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Preface to ”Image and Video Processing and

Recognition Based on Artificial Intelligence

(Volume II)”

Recent developments have led to the powerful application of artificial intelligence (AI)

techniques in image and video processing and recognition. While this state-of-the-art technology has

matured, its performance is still affected by various environmental conditions and heterogeneous

databases. The purpose of this Special Issue was to bring together high-quality and state-of-the-art

academic papers on challenging issues in the field of AI-based image and video processing and

recognition. We solicited original papers of unpublished and completed research that were not

under review by any other conference, magazine, or journal. Topics of interest included, but were

not limited to, the following:

- AI-based image processing, understanding, recognition, compression, and reconstruction;

- AI-based video processing, understanding, recognition, compression, and reconstruction;

- Computer vision based on AI;

- AI-based biometrics;

- AI-based object detection and tracking;

- Approaches that combine AI techniques and conventional methods for image and video

processing and recognition;

- Explainable AI (XAI) for image and video processing and recognition;

- Generative adversarial network (GAN)-based image and video processing and recognition;

- Approaches that combine AI techniques and blockchain methods for image and video processing

and recognition.

Kang Ryoung Park, Sangyoun Lee, and Euntai Kim
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Unsupervised Video Summarization Based on Deep
Reinforcement Learning with Interpolation

Ui Nyoung Yoon, Myung Duk Hong and Geun-Sik Jo *

Artificial Intelligence Laboratory, Department of Electrical and Computer Engineering, Inha University,
Incheon 22212, Republic of Korea
* Correspondence: gsjo@inha.ac.kr; Tel.: +82-032-860-7447

Abstract: Individuals spend time on online video-sharing platforms searching for videos. Video
summarization helps search through many videos efficiently and quickly. In this paper, we propose
an unsupervised video summarization method based on deep reinforcement learning with an interpo-
lation method. To train the video summarization network efficiently, we used the graph-level features
and designed a reinforcement learning-based video summarization framework with a temporal
consistency reward function and other reward functions. Our temporal consistency reward function
helped to select keyframes uniformly. We present a lightweight video summarization network with
transformer and CNN networks to capture the global and local contexts to efficiently predict the
keyframe-level importance score of the video in a short length. The output importance score of
the network was interpolated to fit the video length. Using the predicted importance score, we
calculated the reward based on the reward functions, which helped select interesting keyframes
efficiently and uniformly. We evaluated the proposed method on two datasets, SumMe and TVSum.
The experimental results illustrate that the proposed method showed a state-of-the-art performance
compared to the latest unsupervised video summarization methods, which we demonstrate and
analyze experimentally.

Keywords: video summarization; unsupervised learning; reinforcement learning; piecewise linear
interpolation

1. Introduction

Individuals spend time on online video-sharing platforms such as YouTube to search
for videos. To reduce the search time, thumbnails or summary videos are used to efficiently
and quickly grasp the video content [1]. Over the past few years, video summarization
has become important and has been actively researched to search through video content
or produce summary videos from long videos. The video summarization problem is a
challenging task in predicting the frame-level or shot-level importance scores of videos [2]
and is an abstract and subjective multimodal task without explicit audio-visual patterns or
semantic rules. If a frame of the video is interesting or informative, the importance score
of the frame should be high. These high-scored frames are selected to create the video
summary. Recently, various methods that show high performance using deep learning
have been proposed [3–5]. Deep learning-based video summarization methods are divided
into supervised and unsupervised learning-based methods. For supervised learning-based
methods, creating a labeled dataset is a challenge. Furthermore, it is hard to produce a
dataset covering various domains or scenes. For this reason, we focused on developing an
unsupervised video summarization method.

The reinforcement learning (RL) based unsupervised video summarization method
proposed in [6] demonstrated an improved performance. Specifically, to train the neural
network using RL, there is an efficient and explicit evaluation method to select keyframes,
which is a reward function. Using the evaluation method, the deep neural network ef-
ficiently trains the various features of video such as representativeness, diversity, and

Sensors 2023, 23, 3384. https://doi.org/10.3390/s23073384 https://www.mdpi.com/journal/sensors1
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uniformity. Using RL, we proposed Interp-SUM in the previous work [3], which uses
the piecewise linear interpolation method. With the interpolation method, we mitigated
high variance problems and improved performance with a shorter output of the network.
However, since we fixed the length of output from the network, Interp-SUM had limitations
in increasing the performance for long and short videos. For several videos, the keyframes
were selected only in specific scenes, or the interesting keyframes were not adequately
selected. Furthermore, previous RL-based video summarization methods have several
weaknesses. First, it is difficult to capture the visual and temporal context with their deep
neural networks. Second, many methods use the reward or loss function to train the
network by calculating the visual difference among the keyframes without considering the
temporal distribution of the keyframes. A summary of the video, which keeps the director’s
storyline by selecting keyframes uniformly, helps people easily understand the video.

In this paper, we propose a new reinforcement learning-based video summarization
framework with the interpolation method, which is composed of a new network and a
new reward function such as a temporal consistency reward. To increase the performance,
we used graph-level features. We also present the transformer and convolutional neural
network (CNN)-based video summarization network to accurately predict the importance
scores, as shown in Figure 1. The overall contributions are as follows. (i) We present a
lightweight video summarization network with a transformer network and 1D convolu-
tional neural network to capture the local and global context feature representations and for
efficient interpolation. (ii) We use graph-level features as input features of the video summa-
rization network to efficiently capture long and short context. (iii) We present the temporal
consistency reward function to select interesting keyframes efficiently and uniformly.

Figure 1. Overview: Our goal was to predict the accurate importance score of the keyframes to
produce a summary.

2. Background and Related Work

2.1. Video Summarization

Video summarization methods are divided into supervised and unsupervised learning-
based methods. Both methods use the video summarization dataset, which includes the
frame-level or shot-level importance scores of the video annotated by several users [2,7].
The supervised learning-based method trains the model with the frame-level or shot-level
features of the video as the input to predict the importance scores. With the dataset, this
method calculates the cost with the difference between the predicted importance score and
annotated importance score. The method minimizes the cost of finding the best model.
Many supervised learning-based methods have been proposed.

In [8], the memory-augmented video summarizer was proposed. The memory network
provides supporting knowledge extracted from the whole video efficiently. The global
attention mechanism was used to predict the importance score of a specific shot by adjusting
the score with a holistic understanding of the raw video. In [9], they presented an LSTM-
based network with a determinantal point process (DPP) that encodes the probability
to sample frames to learn representativeness and diversity. In [10], a dilated temporal
relational (DTR) unit in the generator was presented to enhance the temporal context
representation among video frames. To train the network to obtain the best summary of the
video, the adversarial learning method was used with three-player loss functions. In [11],
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to predict the importance score to select key shots, an attention-based encoder–decoder
network was proposed. This network used an encoder with a bidirectional LSTM network
and a decoder with an attention mechanism to train the video representation.

However, the issue with supervised learning-based methods is that it is very difficult to
make a human-labeled video summarization dataset including videos of various categories.
However, the unsupervised learning-based method does not need a human-labeled dataset.
Many unsupervised learning-based methods have been proposed.

In [4], the attention autoencoder (AAE) network replaced the VAE in the SUM-GAN to
improve the training efficiency and performance from the adversarial autoencoder (AAE)
proposed in SUM-GAN. The interesting frames to summarize the video were weighted
while training the networks. In [5], the proposed CSNet (chunk and stride network) was
based on a variational autoencoder (VAE) and generative adversarial network (GAN)
architecture to efficiently train the local and global contexts of the video to predict the video
summary well. In [12], an adversarial autoencoder (AAE) based video summarization
model was proposed. The selector LSTM selected the frames using the input frame-level
features of the video. Then, the variational autoencoder (VAE) generated a reconstructed
video using the selected frames. To train the entire network, the discriminator distinguishes
between the original input video and the reconstructed video. In particular, four loss
functions were used to train the model. In [13], the Cycle-SUM, a SUM-GAN variant, was
proposed. However, the model used a cycle generative adversarial network with two
VAE-based generators and two discriminators to preserve the information in the original
video in the summary video. In [14], the proposed tessellation approach was a video
summarization method that finds visually similar clips and selects the clips that maintain
temporal coherence using the Viterbi algorithm, which is a graph-based method. Rochan
et al. proposed an unsupervised learning-based SUM-FCN [15]. The method presented a
new FCN architecture with the temporal convolution converted from spatial convolution
to handle the video sequence. The method selects frames using the output score of the
decoder and calculates the loss function with a repelling regularizer to enforce the diversity
of the frames in the summary video.

2.2. Policy Gradient Method

Deep reinforcement learning combines a deep neural network with a reinforcement
learning method [16]. The policy gradient method is one of the model-free reinforcement
learning methods. The policy gradient method parametrizes the policy to the deep neural
network model and optimizes the model by maximizing reward over the state distribution
defined by the policy using gradient descent methods such as stochastic gradient descent
(SGD). The method calculates and minimizes the cost with the objective function to train
the neural network. However, policy gradient methods have several problems such as
the low sample efficiency problem [17] and the high variance problem. The reason for the
low sample efficiency problem is that the agent requires more samples such as human
experience to learn actions in the environment (states) compared to humans as the agent is
not as intelligent as a human. The high variance problem of the estimated gradient is caused
by the long-horizon problem and the high-dimensional action space [18]. The long-horizon
problem arises from the hugely delayed reward for a long sequence of decisions to achieve
a goal. In this paper, we used a policy gradient with a baseline to reduce the variance and
increase the number of episodes to mitigate the sample efficiency problem. We also used
the piecewise linear interpolation to mitigate the high variance problem.

3. Method

The video summarization problem is formulated as a keyframe selection problem
using the importance score predicted by the video summarization network. As illustrated
in Figure 2, to predict accurate importance scores, we developed a video summarization net-
work that consists of a transformer encoder network and the Pointwise Conv 1D network.
The transformer encoder network encodes the input graph-level features, and Pointwise
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Conv 1D network decodes the features to efficiently generate importance score candidates.
The importance score candidates are interpolated to the importance scores with piecewise
linear interpolation and are converted to a frame-selection action to select keyframes as a
summary using the Bernoulli distribution. Furthermore, the proposed temporal consistency
reward function and adopted diversity and representativeness reward functions were used
to measure how good the generated summary with the importance scores was. Then, we
trained the video summarization network with the policy gradient-based training method
using the calculated reward.

Figure 2. Unsupervised video summarization framework-based on deep reinforcement learning with
piecewise linear interpolation.

3.1. Video Summarization Network

First, suppose the sequence length is N and the frame number is t, the frame-level
visual features { ft}N

t=1 are extracted from the input video using GoogleNet [19], which
is a powerful CNN for image classification trained with the ImageNet dataset. Let the
embedding size of the frame-level visual features is M, and the shape of the frame-level
visual features is like (N, M). Feature extraction is important for capturing the visual
characteristics of the frame image as a low-dimensional feature vector. Therefore, the
extracted features efficiently calculate the visual differences among frames in the video.

In recent years, graph neural networks (GNNs) have been extensively studied and
it has shown state-of-the-art performance in various deep learning applications [20]. In
this paper, we considered the keyframe selection problem as a graph-based anchor node
finding or graph-based pathfinding problem. Because graph-level features have a rela-
tionship and the structural information of nodes, it is very useful to capture the temporal
dependency among keyframes, specifically, to capture the relationship between scenes. In
GNN, the graph-level features and graph representation mean that the low-dimensional
node embeddings are encoded by a neural network. However, in this paper, we simply
defined the graph-level features (1), that is, the features made of multiplying the node-level
features F (N × M) and adjacency matrix A (N × N) without trainable embeddings, as
shown in Figure 3. We built an adjacency matrix that represents edge information with
node-level features.

{xt}N
t=1 = FA (1)

4



Sensors 2023, 23, 3384

Figure 3. Convert the input features to the graph-level features.

As illustrated in Figure 4a, the proposed video summarization network had a trans-
former and CNN to predict the keyframe-level importance score candidates with graph-
level features. Transformer networks are widely used in sequence learning such as natural
language understanding and video understanding because the network learns spatio-
temporal context very efficiently. The original transformer network is composed of the
encoder and decoder network and we only used the encoder network. The transformer
encoder network in our network was made of four layers and eight heads. After the trans-
former encoder network, we encoded the features from 1024 to 512, which is an embedding
size M using a fully connected layer. We used the layer normalization (LayerNorm) layer,
which can efficiently train and distribute importance score candidate values uniformly to
prevent the importance scores of each frame that do not have the same values after the
sigmoid function because the sigmoid function minimizes the difference in the importance
scores among frames. As illustrated in Figure 4b, the Pointwise 1D convolutional (Conv 1D)
network is a very lightweight network to train temporal dependencies. It summarizes the
frame-level features into the short length I of features to make importance score candidates
using the convolution filter as a sliding window. In the previous work, Interp-SUM [3],
since the method fixed the length I of the importance score candidate, had limitations in
terms of increasing the performance for the long and short videos. On the other hand, the
Pointwise Conv 1D network provides flexibility for various lengths of videos. For example,
if the sequence length of a video is 213, kernel size is 15, and stride size is 3, then the length
of the importance score candidates is 65 as shown in Figure 4a. After the network, we
reduced the embedding size to 1 and used the sigmoid function to obtain the importance
score candidates C = {ct}N

t=1.

5
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Figure 4. The overall architecture of our network.

3.2. Piecewise Linear Interpolation

Interpolation is an estimation method that finds new data points based on the range
of certain known data points. Specifically, piecewise linear interpolation connects the data
points with the linear line and calculates intermediate data points on the line [3]. We
first aligned the importance score candidates C to fit the sequence length N of the input
features with the same intervals. We also interpolated the importance score candidates
to the importance score S using piecewise linear interpolation. Finally, we obtained the
importance scores of each frame as frame-selection probabilities to select the keyframes.
The policy gradient-based reinforcement learning method has a high variance problem.
The high variance problem occurs in the high-dimensional action space, for example,
the frame-selection action space for video summarization. Moreover, since we used the
Bernoulli distribution to select frames based on an exploration strategy, the reward of
the frame-selection action changed in every step in the case of high-dimensional action
space. Next, the variance of the gradient estimate calculated with a cumulated reward
increased, and a high variance problem caused lower training efficiency and performance.
To mitigate the high variance problem, we proposed an interpolation method. When the
frames were selected using interpolated importance scores, adjacent frames had similar
importance scores and were selected together. This had the effect of reducing the action
space and mitigated the high variance problem. The interpolation method facilitated the
generation of a natural sequence of summary frames because the near keyframes that had
high importance scores were selected by each other. Moreover, the interpolation method
reduced the computational complexity of the video summarization network. This makes
the video summarization network learn faster because the network needs to predict only
the I length of the important candidates, and not all.

To select the keyframes as a summary, the Bernoulli distribution (2) was used, which is
a discrete probability distribution to convert the importance score S to the frame-selection
action A = {at|at ∈ {0, 1}, t = 1, .., N}. If the frame-selection action of a frame is equal
to 1, this keyframe is selected as a summary. The Bernoulli distribution promotes the
exploration of the various summaries of the video as it randomly creates variants of the
frame-selection action.

A ∼ Bernoulli(at; st) =

{
st, f or at = 1

1 − st, f or at = 0
(2)

6
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3.3. Reward Functions

To train the video summarization network efficiently, we adopted the diversity reward
function and the representativeness reward function [6], and we proposed a temporal
consistency reward function. The temporal consistency reward function and representa-
tiveness reward function considered the visual similarity distance and temporal similarity
distance among keyframes.

The diversity reward function Rdiv (3) computes the dissimilarity among the keyframes
selected by the frame-selection action with the extracted features. With this reward func-
tion, the network is trained to predict the importance score to selecting diverse frames as
keyframes of the summary. The summary, consisting of these keyframes, allows individ-
uals to easily grasp the content of the video. To maintain the storyline of the video and
reduce the computational complexity, we limited the temporal distance to 20 to calculate
the dissimilarity among the selected keyframes. Without this limitation, even when the
flashback scenes or similar scenes were far from the selected keyframe, they were ignored
when selecting diverse frames.

Let the indices of the selected keyframes be J =
{

ik
∣∣aik = 1, k = 1, 2, . . . , |J |

}
, and

the diversity reward function is

Rdiv =
1

J ( J − 1) ∑
t∈ J

∑
t′∈J
t �=t′

(
1 − xT

t xt′

‖xt‖2‖xt′ ‖2

)
(3)

The representativeness reward function Rrep (4) computes the similarity between the
selected keyframes and all the keyframes of the video using the extracted features. With this
reward function, the network is trained to predict the importance score to select keyframes
of the summary that represent the video. Dt is the distance between the selected keyframes
and st is the importance score of the selected keyframe.

Rrep = exp

(
− 1

N

N

∑
t=1

Dt × st

)
(4)

Dt = min
t′∈J

‖xt − xt′ ‖2 (5)

To create a superior summary of the video and increase performance, we applied
the importance score S to the representativeness reward function, for example, D × st. In
particular, if the video summarization network predicts a high importance score for the
representative keyframes that are selected, the distance D is decreased and the reward
function returns a high reward. If the importance score of other keyframes except the
representative keyframes is low, the reward function also returns a high reward for the
selected keyframes. Therefore, the video summarization network is trained to minimize
the average distance of the selected keyframes and to maximize the importance scores
of the representative keyframes by minimizing the importance scores of other keyframes.
This means that the reward is dynamically updated by applying the importance score to
efficiently select more representative keyframes.

Rcon =
1

log
(

∑J
k=1(ik − jk)

2/|J |
) (6)

jk = (argmin
k∈|J |

‖xik − x ‖) (7)

The temporal consistency reward function Rcon (6) is proposed to efficiently and
uniformly select representative shot-level keyframes. To calculate the reward function,
we repeated the process to find the nearest neighbor of the selected keyframes jk (7) in all
keyframes {xt}N

t=1 until the number of all keyframes |J |, and we calculated the distance
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between jk and jk. To normalize the reward, the distance was divided by |J |, and the
log probability was used. In the training process, the temporal consistency reward was
increased by minimizing the distance.

To explain the temporal consistency reward in detail, as described in Figure 5, we
calculated the similarities among the selected keyframes such as V4′

i of Vsummary
i and the

other keyframes of Vall
i . We selected the keyframes such as V3

i , which were most similar to
the keyframes of V4′

i , except for itself. Then, we defined the KA as a group of keyframes
that had similar scenes around the neighbor keyframes and KB as a group of keyframes
that had no similar scenes near the selected keyframes or had no similar scenes in the
video, as described in Figure 5. The keyframes in KA are the representative keyframes of
the surrounding keyframes. To figure out the number of keyframes included in KA, we
calculated the distance between the selected keyframe and the nearest neighbor of the
selected keyframe and counted the selected keyframes that were shorter than the specified
threshold. All of the keyframes were counted, except KA, as the KB. Depending on the
storyline intended by the director, scenes similar to the keyframes included in KB often
appear sparsely or are only shown once. This means that the summary created with the
keyframes included in KB limits the users’ understanding of the video content because
these keyframes are typically less interesting. In other words, these keyframes are not
representative. Therefore, these keyframes need to be removed from the summary to
increase the users’ understanding. Another advantage is that the temporal consistency
reward function mitigates the problem of the excessive selection of specific scenes in the
video and helps to select keyframes uniformly because the reward function helps to find
local representative keyframes among neighboring keyframes, and not global representative
keyframes. However, in the case of videos with large parts of static content, the proposed
reward function increases the information redundancy in summary. However, the diversity
reward function mitigates the redundancy problem while training.

Figure 5. Example of the temporal consistency reward function.

3.4. Training with Policy Gradient

The quality of the generated summary was evaluated with the sum of the rewards.
With the reward, the proposed video summarization network was trained as a parameter-
ized policy πθ using the policy gradient method. The method is a reinforcement learning
method that explores a better action strategy to obtain a better summary using the gradient
descent algorithm. To explore the variety of action strategies, the objective function of
the exploration strategy of exploring the under-appreciated reward (UREX) method was
used [21]. If the log probability log πθ(at | ht) of the action πθ(at | ht) under the policy
underestimates its reward

(
at | ht) =

(
Rrep + Rdiv

)
/2 + Rcon , the action will be further

explored by the exploration strategy.

8
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To calculate the objective function of UREX OUREX, the log probabilities of the ac-
tion and the rewards in episode J were used. OUREX is the expectation of the reward
R(at | ht) , which is the sum of the rewards and the reward-augmented maximum likeli-
hood (RAML) objective function. The set of normalized importance weights of the rewards
for each episode j is computed using the softmax function to approximate the RAML
objective function.

OUREX(θ; τ) = Eh∼p(ht)

{
∑

a∈A
R(at | ht)

}
(8)

The baseline, an essential technique for the policy gradient to reduce the variance of
the gradient estimate and improve computational efficiency, was applied. The baseline is
calculated as the moving average of rewards experienced thus far. To reduce the variance
efficiently, we calculated the baselines per input video. As illustrated in the equation below,
baseline B was computed as the sum of baseline b1 for each input video and the baseline
b2, which was the average of all baselines for all videos. Finally, the Lrwd is maximized as a
cost to train the network.

B = 0.7 × b1 + 0.3 × b2 (9)

Lrwd = OUREX(θ; τ)−B (10)

3.5. Regularization

The regularization term Lreg proposed in [6] was used to control the probability of
selecting the keyframe using the importance score. If most of the importance scores are close
to 1 or 0, the probability of selecting the wrong keyframes as a summary can be increased.
For example, if the importance scores of all keyframes are 1, the video summarization
network selects all keyframes as the summary. Consequently, this term was used to
make the importance score closer to 0.5 while training. The number (0.5) means that this
term helps to select keyframes as summaries evenly based on the exploration strategy of
reinforcement learning. To avoid the rapid convergence of the importance score to 0.5 while
training, 0.01 was multiplied as below.

Lreg = 0.01 ×
(

1
N

×
N

∑
1

st − 0.5

)2

(11)

After all of the loss functions were computed, the final loss for video summarization
Lsummary was calculated, and the backpropagation was conducted.

Lsummary = Lreg − Lrwd (12)

Algorithm 1 applies to the training procedure of the proposed video summarization
network with the policy gradient method.

Algorithm 1. Training Video Summarization Network

1: Input: Graph-level features of the video (xt)
2: Output: Proposed network’s parameters (θ)
3:
4: for the number of iterations do
6: C ← Network(xt) % Generate importance score candidate
7: S ← Piecewise linear interpolation of C
8: A ← Bernoulli Distribution(S)% Action A from the score S
9: % Calculate Reward Functions and A Loss Function using A and S
10: {θ} +← −∇

(
Lreg − Lrwd

)
% Minimization

11: % Update the network using the policy gradient method:
12: end for

9
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3.6. Generating a Video Summary

In the SumMe and TVSum datasets, we used the shot-level importance score to com-
pare with other methods. To detect the shots of the video, the kernel temporal segmentation
(KTS) method, which detects change points such as shot boundaries, is used [22]. The
shot-level importance scores are calculated by averaging the frame-level importance scores
in a shot. To generate the video summary, key shots were selected over the top 15% of
the video length and sorted by the score. This step applies the same concept as the 0–1
Knapsack problem to maximize the importance of the summary video as described in [6].

4. Experiments

4.1. Dataset

Our proposed video summarization method was evaluated on two datasets: SumMe [2]
and TVSum [7]. The SumMe dataset consists of 25 videos covering various topics such
as extreme sports or airplane landings. Each video length was about 1 to 6.5 min long,
and the average number of frames was 4692.8. The average number of shot changes was
29.76. The frame-level importance scores for each video were annotated. The TVSum
dataset consists of 50 videos of various topics such as vlogs, news, and documentary. The
shot-level importance scores for each video were annotated and the videos varied from
2 to 10 min, and the average number of frames was 7047.06. The average number of shot
changes was 47.46.

4.2. Evaluation Setup

For a fair comparison with other methods on two datasets, the evaluation method used
in [6] to compute the F-measure as a performance metric was applied. First, the precision
and recall were calculated based on the result. Then, the F-measure was computed. Let G
be the generated shot-level summary by our proposed method and A be the user-annotated
summary in the dataset. Both the precision and recall were calculated based on the amount
of temporal overlap between G and A, as seen below.

Precision =
Duration of overlap between G and A

Duration of G
(13)

Recall =
Duration of overlap between G and A

Duration of A
(14)

F − measure =
2 × Precision × Recall

Precision + Recall
× 100% (15)

The 5-fold cross-validation was used to find the performance of our method for a
fair comparison. Our method was tested for five different random splits and the result
of the average performance was taken. To create random splits, the videos were split
into training and validation datasets. Moreover, the F-measure was computed using the
validation dataset.

4.3. Implementation Details

The proposed video summarization network was developed using Pytorch 1.7.1 and
consisted of a transformer encoder network and a Pointwise 1D Conv network. The
transformer encoder network consisted of six transformer encoder layers with eight heads
and 512 hidden units. Moreover, the Pointwise 1D Conv network was based on 15 kernel
sizes and three stride sizes. The Adam optimizer was used to train the network with a
learning rate of 0.00001 for 1000 epochs.

4.4. Performance Evaluation
4.4.1. Quantitative Evaluation

As illustrated in Table 1, the proposed methods with different kernel sizes and stride
sizes were compared to analyze the performance of a Pointwise 1D Conv network for
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interpolation. By changing the receptive field size using the kernel size, the importance
score candidates were produced to capture the short-term or long-term context information
in a video efficiently. By changing the stride size, we reduced the size of important
score candidates to be interpolated to make a lightweight video summarization network
and mitigate the high variance problems, as explained in the previous section. For the
SumMe dataset, the method with 15 kernel sizes and three stride sizes showed the highest
performance. For the TVSum dataset, the method with five kernel sizes and three stride
sizes showed the highest performance.

Table 1. Results (F-measure, %) of the comparison among our methods with different kernel and
stride sizes.

Kernel Size Stride Size SumMe TVSum

3 3 50.78 59.76
5 3 51.58 60.08
10 3 49.74 59.54
15 3 51.66 59.86
15 5 50.70 59.62
15 10 47.88 56.54
20 3 49.16 59.06
25 3 46.22 56.46

We noted that the performance was decreased because of the lack of context informa-
tion caused by the shorter importance score candidates as the kernel size and stride size
increased. In addition, the performance decreased rapidly as the stride size increased. We
observed that the performance degradation was caused by the missed context information
between scenes due to the short length of the importance score candidates because the
length of the importance score candidates is mainly influenced by the stride size. The result
of the TVSum dataset showed better performance than the result of the SumMe dataset at
a smaller kernel size. This is because the training efficiency of the video summarization
network was low since the length of the importance score candidates rapidly shortened
when the kernel size was large, and the video length was long like the videos in the TVSum
dataset. In other words, the training efficiency of the video summarization network was
decreased by the shortened importance score candidates. We chose the proposed method
as the best-performing method showing the best F-measure (51.66) on the SumMe dataset
and the second best F-measure (59.86) on the TVSum dataset. We chose the best-performing
method because increasing the performance of a small number of videos such as the SumMe
dataset is more complicated than the TVSum dataset.

As illustrated in Table 2, variants of the proposed method were compared. Our method
without the Pointwise 1D Conv network and interpolation showed lower performance on
both datasets than the proposed method, which means that the proposed convolutional
neural network and interpolation method are useful for improving the performance. Our
method without the temporal consistency reward function showed a lower performance
on the SumMe dataset, but showed a higher performance on the TVSum dataset. In the
case of the SumMe dataset, the average length of the videos was short and the number
of keyframes was small. The temporal consistency reward function helped to improve
the performance in the dataset, which had many similar scenes among the keyframes.
In the case of the TVSum dataset, the temporal consistency reward function was less
effective. Because the video was long and the number of keyframes was large, similar
scenes among keyframes were small. Our method without graph-level features showed a
lower performance result on both datasets. This means that the graph-level features are
very effective in improving performance.
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Table 2. Results (F-measure, %) of the comparison among variants with 15 kernel sizes and three
stride sizes.

Method SumMe TVSum

Ours w/o 1D Conv Network and w/o Interpolation 50.02 58.70
Ours w/o Temporal Consistency Reward 49.88 60.58

Ours w/o Graph-level Features 50.46 57.26
Ours 51.66 59.86

Table 3 illustrates the difference between our proposed method and the existing
unsupervised-based state-of-the-art methods. The results demonstrate that our proposed
method showed a state-of-the-art performance on the SumMe dataset and high performance
on the TVSum dataset. However, AC-SUM-GAN was 1.24% better than our proposed
method on the TVSum dataset and DSR-RL-GRU was 0.57% better on the TVSum dataset.
Although AC-SUM-GAN and DSR-RL-GRU performed better on the TVSum dataset, AC-
SUM-GAN was more complicated than the proposed method and both methods could not
make a natural sequence of summary like the proposed method without the interpolation
method. However, these methods showed a lower performance than the proposed method
on the SumMe dataset. Additionally, our proposed method demonstrated significantly
improved results compared with the experimental results of our previous proposal (Interp-
SUM). Specifically, the results showed that the videos in the SumMe dataset were close to
the average keyframe length (293) such as ‘Car over camera’ (293, 73.2%), ‘Air force one’
(300, 60.0%), and ‘Kids playing in leaves’ (213, 50.2%), which showed the highest F-measure
(%). In addition, the summary results of the short videos such as ‘Fire Domino’(108, 60.2%),
and ‘Paluma jump’ (172, 61.9%) showed a high F-measure (%). However, the result of
long videos such as ‘Cockpit landing’ (604, 28.8%), and ‘Uncut evening flight’ (645, 19.4%)
showed a low F-measure (%). We noted from our analysis that it was difficult to find
representative keyframes in the case of long videos, as selecting keyframes from the long
video caused a high variance problem. However, there were cases where the video length
was short, but the F-measure (%) was high such as ‘Fire Domino’ (108, 60.2%). We noted that
the proposed method selected representative keyframes well when the visual dissimilarity
among scenes was high.

Table 3. Results (F-measure, %) of the comparison among the unsupervised-based methods tested on
SumMe and TVSum. +/− indicates better/worse performance than ours.

Method SumMe TVSum

SUM-GAN [12] 39.1 (−) 51.7 (−)
SUM-FCN [15] 41.5 (−) 52.7 (−)

DR-DSN [6] 41.4 (−) 57.6 (−)
Cycle-SUM [13] 41.9 (−) 57.6 (−)

CSNet [5] 51.3 (−) 58.8 (−)
UnpairedVSN [23] 47.5 (−) 55.6 (−)

SUM-GAN-AAE [4] 48.9 (−) 58.3 (−)
CSNet+GL+RPE [24] 50.2 (−) 59.1 (−)
AC-SUM-GAN [25] 50.8 (−) 60.6 (+)
DSR-RL-GRU [26] 50.3 (−) 60.2 (+)
AuDSN-SD [27] 47.7 (−) 59.8 (−)
Interp-SUM [3] 47.68 (−) 59.14 (−)

Ours 51.66 59.86

4.4.2. Qualitative Evaluation

Figure 6 is an example of the predicted importance scores by the proposed video sum-
marization method and the video thumbnails of the keyframes, as presented in Figure 6a,c.
The proposed video summarization network with the interpolation method generated a
more natural sequence of a summary than the network without the interpolation method
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and the network selected the keyframes in the main content of the video well and uniformly.
With the interpolation method, the network predicted the importance scores of the main
content as being similar to the importance score of the highest important keyframe. As
presented in Figure 6b,c, the method without linear interpolation did not properly select all
keyframes of the main content as a summary because it is hard to predict the importance
score accurately by the unsupervised learning-based method.

Figure 6. Example of the predicted importance scores by the proposed method and video thumbnails
of the keyframes (The gray color means the importance score and the red color means the selected
keyframes by the proposed method).

5. Conclusions

In this paper, we proposed an unsupervised video summarization method based on
deep reinforcement learning with an interpolation method. We designed a lightweight
video summarization network to predict the accurate importance score candidates of
keyframes and we interpolated the importance score candidates with a piecewise linear
interpolation method to generate a natural sequence of summary and to mitigate the high
variance problem. To train the video summarization network by the reinforcement learning
method efficiently, we used graph-level features and proposed a temporal consistency
reward function to select keyframes uniformly and adopted the representativeness and
diversity reward functions. The experimental results illustrate that the proposed method
showed state-of-the-art performance compared to the latest unsupervised video summa-
rization methods, which we demonstrated and analyzed experimentally. Moreover, the
proposed method robustly summarized various types of videos in the two datasets. How-
ever, based on the experimental results, the proposed method showed a lower performance
on long videos due to the high variance problem. Conversely, the proposed method showed
the best performance on the videos that were shorter than about 300 keyframes. Therefore,
the proposed method is very useful for the video summarization of short-form videos.
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Abstract: Hand detection and classification is a very important pre-processing step in building
applications based on three-dimensional (3D) hand pose estimation and hand activity recognition.
To automatically limit the hand data area on egocentric vision (EV) datasets, especially to see the
development and performance of the “You Only Live Once” (YOLO) network over the past seven
years, we propose a study comparing the efficiency of hand detection and classification based on
the YOLO-family networks. This study is based on the following problems: (1) systematizing all
architectures, advantages, and disadvantages of YOLO-family networks from version (v)1 to v7;
(2) preparing ground-truth data for pre-trained models and evaluation models of hand detection
and classification on EV datasets (FPHAB, HOI4D, RehabHand); (3) fine-tuning the hand detection
and classification model based on the YOLO-family networks, hand detection, and classification
evaluation on the EV datasets. Hand detection and classification results on the YOLOv7 network and
its variations were the best across all three datasets. The results of the YOLOv7-w6 network are as
follows: FPHAB is P = 97% with TheshIOU = 0.5; HOI4D is P = 95% with TheshIOU = 0.5; Rehab-
Hand is larger than 95% with TheshIOU = 0.5; the processing speed of YOLOv7-w6 is 60 fps with a
resolution of 1280 × 1280 pixels and that of YOLOv7 is 133 fps with a resolution of 640 × 640 pixels.

Keywords: hand detection; hand classification; YOLO-family networks; convolutional neural
networks (CNNs); egocentric vision

1. Introduction

Building an application to support the rehabilitation of the hand after surgery is an
issue of interest in artificial intelligence, machine learning, deep learning, and computer
vision. The quantification of the patient’s hand function after surgery was previously
only based on the subjectivity of the doctors. To have objective and accurate assessments
and exercise orientation for patients, it is necessary to support an assessment system.
Through the research process, we propose a model to build a help system, as illustrated in
Figure 1. Figure 1 includes three steps: Input—image sequence from EV; hand tracking
detection; estimate 2D, 3D hand pose; hand activities recognition; Output—quantification
sums up the results to show the action ability of the hand. An EV dataset refers to a
dataset that is collected from the perspective of a single individual, usually with the use of
wearable cameras or other devices that record the individual’s view of their surroundings.
These datasets typically include video and audio, and they may be used in a variety of
applications, such as computer vision, human–computer interaction, and virtual reality.
Figure 1 presents hand detection as an important pre-processing step in the application
construction process; the detected hand data area is very decisive to the estimation space
of the 2D hand pose and 3D hand pose. The problem of hand detection is not a new
study; however, the problem persists when it comes to detection in the EV datasets. Since
the fingers are obscured by the direction of view or other objects, the visible data area is
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only the back of the hand. Often, studies using deep learning models for 3D hand pose
estimation and hand activity recognition apply third-person viewpoint datasets such as the
NYU [1], ICVL [2], and MSRA [3] datasets. These datasets usually have segmented hand
data with the environment and hand data not obfuscated and lost data of the fingers, as
illustrated in Figure 2.

Figure 1. Framework for building an image-based rehabilitation evaluation system of the EV. Hand
detection and classification is an important pre-processing step to limit the hand data area for hand
pose estimation and activity recognition to assess hand activity levels.

Figure 2. Illustration of obscured fingers in the FPHAB dataset [4].

During the research, we performed a study using Google Mediapipe (GM) [5,6] for
hand detection and classification [7] on the HOI4D [8] dataset. The results show that the
pre-trained models of models have low results in hand detection and classification (Tables 1
and 2 [7]). Figure 3 shows some cases where the hand is not detected when using the GM
on the FPHAB and HOI4D datasets.

Recently, the YOLOv7 model was proposed by Wang et al. [9]. YOLOv7-E6 [9] is more
accurate and faster than SWINL Cascade-Mask R-CNN [10] by 2% and 509%, respectively.
YOLO v7 is more accurate and faster than other versions of YOLO such as YOLOR [11],
YOLOX [12], Scaled-YOLOv4 [13], YOLOv5 [14], DETR [15], and Deformable DETR [16].
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Figure 3. Illustrating some cases where the hand cannot be detected in the image when using the GM
on the FPHAB and HOI4D datasets.

In this paper, we are interested in the “hand detection and classification” pre-processing
step. We propose using YOLO-family networks with their advantages of accuracy and
processing speed for fine-tuning the pre-trained model to detect and classify hand action
on many different EV datasets (FPHAB [4], HOI4D [8], RehabHand) with many contexts
and different hand movements. FPHAB [4] and HOI4D [8] datasets are two datasets col-
lected from EV and published to evaluate 2D and 3D hand pose estimation models. The
RehabHand dataset is also collected from EV mounted on patients who practice grasping
rehabilitation at Hanoi Medical University Hospital, Vietnam.

The main contributions of the paper are as follows:

• A framework for building an image-based rehabilitation evaluation system of EV
is proposed.

• We systematize the architectures of the YOLO-family networks for object detection.
• We fine-tune hand action detection and classification of the model based on the YOLO-

family networks on the first-person viewpoint/EV datasets (FPHAB [4], HOI4D [8],
RehabHand [17]).

• We manually mark the hand data area in the datasets for the evaluation of the hand
detection results on the FPHAB [4], HOI4D [8], and RehabHand [17] datasets.

• Experiments on hand action detection and classification are presented in detail, and
the results of hand action detection and classification are evaluated and compared with
YOLO-family networks on the FPHAB [4], HOI4D [8], and RehabHand [17] datasets.

The content of this paper is organized as follows: Section 1 introduces the applications
and difficulties of hand action detection and classification on the EV datasets. Section 2
discusses related research in this field. Section 3 presents the process of applying YOLO-
family networks to fine-tune the hand action detection and classification models. Section 4
compares the models quantitatively and shows qualitative experiments. Section 5 concludes
the contributions and presents the future works.

2. Related Works

The problem of hand detection and classification is not a new research direction.
However, the results of hand detection are very important in the process of building
applications for human–machine interaction or building support systems. However, when
detecting the hand on datasets obtained from EV, there are still some challenges caused by
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the external conditions, such as fingers being completely obscured due to the viewpoint of
the camera and obscured by objects when grasping the object, where the image obtained
only has data of the hand palm. There are also now several EV datasets to evaluate
computer vision studies. Recently, Marcos et al. [18] published a helpful survey research
on activity recognition on EV datasets.

Ren et al. [19] proposed a dataset called Intel EV with 10 video sequences. The total
amount of video data is about 120 min, with 100,000 frames; about 70,000 frames contain
objects, with about 1600 per object and 42 different hand actions. Fathi et al. [20] published
a database under the name GTEA Gaze with more than 30 different types of food and
objects. GTEA Gaze includes 94 types of actions and 33 classes of objects. There are also
some typical databases collected from EV such as H2O [21], Meccano [22], etc.

Particularly, Bandini et al. [23] analyzed problems of computer vision based on an
EV dataset. The authors focused on three main research directions: localization (hand
detection, hand segmentation, hand pose estimation), interpretation (hand gesture recogni-
tion, grasping object, hand action recognition, hand activity recognition), and application
(hand-based human–computer interaction, healthcare application). The three research di-
rections explored in Bandini et al.’s [23] paper constitute a unified process with the output
applications based on hand data obtained from EV.

Today, with the development of computer hardware and the advent of deep learning,
researchers have become equipped with novel tools, the most prominent of which are
various convolutional networks (CNN). There have been many published CNN-based re-
searches on hand detection such as YOLOv1 [24], YOLOv2 [25], YOLOv3 [26], YOLOv4 [27],
YOLOv5 [14,28], YOLOv7 [9], Mask R-CNN [29,30], SSD [31], MobileNetv3 [32], etc. Some
of the most prominent results are shown in Figure 1 of Wang et al.’s work [9], where
YOLOv7 achieved the best results in terms of accuracy and speed.

More specifically, a study by Gallo et al. [33] used YOLOv7 to evaluate the detection
of weeds near plants using images collected from UAVs. The results of the weeds are a
mAP@0.5 score of 56.6%, recall of 62.1%, and precision of 61.3%. Huang et al. [34] used
YOLOv3 to detect and determine the patient’s venous infusion based on flow waveforms.
The results were compared with RCNN and Fast-RCNN. Detection results showed a
precision of 97.68% and recall of 96.88%. Liu et al. [35] used the YOLOv3 model with
four-scale detection layers (FDL) to detect combined B-scan and C-scan GPR images. The
proposed method can detect both large particles and small cracks. Recently, Lugaresi
et al. [5] and Zhang et al. [6] proposed and evaluated a Mediapipe framework that can
perform hand detection on both a CPU and GPU with 95.7% detection accuracy with all
types of hand palms in real life.

3. Hand Action Detection and Classification Based on YOLO-Family Networks

3.1. YOLO-Family Networks for Object Detection

Object detection is an important problem in computer vision. YOLO is a convolutional
neural network rated with average accuracy; however, the computation speed is very fast
and the computation can be performed on a CPU [36]. As studied by Huang et al. [36],
when evaluated on the Pascal VOC 2012 dataset, the accuracy results of R-FCN [37], Faster
R-CNN [38], SSD [39], and YOLOv3 [26] are 80.5%, 70.4%, 78.5%, and 78.6%, respectively.
The processing time results of R-FCN [37], Faster R-CNN [38], SSD [39], and YOLOv3 [26]
are 6 fps, 17 fps, 59 fps, and 91 fps, respectively. Before YOLO was born, there were some
CNNs such as R-CNN, Fast R-CNN, and Faster R-CNN using a two-stage detector method
that obtained very impressive accuracy results but high computation time. To solve the
computation time problem, YOLO uses one-stage detectors for object detection.

YOLO version 1 (YOLOv1) [24] uses 24 convolutional layers: 1 × 1 reduction layers
(used to reduce image size) followed by 3 × 3 convolutional layers, and max pooling layers.
The architecture ends with two fully connected layers. The result is a three-dimensional
matrix of size 7 × 7 × 30, as illustrated in Figure 4.

20



Sensors 2023, 23, 3255

Figure 4. YOLOv1 architecture for object detection [24].

YOLO divides the image into S × S cells, with each cell being a matrix A. If the center
of the object is in the cell (i, j), the corresponding output will be in A[i, j]. The prediction
process is performed in two steps as follows: the convolutional network performs the
feature extraction of the images; extra layers (fully connected layers) analyze and detect the
object, then return the output as a matrix A of the following size:

size(A) = S × S × (5 × B + C) (1)

where B is the number of bounding boxes; each bounding box has five components:
(x, y, w, h, CS). Confidence Score CS is the probability that the cell contains an object.
Finally, the C elements are the representation of the probability distribution of the class
object. This C element is a probability distribution pi and satisfies

c

∑
i=0

pi = 1 (2)

Loss function: YOLO uses the Sum-Squared Error (SSE) function. The values x, y, w, h,
C are the values of the ground truth box, and the values x̃, ỹ, w̃, h̃, C̃ are the predicted
bounding box.

SSE = E1 + E2 + E3 + E4 + E5 (3)

where

E1 = λcoord

S2

∑
i=0

B

∑
j=0

LF
object
ij [ (xi − x̃i)

2 + (yi − ỹi)
2] (4)
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∑
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object
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√
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√
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√
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2
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E3 = λcoord
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∑
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object
ij (Ci − C̃i)

2 (6)

E4 = λno_object

S2

∑
i=0

B

∑
j=0

LF
no_object
ij (Ci − C̃i)

2 (7)

E5 =
B

∑
j=0

LF
object
i ∑

c∈classes
(pi(c)− p̃i(c))2 (8)

where E1 is xy_loss when the object exists at boxj in celli;
E2 is wh_loss when the object exists at boxj in celli;
E3 is con f idence_loss when the object exists at boxj in celli;
E4 is con f idence_loss when objects do not exist in the boxes;
E5 is class_probability_loss in the cell where the object exists.
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Further, LFobject
ij = 1 if in the ith cell, there is a jth box containing an object;

LF
no_object
ij is the opposite of LFobject

ij ;

LF
object
ij = 1 if the ith cell contains an object (otherwise, it is 0);

λcoord, λno_object is the component weight.
However, even a good model still has a case: predicting multiple bounding boxes

for the same object. To solve this problem, YOLO filters out redundant bounding boxes
(duplicate and same class) by non-maximum suppression with two steps as follows:

- Boxes with con f idence_score are ranked from high to low [box_0, box_1, · · · , box_n].
- Traverse from the top of the list, for each box_i, removing box_j that have

IOU(box_i, box_j) ≥ threshold, where j > i. The threshold is a pre-selected thresh-
old value. IOU is the formula for calculating the overlap–interference between two
bounding boxes, as computed in Equation (10).

YOLOv2 [25] was born to improve on the weaknesses of YOLOv1 [24]. YOLOv2
makes the following improvements:

• Batch Normalization (BN): adding BN to all convolutional layers. This allows weights
that would never have been learned without BN to be learned again, and reduces the
dependence on the initialization of parameter values.

• High-Resolution Classifier: training the classifier with 224 × 224 and training with
448 × 448 at least 10 epochs for object detection.

• Anchor Box: they are pre-generated bounding boxes (not model-predicted bounding
boxes). With a grid, it creates some K anchor boxes with different sizes. These anchor
boxes will predict whether it contains an object or not, based on the results of the
calculation of the IOU between it and the ground truth (if the IOU > 50%, the anchor
box is considered to contain the object). Figure 5 shows the process of using anchor
boxes for object prediction in an image. YOLOv2 divides the image into 13 × 13
grid cells; so, the ability to find small objects is higher than that of YOLOv1, which is
7 × 7. YOLOv2 is trained on images that vary in size from 320 × 320 up to 640 × 640.
This enables the model to learn more features of the object and have higher accuracy.
YOLOv2 uses the Darknet19 with 19 convolution layers along with 5 max-pooling
layers (it does not use fully connected layers for prediction but anchor boxes instead).
Without using fully connected classes and using anchor boxes instead, the final result
of the model will be 13 × 13 × 125. For each tensor of size 1 × 1 × 125, it is calculated
as follows: k× (5 + 20), where k = 5 and 20 is the number of pre-trained object classes.
Darknet19 is very fast in object recognition; thus, it makes a lot of sense for real-time
processing. The architecture is presented in Figure 6.

Figure 5. Anchor-based object detector.
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Figure 6. Darknet19 architecture.

YOLOv3 [26] was born to improve on the weaknesses of YOLOv1 [24] and
YOLOv2 [25]. YOLOv3 uses Darknet53 as the backbone (with 53 convolutional layers),
as illustrated in Figure 7. YOLOv3 performs recognition three times on an image with
different sizes. YOLOv3 has its output changed to S × S × 255, with S being the values
13, 26, and 52, respectively. With each grid box, there are nine different anchor boxes
with sizes: grid cell 13 × 13: (116 × 90), (156 × 198), (373 × 326); grid cell 26 × 26:
(30 × 61), (62 × 45), (59 × 119); grid cell 52 × 52: (10 × 13), (16 × 30), (33 × 23). The
training process combines with the k-means clustering algorithm and uses the ground
truth to calculate the error between the ground truth and the anchor box by adjusting
values (x, y, w, h), thereby learning the features of the object.

Figure 7. Darknet53 architecture.
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YOLOv4 [27] was developed to improve the accuracy and processing time of
YOLOv3 [26]. YOLOv4 applies the idea of CSPBlock, replaces the usual Residual Block of
YOLOv3 to CSPResBlock, and also changes the activation function from LeakyReLU to
Mish, creating CSPDarkNet53. The structure of YOLOv4 is divided into four parts:

• Backbone: The backbone can be selected from one of the following three backbones:
CSPResNext50, CSPDarknet53, and EfficientNet-B3. CSPDarknet53 is built on a
combination of CSP (Cross-Stage-Partial connections) and Darknet53.
The CSP is derived from the DenseNet architecture that takes the previous input and
concatenates it with the current input before moving into the Dense layer. The role
of CSP is to remove computational bottlenecks in DenseNet and improve learning
by porting an unmodified version of the feature map. DenseNet (Dense-connected
convolutional network) is one of the latest networks for visual object recognition.
Densenet has a structure of dense blocks and transition layers. With traditional CNN,
if we have L layers, there will be L connections; however, in DenseNet, there will
be L(L + 1)/2 connections (i.e., the front layer will be connected with all the layers
behind it). Yolov4 uses CSPDarknet53 as the backbone.
The main idea of CSPBlock of CSPDarknet53 is applied to Residual Block, as presented
in Figure 8 [13]. Instead of having only one path from beginning to end, CSPBlock is
divided into two paths. By dividing into two such paths, we eliminate the recalculation
of the gradient; therefore, the speed of training is increased. Moreover, splitting into
two paths, with each path being a part taken from the previous feature map, the
number of parameters is also significantly reduced, thereby speeding up the whole
inference process.

• Neck: The neck is responsible for mixing and matching the feature maps learned
through the feature extraction (backbone) and identification process (YOLOv4, called
Dense prediction). YOLOv4 allows customization using the following Neck struc-
tures: FPN (Feature Pyramid Networks) [40], PAN (Path Aggregation Networks) [41],
NAS-FPN (Neural Architecture Search–Feature Pyramid Networks) [42], Bi-FPN (Bidi-
rectional feature pyramid network) [43], ASFF (Adaptively Spatial Feature Fusion) [44],
SFAM (Scale-wise Feature Aggregation Module) [45], SSP (spatial pyramid pooling
layer) [46]. In the latter, SSP is a CNN network but is slightly changed; it is no longer
about dividing feature maps into bins and then concatenating these bins together to
obtain a fixed-dimensional vector.
SPP, whose input is a feature map, outputs C × H × W from the backbone before
being fed to the fully-connected layer to perform detection; YOLO applies the spatial
pyramid pooling layer to the feature map three times—that is, using the SPP block, as
illustrated in Figure 9.
Yolo-SPP applies a maximum pool with kernels of different sizes. The size of the input
feature map is preserved, and the feature maps obtained from applying the max pool
(with different kernel sizes) will be concatenated. The architecture of YOLO-SPP is
shown in Figure 10. Yolov4 also re-applies this technique.

• Dense prediction: using one-stage detectors; Sparse Prediction: using two-stage
detectors such as R-CNN.
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Figure 8. The architecture of CSPBlock in CSPDarknet53 [27]. (a) The simple CSP connection. (b) A
CSP connection in YOLOv4-CSP/P5/P6/P7 [13].

Figure 9. Architecture of SPP [13].

Figure 10. The architecture of YOLO-SPP bypasses the DC Block part [46].
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YOLOv5 (v6.0/6.1) [28] has almost the same architecture as YOLOv4 [27] and includes
the following components: CSP-Darknet53 as a backbone, SPP and PANet in the model
neck, and the head used in YOLOv4. In YOLOv5 (v6.0/6.1), SPPF has been used, which is
just another variant of the SPP block, to improve the speed of the network and apply the
CSPNet strategy on the PANet model.

• Backbone: YOLOv5 improves YOLOv4’s CSPResBlock into a new module, with one
less Convolution layer than YOLOv4, called the C3 module. Activation function:
YOLOv4 uses the Mish or LeakyReLU for the lightweight version, while in YOLOv5,
the activation function used is the SiLU.

• Neck: YOLOv5 adopts a module similar to SPP but twice as fast and calls it SPP-Fast
(SPPF). Instead of using parallel max-pooling as in SPP, YOLOv5 SPPF uses sequential
max-pooling, as illustrated in Figure 11. The kernel size in SPPF’s max-pooling is 5
instead of 5, 9, 13, as in YOLOv4’s SPP. Therefore, Neck in YOLOv5 uses SPPF + PAN.

Figure 11. Comparison of the architecture of SPP and SPPF [47].

• Other changes in YOLOv5 include the following:

– Data Augmentation techniques applied in YOLOv5 include Mosaic Augmenta-
tion, Copy–paste Augmentation, and MixUp Augmentation.

– Loss function: YOLOv5 uses three outputs from PAN Neck to detect objects at
three different scales. However, the effect of objects at each scale on Objectness
Loss is different; so, the formula for Objectness Loss is changed to Equation (9).

LFobject = 4.0 ∗LFsmall
object + 1.0 ∗LFmedium

object + 0.4 ∗LFlarge
object (9)

– Anchor Box (AB): AB in YOLOv5 received two major changes. The first is to use
auto anchor, a technique that applies Genetic Algorithms (GA) to the AB after
the k-means step so that the AB works better with custom datasets, and not only
works well on the MS COCO dataset. The second is to offset the center of the
object to select multiple ABs for an object.

YOLOv7 [9], just like other versions of YOLO, consists of three parts in its architecture,
as shown below:

• Backbone: ELAN, E-ELAN;
• Neck: CSP-SPP and (ELAN, E-ELAN)-PAN;
• Head: YOLOR [11] and Auxiliary head.
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YOLOv7 includes some major improvements. First, the Efficient Layer Aggregation
Networks (ELAN) is proposed to expand to Extended Efficient Layer Aggregation Net-
works (E-ELAN), where the strategy that learns at more depth with the shortest and longest
derivatives along the slope will have a higher probability of convergence. This means not
changing the gradient transmission path of the original architecture but increasing the
group of convolutional layers of the added features and combining the features of different
groups by mixing and merging the cordiality manner, as presented in Figure 12. This way
of working can improve the learning efficiency of learned solid maps and improve the use
of parameters and calculations. This process increases the accuracy of the learned model
without increasing complexity and computational resources.

Figure 12. The architecture of ELAN and E-ELAN for efficient learning and faster convergence [9].

Second is the proposed Model Scaling for Concatenation-based Models (MSCM). The
main idea of MSCM is based on scaled-YOLOv4 [13] to adjust the number of stages. When
increasing the depth of a translation layer, which is immediately after, a concatenation-based
computational block will increase, as illustrated in Figure 13a,b. It means the input width of
the subsequent transmission layer increases. Therefore, the model scaling on concatenation-
based models is proposed. This process only requires the depth in a computational block
to be scaled, and the remaining transmission layer is performed with corresponding width
scaling, as illustrated in Figure 13c.

The third is to reduce the number of parameters and computation for object detection.
YOLOv7 is re-parameterized to combine with a different network. This work can reduce
about 40% of the parameters and 50% computation of the object detector, and the detection
will be faster and more accurate.
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Figure 13. Illustrating of model scaling for concatenation-based models [9].

The fourth is a new label assignment method—as illustrated in Figure 14c,d—that
guides both the auxiliary head and lead head by the lead head prediction. This method
uses lead head prediction as a guidance to generate coarse-to-fine hierarchical labels, as
illustrated in Figure 14e.

Figure 14. Illustration of coarse for auxiliary and fine for lead head label assigner [9].

3.2. Comparative Study for Hand Detection and Classification

In this paper, we perform a comparative study on YOLO-family networks for hand
detection and classification of the EV datasets. The taxonomy of the comparative study is
illustrated in Figure 15. In this study, the methods are the YOLO-family networks whose
development and improvements are presented in Section 3.1. Two models developed
from the YOLO-family networks are hand detection and classification. The hand detection
model is the main model tested on all YOLO versions; the hand classification model is only
tested from YOLOv3 and later. The datasets used to evaluate the two models are FPHAB,
HOI4D, and RehabHand, as presented in Section 4.1. The FPHAB database performs hand
detection model evaluation and classifies action hands, background, and other objects.
The HOI4D and RehabHand datasets perform the hand detection model assessment and
classify left hand, right hand, background, and other objects. In Figure 15, we also present
a comparative study of measures and outputs, described in Sections 4.2 and 4.3.
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Figure 15. The taxonomy of the comparative study for hand detection and classification is based on
the YOLO-family networks.

4. Experimental Results

4.1. Datasets

The FPHAB dataset [4] is the First Person Hand Action Benchmark (FPHAB). This
dataset is captured from an Intel RealSense SR300 RGB-D camera attached to the shoulder
of a person. The resolutions of the color and depth images are 1920 × 1080 pixels and
640 × 480 pixels, respectively. The hand pose is captured using six magnetic sensors; it
provides 3D hand pose annotation and intrinsic parameters for converting 2D hand pose
annotation. There are several subjects (6 in total) performing multiple activities from
3 to 9 times with 45 hand actions. The number of joints in each 3D hand pose is 21.
From attaching the device to mark 3D hand annotation data, the hand data have different
characteristics compared to normal hands when obtained from EV. In this paper, we used
configurations for training and testing, presented as follows: The configuration (Con f .#123)
used the first sequence in each subject from Subj.#1 to Subj.#6 for testing (27,097 samples),
the second sequence in each subject for validation (25,475 samples), and the remaining
sequence for training (52,887 samples) (the ratio is approximately 1:2.5 for testing and
training the model).

The HOI4D dataset [8] is collected and synchronized based on the Kinect v2 RGBD
sensor and the Intel RealSense D455 RGB-D sensor. This is a large-scale 4D EV dataset with
rich annotation for category-level human–object interaction. HOI4D includes 2.4M RGB-D
frames of EV with over 4000 sequences. It is collected from 9 participants interacting
with 800 different object instances from 16 categories over 610 different indoor rooms.
This dataset provides ground-truth data of the following types: Frame-wise annotations
for panoptic segmentation, motion segmentation, 3D hand pose, category-level object
pose, and hand action, together with reconstructed object meshes and scene point clouds.
The annotation data components are illustrated in Figure 16. To obtain the ground-truth
data, which is the bounding boxes of the hand on the image for evaluation, we rely
on the hand keypoints named “kps2D” in the 3D hand pose annotation. We take the
bounding box of 21 hand keypoint annotations. This process is demonstrated in the
source code of the “get_2D_boundingbox_hand_anntation.py” file found at the following
link (https://drive.google.com/drive/folders/1yzhg5NsalPkOHI6CMkAE07yv5rY63tI7
?usp=sharing, accessed on 30 January 2023).
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Figure 16. Describing the types of annotation data of the HOI4D dataset [8].

The RehabHand dataset [17] was collected from rehabilitation exercises of patients
at Hanoi Medical University Hospital, Vietnam. This dataset consists of frames from
the first-person video captured by cameras worn by the patient on the forehead and the
chest. The videos are recorded with a 1080p resolution at 30 frames per second. The
data were collected using the GoPro Hero4 camera in San Mateo, California, USA. The
camera recorded the exercise of 15 patients performing four upper extremity rehabilitation
exercises. Each patient performed each exercise five times. The content of exercises related
to grasping objects in different positions is presented as follows: exercise 1—practice with
the ball, exercise 2—practice with a water bottle, exercise 3—practice with a wooden cube,
exercise 4—practice with round cylinders. The collected data include 10 video files in
MPEG-4 format with a total duration of 4 h and a total capacity of 53 GB recorded. The data
are divided into three subsets for the training set (2220 images), validation set (740 images),
and testing set (740 images) with a ratio of 6:2:2, respectively. Figure 17 illustrates the image
data of the RehabHand dataset [17].

Figure 17. Illustrating the RGB image data obtained from the EV of the RehabHand dataset [17].

In this paper, we used a server with a NVIDIA GeForce RTX 2080 Ti 12 GB GPU for
fine-tuning, training, and testing. The programs were written in the Python language
(≥3.7 version) with the support of CUDA 11.2/cuDNN 8.1.0 libraries. In addition, there
are a number of other libraries such as OpenCV, Numpy, Scipy, Pillow, Cython, Matplotlib,
Scikit-image, Tensorflow ≥ 1.3.0, etc.

4.2. Evaluation Metrics

Similar to the evaluation of object detection and classification on images, we perform
the calculation of the IOU (Intersection over Union) value according to Equation (10).

IOU =
Bg ∩ Bp

Bg ∪ Bp
(10)
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where Bg is the ground truth bounding box of hand action and Bp is the predicted bounding
box of hand.

To determine whether the bounding box is a true finding, we use a threshold TheshIOU
for the evaluation. If IOU is greater than or equal to TheshIOU , it is a true detection;
otherwise, it is false.

In this paper, we also distinguish between the hand action, left hand, right hand, and
the background; so, we also use the formulas for precision (P), Recall (R), and F1-Score (F1)
(Equation (11)) to evaluate the analysis results of hand action classification on the image.

P =
TP

TP + FP
; R =

TP
TP + FN

; F1 =
2 ∗ (R ∗ P)
(R + P)

(11)

where TP are True Positives, TN are True Negatives, FP are False Positives, and FN are
False Negatives. In addition, we also evaluate mAP.5 (mean Average Precision), computed
as Equation (12).

mAP =
∑c

i=1 APi

c
(12)

where averaging the average precision (AP) for all classes involved in the trained model
yields mAP.

We train YOLO-family networks with 50 epochs and batch size = 4 frames; the size
of the image can be img_size = 640 × 640 or img_size = 1280 × 1280, con f _thres = 0.001.
The hyper-parameter in the feature-extraction phase that the YOLO-family networks uses
is the adaptive moment estimation (ADAM) optimizer [48], the learning rate is 0.001, and
momentum is 0.937, as illustrated in Figure 18. There are also some other parameters
shown in Table 1.

Figure 18. Illustrating the hyper-parameters of YOLO-family networks.
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Table 1. The list of parameters of YOLOv7 and its variants [9], resulting in the processing time of the
networks when evaluated on the testing set of the FPHAB dataset.

Methods Image Size (pixel) Number of Layers
Number

of GFLOPS
Parameters

Number
of Epochs

Processing
Time for

Testing (fps)

YOLOv4-CSP [13] 640 × 640 401 118.9 52,469,023 50 76.9

YOLOv4-CSP-X [13] 640 × 640 493 224.8 96,370,166 50 44

YOLOv3 [26] 640 × 640 261 154.5 61,497,430 50 153

YOLOv3-SPP [49] 640 × 640 269 155.4 62,546,518 50 142

YOLOv4 [13] 640 × 640 401 118.9 52,463,638 50 151

YOLOv5-r50-CSP [28] 640 × 640 314 103.2 36,481,772 50 133

YOLOv5-X50-CSP [28] 640 × 640 560 64.4 33,878,846 50 45

YOLOv7 [9] 640 × 640 314 103.2 36,481,772 50 133

YOLOv7-X [9] 640 × 640 362 188.0 70,782,444 50 98

YOLOv7-w6 [9] 1280 × 1280 370 101.8 80,909,336 50 60

In this paper, we re-trained the YOLO-family networks (YOLOv4-CSP [13], YOLOv4-
CSP-X [13], YOLOv3 [26], YOLOv3-SPP [49], YOLOv4 [13], YOLOv5-r50-CSP [28], YOLOv5-
X50-CSP [28], YOLOv7 [9], YOLOv7-X [9], YOLOv7-w6 [9]) on the training set of Con f .#123
of the FPHAB dataset, the training set of the HOI4D dataset, and the training set of the
RehabHand dataset. After that, we evaluated it on the validation set and testing set of
configuration Con f .#123 of the FPHAB dataset, testing set of the HOI4D dataset, and testing
set of the RehabHand dataset. We use the TheshIOU to evaluate as follows: 0.5, 0.75, 0.95.

4.3. Hand Detection and Classification Results

The result of hand action detection and classification on the Con f .#123 of the FPHAB
dataset is shown in Table 2. In the FPHAB dataset is the process of detecting the hand
action in the image. The action hand detection and classification results on the FPHAB
dataset in Table 2 of YOLOv7 and its variants are all greater than 95%. This is a very good
result for the following steps on hand activity estimation and recognition.

Table 2. The results of hand detection and classification on the FPHAB dataset when performed on
YOLOv7 and YOLO-family networks.

IOU Threshold(TheshIOU )/
Precision(P)/ Recall(R)/ Models

0.5 0.75 0.95

R
(%)

P
(%)

mAP@.5
(%)

R
(%)

P
(%)

mAP@.5
(%)

R
(%)

P
(%)

mAP@.5
(%)

YOLOv4-CSP [13] 99.8 96.7 98.5 99.7 96.7 98.6 91.4 92.3 94.9

YOLOv4-CSP-X [13] 99.3 96.5 97.2 99.5 96.1 97.2 87.4 90.2 91.8

YOLOv3 [26] 99.9 96.6 98.5 99.9 96.6 98.8 96.4 95.1 97.5

YOLOv3-SPP [49] 99.5 97.6 98.8 99.6 97.3 98.9 95.3 92.2 97

YOLOv4 [13] 99.6 96.4 97.2 99.6 96.2 97.5 84.7 92 92.3

YOLOv5-r50-CSP [28] 99.3 95.2 98.1 99.5 96.5 98.1 92.5 91.4 93.5

YOLOv5-X50-CSP [28] 99.2 94.8 97.6 99.4 96.4 98.3 96.4 92.6 94.1

YOLOv7 [9] 99.7 96.9 98.7 99.4 96.9 99.4 97 93.9 98.2

YOLOv7-X [9] 99.2 98.7 99.1 99.2 98.2 99.5 97.5 94.5 97

YOLOv7-w6 [9] 99.7 96.9 99.8 99.7 96.9 99.7 93.9 98 98.3
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In Table 2, it can be seen that the hand action detection and classification results
on the FPHAB dataset are very accurate; the results are greater than 95%, even if the
TheshIOU = 0.95, which is close to absolute accuracy. Table 2 also shows that P is usually
greater than R in most cases. This is because in the image of the FPHAB dataset, there
can be two hands and, as a result, there are many background areas that are mistakenly
detected as the hand action, so FN increase. Therefore, R is smaller than P in many cases.
The processing time of the hand action detection and classification process is shown in
Table 1; it is also very fast to ensure the pre-processing step without much impact on the
processing time of the construction applications.

Figure 19 shows the results on precision, recall, F1-score, and confusion matrix on the
hand action detection on the testing set of FPHAB dataset when TheshIOU = 0.5.

Figure 20 shows the confusion matrix on classifying hand action on the testing set of
the FPHAB dataset when TheshIOU = 0.5.

Figure 21 illustrates some results of hand action detection and classification on the
testing set of Con f .#123 of the FPHAB dataset when TheshIOU = 0.5.

The results of hand detection and classification on the HOI4D dataset [8] are shown
in Table 3. Table 3 shows the results of YOLOv7-w6 with the best results (R = 89.85%;
P = 90.55%; mAP@.5 = 88.9%) when TheshIOU = 0.95. This is a large dataset with many
hand actions, for which the YOLO-family networks still obtain high results even when
TheshIOU = 0.95. In this dataset, the YOLO-family networks perform two tasks: detecting
and classifying left and right hands. At the same time, the average result (all) of the left
and right hands are also computed.

Figure 22 illustrates the results of hand classification on the HOI4D dataset based on
YOLOv7. In Figure 22, there are many cases where the subject has the same color as the
skin of the hand. However, YOLOv7 still detects and correctly classifies the hand.

Figure 19. The distribution of precision, recall, and F1-score of hand action detection on the test set of
Con f .#123 of the FPHAB dataset when TheshIOU = 0.5.
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Table 3. The results of hand detection and classification on the HOI4D dataset [8].

IOU Threshold/
(TheshIOU )

Precision(P)/
Recall(R)/

Models

Hand

0.5 0.75 0.95

R
(%)

P
(%)

mAP@.5
(%)

R
(%)

P
(%)

mAP@.5
(%)

R
(%)

P
(%)

mAP@.5
(%)

YOLOv4-CSP [13]

Right hand 90.7 96.2 95.2 96.4 90.6 95.1 88.9 90.1 91.7

Left hand 82.5 86 85.5 82.2 85 84.7 76.8 65.4 74.4

All 88.4 89.4 90.3 89.3 87.8 89.9 82.8 77.7 83.1

YOLOv4-CSP-X [13]

Right hand 96.2 90.7 95 96.2 90.6 94.9 84.2 90.2 90.9

Left hand 81 86 84.8 82 83.3 84.1 76 62.9 71.9

All 88.6 88.3 89.9 89.3 87 89.5 80.1 76.6 81.4

YOLOv3 [26]

Right hand 89.9 90.8 94 89.9 90.8 94.2 77.4 89.3 90.7

Left hand 81.5 81.8 82.4 80.4 81.9 81.6 75.1 61.8 71.2

All 85.7 86.3 88.2 85.1 86.3 87.9 76.2 75.6 80.9

YOLOv3-SPP [49]

Right hand 88.3 90.8 94.1 89.2 90.7 94.2 69.2 88.8 86

Left hand 81.6 81.2 82.1 81.4 79.9 81.1 70.3 58.7 65.4

All 84.9 86 88.1 85.3 85.3 87.6 69.7 73.8 75.7

YOLOv4 [13]

Right hand 89.7 93.4 95.9 90.5 94.6 95.9 71.5 88.8 89.4

Left hand 82.8 83.5 84.3 84.2 82.4 86.3 72.4 78.3 75.2

All 86.3 88.5 88.1 87.4 88.5 91.1 72 83.6 82.3

YOLOv5-r50-CSP [28]

Right hand 84.3 87.5 90.9 84.4 87.4 90.9 63 81.2 78.4

Left hand 79.4 77.6 78.7 78.8 76.9 78.4 61.5 53.6 57.5

All 81.9 82.5 84.8 81.6 82.1 84.6 62.2 7.4 68

YOLOv5-X50-CSP [28]

Right hand 94.1 90.2 92.7 90.4 89.6 90.8 78.2 88.2 84.4

Left hand 79.4 77.6 78.7 78.8 76.9 78.4 61.5 73.6 77.5

All 86.75 83.9 85.7 84.6 83.25 84.6 69.85 80.9 80.95

YOLOv7 [9]

Right hand 87 90.7 93.3 81 90.7 93.4 69.6 89.3 86.4

Left hand 81.4 78.9 80.7 81.3 78.8 80.8 61.7 56.1 60.8

All 84.2 84.8 87 84.2 84.8 87.1 65.7 72.7 73.6

YOLOv7-X [9]

Right hand 91.1 90.6 94.1 91.6 90.6 94.2 74.1 89.6 88.4

Left hand 80.7 81.1 81.2 80.2 80.2 80.6 65.4 59.1 64

All 85.9 85.9 87.7 85.9 85.4 87.4 69.8 74.3 76.2

YOLOv7-w6 [9]

Right hand 99.3 97.7 97 97.4 94.7 98.7 92.8 94.7 93

Left hand 86.7 92.3 95.1 85.5 89.3 88.8 86.9 86.4 84.8

All 93 95 96.05 91.45 92 93.75 89.85 90.55 88.9
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Figure 20. The confusion matrix of hand action classification on the testing set of Con f .#123 of the
FPHAB dataset when TheshIOU = 0.5.

Figure 21. Illustrating some results of hand action detection and classification on the testing set of
Con f .#123 of the FPHAB dataset when TheshIOU = 0.5.

Figure 22. Illustration of hand classification results on the HOI4D dataset.

The results of hand detection and classification on the RehabHand dataset [17] are
shown in Table 4. The results in Table 4 show that YOLOv7 has the best results in de-
tecting and classifying with the left hand (P = 100%; R = 92.1%; mAP@.5 = 14% with
TheshIOU = 0.95). YOLOv7-X has the best results in detecting and classifying with the right
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hand (P = 87.7%; R = 92.5%; mAP@.5 = 96.7% with TheshIOU = 0.95), and the average
result is also computed. It can be seen that the left hand detection results in some networks
are very low because the left hand is as false negative as the right hand, as shown in Table 4.

Table 4. The results of hand detection and classification on the RehabHand dataset [17].

IOU Threshold/
(TheshIOU )

Precision(P)/
Recall(R)/

Models

Hand

0.5 0.75 0.95

R
(%)

P
(%)

mAP@.5
(%)

R
(%)

P
(%)

mAP@.5
(%)

R
(%)

P
(%)

mAP@.5
(%)

YOLOv4-CSP [13]

Right hand 33.8 55.8 29.6 32.9 54.3 28.4 28.2 36.9 20.8

Left hand 100 98.9 93.7 100 97.4 92.1 100 92.4 5.1

All 66.9 77.35 63.45 66.45 75.85 60.25 64.1 66.2 12.95

YOLOv4-CSP-X [13]

Right hand 34.2 56 30.5 33.7 56 30.6 26.6 37.1 21.1

Left hand 100 97.2 95.4 100 95.7 8.12 100 92.6 5.23

All 67.1 76.6 62.95 66.8 75.85 19.3 63.3 64.85 13.2

YOLOv3 [26]

Right hand 2.41 94.1 18.9 0.0861 98.8 19.3 0.045 99 11.2

Left hand 20.8 65.9 17.3 20.5 65.9 17.2 19.4 24.6 12.8

All 11.6 80 18.1 10.7 82.4 18.3 9.91 61.8 12

YOLOv3-SPP [49]

Right hand 17.5 51.6 17.4 17.6 47 17.5 15.2 45 12.6

Left hand 100 98.5 90.7 100 96.8 85.2 100 91.7 89.7

All 58.8 75.5 54.05 58.8 97.9 53.6 58.8 68.35 51.15

YOLOv4 [13]

Right hand 2.26 91.8 21.3 0.91 97.7 21.2 16.4 37 14.5

Left hand 23.9 55.7 21.9 22.2 55.7 20.8 100 25.8 10.5

All 13.1 73.8 21.6 11.6 76.7 21 58.2 31.4 12.5

YOLOv5-r50-CSP [28]

Right hand 25.9 68.9 24.1 25.7 67.4 24 0.44 99.1 14.7

Left hand 100 96.1 92.8 100 94.3 14.6 22.9 40.5 14.1

All 63 82.5 57.4 62.9 80.85 19.3 11.7 69.8 14.4

YOLOv5-X50-CSP [28]

Right hand 1.69 95.8 19.1 0.62 99.5 17.1 0.33 99.3 6.84

Left hand 24.2 53.5 23.6 24 53.6 53.6 27.7 23.3 18.9

All 13 74.7 21.4 12.3 76.6 20.3 14 61.3 12.9

YOLOv7 [9]

Right hand 81.2 96.3 95.2 78.7 91.7 98.8 75.3 96.8 96.7

Left hand 100 99.2 97.3 100 97.8 96.7 100 92.1 92.4

All 90.6 97.75 96.25 89.35 94.75 97.75 87.65 94.45 94.55

YOLOv7-X [9]

Right hand 91.3 95.3 93.6 91.1 92.7 93.6 87.7 92.5 96.7

Left hand 100 96.4 96.2 100 95.5 7.82 100 90.8 90.5

All 95.65 95.85 95.45 95.55 94.1 50.71 93.85 92.3 93.6

YOLOv7-w6 [9]

Right hand 1.77 96.8 19.9 0.498 99.7 19.5 0.0169 99.5 9.53

Left hand 25.8 55.5 15.4 24.3 55.6 14.8 15.2 32.9 5.62

All 13.8 76.1 17.6 12.4 77.6 17.2 7.66 66.2 7.57

Figure 23 illustrates the left hand being negatively classified as the right hand of the
RehabHand dataset [17].

The results in Table 4 also show that the RehabHand dataset [17] is very challenging
for hand detection and classification. This is a good dataset for evaluating hand detection
models, hand pose estimation, and hand activity recognition.
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Figure 23. Illustrating the left hand being negatively classified as the right hand of the RehabHand
dataset [17].

5. Conclusions and Future Works

Building an application to evaluate the rehabilitation process of the hand using the
technology of computer vision and deep learning is a new research area in the medical
field. The first step is hand detection, which is a very important pre-processing step. In
this paper, we systematize a series of versions of YOLO. We pre-trained hand detection
and classification with versions of YOLO on the EV datasets FPHAB, HOI4D, and Re-
habHand. The results show the performance of the YOLO versions for hand detection
and classification. All new versions of YOLO give better results than old versions. The
results of YOLOv7 of hand detection and classification on the FPHAB dataset are the best
(P = 96.9% with TheshIOU = 0.5, P = 96.9% with TheshIOU = 0.75, P = 93.9% with
TheshIOU = 0.95). We apply this model to limit the hand data area, hand pose estimation,
and hand activities recognition for evaluation hand function rehabilitation. YOLOv7 and
its variations’ (YOLOv7-X, YOLOv7-w6) results on the HOI4D and RehabHand datasets are
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lower (Tables 3 and 4) and unequal (Table 4). We perform pre-training with more epochs
and calibrate the model’s parameter set to obtain a better model. Further, we compare
YOLOv7 with CNN networks such as SSD, Faster R-CNN, and SOTA (State-Of-The-Art)
on three datasets: FPHAB, HOI4D, and RehabHand. In the future, we will perform hand
detection and tracking, hand pose estimation, and hand activity recognition for assessing
the ability of the hand from faculty rehabilitation exercises of patients at Hanoi Medi-
cal University Hospital, Huong Sen Rehabilitation Hospital in Tuyen Quang Province in
Vietnam [50], as illustrated in Figure 24.

Figure 24. Illustrating the process of the hand rehabilitation exercise [50].
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Abstract: Deep-learning-based registration methods can not only save time but also automatically ex-
tract deep features from images. In order to obtain better registration performance, many scholars use
cascade networks to realize a coarse-to-fine registration progress. However, such cascade networks
will increase network parameters by an n-times multiplication factor and entail long training and
testing stages. In this paper, we only use a cascade network in the training stage. Unlike others, the
role of the second network is to improve the registration performance of the first network and function
as an augmented regularization term in the whole process. In the training stage, the mean squared
error loss function between the dense deformation field (DDF) with which the second network has
been trained and the zero field is added to constrain the learned DDF such that it tends to 0 at each
position and to compel the first network to conceive of a better deformation field and improve the
network’s registration performance. In the testing stage, only the first network is used to estimate a
better DDF; the second network is not used again. The advantages of this kind of design are reflected
in two aspects: (1) it retains the good registration performance of the cascade network; (2) it retains
the time efficiency of the single network in the testing stage. The experimental results show that the
proposed method effectively improves the network’s registration performance compared to other
state-of-the-art methods.

Keywords: brain image registration; generation adversarial network; deep learning

1. Introduction

Image registration is one of the basic tasks in medical image processing. It involves
the acquisition of a dense deformation field (DDF) when a moving image is matched with
a fixed image so that the two to-be-aligned images and their corresponding anatomical
structures are aligned accurately in space [1]. The traditional registration method optimizes
the cost function through a large number of iterations, a process that usually requires a
significant amount of computation and time [2]. With the popularization and application
of deep learning in the field of medical image registration, the deep learning registration
method is now faster than the traditional image registration method. Therefore, for moving
and fixed images, deformation fields can be generated by training a neural network,
thus achieving rapid registration for a forward pass in the testing stage. Fan et al. [3]
studied the computational costs of seven different deformable registration algorithms. The
results showed that the assessed deep-learning network (BIRNet) without any iterative
optimization needed the least time. Additionally, the registration accuracy improved after
applying the deep learning method. For example, Cao et al. [4] proposed a deep learning
method for registering brain MRI images, and it was revealed that the method’s Dice
coefficient was improved in terms of registering white matter (WM), gray matter (GM),
and cerebrospinal fluid (CSF).

The unsupervised learning image registration method has been widely applied be-
cause it is not difficult to obtain gold-standard registration [5]. Balakrishnan et al. [6]
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optimized the U-Net neural network by defining the loss function as a combination of the
mean square error similarity measure and the deformation field’s smoothing constraint.
de Vos et al. [7] accomplished affine and deformable registration by superimposing sev-
eral networks through unsupervised training. Kim et al. [8,9] used cyclic consistency to
provide implicit regularization for maintaining topology and realizing 2D or 3D image
registration. Moreover, a multi-scale strategy was adopted during the experiment to solve
the relevant storage problem. Jiang et al. [10] proposed an unsupervised network frame-
work (MJ-CNN) that adopted a multi-scale joint training scheme to achieve end-to-end
optimization. Kong et al. [11] designed a cascade-connected channel attention mechanism
network. During cascade registration, the attention module is incorporated to learn the
features of the input image, thereby improving the expression ability of the image features.
Through five iterations of the deformation field, improved bidirectional image registration
was realized. Yang et al. [12] used multiple cascaded U-Net models to form a network
structure. In their structure, each U-Net is trained with smooth regularization parameters
to improve the accuracy of 3D medical image registration. Zhu et al. [13] helped a network
develop high-similarity spatial correspondence by introducing a local attention model and
integrated multi-scale functionality into the attention mechanism module to achieve the
coarse-to-fine registration of local information. Ouyang et al. [14] trained their designed
subnetworks synergistically by training the residual recursive cascade network to realize
cooperation between the subnetworks. Through the connection of the residual network,
the registration speed was accelerated. Guo et al. [15] improved the image registration
accuracy and efficiency of CT-MR and used two cyclic consistency methods in a full convo-
lution neural network to generate the spatial deformation field. Sideri-Lampretsa et al. [16]
considered that it was easy to obtain edge images, so they used the image’s edges to drive
the multimodal registration training process and thus help the network learn more effective
information. Qian et al. [17] proposed a cascade framework of a registration network, and
then registered images in training stages. The authors compared the performance of the
cascade network framework with the traditional registration methods, subsequently, it
was determined that the registration efficiency of the proposed method was significantly
improved. Golkar et al. [18] proposed a hybrid registration framework of vessel extraction
and thinning for retinal image segmentation, which improved the registration accuracy of
complex retinal vessels.

Inspired by the idea of two-person zero-sum game from game theory, Goodefellow
et al. [19] proposed a generation adversarial network (GAN) that used two neural networks
for adversarial training and continuously improved the performance of the network in all
directions during a game between the two networks. In addition to the in-depth study of
the generative adversarial network (GAN), the application of an adversarial network has
been integrated with techniques and aims from other fields, for instance, the combination
of GAN and image processing. Therefore, GANs are also widely used in image registration.
Santarossa et al. [20] used generation adversarial networks combined with ranking loss for
multimodal image registration. Fan et al. [21,22] implemented a GAN in the unsupervised
deformable registration of 3D brain MR images. In this approach, the discrimination
network identifies whether a pair of images are sufficiently similar. The resulting feedback
is then used to train the registration network. Simultaneously, GANs have been applied to
single- and multi-mode image registration. Zheng et al. [23] used a GAN network to realize
symmetric image registration and then transformed the symmetric registration formula
of single- and multi-mode images into a conditional GAN. To align a pair of single-mode
images, the registration method constitutes a cyclical process of transformation from one
image to another and its inverse transformation. To align images with different modes,
mode conversion should be performed before registration. In the training process, the
method also adopts the semi-supervised method and trains using labeled and unlabeled
images. Many registration methods have been produced based on the application of
generation adversarial networks [24–28]. Huang et al. [29] fused a difficulty perception
model into a cascade neural network composed of three networks. These networks are used
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to predict the coarse deformation field and the fine deformation field, respectively, so as to
achieve accurate registration. GANs showed excellent performance in the aforementioned
studies. In the previous study, a GAN based on dual attention mechanisms was proposed,
which showed good registration performance in areas with relatively flat edges, but poor
registration performance in narrow and long-edge areas. To this end, based on previous
research, this paper proposes a method to assist GANs in realizing the registration of long
and narrow regions at the peripheries of the brain, which differs from the methods of coarse
registration and fine registration. Our main contributions are summarized as follows:

1. During training, the cascade networks are trained simultaneously to save network
training time.

2. The second network is used as a loss function. The mean square error loss function
added to the second network can constrain the deformation field output by the second
network such that it tends to 0. Only the first network is used during testing, which
saves testing time.

3. Coupled with the adversarial training of GANs, the registration performance of the
first network is further improved.

The rest of this paper is organized as follows. Section 2 introduces the networks
proposed in this paper in detail. Section 3 introduces the experimental datasets and
evaluation indicators. Section 4 introduces the experimental results obtained from the HBN
and ABIDE datasets. In Section 5, we provide a discussion. Finally, the conclusions are
given in Section 6.

2. Methodology

This paper proposes a method combining adversarial learning with cascade learning.
Joint training of cascaded networks can allow them to predict more accurate deformation
fields. The first (registration) network is used to study the deformation field φ1. The
second (augmented) network enables the first network to learn more deformations. A
discrimination network improves the first network’s performance through adversarial
training. The structures of each cascading network are similar to those of VoxelMorph [6].
The proposed overall learning framework is illustrated in Figure 1.

Figure 1. Overall network framework.
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2.1. First (Registration) Network

The registration network is the first network in cascading framework. Its inputs are
the fixed image F and the moving image M. Its output is the deformation field φ1, i.e.,
φ1 = G(F, M). This network realizes the alignment from M to F, i.e., F = M( φ1), where
M(φ1) is the warped image. Subsequently, the loss function between M(φ1) and F is
calculated to drive the training process. This loss function includes three parts: intensity
similarity loss Lsim, adversarial loss Ladv, and smooth regularization term Lsmooth.

The adversarial loss function of the registration network is:

Ladv(p) =
{ −log(1 − p), c ∈ P+

−log(p), c ∈ P− (1)

where p is the output value of the discrimination network and c indicates the registration
network input.

Local cross-correlation metric is used to calculate the similarity of the intensity between
fixed image F and warped image M(φ1). The specific formula of the loss function is:

CC(F, M(φ1)) = ∑
p∈Ω

(
∑
pi

(F(pi)− F(p))(M(φ(pi))− M(φ(p)))

)2

(
∑pi

(F(pi)− F(p))2
)(

∑pi
(M(φ(pi))− M(φ(p)))2

) (2)

where pi denotes the iteration of the n3 volume center at voxel p, and Ω represents a
three-dimensional voxel. In this paper, n = 9 F(pi), and M(φ1(pi)) represents the voxel
intensities of F and M(φ1) at pi, respectively. F(p) and M(φ1(p)) are the local mean values
of n3 volume. A higher CC indicates a more accurate alignment. According to the definition
of CC, the intensity similarity loss Lsim is defined as follows:

Lsim(F, M(φ1)) = −CC(F, M(φ1)) (3)

Additionally, L2 regularization is implemented to smooth the deformation field φ1:

Lsmooth(φ1) = ∑
p∈Ω

‖∇φ1(p)‖2 (4)

2.2. Successive (Augmented) Network

The inputs of the successive network are F and M(φ1); the output is DDF φ2. φ2 is
used to deform M(φ1) to obtain φ2(M(φ1)). Simultaneously, to clarify the warped image,
we perform a composed operation on φ1 and φ2, i.e., φ1

◦φ2. M(φ 1
◦φ2) is obtained by the

moving image M with the composed DDF. Next, two intensity loss functions, namely,
Lsim( F, M(φ 1

◦φ2)) and Lsim(F, φ2(M(φ1))), are calculated between M(φ 1
◦φ2) and F and

between φ2(M(φ1)) and F, respectively. The DDF φ2 is also constrained as it approaches
zero deformation field through the following MSE loss function, allowing the deformation
field φ1 to learn more accurate deformations.

The formula of MSE loss function is defined as:

Lmse(φ2) = Lmse(φ2, 0) = ∑
p∈Ω

‖∇φ2(p)‖2 (5)

Through this function, the output effect of the first network can achieve fine registra-
tion after the two networks are connected in series.

The loss function for the registration network is as follows:

LG =Ladv (p) + αLsim(F, M(φ1)) + λLsmooth(φ1) (6)
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In addition, the loss function used by the second network is:

LA =Lsim(F, M(φ1))+Lsim(M(φ 1
◦φ2))+Lsim(F, φ2(M(φ1)))+ Lmse (φ2)

+Lsmooth (φ1)+Lsmooth (φ2)+Lsmooth(φ1
◦φ2)

(7)

The total loss function is:
Ltotal = LG + LA (8)

2.3. Discrimination Network

The discrimination network consists of four convolutional layers combined with
leakyReLU activation layers. Finally, the sigmoid activation function is used to output the
probability value. The discrimination network is shown in Figure 2. The discrimination
network distinguishes the authenticity of image. The harder it is to distinguish the warped
image from the fixed image, the harder it is to judge the authenticity of the image by the
discrimination network.

 

Figure 2. The overall framework of the adversarial network. The adversarial network consists of
convolution and LeakyReLU activation layer.

3. Experiment

3.1. Experimental Details

Python and TensorFlow were used to implement the experimental process. The
program was trained and tested with GPU NVIDIA GeForce GTX 2080 Ti [30].

In the training process, the patch-based training method is adopted to reduce the occupied
memory. Herein, 127 blocks are obtained from each image with a size of 182 × 218 × 182.
Each block size is 64 × 64 × 64. The stride is 32. The learning rates for training the registration
and discrimination networks are set to 0.00001 and 0.000001, respectively.

The traditional methods of Demons and SyN are used as comparative experiments.
The deep learning model VoxelMorph is also trained. VoxelMorph is a model of medical
image registration based on unsupervised learning. Therefore, VoxelMorph is selected
as the comparative experiment for deep learning. The Dice score, structural similarity,
and Pearson’s correlation coefficient are used as the evaluation indicators to verify the
superiority of the experimental results. Moreover, the influence of the MSE and Lsim loss
functions on the experimental results is investigated.

3.2. Datasets

To prove the flexibility and superior performance of the proposed method, the
HBN [31] and ABIDE datasets [32] are used for training and testing. The HBN dataset
consists of brain data obtained from patients with ADHD (aged 5–21 years). Herein, 496
and 31 T1-weighted brain images are selected for training and testing, respectively. ABIDE
is a dataset consisting of brain images from patients with autism (aged 5–64 years). Herein,
928 and 60 T1-weighted brain images are used for training and testing, respectively. The
fixed image used in training comprises a pair of images randomly selected from the training
set such that each image is linearly aligned to the fixed image. The image size of both the
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HBN and ABIDE datasets is 182 × 218 × 182 voxels with a resolution of 1 × 1 × 1 mm3.
Both these datasets contain segmentation marker images of CSF, GM, and WM.

3.3. Evaluation Indicators
3.3.1. Dice Score

The Dice coefficient (Dice) index is used to evaluate the degree of overlap between a
warped segmentation image and the segmentation image of the fixed image. This index
reflects the similarity between the experimental and the standard segmentation images. It
is defined as follows:

Dice = 2
∣∣∣∣Xseg ∩ Yseg

Xseg ∪ Yseg

∣∣∣∣ (9)

where Xseg and Yseg represent the standard and warped segmentation images, respec-
tively. The range of Dice values is 0–1, corresponding to a range in the gap between the
warped and the standard segmentation images progressing from large to small values,
respectively. Alternatively, the closer the experimental result is to 1, the more similar the
warped segmentation image is to the standard segmentation image, and the better is the
registration result.

3.3.2. Structural Similarity

The structure similarity index measure [33] can measure the similarity of two images.
The SSIM is calculated as:

SSIM(X, Y)=
(2μXμY + c1)(2σXY + c2)(

μ2
X + μ2

Y + c1
)(

σ2
X + σ2

Y + c2
) (10)

where X, Y represent the two input 3D images; μX and μY represent the average value of
X and Y, respectively. σ2

X and σ2
Y are the variances of X and Y, respectively. σX and σY

represent the standard deviation of X and Y, respectively. σXY represents the covariance of
X and Y. c1 and c2 are constants used to avoid system errors caused by a denominator equal
to 0. The SSIM can measure the structural similarity between the real and warped images.
A SSIM value close to 1 indicates that the two images have a high degree of similarity.

3.3.3. Pearson’s Correlation Coefficient

Pearson’s correlation coefficient (PCC) was used to measure the similarity between
two 3D images. The calculation formula of PCC is:

ρ(X, Y)
∑n

i=1

(
Xi −

−
X
)(

Yi −
−
Y
)

√
∑n

i=1

(
Xi −

−
X
)2

√
∑n

i=1

(
Yi −

−
Y
)2

(11)

The closer the value of PCC is to 1, the greater is the correlation. A PCC of 0 indicates

no correlation. X, Y refer to the two input 3D images.
−
X and

−
Y represent the mean value of

X and Y, respectively.

4. Results

The proposed methodology is compared with the following approaches: (1) Demons
and SyN, two traditional registration methods; (2) Voxelmorph (VM), an unsupervised deep
learning registration method; and (3) VM + A, a method consisting of a simultaneously
trained registration network and augmented network.

First, the proposed GAN method (VM + A + GAN) is compared with Demons and
SyN, which are two traditional methods. Tables 1 and 2 summarize the test results obtained
through different datasets, and all indicators show that our experimental results are the best.
Figure 3 shows the comparison of the test results of the two datasets. The first row of the
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experimental image represents the original image obtained from the HBN dataset, and the
second row represents the segmentation image corresponding to the original image derived
from the HBN dataset. Similarly, the third row represents the original image based on the
ABIDE dataset, and the fourth row represents the segmentation image corresponding to
the original image derived from the ABIDE dataset. Compared with Demons and SyN, the
image obtained by the proposed GAN method is closer in appearance to the fixed image,
and the parts with differences are shown in the enlarged image on the right.

Table 1. Dice values obtained with the HBN and ABIDE datasets. Bold numbers indicate the
best results.

HBN ABIDE

Methods CSF GM WM CSF GM WM

Demons 0.513 ± 0.158 0.335 ± 0.320 0.345 ± 0.330 0.410 ± 0.228 0.312 ± 0.305 0.332 ± 0.320
SyN 0.585 ± 0.026 0.768 ± 0.022 0.786 ± 0.015 0.593 ± 0.041 0.749 ± 0.019 0.791 ± 0.023

VM + A + GAN 0.653 ± 0.041 0.829 ± 0.029 0.855 ± 0.015 0.646 ± 0.046 0.801 ± 0.024 0.847 ± 0.019

Table 2. SSIM and PCC metrics obtained with the HBN and ABIDE datasets. Bold numbers indicate
the best results.

HBN ABIDE

Methods SSIM PCC SSIM PCC

Demons 0.781 0.886 0.763 0.886
SyN 0.904 0.962 0.870 0.958

VM + A + GAN 0.956 0.984 0.920 0.985

Figure 3. Registration results of Demons, SyN, and our proposed method using HBN and ABIDE
datasets.

Second, the proposed GAN method is compared with the VM and VM + A methods.
Figure 4 shows the registered moving image and the fixed image. Moreover, the first row
represents the original image from the HBN dataset, and the second row represents the
segmentation image corresponding to the original image from the HBN dataset. Similarly,
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the third row represents the original image from the ABIDE dataset, and the fourth row
represents the segmentation image corresponding to the original image from the ABIDE
dataset. Additionally, the enlarged figure on the right shows that the result for the proposed
method regarding the training of the registration, augmented, and discrimination networks
together is closer to the fixed image. Through the experimental results, the performance
of the registration, augmented, and discrimination networks when trained together is
verifiably better than that of the registration network trained individually and of the
registration and augmented networks trained simultaneously.

Figure 4. Registration results based on deep learning methods. Among them, VM represents the
result obtained by the VoxelMorph method, VM + A represents the result obtained by training the
registration network and the enhanced network together, and VM + A + GAN represents the result
obtained by our method.

In order to more clearly highlight the effectiveness of the method proposed in this
paper, Figure 5 shows the experimental results of the three parts of the brain tissue based on
the HBN dataset, and Figure 6 shows the experimental results of the three parts of the brain
tissue based on the ABIDE dataset. The dotted circle in the figure is the result obtained by
the method proposed in this paper.

 
Figure 5. GAN registration performance on the HBN dataset.
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Figure 6. GAN registration performance on the ABIDE dataset.

Tables 3 and 4 summarize the Dice, SSIM, and PCC indices corresponding to the
different datasets. Considering Table 3, for the HBN dataset, the proposed method improves
the precision values by 0.030, 0.032, and 0.034 compared with the VM method. For the
ABIDE dataset, the proposed method improves the accuracies by 0.008, 0.004, and 0.004
compared with the VM method. Considering Table 4, for the HBN dataset, the proposed
method increases the SSIM and PCC indices by 0.02 and 0.008, respectively, compared with
the VM method. For the ABIDE dataset, the proposed method improves the SSIM and PCC
indices by 0.006 and 0.003, respectively, compared with the VM method.

Table 3. Dice indicator based on deep learning. Bold numbers indicate the best results.

HBN ABIDE

Methods CSF GM WM CSF GM WM

VM 0.623 ± 0.037 0.797 ± 0.027 0.821 ± 0.015 0.638 ± 0.048 0.797 ± 0.024 0.843 ± 0.018
VM + A 0.642 ± 0.042 0.821 ± 0.029 0.846 ± 0.014 0.639 ± 0.048 0.796 ± 0.023 0.841 ± 0.018

VM + A + GAN 0.653 ± 0.041 0.829 ± 0.029 0.855 ± 0.015 0.646 ± 0.046 0.801 ± 0.024 0.847 ± 0.019

Table 4. SSIM and PCC metrics for deep-learning-based registration methods. Bold numbers indicate
the best results.

HBN ABIDE

Methods SSIM PCC SSIM PCC

VM 0.936 0.976 0.914 0.982
VM + A 0.936 0.976 0.914 0.982

VM + A + GAN 0.956 0.984 0.920 0.985

5. Discussion

The usage of a registration and discrimination networks for image registration is a
common method. Such a registration method has been investigated experimentally in
previous work [34]. However, this adversarial method for training a GAN only limitedly
improves a registration network’s performance, and the registration capacity in some
narrow and long edge areas needs to be further improved. Therefore, this paper proposes a
method of training three networks together to allow the registration network to learn more
deformations, further improving the registration performance. When the three networks are
trained together, the use of different loss functions has a certain impact on the experimental
results, which is discussed in the following subsections.
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5.1. Importance of MSE

When two networks (VM + A) were trained together, both the Lsmooth loss function of
the deformation field φ2 and the MSE loss function were calculated. An experiment was
also performed without the MSE loss function (VM + A − MSE) to verify its effectiveness.
Additionally, when the three networks (VM + A + GAN) were trained together, the MSE loss
function was removed again (VM + A + GAN − MSE), and experiments were performed to
verify the impact of the MSE loss function on the experimental results. Through comparison,
the best registration effect was achieved when the three networks were trained together
and combined with the MSE loss function. The results are shown in Figure 7.

Figure 7. Experimental results regarding the use of the MSE loss function when employing the HBN
and ABIDE datasets. Among them, VM + A − MSE indicates that the MSE loss function has been
removed when training the registration network and the enhanced network, VM + A indicates the
experimental results when the MSE loss function is retained when training the registration network
and the enhanced network, VM + A + GAN − MSE indicates our method’s experimental results
following the removal of the MSE loss function, and VM + A + GAN represents our experimental
results with the MSE loss function retained.

Table 5 summarizes the experimental results regarding the removal of the MSE loss
function (VM + A − MSE) when two networks were trained together (VM + A) and the
removal of the MSE loss function (VM + A + GAN − MSE) when three networks were
trained together (VM + A + GAN). When comparing the results, note that the removal of the
MSE loss function reduces registration accuracy, thus verifying that registration performance
can be improved by adding the MSE loss function when these three networks are trained
together. Comparing the SSIM and PCC metrics in Table 6, the loss function used by the
proposed method achieves good results. Figure 4 shows the comparison of the experimental
results after the MSE loss function was removed (VM + A − MSE) when two networks were
trained together and after the MSE loss function was removed (VM + A + GAN − MSE)
when three networks were trained together. Evidently, the proposed method obtained a
result that is closer to the fixed image, which confirms the effectiveness of training three
networks simultaneously; moreover, note that the proposed method intuitively shows a good
registration effect in the narrow and long regions of the peripheries of the brain images. The
first row of the resulting images represents the original image from the experimental results
for the HBN dataset, and the second row represents the segmentation image corresponding
to the original image from the experimental results for the HBN dataset. Similarly, the third
row represents the original image from the experimental results for the ABIDE dataset, and
the second row represents the segmentation image corresponding to the original image from
the experimental results for the ABIDE dataset.
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Table 5. Dice values when using the MSE loss function and the HBN and ABIDE datasets. Bold
numbers indicate the best results.

Methods
HBN ABIDE

CSF GM WM CSF GM WM

VM + A − MSE 0.641 ± 0.041 0.821 ± 0.029 0.840 ± 0.014 0.638 ± 0.048 0.797 ± 0.024 0.843 ± 0.018
VM + A 0.642 ± 0.042 0.821 ± 0.029 0.846 ± 0.014 0.639 ± 0.048 0.796 ± 0.023 0.841 ± 0.018

VM + A + GAN − MSE 0.652 ± 0.041 0.829 ± 0.028 0.854 ± 0.014 0.645 ± 0.047 0.800 ± 0.024 0.846 ± 0.019
VM + A + GAN 0.653 ± 0.041 0.829 ± 0.029 0.855 ± 0.015 0.646 ± 0.046 0.801 ± 0.024 0.847 ± 0.019

Table 6. SSIM and PCC values when using the MSE loss function and the HBN and ABIDE datasets.
Bold numbers indicate the best results.

Methods
HBN ABIDE

SSIM PCC SSIM PCC

VM + A − MSE 0.950 0.982 0.911 0.982
VM + A 0.952 0.983 0.910 0.981

VM + A + GAN − MSE 0.957 0.985 0.919 0.985
VM + A + GAN 0.956 0.984 0.920 0.985

5.2. Importance of Lsim

When the three networks (VM + A + GAN) are trained together, the Lsmooth loss
functions between the φ2(M(φ1)) image and the fixed image F as well as the M(φ1

◦φ2)
image and the fixed image F are removed for experimental comparison. After removing
the two Lsim loss functions, the registration accuracy decreases significantly. Through this
experimental analysis, it is evident that the Lsim loss function can restrict the similarity
among the images to a certain extent, which proves the effectiveness of adding the Lsim loss
function. By observing the histogram in Figure 8, it is evident that the proposed method
improves the Dice, SSIM, and PCC indices. In Figure 8, note that (a) shows the importance
of verifying the Lsim loss function for the HBN dataset; (b) shows the difference between
verifying the proposed method for the ABIDE dataset and removing the Lsim loss function
in the Dice index; (c) shows the impact of removing the Lsim loss function on the SSIM
and PCC indices for the HBN dataset; and (d) shows the impact of removing the Lsim loss
function on the SSIM and PCC indices for the ABIDE dataset.

Figure 8. Influence of Lsim loss function on registration results.
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5.3. Importance of Different Deformation Fields

The Dice values for when two networks were trained simultaneously are calculated
and discussed next to verify φ1, φ2, and φ1

◦φ2 in the images.
For φ1, the similarity is calculated between the warped moving image segmentation

image Mseg(φ1) and the fixed image segmentation image Fseg, expressed as Mseg(φ1)− Fseg.
For φ2, the similarity is calculated between the warped

(
Mseg(φ1)

)
(φ2) and the fixed image

segmentation image Fseg, expressed as
(

Mseg(φ1)
)
(φ2)− Fseg. For φ1

◦φ2, the similarity is
calculated between the warped moving image segmentation image Mseg(φ1

◦φ2) and the
fixed image segmentation image Fseg, expressed as Mseg(φ1

◦φ2)− Fseg.
Considering the Dice values in the Table 7, the deformation field ( φ2) still plays

a certain role in image registration, but a significantly miniscule role. Therefore, the
registration network still allows the deformation field (φ1) to learn more deformations, and
the augmented network only plays a secondary role.

Table 7. Test results of output images from registration and augmented network for two datasets.
Bold numbers indicate the best results.

Methods
HBN ABIDE

CSF GM WM CSF GM WM

Mseg(φ1)− Fseg 0.642 ± 0.042 0.821 ± 0.029 0.846 ± 0.014 0.639 ± 0.048 0.796 ± 0.023 0.841 ± 0.018(
Mseg(φ1)

)
(φ2)− Fseg 0.644 ± 0.042 0.825 ± 0.030 0.853 ± 0.015 0.642 ± 0.048 0.802 ± 0.023 0.848 ± 0.018

Mseg(φ1
◦φ2)− Fseg 0.643 ± 0.042 0.821 ± 0.028 0.845 ± 0.013 0.640 ± 0.048 0.796 ± 0.023 0.839 ± 0.018

6. Conclusions

In this paper, a method wherein three networks (registration, augmented, and dis-
crimination networks) are trained together is proposed, for which the MSE loss function is
introduced into the augmented network to improve the registration network’s performance.
It was demonstrated that the registration network’s performance was further improved
when coupled with the adversarial capacity of a GAN. Then, it was proven that the pro-
posed method offers significant advantages over the existing methods. In addition, it was
clarified that the proposed training method is easy to implement, and that the implemented
loss function is easy to obtain.

In the future, a more novel GAN will be used to further improve image registration
performance; moreover, more indicators will be used for comparison. The developed model
will then be tested on different datasets to prove its excellent generalizability.
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Abstract: In the medical field, it is delicate to anticipate good performance in using deep learning due
to the lack of large-scale training data and class imbalance. In particular, ultrasound, which is a key
breast cancer diagnosis method, is delicate to diagnose accurately as the quality and interpretation of
images can vary depending on the operator’s experience and proficiency. Therefore, computer-aided
diagnosis technology can facilitate diagnosis by visualizing abnormal information such as tumors and
masses in ultrasound images. In this study, we implemented deep learning-based anomaly detection
methods for breast ultrasound images and validated their effectiveness in detecting abnormal regions.
Herein, we specifically compared the sliced-Wasserstein autoencoder with two representative unsu-
pervised learning models autoencoder and variational autoencoder. The anomalous region detection
performance is estimated with the normal region labels. Our experimental results showed that the
sliced-Wasserstein autoencoder model outperformed the anomaly detection performance of others.
However, anomaly detection using the reconstruction-based approach may not be effective because
of the occurrence of numerous false-positive values. In the following studies, reducing these false
positives becomes an important challenge.

Keywords: breast cancer; ultrasonography; deep learning; anomaly detection; autoencoder

1. Introduction

Recently, deep learning (DL), a branch of machine learning, has attracted considerable
attention. This is a technology for hierarchically learning numerous data features through
a deep artificial neural network(ANN), extracting from simple features of input data to
complex features [1]. In addition, DL performs well in analyzing various data types, such
as video, voice, and text. Moreover, it can be applied to various areas, such as image
classification, object detection, language translation, sentence classification, voice automatic
generation and composition, robotics, medical image analysis, and cybersecurity [2].

In the medical field, various medical imaging techniques, such as magnetic resonance
imaging (MRI), X-ray, computed tomography, ultrasound, and endoscopy are used for
numerous complicated medical imaging analyses because of their improved diagnosis
rates and reduced screening time based on the consistency, scalability, and accuracy of DL.
However, it is challenging to apply DL models to numerous medical images using various
types of medical equipment without additional information from experts. Consequently, a
method for self-learning the inherent features from numerous images without additional
expert opinion and maximizing discrimination via a minimal amount of expert judgment
has been developed recently [3].
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Among the above medical imaging techniques, ultrasound is one of the key diagnostic
imaging techniques for the physical examination of various organs, such as abdominal
organs, breasts, musculoskeletal systems, heart, and blood vessels [3]. Furthermore, ultra-
sonic waves can be imaged in real-time and used with existing resources without building
a separate environment. However, the quality and interpretation of an image may differ
depending on the operator [3,4] and the false-positive rate (FPR), which is the probability
of judging a disease-free normal region as an anomaly with a high value [5]. In particular,
in breast ultrasonography, it is difficult to detect lesions and accurately diagnose them with
a false-negative rate of 50% in dense breasts with a large quantity of mammary tissue and
a fairly small quantity of fat[5]. To overcome these limitations, DL technology has been
employed to effectively extract biometric information or elaborately visualize anomaly
information of organs similar to masses and tumors to aid diagnosis.

Therefore, in this study, DL models were applied to breast ultrasound images to
learn the image features. Using anomalous data, the results of applying deep learning-
based anomaly detection methods for ultrasound images were verified. Thus, DL-based
anomalous region detection technology can automatically detect anomalous regions with
tumors or masses in ultrasound images. Moreover, we aim to study the effectiveness
of this technology in practical applications, e.g., whether it can be used as a computer-
aided diagnostic tool to detect anomalous regions more quickly in ultrasound diagnosis
and more accurately by visually presenting the anomalous region to the user than those
of the other tools.

2. Related Work

2.1. Deep Learning-Based Anomaly Detection

An anomaly is generally defined as the contrary conception of the normal defined
in a field or problem. Anomalies can be largely categorized into point, contextual, and
collective anomalies [5]. Point anomalies represent irregularities or diversions; individual
data can be linked from given data without a particular interpretation and are considered
anomalies. Contextual anomalies are also called conditional anomalies; data are judged
to be anomalous in certain situations and are identified in consideration of contextual,
behavioral, and operational attributes. Collective anomalies may not be anomalies for
individual data; however, data related to each other show anomalous characteristics within
an entire group and are judged as anomalous.

Anomaly detection means finding an unusual pattern unless the expected behavior
in the data is followed, defining a region representing normal behavior, and considering
data that do not belong to the specific region as anomalous and finding them [6]. These
detection methods have long been applied in various fields, e.g., medicine, transportation,
cyber intrusion, telephone or insurance fraud, and industrial control system detection,
playing a crucial role as the demand increases and applications become widespread [7].

DL is a type of ANN that resembles human cognitive function as a machine learning
technique [8]. This is to achieve flexibility by learning how to express data in an overspread
hierarchical structure and ensure excellent performance in learning complex data charac-
teristics such as high-dimensional, temporal, spatial, and graphic data on its purpose of
analysis [7]. DL-based anomaly detection applies DL technology to the anomaly detection
method. A deep ANN algorithm comprising artificial neurons stacked between the input
and output layers is applied to determine whether there is an anomaly.

This method is further classified into supervised, semisupervised, and unsupervised
learning according to the learning approach. Besides, this method is utilized to supervise
outlier detection according to the presence or absence of label data, which is used for
learning data [6].

Unsupervised Deep Anomaly Detection

Supervised and semisupervised deep anomaly detection approaches require securing
labels for learning data. Because obtaining labeled data is complex, research is actively
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being conducted to enable learning without obtaining separate label data, assuming that
most data are normal [9]. The objective of unsupervised anomaly detection is to detect
previously unseen rare objects or events without prior knowledge about them, meaning it
only requires a single labeling process to train a model. Consequently, high accuracy is not
achieved because the restoring performance of the original data depends on the degree of
compression of input data.

The reconstruction methodology for deep anomaly detection has been implemented
for unsupervised-based deep anomaly detection. The authors of [10] assumed that learned
traditional structures are well-remodeled and reconstructed; however, abnormal structures
were difficult to reconstruct. Specifically, in images, a significant difference was visible
between the input data and the anomalous region reconstructed using the data that can be
determined using an object. The core model of unsupervised-based deep anomaly detection
is an AE[11]. As shown in Figure 1, an AE is a generative unsupervised DL algorithm for
reconstructing high-dimensional input data. An AE uses an NN with a narrow bottleneck
layer in the middle that contains the latent that compresses features and then decodes
data to reconstruct the original input. The encoder maps the input data features to a
low-dimensional latent space, and the decoder is trained to restore the low-dimensional
features most similar to the input data through reverse processing.

Figure 1. Autoencoder (AE) Architecture.

The encoder maps high-dimensional data into a low-dimensional latent space as
shown in Equation (1), and the decoder reconstructs and restores the compressed low-
dimensional data as shown in Equation (2) into high-dimensional data [1]. In Equations (1)
and (2), the encoder parameters are {W, b} and the decoder parameters are {W′, b′}. The
activation function is α [1].

z = encoder(x) = α(Wx + b) (1)

x′ = decoder(z) = α(W′z + b′) (2)

As shown in Equation (3), the purpose of the AE model is to minimize the recon-
struction errors using the difference between the restored images and the input image that
mainly uses mean square error (MSE) and cross-entropy error.

L(x, x′) = argmin
1
n

n

∑
i=1

‖x − x′‖2 (3)

We consider three typical AE models applied to unsupervised-based deep anomaly de-
tection: variational AE (VAE), general adversarial network (GAN), and sliced-Wasserstein
AE (SWAE).

The VAE model was proposed by D. Kingma and M. Welling[12] in 2014; it is a
generative model that learns the probability distribution of data and generates new data
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from the learned probability distribution. The structure is shown in Figure 2 and comprises
a network structure of an encoder and a decoder, as shown in the AE model. The encoder
extracts potential features by abstracting input data, and the decoder restores these potential
features to the original data. At this time, the decoder generates data on the premise of a
normal distribution with the average (μ) and variance (σ) of the latent features created by
the encoder as parameters.

Figure 2. VAE Architecture.

The loss function of the VAE model is shown in Equation (4), which computes the
errors in the two optimization tasks. It comprises a sum of reconstruction errors, indicating
how well the input image has been restored, and Kullback–Leibler divergence (KLD) errors,
indicating how closely the latent variable matched the Gaussian distribution, i.e., the latent
space probability distribution.

Li(θ, φ) = −Ez ∼ qθ(z|xi)[logpφ
(xi|z)] + KL(qθ(z|xi)|p(z)), (4)

where x is an input value, and z represents a sampled latent variable. θ is the encoder
parameter, φ is the decoder parameter; the encoder and decoder can be expressed as qθ(z|x)
and pφ(x|z), respectively.

The SWAE model enables the shaping of the latent space distribution into a samplable
probability distribution without the need to train an adversarial network [12]. Similar to
the VAE model, the sample data distribution is enforced. However, in the normalization
process, there is a difference between the usage of the Wasserstein distance (WD) and not
the KLD. Both the KLD and WD measure the distance between probability distributions.
However, the KLD is θ when the two probability distributions overlap, as shown in
Equation (5), and +∞ when they do not overlap. Thus, learning becomes problematic if
the probability distribution is not continuous. However, the WD (EM distance) maintains a
constant |θ| regardless of whether the two probability distributions overlap, as shown in
Equation (6). Hence, it is easy to use it in learning because probability distributions that do
not converge with other distances or divergences can converge with it.

KL(Pθ‖P0) = KL(P0‖Pθ) =

{
+∞ if θ �= 0,
0 if θ = 0

(5)

W(P0, Pθ) = |θ| (6)

To minimize the sliced-WD (SWD) between the distribution of encoded learning data
and the prior distribution, the distance used in sliced-Wasserstein is the same as that in
Equation (7). It refers to the lower limit when the expected value of the distance is the
smallest in the combined probability distributions γ(x, y) combining the two probability
densities Pr and Pg.

W(Pr, Pg) = inf
γ∈Π(Pr ,Pg)

(E(x,y)γ[‖x − y‖p]
1
p ) (7)
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However, because it is impossible to find the minimum in all combinations of proba-
bility distributions, we calculate the value for the 1-Lipschitz function ‖ f ‖L ≤ 1, which is
the upper limit where the average rate of change between any two points does not exceed
1, using the Kantorovich–Rubinstein equation:

W(Pr, Pg) = sup
‖ f ‖L≤1

Ex∼Pr [ f (x)]− Ex∼Pg [ f (x)] (8)

The SWD projects high-dimensional probability densities such as PrandPg in the
distribution of Equation (8) from the WD into one-dimensional (1D) peripheral distributions
and compares these peripheral distributions through the WD.

For the two probability distributions R and G, the Wasserstein-2 distance is calculated
as Equation (9), and the SWD is approximated to W2

2 as shown in Equation (10) and
optimized as Equation (11).

W2
2 (R, G) =

1
|G| min

M

|G|
∑
i=1

|R|
∑
j=1

Mi,j‖Rj − Gi‖2
2, M :

∫
, doubly stochastic (9)

W̃2
2 (R, G) =

∫
w∈Ω

W2
2 (Rw, Gw)dw, Rw = wT R|R|

ii=1
, Gw = wTG|G|

ii=1
, Ω : unit sphere (10)

min
θ

1

|̂Ω|
W2

2 (Rw, Gw(θ))dw (11)

The 1D peripheral distribution of the high-dimensional probability densities may be
defined as follows:

RPX(t; θ) =
∫

X
PX(x)δ(t − θ • x)dx, ∀θ ∈ Sd−1, ∀t ∈ R, (12)

where Sd−1 means a unit sphere of d-dimensional, and for fixed θ ∈ Sd−1, RPX(•; θ) is a
1D slice of PX distribution. That is, RPX(•; θ) is obtained by integrating a hyperplane PX
orthogonal to θ. The following Equation (13) is the sliced-WD defined from the peripheral
distribution of Equation (12).

SWc(PX, PY) =
∫

Sd−1
Wc(RPX(•; θ), RPY(•; θ))dθ (13)

According to Soheil Kolouri[13], the SWAE is calculated as follows to optimize the
model to the minimum SWD value:

argminφ,ψWc(PX, PY) + λSWc(pz, qz), (14)

where φ represents an encoder, ψ represents a decoder, PX represents a data dis-
tribution, PY represents a distribution of data through an encoder and a decoder; pz is
the encoded data distribution, and qz represents a predefined sampling distribution; λ
represents the relative importance of the loss function. The model structure is shown
in Figure 3.

59



Sensors 2023, 23, 2864

Figure 3. SWAE Architecture.

Most DL-based anomaly detection models learn using one of the aforementioned
three learning approaches and determine whether it is abnormal through output values.
According to the result, an abnormal score that can be determined based on a specific
reference value is defined for a given problem to determine its abnormality.

2.2. Deep Learning-Based Anomaly Detection for Medical Images

In the medical field, DL-based anomaly detection methods have been applied to
improve classification performance by learning the characteristics of complex and abstract
medical images and spatially transforming lesions to contribute to the characteristics, which
is helpful for prevention treatments [14].

Data imbalance due to the variety of data is a common issue in the medical field. It is
challenging to collect disease data compared with normal data due to practical limitations
in detecting and classifying lesions. Recently, DL methods have been implemented for
anomaly detection for various medical images modalities, such as brain MRI, retinal
optical coherence tomography (OCT), hand X-ray, chest X-ray, skin disease, and muscle
ultrasound [15–26].

Unsupervised anomaly detection based on implicit field learning was recently pro-
posed for high-resolution three-dimensional volume images [27]. The implicit field learning
was implemented to learn a mapping of latent features and coordinates to a data point
intensity class so that the encoding module preserves as much information as possible in
the original image. The implicit field learning approach with AE achieved state-of-the-art
performance in anomaly detection for brain cancer MRI. GAN-based architectures have also
been employed in various anomaly detection studies. In [28], the GANomaly architecture
was applied to detect chronic brain infarcts. In [29], a unified GAN and VAE architecture
was proposed to identify chest radiographs with abnormal lesions.

DL methods, especially AE and GAN architectures, learn normal image patterns of
human organs in medical images without lesions. In the process of reconstructing a given
image, they have the advantage of using the difference between the input image and the
reconstructed image to determine the abnormality of the input. However, although various
AEs have been proposed, the FPR is still high in pixel-wise anomaly detection. In this
study, the effectiveness of the SWAE in anomaly detection, which is known to have better
reconstruction quality than other AE variants, is validated through comparative studies
with the VAE and conventional AE models.
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3. Materials & Methods

3.1. Materials

In this study, we retrospectively collected 1147 breast ultrasound images compris-
ing 947 normal breast ultrasound images and 200 abnormal ultrasound images from
Kyungpook National University Hospital in the Republic of Korea. The images con-
sist of 113 benign tumors and 87 malignant tumors. The size of all data is 224 × 224 × 3;
853 normal breast ultrasound data and 94 normal data for model training and verifica-
tion. Data with anomalous region (region of interest: ROI) label values were used for
model evaluation.

The ultrasound images used in the experiment were cut into specific areas. Some
normal ultrasound images were used for learning via applying Gaussian filters for noise
removal, and gamma correction with 0.5 and 1.5 gamma values, which decide to express
the dark areas of ultrasound in more detail. The input data were used by dividing the
values of 0–255 pixels into 255 values and converting them into values between 0 and 1.

3.2. Reconstruction-Based Anomaly Detection

The method of detecting an anomalous region applied in this study is to detect an
unrestored region by considering it as abnormal using an error image between an input
image and a reconstructed image (Figure 4). The learning process uses a modified SWAE
model based on AE, a representative generation model of ANNs, and the conventional
AE, which obtains latent features for the summit through input. In the evaluation process,
anomalous data are input to the learned model, and an anomalous region is detected
through the restored results. The difference between the input image and the restored
image is calculated to derive an anomaly map, which is an error image. The anomaly map
is binary divided based on a specific threshold to detect the anomalous region. This process
was applied to the three models to compare and analyze their detection performances and
investigate the factors influencing anomalous region detection in breast ultrasound images.

Figure 4. Deep Learning-based Anomalous Region Detection Process.

3.2.1. Hyperparameter Tuning

In this study, the hyperparameters of the implemented models are as shown in
Tables 1–3. We tuned the hyperparameters by the grid search method.

Table 1. Hyperparameter setting of the AE model.

Hyper Parameter Value

Activation Function LeakyReLU

Output Function Sigmoid

Loss Function L1 distance

Optimizer Adam

Batch Size 16

Epochs 150

Learning Rate 0.0002
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Table 2. Hyperparameter setting of the VAE model.

Hyper Parameter Value

Activation Function LeakyReLU

Output Function Sigmoid

Loss Function Reconstruction Error + KLD

Optimizer Adam

Batch Size 16

Epochs 150

Learning Rate 0.0002

Table 3. Hyperparameter setting of the SWAE model.

Hyper Parameter Value

Activation Function LeakyReLU

Output Function Sigmoid

Loss Function Reconstruction Error + SWD

Optimizer Adam

Batch Size 16

Epochs 150

Learning Rate 0.0002

3.2.2. Model Architecture of Anomaly Detection Model for Breast Ultrasound

The implemented models comprise encoders and decoders with multiple hidden
layers. In the learning process, the encoders map normal ultrasound images into low-
dimensional spaces to represent them as key features of the latent space; meanwhile, the
decoders update and restore weight to some extent according to input. The process for
detecting the anomalous region calculates a pixel unit error over the reconstructed, restored
image and the input image (Figure 5). The anomaly map detects an anomalous region by
binary division based on a specific threshold. It considers the region abnormal if it is larger
than the threshold value and normal otherwise.

Figure 5. Anomaly detection by pixel difference between an original image and reconstructed image
on ultrasonography.

Autoencoder (AE) Model

Figure 6 describes the AE model, comprising different filter sizes and convolutional
layers that are added to the encoder and decoder to extract features. Therefore, the batch
normalization layer is used to normalize the power value. The LeakyRelu activation func-
tion is used with a slight slope to convert the calculated input value into the power value.
In this model, input data are converted to values between 0 and 1 through normalization,
and a sigmoid function is used as the output layer.
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Figure 6. AE model architecture.

The loss value L of the AE model is calculated using the L1 distance loss function to
indicate the abnormal score by the difference in pixel values. This is calculated as the sum
of the absolute values of the difference between the restored image x̂ and the input image x
(Equation (15); the smaller the loss value, the better the model performance. The Adam
optimizer is used for model optimization. The learning rate is set to the maximum initial
value of 0.0002. The cosine annealing method, which can improve accuracy by adjusting
the learning rate in a cosine function, is applied.

L(x, x̂) =
n

∑
i=1

|xi − x̂i| (15)

Variational Autoencoder (VAE) Model

The VAE model comprises an encoder and a decoder similar to the AE model. The only
difference is the AE model is used to map Gaussian distribution and noise for normalization
to the latent space (Figure 7). It is to generate similar data using the latent variable z by
allowing the encoder to return the distribution of the latent space instead of a single point.
Changing the parameter can be ideal for the probability distribution. In this case, the
distribution returned from the encoder is close enough to the standard normal distribution.
In this study, we assumed a Gaussian distribution. Because the immediate differential
calculation is impossible in the latent variable sampling stage. Thus, the latent variable
is converted into z = μ + εσ(sample ε ∼ N(0, 1)) using the reparameterization trick for
optimization to enable backpropagation.

Figure 7. VAE model architecture.

The input data are converted into values between 0 and 1 through normalization,
and the output layer of the model uses a sigmoid function. The loss value L for model
optimization comprises the sum of reconstruction errors using L1 distances as shown in
Equation (16) and the KLD terms for normalization. As in the AE model, the learning
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rate is set to 0.0002 and adjusted by applying cosine annealing for accurate learning. The
parameters are updated using the Adam optimizer for model optimization.

L = Regularization Parameter + Reconstruction Error

= DKL(q∅(z|x)‖pθ(z|x)) + L(θ, ∅, x)

= DKL(N(μ, ∑)‖N(0, 1)) + Eq∅ [logpθ
(x|z)]

= −1
2

J

∑
j=1

(1 + log(σ2
j )− μ2

j + σ2
j ) + E[

D

∑
i=1

(xi logyi
+(1 − xi) • log(1 − yi)]

(16)

SWAE Model

Similar to the VAE model, the SWAE model is a generative model comprising an
encoder and a decoder, which allows the latent space to be formed into a sampling proba-
bility distribution. However, the only difference is normalizing reconstruction losses using
the SWD between the encoded learning sample distribution and the predefined sampling
distribution. Figure 8 shows the SWAE architecture.

Figure 8. SWAE model architecture.

Ultrasonography data converted to values between 0 and 1 are used as input, and
the configuration and output of each model layer are configured the same as those of
the AE and VAE models. The loss value L is calculated as the sum of the reconstruction
error and the SWD of the 1D projection for normalization (Equation (17)). The maximum
value of the learning rate is set to 0.0002, and cosine annealing is applied and adjusted to
increase accuracy.

L = Lrec + Sliced − Wasserstein distance

=
1
n

n

∑
i=1

(x − x̂)2 + SW(Px, Px̂)

= argminEnc,DecW(Px, Px̂) + λSW(pz, qz)

(17)

In the loss function calculation, Lrec evaluates the error between the input and re-
constructed images as a pixel-by-pixel MSE, and the SWE is applied by projecting the
difference between the encoded data distribution pz and predefined sampling distribution
qzin dimensions.

MSE =
1
n

n

∑
i=1

(xi − x̂i)
2 (18)

3.2.3. Validation of Anomaly Detection Method for Breast Ultrasonography

Anomalous data are input to the learned model to detect the anomalous region of an
ultrasound image, and the output is a difference image between the restored and input
images. The anomalous region is detected by a binary division based on a specific threshold.
For performance verification, the ROI label data, extracted from a tumor region of the breast
ultrasound image, is used. Indicators such as similarity (Dice), sensitivity (true-positive rate
(TPR)), and FPR are calculated using overlapping pixel value information in the anomalous
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region of the label data and the binary-split image obtained from the models. Further, these
indicators are employed to compare and analyze the detection results of each model. In
addition, factors influencing the anomalous region detection results in an ultrasound image
are identified.

Performance Evaluation of Anomaly Detection

In this study, three models were used to detect anomalous regions using the error value
between the input and reconstructed images. This should restore the normal ultrasound
image input for learning, and the abnormal ultrasound image input for testing should
restore the anomalous region close to normal. The role of restoration is essential for
successful anomalous region detection by applying a reconstruction-based approach to
ultrasound images. Accordingly, the restoration results for each model for normal and
abnormal ultrasound images are compared and analyzed using the root MSE (RMSE)
values that minimize the error between the input and reconstructed images (Equation (19)).

RMSE =

√
1
n

n

∑
i=1

(Reconstruction − Input)2 (19)

Restoration performance by RMSE value-based model can be considered as a model
with improved learning when learning with normal data, a high RMSE value when eval-
uated with anomalous data, and failure to restore results and can be attributed to a well-
trained model for anomalous region detection.

In addition, three indicators, Dice, TPR, and FPR, belonging to the overlap-based
evaluation index group, were used to evaluate anomaly detection performance. Dice is
calculated from Equation (20) using true positive (TP), false positive (FP), false negative
(FN), and true negative (TN), which are components of the diffusion matrix. It is an indica-
tor that checks the similarity with the correct answer by directly comparing the division
results of the two images. TPR is an indicator of sensitivity, and by predicting the actual
anomalous region abnormal, the anomalous region detection results can be confirmed.
Moreover, FPR is an indicator of the normal region classified above [30]. Performance is
measured based on the indicator values for each model derived by inputting anomalous
data into the model, which are evaluation data. Indicator values are also compared and
analyzed to verify whether the reconstruction-based approach of unsupervised learning is
suitable for anomaly detection in ultrasound images.

Dice =
2TP

2TP + FN + FP
, TPR =

TP
TP + FN

, FPR =
FP

FP + TN
(20)

Analysis of Factor Influencing Anomalous Region Detection

To measure the anomaly detection performance of the reconstruction-based approach,
we analyzed the effects of threshold setting and model-specific latent variables on recon-
struction [17] and tumor and mass size of ultrasound images on anomaly detection.

As for the threshold for determining the anomalous region, the difference between the
mean values of the individual anomaly maps and the overall anomaly map of the validation
data is calculated using 94 normal data points for validation, as shown in Algorithm 1,
and the maximum value calculated by applying the Relu function is set as the reference
threshold [31]. However, in this study, the Relu function applied to obtain the threshold
value treats the negative value of the vector as 0. Hence, the threshold value becomes
relatively large, resulting in a region that treats the abnormality as normal. Therefore, by
supplementing this, three additional thresholds, 0.1, 0.2, and 0.3, which can more accurately
detect anomalous regions in ultrasound images, were applied and compared.
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Algorithm 1 Find threshold for anomaly detection
Input: anomaly map of validation dataset
Output: threshold

1: Max_relu ← 0
2: calculate an average of anomaly map
3: for v in validation set do
4: relu_th ← ReLU(v − average)
5: if Max_relu < max(relu_th) then
6: Max_relu ← max(relu_th)
7: end if
8: end for

return Max_relu

Other influencing factors include the latent variable dimension of the latent space. The
results are analyzed by limiting the structure of latent features through whether the encoder
that generates latent variables for each model reduces dimensions. A reconstructed image
is derived by varying the latent space dimensions of the three models. Anomalous region
detection was performed by setting the latent space to a low dimension. In addition, the
encoder and anomalous region detection results were confirmed by setting the latent space
to a high dimension. Furthermore, changes in indicators according to the ROI sizes, such
as masses and tumors of abnormal images used in the evaluation process, were examined.
We also confirmed that ROI affects anomalous region detection.

4. Experimental Results and Analysis

4.1. Experimental Overview and Environment

In our experiment, AE, VAE, and SWAE models were implemented by applying the
reconstruction-based approach of unsupervised learning. The detection performance of
each model was measured. In addition, the effect of anomaly detection application in
ultrasound was confirmed by comparison based on the performance evaluation values for
each model.

The experimental environment used is the programming language Python 3.6.9 ver-
sion, DL framework Pytorch 1.6 version, CUDA 10.0 version for GPU operation, and
cuDNN 7.6.5 version library. A model’s learning, evaluation, and outcome analysis are per-
formed in an environment using Intel(R) Core(TM) i7-1065G7 CPU @ 1.30 GHz 1.50 GHz
and GeForce GTX Titan Xp 440.100 versions.

4.2. Evaluation of Anomalous Region Detection in Ultrasonography
4.2.1. Reconstruction Performance by Model

The reconstruction performances of the models are presented in Table 4 by comparing
the average RMSE of the verification process using normal ultrasound images and the
average RMSE of abnormal ultrasound images. In the image reconstruction process by
an AE, the smaller the RMSE value, the better the reconstruction performance. However,
in a test process for abnormal ultrasonic images, a larger RMSE value indicates that the
input image is not well-reconstructed. This means that the input image contains abnormal
features that are difficult to reconstruct by the model. The pixel-wise differences between
the input and reconstructed images would be suitable for identifying an anomalous region.
In the comparison experiment for the three models, the RMSE value increases in the order
of SWAE, VAE, and AE, and the anomalous region detection performance is found to be
the best in the SWAE model. Examples of the image reconstruction results for each model
are shown in Figure 9 below.
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Figure 9. Reconstructed images by model.

Table 4. Reconstruction performances of models.

Model Normal Ultrasound RMSE Abnormal Ultrasound RMSE

AE 0.077 0.072

VAE 0.089 0.084

SWAE 0.139 0.139

We confirmed that the AE model with the smallest RMSE value yielded restoration as
the input. For the VAE model, although the normalization value was considered in learning,
the results were similar to those of the AE model. This shows that it is difficult to find an
anomalous region in an error image by restoring the anomalous region similar to the input
as a result of the test by inputting an abnormal image. Conversely, the reconstructed images
of the SWAE model, which showed the highest RMSE value in the evaluation process, did
not restore abnormal features. The anomalous region could be verified in the different
maps more accurately.
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4.2.2. Anomalous Region Detection

To evaluate the anomaly detection performance of the three models, we used three in-
dicators, Dice, TPR, and FPR, as described in Section N. The results of detecting anomalous
regions by the three models based on an arbitrary threshold of 0.2 are shown in Table 5.

Table 5. Indicators of anomalous region detection results of models.

Model Similarity (Dice)
True Positive Rate

(TPR)
False Positive Rate

(FPR)

AE 0.000017 0.001995 0.001494

VAE 0.00005 0.005804 0.001616

SWAE 0.001252 0.312863 0.043162

Similarity generally showed low values in the three models. However, they were
the lowest in the AE model, and all indicator values showed the highest results in the
SWAE model. The SWAE model showed relatively high sensitivity and good performance,
but the FPR value was relatively low. Figure 10 shows each model’s anomalous region
detection performance.

The AE model, which has the smallest similarity, sensitivity, and performance values,
restored an input very similarly. It can be seen that there is almost no region indicating an
abnormality in the case of binary division based on a specific threshold of 0.2. The VAE
model restored the input image similar to the AE model, and both the error and binary-split
images, and the indicator values, showed similar results to the AE model. The SWAE
model shows the most significant result in all three indicator values. The anomalous region
is most clearly detected and displayed in the error and binary-split images.

Figure 10. Reconstructed result images by models.
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4.3. Analysis of Factor Influencing Anomalous Region Detection in Ultrasonography
4.3.1. Threshold

As a result of detecting anomalous regions of the models, the reconstruction-based
approach is considerably affected by the threshold value. Figure 11 shows the change in
indicators for each arbitrary threshold.

Figure 11. Changes in indicators according to the threshold for each model.

In all three models, the smaller the threshold, the larger the region, which is considered
abnormal, indicating an increase in the TPR and FPR values. In the AE model, the FPR value
increases significantly more than the TPR value because the FPR value, which considers
typical abnormalities as normal, is larger than the TPR value, which considers abnormalities
as abnormalities. It is difficult to say that the anomalous region was well-detected. The
VAE and SWAE models show that the TPR value increases more than the FPR value as the
threshold value decreases. In particular, for the SWAE model, the TPR value increases the
most, indicating that the anomalous region was well-detected by considering the actual
abnormality as abnormal. As shown in Figure 11, thresholds play an important role in
anomalous region detection, thus, we did not use arbitrary thresholds. We applied the
method using the validation data mentioned in Algorithm 1 of the Research Methodology
to derive thresholds. The derived thresholds are shown in Table 6.

The method applied in Figure 6 uses the Relu function. The application method
shows a relatively significant threshold value because the negative number is treated as
0 in the vector value of the error image. A significant threshold may occur in a region
where the abnormality is treated as normal during the binary division of an error image.
Figure 12 demonstrates the anomalous region detection results. Figure 12 shows that most
results compared with the ROI are considered normal in the error image, resulting in the
anomalous region not occurring and no overlapping area with the ROI occurring, which
further indicates that it is difficult to detect the anomalous region.

Table 6. Comparison of thresholds by models.

Threshold AE Model VAE Model SWAE Model

Applying Relu 0.52675 0.559735 0.497874

When the average value of the verified data error image was used without applying
the Relu function to calculate the threshold value for detecting the anomalous region of the
breast ultrasonography, a threshold value, somewhat lower than that of applying the Relu
function, was derived, indicating relatively good results for anomalous region detection.
However, for small thresholds, the FPR value increases as the increase of FPs, indicating
the limitation of anomalous detection.
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Figure 12. Anomalous region detection results with respect to threshold with applying Relu function.

4.3.2. Size of Tumor

The number of pixels in the ROI image representing the tumor was calculated to
confirm the effect of tumor size on anomalous region detection. The tumor size was
divided into ranges according to the number of pixels, and the averages of the Dice scores
and TPR values in the corresponding range were calculated to compare the performance
of each model. Figure 13 shows the change in indicators according to tumor size at a
corresponding threshold for each model.

Figure 13. Changes in indicators according to tumor size by model.
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Dice scores were small in all models, making it difficult to compare, but TPR values
showed similar patterns for each model. The error image is binary divided based on a
specific threshold, hence, the TPR value can be calculated somewhat larger at a smaller
threshold. However, the TPR value according to tumor size showed a similar pattern
depending on the model’s threshold value. In the AE and VAE models, the TPR value
decreased as the tumor size increased. Meanwhile, in the SWAE model, the TPR value
increased as the tumor size increased to a specific range; in general, the larger the tumor
size, the larger the TPR value.

5. Conclusions

In this study, we have used the reconstruction-based approach of unsupervised learn-
ing to confirm the effect of using deep learning-based technology to detect anomalies in
breast ultrasound images. Three models–AE, VAE, and SWAE–were used to compare the
results of anomalous region detection based on calculated specific threshold similarity
(Dice), sensitivity (TPR), and FPR indicators. The performance results of restoring ultra-
sound images were good in the order of AE, VAE, and SWAE; however, abnormal images
could not be restored in the anomalous region detection.

In addition, we confirmed that the SWAE model, which represents a more significant
TPR value than the FPR value, exhibited relatively good performance in anomalous region
detection. Meanwhile, the VAE model, which performed similar learning as the SWAE
model by adding normalization values, failed to enforce the distribution of sample data, a
characteristic of the model, resulting in similar results to the AE model.

The anomalous region detection technology applied in this study has a threshold-
dependent limitation because based on a specific threshold, it determines whether an error
image is abnormal by dividing it. This resulted in a higher TPR value with a decreasing
threshold value. However, the FPR value that could detect non-tumor regions as tumors
also increased and that was not a good result.

Changes in the Dice and TPR indicators according to the tumor size were confirmed
to check the effect of tumor size on detecting anomalous regions. Although the indicator
values might differ due to the difference in anomalous regions according to the threshold
value, similar patterns were observed for each model. In the AE and VAE models, the
larger the tumor size, the fewer the detected anomalous regions. This is observed as a result
of a restoration similar to the anomalous region, resulting in a smaller region considered
abnormal. Furthermore, because the reconstruction in the SWAE model was restored to map
the anomalous region to normal, the overall anomalous region was detected. The larger
the tumor size, the more overlapping parts occurred, and the higher the TPR value was.

In this study, we detected anomalous regions such as tumors and masses in ultrasound
images and checked whether they could be visually presented. The results of anomalous
region detection using the SWAE model showed the best performance in ultrasound images
among the three AE-based models.

Further research is required to reduce learning through securing various samples, FPR
values, and increasing TPR values to detect anomalous regions with improved performance
on breast ultrasound images with high variance characteristics. Moreover, because the
threshold setting considerably influences the anomalous region detection results, visual
presentation of anomalous regions for ultrasound images will be possible if additional
methods are applied to determine anomalies without a separate threshold setting.
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Abstract: This paper proposes facial expression recognition (FER) with the wild data set. In particular,
this paper chiefly deals with two issues, occlusion and intra-similarity problems. The attention
mechanism enables one to use the most relevant areas of facial images for specific expressions, and
the triplet loss function solves the intra-similarity problem that sometimes fails to aggregate the
same expression from different faces and vice versa. The proposed approach for the FER is robust to
occlusion, and it uses a spatial transformer network (STN) with an attention mechanism to utilize
specific facial region that dominantly contributes (or that is the most relevant) to particular facial
expressions, e.g., anger, contempt, disgust, fear, joy, sadness, and surprise. In addition, the STN
model is connected to the triplet loss function to improve the recognition rate which outperforms the
existing approaches that employ cross-entropy or other approaches using only deep neural networks
or classical methods. The triplet loss module alleviates limitations of the intra-similarity problem,
leading to further improvement of the classification. Experimental results are provided to substantiate
the proposed approach for FER, and the result outperforms the recognition rate in more practical
cases, e.g., occlusion. The quantitative result provides FER results with more than 2.09% higher
accuracy compared to the existing FER results in CK+ data sets and 0.48% higher than the accuracy
of the results with the modified ResNet model in the FER2013 data set.

Keywords: facial expression recognition; spatial transformation network; attention mechanism;
triplet loss function; intra-similarity problem

1. Introduction

Recognition problems have always been issues in computer vision and pattern recog-
nition. In particular, face or facial expression recognition is considered the most widely
explored topic in research and industrial fields. Computer vision, pattern recognition,
and imaging-related technologies have achieved impressive performance from quantitative
and qualitative perspectives in recent years with the appearance of end-to-end learning
frameworks, such as deep neural network models. Among numerous practical applications
of computer vision and pattern recognition, image-based, automatic, and intelligent facial
expressions are considered one of the most popular topics because facial expression conveys
emotional states and can play a key role in detecting, analyzing, and predicting emotional
or behavioral states. In facial expression recognition (FER), researchers have usually dealt
with discrete facial expressions, such as happiness, surprise, neutral, sadness, fear, disgust,
and anger [1]. Thus, FER aims to achieve accurate classification among different facial
expressions, i.e., maximize inter-class distance and minimize intra-class distance.

Over a few decades, numerous approaches have been proposed, and they are cat-
egorized into two groups, conventional ones, and deep-learning-based ones. Similar to
a field of object recognition, conventional FER is usually composed of three major steps:
(1) preprocessing of an image containing a facial image followed by detection of the face
region, (2) extracting features of a face, and (3) classification and recognition of expressions.
From a technological perspective, FER is similar to face recognition (FR) [2], but FER is
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different from FR in that FER chiefly deals with the seven target expressions mentioned
above. Moreover, facial expressions play a more important role in human communication
or other interactions between human–machine and human–human. FR usually plays a key
role in human identification or authentication rather than interaction activities.

1.1. Traditional Methods

Pre-processing in FER requires reliable quality of image data so that feature extraction
and face detection can be accurately achieved. Noise reduction (or removal) is carried
out before detecting the region of interest, e.g., face detection. Various types of filters
usually categorize in low pass filters, such as Gaussian filter, Laplacian of Gaussian (LOG)
filter or bilateral filter. Histogram data are sometimes utilized to enhance image quality,
e.g., histogram stretching, histogram equalization, etc. If a facial image contains illumina-
tion, varying pose, or occlusion, more complex preprocessing techniques are required [3].
Furthermore, a face image can be acquired using various types of sensors or using a com-
bination of multiple sensors, e.g., fusion of RGB and IR (infrared red) sensors, leading to
increasing complexity of algorithms. In the course of recognition, it can successfully begin
with accurate detection of the region of interest (ROI). In FER, accurate detection of the
face region needs to be carried out before performing expression recognition. Human face
detection has also been one of the most important processes in face recognition, expression
recognition, gesture recognition, etc.

In conventional approaches of FER or FR (without using deep learning), tremendous
work for face detection was proposed [4], and it can be categorized into feature-based
and image-based approaches. The former includes active shape model (ASM), low-level
analysis (color, motion, or edge-based analysis), and feature analysis (Viola Jones detector,
AdaBoost, local binary pattern, Gabor feature-based method, constellation method, etc.).
The latter includes more recent approaches that use training and test data sets to perform
the matching procedure for the detection (neural network, principal component analysis
(PCA), and support vector machine (SVM) ).

The image-based approach also contains a sub-space-based method and statistical
approach (PCA and SBVM are also included in this category). In feature-based face detec-
tion, accurate feature extraction (invariant feature points) is desired, while the image-based
approach achieves accuracy and computational efficiency by performing dimensionality
reduction. Once the region of a face is detected, feature extraction is carried out. Accurate
feature extraction is crucial for diverse applications of image processing and computer
vision. Almost all imaging and vision technologies require highly accurate feature extrac-
tion results. Feature extraction has been one of the most significant contributions to FER,
and there have been extensive research activities to propose accurate feature extraction
algorithms. In FER or FR, feature extraction and face detection are very closely related
and highly correlated, and some of the algorithms are overlapped. In addition, extracted
landmarks are important in many facial tasks [5,6]. In feature extraction of a facial image,
applying proper spatial filters to a facial image is a very basic and simple approach. The
Gabor filter, local binary pattern (LBP), scale-invariant feature transform (SIFT), speed-up
robust features (SURF), and histograms of oriented gradients (HOG) are the most popularly
used ones. Encoding based on a code-book is another approach for feature extraction, com-
posed of a training phase and an encoding phase. K-means algorithm, Gaussian mixture
model (GMM), and Fisher Vector (FV) are encoding-based approaches. Spatial pooling and
holistic encoding also play roles in feature extraction.

Classification is the final stage for recognition. In the recognition, inter-class distance is
to be maximized, while intra-class distance is to be minimized. Numerous conventional ap-
proaches have been used for recognition recently, e.g., Hausdorff distance (HD), Euclidean
distance (ED), SVM, PCA, hidden Markov model (HMM), hidden conditional random
fields (HCRF), etc. [7–11].
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1.2. Deep-Learning-Based Methods

Although tremendous efforts have been made to improve performance of traditional
FER from qualitative and quantitative perspectives, it still lacks recognition accuracy when
used in an uncontrolled experimental environment, with images that belong to a wild
setting, or with unrefined input images. Similar to other image processing, computer
vision, and pattern recognition problems, recent FER has shown remarkable improvements
by employing deep learning models [12]. Deep-learning-based FER uses a deep neural
network that has various types of structures each of which has its strengths. Proper selection
of the model can significantly improve the performance of face detection, feature extraction,
and classification for the recognition. A deep neural network (DNN), with a sufficiently
large amount of data, provides an end-to-end framework for FER tasks. The recent state-of-
the-art approaches have verified the advantages in the fields of visual object recognition,
pose estimation, depth estimation and others [13]. Deep-learning-based FER aims at
classifying facial expressions using a single image or sequence of images, and the neural
network structures learn characteristics or information contained in image data sets. Even
if not under controlled experimental environments, deep-learning-based FER provides
accurate and reliable recognition results. In other words, in contrast to the traditional
methods, deep-learning-based FER shows less dependence on data sets. Moreover, deep-
learning-based FER, in contrast to the traditional methods, does not have to consider
three major steps (face detection or localization, feature extraction, and classification)
separately because the DNN model has the capability to learn a sufficient amount of
information to classify seven facial expressions in an end-to-end manner. Among several
DNN models, the convolutional neural network (CNN) model is the most popularly
employed, especially in the case of static input images. Convolution is a very well-known
arithmetic operation in signal processing and image processing when spatial and time-
domain data are directly utilized. Before the CNN model was popularly used, frequency
domain analysis, e.g., Fourier Transform, was one of the most popular approaches. The
CNN model enables direct use of spatial numeric data, i.e., pixel values, for detection,
feature extraction, recognition, and classification work. In addition to these, almost all
of the fields related to computer vision, image, and signal processing have significant
benefits from the CNN model. Usual CNN-based FER takes static images or a set of static
images as an input to the network model that is composed of more than three layers,
called hidden layers, each of which provides convolution results with the output data of
the previous steps. Various structures of filters are convolved with the input data or the
output data of the previous layer, leading to an increase in computational complexity which
has been resolved with the improvement of hardware infrastructures and the algorithms
for developing a light structure of DNN models. Each layer contains the result of the
convolution operation providing feature maps followed by generating fully connected
layers to proceed to conduct classification. In the recognition work that uses static images as
input data, CNN-based approaches have been considered a main method [14]. In practice,
recognition tasks in a wild environment may require detection followed by classification
in a real-time manner because the input image data varies over time. If DNN models
are required to train input face (or facial expression) images with the variation of the
expressions over time, i.e., input data has spatiotemporal features, the recurrent neural
network (RNN) model is considered more appropriate for the recognition work [15]. In this
case, sequences of facial expression data have a temporal dependency in addition to a
spatial one, so the additional dependency is taken into account during the classification
and recognition process.

In this paper, we present a novel approach to automatic FER using a spatial transformer
network with a triplet loss function. To this end, the proposed method aims at accurate
and efficient FER by focusing on the relevant region for each facial expression while robust
to occlusion. A flow diagram of the proposed approach is shown in Figure 1.
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Figure 1. An overview of the proposed model for FER that solves the intra-similarity problem and is
robust to occlusion. (a) Three classes of facial images with occlusion (anchor, positive and neutral)
are classified using the proposed model, STN-TL. (b) Architecture of spatial transformer network is
basically used in the proposed FER.The images in this figure are from public data set (CK+) [16].

The rest of this paper is organized as follows. Section 2 briefly introduces related work
to the field of FER using deep neural networks and STN. This section also introduces the
loss functions that have been applied to the recognition work. In Section 3, we introduce
our proposed model TL-STN in detail. Then in Section 4, we introduce the data set used
in our experiments. In addition in this section, we describe a comparison between the
cross-entropy loss function and triplet loss function and also between occlusion data and
non-occlusion data. Then, we compare the state-of-the-art model and TL-STN.

2. Related Work

Transformer architecture that has been widely used in the field of natural language
processing (NLP) shows exceptionally well-performed results in the recognition task, espe-
cially in the case of using sequences of images as input data [17]. Recently, a new learnable
module, spatial transformer network (STN) was proposed to provide robust performance
by allowing spatial manipulation of input image data. STN is inserted into existing network
models, e.g., CNN, and it enables one to achieve robust training results from invariance
to the spatial transformation of input data, e.g., translation, rotation, warping, etc. [18].
The STN model has been applied to many practical problems among numerous cases of
the recognition problems with encouraging results [19].

Another transformer model, vision transformer (ViT) [20], has gained attention in the
recognition field and has been proposed as an alternative to the existing DNN models.

Although the existing FER work has achieved significantly improved results from
quantitative and qualitative perspectives, it is still a challenging task due to the existence
of uncontrolled external environments, pose variations, or occlusion that degrade the
performance of FER results. More complex scenarios of FER need to be dealt with for
high-quality FER from practical perspectives. Thus, it is worth investigating FER methods
using STN, which has gained attention in the area of deep learning. In this paper, inspired
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by a spatial transformer network module, FER is performed efficiently by selecting the most
relevant part of a facial image followed by applying the triplet loss function. The result
is compared to the results using cross-entropy and to the other FER results using state-
of-the-art algorithms. The proposed method shows superior recognition results in FER,
particularly in the case of facial images having occlusion areas. A spatial transformer
network that is included in standard neural network structure has advantages in case of
rotation, cropping, scaling, and non-rigid deformation of images that sometimes happen to
face images in practice.

As very well-known, traditional methods for the FER employ pixel-level, geometric
model, or object-level-based approaches. Recent approaches are usually categorized as
deep-learning-based approaches. In the past few years, learning-based approaches have
witnessed a significant improvement in recognition tasks, especially in the areas of face
recognition, facial expression recognition, activity recognition, etc. In the deep-learning-
based approaches, convolutional neural networks and recurrent neural network models
are the most widely used. More recently, a transformer network has been considered one
of the alternatives to the CNN and RNN-based approaches. In this paper, we are interested
in FER using deep-learning-based approaches and the spatial transformer network (STN)
with a triplet loss function which improves the success rate of the recognition. The deep
neural network (DNN) model enables one to perform automated FER that has long been an
interesting and challenging task in the field of recognition problems. Instead of extracting
feature points from facial images using a specific mathematical or statistical model, the
DNN-based recognition approach extracts diverse and numerous feature points using large
numbers of hidden layers that contribute to feature extraction with a brain-like mechanism.

Contrary to the traditional approach that always tries to achieve minimum intra-class
distance and maximum inter-class distance in the recognition problem using an analytical
model (mathematics, statistics, etc), the recent deep-learning-based approach is able to find
abstraction and complex patterns that are inherent in real facial images.

Traditional approaches for the recognition of a face, facial expression, activity, or object
lack generalizability due to the variations of a pose or scale and randomly additive noise.
In addition, due to the non-existence of data sets, almost all of the recognition task was
based on the manual or analytic model-based extraction of feature points. Inspired by the
advent of deep learning, CNN-based models have shown robustness to the abovementioned
variations, so FER has employed a CNN model to achieve higher accuracy of the recognition
rate. CNN-based analysis of facial data has appeared in the work by Lawrence [21],
LeCun [22] and Fasel [23] whose work has utilized less than five hidden layers in their
network models. Almost all of the FER algorithms also use those works as a baseline
to propose novelty or further improvement in the accuracy of the recognition. Since the
work of FER in the early stages, significant progress has been achieved in more practical
and wild-setting circumstances by utilizing the DNN model. The CNN model is one
of the earliest ones that deeply learns and extracts facial feature points that have subtle
expression changes that are difficult to extract using traditional recognition methods. Since
the introduction of CNN for the recognition work, FER has also employed CNN structure
by adding more layers, leading to deep CNN architectures that improved FER results [24].
In the beginning stage of FER using CNN, a limited number of image data sets were
used and a specific expression was a target to be recognized. Subject independence and
translation, rotation, and scale-invariant FER using CNN has been proposed to discriminate
smiling from talking based on the saliency of visual cues [25]. Inspired by the expressions
of real emotion, FER has been extended to micro-expression (ME) recognition using deep
learning methods [26]. A single deep learning network structure that consists of two
convolution layers followed by max pooling and four inception layers was introduced in
the early stages of FER using DNN, but this work uses a registered face image data-set and
the landmark is extracted a priori [27]. Much research has been conducted to solve wild data
set FER problems. The work in [28], proposes a multi-task learning (MTL) framework that
exploits the dependencies between these two models using a graph convolutional network
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(GCN) to recognize facial expressions in the wild. The work in [29], proposes a visual-
based end-to-end emotion recognition framework, which consists of the robust pre-trained
backbone model and temporal sub-system to model temporal dependencies across many
video frames. In addition, facial expressions can be applied in many applications. The work
in [30] used facial expression recognition to analyze students’ behavior in the e-learning
environment. They used EfficientNet-B2 to extract emotional features in each frame. The
sequence of facial images (video sequence) can be used as inputs to the DNN model, and in
this case, the temporal relations between frames need to be taken into account, leading to
the necessity of a long short-term-memory (LSTM) unit being additionally employed [31].
Another popular deep learning model is the recurrent neural network (RNN) model that
is more suitable to temporal, sequential data, such as video, voice, text, etc., leading
to the superior performance of the prediction task [32]. Transformer architecture was
first proposed as a sequence transduction model based only on attention, and the spatial
transformer network (STN) model chiefly deals with images with spatial transformation,
so it shows a geometric invariant generalization of differentiable attention that is robust to
any spatial transformation. Basic CNN models have the inevitable drawbacks of precise
localization of important parts, particularly in the case of small objects. To the best of the
authors’ knowledge, there have been fewer research activities on STN-based FER with
adaptive loss function. Thus, this section introduces STN-based recognition work (not
limited to FER) focusing on the recent literature. The beginning state of deep-learning-based
FER could be enhanced by adding an attention mechanism because it can focus on the most
important sub-region of a facial image. In FER, the need for an attention mechanism has
consequently brought the proposal of the STN model [18]. In [33], the attention mechanism
uses a semi-supervised localizer that precisely detects salient regions, and the STN model
is inserted into the existing DNN model (e.g., CNN model) to solve the recognition and
detection problem in case of spatially transformed input images. The work shows STN
incorporates into the basic CNN model, and the whole architecture is composed of three
parts, localization, sampling grid, and image sampling. However, it can localize the rough
position of the target (e.g., the jersey number of a soccer player), and there is no work
on selecting an adaptive loss function for optimization. An attentional convolutional
network has been introduced to classify facial expressions where the number of classes is
smaller than the usual cases of classification problems [34]. In the work of [34], the authors
used less than 10 hidden layers and added an attention mechanism for efficient FER, and
the proposed approach reported better accuracy than state-of-the-art results. However,
the accuracy shows oscillations, and the work reports that there is a trade-off between the
recognition rate and the speed of convergence. Occlusion or pose variations are two major
factors that degrade recognition accuracy, so region attention networks (RAN) have been
employed for robust FER by adaptively capturing the important facial regions [35]. As
FER in the wild is a challenging task, an attention mechanism with a basic CNN model
(ACNN) has been proposed to perceive occlusion regions while focusing on the most
unoccluded facial regions [36]. In [37], an extension to the basic STN model is proposed
by adding procedures for capturing effective attentional regions using facial landmarks
or facial visual saliency maps. In [38], STN-based FER was added to the CNN model
with spatial and channel attention, and further improvement could be possibly achieved
using the proposed GELU (Gaussian error linear unit) activation function. Multimodal
emotion recognition that uses speech and facial images has been proposed. In this approach,
pre-trained STN for saliency maps and bi-LSTM for the attention mechanism is proposed
for emotion recognition [39]. However, in this work, the input image is transformed into
mel-spectograms, leading to an increase in computational complexity.

Despite efforts in FER using DNN with an attention mechanism, there is room for
further improvement, and our proposed method yields FER that is robust to occlusion
and efficient by focusing on the most relevant facial region for specific expression by
adding STN. In addition to the methods using STN, our approach employs an adaptive loss
function and a triplet loss function that improves recognition accuracy in case of occlusion.
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3. Proposed Method

Deep-learning-based facial expression recognition research shows high accuracy and
performance. Nevertheless, there is still a problem in that it is hard to accurately recognize
wild data sets due to external factors such as occlusion, pose, and illumination. Our
proposed method is robust to occlusion using STN with an attention mechanism and triplet
loss function that achieves optimized recognition accuracy. In practical cases, in addition to
the occlusion problem, FER struggles with minimizing intra-class distance, i.e, existing FER
algorithms sometimes fail to recognize the same expression. Some examples are depicted
in Figure 2a,b.

Different from previous FER images, Figure 2a contains non-formalized FER images.
In this case, although the facial images belong to the same class (e.g., fear, happiness,
and neutral) the existing FER methods do not successfully classify or recognize the expres-
sion. Figure 2b shows another difficult classification problem between “sad” and “angry”.
Our proposed method solves this classification problem as well as the occlusion problem
using a model called TL-STN which combines the spatial transformer network (STN) and
a triplet loss function. In this section, the proposed model TL-STN is briefly explained,
and the spatial transformer network and triplet loss are described in detail in Section 3.1
(Figure 1).

Figure 2. In practice, existing FER algorithms sometimes struggle with intra-similarity problems:
(a) same expressions from different peoples’ faces, and the existing algorithms sometimes consider
them as different expressions; (b): different expressions from the same person’s face. Existing work
sometimes considers them as the same expressions. The images in this figure are from public data set
(FER2013) [40].

3.1. Overview of TL-STN

In this section, we introduce an overview of a model that combines a spatial trans-
former network and triplet loss to solve problems affected by external environments,
such as occlusion, pose, and illumination among facial recognition problems. In addition,
the proposed method alleviates the limitation of recognizing the same expressions of wild
data sets by combining STN and the triplet loss function. In particular, the triplet loss
function contributes to aggregation of similar expressions.

As shown in Figure 1a, anchor (Ai), positive (Pi), and negative (Ni) images are used as
input data for training the triplet loss function. Anchor data (Ai) stands for the original
data which we want to classify. Positive data stands for the data belonging to the same
class as the anchor data. Negative data stands for different class data from the anchor
data. In this study, we used three input data for training. Positive and negative data were
sequentially picked randomly from the same class and different classes.

Each facial data image is fed to the spatial transformer network followed by a triplet
loss function so that the distance between Pi and Ai is minimized and the distance between
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Pi and Ni is maximized. Furthermore, input image (Ai, Pi and Ni) with occlusion is fed
to the STN that is combined with ResNet [41]. To this end, the classification of facial
expression with occlusion and under the wild circumstance can be achieved with high
accuracy in place of using only deep neural networks (e.g., CNN-based, RNN-based, STN
only, etc) with the facial data acquired under the controlled circumstances.

3.2. Spatial Transformer Network

When carrying out the classification of facial images based on deep learning technolo-
gies, it is important that accurate classification be performed in realistic conditions, such as
pose change, occlusion, and missing some parts of the facial image. CNN-based models use
a pooling layer to solve these spatial variance problems. The spatial transformer network is
a recent classification method [18], which can be utilized in the fields of image classification,
co-localization, and spatial attention, and it can solve the spatial invariance problem by
transforming specific parts that are required in the learning tasks. Our proposed approach
to facial expression recognition combines STN and triplet loss instead of only using a single
deep neural network model so that robust recognition can be performed in case of occlusion.
In addition to robustness to occlusion, the triplet loss function alleviates the limitation of
the existing FER methods that sometimes fail to categorize the same expression as shown in
Figure 2. The combination of STN and triplet successfully aggregates the same expression
that is captured in wild-set environments.

Figure 1b shows the STN in detail. It consists of a localization network, a grid gen-
erator, and a sampler. Conv, MP, ReLU, Linear, and CNN stand for convolution layer,
max pooling layer, ReLU activation function, fully connected layer, and CNN model,
respectively. ResNet has been used in the STN because it shows the best accuracy of
classification in case of occlusion and wild-set environments. The localization network
returns parameters required for spatial transformation, and the grid generator returns
the grid required for transformation. In the course of transformation, we used affine
transformation. The sampler samples the grid and input image generated through the
grid generator. The localization network is constructed by adding max pooling and ReLU
activation functions with convolution layers and one fully connected layer (Figure 1b).

Through the localization network, six parameters required for the affine grid (Aθ),
written as Equation (1), are returned as outputs.

Aθ =

[
θ11 θ12 θ13
θ21 θ22 θ23

]
(1)

The affine grid (Aθ) is generated through the six parameters returned from the local-
ization network. The generated grid and input image are sampled through grid sampling
to generate a final conversion grid necessary for learning, as written by Equation (2). In
Equation (2), xi and yi stand for the coordinates of a horizontal and vertical axis of the
generated grid. Tθ(Gi) stands for the grid generator, and Aθ stands for the affine grid.

(
xi
yi

)
= Tθ(Gi) = Aθ

⎛⎝xi
yi
1

⎞⎠ (2)

3.3. Triplet Loss

FER frequently shows limitations in that different classes (e.g., expressions) of the
same person do not show maximized distance, i.e, the existing methods fail to classify
different expressions if those are from the same person. FER also shows a limitation in that
the existing method fails to aggregate the same expressions of different people. The triplet
loss function alleviates this limitation.
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Triplet loss is a loss function for metric learning. Based on the anchor data, the triplet
loss function enables one to minimize the distance between the same expressions of different
people and to maximize the distance between the different expressions of the same person.
By using this triplet loss, the Euclidean distance is decreased for facial expression data
belonging to the same class, and the Euclidean distance is increased for facial expression
data belonging to different classes. Data are organized as follows. The data belonging to
the same class as the anchor data are composed of positive data, the data belonging to
the other class are composed of negative data, the three sets of data are learned by each
STN model, and the output result value is calculated as the Euclidean distance through the
triplet loss function, written as

N

∑
i
[|| f (xa

i )− f (xp
i )||2 − || f (xa

i )− f (xn
i )||2 + α] (3)

where N is the number of data; f is the STN model; a, p, and n are anchor, positive,
and negative, respectively,||.||2 means L2 normalization. α is a hyperparameter representing
the margin, and in this experiment, it is set to 1.0. In the experiment, back-propagation
learning is performed through the above equation for positive data, negative data and
anchor data that have passed each STN model.

4. Experimental Results

This section details the results with the used data set for the experiments, experimental
setup, and environments. To validate the proposed approach in this work, we compare
various image data, e.g., occlusion and non-occlusion data. The comparison is carried out
through ablation studies, followed by a comparison with the state-of-the-art (SOTA) model.

4.1. Data Set

CK+: The Extended CohnKanada (CK+) database [16] is the most widely used labora-
tory control database in the field of FER. CK+ contains 593 video sequences of 123 topics.
The sequences vary in duration from 10 to 60 frames and show transitions from neutral
to peak facial expressions. In this video, seven basic facial expression labels (anger, con-
tempt, disgust, fear, happiness, sadness, surprise) are classified based on the FACS (Facial
Action Coding System). In this paper, a total of 981 frames were extracted and used in
the experiment. Here, 800 training images and 181 test images were randomly divided
into experiments.

FER2013: The FER2013 database [40] is the data used in ICML2013 Challenges in
Presentation Learning. FER2013 is a large database that is automatically collected by the
Google Image Search API. All images are scaled to a size of 48 × 48 pixels and consist of
7 expression labels (anger, disgust, fear, happiness, sadness, surprise, neutrality). It consists
of 28,709 training images, 3589 verification images, and 3589 test images.

4.1.1. Experimental Environment

In this paper, the image size of the data set was adjusted to 224 × 224. Anchor,
positive, and negative data were used with batch size eight. Based on the anchor data,
images belonging to the same or different classes were randomly extracted to form positive
and negative data, respectively. Each of the three data (anchor, positive, negative) is trained
through the STN model combined with modified ResNet-18. The triplet loss was calculated
through the three output values obtained by the model. We initialized the learning rate to
0.001, and the Adam optimizer was applied. The modified ResNet-18 layers are shown in
Table 1. The existing ResNet model is modified by removing the number of layers in the
model of ResNet-18, which includes the smallest number of layers among ResNet models.
Then, the number of layers becomes smaller.
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Table 1. Modified size of each layer of ResNet structure.

Layer Type Output Size Patch Size, Channel

Convolution layer 1 24 × 24 7 × 7, 64, stride 2
Convolution layer 2 12 × 12 3 × 3, 64, 3 × 3, 64
Convolution layer 3 6 × 6 3 × 3, 128, 3 × 3, 128
Convolution layer 4 3 × 3 3 × 3, 256, 3 × 3, 256
Convolution layer 5 2 × 2 3 × 3, 512, 3 × 3, 512

Average Pool 1 × 1 -

4.1.2. Ablation Studies

Figure 3 visualizes the distribution of image data used for the comparison experi-
ments. The comparison is performed from two perspectives. One is a comparison between
occluded facial images and non-occluded ones. The other is a comparison between using
cross-entropy and using the triplet loss function. Figure 3a,b represent the case of using
the cross-entropy loss function, and (c) and (d) represent the case of using the triplet loss
function. Here, (a) and (c) show the visualization of experimental results using occlusion
data, and (b) and (d) show the experimental results using non-occlusion data. It seems
that it is difficult to clearly distinguish between different classes when a cross-entropy
loss is used (Figure 3a,b). On the other hand, when triplet loss is used (Figure 3c,d), it
can be seen that classification is more successful. We can see Figure 3a,c show a more
clearly distinguished result than (b) and (d) show, which are trained by occlusion data.
Nevertheless, when using triplet loss, classes are more clearly distinguished in occlusion
data than when using the cross-entropy loss function, and we can see that they are more
clearly aggregated between the same classes (indices of vertical and horizontal axes just
present relative locations of points of each expression).

Figure 3. Visualization of data distribution under loss function and occlusion: (a,b) show classifica-
tion using the cross-entropy loss function; (c,d) show the result using triplet loss; (a,c) visualize the
result with non-occlusion data; (b,d) visualize the result with occlusion data.

Table 2 compares the accuracy of the original ResNet-18 and the modified ResNet-18
using randomly erased CK+ data and compares the accuracy of using cross-entropy loss
and triplet loss. Through the experiment, it is confirmed that when the modified ResNet-18
is combined with STN, the accuracy achieved is 2.09% higher than the model combined
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with STN and the original ResNet-18. Through this experiment, it can be confirmed that
when modified ResNet-18 is combined with STN, it shows better performance. In other
words, the results imply that the model with fewer layers in the network model shows
higher accuracy when combined with STN. In addition, through the experiment, it was
confirmed that the use of the triplet loss function showed a classification accuracy of 99.44%,
which is 0.48% higher than with the cross-entropy loss. Although our approach uses the
ResNet-18 structure, the result is comparable to the result using the ResNet-34 structure
(LHC-Net). Unfortunately, our approach struggles with the optimization of the recognition
result with an increase in the number of layers. These results verify that in the case of
facial expression recognition, using the triplet loss function further improves the accuracy
compared to using the cross-entropy loss function.

Table 2. Ablation study of ResNet model and using different loss function on CK+ data set.

ResNet Loss Function Accuracy (%)

Orignal ResNet-18 CrossEntropy 96.87
Modify ResNet-18 CrossEntropy 98.96
Modify ResNet-18 Triplet 99.41

4.1.3. Comparison Result

Experimental results using CK+ and FER2013 data sets are shown in Figure 3 and
Tables 2 and 3. Table 2 chiefly compares the accuracy between using the cross-entropy and
triplet loss function in the ablation study. Table 3 comprehensively shows the comparison
results between the SOTA models and our proposed approach. In the case of using the CK+
data set, the proposed model, TL-STN, is compared with FER-IK [42], IPA2LT [43] , lp-norm
MKL multiclass-SVM [44], twofold random forest classier [45], and the self-supervised
learning (SLL) puzzling model [46].

In the CK+ data set, ViT+SE [47] and FAN [48] show high accuracy, but we excluded
it from the comparison table because ViT+SE uses 10-fold cross-validation and FAN uses
video sequences as input data which is a different setup from our proposed approach.
FER-IK is known as a knowledge-augmented image-based FER model, and IPA2LT is
known as inconsistent pseudo annotations to the latent truth model. The lp-norm MKL
multiclass-SVM is known as multiple kernel learning (MKL) in multiclass support vector
machines (SVM). Twofold random forest classier is known as a model which recognizes
AUs from image sequences using a twofold random forest classifier. SSL puzzling is known
as a nonlinear evaluation in supervised learning (SL) and the self-supervised learning (SSL)
puzzling model.

In the case of using the FER 2013 data set, our proposed model, STN with modified
ResNet-18 and cross-entropy, is compared to LHC-Net [49], CNN [50], GoogleNet [51] ,
ResNet [41], VGGNet [52], and STN with a cross-entropy loss function.

In the FER2013 data set, Ensemble ResMaskingNet with six other CNNs [40] and Local
Learning Deep+BOW [53] showed high accuracy, but we excluded it from the comparison
table because these models use machine learning, unlike our proposed model. In addition,
simple comparisons are impossible because we propose a loss function using attention-
focused mechanism-based models and metric learning.

In this experiment, our approach does not show an improved result, but the proposed
model shows superior accuracy compared to the result of using the original ResNet-18
model. TL-STN with the CK+ data set achieves the best recognition accuracy despite using
randomly erased facial images.
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Table 3. Performances comparison with state-of-the-art methods.

Model Datasets Accuracy (%)

FER-IK [42]

CK+

97.59

IPA2LT [43] 91.67

lp-norm MKL multiclass-SVM [44] 93.6

Twofold random forest classier [45] 96.38

Nonlinear eval on SL + SSL Puzzling [46] 98.23

TL-STN (ours) 99.41

LHC-Net [49]

FER2013

74.42

CNN [50] 62.44

GoogleNet [51] 65.20

ResNet [41] 72.4

VGGNet [52] 73.28

STN (w/orignal ResNet-18) + TL (ours) 72.30

STN (w/modified ResNet-18) + TL (ours) 73.31

5. Conclusions

This paper presents facial expression recognition based on deep learning technology.
Since the advent of deep neural network models, diverse applications using image data
have shown significant improvement from theoretical and practical perspectives. However,
a lot of challenges remain due to the unexpected factors that degrade the performance of
recognition. Furthermore, facial expression directly reflects human emotion which is a very
qualitative component. Facial expression and human emotion are very delicate, leading to
the technical difficulty in analysis and quantification. In this paper, the proposed approach
chiefly contributes to two problems, one is occlusion, and the other one is a classification
of expression (intra-class similarity problem) in practical cases (Figure 2). Exsiting FER
methods usually employ cross-entropy loss function which helps reduce the difference
between ground truth values and the estimated (or predicted) ones that are similar to other
image recognition fields. The cross-entropy loss function shows a high recognition accuracy
for objects that do not change the appearance of objects in the image, but it is difficult to
classify when there are various features in the same class, such as facial expressions. In this
paper, to solve these problems, the experiments were conducted by using the triplet loss
function which was the first suggested in the field of facial expression recognition, and the
proposed one can be applied to diverse practical fields. The triplet loss function with a STN
(w/modified ResNet-18) alleviates the abovementioned limitations. The proposed model
solves occlusion and illumination, poses change issues, and shows superior results to the
existing work. To verify the benefit of the modified ResNet-18 model, a comparison was
performed that showed a 1.01% improvement on the FER2013 data set. When the triplet
loss function and the modified ResNet-18 were combined, they yielded 99.41% accuracy.
The experiment with a randomly erased pre-processed CK+ data set showed the highest
accuracy compared to SOTA models which were performed with the original CK+ data set.
Through these experiments, it was confirmed that even for data with occlusion, our model
shows high performance in FER. In addition, the proposed model shows the availability of
a metric-learning-based loss function.

In future work, we will more deeply focus on enhancement of the recognition accuracy
with the more delicate differences of facial expression, as well as more practical issues in
recognition problems. Specifically, we will analyze the practical limitations existing in the
proposed approach and will try to solve them through contrastive loss functions such as
triplet loss. Through this, we plan to see if we can solve other recognition problems by
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applying our methods to fine-grain recognition problems that use small data sets, such as
medical diagnosis, gender classification, etc. [54–56].
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Abstract: High-speed detection of abnormal frames in surveillance videos is essential for security.
This paper proposes a new video anomaly–detection model, namely, feature trajectory–smoothed
long short-term memory (FTS-LSTM). This model trains an LSTM autoencoder network to generate
future frames on normal video streams, and uses the FTS detector and generation error (GE) detector
to detect anomalies on testing video streams. FTS loss is a new indicator in the anomaly–detection
area. In the training stage, the model applies a feature trajectory smoothness (FTS) loss to constrain
the LSTM layer. This loss enables the LSTM layer to learn the temporal regularity of video streams
more precisely. In the detection stage, the model utilizes the FTS loss and the GE loss as two detectors
to detect anomalies. By cascading the FTS detector and the GE detector to detect anomalies, the
model achieves a high speed and competitive anomaly-detection performance on multiple datasets.

Keywords: anomaly detection; generation error; feature trajectory smoothness; surveillance video

1. Introduction

Surveillance cameras are widely used in people’s daily lives. Detecting anomalies in
surveillance videos is important for safe-protection and crime prevention. Anomalies in
videos generally refer to events that have low probabilities of occurrence [1], or patterns
that do not conform to expected behaviors [2].

Abnormal event detection is of great significance in many scenarios. For example,
in office areas, illegal intrusion, theft, and fire are anomalies; in transportation scenes, traffic
violations and traffic accidents are anomalies [3–5]; in public areas, terrorist attacks, robbery,
and fare evasion are anomalies. Thus, improving the detection ability of surveillance video
in public areas garners attention in research [6,7]. Detecting anomalies in surveillance
videos is a challenging task because (1) surveillance videos are private property and
(2) anomalous events have rarity, diversity, and scene-dependent properties. It is almost
infeasible to gather all kinds of abnormal events and tackle the problem of anomaly
detection with a simple classification method [8].

Video anomaly-detection methods can be classified into three categories, i.e., super-
vised methods, unsupervised methods and semisupervised methods. Supervised methods
transform the anomaly-detection task into a binary or multiclassification task, by collect-
ing and annotating a large number of normal and abnormal video samples. Ullah et al.
proposed a lightweight model for anomaly detection [9], which works for a real-world
surveillance network and employs the residual attention-based long short-term memory
(LSTM) which can effectively learn temporal context information and precisely recognize
anomalous events. Dubey et al. proposed an innovative framework called DMRMs, which
was tested on the UCF–crime and ShanghaiTech datasets [10]. The results and ablation
study demonstrated their effectiveness when compared with other methods. The disad-
vantages of this kind of method include the facts that the workload of sample collection
and annotation is huge, and the generalization of detecting unknown abnormal events is
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poor. The unsupervised method analyzes the distribution of sample space and judges a
small number of samples far away from the majority of samples as anomalies. Ionescu et al.
proposed a novel framework for abnormal event detection in the video that requires no
training sequences [11]. The disadvantages of this kind of method include a large amount
of computation, poor real-time performance, and poor anomaly-detection. The semisuper-
vised method transforms anomaly detection into a classification task by only collecting a
large number of normal samples. They study the patterns of normal samples and identify
those that do not follow normal patterns as abnormal. This kind of method has a small
sample collection and sample labeling workload, has good generalization for unknown
anomalies, and good real-time anomaly-detection speed. This has gained the most attention
among the three kinds of methods.

The semisupervised surveillance video-anomaly detection algorithm has been de-
veloped for a long time. Recently, with the excellent performances of deep learning
in many computer vision tasks, deep-learning-based semisupervised surveillance video
anomaly detection (DSAD) algorithms have gained much attention. These methods use
neural networks to learn the manifold distribution of normal samples, and then judge the
samples that deviate from the normal manifold distribution as anomalies. Based on the
types of indicators in anomaly detection, the semi-supervised methods can be classified
into four categories: the deep distance-based method [12–14], the deep probability-based
method [15,16], the deep generation error-based (GE-based) method [17–20], and and the
aggregation method [21–23]. The deep distance-based method clusters samples to multiple
groups by the deep neural network (DNN), and judges the samples that are outliers of all
normal clusters as anomalies. The deep probability-based method learns the probability
distribution of normal video samples, and take samples with low distribution probabilities
(DPs) as anomalies. The deep GE-based method trains generative models to generate
normal video frames and judge testing frames with large GE errors as anomalies. The ag-
gregation methods train no less than two detectors that belong to the above three methods
to detect the video anomaly events.

In the DSAD method, the GE indicator is a very important indicator because of its good
anomaly detection and location performances. It usually plays a major role in aggregation
methods. In order to improve the anomaly-detection effect of GE, many improvement
strategies have been proposed. One important and fundamental improvement strategy
is to capture videos’ temporal regularity. In the surveillance video anomaly-detection
field, many previous works such as [24–26] have proven that LSTM has a solid ability
to capture video temporal regularity. These LSTM methods [24–26] utilized autoencoder
models to generate normal video frames, adopted GE loss to constrain models’ generation
performances, and asserted LSTM layers between the encoder and decoder modules to
capture videos’ temporal regularity. However, the GE loss does not constrain videos’
features directly, and is not powerful enough to force the maintainance of videos’ temporal
regularity in the feature space. Thus, these LSTM methods would not capture videos’
temporal regularity precisely. As a result, the LSTM layer could not effectively improve the
anomaly-detection performance of the model. In addition, deep neural networks usually
face the problem of large amounts of computation. The way to further reduce the amount
of computation and improve the abnormal detection speed of neural networks is a problem
that requires constant attention.

In order to solve the aforementioned problems, this paper proposes a new detection
model, namely, the feature trajectory-smoothed long short-term memory (FTS-LSTM). In
the training stage, the model imposes a temporal smoothing loss on the feature space
of the LSTM layer, which enables features to maintain the videos’ temporal regularity
better and thus enables the LSTM layer to learn videos’ temporal regularity more precisely.
In the detecting stage, the model utilizes the feature-trajectory smoothness (FTS) loss
as a new anomaly-detection indicator. The FTS indicator judges frames with high FTS
losses as anomalies. It can detect anomalies quickly because of its low computation cost.
The generation error (GE) indicator can detect anomalies precisely [19,27]. By cascading

92



Sensors 2023, 23, 1612

the FTS and the GE indicators, the proposed model achieves fast and accurate anomaly-
detection performances.

The contributions of the paper are summarized as follows.

• A a video anomaly-detection model, namely, FTS-LSTM, is proposed. In this model,
an FTS loss is designed to enable the LSTM layer to learn videos’ temporal regularity
better.

• A new indicator to detect anomalies, namely, the FTS indicator, is proposed. It can
detect anomalies precisely with a high speed.

• This work has good generalization capability and can easily transfer to other models
with LSTM layers.

The overall structure of the article is summarized below. In Section 2, we discuss the
development of existing techniques concerning anomaly detection in surveillance videos.
Section 3 describes the detail of the novel FTS-LSTM method. In Section 4, the model
implementation and experimental results, along with the evaluation of the proposed model
are discussed. Finally, the conclusion and future work are given in Section 5.

2. Related Work

The development of semisupervised anomaly-detection algorithms can be classified
into two stages, namely, the stage of traditional machine learning methods and the stage
of deep learning methods. Furthermore, the traditional machine learning methods can be
classified into three broad research areas, and the deep learning methods can be classified
into four broad research areas.

2.1. Traditional Machine Learning Stage

In the traditional machine learning stage, many studies extract features manually and
use traditional machine learning models to detect anomalies. Anomaly-detection indicators
in this stage can be roughly classified into distance-based (DB) methods, probability-based
(PB) methods, and reconstruction error (RE) methods.

The distance-based method [28,29] detects anomalies by using distances from test
samples to normal samples or clusters of normal samples. This type of methods usually
includes a step of clustering. Before model training, the normal samples are divided into
multiple clusters, and then the samples far away from all normal clusters are judged as
abnormal. Ionescu et al. [28] used k-means to cluster samples and one-class support vector
machines (OC-SVM) to detect outliers. Hinami et al. [29] trained a multitask fast recurrent
convolutionary neural network (RCNN) model to extract features. They grouped features
into different clusters by k-means and used kernel density estimation (KDE) to detect
anomalies on all clusters.

The probability-based method [30,31] learns the distribution probability density of
the sample feature space or the inferred relationship between normal features through the
model, and then takes the samples with low distribution probability density or those which
do not obey the normal inferred relationship as abnormal. Hu X. et al. [32] modeled the
distribution of normal sample feature spaces with models in question. They first proposed
a local binary pattern feature with a squirrel cage structure, and then modeled the feature
space of normal samples with a model in question. Weixin Li et al. [33] used the mixture
dynamic texture (MDT) model to construct transition rules for normal sample feature
sequences. MDT consists of k-linear dynamic systems, which are used to capture k-state
transition laws of normal sample features. When the test sample does not meet any of the
normal transition rules, the algorithm judges it as an abnormal event.

The reconstruction error method [34] used the common factors shared by the normal
samples to reconstruct normal samples, but abnormal samples cannot be reconstructed
because they do not share any common factors. Cong et al. [35] proposed a sparse coding
method that weighs word anomalies so that different words have different anomaly weights.
Chu et al. [36] proposed a recurrent framework that combines deep feature extraction with
sparse coding. They put the module for training 3D convolutional neural networks to
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extract deep features and the module for learning sparse coding dictionaries with deep
features under the same loop framework to be iteratively optimized, so that the features
extracted by the network are the features most suitable for the sparse coding method, in
order to achieve better performance in terms of good anomaly detection.

2.2. Deep Learning Stage

In the deep learning stage, many studies train DNNs to detect anomalies in the end-to-
end manner. The indicators can be classified into four categories based on their characters,
i.e., the deep distance-based (DDB) method, the deep probability-based (DPB) method, the
deep generation error-based (DGE) method, and the aggregation method.

The deep distance-based method [12–14] in the deep learning stage clusters samples
to multiple groups by DNN in an end-to-end manner. It judges the samples that are
outliers of all normal clusters as anomalies. Fan et al. [37] trained a Gaussian mixture fully
convolutional variational autoencoder (GMFC-VAE) to map samples to multiple clusters in
the latent space and judged samples that have low condition probabilities with any existing
clusters as anomalies. Wu et al. [14] trained a deep one-class neural network (DeepOC) to
map normal samples into a single hypersphere and judged the samples mapped out of the
hypersphere as anomalies.

The deep probability-based method [20,38,39] learns the probability distribution of
normal videos and judges samples with low distribution probabilities as anomalies. It
uses the discriminator to output the DPs of the video frames to detect anomalies. Ravan-
bakhsh et al. [39] trained two GANs to generate motion images from appearance images
which were generated from motion images. They combined two DP score maps generated
by two discriminators to detect anomalies.

The deep generation error-based method [17–20,22,24–26,40–43] trains generative
models to generate normal video frames and judges testing frames with large GE errors
as anomalies. Hasan et al. [26] first introduced the autoencoder(AE) to video anomaly
detection. Gong et al. [40] proposed a memory-augmented autoencoder (MemAE) to limit
the AE’s generalization ability. Zhou et al. [41] proposed an attention-driven training loss
to alleviate the imbalance problem between the foreground and stationary background. In
order to capture videos’ spatiotemporal regularity, many methods [18,21,22,24,25,42,43]
have utilized the LSTM-AE to detect anomalies. There are some works which train no less
than two detectors to disclose the video anomaly events which belongs to deep generation
error-based method.

The aggregation method [21–23] trains no less than two detectors to disclose the
video anomaly events. Lee et al. proposed a spatiotemporal adversarial network to detect
anomalies [21]. The algorithm extracts two anomaly detectors which are a generative error
detector and a generative adversarial network (GAN) probabilistic detector. The two detec-
tors disclose anomalies with a weighted sum of the anomaly scores of the two detectors.
Wang et al. proposed an integrated approach called primary–auxiliary fusion [23]. The core
detector is a video anomaly detector based on the pixel generation error, and the auxiliary
detector is a detector with high accuracy in detecting strong normality and strong anomaly.
The algorithm extracts this decision ability from the auxiliary detector and weighs it with
the outlier score in the main detector to obtain an integrated detector.

3. Method

The pipeline of the proposed work is illustrated in Figure 1. It uses normal videos
to train the model and detect anomalies in the testing videos. This section introduces the
proposed work in three aspects, i.e, the network structure, the training process, and the
detecting process.

3.1. Network Structure

As shown in Figure 1, the proposed method consists of three network modules, which
are the encoder module, the ConvLSTM module, and the decoder module, repectively.
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There is a skip connection from the encoder to the decoder, which can improve the model
ability to transmit more information from the encoder to the decoder.

Figure 1. Pipeline of the proposed method. FTS-LSTM trains an LSTM-AE to predict future frames
for input frames. FTS-LSTM uses two losses to constrain the model: a GE loss and a FTS loss. The GE
loss enables the model to predict future frames precisely. The FTS loss enables features to maintain
videos’ temporal regularity. In the testing period, the FTS loss and the GE loss as indicators are
utilized to detect anomalies. FTS-LSTM cascades the FTS indicator and the GE indicator to achieve
fast and accurate performances.

3.1.1. Encoder Module

The encoder module extracts spatial features for input frames. It consists of several
2D spatial convolution layers. Let E express the encoder, and {I1, . . . , It, . . . , IT} be T
consecutive input video frames. The feature of the frame It can be represented as

xt = E(It), (1)

where xt is the extracted feature for frame It. Therefore, we can get T consecutive features
{x1, . . . , xt, . . . , xT} for {I1, . . . , It, . . . , IT}.

3.1.2. ConvLSTM Module

The ConvLSTM module aims to capture videos’ temporal regularities in the feature
space. The ConvLSTM is widely used in many video processing tasks. The process of the
ConvLSTM module can be expressed as

Ĉt = relu(WC � [ht−1, xt] + bC) (2)

it = σ(Wi � [ht−1, xt] + bi) (3)

ft = σ(Wf � [ht−1, xt] + b f ) (4)

Ct = ft ∗ Ct−1 + it ∗ Ĉt (5)

ot = σ(Wo � [ht−1, xt] + bo) (6)

ht = ot ∗ relu(Ct), (7)
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where it, ft and ot are the input gate, forget gate, and output gate at time t; Ĉt is the input
information of the LSTM at time t; Ct is the cell state at time t (it stores the information
of history frames [IT−4, IT−1]); ht is the output of the LSTM layer at time t; WC, Wi, Wf , Wo
are the weights metrics; bC, bi, b f , bo are the biases of ConvLSTM; � and ∗ represent the
convolution operation and pointwise multiplication, respectively; and σ and relu represent
the sigmoid and ReLU [44] activation function. The LSTM network is shown in Figure 2.
We use H to represent the ConvLSTM module. At time t, the ConvLSTM’s processing
function can be simply expressed as

ht = H(xt, ht−1), (8)

where xt is the input at time t; ht−1 is the hidden state at time t − 1; and ht is the hidden
state at time t. Based on (8), we get T consecutive hidden states {h1, . . . , ht, . . . , hT} for
consecutive features {x1, . . . , xt, . . . , xT}.

Figure 2. LSTM structure.

3.1.3. Decoder Module

The decoder module plays the role of a generator. It predicts future frames for input
frames given {h1, . . . , ht, . . . , hT}. It consists of several 2D convolution layers and 2D
deconvolution layers. We utilize D to express the decoder, and use Ît+1 to represent the
prediction result for frame It. We have

Ît+1 = D(ht), (9)

where D is the decoder and Ît+1 is the output of D, whose ground truth is It+1.

3.2. The Training Process

In the training process, we use a GE loss and an FTS loss to constrain the model to
learn videos’ normal regularity.

3.2.1. The GE Loss

The GE loss consists of two sub-GE losses, lint and lgdl , whose functions are represented
as follows,

LGE = lint + lgdl , (10)

lint =
T

∑
t=1

‖ Ît+1 − It+1‖2, (11)

lgdl =
T

∑
t=1

(‖∇x( Ît+1)−∇x(It+1)‖1 + ‖∇y( Ît+1)−∇y(It+1)‖1), (12)

where lint is the intensity loss, which is applied to penalize the losses on pixels’ intensities;
lgdl is the gradient loss which is applied to penalize errors around edges; and ∇x and ∇y
represent the spatial derivatives along the x-axis and y-axis, respectively.
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The purpose of GE loss is to enable the model to accurately generate normal samples.
It does not constrain videos’ features directly, because there is a decoder module between
the feature space and the GE loss. As a result, the GE loss is not powerful enough to force
features maintaining videos’ temporal regularity, and the LSTM layers would not capture
videos’ temporal regularity precisely.

3.2.2. FTS Loss

In order to capture the videos’ temporal regularity precisely, we present an FTS loss
to constrain the feature space directly. The content of the video frames changes smoothly
over time. Therefore, the features of video frames should also change smoothly in the
feature space.

Based on this point, we design the FTS loss to force temporal-consecutive features to
be similar. We use the Euclidean distance to measure the similarity between features and
accumulate the distances between all temporal-neighbored features to formulate the FTS
loss. The FTS loss is expressed as

LFTS =
T−1

∑
t=1

‖xt+1 − xt‖2. (13)

3.2.3. Global Training Loss

We combine the GE loss and FTS loss to train the model. The global training loss has a
coefficient that is called λ, and it can be represented as

Ltrain = LGE + λ ∗ LFTS. (14)

3.3. Detecting Process

In the detecting period, we design a GE detector and FTS detector based on the GE
loss and the FTS loss, respectively. We cascade these two detectors to achieve faster and
better anomaly detections.

This section first introduces the GE detector’s and the FTS detector’s working mech-
anisms, then analyses why the FTS loss is helpful to improve GE detector’s anomaly-
detection performance.

3.3.1. The GE Detector

The model is trained to predict normal samples. It cannot predict anomalous samples
well. We use the lint of the last frame to detect anomalies. Considering that anomalies
usually occur in local areas, the maximum of block-level GEs in a frame is used to detect
anomalies [45], which is defined as

GEmap(t) = ∑
c
‖ Ît+1 − It+1‖2, (15)

SGE(t) = max(meanbl_size(GEmap(t))), (16)

where GEmap(t) is the GE map of the predicted frame Ît+1; SGE(t) is the anomaly score for
frame It+1 in the GE detector; meanbl_size indicates a mean filter with kernel size bl_size;
and c indicates the number of channels of a frame.

3.3.2. The FTS Detector

The DNN learns the mapping function between two manifold distributions, which
is only applicable to samples that obey the manifold distributions. When a sample does
not obey the input manifold distribution, its mapping position will deviate from its target
position on the output distribution. We call the difference between the mapping position of
the sample and the target mapping position as a mapping error. In FTS-LSTM, the encoder
learns a mapping function from the manifold of normal frames to a feature space. When
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an abnormal sample (outliers of the normal manifold) is input to the encoder, there will
be a large number of mapping errors in the feature space, and anomalous videos FTS loss
will increase. Therefore, the FTS loss can be used to detect abnormalities. Based on this
point, we use the FTS loss as an indicator to detect anomalies and judge the samples with
large FTS losses as anomalies. Considering that anomalies occur in local areas, we use the
maximum value of the FTS loss map to detect anomalies. The FTS detector is defined as

FTSmap(t) =∑
c
‖xt − xt−1‖2, (17)

SFTS(t) =max(FTSmap(t)), (18)

where FTSmap(t) is the FTS-loss-map of It; SFTS(t) is the anomaly score for It in the FTS
detector; and c indicates the number of channels of the feature map.

As shown in (17), the FTS detector detects anomalies by detecting the difference
between the apparent characteristics of the target over time. Therefore, the detector is
suitable to detecting dynamic anomalies (the abnormal targets having motion in the scene).

3.3.3. Cascade

The FTS detector detects anomalies in the feature space. It is faster than the GE detector.
The FTS detector can be cascaded with the GE detector to detect anomalies. When a sample
is input into the model, its features are extracted and then the SN and SA samples are
detected with the FTS detector. Afterward, the remaining features are fed to the following
network modules and the GE detector is used to make the final decision. In the cascading
process, it is essential to set suitable thresholds for FTS detector In this paper, we set
the SA threshold thra and the SN threshold thrn based on the FTS anomaly scores of the
training data. We have

thra = max(Strain
FTS ) + (max(Strain

FTS )− min(Strain
FTS )) ∗ γa, (19)

thrn = min(Strain
FTS ) + (max(Strain

FTS )− min(Strain
FTS )) ∗ (1 − γn), (20)

where max(scores) and min(scores) indicates the maximum value and the minimum value
of the scores, respectively; Strain

FTS indicates the FTS anomaly scores of the training data; γa
and γn indicate the strict coefficients for thra and thrn, respectively.The higher the γa and
γn, the more credible the extracted SA and SN samples. Generally, γa and γn are in the
range of [0, 1].

As shown in (19), we set the maximum value of normal training samples’ FTS
loss, max(Strain

FTS ), as the base value of the SA threshold. We added the second term,
(max(Strain

FTS ) − min(Strain
FTS )) ∗ γa, as the strengthen value. The strengthen value is calcu-

lated by the max–min difference value multiplying a ratio. As shown in (20), we set the
minimum value of normal training samples’ FTS loss, min(Strain

FTS ), as the base value of
the SN threshold. It is too strict to detect SN samples. Therefore, we added the second
term, (max(Strain

FTS )− min(Strain
FTS )) ∗ (1 − γn), as the relaxing value. The relaxing value is

calculated by the (max(Strain
FTS )− min(Strain

FTS )) difference value multiplying a ratio.

3.3.4. Discussion

The GE detector can detect both temporal and spatial anomalies in videos. Its anomaly-
detection mechanism is analyzed as follows. Let us substitute Equations (8) and (9) into
Equation (16). Then the GE detector can be expressed as

SGE = max(mean(∑
c
|D(H(ht−1, xt))− It+1|2)). (21)

As shown in (21), the GE is generated by Ît+1 and Ît+1 is generated from ht. The ht has
two information sources: the xt and the ht−1.
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The xt supplies the spatial information of the current input frame It. It is generated
by the encoder module. The encoder module is trained to extract spatial features for
normal frames; it cannot extract features correctly for abnormal frames. Therefore, there
will be information differences between the extracted features and the aiming features
for abnormal frames. The information differences in xt will lead to the large GEs in Ît+1.
Therefore, the GE loss can be used to detect spatial anomalies.

The ht−1 supplies history information including It−4, It−3, It−2, It−1, respectively . The
ht−1 captures history information by the memory cell Ct and three gates it, ft, ot in the LSTM
module. In the training process, the memory cell and three gates are trained to capture
information from sequences of historical features that obey normal temporal regularities.
When features do not obey normal temporal regularities, the three gates will capture
incorrect information from historical features. Thus, there will be errors of information in
ht−1. The error of information in ht−1 will lead to the larger GE losses in Ît+1. Therefore,
the GE loss can be used to capture temporal anomalies.

As analyzed above, the better the LSTM layer learns normal videos’ temporal regu-
larity, the better the performance the GE detector can capture videos’ temporal anomalies.
The better FTS loss enables feature space to maintain normal videos temporal regularity,
the better the LSTM layer can learn videos’ temporal regularity. Therefore, the FTS loss can
help the GE detector to achieve better anomaly-detection performances.

4. Results

In this section, we carry out experiments to demonstrate the effectiveness of the
proposed method.

4.1. Datasets

We evaluate our method on three popular public datasets.
UCSD dataset [46] has two subdatasets: The UCSD Pedestrian 1 (Ped1) dataset and

the UCSD Pedestrian 2 (Ped2) dataset. The Ped1 dataset contains 34 training videos and
36 testing videos. The Ped2 dataset contains 16 training videos and 12 testing videos. The
two datasets are captured from different scenarios. Their abnormal events include cycling,
skateboarding, crossing lawns, cars, etc. These two subdatasets are usually used separately.

The CUHK Avenue dataset [34] contains 16 training videos and 21 testing videos.
The abnormal events include running, throwing schoolbag, throwing papers, etc. The size
of people may change with the positions and angles of the camera.

The ShanghaiTech (SH) dataset [19] contains 330 training videos and 107 testing videos.
The videos are captured from 13 different scenes. The abnormal events include running,
cars, throwing schoolbag, etc.

4.2. Implementation Details

In all experiments, video frames are resized to 256 × 256 pixels, the pixel values of
video frames are normalized to [−1, 1], the LSTM layer’s length T = 5, minibatch = 2,
and λ = 100. In the training process, the Adam algorithm [47] is utilized as the optimizer.
Each dataset trains for 200,000 iterations with minibatch=2 on a single GTX 1080 GPU. The
learning rate is set 1 × 10−4 when the iteration is low than 40,000, which is set to 1 × 10−5

when the iteration is high than 40,000. In the testing stage, set bl_size = 30, γa = 0.2.
In Ped1 and Ped2 datasets, γn = 0.8. In Avenue and SH datasets, γn = 0.4 to achieve
better performances.

The detail of FTS-LSTM network is shown in Figure 3. All the kernel sizes and strides
of the convolution layers are (3, 3) and (1, 1), respectively. All the kernel sizes and strides
of the transpose convolution layers are (2, 2) and (2, 2), respectively. The pool size and
strides of the polling layers are (2, 2) and (2, 2), respectively. We adopt the Relu activation
function in all convolution layers. The green rectangles indicate the tensor obtained by
the convolution operation, and the orange rectangles indicate the tensor obtained by
deconvolution. In the deconvolution process, the number of tensor channels is halved,
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and the height and width of tensors are doubled. The function of concatenate is to transmit
more information from the encoder to the decoder so that the decoder can obtain a better
generation effect and better anomaly-detection effect [8].

Figure 3. The detail of the network structure of our work. There are three zones in the network,
in which the left zone is called the encoder, the right zone is called the decoder, and the rest of the
structure in the middle is the LSTM network.

As shown in Figure 3, The entire network contains 21 layers of convolution or decon-
volution operations: seven layers of 3 × 3 convolution operations in the encoder module,
three layers of 3 × 3 convolution operations in the LSTM module, three deconvolution op-
erations in the Decoder network, and eight convolution operations in the decoder network.

4.3. Evaluation Metric

In video anomaly detection, the most commonly used evaluation metric is the receiver
operation characteristic (ROC) curve and the area under this curve (AUC). A higher AUC
value indicates better anomaly-detection performance. This paper adopts the frame-level
AUC to evaluate anomaly-detection performances.

4.4. Anomaly-Detection Performances

Table 1 shows anomaly detection ROC/AUC performances of the proposed model,
comparing with some state-of-the-art (SOTA) and classic methods, including DDB [14],
DPB [20], DGE [8,19,40,41,48], and the aggregation methods [21–23]. In the Table, the opti-
mal performance in each dataset is marked with bold font, and the suboptimal performance
is marked with bold italic font. The proposed model achieves optimal and suboptimal
performances on Ped2, Avenue, and SH datasets. Meanwhile, its detection speed is 117 FPS
on average, which is far faster than other algorithms. These performances demonstrate the
superiority of the proposed method.

Frame-level anomaly-detection scores (between 0 and 1) provided by our FST-LSTM
framework are shown in Figure 4. The cyan zone represents the ground-truth abnormal
events and our scores are illustrated in red. The pictures in the figure are the frames of
the Avenue dataset captured from test video 4 to test video 6, which illustrate the effect
of our framework. Anomaly-detection heatmaps of videos are shown in Figure 5. As
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shown in Figure 5b,c, the FTS loss in anomalous areas are higher than that in normal areas.
They demonstrate that the FTS loss can detect and localize anomalies. Figure 5d,e show
intensity maps and heatmaps of the GE indicator. They demonstrate the anomaly-detection
performances of the GE indicator.

4.5. Ablation Study

This section carries out experiments to demonstrate the problems proposed in the
introduction and prove the effectiveness of the proposed model in solving these problems.

4.5.1. Feature Space TSNE Visualization

Figure 6 visualizes two video features in the model’s feature space. As shown in
Figure 6a, when the model is trained without utilizing the FTS loss, video features are ran-
domly distributed in the feature space. It indicates that the feature space does not maintain
videos’ temporal regularity precisely. As shown in Figure 6b, when the model is trained
with utilizing the FTS loss, video features are distributed in the feature space in an orderly
manner. The features of different videos are separable from each other. It indicates that the
model’s feature space maintained videos’ temporal regularity. The visualization verified
the effectiveness of the FTS loss on maintaining videos’ temporal regularity. The result
demonstrates the proposed model can solve the question when utilizing LSTM layer to
detect anomalies.

Table 1. Frame-level ROC/AUCs of different methods. The bold font represent the optimal perfor-
mance, and the bold italic font represent the suboptimal performance.

Method – Ped1 Ped2 Avenue SH Speed

Deep Distance-based DeepOC [14] 83.5 96.9 86.6 – 40 FPS

Deep Probability-based Tang et al. [20] 84.7 96.3 85.1 71.5 30 FPS

Aggregation methods
STAN [21] 82.1 96.5 87.2 – –

TAM-Net [22] 83.5 98.1 78.3 – –
MAAS [23] 85.8 99.0 92.1 69.7 4 FPS

Deep Generation-error-based

Unet [8] 83.1 95.4 85.1 72.8 12 FPS
Ts-Unet [48] – 97.8 88.4 – 12 FPS
sRNN [19] – 92.2 83.5 69.6 10 FPS

MemAE [40] – 94.1 83.3 71.2 38 FPS
Zhou et al. [41] 83.9 96.0 86.0 – –

FTS-LSTM (ours) 83.5 98.3 91.1 72.9 117 FPS
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Figure 4. Frame-level anomaly-detection scores (between 0 and 1) provided by our FST-LSTM
framework based on the late fusion strategy, for test in the Avenue dataset. The green lines and green
zone represent the ground truth abnormal events. The red lines represent our scores. (a) Test video 4
in the Avenue dataset. (b) Test video 5 in the Avenue dataset. (c) Test video 6 in the Avenue dataset.
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Figure 5. Anomaly-detection visualization. (a) Anomalous frames in different datasets. The contents
in red circles are anomalous events. (b) FTS loss’s intensity map. (c) FTS loss’s heatmap. (d) GE loss’s
intensity map. (e) GE loss’s heatmap.

Figure 6. Dots with different colors indicates features belonging to different videos. (a) Without FTS
loss. (b) With FTS loss.
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4.5.2. Impact of FTS Loss on the GE Detector

The FTS loss enables LSTM layer to learn videos’ temporal regularity more precisely.
It increases GE detector’s anomaly-detection performance. Table 2 and Figure 7 show
the anomalous frames’ GE saliencies in models trained with and without utilizing the
FTS loss and shows the ROC/AUCs of corresponding models. The table demonstrates
that the FTS loss improves anomalous frames’ GE saliencies and improves GE detector’s
anomaly-detection performances.

Figure 7. The ROC/AUC curves of the GE detectors trained with and without utilizing the FTS
loss on multiple datasets. The red curve represents the detector trained with FTS loss. The blue
curve represents the detector trained without FTS loss. (a) The ROC/AUC curves on Avenue dataset.
(b) The ROC/AUC curves on Ped2 dataset. The dashed blue line represent the ROC curve of a
completely random classifier.

Table 2. Frame-level GE saliency and ROC/AUCs of the GE detectors on multiple datasets. The bold
font represent GE saliency of anomalous frames and ROC/AUC performances utilizing the FTS loss.

FTS Loss Ped1 Ped2 Avenue SH

GE saliency of w/o 1.930 3.657 2.645 1.184
Anomalous frames with 2.205 3.985 2.656 1.366

ROC/AUC
w/o 82.73 97.10 89.31 71.20
with 83.51 98.34 91.04 72.92

4.5.3. Impact of the FTS Loss on FTS Detector

The DNN trained on normal samples cannot maintain relationships among abnormal
samples. Table 3 calculates the FTS loss saliencies of anomalous frames compared with
normal frames. As shown in the table, all the FTS loss anomaly saliencies are positive,
which indicates that the FTS losses of the anomalous frames are higher than that of the
normal frames. It indicates that the FTS loss can be used to detect anomalies, which proves
our analysis.

Table 3 and Figure 8 show anomaly-detection performances of the FTS detectors. The
FTS loss strengthened the encoder to maintain more relationships among normal frames. It
increased the anomaly saliencies of the anomalous frames in FTS.
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Figure 8. The ROC/AUC curves of the FTS detectors trained with and without utilizing the FTS
loss on multiple datasets. The red curve is represents the detector trained with FTS loss. The blue
curve represents the detector trained without FTS loss. (a) The ROC/AUC curves on Avenue dataset.
(b) The ROC/AUC curves on Ped2 dataset. The dashed blue line represent the ROC curve of a
completely random classifier.

Table 3. Frame-level FTS saliency and ROC/AUCs of the FTS detectors on multiple datasets. The
bold font represent FTS saliency of anomalous frames and ROC/AUC performances utilizing the
FTS loss.

FTS Loss Ped1 Ped2 Avenue SH

FTS saliency of w/o 0.086 0.055 0.342 0.342
Anomalous frames with 0.162 0.122 0.639 0.374

ROC/AUC
w/o 64.02 64.37 80.55 67.22
with 70.22 78.77 85.67 68.71

4.5.4. Detection Speed Analysis

By cascading the FTS and GE detectors, the proposed model achieves fast and precise
performances. Table 4 shows anomaly-detection ROC/AUCs and speeds of different
detectors. It demonstrates that, by cascading the FTS and the GE detectors, the model
maintains GE detector’s ROC/AUC and achieves a faster speed than the GE detector.

As shown in Table 4, this work can achieve a speed of 117 FPS, and this high detection
speed mainly benefits from the low computational complexity of the FTS detector. The FTS
detector only calls the encoder module of the network (7 layers 3× 3 convolution operations)
to detect anomalies and can filter out most video frames in anomaly detection. Only a small
number of video frames are transmitted to the subsequent network module, which greatly
reduces the amount of calculation in the anomaly-detection process.

Table 4. Frame-level ROC/AUCs of the cascaded detector on multiple datasets

ROC/AUC
Speed

Ped1 Ped2 Avenue SH

FTS Detector 70.22 78.77 85.67 68.71 186 FPS
GE Detector 83.51 98.34 91.04 72.92 50 FPS

Cascade 83.51 98.34 91.14 72.92 117 FPS

4.5.5. Impact of Weight λ

Figure 9 shows the anomaly-detection ROC/AUC of GE metrics and FTS metrics under
different λ. This figure proves that the FTS loss can robustly improve the anomaly-detection
performance of the model.
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Figure 9. Frame-level ROC/AUCs of the GE and FTS detectors under different FTS loss weights.

4.5.6. Generality

Table 5 shows anomaly-detection saliency and ROC/AUC with or without applying
FTS loss in the LSTM model [24]. The anomaly-detection performance and anomaly
saliency of the the LSTM model have been significantly improved with FTS loss. This result
proves that the temporal smoothing loss in the feature space is general for improving the
anomaly-detection performance of the generative model by restraining generated errors.

Table 5. Saliency and ROC/AUC of the LSTM model with or without applying FTS loss. The bold
font represent saliency of anomalous frames and ROC/AUC performances utilizing the FTS loss.

FTS Loss Ped2 Avenue Average

Saliency of
Anomalous frames

w/o 0.9278 1.086 1.0007
with 1.104 1.192 1.148

ROC/AUC
w/o 76.51 79.18 77.85
with 82.25 81.62 81.94

4.6. Limitation

As described above, our proposed method achieves relatively better performance on
the UCSD dataset and ShanghaiTech dataset. However, this method might not be good
at detecting static anomaly time. For example, the car parked on the sidewalk, the FTS
can detect the object in to scene but cannot respond to the static car out because the target
brings no changes to the frame’s apparent feature. Generally, abnormal events occur along
with a dynamic process. Therefore, this limitation is acceptable to surveillance video
anomaly detection.

5. Conclusions

This paper proposes a FTS-LSTM method for video anomaly detection. It trains a
LSTM-AE to generate normal videos and to detect anomalies. In the training process, it uses
the FTS loss and the GE loss to constrain the model. In the detecting process, it cascades
the FTS and the GE indicators to detect anomalies. Experiments on multiple datasets reveal
the proposed method’s effectiveness and efficiency. The shortcoming of the FTS indicator
is that it cannot detect static anomalies. In general monitoring scenarios, the occurrence
of abnormal events generally have a dynamic process. Therefore, this shortcoming can
be ignored. In the future, we will combine the FTS loss with Transformer and the GRU
method to explore the proposed method’s generalization, and we will study the solution
of combining the FTS detector with a static anomaly-detection method to improve the
algorithm’s ability.
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Abstract: Customer demands for product search are growing as a result of the recent growth of
the e-commerce market. According to this trend, studies on object-centric retrieval using product
images have emerged, but it is difficult to respond to complex user-environment scenarios and a
search requires a vast amount of data. In this paper, we propose the Video E-commerce Retrieval
Dataset (VERD), which utilizes user-perspective videos. In addition, a benchmark and additional
experiments are presented to demonstrate the need for independent research on product-centered
video-based retrieval. VERD is publicly accessible for academic research and can be downloaded by
contacting the author by email.

Keywords: computer vision; information retrieval; content-based video retrieval

1. Introduction

Image retrieval aims to search the database for images that are similar to a given query
image. This technology has been used for automatic checkouts, which scan for products at
supermarket cash registers. However, as a result of the recent expansion of the e-commerce
market induced by the development of communication technology, research has been
conducted to find similar items in online shopping malls.

The goal of the offline datasets [1–5] used for image retrieval in conventional stores is
to identify the products at the checkout counter in order to complete automatic payment.
These datasets comprise images of products placed on shelves in supermarkets in order to
find which items are placed on the checkout desk. Due to the characteristics of this product
arrangement, the images in datasets have a uniform background due to the fact that they
were filmed in a confined space, although there could be subtle variations in illumination
and background depending on the display condition. In addition, they consist of photos
taken from the product’s front that clearly depict the brand and its characteristics in order
to facilitate automatic checkout.

As previously stated, the growth of the e-commerce market has resulted in the emer-
gence of online datasets [6–9] used to find similar products in images. These datasets
have a more complex background than prior datasets used for automatic checkout. This is
because the datasets consist of both images captured by users and uploaded by the sellers
to promote the item. The data obtained from the user are realistic, but the product image
processed by the seller may include marketing text or other effects. There is a difference in
the angle of view, illumination, color, and background between the objects photographed
by the actual user and the objects photographed by the seller. These differences make it
difficult to identify real objects.

Multimodal online datasets [10–12] have appeared to tackle these problems and enable
a more sophisticated product search. In contrast to previous studies that relied solely on im-
ages, most of the multimodal online datasets contain text and image information that can be
used for retrieval, and audio and video information are also being utilized in research [13].
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By using extra information from multimodal online datasets, retrieval can be achieved even
when images have insufficient information to distinguish products. However, because
the datasets were derived from data processed by the seller, they lack the very same data
as the user’s search environment. In addition, it is inconvenient that users must provide
additional data in addition to image data in a real-world retrieval environment.

To handle the limitations that existing datasets are not comparable to actual search
environments and that multimodal datasets do not reduce search complexity, we propose a
dataset named Video E-commerce Retrieval Dataset (VERD). Figure 1 shows the difference
between the VERD and existing datasets. Traditional datasets collect data based on images,
while VERD collects data based on video reviews, which are increasingly popular on the
e-commerce platform. This was performed to leverage the idea that video reviews are
filmed from a variety of viewpoints and contain a wealth of product-related information.
These video reviews were not filmed by sellers, but, rather, by users with the devices
that were used to conduct actual searches. Therefore, unlike the data of sellers, filmed in
uniform environments, video reviews include a wide variety of backgrounds and camera
angles. Based on these attributes, VERD is comparable to the data used in a real-world
search, and it aims to conduct retrieval using only the visual information provided by
the video, without providing any additional information. Lastly, we present benchmark
performance through the existing video retrieval methods [14–16] on VERD. We believe
that VERD and benchmarks will encourage research on video-based product retrieval.

Figure 1. Comparison of datasets related to object-centric retrieval.

2. Related Work

2.1. Datasets
2.1.1. Offline Dataset

Offline datasets are configured to perform tasks such as automatic payment or shop
management in conventional grocery stores. Merler et al. [1] proposed the Grozi-120
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dataset, which contains images of all products taken in real marketplaces and ideal studios.
Jund et al. [2] suggested the Freiburg Grocery dataset, which gathered images from the real-
world environments of various shops and apartments to identify various common items,
including groceries. Klasson et al. [3] proposed the Grocery Store dataset with hierarchical
label information that can combine visual and semantic information on supermarket
groceries. Georgiadis et al. [4] suggested the Products-6k dataset, which was created by
capturing photos containing product brand names or product descriptions for large-scale
product recognition in a supermarket environment. Wei et al. [5] proposed the Retail
Product Checkout (RPC) dataset for automatic checkout, which consists of images of
objects taken from multiple angles.

2.1.2. Online Dataset

Online datasets, as opposed to offline datasets, comprise data acquired in a varied
environment because they collect data uploaded to the e-commerce market. These online
datasets can be broadly categorized into two types. The first type of online datasets
is a single modality dataset comprising images. Song et al. [6] suggested the Stanford
Online Product (SOP) dataset, which has five photos per class but a vast number of classes
collected from an e-commerce website. Liu et al. [7] offered the Deepfashion dataset,
which contains a variety of images of fashion items, ranging from posed store images to
unsupervised consumer photographs. Ge et al. [8] proposed the Deepfashion2 dataset,
which includes numerous landmarks and skeletons extracted from fashion-related images.
Bai et al. [9] proposed the Product-10k dataset, which consists of photographs of frequently
purchased e-commerce product classes across multiple categories, such as food, fashion,
and household products.

The second type of online dataset is a multimodal dataset, mainly consisting of text
and image data. Corbiere et al. [10] proposed the Dress Retrieval dataset, a noisy image–text
multimodal dataset for e-commerce website catalog product descriptions. Chen et al. [11]
offered the MEP-3M dataset, which applied hierarchical labels to image–text pair data
acquired from Chinese online shopping websites. Zhan et al. [12] proposed the Product 1M
dataset containing extensive cosmetic data by gathering textual descriptions of cosmetics
and product displays. Dong et al. [13] suggested the M5 product dataset with several
modalities, including audio, video, and text, utilizing data uploaded by online retailers.

2.2. Methods
2.2.1. Image-Based Retrieval

Traditionally, image-based product retrieval studies [17,18] were conducted in the offline
market for applications such as automatic checkout or store management. George et al. [17]
proposed a genetic algorithm optimized by multilabel image classification to identify prod-
ucts on shelves. Li et al. [18] proposed the Data Priming Network (DPNet) for automatic
checkout to pick reliable samples utilizing the detection and counting collaborative learning
strategy during the training process.

In addition, research is extending to include online shopping malls due to the ex-
pansion of the e-commerce market. These methods [19–21] are typically employed to
recommend similar products to users, as well as to locate and recommend similar products,
by combining various models that can extract varied product attributes. Shankar et al. [19]
introduced VisNet, an end-to-end DCNN architecture comprising deep and shallow net-
works. Yang et al. [20] and Hu et al. [21] developed a visual search system that uses a
reranking mechanism that can be can be applied to large search engines.

2.2.2. Video-Based Retrieval

The majority of research on video-based retrieval focuses on video copy detection
for video copy protection and verification, and also content-based video retrieval for
video recommendation. These studies can be classified into two categories based on the
similarity-calculating method.
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The first methods [15,22,23] extract frame-level features, conduct interframe similarity cal-
culations, and then aggregate the results into video-level similarities. Tan et al. [22] proposed a
temporal network (TN) using graphs generated by keyframe matching. Chou et al. [23] pro-
posed dynamic programming (DP), which extracts the diagonal pattern from a frame-level
similarity map to detect a spatiotemporal pattern. Kordopatis et al. [15] proposed video
similarity learning (ViSiL), which employs metric learning combining chamfer similarity to
calculate pairwise similarities on an interframe similarity map.

The second methods [14,16] encode video-level features by aggregating frame-level
features derived from images and calculating video-level similarity by comparing the
obtained features. Kordopatis et al. [14] proposed deep metric learning (DML) utilizing
LN-iMAC [24]. Shao et al. [16] proposed temporal context aggregation (TCA), which
utilizes the self-attention mechanism to integrate long-range temporal information between
frame-level features.

2.2.3. Multimodal-Based Retrieval

Recently, with the emergence of datasets that support various modalities, studies
using various modality information have emerged. Shin et al. [25] proposed e-CLIP, which
can be deployed on multiple e-commerce downstream tasks, based on an approach [26]
that utilizes both visual and language information. Dong et al. [13] proposed the Self-
harmonized Contrastive Learning (SCALE) framework, which unifies the several modalities
into a unified model through an adaptive mechanism for fusing features.

3. Proposed Dataset

3.1. Video Collection

This section discusses the data collection procedure in the Video E-commerce Retrieval
Dataset (VERD). We aimed to create a dataset with scenarios resembling those in which
consumers look for objects in video. To accomplish this objective, VERD was collected
using recently introduced video-based product reviews from online shopping malls (https:
//shopping.naver.com (accessed on 31 May 2022)).

These product reviews were freely filmed to describe the things that consumers pur-
chased. Due to the various viewpoints, it has a complex background as well as differences
in illumination and color. In addition, despite being a review of the same product, the
captured area varies according to what the buyer wants to show. As shown in Figure 2,
these characteristics allowed us to collect realistic data from the same environment as the
user’s search devices.

3.2. Annotation Process

This section explains the processing of the dataset. Due to the flexibility of user-
uploaded video reviews, we find that reviews are sometimes irrelevant to the product or
inadequately depict the product during the data collection section. To address these issues,
we conducted a four-step preprocessing procedure to obtain a clean dataset.

The first step is to remove duplicate videos. Occasionally, the same video was reused
for many reviews on the e-commerce platform. To eliminate these duplicate videos, Video
Duplicate Finder (https://github.com/0x90d/videoduplicatefinder (accessed on 7 July
2022)) was employed. Additionally, visually similar but nonidentical videos were deemed
irrelevant and removed.

In a second step, the face-containing video was excluded. We found that in some
video product reviews, the user’s face was captured with the product. These reviews
contain products, but they are not filmed around the items themselves, making it difficult
to identify objects. To filter these videos for object-centric video retrieval, RetinaFace [27]
was used to recognize video frames containing faces. If a video had an identifiable face in
even a single frame, it was excluded from the dataset.
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Figure 2. Videos of the hierarchical category of VERD. The category to the left of images represents
the Level-0 category, and the category below images represents the Level-1 category.

In the third step, videos captured away from the object’s center were discarded. Typi-
cally, this is the case for a long-form review. Long-form reviews provide a comprehensive
explanation of the product from the perspective of a product review. However, these
reviews contain numerous frames that are irrelevant to the item from the perspective of
product search. Therefore, these videos were omitted from the dataset because they did not
align with the goal of the dataset collection.

In the final phase, labels were adjusted based on their visual similarity with hierarchical
category labels. In fact, videos in the category “coffee” can be divided into a subcategory
“capsule coffee” and “cold brew coffee”. These two items were labeled as the same product
up to the level of subdivision, although their physical properties were different. Therefore,
some labels were reclassified as distinct goods to allow a more detailed search.

Through this annotation process, it was possible to construct a precise dataset with less
noise by excluding videos that did not correspond to the data collection goal. In conclusion,
VERD includes a total of 41,570 videos and 187 categories.

3.3. Hierarchical Category Labeling

Following the annotation process, this section describes the category configuration of
the VERD. In the majority of datasets, a label associated with a product relates to a fixed
value. This fixed label is inappropriate from the perspective of the retrieval task, which
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needs to search for related objects. Therefore, we adopted hierarchical category labeling
to understand the relationship between products, taking into account the nature of the
e-commerce market that sells a wide range of goods.

The hierarchical category labeling that we established is a new definition of product
taxonomy. Generally, e-commerce markets employ product taxonomy to facilitate the sale
of goods. However, the existing product taxonomy has separate categories for products
with similar visual qualities or is unable to distinguish between products within the same
category. To overcome these difficulties, we created a new product taxonomy based on
whether a product can be visually classified.

The hierarchical category is separated into four levels, whereby the higher the level,
the more specific the product classification. From Level-0 to Level-3, there are 6 categories,
44 categories, 119 categories, and 91 categories, respectively. Every video has a hierarchical
category with a minimum Level-1 and a maximum Level-3. Figure 3 provides a detailed
illustration of hierarchical category. Even though “fan” and “air circulator” have the same
Level-2 category, “fan” is subcategorized further for “air circulator”, which works similarly
to a fan but differs visually. However, there were occasions in which products in the same
class could be visually distinguished from one another. Figure 3 provides another example
of this scenario. The “humidifier”, which is designated as a Level-2 category, could be
further defined based on how the product performs. In this case, it was modified to add
subcategories so that it could be classified into other categories.

Figure 3. An example of the hierarchical categories of VERD.

3.4. Dataset Statistics

This section explains the video statistics of VERD. The dataset contains 41,570 videos.
Videos consist of short clips that average 9.8 s. The large majority of videos are under 10 s,
and videos under 30 s comprise 94% of the dataset. This demonstrates that most of the
videos were filmed around the product rapidly to introduce it.

The dataset can be separated mainly into product-related and fashion-related cat-
egories. The product-related category covers the Level-0 categories “digital/home ap-
pliances” (10,135), “life/health” (6327), “food” (5754), and “furniture/interior” (1240).
Following that, the fashion-related category contains “fashion accessories” (10,283) and
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“fashion clothing” (7831), for a total of 18,114 videos. This demonstrates that the dataset is
dispersed rather equally.

3.5. Dataset Characteristics

VERD attempted to construct a dataset that simulates the scenario in which a user
conducts an object search through a video. From this perspective, the data can be broadly
separated into seller-centric data and user-centric data. In this part, we discuss in detail
how user-centric data differ from seller-centric data in terms of the information they
may provide.

Differences in illumination and color: Lighting variance can be the most significant
difference between the environment presented by the seller and the user. Figure 4A
illustrates these attributes. There are instances in which it is difficult to understand the
properties of a product due to the surrounding lighting, which is not simply a matter of
dark or bright illumination. Even when it was the same product, it occasionally offered
various colors. VERD has invested a significant amount of time in collecting these videos
so that related products can be identified based on their visual characteristics.

Complex backgrounds: Figure 4B shows examples of various backgrounds within
the sample videos. In general, seller-centric data exclude a background to emphasize the
product. Due to the fact that consumers take shots in a variety of locations, such as their
homes and workplaces, multiple items are captured alongside the product. In the videos
shown in Figure 4B, it can be verified that the backgrounds are distinctive and do not match.
VERD has obtained videos in these varied contexts.

Variety of viewpoints: The majority of the information on the page for product sales
is taken from the front in order to make the product seem more attractive. However, users
do not consider these factors when capturing the product. In order to address this issue,
Figure 4C provides examples of videos collected from a variety of perspectives within the
dataset. In the example, filming began on the front of the product but was finished by
moving the camera upward so that the mechanical part of the product could be seen clearly.
In this real-world scenario, including the search for various product parts, the video-based
VERD can work effectively.

We illustrate numerous examples of the user-filmed environment by describing Figure 4
and the characteristics of the dataset. They may have a complicated history with irrelevant
items and diverse viewpoints. These characteristics suggest that VERD is suitable for
real-world scenarios.

Figure 4. An example of VERD in “Humidifier” category.
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4. Experiments

4.1. Setup

In this section, we propose a benchmark performance with several video retrieval
systems. Among these methods, we conducted experiments on DML [14], ViSiL [15], and
TCA [16] that published codes. Following the previous approach, the performance was
also reported as mean average precision (mAP).

Due to the absence of available training datasets for object-centric video studies, K-fold
cross-validation was applied as the evaluation approach. We fixed query videos in the
dataset and set K to 5 to split the database. In order to ensure that a sufficient quantity of
data is used in the search, the experiment was constructed so that while one fold was used
for learning, the remaining fold was used for evaluation.

4.2. Benchmark

Table 1 shows benchmark results for existing video retrieval models on VERD. Bench-
mark experiments were conducted using the authors’ provided code, with only a few
hyperparameters modified. All performances were evaluated by choosing the method-
ology for which the highest performance was reported for each method (ViSiLv, TCA f ,
DMLlate).

Table 1. Benchmark results of applying VERD to existing video retrieval methods.

Method Category
Fold

Mean
1 2 3 4 5

DML [14] Product 0.081 0.080 0.087 0.077 0.083 0.082
Fashion 0.090 0.077 0.097 0.093 0.092 0.090

ViSiL [15] Product 0.309 0.310 0.311 0.311 0.309 0.310
Fashion 0.159 0.159 0.158 0.159 0.161 0.159

TCA [16] Product 0.290 0.292 0.293 0.293 0.294 0.292
Fashion 0.175 0.182 0.183 0.184 0.184 0.181

Benchmark performance was obtained by separating the product category and the
fashion category. This is due to the fact that the two categories have different visual qualities.
As a result, items in the fashion category have varied shapes based on whether or not they
are worn by humans, whereas the visual aspects of products change based on location but
the shape of the item does not change. Therefore, the overall performance of the fashion
category was deemed to be inferior to that of the product category.

On the other hand, it is noticeable that the performance, in general, is insufficient. This
demonstrates that the existing video-to-video retrieval model did not acquire the properties
required by object-centric video datasets such as VERD, as it was mainly researched using
incident-centric videos. Consequently, the experimental result shows the need for future
independent object-centric video retrieval study.

4.3. Analysis
4.3.1. Feature Comparison

Most video retrieval methods use frame-level features or video-level features to cal-
culate video similarities. The frame-level feature calculates the similarity between each
frame to determine the similarity of the video, while the video-level feature compresses the
feature representation of the video to determine the similarity.

Table 2 presents the performance based on the feature difference in TCA [16] to
determine the difference between frame-level and video-level feature presentation in object-
centric video retrieval. Experiments indicate that the type of feature has a negligible impact
on the feature’s performance. This indicates that VERD was taken around an object, allow-
ing the model to understand the expression of the object in the majority of video frames.
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Moreover, despite the fact that frame-level features perform better in incident-centric video
retrieval studies, video-level features are appropriate for e-commerce platforms that need
speedy search when performance gaps among feature types are considered.

Table 2. Performance comparison between frame-level feature (TCA f ) and video-level feature (TCAc).

Descriptor Category
Fold

Mean
1 2 3 4 5

Frame-level Product 0.290 0.292 0.293 0.293 0.294 0.292
Fashion 0.175 0.182 0.183 0.184 0.184 0.181

Video-level Product 0.288 0.290 0.290 0.290 0.292 0.290
Fashion 0.173 0.181 0.182 0.184 0.183 0.181

4.3.2. Modality Comparison

To demonstrate that video clips have a higher volume for visual representation than
images, analysis was conducted to compare the performance of image-based and video-
based retrieval in Table 3.

The experiment employed the same K-fold cross-validation as Section 4.2; however,
in the analysis experiment, only evaluation sets were used identically since there was no
training engaged. Moreover, since there was no corresponding dataset for images and
videos, a pseudo image dataset was created in VERD for the experiment. This dataset was
processed by extracting images from the video’s intermediate frame.

Table 3. Performance evaluation of the VERD using video-based and image-based retrieval.

Method Category
Fold

Mean
1 2 3 4 5

Image-based Product 0.191 0.192 0.192 0.192 0.192 0.192
Fashion 0.100 0.100 0.099 0.100 0.100 0.100

Video-based Product 0.291 0.291 0.292 0.293 0.291 0.292
Fashion 0.158 0.158 0.157 0.158 0.159 0.158

Using the method of [15], a simple video search model was built in order to evaluate
the performance of the dataset created in this approach. Similarity was calculated using
chamfer similarity with L4-iMAC as a feature.

Table 3 demonstrates that video-based methods consistently outperform image-based
methods. This difference in performance is because the video was taken from multiple
perspectives, allowing it to be responded to even if the front and side visual characteristics
of the product are varied. This means that the video contains more information than the
image, as this paper suggests. In the case of existing video search models, where the focus is
on incident-centric video retrieval, Table 1 indicates that the performance does not improve
significantly, even after training. This demonstrates the necessity for independent research
on object-centric video retrieval.

5. Conclusions

Object-centric retrieval in the user environment is a major task that can be handled
in the expanding e-commerce industry. According to this trend, research on single and
multimodal search based on product images emerged, but the challenge was that it was
difficult to respond to complex scenarios or that the quantity of data required for a search
was massive. Therefore, we propose the Video E-commerce Retrieval Dataset (VERD),
comprising videos that have not been utilized in previous studies. We present benchmark
performance experiments applying the proposed dataset to existing video search method-
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ologies, and additional experiments indicate the better performance of videos relative to
images, demonstrating the need for video-based research.
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Abstract: Images captured in bad weather are not conducive to visual tasks. Rain streaks in rainy
images will significantly affect the regular operation of imaging equipment; to solve this problem,
using multiple neural networks is a trend. The ingenious integration of network structures allows
for full use of the powerful representation and fitting abilities of deep learning to complete low-
level visual tasks. In this study, we propose a generative adversarial network (GAN) with multiple
attention mechanisms for image rain removal tasks. Firstly, to the best of our knowledge, we propose
a pretrained vision transformer (ViT) as the discriminator in GAN for single-image rain removal for
the first time. Secondly, we propose a neural network training method that can use a small amount of
data for training while maintaining promising results and reliable visual quality. A large number of
experiments prove the correctness and effectiveness of our method. Our proposed method achieves
better results on synthetic and real image datasets than multiple state-of-the-art methods, even when
using less training data.

Keywords: deep learning; image deraining; neural network; vision transformer; generative adversar-
ial network

1. Introduction

Rain patterns in an image will affect the visibility of the image and cause considerable
trouble to imaging instruments. Degradation phenomena, such as rain streaks and fog,
will greatly decrease the accuracy of visual tasks, especially for high-level tasks. Therefore,
removing rain from rainy images has become classical in down-stream visual tasks, while,
single-image deraining is a challenging task in low-level visual research fields.

Deep learning, relying on its strong representation and mapping fitting ability, has
made great achievements in the field of computer vision in recent years. Not only in
high-level visual tasks, such as image classification [1], object detection [2], semantic
segmentation [3], and person reidentification [4], has deep learning occupied a dominant
achievement, but also in the low-level visual tasks. For visual representations, the depth
of network is very important [5], but simply deepening the neural network will make it
difficult to train. Since ResNet [6] solved this problem, the application of convolutional
neural network (CNN) in computer vision has shown a spurt of development [7,8]. Later
researchers mimicked human visual attention by adding attention mechanisms [9,10] to
CNN, allowing it to allocate more computing resources to parts that contain significant
information based on dynamic weight scores [11]. Recently, with the excellent performance
of self-attention [12], ViT [13] has re-examined the choices of network backbone. Meanwhile,
CNN can also be combined with GAN and recurrent neural network (RNN), respectively.
Using the powerful generation ability of GAN and the outstanding temporal modeling
capability of RNN, attractive achievements have been made in image generation [14] and
deblurring [15], video super-resolution [16], and denoising [17] tasks.

Single-image deraining is a hot issue because the images captured in rainy days will
be significantly degraded by rain patterns, so computer vision tasks are difficult to perform.
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In contrast to the model-based or prior-based methods in traditional algorithms, learning-
based methods are applied to image rain removal, and can achieve more promising results
with better generalization ability, while requiring no prior knowledge. In detail, combined
with image processing domain knowledge, Fu et al. [18] proposed a modestly sized CNN
to modify the objective function for image deraining. Yang et al. [19] created a recurrent
rain detection and removal network that could jointly detect and remove rain from single
images. Zhang et al. [20] proposed a density-aware, multi-stream, densely connected
network for joint rain density estimation and deraining that can automatically determine
the rain-density information. As for single-image deraining, Zhang et al. [21] proposed
ID-CGAN (image deraining conditional generative adversarial network) by leveraging the
powerful generative modeling capabilities of conditional GAN. Ren et al. [22] proposed a
progressive recurrent network that can take the advantage of recursive computation while
exploiting the dependencies of deep features across stages. Attention mechanisms, such as
CNN, GAN, RNN, and ViT, are all excellent components of deep learning, which can be
used as components to design a network that combines the advantages and characteristics
of a variety of structures. The use of these network structures alone cannot obtain a
satisfactory effect, therefore, our motivation was to give full play to the advantages of
various network structures by integrating and collocating multiple network structures. On
the other hand, training of complex neural networks requires a lot of data, which means it
takes a lot of time simultaneously. Therefore, the efficient use of data will make training
easier. Given that generators are the more important member, there have been few studies
on discriminators and the stability of their training. In order to solve the above problems,
in this study, we propose a progressive recurrent attention generation adversarial network,
the generator for which includes a convolutional block attention module [10] (CBAM) and
convolutional LSTM [23] (ConvLSTM). At the same time, a pretrained ViT is proposed as a
discriminator to organize the adversarial training with the generator. Finally, we introduce
a training method that can use only a portion of training image pairs while obtaining results
beyond the amount of data. Detailed ablation experiments and comparative experiments
have proven the rationality and effectiveness of our proposed method.

The main contributions of this work are as follows:

1. We propose an adversarial model using a pretrained ViT discriminator. We utilize
ViT’s powerful fitting ability in computer vision while minimizing its drawback of
requiring large amounts of data for pretraining. To our best knowledge, there has
been little work to improve the performance of discriminators in image deraining,
and we are the first to propose a pretrained ViT discriminator to improve the overall
performance of GAN.

2. We propose a data reselection algorithm, called DRA. To be specific, the training data
are reselected at a specific time in the process of network training. Compared with the
fixed part of training data, the rain removal effect of our model can be significantly
improved by using this algorithm.

3. A large number of comparative experiments and ablation experiments on synthetic
and real datasets prove the effectiveness and rationality of our proposed method.

1.1. Single-Image Deraining

Compared with video deraining tasks, which that can use inter-frame temporal in-
formation, significantly less information can be fully utilized in individual images for
single-image deraining. Therefore, it is obviously more difficult and challenging to remove
rain streaks in single images. In early studies, the rain model is usually simply expressed
as Formula (1):

O = B + S̃ (1)

where O is the input image with rain streaks, B is the background image, and S̃ is the
rain streak layer. Yang et al. [6] proposed a new model in order to realistically simulate
the rain streak phenomena in the real world. By accommodating streak accumulation
and overlapping rain streaks with different directions, this model can both comprise of
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multiple layers of rain streaks and represent diversity of rain streaks. The new rain model
is expressed as Formula (2):

O = α(B +
s

∑
t=1

S̃tR) + (1 − α)A (2)

where S̃t is the rain streak layer in the same direction, which has effects of atmospheric
shading; S is the maximum number of rain streak layers; and t is the index of these layers.
R represents binary values of 0 or 1, 0 representing areas without rain and 1 representing
areas with rain. α represents the atmospheric propagation transmittance that is common in
image dehazing and A represents the global atmospheric light value.

1.2. ConvLSTM and GAN

To solve the problem that storing information over extended time intervals is time-
consuming, Sepp et al. [24] proposed long short-term memory (LSTM). As a recurrent
version of the cascade correlation learning architecture, recurrent cascade correlation can
learn from examples to map an input sequence to the desired output sequence while
preserving the benefits of cascade correlation, such as fast learning. LSTM can lead to more
successful runs than recurrent cascade correlation while learning much faster. However,
the fully connected LSTM (FC-LSTM) cannot encode spatial information in handling
spatiotemporal data. To overcome this major drawback of LSTM, Shi et al. [23] proposed
ConvLSTM, which is more suitable for spatiotemporal data than FC-LSTM while preserving
the advantages of it. ConvLSTM consists of an input gate it, an output gate ot, a forget gate
ft, and a memory cell Ct [25]. The key equations of ConvLSTM are shown in Formula (3):

it = σ(Wxi ∗ Xt + Whi ∗ Ht−1 + Wci ◦ Ct−1 + bi)

ft = σ(Wx f ∗ Xt + Wh f ∗ Ht−1 + Wc f ◦ Ct−1 + b f )

Ct = ft ◦ Ct−1 + it ◦ tanh(Wxc ∗ Xt + Whc ∗ Ht−1 + bc)

ot = σ(Wxo ∗ Xt + Who ∗ Ht−1 + Wco ◦ Ct + bo)

Ht = ot ◦ tanh(Ct)

(3)

where ◦ and ∗ denote Hadamard product and convolution operator. Xt, Ht, W∗, b∗ are input
tensor, hidden state tensor, network weights, and bias terms, respectively.

By simultaneously training a generative model G and a discriminative model D via an
adversarial process, GAN can represent even degenerate distributions with no approximate
inference better than methods based on Markov chains [26]. The training objective of D is
to distinguish between data generated by G and real data as much as possible. The training
goal of G is to make D unable to distinguish between them. The adversarial process is
shown as a two-player minimax game in Formula (4):

min
G

max
D

V(D, G) = Ex∼Pdata(x)
[log D(x)] +Ez∼Pz(x)

[log(1 − D(G(z)))] (4)

where Pdata(x) and Pz(x) are the distributions of real data and generated data, meanwhile,
D(x) and D(G(z)) are the probabilities of the discriminator judging real or generated data
as true, respectively. GAN has a disadvantage that D must be synchronized well with G
during training [26] while suffering from training instability [27]. Therefore, the structures
of G and D must be well-designed, and the components used in the proposed network will
be described in the following section.

1.3. CBAM and ViT

Hu et al. [12] proposed the SE module, which uses global average-pooled features to
compute channel-wise attention for exploiting the inter-channel relationship. However, the
SE module is suboptimal because it only focuses on the channel dimension. CBAM [10] can
sequentially infer attention maps along not only the channel but also the spatial dimension

125



Sensors 2022, 22, 9587

to get better inter-dependencies than [9]. The overall attention process of CBAM [10] is
shown in Formulas (5) and (6):

F′ = Mc(F)⊗ F
F′′ = Ms(F′)⊗ F′ (5)

where F′ and F′′ are the intermediate feature map and the final refined output, while ⊗
denotes element-wise multiplication, in which:

Mc(F) = σ(W1(W0(Fc
avg)) + W1(W0(Fc

max)))

Ms(F) = σ( f 7×7([Fs
avg; Fs

max]))
(6)

where F∗
avg, F∗

max, W∗, and f 7×7 denote average-pooled features, max-pooled features,
CNN’s weights, and convolution operations with a 7 × 7 filter, respectively. Further, the
structure of the CBAM is shown in Figure 1.

 

 

 

Figure 1. Detailed structure of CBAM.

Based solely on self-attention mechanisms, transformer [12] is the de facto standard
for natural language processing tasks. Applications of pure transformer [13] or its vari-
ants [28,29] to computer vision tasks prove the superiority of transformer over CNN
and RNN. By flattening the loss landscapes [30], multi-head self-attentions (MSAs) in
transformer improve not only accuracy but also generalization, which gives transformer
excellent fitting and representation abilities. As a discriminator, we only used the trans-
former encoder, which includes a MSA module and a feed-forward network (FFN). The
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size of input fpi is the same as that of output patch in encoder fEi ∈ R
P2×C, and the whole

calculation of transformer can be formulated in Formula (7):

y0 = [Ep1 + fp1, Ep2 + fp2, . . . , Epn + fpn],

qi = ki = vi = LN(yi−1),

y′i = MSA(qi, ki, vi) + yi−1,

yi = FFN(LN(y′i)) + y′i, i = 1, . . . , l

[ fE1, fE2, . . . , fEn ] = y1

(7)

in which the self-attention in MSA can be unified as (8):

Attention(Q, K, V) = so f t max(
Q · KT
√

dk
) (8)

where q, k, v are query, key, and value used in MSA; Q, K, V are vectors packed together into
three different matrices which are derived from different inputs [31], respectively. In addi-
tion, l denotes the number of layers in the encoder and LN is the layer normalization [32]
applied before every block.

2. Proposed Method

In the second chapter, we mainly introduce three parts. Firstly, we mention the overall
network structure and progressive recurrent loss function. The second part introduces a
confrontation model using a pretrained ViT discriminator. Finally, we introduce an effective
training method: reselecting data progressively.

2.1. Network and Loss Function

We promote the guiding role of loss function [33] for end-to-end single-image rain
removal. The whole structure of our generator is shown in Figure 2, the generator was
inspired by the manner of progressively coarse-to-fine restoration from degraded to sharp
images in [34–36], methods of sharing network parameters in [37], and RNN for derain-
ing [22,36].

Figure 2. The overall structure of our proposed generator. The CBAM part is shown in Figure 1. Our
generator is a variant of the recurrent neural network, which offers three cycles in the figure above.
The parameters of the three cycles are shared, that is, only one-third of the parameters of the overall
network. The generator does not need to be pretrained. In the adversarial training, the pretrained
discriminator is used to conduct adversarial training with the generator proposed above.
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We applied one loss to each loop in the training process of the generator to achieve
a progressive recurrent loss. Specifically, in the first loop, we used MSE loss, which is
expressed in Equation (9):

Lmse =
1
N
‖B1 − B‖2

2 (9)

where B1 is the output of first loop and N is the number of elements in B1 to normalize. In
the second loop, we employed the EDGE loss, which is expressed in Equation (10):

Ledge =

√
(Lap(B)− Lap(B2))

2 + ε2 (10)

where Lap(∗) denotes the edge maps extracted from images via Laplacian operator [38]
and ε is set to 0.001. In the last loop, as the final result, we chose structural similarity
(SSIM) [39] loss, which can take into account the overall coordination between predicted
deraining images and labels. The SSIM between image X and image Y can be expressed as
Formula (11):

SSIM(X, Y) = l(X, Y)c(X, Y)s(X, Y) (11)

where l(X, Y), c(X, Y), and s(X, Y) are luminance component, contrast component, and
structure component of SSIM, respectively. The SSIM loss between final output B3 and
label can be defined as Formula (12):

LSSIM = 1 − SSIM(B3, B) (12)

In order to avoid the burden of fine-tuning parameters [22], we conducted a prior
analysis of the above three loss values, as shown in Figure 3. Therefore, we simply arranged
the order by numerical value from small to large. Therefore, the final loss used for our
model is defined as Formula (13):

Lossall = Lmse + Ledge + LSSIM (13)

Figure 3. Numerical comparison of three losses during model training.

2.2. Discriminator: Pretrained ViT

Due to their capacity for long-range representation [40] and faculty for flattening
loss landscapes [30], transformer-based models show high performance for visual tasks
with less need for vision-specific induction [31]. Multiple tasks [41–43] have revealed that
transformer-based models heavily rely on massive datasets for large-scale training, which
may be the key to achieving its inductive bias [13]. However, pretraining [44] on large-scale
datasets (e.g., ImageNet [45]) is both very demanding on hardware and does not necessarily
improve the final target task accuracy [46].

In this section, we give a detailed description of a proposed strategy that uses our
pretrained ViT as the discriminator of GAN. Compared with the large-scale dataset that
includes over tens of millions of images, we used less than 3 × 104 images for training.
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Given that this pretraining process can be regarded as a binary classification task, the
number of training iterations is small while the effect is good. To demonstrate the supe-
riority of ViT over CNN, we also trained a classical CNN, called PatchGAN [47], which
is often used as a discriminator in image restoration tasks [48,49]. The PatchGAN [47]
network mainly includes: C64 − C128 − C256 − C512. Ck presents a 4 × 4 Convolution
+ BatchNorm + LeakyReLU block with stride two and k filters. The parameters of these
LeakyReLU activation functions were set to 0.2 and the last two layers of this network are
made up of a 4 × 4 convolution layer, for which stride and filter number were set to one,
and an average pooling layer. Meanwhile, the ViT used as a discriminator has 16 patch
sizes, 768 embedding dimensions, 6 MSAs Blocks, and 12 attention heads. The detailed
structures of ViT [13] and PatchGAN [47] are shown in Figures 4 and 5. By recording the
loss function, as shown in Figure 6, ViT [13] converges faster and is more stable than CNN
during training. Further, as shown in Figure 7, by testing the trained network on whole
data, we found that, as a discriminator, pretraining ViT can better distinguish images with
rain from clear images. After pretraining, this ViT has been fully equipped with the ability
to distinguish whether the training data contain rain.

Figure 4. The detailed structure of the transformer discriminator used in this article. In addition, the
‘*’ symbol represents class token.

Figure 5. The detailed structure of the classical PatchGAN.
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(a)  (b)  

Figure 6. Comparison of losses convergence in pretraining. Note, our aim is not to make a per-
formance comparison between these two, but rather to explore the wider use of ViT [13] and pre-
training for generative tasks from the perspective of a GAN’s discriminator. (a) PatchGAN [47] on
128 × 128 patches. (b) ViT [13] on 128 × 128 patches.

  
(a) (b) 

Figure 7. The difference between the predicted values of all image pairs after training. The goal of
both networks is to return 1 to the image without rain and 0 to the image with rain. The number in
the figure is the return value of the image without rain minus the return value of the image with
rain. That is, the larger the difference is, the stronger the network’s discrimination ability is. As
shown in the figure, on the image patches of 128 × 128, ViT [13] performs better than PatchGAN [47].
(a) PatchGAN [47] on 128 × 128 patches. (b) ViT [13] on 128 × 128 patches.

2.3. Reselecting Data Progressively: Train More Effectively

Nowadays, deep neural networks often require a large amount of data for training to
converge. As described in the previous section, pretraining on large-scale datasets requires
fairly good hardware conditions and very long time, but does not necessarily improve
final target task accuracy [46]. Not only that, in order to comprehensively explore the
competence, models for single image deraining also require massive data for training [36],
which also increases the difficulty for this task to a certain extent.

To solve these problems, we propose an algorithm for progressively random rese-
lection of data, which is inspired by the coarse-to-fine principle that has been proved to
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be effective [50] by other image restoration tasks [35,51]. Specifically, randomly select a
portion from the entire training set at the beginning and then reselect it several times. By
reselecting training data at the end of a specific training epoch, we can achieve better results
than using the same amount of training data without reselecting. In addition, in accordance
with the principle of coarse-to-fine, we interval different training epochs to reselect the data,
which makes the intervals change from large to small. At the end stage of network training,
the data are reselected every two epochs, while in the initial stage of network training, data
are reselected every twenty-five epochs. From the perspective of network generalization
performance, using different data for training every once in a while can simply inhibit
over-fitting. At the same time, in contrast to the discriminator, our generator does not
need pretraining, although pretraining will not automatically help reduce overfitting [46].
Each process is carried out before one training epoch; compared with the time required for
training, time consumption of reselecting data can be ignored, but it can perform better
results. The process of reselecting data is summarized in Algorithm 1:

Algorithm 1: Reselecting Data Progressively.

Parameters:

M = 251: total epoch number for training,
E = 50: number of epochs included in one stage of reselecting data progressively,
D: all the training data,
R = 4: ratio of overall data selection,
List = [25, 10, 5, 2]: a list of epoch values for reselecting data,
S = [0, List[0]]: a list for saving the number of rounds for which data should be reselected,
L = [0, . . . , len(D)]: a list of integers from 0 to the length of D,
Loader: dataloader in Pytorch
1. for i = 0 to len(List) do
2. while S[−1] < (E*(i + 2)) do

3. S.append(List[i] + S[−1])
4. end while

5. end for

6. for i = 0 to M do

7. if i in S then

8. Shuffle(L)
9. Part = [D[j] for j in L[0:(len(D)//R)]]
10. Loader(Part)
11. end if

12. Train one epoch
13. end for

3. Experimental Results

3.1. Implementation Details

We implemented our model with the pytorch library. The generator was able to be
divided into three stages based on the size of feature map. After each down-sampling, the
number of channels in the convolution layer was twice that before. The number of channels
in the convolution layer at the beginning of the network was 32, and the convolution
kernel size of all convolution layers was 3. The image patches used in all experiments
were 256 × 256. Due to hardware limitations, specific ablation experiments may use
different batch sizes. All the generators in different ablation experiments used Adam [52]
optimizer for training, and the initial learning rate was 0.0002, which steadily decreased
to 1 × 10−6 using the cosine annealing strategy [53]. In contrast to the generator, the
initial learning rate of the discriminator during pretraining was 2 × 10−5, and AdamW [54]
optimizer was used for optimization. Horizontal and vertical flips were randomly applied
for data augmentation. In addition to pretraining the discriminator, our experiments were
conducted on an NVIDIA RTX 3060 GPU. Further details may be found in [55].
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On several synthetic datasets, our proposed PRAGAN was compared with seven state-
of-the-art models, i.e., DerainNet [5], RESCAN [55], DIDMDN [7], UMRL [56], SEMI [57],
PreNet [22] and MSPFN [36]. All other methods were configured as in [36], and we used
the results provided by [36] to establish a re-evaluation of image quality by employing
the peak signal to noise ratio (PSNR) and SSIM in scikit-image. All datasets used for
training included Rain14000 [58], Rain1800 [6], Rain800 [21], and Rain12 [59], with a total
of 13,712 image pairs, which we call MIX.

On real-world rainy image datasets, according to the configuration in [60], we only
trained the proposed model on the Rain100L [6] training set, we call it Train200. Train200
has a total of 200 image pairs, and PRAGAN was tested on Internet-Data [57] and SPA-
Data [61]. These two datasets contain 147 rainy images and 1000 image pairs, respectively.
Given that Internet-Data [57] has no ground truth, we only provide visual comparison with
several state-of-the-art models in Figure 7.

3.2. Ablation Studies

In this section, we provide the contributions of different designs quantitatively.

3.2.1. Network Structure and LOSS

By removing CBAM and ConvLSTM, we verified the necessity of using them. For
progressive recurrent loss, experiments have shown that this loss can achieve better results
than adding three losses to one loop or using MSE loss to measure the prediction value of
each loop directly. Finally, it should be noted that our network only inputs the original rain
image each loop, rather than the predicted value of the previous loop. We found through
experiments that for PRAGAN, doing so will bring performance losses. The training set
and testing set used in all experiments in this section were Rain800 [21] and Test100 [21];
mini-batch size and training epoch were 1 and 101. All the results are shown in Table 1.

Table 1. Ablation studies on network structure and loss function. A1 represents the results of
removing the CBAM model and A2 shows the predicted value of the last loop as the next input of
the network. A3 is the case where MSEloss is used to measure the training effects of three loops. A4
represents the results of removing ConvLSTM. A5 and A6 are the results of adding three losses to
the same loop for training and then performing one and three inferences. A7 is the overall network
structure with progressive recurrent loss.

A1 A2 A3 A4 A5 A6 A7

PSNR 24.21 24.31 24.58 24.75 24.77 24.77 24.79
SSIM 0.861 0.869 0.846 0.872 0.871 0.872 0.874

3.2.2. Pretraining ViT as Discriminator

In this section, we compare the ViT pretrained on 128 × 128 and 256 × 256 image
patches, as shown in Tables 2 and 3. For the smaller image patches, we set batch size to
64, while for the larger image patches, due to the hardware limitation, we set batch size
to 16. The number of training epochs and the initial learning rate were 502 and 2 × 10−5,
respectively. When the discriminator was used for adversarial training, the initial learning
rate was 1 × 10−5. Our discriminator used AdamW [54] as optimizer in pretraining and
adversarial learning. During pretraining and adversarial training, the loss of both patch
sizes for discriminator was BCEloss. The training dataset for pretraining was MIX. In order
to better display the superiority of pretraining for ViT, as for the smaller patch, we trained
the network on a quarter of the MIX training set. Meanwhile, for the larger patch, we used
a quarter of Rain1800 [19] for training. Pretraining ViT can effectively help the generator to
improve the performance of image deraining.
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Table 2. Ablation studies on pretraining the discriminator or not. ViT discriminator can make the
generator perform better in image deraining tasks through pretraining on 128 × 128 image patches.

Test100
PSNR/SSIM

Rain100H
PSNR/SSIM

Rain100L
PSNR/SSIM

Test1200
PSNR/SSIM

No pretraining 21.89/0.837 22.99/0.799 24.47/0.861 25.71/0.873
Pretraining 22.55/0.855 23.54/0.813 25.94/0.890 25.95/0.877

Table 3. Performance comparison of pretrained ViT discriminator on 256 × 256 image patches. The
model was trained on Rain800 [21] and tested on Test100 [21].

PSNR SSIM

No pretraining 24.78 0.870
Pretraining 24.87 0.871

3.2.3. Reselecting Data Algorithm

In this part, we studied the reselecting data algorithm with small and large amounts
of training data to better demonstrate its effectiveness. Specifically, the smaller one was
Rain800 [21] and the larger one was a quarter of MIX, including 700 and 3426 image pairs,
respectively. Batch size of the former was 1, the latter was 2. The number of training epochs
and the size of image patches were 251 and 256, respectively, and relevant results are shown
in Tables 4 and 5. With the increase of the amount of training data, the corresponding image
evaluation index will also increase. Meanwhile, using same amount of data, by employing
a reselecting data algorithm, the deraining task can obtain better results.

Table 4. Studies of reselecting data on small-scale training set. The model was trained on Rain800 [21]
and tested on Test100 [21]. r represents the proportion of reselected data to the total and 1/4 means
fixed quarter of total data.

r = 20 r = 10 1/4 r = 4

PSNR 23.87 24.83 25.79 26.08
SSIM 0.844 0.866 0.888 0.889

Table 5. Studies of reselecting data on a large-scale training set. r represents the proportion of
reselected data to the total and 1/4 means fixed quarter of total data.

Test100
PSNR/SSIM

Rain100H
PSNR/SSIM

Rain100L
PSNR/SSIM

Test2800
PSNR/SSIM

r = 20 23.97/0.868 25.52/0.838 28.80/0.898 27.76/0.899
r = 10 24.94/0.885 26.69/0.861 30.32/0.929 27.85/0.902
1/4 27.25/0.911 27.09/0.877 31.22/0.933 27.90/0.905
r = 4 27.54/0.912 27.51/0.884 32.77/0.955 27.97/0.906

3.3. Comparison with Other Methods
3.3.1. Synthetic Images

Through training on one quarter of the MIX training set, combined with DRA and
pretraining of the ViT discriminator, we obtained the best results with the proposed method.
We compared it with eight state-of-the-art methods. Due to the relatively long time, we
remeasured the image quality, which may be different from the previous study. We used
the results provided by [36] to perform a re-evaluation of all methods, as shown in Table 6.
Meanwhile, visualized images shown in Figures 8 and 9 match well with the quantitative
results, which shows PRAGAN’s superior deraining ability and favorable image restoration
capability. Note that most other methods used all MIX training sets, while PRAGAN never
used all 13,712 images for training, and only 1/4 of the data can achieve the best results.
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Table 6. Comparative results on synthetic deraining datasets, all models were directly tested on
Test1200 [20]. For MPRNet [59], we retrained it with the same number of iterations using the same
experimental configuration as our proposed method. Specifically, MPRNet [59] was trained for
63 epochs with all training data.

Test100
PSNR/SSIM

Rain100H
PSNR/SSIM

Rain100L
PSNR/SSIM

Test1200
PSNR/SSIM

DerainNet [18] 21.90/0.837 13.67/0.573 26.36/0.873 22.24/0.848
DDC [58] 22.63/0.825 14.51/0.499 26.75/0.858 27.59/0.882

DIDMDN [20] 21.56/0.811 16.31/0.556 23.71/0.804 27.00/0.883
SEMI [57] 21.39/0.781 15.50/0.519 24.05/0.820 24.95/0.841

RESCAN [55] 23.09/0.830 24.86/0.783 27.46/0.864 27.14/0.869
UMRL [56] 23.92/0.883 24.85/0.835 27.73/0.929 29.59/0.922
PreNet [22] 24.03/0.872 25.75/0.861 31.64/0.949 30.86/0.926
MSPFN [36] 26.97/0.898 27.42/0.864 31.66/0.921 31.59/0.928
MPRNet [59] 26.24/0.894 27.73/0.867 32.65/0.951 31.84/0.929

PRAGAN 27.71/0.916 27.41/0.883 32.54/0.957 32.20/0.934

Figure 8. Deraining results from the Rain100L [19] testing set. Rain100L [19] consists of 100 image
pairs for testing with one type of rain streak. It can be seen from the figure that most of the methods
can remove rain streaks to a certain extent, but our PRAGAN can almost remove all the rain streaks
compared with other methods, and restore images closer to ground truth.

 
Figure 9. Deraining results from the Rain100H [19] testing set. In contrast to the relatively simple
Rain100L [19], Rain100H [19] contains five types of streak directions, so part of the rain removal
method was not effective. Our method needed only a quarter of the 13,712 image pairs for training.

3.3.2. Real Images

Due to the inevitable difference between synthetic rain streaks and real data, this
section lists the comparison results of our proposed PRAGAN with other methods on real
deraining datasets. According to the results provided by [61], we conducted experiments
on two datasets, namely Internet-Data [57] and SPA-Data [62]. For Internet-Data [57], we
only provide visual comparison, given that it has no ground truth to allow a quantitative
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comparison. We pretrained the ViT discriminator for this section with a new dataset that
contained Train200 and Internet-Data, for which the mini-batch size was 32, while other
configurations were the same as the previous pretraining. In the adversarial training, given
that the overall dataset Train200 has only 200 image pairs, we did not use the reselecting
data algorithm. PSNR and SSIM comparisons on SPA-Data [62] are shown in Table 7 and a
visual comparison on Internet-Data [57] is displayed in Figure 10.

Table 7. Comparisons on real-world dataset SPA-Data [61].

Methods PSNR SSIM

Input 34.15 0.927
DSC [63] 34.95 0.942

GMM [60] 34.30 0.943
JCAS [64] 34.95 0.945
Clear [5] 32.66 0.942

DDN [58] 34.70 0.934
RESCAN [55] 34.70 0.938

JORDER_E [65] 34.34 0.936
SIRR [57] 34.85 0.936
PRAGAN 34.96 0.951

 

Figure 10. Deraining results on Internet-Data [57] testing set. Best viewed when zoomed in and
in color.

4. Conclusions

In this study, we propose a novel generative adversarial network consisting of a
pretrained ViT discriminator and a progressive recurrent attention generator for single-
image deraining tasks. First of all, we propose a parameter sharing recurrent neural
network for image deraining. Secondly, we propose a new pretrained ViT discriminator for
image deraining in a GAN. Compared with PatchGAN, ViT in the pretrained stage shows
more stable convergence. Finally, we propose a data reselecting algorithm DRA, which
can not only make efficient use of training data on small datasets, but also promote the
deraining performance of our model on large datasets. We have shown extensive ablation
studies and comparative experiments to fully validate the effectiveness of our proposed
PRAGAN on both synthetized and real datasets. A more in-depth investigation on image
deraining and GAN will be carried out in the future.
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Abstract: Recently, there has been an increase in research interest in the seamless streaming of video
on top of Hypertext Transfer Protocol (HTTP) in cellular networks (3G/4G). The main challenges
involved are the variation in available bit rates on the Internet caused by resource sharing and the
dynamic nature of wireless communication channels. State-of-the-art techniques, such as Dynamic
Adaptive Streaming over HTTP (DASH), support the streaming of stored video, but they suffer
from the challenge of live video content due to fluctuating bit rate in the network. In this work,
a novel dynamic bit rate analysis technique is proposed to model client–server architecture using
attention-based long short-term memory (A-LSTM) networks for solving the problem of smooth
video streaming over HTTP networks. The proposed client system analyzes the bit rate dynamically,
and a status report is sent to the server to adjust the ongoing session parameter. The server assesses
the dynamics of the bit rate on the fly and calculates the status for each video sequence. The bit rate
and buffer length are given as sequential inputs to LSTM to produce feature vectors. These feature
vectors are given different weights to produce updated feature vectors. These updated feature vectors
are given to multi-layer feed forward neural networks to predict six output class labels (144p, 240p,
360p, 480p, 720p, and 1080p). Finally, the proposed A-LSTM work is evaluated in real-time using a
code division multiple access evolution-data optimized network (CDMA20001xEVDO Rev-A) with
the help of an Internet dongle. Furthermore, the performance is analyzed with the full reference
quality metric of streaming video to validate our proposed work. Experimental results also show an
average improvement of 37.53% in peak signal-to-noise ratio (PSNR) and 5.7% in structural similarity
(SSIM) index over the commonly used buffer-filling technique during the live streaming of video.

Keywords: adaptive video streaming; A-LSTM networks; bit rate measurement; client–server model;
HTTP; reference metrics; video quality

1. Introduction

Adaptive media streaming through Hypertext Transfer Protocol (HTTP) is a widely
used mechanism by the service provider. The main advantage is that it does not require any
change in the underlying network layer to support streaming. The standard organization
Moving Picture Experts Group (MPEG) and the 3rd Generation Partnership Project (3GPP)
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have standardized a method called Dynamic Adaptive Streaming over HTTP (DASH) to
ensure interoperability [1]. In DASH implementation, the video is segmented, and each
segment is stored with different video quality parameters, including spatial and temporal
resolutions. The adaptation process at the server streams suitable segments targeted to
match the link capacity of the client [2]. The present solution fails in case of fast changes in
network bit carrying capacities leading to the video freezing and enhancing degradation of
user satisfaction [3]. A new method can be integrated with the DASH technique to support
live content streaming. In the buffer-based implementation of live video streaming [4,5],
involving client observation of buffer threshold does not guarantee the quality since the
variation in the bit rate depends on capturing and coding methods at the server. The
scalable video coding (SVC) approach permits frame-level adaptation, but it requires
switching different video layers during the session [6].

Another development in adaptive video streaming is the study of 3G/4G cellular
networks offering Internet connection. Many times, the user equipment offered by a cel-
lular operator to support Internet services fails to deliver the desired quality for many
practical reasons. For example, Figure 1 shows the observation of a 4G dongle employing
the CDMA20001xEVDO Rev-A technique and a 4G dongle based on the long-term evo-
lution time-division duplex (LTE-TDD) category-3 system. The observed variation in bit
rate depends on location and fluctuation with time. This clearly justifies the motivation
behind the developing system, which can target wireless empowerment and offer the best
performance in terms of user satisfaction.

 
(a) 

 
(b) 

Figure 1. Download/Upload bit rate observed through different wireless Internet dongles (a) Re-
liance Netconnect+ (CDMA20001xEVDO Rev-A) 4G dongle (b) Airtel 4G Mobile Hotspot (LTE-TDD
Category 3) dongle.

The objective performance of the proposed system is evaluated using standard metrics
while meeting the design goal. The International Telecommunication Union Standardiza-
tion Sector (ITU-T) recommends using full reference metrics when the original video is
available at the receiver to test the individual system in a laboratory environment. The
standard evaluation metrics can be applied to test video quality in different formats, in-
cluding quarter common intermediate format (QCIF), common intermediate format (CIF),
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and Video Graphics Array (VGA). Table 1 lists the different parameters and corresponding
values to test the large varying quality of the video.

Table 1. Test factors as per the ITU-T J.247 recommendation.

S. No. Parameters Values

1 Transmission Errors with packet loss
2 Frame rate 5 fps to 30 fps

3 Video codec
H.264/AVC, VC-1,
Windows Media 9,
Real Video, MPEG4

4 Video resolution
(QCIF, CIF, and VGA)

QCIF (6 to 320 Kbps)
CIF (64 to 2000 Kbps)
VGA (128–4000 Kbps)

5 Temporal errors (pausing with skipping) Maximum of 2 s

The proposed work in this paper tries to use these parameters with their corresponding
standard values in implementation and development. The existing link bit rate assessment
method at the client involves sending a ping message to the server and computing the bit
rate using the time spent by the packet to come back. However, this method lacks precision
because of many external factors, for example, instantaneous congestion to the router can
temporarily interrupt the incoming rate of a ping message. Thus, the best practice for
dealing with this issue is to evaluate the capacity of the link in terms of bit rate to the
receiver by analyzing the bit stream arrival on the fly.

The streaming that needs to be sampled at times is analyzed and sent a feedback
message to the sender for performing remedial action on the outgoing stream so that
the end user enjoys a better quality of experience during the entire viewing session. The
schematic approach of the proposed architecture is shown in Figure 2, where the client
applies a predefined algorithm to compute the arrival rate and forward the report to the
server. The response action in the system loop needs to be proactive and stable to meet the
satisfaction of the system’s real-time streaming requirement. This provides the scope of
additional intelligence for the link capacity estimation. In the proposed method, pattern
matching is employed by the client to reduce the processing time and meet the requirements
of live video streaming.

Figure 2. Schematic diagram of a client–server model for adaptive video streaming.

An analytical model is included to support the performance measure of the proposed
work. The bit rate profile and performance measure are also presented in tabular form.
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Although the proposed system is basically developed as on-the-top of HTTP (OTT), it
has incorporated the inherent behavior of streamed data over the wireless network. The
dynamics of the observed bit rate are due to the burst nature of the Internet traffic [7]
and the time-varying nature of wireless signals in 3G/4G networks. Further, the sys-
tem performance evaluated here corresponds to the Internet over 4G wireless networks
(CDMA20001xEVDO Rev-A). Finally, the proposed work is compared against popular
buffer-filling methods [8], the default Internet option to stream multimedia content.

We present a summary of our contributions:

1. We devised a novel feed-forward attention-based LSTM model using reinforcement
learning to successfully integrate features from several layers of the LSTM network to
solve sequential bit rate dependency problems and adaptive video streaming over
HTTP.

2. We present a cost function for attention networks that maximizes video quality and
minimizes re-buffering time.

3. Experimental results have revealed that the suggested A-LSTM technique performs
better than the state-of-the-art buffer filling algorithms on the standard datasets.

The rest of the paper is organized as follows: video streaming, video buffering, and
machine learning techniques in multimedia streaming-related works are summarized in
Section 2. The architecture of the client–server model and A-LSTM is introduced first.
Then, we present the suggested A-LSTM model employing reinforcement learning and
feed forward attention-LSTM technique in Section 3. Section 4 presents the results of tests
performed on standard datasets containing variant bit rates and buffer lengths with the
current popular techniques. Lastly, we complete the paper with the hypotheses and future
work in Section 5.

2. Related Work

The bit rate adaptation of video streaming involves many factors, including scheduling
of segmented video, bit rate selection, bandwidth estimation, etc. Many commercially
available services, such as Smooth Streaming, Akamai HD, Netflix, and Adobe OSMF,
implement adaptive streaming through the Internet. Appropriate modeling and analysis
of the key phase include switching of the multimedia data during streaming used by the
service provider, which helps to refine the design of the system for improving performance
in the feedback control loop [9].

In the HTTP based adaptive streaming (HAS), the quality of experience (QoE) depends
on the appropriate selection of video segment and switching of bit stream based on client
input [10]. The underflow probability of the media buffer is estimated during run time
and is incorporated in the QoE framework while supporting the acceptable quality of
the streaming video. The buffer stability is a vital parameter to maintain the quality of
the video during play out, and this is implemented by estimating the buffer level during
the streaming session of the client [11]. Furthermore, the estimation of buffer underflow
probability can provide vital inputs in implementing layer switching of different video
segments, i.e., adaptation of video content during the streaming process [12].

A new version of adaptive rate control algorithms [13] is proposed to improve the
combined system performance of video play out smoothness and frame quality based on
the feedback information of wireless network estimation, buffer content, and playback
situation. However, their main disadvantage is the lack of adaptability of heterogeneous
networks and noisy error data. To solve transmission errors, a novel error control coding
technique is proposed [14] for video transmission over wireless network and to implement
different error control techniques for video transmission. However, their main performance
is not evaluated for real-time applications and does not consider the pixel intensity values.

To solve the pixel intensity problem, a novel algorithm [15] is presented for exploiting a
general model of high-efficiency video coding (HEVC) technique with the help of decoding-
energy fast compression (DEFC). This method does not consider routing parameters.
A Novel Analytical framework [16] is proposed based on routing measure parameters
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to reduce distortion in wireless video traffic. A new hue saturation lightness (HSV),
edge preserving, and Huffman-coding (HC)-based Huffman and differential pulse code
modulation (DPCM) encodings algorithm [17] is proposed to increase the compression
ratio of the video frames.

Dynamic Adaptive Streaming over HTTP (DASH) in the client–server environment
has attracted worldwide attention for many reasons from researchers and developers [18].
There is a need to map the DASH layer with the scalable video coding (SVC) layer, not
only to improve the throughput of streaming video with the help of HTTP overhead
messages, but also to estimate the bit rates of media sessions [19]. A cross-layer method
involving DASH and a physical (radio) layer can manage better scheduling and resource
allocation [20] in the media accesses control layer to solve the throughput problem. To
overcome the limitations of a single network, energy consumption of the end device and
environmental factors are considered an important parameter by [21] to seamlessly transfer
the requested video segments concurrently to mobile devices.

Further, a learning approach may help with streaming video through multilink. For
example, the learning method can incorporate a Markov decision process with a finite
state. The reward calculation in such implementations must include video quality of
service (QoS) [21,22]. The estimation of network bandwidth as a Transport Control Protocol
(TCP) throughput in the HAS system by the client may not be reliable when HAS traffic
occupies a significant portion of the network traffic. The client encounters bottlenecks
in the networks for supporting discrete characteristics of video bit rate while competing
with other clients [23]. The physical layer information, i.e., statistics at the modem, can be
passed to the application layer for fast identification and estimation of the wireless channel
condition in a HAS system [24]. In [25], the physical layer throughput/goodput is used to
adapt the rate of the HAS video client and improve the QoE of streaming video, but still,
the system needs to consider the dynamic behavior of the wireless channel. At the physical
layer, modem statistics can detect sharp variations in wireless link quality. Now, the HAS
client can place a new request to the server based on its current state and the status of the
existing request for the segment (as shown in Figure 2).

Another focus for adaptation of DASH/HAS video in cellular mobile systems can
be enforced by the network operator based on the knowledge of cell load and channel
conditions to optimize the content delivery. Further, this opens an avenue for joint opti-
mization of resource allocation in multi-user networks and controlling video streaming for
the DASH client [26]. Furthermore, assuming the proxy has the adaptive HAS content with
multiple-bit rate encoding, it may eliminate the need for further processing of video, and
this approach is desirable for on-the-top (OTT) streaming services, particularly when the
DASH server is not present in the network operator’s domain.

Understanding the time complexities and other quality of service (QoS) requirements
of live video streaming, our work considers sampling of incoming bit rate alone and
the buffer state for the client’s decision-making. Furthermore, the proposed system is
developed to cope with the fluctuation in bit rate due to the best-effort model of the
Internet and the time-varying characteristics of a wireless channel. The combined network
effect on the sampled data set (bit rate) tends to behave as random variables. Hence the
Markov process-based decision-making is not suitable here [26]. Another novel contribution
compared to the earlier work is the quick processing of link capacity estimation by using
predefined pattern matching, as the system design is targeted to handle live video streams.

3. Proposed Methodology

3.1. System Architecture

The proposed system is demonstrated after the client–server architecture. The main
function of the server side module is to receive the live or stored video for transcoding
before streaming (Figure 2). The system architecture consists of two main modules, where
the first module deals with transcoding and adaptive streaming of the content while the
second module listens to the client feedback. A video-acquiring device capable of capturing
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high-definition content is attached to the server (Figure 3), and the H.264 video codec
codes the resulting stream. The connection for live streaming is implemented on 4G
wireless cellular networks. The system implementation at the client deals with (Figure 4)
playing and analysis of the incoming video stream. After collecting N frames, the system
simultaneously calls the bit rate estimation process and the media player task. The bit rate
estimation algorithm defines the feedback category to be sent to the server.

Figure 3. Modular flow diagram at server side representing transcoding, client feedback analysis,
and adaptive video streaming operations.

 

Figure 4. Modular flow diagram at client side performing bit rate analysis and giving feedback to the
server.

The four unique patterns of variation in bit rate are defined (Figure 5) for comparison
and analysis of streaming data. Category 1 denotes a progressive type of data flow where
the bit rate increases in time. The bit rate fluctuation may gradually cease and finally
stabilize (Category 2). Category 3 represents a case when the variation in bit rate diverges.
If the decreasing trend of the bit rate continues, it represents a disturbing category of
maintaining video quality (Category 4). Finally, the root mean square (RMS) method is
adapted to dealing with unresolved categories.
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(c) (d) 

Figure 5. Different categories of bit rate arrived at the client side. (a) Progressive data pattern.
(b) Fluctuated data pattern, (c) Stable data pattern, (d) Degraded data pattern.

3.1.1. Server Modules

The server’s implementation procedure involves monitoring client feedback and
assigning the appropriate parameter values to the ongoing video session. It consists of two
main modules:

• The H.264 codec with VLCJ media framework captures the video and streams continu-
ously through the HTTP port.

• The second module deals with listening to client feedback messages to adjust the video
stream parameter, which includes resolution and frame rate.

3.1.2. Client Modules

The client periodically samples and analyzes the streaming data to estimate the dy-
namically changing bit rate trend. The client side implementation has three main modules:

• The first module consists of the VLCJ framework for playing streamed media data.
• The implementation of module 2 forms the core of the proposed system, which

estimates the client’s bit rate by applying a suitable bit pattern matching algorithm.
• The third module formats the feedback messages in a standard format than can be

understood by the server.

3.2. Methodology

The proposed system at the client samples the incoming bit rate periodically at
(x1, x2, x3, . . . , xn) and analyzes to find the trend of fluctuating data rate during the stream-
ing, as shown in Algorithm 1. The fluctuating bit rate is categorized into predefined
patterns (Figure 5) to simplify the estimation process. The proposed algorithm uses the
theory of local maxima–minima in sampled bit rate to map the data arrival pattern into
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one of the four cases: progressive, stabilized, fluctuating, and degraded. When the system
cannot resolve the streamed data into any four of these patterns, the status is declared as
non-monotonic, and the system computes the data sample’s RMS. By default, the system
employs the RMS approach, which includes special cases such as monotonic flat patterns.
Predicting the pattern depends on the values of α, β and γ, which are calculated based on
analysis of startup, median, and endp for (x1, x2, x3, . . . , xn).

Algorithm 1. Client algorithm.

(1) Sample the data rate and put it in an array;
(2) Find maxima Lmax:

(i) Input bit rate samples in pairs of three (v1, v2, v3);

(ii) If (v1 < v2 > v3), add v2 to Lmax, # find maximum bit rate;

(iii) Continue step 2 until N received frames;

(3) Find minima Lmin:

(i) Input bit rate samples in pairs of three (v1, v2, v3);

(ii) If (v1 > v2 < v3), add v2 to Lmin, # find minimum bit rate;

(iii) Continue step 3 until N received frames;

(4) Max = Analyse(Lmax), # Call procedure to acquire α, β, and γ;

(5) Min = Analyse(Lmin), # Call procedure to acquire α, β, and γ;

(6) Find status:

(2)

(i) If (Max == β & & Min == β), set Status as Progressive;
(ii) Else if (Max == α & & Min == β), set Status as Stabilized;
(iii) Else if (Max == β & & Min == α), set Status as Fluctuated;
(iv) Else if (Max == α & & Min == α), set Status as Degraded;
(v) If (Max == γ || Min == γ),

set Status as non-monotonic and call Find_rms (Bit rates);
A. function Analyze (Bit rates):
Read start data point, startp;
Read end data point, endp;
Find median value, medianp;
If (startp, medianp, endp) tends to monotonic increase, return β;
Else if (startp, medianp, endp) tends to monotonic decrease, return α;
If (startp, medianp and endp) tends to neither monotonic increase nor decrease, return γ;
B. function Find_RMS (Bit rate):
Calculate the root mean square (RMS) of the samples;

Xrms =
√

1/n(x2
1 + x2

2 + . . . + x2
n)

Divide the N different samples into M segments (M = 3);
Continue Step1 to find the RMS values of each segments:
rms1, rms2, and rms3;
Compute the difference among the overall RMS and
the RMS of the corresponding segments;
Calculate di f f1 = RMS − rms1;
Calculate di f f2 = RMS − rms2;
Calculate di f f3 = RMS − rms3 ;
If (di f f1 <= di f f2 <= di f f3), then return 1;
Else if (di f f1 >= di f f2 >= di f f3), then return 0;
Else return 2.

The server side algorithm (Algorithm 2) decodes the client message and modifies the
streaming video parameter accordingly. The execution time of the switching process from
switching the current stream to the new stream is taken as one input parameter in the
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server’s decision-making. If the client’s algorithm wrongly classifies the arrival pattern
(Ghuge, C. A et al., 2018), then it will lead to an improper action by the server, which may
degrade the streaming video on the client side.

Algorithm 2. Server side algorithm.

Let S and T be the spatial and temporal resolution vector, respectively, given by:
S = {SR1, SR2, SR3, SR4,SR5}, T = {TR1, TR2, TR3, TR4, TR5}.

(1) Initially set SR1 and TR1 to a default value
(
SQCIF, Td

)
;

(2) Continue:

Read feedback message (status) from the client;
If (Status == Stabilized),
continue with the existing setup;
Else if (Status == Progressive),
call A-LSTM(status), ##Increase Spatial/Temporal resolution;
Else if (Status == Fluctuated),
find Switch_time (bit rate),
call A-LSTM(status), ##Update Spatial/Temporal resolution;
Else if (Status == Degraded),
call A-LSTM(status), ##decrease Spatial/Temporal resolution;
Else if (Status == Non − monotonic),
wait till next feedback message arrives;

(3) Continue till connection is terminated;

A. Function Find_Switch_Time (bit rate):
Calculate time for quality switch Tswitch = TQSk+1 − TQSk:
#where TQSk+1 is the time instant at the end of kth served quality switching,
# request, and TQSk is the present time instant attending previous quality,
# switching request;
Set a timer when request for quality switch is received;
Wait for the next feedback message;
If (Tswitch > TFluctuation_time),
discard the request for quality switching and wait for next client
feedback message;
Else,
serve the request for quality switching.

In this paper, we model the future bit-rate prediction for higher QoS as a time series
prediction problem. Time series analysis, which involves analyzing past examples of bit
rate in various network qualities to infer an optimal QoS, may be utilized to predict video
bit rate. This time series analysis problem is learned in this work using attention-based
LSTM (A-LSTM), an advanced variant of recurrent deep neural networks. The A-LSTM
algorithm, which was trained using the back propagation through time (BPTT) algorithm,
is more useful for learning long-duration dependencies.

To improve the quality of service (QoS) for individual consumers, we use a deep
neural model consisting primarily of attention-based LSTM and reinforcement learning
architecture (as shown in Figure 6). In reinforcement learning, an agent executes a task
on an environment, and the environment responds with a reward based on the action
performed. When the LSTM network’s reinforcement learning (RL) agent receives the input
state, it chooses an action that is equivalent to the bit rate of the next video sequence. The
domain expert examines the performance of the proposed A-LSTM model using the reward
function mentioned in Equation (2) based on the action (at) taken. The main goal of the
proposed A-LSTM model is to choose an action class for the input state (St) that maximizes
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the overall video quality viewed by the end user. In Equation (1), cost function Q(t) has
now been created to assess the total effectiveness of a video streaming session:

Q(t) =
N

∑
n=1

q(Rn)− μ
N

∑
n=1

Tn (1)

St = LSTM(St−1) (2)

et = a(St) (3)

αt =
exp(et)

T
∑

k=1
exp(ek)

(4)

c =
T

∑
t=1

αtSt (5)

where the first term q(Rn) represents the video quality perceived by a user for N video
sequence, St represents the output state, et represents the feed-forward attention network,
αt represents weighted attention, and c represents the weighted feature output.

Figure 6. Architecture of the proposed attention based on LSTM at the server module.

The inputs to the proposed algorithm are bit rate bt, current buffer size as but, and
output of the classification labels related to different spatial resolutions (144p, 240p, 360p,
480p, 720p, and 1080p). Furthermore, during training, attention networks are trained for
parameters ‘θ’ with the help of rewards given by client feedback messages. Finally, these
attention networks are responsible for maintaining efficient adaptive bit rate strategies for
a particular video sequence.

The experiment uses the proposed attention-based model, which takes into account
the video sequence, download times, and past (k = 16) bit rate measurements. As shown
in Figure 6, an LSTM network receives these sequential inputs. The current buffer size as
bt, the remaining video sequence as Ct, and the last chunk bit rate as bt, are instantaneous
inputs that are fed to a fully connected layer with 128 filters, each of size 4 and stride 1.
The final layer, which is fully connected, chooses the state policies’ action for state St using
a softmax function. The softmax function’s output is a selection of the bit rate for the
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following video segment with the highest probability, ensuring that the best bit rate is
chosen for a corresponding state St. In the training phase, user feedback messages are
reinforced to the attention network and LSTM network to obtain optimum parameters,
using policy gradient strategy. Only the attention-LSTM network is used in predicting
spatial resolutions in the testing phase.

For comparison purposes, we implemented a buffer filling algorithm based on the
traditional adaptive streaming method [27] to analyze the performance of the proposed
A-LSTM system. Implementation of the system at the client level involves monitoring the
lower as well as the upper threshold of the media buffer. If the buffer reaches the upper
threshold, it recommends slowing down the flow rate, but on the other hand, if the content
arrival rate nears the lower threshold, it signals the server to increase the rate of content
transfer. As a result, the server reduces or increases the stream bit rate by modifying the
resolution of streaming video and/or reducing/increasing frames accordingly.

4. Results and Discussion

4.1. System Analysis

The streaming content can be treated as a chronological sequence of statistical data,
which is sampled periodically for analysis and prediction. The error due to sampling and
subsequent analysis need to be formulated and modeled to define the system’s design
objective and performance evaluation. The non-parametric approach [28] could be a better
approach in micro-level system implementation.

A non-parametric prediction interval can be defined to include a simple maximum
and minimum value in a sample set of a given population. Generally, for an exchangeable
sequence of random variables, each sample qualifies as the maximum or minimum. In
a bit rate sample set of {R0, . . . , Rn}, a sample Ri (i = 0, 1, . . . n) has the probability of
1/(n + 1) being the maximum value, and probability of 1/(n + 1) being the minimum
value, while (n – 1)/(n + 1) of probability, the sample Ri falls between the largest and
smallest sample of {R0, . . . , Rn}. A sample maximum and minimum can be represented
by Lmax and Lmin, respectively, and (n – 1)/(n + 1) prediction interval of [Lmax,Lmin].

For a given sample Ri, the error of the estimator θ̂(Ri) can be denoted as:

e(Ri) = θ̂(Ri)− θi (6)

where θi is the parameter of estimation. Here, the error e(Ri) depends on the process of
estimation as well as on the sample value. The sampling deviation of the estimator θ̂ for a
given sample Ri, is expressed as:

d(Ri) = θ̂(Ri)− E
(
θ̂(Ri)

)
= θ̂(Ri)− E(θ̂)

(7)

where E(θ̂(Ri)) is the expected value of the estimator. Like error of estimator, the sampling
deviation Ri depends on the estimator as well the sample itself. The variance of θ̂ is
computed as the expected value of the square of sampling deviations given by:

var(θ̂) = E[(θ̂ − E(θ̂))2
] (8)

The variance of the estimate indicates the distance from the expected value of the
estimates. Sometimes, the distance between the average of the collection of estimates and
the single parameter being estimated, called bias, need to be computed. The bias of θ can
be denoted as:

bia(θ̂) = E(θ̂)− θ (9)

Further,
E(θ̂)− θ = E(θ̂) (10)
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The mean squared error (MSE) can be expressed in terms of variance and bias as:

MSE(θ̂) = var(θ̂) + (bias(θ̂))2
(11)

If R̂ denotes a set of n predicted values, and R the set of experiential values given as
the input to the predictions, then the MSE of the predictor is computed as:

MSE =
1
n∑ n

i=1(R̂i − Ri)
2 (12)

Since the full reference (FR) methods correspond to the objective evaluation of video
quality and provide the most accurate result, it was used to evaluate the performance of
the proposed system. The two widely used FR metrics are PSNR and SSIM. The paramount
interest of the proposed solution is that the system response to the changing network
resource should result in higher PSNR and SSIM while sustaining video communication.

4.1.1. Peak Signal-to-Noise Ratio (PSNR)

The PSNR provides information about the degradation of decoded video quality with
respect to the original content. It is calculated on luminance components of the video
(ITU-T recommendation), which can be formulated on a logarithmic scale as:

PSNR = 20 log10

(
Max√

MSE(m)

)
(13)

where Max = 2no. o f bits/(sample−1), and for 8-bit word length, the luminance per sample is
255. The mean squared error (MSE (m)) is computed as the absolute difference between the
original and the decoded video in the same frame (mth), denoted as:

MSE(m) =
1

M × N

M

∑
i=1

N

∑
j=1

[Xout(i, j, m)− Xin(i, j, m)]2 (14)

The PSNR observation is basically an offline process that can be carried out on a few
selected frames at the end of the experiment to ascertain the quality of the streaming system.
In designing and developing a higher quality streaming system, achieving a minimum
average PSNR of 30 dB may be desirable.

4.1.2. Structural Similarity (SSIM) Index

The SSIM [29] metrics measure the perceived degradation resulting from structural
deformation at the frame level. In the real-world video, pixel positions exhibit temporal
and spatial dependence between pixels. The spatial dependence information in a frame
helps in estimating the structural similarity of the objects in decoded frames; therefore,
SSIM is used as a perceptual measure of video quality.

The SSIM [30,31] metric is computed on three different components: luminance,
contrast, and structure. It is defined by the Joint Video Team (JVT) of ISO/IEC MPEG and
ITU-T VCEG as:

l(x, y) =
2μxμy + C1

μ2
x + μ2

y + C1
(15)

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2
(16)

s(x, y) =
σxy + C3

σxσy + C3
(17)

where μx is the average of x, μy is the average of y, σ2
x is the variance of x, σ2

y is the
variance of y, σxy is the covariance of x and y. The constants C1, C2 and C3 given by
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C1 = (K1 L)2, C2 = (K2 L)2and C3 = (K3 L)2 are used to stabilize the division operation
while dealing with the weak denominator. L represents the dynamic range of the pixel
values given by:

L = 2no. o f bit/pixel − 1 and K1 << 1 and K2 << 1 are two scalar constants.
Using these components, the SSIM is represented as:

SSIM(x, y) = [l(x, y)]α · [c(x, y)]β · [s(x, y)]γ (18)

where α, β, and γ state the different weightage assigned to each measure. The single-scale
SSIM (Yue Wang et al., 2012) is now formulated as:

SSIM(x, y) =

(
2μxμy + c1

)(
2σxy + C2

)(
μ2

x + μ2
y + C1

)(
σ2

x + σ2
y + C2

) (19)

An SSIM index of more than 0.95 represents a good decoded video, and it could
be a design objective considering the requirement of the end user in high-quality video
communication.

4.2. Experimental Setup

The proposed system was implemented in a client–server environment, where the
server uses four standard video formats, namely common intermediate format (CIF),
quarter CIF (QCIF), sub quarter CIF (SQCIF), and quarter Video Graphics Array (QVGA),
to map the video quality dynamically corresponding to the feedback messages. The frame
rate of 10, 18, 25, 30, and 35 fps was used to alter temporal resolution. The default value of
the temporal resolution (in fps), and also during the initial setup, was assigned as 30. The
streaming system at the server selects either one or a combination of spatial and temporal
resolutions to achieve the predicted bit rate of the network by the client.

In the experimental setup, the wireless Internet connectivity was established by a
4G Internet-connect device, Reliance_Netconnect+, working on CDMA20001xRTT and
1xEV-DO Rev-A techniques. As per the specification provided by Reliance communication
Ltd., the Reliance_Netconnect + device is designed to support a download and upload
data rate of 3.1 Mbps and 1.8 Mbps, respectively, but a real-time measurement carried
out using an online tool (SpeedOf.Me) had the average bit rate during uplink and down-
link estimated at 0.54 Mbps and 0.45 Mbps, respectively, in the laboratory environment.
Therefore, fluctuating throughput in data communication across the Internet connected by
Reliance_Netconnect + provided us with the ideal real-time platform to test our proposed
system.

The different modules of client and server were developed on Dell Inspiron N5010
personal computers having the Intel® Core ™ i7-3770 CPU @ 3.4 GHz processor and 8 GB
RAM. The Window-7 Professional 32-bit operating system was installed to run the program
for the client/server system. The streaming process was implemented over HTTP with the
user datagram protocol as the transport protocol.

H.264 codec generates a variable bit rate for the input video depending on the scene
change in visual contents. Figure 7 shows the bit rate vs. frame number for different frame
size (176 × 144, 320 × 240, 640 × 480, and 800 × 600) observed during experimentation.
The fluctuation in bit rate can be easily observed for all video resolution. This nature of
video places additional constraints on system design, as the system proposed is based on
best effort service model of the Internet, which operates in the wireless environment.
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(c) (d) 

Figure 7. (a) Top-Left: 176 x 144, (b) Top-Right: 800 × 600, (c) Bottom-Left: 640 × 480, (d) Bottom-
Right: 320 × 240.

VLC media player is used in a Java framework (VLCJ) at the sender as well as the
receiver. VLCJ provides a higher level framework to cope with the complexities of VLC
libraries. The VLC framework includes a variety of media formats through libavcodec
library of codecs to the media player, which seamlessly plays the H.264 bit stream. Further-
more, JPCAP provides a library for packet capturing in-network applications using Java,
which helps analyze real-time network traffic.

4.3. Results and Discussion

The proposed system was implemented using the open-source tool (VLCJ framework),
and experimental results were obtained on live as well as stored video in wireless 4G
CDMA networks. Since the intended application of this system is to support live video
streaming over wireless on the top of HTTP, the result presented here corresponds to
live-streamed video in the laboratory environment. Although the working of the system
was successfully demonstrated many times, the numerical result analyzed here represents
a single instance of experimentation.

4.3.1. Inter-Packet Arrival Delay

The variability of packet delay in the one-way end-to-end communication was ob-
served while discarding packet loss during the experimentation of the proposed video
streaming system. As shown in Figure 8, variation in the delay of packet arrival character-
izes the inherent property of Internet traffic, which is attributed to the prevailing Internet
traffic during the test. The measurement process includes additional delay in 4G wireless,
which is used here as last-mile connectivity to the end user. Although the upper bound on
packet delay as a design parameter was not directly incorporated in the proposed system,
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the server dynamically attuned the streaming bit rate to maximize visual eminence. The
observed value, plotted in Figure 8, corresponds to an average inter-packet delay of 69 μs.

 

Figure 8. Observed packet arrival delay at the client with a graph drawn between delay and packet
index.

4.3.2. PSNR Measurement

The PSNR observation (Figure 9) was performed offline based three methods: (i) with-
out any adaptation, i.e., default existing mechanism in media streaming over the Internet,
(ii) buffer filling algorithm, and (iii) the proposed adaptation method. The proposed al-
gorithm achieves an average PSNR of 36.267 dB on video frames resulting from the live
streaming, which is 37.53% higher than the buffer-filling algorithm. Further, the average
improvement of PSNR is 74.37% higher than the default without an adaptation scheme. The
augmented PSNR is accredited to the higher level of adaptation exhibited by the proposed
technique, which continuously tries to deliver content at the maximum achievable quality.
The observed PSNR for a few frames under different algorithms is also presented in Table 2.

Figure 9. Performance comparison between before adaptation buffer filling algorithm and proposed
A-LSTM technique using PSNR value.
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Table 2. PSNR values for different frames.

Frame Number Before Adaptation Buffer Filling Algorithm
Proposed A-LSTM

Algorithm

1 19.54 25.89 39.09
2 19.83 26.24 39.09
3 18.47 24.89 36.79
4 20.14 28.64 32.69
5 23.54 27.59 34.9
6 22.58 26.49 33.98
7 21.29 25.87 35.01
8 20.48 25.98 39.09
9 20.89 26.87 34.32
10 21.23 25.23 37.71

Average 20.799 26.369 36.267

4.3.3. SSIM Index

The SSIM was calculated offline using the same approach as that of PSNR. It is
observed based on the data generated by three methods: default without adaptation
scheme, existing buffer filling algorithm, and proposed adaptation algorithm resulting from
the live streaming of video (Figure 10). The system implementing the proposed algorithm
provides a 5.7% increase in average SSIM index than the existing buffer filling algorithm,
and it achieves a much higher (11.44%) index than the method without adaptation. Due to
the higher level of adaptation exhibited by the proposed system, the structural statistics
were preserved, resulting in a higher value of the SSIM index. Although the design and
implementation of the system do not directly deal with the retention of structural property
during streaming, a higher SSIM index is an incentive for the system dynamics. Table 3
lists the perceived numerical ethics of SSIM under different adaptation algorithms.

 

Figure 10. Performance comparison of before adaption, buffer filling algorithm, and proposed
A-LSTM algorithm using SSIM index measurement.
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Table 3. SSIM values for different frames.

Frame Number Before Adaptation Buffer Filling Algorithm
Proposed A-LSTM

Algorithm

1 0.835 0.873 0.965
2 0.863 0.892 0.986
3 0.768 0.912 0.967
4 0.887 0.925 0.956
5 0.89 0.899 0.978
6 0.884 0.924 0.968
7 0.869 0.934 0.946
8 0.894 0.939 0.952
9 0.873 0.934 0.968
10 0.879 0.916 0.973

Average 0.8689 0.9160 0.9683

4.3.4. Selected Original and Decoded Frame

Figures 11 and 12 show the original and received decoded frames recorded during live
streaming and stored foreman video during experimentation. Since the proposed system
maintains an average PSNR of more than 36 dB and an SSIM index of 0.96, even a keen
look at the received frames does not reveal a noticeable loss in quality of the decoded
video, which is a requirement in developing a system for high-quality video applications.
This also emphasizes the proposed method’s importance over existing approaches and the
default mechanism available on the Internet.

   
(a) 

   
(b) 

Figure 11. Quality comparison of sampled frames between (a) Original and (b) Received online video
frames.

   
(a) 

   
(b) 

Figure 12. Quality comparison between (a) Original and (b) Received sampled stored foreman video
frames.
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5. Conclusions

The development of a mechanism to support adaptive streaming of video over HTTP
in dealing with fluctuation in available bit rate on the Internet with last-mile connectivity
as a wireless network is a rewarding approach. The proposed A-LSTM system adopted the
theory of maxima–minima along with an RMS method, reinforcement techniques, along
with attention-LSTM networks to compute and match the pattern of the bit stream. It also
included the duration of network fluctuation as well as the time for switching excellence in
effective decision-making, while switching between different video qualities. The proposed
solution tackled the problem of inherent conduct of wireless and Internet traffic in a unified
tactic. The link level quality of service parameters such as delay, jitter, and packet loss was
not considered in the problem formulation as the system is developed on top of HTTP.

Although the proposed system is targeted toward the attainment of quality of the
video, it can be used in many other video streaming applications. Abrupt congestion at
the router on the Internet may cause extra delay in video streaming packets, and a suitable
method is required to tackle it. Another future work includes supporting video streaming
to hand-held devices (smart phones) connected to the Internet through a cellular network.

Author Contributions: Conceptualization, P.M.A.K., and L.N.A.R.; methodology, P.M.A.K., B.J., and
N.F.S.; software, M.B.; validation, M.B., W.E.-S.; formal analysis, P.M.A.K., B.J. and N.F.S.; investiga-
tion, W.E.-S.; resources, N.F.S.; data curation, P.M.A.K.; writing—original draft preparation, P.M.A.K.,
M.B., W.E.-S., and B.J.; writing—review and editing, P.M.A.K., L.N.A.R., and W.E.-S.; visualization,
M.B.; supervision, N.F.S.; project administration, L.N.A.R. and N.F.S.; funding acquisition, N.F.S., and
W.E.-S. All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by Princess Nourah bint Abdulrahman University Researchers
Supporting Project number (PNURSP2022R66), Princess Nourah bint Abdulrahman University,
Riyadh, Saudi Arabia.

Data Availability Statement: The data used to support the findings of this study will be available
with the corresponding author.

Acknowledgments: The authors would like to acknowledge the Princess Nourah bint Abdulrahman
University Researchers Supporting Project number (PNURSP2022R66), Princess Nourah bint Abdul-
rahman University, Riyadh, Saudi Arabia. The authors would like to acknowledge the support of
Prince Sultan University for paying the Article Processing Charges (APC) of this publication.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Krishna, Y.H.; Kumar, K.B.; Maharshi, D.; Amudhavel, J. Image processing and restriction of video downloads using cloud. Int. J.
Eng. Technol. (UAE) 2018, 7, 327–330. [CrossRef]

2. Zhao, M.; Gong, X.; Liang, J.; Wang, W.; Que, X.; Cheng, S. QoE-driven cross-layer optimization for wireless dynamic adaptive
streaming of scalable videos over HTTP. IEEE Trans. Circuits Syst. Video Technol. 2014, 25, 451–465. [CrossRef]

3. Han, S.; Go, Y.; Noh, H.; Song, H. Cooperative Server-Client HTTP Adaptive Streaming System for Live Video Streaming. In
Proceedings of the 2019 International Conference on Information Networking (ICOIN), Malaysia, Malaysia, 9–11 January 2019.

4. Ghuge, C.A.; Ruikar, S.D.; Prakash, V.C. Query-specific distance and hybrid tracking model for video object retrieval. J. Intell.
Syst. 2018, 27, 195–212. [CrossRef]

5. Reddy, K.S.; Prakash, B.L. HSV, edge preserved and huffman coding based intra frame high efficient video compression for
multimedia communication. Int. J. Eng. Technol. (UAE) 2018, 7, 1090–1095. [CrossRef]

6. Chen, S.; Yang, J.; Ran, Y.; Yang, E. Adaptive Layer Switching Algorithm Based on Buffer Underflow Probability for Scalable
Video Streaming Over Wireless Networks. IEEE Trans. Circuits Syst. Video Technol. 2016, 26, 1146–1160. [CrossRef]

7. Koganti, S.P.; Raja, K.H.; Sajja, S.; Sai Narendra, M. A study on volume, speed and lane distribution of mixed traffic flow by using
video graphic technique. Int. J. Eng. Technol. (UAE) 2018, 7, 59–62.mel. [CrossRef]

8. El Meligy, A.O.; Hassan, M.S.; Landolsi, T. A Buffer-Based Rate Adaptation Approach for Video Streaming Over HTTP. In
Proceedings of the Wireless Telecommunications Symposium (WTS), Washington, DC, USA, 22–24 April 2020.

9. De Cicco, L.; Mascolo, S. An Adaptive Video Streaming Control System: Modeling, Validation, and Performance Evaluation.
IEEE Trans. Netw. 2014, 22, 526–539. [CrossRef]

10. Xu, Y.; Zhou, Y.; Chiu, D.M. Analytical QoE Models for Bit Rate Switching in Dynamic Adaptive Streaming Systems. IEEE Trans.
Mob. Comput. 2014, 13, 2734–2748. [CrossRef]

156



Sensors 2022, 22, 9307

11. Xing, M.; Xiang, S.; Cai, L. A Real-Time Adaptive Algorithm for Video Streaming over Multiple Wireless Access Networks. IEEE
Trans. Sel. Areas Commun. 2014, 32, 795–805. [CrossRef]

12. Li, Z.; Zhu, X.; Gahm, J.; Pan, R.; Hu, H.; Begen, A.; Oran, D. Probe and Adapt Rate Adaptation for HTTP Video Streaming at
Scale. IEEE Trans. Sel. Areas Commun. 2014, 32, 719–733. [CrossRef]

13. Anantharaj, B.; Balaji, N.; Sambasivam, G.; Basha, M.S.; Vengattaraman, T. EQVS: Enhanced Quality Video Streaming Distribution
over Wired/Wireless Networks. In Proceedings of the 2017 International Conference on Technical Advancements in Computers
and Communications (ICTACC), Melmaurvathur, India, 10–11 April 2017; pp. 148–153.

14. Nagageetha, M.; Mamilla, S.K.; Hasane Ahammad, S. Performance analysis of feedback based error control coding algorithm for
video transmission on wireless multimedia networks. J. Adv. Res. Dyn. Control Syst. 2017, 9, 626–660.

15. Sripal Reddy, K.; Leelaram Prakash, B. Optimized lossless video compression analysis using decoding-energy fast compression. J.
Adv. Res. Dyn. Control Syst. 2017, 9, 42–51.

16. Bulli Babu, R.; Shahid Afridi, S.K.; Satya Vasavi, S. A New enhancement to avoid video distortion in wireless multihop networks.
Int. J. Eng. Technol. (UAE) 2018, 7, 326–330. [CrossRef]

17. Wankhede Vishal, A.; More, A.R.; Prasad, M.S.G. Suboptimal resource allocation scheme for scalable video multicast in integrated
mobile WiMAX/WLANs network. Int. J. Eng. Technol. (UAE) 2018, 7, 69–76. [CrossRef]

18. Go, Y.; Kwon, O.C.; Song, H. An Energy efficient HTTP Adaptive Video Streaming with Networking Cost Constraint over
Heterogeneous Wireless Networks. IEEE Trans. Multimed. 2015, 17, 1646–1657. [CrossRef]

19. Choi, W.; Yoon, J. SATE: Providing stable and agile adaptation in HTTP-based video streaming. IEEE Access 2019, 7, 26830–26841.
[CrossRef]

20. El Essaili, A.; Schroeder, D.; Steinbach, E.; Staehle, D.; Shehada, M. QoE-based traffic and resource management for adaptive
HTTP video delivery in LTE. IEEE Trans. Circuits Syst. Video Technol. 2014, 25, 988–1001. [CrossRef]

21. Zhou, C.; Lin, C.W.; Guo, Z. mDASH: A Markov decision-based rate adaptation approach for dynamic HTTP streaming. IEEE
Trans. Multimed. 2016, 18, 738–751. [CrossRef]

22. Claeys, M.; Latre, S.; Famaey, J.; DeTurck, F. Design and Evaluation of a Self-Learning HTTP Adaptive Video Streaming Client.
IEEE Commun. Lett. 2014, 18, 716–719. [CrossRef]

23. Sedano, I.; Brunnström, K.; Kihl, M.; Aurelius, A. Full-reference video quality metric assisted the development of no-reference
bitstream video quality metrics for real-time network monitoring. EURASIP J. Image Video Process. 2014, 2014, 4. [CrossRef]

24. Wang, Y.; Jiang, T.; Ma, S.; Gao, W. Efficient Motion Weighted Spatial, Temporal Video SSIM Index. In Proceedings of the 2012
Visual Communications and Image Processing (VCIP 2012), San Diego, CA, USA, 27–30 November 2012.

25. Kumar, D.; Easwaran, N.K.; Srinivasan, A.; Shankar, A.M.; Raj, L.A. Adaptive video streaming over HTTP through 3G/4G
wireless networks employing dynamic on the fly bitrate analysis. In Proceedings of the 2015 ITU Kaleidoscope: Trust in the
Information Society (K-2015), Barcelona, Spain, 9–11 December 2015.

26. Ghuge, C.A.; Ruikar, S.D.; Prakash, V.C. Support vector regression and extended nearest neighbor for video object retrieval. Evol.
Intell. 2018, 15, 837–850. [CrossRef]

27. Qasem, M.; Almohri, H.M.J. An Efficient Deception Architecture for Cloud-based Virtual Networks. Kuwait J. Sci. 2019, 46, 40–52.
28. ITU Telecommunication Standardization Sector. Objective perceptual multimedia video quality measurement in the presence of a

full reference. ITU-T Recomm. J. 2008, 247, 18.
29. Jiang, J.; Sekar, V.; Zhang, H. Improving fairness, efficiency, and stability in http-based adaptive video streaming with festive. In

Proceedings of the 8th International Conference on Emerging Networking Experiments and Technologies, Côte d’Azur, France,
10–13 December 2012; pp. 97–108.

30. Thang, T.C.; Ho, Q.D.; Kang, J.W.; Pham, A.T. Adaptive Streaming of Audiovisual Content using MPEG DASH. IEEE Trans.
Consum. Electron. 2012, 58, 78–85. [CrossRef]

31. Zainab Mohammd Aljazzaf, Z. Modelling and measuring the quality of online services. Kuwait J. Sci. 2015, 42, 134–157.

157





Citation: Teng, X.; Gui, X.; Xu, P.;

Tong, J.; An, J.; Liu, Y.; Jiang, H. A

Hierarchical Spatial–Temporal

Cross-Attention Scheme for Video

Summarization Using Contrastive

Learning. Sensors 2022, 22, 8275.

https://doi.org/10.3390/s22218275

Academic Editors: Kang Ryoung

Park, Sangyoun Lee and Euntai Kim

Received: 23 September 2022

Accepted: 25 October 2022

Published: 28 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Hierarchical Spatial–Temporal Cross-Attention Scheme for
Video Summarization Using Contrastive Learning

Xiaoyu Teng 1,2, Xiaolin Gui 1,2,*, Pan Xu 1,2, Jianglei Tong 1,2, Jian An 1,2, Yang Liu 3 and Huilan Jiang 4

1 Department of Faculty of Electronic and Information Engineering, Xi’an Jiaotong University,
Xi’an 710049, China

2 Shaanxi Province Key Laboratory of Computer Network, Xi’an Jiaotong University, Xi’an 710049, China
3 Medical College, Northwest Minzu University, Lanzhou 730030, China
4 ONYCOM Co., Ltd., Seoul 04519, Korea
* Correspondence: xlgui@mail.xjtu.edu.cn; Tel.: +86-157-2196-0091

Abstract: Video summarization (VS) is a widely used technique for facilitating the effective reading,
fast comprehension, and effective retrieval of video content. Certain properties of the new video data,
such as a lack of prominent emphasis and a fuzzy theme development border, disturb the original
thinking mode based on video feature information. Moreover, it introduces new challenges to the
extraction of video depth and breadth features. In addition, the diversity of user requirements creates
additional complications for more accurate keyframe screening issues. To overcome these challenges,
this paper proposes a hierarchical spatial–temporal cross-attention scheme for video summarization
based on comparative learning. Graph attention networks (GAT) and the multi-head convolutional
attention cell are used to extract local and depth features, while the GAT-adjusted bidirection ConvL-
STM (DB-ConvLSTM) is used to extract global and breadth features. Furthermore, a spatial–temporal
cross-attention-based ConvLSTM is developed for merging hierarchical characteristics and achieving
more accurate screening in similar keyframes clusters. Verification experiments and comparative
analysis demonstrate that our method outperforms state-of-the-art methods.

Keywords: video summarization; spatial–temporal features; cross-attention

1. Introduction

With the rapid development of multimedia information technology and intelligent
terminal equipment, video data have emerged as a critical medium of information trans-
mission due to its lack of reading threshold and high data-carrying capacity. However, the
openness and informality of video production result in the accelerated growth of video
data and several undesirable phenomena, such as widespread data redundancy [1], unclear
content emphasis, and blurred video theme boundaries. Therefore, it is becoming vital to
provide effective and efficient tools for the management, browsing, and retrieval of these
videos. Video summarization, which uses a subset of the most informative frames to create
a condensed version of the original video by removing redundant information [2–4], is an
effective tool for addressing these issues.

Recent methods for video summarization rely heavily on the superior performance
of deep learning, particularly in feature extraction. In addition, feature extraction is a
fundamental component of video summarization algorithms that extract time series [5,6]
or spatial–temporal features from video data [7,8]. From the perspective of a video feature,
the performance of the video summary is dependent on the feature extraction technique.
These deep learning video summarization algorithms constantly increase the depth and
breadth of video feature extraction to improve its performance. The most important crite-
rion for measuring video summarization performance is user satisfaction. User satisfaction
is contingent upon their requirements for video summarization performance. Furthermore,
user requirements can be translated into property constraints of algorithms [7]. These
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property constraints can be categorized as representativeness [5], content coverage [8],
redundancy [3], diversity [5], interestingness [9], importance [10], etc. The variety of
user requirements continues to expand, while their feature definitions are more hazy.
Consequently, video summarization algorithms focusing on video salient characteristics
extraction are incapable of satisfying the multi-source user requirements. In addition, with
the rise in popularity of video terminal equipment and the evolution of multimedia technol-
ogy, hand-held and fragmented time-created videos have become the predominant sources
of new created video data. Certain more prominent properties of the new video production,
such as significant redundancy, a lack of strong focus, and a fuzzy theme boundary, dis-
rupt the video summarization’s initial thinking mode based on video feature information
and present it with new challenges. With the evolution of video characteristics and user
requirements for video summarization, the demand for keyframe accuracy screening has
increased. Some traditional methods are no longer applicable, such as clustering [11].

To be more precise, existing algorithms can meet a portion of the user-centered require-
ments and capture good summarization performance. However, the following challenges
remain: contradiction between breadth extraction of salient video characteristics and multi-
source of user diversified requirements; the contradiction between depth extraction of
salient video characteristics and unbounded new video productions; the contradiction
between similarity frames and more accurate keyframe screening.

To address the issues mentioned above, this paper proposes a hierarchical spatial–
temporal cross-attention scheme based on contrastive learning, as shown in Figure 1.
The central idea of this article is to extract features and relationships between frames that
account for coarse and fine-grained, global and local, depth and breadth, to fuse hierarchical
features while increasing the difference between similar frames, and then screen keyframes
and generate summaries by evaluating their significance. From the perspective of video
feature extraction, the solution to diverse user requirements for video summary lies in the
extraction of the frame’s own characteristics, relationship features between frames, and
relationship features between frames and the entire video. This study uses DB-ConvLSTM
and multi-head attention mechanisms to design multi-conv-attention cells and joint GAT
to acquire the spatial–temporal connection of keyframes to extract fine-grained spatial–
temporal feature information from video frames. The GAT adjusted DB-ConvLSTM to
extract the global and breadth features. In addition, to amplify the difference of similar
keyframes, a spatial–temporal cross-attention-based ConvLSTM is constructed for merging
hierarchical characteristics. Finally, video summarization is generated by CB-ConvLSTM
through possibility. Therefore, the major contributions of this work can be summarized
as follows:

1. A hierarchical spatial–temporal video feature extraction approach is developed. The
purpose is to ensure as much characteristic information as possible for generating
video summarization;

2. A cross-attention cell that combines the local and global features information based
on DB-ConvLSTM is proposed. It seeks to emphasize the difference between related
frames and achieve more accurate screening in similar keyframes clusters for video
summary generation;

3. Verification experiments and comparative analysis are performed on two benchmark
datasets (TVSum and SumMe) for this paper’s algorithm. The results demonstrate
that the proposed algorithm is extremely rational, effective, and usable.
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Figure 1. Overview of our approach.

2. Related Work

In this section, we briefly overview some state-of-the-art video summarization ap-
proaches and correlation techniques pertaining to our hierarchical spatial–temporal cross-
attention scheme.

2.1. Video Summarization

Generally speaking, pre-processing, feature extraction, post-processing, and VS cre-
ation comprise the video summary generating procedures. The post-processing can be
left out. In particular, feature extraction is the central stage of the algorithm. The initial
algorithm is based on time series techniques such as vsLSTM/dppLSTM [5]. The initial
method of similar keyframes decision is based on clustering [11]. Zhao et al. [12] develop
an extended bidirectional LSTM (Bi-LSTM) for extracting both structure and information
characteristics from video data. To acquire a more precise extraction of video features,
refs. [3,13] offer a keyframe-selection strategy based on video spatial–temporal character-
istics. In addition, graph neural networks are employed to implement this notion [1,6].
However, the aforementioned algorithms are all video-centric and lack comprehensive
analysis of video topics and user demands. In [14], first-person (egocentric) videos-based
models are proposed. A model of characterizing egocentric video frames uses a graph-
based center-surround model. User requirements impose certain restrictions on the feature
extraction results. The video summarization algorithms [15] are based on attention tech-
nologies, mimicking human keyframe filtering. Ji et al. [16] solve the problem of short-term
contextual attention insufficiency and distribution inconsistency. Köprü [17] proposes
two new architectures based on temporal attention (TA-AVSUM) and spatial attention
(SA-AVSUM).

Additionally, for the video summarization algorithm, both video feature information
and video frame relational are crucial [18]. Continuously improving the performance of the
user-requirements-driven algorithm fundamentally necessitates more comprehensive and
accurate feature extraction. This scheme is based on the concept of creating stereoscopic
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modeling using spatial–temporal feature information, relationship information, and other
multi-elements.

2.2. Cross Attention

Refs. [19–22] have conducted substantial study on how to more properly and com-
pletely extract video features and the relationship features between video frames. Con-
textual information is vital in visual understanding problems [19] and is also applicable
to generating video summarization. Huang et al. [19] proposes a Criss-Cross Network
(CCNet) based on attention for obtaining video information in a more effective and efficient
way. Lin et al. [20] presents a universal Cross-Attention Transformer (CAT) module for ac-
curate and efficient semantic similarity comparison in one-shot object detection. In [22], the
attention mechanism is incorporated at two main levels: a self-attention module leverages
global interactions between encoder features, while cross-attention in the skip connections
allows fine spatial recovery in the U-Net decoder by filtering out non-semantic features.
It can be seen that cross-attention has the ability to simultaneously extract the depth and
breadth characteristics of video data. This study uses cross-attention to merge the hierar-
chical spatial–temporal characteristics, and it aims to accentuate the distinctions between
video frames.

2.3. Graph Attention Networks (GATs)

Veličković et al. [23] give a novel neural network architecture that operates on graph-
structured data, leveraging masked self-attentional layers to address the shortcomings of
prior methods based on graph convolutions or their approximations. GATs provide distinct
weights to each neighbor based on their importance, effectively filtering the neighbors.
Zhong et al. [1] build a method for video summarizing utilizing graph attention networks
and Bi-LSTM. However, it does not take into account information loss throughout the
confrontation process. This paper makes use of GATs to capture spatial–temporal relational
attention between video frames and comparative-adjusting feature extraction.

3. Materials and Methods

Figure 1 shows an overview of our hierarchical spatial–temporal cross-attention
scheme for video summarization. DB-ConvLSTM, multi-conv-attention, and multi-head
attention GAT are all used for video feature extraction. The DB-ConvLSTM is employed to
extract coarse-grained global spatial–temporal video characteristics. Effective fine-grained
local features are extracted using multi-conv-attention networks and spatial–temporal
relational feature extraction using multi-head attention GAT. This research derives hier-
archical spatial–temporal feature information on the basis of cross-attention, taking into
consideration both global and local characteristics and coarse-grained and fine-grained
features. In particular, this scheme promotes comparative learning for acquiring local
feature information for multi-conv-attention and GAT, and obtaining global feature knowl-
edge for DB-ConvLSTM and GAT. The local and global characteristics are combined using
spatial–temporal cross-attention. Finally, CB-ConvLSTM obtains the video summary.

Following the algorithm phases, this part elaborates the DB-ConvLSTM and CB-
ConvLSTM, contrastive adjustment learning, and spatial–temporal cross-attention for the
keyframes screening module. The contrastive adjustment learning is adjustment learn-
ing based on contrastive learning. Finally, we will introduce the loss function used in
our framework.

3.1. DB-ConvLSTM and CB-ConvLSTM

Both DB-ConvLSTM and CB-ConvLSTM are founded on the technology of ConvLSTM.
ConvLSTM is not only designed for extracting spatial–temporal information features but
also for inferring saliency information concurrently. Then, suppose there are n frames in
a video, the whole video can be written as f = { f1, · · · fn}, ct is the memory cell, ft is
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the forget gate, and it is the input gate. From [24], we can obtain that the ConvLSTM is
defined as:

it = σ(Wχ
i × Xt + WH

i × Ht−1)
ft = σ(Wχ

f × Xt + WH
f × Ht−1)

ot = σ(Wχ
o × Xt + WH

o × Ht−1)
ct = ft ◦ ct−1 + it ◦ tanh(Wχ

c × Xt + WH
c × Ht−1)

Ht = ot ◦ tanh(ct)

(1)

3.1.1. DB-ConvLSTM

In the video information processing methods, the DB-ConvLSTM [25] network is
suggested to extract spatial–temporal video characteristics more deeply and precisely.
DB-ConvLSTM is a bidirectional two-layer architecture, one forward-oriented and one
backward-oriented. The forward-oriented and backward-oriented have information inter-
action. The deeper layer is composed of backward-cells, its input is the output features of
forward-cells, and the output is {Yt}t

t=1. The backward-ConvLSTM is defined as:

ib
t = σ(WH f

i × H f
t + WHb

i × Hb
t+1) (2)

f b
t = σ(WH f

f × H f
t + WHb

f × Hb
t+1) (3)

ob
t = σ(WH f

o × H f
t + WHb

o × Hb
t+1) (4)

cb
t = ft

b ◦ cb
t+1 + ib

t ◦ tanh(WH f

c × H f
t + WHb

c × Hb
t+1) (5)

Hb
t = ob

t ◦ tanh(cb
t ) (6)

where W are the training parameters, denoting the learnable weights, H is the hidden
state, σ is the activation function, × denotes the convolution operator, and ◦ denotes the
hadamard product. In the VS algorithm, the DB-ConvLSTM can be written as:

Yt = tanh(WH f

y × H f
t + WHb

y × Hb
t−1) (7)

tanh is the activation function to normalize Yt, and the loss function of training DB-
ConvLSTM is distance minimization.

3.1.2. CB-ConvLSTM

CB-ConvLSTM is capable of extracting not only the characteristics of a single video
frame but also the spatial–temporal relationships between different frames [7]. From [7],
we can obtain the definition of CB-ConvLSTM, based on Equations (2)–(7), and replace the
content in Equation (1) by ConvLSTM; then, CB-ConvLSTM is defined as follows:

H f
t = ConvLSTM(Xt, H f

t−1) (8)

Hb
t = ConvLSTM(Xt ⊕ H1,t, Hb

t+1) (9)

⊕ is the operation of fusing two vectors, H1,t is the first hidden state, and the loss
function of training CB-ConvLSTM is distance minimization. In this paper, the three layers
in the network cell aim to extract and aggregate the features, and the final outputs are the
possibility of whether a frame will be selected as a keyframe for video summarization.

3.2. Contrastive Adjustment Learning

Contrastive learning [26] introduces a novel idea of features derived from many
perspectives: the learning algorithm does not have to concentrate on every element of
the sample itself, as long as it learns enough traits to differentiate it from others. In our
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study, the use of contrastive learning serves three purposes: (1) to overcome the diversity
theme of video, (2) to extract elastic traffic feature information, and (3) to increase feature
extraction with surface breadth and detail while enlarging the difference between video
frames. As shown in Figure 2, the specific application of our strategy is to use the GATs-
obtained data as the primary line and generate positive and negative pairs from the results
of DB-ConvLSTM and multi-conv-attention, respectively. Dm is supposed as the results of
the two sections of the comparative learning. DDPG [27] is used to train the Dm adjusted
DB-ConvLSTM, which is the same as [1].

Figure 2. Step of contrastive adjustment learning.

x+ is the positive sample, and x− is the negative sample, S is the function for measur-
ing the samples’ similarity, and similar to [26], the rule for setting positive pairs is:

S(Y(x), Y(x+)) � S(Y(x), Y(x−)) (10)

Dt is the video characteristics, which are extracted by multi-conv-attention and DB-
ConvLSTM. D+ is the keyframe sets, D− is the non-keyframe sets, Qj is feature mapping
of the labeled data, and Q+ is the annotated manually keyframe-sets. Then, the positive
pairs include: YA = {D+(x) ∩ Q+(x)}. Moreover, the loss function of a negative sample is
InfoNCE in this paper, and it can be written as:

Ladj = ∑
x,x+ ,x−

[
−log

(
eY(x)TY(x+)

eY(x)TY(x+)+Y(x)TY(x−)

)]
(11)

3.3. Multi-Conv-Attention and Cross-Attention
3.3.1. Multi-Conv-Attention

The temporal, spatial, and multi-element video properties are all important parts of
our approach. As a consequence, a new network cell is constructed using ConvLSTM and
multi-head attention. It uses convolution to improve the attention mechanism’s ability
to get as much video information as possible. In our multi-conv-attention cell, we first
adopt a set of projections to obtain query Q. Additionally, it employs ConvLSTM and
average pooling to produce two sets of projections of key K and value V, enhancing the K
and V dimensions of the attention mechanism while also boosting the performance and
consistency of feature information extraction. Finally, the attention is calculated as:

Mc(Q, K, V) = So f tmax(ConvLSTM( QKT√
dk

))V (12)

In this scheme, we employ n = 8, and dk = dv = dmodel/n = 64.
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3.3.2. Cross-Attention

The Cross-Attention module is shown in Figure 3. F(·) and G(·) are projections to
align dimensions using interpolation function. Then, the module performs cross-attention
between Xm and Xatt, which can be expressed as

q = G(Xm) · WQ (13)

k = ConvLSTM(G(Xatt)) · Wk (14)

v = F(Xm) · Wv (15)

Finally, calculate the cross-attention using Equation (12).

Figure 3. Spatial–temporal cross-attention cell.

3.4. Loss Function

The total loss is primarily made up of three components, and all the loss functions
of these parts are based on cross-entropy. In items of supervised learning, the selection
of keyframes is ultimately intended to decrease the discrepancy between predicted and
background data. The cross-entropy is used to approximate the distribution of the learnt
model to the background data. The lower the value is, the more similar the probability
distributions of the anticipated and background data. p is the probability distribution of
background data, and q is the predicted probability distribution, and the cross-entropy
H(p, q) is:

H(p, q) =
n

∑
i=1

pilog
1
qi

= −
n

∑
i=1

pilogqi (16)

In our network, the softmax is used to normalize the cross-entropy, yi is the output of
network cells, ŷi is the category i of background data, ŷi ∈ {0, 1}, and the loss function is:

L = − 1
m

[
m

∑
i=1

ŷi log
ezi

∑k
i=1 ezk

]
= − 1

m

[
i=1

∑
m

ŷilogyi

]
(17)
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Lmat is the loss function of the model of multi-conv-attention contrastive GAT. Ldat is
the loss function of the model of DB-ConvLSTM contrastive adjustment GAT. Lcro is
the loss function of cross-attention. Both Lmat and Ldat are cross-entropy, as defined by
Equation (17). To resolve the centralization issue and reduce the ambiguity problem in key
frame filtering, we use Lcen for centralization keyframe scores:

Lcen = λ · min(Ldat,Lmat)

max(Ldat,Lmat)
(18)

In Equation (17), λ balances the function of global and local domains. Formally, the objective
function Lobj is written as

Ltol = μ · Lcro + Lcen (19)

μ balances the loss of cross-attention and multi-conv-attention.

4. Experiments Analysis

4.1. Datasets

Each database has its focus, so before the experiment, the two databases TVsum [28]
and SumMe [29] should be analyzed, and the results are shown in Table 1. Additionally, we
use two other public datasets, OVP (Open Video Project) [30] and YouTube [11], to augment
the training sets.

Table 1. Analysis of TVsum and SumMe dataset.

Datasets Description

TVsum
The title-based video summarization dataset contains 50 videos of various genres

(e.g., news, documentary, egocentric) and 1000 annotations of shot-level importance
scores (20 user annotations per video). The duration varies from 2 to 10 min.

SumMe The SumMe dataset consists of 25 videos, each annotated with at least 15 human
annotated summaries. The duration of videos varies from 1.5 to 6.5 min.

4.2. Evaluation Metrics

To facilitate a comparison study of the experimental influence on current research
findings, the Precision, Recall, and F-score are used as measurement standards, similar to
the literature [3]. S is the video summarization generated by the algorithm, G denotes the
ground user-marked ground truth, and the following definitions apply to Precision, Recall,
and F-score:

Precision =
|S ∪ G|
|S| (20)

Recall =
|S ∪ G|
|G| (21)

F − score =
2 × Precision × Recall

Precision + Recall
(22)

As shown in [31], randomly generated video summaries may achieve equivalent perfor-
mance when using the F-score measure. To avoid this problem, we evaluated our method
as seen in Table 2. Under our comparison method, the comparing parameter is F-score.
Furthermore, to be more precise, these datasets are randomly split into different training
and testing sets five times, and the final measure is produced by averaging the five results.
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Table 2. Datasets setting used for evaluation (C: Canonical; A: Augmented; T: Transfer).

Datasets Setting Training Phase Testing Phase

TVSum

C 80% TVSum The rest 20% of TVSum
A 80% TVSum+SumMe+ The rest 20% of TVSum

OVP+YouTube
T SumMe+OVP+YouTube TVSum

SumMe

C 80% SumMe The rest 20% of SumMe
A TVSum+80% SumMe+ The rest 20% of SumMe

OVP+YouTube
T TVSum+OVP+YouTube SumMe

4.3. Experimental Environment and Parameters Settings

The deep learning platform for operating our approach is Pytorch. The hidden states
are with dimensionality of 256 for ConvLSTM, and other parameters settings are as follows:
similar to other algorithms, we use the pool5 layer of GoogleNet to extract the visual
features for each video frame. The number of ConvLSTMs hidden layers is 256, the
learning rate initialized is le − 5, the batch size is 5, the kernel size is set as (5,1), and the
maximum training epoch is set as 100. Furthermore, considering that the training epochs
are critical to summarization performance, after increasing for five epochs continuously,
their influence on the validation set is plotted in Figures 4–6. The horizontal coordinate
is the training epochs, and the vertical coordinates are the values the of F-scores, Recall,
and Precision.

Figure 4. Plots show the influence of training epochs on the value of F-scores.

Figure 5. Plots show the influence of training epochs on the value of Recall.
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Figure 6. Plots show the influence of training epochs on the value of Precision.

4.4. Comparative Analysis of Schemes

This section verifies the feasibility and effectiveness of the proposed strategy through
two ways: one is validation of the algorithm itself, and the other one is comparative analysis
with state-of-the-art video summarization approaches.

4.4.1. Self-Verification

Before comparing the scheme to other state-of-the-art algorithms, it is vital to validate
the scheme’s performance itself. Table 3 and Figure 7 show the results of evaluating the
performances of our methods on the SumMe and TVSum datasets. From the perspective
of result stability, the test variation curves of C, T, and A on SumMe and TVSum datasets
are shown in Figures 8 and 9. The horizontal coordinate of both figures is training epochs.
Figure 7 gives an example of generating video summarization on the SumMe and TVSum
datasets by our approach; the yellow lines show the annotation importance scores of
ground truth summarization marked by the user, and the blue lines show the prediction
score of our method. We clearly observe that our models achieve very competitive results
against state-of-the-art methods.

Figure 7. An example of generating video summarization on SumMe and TVSum datasets; the
first two are samples from SumMe datasets and the last one is from TVSum datasets. The yellow
lines show the annotation importance scores of ground truth summarization marked by the user, and
the blue lines show the prediction score of our method.
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Figure 8. The A, C, and T results of SumMe.

Figure 9. The A, C, and T results of TvSum.

Table 3. Performance analysis of self-verification (F-scores).

Data Sets TVSum SumMe

Metric C (%) A (%) T (%) C (%) A (%) T (%)

MAX 65.3 67.4 66.2 61.6 63.1 64.5
MIN 50.8 50.2 55.9 53.3 52.4 51.3

AVERAGE 60.57 58.62 61.26 58.4 58.4 60.01

4.4.2. Comparative Analysis with Relative Approaches

The primary components of our algorithm consist of the attention mechanism, Con-
vLSTM, and GATs. In this section, we compared our approach with some state-of-the-art
video summarization methods on SumMe and TvSum. Comparison methods can be clas-
sified into three categories: based on “LSTM+”, based on “Attention+”, and based on
GATs methods.

(1) Comparison With “Bi-LSTM+” Methods

Due to the few research results on the summary algorithm based on ConvLSTM, this
section compares our scheme to the Bi-LSTM based algorithms. Some classic algorithms
are compared, as shown in Table 4.
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Table 4. Performance analysis of methods based on “Bi-LSTM+”.

Data Sets TVSum SumMe

Metric C (%) A (%) T (%) C (%) A (%) T (%)

vsLSTM [5] 54.2 57.9 56.9 37.6 41.6 40.7
dppLSTM [5] 54.7 59.6 58.7 38.6 42.9 41.8
H-RNN [12] 57.9 61.9 − 42.1 43.8 −

HAS-RNN [32] 58.7 59.8 − 42.3 42.1 −
DHAVS [33] 60.8 61.2 57.5 45.6 46.5 43.5

Ours 65.3 67.4 66.2 58.4 58.4 60.01

H-RNN [12] and HAS-RNN [32] are based on hierarchical architecture. According to
the findings of the comparison, we observe that our method outperforms state-of-the-art
video summarization methods on both datasets.

(2) Comparison With “Attention+” Methods

Since the scheme in this paper involves not only the combination of ConvLSTM and
attention but also the graph neural network, we will analyze it separately. The results of
comparison with “Attention+” methods are shown in Table 5. SABTNet [15] is based on
attention and a binary neural tree. Liang et al. [34] proposes a video summarization method
based on dual-path attention, while Zhu et al. [35] is based on hierarchical attention. Table 5
demonstrates that the cross-attention method has clear benefits over the SumMe database.

Table 5. Performance analysis of methods based on “Attention+”.

Data Sets TVSum SumMe

Metric C (%) A (%) T (%) C (%) A (%) T (%)

M-AVS [36] 61.0 61.8 − 44.4 41.6 −
SABTNet [15] 61.0 − − 51.7 − −

[34] 61.58 61.2 58.9 51.7 52.1 44.1
[35] 61.5 62.8 56.7 51.1 52.1 45.6

Interp-SUM [2] 59.14 − − 47.7 − −
3DST-UNet [3] 58.3 58.9 56.1 47.4 49.9 47.9

Ours 65.3 67.4 66.2 58.4 58.4 60.01

(3) Comparison With “Graph Attention+” Methods

The extraction of spatial–temporal characteristics and frame–relationship features is
facilitated by a graph neural network. Table 6 shows the results of comparing our method
with some “Graph Attention+” video summarization methods including RSGN [13],
GCAN [37], Bi-GAT [1] and SumGraph [38]. From the experimental results in Table 6,
our method outperforms other approaches, which are based on “Graph Attention+”.

Table 6. Performance analysis of methods based on “Graph Attention+”.

Data Sets TvSum (F-Score %) SumMe (F-Score %)

RSGN [13] 60.1 45.0
GCAN [37] 60.1 53.0
Bi-GAT [1] 59.6 51.7

SumGraph [38] 63.9 51.4

Ours 65.36 58.48

4.4.3. Comparison Results

Following the comparison tests outlined above, it can be seen that the proposed
method has certain advantages over existing approaches, most notably in the SumMe
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database set. Specifically, the hierarchical spatial–temporal cross-attention scheme in this
research enhances the algorithm’s stability, scalability, and other performance characteristics.

5. Conclusions

This paper proposes a hierarchical spatial–temporal cross-attention scheme for video
summarization using contrastive learning. The scheme solves the contradictions of diver-
sification user requirements, depth and breadth of features extraction and new creation
videos. The hierarchical architecture is divided primarily into depth and breadth feature
extraction and spatial–temporal cross-attention feature merging. This paper extracts local
and depth features using a graph attention network and multi-head attention mechanism,
and it extracts global and breadth features using a GAT adjusted DB-ConvLSTM. Fur-
thermore, merging hierarchical characteristics via spatial–temporal cross-attention cells is
used for more precise keyframe screening. Finally, video summarization is generated by
CB-ConvLSTM. In practice, results from the TVSum and SumMe datasets indicate that the
proposed algorithm is highly rational, effective, and usable. Nevertheless, the analysis of
similarity keyframe screening is still insufficiently detailed.
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Abstract: A fingerprint sensor interoperability problem, or a cross-sensor matching problem, occurs
when one type of sensor is used for enrolment and a different type for matching. Fingerprints
captured for the same person using various sensor technologies have various types of noises and
artifacts. This problem motivated us to develop an algorithm that can enhance fingerprints captured
using different types of sensors and touch technologies. Inspired by the success of deep learning
in various computer vision tasks, we formulate this problem as an image-to-image transformation
designed using a deep encoder–decoder model. It is trained using two learning frameworks, i.e.,
conventional learning and adversarial learning based on a conditional Generative Adversarial Net-
work (cGAN) framework. Since different types of edges form the ridge patterns in fingerprints,
we employed edge loss to train the model for effective fingerprint enhancement. The designed
method was evaluated on fingerprints from two benchmark cross-sensor fingerprint datasets, i.e.,
MOLF and FingerPass. To assess the quality of enhanced fingerprints, we employed two standard
metrics commonly used: NBIS Fingerprint Image Quality (NFIQ) and Structural Similarity Index
Metric (SSIM). In addition, we proposed a metric named Fingerprint Quality Enhancement Index
(FQEI) for comprehensive evaluation of fingerprint enhancement algorithms. Effective fingerprint
quality enhancement results were achieved regardless of the sensor type used, where this issue
was not investigated in the related literature before. The results indicate that the proposed method
outperforms the state-of-the-art methods.

Keywords: biometrics; cross-sensor fingerprints; fingerprint enhancement; cGAN; adversarial
learning; deep learning

1. Introduction

The fingerprint is a biometric modality deployed mainly for human identification.
Fingerprint recognition systems have several practical applications, including access control
and criminal investigation [1].

Most available fingerprint systems compare data captured from the same sensor,
where matching algorithms are designed to work on data obtained from a single sensor for
enrollment and verification. Thus, the ability of these algorithms to work on data collected
from multiple sensors is limited. It is known as the fingerprint sensor interoperability
problem or the cross-sensor problem. In legacy databases, billions of fingerprints have been
collected from different sensors based on diverse technologies. Every time the sensor of
choice is changed, the re-enrollment of persons is a costly and substantial task. Moreover,
due to the improvement in fingerprint sensors and the need to apply fingerprint recognition
in devices such as those linked to the Internet of Things (IoT), the demand is high for an
efficient fingerprint matching algorithm that can recognize fingerprints captured using
different sensors. Therefore, the algorithms for the sensor interoperability problem, which
improve the biometric system’s ability to adapt to data obtained from several sensors, are
highly needed and will significantly impact system usability [2].
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The quality of fingerprints varies based on the sensor types used for capturing the
fingerprint, even if the same sensing technology is employed (e.g., optical or capacitive).
Additionally, the corresponding sets of features have high variability, which cannot be
analyzed easily by a matching algorithm for accurate decisions. An example is shown
in Figure 1, which shows the fingerprint of the same finger captured by nine different
sensors [3].

Figure 1. Fingerprints from the FingerPass database of the same finger that were captured by different
sensors.

Differences in sensor technology and interaction type can cause significant variations
in the quality of fingerprints. Thus, a considerable drop in the performance of the existing
fingerprint recognition systems has been reported when different sensors are used for
identification [2].

Moreover, the performance of cross-sensor matching algorithms is affected because
of the variations in ridge patterns caused by the various types of noises and artifacts due
to the difference in sensor technologies, as shown in Figure 1. There is a real need to
enhance fingerprint images. However, this is challenging because fingerprints captured
using various sensors include several kinds of texture patterns and noises [4].

A sample including a set of impressions taken from the MOLF dataset [5] is presented
in Figure 2. These impressions were categorized into three subsets: DB1 comprises the flat
dap (10) fingerprints captured by the Lumidigm Venus sensor; DB2 contains the fingerprints
of the same fingers captured by the Secugen HamsterIV sensor; and DB3 consists of the
dap fingerprints captured by CrossMatch L-Scan patrol sensor. Their quality was measured
using the NFIQ (NBIS Fingerprint Image Quality) tool [6]. It is an open-source minutiae-
based quality evaluation algorithm that provides a quality value {1, 2, 3, 4, 5}, with 1
representing the best quality and 5 denoting the worst one. Each row within the set stands
for fingerprints captured by the same sensor. Each column, in turn, represents the same
level of quality, in which the first column is excellent while the last column is poor. It
can be noticed that DB1 has no images of the poor class. In addition, most of the ridge
pattern information is unclear in the impressions belonging to classes poor and fair in
DB2 and DB3.

In this paper, we present an efficient enhancement solution for the cross-sensor finger-
print problem. Specifically, motivated by the outstanding performance of deep learning-
based techniques in various computer vision tasks such as image enhancement [7,8]. We
designed an image-to-image mapping function F that receives a low-quality fingerprint
and generates a high-quality one. We model F using Convolutional Neural Networks
(CNN) based on encoder–decoder architecture. The learning of this kind of CNN is a
challenging problem. Thus, we trained our method using two types of learning approaches
i.e., the conventional end-to-end approach and using the adversarial learning (using a
conditional GAN framework).

Adversarial learning generates fingerprints of higher quality than those produced
by conventional learning, as demonstrated by comparing the outputs of the two methods
using two frequent metrics: NFIQ and SSIM.
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Figure 2. Quality variations Q = {1, 2, 3, 4,5} per impression for the same subject across three sensors:
(a) Lumidigm Venus, (b) Secugen Hamster-IV, and (c) CrossMatch L-Scan Patrol from MOLF dataset.

Our method was evaluated on two benchmark public datasets, FingerPass and MOLF.
The results indicate that fingerprints are enhanced to higher quality regardless of the sensor
type used.

To the best of our knowledge, this is the first work dealing with the problem of cross-
sensor fingerprint enhancement using deep learning. Our contributions in this paper can
be summarized as follow:

• We formulated the cross-sensor fingerprint enhancement problem as an image-to-
image transformation problem and designed it using a CNN model with an encoder–
decoder architecture that takes a low-quality fingerprint and produces an enhanced
fingerprint. We trained the proposed CNN model using two different approaches:
conventional learning and adversarial learning.

• Motivated by the success of adversarial learning in modeling image-to-image transfor-
mation [9], we learned the proposed image-to-image transformation (the CNN model)
using a conditional GAN framework, where the proposed CNN model plays the role
of a generator.

• To preserve the ridge patterns in the fingerprints, we incorporated the edge loss
function [10] and L1 loss [9] into the adversarial loss [11]. This resulted in good quality
enhanced fingerprints regardless of the type of sensor used to capture the fingerprints.

• For comprehensive evaluation of a fingerprint enhancement algorithm, we proposed a
new metric called Fingerprint Quality Enhancement Index (FQEI). This metric yields a
value between 1 and −1, where 1 represents the best enhancement and −1 represents
the worst degradation.
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The rest of this paper is structured as follows. Section 2 reviews previous enhancement
methods, while Section 3 describes in detail the proposed method. Section 4 presents the
training and testing stages of our model, while Section 5 gives details of the experiments.
Section 6 discusses our results. Finally, Section 7 concludes the conducted work and
suggests some directions for future work.

2. Related Work

In the last decade, various studies have been conducted to study the effect of reliable
fingerprint enhancement for solving the matching problem assuming that the same sensor
was used both for enrollment and verification.

A common technique is the HONG method proposed by Hong et al. [12], where
fingerprints are enhanced using a bank of Gabor filters, which are adjusted to the orientation
of the local ridges. Another state-of-the-art method is the CHIK method, which was
proposed by Chikkerur et al. [13], where fingerprints are enhanced using the short-time
Fourier transform (STFT). In this method, each fingerprint is initially divided into small
overlapping windows, and the STFT is applied to each window. Next, the block energy,
ridge orientation, and ridge frequency are estimated using the Fourier spectrum, and then
contextual filtering is applied for fingerprint enhancement.

Other enhancement techniques focus on using off-line images, such as the latent
fingerprint technique [14]. Researchers proposed an approach that employed a CNN model
to predict ridge direction from a set of pre-trained ridge patterns. In [7], a direct end-to-end
enhancement approach was proposed using the FingerNet architecture. This method relied
on the use of a CNN within an encoder–decoder scheme. In [8], the authors employed a
convolutional auto-encoder neural network to enhance the missing ridge pattern. A similar
work was proposed in [15], where a method based on de-convolutional auto-encoders was
developed to match sensor-scan and inked fingerprints.

All previous works have focused on using conventional learning only in the enhance-
ment process, where CNNs learn to minimize the loss function. This process, however,
requires a lot of manual effort. In contrast, the flexibility provided by Generative Adversar-
ial Networks (GANs), which apply adversarial learning, allows for optimizing the objective
function of the problem more effectively. It initially determines a single high-level goal, such
as producing indistinguishable fake images from real images, and then learns to achieve
such a goal automatically using a suitable loss function [9]. In the JOSHI method [16], a con-
ditional GAN model was proposed based on an image-to-image translation to reconstruct
the ridge structure of latent fingerprints. As discussed above, most previous enhancement
methods have focused on matching latent fingerprints left unintentionally at a crime scene.
Unlike previous methods, which deal with latent fingerprints, the proposed method ad-
dresses the problem of enhancing cross-sensor fingerprints. The problem of cross-sensor
enhancement has been addressed in a few studies only. In [4,17], an adaptive histogram
equalization method was proposed to enhance the contrast of contactless fingerprint ridges
and valleys. To date, these are the only published studies concerning cross-sensor enhance-
ment. No previous studies have addressed the cross-sensor enhancement problem using
deep learning techniques.

3. Proposed Method

A critical issue when designing an effective cross-sensor fingerprint enhancement is
preserving valleys, ridges, and other fingerprint features, such as minutiae. In view of this,
we introduce a new method for cross-sensor fingerprint enhancement.

3.1. Problem Formulation

Fingerprint enhancement can be expressed as an image-to-image transformation prob-
lem. It aims to learn a mapping, denoted by F , which transforms an input fingerprint
x ∈ R

mxn to an enhanced fingerprint ŷ. This implies finding a mapping F : Rmxn → R
mxn

such that ŷ = F (x; θ), where θ represents the transformation parameters. A critical ques-
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tion in this context is how to model the mapping function F . From a practical standpoint,
the application of both deep learning and CNNs has shown promising performance in pat-
tern recognition problems, as indicated in various studies [4,14,15]. This, in turn, motivated
us to model F using a CNN model. The learning method typically employed in CNNs
is conventional learning, which is based on an objective function that minimizes the loss
function between ground truth and the predicted labels. However, regardless of whether
the learning process is automatic, several studies have sought to design more effective loss
functions [9].

Another efficient learning approach is based on the Generative Adversarial Networks
(GANs) framework. The learning method applied in GANs is adversarial learning, which
is based on a min-max game and includes a specific loss function, where one agent tries to
maximize while the other one tries to minimize [11].

3.2. The Design of Mapping Function (F )

The design of the mapping function (F ) is a challenging problem since the captured
fingerprints by different sensors have different texture patterns and noise [4]. The desired
mapping must be developed to enhance fingerprints by preserving the underlying finger-
print features and removing possible corruption and noise. To address these issues and
effectively learn F , two learning frameworks were investigated: conventional learning and
adversarial learning.

3.2.1. Conventional Learning Framework (One-Net)

In this case, F was designed using a CNN model following an encoder–decoder
architecture [18]. It takes a low-quality fingerprint as input and produces a high-quality
one as output. This architecture minimizes the loss between the target images and the
predicted ones. This architecture was adopted from SegNet [19] with some modifications.
SegNet comprises two networks: an encoder and a corresponding decoder, followed by a
final pixel-wise classification layer.

SegNet has five encoders and corresponding five decoders. All the encoders include
two consecutive layers and max pooling layers. Each convolutional layer consists of
64 filters with size 3 × 3, 1 padding and stride of 1 followed by batch normalization (BN)
layer and then element-wise rectified linear non-linearity (ReLU). After that, 2 × 2 max
pooling layer, with a stride of 2, is applied where the related max pooling indices (locations)
are saved.

Each corresponding decoder up-samples its input using the recalled max-pooling
indices using a 2 × 2 max unpooling layer with a stride of 2. Then, it convolves the input
using two consecutive convolutional layers. Each convolutional layer contains 64 filters of
size 3 × 3 and a stride of 1 followed by a batch normalization layer, then a ReLU layer. The
final output is then fed into a multi-class soft-max classifier to compute class probabilities
for each pixel independently.

This model has been specifically designed for segmentation purposes. However, since
our goal is different and focuses on the enhancement task, the SegNet model was modified
to fit the task of interest by receiving a low-quality, 300 × 300 × 1 fingerprint and generating
a same-size fingerprint with higher quality. Both the Softmax layer and the pixel-wise
classification layer were removed. Since the target task is to produce a same-size fingerprint
with a higher quality, a convolution layer with one filter of size 3 × 3, was also added, as
shown in Figure 3.

The preservation of small and thin details is essential for fingerprint matching since
they play an important role in determining the identity of each subject. Some of these
details are the minutiae points formed mainly by ridge bifurcations and ridge endings. The
ridge bifurcations are those points where ridges are divided into two ridges, whereas the
ridge endings are those points where ridges end. The extraction of minutiae points is a
difficult task in low-quality fingerprint images [1], see Figure 4.
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Figure 3. Conventional learning framework.

Figure 4. The two most common minutiae—ridge ending and bifurcation. Reprinted with permission
from Ref. [1]. Copyright 2022, Springer Nature.

These small details should be considered when designing the target model. Convolu-
tional networks are deployed to gradually reduce the image resolution until it is represented
via tiny feature maps, where the spatial structure is not yet visible. However, this spatial
acuity loss may restrict fingerprint enhancement. This issue can be addressed by dilated
convolutions that can increase the output feature maps resolution without decreasing the
individual neurons’ receptive field. Thus, a second modification introduced to the SegNet
model is adding dilated convolutions.

Generally, dilated convolution is a convolution having a wider kernel that is generated
based on repeatedly adding spaces among the kernel elements [20]. Therefore, each
convolution layer in the encoder was substituted by a dilated convolution layer using a
different dilation factor in the range: 1, 1, 2, 2, 4, 4, 8, 8, 16, and 16. Our results illustrate
that dilated convolution is appropriate for fingerprint enhancement since it enlarges the
receptive field with no coverage or resolution loss.

In the decoder network, each decoder up-samples its input feature map(s) by deploy-
ing the memorized max-pooling indices related to its corresponding encoder’s feature
map(s). It should be noted that there is no conducted learning within the up-sampling
stage. SegNet uses the max pooling indices to up-sample the feature map(s) and convolves
them with a trainable decoder filter bank. Next, batch normalization is applied to each
map. Subsequently, the high dimensional feature representation at the final decoder output
is fed to a convolutional layer followed by a Tanh layer as shown in Table 1.
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Table 1. Specifications of encoder and decoder models; FS represents the filter size; FN is number of
filters and S represents the stride.

Encoder Decoder

Layer FS FN S Layer FS FN S

Conv1_1 3 64 1 Conv1_1 3 64 1
Conv1_2 3 64 1 Conv1_2 3 64 1

Max Pooling 1 2 - 2 Max Un pooling 1 2 - 2
Dilated Conv 2_1 3 64 1 Conv 2_1 3 64 1
Dilated Conv 2_2 3 64 1 Conv 2_2 3 64 1

Max Pooling 2 2 - 2 Max Un pooling 2 2 - 2
Dilated Conv 3_1 3 64 1 Conv 3_1 3 64 1
Dilated Conv 3_2 3 64 1 Conv 3_2 3 64 1

Max Pooling 3 2 - 2 Max Un pooling 3 2 - 2
Dilated Conv 4_1 3 64 1 Conv 4_1 3 64 1
Dilated Conv 4_2 3 64 1 Conv 4_2 3 64 1

Max Pooling 4 2 - 2 Max Un pooling 4 2 - 2
Dilated Conv 5_1 3 64 1 Conv 5_1 3 64 1
Dilated Conv 5_2 3 64 1 Conv 5_2 3 64 1

Max Pooling 5 2 - 2 Max Un pooling 5 2 - 2
Conv 6_1 3 1 1

Tanh - - -

3.2.2. The Adversarial Learning Framework (Two-Net)

This type of learning is based on the conditional generative adversarial network
(cGAN) framework [9]. The cGAN framework consists of a generator and a discriminator.
The role of the generator is to produce a transformed image from the input one. The
discriminator determines if the input image is real or fake. In the training stage, both the
generator and discriminator conduct a min-max game. For this task, F plays the role of
the generator, which is to produce a high-quality fingerprint (ŷ) from a low-quality one (x).
The enhanced high-quality fingerprint must have a clear ridge structure to preserve the
valleys, ridges, and further fingerprint features, such as minutiae points. The discriminator
differentiates real fingerprints from the generated ones, which helps to learn F .

To effectively learn F via the cGANs framework, it is considered a generator that
generates an enhanced image ŷ from an input image x. To model F , a dilated SegNet is
deployed since both the input and output are images with the same size 300 × 300 × 1,
as explained in the first framework. The discriminator D is modeled using a patch GAN
discriminator that was adopted from the paper [9]. The first convolution layer Conv
contains 64 filters, stride 2, depth of 2, followed by a Leaky ReLU layer. The second Conv
consists of 128 filters, stride 2, and the third contains 256 filters of stride 2; the fourth Conv
contains 512 filters, stride 2; each of these layers is followed by a batch normalization layer
and the Leaky ReLU. The last layer is a Conv layer consisting of one filter and stride of 1.
All these Conv layers contain filters of size 4, as illustrated in Figure 5.

3.3. Loss Functions and the Learning of (F )

For the first framework, F is learned through conventional learning based on taking
a low-quality fingerprint x and producing a high-quality one. This model minimizes the
gradient difference between the generated fingerprint and the ground truth y. We used
two loss functions: L1 loss [9] and Edge Loss [10].

The first loss used is the L1 distance that is expressed as follows:

LL1(F ) = Ex,y[‖ y −F (x) ‖1] (1)

An ideal fingerprint image has valleys and ridges that flow in a locally regular direction.
In this case, the detection of ridges is straightforward, and minutiae can be accurately
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located within the image. Nevertheless, skin conditions (e.g., dry/wet, bruises, and cuts),
improper finger pressure, and sensor noise significantly impact fingerprint image quality.

Figure 5. The adversarial learning framework. The blue color represents dilated Conv, BN and ReLU
layers; the pink color represents Max-Pooling layer; the green color represents up sampling layer;
light grey color represents Conv, BN and ReLU layers; the dark grey color represents Conv and
Tanh layers.

Therefore, the edge loss function is added to improve the fingerprint ridge structures
by calculating the edge direction. For this, the ridge pattern of the generated fingerprint
and the corresponding ground truth fingerprint are initially computed, and then the loss is
used to update the parameters of F . The edge loss is denoted as Ledge and can be expressed
as follows:

Ledge(F ) =

√
‖ ΔF (x)− Δy ‖2 + ε2 (2)

where Δ represents the Laplacian of Gaussian operator, y denotes the ground truth finger-
print (high quality), and F (x) denotes the enhanced image. The parameter with constant ε
empirically set to 10−3 as used in [10]. This loss is used to preserve edge features useful for
improving ridge patterns.

The total loss
LConventional(F ) = μ LL1(F ) + λLedge(F ). (3)

In the second framework, F learning is inspired by the method [9]. Both D and F
are learned using adversarial learning. The training dataset includes pairs of poor- and
high-quality fingerprints. Such pairs are expressed as (xi; yi), in which xi stands for the
poor-quality fingerprint image, while yi stands for the corresponding high-quality one
(ground truth).

A fingerprint x is fed into F , which then maps it to an enhanced version ŷ. The channel-
wise concatenation between the pairs (x, y) and (x, ŷ) is then fed into D to classify them
as real or generated fingerprints. The discriminator ensures that the generator effectively
learns to preserve ridge structures of the generated enhanced fingerprints. The adversarial
loss is given below:

LGAN(F , D) = E(x,y)[log(D(x, y) + Ex[log(1 −D(x,F (x)) ]]. (4)

A custom training loop is deployed to train the model using the training dataset, in
which the network weights are updated in each iteration. In the training stage, F produces
a fingerprint that is hard to be classified as synthetic via D. In contrast, D avoids being
misled by F and increases the successful discrimination between the original and synthetic
fingerprints by reducing the value of the loss function.
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We combined the edge loss and L1 distance with adversarial learning. The final
objective function is expressed below:

argminFmaxD LGAN(F , D) + μ LL1(F ) + λLedge(F ). (5)

Figure 6 illustrates the training framework, which learns F to produce an enhanced
fingerprint from an input one.

Figure 6. The learning procedure of F using adversarial learning. The thin arrows represent the
input; the thick arrows represent the output; The dotted lines represent weights updating, the dashes
represent the two fingerprints used to calculate the edge loss and L1 loss; and the circles represent the
channel-wise concatenation.

3.4. Assessing the Quality of the Enhancements

Although both NFIQ [6] and SSIM [21] are popular and accurate metrics used widely
to measure fingerprint quality, they do not offer a comprehensive description of what
happens during enhancement. In these metrics, the number of enhanced or degraded
images is not considered. A new metric has been designed to comprehensively describe
each class’s performance by analyzing the NFIQ results.

Fingerprint Quality Enhancement Index (FQEI)

The detail of the new metric for assessing the enhancement potential of an algorithm
is given in the following paragraphs. A fingerprint can be assigned to one of five quality
levels, i.e., Q1: excellent, Q2: very good, Q3: good, Q4: fair, or Q5: poor, based on the
scores obtained from the NFIQ tool [6]. Using the quality levels of fingerprints before
and after enhancement, we compute the Quality Confusion Matrix (QCM) as shown in
Table 2, where Qjj is the number of images with original quality Qj have been enhanced to
quality Qi.

Table 2. The quality confusion matrix (QCM).

Q11 Q12 Q13 Q14 Q15
Q21 Q22 Q23 Q24 Q25
Q31 Q32 Q33 Q34 Q35
Q41 Q42 Q43 Q44 Q45
Q51 Q52 Q53 Q54 Q55

To quantify the enhancement quality, each Qjj in QCM is scaled according to the
corresponding coefficient wij in the weight quality matrix (WQM), shown in Table 3.
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Table 3. The weight quality matrix (WQM).

0 1 2 3 4
−1 0 1 2 3
−2 −1 0 1 2
−3 −2 −1 0 1
−4 −3 −2 −1 0

In WQM, (i) wii = 0 because there is no enhancement in the quality level of the
fingerprints, (ii) wij (i < j) is 1, 2, 3, or 4 depending on enhancement levels, e.g., in case of
Q13, the quality of fingerprints after enhancement goes two levels up from Q3 to Q1, it must
be weighted with w13 = 2, (iii) wij (i > j) is −1, −2, −3 or −4 depending on de-enhancement
levels.

The enhancement score (Es), which quantifies the quality of enhancement of finger-
prints that were in a low-quality class before enhancement and assigned to a high-quality
class after enhancement, can be expressed using QCM and WQM as follows:

Es =
5

∑
j=2

∑
j>i

Qij × wij (6)

The degradation score (Ds), which quantifies the quality of de-enhancement of finger-
prints that were in a high-quality class before enhancement and assigned to a low-quality
class after enhancement, can be expressed using QCM and WQM as follows:

Ds =
5

∑
i=2

∑
j<i

Qij × wij (7)

In the ideal case (IS) scenario, all images are enhanced from low-quality class to
excellent class. In other words, IS can be represented as a weighted sum of all images,
except those of Q1 quality, using the following formula:

IS = (Q12 × 1) + (Q13 × 2)+(Q14 × 3)+(Q15 × 4) (8)

where Q12 represents images from very good class that enhanced one degree up to be in
class excellent, and so on.

However, in the worst-case (WS) scenario, all images move from the high-quality class
to the poor-quality class, excluding the class poor since its images preserve their class. This
means that WS can be expressed as a weighted sum of all images, except those in class
poor, using the following formula:

WS = (Q51 ×−4) + (Q52 ×−3) + (Q53 ×−2) + (Q54 ×−1) (9)

where Q51 represents images from excellent class that degraded four degrees down to be in
poor class, and so on.

To measure the enhancement ratio (ER), the Es computed using Equation (6), is divided
by IS computed using Equation (8). Thus, the ER is expressed as follows:

ER =
Es

IS
(10)

In contrast, the degradation ratio can be measured by dividing the Ds by WS as follows:

DR =
Ds

WS
(11)

The difference between the enhancement ratio and the degradation ratio is computed
to determine the degree of enhancement for measuring the performance of an algorithm:

FQEI = ER − DR. (12)

In the ideal case scenario FQEI = 1, and it is equal to −1 in the worst-case scenario.
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The more the FQEI is close to one, the higher the enhancement is, and vice versa. An
illustrative example is provided in the Appendix A.

4. Training and Testing

In this section, we discuss the training stage, which uses training data to learn the
model, and the testing stage tests it using test data.

4.1. Training Details

The model constructed is a supervised generative one trained to generate high-quality
fingerprint images from low-quality ones. Practically, a supervised model needs paired
training data of low-quality fingerprints combined with their corresponding enhanced
images. However, cross-sensor fingerprint datasets have low-quality fingerprints, and
their related high-quality counterparts are not available. Moreover, cross-sensor fingerprint
databases are not large enough with high-quality images. This results in training difficulties
of deep neural network models. Therefore, there is a need to generate fingerprints with
noise characteristics similar to those of real fingerprints, as shown in Figure 1, and their
enhanced versions to train the enhancement model. The following subsections detail the
datasets prepared for training the model.

FingerPass Database

The training data were fingerprints from the AES2501 sensor from the FingerPass
dataset, which includes 8460 images of different qualities: excellent, very good, good, fair,
and poor. To help the model learn how to enhance fingerprints with different quality levels,
all fingerprints were enhanced using the HONG method [12], which were used as the target
fingerprints.

The proposed method was trained using a minibatch SGD with Adam optimizer
considering the following parameters: Momentum parameters β1 = 0.5 and β2 = 0.999,
Learning rate 0.002, μ = 100, and λ = 0.001.

4.2. Testing Details

The performance of the proposed method was tested using two benchmark public
databases: FingerPass [3] and MOLF [5].

4.2.1. Multisensor Optical and Latent Fingerprint (MOLF) Dataset

This dataset includes images captured by using three different sensors, having the
same sensor technology (optical sensors) and the same capturing method (press). Images
in the database come from 100 subjects, where each one of the 10 fingerprints was captured
in two sessions (two independent instances were captured in each session). Each sensor
was used to capture 4000 images with 1000 fingerprint classes.

Live-scan images in the database are categorized into three subsets. DB1, DB2, and DB3.
It can be noted from Figure 2 that those images are visually different due the acquisition
sensor used and the capturing process applied.

4.2.2. FingerPass Database

FingerPass consists of images of the same eight fingers (thumb, index finger, middle
finger, and ring finger of both hands) captured using nine sensors from 90 subjects; a
sample is shown in Figure 1.

It includes two technological types (optical and capacitive sensors) and two capturing
methods (in this case, press and sweep). Each subject was asked to take 12 impressions for
each finger. Therefore, the database includes images of 720 fingers, where the total number
of impressions for one sensor is 90 × 8 × 12 = 8640 images.

Since our model is trained on fingerprints of size 300 × 300 × 1, the fingerprints from
the MOLF dataset and FingerPass are preprocessed to match the required size.
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5. Experimental Results

In this section, we introduce the metric used to evaluate our results and present the
outcome of the conducted experiments.

5.1. Fingerprint Image Quality Analysis

The NFIQ module of NBIS proposed in [6] was used to analyze the ability of the
proposed enhancement algorithm to enhance the quality of cross-sensor fingerprints. The
analysis offers a value between 1 and 5, where 1 represents the best quality while 5 repre-
sents the worst quality. The score distribution before and after applying the enhancement
method was assessed using fingerprints from MOLF and FingerPass datasets to evaluate
the performance. The results for MOLF enhancement using adversarial learning are shown
in Table 4.

Table 4. NFIQ quality scores on the Original MOLF dataset and the enhanced dataset by our model
(After E.). The up arrow represents better enhancement.

Quality Q
DB1 DB2 DB3

Original After E. Original After E. Original After E.

Excellent 1 2965 3796 ↑ 1340 2255 ↑ 2018 3303 ↑
Very good 2 985 183 1940 1724 985 646

Good 3 37 2 603 8 744 16
Fair 4 12 19 27 8 155 19
poor 5 0 0 89 5 97 18

It can be noticed from Table 4 that all images were enhanced, although different sensors
were used to capture them. In DB1, there is a significant image quality enhancement, where
3796 images were enhanced out of 4000 to be in class excellent. The difference here is
204 images, which are enhanced compared to the original images.

Moreover, DB2 shows enhancement in class excellent results from 1340 to 2255 and a
noticed reduction in a class fair and poor with 27 and 89 images before and 8 and 4 images
after for each class. DB3 shows an increase in class excellent fingerprints by 1285 images
and a reduction for all other classes; the number of fingerprints of class poor reduces from
97 to 18 after enhancement.

Two learning methods were applied: namely, conventional learning and adversarial
learning. A single network was constructed with a loss function that aims to minimize
the distance between the predicted and ground truth to test the impact of conventional
learning, as described in Section 3.1. On the other hand, the impact of adversarial learning
was tested using two networks: a generator and a discriminator, as described in Section 3.2.
The results are shown in Table 5 on MOLF datasets.

Table 5. The effect of the learning approach on the quality of the MOLF database.

Quality Score Q DB1
Original

Conventional Learning
(One Net)

Adversarial Learning
(Two Net)

Excellent 1 2965 3827 3796
Very good 2 985 123 183

Good 3 37 12 2
Fair 4 12 36 19
poor 5 0 2 0

Quality Score Q DB2
Original

Conventional Learning
(One Net)

Adversarial Learning
(Two Net)

Excellent 1 1340 1915 2255
Very good 2 1940 2057 1724

Good 3 603 18 8
Fair 4 27 6 8
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Table 5. Cont.

Quality Score Q DB3
Original

Conventional Learning
(One Net)

Adversarial Learning
(Two Net)

Excellent 1 2018 3206 3303
Very good 2 985 634 646

Good 3 744 39 16
Fair 4 155 86 19
poor 5 97 35 18

It can be noticed from Table 5 that the experiment based on adversarial learning offered
better results than the conventional one, although the same network architecture was used
to generate the fingerprints.

Comparison with the State-of-the-Art Method

There are various studies in the field of fingerprint enhancement, for example, the
methods proposed in [7,8,14,15]. Although HONG and CHIK methods are a bit old,
their performance is still better than the recent methods for cross-sensor fingerprint en-
hancement, and, due to this reason, they have been used in recent cross-sensor matching
methods [4,22–26]. So, we compared our method with HONG and CHIK methods and a
more recent method, i.e., JOSHI method [16].

Figures 7–9 illustrate the comparison results on DB1, DB2, and DB3.

 

DB1 enhancements results

Figure 7. Comparison between the enhancement results of HONG [12], CHIK [13], JOSHI [16], and
our method on DB1.

 

DB2 enhancements results

Figure 8. Comparison between the enhancement results of HONG [12], CHIK [13], JOSHI [16], and
our method on DB2.
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DB3 enhancements results

Figure 9. Comparison between the enhancement results of HONG [12], CHIK [13], JOSHI [16], and
our method on DB3.

It is revealed from Figures 7–9 that our method outperforms HONG and CHIK meth-
ods in enhancing fingerprints to class excellent from DB1 and DB3. For DB2, the number of
enhanced fingerprints to class excellent by HONG method is slightly higher than that by
our method and CHIK.

5.2. Fingerprint Quality Enhancement Index (FQEI)

The FQEI metric was measured using MOLF datasets DB1, DB2, and DB3 by compar-
ing three methods: HONG, CHIK, JOSHI [16], and our method, where obtained results are
provided in Table 6. It can be clearly noticed that our method outperformed both HONG,
CHIK, and JOSHI methods on DB1, DB2, and DB3.

Table 6. FQEI values computed for HONG method, CHIK method, JOSHI [16] method, and our
method for the MOLF dataset.

The Enhancement Method DB1 DB2 DB3

HONG [12] 0.2581 0.6342 0.7026
CHIK [13] 0.0231 0.5562 0.6508
JOSHI [16] 0.2012 0.1723 0.3270

Our method 0.8863 0.6760 0.8740

For DB1, the HONG method performance is 0.2581 since the Es is 348, which is less
than the Ds (−808). This means that the number of images above the diagonal is less than
the images below the diagonal. The same case is for CHIK performance, where the Es is 168,
while the Ds is −1943 since a large number of fingerprints was degraded from excellent
class to very good class. In contrast, our method has a higher enhancement score than the
degradation score. Thus, our method outperformed both the HONG and CHIK methods
on DB1, DB2, and DB3.

Tables 7–11 illustrate a comparison between the enhancement results obtained with
HONG method, CHIK method, JOSHI method, and our method for FingerPass datasets
using NFIQ and our metric FQEI.
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Table 7. Analysis of the fingerprint quality scores measured by NFIQ of the FingerPass database
before enhancement.

Quality Q AES2501 AES3400 ATRUA FPC FX3000 UPEK V300 WS URU4000B

Excellent 1 5519 0 28 40 4105 2016 7917 7395 4697
Very Good 2 2423 65 3149 508 4195 5472 637 895 3263

Good 3 662 7177 2356 5585 330 1142 76 304 647
Fair 4 32 0 0 0 0 0 10 42 33
Poor 5 4 1398 3107 2507 10 10 0 4 0

Table 8. Analysis of the fingerprint quality scores measured by NFIQ and FQEI of the FingerPass
enhanced using HONG method [12].

NFIQ Q AES2501 AES3400 ATRUA FPC FX3000 UPEK V300 WS URU4000B

Excellent 1 6194 0 1136 13 4758 945 6381 6786 5245
Very Good 2 2443 202 6852 6020 3882 7693 2258 1853 3389

Good 3 2 8161 546 2596 0 2 1 0 0
Fair 4 1 0 1 0 0 0 0 1 0
Poor 5 0 277 105 10 0 0 0 0 6

FQEI 0.6146 0.1110 0.5868 0.4791 0.4497 0.1379 0.5065 0.5829 0.5912

Table 9. Analysis of the fingerprint quality scores measured by NFIQ and FQEI of the FingerPass
enhanced using CHIK method [13].

NFIQ Q AES2501 AES3400 ATRUA FPC FX3000 UPEK V300 WS URU4000B

Excellent 1 4834 0 318 4 2253 838 3953 6217 545
Very Good 2 3806 124 7525 5743 6387 7800 4687 2423 8095

Good 3 0 7323 706 2848 0 2 0 0 0
Fair 4 0 0 0 0 0 0 0 0 0
Poor 5 0 1193 91 45 0 0 0 0 0

FQEI 0.5335 −0.0012 0.5410 0.4615 0.2562 0.1372 0.3202 0.5373 0.0683

Table 10. Analysis of the fingerprint quality scores measured by NFIQ and FQEI of the FingerPass
enhanced using JOSHI method [16].

NFIQ Q AES2501 AES3400 ATRUA FPC FX3000 UPEK V300 WS URU4000B

Excellent 1 2216 197 4583 783 2418 2607 2874 2506 2160
Very Good 2 6497 0 3975 6394 6005 5672 1648 6126 6474

Good 3 27 3459 28 1453 189 359 2438 6 6
Fair 4 0 1877 3 8 22 1 464 2 0
Poor 5 0 3107 51 2 6 1 1216 0 0

FQEI 0.2291 −0.3792 0.7889 0.5660 0.1027 0.3114 −0.070 0.3096 0.1582

Table 11. Analysis of the fingerprint quality scores measured by NFIQ and FQEI of the FingerPass
enhanced using our method.

NFIQ Q AES2501 AES3400 ATRUA FPC FX3000 UPEK V300 WS URU4000B

Excellent 1 5824 8192 8066 3958 4700 2924 4743 6779 8134
Very Good 2 2797 65 562 4680 2609 5716 241 1855 467

Good 3 2 82 6 1 813 0 3343 2 23
Fair 4 17 301 5 1 399 0 206 4 16
Poor 5 0 0 1 0 119 0 107 0 0

FQEI 0.5645 0.9388 0.9707 0.7836 0.3149 0.3407 0.2931 0.5825 0.9149
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From Table 7 for FingerPass dataset before enhancement, it can be noticed that there
are three sensors that have the highest number of images in poor class, including AES3400,
ATRUA, and FPC sensors with 1398, 3107, and 2507 images, respectively.

Based on comparing the results of NFIQ for the three methods after enhancement, it
can be noticed that our method offered the highest enhancement in these three sensors
by extremely reducing it to zero poor images for the first sensor, one poor image for the
second sensor and zero poor images for the third sensor. Moreover, it particularly enhanced
the number of images in excellent class to more than 8000 images for the first sensors and
the URU4000B sensor. In contrast, the HONG method revealed the highest enhancement
for AES2501 sensor. There are also two sensors with the highest number of images in the
excellent class: the WS and V300 sensors.

The overall results show that our method outperformed mostly in increasing the
number of images in the excellent class. The CHIK method usually transforms fingerprints’
quality to excellent and very good classes but with a noticeable reduction in the number
of images in excellent class in most sensors. JOSHI method increases the number of poor
fingerprints in two sensors: AES3400 and V3000.

In terms of FQEI metric, our method shows the highest results for five out of nine
sensors. The results on AES3400, ATRUA, and URU4000B sensors are 0.9149, 0.9388, 0.9707,
respectively, which are very close to 1, and hence a very high enhancement performance.
However, a negative enhancement was achieved by JOSHI method in two sensors: AES3400
and V3000. On the other hand, CHIK method gave FQEI of −0.0012 for AES3400 sensor,
where the minus sign means distortion in images, which can be obviously noticed by
comparing it with the confusion matrix results as shown in Table 12, where most images
preserved in good class without enhancement as well as a slight enhancement was revealed
from poor class to good class.

Table 12. Quality Confusion Matrices for AES3400 sensor enhancements using: (a) Hong [12]
(b) CHIK [13] (c) Our method.

(a) (b) (c)

Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5

q1 0 0 0 0 0 0 0 0 0 0 0 61 6821 0 1310

q2 0 17 144 0 41 0 15 99 0 10 0 1 48 0 16

q3 0 47 6847 0 1267 0 46 6450 0 827 0 1 66 0 15

q4 0 0 0 0 0 0 0 0 0 0 0 2 242 0 57

q5 0 1 186 0 90 0 4 628 0 561 0 0 0 0 0

5.3. Structural Similarity Index Metric (SSIM)

Fingerprint enhancement algorithms are applied to improve fingerprints without
changing the ridge structure. This feature can be assessed by computing the SSIM [21]
on the generated fingerprints using anguli and their related ground truth, due to the lack
of databases that include low-quality images and relative high-quality images. In other
words, the higher the obtained SSIM value is, the higher the preserved structural similarity
between the generated and ground truth is. Moreover, this denotes that the ridge structure
is also maintained.

A comparison was conducted for fingerprints that were enhanced using HONG
method, CHIK method, and our method. The test datasets contain two thousand synthetic
fingerprints generated using anguli [27]. It is an open-source implementation from the
fingerprint generator SFinGe [28] based on simulating synthetic live fingerprints having
similar features, such as real-live fingerprints. Two thousand (2000) synthetic fingerprint
images produced by Anguli are used to test the model with pattern types following the
normal distribution, including the arch, right loop, left loop, whorl, and double loop.
From those images generated using Anguli, other input images with lower quality were
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generated by adding Gaussian noise with morphological operations and blurring the
filtering in the frequency domain.

Both the mean and standard deviation of SSIM were then computed as shown in
Table 13.

Table 13. Mean and standard deviation (std) of SSIM.

The Enhancement Method Mean of SSIM Std

HONG [12] 0.4551 0.0482
CHIK [13] 0.4650 0.0460
JOSHI [16] 0.4125 0.0354

Our method 0.5127 0.0693

The mean of SSIM between the enhanced fingerprint generated using our model and
the ground truth is 0.5127. It can be noticed that our method had the highest mean of SSIM,
which means that the preservation of ridge patterns is the best in our method.

5.4. Computation Time

The average computation time needed to enhance the URU4000b sensor dataset was
computed. All three methods were applied on the same environment (R2021b). The
experiment was also applied using a laptop with an Intel Core i7-9750H CPU at 2.60 GHz
-2.59 GHz, 32.0 GB RAM, Microsoft Windows 10 in the 64-bit operating system, and an
x64-based processor. Our method is faster than HONG, CHIK, and JOSHI [16] methods as
shown in Table 14.

Table 14. Comparison between the computation time for enhancement.

Method Average Computation Time (in Seconds)

HONG [12] 0.63
CHIK [13] 0.48
JOSHI [16] 0.38

Our method 0.087

6. Discussion

The fingerprint sensor interoperability focuses on addressing how the fingerprint-
matching system is able to compensate for the differences in the captured fingerprints for
the same person by several sensors. The main causes of such variability in fingerprints
are the differences in the used capturing technology of sensors, scanning area, sensor
resolution, and interaction type.

In practice, each sensor generates its specific type of distortions. Hence, there is a
need to enhance captured fingerprints by various sensors. To achieve this, a cross-sensor
enhancement method was designed and trained using fingerprints from one sensor, which
is the AES2501. On the other hand, this method revealed general enhancement results
for other sensors in FingerPass and MOLF datasets. The learning approach considered
is the adversarial learning one, which offers better enhancement than the conventional
learning one. Moreover, it was found that there was no change in the global flow of ridge
patterns within the captured fingerprints by different sensors. This proves its robustness to
discrimination. Hence, the edge loss, L1 loss, and adversarial loss function were used as
loss functions.

The use of dilation convolution offered better enhancement results than those mea-
sured using convolution only. This means that the small fingerprint details, considered
important features for determining the identity, such as the minutia point and edges, were
preserved. This is clearly illustrated in Table 15.
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Table 15. The impact of using dilation operation and convolution operation for MOLF datasets.

FQEI DB1 DB2 DB3

Convolution layer 0.8643 0.5208 0.7996
Dilation Convolution 0.8863 0.6760 0.8740

Based on comparing the results of our method with those of two state-of-art fingerprint
methods: HONG and CHIK and a more recent method i.e., JOSHI method [16], using two
metrics, our method outperformed both of them. However, the NFIQ metric does not offer
a precise description for enhancement performance. Therefore, a new metric was designed,
called FQEI. This metric gives one result value between 1 and −1 instead of the five classes
results as in the NFIQ.

Figure 10 illustrates zoomed-in views of the fingerprints enhanced using the three
methods. From the enhanced fingerprints examples shown in Figure 10, it can be noticed
that the smoothed ridges related to the processed fingerprints by the HONG method were
more enhanced than those of the CHIK method. On the other hand, our method enhanced
fingerprints with preserving their original ridge pattern better than HONG and CHIK.

Original HONG CHIK Our method

Figure 10. A zoomed-in view for fingerprint enhancement result, where the first column shows
the original fingerprint, while the second, third, and fourth columns show those of the HONG [12],
CHIK [13] and our method, respectively.

From Table 12, it is obvious that our method offers faster enhancement results than
those of HONG, CHIK, and JOSHI methods. In other words, the average computation time
needed to enhance one fingerprint by the HONG, CHIK, JOSHI, and our method was 0.63,
0.48, 0.38, and 0.087 s, respectively. Thus, our method is 13% faster than HONG method.
However, there are two sensors FX3000 and V300 with less results than what was expected
since the fingerprint nature is different than the original data.

7. Conclusions

It can be concluded that with the continuous developments in both fingerprint sensor
technologies and the Internet of Things (IoT), the use of biometric fingerprint identification
has been increasing over the years. Differences in sensor technologies and resolution can
lead to different types of distortion, which affects fingerprint image quality. Therefore, fin-
gerprints must be enhanced. On the other hand, there are no sufficient investigations of the
cross-sensor enhancement problem in the related literature. Therefore, this paper proposed
an efficient solution for this problem based on deep learning, in which cGAN framework is
used for training the image-to-image transformation for fingerprint enhancement. It was
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demonstrated that the proposed method significantly enhanced the cross-sensor finger-
prints regardless of the sensor type used. However, there is still space to achieve more
enhancement. One of the suggested future works is to explore different loss functions to
preserve and recover the ridge patterns.
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Appendix A

To clarify FQEI metric, the following example is provided: For a small dataset of
40 fingerprint images having different qualities, the table below represents the NFIQ de-
grees before (original) and after the enhancement. The QCM is then computed, where the
first column represents the total number of images before enhancement, while the first row
represents the total number of images after enhancement and so on. Both the IS and WS
are then computed as follows:

IS = 10 × 1 + 10 × 2 + 5 × 3 + 10 × 4
WS = 5 ×−4 + 10 ×−3 + 10 ×−2 + 5 ×−1

Table A1. NFIQ quality score of the example before and after enhancements.

NFIQ Values Q1 Q2 Q3 Q4 Q5

Original 5 10 10 5 10
The enhanced 20 4 14 1 1

Table A2. Computing the (QCM).

Q1 Q2 Q3 Q4 Q5

q1 1 8 5 2 4
q2 0 1 2 0 1
q3 3 0 3 3 5
q4 1 0 0 0 0
q5 0 1 0 0 0

Table A3. Computing the WCM by Multiplying QCM with WQM.

Q1 Q2 Q3 Q4 Q5

q1 0 8 10 6 16
q2 0 0 2 0 3
q3 −6 0 0 3 10
q4 −4 0 0 0 0
q5 0 −3 0 0 0
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Table A4. Calculating the FQEI.

Es Ds IS WS ER DR FQEI

58 −13 85 −75 0.6823 −0.1733 0.509
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Abstract: Gait analysis is proven to be a reliable way to perform person identification without relying
on subject cooperation. Walking is a biometric that does not significantly change in short periods of
time and can be regarded as unique to each person. So far, the study of gait analysis focused mostly
on identification and demographics estimation, without considering many of the pedestrian attributes
that appearance-based methods rely on. In this work, alongside gait-based person identification, we
explore pedestrian attribute identification solely from movement patterns. We propose DenseGait,
the largest dataset for pretraining gait analysis systems containing 217 K anonymized tracklets,
annotated automatically with 42 appearance attributes. DenseGait is constructed by automatically
processing video streams and offers the full array of gait covariates present in the real world. We
make the dataset available to the research community. Additionally, we propose GaitFormer, a
transformer-based model that after pretraining in a multi-task fashion on DenseGait, achieves 92.5%
accuracy on CASIA-B and 85.33% on FVG, without utilizing any manually annotated data. This
corresponds to a +14.2% and +9.67% accuracy increase compared to similar methods. Moreover,
GaitFormer is able to accurately identify gender information and a multitude of appearance attributes
utilizing only movement patterns. The code to reproduce the experiments is made publicly.

Keywords: gait recognition; self-supervised learning; pose estimation; multi-task learning;
weakly-supervised learning

1. Introduction

Technologies relying on facial and pedestrian analysis play a crucial role in intelligent
video surveillance and security systems. Facial and pedestrian analysis systems have
become the norm in video intelligence, such systems being deployed ubiquitously. How-
ever, appearance-based pedestrian re-identification [1] and facial recognition models [2]
invariably suffer from extrinsic factors related to camera viewpoint and resolution, and to
the change in a person’s appearance such as different clothing, hairstyles and accessories.
Moreover, due to the proliferation of privacy laws such as GDPR, it is increasingly difficult
to deploy appearance-based solutions for video-intelligence. Human movement is highly
correlated with many internal and external aspects of a particular individual including age,
gender, body mass index, clothing, carrying conditions, emotions and personality [3]. The
manner of walking is unique to each person, it does not significantly change in short peri-
ods of time [4] and cannot be easily faked to impersonate another person [5]. Gait analysis
has gained significant attention in recent years [6,7], due to solving many of the problems
of appearance-based technologies without relying on the direct cooperation of subjects.
However, compared to appearance-based methods, gait analysis is intrinsically harder to
perform with reliable accuracy, due to the influence of many confounding factors that affect
the manner of walking. This problem is tackled in literature in two major ways, either by
building specialized neural architectures that are invariant to walking variations [8–10], or
by creating large-scale and diverse datasets for training [11–15].

One of the first attempts of building a large-scale gait recognition dataset is OU-ISIR [14],
which is comprised of 10,307 identities that walk in a straight line for a short duration
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of time. Such a dataset is severely limited by its lack of walking variability, having only
viewpoint change as a confounding factor. Building sufficiently large datasets that account
for all the walking variations imply an immense annotation effort. For example, the GREW
benchmark [12] for gait-based identification, reportedly took 3 months of continuous man-
ual annotation by 20 workers. In contrast, automatic, weakly annotated datasets are much
easier to gather by leveraging existing state-of-the-art models—UWG [11], a comparatively
large dataset of individual walking tracklets proved to be a promising new direction in the
field. Increasing the dataset size is indeed correlated with performance on downstream gait
recognition benchmarks [11], even though no manual annotations are provided. One limita-
tion of these datasets is that they are annotated with attributes per individual only sparsely,
and not addressing the problem of pedestrian attribute identification (PAI), currently per-
formed only through appearance-based methods [16–18]. Walking pedestrians are often
annotated only with their gender, age, and camera viewpoint [8,12,14,15]. Even though
gait-based demographic identification is a viable method for pedestrian analysis [19], it is
also severely limited by the lack of data. Also, many attributes from PAI networks such
as gender, age and body type have a definite impact on walking patterns [20–22], and we
posit that they can be identified with a reasonable degree of accuracy using only movement
patterns and not utilizing appearance information.

We propose DenseGait, the largest gait dataset for pretraining to date, containing
217 K anonymized tracklets in the form of skeleton sequences, automatically gathered
by processing real-world surveillance streams through state-of-the-art models for pose
estimation and pose tracking. An ensemble of PAI networks was used to densely annotate
each skeleton sequence with 42 appearance attributes such as their gender, age group, body
fat, camera viewpoint, clothing information and apparent action. The purpose of DenseGait
is to be used for pretraining networks for gait recognition and attribute identification, it
is not suitable for evaluation since it is annotated automatically and does not contain
manual, ground-truth labels. DenseGait contains walking individuals in real scenarios, it is
markerless, non-treadmill, and avoids unnatural and constrictive laboratory conditions,
which have been shown to affect gait [23]. It practically contains the full array of factors
that are present in real world gait patterns.

The dataset is fully anonymized, and any information pertaining to individual identi-
ties is removed, such as the time, location and source of the video stream, and the appear-
ance and height information of the person. DenseGait is a gait analysis dataset primarily
intended for pretraining neural models—using it to explicitly identify the individuals
within it is highly unfeasible, requiring extensive external information about the individ-
uals, such as personal identifying information (i.e., their name or ID) and a baseline gait
pattern. According to GDPR (https://eur-lex.europa.eu/eli/reg/2016/679/oj, accessed
on 1 July 2022) legislation, data used for research purposes can be used if anonymized.
Moreover, anonymized data does not conform to the rigors of personal data and can be
processed without explicit consent. Nevertheless, any attempt to use of DenseGait to explicitly
identify individuals present in it is highly discouraged.

We chose to utilize only skeleton sequences for gait analysis, as current appearance-
based methods that rely on silhouettes are not privacy preserving, potentially allowing
for identification based only on the person’s appearance, rather than their movement [24].
Skeleton sequences encode only the movement of the person, abstracting away any visual
queues regarding identity and attributes. Moreover, skeleton-based solutions have the
potential to generalize across tasks such as action recognition, allowing for a flexible and
extensible computation.

DenseGait, compared to other similar datasets [11], contains 10× more sequences
and is automatically annotated with 42 appearance attributes through a pretrained PAI
ensemble (Table 1). In total, 60 h of video streams were processed, having a cumulative
walking duration of pedestrians of 410 h. We release the dataset under open credentialized
access, for research purposes only, under CC-BY-NC-ND-4.0 (https://creativecommons.
org/licenses/by-nc-nd/4.0/legalcode, accessed on 1 July 2022) License.
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Table 1. List of attributes extracted by each network in the PAI ensemble. Each network is trained on
a different dataset, with a separate set of attributes. After coalescing similar attributes and eliminating
appearance-only attributes, we obtain 42 appearance attributes.

PA100k PETA RAP

Female, AgeOver60,
Age18–60, AgeLess18,
Front, Side, Back, Hat,
Glasses, HandBag,
ShoulderBag, Backpack,
HoldObjectsInFront,
ShortSleeve, LongSleeve,
UpperStride, UpperLogo,
UpperPlaid, UpperSplice,
LowerStripe, LowerPat-
tern, LongCoat, Trousers,
Shorts, Skirt & Dress,
Boots

Age16–30, Age31–45,
Age46–60, AgeAbove61,
Backpack, CarryingOther,
Casual lower, Casual upper,
Formal lower, Formal upper,
Hat, Jacket, Jeans, Leather-
Shoes, Logo, LongHair, Male,
Messenger Bag, Muffler, No
accessory, No carrying, Plaid,
PlasticBags, Sandals, Shoes,
Shorts, Short Sleeve, Skirt,
Sneaker, Stripes, Sunglasses,
Trousers, TShirt, UpperOther,
V-Neck

Female, AgeLess16, Age17–30,
Age31–45, BodyFat, BodyNormal,
BodyThin, Customer, Clerk, Bald-
Head, LongHair, BlackHair, Hat,
Glasses, Muffler, Shirt, Sweater,
Vest, TShirt, Cotton, Jacket, Suit-Up,
Tight, ShortSleeve, LongTrousers,
Skirt, ShortSkirt, Dress, Jeans,
TightTrousers, LeatherShoes,
SportShoes, Boots, ClothShoes, Ca-
sualShoes, Backpack, SSBag, Hand-
Bag, Box, PlasticBags, PaperBag,
HandTrunk, OtherAttchment, Call-
ing, Talking, Gathering, Holding,
Pusing, Pulling, CarryingbyArm,
CarryingbyHand

We also propose GaitFormer, a multi-task transformer-based architecture [25] that is
pretrained on DenseGait in a self-supervised manner, being able to perform exceptionally
well in zero-shot gait recognition scenarios on benchmark datasets, achieving 92.5% identi-
fication accuracy from direct transfer on the popular CASIA-B dataset, without using any
manually annotated data. Moreover, it obtains good results on demographic and pedestrian
attribute identification from walking patterns, with no manual annotations. GaitFormer
represents the first use of a plain transformer encoder architecture in gait skeleton sequence
processing, without relying on hand-crafted architectural modifications as in the case of
graph neural networks [26,27].

This paper makes the following contributions:

1. We release DenseGait, the largest dataset of skeleton walking sequences, densely
annotated with appearance information, for use in pretraining neural architectures
that can be further fine-tuned on specific gait analysis tasks. The dataset can be
found at https://bit.ly/3SLO8RW, under open credentialized access, for research
purposes only.

2. We propose GaitFormer, a multi-task transformer that is pretrained on the DenseGait
dataset and achieves exceptional results in zero-shot gait recognition scenarios on
benchmark datasets, achieving 92.52% accuracy on CASIA-B and 85.33% on FVG,
without training on any manually annotated data (+14.2% and +9.67% increase
compared to similar methods [11]). The code is made publicly available at: https:
//github.com/cosmaadrian/gaitformer

3. We explore the performance of GaitFormer on other gait analysis tasks, such as
gait-based gender estimation and attribute identification.

2. Related Work

2.1. Gait Analysis

Video gait analysis encompasses research efforts dedicated to automatically estimate
and predict various aspects of a walking person. Research has been mostly dedicated into
gait-based person recognition, with many benchmark datasets [8,11,12,14,28–31] available
for training and testing models. Moreover, there have been improvements in areas such as
estimating demographics information [19,32], emotion detection [33] and ethnicity estima-
tion [34] from only movement patterns. Sepas-Moghaddam and Etemad [35] proposed a
taxonomy to organize the existing works in the field of gait recognition. In this work, we fo-
cus mainly on body representation, as we made a deliberate choice of providing DenseGait
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with only movement information for anonymization. Broadly, works in gait analysis can
be divided into two major approaches in terms of body representation: silhouette-based
and skeleton-based.

2.1.1. Silhouette-Based Solutions

Silhouette-based approaches make use of silhouettes of walking individuals estimated
either through background subtraction methods or through instance segmentation and
tracking. Silhouettes are used in various forms, either in a condensed representation [36–38],
or as a sequences, as it is the norm in more modern methods [8,39–41]. Most notably,
GaitSet [39] processes the silhouettes as a set, as opposed to preserving the temporal infor-
mation present in a sequence. As such, the authors can include silhouettes from multiple
videos of the same walking subjects, achieving good invariance to walking variations.
GaitPart [40] processes the temporal variation of each individual body part separately in a
Micro-motion Capture Module (MCM), taking inspiration from model-based approaches.
Each body part exhibits different visual queues and temporal variation and the authors
propose to combine the each feature part to construct the final gait representation. Recently,
Lin et al. [41], advance the construction of neural architectures for processing silhouette se-
quences by proposing a Global-Local Feature Extractor (GLFE), which obtains good results
on benchmark datasets. Zhang et al. [8] propose GaitNet, a model which directly makes use
of the appearance of the individual and is able to output invariant feature representations
for gait recognition. Moreover, they also propose FVG, a dataset with 226 individuals, only
from the front-view angle, one of the more challenging angles in gait analysis, due to the
lack of perceived variation in limb movements.

2.1.2. Skeleton-Based Solutions

Skeleton-based approaches, on the other hand, avoid making use of appearance infor-
mation in the form of silhouettes, and instead focus on the moving anatomical skeleton
of the person, effectively processing only movement patterns. Approaches typically im-
ply processing walking sequences with a pose estimation [42] model, and processing the
resulting skeletons with a neural network, either by adapting conventional CNN mod-
ules [43], or with an LSTM [44,45]. More modern approaches make use of graph neural
networks to model the relationships between human joints [46,47]. Liao et al. [44] make
use of a combined CNN and LSTM architecture to model 2D skeleton sequences. A later
improvement makes use of 3D skeletons [45] to further improve results. Li et al. [46]
propose a graph-based convolutional architecture to process skeleton sequences, and a
Joints Relationship Pyramid Mapping to map spatio-temporal gait features into a discrim-
inative feature space. Li and Zhao [47] propose CycleGait, a graph-based approach that
incorporates multiple walking paces in the augmentation procedure and obtains robust
results in gait recognition on CASIA-B. In contrast to these approaches, we opted to take a
data-driven approach, instead of an algorithmic approach, and use a standard transformer
architecture and pretrain it on a large amount of weakly-labelled data. Recently, Cosma
and Radoi [11] proposed an approach called WildGait to skeleton-based gait recognition, in
which they automatically mine surveillance streams and pretrain a ST-GCN [26] model in a
self-supervised manner. Through fine-tuning, good results are obtained in recognition on
CASIA-B and FVG. Similarly to WildGait, we also process publicly available surveillance
streams, but increase the DenseGait dataset size by an order of magnitude. Moreover, we
densely annotate each skeleton sequence with 42 appearance attributes for use in zero-shot
attribute identification scenarios.

However, model-based approaches still lag behind methods utilizing appearance (i.e.,
silhouettes). This is most likely due to the imperfect extraction of skeletons by modern
pose estimators, which struggle to accurately detect fine-grained movements at a distance.
Moreover, using appearance-based methods is fundamentally easier, since a single silhou-
ette can contain identifying information about a subject. For instance Xu et al. [48] obtained
reasonable results for gait recognition using a single silhouette, which cannot be considered
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gait, as no temporal movement is being processed at all. This implies that recognition is
performed through “shortcuts” in the form of appearance features (i.e., body composition,
height, haircut, side-profile etc). For this reason, a more privacy-aware approach is to
process only movement patterns, which constitutes the motivation for releasing DenseGait
with only anonymized skeleton sequences, and disregarding silhouettes.

2.2. Transformers and Self-Supervised Learning

In recent years, there has been a insurgence of research in the area of self-supervised
learning, mostly due to the extremely high performance obtained in natural language
processing with models such as BERT [49] and GPT [50]. Self-supervised learning presumes
training models using aspects of the data itself as a supervisory signal. While initial efforts
in computer vision relied on creating artificial pretext tasks [51–53], the field is moving
towards contrastive-based approaches [29,54,55]. Methods such as SimCLR [29], Barlow
Twins [54] and Dino [55] obtaining almost similar performance to direct supervision.
Moreover, the transformer has proven to be a flexible architecture, capable of handling a
multitude of modalities such as text [49], images [56], video [57], speech [58], and highly
benefit from large-scale pretraining [59]. Taking inspiration from related efforts to process
non-textual data with transformers [56], we construct GaitFormer by processing flattened
skeletons as input “tokens”. In this manner, any human bias related to hand-crafted
graph relationships between the body joints is eliminated. Moreover, as opposed to graph
networks such as ST-GCN [27], training a similarly large transformer encoder make more
efficient use of computational resources, significantly reducing training time.

3. Method

3.1. Dataset Construction

For building the DenseGait dataset, we made use of public video streams (e.g., street
cams), and processed them with AlphaPose [42], a modern, state-of-the-art multi-person
pose estimation model. AlphaPose’s raw output is comprised of skeletons with (x, y, c)
coordinates for each of the 18 joints of the COCO skeleton format Lin et al. [60], correspond-
ing to 2D coordinates in the image plane and a prediction confidence score. We performed
intra-camera tracking for each skeleton with on SortOH [61]. SortOH is based on the
SORT [62] algorithm, which relies only on coordinate information and not on appearance
information. As opposed to DeepSORT [63] which makes use of person re-identification
models, SortOH is only using coordinates and bounding box size for faster computation
time while having comparably similar performance. SortOH ensures that tracking is not
significantly affected by occlusions.

To ensure that the skeleton sequences can be properly processed by a deep learning
model, we performed extensive data cleaning. We have filtered low confidence skeletons by
computing the average confidence of each of the 18 joints, and in each sequence, skeletons
with an average confidence of less than 0.5 were removed. Furthermore, skeletons with
feet confidence less than 0.4 were removed. This step guarantees that the feet are visible
and confidently detected—leg movement is one of the most important signals for gait
analysis. In our processing, we chose a period length T of 48 frames, which corresponds to
approximately 2 full gait cycles on average [64]. Surveillance streams do not have the same
frame rate between them, which makes the sequences have different paces and durations.
As such, we filtered short tracklets which have a duration of less than T∗ f ps

24 . We consider
24 FPS to be real-time video speed, and each video was processed according to its own
frame rate. Moreover, skeletons are linearly interpolated such that the pace and duration is
unified across video streams.

Similar to [11], we further normalized each skeleton by centering at the pelvis
coordinates (xpelvis, ypelvis) and scaling vertically by the distance between the head
and the hips (yneck − ypelvis) and horizontally by the distance between the shoulders
((xR.shoulder − xL.shoulder)). This procedure is detailed in Equations (1) and (2). The normal-
ization procedure aligns the skeleton sequences in a similar manner to the alignment step in

199



Sensors 2022, 22, 6803

face recognition pipelines [65]. This step eliminated the height and body type information
about the subject, ensuring that the person cannot be directly identified.

xjoint =
xjoint − xpelvis

|xR.shoulder − xL.shoulder|
(1)

yjoint =
yjoint − ypelvis

|yneck − ypelvis|
(2)

However, body type information should be preserved through the analysis of the
walking patterns. Moreover, normalization obscures the human position in the frame, to
prevent identification of the source video stream.

Finally, we filtered standing/non-walking skeletons in each sequence by computing
the average movement speed of the legs, which is indicative of the action the person is
performing. As such, if the average leg speed is less than 0.0015 and higher than 0.09, the
sequence was removed. The thresholds were determined through manual inspection of
the sequences. This eliminated both standing skeleton sequences as well as sequences
with erratic leg movement, which is most probably due to poor pose estimation output in
that case.

DenseGait is fully anonymized. Any information regarding the identity of particular
individuals in the dataset is eliminated, including appearance information (by keeping only
movement information in the form of skeleton sequences), height and body proportions
(through normalization), and the time, location, and source of the video stream. Identifying
individuals in DenseGait is highly unfeasible, as it requires external information (i.e., name,
email, ID, etc.) and specific collection of gait patterns.

The final dataset contains 217 K anonymized tracklets, with a combined length of 410
h. DenseGait is currently the largest dataset of skeleton sequences for use in pretraining gait
analysis models. Table 2 showcases a comparison between DenseGait and other popular
gait recognition datasets. Since the skeleton sequences are collected automatically through
pose tracking, it is impossible to quantify exactly the number of different identities in the
dataset, as, in some cases, tracking might be lost due to occlusions. However, DenseGait
contains a significantly larger number of tracklets compared to other available datasets
while also being automatically densely annotated with 42 appearance attributes. In the case
of UWG [11] and DenseGait, the datasets do not contain explicit covariates for each identity,
but rather covariates in terms of viewing angle, carrying conditions, clothing change, and
apparent action are present across the tracklet duration, similar to GREW [12].

Similarly to UWG [11], DenseGait does not contain multiple walks per person, rather
each tracklet is considered a unique identity. Compared to other large-scale datasets,
DenseGait tracks individuals for a longer duration, which makes it suitable for use in
self-supervised pretraining, as longer tracked walking usually contains more variability
for a single person. Figure 1 shows boxplots with a five-number summary descriptive
statistics for the distribution of track durations in each dataset. DenseGait has a mean
tracklet duration of 162 frames, which is significantly larger (z-test p < 0.0001) compared
to other datasets: CASIA-B [15]—83 frames, FVG [8]—97 frames, GREW [12]—98 frames,
UWG [11]—136 frames). Due to potential loss of tracking information, the dataset is noisy,
and can be used only for self-supervised pretraining.

3.2. Annotations with Appearance Attributes

Appearance attributes are essential for pretraining for tasks such as gender estimation [19],
age estimation [66] and pedestrian attribute identification [16–18]. To ensure that the
dataset is densely annotated with appearance attributes, we made use of an ensemble of
pretrained PAI networks, each trained on different popular PAI datasets. Specifically, we
employed three InceptionV3 [67] networks trained on RAP [68], PETA [69] and PA100k [16],
respectively. Figure 2 showcases the annotation procedure.
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Table 2. Comparison of popular datasets for gait recognition. DenseGait is an order of magnitude
larger, has more identities in terms of skeleton sequences (highlighted in bold), and each sequence is
annotated with 42 appearance attributes. * Approximate number given by pose tracker. † Implicit
covariates across tracking duration.

Dataset # IDs Sequences Covariates Views Env.

USF HumanID [31] 122 1870 Y 2 Outdoor
TUM-GAID [28] 305 3370 Y 1 Outdoor
FVG [8] 226 2857 Y 1 Outdoor
CASIA-B [15] 124 13,640 Y 11 Indoor
OU-ISIR [14] 10,307 144,298 N 14 Indoor
GREW [12] 26,000 128,000 Y - Outdoor
UWG [11] 38,502 * 38,502 Y † - Outdoor

DenseGait (ours) 217,954 * 217,954 Y † - Outdoor

Figure 1. Comparison between existing large-scale skeleton gait databases and DenseGait in terms
of distributions of tracklet duration. DenseGait is an order of magnitude larger than the next largest
skeleton database, while having a longer average duration (136 frames UWG vs 162 frames DenseGait).

Since each dataset has a different set of pedestrian attributes, we averaged similar
classes (e.g., AgeLess16 and AgeLess18 into AgeChild), coalesced similar classes (e.g., Formal
and Suit-Up into FormalWear) and removed attributes that cannot evidently be estimated
from movement patterns (e.g., BaldHead, Hat, V-Neck, Glasses, Plaid etc.).

For a particular sequence, we take the cropped image of the pedestrian at every T
frames (where T is the period length), and randomly augment it k = 4 times (e.g., random
horizontal flips, color jitter and small random rotation). For each crop, each augmented
version is then processed by a PAI network and the results are averaged such that the
output is robust to noise [70]. Finally, to have a unified prediction for the walking sequence,
results are averaged according to the size of the bounding box relative to the image, similar
to Catruna et al. [19]. Predictions on larger crops have a higher weight, with the assumption
that the pedestrian appearance is more clearly distinguishable when closer to the camera.

Figure 3 showcases the final list of attributes, and their distribution across the dataset.
We have a total of 42 attributes, split into 8 groups: Gender, Age Group, Body Type, Viewpoint,
Carry Conditions, Clothing, Footwear and Apparent Action. For the final annotations, we chose
to keep the soft-labels and not round them, as utilizing soft-labels for model training was
shown to be a more robust approach when dealing with noisy data [70].

Figure 4 showcases selected examples of attribute predictions from the PAI ensemble.
Since surveillance cameras usually have low resolution and the subject might be far away
from the camera, some pedestrian crops are blurry and might affect prediction by the
PAI ensemble. For gender, age group, body composition and viewpoint, the models
are confidently identifying these attributes. However, for specific pieces of clothing (i.e.,
footwear: Sandals/LeatherShoes), predictions are not always reliable, due to the low
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resolution of some of the crops, but the errors are negligible when taking into account the
scale of the dataset.

Figure 2. Overview of the automatic annotation procedure for the 42 appearance attributes. To
robustly annotate attributes, an ensemble of pretrained networks is used in conjunction with multiple
augmentations of the same crop. Predictions across the sequence are averaged according to their
bounding-box area.

Figure 3. Distribution of the 42 appearance attributes in DenseGait. The dataset is annotated in a
fine-grained manner with attributes ranging from internal aspects of the person (Gender, Age Group,
Body Type) to appearance only labels (Clothing, Footwear).

Figure 4. Qualitative examples for selected attributes from the PAI ensemble. The networks correctly
identify gender, age group and viewpoint. However, in some cases, clothing and, more specifically,
footwear are more difficult to estimate in low resolution scenarios.
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3.3. Description of Model Architecture

For pretraining on the DenseGait dataset for the tasks of gait-based recognition and
attribute identification, we chose to adapt the popular transformer encoder architecture [25]
to handle skeleton sequences. Initially, transformers were immensely successful in handling
sequential data in the form of text, effectively replacing LSTM [71] networks, the de facto
approach for these problems. However, lately, transformers have been used in a variety
of problems, being able to handle images [56], video [57] and multi-modal data [72].
Moreover, transformer architectures in particular highly benefit from large-scale, self-
supervised pretraining [49,50,55], allowing models to be effectively fine-tuned on more
specific datasets with small amounts of annotated data.

To handle skeleton sequences, we abstain from making any hand-crafted architectural
modifications, as in the case of Plizzari et al. [27], which uses a hybrid approach by combin-
ing graph computation on the skeleton and using multi-head attention on the extracted
features. Instead, we take inspiration from ViT [56], which processes images as a sequence
of flattened patches that are fed into a standard transformer encoder network. Figure 5
showcases the training procedure for GaitFormer in the multi-task training regime. Each
skeleton is flattened into a 54 dimensional vector and is linearly projected with a standard
learnable feed-forward layer into a 256 dimensional space. Each skeleton projection is then
fed into a transformer encoder network. We opted for learnable positional embedding
that is added to each projection instead of concatenated, to avoid increasing the dimen-
sionality. After the transformer encoder, representations for each skeleton are averaged,
and a final linear feed-forward layer of 256 elements is used as the final embedding. Fur-
ther, as described in SimCLR [29], we used an additional 128-dimension linear layer for
training with a supervised contrastive objective [73]. Additionally, a linear layer is used
as appearance head to estimate the pedestrian attributes that is trained using a standard
binary-crossentropy loss.

We used three different model sizes for the transformer encoder in our experiments,
with 4 encoder layers (SM), 8 encoder layers (MD) and 12 encoder layers (XL). In all types
of architectures, 8 attention heads were used, and the internal feed-forward dimensionality
was 256 [25].

Figure 5. Overview of GaitFormer (Multi-Task) training procedure. Flattened skeletons are linearly
projected using a standard feed-forward layer and fed into a transformer encoder. The vectorized
representations are average pooled and the resulting 256-dimensional vector is used for estimating
the identity and to estimate the 42 appearance attributes through the “Appearance Head”. The
contrastive objective (SupConLoss) is applied to a lower 128-dimensional linear projection, similar to
the approach in SimCLR [29].
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3.4. Training Details

For training on DenseGait, we chose to use contrastive learning [29] as a supervisory
signal. By design, contrastive methods work by attracting representations belonging to the
same class, while simultaneously repelling samples from different classes. This paradigm is
identical to the objective for recognition problems, which constitues one of the main tasks
in gait analysis. Specifically, we used SupConLoss [73], with a temperature of τ = 0.001,
alongside a two-view sampler for each skeleton in the batch. SupConLoss assumes a
multi-viewed batch, with multiple augmentations for the same sample. Each view of a
skeleton sequence is randomly augmented by the standard suite of augmentations for this
data modality: random sequence crops of fixed length of T = 48, random flips with 50%
probability, random paces [53], and random gaussian noise added to joints coordinates.
Let i ∈ I ≡ {1 . . . 2N} be the index of an arbitrary augmented sample. SupConLoss is
defined as:

Lsup = ∑
i∈I

−1
|P(i)| ∑

p∈P(i)
log

exp(zi · zp/τ)

∑a∈A(i) exp(zi · za/τ)
(3)

In Equation (3), zl = Enc(x̃l) denotes the embedding of a skeleton sequence xl, “·”
denotes the dot product operation and A(i) ≡ I \ {i}. Moreover, P(i) ≡ {p ∈ A(i) : ỹp = ỹi}
is the set of indices of all positives in the multi-viewed batch distinct from i. In our case,
the positive pairs are constructed by two different augmentations of the same skeleton
sequence. The variability of the two augmentations is higher if the skeleton is tracked for a
longer duration of time, as the walking individual might change direction.

As suggested in Chen et al. [29], the supervisory signal given by SupConLoss is applied
to a lower dimensional embedding (128 dimensions) to avoid the curse of dimensionality.

For predicting appearance attributes, which is a multi-label problem, we used a
standard binary-crossentropy loss between each appearance label (pi) and its corresponding
prediction (yi) (Equation (4)). As previously mentioned, we keep the soft labels as a
supervisory signal, to prevent the network from overfitting and be more robust to noisy
or incorrect labels [74]. Moreover, since learning appearance labels can regarded as a
knowledge distillation problem between the PAI ensemble and the transformer network,
soft labels help improve the distillation process [75].

Lappearance = −(yi log(pi) + (1 − yi) log(1 − pi))) (4)

In multi-task (MT) training scenarios, we used a combination of the two losses, with a
weight penalty of λ = 0.5 on the appearance loss Lappearance. We chose λ = 0.5 empirically,
such that the two losses have similar magnitudes. The final loss function is defined as:

L f inal = LSupCon + λLappearance (5)

In plain contrastive training scenarios, we employ only the SupConLoss, without
predicting attributes (i.e., L f inal = LSupCon).

The motivation for pre-training the network in a multi-task setting is that the network
not only learns to cluster walking sequences by their identity, but also to take appearance
attributes into account. For instance, predicting the gender and age, even if they are
not completely reliable, could prove useful for gait recognition, as demographics can be
considered soft-biometrics, allowing the network to automatically filter identities by these
attributes. On the other hand, in contrastive-only scenario, the network is under a classical
self-supervised regime.

We used a batch size of 1024 across our experiments, with a cyclical learning rate [76]
ranging from 0.0001 and 0.001 across 20 epochs. We trained all models for 400 epochs.

4. Experiments and Results

This section explores the performance of GaitFormer on gait-based recognition, gender
identification and pedestrian attribute identification. We are primarily interested in evalu-
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ating the model in scenarios with low amounts of annotated data and we opted to use the
two popular benchmark datasets originally constructed for gait recognition: CASIA-B [15]
and FVG [8]. For gender estimation, we manually annotated the gender information for
each identity in the two datasets and constructed CASIA-gender and FVG-gender. We
briefly describe each dataset below.

We chose CASIA-B to compare with other skeleton-based gait recognition models,
since it is one of the most popular gait recognition datasets in literature. It contains
124 subjects walking indoors in a straight line, captured with 11 synchronized cameras
with three walking variations—normal walking (NM), clothing change (CL) and carry
conditions (BG). According to Yu et al. [15], the first 62 subjects are used for training
and the rest for evaluation. CASIA-gender consists of manually annotated the subjects in
CASIA-B with gender information, having a split of 92 males and 32 females. We maintain
the training and validation splits from the recognition task, using the first 62 subjects for
training (44 males and 18 females) and the rest for validation (48 males and 14 females).
We use FVG to evaluate the robustness of GaitFormer, as it contains different covariates
than CASIA-B such as varying degrees of walking speed, the passage of time and cluttered
background. Moreover, FVG only contains walks from the front-view angle, which is
more difficult for gait processing due to lower perceived limb variation. According to
Zhang et al. [8], from the 226 identities present in FVG, the first 136 are used for training
and the rest for testing. Similarly, FVG-gender contains manual annotations with gender
information, obtaining 149 males and 77 females. We maintain the training and validation
splits from the recognition task, utilizing the first 136 individuals for training (83 males and
53 females) and the rest for validation (66 males and 24 females).

4.1. Recognition

We initially trained GaitFormer under two regimes: (i) contrastive only and (ii) multi-
task (MT), which implies training with SupConLoss [73] on the tracklet ID while simultane-
ously estimating the appearance attributes (Figure 5). We experiment with three models
sizes: SM—4 encoder layers (2.24M parameters), MD—8 encoder layers (4.35M parameters)
and XL—12 encoder layers (6.46M parameters).

We pretrain GaitFormer on the DenseGait dataset under the mentioned conditions
and directly evaluate recognition performance in terms of accuracy on CASIA-B and FVG,
without fine-tuning. In all experiments we perform a deterministic crop in the middle of the
skeleton sequences of T = 48 frames, and use no test-time augmentations. For each cropped
skeleton sequence, features are extracted using the 256-dimensional representation and
are normalized with the l2 norm. In Table 3 we present results on the walking variations
for each model size and training regime. For CASIA-B, we show mean accuracy where
the gallery set contains all viewpoints except the probe angle, in the three evaluation
scenarios: normal walking (NM), change in clothing (CL) and carry bag (CB). For FVG, we
show accuracy results based on the evaluation protocols mentioned by Zhang et al. [8],
corresponding to different walking scenarios (walk speed (WS), change in clothing (CL),
carrying bag (CB), cluttered background (CBG) and ALL). Results show that unsupervised
pretraining on DenseGait is a viable way to perform gait recognition, achieving an accuracy
of 92.52% on CASIA-B and 85.33% on FVG, without any manually annotated data available.
Notably, multi-task learning on appearance attributes provides a consistent positive gap in
the downstream performance.

Model size in terms of number of layers does not seem to considerably affect per-
formance on benchmark datasets. GaitFormerMD (8 layers) fairs consistently better than
GaitFormerXL (12 layers), while being similarly close to GaitFormerSM (4 layers).

Figure 6 compares GaitFormerMD pretrained on DenseGait in the two training regimes
(contrastive only—Cont. and Multi-Task—MT) and GaitFormerMD randomly initial-
ized. The networks were fine-tuned on progressively larger samples of the corresponding
datasets: for CASIA-B, we sampled multiple runs for the same identity (from 1 to 10 runs
per ID), and for FVG, we randomly sampled a percentage of runs per each identity. Mod-
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els were fine-tuned using Layer-wise Learning Rate Decay (LLRD) [77], which implies a
higher learning rate for top layers and a progressively lower learning rate for bottom layers.
The learning rate was decreased linearly from 0.0001 to 0, across 200 epochs. The results
show that unsupervised pretraining has a substantial effect on downstream performance
especially in low data scenarios (direct transfer and 10% of available data). Moreover,
pretraining the model in Multi-Task learning regime, in which the network was tasked
to estimate appearance attributes from movement alongside with the identity, provides a
consistent increase in performance.

Table 3. GaitFormer direct transfer performance on gait recognition on CASIA-B and FVG datasets.
We highlight in bold the best overall result for each dataset.

CASIA-B FVG

Size Training NM CL CB WS CB CL CBG ALL

SM Contrastive 89.00 22.36 61.88 77.33 81.82 54.27 86.75 77.33
MD Contrastive 90.18 23.46 60.78 78.33 72.73 49.15 83.33 78.33
XL Contrastive 91.79 21.11 63.12 76.33 69.70 48.29 87.61 76.33

SM MT 92.52 22.73 67.16 84.67 81.82 59.40 91.45 84.67
MD MT 92.52 23.31 65.10 85.33 87.88 53.42 88.89 85.33
XL MT 90.69 20.75 60.34 85.00 81.82 51.71 91.03 85.00

Figure 6. Fine-tuning results on gait recognition on CASIA-B and FVG, on progressively larger
number of runs per identity. Compared to the same network randomly initialized, pretraining
on DenseGait offers substantial improvements, even in the direct transfer regime. A consistent
performance increase is obtained when also estimating attributes.

Table 4 presents state-of-the-art results compared with other skeleton-based gait
recognition models. We showcase the results of GaitFormerSM trained in the Multi-Task
(MT) regime, without fine-tuning (direct) and tuned with all the available training data in
CASIA-B. For comparison, we include WildGait [11] with and without fine-tuning, as this
model is also pretrained on a large dataset of skeleton sequences. We also compare with our
implementation of GaitGraph Teepe et al. [78]—a multi-branch ST-GCN which processes
joint coordinates, velocities and bone angles, achieving great results on CASIA-B—and
with a ST-GCN pretrained on DenseGait.
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It is clear that the fine-tuned GaitFormerSM has very good results even without fine-
tuning, achieving comparable results with the state of the art. Fine-tuning marginally
increases the performance, achieving 96.2% accuracy on normal walking (NM) and 72.5%
performance in carry bag (CB).

Table 4. GaitFormer comparison to other skeleton-based gait recognition methods on CASIA-B dataset.
In all methods the gallery set contains all viewpoints except the proble angle. In bold and underline
we highlight the best and second best results for a particular viewpoint and walking condition.

Method 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦ Mean

NM

GaitGraph 79.8 89.5 91.1 92.7 87.9 89.5 94.35 95.1 92.7 93.5 80.6 89.7
ST-GCN (DenseGait) 89.5 89.5 95.1 87.9 81.4 68.5 64.5 89.5 88.7 84.6 82.2 83.8
WildGait—direct 72.6 84.6 90.3 83.8 63.7 62.9 66.1 83.0 86.3 84.6 83.0 78.3
PoseFrame 66.9 90.3 91.1 55.6 89.5 97.6 98.4 97.6 89.5 69.4 68.5 83.1
GaitFormerSM—MT—direct 94.3 97.5 99.2 98.4 79.8 80.6 89.5 100.0 94.3 95.1 88.7 92.5
WildGait—tuned 86.3 96.0 97.6 94.3 92.7 94.3 94.3 98.4 97.6 91.1 83.8 93.4
GaitFormerSM—MT—tuned 96.7 99.2 100.0 99.2 91.9 91.9 95.1 98.4 96.7 97.6 91.1 96.2

CL

GaitGraph 27.4 33.0 40.3 37.1 33.8 33.0 35.4 33.8 34.6 21.7 17.7 31.6
ST-GCN (DenseGait) 18.5 22.5 25.0 21.7 13.7 18.5 21.7 31.4 21.7 21.7 16.9 21.2
WildGait—direct 12.1 33.0 25.8 18.5 12.9 11.3 21.7 24.2 20.1 26.6 16.1 20.2
PoseFrame 13.7 29.0 20.2 19.4 28.2 53.2 57.3 52.4 25.8 26.6 21.0 31.5
GaitFormerSM/MT—direct 12.9 21.7 29.0 25.8 16.1 18.5 22.5 29.0 27.4 26.6 20.1 22.7
WildGait—tuned 29.0 32.2 35.5 40.3 26.6 25.0 38.7 38.7 31.4 34.6 31.4 33.0
GaitFormerSM/MT—tuned 35.5 35.5 33.8 33.8 20.9 30.6 31.4 31.4 28.2 42.7 29.8 32.2

BG

GaitGraph 64.5 69.3 70.1 62.9 61.2 58.8 59.6 58.0 57.2 55.6 45.9 60.3
ST-GCN (DenseGait) 78.2 68.5 71.7 60.4 59.6 45.9 46.7 58.0 58.0 58.0 51.6 59.7
WildGait—direct 67.7 60.5 63.7 51.6 47.6 39.5 41.1 50.0 52.4 51.6 42.7 51.7
PoseFrame 45.2 66.1 60.5 42.7 58.1 84.7 79.8 82.3 65.3 54.0 50.0 62.6
GaitFormerSM/MT—direct 78.2 71.7 84.7 74.2 56.4 50.0 57.2 66.1 69.3 70.9 59.6 67.1
WildGait—fine-tuned 66.1 70.1 72.6 65.3 56.4 64.5 65.3 67.7 57.2 66.1 52.4 64.0
GaitFormerSM/MT—tuned 82.2 80.6 83.8 72.6 62.9 69.3 68.5 70.1 69.3 77.4 60.4 72.5

4.2. Comparison with ST-GCN and Other Pretraining Datasets

In Table 5, we compare GaitFormer with ST-GCN [26] under different pretraining
datasets. Reported results are mean accuracy across all angles for CASIA-B, under normal
walking (NM) scenario, and accuracy under ALL scenario for FVG. The networks were not
fine-tuned on these datasets; we present direct transfer performance after pretraining. We
chose to pretrain on OU-ISIR [13], as this dataset is one of the most popular, large-scale
datasets for gait recognition. However, OU-ISIR lacks data diversity, as all individuals are
walking on a treadmill for a short duration, which is not the case for DenseGait. We also
chose to pretrain on GREW [12], as it is also a diverse dataset collected in the wild, but
contains fewer identities that walk for a comparably shorter duration of time.

Results show that, as a pretraining dataset, DenseGait is consistently outperforming
GREW and OU-ISIR across the two architectures. These results are consistent with the
insights in Figure 1, in which we posit that longer tracking duration for the individuals
imply larger data diversity when pretraining in a contrastive self-supervised fashion, which
directly improves performance.

4.3. Gait-Based Gender Detection

Table 6 presents results for direct transfer (zero-shot) performance for gender esti-
mation on CASIA-gender and FVG-gender. In this case, we compared different sizes of
GaitFormer trained on DenseGait in two manners: i) only estimating attributes, without
a constrastive objective (Attributes Only), and ii) estimating attributes and identity us-
ing a constrastive objective (MT). Similarly to the case of gait recognition, the Multi-Task
networks consistently outperforms the other training regime. Moreover, the networks
achieved reasonable performance in terms of F1 score (76.18% for CASIA-gender and
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86.81% for FVG-gender), considering that the networks were not exposed to any manually
annotated data.

Table 5. Comparison between GaitFormer and ST-GCN pretrained with Supervised Contrastive on
GREW [12], OU-ISIR [13] and our proposed DenseGait. Performance is directly correlated with mean
tracklet duration on each dataset as shown in Figure 1. We highlight in bold the best results for each
architecture and dataset.

Backbone Pretraining Data CASIA-B (NM) FVG (ALL)

ST-GCN
OU-ISIR 55.65 63.33
GREW 61.14 56.67
DenseGait (ours) 83.80 75.28

GaitFormer (ours)
OU-ISIR 25.73 51.34
GREW 65.40 64.04
DenseGait (ours) 89.0 77.33

Table 6. GaitFormer direct transfer performance on gait-based gender estimation on CASIA-gender
and FVG-gender. We highlight in bold the best overall results for each dataset.

CASIA-Gender FVG-Gender

Size Training Prec. Recall F1 Prec. Recall F1

SM Attributes 94.54 62.46 72.10 85.87 84.9 85.10
MD Attributes 94.48 63.66 73.07 82.03 79.87 80.27
XL Attributes 94.59 62.43 72.08 84.36 84.43 84.26

SM MT 94.84 63.61 73.00 86.47 86.34 86.33
MD MT 94.71 61.50 71.31 86.96 86.87 86.81
XL MT 94.72 67.67 76.18 87.06 86.21 86.38

Figure 7 presents the performance under fine-tuning of GaitFormerXL on CASIA-
gender and FVG-gender, in similar conditions to the recognition task. All networks are
trained with a binary-crossentropy objective on the gender estimation task, without taking
the person identity into account at training time. GaitFormerXL under Multi-Task training
regime is consistently superior to a network initialized from random weights, achieving an
F1 score of 93.09% on CASIA-gender and of 91.51% on FVG-gender. The pretrained models
significantly benefit from fine-tuning when small amounts of training data is available.
Performance slightly increases with the availability of more training data.

4.4. Gait-Based Pedestrian Attribute Identification

For pedestrian attribute identification, we process a 10-h surveillance stream, corre-
sponding to 10,733 tracklets, and use it for testing. For evaluation, we use the attribute
pseudo-labels annotated automatically by the PAI ensemble. Figure 8 showcases R2 score
results for GaitFormerMD trained with a multi-task objective. This score is computed
relative to the soft pseudo-labels estimated by the PAI ensemble. We emphasize that the
model only uses movement information to estimate these labels, and has no information
regarding appearance. Using a skeleton-based model for pedestrian attribute identifi-
cation is useful in situations where the appearance of the person is unavailable (i.e., in
privacy-critical scenarios). The model is effectively distilling external appearance into
movement representations.

The model obtains good results in categories such as Gender, AgeGroup, BodyType and
Viewpoint. The model is able to obtain better than average performance on categories such
as Footwear, and some types of clothing. However, some clothing categories have proven
to be very difficult to model, especially LongCoat and Trousers. We hypothesize that such
pieces of clothing negatively affect the accuracy of the pose estimation model, resulting in
low quality extracted skeletons.
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Figure 7. Fine-tuning results for GaitFormer on CASIA-gender and FVG-gender, trained on pro-
gressively larger samples of the datasets. Compared to a randomly initialized network, GaitFormer
benefits significantly from fine-tuning in extremely low data regimes (e.g., 10% of available anno-
tated data). Compared to only pretraining on predicting attributes (Attributes Only), the Multi-Task
network has consistently better performance across all fractions of the datasets.

These are promising results which show that external appearance and movement are
intrinsically linked together. This is evident in the more explicit relationship between, for
example, footwear and gait, in which, intuitively, gait is severely affected by the walker’s
choice of shoes. Clothing, accessories, and actions while walking can be regarded as
“distractor” attributes, which affect gait only temporarily. However, there are more subtle
information cues which are present in gait, related to the developmental aspects of the
person (e.g., gender, age, body composition, mental state etc). These attributes are more
stable in time, and can provide insights into the internal workings of the walker. We
posit that, in the future, works in gait analysis will tackle more rigorously the problem
of estimating the internal state of the walker (i.e., personality/mental issues) through
specialized datasets and methods.

Figure 8. GaitFormerMD performance in terms of R2 score. GaitFormerMD was trained with the
multi-task objective. The model uses only movement information to predict attributes, and no
information regarding the appearance of the individual.
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4.5. Inference Time

Using transformer architectures for processing gait has other advantages besides a
noticeable increase in downstream performance. Transformers have been shown to be
more efficient in terms of inference time when compared to convolutional networks [56].
This effect is not directly correlated with the number of parameters, but is rather more
influenced by the network structure [79].

In Figure 9, we show a comparison between multiple sizes of GaitFormer, a plain trans-
former module minimally adapted for processing skeleton sequences, with the ST-GCN net-
work, a popular architecture for skeleton action recognition [26] and gait analysis [46]. We
computed the inference time across multiple period lengths (from 12 frames to 96 frames)
to evaluate the scalability when processing shorter/longer sequences. For each period
length, we run 100 experiments with a batch size of 512 and show the mean inference time
in seconds, along with the standard deviation. All experiments were run on a NVIDIA
RTX 3060 GPU. Even with comparable and exceeding number of parameters (ST-GCN
from Cosma and Radoi [11] has 3.11M parameters), the transformer architecture clearly
outperforms graph-convolutional models for processing gait sequences across multiple
sequence lengths.

Figure 9. Inference times across processed walking duration length (period length) for ST-GCN and
the various sizes of GaitFormer. We report the mean and stardard deviation across 100 runs, for each
period length.

5. Conclusions

In this work, we presented DenseGait, currently the largest dataset for pretraining
gait analysis models, consisting of 217 K anonymized skeleton sequences. Each skele-
ton sequence is automatically annotated with 42 appearance attributes by making use of
an ensemble of pretrained PAI networks. We make DenseGait available to the research
community, under open credentialized access, to promote further advancement in the
skeleton-based gait analysis field. We proposed GaitFormer, a transformer that is pre-
trained on DenseGait in a self-supervised and multi-task fashion. The model obtains
92.5% accuracy on CASIA-B and 85.3% accuracy on FVG, without processing any man-
ually annotated data, achieving higher performance even compared to fully supervised
methods. GaitFormer represents the first application of plain transformer encoders for
skeleton-based gait analysis, without any hand-crafted architectural modifications. We
explored pedestrian attribute identification based solely on movement, without utilizing
appearance information. GaitFormer achieves good results in gender, age body type, and
clothing attributes.
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Abstract: Pedestrians are often obstructed by other objects or people in real-world vision sensors.
These obstacles make pedestrian-attribute recognition (PAR) difficult; hence, occlusion processing for
visual sensing is a key issue in PAR. To address this problem, we first formulate the identification
of non-occluded frames as temporal attention based on the sparsity of a crowded video. In other
words, a model for PAR is guided to prevent paying attention to the occluded frame. However,
we deduced that this approach cannot include a correlation between attributes when occlusion
occurs. For example, “boots” and “shoe color” cannot be recognized simultaneously when the foot is
invisible. To address the uncorrelated attention issue, we propose a novel temporal-attention module
based on group sparsity. Group sparsity is applied across attention weights in correlated attributes.
Accordingly, physically-adjacent pedestrian attributes are grouped, and the attention weights of a
group are forced to focus on the same frames. Experimental results indicate that the proposed method
achieved 1.18% and 6.21% higher F1-scores than the advanced baseline method on the occlusion
samples in DukeMTMC-VideoReID and MARS video-based PAR datasets, respectively.

Keywords: deep learning; group-sparsity loss; temporal attention module; video-based pedestrian-
attribute recognition

1. Introduction

Pedestrian-attribute recognition (PAR) is a task that predicts various attributes of
pedestrians detected by surveillance vision sensors, e.g., CCTV. It is a human-searchable
semantic description and can be adopted in soft biometrics for visual surveillance [1].
Several studies have been conducted on this subject [2–8], owing to the importance of its
applications, such as in finding missing persons and criminals. A few studies have focused
on occlusion situations for pedestrian detection [9] and person re-identification [10–12]
based on visual sensors. However, the occlusion problem in the field of PAR remains an
open problem.

Due to the fact that other objects and persons obstruct pedestrians, it is impossible to
resolve this challenge based on a single image. However, a video sensor contains more
pedestrian information than an image, thus allowing a model to leverage information from
multiple frames. Consider a case in which the lower body of a pedestrian is occluded in
some frames but the other frames contain a visible lower-body appearance of the same
pedestrian. In this case, we must use only the information obtained from the frame with
the visible lower body rather than the one in which the lower body is occluded. Recently,
Chen et al. [13] proposed a video-based PAR method that calculates temporal attention
probabilities to focus on frames that are important for attribute recognition. However, this
method concentrates on incorrect frames when a pedestrian is occluded by other objects
or people.

Recent studies are yet to comprehensively consider occlusion analysis. In this study,
we propose a novel method for improving PAR performance in occlusion cases. As an
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intuitive idea, to avoid concentrating on the frame with the occlusion, we select a frame
that can best estimate each attribute. Therefore, one solution adopts the sparsity regular-
ization [14] of temporal attention weights. In other words, sparse attention maximizes
relevant information in the other weighted frames. However, our experimental results
indicate that adding this simple sparsity constraint to the baseline method [13] does not
accurately handle occlusion. This is because the method proposed in [13] employs multiple
independent branches for multi-attribute classification. Sparsity-constrained temporal
attention cannot understand the relationships between the attributes. However, pedestrian
attributes are closely related to each other. In particular, semantically adjacent attributes
exhibit more significant relationships, as illustrated in Figure 1. Therefore, the relationship
between attributes is key to finding meaningless frames, and we formulate this relationship
as temporal attention based on group sparsity.

Hat: No
Gender: Female

Backpack: Yes
Top Color: Gray

Shoulder Bag: No
Handbag: No

Top Length: Short
Bottom Color: Black

Boots: Other Shoes
Shoe Color: Bright

Motion: Walking
Pose: Lateral-Back

3

4

Attribute grouping 
for local attention

Motion: Walking

Pose: Lateral-Back

Hat: No

Gender: Female

Backpack: Yes

Top Color: Gray

Shoulder Bag: No

Handbag: No

Top Length: Short

Bottom Color: Black

Boots: Other Shoes

Shoe Color: Bright

Figure 1. Attribute grouping for local attention. Physically-adjacent pedestrian attributes are grouped
into one group. Group 1 is for attributes related to the entirety of a pedestrian. Groups 2, 3, 4, and 5
are for attributes related to the head, upper body, lower body, and feet of a pedestrian, respectively.
The network focuses on the semantic information of the pedestrian such that it helps in recognizing
pedestrian attributes occluded by obstacles.

Group sparsity [15] is a more advanced method than sparsity; it can gather the related
attention of the attributes into a single group. For instance, in Figure 1, information
regarding “boots” and “shoe color" is destroyed at the same time an obstacle occludes the
feet of a pedestrian. In this case, group sparsity categorizes the “boots” and “shoe color”
together into one group. Then, their attention weights are simultaneously suppressed.
Therefore, the group constraint achieves more improved results for occlusion situations
than those of the sparsity method. Figure 2 presents an overview of the proposed method
comprising a shared feature extractor, multiple attribute-classification branches, and a
temporal attention module based on group sparsity across multiple branches.
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Figure 2. Overview of the network architecture of the proposed method. It comprises a feature
extractor, Sigmoid-based temporal attention modules, and attribute classifiers. Due to the fact
that the attributes of the pedestrians are closely related to each other, the attention weights for
semantically adjacent attributes have similar values to each other, i.e., temporal frame attentions
are not independent. To reflect this point, we formulate a temporal attention module based on the
group-sparsity constraint. In the T × B block, the attention weights of the related attributes are
grouped by the L2 norm in each frame.

Extensive experiments were conducted to demonstrate the improvement of the pro-
posed method in its effectiveness against occlusion. The proposed method outperformed
the advanced methods on the DukeMTMC-VideoReID [13,16,17] and MARS [13,18] bench-
mark datasets. In particular, the proposed method achieved 1.18% and 6.21% higher
F1-scores than those of the advanced baseline method on occlusion samples. We also
validated the proposed method on additional occlusion scenarios with synthetic data,
demonstrating that the proposed method consistently outperformed the advanced baseline
method with a maximum F1-score of 6.26%.

Our main contributions are summarized as follows.

• The proposed temporal attention module is designed to reflect the temporal sparsity
of useful frames in a crowded video. Our model is guided to not pay attention to the
occluded frame, but rather to the frame where relevant attributes are visible.

• When a pedestrian is occluded owing to obstacles, information on several related
attributes is difficult to infer simultaneously. Therefore, we propose a novel group-
sparsity-based temporal attention module. This module allows a model to robustly
pay attention to meaningful frames to recognize the group attributes of a pedestrian.

• Extensive experiments provide performance analysis of PAR methods on various occlu-
sion scenarios, where the proposed method outperformed the state-of-the-art methods.

The remainder of this paper is organized as follows. First, we introduce sparsity and
group-sparsity regularizations, as well as other related work in Section 2.2, and then the
proposed method is described in Section 3. Subsequently, Section 4 presents details on the
implementation and experimental results. Finally, we discuss and conclude the paper in
Section 5.
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2. Preliminaries

2.1. Sparsity and Group-Sparsity Regularizations

In deep learning, training a classifier model f is an under-determined problem due
to finite datasets [19]. A regularization term R is used to impose prior knowledge on
parameters w as

min
w

n

∑
i=1

L( f (xi; w), yi) + λR(w), (1)

where xi, L, and λ represents the i-th training example, a loss function between predict-
ing results f (xi; w) and their ground truths yi, and a hyper-parameter that controls the
importance of the regularization term, respectively.

Sparsity Regularization is adopted to induce the model to be sparse. The feasible
constraint for sparsity is to reduce the number of nonzero parameter elements, defined as
L0 norm R(w) = ‖w‖0. However, because the L0 norm solution is NP-hard problem, the
L1 norm R(w) = ‖w‖1 = ∑j |wj| is used to approximate L0 norm in several deep learning
problems [20].

Group-sparsity regularization is employed to introduce the K-group structure into

the leaning problem as R(w) = ||w||2,1 = ∑K
k=1 ‖wk‖2, where ‖wk‖2 =

√
∑
|Gk |
j=1 (w

k
j )

2. This

is interpreted as imposing an L2 norm regularizer on members of each group, wk ∈ R
|Gk |,

and then inducing an L1 norm over groups [21,22].
Applications: Nguyen et al. [20] proposed a sparse temporal pooling network for

action localization in a video. Unlike the sparsity loss method that adjusts each value,
the group-sparsity loss method simultaneously controls the values associated with each
other [21–24]. We propose a method that simultaneously adjusts the attention weights of
pedestrian attributes by designing the group-sparsity constraint.

2.2. Pedestrian-Attribute Recognition

Video-based PAR: Chen et al. [13] proposed an attention module that indicates the
extent to which the model pays attention to each frame for each attribute. They designed
branches and classifiers for each attribute in the video. Specker et al. [25] employed
global features before temporal pooling to utilize the different pieces of information from
various frames. However, existing video-based PAR methods are yet to comprehensively
consider the occlusion problem. In this study, we focus on the occlusion handling of
video-based PAR.

Image-based PAR: Liu et al. [2] proposed the HydraPlus-Net network that utilizes
multi-scale features. Tang et al. [26] proposed an attribute localization module (ALM) that
learns specific regions for each attribute generated from multiple levels. Furthermore,
Ji et al. [27] proposed a multiple-time-steps attention mechanism that considers the current,
previous, and next time steps to understand the complex relationships between attributes
and images. Jia et al. [28] proposed Spatial and Semantic Consistency Regularizations
(SSCso f t). The spatial consistency regularization understands the regions related to each
attribute. In addition, they proposed a semantic consistency regularization to extract the
unique semantic features of each attribute.

With image-based PAR, it is difficult to achieve accurate attribute recognition for
various situations, such as occlusion situations. On the other hand, videos contain more
information than images; recently, the number of video-based studies has been increasing.

3. Proposed Method

3.1. Problem Formulation

Figure 3 presents examples of occluded pedestrian images from two video PAR
datasets (DukeMTMC-VideoReID and MARS [13]). Typically, pedestrian images obtained
from surveillance cameras in the real world are often obscured by crowds of people, cars,
and buildings. In addition, the instability of pedestrian tracking results in distorted pedes-
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trian images. Therefore, it is important to correctly recognize pedestrian attributes in
occlusion situations; however, occluded pedestrian images make it impossible to obtain
single-image-based PAR. This study attempts to achieve improved PAR using multiple
frames, i.e., video-based PAR.

(a) (b)

Figure 3. (a,b) represent the occlusion types in MARS and DukeMTMC-VideoReID datasets, respec-
tively. Various occlusion types exist, such as a lower body or head of a pedestrian occluded by other
pedestrians, tracking failure, and so forth.

3.2. Overview

The proposed method comprises a feature extractor, attention modules, and attribute
classifiers. In addition, the inputs are a set of T frames, as illustrated in Figure 2.

First, any feature-extraction network can be used. Here, we utilize the same feature
extractor employed in our baseline [13], which comprises a ResNet [29] and two convolution
modules, to extract two types of features according to their relevance to the identification
(for more details, please refer to [13]). It returns a feature matrix F ∈ R

d×T that contains
a set of d-dimensional feature vectors corresponding to T frames as F = [f1, f2, . . . , fT ].
However, the body parts of a pedestrian are often occluded, owing to obstacles and other
pedestrians in actual videos. Therefore, the information required to recognize pedestrian
attributes differs for each frame, even in the same video.

Second, the proposed network includes a temporal attention module for aggregating
multiple frames that is implemented by multiplying the feature matrix F as

f̃i = Fai =
T

∑
t=1

ai
t · fi

t, (2)

where f̃i ∈ R
d is an aggregated feature vector, while ai is an attention-weight vector

obtained by the temporal attention module in Section 3.3. The superscript i indicates the
i-th attribute type (e.g., hat, backpack, shoe type, and color).

Finally, multi-branch classifiers are employed for multi-labeled attribute classifications
as depicted in Figure 2. Notably, unlike the existing work [13], which trains multiple
attribute classifiers by solely adopting independent classification losses, the proposed
method reliably trains multiple classifiers using feature vectors constrained by a temporal
attention module based on group sparsity.

In the following sections, we will explain the novel temporal attention module based
on group sparsity.

3.3. Temporal-Attention-Module-Based Classification

Chen et al. [13] designed the temporal attention as a Softmax-based probabilistic
temporal attention module (PTAM) that calculates important probabilities for frames in
the temporal direction and returns an attention weight vector a ∈ R

T . However, PTAM
comprises Conv-ReLU-Conv-ReLU-Softmax. ReLU [30] converts all the negative values to
0 as illustrated in Figure 4a, while Softmax normalizes the sum of the attention weights
of the T frame equal to 1, i.e., So f tmax(a) = [ ea1

∑T
j=1 eaj , ea2

∑T
j=1 eaj , . . . , eaT

∑T
j=1 eaj ]. This makes it

219



Sensors 2022, 22, 6626

difficult to obtain attention weights that reflect the sparsity constraints [20]. In other words,
if the weight of a particular frame becomes 1, the weight of the rest of the frame becomes 0.
This is not optimal, as the weights of several frames should have high values. To address
this issue, Ref. [20] adopted the Sigmoid-based attention module. Inspired by [20], we use
a Sigmoid-based temporal attention module (STAM) configured with Conv-ReLU-Conv-
Sigmoid. The Sigmoid after Conv allows any frame to have a weight close to 0 or 1, as
illustrated in Figure 4b.

0

(a)

0

0.5

1s

(b)

Figure 4. Activation functions. (a) ReLU function; (b) Sigmoid function.

In multi-branch cases, a temporal-attention-weight vector for the i-th attribute type,
ai ∈ R

T , can be obtained as
ai = STAMi(F). (3)

Finally, an aggregated feature vector for the i-th attitude classification, f̃i ∈ R
d, is

obtained by Equation (2). Subsequently, we pass f̃i to the i-th linear attribute classifier, and
a prediction vector pi is obtained for each attribute as:

pi = So f tmax(Wi f̃i), (4)

where Wi ∈ R
ci×d represents a weight matrix of a fully connected layer for the i-th attribute

classification branch, and ci denotes the number of classes of the branch. The classification
loss Lclass is the sum of the cross-entropy (CE) [31] of the attributes.

Lclass =
B

∑
i=1

βiCE(pi), (5)

where B denotes the number of branches for each attribute in Figure 2. βi is a balancing
hyperparameter for the i-th attribute classification. It is set as a reciprocal of the number
of classes in each attribute, because each attribute classification has a different number
of classes.

3.4. Limitation of Sparsity Constraint on STAM

The temporal attention weight ai in Equation (2) is an indicator that represents the
importance of each frame. The sparsity constraint for the attention weight is used to
improve the importance indication of frames and is computed by the L1 norm on ai.

Lsparsity =
B

∑
i=1

‖ai‖1, (6)

where B denotes the number of branches of each attribute. The sparsity loss is the operation
of the L1 norm per branch of each attribute. From the formulation, the sparsity constraint
is expected to have the effect of selecting frames that are not occluded from T frames
independently for each branch.

However, compared with the baselines, our experimental results, presented in Section 4,
indicate that the sparsity constraint on the STAM fails to assign importance to the correct
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frame, thereby degrading the PAR performance sometimes.

Why does the sparsity constraint fail to improve the overall performance?

As illustrated on the left-hand side of Figure 5, the sparsity constraint on STAM is
independently applied to the temporal attention weights by the L1 norm for each branch;
hence, the attention weights of each branch solely depend on the temporal information in
each attribute. This implies that the sparsity constraint does not help a model understand
the relationship between each attribute. However, pedestrian attributes are closely related
to each other. As presented in Figure 3, information about some attributes, such as the type
and color of the bottom and shoe of a pedestrian, respectively, is damaged simultaneously
if a the lower body or feet of the pedestrian is/are occluded. Therefore, another constraint
is required to guide the model to understand the relationship between pedestrian attributes,
which is important for achieving improved performance, by considering various occlusion
situations. In the next section, we design the attribute relationships as attribute groups and
formulate the group constraints of these attributes.

High attention weight
Low attention weight

Equation (6)
Sum of Independent Sparsity

1

1

1

1

1

1

Equation (7)
Group Sparsity

1

1

1

-norm of a group vector 

vs.

Figure 5. Comparison between the sparsity- and group-sparsity-based constraints. Unlike the
sparsity-based method that adjusts each value independently, the group-sparsity-based method
simultaneously controls the values associated with each other.

3.5. Group-Sparsity Constraint on STAM

Group sparsity extends and generalizes how to learn the correct sparsity regulariza-
tion by which prior assumptions on the structure of the input variables can be incorpo-
rated [15]. Regarding the attributes of an occluded pedestrian, the prior assumption is that
these attributes can be partitioned into K groups based on their relevance, i.e., Gk where
k = 1, 2, . . . , K, as illustrated in Figure 1. Accordingly, the attention weights in the same
group at time t, {ai

t|i ∈ Gk}, can be constrained by considering the group structure.
The method for grouping multiple attribute weights at time t involves introducing

a new vector at time t using each attribute group, i.e., gk
t ∈ R

|Gk |, as presented on the
right-hand side of Figure 5. By summing the L2 norm of a group vector gk

t , we can define
two sparsity constraints on attributes and time as

Lgroup =
T

∑
t=1

K

∑
k=1

γk‖gk
t ‖2, (7)

where ‖gk
t ‖2 always has positive values; hence, the sum of these values has the same effect

as the L1 norm [21–23]. γk is a balancing hyperparameter for the k-th group in the sum of
all the group-sparsity loss functions. It is set as a reciprocal of the number of attributes in
each group, because each group has a different number of attributes.
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The Lgroup constraint on STAM simultaneously increases or decreases the attention
weights of specific groups in particular frames. This helps a model understand the frames
that are more important for each group, including the groups that are recognizable in
the same frame. This constraint is consistent with the prior assumption that groups exist
between attributes. In addition, it does not employ explicit local patches in frames for
the recognition of specific attributes. It adopts implicit attention via attribute groups,
thereby enabling improved attribute recognition for pedestrian appearance distortions due
to tracking failures.

Finally, the total loss function comprises Lclass and Lgroup, described above, as follows:

Ltotal = Lclass + λLgroup, (8)

where λ represents a weight factor that combines the classification and group-sparsity losses.

4. Experiments

4.1. Implementation Details

Table 1 presents the attribute groups of the group sparsity for the experiments. We
employed the same feature extractor as [13], pretrained on the ImageNet dataset [32]. The
initial learning rate was set to 3 × 10−4 and multiplied by 0.3 at 100 epochs. The weight
decay was set to 5 × 10−4 for the Adam optimizer [33]. For the input, the width and
height of the frame were resized to 112 and 224 pixels, respectively. The weight factor
λ in Equation (8) was set to 0.02. The batch size for training was set to 64. The model
was trained for 200 epochs, and the best results among the measurements were reported
every 20 epochs. The sequence length T of the consecutive and non-overlapping frames
for training was set to 6, according to a previous study [13]. In the test phase, we divided
the trajectory of a pedestrian into segments comprising 6 frames. The divided segments
were independently inferred, and the results were averaged for PAR. In other words,
performance was measured using one prediction per trajectory, according to [13]. We
utilized a single NVIDIA Titan RTX GPU for both training and inference. Regarding our
experimental setting, in the absence of an additional explanation, we follow the process
detailed in the baselines [13] for a fair comparison. The random seed for the experiments
was fixed deterministically.

Table 1. Attribute groups for DukeMTMC-VideoReID and MARS datasets.

Group DukeMTMC-VideoREID MARS

Whole motion, pose motion, pose

Head hat, gender age, hat, hair, gender

Upper Body backpack, top color, shoulder bag, backpack, top color, shoulder bag,
handbag handbag, top length

Lower Body top length, bottom color bottom length, bottom color,
type of bottom

Foot boots, shoe color -

4.2. Evaluation Metrics and Datasets

We evaluated the proposed method using the average accuracy and F1-score that
decrease when the algorithm fails to recognize the correct pedestrian attributes. For the
extensive experiments, we used two video-based PAR datasets: DukeMTMC-VideoReID
and MARS [13], which were derived from the reidentification datasets, DukeMTMC-
VideoReID [16] and MARS [18], respectively. Chen et al. [13] reannotated them for the
video-based PAR datasets.
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4.2.1. DukeMTMC-VideoReID Dataset

The DukeMTMC-VideoReID dataset contains 12 types of pedestrian-attribute annota-
tions. Eight of these attributes are binary types: backpack, shoulder bag, handbag, boots,
gender, hat, shoe color, and top length. The other four attributes are multi-class types:
motion (walking, running, riding, staying, various), pose (frontal, lateral-frontal, lateral,
lateral-back, back, various), bottom color (black, white, red, gray, blue, green, brown, com-
plex), and top color (black, white, red, purple, gray, blue, green, brown, complex). The
attributes were annotated per trajectory and the total number of trajectories was 4832. We
excluded four trajectories with fewer frames than the segment length T, while the remain-
ing 4828 trajectories were adopted in the experiments. For the training, 2195 trajectories
were used, 413 of which contained occlusions, as illustrated in Figure 3b. For the test,
2633 trajectories were employed, 449 of which contained occlusions. The average length of
the trajectories was approximately 169 frames.

4.2.2. MARS Dataset

The MARS dataset contains 14 types of pedestrian-attribute annotations. Ten of
these attributes are binary types: shoulder bag, gender, hair, bottom type, bottom length,
top length, backpack, age, hat, and handbag. The other four attributes are multi-class
types: motion (walking, running, riding, staying, various), pose (frontal, lateral-frontal,
lateral, lateral-back, back, various), top color (black, purple, green, blue, gray, white,
yellow, red, complex), and bottom color (white, purple, black, green, gray, pink, yellow,
blue, brown, complex). The attributes were also annotated per trajectory, and the total
number of trajectories was 16,360. We also excluded five trajectories with fewer frames
than the segment length T, and the remaining trajectories were 16,355. For the training,
8297 trajectories were used, 35 of which contained occlusions, as illustrated in Figure 3a.
For the test, 8058 trajectories were used, 30 of which contained occlusions. The average
length of the trajectories was approximately 60 frames.

4.3. Comparisons with State-of-the-Art Methods

The proposed method was compared with five baselines: Chen et al. [13], 3D-CNN [34],
CNN-RNN [35], ALM [26], and SSCso f t [28]. The Chen et al. [13] method is a state-of-the-
art video-based PAR method. CNN-RNN and 3D-CNN are video-based PAR methods
compared in [13]. ALM [26] and SSCso f t [28] are two state-of-the-arts for image-based
PAR. For fair comparisons, we adopted the average values for each image of trajectories to
evaluate the ALM and SSCso f t methods on video-based datasets. We retrained the ALM [26]
using the officially published code. For SSCso f t [28], we re-implemented it because there is
no official code. In the case of ALM [26] and SSCso f t [28], the image batch size was set to
96, and the learning rate was adjusted to 7.5 × 10−5, according to [36].

To evaluate the improvement of the proposed method in occlusion situations, we
compared its performance with those of the baselines by only adopting the occlusion
samples. Table 2 presents the results on the DukeMTMC-VideoReID and MARS datasets.
To ensure accurate evaluation, we excluded the “hat” and “handbag” attributes of the
MARS dataset when evaluating all methods, because the ground truth of both attributes
for all occlusion samples was the same, i.e., “no”. As presented in Table 2, the proposed
method outperformed the baselines in all cases and achieved average accuracies of 88.36%
and 71.94%, including average F1-scores of 70.21% and 61.88% on the occlusion samples of
the DukeMTMC-VideoReID and MARS datasets, respectively. In particular, the proposed
method achieves superior performance over the state-of-the-art ALM [26] and SSCso f t [28]
methods, which extended to video using multi-frame averages. This shows that the image-
based PAR methods have limitations in effectively using multiple frames when extended
to video. In the real world, pedestrians are often occluded by various environments, so
performance improvement of the proposed method in occlusive situations is not trivial.
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Table 2. Comparisons of the results obtained for the occlusion samples of the DukeMTMC-VideoReID
and MARS datasets. The bold indicates the best result.

Dataset Method
Average Average

Accuracy (%) F1-Score (%)

DukeMTMC
-VideoReID

Chen et al. [13] 88.33 69.03
3DCNN [34] 84.41 61.38

CNN-RNN [35] 87.94 68.12
ALM [26] 86.99 65.87

SSCso f t [28] 86.86 65.01
Ours 88.36 70.21

MARS

Chen et al. [13] 66.39 55.67
3DCNN [34] 60.83 46.16

CNN-RNN [35] 65.83 53.79
ALM [26] 67.50 55.73

SSCso f t [28] 68.89 57.44
Ours 71.94 61.88

To verify that the proposed method does not have severe negative effects on non-
occlusion samples, we also evaluated its performance using total samples, including the
occlusion and non-occlusion samples. Table 3 presents the performances of the methods on
the total samples of the DukeMTMC-VideoReID and MARS datasets, where the proposed
method outperformed the baselines. The Chen et al. [13] method exhibited a slightly better
average accuracy in just one case, in the DukeMTMC-VideoReID dataset. However, because
the measure of average accuracy did not consider a data imbalance, the difference was
negligible. For instance, if there are 90 negative samples and 10 positive samples among the
100 total samples, the model can obtain high accuracy by predicting most of the samples as
being negative, e.g., when true negative, true positive, false negative, and false positive are
90, 1, 9, and 0, respectively, the accuracy is 91%, and the F1-score is 18.18%. Therefore, the
average F1-score is a better measure than the average accuracy for imbalanced datasets.

Table 3. Comparisons of the results for the total samples of the DukeMTMC-VideoReID and
MARS datasets. The bold indicates the best result.

Dataset Method
Average Average

Accuracy (%) F1-Score (%)

DukeMTMC
-VideoReID

Chen et al. [13] 89.12 71.58
3DCNN [34] 85.38 64.66

CNN-RNN [35] 88.80 71.73
ALM [26] 88.13 69.66

SSCso f t [28] 87.52 68.71
Ours 88.98 72.30

MARS

Chen et al. [13] 86.42 69.92
3DCNN [34] 81.96 60.39

CNN-RNN [35] 86.49 69.89
ALM [26] 86.56 68.89

SSCso f t [28] 86.01 68.15
Ours 86.75 70.42

4.4. Ablation Study
4.4.1. Effects of the Weight Factor λ

We compared the experimental results according to the weight factor λ in Equation (8).
The weight factor λ is a parameter that adjusts sparsity. As presented in Table 4, the
proposed method exhibits higher F1-scores than those of the baseline methods, regardless
of the λ values, and the best results were obtained with λ = 0.02.
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Table 4. Analysis of the group-sparsity loss for the occlusion samples of the DukeMTMC-VideoReID
and MARS datasets. The bold indicates the best result.

Dataset Method
Average Average

Accuracy (%) F1-Score (%)

DukeMTMC
-VideoReID

Chen et al. [13] 88.33 69.03
λ = 0.005 88.38 69.85
λ = 0.03 88.16 69.62
λ = 0.02 88.36 70.21

MARS

Chen et al. [13] 66.39 55.67
λ = 0.005 68.06 55.07
λ = 0.03 70.00 58.89
λ = 0.02 71.94 61.88

4.4.2. Comparisons Between PTAM and STAM

We analyzed PTAM and STAM by applying them along with each method. Table 5
demonstrates that sparsity has the worst performance for occlusion samples in terms of
both accuracy and F1-scores. As explained in Section 3.4, the sparsity constraint cannot help
a model understand the relationship between attributes. However, the proposed method
using the group-sparsity-constrained STAM, which understands the relationship between
each attribute, exhibited the best performance among the other methods.

Table 5. Comparisons between the sparsity-based and group-sparsity-based (ours) constraints for
the occlusion samples of the DukeMTMC-VideoReID and MARS datasets. The bold indicates the
best result.

Dataset Method PTAM STAM
Average Average

Accuracy (%) F1-Score (%)

DukeMTMC
-VideoReID

Chen et al. [13] � - 88.33 69.03
Sparsity � - 87.99 69.05

Group sparsity � - 88.23 70.24
Chen et al. [13] - � 87.94 69.26

Sparsity - � 87.68 67.52
Group sparsity - � 88.36 70.21

MARS

Chen et al. [13] � - 66.39 55.67
Sparsity � - 70.00 57.76

Group sparsity � - 71.94 61.70
Chen et al. [13] - � 66.94 55.92

Sparsity - � 69.17 57.80
Group sparsity - � 71.94 61.88

4.5. Qualitative Results

We visualized the temporal attention weight vector with various segment frames to
analyze the improvement of the proposed method in occlusion situations. Figure 6 presents
the temporal attention vectors and PAR results of the method presented by Chen et al. [13]
and that of our method for all the groups in the DukeMTMC-VideoReID dataset. The values
of the baseline method are similar in all the frames. Thereby, the baseline method failed to
recognize the “shoe color” attribute. In contrast, the values of the proposed method are
different in each frame. Moreover, the values of the occlusion frames are lower than those
of the general frames. The attention weights of the bottom- and top-length attributes are
simultaneously controlled, because they belong to the same group. For the same reason, the
attention weights of the “shoe color” and “boot” attributes are also simultaneously adjusted.
Consequently, the proposed method accurately predicted all attributes. It shows that the
proposed group-sparsity constraint helps STAM accurately focus on non-occlusion frames.
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Figure 6. Qualitative results for the DukeMTMC-VideoReID dataset. It presents the attention weights
of the group attributes and PAR results. For the groups related to the lower body, the proposed
method has low attention weights in the occluded frames. However, the attention weights of the
baseline method (Chen et al. [13]) are almost the same in all the frames.

4.6. Evaluation of Additional Occlusion Scenarios

We designed two synthetic occlusion scenarios, as illustrated in Figure 7, to validate the
improvement of the proposed method on several occlusion samples. These two occlusion
scenarios are designed to analyze the impact on recognition performance if a part of the
appearance of pedestrian frames is distorted by blurring, low illumination, or an object
such as another pedestrian or car.

Figure 7. Examples of two occlusion scenarios.
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The first scenario was a body-part occlusion. In this scenario, we randomly selected
three frames among the segment frames. Subsequently, the head of a pedestrian and the left
and right sides of their upper and lower body, respectively, were randomly occluded. The
second scenario was the bottom occlusion scenario that simulated a situation in which cars
and bicycles passed through and occluded the lower body of the pedestrian. We randomly
selected three consecutive frames.

In the process of constructing the scenarios, we did not apply the additional occlusion
situations to real occlusion samples in the datasets. The number of test samples for each sce-
nario was 2633 and 8058 for the DukeMTMC-VideoReID and MARS datasets, respectively,
which are the same as the total number of test samples in the original datasets.

We did not retrain the baseline and proposed methods to prevent the models from
learning the tendency of synthetic occlusion. We used the same models in Sections 4.3
and 4.4 and evaluated them on two scenario samples. Table 6 presents the results for the
body-part and bottom occlusion scenarios. In all cases, the proposed method achieved
better results than those of the baseline methods. Table 7 shows the average F1-scores
according to the number of consecutive occlusion frames on the bottom occlusion scenario
samples of the DukeMTMC-VideoReID and MARS datasets. As the number of consecutive
occlusion frames increases, the amount of information for recognizing attributes decreases,
and, thus, the performances of all methods were degraded. Nevertheless, the proposed
method consistently achieved better average F1-scores in comparison to those of the base-
lines as the number of consecutive occlusion frames increased. The obtained experimental
results indicate that the proposed method is effective in handling occlusions, regardless of
the scenario. Accordingly, we can conclude that the proposed method is more suitable for
real-world scenarios with many occlusions than the compared methods.

Table 6. Comparisons of the results for the two occlusion scenarios of the DukeMTMC-VideoReID
and MARS datasets. The bold indicates the best result.

Dataset Method
Body Part Bottom

Average

Accuracy (%)

Average

F1-Score (%)

Average

Accuracy (%)

Average

F1-Score (%)

DukeMTMC
-VideoReID

Chen et al. [13] 88.67 70.94 87.03 66.85
3DCNN [34] 85.31 63.99 82.28 58.40

CNN-RNN [35] 88.73 71.17 88.50 70.00
ALM [26] 88.08 69.45 87.17 66.98

SSCso f t [28] 87.60 67.87 86.60 65.64
Ours 88.95 71.97 88.59 70.66

MARS

Chen et al. [13] 85.97 68.34 82.79 62.55
3DCNN [34] 81.64 59.42 79.05 55.58

CNN-RNN [35] 86.42 69.49 85.95 68.34
ALM [26] 86.32 67.87 85.77 65.96

SSCso f t [28] 85.34 65.18 84.61 63.95
Ours 86.73 70.05 86.08 68.81
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Table 7. Comparisons of the average F1-scores (%) for according to the number of consecutive
occluded frames on the bottom occlusion scenario of the DukeMTMC-VideoReID and MARS datasets.
The bold indicates the best result.

Dataset
# Consecutive

Chen et al. [13] 3DCNN [34] CNN-RNN [35] ALM [26] SSCsof t [28] Ours
Occlusion Frames

DukeMTMC
-VideoReID

1 70.79 63.46 71.15 69.18 68.00 72.04
2 69.63 61.15 70.38 68.37 66.98 71.61
3 66.85 58.40 70.00 66.98 65.64 70.66
4 61.28 55.77 67.44 64.78 63.68 68.16
5 55.94 54.22 63.77 62.03 61.16 63.54

MARS

1 68.37 59.13 69.59 68.40 67.28 70.19
2 66.11 57.38 69.09 67.62 65.50 69.69
3 62.55 55.58 68.34 65.96 63.95 68.81
4 57.48 54.14 67.01 64.30 61.84 67.62
5 51.50 52.97 65.04 62.18 59.13 65.67

5. Conclusions and Future Work

This study proposed a novel video-based PAR method to improve PAR in various
occlusion situations. The proposed method was formulated as a group sparsity to consider
the relationship between pedestrian attributes. In addition to improving the temporal atten-
tion weights for non-occluded frames, it exhibited the effect of simultaneously excluding
multiple occluded attributes by understanding the relationship between each attribute
within the frame. In other words, the proposed method focused more on information about
attributes that were not occluded and related to each other in the specific frames.

The proposed method was designed to improve PAR in occlusion situations; however,
only a few datasets contained sufficient occlusion samples. To address this limitation,
the proposed method was also validated on additional scenarios with synthetic samples.
The results obtained from extensive experiments demonstrate that the proposed method
consistently outperformed most of the baselines. In the future, we will study how to
generate an extensive and natural occlusion situation. Furthermore, we will investigate a
one-stage method that can detect and track pedestrians and better recognize pedestrian
attributes in an extensive occlusion situation.
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Abstract: Construction signs alert drivers to the dangers of abnormally blocked roads. In the case
of autonomous vehicles, construction signs should be detected automatically to prevent accidents.
One might think that we can accomplish the goal easily using the popular deep-learning-based
detectors, but it is not the case. To train the deep learning detectors to detect construction signs,
we need a large amount of training images which contain construction signs. However, collecting
training images including construction signs is very difficult in the real world because construction
events do not occur frequently. To make matters worse, the construction signs might have dozens
of different construction signs (i.e., contents). To address this problem, we propose a new method
named content swapping. Our content swapping divides a construction sign into two parts: the board
and the frame. Content swapping generates numerous synthetic construction signs by combining
the board images (i.e., contents) taken from the in-domain images and the frames (i.e., geometric
shapes) taken from the out-domain images. The generated synthetic construction signs are then
added to the background road images via the cut-and-paste mechanism, increasing the number of
training images. Furthermore, three fine-tuning methods regarding the region, size, and color of
the construction signs are developed to make the generated training images look more realistic. To
validate our approach, we applied our method to real-world images captured in South Korea. Finally,
we achieve an average precision (AP50) score of 84.98%, which surpasses that of the off-the-shelf
method by 9.15%. Full experimental results are available online as a supplemental video. The images
used in the experiments are also released as a new dataset CSS138 for the benefit of the autonomous
driving community.

Keywords: construction sign detection; image synthesis; cut-and-paste; perspective transformation

1. Introduction

The misdetection of a construction sign may lead to accidents by unexpectedly entering
blocked roads. Therefore, the reliable detection of construction signs is quite important
in realizing autonomous driving. With the recent progress in object detection based on
deep learning [1–6], one might think that we can accomplish the reliable detection of
construction signs easily, but it is not true. To train the deep learning detector, we need
large-scale training images including construction signs for robust and high-quality results.
Unfortunately, construction signs appear infrequently on roads. Thus, collecting large
amounts of training data for construction sign detection is required, but it is time-consuming
and expensive. To address this problem, we propose a new method for learning to detect
construction signs on roads. The main idea of the proposed method is to synthesize training
images using a small number of construction sign images. To synthesize training images,
we follow the cut-and-paste mechanism [7–9], which cuts an instance from the source
image (i.e., construction sign region in an image) and pastes it into a background image
(i.e., road image). The cut-and-paste method enables a model to avoid overfitting on a
small number of backgrounds in source images, but it cannot generalize limited instances.
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A construction sign can be divided into two parts: the board and frame. The content
of the sign is contained in a rectangular board, and the board is supported by a frame. The
frame can be shared for any sign. Using this characteristic, we effectively generate new
construction sign images by swapping the contents in the rectangular board between two
different construction sign images, as shown in Figure 1. Our content swapping synthesizes
numerous synthetic construction signs by combining the board images (i.e., contents)
taken from the in-domain images and the frames (i.e., geometric shapes) taken from the
out-domain images. This approach allows us to obtain new NI NO images from NI in-
domain construction sign images and NO out-domain construction sign images. Although
in-domain sign images need to be collected using the same camera setting as in the test
set, out-domain images can be collected from the Internet. Therefore, we can synthesize a
large-scale training dataset with only a small number of in-domain sign images and train a
detector on them.

Content
swapping

Construction sign images
(in-domain)

Construction sign images
(out-domain)

Synthesized sign images
(in-domain)

Figure 1. Content swapping. With NI in-domain and NO out-domain construction sign images, we
synthesize NI NO in-domain construction sign images via perspective transformation. The synthe-
sized sign images are used as source images for cut-and-paste.

We also develop three fine-tuning methods to improve the quality of synthetic training
images. The three methods deal with the (1) pasted region, (2) instance size, and (3) color
difference of the synthesized images, respectively. The first method guides us to paste the
synthetic construction sign image on the drivable region. Because the construction sign
cannot be placed on the sky, car, or other objects, it should be placed only on the drivable
region for realistic purposes. The second method helps us to select the size of the instance
based on the location where the sign is to be pasted. If we assume that the construction sign
is always pasted on the road and the road is flat, then we can automatically predict the size
of the instance in the image. The prediction not only avoids making construction images
either too large or too small but also resizes the images to match nearby objects, thereby
improving global consistency. Finally, we blend the synthesized construction signs with the
training image to reduce the gap between the source and background images. The blending
also reduces the domain gap between in-domain and out-domain construction sign images
in content swapping. To our best knowledge, no other research has been conducted to
detect the construction signs. To validate the effectiveness of the proposed methods, we
collect the CSS138 (Construction Signs in Seoul with 138 images) dataset for training and
testing construction sign detection. All the images are captured in Seoul, Korea. The CSS138
dataset can be downloaded at https://github.com/Hongje/content-swapping, (accessed
on 5 April 2022). In the experiment, we synthesize a large-scale training dataset with only
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12 in-domain sign images and achieve a robust and accurate result with an AP50 score
of 84.98% for CSS138. Our result surpasses off-the-shelf cut-and-paste by 9.15% in the
AP50 score. Full experimental results are available online: https://youtu.be/us_qso6C5pw,
(accessed on 5 April 2022).

The main contributions are summarized as follows:

• This is the first paper which deals with the construction sign detection.
• We propose a new image synthesis method, content swapping, to avoid overfitting on

limited instances in source images.
• We further present three fine-tunning methods for creating realistic construction

images on roads.
• To demonstrate the efficacy of the proposed method, we construct a new dataset,

CSS138, for construction sign detection.
• Finally, we achieve an AP50 score of 84.98%, creating a gap of 9.15% from the naive

cut-and-paste method.

The remainder of this paper is organized as follows. Previous works related to this
study are discussed in Section 2. The proposed method for synthesizing construction
images is described in Section 3. The experimental results for CSS138 and the analysis are
presented in Section 4. Finally, the conclusions are presented in Section 5.

2. Related Work

2.1. Sign Detection

Early methods designed models for detecting signs heuristically. Specifically, Prince
et al. [10] design a sign detection algorithm based on a geometrical analysis of the edges
and groups of the sign image features. Escalera et al. [11] segment images using color
thresholding and then analyze the shape to detect signs. Fang et al. [12] formulate three
types of shapes—circular, triangular, and octagonal—to extract the color features of the
signs. Shadeed et al. [13] convert the RGB color space to HSV and YUV color spaces and
then defined a heuristic algorithm. Loy et al. [14] exploit the symmetric nature and the
pattern of the edge of the triangular, square, and octagonal shapes to predict the shape of
the sign image. Bahlmann et al. [15] propose a joint color and shape information modeling
approach using a set of Haar wavelet features.

Recently, state-of-the-art approaches have used convolutional neural network (CNN)-
based supervised models. Shao et al. [16] train CNNs with simplified Gabor filters. Cao
et al. [17] use shallow CNNs to classify the traffic signs. Zhang et al. [18] propose a new
cascaded R-CNN architecture that includes multiscale attention and imbalanced samples.
Liu et al. [19] propose TSingNet, which is based on feature pyramid networks and includes
several attention-based modules. Ahmed et al. [20] propose a new DNN-based framework
that is robust in detecting traffic signs, even under challenging weather conditions. Zeng
et al. [21] propose an improved YOLOv3 architecture for real-time traffic-sign detection.
All previous methods considered only traffic or road signs.

The basic difference between general sign detection and construction sign detection is
how much training samples are provided. Differently from the large amount of training
images in general sign detection, only dozens of training images are given in construction
sign detection. Furthermore, collecting the training images for construction signs is much
more difficult. The key idea of our method is how to augment the training images and train
a detector on them effectively. The purpose to detect and recognize construction signs is to
alert the unplanned situations made by road construction. Understandably, commercial
autonomous vehicles can handle not only the planned situations but also the unplanned
situations. The typical example of the unplanned situation might be the road construction.
In this case, the autonomous vehicle may not have to obey the traffic law. For example, our
vehicle may have to cross the road following policeman’s hand signal, ignoring the traffic
sign. The goal of our paper is to handle that kind of unplanned abnormal situation.

Our construction sign detection can also be considered as a special kind of class
imbalance problem. We are dealing with only a single class (i.e., construction sign) and
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the instances of the class are highly imbalanced with the background instances such as
buildings, roads, or pedestrians. The key idea of the paper is to tackle the serious imbalance
problem by augmenting the training samples.

2.2. Image Synthesis for Network Training

Several studies [9,22] have synthesized training images with a focus on realism. Fur-
thermore, task-specific image synthesis has also been extensively studied. Dwibedi et al. [7]
propose a simple yet effective training image synthesis method that uses cut-and-paste for
object detection. Lee et al. [8] propose content transfer, which transfers tail-class content
from source to target to address the class imbalance problem in unsupervised domain-
adaptive semantic segmentation. Leon et al. [9] synthesize training images by rendering
that does not require real-world images. In this paper, we propose methods for synthesizing
construction sign images for sign detection. The key idea of our image synthesis is that the
contents of the board are taken from in-domain images, whereas the frame is taken from the
out-domain (and in-domain) images. Since the frames includes only the geometrical shape
of the sign board, they can be collected from any images (out-domain images) without
affecting the detection performance. However, since the board images have their own style,
the construction sign images taken only from the in-domain images are used to facilitate
the synthesis onto the background road images.

3. Method

3.1. Overview

An overview of the proposed method for synthesizing training data is shown in
Figure 2. The entire process of synthesizing the training images comprised four main
steps. In the first step, we prepared images by collecting construction sign images and
road images. As acquiring construction sign images is difficult, we could only prepare a
limited number of sign images. Therefore, we collected additional out-domain construction
sign images from the Internet. In the second step, the four corners of the content and
segmentation mask were labeled in the construction sign images. In the third step, content
swapping was performed using these labels. Finally, the training images were generated
via the cut-and-paste mechanism using the proposed realistic transformations.

In-domain construction sign images ( images) Out-domain construction sign images ( images)

Synthesized in-domain construction sign images ( images)

Content
swapping

1. Collecting images 

2. Labeling four corners of the content, and segment 

3. Augmenting sign images via content swapping

Road images
(Background)

Synthesized images
4. Cut-and-paste with realistic transformations

Sampling

Sampling

Figure 2. An overview of training data synthesis. The entire process was divided into four steps. First,
we collected three types of images: in-domain construction sign images, out-domain construction
sign images, and road images. Then, we labeled four corners of the contents and segmented the
construction sign images. The labels were then used for content swapping. Finally, a pair of a
construction image and a road image was randomly sampled and synthesized via the cut-and-
paste mechanism with proposed realistic transformations. The synthesized images are used for
training networks.
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For a clearer explanation, we provide a pseudo-code of the proposed method in
Algorithm 1. Each step in Algorithm 1 matches Figure 2. In the following subsections, we
describe the details of each step.

Algorithm 1 Pseudo-code of the proposed method.

Step1: Collecting construction sign and road images

1: In-domain construction sign image: IIn
2: Out-domain construction sign image: IOut
3: Road image: IRoad

Step2: Labeling bounding box, segment, and four corners of the board

4: Bounding box labels: BboxIn, BboxOut
5: Segment labels: MIn, MOut
6: Four corners of the board: (

[
x1

I y1
I

][
x2

I y2
I

][
x3

I y3
I

][
x4

I y4
I

]
),

(
[

x1
O y1

O
][

x2
O y2

O
][

x3
O y3

O
][

x4
O y4

O
]
)

Step3: Content swapping

7: Randomly select content image (source): S ∈ In
8: Randomly select frame image (target): T ∈

[
In Out

]
9: Set content region mask of target image using four corners label: CT

10: Compute transformation matrix T :

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
S y1

S 1 0 0 0 −x1
Sx1

T −y1
Sx1

T
0 0 0 x1

S y1
S 1 −x1

Sy1
T −y1

Sy1
T

x2
S y2

S 1 0 0 0 −x2
Sx2

T −y2
Sx2

T
0 0 0 x2

S y2
S 1 −x2

Sy2
T −y2

Sy2
T

x3
S y3

S 1 0 0 0 −x3
Sx3

T −y3
Sx3

T
0 0 0 x3

S y3
S 1 −x3

Sy3
T −y3

Sy3
T

x4
S y4

S 1 0 0 0 −x4
Sx4

T −y4
Sx4

T
0 0 0 x4

S y4
S 1 −x4

Sy4
T −y4

Sy4
T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
T

y1
T

x2
T

y2
T

x3
T

y3
T

x4
T

y4
T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� Section 3.4

11: Swap content: ICS
T = T (IS)� CT + IT � (1 − CT)

Step4: Cut-and-paste with realistic transformations

12: Randomly select road image (background): B ∈ Road
13: Compute pasteable region: PB � Section 3.5.1
14: Randomly select bottom point of the sign: p1 =

[
px

1 py
1

]
∈ PB

15: Compute top point of the sign:

p2 =
[

px
2 py

2

]
=

[
px

1

(
tan−1

(
tan(α·py

1+β)
1−h

)
− β

)/
α

] � Section 3.5.2

16: Cut sign image ICS
T and paste to road image IB:

ICP
T = Cut − and − Paste

(
ICS
T , MT , IB, p1, p2

)
17: Transform segment label to p1 and p2: MCP

T = Transform_mask(MT , p1, p2)

18: Transform bounding box label to p1 and p2: BboxCP
T = Transform_box(BboxT , p1, p2)

19: Reduce color difference: IGP
T = GP − GAN

(
ICS
T , MCS

T
)

� Section 3.5.3
Output: Synthesized training image: IGP

T ;
Synthesized training label: BboxCP

T

3.2. Collecting Images

To collect construction sign and road images, we used the FHD390C-USB(D)
(Autonomous A2Z, Gyeongsan, South Korea) camera model. This model captures full
HD images (1080p) in 30 frames per second. It has a field of view of 60 degrees. We built
a data-collecting platform using this camera model, as shown in Figure 3. The camera
was installed at a height of 1500mm from the ground and was positioned in front of a
platform so that we could collect front-view images of the roads. In total, we collected 138
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construction sign images, of which 12 were used for training and the remaining 126 were
used for testing. The collected construction sign images were used as in-domain images. In
addition, we collected 992 road images that did not contain any construction signs. All the
images were captured in Seoul, Korea. Twelve images were used to collect the contents of
the construction signs. We also collected an additional 24 construction sign images from the
Internet. They were out-domain construction sign images, and they were used to capture
the frame of the construction sign boards.

Camera

(a) Camera setting in real image (b) Camera setting details

1500mm

60º

90º

Figure 3. The camera setting in the data-collecting platform.

We collected 12 construction signs using our platform. Thus, we had 12 kinds of con-
struction signs (12 in-domain images) for the board region. We also gathered 24 construction
sign images from the Internet, making 36 kinds of construction signs (12 in-domain + 24
out-domain images) for the frame region. The collected 12 in-domain construction signs
are shown in Figure 4.

Figure 4. Collected in-domain construction signs.

3.3. Labeling

We annotate three types of labels in the construction sign images. First, we annotate
the bounding box for all the collected construction sign images. Bounding box annotations
are needed to compute the loss during training and evaluate the detection quality during
testing. Second, we annotate the four corners of the board in the training set of construction
sign images. Corner annotation is required to calculate the transformation matrix between
two construction sign images. Third, we annotate the per-pixel label of the construction
sign. Pixel-level annotations are used for both content swapping (detailed in Section 3.4)
and cut-and-paste (detailed in Section 3.5).
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3.4. Content Swapping

To overcome the lack of the training image, we synthesize training images using
a cut-and-paste [7–9] mechanism, as shown in Figure 1. The cut-and-paste effectively
helps to prevent the networks from overfitting on the limited backgrounds of the training
images. However, the cut-and-paste method cannot augment the content of the training
images. This means that only background images can be diversified, and the contents of
the construction signs are still limited. We address this problem using content swapping.

The construction sign can be divided into two parts: a rectangular board and frame, as
shown in Figure 5. Therefore, we can reuse the frame for other constructions by replacing
only the board. To replace the board in the target sign image with the source sign image,
we need to formulate the transformation function between the source image and the target
image. Thankfully, because the shape of the board is rectangular, replacing the content is
possible with four pairs of corner points on the board using perspective transformation,
as follows: ⎡⎣ wxT

wyT
w

⎤⎦ = T

⎡⎣ xS
yS
1

⎤⎦ =

⎡⎣ p11 p12 p13
p21 p22 p23
p31 p32 1

⎤⎦⎡⎣ xS
yS
1

⎤⎦ (1)

where
[

xS yS
]T and

[
xT yT

]T are the source and target points of the construction

sign images, respectively, and T =

⎡⎣ p11 p12 p13
p21 p22 p23
p31 p32 1

⎤⎦ is the perspective transformation

matrix with 8 parameters. Here, the eight parameters in the perspective transformation
matrix T are unknown. Then, we can unfold the equations as:

xT = (p11xS + p12yS + p13)/w, (2)

yT = (p21xS + p22yS + p23)/w, (3)

w = p31xS + p32yS + 1. (4)

By substituting Equation (4) into Equations (2) and (3), we can join a parameter w into
xT and yT as:

xT =
p11xS + p12yS + p13

p31xS + p32yS + 1
, (5)

yT =
p21xS + p22yS + p23

p31xS + p32yS + 1
. (6)

To easily formulate each unknown parameter in T into a matrix form, we can rearrange
Equations (5) and (6) into:

xT = p11xS + p12yS + p13 − p31xSxT − p32ySxT , (7)

yT = p21xS + p22yS + p23 − p31xSyT − p32ySyT , (8)

respectively. Here, there are eight unknown parameters (i.e.,
[

p11 p12 · · · p32
]
). There-

fore, to estimate the eight parameters’ values, we need eight different formulas. With
Equations (7) and (8), we can make eight different formulas using four known pairs of corre-
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sponding points (
[

x1
S y1

S
]
· · ·

[
x4

S y4
S

]
for source points and

[
x1

T y1
T

]
· · ·

[
x4

T y4
T

]
for target points), and then we can write them into a matrix as follows:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
T

y1
T

x2
T

y2
T

x3
T

y3
T

x4
T

y4
T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
S y1

S 1 0 0 0 −x1
Sx1

T −y1
Sx1

T
0 0 0 x1

S y1
S 1 −x1

Sy1
T −y1

Sy1
T

x2
S y2

S 1 0 0 0 −x2
Sx2

T −y2
Sx2

T
0 0 0 x2

S y2
S 1 −x2

Sy2
T −y2

Sy2
T

x3
S y3

S 1 0 0 0 −x3
Sx3

T −y3
Sx3

T
0 0 0 x3

S y3
S 1 −x3

Sy3
T −y3

Sy3
T

x4
S y4

S 1 0 0 0 −x4
Sx4

T −y4
Sx4

T
0 0 0 x4

S y4
S 1 −x4

Sy4
T −y4

Sy4
T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p11
p12
p13
p21
p22
p23
p31
p32

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (9)

The objective is to estimate eight unknown parameters in T . Therefore, we can
finally obtain the transformation matrix T by computing the inverse of the 8 × 8 matrix in
Equation (9) and performing matrix multiplication as follows:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
S y1

S 1 0 0 0 −x1
Sx1

T −y1
Sx1

T
0 0 0 x1

S y1
S 1 −x1

Sy1
T −y1

Sy1
T

x2
S y2

S 1 0 0 0 −x2
Sx2

T −y2
Sx2

T
0 0 0 x2

S y2
S 1 −x2

Sy2
T −y2

Sy2
T

x3
S y3

S 1 0 0 0 −x3
Sx3

T −y3
Sx3

T
0 0 0 x3

S y3
S 1 −x3

Sy3
T −y3

Sy3
T

x4
S y4

S 1 0 0 0 −x4
Sx4

T −y4
Sx4

T
0 0 0 x4

S y4
S 1 −x4

Sy4
T −y4

Sy4
T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
T

y1
T

x2
T

y2
T

x3
T

y3
T

x4
T

y4
T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p11
p12
p13
p21
p22
p23
p31
p32

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (10)

Using the estimated transformation matrix T , we warped the board from the source
image to the target image, which is called content swapping.

With content swapping, we can effectively augment in-domain construction sign
images using out-domain construction sign images. Given the NI in-domain and NO
out-domain construction sign images, we can synthesize in-domain images by content
swapping from in-domain sign images to out-domain images, resulting in NI NO pairs.
Therefore, although we obtained only 12 in-domain construction sign images for training,
288 in-domain images can be obtained using 24 out-domain sign images. Furthermore, we
use the frame region in the in-domain sign images for content swapping, which resulted in
432 construction sign images.

: Board (include content)
: Frame

Construction sign image Visualization of two parts of the sign

Figure 5. Visualization of the two parts of the construction sign. In the first column, we show a
construction sign image. In the second column, we denote the board and frame regions with green
and red, respectively.

3.5. Cut-and-Paste with Realistic Transformations

We synthesize training images by cutting a construction sign image and then pasting
it onto the background road images. Here, naively cutting and pasting would result in
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unrealistic synthetic images, which may lead to performance degradation. We address
this problem by proposing three fine-tunning methods. They are developed from three
perspectives: pasteable region, instance size, and color difference. Detailed explanations of
each fine-tuning methods are provided below.

3.5.1. Pasteable Region

The construction sign cannot fly and is never placed on a car. Therefore, we set the
pasteable region as the road. To find road regions in the background image, we used
two independent pre-trained networks: semantic segmentation and depth estimation.
For the semantic segmentation network, we used DeepLab v3+, trained on Cityscapes
https://www.cityscapes-dataset.com, (accessed on 5 April 2022). Because the road class is
included in the Cityscapes dataset, the predicted score of the road is used directly. For the
depth estimation network, we use the off-the-shelf depth prediction network, MiDaS [23].
The estimated depth is used to filter the noise by thresholding. Thus, the regions that are
predicted as roads and with estimated depths lower than the predefined threshold are
defined as pasteable regions.

3.5.2. Instance Size

Close objects look large and far objects look small. This property is also preserved
in the images. Using this property, we adjust the instance size of the construction sign
according to the pasted position. In the image, we first randomly select a pixel within
the pasteable region (p1 =

[
px

1 py
1

]
). The selected pixel is the bottom point of the

construction sign. In real-world coordinates, we compute the distance between the camera
and the sign (d), under the assumption that the road is flat, as follows:

d = Hcam tan θ1 (11)

where Hcam denotes the height of the camera from the road, and θ1 is the angle between
the line from the camera to the road and the line from the camera to the bottom of the
construction sign line. The angle θ1 is proportional to py

1:

θ1 = α · py
1 + β (12)

where α and β are constants. Given the computed distance d, we can calculate the angle
θ2, which is the angle between the line from the camera to the road and the line from the
camera to the top of the construction sign, as follows:

θ2 = tan−1

(
d

Hcam − Hsign

)
(13)

where Hsign denotes the height of the construction sign, and Hsign < Hcam. For sim-
plification, we assume that all construction signs have the same height Hsign and stand
perpendicular to the road. Then, in the image coordinates, we compute the top point
of the construction sign (p2 =

[
px

2 py
2

]
) using the proportionality between θ2 and py

2
as follows:

px
2 = px

1, (14)
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py
2 = (θ2 − β)/α

=

(
tan−1

(
d

Hcam − Hsign

)
− β

)/
α

=

(
tan−1

(
Hcam tan θ1

Hcam − Hsign

)
− β

)/
α

=

⎛⎝tan−1

⎛⎝ Hcam tan
(

α · py
1 + β

)
Hcam − Hsign

⎞⎠− β

⎞⎠/
α.

(15)

In Equation (15), we divide the denominator and numerator by Hcam as:

py
2 =

⎛⎝tan−1

⎛⎝ tan
(

α · py
1 + β

)
1 −

(
Hsign/Hcam

)
⎞⎠− β

⎞⎠/
α.

=

⎛⎝tan−1

⎛⎝ tan
(

α · py
1 + β

)
1 − h

⎞⎠− β

⎞⎠/
α.

(16)

where h denotes the ratio of the height of the sign to the camera. Using Equations (14) and
(16), the top point of the construction sign can be directly computed from the bottom point.
We empirically set the parameters α, β, and h to π/3888, π/3, and 0.75, respectively. The
overall process for computing the size of the construction signs is summarized in Figure 6.

: height of the camera
: height of the construction sign

2. Compute distance in the real domain.
( = tan , )

3. Calculate the angle = tan

1. Randomly select the bottom point of the sign ( )

4. Compute the top point of the construction sign ( ) 
using the angle ( )

Figure 6. Step-by-step processes for computing the size of the construction sign. (1) We randomly
select the bottom position of the construction sign in the image. The position is selected only within
the pasteable region. (2) From the randomly selected point in the image, we estimate the angle θ1 and
compute the distance between the camera and the sign in the real domain. (3) We estimate the angle
θ2 by assuming that all construction signs have the same height Hsign and stand perpendicular to the
road. (4) Using the estimated angle θ2, we compute the point of the top of the construction sign in
the image.

3.5.3. Color Difference

One of the main reasons for the artifacts in the synthesized images, which is made
using cut-and-paste, is the color difference between the two images. As shown in Figure 7c,
the color difference is caused by differences in illumination, weather, and environment. To
match the color difference between the construction sign image and road image, we blend
the synthesized image using an off-the-shelf model, GP-GAN [24]. By blending, we can
reduce the artifacts of the synthesized image, as shown in Figure 7d.
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(c) Cut-and-Paste (without blending) (d) Cut-and-Paste (with blending)

(a) Image for cut (b) Image for paste

Figure 7. Effect of blending. Using the construction sign image in (a) and the road image in (b),
we synthesize the training image via cut-and-paste. As shown in (c), however, the artifact seems
prominent because of the color difference between the construction sign and the road. This problem
is mitigated by blending, as shown in (d).

4. Experiments

4.1. Implementation Details

We conduct some experiments using our collected construction sign detection dataset,
CSS138. We use YOLOv3 [1] as a construction sign detector. Basically, we follow the
training and inference details in the original YOLOv3 paper [1]. We use Darknet-53 [1]
as a backbone network. Darknet-53 consists of 53 convolutional layers and 23 residual
connections. Darknet-53 outputs three different sizes of features, which have 1/8, 1/16,
and 1/32 resolutions with respect to the input image. To detect construction signs from
encoder’s feature, a decoder is used. The decoder takes three outputs of Darknet-53, and
outputs detection results at three different resolutions, i.e., 1/8, 1/16, and 1/32 resolutions
with respect to the input image. Each output predicts five values: four for coordinates of
the bounding box and one for objectness. Unlike vanilla YOLOv3, which predicts the class
of the object, we do not predict the object class because we have only a single object class,
construction sign, in this paper.

Additionally, we apply our method to YOLOv3-tiny to see the effectiveness of our
method in other networks. YOLOv3-tiny uses Darknet-19 [25] as a backbone network.
Darknet-19 has 19 convolutional layers without residual connections. YOLOv3 has 61.5M
parameters, while YOLOv3-tiny has 8.7M parameters. These parameter numbers are
comparable with state-of-the-art object detectors: Faster R-CNN [26] has 52.7M parameters,
FPN [27] has 60.6M parameters, and RetinaNet [28] has 56.9M parameters. To train YOLOv3,
we use an RGB image as an input.

A total of 9920 RGB images are synthesized for training using the CSS138 training
set. The training set includes 992 road images and 36 construction sign images. Among
36 sign images, 12 images are in-domain and 24 are out-domain. We randomly crop
640 × 640 patches for the training. The learning rate is initially set to 1 × 10−2, and we
decrease the learning rate to 1 × 10−3 using the cosine decay schedule. The network is
trained in 375,000 iterations with a mini-batch size of 16. The entire training process takes
approximately 60 h using a single NVIDIA Titan V GPU. During inference, we obtain
multiple detection results at three different resolutions. To select accurate results and
dismiss overlapped noisy results, we use non-maximal suppression with an IoU threshold
of 0.45.

4.2. Quantitative Results

We validate our approach on the CSS138 validation set. The CSS138 validation set
includes 126 images containing at least one construction sign. For quantitative evaluation,
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we measure the average precision with Intersection over Union (IoU) thresholds of 0.5, and
we denote it as AP50. Following the recent object detection benchmark https://cocodataset.
org/#detection-eval, (accessed on 5 April 2022), we additionally measure AP, which is
calculated by computing 10 average precision values with IoU thresholds of {0.5, 0.55,
. . . 0.9, 0.95} and then averaging them. To demonstrate the superiority of our approach,
we set a baseline that synthesizes 9920 training images by using a naive cut-and-paste
method. From the baseline, we add the proposed methods in a step-by-step manner. The
experimental results for the CSS138 validation set are listed in Table 1. As shown in Table 1,
our method achieves AP and AP50 scores of 70.36% and 84.98%, respectively, whereas the
baseline achieves scores of 60.53% and 75.84%, respectively. We surpass the baseline by
>+9% for both the AP and AP50 scores. Table 1 shows the contributions of each step of the
proposed method. Each step improves the performance by >+2% for both AP and AP50.
This demonstrates that all our approaches are effective in synthesizing training images for
construction sign detection.

Table 1. Experimental results on CSS138 validation set.

Method AP AP50

A . Baseline (cut-and-paste) 60.53 75.84
B. + Pasteable region 62.74 77.30
C. + Instance size 65.57 82.44
D. + Content swapping 68.51 82.73
E. + Color difference 70.36 84.98

In Table 2, we additionally validate the efficacy of our instance size adjustment method.
As described in Section 3.5.2, we resize the instance by projecting it to real-world coordi-
nates. We can compare it with Fixed, which uses the original scale of the construction sign
image. We can further compare it with Random, which uses a randomly sampled value for
scaling construction sign images and was used in cut-and-paste [7]. As shown in Table 2,
we significantly surpass Fixed and Random by 5% and 2%, respectively, in terms of the
AP50 score. The results demonstrate the superiority of our instance size adjustment method.

Table 2. Analysis experiment on instance size.

Instance Size AP AP50

Fixed 62.74 77.30
Random [7] 65.14 80.12
Ours 65.57 82.44

In Table 3, we conduct an ablation study using a different backbone. In the ablation
study, we use DarkNet-19 in YOLOv3-tiny. As shown in Table 3, our proposed method
improves the detection quality of both YOLOv3-tiny and YOLOv3 networks. This result
demonstrates that our proposed method is effective in various networks.

Table 3. Ablation study with various backbone networks.

Method
YOLOv3-tiny (DarkNet-19) YOLOv3 (DarkNet-53)

AP AP50 AP AP50

Baseline 53.40 70.67 60.53 75.84
Proposed 54.95 75.57 70.36 84.98

4.3. Grad-CAM Result

In this subsection, we analyze the effectiveness of our proposed method using Grad-
CAM. In Figure 8, we visualize the Grad-CAM [29] results of YOLOv3. To extract Grad-
CAM, we compute the gradient of the score for objectness at three different resolution
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outputs. Then, we average the three activations in each last layer of the decoder. To
validate the efficacy of our proposed method, we compare two methods for synthesizing
training images. One is to synthesize images simply using naive cut-and-paste method
(baseline), and the other one is to synthesize the images using our proposed method. As
shown in Figure 8, YOLOv3 trained using a baseline often cannot detect construction signs
(second and third rows), while YOLOv3 trained with our proposed method gives accurate
activation maps. This result demonstrates that our proposed method helps to learn the
discriminative features for construction sign detection.

Image + GT Baseline Ours

Figure 8. Grad-CAM result. In the first column, input images and corresponding ground truth
bonding boxes of the construction sign are shown. In the second and third columns, Grad-CAM
results are given. In the Grad-CAM results, high activation values are visualized in blue, while low
activation values are visualized in red.

4.4. Effect of Daylight

In this subsection, we analyze the effect of daylight and whether on the performance.
We build a hierarchical structure in our CSS138 training set by splitting it into two parts:
one is captured under sufficient daylight (i.e., outdoor scene), and the other one is captured
under low daylight (i.e., tunnel scene). Among 992 road images, 796 images were taken
outdoors and 196 images were taken in tunnel. Examples of outdoor and tunnel scenes are
given in Figure 9.

Outdoor Tunnel

Figure 9. An example of synthesized training set in outdoor and tunnel scenes.

With this split, we train detection networks, and the results for the two different
daylight conditions are given in Table 4. As shown in the table, daylight significantly
contributed to the performance. Specifically, the performance difference between outdoors
and the tunnel is about 30%, and the training set captured under sufficient daylight is more
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effective than the one under low daylight in improving detection performance. Therefore,
daylight and weather are crucial for construction sign detection.

Table 4. Results on two different daylight conditions.

Split
YOLOv3-tiny (DarkNet-19) YOLOv3 (DarkNet-53)

AP AP50 AP AP50

Outdoor 56.34 76.81 69.32 84.88
Tunnel 16.20 32.29 39.91 55.53

4.5. Qualitative Analysis

The synthesized training images are shown in Figure 10. Baseline (A) often pastes the
construction sign on the sky, which never occurs in real-world scenarios. After considering
the pasteable region (B), the construction sign is placed on the road, but the scale seems
very unfamiliar. Our instance size adjustment method (C) could address this problem,
but the problem of limited sign images remained. Our content swapping (D) effectively
augments the construction sign images, preventing overfitting. Finally, the color difference
(E) between the background road image and foreground construction sign image is adjusted
to create a realistic image.

E. +Color differenceD. +Content swappingC. +Instance sizeB. +Pasteable regionA. Baseline

Figure 10. Synthesized training images. For each method, we sampled from the same five back-
ground images.

Figure 11 shows the qualitative results of the proposed methods on the CSS138 vali-
dation set, as well as the results of the baseline. As shown in the figure, our method finds
small instances (first, second, and third rows) and precisely determines the bounding box
of the construction sign (fourth row).

In Figure 12, we present some failure cases, and they show some limitation of our
method. The first two rows present false negatives, while the last row present false positive.
In the first two rows, construction signs are often missed when they are occluded by other
objects such as traffic cones. The last row is the example of the false positive. As can be
seen, a rectangular shape object is sometimes detected as a construction sign. We expect
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that this problem can be solved by various methods, e.g., pre-designing sign shape [10,12],
hard example mining [30,31], or learning with strong generalization [32,33].

GT Baseline Ours

1 missed 0 missed

1 missed

0 missed

0 missed1 missed (IOU<0.9)

3 missed

1 missed

Figure 11. Qualitative results on CSS138 validation set. From left to right, each row shows ground
truth (GT), the baseline (naive cut-and-paste), and Ours. For each result on the baseline and ours, we
denote the number of missed construction signs.

GT Ours

4 missed

2 missed

1 wrong detection

Figure 12. Limitations: if the construction sign is severely occluded, we cannot detect it accurately
(first and second rows). A rectangle shape can be detected as a construction sign (third row).
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5. Conclusions

In this paper, we have presented a new approach for synthesizing training images
for construction sign detection and trained a deep learning detector on them. Since this is
the first paper which deals with the construction sign detection, there is not a benchmark
set, and we have applied our method to real-world images. Our approach is effective,
even when only a few construction sign images are available. Furthermore, our main
proposal, content swapping, allows us to use out-domain construction sign data, effectively
alleviating the problem of data hunger. To demonstrate the efficacy of our approach, we
collected road and construction sign images in person and collected out-domain construc-
tion sign images from the Internet. The images used in our experiments are gathered as a
dataset CSS138, and we made the dataset available online for the benefit of our community.
Even though our method was tested only on the dataset gathered in Seoul, South Korea,
we firmly believe that our methods will be applied to other countries and other similar
sign-related tasks successfully. Since our content swapping allows us to train networks
with a few images, it has the potential to be applied to the few-shot learning field. In this
paper, we applied our method only to images, but our proposed method can be extended
to videos by applying content swapping and realistic transformations smoothly over time.
In addition, our method can be extended to stereo-camera by modeling a construction sign
in 3D and projecting it into stereo-view. In addition, a laser scanner sensor can also be
considered to measure the distance between the vehicle and the construction sign. The
measured distance can improve the quality of the realistic transformations. Furthermore,
the future direction of this work would be deciding the action of the autonomous vehicles,
after detecting construction signs.
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Abstract: Automatic Traffic Sign Detection and Recognition (TSDR) provides drivers with critical
information on traffic signs, and it constitutes an enabling condition for autonomous driving. Misclas-
sifying even a single sign may constitute a severe hazard, which negatively impacts the environment,
infrastructures, and human lives. Therefore, a reliable TSDR mechanism is essential to attain a safe
circulation of road vehicles. Traffic Sign Recognition (TSR) techniques that use Machine Learning
(ML) algorithms have been proposed, but no agreement on a preferred ML algorithm nor perfect
classification capabilities were always achieved by any existing solutions. Consequently, our study
employs ML-based classifiers to build a TSR system that analyzes a sliding window of frames sam-
pled by sensors on a vehicle. Such TSR processes the most recent frame and past frames sampled
by sensors through (i) Long Short-Term Memory (LSTM) networks and (ii) Stacking Meta-Learners,
which allow for efficiently combining base-learning classification episodes into a unified and im-
proved meta-level classification. Experimental results by using publicly available datasets show
that Stacking Meta-Learners dramatically reduce misclassifications of signs and achieved perfect
classification on all three considered datasets. This shows the potential of our novel approach based
on sliding windows to be used as an efficient solution for TSR.

Keywords: traffic sign recognition; sliding windows; meta learning; deep learning; classification

1. Introduction

Intelligent transportation systems are nowadays of utmost interest for researchers and
practitioners as they aim at providing advanced and automatized functionalities, such as
obstacle detection, traffic sign recognition, car plate recognition, and automatic incident
detection or stopped vehicle detection systems. Particularly, Traffic Sign Detection and
Recognition (TSDR) systems aim at detecting (TSD) and recognizing (TSR) traffic signs from
images or frames sampled by sensors [1–3] installed on vehicles (e.g., webcams). Those
systems synergize with the human driver, who may misinterpret or miss an important
traffic sign, potentially leading to accidents that may generate safety-related hazards [4].
When integrated into intelligent vehicles [5,6], in terms of Advanced Driver-Assistance
Systems (ADAS) [2,7–9], TSDR can automatically provide drivers with actionable warnings
or even trigger reaction strategies (e.g., automatic reduction of speed, braking) that may be
crucial to avoid or reduce the likelihood of accidents [3,10].

Humans are expected to naturally miss or misinterpret a traffic sign occasionally
because of being distracted [11]. Similarly, to humans, TSDR systems are also subject to
error as they may misinterpret or miss a traffic sign. This could happen due to various
reasons, such as unsatisfactory road situations, imperfect traffic sign state, adverse environ-
mental conditions (e.g., foggy weather [12]) or imperfect analysis processes. Nevertheless,
researchers and practitioners are trying to minimize misclassifications at the automatic
TSDR side, which is expected to increase safety by providing drivers with accurate and
timely notifications.
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Available TSD systems can precisely extract areas of an image or a frame, which are
supposed to contain a traffic sign. Thereto, TSR systems that embed Machine Learning
(ML) algorithms [13–16], process features that are extracted from those images through
feature descriptors (e.g., Histogram of Oriented Gradients (HOG) [17], Local Binary Pat-
tern (LBP) [16] to recognize traffic sign categories [18,19]. Alternatively, deep learning
algorithms, such as AlexNet, googLeNet [20] can directly process images coming from
sensors and classify them according to internal representation learning processes, which are
orchestrated through multiple convolutional and fully connected layers. Throughout the
years, many studies tackled TSR [21–23] using different feature descriptors and ML-based
classifiers. Different combinations of such classifiers and features have been proven to gen-
erate heterogeneous classification scores [15,19,24–27] motivating the need for comparisons
to discover the optimal classifier for a given TSR problem [3,28,29].

Regardless of the outcomes of comparison studies, most of the existing solutions for
TSR process a single image or frame and output a classification result. Instead, vehicles
gradually approach traffic signs during their road trips, generating sequences of images:
the closer the vehicle is to the traffic sign, the better the quality of the image, even under
slightly different environmental conditions. Therefore, the problem of TSR naturally scales
to knowledge extraction from a set or sequence of images that potentially contain traffic
signs. Consequently, the classification process should not depend only on a single frame to
make a decision; instead, it should build on the knowledge acquired as the vehicle moves
forward, i.e., the sequence of images.

This study considers a sliding window of images to commit classification rather than
classifying frames individually. First, we process each image with the most effective single-
frame classifier for TSR: then, we combine classification scores assigned to images in the
sliding window to provide a unified and improved classification result. Such a combination
is performed by appropriate Meta-Learners [30], which suit model combination, and
therefore, show potential to be applied in such a context.

We conduct an experimental evaluation by processing three public datasets, namely,
(i) German Traffic Sign Recognition Benchmark (GTSRB) [31] (ii) BelgiumTSC [32], and
(iii) the Dataset of Italian Traffic Signs (DITS) [33], which report on sequences or unordered
sets of images of traffic signs. From each image, we extracted 12 different feature sets, which
use handcrafted features (HOG [17], LBP [16]), deep features (from AlexNet [34], ResNet-
18 [35]), and their combinations, to debate their impact in TSR. Those features were fed to
supervised classifiers as Decision Trees [36], Random Forests [37], k-th Nearest Neighbour
(K-NN, [13]), Linear Discriminant Analysis Classifier (LDA) [38], Support Vector Machines
(SVMs) [14], and AdaBoost [39]. We also exercised single-frame classifiers that do not rely
on feature descriptors as deep learners, namely Inceptionv3 [40], MobileNet-v2 [41] and
AlexNet [34]. We used the classifiers above both as single-frame classifiers and as base-level
learners of a Stacking meta-learner, which aggregates individual classification scores into
sliding windows. The meta-level classifier for Stacking was experimentally chosen out of
supervised (non-deep) classifiers, the Majority Voting [42] and Discrete Hidden Markov
Model (DHMM, [43]).

Additionally, we compare the classification performance of those meta-learners with
Long Short-Term Memory (LSTM) networks, which naturally deal with sequences of
data coming at different time instants. We trained those LSTM networks on the same
sliding windows of images processed through Stacking. Results show how single-frame
classifiers achieve 100% accuracy on the GTRSB, 99.72% on BelgiumTSC and 96.03% on
DITS datasets. Then, we applied our approach based on sliding windows by using LSTM
networks and stacking meta-learners, finding that both approaches greatly improve the
accuracy of TSR: particularly, specific stacking meta-learners achieved perfect accuracy
(i.e., no misclassifications at all) on the three datasets by using a sliding window of two or
three images.

Summarizing the contribution and novelty of the paper mainly lies in the following items:

• a deep literature review about ML-based TSR;
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• presentation of an approach based on sliding windows of frames to be processed either
by meta-learners or LSTM;

• an experimental campaign that relies on heterogeneous and public datasets of traffic
signs; and finally

• a discussion of results that clearly shows how a sliding window of at least two items,
deep base-level classifiers and K-NN as stacking meta-learner allow achieving perfect
TSR on all datasets considered in the study, dramatically improving the state of the art.

The rest of the paper is organized as follows: Section 2 elaborates on related works
and a review of existing TSR systems. Section 3 expands on our approach based on sliding
windows. Section 4 reports on our experimental setup and methodology, classifiers, and
feature sets to compare different TSR systems. Finally, Section 5 discusses and comments
on those experimental results, letting Section 6 conclude the paper.

2. Background on Traffic Sign Recognition

2.1. Classifiers for TSR

In the last decade, researchers, practitioners, and companies devised automatic TSR
systems to be integrated into ADAS. Amongst all the possible approaches, most TSR
systems rely on the same main blocks, namely: (i) Dataset creation/identification, (ii) pre-
processing (e.g., resizing, histogram equalization), (iii) Feature extraction and supervised
model learning, or (iv) model learning through deep classifiers (i.e., deep learners).

As depicted in Figure 1, these building blocks interact with each other sequentially.
Each image in the dataset is pre-processed to make feature extraction easier. These features
are then fed into the classifier, either for training or for testing (right of Figure 1) if the
model was already learned. Alternatively (see bottom left of Figure 1) we could rely
on deep learning algorithms, which—unlike traditional supervised classifiers—embed
representation learning, and therefore, do not require feature extraction.

Figure 1. Block diagram of traffic sign recognition through deep learners or supervised classifiers.

Regardless of their type, classifiers output Probabilities of Traffic Sign categories (PTS),
or rather, assign probabilities belonging to any known class of traffic signs to each image.
The category of a traffic sign corresponds to the highest probability in PTS which defines
the predicted class of a given image.

2.2. Related Works on Single-Frame TSR

Feature extractors and supervised classifiers have been arranged differently to mini-
mize misclassifications in a wide variety of domains. Soni et al. [24] processed the Chinese
traffic sign dataset through SVM, trained on the HOG or LBP after Principal Component
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Analysis (PCA), reaching an accuracy of 84.44%. A similar setup was used by Manisha and
Liyanage [21], who achieved 98.6% accuracy on vehicles moving at 40–45 km/h. Moreover,
Matoš et al. [22] used an SVM trained on HOG features and achieved recognition of 93.75%
accuracy on the GTSRB dataset. The same dataset was used in [44], where Extreme Learn-
ing Machine (ELM) improved accuracy to 96%. Agrawal and Chaurasiya [45] extracted
HOG features from the traffic signs of the GTSRB dataset and applied PCA for the dimen-
sionality reduction to obtain an accuracy of 73.99%, 66.46%, 91.86% on denial, mandatory
and danger traffic sign categories. Similar studies as [15,46,47] processed the same datasets
with different feature sets and algorithms, obtaining similar scores.

Deep learners and the Viola–Jones framework allowed the authors of [8] to enhance
classification on the GTSRB dataset with up to 90% of accuracy. Li et al. [28] proposed a new
Convolutional Neural Network and trained on the GTSRB and BelgiumTSC datasets. The
proposed architecture achieved an accuracy of 98.1% and 97.4% on BelgiumTSC and GTSRB
datasets, respectively. In [48], the fifteen-layer WAF-LeNet network reached a detection
accuracy of 96.5% on GTSRB. The authors of [49] proposed an approach for TSDR using
SegU-Net and a modified Tversky loss function With L1-Constraint that achieved 94.60%
and 80.21% precision and recall, respectively, on the CURE-TSD dataset. Liu et al. [50]
proposed traffic sign recognition and detection approaches, which first extract the region
of interest and after verification of the traffic sign through an SVM classifier, it classifies
the traffic sign into traffic sign categories. The proposed approach achieves the highest
accuracy 94.81%.

Another study [51] used the Inceptionv3 model trained with transfer learning on the
BelgiumTSC dataset, obtaining an accuracy of 99.18%. In [52], the authors found that the
Tiny-YOLOv2 network is fast but outperformed by YOLOv2 or YOLOv3 deep learners.
While the authors of [53] introduced real time image enhancement CNN and achieved
an accuracy of 99.25% for the BelgiumTSC, 99.75% for GTSRB, and 99.55% for Croatian
Traffic Sign (rMASTIF). Authors of [54], developed a real time TSR by using the You Only
Look Once (YOLO) algorithm to train the model for Malaysian traffic sign recognition and
tested it on five types of warning traffic signs. In [55] authors propose a lightweight CNN
architecture for the recognition of the traffic sign GTSRB dataset, and they achieved 99.15%
accuracy. In one another study [56], a novel semi supervised classification technique is
adopted for TSR with weakly-supervised learning and self-training. An ensemble of CNN
was used for the recognition of the traffic signs and achieved higher than 99% accuracy
for the circular traffic signs of the German and BelgiumTSC datasets [57]. Lu et al. [58]
use multi-modal tree structure embedded multitask learning for the GTSRB dataset and
achieved an overall accuracy of 98.27%. In [59], the authors improved the VGG-16 deep
model by removing some redundant convolutional layers and adding Batch Normalization
and global average pooling layer to improve the performance of the network, while [60]
proposed a hybrid 2D-3D CNN. In [61], the authors proposed a traffic sign recognition
system that learns learning hierarchical features based on multi-scale CNNs. In one another
study [62], the authors proposed a real-time TSDR for Chinese and German roads. In [63]
authors proposed a robust custom feature extraction method and multilayer artificial neural
network for the recognition of traffic signs in real time.

Additionally, a few works perform classification depending on multiple frames. In
a study [64], authors considered the sequences of frames of the street view images and
achieved an 87.03% evaluation score, i.e., the ratio of true positive and true positive + false
positive + false negative. In another study, Yuan et al. [65] proposed a video based traffic
sign detection and recognition mechanism to fuse the result of all frames for final classi-
fication. They utilized a multi-class SVM with two different fusion strategies, i.e., equal
weighting and a scale based weighting scheme which achieved 99.48% accuracy on the
TS2010 dataset.

In the literature, there are many studies [66–69] focusing on single frame TSR, and
very few studies [64,65] that process multiple frames. According to our knowledge based
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on the literature review, there is no study available that considers the sliding windows
approach for traffic sign recognition.

2.3. Background on Comparative Studies

Only a few comparative studies have been proposed in the literature. For exam-
ple, Jo [15] trained different supervised classifiers on HOG features extracted from the
GTSRB dataset. Similarly, Schuszter [70] reported on experiments with the BelgiumTSC
dataset [32], where HOG features were extracted from images and then fed to the SVM to
classify one of the six basic traffic sign subclasses. Yang et al. [19] provide a comparison
of different classifiers, such as the K-NN, SVM, Random Forest and AdaBoost trained by
using combinations of features. This study reported the highest accuracy by using Random
Forest with the combination of LBP and HOG features. Another study [29] compared
traditional supervised classifiers and deep learning models on three datasets, i.e., GTSRB,
BelgiumTSC and DITS considering three broad categories of traffic signs, i.e., red circular,
blue circular and red triangular. Noticeably, both traditional supervised classifiers and
deep classifiers achieved perfect accuracy on GTSRB. Moreover, the authors of [18] trained
different classifiers for traffic sign recognition. They considered the GTSRB dataset and
extracted HOG features to train LDA and Random Forest. Additionally, they used the
committee of Convolutional Neural Networks (CNN) and multiscale-scale CNN. While
in the study [31] authors organized a competition to classify GTSRB dataset traffic signs.
These traffic signs were categorized by human and ML algorithms and an accuracy of
98.98% was achieved which is comparable to human performance on this dataset.

3. Sliding Windows to Improve TSR

TSR naturally fits the analysis of sequences of images being collected as the vehicle
approaches the traffic sign. Therefore, we organize a complex classifier that processes
sliding windows of frames

As shown in Figure 2, a sliding window of size s contains (i) the most recent frame
sampled by the sensors on the vehicle plus (ii) the s-1 most recent frames. The figure
represents how sliding windows of size s = 2 and s = 3 evolve as time passes by as the
vehicle approaches a speed limit sign. Intuitively, the closer the vehicle gets to the traffic
sign, the more visible and clearer the traffic sign gets. On the other hand, the sooner the
TSR correctly classifies a traffic sign, the better it is for the ADAS, e.g., it may provide more
time for emergency braking, whenever needed.

Figure 2. Example of Sliding Windows. Dotted, dashed and solid boxes show sliding windows,
respectively, at t5, t4, t3.
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3.1. Sliding Windows and Meta-Learning

Adopting sliding windows of s images calls for a rework of the TSR system. In
particular, classification should be carried out using s subsequent classifications, which
contribute to the final decision on the traffic sign. Those single-frame classifications for
subsequent frames have to be combined by utilizing an independent strategy that delivers
the result of this ensemble of single-frame classifiers.

Such a combination is usually orchestrated through meta-learning [30,71], which uses
knowledge acquired during base-learning episodes, i.e., meta-knowledge, to improve
classification capabilities. More specifically [72], a base-learning process starts feeding
images into one or more base classifiers to create meta-data at the first stage. Results
of those base learners, i.e., meta-data are provided alongside other features to the meta-
level classifier as input features, which in turn provides the classification result of the
whole meta-learner.

The paradigm of meta-learning can be adapted to TSR as shown in Figure 3. Let k
be the number of different categories of traffic signs (i.e., classes), and let s be the size of
the sliding window. Starting from the left of the figure, frames are processed by means of
single-frame base-level classifiers, which provide k probabilities PTSi = {ptsi1, . . . ptsik} to
classify each frame. Depending on the current time tj, we create a sliding window of at
most s×k items, namely swsj = {PTSj, PTSj-1, . . . PTSj-s-1}, which builds the meta-data to be
provided to the meta-level classifier. On the right side of Figure 3, the meta-level classifier
processes such meta-data and provides the k probabilities PTSfinal, which will constitute
the classification result of the whole sequence within the sliding window. As time moves
on, we will have newly captured images and the sliding window will process the most
recent s × k items. Note, that the sliding window swsj may contain less than s × k items
when j < s (e.g., the window of size 3 at time t2 in Figure 2). In those cases, the TSR system
will decide based on a single-frame classification of the most recent image.

Figure 3. Diagram representing TSR which uses sliding windows. Blue solid boxes represent
single-frame classifier in Figure 1.
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3.2. A Stacking Meta-Learner

The structure of the meta-learner we described previously is traditionally referred
to as Stacking. Stacking [73] builds a base-level of different classifiers as base learners.
Base-learners can be trained with the exact same training set or with different training
sets, mimicking Bagging [74]. Each of the n base-learners generates meta-features (PTSi,
1 ≤ i ≤ n in Figure 3) that are fed to another independent classifier, the meta-level classifier,
which calculates and delivers the final output (PTSfinal in Figure 3).

In our instantiation of the Stacker, we use the same base-level classifier, which can
either be a deep learner or a traditional supervised classifier but feed each base-learner with
a different image. The meta-level classifier is necessarily a supervised (non-deep) classifier
as it has to process numeric features contained in swsj rather than images.

3.3. Long Short-Term Memory Networks (LSTM)

As an alternative to stacking, we plan the usage of LSTM networks [75,76]. An LSTM
network is a Recurrent Neural Network that learns the long-term dependencies between
time steps of sequence data by orchestrating two layers. Those networks do not have a
meta-learning structure as a stacker: however, they perfectly fit the analysis of sliding
windows of traffic signs as they are intended to be used for the classification of sets or
sequences by directly processing multiple frames. The first layer contains a sequence of
inputs, which are then forwarded to the LSTM fully connected layer, and finally, the output
layer shows the classification result.

4. Methodology, Inputs and Experimental Setup

This section describes the methodology, inputs, and experimental setup to compare
single-frame classifiers and approaches built upon sliding windows, such as Stacking and
LSTM networks. Results will be presented, analyzed, and discussed in Section 5.

4.1. Methodology for a Fair Comparison of TSR Systems

We orchestrate our experimental methodology as follows:

• Datasets and Pre-processing. Images go through a pre-processing phase to resize
them to the same scale and enhance the contrast between background and foreground
through histogram equalization.

• Feature Extraction (Section 4.3). Then, each pre-processed image is analyzed to extract
features: these will be used with traditional supervised classifiers, while deep learners
will be directly fed with pre-processed images.

• Classification Metrics (Section 4.4). Before exercising classifiers, we select metrics to
measure the classification capabilities of ML algorithms which apply both to single-
frame classifiers and to others based on sliding windows.

• Single-Frame Classification. Both supervised (Section 4.5) classifiers and deep learn-
ers (Section 4.6) will be trained and tested independently, executing grid searches to
identify proper values for hyper-parameters.

• Sliding Windows with Stacking Meta-Learners (Section 4.7). Results of single-frame
classifiers will then be used to build Stacking learners as described in Section 3.2 and
by adopting different meta-level classifiers.

• Sliding Windows with LSTM (Section 4.8). Furthermore, sliding windows will be
used to exercise LSTM networks as described in Section 3.3.

Exercising such methodology with its inputs required approximately 6 weeks of exe-
cution. The experiments were conducted on an Intel(R) Core (TM) i5-8350U CPU@1.7 GHz
1.9 GHz running MATLAB. MATLAB implementations of Deep Learners also use our
NVIDIA Quadro RTX 5000 GPU.
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4.2. TSR Datasets and Traffic Sign Categories

We conducted extensive research to identify commonly used labeled datasets report-
ing on sequences of traffic signs with overlapping categories. We selected three public
datasets which report on sequences of images of traffic signs, namely: (i) the BelgiumTSC
dataset [32], (ii) the GTSRB dataset [31], and (iii) the DITS [33]. Details about their structure
and the categories of traffic signs are in Tables 1 and 2, respectively.

Table 1. Details of the three datasets used in this study.

Dataset Train Images Test Images
Images per
Sequence

Training
Sequences

Test
Sequences

GTSRB 39210 12570 30 1307 419

DITS 7500 1159 15 500 123

BelgiumTSC 4581 2505 3 1527 835

Table 2. Categorization of Traffic Signs into 9 categories based on their shape, color, and content.

Category 1 2 3 4 5 6 7 8 9

Traffic
Signs        

GTSRB

BelgiumTSC

DITS

4.2.1. German Traffic Signs Recognition Benchmark Dataset

The German Traffic Signs Recognition Benchmark (GTSRB [31]) dataset is widely
used in the literature [15,18,19,31] as it reports on images of traffic signs belonging to eight
categories with heterogeneous illumination, occlusion and distance from the camera. The
dataset contains sequences of 30 images for each traffic sign, which were gathered as the
vehicle was approaching it. The authors made available 1307 training and 419 testing
sequences of images for a total of 51,780 images contained in the dataset. Table 2 depicts
examples of traffic signs for each category of traffic sign contained in this dataset. Impor-
tantly, the rectangular traffic signs we mapped into category 8 in the table do not appear in
the GTSRB dataset but appear in other datasets considered in this study.

4.2.2. BelgiumTSC Dataset

The BelgiumTSC dataset [32] is another dataset of traffic signs which was extensively
used in the last decade [32,70]. The BelgiumTSC contains eight categories of traffic signs,
shown from category 1 to category 8 in Table 2. The dataset is smaller than the GTSRB:
the BelgiumTSC contains only 2362 sets of three images taken with different cameras
from different viewpoints. It follows that this dataset reports triple images for each traffic
sign which are all taken at the same time and thus are not time- ordered: this requires a
dedicated discussion that we expand on in Section 5.4.

4.2.3. Dataset of Italian Traffic Signs Dataset

The Dataset of Italian Traffic Signs (DITS) dataset is considered more challenging
than others in the literature [33] as it contains traffic signs images that were taken under
non-optimal lighting conditions, e.g., day, night-time, foggy weather. The DITS contains
623 sequences containing a varying, time-ordered, number of frames. We point out that
DITS is the only dataset in this study that contains all the nine categories of traffic signs
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reported in Table 2 and as such, it provides a complete view of all potential traffic signs.
The dataset contains 500 training sequences and 123 testing sequences of varying lengths
as summarized in Table 1.

4.3. Feature Descriptors

In this study, we extract features from images by means of handcrafted, i.e., HOG, LBP
and deep, i.e., AlexNet and ResNet, feature descriptors, as described below.

• Histogram of Oriented Gradients (HOG) mostly provides information about key
points in images. The process partitions an image into small squares and computes
the normalized HOG histogram for each key point in each square [17].

• Local Binary Patterns (LBP) encode local textures [16] by partitioning each image
into non-overlapping cells. Then, LBP isolates local binary patterns and uses small
gray-scale discrepancies to identify specific features. Its behavior is invariant to the
monotonic transformation of grayscale.

• AlexNet Features (AFeat) are extracted through a pre-trained AlexNet [34], composed
of five convolutional layers and three fully connected layers. Convolutional layers are
basically extracting deep features from RGB images of size 227 × 227. We extract a
feature vector of 4096 items by fetching data at the fully connected layer “fc7”.

• ResNet Features (RFeat) are extracted from a ResNet-18 [35], a convolutional neural
network with 18 hidden layers. Convolutional layers are extracting deep features
from RGB images of size 224 × 224 Similarly to AlexNet, we extract 512 features by
extracting data at the global average pooling layer “pool5”.

In addition, we combine hand-crafted and deep feature descriptors that are con-
sequently fed simultaneously to classifiers: couples as {HOG ∪ LBP}, {AFeat ∪ HOG},
{AFeat ∪ LBP}, {RFeat ∪ HOG}, {RFeat ∪ LBP}, {AFeat ∪ RFeat}, and triples of
{AFeat ∪ HOG ∪ LBP} and {RFeat ∪ HOG ∪ LBP}.

4.4. Classification Metrics

The performance of classifiers for TSR is usually compared by means of classification
metrics. These metrics are mostly designed for binary classification problems, but they
can be adapted also to measure multi-class classification performance. Amongst the many
alternatives, TSR mostly relies on accuracy [77,78], which measures the overall correct
and incorrect classifications. Correct classifications reside in the diagonal of the confusion
matrix, whereas any other item of the confusion matrix is counted as a misclassification.

It should be noticed that this is a quite conservative metric for TSR as it considers all
misclassifications at the same level. Instead, we may not be too worried about misclassifying
an informative sign (e.g., Category 8 in Table 2) with a stop sign, whereas the opposite
represents a very dangerous event. That being said, for ease of comparison with existing
studies, we calculate accuracy according to its traditional formulation, thus considering
each misclassification as equally harmful.

4.5. Traditional Supervised Classifiers and Hyper-Parameters

Traditional Supervised classifiers process features extracted from images. Amongst
the many alternatives, we summarize below those algorithms that frequently appear in
most studies about TSR.

• K Nearest Neighbors (K-NN) algorithm [13] classifies a data point based on the class
of its neighbors, or rather other data points that have a small Euclidean Distance with
respect to the novel data point. The size k of the neighborhood has a major impact on
classification, and therefore, needs careful tuning, which is mostly achieved through
grid or random searches.

• Support Vector Machines (SVMs) [14], instead, separate the input space through
hyperplanes, whose shape is defined by a kernel. This allows performing either linear
or non-linear (e.g., radial basis function RBF kernel) classification. When SVM is used
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for multi-class classification, the problem is divided into multiple binary classification
problems [79].

• Decision Tree provides a branching classification of data and is widely used to ap-
proximate discrete functions [36]. The split of internal nodes is usually driven by the
discriminative power of features, measured either with Gini or Entropy Gain. Training
of decision trees employs a given number of iterations and a final pruning step to
limit overfitting.

• Boosting (AdaBoostM2) [39] ensembles combine multiple (weak) learners to build a
strong learner by weighting the results of individual weak learners. Those are created
iteratively by building specialized decision stumps that focus on “hard” areas of
input space.

• Linear Discriminant Analysis (LDA) is used to find out the linear combination of
features that efficiently separates different classes by distributing samples into the
same type of category [38]. This process uses a derivation of Fisher discriminant to fit
multi-class problems.

• Random Forests [37] build ensembles of Decision Trees, each of them trained with a
subset of the training set extracted by random sampling with replacement of examples.

Each supervised algorithm has its own set of hyper-parameters. To such an extent, we
identified the following parameter values to exercise grid searches.

• K-NN with different values of k, i.e., different odd values of k from 1 to 25. Addi-
tionally, we observe that DITS contains nine categories of traffic signs: therefore, we
disregard the usage of k = 9 to further avoid ties.

• SVM: we used three different kernels: Linear, RBF and Polynomial (quadratic), leaving
other parameters (e.g., nu) as default.

• Decision Tree: we used the default configuration of MATLAB which assigns MaxNum-
Splits = training sample size 1, with no depth limits on decision trees.

• Boosting: we created boosting ensembles with AdaBoostM2 by building 25, 50, 75,
and 100 trees (decision stumps) independently.

• Random Forest: we build forests of 25, 50, 75, or 100 decision trees.
• LDA: we Trained LDA using different discriminants, namely: pseudo-linear, diag-

linear, diag-quadratic, and pseudo-quadratic.

4.6. Deep Learners and Hyper-Parameters

Deep learners may be either built from scratch or more likely—by adapting existing
models to a given problem through transfer learning (i.e., knowledge transfer). Through
transfer learning, we fine tune the fully connected layers of the deep model, letting all con-
volutional layers remain unchanged. Commonly used deep learners for the classification
of images and object recognition are below.

• AlexNet [34] is composed of eight layers, i.e., five convolutional layers and three fully
connected layers that were previously trained on the ImageNet database [80], which
contains images of 227 × 227 pixels with RGB channels. The output of the last fully
connected layer is provided to the SoftMax function, which provides the distribution
of overall categories of images.

• InceptionV3 is a deep convolutional neural network built by 48 layers that were
trained using the ImageNet database [80], which includes images (299 × 299 with RGB
channels) belonging to 1000 categories. InceptionV3 builds on (i) the basic convolu-
tional block, (ii) the Inception module and finally (iii) the classifier. A 1x1 convolutional
kernel is used in the Inceptionv3 model to accelerate the training process by decreasing
the number of feature channels; further speedup is achieved by partitioning large
convolutions into small convolutions [40].

• MobileNet-v2 [41] embeds 53 layers trained on ImageNet database [80]. Differently
from others, it can be considered a lightweight and efficient deep convolutional neural
network with fewer parameters to tune for mobile and embedded computer vision
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applications. MobileNet-v2 embeds two types of blocks: the residual block and a
downsizing block, with three layers each.

Those deep learners can be tailored to TSR through transfer learning. Fully connected
layers are trained on defined categories of traffic signs with different learning rates (LR) to
fine-tune the models which are already trained on the ImageNet database of 1000 categories.
Additionally, we employ data augmentation to avoid model overfitting; this was conducted
through X and Y translation with a random value between [−30, 30] and scale range within
a range [0.7, 1].

The hyper-parameter learning rate controls how fast weights are updated in response
to the estimated errors, and therefore, controls both the time and the resources needed
to train a neural network. Choosing the optimal learning rate is usually a tricky and
time-consuming task: learning rates that are too big may result in fast but unstable training,
while small learning rates usually trigger a heavier training phase which may even get stuck
without completing correctly. In our experiments, we varied learning rate as follows: {0.05,
0.01, 0.005, 0.001, 0.0005, 0.0001} for Inceptionv3 and MobileNet-v2, and {0.0001, 0.0005,
0.00001, 0.00005, 0.000005, 0.000001} for AlexNet, which resulted in very low accuracy when
using the same learning rates of the Inceptionv3 and MobileNet-v2. Noticeably, training a
deep classifier with the highest learning rate in the interval reduce the training time with
respect to using the smallest value in the interval (e.g., training Inceptionv3 with a learning
rate of 0.05 instead of using 0.0001).

We set a minimum batch size of 32, with 10 train epochs and stochastic gradient
descent with momentum (sgdm) optimizer for all the experiments on each dataset to
fine-tune the models for TSR. Furthermore, we used the loss function ‘crossentropyex’
at the classification layer and the fully connected weights and biases were updated with
a learning factor (different from learning rate) of 10. We had the weights vector size
associated with the last fully connected layers [Num_cat × 4096], [Num_cat × 1280], and
[Num_cat × 2048] for Alexnet, MobileNet-v2 and Inceptionv3 models, respectively, where
Num_cat represented the number of traffic sign categories in each dataset.

4.7. Stacking Meta-Level Learners

Stacking meta-learners orchestrate a set of base-learners, which provide meta-data to
the meta-level learner. In our study, we foresee the usage of different meta-level learners as
listed below.

• Majority Voting [42] commits the final decision based on the class the majority of
base-learners agree upon. This technique is not very sophisticated, albeit it was and
is widely used to manage redundancy in complex systems [81] and to build robust
machine learners [82].

• Discrete Hidden Markov Model (DHMM) [43]. For each class, a separate Discrete
HMM returns the probability of an image belonging to that class. The classification
result of the frames within the sliding window is given as input to all three DHMMs.
Each DHMM returns the likelihood of the sequence to a specific class. The higher the
likelihood to a specific class is decided as a final label for that specific sequence.

• Supervised Classifiers in Section 4.5. These classifiers can be employed as meta-level
learners as meta-data resembles a set of features coming from base-learning episodes.

The parameters we used to execute grid searches and train meta-level learners above
are as follows.

• Majority Voting: no parameter is needed.
• Each DHMM model was trained with 500 iterations.
• Supervised Classifiers: we used the same parameter values we already presented

in Section 4.5.
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4.8. Long-Short Term Memory (LSTM) Networks

LSTM networks are artificial recurrent neural networks, which efficiently process
sequences of images, and therefore, suit the classification of sequences of traffic signs.
LSTM networks are trained on all 12 feature sets in Section 4.3 independently considering
three different training functions or optimizers, i.e., ‘adam’, ‘sgdm’, and ‘rmsprop’ with a
learning rate of 0.001.

5. Results and Discussion

This section reports and discusses the results of our experimental campaign. We
split the results into two sub-sections: Section 5.1 describes the experimental results of
single-frame classifiers, while Section 5.2 reports on the results achieved by classifiers that
consider sliding windows of frames.

5.1. TSR Based on Single Frame

First, we elaborate on the classification performance of TSR systems that process
frames individually.

5.1.1. Highest Accuracy for Each Dataset

Figure 4 depicts a bar chart diagram reporting the highest accuracy achieved by
classifiers in each of the three datasets. It is clear from the blue solid bars in Figure 4 that
almost all classifiers give better performance on the GTSRB dataset compared to the other
two datasets, i.e., BelgiumTSC and DITS. All classifiers in the figure but Decision Tree and
LDA achieve perfect accuracy on the GTSRB dataset. The reason behind the high accuracy
may be the higher number of training samples and better image quality of the GTSRB
dataset compared to the other two datasets. Instead, SVM provides the highest accuracy of
95.94% in DITS, with LDA that comes close at 95.85%. Consequently, the highest accuracy
in each dataset is not always achieved by the same algorithm, despite K-NN, SVM and
LDA performing better overall compared to other supervised classifiers.
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Figure 4. Highest accuracy achieved by traditional supervised classifiers on each dataset.

5.1.2. Impact of Feature Descriptors

Table 3 further elaborates on the impact of features on accuracy scores achieved by
supervised classifiers on each dataset. Supervised classifiers achieve perfect accuracy with
all feature descriptors on GTSRB. Instead, the combination of AFeat and RFeat builds a
feature descriptor that allows algorithms to achieve the highest accuracy of 95.94% for
DITS and 99.12% for BelgiumTSC. Additionally, AFeat and RFeat descriptors provide
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features that allow algorithms to reach higher accuracy. By using just a single feature
descriptor AFeat always achieves the highest accuracy on all three datasets, while the
second highest accuracy is achieved by RFeat. Instead, using only LBP, HOG or their
combination generates accuracy scores that are lower than potential alternatives. Moreover,
it is worth noticing how combining feature descriptors provides features that increase the
classification performance of supervised classifiers, such as: from 95.51% to 95.94% in DITS,
and from 98.84% to 99.12% in BelgiumTSC.

Table 3. Highest accuracy achieved using different feature descriptors on each dataset (bold high-
lighted values represent the highest achieved accuracy across each dataset).

Feature Descriptor (s) GTSRB DITS BelgiumTSC

AFeat 100.00 95.51 98.84

RFeat 100.00 94.13 97.76

LBP 100.00 79.98 93.49

HOG 100.00 87.92 96.24

HOG ∪ LBP 100.00 88.26 96.56

AFeat ∪ RFeat 100.00 95.94 99.12

AFeat ∪ HOG 100.00 95.68 98.96

AFeat ∪ LBP 100.00 95.85 98.96

RFeat ∪ HOG 100.00 95.51 98.72

RFeat ∪ LBP 100.00 95.85 98.80

AFeat ∪ HOG ∪ LBP 100.00 95.42 98.88

RFeat ∪ HOG ∪ LBP 100.00 95.34 98.84

5.1.3. Results of Deep Classifiers

We explore the results of the deep classifiers considered in this study with the aid
of Table 4, which shows accuracy scores achieved by those classifiers for different learn-
ing rates.

MobileNet-v2 achieves the highest accuracy out of the three deep learners for the
GTSRB dataset with a learning rate of 0.001, whereas a learning rate of 0.00005 maximizes
the accuracy scores of AlexNet on the BelgiumTSC dataset. Instead, the learning rate of
0.0001 allows InceptionV3 to reach the maximum accuracy of 96.03% for the DITS dataset,
outperforming MobileNet-v2 and AlexNet, which instead achieves the highest accuracy
in the BelgiumTSC dataset with a learning rate of 0.0005. Interestingly, whereas accuracy
scores for GTSRB do not vary a lot when using different learning rates, the choice of the
learning rate becomes of paramount importance when classifying DITS and BelgiumTSC
datasets. Particularly, the bottom of Table 4, the third column, shows a 14.97% accuracy
on the BelgiumTSC dataset using learning rates of 0.05 and 0.005, which is a very poor
achievement. For these learning rates, the training process was unstable, with weights that
were updated too fast and ended up with a classifier that has semi-random classification
performance. Unfortunately, we could not identify a single deep classifier that outperforms
others in all three datasets.

5.2. TSR Based on Sliding Windows

This section elaborates on the classification performance of TSR systems that process a
sliding window of multiple frames.

5.2.1. Meta Learning with Traditional Base Classifiers

Table 5 reports scores achieved by stacking meta-learners built using (i) the three
traditional supervised classifiers that performed better in Section 5.1.1 as base learners, and
(ii) different meta-level learners, such as K-NN, SVM, LDA, Decision Tree, Majority Voting,
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Boosting, Random Forest and DHMM. The GTSRB dataset does not appear in Table 5 since
single-frame traditional classifiers alone already achieved perfect classification. The table
reports the highest accuracy scores achieved by each stacking meta-level classifier by using
different combinations of base-learners (K-NN, SVM, LDA) and window sizes of two and
three items.

Table 4. Accuracy achieved by deep learners for each of the three datasets with varying learn-
ing rates (bold highlighted values represent the highest achieved accuracy across each dataset by
deep classifiers).

InceptionV3 MobileNet-v2 AlexNet

LR Acc LR Acc LR Acc

G
T

S
R

B

0.01 96.62 0.01 96.11 0.0001 95.98
0.05 93.56 0.05 93.38 0.0005 94.92

0.001 96.95 0.001 99.35 0.00001 94.86
0.005 97.06 0.005 96.42 0.00005 95.64

0.0001 96.81 0.0001 96.83 0.000001 95.83
0.0005 98.03 0.0005 96.65 0.000005 96.07

D
IT

S

0.01 80.06 0.01 93.52 0.0001 87.40
0.05 80.67 0.05 85.93 0.0005 86.45

0.001 88.17 0.001 94.99 0.00001 95.51
0.005 84.98 0.005 88.78 0.00005 92.06

0.0001 96.03 0.0001 95.77 0.000001 92.23
0.0005 91.88 0.0005 95.94 0.000005 95.16

B
e

lg
iu

m
T

S
C

0.01 89.58 0.01 97.16 0.0001 99.24
0.05 14.97 0.05 94.49 0.0005 92.57

0.001 98.12 0.001 98.72 0.00001 99.52
0.005 14.97 0.005 94.73 0.00005 99.72
0.0001 99.64 0.0001 99.24 0.000001 97.92
0.0005 99.68 0.0005 98.96 0.000005 99.24

Table 5. Results achieved using different meta-learners considering traditional classifiers as base
classifiers varying window size (WS). We bolded the highest achieved accuracy using different
combinations across each dataset and low accuracy achieved through AdaBoostM2 and Random
Forest are italicized in the 10th and 11th columns.

Dataset
Base-Level
Classifier

Single Frame
Accuracy

WS

Stacking Meta-Level Classifier

Majority
Voting

K-NN SVM LDA
Decision

Tree
AdaBoostM2

Random
Forest

DHMM

B
e

lg
iu

m
T

S
C

KNN 98.44
2

99.40 99.04 98.8 98.80 98.68 98.80 51.86 98.56
SVM 98.88 99.52 99.64 99.76 98.68 99.64 99.28 98.80 99.04
LDA 99.12 99.64 99.40 99.28 99.28 98.32 98.92 97.84 99.40

KNN 98.44
3

99.40 99.40 99.04 98.92 98.44 98.32 63.47 98.20
SVM 98.88 99.52 99.52 99.64 99.40 98.56 14.97 99.28 98.80
LDA 99.12 99.64 99.64 99.40 98.2 99.28 97.96 98.32 98.80

D
IT

S

KNN 95.25
2

97.56 97.56 97.56 96.75 97.56 97.56 82.93 96.75
SVM 95.94 96.75 97.56 98.37 97.56 95.12 31.71 95.12 95.93
LDA 95.85 98.37 98.37 97.56 97.56 98.37 95.93 96.75 96.75

KNN 95.25
3

99.00 99.00 99.00 99.00 99.00 99.00 85.00 98.00
SVM 95.94 99.00 100.00 99.00 99.00 97.00 36.00 97.00 96.00
LDA 95.85 99.00 100.00 98.00 100.00 99.00 98.00 99.00 98.00

Overall, LDA as a base-level classifier with a K-NN meta-level classifier is the preferred
choice (bolded values in Table 5) on DITS and on BelgiumTSC with a sliding window of
three items. Instead, using ensembles of Decision Trees as AdaBoost and Random Forests
sparingly gives very low accuracy scores (see italicized numbers in the 10th and 11th
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columns of Table 5), showing that those two classifiers do not always adequately play the
role of a meta-level classifier for a stacker.

Results for DITS in Table 5 show that using a sliding window of three items generally
improves accuracy with respect to using a sliding window of only two items. A sliding
window of three items allowed stacking meta-learners, which used K-NN or LDA as meta-
level classifiers to reach perfect accuracy (100%) on the DITS dataset using either LDA or
SVM as base-learners. This result was largely expected: the more information is available
(i.e., wider sliding window), the fewer misclassifications we expect from a given classifier.

Instead, we obtained maximum accuracy for the BelgiumTSC by using a sliding win-
dow of two items, whereas using three items often degrades classification performance. At
a first glance, this result is counter-intuitive with respect to previous discussions. However,
the reader should note that the BelgiumTSC dataset reports on a set of images of the same
traffic signs which are captured with multiple input cameras without any temporal order.
Consequently, the sliding window for the BelgiumTSC contains images of the traffic sign
which are taken from different angles and may lead the meta-learner to lean towards
misclassifications rather than improving accuracy. In fact, for this dataset, there is no direct
relation between the size of the window and accuracy values, which instead turned out to
be evident for the other datasets.

5.2.2. Meta Learning with Base-Level Deep Classifiers

Table 6 has a structure similar to Table 5 but employs base-level deep classifiers to
build the stacking meta-learner, and also reports on all datasets as deep classifiers based
on a single frame but did not achieve perfect accuracy on any of the three datasets. Deep
base-level classifiers in conjunction with K-NN as a meta-level classifier achieved perfect
classification on all three datasets, as shown by bold values in Table 6. GTSRB turns out
to be the dataset that provides the higher average accuracy by using a different base and
meta-level classifiers. The highest achieved accuracies are highlighted in Table 6 with bold
typeset. It is very interesting to discuss that all three deep learning models (base-level
classifiers) with meta-level classifiers K-NN, LDA, Boosting and Random Forest give 100%
accuracy, while MobileNet-v2 achieves 100% accuracy with all meta-level classifiers for a
sliding window of size 2 or 3 on the GTSRB dataset. Inceptionv3 and MobileNetv2 with
meta-level classifiers (K-NN, AdaboostM2) achieve 100% accuracy on the DITS dataset
for sliding windows of size 2 and 3, respectively, While AlexNet base-level classifier with
Majority voting and K-NN as the meta-level classifier achieves 100% accuracy for both
sliding windows of size 2 & 3 on BelgiumTSC dataset.

Similarly, to Table 5, we observe that AdaboostM2 does not show up as a reliable
meta-level classifier as it provides very low accuracy for the BelgiumTSC with a sliding
window of three frames. All meta-level classifiers with base-level classifier Mobilenet-v2
achieve 100% accuracy on the GTSRB dataset, whose sequences contain 30 images of the
same traffic sign, and therefore, provide much information for the stacking classifier to
classify traffic signs as the window slides.

5.2.3. Results of LSTM Networks

Table 7 reports accuracy scores of LSTM networks on the BelgiumTSC and DITS
datasets with a sliding window of size 2 or 3. Similarly to Section 5.2.1, we omit the GTSRB
dataset since it is perfectly classified by single-frame traditional classifiers. We indepen-
dently trained the LSTM by using each of the 12 feature sets in Section 4.3, with different
window sizes (WS) and by using three different optimizers: adam, sgdm and rmsprop.

Table 7 reports the highest accuracy achieved by LSTM by using a given WS and
optimizer function. It is evident how the adam optimizer always allows achieving the
highest accuracy scores in both datasets and with different WS. Additionally, accuracy
is always higher when using a window of size 3 with respect to a window containing
only two items: this was expected for DITS, whose images are time-ordered, but it is also
verified for the BelgiumTSC, which does not have such ordering. Overall, the results of the
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LSTM are slightly lower than stacking meta-learners using traditional base-level classifiers
and clearly worse than stacking using deep base-level classifiers, which achieves perfect
accuracy on all datasets.

Table 6. Results achieved using different meta learners with deep learners as base classifiers with
varying window size (WS). We bolded the perfect classification (100% accuracy).

Dataset
Base-Level
Classifier

Single Frame
Accuracy

WS
Majority
Voting

K-NN SVM LDA
Decision

Tree
AdaBoostM2

Random
Forest

DHMM

B
e

lg
iu

m
T

S
C

AlexNet 99.72
2

99.88 100.00 99.64 99.88 99.88 99.40 99.16 99.76
InceptionV3 99.68 99.88 99.88 99.64 99.88 99.52 99.88 99.64 99.64
MobileNetv2 99.24 99.52 99.88 99.64 99.04 99.64 99.52 98.68 99.64

AlexNet 99.72
3

100.00 100.00 99.28 99.88 99.88 99.76 99.76 99.28
InceptionV3 99.68 99.88 99.88 99.40 99.52 99.40 14.97 99.76 99.52
MobileNetv2 99.24 99.88 99.88 98.80 99.16 99.40 14.97 99.76 99.52

D
IT

S

AlexNet 95.51
2

96.75 97.56 97.56 97.56 96.74 96.74 96.74 98.37
InceptionV3 96.03 98.37 100.00 97.56 98.37 98.37 96.74 95.93 99.19
MobileNetv2 95.94 97.56 99.18 99.18 99.18 99.18 100.00 98.37 99.19

AlexNet 95.51
3

97.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00
InceptionV3 96.03 98.00 100.00 99.00 98.00 99.00 100.00 99.00 98.00
MobileNetv2 95.94 98.00 100.00 99.00 100.00 99.00 100.00 100.00 100.00

G
T

S
R

B

AlexNet 96.07
2

97.37 100.00 99.76 100.00 98.09 100.00 100.00 98.09
InceptionV3 98.03 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.76
MobileNetv2 99.35 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

AlexNet 96.07
3

0.9737 100.00 99.76 100.00 98.09 100.00 100.00 98.09
InceptionV3 98.03 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.76
MobileNetv2 99.35 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Table 7. Accuracy of LSTM with window sizes 2 and 3.

Dataset WS
Optimizer

adam sgdm rmsprop

DITS 2 97.56 97.56 96.74
DITS 3 99.00 99.00 98.00

BelgiumTSC 2 99.40 99.16 99.16
BelgiumTSC 3 99.64 99.28 99.40

5.3. Comparing Sliding Windows and Single-Frame Classifiers

Independent analyses and discussions of results in Sections 5.1 and 5.2 provided interest-
ing findings concerning both traditional supervised and deep base-level classifiers and the
usage of sliding windows to improve the classification performance through meta-learning.

Traditional supervised classifiers, such as K-NN, SVM, AdaboostM2, and Random
Forests achieved a perfect classification of each image contained in the GTRSB dataset.
Moreover, we observed how combining deep features descriptor {AFeat ∪ RFeat} allowed
traditional classifiers to reach the highest accuracy in any of the three datasets, achieving
100%, 95.94%, 99.12% on the GTSRB, DITS and BelgiumTSC datasets, respectively. On the
other hand, deep classifiers outperform traditional classifiers on the DITS and BelgiumTSC
datasets but still cannot reach a perfect classification accuracy.

Noticeably, stacking meta-learners that take advantage of sliding windows achieve
perfect classification accuracy on all three datasets when using deep base-level classifiers
and K-NN as meta-level classifiers. These results show that orchestrating sliding windows
critically increases the classification performance compared to single frame classifiers.
Differently, LSTM networks achieve 97.56% and 99% of accuracy on the DITS dataset for
a sliding window of size 2 or 3, respectively, which is better than single frame classifier
performance, but still inferior with respect to stacking meta-learners.

Figure 5 compares the accuracy achieved by stacking meta-learners and LSTM net-
works by means of a bar chart. Base-level traditional supervised classifiers with stacking
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meta learners achieved 98.37% and 100% accuracy on the DITS dataset considering a slid-
ing window of two and three inputs, respectively, which is slightly higher than the LSTM
scores. A similar trend can be observed for the BelgiumTSC, while the GTSRB scores are
not reported in the chart as it does not require sliding windows to achieve perfect accuracy.

 

Figure 5. Highest accuracy achieved by LSTM, stacker with supervised base-level, and stacker with
deep base-level on BelgiumTSC and DITS.

5.4. In-Depth View of BelgiumTSC

Similarly, to the GTSRB and DITS, we observed perfect classification by using a
stacker with deep base-level classifiers also with the BelgiumTSC dataset, which contains
unordered sets of images rather than sequences. Consequently, our meta-learning strategy
proves to be beneficial even if images in the sliding window are not time-ordered.

However, Table 7 showed that a sliding window of three items performs poorly with
respect to using only two items, which may seem counterintuitive. Figure 6 shows one
of those cases in which using a window of two items is beneficial with respect to using
three items. The upper part of Figure 6 represents the process adopted for the classification
of a Diamond traffic sign (Category 7) when using a window of three images. All the
three images taken from different viewpoints are individually classified by the base-level
classifier AlexNet, which returns the probabilities PTS of belonging to all classes (see Base-
Classifier output in the figure). These three probability vectors (which match the PTSi in
Section 3.2) are fed to the meta-level classifier to commit the final decision. We observe that
PTS1 and PTS2 give almost a certain probability of belonging to class 7 (0.999), while PTS3
gives a higher probability for class 1 (i.e., stop traffic sign). With those results, the SVM
meta-learner decides that the traffic sign is a stop sign, ending up with a misclassification.
Clearly, the third image is taken from a different angle, has some blurring and makes the
meta-learner lean towards a misclassification rather than helping.

Instead, Figure 7 shows the process to classify the same inputs using a window of two
items. When {PTS1, PTS2} are provided as meta features to a meta-level classifier, the final
output shows a high likelihood of being a category 7 which is indeed a correct classification.
Meanwhile, providing {PTS2, PTS3} or {PTS1, PTS3} as meta features lead the stacker to
misclassify the set of images as a stop sign (category 1): the predicted final output is class 6
which is a wrong prediction. This enforces the conjecture that in this case using the third
image constitutes noise that causes misclassification.

5.5. Timing Analysis

This section expands on the time required for classification using the different setups
in this paper. Table 8 reports the average and standard deviation of time required for
(i) feature extraction, (ii) single-frame classification, and (iii) stacking meta-learning across
test images of three datasets.
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Figure 6. Instantiation of the stacking-meta learner with AlexNet base-learner and SVM meta-level
learner, managing a sliding window of size 3 for BelgiumTSC. The three frames we use as input
describe a Diamond sign (Category 7) which is misclassified using all three frames.

Figure 7. Instantiation of the Stacking-Meta learner with AlexNet Base-learner and SVM meta-level
learner, managing a sliding window of size 2 for the BelgiumTSC. The three frames we use as input
describe a Diamond sign (Category 7) which is misclassified using all three frames (Figure 6) but may
be classified correctly by using a shorter window.

Starting from feature extraction on the left of the table, it turns out that the extraction
of handcrafted features takes slightly less time compared to deep features. However, even
extracting deep features through ResNet-18 from a single image does not require on average
more than 0.04 s (roughly 40 ms). Instead, the time required for exercising single-frame TSR
classifiers varies a lot: traditional supervised classifiers need at most 200 ms to classify a
given input set, whereas deep classifiers need more than half a second to classify an image
with our hardware setup, depending on the number of layers of deep models. Indeed,
the reader should note that whereas deep classifiers embed feature extraction through

266



Sensors 2022, 22, 2683

convolutional layers, traditional classifiers have the prerequisite of feature extraction. In
fact, on the right of Table 8, we show that a TSR system that relies on AFeat ∪ RFeat features
(i.e., most useful ones according to Table 3) provided to an SVM classifier takes on average
0.1974 s to classify an image: this includes feature extraction and classification itself. A
perfect parallelization of the feature extractors cuts down this timing to 0.1756 and will be
easily achievable on basic multi-core systems.

Table 8. Time required for (left) feature extraction, (middle) exercising individual classifiers, and
(right) different TSR strategies, either sequential or parallel execution.

Feature Extractor
Time in Seconds

Avg ± St. Dev
Individual
Classifier

Time in Seconds
Avg ± St. Dev

TSR Strategy
Average Time in Seconds

(Sequential) (Parallel)

HOG 0.0204 ± 0.0024 SVM 0.1344 ± 0.0364 Single-frame
(AFeat ∪ RFeat + SVM) 0.1974 0.1756

LBP 0.0196 ± 0.0023 KNN 0.1205 ± 0.0302 Single-frame
(InceptionV3) 1.4205 1.4205

AFeat 0.0218 ± 0.0023 LDA 0.1034 ± 0.0256 Stacking with WS = 2
(AFeat ∪ RFeat + SVM + KNN) 0.4036 0.3636

RFeat 0.0412 ±0.0034 InceptionV3 1.4205 ± 0.6613

MobileNetV2 0.6391 ± 0.2180 Stacking with WS = 2
(AlexNet + KNN) 0.5621 0.5621

AlexNet 0.3749 ± 0.1407 Stacking with WS = 2
(InceptionV3 + KNN) 1.6085 1.6085

Table 8 also shows the time needed to perform other TSR strategies we discussed in
this paper. Particularly, the third to sixth line on the right of the table show the time needed
to classify an image using a sliding window of two or three items with different base-levels
and meta-level learners. The time required for base-level learning equals single-frame
classification: only the most recent frame in the window is processed, whereas probabilities
assigned by classifiers to older frames are stored, and therefore, do not need to be re-
computed again. The table reports on different base-learners but always uses K-NN as the
meta-level learner, as this was the classifier that allowed reaching high scores in Section 5.2.
K-NN takes on average 0.188 to classify a sliding window of two items, (i.e., two PTS
vectors of 8/9 numbers each), and only slightly more time to process a sliding window of
three items.

Overall, we can observe how most TSR systems that embed sliding windows are
able to classify a new image in less than a second, whereas heavier deep learners make
classification time lean towards two seconds. We believe that such timing performance
albeit slower than using single-frame classifiers is still efficient enough to be installed
on a vehicle, which only rarely samples more than a frame per second for TSR tasks.
Nevertheless, using more efficient hardware, especially GPUs, could help in reducing, even
more, the time required for classification.

5.6. Comparison to the State of the Art TSR

Ultimately, we recap the accuracy scores achieved by studies we already referred to as
related works in Sections 2.2 and 2.3, to compare their scores with ours. Therefore, Table 9
summarizes those studies, the datasets they used, and the accuracy they achieved. At a
first glance, those studies conclude that their single-frame classifiers are often far from
perfect classification. In fact, even in this study, we observed that single-frame TSR in the
BelgiumTSC and DITS datasets cannot reach perfect accuracy (i.e., second-last row in the
table). Unfortunately, promising studies [64,65], which describe multi-frame classifiers, do
not rely on our datasets, and therefore, we cannot directly compare them.

To summarize, our experiment ended up achieving perfect classification on all datasets
thanks to sliding windows (see last row of Table 9), dramatically improving existing studies
on those datasets, for which perfect accuracy was hardly achieved by existing studies.
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Table 9. Comparison with state of the art approaches.

Studies Sequences of Frames
Achieved Accuracy (%)

GTSRB BelgiumTSC DITS

Stallkamp et al. [31] No 98.98

Atif et al. [29] No 100.00 99.80 99.31

Agrawal et al. [45] No * 77.43

Youssef et al. [33] No 95.00 98.20

Mathias et al. [1] No 97.83

Huang et al. [44] No * 95.56

Lin et al. [51] No * 99.18

Li et al. [28] No 97.40 98.10

Li and Wang [3] No 99.66

Zeng et al. [83] No 95.40
No 100.00 99.72 96.03

Our Approach
Yes 100.00 100.00 100.00

Note: Accuracy values with * represent average accuracy across different classes of traffic signs no balanced
accuracy was provided.

6. Concluding Remarks

To conclude the paper, we report in this section the limitations to the validity of our
study, we summarize the findings and lessons learned in this paper and ultimately discuss
future works.

6.1. Limitations to Validity

We report here possible limitations to the validity and the applicability of our study.
These are not to be intended as showstoppers when considering the conclusions of this
paper. Instead, they should be interpreted as boundaries or possible future implications
which may impact the validity of this study.

6.1.1. Usage of Public Data

The usage of public image datasets and public tools to run algorithms was a prerequi-
site of our analysis, to allow reproducibility and to rely on proven-in-use data. However,
the heterogeneity of data sources and their potential lack of documentation may limit the
understandability of data. In addition, such datasets are not under our control; therefore,
possible actions, such as changing the way data is generated, are out of consideration. For
example, creating longer sequences of traffic signs or creating a time-sequenced version of
the BelgiumTSC is not possible at all.

6.1.2. Parameters of Classifiers

Each classifier relies on its own parameters. Finding the optimal values of parameters
is a substantial process that requires sensitive analyses and is directly linked with the
scenario in which the classifier is going to be exercised. When applying classifiers to
different datasets it is not always possible to precisely tune these parameters: instead,
in this study, we perform grid searches, which run a classifier with different parameter
values and choose the parameter that maximizes accuracy. This does not guarantee finding
the absolute optimum value of a parameter for a given classifier on a given dataset but
constitutes a good approximation [84].
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6.2. Lessons Learned

This section highlights the main findings and lessons learned from this study.

• We observed that classifying images in the DITS dataset is harder than classifying the
BelgiumTSC and GTSRB datasets as both base-level traditional supervised and deep
classifiers’ performances are low comparatively. This is mostly due to the amount of
training images and their quality, which is higher in the GTSRB compared to the other
two datasets.

• Combining feature descriptors allows for improving classification performance. Par-
ticularly, we found that the {AFeat ∪ RFeat} descriptor allows traditional classifiers to
maximize accuracy.

• Single-frame traditional supervised classifiers achieved perfect classification on the
GTSRB dataset, while on the BelgiumTSC and DITS they show a non-zero amount
of misclassifications. To the best of our knowledge, this result is due to the number
of training samples, which is higher in the GTSRB with respect to the BelgiumTSC
and DITS, and image quality, which again is better for the GTSRB. On the other hand,
we achieved 100% accuracy by adopting a sliding windows based TSR strategy on all
three considered datasets.

• There is no clear benefit in adopting deep classifiers over traditional classifiers for
single-frame classification as they show similar accuracy scores. Additionally, both are
outperformed, when using sliding windows for TSR.

• LSTM networks often, but not always, outperform single-frame classifiers but show
lower accuracy than stacking meta-learners in orchestrating sliding windows.

• A stacking meta-learner with deep base-level classifiers and K-NN as meta-level
classifier can perfectly classify traffic signs on all three datasets with any window size
WS ≥ 2.

• For datasets that contain sequences (time-series) of images, enlarging the sliding window
never decreases accuracy and, in most cases, raises the number of correct classifications.

• Deep learning models require more time compared to traditional supervised classifiers,
especially because there are many layers, e.g., InceptionV3.

• Sliding windows based classification takes more time compared to single-frame classi-
fiers but has remarkably higher classification performance across all three datasets.

• Overall, adopting classifiers that use a sliding window rather than a single-frame
classifier allows reducing misclassifications, consequently raising accuracy.

6.3. Current and Future Works

Our study showed how the adoption of a stacking meta-learner in conjunction with
sliding windows allows achieving perfect classification on the public GTSRB, BelgiumTSC
and DITS datasets. Those datasets contain images taken in different parts of the world and
mostly taken in semi-ideal lighting and environmental conditions. Therefore, they may not
completely represent what a real TSR system installed on a vehicle will face during its life.
As a result, we plan to explore the robustness of classifiers used in this study by injecting
different types of faults/perturbations in the captured images [85], tracking the likely
growth of misclassifications of individual classifiers. After this test, we plan to re-train
(either from scratch or through transfer learning) classifiers using both original images
from datasets and those faulty images. Furthermore, we plan to inject adversarial attacks
to traffic sign images and using them both (i) as a test set, to observe the degradation of
accuracy (if any) when processing corrupted frames, and (ii) during training, to learn a
more reliable model. We believe that this process will allow us to build robust classifiers
with very high accuracy, even when classifying faulty, adversarial, or corrupted images.
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22. Matoš, I.; Krpić, Z.; Romić, K. The Speed Limit Road Signs Recognition Using Hough Transformation and Multi-Class Svm.
In Proceedings of the 2019 International Conference on Systems, Signals and Image Processing (IWSSIP), Osijek, Croatia,
5–7 June 2019; pp. 89–94.

23. Liu, C.; Li, S.; Chang, F.; Wang, Y. Machine Vision Based Traffic Sign Detection Methods: Review, Analyses and Perspectives.
IEEE Access 2019, 7, 86578–86596. [CrossRef]

24. Soni, D.; Chaurasiya, R.K.; Agrawal, S. Improving the Classification Accuracy of Accurate Traffic Sign Detection and Recognition System
Using HOG and LBP Features and PCA-Based Dimension Reduction; Social Science Research Network: Rochester, NY, USA, 2019.

25. Hasan, N.; Anzum, T.; Jahan, N. Traffic Sign Recognition System (TSRS): SVM and Convolutional Neural Network. In Inventive
Communication and Computational Technologies; Springer: Singapore, 2021; pp. 69–79. [CrossRef]

26. Rahmad, C.; Rahmah, I.F.; Asmara, R.A.; Adhisuwignjo, S. Indonesian Traffic Sign Detection and Recognition Using Color
and Texture Feature Extraction and SVM Classifier. In Proceedings of the 2018 International Conference on Information and
Communications Technology (ICOIACT), Yogyakarta, Indonesia, 6–7 March 2018; pp. 50–55.

27. Cao, J.; Song, C.; Peng, S.; Xiao, F.; Song, S. Improved Traffic Sign Detection and Recognition Algorithm for Intelligent Vehicles.
Sensors 2019, 19, 4021. [CrossRef] [PubMed]

28. Li, W.; Li, D.; Zeng, S. Traffic Sign Recognition with a Small Convolutional Neural Network. IOP Conf. Ser. Mater. Sci. Eng. 2019,
688, 044034. [CrossRef]

29. Atif, M.; Zoppi, T.; Gharib, M.; Bondavalli, A. Quantitative Comparison of Supervised Algorithms and Feature Sets for Traffic
Sign Recognition. In Proceedings of the 36th Annual ACM Symposium on Applied Computing, Virtual, 22–26 March 2021;
Association for Computing Machinery: Gwangju, Korea, 2021; pp. 174–177. [CrossRef]

30. Vilalta, R.; Drissi, Y. A Perspective View and Survey of Meta-Learning. Artif. Intell. Rev. 2002, 18, 77–95. [CrossRef]
31. Stallkamp, J.; Schlipsing, M.; Salmen, J.; Igel, C. The German Traffic Sign Recognition Benchmark: A Multi-Class Classi-

fication Competition. In Proceedings of the 2011 International Joint Conference on Neural Networks, San Jose, CA, USA,
31 July–5 August 2011; pp. 1453–1460.

32. Timofte, R.; Zimmermann, K.; Van Gool, L. Multi-View Traffic Sign Detection, Recognition, and 3D Localisation. Mach. Vis. Appl.
2014, 25, 633–647. [CrossRef]

33. Youssef, A.; Albani, D.; Nardi, D.; Bloisi, D.D. Fast Traffic Sign Recognition Using Color Segmentation and Deep Convolutional
Networks. In Advanced Concepts for Intelligent Vision Systems; Springer: Lecce, Italy, 2016; pp. 205–216.

34. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of
the Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems
2012, Lake Tahoe, NV, USA, 3–6 December 2012.

35. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

36. Carbonell, J.G.; Michalski, R.S.; Mitchell, T.M. 1—An Overview of Machine Learning. In Machine Learning; Michalski, R.S.,
Carbonell, J.G., Mitchell, T.M., Eds.; Morgan Kaufmann: San Francisco, CA, USA, 1983; pp. 3–23. ISBN 978-0-08-051054-5.

37. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
38. Fisher, R.A. The Use of Multiple Measurements in Taxonomic Problems. Ann. Eugen. 1936, 7, 179–188. [CrossRef]
39. Freund, Y. A More Robust Boosting Algorithm. arXiv 2009, arXiv:0905.2138.
40. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016;
pp. 2818–2826.

41. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 4510–4520.

42. Lam, L.; Suen, S.Y. Application of Majority Voting to Pattern Recognition: An Analysis of Its Behavior and Performance. IEEE
Trans. Syst. Man Cybern.-Part A Syst. Hum. 1997, 27, 553–568. [CrossRef]

43. Yasuda, H.; Takahashi, K.; Matsumoto, T. A Discrete Hmm for Online Handwriting Recognition. Int. J. Pattern Recognit. Artif.
Intell. 2000, 14, 675–688. [CrossRef]

44. Huang, Z.; Yu, Y.; Gu, J. A Novel Method for Traffic Sign Recognition Based on Extreme Learning Machine. In Proceedings of the
11th World Congress on Intelligent Control and Automation, Shenyang, China, 29 June–4 July 2014; pp. 1451–1456.

45. Agrawal, S.; Chaurasiya, R.K. Ensemble of SVM for Accurate Traffic Sign Detection and Recognition. In Proceedings of the
International Conference on Graphics and Signal Processing, Singapore, 24–27 June 2017; pp. 10–15.

46. Myint, T.; Thida, L. Real-Time Myanmar Traffic Sign Recognition System Using HOG and SVM. Int. J. Trend Sci. Res. Dev. 2019, 3,
2367–2371. [CrossRef]

47. Abedin, M.Z.; Dhar, P.; Deb, K. Traffic Sign Recognition Using SURF: Speeded up Robust Feature Descriptor and Artificial Neural
Network Classifier. In Proceedings of the 2016 9th International Conference on Electrical and Computer Engineering (ICECE),
Dhaka, Bangladesh, 20–22 December 2016; pp. 198–201.

48. Farag, W. Traffic Signs Classification by Deep Learning for Advanced Driving Assistance Systems. Intell. Decis. Technol. 2019, 13,
305–314. [CrossRef]

271



Sensors 2022, 22, 2683

49. Kamal, U.; Tonmoy, T.I.; Das, S.; Hasan, M.K. Automatic Traffic Sign Detection and Recognition Using SegU-Net and a Modified
Tversky Loss Function With L1-Constraint. IEEE Trans. Intell. Transp. Syst. 2020, 21, 1467–1479. [CrossRef]

50. Liu, C.; Chang, F.; Chen, Z.; Liu, D. Fast Traffic Sign Recognition via High-Contrast Region Extraction and Extended Sparse
Representation. IEEE Trans. Intell. Transp. Syst. 2016, 17, 79–92. [CrossRef]

51. Lin, C.; Li, L.; Luo, W.; Wang, K.C.P.; Guo, J. Transfer Learning Based Traffic Sign Recognition Using Inception-v3 Model. Period.
Polytech. Transp. Eng. 2019, 47, 242–250. [CrossRef]

52. Zaki, P.S.; William, M.M.; Soliman, B.K.; Alexsan, K.G.; Khalil, K.; El-Moursy, M. Traffic Signs Detection and Recognition System
Using Deep Learning. arXiv 2020, arXiv:2003.03256.

53. Abdel-Salam, R.; Mostafa, R.; Abdel-Gawad, A.H. RIECNN: Real-Time Image Enhanced CNN for Traffic Sign Recognition. Neural
Comput. Appl. 2022, 34, 6085–6096. [CrossRef]

54. Mangshor, N.N.A.; Paudzi, N.P.A.M.; Ibrahim, S.; Sabri, N. A Real-Time Malaysian Traffic Sign Recognition Using YOLO
Algorithm. In 12th National Technical Seminar on Unmanned System Technology 2020; Lecture Notes in Electrical Engineering;
Springer: Singapore, 2022; pp. 283–293.

55. Naim, S.; Moumkine, N. LiteNet: A Novel Approach for Traffic Sign Classification Using a Light Architecture. In WITS 2020,
Proceedings of the 6th International Conference on Wireless Technologies, Embedded, and Intelligent Systems; Springer: Singapore, 2022;
pp. 37–47.

56. Nartey, O.T.; Yang, G.; Asare, S.K.; Wu, J.; Frempong, L.N. Robust Semi-Supervised Traffic Sign Recognition via Self-Training and
Weakly-Supervised Learning. Sensors 2020, 20, 2684. [CrossRef]

57. Vennelakanti, A.; Shreya, S.; Rajendran, R.; Sarkar, D.; Muddegowda, D.; Hanagal, P. Traffic Sign Detection and Recognition
Using a CNN Ensemble. In Proceedings of the 2019 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas,
NV, USA, 11–13 January 2019; pp. 1–4.

58. Lu, X.; Wang, Y.; Zhou, X.; Zhang, Z.; Ling, Z. Traffic Sign Recognition via Multi-Modal Tree-Structure Embedded Multi-Task
Learning. IEEE Trans. Intell. Transp. Syst. 2017, 18, 960–972. [CrossRef]

59. Bi, Z.; Yu, L.; Gao, H.; Zhou, P.; Yao, H. Improved VGG Model-Based Efficient Traffic Sign Recognition for Safe Driving in 5G
Scenarios. Int. J. Mach. Learn. Cybern. 2021, 12, 3069–3080. [CrossRef]

60. Bayoudh, K.; Hamdaoui, F.; Mtibaa, A. Transfer Learning Based Hybrid 2D–3D CNN for Traffic Sign Recognition and Semantic
Road Detection Applied in Advanced Driver Assistance Systems. Appl. Intell. 2021, 51, 124–142. [CrossRef]

61. Sermanet, P.; LeCun, Y. Traffic Sign Recognition with Multi-Scale Convolutional Networks. In Proceedings of the 2011 International
Joint Conference on Neural Networks, San Jose, CA, USA, 31 July–5 August 2011; pp. 2809–2813.

62. Yang, Y.; Luo, H.; Xu, H.; Wu, F. Towards Real-Time Traffic Sign Detection and Classification. IEEE Trans. Intell. Transp. Syst. 2016,
17, 2022–2031. [CrossRef]

63. Islam, K.T.; Raj, R.G. Real-Time (Vision-Based) Road Sign Recognition Using an Artificial Neural Network. Sensors 2017, 17, 853.
[CrossRef] [PubMed]

64. Luo, H.; Yang, Y.; Tong, B.; Wu, F.; Fan, B. Traffic Sign Recognition Using a Multi-Task Convolutional Neural Network. IEEE
Trans. Intell. Transp. Syst. 2018, 19, 1100–1111. [CrossRef]

65. Yuan, Y.; Xiong, Z.; Wang, Q. An Incremental Framework for Video-Based Traffic Sign Detection, Tracking, and Recognition. IEEE
Trans. Intell. Transp. Syst. 2017, 18, 1918–1929. [CrossRef]

66. Park, J.; Lee, K.; Kim, H.Y. Recognition Assistant Framework Based on Deep Learning for Autonomous Driving: Restoring Damaged Road
Sign Information; Social Science Research Network: Rochester, NY, USA, 2022.

67. Zakir Hussain, K.M.; Kattigenahally, K.N.; Nikitha, S.; Jena, P.P.; Harshalatha, Y. Traffic Symbol Detection and Recognition System.
In Emerging Research in Computing, Information, Communication and Applications; Springer: Singapore, 2022; pp. 885–897.

68. Lahmyed, R.; Ansari, M.E.; Kerkaou, Z. Automatic Road Sign Detection and Recognition Based on Neural Network. Soft Comput.
2022, 26, 1743–1764. [CrossRef]

69. Gautam, S.; Kumar, A. Automatic Traffic Light Detection for Self-Driving Cars Using Transfer Learning. In Intelligent Sustainable
Systems; Springer: Singapore, 2022; pp. 597–606.

70. Schuszter, I.C. A Comparative Study of Machine Learning Methods for Traffic Sign Recognition. In Proceedings of the 2017
19th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), Timisoara, Romania,
21–24 September 2017; pp. 389–392.

71. Brazdil, P.; Carrier, C.G.; Soares, C.; Vilalta, R. Metalearning: Applications to Data Mining; Springer Science & Business Media:
Berlin/Heidelberg, Germany, 2008; ISBN 978-3-540-73262-4.

72. Vanschoren, J. Understanding Machine Learning Performance with Experiment Databases. Ph.D. Thesis, Katholieke Universiteit
Leuven—Faculty of Engineering Address, Leuven, Belgium, May 2010.

73. Wolpert, D.H. Stacked Generalization. Neural Netw. 1992, 5, 241–259. [CrossRef]
74. Breiman, L. Bagging Predictors. Mach. Learn. 1996, 24, 123–140. [CrossRef]
75. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
76. Li, Y.; Zhu, Z.; Kong, D.; Han, H.; Zhao, Y. EA-LSTM: Evolutionary Attention-Based LSTM for Time Series Prediction. Knowl.-Based

Syst. 2019, 181, 104785. [CrossRef]
77. Sokolova, M.; Lapalme, G. A Systematic Analysis of Performance Measures for Classification Tasks. Inf. Process. Manag. 2009, 45,

427–437. [CrossRef]

272



Sensors 2022, 22, 2683

78. Mortaz, E. Imbalance Accuracy Metric for Model Selection in Multi-Class Imbalance Classification Problems. Knowl.-Based Syst.
2020, 210, 106490. [CrossRef]

79. Chamasemani, F.F.; Singh, Y.P. Multi-Class Support Vector Machine (SVM) Classifiers—An Application in Hypothyroid Detection
and Classification. In Proceedings of the 2011 Sixth International Conference on Bio-Inspired Computing: Theories and
Applications, Penang, Malaysia, 27–29 September 2011; pp. 351–356.

80. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. ImageNet: A Large-Scale Hierarchical Image Database. In Proceedings of
the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255.

81. Popov, G.; Raynova, K. Diversity in Nature and Technology—Tool for Increase the Reliability of Systems. In Proceedings of the
2017 15th International Conference on Electrical Machines, Drives and Power Systems (ELMA), Sofia, Bulgaria, 1–3 June 2017;
pp. 464–466.

82. Shang, R.; Xu, K.; Shang, F.; Jiao, L. Sparse and Low-Redundant Subspace Learning-Based Dual-Graph Regularized Robust
Feature Selection. Knowl.-Based Syst. 2020, 187, 104830. [CrossRef]

83. Zeng, Y.; Xu, X.; Shen, D.; Fang, Y.; Xiao, Z. Traffic Sign Recognition Using Kernel Extreme Learning Machines With Deep
Perceptual Features. IEEE Trans. Intell. Transp. Syst. 2017, 18, 1647–1653. [CrossRef]

84. Jiménez, Á.B.; Lázaro, J.L.; Dorronsoro, J.R. Finding Optimal Model Parameters by Discrete Grid Search. In Innovations in Hybrid
Intelligent Systems; Springer: Berlin/Heidelberg, Germany, 2007; pp. 120–127. [CrossRef]

85. Secci, F.; Ceccarelli, A. On Failures of RGB Cameras and Their Effects in Autonomous Driving Applications. In Proceedings of the
2020 IEEE 31st International Symposium on Software Reliability Engineering (ISSRE), Coimbra, Portugal, 12–15 October 2020;
pp. 13–24.

273





Citation: Kalake, L.; Dong, Y.; Wan,

W.; Hou, L. Enhancing Detection

Quality Rate with a Combined HOG

and CNN for Real-Time Multiple

Object Tracking across Non-

Overlapping Multiple Cameras.

Sensors 2022, 22, 2123.

https://doi.org/10.3390/s22062123

Academic Editors: Euntai Kim, Kang

Ryoung Park and Sangyoun Lee

Received: 30 December 2021

Accepted: 5 March 2022

Published: 9 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Enhancing Detection Quality Rate with a Combined HOG and
CNN for Real-Time Multiple Object Tracking across
Non-Overlapping Multiple Cameras

Lesole Kalake 1,*, Yanqiu Dong 1, Wanggen Wan 1 and Li Hou 2

1 School of Communications and Information Engineering, Institute of Smart City, Shanghai University,
Shanghai 200444, China; yanqiu_dong@shu.edu.cn (Y.D.); wanwg@staff.shu.edu.cn (W.W.)

2 School of Information Engineering, Huangshan University, Huangshan 245041, China; houli@shu.edu.cn
* Correspondence: tumelok1@shu.edu.cn; Tel.: +86-198-2121-4680

Abstract: Multi-object tracking in video surveillance is subjected to illumination variation, blurring,
motion, and similarity variations during the identification process in real-world practice. The
previously proposed applications have difficulties in learning the appearances and differentiating the
objects from sundry detections. They mostly rely heavily on local features and tend to lose vital global
structured features such as contour features. This contributes to their inability to accurately detect,
classify or distinguish the fooling images. In this paper, we propose a paradigm aimed at eliminating
these tracking difficulties by enhancing the detection quality rate through the combination of a
convolutional neural network (CNN) and a histogram of oriented gradient (HOG) descriptor. We
trained the algorithm with an input of 120 × 32 images size and cleaned and converted them into
binary for reducing the numbers of false positives. In testing, we eliminated the background on frames
size and applied morphological operations and Laplacian of Gaussian model (LOG) mixture after
blobs. The images further underwent feature extraction and computation with the HOG descriptor
to simplify the structural information of the objects in the captured video images. We stored the
appearance features in an array and passed them into the network (CNN) for further processing.
We have applied and evaluated our algorithm for real-time multiple object tracking on various city
streets using EPFL multi-camera pedestrian datasets. The experimental results illustrate that our
proposed technique improves the detection rate and data associations. Our algorithm outperformed
the online state-of-the-art approach by recording the highest in precisions and specificity rates.

Keywords: convolutional neural network; histogram oriented graphic; multi-camera multi-object
tracking; detection quality

1. Introduction

The visualization and tracking of multiple objects in surveillance applications are
enormously dominating topics in computer vision’s security field. In recent years, there has
been a drastic change in point of focus for enhancing the handling of security issues on these
applications [1]. Many researchers are attracted, and several techniques and algorithms
emerged are applied continuously on various smart city projects to ensure residence safety.
However, most rely on the traditional convolutional neural network (CNN) to improve
the detection quality rate and object classification [2]. The CNN provides an effective and
quick solution to extract high-level contour features and record a significant state-of-the-art
performance on real-time multiple-object-tacking (MOT) [3]. It is considered to be more
effective compared to HOG descriptor algorithms which mainly focus on global features
process handling [4].

Despite the state-of-the-art achievement, the traditional CNN proposed algorithms
tend to ignore the global features [5]. Their detectors are mainly based on the local features
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extraction for the application to understand the image information [6]. Therefore, they con-
tinue to suffer from identifying the shape and boundary characteristics from the captured
images [7]. Thus, this contributes to their incapability for handling the detection accuracy
on light, appearance distortion, deformation, and motion-blurred images. Furthermore, it
results in poor detection quality and high false positives, hence, its failure in representing
human-like application systems [8]. Other studies tried to eliminate this grey area by
exploiting the HOG descriptor technique and recorded satisfactory results but suffered
from the speed and classification of huge samples during the training phase [9].

Therefore, to ensure both contour and global features are effectively incorporated
into the neural network to represent a human-like system. In this paper, we propose to
build a new model by combining the HOG descriptors and a traditional CNN to form an
HCNN algorithm for tracking multi-object across non-overlapping cameras. We further
propose to improve the detection quality rate by removing the background information
and ensuring that the appearance and motion variations are well maintained throughout
the tracking process. This paper is arranged into five sections: Section 1 introduces the
background, Section 2 details the related work, Section 3 describes details of our approach,
Section 4 presents experimental results, Section 5 discusses an interpretation of the results
and comparison with state-of-the-art algorithms, and finally Section 6 concludes the paper.

2. Related Works

The techniques that implement multiple view angles provide additional information
that enables the computer vision applications to acquire more knowledge and under-
standing of the object’s characteristics. This has proven its effectiveness in enriching the
target-related shape, features, and location in sequential video frames [3]. It further re-
sulted in the emergence of various multiple view object tracking approaches to solve
the persisting challenges such as partial inclusion, shape deformation, illumination vari-
ations, and background cluttering. The approaches are online or offline depending on
the criteria, such as handcrafted features or deep features handlings. The handcrafted
feature-based trackers are manually defined, whereas the deep features trackers use neural
networks [10]. However, both categories tend to ignore the preprocessing of input images
to reduce interferences. Therefore, integration has emerged to achieve fast and accurate
human-like detection application systems [11]. Thus, in this section, we summarize these
previously proposed state-of-the-art tracking methods by classifying them into two themes:
(i) histogram of oriented gradient (HOG) and (ii) convolutional neural network (CNN)
learning-based methods.

The histogram of oriented gradient (HOG) descriptor is one of the most popular
approaches in computer vision used to extract significant features from images. It discards
the futile information by relying heavily on the extracted features to compute accurate
objects detections and classifications [12].

Zhang et al. [11] were inspired by these capabilities and proposed a combined local and
global feature handling algorithm to simulate a human-like application. They trained both
features (local and global) with traditional CNN and set the number of hidden layer nodes
to 3000 to distinguish the fool images. However, the technique is most efficient in offline
mode and recorded few false alarms compared to CNN solely based paradigms. It further
illustrated the incapability of learning features recursively and resulted in slow detection
performance, decreased accuracy, and posed challenges to implement online. To eliminate
these challenges, Zhang et al. [13] introduced the model detection and classification of
moving objects in video and used HOG to remove the noisy background. This strengthened
the approach in detecting the moving objects accurately in food and agricultural traceability
analysis. However, it failed to obtain adequate features from the selection and resulted in a
poor detection rate and data association. Najva et al. [14] proposed improving the detection
rate by combining tensor features with scale invariant feature transform (SIFT) features.
The technique merged the handcrafted features with a deep convolutional neural network
(DCNN) and served as the concrete foundation to expand in the computer vision field. Then
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Lipetski et al. [5] took advantage of the laid foundation and combined the HOG descriptor
with CNN to form the HCNN model for improving the pedestrian detection quality rate.
They extracted HOG features and fed them into the CNN as input to increase classification
and detection rates. This reduced the processing time of the overall detector and proved that
the concept enhances the capabilities of the overlapping window to handle real-time object
tracking processes. The development gained the attention of Rui et al. [15], who proposed
an algorithm that takes various features maps from the first CNN layer as input to HOG and
extracts the HOG features. However, the performance results illustrated that a single feature
map was not comprehensive enough to reflect all the necessary information on the original
image. Thus, the technique performed worse than the original HOG paradigm but proved
that pedestrian detection with HOG-based multi-convolutional features could obtain a high
detection accuracy and stabilized network performance. Then Sujanaa et al. [16] proposed
to eliminate pedestrian detection and classification issues by introducing the combined
pyramid histogram of oriented gradient (PHOG) and CNN algorithm for real-time object
tracking. They used the PHOG descriptor to create pyramid histograms over the entire
image and attach them into a single vector, whereas the CNN is used as the classifier
for the PHOG features extracted from the window’s raw image data. The first layer of
the CNN moved adequately over the input image window thus that the second layer
could transfer functions to the input image window. Lastly, the hidden layer unit is used
to connect to each input through a separate weight. This reduced computational cost,
adaptable parameters during training, and proved the technique compatible for real-time
object tracking. However, it suffered from low performance with a high misdetection rate
under heavy light variations.

Qi et al. [17] proposed an internet of things (IoT) based on a key frame extraction
algorithm to enhance detection quality rate in videos. They modeled and trained the CNN
to generate a predicted score to indicate the quality of faces in the frame. The selected key
frames fed into the neural network to enhance face detection accuracy. This enhanced the
extraction of feature vectors and increased face recognitions and detections on poor-quality
captured images. Angeline et al. [1] capitalized on the progress and proposed to enhance
efficiency on face recognition applications in real-time object tracking. They used HOG
descriptor detections to enhance accuracy and train CNN with a linear support vector
machine (SVM) to handle blurred motions, occlusions, and pose variation. However, the
algorithm used a small dataset and struggled with misfeeding. Thus, Yudin et al. [18] used
video streams of specified IP cameras to access more data through the server module. They
augmented the IoT application with the HOG descriptor and masked R-CNN architecture
for accurate detection of a human head on low-quality and light variations images. This
enabled the application to carry out client requests from various computers connected
to the network. However, the updating of people counting results performed once per
minute hindered overall speed performance. This contributed to the misdetection rate
where objects’ motion changes.

Madan et al. [6] proposed a hybrid model based on a combination of HOG-speeded-up
robust features (SURF) features and CNN. They used extracted HOG features as an input
into the network (CNN) and reduced the dimensions. The application embedding from the
first layer and second layer of the CNN passes through the fully connected layer. Therefore,
this reduced the model parameter’s computational cost by filtering out the fool images at an
early stage. It further improved the detection and classification accuracy rate. Bao et al. [7]
showed appreciation of these developments when proposing the merging of both HOG
feature space and traditional CNN to ease the plant species identification and classification
from a leaf pattern in botany. They extracted HOG features through 8 × 8 dimension cells
and 2 × 2 cells per block for the input image. These attributes are passed into the network
for further processing and classification. However, the algorithm is an offline mode and
recorded a noticeable improvement in the overall performance.
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3. Proposed HCNN for Real-Time MOT

The main task is to track and re-identify the target across these multiple cameras [19–21].
We, therefore, designed our algorithm to detect, track and re-identify the object of interest across
several non-overlapping cameras using the multi-object tracking process. We implemented the
proposed algorithm using the dataset that contains different poses of persons [22] and different
illumination conditions. The algorithm is divided into two modules, namely, detection and
tracking. The detection module buttressed [23,24] by the inclusion of HOG descriptors which
have been proven to cater to both texture and contour features [8,21,22]. We train the model
on the EPFL dataset with multiple pedestrians’ videos using the HOG detector. However, the
HOG descriptor is slowing down overall algorithm performance. Therefore, we combined the
HOG detector module with CNN to create an HCNN to enhance classification and identify the
association in tracking multiple people. According to our best knowledge, there is no similar
proposed algorithm for real-time object tracking across multiple non-overlapping cameras.

The algorithm’s process of determining an object’s background is split into several
separated steps to eliminate backgrounds that might otherwise be classified [25–27]. This is
embraced by subtracting the objects’ background and computing a foreground mask on col-
ored video frames [28] and gray images captured from multiple surveillance cameras. The
proposed algorithm takes an input of the 120 × 32 images, cleans and converts them into
binary format, and then smoothens the pixels on binary images by applying morphological
operations that are followed by the implementation of a Laplacian of Gaussian model (LOG)
mixture after blobs. The images undergo further feature extraction and computation with
the HOG descriptor. We stored these features into a 2-dimensional array and passed them
to the fully connected multi-layer neural network for further classifications and matching
computation, as shown in Figure 1. The CNN flattens the given 2D array into a single
feature vector that is used to determine the object of interest’s class. Then an output from
the HOG descriptor compared them with the object of interest on the input frame based on
the connected components, image region properties, and window binary mask. The sliding
window tactics were applied on input frames to reduce the data size, processing time, and
to improve the object locating during tracking in one step. The normalized cross-function
is used to obtain the object centroids on these images. Finally, we considered the use of the
Kalman filter to track the object of interest, based on the computed centroids.

 

Figure 1. Proposed HCNN method implementation architecture overview.
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3.1. Background Segmenting Modeling

Background motion has always been a throwback for many conventional methods to
achieve the desired accuracy [23,25]. However, we applied the background subtraction
model to ensure that our algorithm overcomes these challenges. In this modeling, we set
the threshold pixel value to 0.5 to ensure the detection of every blob for all objects shapes.
We further applied the splitting of the image into foreground and background for our
algorithm to efficiently classify the pixels [29]. However, the recent history of each pixel
value is observed with a mixture of Gaussian distributions, and the new pixel values are
considered as the major components to update the model. These new pixel values at a
given time (pVt) are further checked against generated Gaussian distribution until matches
are obtained [30]. The pixels with similar velocity at given x and y directions are considered
as a point of interest of the same object representing its velocity. These matches are then
defined with a standard deviation (σ) of the distribution. This improved the foreground
masks, connectivity between neighboring pixels, speed mapping of the moving object, and
the capability to distinguish the non-stationary detections from the foreground blobs.

However, when there are no matches found in the T generated distribution, the
probability of the distribution of the previous action is replaced with the current mean (μ)
value, highest variance (σ2) and the lowest weight (w) of the object. Thus, we observe the
probability of the pixel values as follows.

P(Xt) =
T

∑
i=1

Wi,t × Ψ(Xt, μi,t,
T

∑
i,t
) (1)

where {X1, X2 . . . Xt} represent recent pixels history and 1 ≤ i ≤ t; T denotes the number
of the distributions, whereas Wi,t represents an estimated weight of the ith The Gaussian

mixture at given time t, μi,t and
T
∑
i,t

respectively denotes the mean and covariance matrix.

Then Ψ denotes the Gaussian probability density function and is computed as follows.

Ψ(Xt, μ, Σ) = 1/((2Π)n/2
∣∣∣Σ∣∣∣1/2)e1/2(Xt−μt)

TΣ−1(Xt−μt) (2)

Then the weight of the T distribution at a given time is updated as follows.

WT,t = (1 − α)× WT,(t−1) + α × (ΞT,t) (3)

where α denote the learning rate, T is equivalent to the available memory and computation
power usage, ΞT,t ε(1, 0) where one denotes model matching is true, zero represents that
model as unmatched. The advantage of this background technique we applied is that our
background model is updated without destroying the existing model. This is achieved by
ensuring that after the weights normalizations, the mean and the variance corresponds
with the conditions of the distribution and are updated only when conditions change by
using the following equations, respectively.

μt = (1 − p)μ(t−1) + pXt (4)

and
σ2

t = (1 − p)σ2
(t−1) + p(Xt − μt) (5)

We further ensured that the learning factor p adapts to the current distributions by
computing it as:

p = α × Ψ(Xt|μt, σt) (6)

3.2. Foreground Blobs Windowing Modeling

In this modeling, we applied a sliding window approach on both images and foreground
frames. This helped our algorithm to avoid detection of non-moving background and shadows
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of the objects in motion. Therefore, the binary foreground image is used to fulfill the desired
window output that is extracted and expressed with the following equation.

ζw
xy =

{
δw

xy Σ
wxwy
x,y=1δwb

xy ≥ κp × 50%; wxεhieght, wyεwidth (7)

where ζw
xy denotes desired output window for the given window input image δw

xy which is
extracted through a sliding window on the binary foreground image δwb

xy with a sum of the

total number of pixels Σ
wxwy
x,y=1δwb

xy on binary window κp. In the next section, we discuss the
HoG descriptor implemented in this paper in detail.

3.3. HOG Descriptor’s Features Extraction

Hog is a feature extraction technique that extracts features from every position of the
image by constructing logic histograms of the object from the images [7]. In this paper, the
images are first passed through the HOG descriptor for data size reduction and searching
for an object to detect. Thereafter, the histograms are created and computed over the whole
images that are retrieved from several video frames. These histograms are then appended
into a single feature vector using the exponential equation 2�, representing the grid level
(�) for all cells along the dimensions. However, the correspondence on the whole input
images between the vectors and histograms bins is ensured by limiting the level (�) to ≤3
and computed using the following equation.

ν = K
�

∑
i=1

4�; i ≤ 3 (8)

where ν, denotes vector dimensions, K denotes bins, � defines grid level. This equation
ensures that all images that are extremely large and rich in texture are weighted the same
as low texture images within the set parameters. It is also used to guard and control our
algorithm against overfitting.

In our detection module, a two-dimensional (2D) array of the detected object is
constructed. It is passed to the CNN, wherein the process of targeted object recognition
is flattened into a single vector using two fully connected layers. The CNN is also used
to classify that the person detected by the HOG descriptor is either associated with the
assigned ID (e.g., ID1 or other IDs) [31].

3.4. Structure of the Convolutional Neural Network

The structure of the CNN incorporated into our algorithm is shown in Figure 2. We
considered extracting the appropriate features first from the window’s raw data. There are
four convolutional layers with three max-pooling layers, two fully convolutional layers,
and a softmax activation function. The first layer is used to map various small features
that are cited as local receptive fields (LRF) that move satisfactorily over the input image
window on the grid. The second layer contains one or many fully connected output neurons
that are applied to transfer functions to the inputs during the training phase. Therefore,
the hidden layer of the multiple layer perception is used to connect each input with a
separate weight.

The LRF was applied to all image portions using the same weights, and this con-
tributed to the reduction of adaptable parameters. However, when the network has biased
weights, the output weights becomes the element of the transferred functions, which are
applied to the first and second layer, respectively. The object is then recognized from the
foreground frame’s sliding window, and its parameters such as x and y coordinates for
the starting position, height, width, and centroids are calculated. This avoided network
overfitting and provided the current location of the object being detected [24,25]. Finally,
the Kalman filter was applied to track the object of interest based on the computed centroids
and assigned unique identities throughout the frames.

280



Sensors 2022, 22, 2123

 
Figure 2. Overview of the CNN structure incorporated into HOG.

3.5. Designing Kalman Filter for Our HCNN Algorithm

In most cases, computer vision algorithms’ frequent task is based on object detection
and localization [26,32]. Therefore, in this paper, we considered the design and the in-
corporation of a simple and robust procedure to engage complex scenes with minimum
resources [27]. We integrated the computed object centroids into the Kalman filter’s object
motion and measurement noise [29]. This strengthened the processing of noises and the
estimation of the object’s next position in the next frame at a given speed and time [12].
However, it also made our algorithm entitled to efficiently re-detect the moving object
during occlusions, scaling, illuminations, appearance changes, and rapid motion on both
training and validation phases [33]. Therefore, to solve these challenges, we enabled the
Kalman filer to model and associate the target ID that is assigned based on the computed
centroids. This improved the observations, predictions, measurements, corrections, and
updating of the object’s whereabouts and directions.

Thus, observations are effectively used to locate the object and provide a direction at a
given velocity and measurement using the following equation.

Z = X + Er ; (9)

where Z denotes measurements, X represents the location of the object being tracked,
and Er is distributed normally (Er ~N (0, σ2)) and denotes noisy measurements due to
uncertainty of the current object location. Although this guarantees that our algorithm
can handle the noises, we prognosticate that our detector might be imperfect due to the
combination of Er and velocity (v) variations that will affect the tracker to locate and
track the object of interest effectively. Thus, to handle these uncertainties, we estimated
the trajectories of the moving object from the initial state to the final state of direction by
incorporating the Er into the converted matrix formulae of motion measurement as follows.

Xt =

[
Xt
Vt

]
; (10)

denoting location X, and speed V of an object at a particular time

Zt = [Zt]; (11)

denoting the distance measurement of an object at a particular time
Thus, the Equations (10) and (11) are combined and expanded to express the location

of an object being tracked as follows:

Zt = Xt + Er (12)
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which is further converted into a matrix equation and used to handle both noisy measure-
ments and speed variation.

Zt+1 =
[

1 0
]
Xt + Er; (13)[

1 0
]

denote H state control matrix at time t + 1.
In short, Equation (13) is expressed as Zt+1 = HXt + Er .
However, the Equation (13) estimations do not adapt to the speed changes. Therefore,

to incorporate speed variations and locate the position of the object correctly in the next
frame, we calculated the algorithm evaluation through time (t) at acceleration (a) and
changes in time (Δt) using the equation below.

Xt+1 = Xt + Vt × Δt +
1
2

at2 (14)

where Xt+1 denotes our prediction corrections, Xt denotes the location of the object at a
given time (t), Vt denote the speed of the object at a given time (t), and Δt + 1

2 at2 represent
speed integration at a given time (t). However, the speed is not constant for the object in
motion. Hence, we accommodated its changes through different frames scenes by adapting
velocity variations using the equation below.

Vt+1 = Vt + aΔt (15)

We further expanded Equation (14) for time evolution handling and to ensure that the
motion and object feature representation on both foreground frames and binary images
are correctly captured and predicted. Hence, the newly desired formulae are expressed
as follows:

Xt+1 =

[
1 Δt
0 1

]
+ Xt{Previous state}+

[ 1
2 Δt2

Δt

]
a; (16)

where
[

1 Δt
0 1

]
denotes state transition matrix function (F), a denote object’s acceleration

and is distributed normally with mean 0 and variance of the noise measurements, a ∼
N

(
0, σ2

r
)
. Therefore, Equation (16) is further expressed in short, as Xt+1 = FXt + GVt

where G represents a vector
[ 1

2 Δt2

Δt

]
, which is the object’s uncertainty in time changes.

Finally, we used these equations into the Kalman filter to predict and correct the object
velocity based on the pixels found in the x and y directions. We predicted the steps and
propagated the state as follows:

Xt ⇒ Xt+1, (17)

i f (Xt ∼ N(X̂t, Ṕt)) (17a)

where Xt is a random variable of a normal distribution with a mean X̂t and covariance Ṕt.

then X̂t+1 = F· X̂t (17b)

where F represents the previous state with a certain speed at a particular time. Therefore,
we expanded the covariance equation to estimate and update time as follows.

Pt+1 = FPtFT + Gσ2
a GT (17c)

where Pt+1 defines the estimated error covariance matrix in the next frame. Thus, knowl-
edge of the measurement (Zt) steps are now incorporated into the moving object’s estimate
state vector (Xt) and the (a) Measuring residual error, (b) Residual covariance, and (c)
Kalman gain are computed as respectively as follows.

Y = Zt − H·X̂t ; X̂t = μ (18a)
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St = HPt HT + R; where R denote σ2
r (18b)

K = Pt HTS−1
k (18c)

Therefore, after this measurement steps incorporation, we can finally update the
variable position estimates in the next frame by updating the mean and covariance based
on the Kalman gain using the equations below.

X̂|z = X̂t + K·Y; where X̂t denote the previous mean (18d)

P|z = (I − K·H)Pt ; (18e)

and I is a 4 × 4 identity matrix:

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦.

4. Experiments

Experimental Setup

We performed experiments on the EPFL datasets based on campus passengers and
subway scenes that contain lots of poses and illumination variations. The algorithm is
implemented on Dell, G15 Corei7 11800H Processor, NVidia GeForce RT 350Ti GPU, 4 GB
GDDR6, 16 GB RAM with Python 3 (Dell, Pretoria, South Africa).

Datasets and Evaluation Metrics: The EPFL dataset is used and contains campus and
passageway scenes that are both outdoor sequences. The campus scene consists of 6 videos,
while the passageway has 4 videos. The videos are split into training and validation sets,
where we selected 4 campus scenes videos, 3 passageway videos and split them into frames,
and retrieved 40,000 images for training. The remaining videos are used for validation in
the testing phase.

The algorithm training is conducted with 30,000 multi-view angle positive images and
10,000 negative images of size 120 × 32. These images are subsets of the frames of the video.
We show their instances, labels associations, and correlations in Figure 3. The algorithm is
trained with the use of the HOG descriptor, which resized images and activated the object
detection module. The HOG descriptor is integrated with the structured CNN illustrated
in Figure 2 that is applied as an additional processing mechanism and also a classification
mechanism. The training of this proposed system was conducted with 3000 iterations at a
learning rate of 0.001.

We evaluated our algorithm’s performance with CLEAR MOT metrics that include
the precisions(P), recall(R), identity F1 score(IDF1), mean average precisions(mAP), multi-
ple object tracking accuracy(MOTA), multiple object tracking precisions(MOTP), mostly
tracked(ML), mostly lost(ML) and ID switches(IDs). The P is the ratio of the correct positive
predictions out of all the positive predictions made, whereas R is the ratio of the number
of correct positive predictions made out of all positive predictions that could have been
made. The mAP was used to evaluate our detection model by comparing the ground
truth-bounding box with the detected box. However, the MT and ML account for the
ground-truth trajectories that are the ratio of 80% and 20% correctly identified detections
over the mAP returned scores respectively [28]. These metrics are defined as follows:

Precision =
TruePositives

(TruePositives + FalsePositives)
(19)

Recall =
TruePositives

(TruePositives + FalseNegatives)
(20)

IDF1 scores = 2[
P × R
(P + R)

] (21)
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where P and R denote precision and recall respectively.

mAP =
1
2

k=n

∑
k=1

APk ; AP =
k=n−1

∑
k=0

[Rk − Rk+1]× Pk (22)

where Rn = 0, Pn = 1 and n denotes the number of thresholds. The k represents the number
of classes.

MOTA = 1 −
[

∑N
t ( f nt + f pt + IDst)

∑N
t Gt

]
(23)

where f nt, f pt and IDst denote the number of false-negative or missed detections, the false
positive, and the miss-match errors in frame t. The Gt represent the ground truth.

MOTP = 1 − [
∑N

i,t di
t

∑N
t ct

] (24)

where di
t denotes the distance between the localization of objects in the ith ground truth

and the detection output in frame t. The ct is the total matches made between ground truth
and the detection output in frame t.

  
(a) (b) 

Figure 3. The left (a) shows the scatter plot of each instance and label associates, and (b) illustrates
the correlation relations on the campus scenes images dataset. At most, 90% of the instances are
correctly associated with the labels throughout the scenes.

Parameter Settings. Our Algorithm reacted to a new entry object by initiating a
Kalman filter for object tracking [29]. The tracker continues to track and check if the
new object falls within the acceptance region of the trajectories by using the Kalman filter
predicting equations [12]. The error between the actual observation and the predicted
observation is normalized by the computation of a covariance matrix from the Kalman
filter update equations [32]. Thus, the determination of whether the new object observation
is associated with an existing track is performed by the threshold value test on the residual
error (covariance matrix values) [12]. This defines the acceptance relations for each object
being tracked and updates the state where the threshold test satisfies. All trajectories that
are shorter than 80 milliseconds are deleted. However, when an object observation does
not fall within any acceptable trajectory region, the tracker establishes a new track. This
endorsed the auto-labeling correlations showed in Figures 3a,b and 4a,b. Therefore, the
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instances are only associated with a single label, and this has increased the label correlations,
precisions, and recall in our experimented dataset [30,31]. It also led to the highest MOTA
and MOTP, as shown in Tables 1–3. The metrics results and analysis are discussed in the
next section, Results Analysis.

 
(a) (b) 

Figure 4. The left (a) shows the scatter plot of each instance and label associates, and (b) illustrates
the correlation relations on the passageway scenes images dataset. Mostly, 92% of the instances are
correctly associated with the labels throughout the scenes.

Table 1. Comparison with state-of-the-art methods based on MOT Classification Accuracy.

Methods Precision ↑ Causality

Improved HOG [4] 86.70% Online
HOG + 1DCNN [16] 90.23% Offline
HOG + DCNN Net [32] 96.74 Offline
HOG + CNN [33] 94.14% Offline
Ours 91.00% Online

Table 2. Performance evaluation metrics on EPFL dataset campus sequence.

Sequences Precision ↑ Recall ↑ IDF Score ↑ MOTA ↑ MOTP ↑ IDS ↓ ML ↓ MT ↑ FM ↓
CAM#4_scene0 99.4% 96.0% 95.9% 94.0% 91.9% 1 1% 96.0% 2
CAM#4_scene1 98.0% 97.0% 98.0% 93.0% 92.0% 1 1% 94.0% 1
CAM#4_scene2 98.0% 94.0% 96.0% 93.0% 89.0% 2 2% 92.0% 3
CAM#7_scene0 68.0% 80.2% 76.4% 63.3% 75.0% 4 3% 82.0% 5
CAM#7_scene1 88.9% 87.6% 88.2% 83.9% 82.5% 3 2% 88% 2
CAM#7_scene2 95.0% 96.8% 96.3% 90.0% 91.8% 1 1% 92% 1

Overall
performance 91.22% 91.93% 91.80% 86.20% 87.03% 2 1.67% 90.67% 3

Table 3. Performance evaluation metrics on EPFL dataset passageway sequence.

Sequences Precision ↑ Recall ↑ IDF Score ↑ MOTA ↑ MOTP ↑ IDS ↓ ML ↓ MT ↑ FM ↓
CAM#1_scene0 94.0% 92.0% 93.0% 89.4% 87.0% 2 2.0% 88.0% 3
CAM#2_scene1 83.0% 82.0% 82.0% 78.0% 76.8% 4 3.0% 86.0% 5
CAM#3_scene2 97.0% 90.8% 93.8% 92.3% 85.8% 2 1.0% 93.0% 2
CAM#4_scene3 76.0% 71.2% 73.5% 71.0% 66.3% 4 4.0% 81.0% 8

Overall
performance 87.50% 84.00% 85.58% 82.68% 78.98% 3 2.50% 87.00% 5
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5. Results Analysis

In this section, we analyze our HCNN algorithm’s results obtained from the experi-
mented dataset. We trained and evaluated our detector to classify with a coupled HOG
descriptor and CNN using the EPFL dataset with the selected scenes (campus and passage)
for real-time multi-object tracking. The objects are observed and tracked by use of Kalman
Filter, as shown in Figure 1. Figures 5–8 illustrate the overall performance and effectiveness
of our algorithm’s detector and classify for both training and validation phases.

The algorithm has proven to be effective with high performance in precision and recall,
accompanied by the high confidence values on the campus scene dataset. It achieved a
greater balance between precision and recall, with a mean average precision of 95.1% at
a 0.5 threshold for all classes. This demonstrated in Figure 9 that the algorithm could be
trusted for accurately detecting and correctly classifying the objects of interest. However,
through this process, the algorithm at the beginning of training and the testing phases had
challenges of the unrepresentative data but gradually converged well with more training
epochs. This is shown in Figures 6 and 8, with the ups and downs of the jumping of the
stats values in either training or validation phase graphs. Thus, it led to the high numbers
of false-positive classification and miss matching as clearly advocated in Figures 5 and 7,
and Tables 1–3. It is emphasized in Figures 6 and 8, where the algorithm training losses
and gains on 200 and 100 epochs are projecting the performance well on both the campus
and passageway sequences scenes, respectively.

However, the algorithm demonstrated better performance on passageway scenes, which
had more difficult challenges such as illumination variations, and different poses compared
to the outdoor environment (campus scenes). This is well illustrated in Figures 6 and 8
performance comparisons, where our algorithm recorded the highest performance in precision,
recall, and IDF1 scores on the passageway scenes dataset than on the campus scenes dataset.
It recorded an absolute 100% for all those metrics with satisfactory confidence values. It is
illustrated in Figure A1a,b that our algorithm has mostly identified all the objects of interest
under various heavy conditions [32]. This proves that the algorithm is robust against various
heavy illuminations and different poses or skewed view angles. However, Figure 9 shows that
though the algorithm performed better, it had similar challenges of the unrepresentative data,
mostly in the middle of training and testing phases. However, it quickly converged better
compared to campus scenes. This proved that our algorithm in the training phase had been
fitted with enough data, although at the beginning of our training on the campus scenes, it
could be seen struggling or not receiving enough data. The up and downs jumping [33] could
be due to data fit because we can see that when we trained the algorithm with more epochs,
we obtained better and more stable results for both passageway and campus scenes datasets.

To demonstrate our algorithm’s classification accuracy (CA) and specificity, we com-
pared our precision results with state-of-the-art paradigms. The results are summarized in
Table 1. Our approach achieved better results compared to the online approach and short
just 5.74% to the current state-of-the-art paradigm.

Thus, for real-time tracking, we evaluated our algorithm with several video frames
taken from two different sequences of the EPFL dataset, as shown in Tables 2 and 3. The
CLEAR MOT is used for evaluations, where ↑ denotes high performance and ↓ represents
lower performance. In both sequences, our approach recorded an average overall perfor-
mance above 80% with very few fragmentations and ID switches in all metrics. Further
training and testing were conducted on our algorithm without Kalman filter using the
8000 frames from the real-time overlapping multiple cameras dataset (EPFL-RCL multi-
cameras). In the comparison exercise, we found that the model’s MOTA, MOTP, precision,
and recall performance were very low compared to the one with the Kalman filter in
Tables 2–4. It had a low detection ratio and a high ID switches ratio that adversely affected
the overall tracking results. This is displayed in Table 5 and illustrated well in Figure 9e,f,
where the Kalman Filter and segmentation technique are removed from our proposed
HCNN algorithm. However, the proposed HCNN with Kalman filter performed very
closely to the Yolo5Deep model in Table 4. This proves that the proposed model provides
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a better data affinity of a close equivalent to the Yolo5Deep model in real-time multiple
object tracking.

 
(a) (b) 

  
(c) (d) 

Figure 5. The label (a) shows the precision (P) versus confidence (C) graph, (b) the recall (R) versus
confidence (C), (c) is the mean average precision based on comparing the truth bounding box and
detection box, and (d) the IDF1 score at 92% with confidence of 0.729, advocates the balancing
between the P and R based on Campus scenes images dataset. The mAP for all classes is high and
accurately modeling detections at 95.1% with a threshold of 0.5. The P and R are high at 88.0%, and
87.5%, respectively, and more confidence at 0.8 and 0.78, respectively, for all classes.

Table 4. Performance evaluation analysis of fine-tuned Yolo5Deep on EPFL dataset (campus and
passageway).

Sequences Precision ↑ Recall ↑ IDF Score ↑ MOTA ↑ MOTP ↑ IDS ↓ ML ↓ MT ↑ FM ↓
Campus scenes 96.0% 90.6% 91.5% 92.0% 85.0% 2 1.0% 93.0% 2

Passageway scenes 94.0% 92.0% 93.0% 89.4% 87.0% 2 2.0% 88.0% 3
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Table 5. Performance evaluation analysis of the proposed algorithm without Kalman filter on
EPFL-RCL overlapping multi-cameras.

Sequences Precision ↑ Recall ↑ IDF Score ↑ MOTA ↑ MOTP ↑ IDS ↓ ML ↓ MT ↑ FM ↓
Overall performance 65.0% 56.2% 58.5% 52.0% 46.3% 24 34.0% 54.0% 14

Figure 6. Shows both training and validations losses of the HCNN algorithm’s object detector and
classification on 200 epochs for campus scenes dataset. The precision and recall metrics in the training
and validation phase converge at the highest of 95.7% accuracy, whereas the mAP converges at 95%
with a 0.5 threshold.

 
(a) (b) 

Figure 7. Cont.
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(c) (d) 

Figure 7. The label (a) shows the precision(P) versus confidence(C) graph, (b) the recall(R) versus
confidence(C), (c) is the mean average precision(mAP) based on comparing the truth bounding box
and detection box, and (d) the IDF1 score at 100% with confidence of 0.626, which advocates the
balance between P and R based on passageway scenes dataset. The mAP for all classes is high and
accurately modeling detections at 95.1% with a threshold of 0.5. The P and R are high at 100% and
100%, respectively, and more confidence at 0.713 and 0.0 respectively for all classes.

Figure 8. Shows both training and validations of the HCNN algorithm’s object detector and classifi-
cation loss converging on 100 epochs for passageway scenes dataset. The precision and recall metrics
in the training and validation phase converge at the highest of 95.7% accuracy, whereas the mAP
converges at 95% with a 0.5 threshold.
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 9. The first row shows visualize (a,b), the tracking results on validations of both sequences
(Campus and Passageway, respectively) with proposed the HCNN algorithm’s tracker. While
(c,d) shows the tracking results of the fine-tuned Yolov5 + Deepsort, (Yolo5Deep) model integrated
with HOG and Kalman Filter. (e,f) shows the EPFL-RCL Multi-cameras frame results for the pro-
posed HCNN without a Kalman Filter and segmentation technique. Compared to our detector
and tracker with Yolo5Deep, our proposed algorithm increased positive detections and improved
the precision of detection boxes. Moreover, the method is robust for occlusion, illumination, and
re-appearance variations.
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Benchmark Evaluation Results

Results on EPFL multi-camera pedestrian datasets: In Table 6, we summarized the
results of the EPFL multi-camera pedestrians tracking testing set. We compared our
algorithm to several state-of-the-art methods. However, some of these approaches could
only be analyzed offline.

Table 6. Comparison with state-of-the-art methods on testing the subset of EPF multi-cameras
pedestrian dataset.

Method MOTA ↑ MOTP ↑ Causality

NCA-Net [32] 64.5% 78.2% Offline
CNN + HOG Template Matching [11] 94.0% 80.9% Offline
Yolo + Deepsort [33] 86.1% 88.6% Online
MCMOT HDM [34] 62.4% 78.2% Offline
Ours 68.2% 65.0% Online

For the offline mode, our approach performs poorly. Interestingly, we found that in
real-time tracking settings, our approach recorded results that were close to the best state-
of-the-art approach. However, in ablation studies, as shown in Figure 9e,f, our approach
suffered from overlapping detection boxes and resulted in high misdetection and object
re-identification.

6. Conclusions

Our study presents an efficient algorithm for multi-view pedestrian detection, iden-
tification, and tracking based on combined HOG descriptors and CNN. The background
subtraction technique was used to eliminate noise from video frames taken from the EPFL
dataset. Extensive experiments were conducted on selected sequences (campus and pas-
sageway) of the outdoor environments, where the Kalman filter was used to track the
multiple objects and to test the robustness of the proposed system under difficult tracking
conditions. Our algorithm demonstrated that contour and global features handling en-
hances real-time multi-object tracking performance. The results showed that the proposed
technique produces better detection rates and data associations. Therefore, our feature
work will involve the implementation of the algorithm for tracking multiple fast-moving
objects on a huge dataset with more objects such as vehicles.
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Appendix A

 
(a) 

(b) 

Figure A1. Illustrate the confusion matrices on both (a) passageway sequence, and (b) campus
sequence, respectively.
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Abstract: Multi-person pose estimation has been gaining considerable interest due to its use in
several real-world applications, such as activity recognition, motion capture, and augmented reality.
Although the improvement of the accuracy and speed of multi-person pose estimation techniques
has been recently studied, limitations still exist in balancing these two aspects. In this paper, a novel
knowledge distilled lightweight top-down pose network (KDLPN) is proposed that balances compu-
tational complexity and accuracy. For the first time in multi-person pose estimation, a network that
reduces computational complexity by applying a “Pelee” structure and shuffles pixels in the dense
upsampling convolution layer to reduce the number of channels is presented. Furthermore, to prevent
performance degradation because of the reduced computational complexity, knowledge distillation
is applied to establish the pose estimation network as a teacher network. The method performance
is evaluated on the MSCOCO dataset. Experimental results demonstrate that our KDLPN network
significantly reduces 95% of the parameters required by state-of-the-art methods with minimal
performance degradation. Moreover, our method is compared with other pose estimation methods to
substantiate the importance of computational complexity reduction and its effectiveness.

Keywords: pose estimation; convolutional neural network; lightweight; knowledge distillation

1. Introduction

The demand for human pose estimation has increased over time as it is essential
for detecting human behaviors and for numerous applications such as human-computer
interaction [1], human action recognition [2], and human performance analysis [3]. Previ-
ously, human pose estimation has been studied as a close-up technique requiring a balance
between accuracy and low computational complexity. Traditional approaches such as his-
togram of oriented gradient (HOG) [4] and Edgelet [5] extract discriminative features from
images and assign a class to the feature vector. However, they cannot adequately determine
the accurate location of body parts in a human figure [6].

Recent advances in convolutional neural networks (CNNs) that enable robust feature
extraction have afforded significant improvements in pose estimation. Therefore, owing
to the feature extraction capabilities of CNNs, the research paradigm of human pose
estimation shifted from classic approaches to deep learning [7–9]. Two main approaches,
i.e., bottom-up and top-down approaches, of deep-learning-based methods, have been
employed to overcome the limitations of handcrafting-based methods during the transition.

Bottom-up approaches [10–16] first detect human body poses and then group them
using clustering algorithms. Compared to top-down approaches, they are faster in testing
and thus require lower computational complexities during model building. However, the
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bottom-up approaches are unable to amplify the details of each person, and subsequently,
they yield lower accuracies than top-down approaches.

In contrast, the keypoint prediction process in top-down approaches is a two-step
operation. Generally, top-down approaches [17–23] first detect all the people in an image
and crop the person region and then input the cropped image into a single-person pose
estimation model. Due to the two-step operation, they yield better results than bottom-
up approaches. To accurately estimate the keypoints of people in an image, top-down
approaches construct network layers deeper than bottom-up approaches. However, top-
down approaches are unable to solve the speed degradation issue that arises when deeply
constructing network layers for estimating keypoints.

Most previous multi-person estimation methods require high computational com-
plexity to accurately estimate the keypoints of people in an image. Additionally, to guar-
antee accuracy, the network layers need to be deeply designed, which decreases the es-
timation speed. Due to these limitations, the accuracy and speed need to be balanced in
multi-person estimations.

In this paper, we present a lightweight top-down human pose estimation network
that uses a knowledge distillation method to overcome the balance limitations. Inspired
by PeleeNet [24], we propose knowledge distilled lightweight top-down pose network
(KDLPN), a network that minimizes computational complexity while shuffling the pixels in
the decoder previously introduced in the dense upsampling convolution (DUC) layer [25]
to reduce the number of channels.

To effectively and efficiently resolve the performance degradation occurring in the
lightweight networks, the knowledge distillation approach [26] is applied in our model. To
satisfy the complexity and performance requirements of deploying state-of-the-art deep
neural models in our proposed system, compact and fast models are trained by transferring
knowledge from extremely deep and powerful teacher models. Additionally, experiments
are conducted on the MSCOCO dataset [27], a widely-used human pose estimation dataset
to verify the model effectiveness, and the balance between the estimation accuracy and the
speed of our approach is demonstrated.

The remainder of this paper is organized as follows. Section 2 presents a review of
the related work. In Section 3, the proposed two-dimensional (2D) human pose estimation
model is presented and the features of each part are formulated. Sections 3.1 and 3.2 discuss
the study motivations. Section 3.3 describes the building of a lightweight 2D human pose
estimation network and replacement of the decoder to reduce complexity. In Section 3.4,
to prevent performance degradation, the proposed method is adopted for knowledge
distillation in training. Section 4 presents the simulation results and discussion on the
MSCOCO dataset. Finally, Section 4.5 presents the conclusions.

2. Related Work

2.1. Multi-Person Pose Estimation

Recently, multi-person pose estimation has drawn increasing attention because of its
applicability in real-life applications, such as postural correction [28], action recognition [29],
and health care [30]. Multi-person pose estimation using neural networks can be deter-
mined via two main approaches. The first is the bottom-up approaches that obtain all
the pose keypoints in input images and assemble them as distinct people using methods
such as part affinity field (PAF) [11]. The other is the top-down approaches that employ
human detection to obtain bounding boxes and input the cropped image batch to the pose
estimation neural network.

Bottom-up approach: Bottom-up pose estimation methods [10–16] detect the identity-
free human joints of all people within an image and assemble the joints using an algorithm.
While traditional multi-person pose estimation models focus on human structural char-
acteristics, contemporary models focus more on measuring the body itself by adopting
strong CNN models.
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To accurately estimate multi-person poses, DeepCut [12] proposed the derivation
of a joint detection and pose estimation formulation that was casted as an integer linear
program problem and a new formulation that was casted as a joint subset partitioning
and labeling problem. Further, DeeperCut [13], an improved DeepCut employs a residual
network (ResNet) [31] to extract more robust body parts representations. Moreover, it
adopts image-conditioned pairwise terms to achieve better performance. Next, Associative
Embedding [14] detects heatmaps with pixelwise embedding and groups the keypoint
candidates by comparing the distance between the embeddings to generate the result. To
improve the estimation accuracy, Openpose [11] employed PAFs to learn to associate body
parts with individuals in an image. Openpose obtains a heatmap around the grouped joints
of people using a multi-stage CNN (initialized by the first ten layers of VGG-19 [32]) and
fine-tunes and then yields multi-person poses using PAFs (Figure 1a).

Current bottom-up pose estimation approaches have high estimation speeds, and
can be implemented in mobile devices without additional human detection networks.
However, their performances are significantly affected by complex backgrounds and human
outer walls.

Figure 1. Human Pose Estimation algorithm. Column (a): The example of a bottom-up approach.
Column (b): The example of a top-down approach.

Top-down approach: Top-down approaches [17–23] employ a two-step process to
estimate pose keypoints. They first detect all the people within an image using object
detection. Then, each cropped image is processed into a single-person pose estimation
network model. A Cascaded Pyramid Network (CPN) [20] has been proposed to robustly
detect “hard” keypoints and divide keypoints into simple levels. CPN comprises a pyramid
architecture as the backbone network, including GlobalNet and RefineNet. In RefineNet,
CPN selects the hard keypoints online based on the training L2 loss. George et al. [19]
predicted heatmaps and offsets using a fully convolutional ResNet and a faster RCNN
detector to detect bounding boxes, and they then predicted the final location output using
the heatmaps, offsets, and keypoint-based non maximum suppression. Regional multi-
person pose estimation (RMPE) [17] comprises a human detection model and a skeleton
registration model [33–37] for estimating the multi-person poses in the image. The detected
single human bounding boxes in batches from the detection model are input into the
skeleton registration model to detect the skeleton keypoints (Figure 1b).
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To utilize the characteristics of the superior performance of top-down approaches and
overcome its shortcomings, we propose a lightweight top-down pose estimation approach
to improve computational efficiency while improving the performance.

2.2. Lightweight Neural Network

The effectiveness of neural networks has significantly improved the performance
of applications that use various memory locations and operations. However, computing
power and memory have not kept up with the development of neural networks. Conse-
quently, lightweight networks with low computational complexity have been proposed to
meet the demand for mobile devices.

MobileNets [38–40] proposed the construction of a lightweight model that can run on
mobile devices by minimizing the number of network parameters. It minimizes the overall
computation using a depth-wise convolution to convert each channel into its respective
kernel and by applying a 1 × 1 convolution to change the output channel to pointwise
convolution. MobileNetsV3 [40] proposed the platform-aware network architecture search
method, which automatically optimizes each network block. It utilizes a module based on
squeeze and excitation in the bottleneck structure to minimize the network parameters
while improving the performance. PeleeNet [24] is a network model that performs various
tunings based on DenseNet [41] for mobile devices. It utilizes the architecture of DenseNet
that concatenates the feature map of the layers. Additionally, it uses stemblock and two-way
dense layers to reduce the computational cost and adopts a structure with varying number
of layers on each stage. The computational complexity of PeleeNet is significantly low,
which allows its operation in mobile devices. It affords better accuracy and over 1.8 times
faster speed than MobileNet and MobileNetV2 on the ImageNet ILSVRC 2012 dataset [42].

2.3. Knowledge Distillation

Deep learning models are basically wide and deep; thus, feature extension works
efficiently if the number of parameters and operations are high. Subsequently, the object
classification or detection performance, which is the purpose of the model, is improved.
However, deep learning cannot be configured using large and deep networks owing to
device limitations, such as computing resources (CPU and GPU) and memory. There-
fore, considering these device environments, a deep learning model with a small size
and improved performance is required. This demand has led to the development of vari-
ous algorithms that can afford similar performance to large networks, and among them,
knowledge distillation is attracting immense attention [26,43].

Knowledge distillation is the information transfer between different neural networks
with distinct capacities. Bucilua et al. [44] were the first to propose model compression
to use the information from a large model for the training of a small model without a
substantial drop in accuracy. This is mainly based on the idea that student models reflect
teacher models and afford similar performances. Hinton et al. [43] employed a well-trained
large and complex network to help train a small network. Yim et al. [45] compared an
original network and a network trained using the original network, as a teacher network.
They determined that the student network that learned the distilled knowledge is optimized
much quicker than the original model, and it outperforms the original network.

This is because the teacher model provides extra supervision in the form of class
probabilities, feature representations [46,47], or an inter-layer flow. Recently, this principle
has also been applied to accelerate the model training process of large-scale distributed
neural networks and transfer knowledge between multiple layers [48] or between multiple
training states [49]. In addition to the conventional two-stage training-based offline distilla-
tion, one-stage online knowledge distillation has been attempted, and advantageously, it
provides more efficient optimization and learning. Furthermore, knowledge distillation
has been used to distil easy-to-train large networks into harder-to-train small networks.
Alashkar et al. [50] presented a makeup recommendation and synthesis system wherein
the makeup art domain knowledge and makeup expert experience are both incorporated
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into a neural network to boost the performance of the makeup recommendation. Although
knowledge distillation in deep neural networks has been successfully applied to solve the
problems of visual relationship detection, sentence sentiment analysis and name entity
recognition, its application in the fashion domain has been limited.

In this work, we adopt a knowledge distillation method to advantageously employ
the complex teacher network knowledge to guide lightweight neural models.

3. Proposed Method

3.1. Overview

In this section, we propose a lightweight multi-person pose estimation network using
a top-down-based approach. The top-down method basically comprises a detector, which
detects people, and a single-person pose estimation (SPPE), which predicts a single pose
from the detected person. Although the speed reduces based on the number of people in
the top-down approach compared to the bottom-up approach, the top-down approach
affords better performance. Moreover, the speed problem can be alleviated by minimiz-
ing the number of network parameters. As several fast and accurate approaches [33–37]
exist for human detection, we mainly focus on making the SPPE of the pose estimation
model lightweight.

SPPE comprises an encoder model, which extracts features from the detected person
as input, and a decoder model, which acquires the heatmap to the keypoints of that person
by upsampling from the extracted features. As shown in Figure 2, we changed the encoder
model to the proposed optimal lightweight model. Concurrently, we reduced the number
of parameters by applying a new structure to the upsampling layer of the decoder model.
To avoid the performance degradation when reducing the number of parameters, we
employed knowledge distillation using a teacher network with high performance.

Figure 2. Overall lightweight human pose estimation network.

In the next section, we present the overview of our method. Then, we illustrate
the lightweight network corresponding to the top-down-based SPPE in Section 3.2 and
the decoder of the lightweight network in Section 3.3. Finally, we present the knowl-
edge distillation method that can minimize the performance reduction associated with
lightweightedness in Section 3.4.
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3.2. Preliminary Processing

Human pose estimation aims to localize the body joints of all the detected people in a
given image. In the top-down mode, the detector first yields the bounding box of detection
information about people in images.

We use YOLOV3 [37] to quickly and efficiently detect people. The detected images
are passed through a spatial transformer network [51], which is a parametric network
that automatically selects areas of interest and appears prior to the SPPE input, and the
detected information about the human region is converted into high quality information
of the same size. Then, using the converted detection information, the SPPE extracts the
heatmap, which represents the location information of the human body joints. The original
resolution and size of the extracted heatmap (H) is determined by the inverse conversion of
the spatial de-transformer network. Finally, we estimate the posture of every person in the
image by connecting the body joints based on the heat maps extracted from each person.

3.3. Network Architecture
3.3.1. Lightweight Network Encoder

Top-down methods, which detect people from images and estimate poses from within
bounding boxes, are more accurate than bottom-up methods, which estimate all the key-
points in an image and correlate them. However, disadvantageously, in top-down methods,
the detected bounding boxes need to be cropped and the estimation speed reduces if
multiple people are present in the images.

Although many studies have been conducted on top-down methods [17–23], the limi-
tations of heavy and slow models have not yet been overcome. As a representative example,
Alpha-pose based on RMPE [17,18] utilizes a very heavy encoder structure with SE-ResNet.
Therefore, after conducting multiple experiments to determine a suitable encoder structure
that lightens the multi-person pose estimation network, we selected PeleeNet as the op-
timal encoder structure. PeleeNet is a lightweight model of DenseNet [41] and has been
widely used as a feature extractor that reduces the size of the input image by four times the
width and length, which makes the entire architecture cost-effective. Additionally, it can
increase the feature expression ability with a small amount of computation. Moreover, to
obtain the receptive fields at various scales, PeleeNet utilizes a two-way dense layer, where
DenseNet only comprises a combination of 1 × 1 convolution and a 3 × 3 convolutions in
the bottleneck layer. Instead of a depth-wise convolution layer, it utilizes a simple convo-
lution layer to improve its implementation efficiency. Owing to its efficient methods and
small number of calculations, its speed and performance are superior to those of typical
methods, such as MobileNetV1 [38], V2 [39], and ShuffleNet [52]. Furthermore, because of
its simple convolution, the use of additional techniques could likely afford a much more
efficient detector. Various types of network decoders can be added via simple convolutions
of the encoder while applying various training methods.

3.3.2. Lightweight Network Decoder

To speed up the computation in the decoder, we designed a novel network structure
using the DUC proposed in Figure 3. Table 1 summarizes the structure of the entire decoder
comprising the proposed DUC layer. The DUC layer contains pixel shuffle operations,
which increase the resolution and reduce the number of channels, and 3 × 3 convolution
operations. When the input feature map is set to (H) × width (W) × channel (C), pixel
shuffle reduces the number of channels to C/d2 and increases the resolution to dH × dW as
shown in Figure 3. Here, d denotes the upsampling coefficient and is set as 2, i.e., the same
as that in the standard deconvolution-based upsampling method. This helps substantially
reduce the number of parameters to C/d2 during upsampling. The feature that reduces the
channel to C/d2 size using the pixel shuffle layer again expands the number of channels to
C/d through the convolution layer. This minimizes performance degradation by embedding
the same amount of information into the feature as that before the reduction of the number
of input channels. The entire decoder structure includes three DUC layers and outputs
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heatmaps showing the positions of each keypoint in the last layer. The proposed decoder
network substantially reduces the number of parameters and speeds up the computation
compared to the standard deconvolution-based decoder.

Figure 3. Specifications of the decoder of our proposed algorithm. (a): Block diagram of proposed algorithm. (b): The
process of decoding. (c): The example operation of PixelShuffle.

Table 1. Decoder architecture.

Stage Layer Output Shape

Input 12 × 8 × 704

DUC Stage 0

PixelShuffle PixelShuffle 24 × 16 × 176

Convolutional Block
conv2d 3 × 3

24 × 16 × 352BatchNorm2d
ReLU

DUC Stage 1

PixelShuffle PixelShuffle 48 × 32 × 88

Convolutional Block
conv2d 3 × 3

48 × 32 × 176BatchNorm2d
ReLU

DUC Stage 2
PixelShuffle PixelShuffle 96 × 64 × 44

Convolutional layer conv2d 3 × 3 96 × 64 × 17

3.4. Knowledge Distillation Method

Accuracy and speed must both be considered in multi-person pose estimation. How-
ever, most existing methods only focus on accuracy and thus consume considerable com-
puting resources and memory. However, lightweight networks exhibit performance degra-
dation because of the reduced computing resources.

To overcome these shortcomings, we applied knowledge distillation to alleviate the
performance degradation of the lightweight multi-person pose estimation network.

(1). We trained a large pose model of the teacher network. Then, we selected SE-
ResNet-101 as the teacher network because it utilizes squeeze-and-excitation blocks to
perform channel-wise feature extraction.

(2). Thereafter, we trained a target student model using the knowledge learned by the
teacher model. The training model is capable of handling wrong pose joint annotations,
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e.g., when the pretrained teacher predicts more accurate joints than the manually assigned
wrong and missing labels.

As stated by [26], knowledge distillation mainly aims to designs an appropriate
mimicry loss function that can effectively extract a teachers’ knowledge and transfer it
to student model training. The previous distillation functions were designed for single-
label based softmax cross-entropy loss in the context of object categorization and are thus
unsuitable for transferring the structured pose knowledge in a 2D image space.

To address this problem, we employed a joint confidence map dedicated pose distilla-
tion loss function, as given below:

Ltotal = αKD(
1
N

N

∑
n=0

(mn
S − mn

GT)
2
) + (1 − αKD)(

1
N

N

∑
n=0

(mn
S − mn

T)2) (1)

Here, αKD is the knowledge distillation balancing parameter. Additionally, N denotes
the number of joints, and mn

S, mn
T , and mn

GT denote the heatmaps for the n-th joint
predicted by the in-training student target model, pretrained teacher model, and corre-
sponding ground truth of the prediction, respectively. Then, to maximize the comparability
with the pose supervised learning loss, we set the mean squared error as the distillation
quantity to measure the divergence between the estimation and its label. By employing
these knowledge distillation techniques, learning was performed using superior and com-
plex networks rather than the existing ground truth alone, which boosted the performance
of lightweight networks to match that of the superior networks.

4. Experiments and Results

4.1. Dataset and Evaluation Matrix

We used the MSCOCO dataset [27] to train and evaluate our method. The dataset
comprises more than 200 k images including 250 k person instances with 17 keypoints per
instance. We trained our method on the training set of the MSCOCO dataset, comprising
56 k images including 150 k person instances. We used the official evaluation metric of
the MSCOCO keypoints challenge dataset, i.e., average precision (AP) based on object
keypoint similarity (OKS). OKS is a measure of how close a predicted keypoint is to the
ground truth, and is defined as follows:

OKS =
∑i exp(−d2

i /2s2k2
i )δ(vi > 0)

∑i δ(vi > 0)
, (2)

where di is the Euclidean distance between a detected keypoint and its corresponding
ground truth, vi is the visibility flag of the ground truth, s is the object scale, and ki is a
per-keypoint constant that controls fall off. We report the standard AP and recall scores
from MSCOCO dataset: AP50 (AP at OKS = 0.50), AP75, AP (the mean of AP scores at OKS
= 0.50, 0.55, . . . , 0.90, and 0.95), APM for medium objects, APL for large objects, and AR
(the mean of recalls at OKS = 0.50, 0.55, . . . , 0.90 and 0.95).

4.2. Training Details

A YOLOV3 detector that was pretrained on the MSCOCO dataset was utilized to
detect humans in images. Each detected image was resized to 384 × 256 and was randomly
flipped horizontally to augment the data. PeleeNet was used as the encoder of the proposed
method, and it was pretrained using ImageNet. The model was trained for 120 epochs, and
the initial learning rate was set to 0.0001, which decreased by 10% at both the 60th and 90th
epochs. Then, the model was optimized using an Adam optimizer [53] and the batch size
was set as 8. An SE-ResNet-based RMPE that was pretrained on the MSCOCO dataset was
used as the teacher network, and the knowledge distillation parameter alpha was set as 0.8.
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4.3. Ablation Study
4.3.1. Lightweight Network Structure

Additional experiments were conducted to evaluate the effectiveness of employing
PeleeNet as the backbone for human pose estimation. The number of parameters (M) and
FLOPS (G) and AP were measured using various encode models and compared PeleeNet,
the encoder of our model, was compared with popular lightweight networks such as
MobileNetV1, V2, and V3 [38–40], ShuffleNetV2 [54], MnasNet [55], and Hourglass [56]
with 1, 2, and 4 stacks. The knowledge distillation parameter αKD was set as 0.8. The results
are summarized in Table 2.

Table 2. Results for the MSCOCO validation sets in a lightweight network with αKD = 0.8.

Encoder AP AP50 AP75 APM APL Param (M) FLOPS (G)

Hourglass (4-stack) 64.8 82.1 71.3 60.6 71.6 26.0 46.6
Hourglass (2-stack) 62.6 81.1 69.0 58.2 69.4 13.5 23.3
Hourglass (1-stack) 55.4 78.8 60.9 51.0 62.4 7.17 11.7
ShufflenetV2 [54] 52.5 76.9 57.5 48.2 59.1 2.73 1.26
MobileNetV3 [40] 60.8 81.1 67.9 56.2 68.0 3.94 1.36
MobileNetV2 [39] 56.1 79.0 62.0 52.1 63.0 4.54 2.12
MobileNetV1 [38] 54.8 77.9 59.9 50.1 61.7 4.69 2.11
MnasNet [55] 57.7 79.4 63.8 53.9 64.5 5.42 2.14

PeleeNet 61.9 82.0 68.5 57.6 68.7 2.80 1.49

As shown in Table 2, from the perspective of AP, PeleeNet affords better performance
than the other encoders. Moreover, PeleeNet achieves significantly better accuracy and
lower complexity than MobileNetV1, V2, and V3 and MnasNet. Compared to ShuffleNetV2,
PeleeNet exhibits better AP by 7.1. Although models with Hourglass with 2 stacks and
Hourglass with 4 stacks exhibited better accuracy than our KDLPN, the number of their
network parameters was significantly higher. The table also shows that when PeleeNet
is used as the encoder, stable performance can be obtained even with a small number of
parameters. Figure 4 shows a schematic diagram of Table 2.
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Figure 4. Comparison of the parameters and accuracies of lightweight networks for MSCOCO
validation Sets.
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4.3.2. Decoder Structure

To select the best decoder for KDLPN, we performed experiments to evaluate the
performance of decoder approaches using the knowledge distillation method with overall
loss alpha αKD = 0.8. In comparison, we also attempted to implement a three-step de-
convolution layer decoder. For the three-step deconvolution layer decoder, experiments
were performed by changing the number of channels from 352 to 44 for each decoder layer
condition. To evaluate the accuracy and efficiency, Table 3 shows comparison of the number
of parameters in the networks.

In Table 3, the parameters in the proposed decoder are reduced as compared to the
parameters of the deconvolution decoder. From the computational complexity perspective,
KDLPN with DUC exhibits the best performance. It uses only 38% of the parameters but
affords a competitive performance to the deconvolution decoder with an AP difference of
1.5. The parameter and FLOPS of this decoder model were reduced to nearly seven and ten
times that of deconvolution decoder, respectively, with competitive performance.

Table 3. Comparison of the network parameters with αKD = 0.8.

Encoder Decoder
Decoder Decoder

AP
Param (M) FLOPS (G)

PeleeNet

Deconv (512 512 512) 14.11 34.49 62.8
Deconv (256 256 256) 4.98 9.19 63.5
Deconv (128 128 128) 1.98 2.58 62.8
Deconv (64 64 64) 0.86 0.79 43.3
Half-step deconv 5.21 4.58 63.4
Ours 0.71 0.47 61.9

To demonstrate the effectiveness of our method, we performed various experiments
such as simplifying the number of channels, and simply reducing the parameters of the
proposed DUC model, and measured the corresponding performance and complexity.
First, we constructed a baseline model by combining the encoder of the PeleeNet and
a decoder comprising three deconvolution layers. Then the number of deconvolution
channels in the lightweight model was modified from (256, 256, 256) (baseline model) to
(512, 512, 512), (128, 128, 128), (64, 64, 64) and half-step channel. The half-step channel has
the same output channel size as the DUC decoder model proposed as (176, 88, 44). The
resultant performance, memory size, and FLOPS obtained by lightweighting the model in
the aforementioned manner are presented in Table 3. In the experiment on reducing the
number of channels, highest performance was afforded when the output channel size was
reduced and modified to (256, 256, 256). Models with reduced output channel size of (128,
128, 128) and (64, 64, 64) exhibited performance degradation of 1.1% and 31.8%, respectively.
The performance of the proposed DUC layer reduced by 2% on average compared to the
existing model; however, the FLOPS and memory size considerably reduced to 85.4% and
60.5%, respectively, compared to those of the baseline model with the output channel size
of (256, 256, 256). Moreover, compared to the model with the smallest output channel size
of (64, 64, 64), FLOPS and memory size decreased further to 41.0% and 17.2%, respectively.
Moreover, in comparison with the half-step deconv model with the same channel standard
as the DUC decoder, FLOPS and memory size decreased to 86.4% and 89.7%, respectively.
This indicates that the proposed DUC method is more efficient in lightweighting than
the simple reduction of the number of channels. Considering the computational cost and
performance of these methods presented in Table 3, KDLPN with DUC is the optimal
model that can balance accuracy and efficient performance.

4.3.3. Knowledge Distillation Method

To demonstrate and optimize the effect of the knowledge distillation (Section 3.4) on
the proposed network, experiments were performed on the proposed model with respect
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to αKD. Table 4 shows the results of the experiments with varying αKD using the teacher
network. The table also shows the APs for each overall function αKD in the same backbone
network and DUC decoder. The αKD values were varied from 0.3 to 1.0 for each dataset.
The knowledge distillation method afforded better performances across all intervals than
the PeleeNet network with DUC (57.4 AP). Furthermore, αKD = 0.8 afforded the best
performance in this experiment; thus, we selected αKD = 0.8 for model training.

Table 4. Comparison of experiments on knowledge distillation.

Encoder Decoder αKD AP

PeleeNet DUC

0.3 59.6
0.4 59.6
0.5 60.4
0.6 60.6
0.7 61.5
0.8 61.9
0.9 61.6
1.0 60.9

During training through knowledge distillation, the knowledge of a teacher network
can be advantageously learned, which is relatively accessible compared to the ground
truth, which is difficult to learn. Accordingly, we first prepared a large and deep pretrained
network using the teacher network and then trained a student network to apply knowledge
distillation using the teacher network. If the teacher and student networks are simulta-
neously trained, the performance decreases since the teacher network is not converged.
Similarly, when training a teacher network that has already converged, the test performance
of the student network deteriorates as the optimally trained teacher network is overfitted to
the training set. Regarding the above case, we conducted additional experiments, and the
graph below displays the performance comparison between the model where the teacher
and student network are simultaneously trained and the original training scheme. As
shown in Figure 5, the performance of the simultaneously trained model, indicated in
orange color, is decreased than that of the existing model, indicated in blue color. The
reason why the performance difference between the two experiments is small is that both
models used the same pretrained teacher model. However, since the teacher model is
already pretrained, it can be overfitted to the training set during simultaneous learning,
and the performance may degrade due to the probability of deviating from the optimal
point. For this reason, the proposed original training scheme shows higher performance.

Figure 5. A graph comparing performance according to epoch of simultaneous training method and
existing training method on MSCOCO validation dataset.
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4.4. Results and Analysis
4.4.1. Overall Results

We compared our methods to other current state-of-the-art top-down-based human
pose estimation methods such as RMPE, Mask-RCNN [57], and G-RMI [19]. For fair
comparison, we used the same human detector for the top-down approach, to evaluate the
pose estimation network performance of these methods based on a uniform criterion.

To further clarify the effectiveness of our scheme, we conducted additional experi-
ments and modified only for the top-down algorithms using the same approach as the
proposed method and fairly and accurately compared the amount of parameters. Table 5
below illustrates the validation results comparison of AP values, total parameters used,
and FLOPS values. Our proposed model exhibits similar performance as the existing
top-down-approach-based pose estimation networks and requires very few parameters in
comparison as shown in Figure 6. We achieved an AP of 61.9 with only 2.80 M parame-
ters and 1.49 FLOPS. Particularly, the amount of parameter used can be reduced by 90%
compared to G-RMI with significantly lower computational complexity.
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Figure 6. Parameter and accuracy comparison of top-down pose networks.

Table 5. Validation results comparison of AP values, total parameters used, and FLOPS values on
MSCOCO dataset Params and FLOPS are calculated for the pose estimation network, and those for
human detection and keypoint grouping are not included.

Method Encoder Decoder AP
Param

(M)
FLOPS

(G)

RMPE 4-stack hourglass Deconv 62.3 14.8 -
8-Stage Hourglass Hourglass (dev) 66.9 25.6 26.2
G-RMI ResNet-101 (dev) 65.8 42.6 57.0

Ours PeleeNet DUC 61.9 2.80 1.49

We further conducted experiments on the MPII dataset [58] to demonstrate the gener-
alization of our model. The MPII dataset is a popular open dataset on human pose that
contains 25 k images with over 40 k people with annotated pose points acquired from
YouTube. We conducted knowledge distillation learning on the same teacher network and
validated the performance for 16 keypoints that are different from the MSCOCO dataset.
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Table 6 describes the performance results of the experiment conducted on the MPII dataset.
As illustrated in the table, the proposed method affords a mean of 86.9 (mean@0.5) via
PCKh evaluation. We achieved a PCKh of 86.9 with 2.80 M parameters and 1.48 FLOPS.
Compared to DU-Net (8), our model performed better 2.2 PCKh, and memory size de-
creased further to 64.6%, respectively. Moreover, in comparison with a state-of-the-art
algorithm, our model achieved a balance between complexity and accuracy. Thus, the
proposed pose network affords better performance than other methods.

Table 6. Comparison results on the MPII validation dataset (PCKh@0.5).

Method PCKh(@0.5) Param (M) FLOPS (G)

DU-Net (8) [59] 84.7 7.90 -
Tang et al. [60] 87.5 15.5 33.6
Yang et al. [61] 88.5 7.30 16.2
Bulat et al. [61] 89.5 8.50 9.9
EfficientPoseIV [62] 89.75 6.56 72.9

Ours 86.9 2.8 1.48

Figure 7 illustrates the effectiveness of applying knowledge distillation to our method.
Figure 7b–d display the pose heat map visualizations of the input image (a). (1) to (4) of
Figure 7, the proposed algorithm is close to the ground-truth according to the teaching
network for the moving and standing sequences. (6) of Figure 7 shows the example results
when a person is occluded by an object. In fact, the ground-truth heatmap has missing
keypoint labels due to occlusion object, but the teacher model identifies the missing ground-
truth keypoint labels. Accordingly, the teacher model labels extra poses that assists the
student network to learn as shown in 5, 6 (b) of Figure 7. Figure 8 visualizes the example
image results from the validation set of the MSCOCO dataset. Therefore, our method
achieved robust and stabilized pose estimation, even for difficult cases when joints are
occluded by objects.

4.4.2. Discussions

We focused on introducing an approach to address the imbalance between perfor-
mance and computational complexity, which is a fundamental problem of pose estimation.
We introduced a method that reduces complexity using a fast lightweight network with
few parameters and that compensates for the insufficient performance using the knowl-
edge distillation method. Our proposed approach does not require the designing of a new
network to ensure performance or speed. Furthermore, our approach is not limited to the
network capacity of the network, as well as it advantageously complements performance
by combining networks in various ways.

The proposed model has a limitation: its performance is relatively lower than that of
existing deep and heavy networks such as [17–23]. However, our lightweighting scheme
has demonstrated that its performance is high even when the resources are limited, such as
low memory and computing power. Furthermore, a highly efficient learning method using
the DUC layer is expected for pose estimation in mobile devices or embedded devices
requiring low memory size with real time.
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Figure 7. Pose estimation results of our model on the MSCOCO validation set. Column (a): The input images. Column (b):
the keypoint heatmaps of Propoesd algorithm. Column (c): the keypoint heatmaps by the teacher model. Column (d): the
ground-truth keypoint heatmaps. Row (1,2): Moving sequence on MSCOCO dataset. Row (3,4): Standing sequence on the
MSCOCO dataset. Row (5,6): Body sequence hidden by objects in the MSCOCO dataset.

4.5. Conclusions

In this paper, we propose a new lightweight top-down multi-person pose estimation
approach. The main challenge of a top-down approach is the achievement of a balance
between the complexity and accuracy. Traditional top-down pose estimation approaches
afford high performances, but the high complexity and high computing load make them
time consuming. To resolve this dilemma, we introduced KDLPN, which operates efficiently
and has low computational complexity. Moreover, the pixel shuffling operation in the
decoder allows the reduction of the number of parameters. We applied the knowledge
distillation method to prevent performance degradation and improve accuracy. Overall, our
proposed algorithm achieved a balance between complexity and accuracy, as demonstrated
by the qualitative and quantitative evaluation on the MSCOCO and MPII datasets.
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Figure 8. Qualitative results of our model in MSCOCO. Column (a): Images that contain single person. Column (b): Images
that contain two people. Column (c): Images that contain three & four people. Column (d): Images of group of people.
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Abstract: In recent times, as interest in stress control has increased, many studies on stress recognition
have been conducted. Several studies have been based on physiological signals, but the disadvantage
of this strategy is that it requires physiological-signal-acquisition devices. Another strategy employs
facial-image-based stress-recognition methods, which do not require devices, but predominantly
use handcrafted features. However, such features have low discriminating power. We propose
a deep-learning-based stress-recognition method using facial images to address these challenges.
Given that deep-learning methods require extensive data, we constructed a large-capacity image
database for stress recognition. Furthermore, we used temporal attention, which assigns a high
weight to frames that are highly related to stress, as well as spatial attention, which assigns a high
weight to regions that are highly related to stress. By adding a network that inputs the facial landmark
information closely related to stress, we supplemented the network that receives only facial images
as the input. Experimental results on our newly constructed database indicated that the proposed
method outperforms contemporary deep-learning-based recognition methods.

Keywords: deep learning; stress recognition; stress database; spatial attention; temporal attention;
facial landmark

1. Introduction

People in contemporary society are under immense stress due to various factors [1].
As stress is a cause of various diseases and affects longevity, it is vital to keep it under
control [2–4]. A system that detects a user’s stress level in real time and provides feedback
about how to lower stress is the need of the hour [5–7]. To develop such a system, high-
accuracy stress recognition technology is required. In response to this need, research on
stress recognition technology has been actively conducted. Reliable stress recognition
technology will be useful in various fields, such as driver stress monitoring [8,9] and online
psychological counseling.

Most stress-recognition studies have been conducted using a two-class classification,
which divides subjects into stressed or relaxed, or using three classes, i.e., low, medium,
and high stress [10]. Several stress recognition studies have been conducted on physio-
logical signals acquired through wearable devices [8,11–17]. Physiological-signal-based
approaches effectively recognize human stress because they use signals that immediately
reveal a person’s condition, such as respiration rate, heart rate, skin conductivity, and body
temperature. However, this method involves additional costs because a special wearable
device is required to acquire physiological signals, which users may find too expensive or
feel reluctant to wear.

Other studies have identified and classified stress using life-log data such as mobile
app usage records obtained from smartphones [18–21]. As smartphones are always at-
tached to their users, it is possible to ascertain the user’s status by accumulating data over
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a certain period. This approach is suitable for recognizing stress over a specific period,
but fails to recognize an instantaneous stress state. By contrast, images, such as thermal
images showing blood flow and respiratory rate and visual images portraying body move-
ments and pupil size, can be used for stress recognition [22–24]. Some stress-recognition
studies use only visual images, especially facial images, which have the advantage of only
requiring a camera; the subjects need not wear additional equipment [25,26]. However, in
many of these methods, handcrafted features continue to be used. In some recent studies, a
neural network with handcrafted features is used in the feature extraction process [27–29].

Some recent studies have recognized stress using only deep learning. Zhang et al. [30]
proposed a deep-learning-based method that detects the presence or absence of stress
using the video footage of a person watching a video clip that induces or does not induce
stress. In this method, when the face-level representation was first learned, an emotion
recognition network was used to learn the emotion change between the two frames with
the largest emotion difference. Furthermore, the action-level representation was learned by
using motion information and an attention module that passes the entire feature through
one fully connected layer. The resolution of both the facial image and upper body image
was 64 × 64, which rendered the detection of small facial changes difficult.

By contrast, our study focuses on a more difficult task: subdividing stressful situ-
ations into low-stress and high-stress situations. Furthermore, the attention used was
subdivided into spatial and temporal attention, and since it had a precise structure, it
could be advantageously used for learning attention for each purpose. Additionally, the
face-level representation was learned using all frame information, and the resolution of the
facial image used was 112 × 112, which was more advantageous for detecting small facial
changes. Moreover, since the proposed method does not use motion information, it can
show higher performance in situations where only a face is visible or for people without
bodily motion. The experimental results in Section 5.4 show that the proposed method
could detect overall spatial and temporal changes in the face related to stress and that it is
superior to the method presented in the previous work [30].

In a previous study [31], we constructed a database and performed deep-learning-
based stress recognition using facial images. In this database, data were acquired in
both the speaking and nonspeaking stages. However, this resulted in a challenge: the
learning proceeds in such a way that the network classifies speaking and nonspeaking
states. Moreover, the amount of data was insufficient for detecting minute changes in the
face because images were stored at a rate of about five images per second. Furthermore,
the stress recognition network was not designed in detail to find minute changes in facial
expressions, but was instead designed as a combination of a convolutional neural network
(CNN) and a deep neural network (DNN) with a simple structure.

Therefore, in this study, the database construction and network design were improved
so as to alleviate the aforementioned concerns. High-quality data were acquired by design-
ing a more sophisticated scenario, and the recognition model also had a more sophisticated
design. We acquired additional data because a large-capacity image database is required to
use deep learning, but there is no existing database that can be used for stress recognition.
Therefore, we built a large image database by conducting a stress-inducing experiment
and released the database publicly. We propose a deep-learning-based stress-recognition
method using facial images from this stress recognition database.

In the proposed method, we used time-related information, which is unavailable in
still images. Given that our database contains images captured from video data, we use
a temporal attention module that assigns a high weight to frames related to stress when
viewed from the time axis. Furthermore, we used a spatial attention module that assigns a
high weight to the stress-related areas in the image to improve the performance further.
One study [32] found that peoples’ eye, mouth, and head movements differ when under
stress. Therefore, to accurately capture these movements, a network that receives facial
landmark information was added. Accordingly, we supplemented the network, which
receives only facial images as the input. In addition, designing a proper loss function when
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using the deep-learning method is crucial. Therefore, we designed a loss function that is
suitable for our database and trained the proposed method end-to-end.

Our contributions are as follows:

1. We built and released a large-capacity stress recognition image database that can be
used for deep learning;

2. We applied a multi-attention structure to the deep learning network, and the proposed
method was trained end-to-end;

3. We trained a feature with stronger discriminating power by adding a network that
uses facial landmarks.

The remainder of this paper is organized as follows. In Section 2, previous studies
related to stress recognition and deep learning are described. In Section 3, we introduce the
construction process and contents of our database. In Section 4, the proposed method is pre-
sented in detail. In Section 5, the experimental settings are described and the experimental
results are analyzed. Finally, Section 6 concludes this study.

2. Related Work

2.1. Facial-Action-Unit-Based Stress Recognition Methods

Many studies have attempted to recognize stress using facial action unit information
that defines the movements of the eyes, nose, mouth, and head [25,32–34]. There are
several types of facial action units, and among them, units that are highly related to stress,
such as inner brow raise, nose wrinkle, and jaw drop, are used often. In previous studies,
the movement of each facial action unit was used as a feature, and classical classifiers
such as random forest and support vector machine (SVM) were used for classification.
Some studies recognized stress primarily using pupil size [24,35]. The pupil diameter
and pupil dilation acceleration were used as features, and the SVM and decision tree
were used as classifiers. Pampouchidou et al. [36] recognized stress using mouth size as a
primary characteristic. Stress was recognized using normalized openings per minute and
the average openness intensity obtained from mouth openness. In another study, stress
was recognized by observing breathing patterns through changes in the nostril area [27].
After discovering breathing patterns through temperature changes near the nostrils, two-
dimensional respiration variability spectrogram sequences were constructed using these
data and were used to recognize stress. Giannakakis et al. [37] recognized stress based on
facial action unit information obtained from nonrigid 3D facial landmarks, the histogram
of oriented gradients (HOG), and the SVM. The limitations of the aforementioned methods
are that they cannot utilize the changes in the facial colors and the full facial image because
the entire image information is not used.

2.2. Facial-Image-Based Stress Recognition Methods

In one popular method of recognizing stress using facial images, unlike the facial
action unit, a comprehensive feature is extracted from the entire image. In some studies,
the HOG features were extracted from the eye, nose, and mouth regions in RGB images
and used as features [26,29]. In these methods, a CNN and a method combining the
SVM and slant binary tree algorithm were used as classifiers. Some studies used features
extracted from thermal images or nearinfrared (NIR) images [9,22,38]. In the methods
using thermal images, stress was recognized based on the tissue oxygen saturation value
extracted from the thermal image or by applying a CNN to the thermal image itself. In the
method using NIR images, stress recognition was performed using an SVM after extracting
scale-invariant feature transform (SIFT) descriptors around facial landmarks. In other
studies, stress was recognized by fusing RGB and thermal images [28,39,40]. In these
methods, stress was recognized using the features extracted from super-pixels and local
binary patterns on the three orthogonal plane (LBP-TOP) descriptor. All the methods
introduced above used handcrafted features, but there was also a method using deep
learning. This method recognizes stress by fusing facial images and motion information
such as hand movements [30]. In this method, optical flow images were used to obtain
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motion information, and stress was recognized by applying attention to facial features
and motion features. Most of the facial-image-based stress recognition studies have used
handcrafted features. Many image recognition studies have shown great performance
improvement through deep learning. If deep learning is used, the stress recognition
performance can be further improved because stress-related high-dimensional features can
be learned from images. Recently, a study [30] that recognized stress using deep learning
came out, and we also tried to recognize stress using deep learning for better performance.

2.3. Facial-Image-Based Emotion Recognition Methods

Many studies on facial-image-based emotion recognition are being conducted, and
there are similarities between emotion recognition and stress recognition studies since
emotion and stress are related. Among studies on emotion recognition methods, many
studies using facial landmark information are underway [41–43]. As changes in facial
expressions are highly correlated with changes in facial landmarks, these studies input
the coordinates of facial landmarks directly into a network or images created from facial
landmarks. Palestra et al. [44] classified emotions using a random forest classifier after
extracting geometrical features from facial landmark information. Studies on recognizing
emotions in videos are also being actively conducted. For such emotion recognition,
various methods for using time-related information are being studied. These include
a method that uses a 3D-CNN [41,45] and a method that combines a 2D-CNN and a
recurrent neural network (RNN) [42,43]. Furthermore, many recent deep-learning-based
studies have improved the recognition performance by using simple modules such as the
attention module [46,47]. The attention module creates attention maps that are multiplied
by the input feature maps and then refines those feature maps to improve recognition
performance. For example, Zhu et al. [48] proposed a hybrid attention module comprising a
self-attention module and a spatial attention module to detect regions with large differences
in facial expressions. Meng et al. [49] proposed a frame attention module that assigns
higher weights to frames with higher importance among multiple frames when video
data are input. The difference between our method and the above methods is that the
former were designed to detect overall spatial and temporal changes in the face. First,
attention was divided into spatial attention and temporal attention to emphasize spatially
and temporally important parts, respectively. We then designed a network that could
effectively detect facial changes by using preprocessed facial landmark images. We showed
that the proposed method is superior to other methods through various ablation studies
and performance evaluation experiments.

3. Database Construction

Several databases [50,51] containing data for stress recognition are available, but
most contain physiological signal data; few have image-related information. As far as
we know, there is only one database, i.e., the SWELL-KW database [51], that includes
facial image information. This database provides four types of information: computer
interactions, facial expressions, body postures, and physiology. It provides four pieces
of information related to facial expressions. First, the orientation of the head in three
dimensions is provided. Second, ten pieces of information related to facial movements,
such as gaze direction and whether the mouth is closed, are provided. Third, 19 pieces
of information related to facial action units such as inner brow raise, nose wrinkle, and
chin raise are provided. Finally, probability values are provided for eight emotions such
as neutral, happy, and sad. However, this database does not provide images, but only the
above high-level information obtained from images. Therefore, this database cannot be
used for deep-learning-based stress-recognition methods that take images as the input.

Therefore, a new database is required to recognize stress using deep learning, so we
built a large image database. The database we built consists of the subject’s facial images
and information on whether the subject’s stress level belongs to one of three levels (neutral,
low stress, or high stress). As this study involved human participants, our database was
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built with the approval of the Institutional Review Board of Yonsei University, and the
study was conducted upon it. We created this database by designing an experimental
scenario that included stress-inducing situations. The designed stress-inducing experiment
scenario is depicted in Figure 1.

Relaxation

5 min 10 min 10 min5 minRecording Time

Experiment
Process

Native Language
Script Reading

Non-native
Language

Script Reading

Native Language
Interview

Non-native 
Language
Interview

Figure 1. Progress of the designed stress-inducing experimental scenario, including the recording
time for each stage.

As research results indicated that an interview induces stress in the subject [52,53]
and that the subject is stressed when asked to use a non-native language [54,55], the
experimental scenario was designed in accordance with these studies’ results. Therefore,
the stress-inducing situation comprised interviews in native and non-native languages. The
former was established as a situation that induces low stress and the latter as a situation
that induces high stress. We recruited subjects near our school. As most of the population
is Korean, Koreans were selected as test subjects, and accordingly, Korean was used as the
native language. English was selected as the non-native language because it is the most
popular non-native language used by Koreans.

Situations in which the test subject reads scripts written in the native or non-native
languages were used as the comparison group. These were considered situations that
did not cause stress (i.e., neutral). If the nonspeaking situations were set as a comparison
group, the network can learn to classify speaking and nonspeaking situations. Thus, the
comparison group was limited to situations in which subjects read scripts. The experiment
time for each stage was 5 min for the native and non-native language script reading and
10 min for the native and non-native language interviews. We set the experiment time for
each script-reading stage to 5 min because we designed both script-reading stages to be
stress-free so that the sum of the experiment time of the two stages would be the same
(10 min) as the other stress-inducing stages in the experiment. We shot a single video
at each experimental stage for each subject. As there were four experimental steps, the
number of videos for each subject was four.

We collected data by recruiting 50 men and women in their 20 s and 30 s. We chose
this age group because the experimental stages included reading scripts and interviewing
in a non-native language. We believed that this task would be difficult for older people.
In addition, the population in their 20s and 30s in the subject recruitment area was large.
During the experiment involving situations that do and do not induce stress, the subject’s
appearance was photographed using a Kinect v2 camera.

The data acquisition environment was as follows. The data were acquired in a win-
dowless location so that the lighting could be kept constant. The camera was set so that
only a white wall appeared behind the subject, eliminating any potential interference
from a complex background. The camera was positioned in front of the subject so that
the subject’s frontal face could be photographed. To ensure that the subject’s face would
always be visible, hair or accessories other than glasses were not allowed to cover the
subject’s face. The reason for this constraint is that if hair or accessories cover the face, they
interfere with the observation of the subject’s facial changes. We enforced these constraints
because the purpose of this study is to detect overall spatial and temporal changes in the
face related to stress. The resolution of the recorded video is 1920 × 1080. When the data
were acquired, about 24 images were saved per second, and the entire database comprises
2,020,556 images. The summary information about the database construction settings and
database contents is depicted in Appendix A.

As presented in Table 1, this database comprises a large number of images for deep
learning, which is considered highly useful, and was released as the Yonsei Stress Im-
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age Database on IEEE DataPort (https://dx.doi.org/10.21227/17r7-db23 (accessed on 8
November 2021)). It is publicly available for stress recognition research. We measured the
stress recognition accuracy after labeling the acquired data according to the scenario we
designed. We labeled the data acquired during the native language interview as low stress,
the data acquired during the non-native language interview as high stress, and the data
acquired while reading the script produced in the native language or non-native language
as neutral.

Table 1. Number of images acquired at each stage of the database construction.

Designed State Experimental Stage Total Images

Neutral
Native Language Script Reading 366,121

Non-native Language Script Reading 368,991

Low Stress Native Language Interview 656,624

High Stress Non-native Language Interview 628,820

We annotated the data in this manner because many stress recognition studies still use
this method [10]. The reason why this labeling method continues to be popular is that it is
difficult to annotate stress data in real time. In the case of an emotion database, an annotator
can examine the facial expression of a subject and label the subject’s emotions as positive or
negative in real time. This is possible because in the case of facial expressions, the emotion
is visually apparent, and therefore, other people can judge to some extent whether it is
positive or negative. However, in the case of stress, it is difficult to judge it solely from
facial expressions. For example, while a subject may actually be stressed, it may not be
evident from his/her facial expressions, or he/she may fake a smile. Therefore, many
studies have created a stress-inducing situation, and all data obtained from that situation
were labeled as corresponding to a stress state. We trained and tested how accurately
the proposed method and other methods classified data into these three labels, and the
performance of each method was compared using the test accuracy. The ablation studies
and comparative experiments conducted using the established database are described in
Section 5.

4. Proposed Methodology

In this section, we describe the structure of the proposed method for recognizing stress
using facial information and multiple attention. We look at the proposed method’s overall
structure and then look at the spatial attention module, facial landmark feature module,
temporal attention module, and loss function, in that order.

4.1. Overall Structure

The proposed method predicts a person’s stress level from video data based on facial
information. A flowchart for the proposed method is depicted in Figure 2, and the details
are described below.

First, one clip was entered as the input for the proposed method. This clip was created
by dividing all 5 or 10 min videos acquired in the database construction experiment into
2 s clips. As the data acquisition rate was 24 frames per second (fps), one clip consisted
of 48 frames, and we used all 48 frames as the input. The size of the original image was
1920 × 1080, but when training and testing, the face area was detected, cropped, and
resized to 112 × 112. A multitask cascaded convolutional network [56] was used to detect
and localize the facial area. When the facial image passes through the ResNet-18 residual
network [57], feature maps are generated. Furthermore, as these feature maps pass through
the spatial attention module and global average pooling (GAP) [58], a facial image feature
is generated.

In the spatial attention module, a high weight was assigned to the positionally im-
portant parts of the feature maps, and a lower weight was assigned to the positionally
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unimportant parts of the feature maps. The details of the spatial attention module are
described later in Section 4.2. When a facial image passed through the facial landmark
detector, 68 facial landmarks were obtained. After creating a facial landmark image by
marking 68 facial landmark points as white dots on a black image, the facial landmark
feature network and GAP were applied to obtain a facial landmark feature. The details of
the facial landmark feature module are described later in Section 4.3. The resulting 48 facial
image features and 48 facial landmark features were concatenated for each frame and then
passed through the temporal attention module to obtain a final feature.

In the temporal attention module, a high weight was assigned to frame features that
were highly related to stress, while a low weight was assigned to frame features that were
less related to stress. The details of the temporal attention module are described later in
Section 4.4. When the final obtained feature passed through the fully connected layer, a
stress prediction result was finally produced. We divided the stress state into neutral, low,
and high stress. Therefore, the stress prediction result would be one of these three states.
While the learning was in progress, the part that was actually learned is marked with a red
box in Figure 2.

Figure 2. Flowchart of the proposed method. The residual network ResNet-18 extracts feature maps from facial images.
GAP: global average pooling; FC: fully connected layer.

4.2. Spatial Attention Module

Chen et al. [59] used a spatial attention module to pinpoint to the network the relevant
parts of the feature map that should be viewed more closely. Since then, the spatial attention
module’s structure has continued to develop. As the module proposed by Woo et al. [47]
demonstrated both light and high performance, we used it to obtain the spatial attention
weight. The spatial attention module’s overall structure is depicted in Figure 3, and the
details are described below.

First, the feature maps were extracted by inputting the facial image into ResNet-18.
This network is light and has high performance, so it is widely used in various recognition
fields. We did not use a pretrained network; only the structure of ResNet-18 was used and
trained from the beginning after initializing the weights. After obtaining the feature maps,
average pooling and max pooling were performed on the channel axis. The two results
were concatenated along the channel axis. Chen et al. [59] demonstrated that performing
the pooling operation on the channel axis emphasizes locational importance. The average
pooling operation used by Zhou et al. [60] is frequently used because it is effective for
aggregating information.
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Figure 3. Structure of the spatial attention module. For efficient learning, the multiplication result
from the original feature maps and the spatial attention map is added to the original feature maps.
GAP: global average pooling.

Furthermore, Woo et al. [47] found that the max pooling operation reveals important
information that differs from that revealed by the average pooling operation. Therefore, if
the results obtained by performing both the average pooling and max pooling operations
on the feature maps are concatenated and a convolutional operation is performed, it is
possible to obtain an attention map that highlights stress-relevant regions by considering
multiple perspectives. In our design, the sigmoid function was used to obtain the final
spatial attention map. By multiplying the obtained spatial attention map by the original
feature maps, feature maps with applied spatial attention can be obtained.

In the next step, the final feature maps were obtained by adding attention-applied
feature maps to the original feature maps. This addition to the previous layer’s result is
called identity mapping. This structure reduces the amount of information that the layer
must learn so that learning can be performed more effectively [57]. Finally, the facial image
feature was obtained by applying GAP to the final feature maps. While the learning was in
progress, the part that was actually learned is marked with a red box in Figure 3. The facial
image feature was obtained using the following equation:

Msa = σ(conv7×7([AvgPool(F); MaxPool(F)]))), (1)

f f acial image = GAP(F + Msa ◦ F), (2)

where σ is the sigmoid function, conv7×7 denotes the convolutional operation with a
7 × 7 filter, F denotes the feature maps extracted from ResNet-18, the symbol ; denotes
the concatenation operation, GAP indicates the GAP operation, and ◦ is the product of
the attention weight and feature value for each position in the feature map. The residual
network’s structure and spatial attention module are depicted in Table 2. As can be seen
from Table 2, the size of the feature space of the facial image feature was 4 × 4 × 512. This
module was automatically trained through an end-to-end learning process. The importance
of the spatial attention module is evaluated in Section 5.3.2.
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Table 2. Network structure of the residual network and spatial attention module.

Unit Layer Filter/Stride Output Size

Input 0 112 × 112 × 3

Residual
Network

1
Conv-BN-ReLU 7 × 7, 64/2 56 × 56 × 64
Max Pooling 3 × 3/2 28 × 28 × 64

2
Conv-BN-ReLU 3 × 3, 64/1 28 × 28 × 64
Conv-BN 3 × 3, 64/1 28 × 28 × 64

3
Conv-BN 1 × 1, 128/2 14 × 14 × 128
Conv-BN-ReLU 3 × 3, 128/1 14 × 14 × 128
Conv-BN 3 × 3, 128/1 14 × 14 × 128

4
Conv-BN 1 × 1, 256/2 7 × 7 × 256
Conv-BN-ReLU 3 × 3, 256/1 7 × 7 × 256
Conv-BN 3 × 3, 256/1 7 × 7 × 256

5
Conv-BN 1 × 1, 512/2 4 × 4 × 512
Conv-BN-ReLU 3 × 3, 512/1 4 × 4 × 512
Conv-BN 3 × 3, 512/1 4 × 4 × 512

Spatial
Attention
Module

6

AvgPool 4 × 4 × 1
MaxPool 4 × 4 × 1
AvgPool+MaxPool 4 × 4 × 2
Conv-Sigmoid 7 × 7, 1/1 4 × 4 × 1

7 Product (5 ◦ 6) 4 × 4 × 512

Output 8 GlobalAvgPool 512
BN: batch normalization. In Unit 7, the outputs of Units 5 and 6 are multiplied for each position in the feature
maps.

4.3. Facial Landmark Feature Module

Giannakakis et al. [32] indicated that peoples’ eye, mouth, and head movements
during stressful situations differ from those during nonstressful situations. To accurately
capture these movements, we designed a network that receives facial landmark points
representing the eye, mouth, and head positions as the input. The feature extracted from
this network is used along with the facial image feature to complement its discriminating
power. The process of extracting the facial landmark feature is depicted in Figure 4, and
the details are described below.

Figure 4. Facial landmark feature extraction process. A simple network with three convolutional layers is used to extract
the facial landmark feature. GAP: global average pooling.

A facial image was first input into the facial landmark detector to extract the facial
landmark feature, where the detector was an ensemble of the regression tree algorithm [61].
Passing through the facial landmark detector, 68 facial landmarks were obtained and
displayed as white dots on a black image to create a facial landmark image. The facial
landmark image was used because it better captures the movement of the facial landmarks
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when input into the CNN, which uses spatial information, rather than simply entering the
facial landmark coordinate values into the fully connected neural network. In the method
proposed by Wu et al. [41], the facial landmark image was used to utilize the facial location,
and it was shown that fine movements could be captured well. Therefore, we also tried
to capture the minute movements of the face by proposing a method to utilize a facial
landmark image by paying attention to this aspect.

Furthermore, two preprocessing steps were performed on the facial landmark image;
one is min–max normalization, and the other is Gaussian blurring. Min–max normalization
was used because the position of the area where the human face is detected in each frame of
the video jitters slightly, so the face is stationary, but appears to be moving. If the location
of the face area moves slightly, the location of the facial landmark detected in the facial
area also moves slightly. Consequently, the head is stationary, but it may appear to move,
which may adversely affect stress recognition. By performing min–max normalization,
this phenomenon can be prevented because the positions of the facial landmarks are
evenly aligned in all frames. In the face detection stage, we roughly aligned the positions
of the eyes, nose, and mouth through alignment, but these positions were not always
precisely fixed. Therefore, min–max normalization was additionally applied to reduce this
phenomenon as much as possible.

After min–max normalization, Gaussian blurring was performed because jittering
also occurred in the facial landmark detector result, and the effects that arise from these
phenomena can be reduced when blurring is performed by spreading the data around a
point rather than merely displaying that point. After performing these two preprocessing
steps, the image was passed through the CNN. The structure of this network comprises
three convolutional layers. The content of the facial landmark image is simple. Useful
information can be extracted even by a simple network, so we chose a simple network
to avoid unnecessary complexity. Finally, the facial landmark feature was obtained by
performing a GAP operation on the feature maps that passed through the CNN. While the
learning was in progress, the part that was actually learned is marked with a red box in
Figure 4. The facial landmark feature module network structure is depicted in Table 3. As
can be seen from Table 3, the size of the feature space of the facial landmark feature was
9 × 9 × 256.

Table 3. Network structure of the facial landmark feature module.

Unit Layer Filter/Stride Output Size

Input 0 112 × 112 × 1

Facial
Landmark
Feature
Network

1
Conv-BN-ReLU
Conv-BN-ReLU
Conv-BN-ReLU

7 × 7, 64/2
7 × 7, 128/2
7 × 7, 256/2

53 × 53 × 64
24 × 24 × 128
9 × 9 × 256

Output 2 GlobalAvgPool 256
BN: batch normalization. The stride is 2, but the feature map size is reduced by more than 0.5-times because
padding is not performed during convolution.

4.4. Temporal Attention Module

Meng et al. [49] used a temporal attention module to observe the information in all
frames to determine on which frame to focus. As the structure is simple and demonstrated
high performance in facial expression recognition, we modified this module and used it to
obtain the temporal attention weight. The temporal attention module’s overall structure is
depicted in Figure 5, and the details are described below.
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Figure 5. Structure of the temporal attention module. The attention weight increases when the frame is highly related to
stress, considering the average feature representing 48 frames and the feature of a specific frame. FC: fully connected layer.

First, 48 video frames passed through the ResNet-18 network and spatial attention
module, and 48 facial image features were extracted. Then, these frames passed through
the facial landmark detector and facial landmark feature network, and 48 facial landmark
features were extracted. When the 48 extracted facial image features and 48 extracted facial
landmark features entered the temporal attention module, they were first concatenated
frame-by-frame to create 48 concatenated features. Thus, frames highly related to stress
were found by considering the facial image features, as well as the facial landmark features.

The 48 concatenated features were averaged to obtain the average feature, and the
average feature was concatenated into 48 concatenated features to generate 48 final con-
catenated features. The average feature can be regarded as containing all information for
all frames. When the temporal attention weight is calculated using these final concate-
nated features, it becomes possible to obtain each frame’s temporal attention weight by
comprehensively viewing the information of the entire frame, as well as the information of
individual frames. Therefore, each final concatenated feature was passed through three
fully connected layers to obtain each frame’s temporal attention weight. It is possible to
attach the 49th slice and calculate the weight at once, but the weight of the target individual
feature and the total feature decreases, so the desired weight value cannot be obtained.
Therefore, we did not proceed in this manner.

When the obtained temporal attention weight for each frame is multiplied by the
concatenated feature from the corresponding frame’s facial image feature and facial land-
mark feature, the concatenated feature reflects the importance of the corresponding frame.
Accordingly, after obtaining the concatenated features that reflect the importance of all
48 frames, the final feature was obtained by applying the average operation. By applying a
fully connected layer to this feature, the stress recognition result was output. While the
learning was in progress, the part that was actually learned is marked with a red box in
Figure 5. The final feature was obtained using the following equations:

f i
concat = [ f i

f acial image; f i
f acial landmark], (3)

f i
total concat = [ f i

concat; Avg( fconcat)], (4)

Wi
ta = f c1( f c1536( f c1536( f i

total concat))), (5)
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f f inal = Avg(Wta · fconcat), (6)

where f i is the feature of the ith frame, Avg denotes the averaging operation on the time
axis, Wi is the weight of the ith frame, f cn represents a fully connected layer with n output
nodes, and the symbol · denotes the multiplication operation for each frame. The bold
notation indicates a vector of features or weights for all frames. The network structure of
the temporal attention module is depicted in Table 4.

Table 4. Network structure of the temporal attention module.

Unit Layer Output Size

Input
0 Facial Image Feature 512 × 48 (frames)

1 Facial Landmark Feature 256 × 48 (frames)

Temporal
Attention
Module

2 Concatenate (0 + 1) 768 × 48 (frames)

3 Average (48 frames) 768

4 Concatenate (2 + 3) 1536 × 48 (frames)

5
Fully Connected 1536 × 48 (frames)
Fully Connected 1536 × 48 (frames)
Fully Connected 1 × 48 (frames)

6 Multiplication (2 · 5) 768 × 48 (frames)

7 Average (48 frames) 768

Output 8 Fully Connected 3 or 4
In Unit 4, the outputs of Units 2 and 3 are concatenated for each frame. In Unit 6, the outputs of Units 2 and 5 are
multiplied for each frame.

4.5. Loss Function

We trained and tested the proposed method using the constructed database. Given
the database’s characteristics, the choice of the loss function influenced the training result
considerably. For the constructed database, the difference in facial changes observed by the
same person in different stress states is minute, so the difference between classes within
the same subject’s data is not large.

In contrast, even in the same stress state, each person has a unique face, and a differ-
ence in the pattern of facial changes occurs. Accordingly, the difference between subjects
within data from the same class is large. Therefore, if the distance between features for data
from different classes within the data for the same subject is increased and the distance
between features for data from different subjects within the data for the same class is
decreased, it is possible to prevent ineffective learning caused by database characteristics.

Previous studies have proposed several loss functions to prevent this phenomenon,
such as the widely used contrastive loss [62] and triplet loss [63] functions. For contrastive
loss, only one positive data point and one negative data point are used in the loss function,
but this may result in less efficiency than using both. For triplet loss, one formula handles
both, reducing the distance between data for the same class and increasing the distance
between data for different classes. However, this approach can reduce the learning abil-
ity when compared with methods that handle these tasks separately and then combine
the results. Therefore, considering this information, we propose a new loss function by
combining the two loss functions.

The first component of the proposed loss function reduces the Euclidean distance
between the features extracted from the anchor data and the positive data to zero. The
second component changes the Euclidean distance between the features extracted from
the anchor data and the negative data to a value called the margin. The final loss function
was completed by adding three cross-entropy losses to the proposed loss function. The
three cross-entropy losses were obtained from the prediction scores of the anchor, positive,
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and negative data and the ground truth for each data point. The final loss function was
obtained using the following equations:

LCE = −
C

∑
c=1

tc log(sc), (7)

where C is the number of classes, tc indicates the ground truth of class c, and sc is the
prediction score of class c.

LMSE( f1, f2) =
1
N

N

∑
i=1

( f i
1 − f i

2)
2, (8)

L f inal = LCE−anchor + LCE−pos + LCE−neg

+ LMSE( fanchor, fpos)

+ max(0, m − LMSE( fanchor, fneg)),

(9)

where N denotes the feature dimension, f i is the ith element of the feature, and m represents
the margin. Furthermore, tc is one when the ground truth of a data point is class c and zero
for the rest, and LCE−x is the cross-entropy loss of x data.

Positive and negative data input into the final loss function were selected considering
the characteristics of the constructed database. The positive data were selected to have the
same class as the anchor data, with the selected subject being different from the anchor
data. The negative data were selected to be a different class from the anchor data, with
the selected subject being the same as the anchor data. The proposed method was learned
end-to-end using this newly proposed loss function.

5. Experimental Results

This section explains the experiment we conducted. First, the experimental setting
and dataset are described. Second, the results of the ablation study experiment performed
to design the proposed method are presented. Finally, the results of the performance
comparison experiment between the proposed method and other methods are explained
and analyzed.

5.1. Experimental Setting

PyTorch, a deep-learning library, was used to implement the proposed method. We
divided the training set and the testing set using a five-fold cross-validation method to
evaluate the performance. When training, the parameters were set as follows. First, in the
final loss function (9), the margin was set to 2, and for the optimizer, a stochastic gradient
descent optimizer was used. The momentum was set to 0.9, and the weight decay was set
to 0.0001. The training epoch was set to 45, and the initial value for the learning rate was
set to 0.001 and decreased by 0.1 every 15 epochs. The batch size was set to maximize the
GPU memory and set to 6 in the proposed method. We divided the data into a training
set, a validation set, and a testing set in a ratio of 3:1:1, and the best hyperparameter set
was determined by conducting experiments with various hyperparameter combinations
for the validation set. During the division of the data, it was ensured that a subject’s data
belonged to only one set, since if the same subject’s image were to be included in both the
training and test sets, the subject’s appearance could be learned and the performance could
hence be abnormally high.

In the experiments, the performance comparison between the methods used accuracy
values obtained by dividing the number of correctly predicted clips in the testing set by
the number of all clips in the testing set. As we used the five-fold cross-validation method,
we used the average of five accuracy values from five testing sets.
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5.2. Dataset

We used the Yonsei Stress Image Database previously described in Section 3 to eval-
uate the stress recognition performance. A total of 42,023 clips were created by dividing
2,020,556 images of 50 subjects into 48 consecutive frames, and the clips were used as the
input for training and testing. The reason for defining a clip as 48 consecutive frames, i.e.,
two seconds in length, is as follows. In university labs, GPUs with 11GB of memory are
often used. When learning the proposed method using this GPU, if 48 frames are input
to the GPU, the maximum batch size is 6. If the batch size is too small, the performance
deteriorates, so we could use up to 48 frames at once. Additionally, we conducted an
ablation study (described in Section 5.3.4) to investigate the variation of the performance
with the clip length. To match the experimental conditions as much as possible, 48 frames
were randomly selected and used for clips longer than 2 s. In the experimental results, the
2 s clip showed the highest performance, so we used the 2 s clip as a training and test unit.

The facial images were cropped from the original images and input into the network.
Examples of the facial images are depicted in Figure 6. For four randomly selected subjects,
the various facial expressions displayed by them are presented for each situation.

Non-native Language
Interview

Non-native Language
Script Reading

Native Language
Interview

Native Language
Script Reading

Non-native Language
Interview

Non-native Language
Script Reading

Native Language
Interview

Native Language
Script Reading

Figure 6. Samples of cropped facial images from the constructed database.

5.3. Ablation Study

In this subsection, we describe the settings and results of the experiments conducted to
select the structure of the proposed method. We also present the results of the experiments
and examine the effect of the clip settings.

5.3.1. Loss Function

First, an experiment was conducted to determine the loss function that most effec-
tively improved the learning. The proposed loss function was designed with reference to
the contrastive loss [62] and triplet loss [63] to ensure effective learning considering the
characteristics of these databases. The performance was compared with these functions
to determine whether the proposed loss function was effective. The results are listed in
Table 5.
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Table 5. Comparison of different loss functions.

Method Accuracy (%)

ResNet-18 + Cross-Entropy Loss 60.0895
ResNet-18 + Cross-Entropy Loss + Contrastive Loss 63.1357
ResNet-18 + Cross-Entropy Loss + Triplet Loss 62.8771
ResNet-18 + Cross-Entropy Loss + Proposed Loss 64.1865

As depicted in the experimental results, the best performance was achieved when
the cross-entropy loss and proposed loss were used together. When learning using the
proposed loss function, the distance between the data from the same class was reduced,
and the distance between the data from different classes was increased when compared
with using other loss functions.

5.3.2. Attention Module

With several types of attention modules available, we experimented to determine
the best combination by fusing several attention modules. The attention modules used in
the experiment are common: the spatial attention module, channel attention module, and
temporal attention module. The spatial and channel attention modules were proposed by
Woo et al. [47], and the temporal attention module was a modified version of that proposed
by Meng et al. [49]. Table 6 presents the experimental results for various combinations of
attention modules.

Table 6. Comparison of various combinations of attention modules.

Method Accuracy (%)

ResNet-18 64.1865
ResNet-18 + Spatial Att 64.7608
ResNet-18 + Channel Att 65.1097
ResNet-18 + Temporal Att 65.2569
ResNet-18 + Channel Att + Temporal Att 64.3173
ResNet-18 + Spatial Att + Temporal Att 65.3396
ResNet-18 + Spatial Att + Channel Att 64.4165
ResNet-18 + Spatial Att + Channel Att + Temporal Att 64.8969

The experimental results demonstrated that the highest performance occurred when
the spatial attention and temporal attention modules were both used. Accordingly, finding
a channel with a high correlation to stress on the feature maps did not significantly affect
the performance, whereas finding a location and frame with a high correlation to stress
significantly affected the performance.

5.3.3. Facial Landmark Feature Module

Furthermore, 68 facial landmarks were imaged and entered into the network to extract
facial landmark features, and an experiment was conducted to determine the best method
for processing and inputting these facial landmark images. As the results of the face
detector and facial landmark detector illustrated a jittering pattern, we examined the
extent to which the stress recognition performance was affected when this phenomenon
was prevented by applying min–max normalization and Gaussian blurring to the facial
landmark images. The experimental results are listed in Table 7.
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Table 7. Comparison of facial landmark feature extraction methods.

Method Accuracy (%)

ResNet-18 + Att 65.3396
ResNet-18 + Att + Landmark Image 63.0085
ResNet-18 + Att + Landmark Image + Norm 64.0012
ResNet-18 + Att + Landmark Image + Blur 66.1854
ResNet-18 + Att + Landmark Image + Norm + Blur 66.8409

Att: spatial and temporal attention modules, Norm: min–max normalization, Blur: Gaussian blurring.

The experimental results demonstrated that the performance decreased when only
the landmark image was used or only min–max normalization was applied. However,
when min–max normalization and Gaussian blurring were both applied to the landmark
images, the performance increased. Thus, when both min–max normalization and Gaussian
blurring were used, the jittering phenomenon was prevented.

5.3.4. Clip Length and Number of Frames

Finally, we analyzed the impact of the proposed method on the performance by
varying the clip length and number of frames. First, we experimented by changing the clip
length, which is a unit used in training and testing, to 1 s, 2 s, 5 s, 10 s, and 30 s; the results
are listed in Table 8. To match the experimental conditions as much as possible, we used
24 frames for 1 s, and 48 frames were used in the remaining experiments.

Table 8. Effect of clip length on the performance.

Method Clip Length (s) Accuracy (%)

1 65.9470
2 66.8409

Ours 5 65.6555
10 65.8282
30 65.6207

The experimental results demonstrated that the best performance occurred when
the clip length was 2 s. It was possible to identify the cues that indicated stress in 2 s
clips, and the temporal change was learned well using 48 consecutive frames. In contrast,
we randomly selected 48 frames for clips longer than 2 s and used them for training
and testing; hence, the discontinuity between frames could have an adverse effect on
learning the temporal change. Next, we experimented by changing the number of frames
constituting one clip to 8, 16, 32, 48, and 64, and the results were the same as in Table 9. To
match the experimental conditions as much as possible, we used 2.7 s clips for 64 frames,
while the other experiments used 2 s clips.

Table 9. Effect on the performance of the number of frames.

Method Number of Frames Accuracy (%)

8 65.0138
16 64.8687

Ours 32 66.1900
48 66.8409
64 64.4527

The experimental results demonstrated that the highest performance was achieved
when 48 frames were used. This setting exhibited the highest performance when all
48 frames of the 2 s clips were used because it is necessary to find the overall spatial and
temporal facial changes when recognizing stress. In contrast, when the clip length exceeded
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2 s, recognition was hampered by the increased amount of unnecessary information, as in
the above experiment.

5.4. Comparison with Other Methods

We evaluated the stress recognition performance of the proposed method, as well
as various other methods. We compared the proposed method with widely used deep-
learning networks that have demonstrated high performance [46,47,57,64–67]. The HOG–
SVM method, which combines the widely used handcrafted features, HOG [68], and
the classical classifier SVM [69], was used for comparison. In addition, current deep-
learning-based recognition methods [41–43,45] using spatial–temporal facial information
were also used for performance comparison. These methods were used because an emotion
recognition network could be considered similar to a stress recognition network.

The experimental results of the proposed method and other methods are listed in
Table 10, along with each method’s feature dimension. In general, a higher feature dimen-
sion indicates a higher discriminating power, but because the computational complexity
increases, lower feature dimensions that exhibit high performance are preferable.

Table 10. Stress recognition accuracy, sensitivity, and specificity on the constructed database.

Method Feature Dimension Accuracy (%) Sensitivity (%) Specificity (%)

HOG-SVM [68,69] 1764 50.9153 50.4360 64.3488

VGG-16 [65] 2048 56.9125 56.4093 71.0178
CBAM-ResNet-18 [47] 512 58.8559 58.1435 72.4161

ResNet-50 [57] 2048 60.0093 59.4649 74.2789
ResNet-18 [57] 512 60.0895 59.4573 74.4877

Inception v3 [66] 2048 63.4185 62.8578 77.6015
AlexNet [64] 4096 64.1588 63.4871 78.3340

DenseNet-121 [67] 1024 64.9408 64.4349 78.2179
SE-ResNet-18 [46] 512 65.7013 65.1206 79.2945

2D-CNN + LSTM + Facial Landmark [42] 768 58.3432 57.7521 72.5148
3D-CNN + Facial Landmark Image [41] 4096 62.5361 62.1877 76.1710

2D-CNN + GRU + Multimodel [43] 512 65.8770 65.3907 79.3543
3D-CNN + Hyperparameter

Optimize [45] 4096 65.9372 65.4369 79.7895

Zhang et al. [30] 47104 64.6481 64.0199 78.3209

Ours (w/o Facial Landmark Feature) 512 65.3396 64.5928 78.9639
Ours 768 66.8409 66.1292 80.0959

As depicted in the experimental results, the proposed method had the highest accuracy,
66.8409%, even though features with a relatively low dimensional number of 768 were
used. Even when the facial landmark feature was not used, it exhibited an accuracy of
65.3396% with a small 512-dimensional feature. SE-ResNet-18 had the highest performance,
at 65.7013%, among the widely used deep-learning networks. This network uses attention
modules, which seems to have a positive effect on the stress recognition performance.

By contrast, VGG-16 and ResNet-50 exhibited low performance despite using a rela-
tively high number of feature dimensions, i.e., 2048. This result demonstrates that these
methods have a network structure that is unsuitable for stress recognition. The HOG–SVM
method used a relatively high number of feature dimensions, i.e., 1764, but exhibited the
lowest performance, i.e., 50.9153%. Thus, it was demonstrated that the discriminating
power of the handcrafted features was lower than that of the deep-learning networks.

Examining the results of methods using spatial–temporal facial information, the
method using the 2D-CNN, LSTM, and facial landmarks demonstrated low performance,
i.e., 58.3432%. This result indicates that the facial landmark information was not utilized
satisfactorily because the coordinates of the facial landmarks were simply input into the
network. Furthermore, the method using the 3D-CNN with hyperparameter optimization
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exhibited high performance at 65.9372%. Thus, even a simple network can exhibit high
performance through appropriate hyperparameter optimization.

We also compared the performance with the method using a physiological signal
database [13]. It can be seen that the performance of that method was higher than ours
at 74.1%. However, unlike our method, which classified three stress states, this method
classified two stress states. In addition, since this method uses physiological signal data, a
direct comparison with our method is not possible. Therefore, our approach, which showed
the highest performance when there were three stress states, was quite competitive as it
offered finer distinctions. Furthermore, as mentioned before, our method does not require
biosensors and has the advantage of being able to be used for more diverse applications
using images.

Furthermore, we compared the performance with the previous video-based stress-
recognition method [30]. The performance of the method was high at 64.6481%, but the
performance was lower than that of our proposed method. Therefore, the experimental
results in Table 10 show that the performance of the proposed method was higher than
that of the other methods. These results indicate that the proposed method is superior to
other methods in detecting the overall spatial and temporal changes of the face.

We present the sensitivity and specificity rates along with classification accuracy in
Table 10. It can be confirmed that the proposed method showed the best performance in
both sensitivity and specificity, as well as accuracy.

We also output the feature maps and attention map obtained from the spatial attention
module, and the results are shown in Figure 7. In the case of the attention map, it can be
seen that a higher weight was assigned to the lower part of the face. However, in the case
of the feature map, it can be seen that it is difficult to identify which features have been
learned because the resolution was as low as 4 × 4. Therefore, we drew a picture of the
Grad-cam [70], which shows which part of the image was mainly viewed and determined
the prediction. We drew the Grad-cam results for the facial image, as well as the facial
landmark image, and the results are shown in Figure 7. As can be seen from Figure 7, the
network predicted the stress level primarily by considering the areas around the eyes and
mouth.

Input Image Grad-cam ImagesAttention MapFeature Maps

…

Figure 7. Feature maps, attention map, and Grad-cam images output from an example facial image.

In addition, temporal attention weights were visualized to check whether temporal
attention was well applied, and the result is as shown in Figure 8. In the neutral state, the
change rate of the weight was not large; however, in the stressed state, the change rate
was large. It can be seen that the weight was higher for images in which the change in
facial expression was large. This showed that the temporal attention module was working
properly.

The classification accuracy for each of the proposed method’s classes is listed in
Table 11. When the facial landmark feature was used, the proposed method demonstrated
higher performance for all three classes than when it was not used. This result implies that
the facial landmark feature effectively complements the facial image feature. However,
even if the facial landmark feature is used in the proposed method, its classification of the
neutral state was superior to its classification of the stress states. Thus, it is challenging to
find overall spatial and temporal facial changes that appear when people are under stress.
Especially under low stress, the changes are smaller, so they are more difficult to pinpoint.
We also output the confusion matrix of the proposed method without and with the facial
landmark feature, and the results are shown in Figure 9. Figure 9 shows that the overall
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performance improved when the facial landmark feature was used compared with not
using it.

Figure 8. Visualization of the temporal attention weight in three stress states. The higher the height
of the bar on the image, the greater the weight is.

Table 11. The proposed method’s classification accuracy for each stress state with and without the
facial landmark feature.

Stress State
Accuracy (%)

Ours (w/o Facial Landmark Feature) Ours

Neutral 79.9396 80.5567
Low Stress 49.4030 51.5811
High Stress 64.4358 66.2499

(a) (b)

Figure 9. Confusion matrix of the proposed method (a) without and (b) with the facial landmark
feature.

We plotted a histogram of the accuracy of each subject in the proposed method, as
shown in Figure 10. The histogram shows how the average performance of the three classes
is distributed for all subjects. More specifically, five subjects with an accuracy of 30%∼40%
means that the number of subjects with an average performance of three classes between
30% and 40% is five. The interval with the largest number of subjects was between 60%
and 70%, and the average performance of the three classes in our method from Table 11
also involved this interval.
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Figure 10. Histogram of the accuracy for each subject in the proposed method.

To evaluate the performance of the video unit, we performed classification by dividing
all 5 min and 10 min videos into 2 s clips. For each subject, there were two 5 min videos for
the neutral class and one 10 min video for the low- and high-stress classes. If the ratio of
correctly classified clips was greater than the threshold, the video was counted as correctly
classified and the accuracy was measured. The video unit performance of the proposed
method is shown in Table 12, and it is possible to grasp the trend of the performance change
according to the threshold change. Since the accuracy was calculated using the results of
Table 10 learned by the cross-validation method, the cross-validation method was also
applied to these results. If the threshold was set to 50%, the video unit performance was
better than the 2 s clip unit performance. For the three classes, the threshold value of 50%
can be seen as a reasonable value.

Table 12. Video-based stress recognition accuracy in the proposed method obtained by changing the
threshold.

Accuracy (%)

Threshold 40% 50% 60%

Neutral 84.0000 79.0000 77.0000
Low Stress 58.0000 56.0000 52.0000
High Stress 79.5918 73.4694 67.3469

Total 73.8639 69.4898 65.4490

6. Conclusions

In this paper, a stress-recognition method using spatial–temporal facial information
was proposed using deep learning. To use deep learning technology, we built and released
a large image database for stress recognition. In the proposed method, we used a spatial
attention module that assigns a high weight to the stress-related regions of the facial
image. Using a temporal attention module that assigns a high weight to frames that are
highly related to stress from among several frames in the video, we improved the feature’s
discriminating power. Furthermore, using features extracted from the facial landmark
information, we supplemented the discriminating power of the feature extracted from the
facial image.

We designed the loss function so that the network learning proceeds effectively,
considering the characteristics of the constructed database. We evaluated the proposed
method on our constructed database, and it exhibited higher performance than existing
deep-learning-based recognition methods. However, our approach has a limitation in that it
would find it difficult to recognize stress in people who do not display much change in their
facial expressions. In the future, to mitigate this limitation, a study on stress recognition
based on multimodal data will be conducted using voice data, which is closely related to
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stress, along with the images. In addition, research in more difficult environments such as
occlusion on the face will be conducted as future work.
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Appendix A

Table A1. Summary of the database construction settings and database contents.

Item Description

Number of Subjects 50
Age of Subjects 20–39 y
Gender Ratio of Subjects 1:1
Nationality of Subjects Korea
Number of Experimental Stages 4
Number of Stress States 3
Number of Videos per Subject 4
Camera Used for Recording Kinect v2
Image Resolution 1920 × 1080
Data Acquisition Rate 24 frames/s
Total Number of Images 2,020,556
Total Length of Recorded Videos 1403 min
Illumination Keep the lights constantly bright
Background Only clean, white walls
Head Orientation Almost straight ahead
Occlusion Hair or accessories do not cover the face (excluding glasses)
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Abstract: Among many available biometrics identification methods, finger-vein recognition has an
advantage that is difficult to counterfeit, as finger veins are located under the skin, and high user
convenience as a non-invasive image capturing device is used for recognition. However, blurring
can occur when acquiring finger-vein images, and such blur can be mainly categorized into three
types. First, skin scattering blur due to light scattering in the skin layer; second, optical blur occurs
due to lens focus mismatching; and third, motion blur exists due to finger movements. Blurred
images generated in these kinds of blur can significantly reduce finger-vein recognition performance.
Therefore, restoration of blurred finger-vein images is necessary. Most of the previous studies have
addressed the restoration method of skin scattering blurred images and some of the studies have
addressed the restoration method of optically blurred images. However, there has been no research
on restoration methods of motion blurred finger-vein images that can occur in actual environments.
To address this problem, this study proposes a new method for improving the finger-vein recognition
performance by restoring motion blurred finger-vein images using a modified deblur generative
adversarial network (modified DeblurGAN). Based on an experiment conducted using two open
databases, the Shandong University homologous multi-modal traits (SDUMLA-HMT) finger-vein
database and Hong Kong Polytechnic University finger-image database version 1, the proposed
method demonstrates outstanding performance that is better than those obtained using state-of-the-
art methods.

Keywords: Finger-vein recognition; motion blur image restoration; modified DeblurGAN; CNN

1. Introduction

There are several types of measurable human biometrics, including those of voice,
face, iris, fingerprint, palm print, and finger-vein recognition. Among these, finger-vein
recognition has the following advantages, (1) finger-vein patterns are hidden under the
skin. Therefore, they are generally invisible, making them difficult to forge or steal. (2) Non-
invasive image capture ensures both convenience and cleanliness and is more suitable
for a user. (3) As most people have ten fingers, if an unexpected accident occurs with
one finger, the other finger can be used for authentication [1]. However, due to various
factors such as light scattering in the skin layer caused by near-infrared (NIR) light, focus
mismatch of a camera lens, differences in finger thickness, differences in depth between the
surface of the skin and vein, and finger movements, blurring may occur when capturing
finger-vein images. Blurred images generated in these kinds of blur can significantly reduce
finger-vein recognition performance. Therefore, image restoration through a deblurring
method is necessary. Extensive research has been conducted for restoring skin scattering
blur that occurs frequently [2–9], and several studies have been conducted on optical blur
caused by the difference in the distance from a camera lens to the finger vein and finger
thickness [10,11]. Motion blur can occur frequently, due to finger movement. However, no
study has been conducted for motion blurred finger-vein image restoration.
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Although, during finger-vein image capture, a finger is fixed to the image capturing
device to some extent; however, Parkinson’s disease, physiologic tremors, dystonia, and
excessive stress may cause hand tremors. Due to these reasons, motion blur can occur.
Furthermore, with the recent expansion of non-contact devices due to COVID-19, motion
blur occurs more in the input image, and the resulting motion blurred image causes
severe performance degradation during finger-vein recognition. To solve this problem, the
restoration of a motion blurred finger-vein image is essential.

Conventional image restoration methods can be categorized into blind and non-blind
deblurring [12]. Early non-blind deblurring methods perform deblurring, assuming that
blur kernels are known. Blur kernel is deduced from knowledge of the image formation
process (e.g., amount of motion or defocus blur and camera sensor optics), calculated
from the test image, or measured through point spread function (PSF) [13]. Using these
methods, the original sharp image can be obtained through deconvolution by estimating
the blur kernel. However, when a non-blind restoration method is applied, the recogni-
tion performance can be reduced if images are acquired from various devices and show
difference blurring characteristics in the spatial domain. Moreover, there are limitations
to applying non-blinded methods to each case because various types of distortions occur
when capturing an image in actual environments. Also, most blur kernels are unknown in
actual environments, and it is time-consuming to estimate blur kernels.

Contrary to the non-blind deblurring method, the blind deblurring methods proceed
with deblurring, assuming that blur kernels are unknown [12,14,15]. A generative adver-
sarial network (GAN) that combines the blind deblurring method and the training-based
method has also been studied to solve the problems arising from non-blinded deblur-
ring [12,14]. GAN is a network that generates an image by finding an optimal filter using
weights trained from the training data. Therefore, using GAN has the advantage of being
robust even if images have various distortions. Also, there is no need to estimate the blur
kernel directly, and restoration can be performed through training. Considering these
reasons, we propose a method of performing motion blurred finger-vein image restoration
using the newly proposed modified DeblurGAN and a method of performing restored
finger-vein image recognition using deep CNN. The main contributions of our paper are
as follows:

• This is the first study on motion blur finger-vein image restoration that can occur in
actual environments.

• For restoration of motion blur finger-vein image, we propose a modified DeblurGAN.
The proposed modified DeblurGAN has differences in comparison with the original
DeblurGAN, (1) dropout layer removal, (2) number of trainable parameters reduction
by modifying the number of the residual block structure, (3) and uses feature-based
perceptual loss in the first residual block.

• Training is conducted by separating the modified DeblurGAN and the deep CNN,
therefore, reducing training complexity while improving convergence.

• The modified DeblurGAN, a deep CNN, and a non-uniform motion blurred im-
age database are published in [16] to allow other researchers to perform fair perfor-
mance evaluations.

This paper is organized as follows: Section 2 provides an overview of the previous
studies, and the proposed method is explained in Section 3. In Section 4, comparative
experiments and experimental results with analysis are described. Finally, in Section 5, the
conclusions of this paper are explained.

2. Related Works

Previous studies on blurred finger-vein image restoration have been conducted on the
restoration of skin scattering or optical blur, and studies related to motion blur restoration
have not been conducted. Therefore, previous studies were analyzed in terms of finger-vein
recognition without blur restoration, with skin scattering blur restoration, and with optical
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blur restoration. Such methods can be further categorized into handcrafted feature-based
and deep-feature-based finger-vein recognition for analysis.

2.1. Finger-Vein Recognition without Blur Restoration

For the handcrafted feature-based finger-vein recognition without blur restoration
method, Lee et al. [17] proposed a method for finger-vein recognition by aligning the
image using minutia points extracted from the finger-vein region, extracting finger-vein
features using a local binary pattern (LBP), and calculating the Hamming distance using
the extracted features. Peng et al. [18] applied Gabor filters having eight orientations to
the original finger-vein image and extracted the finger-vein pattern by the fusion of the
image with the vein pattern highlighted. They proposed a scale-invariant feature transform
(SIFT) feature matching method based on the extracted finger-vein patterns. The method
proposed in the study of [18] has the advantage that recognition performance is improved
when an optimal filter is accurately modeled. However, this method can cause performance
degradation when the filter is applied to finger-vein images having multiple characteristics,
and since this experiment was conducted in a constraint environment, it is not robust to
image variants, such as illumination or misalignment. Moreover, they did not consider the
blur that could occur when capturing a finger-vein image.

Deep feature-based methods have been studied to overcome the drawbacks of these
handcrafted feature-based methods. Although a deep-learning-based method was not used,
Wu et al. [19] performed dimension reduction and feature extraction of a finger-vein image
using a principal component analysis (PCA) and a linear discriminant analysis (LDA). They
proposed a finger-vein pattern identification method based on a support vector machine
(SVM), which used the PCA- and LDA-extracted features. Hong et al. [20] and Kim et al. [21]
proposed finger-vein verification methods to distinguish genuine (authentic) matching (match-
ing images of the same class), and imposter matching (matching images of different classes)
using the difference image of enrolled and input images as input to a CNN. Qin et al. [22]
created vein-pattern maps, calculated the finger-vein feature probability for each pixel, and
labeled veins and backgrounds. Subsequently, training was conducted by dividing the orig-
inal image into an N×N size, and the probability that the final input image was the vein
pattern was calculated. Song et al. [23] and Noh et al. [24,25] proposed a shift-matching
finger-vein recognition method using a composite image. Qin et al. [26] proposed a finger-
vein verification method that combined a CNN and long short-term memory (LSTM). They
assigned labels through handcrafted finger-vein image segmentation techniques and extracted
finger-vein features using stacked convolutional neural networks and long short-term mem-
ory (SCNN-LSTM). Genuine and imposter matching were verified using feature matching
between supervised feature encoding and enrollment databases using extracted features.
These studies on deep feature-based finger-vein recognition have a limitation that an intensive
training process is required, and there is a disadvantage that they did not consider blur that
can occur when capturing finger-vein images.

2.2. Finger-Vein Recognition with Skin Scattering Blur Restoration

Lee et al. [2] proposed a method for restoring skin scattering blur by measuring a PSF
of a skin scattering blur and using a constrained least squares (CLS) filter. Yang et al. [3,4]
performed scattering-removal by calculating light-scattering components of a biological
optical model (BOM). Yang et al. [5] performed scattering effects removal from finger-
vein images by considering an anisotropic diffusion, and gamma correction (ADAGC),
weighted biological optical model (WBOM), Gabor wavelet, non-scattered transmission
map (NSTM), and inter-scale multiplication operation. Shi et al. [6] used haze-removal
techniques based on Koschmieder’s law to remove scattering effects in finger-vein images.
Yang et al. [7] used multilayered PSF and BOM to restore blurred images. Furthermore,
Yang et al. [8] proposed a scattering-effect removal method using a BOM-based algorithm
that measured the scattering component with the transmission map. You et al. [9] designed
a bilayer diffusion model to simulate light scattering and measured the parameters of a
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bilayer diffusion model through blur-Steins unbiased risk estimate (blur-SURE). Image
restoration methods were also proposed based on these parameters with the multi-Wiener
linear expansion thresholds (SURE-LET). However, these studies have the disadvantages
that scattering blur parameters must be accurately estimated, and parameters must be
re-estimated when the domain between the image used for estimation and the test image
is different.

2.3. Finger-Vein Recognition with Optical Blur Restoration

Lee et al. [10] proposed a blurred finger-vein image restoration method that considers
both optical and scattering blur using PSF and CLS filters. They restored blurred finger-
vein images by considering both optical blur components and scattering blur components
and improved recognition performance. However, this method requires that parameters
should be accurately predicted when measuring two PSFs to improve performance, causing
extensive processing time. Choi et al. [11] proposed a finger-vein recognition method by
restoring the optical blur included in the original finger-vein image based on modified
conditional GAN. This method has the advantage that it can be applied to images acquired
from various environments but has the disadvantage that it does not consider more complex
motion blur that can occur during image acquisition.

As such, most of the previous studies did not focus on motion blur that can occur
from the movement of fingers in finger-vein recognition and did not consider the image
restoration associated with the motion blur. Therefore, we propose a new method of restor-
ing a motion blurred finger-vein image using the modified DeblurGAN and recognizing
the restored image using a deep CNN.

Point spread functions (PSFs) for skin scattering and optically blurred images are
completely different from that for motion blurred images [2–11,27,28]. Therefore, the
methods developed for skin scattering or optically blurred images cannot be used directly
to solve the motion blurring issue. In the case of the handcrafted feature-based method of
Table 1, the PSFs for skin scattering or optically blurred images should be replaced by the
PSF for motion blurred images with optimal parameters of PSF. In case of deep feature-
based method of Table 1, the CNN and GAN models for skin scattering or optically blurred
images should be retrained with motion blurred images in addition to the modification of
layers or filters of CNN and GAN models.

Table 1. Comparisons of the previous and proposed finger-vein image restoration methods.

Category Methods Advantages Disadvantages

Without
considering

blur restoration

Handcrafted
feature-based

LBP-based feature extraction + Hamming
distance [17]

Recognition performance is
improved when an optimal filter
is accurately modeled

- Performance degradation when the
modeled optimal filter is applied to
images having different
characteristics

- Not robust to image variants, such
as illumination or misalignment,
because the research was conducted
in a constrained environment

- A blur that may occur when
capturing finger-vein images is not
considered

Gabor filter + SIFT feature matching [18]

Deep
feature-based

PCA + LDA + SVM [19]
- No need to directly model

an optimal filter
- Robust to image variation

as various image features
are trained

- Requires intensive training process
- Not consider a blur that may occur

during image capturing

Difference image + CNN [20,21]
Vein-pattern maps + CNN [22]

Composite image + shift matching +
CNN [23–25]

SCNN-LSTM [26]

Skin scattering
blur restoration

Handcrafted
feature-based

PSF + CLS filter [2]

Performance is significantly
improved if scattering blur
parameters are accurately
estimated

- Scattering blur parameters must be
accurately estimated

- Parameters must be re-estimated
when the domain between the image
used for estimation and the test
image is different

BOM [3,4]
WBOM + ADAGC + NSTM + Gabor

wavelets [5]
Haze removal techniques [6]
Multilayered PSF + BOM [7]

Optical model-based scattering removal
[8]

Bilayer diffusion model + blur-SURE +
multi-Wiener SURE-LET [9]
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Table 1. Cont.

Category Methods Advantages Disadvantages

Optical-blur
restoration

Handcrafted
feature-based

PSF for optical blur + PSF for scattering
blur + CLS filter [10]

Image restoration considering
both optical and skin scattering
blur

- Performance can be improved only
when the parameters of two PSFs are
accurately predicted from the
perspective of skin structure and
camera optics

- Processing time is long because
optical blur restoration and skin
scattering blur restoration are
processed simultaneously

Deep
feature-based Conditional GAN + CNN [11] Applicable to images captured

from various environments Did not consider the motion blur

Motion blur
restoration

Deep
feature-based

Modified DeblurGAN-based method +
CNN (Proposed method)

Recognition performance
improved after restoration
considering a motion blur that
may occur when capturing
finger-vein images

Networks for restoration and recognition
require large data and take a long time to
train.

Table 1 presents a comparison of the advantages and disadvantages of the proposed
method and the previous studies.

3. Proposed Method

3.1. Overview of the Proposed Method

Figure 1 shows the overall flowchart of the proposed method. After acquiring finger
images (step (1)), the finger region of interest (ROI) is detected using preprocessing method
(step (2)). Then, the motion blurred finger-vein image is restored using the proposed
modified DeblurGAN (step (3)). One difference image is then generated from the restored
enrolled and recognized images (step (4)). Lastly, based on the output score obtained by
inputting the difference image in the deep CNN, finger-vein recognition is performed to
distinguish genuine (authentic) or imposter matching (step (5)).

 
Figure 1. Flowchart of the proposed method.

3.2. Preprocessing the Finger-Vein Image

The first part of preprocessing removes unnecessary background regions and finds
the finger-vein ROI. The captured image is then binarized to obtain the image shown
in Figure 2b. However, even if binarization is performed, the background is not completely
removed, so an edge map is created using a Sobel filter. A difference image is then
generated using the created edge map and the binarized image. By applying the area
threshold method [29] to the generated difference image, an image with the background
removed as shown in Figure 2c is obtained. Then, in order to correct misalignment caused
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by in-plane rotation of the finger image, which degrades recognition performance, second-
order moments of the binarized mask R (Figure 2c), are calculated using Equation (1).

  
(a) (b) 

  
(c) (d) 

Figure 2. Example of background removal and in-plane rotation compensation: (a) original image;
(b) binarized image; (c) background removed image; (d) in-plane rotation compensation.

Note that f (x, y) and (mx, my) represent image pixel values and central coordinates,
respectively. Based on these values, the rotation angle θ, in Equation (2) is calculated to
compensate for the in-plane rotation [30]. The compensated image, shown in Figure 2d, is
obtained from this process.

a11=
∑(x,y)∈R(y−my)

2· f (x,y)
∑(x,y)∈R I(x, y)

a12=
∑(x,y)∈M(x−mx)(y−my)· f (x,y)

∑(x,y)∈R I(x, y)

a22=
∑(x,y)∈R(x−mx)

2· f (x,y)
∑(x,y)∈R I(x, y)

(1)

θ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
tan−1

{
a11−a22+

√
(a11−a22)

2+4a2
12

−2a12

}
i f a11 > a22

tan−1

{
−2a12

a22−a11+
√
(a22−a11)

2+4a2
12

}
i f a11 ≤ a22

(2)

As shown in Figure 3a, the left and right ends of the finger are the regions of the
thick area or region with a fingernail where NIR lighting is not well-transmitted. Thus,
these regions are inappropriate for recognition because vein patterns are not likely to be
captured accurately. Therefore, the image, shown in Figure 3c, is obtained by removing
the left and right sides by a predetermined size to which in-plane rotation compensation
is applied. By performing erosion operation, component labeling process, and dilation
operation [27], the unnecessary region for finger-vein recognition such as the upper right
corner of Figure 3c, is removed. As a result of this process, an image as shown in Figure 3d
is created. Since the vein pattern is not acquired by bright illumination, the black area
of the finger area is not required for recognition. An ROI mask is obtained by using a
4 × 20 mask to fill the black area with the average pixel values around it (Figure 3e). In
details, as shown in the red-dashed circles of the lower boundary of finger in Figure 3a,
there exists bright pixels inside of finger caused by excessive illumination, which causes
the error of binarization of lower boundary as shown in Figure 3b–d. Therefore, we applied
4 × 20 mask to the binarized image of Figure 3d. At each convolution position of mask, the
average pixel value within 4 × 20 area (except for the black pixels of Figure 3d) is assigned
to the binarized image of Figure 3d. That is, if the majority pixels within 4 × 20 area is
white (255), white pixel is assigned. Then, the inaccurate black pixels of the red-dashed
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circles of Figure 3d are replaced by the white pixels of finger region as shown in the lower
boundary of Figure 3e.

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 3. Extracting finger-vein ROI: (a) original finger image, (b) in-plane rotation compensation,
(c) left and right areas removal, (d) component labeling, (e) ROI mask after filling black area of finger
region, and (f) obtained ROI image.

The mask size (4 × 20) generalizes on the images of different resolutions. To confirm
this, we used two open databases of the Shandong University homologous multi-modal
traits (SDUMLA-HMT) finger-vein database [31] and the Hong Kong Polytechnic Univer-
sity finger-image database version 1 [29] in our research.

3.3. Modified DeblurGAN-Based Finger-Vein Image Restoration

The principal objective of enhancement is to process the image so that the result is
more suitable than the original image for a specific application [27]. Therefore, although
image enhancement is mostly a subjective process, while image restoration is a generally
objective process. Because image restoration is an attempt to reconstruct a degraded image
using prior knowledge of degradation, the restoration method must focus on applying
degradation modeling to restore the original image and the inverse process. The blur
model based on the above process can be expressed as follows [28]:

g(x, y) = h(x, y) ∗ f (x, y) + η(x, y) (3)

Here, g(x, y) is a degraded (blurred) image, h(x, y) is a spatial representation of a
degradation function (H), ∗ is a convolution operation, f (x, y) is an input image, and
η(x, y) is an additive noise. If the above conditions are given, the goal of restoration is to
obtain f̂ (x, y), which is the estimation of an original image. The more accurately h(x, y)
and η(x, y) are estimated, f̂ (x, y) and f (x, y) become closer [28]. However, from g(x, y),
which is the image obtained from various environments, it is extremely difficult to estimate
h(x, y) and η(x, y) accurately. Furthermore, when images having different characteristics
than those used for estimation are input, the estimated h(x, y) and η(x, y) may sometimes
not be applicable. Considering these facts, this study proposes a training-based restoration
model, the modified DeblurGAN, and we aim to ensure the restored finger-vein image Fres,
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becomes similar to the original finger-vein image Fori, through training without separately
estimating h(x, y) and η(x, y) when a motion blurred finger-vein image Gblur, is given.

A deblurring task can be generally divided into blind and non-blind deblurring. For
the non-blind deblurring method, deblurring is performed assuming that the blur kernel
(h(x, y)) is known, whereas, for the blind deblurring method, deblurring is performed
assuming that the blur kernel is not known [12]. In a general environment, a blind kernel
is not known, and it is time-consuming to directly estimate it. In this study, we assume
that the blur kernel is unknown, similar to the general environment. Also, it proposes
a restoration method applicable for motion blurred finger-vein images obtained from
various environments, so this study can be considered a blind deblurring task. Because
the original DeblurGAN exhibits good performance in a blind motion-deblurring task [12],
we determined that it would be effective in this study as well. Therefore, we propose a
modified DeblurGAN. The generator of the modified DeblurGAN used in this study is
shown in Figure 4 and Table 2, and the discriminator is shown in Figure 5 and Table 3. A
more detailed explanation is provided in the next subsection.

 

Figure 4. Generator of the modified DeblurGAN.

Table 2. Descriptions of generator in modified DeblurGAN.

Layer
Number
of Filters

Size of Feature
Map

(Height × Width ×
Channel)

Size of Kernel
(Height × Width ×

Channel)

Number of Strides
(Height × Width)

Number of
Paddings

(Height × Width)

Image input layer 256 × 256 × 3

Encoder

1st convolutional layer
Batch normalization
ReLU

64 256 × 256 × 64 7 × 7 × 3 1 × 1 3 × 3

2nd convolutional layer
Batch normalization
ReLU

128 128 × 128 × 128 3 × 3 × 64 2 × 2 1 × 1

3rd convolutional layer
Batch normalization
ReLU

256 64 × 64 × 256 3 × 3 × 128 2 × 2 1 × 1

Residual Blocks × 6
[3 × 3 conv,
Batch normalization]

256 64 × 64 × 256 3 × 3 × 256 1 × 1 1 × 1

Decoder

1st transposed layer
Batch normalization
ReLU

128 128 × 128 × 128 3 × 3 × 256 2 × 2

2nd transposed layer
Batch normalization
ReLU

64 256 × 256 × 64 3 × 3 × 128 2 × 2

4th convolutional layer
Batch normalization
ReLU

3 256 × 256 × 3 7 × 7 × 64 1 × 1 3 × 3

Output
(input + 4th convolutional
layer)

256 × 256 × 3
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Figure 5. Discriminator of the modified DeblurGAN.

Table 3. Descriptions of the discriminator in modified DeblurGAN (* means the output image or target image of Figure 5).

Layer
Number of

Filters

Size of Feature
Map

(Height × Width
× Channel)

Size of Kernel
(Height × Width

× Channel)

Number of
Strides

(Height × Width)

Number of
Paddings

(Height × Width)

* Image input layer 256 × 256 × 3
1st convolutional layer
Leaky ReLU 64 129 × 129 × 64 4 × 4 × 3 2 × 2 2 × 2

2nd convolutional
layer
Batch normalization
Leaky ReLU

128 65 × 65 × 128 4 × 4 × 64 2 × 2 2 × 2

3rd convolutional
layer
Batch normalization
Leaky ReLU

256 33 × 33 × 256 4 × 4 × 128 2 × 2 2 × 2

4th convolutional layer
Batch normalization
Leaky ReLU

512 34 × 34 × 512 4 × 4 × 256 1 × 1 2 × 2

5th convolutional
layer 1 35 × 35 × 1 4 × 4 × 512 1 × 1 2 × 2

3.3.1. Generator

A GAN generally comprises generator and discriminator models in which the adver-
sarial training between the two gradually improves the performance of both. The generator
of the original DeblurGAN has one convolution block, two strided convolution blocks
with strides of 1/2, nine residual blocks (ResBlocks) [32], and two transposed convolution
blocks [12]. Each ResBlock consists of a convolution layer, an instance normalization
layer, and a rectified linear unit (ReLU) for activation [33]. Compared with the original
DeblurGAN, the following two aspects were modified for this study.

First, a dropout [34] is removed. In the original DeblurGAN, a dropout ratio of 0.5 is
applied to each residual block of the generator, and the same ratio is applied for inference.
Generally, a dropout is effective as a regularization method for avoiding overfitting, but
it can cause the modification of a vein pattern in the restored output image, due to the
randomness of a dropout when applied to a restoration task. The modified vein pattern
then has different features from the original finger-vein image, which results in degraded
performance. Rather than creating a variety of outputs in which the vein pattern is de-
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formed, the generated pattern information needs a deterministic output that is similar to
the original as possible, therefore, dropout.

Second, the number of parameters is reduced by modifying the residual blocks. Large
parameters can increase the inference time when applied to an actual environment, and
increased inference time can cause the inefficiency of the system. The original DeblurGAN
used the GoPro [35] and Kohler datasets [36] and applied nine residual blocks to the
generator. In this study, the existing nine residual blocks were reduced to six to shorten
the inference time by reducing the number of parameters. Also, by modifying the residual
blocks as shown in Figure 6, feature information is maintained in the layer prior to the
next convolution layer, and the number of parameters is reduced. The width and height
of feature map are reduced by passing through convolution layer, which usually causes
the reduction of important feature information [32]. Therefore, by comparing Figure 6a,b,
the second 3 × 3, 256 Conv layer is removed in our modified residual block, which can
maintain feature information in the layer prior to the next convolution layer. In addition,
the number of parameters is reduced by removing the second 3 × 3, 256 Conv layer in
the modified residual block. Consequently, the number of parameters of the generator is
reduced from 6.0 to 4.2 million.

  

(a) (b) 

Figure 6. Architectures of original and modified residual blocks: (a) residual block in original
DeblurGAN; (b) a modified residual block in the modified DeblurGAN.

3.3.2. Discriminator

The structure of the discriminator is shown in Figure 5 and Table 3. The discrimi-
nator of the modified DeblurGAN proposed in this study has the same structure as the
discriminator of the original DeblurGAN, which used the Wasserstein WGAN gradient
penalty (GP) [37]. For a GAN, the Nash equilibrium in a non-convex system must be found
using continuous and high-dimensional parameters for smooth training, however, the
existing GAN [38] cannot solve this problem, therefore, it fails to converge [39]. In the case
of DeblurGAN, WGAN-GP is used as a critic function using Wasserstein distance and the
gradient penalty methods proposed in [37]. Thus, a structure that is robust to generator
structure selection and at the same time enables stable training is proposed. In this study,
these advantages of the discriminator of the original DeblurGAN are adopted.

3.3.3. Loss

In the case of the original DeblurGAN, a perceptual loss is applied to perceptually hard
to distinguish between the generated image and the real sharp image and to restore finer
texture detail [12]. A perceptual loss refers to the difference in feature maps between the
generated and target images, which can produce better results than the loss that generates
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blurry results by calculating the pixel-wise average difference such as L1 or L2 loss. The
perceptual loss function used in this study, based on the previous study [12], can be defined
as follows:

LX =
1

W∅H∅

W∅

∑
x=1

H∅

∑
y=1

(
∅

(
Fori

)
x,y

−∅

(
GθG

(
Fblur

))
x,y

)2
(4)

where ∅ is the feature maps extracted from the ImageNet pretrained network. For the
original DeblurGAN, the feature maps extracted from the third convolution layer before the
third max-pooling layer in the visual geometry group (VGG)-19 [40] are used for perceptual
loss. W∅ and H∅ are the width and height of feature maps, respectively. In a classification
network, such as that of a VGG, abstracted features extracted from a higher layer preserve
the overall spatial structure, whereas low-level features, such as color, corner, edge, and
texture, cannot be preserved [41,42]. In terms of finger-vein images, it is important to
restore the high-level features of restored output image similar to those of the original
image, however, restoring low-level features is important as well, because vein patterns
and texture are slightly different for each class, and performance can be varied due to
differences in low-level features during recognition. Because of these reasons, unlike the
original DeblurGAN that applied perceptual loss by extracting feature maps from the
middle layer of the ImageNet pretrained VGG-19, in this study, feature sets are extracted
from the generated image and target image in the first residual block (conv2_x) using the
ImageNet pretrained ResNet-34 [32] model, respectively, and the difference between the
two feature sets is applied as a perceptual loss. In a typical neural network, vanishing
gradient and explosion occur as the layer gets deeper, eventually resulting in performance
degradation. In ResNet, however, this problem is solved by applying a residual learning
method. The residual block applying the residual learning method is trained so that
identity mapping F(x) + x that is mapping between output F(x) of the weight layer and
output x of the layer just before the weight layer, and plain layer output H(x) are the same
(H(x) = F(x) + x). From the characteristics of the residual block that identity mapping
the output information of the previous layer to the next layer, we inferred that low-level
features such as color, corner, edge, and texture of the finger-vein can be preserved during
restoration training. For this reason, a perceptual loss is applied from the conv2_x layer of
ResNet-34 instead of the original VGG-19.

3.3.4. Summarized Differences between Original DeblurGAN and Proposed
Modified DeblurGAN

The differences between the original DeblurGAN and the proposed modified Deblur-
GAN are as follows.

• A dropout is applied to the generator of the original DeblurGAN, whereas a dropout
is not applied to the generator of the modified DeblurGAN because the vein patterns
of the restored image can be modified. The dropout layer usually helps avoiding
overfitting. However, the dropout layer can also bring about the excessive sparsity of
activation and features with coarser features compared to the case without the dropout
layer [34,43], which can cause the consequent modification of a vein pattern in the
restored output image. Therefore, we do not use the dropout layer in the generator of
proposed modified DeblurGAN.

• In the original DeblurGAN, nine residual blocks (convolutional layer—normalization
layer—activation layer—convolutional layer—normalization layer) were used for the
generator. In the modified DeblurGAN, to reduce the inference time, the number of
parameters was reduced by reducing the structure of the residual block (convolutional
layer-normalization layer) and reducing the total number of residual blocks to six.

• In the original DeblurGAN, high-level feature maps extracted from the third convolu-
tion layer prior to the third max-pooling layer of the ImageNet-pretrained VGG-19
were applied to a perceptual loss. However, it is equally important to restore the
information of low-level features, such as color, corner, edge, and texture, during
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finger-vein restoration. Hence, a perceptual loss was applied to the first residual block
(conv2_x) using the ImageNet-pretrained ResNet-34 in the modified DeblurGAN.

3.4. Finger-Vein Recognition by Deep CNN

In this study, the difference image between registered (enrolled) and recognized im-
ages was used as an input for CNN-based finger-vein recognition. An image differencing
method determines the changes in images where the differences are determined by cal-
culating the pixel differences, and a new image is then created based on the calculation
results [44]. Thus, an image differencing method reacts sensitively to the changes in images.
For the finger-vein datasets used in this study, if the same class images are used, the pixel
difference between the two images is small. So, in general, a pixel value with a low differ-
ence image, that is, an image with many black areas is an output. Whereas in the case of
other classes, since the pixel difference between the two images is large, the difference im-
age has generally a high pixel value, that is, an image with many bright areas is output. An
image differencing method has the advantage of expressing the characteristics of genuine
and imposter matching with one output image. Here, genuine matching refers to matching
when the input image and the enrolled image are the same class, and imposter matching
refers to matching when the input image and the enrolled image are the different class.
The finger-vein datasets used in this study have a high similarity of vein patterns between
intra-class, but a low similarity between inter-class. Therefore, the finger-vein recognition
performance can be verified in the difference image. The examples of finger-vein difference
images generated from the dataset used in this study are shown in Figure 7c,f.

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 7. Difference images of registered and input images. (a) Registered image, (b) input image of
same class as registered image, (c) difference image of (a,b), (d) registered image, (e) input image of
different class as registered image, and (f) difference image of (d,e).

The generated difference image is then used as an input to deep CNN. DenseNet-161 [45]
is used to recognition of finger-vein images. DenseNet adopts dense connectivity in which the
feature maps of a previous layer are concatenated in the current layer.

xl = Hl([x0, x1, . . . , xl−1]) (5)
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Equation (5) represents dense connectivity, where [x0, x1, . . . , xl−1] means the feature
map concatenation from layers 0 to l − 1. A dense block performs feature map concate-
nation of the previous and the current layer and transfers the concatenated feature maps
to the following layer. Hl is a composite function and is composed of batch normaliza-
tion [46], ReLU [33], and a convolution layer. Generally, as the network becomes deeper,
the number of channels of feature maps caused by dense connectivity increases, resulting
in an increased number of network parameters. To mitigate the increasing parameters,
a bottleneck layer is added to the dense block of DenseNet. As a result, utilizing the
bottleneck structure reduces computational costs. However, the output of a dense block
concatenates all layers within the block. As the layer gets deeper or the number of layers in
the dense block increases, the size and depths of the feature map increase enormously. To
solve this problem, a transition layer was added between the dense blocks to reduce the
size and depths of the feature maps. The transition layer cuts the number of feature map
depths by half through 1 × 1 convolutional computation and reduces width and height
by half using 2 × 2 average pooling. In addition, by specifying a growth rate, DenseNet
controls the number of output feature map channels. Dense block outputs the feature map
at the size of the designated growth rate. In this research, the growth rate is set to 48.

In this study, for finger-vein recognition, the DenseNet-161 pretrained with the Ima-
geNet database [47] is fine-tuned with the finger-vein training data. Difference images are
used for the training and testing process, and these images are created using the output
restored images by the proposed modified DeblurGAN. The number of output classes of
DenseNet-161 is set to 2, genuine matching and imposter matching. The criterion for this is
based on the output score obtained from the last layer of the DenseNet. With respect to
the threshold of the equal error rate (EER) of genuine and imposter matching distributions
of the CNN output score obtained from the training data, it is determined as genuine
matching if the CNN output score of the testing data is below the threshold. And imposter
matching is determined if the output score is greater than the threshold. The EER is the
rate of error at the point where the false rejection rate (FRR) which is the error rate of
falsely rejecting genuine matching as an imposter matching and the false acceptance rate
(FAR) which is the error rate of falsely accepting imposter matching as genuine matching
are equal.

4. Experimental Results

4.1. Two Open Databases for Experiments

In this study, experiments were conducted using two types of open finger-vein
databases, SDUMLA-HMT finger-vein database [31] and session 1 images from the Hong
Kong Polytechnic University finger-image database version 1 [29]. In SDUMLA-HMT
finger-vein database, 6 images from the ring, middle, and index finger from both hands
were obtained respectively, from 106 individuals, a total of 3816 images were obtained
(2 hands × 3 fingers × 6 images from 106 individuals). In session 1 from the Hong Kong
Polytechnic University finger-image database version 1, 6 images from the middle and
index finger images were obtained respectively, from 156 individuals, a total of 1872 images
were obtained (2 fingers × 6 images from 156 individuals). In this study, the finger-vein
database of the SDUMLA-HMT is referred to as SDU-DB, and the session 1 finger-image
database version 1 of the Hong Kong Polytechnic University is referred to as PolyU-DB.
Figure 8 shows examples from the same finger for PolyU-DB and SDU-DB. The image
resolution of SDUMLA-HMT is 320 × 240 pixels, and that of the Hong Kong Polytechnic
University finger-image database is 513 × 256 pixels.

SDU-DB consists of 636 classes, whereas PolyU-DB consists of 312 classes. All experi-
ments adopted two-fold cross-validation. Through the two-fold cross-validation method,
data of the same class were not used for training and testing (open-world setting). The
average accuracy measured through two-fold cross-validation was adopted as the final
recognition accuracy.
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(a) 

   
(b) 

Figure 8. Images obtained from the same finger. (a) SDU-DB and (b) PolyU-DB.

4.2. Motion Blur Datasets for Finger-Vein Image Restoration

In the case of PolyU-DB and SDU-DB, which are open databases used in this study,
motion blurred finger-vein datasets were not constructed. Therefore, to proceed with this
study, a motion blurred finger-vein database was constructed by applying motion blurring
kernels to the two open databases. When constructing the database, non-uniform (random)
motion blurring kernels were applied instead of uniform motion blurring kernels to closely
resemble the actual environment. For the random motion blurring kernels, the method
proposed by Kupyn et al. [12] was used. Figures 9 and 10 show original and generated
motion blurred images of SDU-DB and PolyU-DB.

  
(a) 

  
(b) 

Figure 9. Examples of original images and motion blurred images of SDU-DB. (a) Original images;
(b) motion blurred images.

  
(a) 

  
(b) 

Figure 10. Examples of original images and motion blurred images of PolyU-DB. (a) Original images;
(b) motion blurred images.
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4.3. Data Augmentation and Experimental Setup

The datasets used in this study do not contain enough images to train a deep CNN,
which would result in overfitting. To solve this problem, a data augmentation method
was applied to increase the number of training data. For this method, 5 pixel shifting was
applied for each image based on 8 directions in a combination of the top, bottom, left,
and right. Therefore, each image was increased to 9 times including the original image.
Table 4 presents the descriptions of original and augmented data from PolyU-DB and SDU-
DB datasets. From the data augmentation, 54 images were generated that increased 9 times
from 6 images per class. When training DenseNet-161 for finger-vein recognition, only
1 image among 54 augmented images was selected as an enrolled image, and the other
images were used as input images. A difference image was generated using the enrolled
image and input image to determine genuine and imposter matching. In the case of SDU-
DB, the number of imposter matching was 317 times that of genuine matching, and it was
155 times that of genuine matching for the PolyU-DB. When training this data as it is, a bias
on the majority class occurs due to data imbalance. In order to solve this problem, when
genuine matching data is augmented with the same number as imposter matching data,
training time is increased due to a large number of data, and an overfitting problem for
genuine matching data can occur. Therefore, in this study, we applied a random selection
method for the imposter matching data. Augmentation and random selection methods
were applied to both SDU-DB and PolyU-DB in the same manner, but only to the training
data. The original images that were not augmented were used as the testing data.

Table 4. Descriptions of experimental databases by data augmentation.

SDU-DB PolyU-DB

Original images

# of images 3816 1872
# of people 106 156
# of hands 2 1

# of fingers 3
(index, middle, and ring fingers)

2
(index and middle fingers)

# of classes
(# of images

per class)

636
(6)

312
(6)

Training for 1st or
2nd fold cross

validation

Training of modified
DeblurGAN

# of images
(original + augmented data)

17,172
(6 images × 9 times

× 318 classes)

8424
(6 images × 9 times

× 156 classes)

Training of CNN for
finger-vein
recognition

# of images for
genuine matching

16,854
((6 images × 9 times − 1)

× 318 classes)

8268
((6 images × 9 times − 1)

× 156 classes)
# of images for

imposter matching
16,854

(Random selection)
8268

(Random selection)

The training and testing were performed on a desktop computer equipped with
NVIDIA GeForce GTX 1070 graphics processing unit (GPU) [48] and Intel® Core™ i7-9700F
CPU with 16 GB RAM.

4.4. Training of Modified DeblurGAN Model for Motion Blur Restoration

For the training parameter of modified DeblurGAN, the max epoch was set to 100,
the mini-batch size was set to 4, and the learning rate was set to 0.0005. Adaptive moment
estimation (Adam) optimization [49] was used for the generator and discriminator to train
the modified DeblurGAN. Figures 11a,b and 12a,b show the graphs of training loss of
the proposed modified DeblurGAN according to the epoch for SDU-DB and PolyU-DB,
respectively. The loss values converged as the training progresses, confirming that the
proposed modified DeblurGAN was trained sufficiently, as shown in the figures. The
trained model with excessive larger number of epochs usually causes the model overfitting.
Therefore, we used 10% of training data as validation set which was not used as training.
With the trained model of each epoch, the accuracies of validation set was measured, and
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the model which showed the best validation accuracy was selected for measuring testing
accuracy with testing data. We included the validation performances with validation set in
Figures 11c and 12c, which confirms that our model was not overfitted with training data.

 
(a) (b) 

 
(c) 

Figure 11. Training and validation loss graphs of the modified DeblurGAN (SDU-DB): training loss graphs of (a) generator
and (b) discriminator. (c) Validation loss graphs of generator and discriminator.

4.5. Training of DenseNet-161 for Finger-Vein Recognition

A stochastic gradient descent (SGD) optimization method [50] was used to train the
CNN model for finger-vein recognition. This method involves multiplying a gamma
value by the learning rate for every step size at a mini-batch unit to reduce the learning
rate, thereby rapidly converging training accuracy and loss. As explained in Section 3.4,
DenseNet-161 was used in this study for training and testing. The number of output
classes was set to two (authentic and imposter-matching), the number of max epochs
was set to 30. The mini-batch size was set to 4, the learning rate was set to 0.001, the
step size was set to 16 epochs, the momentum was set to 0.9, and the gamma value was
set to 0.1. All the hyperparameters were determined with training data. In detail, the
optimal hyperparameters (with which the highest accuracies of finger-vein recognition
were obtained with training data) were selected. The search spaces for the number of max
epochs, mini-batch size, and learning rate were 10~50, 1~10, and 0.0001~0.01, respectively.
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The search spaces for the step size, momentum, and gamma value are 5~25 epochs, 0.1~1,
and 0.1~1, respectively.

 
(a) (b) 

 
(c) 

Figure 12. Training and validation loss graphs of the modified DeblurGAN (PolyU-DB): training loss graphs of (a) generator
and (b) discriminator. (c) Validation loss graphs of generator and discriminator.

Figures 13 and 14 show the training loss and accuracy graphs of DenseNet-161,
which used a difference image restored by the modified DeblurGAN as input. As shown
in the training graphs, training loss converged to nearly zero, whereas accuracy con-
verged to nearly 100, indicating that the CNN model for finger-vein recognition was
sufficiently trained.

4.6. Testing Results of Proposed Method
4.6.1. Ablation Studies

As ablation studies, experiments were conducted according to with or without motion
blur is applied, and the methods can be largely divided into 4 schemes. Scheme 1 means that
DenseNet-161 trained with the original training data without blurring was used to perform
finger-vein recognition with the original testing data to measure the EER. Scheme 2 means
that DenseNet-161 trained with the original training data was used to perform finger-vein
recognition with the motion blurred testing data to measure the EER. Scheme 3 represents
that DenseNet-161 trained with the motion blurred training data was used to perform
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finger-vein recognition with the motion blurred testing data to measure the EER. Lastly,
scheme 4 represents that DenseNet-161 trained with the training data restored with the
modified DeblurGAN proposed in this study was used to perform finger-vein recognition
with testing data restored using the modified DeblurGAN to measure the EER. As shown in
schemes 2 and 3 in Tables 5 and 6, the vein-pattern region and other regions were difficult
to distinguish, due to motion blur, resulting in degradation of recognition performance.
Also, in all cases, compared with schemes 2 and 3, when training was performed with the
training data restored with the modified DeblurGAN, and recognition was performed for
the testing data restored with the modified DeblurGAN, the recognition accuracy was the
highest in scheme 4.

Figure 13. Training accuracy and loss graphs of DenseNet-161 using images restored by proposed
modified DeblurGAN (SDU-DB).

Figure 14. Training accuracy and loss graphs of DenseNet-161 using images restored by proposed
modified DeblurGAN (PolyU-DB).
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Table 5. Comparison of finger-vein recognition error (EER) with respect to the applicable of a motion blur with SDU-DB
(unit: %).

Training & Testing with
Original Images

(Scheme 1)

Testing Blurred Images
without Training

(Scheme 2)

Training & Testing with
Blurred Images

(Scheme 3)

Training & Testing with
Restored Images

(Scheme 4)
(Proposed Method)

2.932 14.618 6.420 5.270

Table 6. Comparison of finger-vein recognition error (EER) with respect to the applicable of a motion blur with PolyU-DB
(unit: %).

Training & Testing
with Original Images

(Scheme 1)

Testing Blurred Images
without Training

(Scheme 2)

Training & Testing
with Blurred Images

(Scheme 3)

Training & Testing
with Restored Images

(Scheme 4)
(Proposed Method)

1.534 18.303 5.886 4.536

Figures 15 and 16 show the receiver operating characteristics (ROC) curves for the
recognition performance of schemes 1–4 of SDU-DB and PolyU-DB, respectively. Here,
GAR is calculated as 100—FRR (%). As shown in Figures 15 and 16, in all cases, the
recognition performance after restoration with the modified DeblurGAN proposed in this
study (scheme 4) was higher than schemes 2 and 3.

Figure 15. SDU-DB finger-vein recognition ROC curve for scheme 1–4.

Figure 16. PolyU-DB finger-vein recognition ROC curve for schemes 1–4.
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In Tables 7 and 8, the recognition performances of the modified DeblurGAN model
were compared according to the changes in the perceptual loss based on the features
extracted from the various CNN models and layers. For a fair performance evaluation,
the same recognition model was used for all cases based on scheme 4 to measure the
recognition accuracy. For VGG-19 (original DeblurGAN), features extracted from the third
convolution layer before the third max-pooling were used. Moreover, features extracted
from the first convolution layer before the third max-pooling were used for VGG-19
(conv3.1). This is a result of reflecting the features extracted from a layer prior to VGG-19
(original DeblurGAN) in the perceptual loss, indicating that VGG-19 (original DeblurGAN)
showed better recognition performance. For ResNeXt-101 (conv2), better recognition
performance was exhibited over VGG-19 (original DeblurGAN) and VGG-19 (conv3.1)
for both experiments. Lastly, for ResNet-34 (conv2_x), the features extracted from the
first residual block (conv2_x) were applied to a perceptual loss (proposed method), thus
exhibiting the best performance in all cases with SDU-DB whereas VGG-19 (conv3.1) shows
the better accuracies than other cases with PolyU-DB.

Table 7. Comparison of finger-vein recognition error (EER) of restored images in SDU-DB according to the perceptual loss
based on the various CNN models and layers (unit: %).

VGG-19 [40]
(Original DeblurGAN)

VGG-19 [40]
(Conv3.1)

ResNeXt-101 [51]
(Conv2)

ResNet-34 [32]
(Conv2_x)

6.049 6.503 5.281 5.270

Table 8. Comparison of finger-vein recognition error (EER) of restored images in PolyU-DB according to the perceptual loss
based on the various CNN models and layers (unit: %).

VGG-19 [40]
(Original DeblurGAN)

VGG-19 [40]
(Conv3.1)

ResNeXt-101 [51]
(Conv2)

ResNet-34 [32]
(Conv2_x)

4.777 4.536 4.764 4.983

4.6.2. Comparisons with the State-of-the-Art Methods

For the next experiment, the similarities between the images restored with the state-
of-the-art methods and the proposed modified DeblurGAN and the original images were
quantitatively evaluated. For a numerical comparison, a signal-to-noise ratio (SNR) [52],
peak SNR (PSNR) [53], and SSIM [54] were measured. SNR and PSNR are evaluation met-
rics based on the MSE between two images. Equations (6)–(8) are mathematical equations
of MSE, SNR, and PSNR, respectively.

MSE =
1

hw

h−1

∑
i=0

w−1

∑
j=0

[Io(i, j)− Ir(i, j)]2 (6)

SNR = 10log10

⎛⎜⎝ ∑h−1
i=0 ∑w−1

j=0 [Io(i, j)]2

hw
MSE

⎞⎟⎠ (7)

PSNR = 10log10

(
2552

MSE

)
(8)

where Ir is the restored image obtained from the state-of-the-art or proposed methods,
and Io is the original image. h and w are the height and width of an image, respectively.
Equation (9) is the mathematical equation of SSIM:

SSIM =
(2μoμr + C1)(2σor + C2)

(μo2 + μr2 + C1)(σo2 + σr2 + C2)
(9)
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where μr and σr are the mean and standard deviation of the pixel values of the restored
image, respectively. μo and σo are the mean and standard deviation of the pixel values of the
original image, respectively. σor is the covariance of two images, and C1 and C2 are constants
to prevent the denominator of each equation from becoming zero. Using the evaluation
metrics of Equations (6)–(9), the enhancement quality of our proposed method and that
of the state-of-the-art was numerically evaluated as shown in Tables 9 and 10. As shown
in Tables 9 and 10, SRN-DeblurNet shows the higher values for PSNR, SNR, and SSIM
compared to our modified DeblurGAN. That is, the qualities of restored images by SRN-
DeblurNet are more similar to those of original ones than those by our method. However,
the recognition accuracies by our method are higher than those by SRN-DeblurNet as
shown in Tables 11 and 12. That is because the additional noises are included in the
restored image and the features similar to the original features cannot be restored by SRN-
DeblurNet, which causes the degradation of recognition accuracies although the qualities
of restored images are similar to those of original ones.

Table 9. Comparisons of blur restoration by using the state-of-the-art methods and proposed modified
DeblurGAN with PolyU-DB.

Methods PSNR SNR SSIM

Original DeblurGAN [12] 28.98 21.45 0.90
DeblurGANv2 [14] 26.84 19.32 0.87

SRN-DeblurNet [15] 37.22 29.69 0.95
Modified DeblurGAN

(proposed method)
VGG-19 (conv3.1)

26.90 19.37 0.88

Modified DeblurGAN
(proposed method)

ResNet-34
27.70 20.17 0.90

Table 10. Comparisons of blur restoration by using the state-of-the-art methods and proposed
modified DeblurGAN with SDU-DB.

Methods PSNR SNR SSIM

Original DeblurGAN [12] 30.84 20.95 0.81
DeblurGANv2 [14] 29.63 19.73 0.82

SRN-DeblurNet [15] 39.17 29.28 0.90
Modified DeblurGAN

(proposed method)
VGG-19(conv3.1)

28.50 18.60 0.82

Modified DeblurGAN
(proposed method)

ResNet-34
32.64 22.75 0.85

Table 11. Comparisons of finger-vein recognition error (EER) by using the state-of-the-art restoration models and proposed
methods with SDU-DB (unit: %).

Original DeblurGAN [12] DeblurGANv2 [14] SRN-DeblurNet [15] Modified DeblurGAN

6.049 6.077 6.032 5.270

Table 12. Comparisons of finger-vein recognition error (EER) by using the state-of-the-art restoration models and proposed
methods with PolyU-DB (unit: %).

Original DeblurGAN [12] DeblurGANv2 [14] SRN-DeblurNet [15] Modified DeblurGAN

4.777 5.507 7.105 4.536

357



Sensors 2021, 21, 4635

Figure 17 shows examples of the finger-vein images restored by state-of-the-art meth-
ods and the modified DeblurGAN. For the next experiment, finger-vein recognition per-
formances were compared using the images restored by the modified DeblurGAN and
those restored by the state-of-the-art restoration methods for SDU-DB and PolyU-DB, as
shown in Tables 11 and 12. For the comparative experiment, the same recognition model
was used for a fair performance evaluation to measure the recognition accuracy using the
scheme 4 method of Tables 5 and 6. As shown in Tables 11 and 12, finger-vein recognition
performance was higher than the existing state-of-the-art restoration methods, when the
restoration was performed using the modified DeblurGAN method.

  
(a) (b) 

  
(c) (d) 

  

(e) (f) 

Figure 17. Examples of restored images using the state-of-the-art methods and the proposed modified
DeblurGAN: (a) original images, (b) motion blurred images, and the restored images by (c) original
DeblurGAN, (d) DeblurGANv2, (e) SRN-DeblurNet, and (f) proposed modified DeblurGAN.

Figure 18a,c are the result of authentic and imposter matching prior to restoration,
which provide incorrect matching results caused by modified vein patterns and texture
information due to motion blur. Authentic matching was falsely rejected as imposter
matching, whereas imposter matching was falsely accepted as authentic, thus decreased
the recognition performance. Figure 18b,d are the results of correct matching by restoring
the incorrect matching problem in (a) and (c) by the modified DeblurGAN. Authentic
matching was classified as correct acceptance, and imposer matching was classified as
correct rejection.
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 18. Correct recognition examples after restoring motion blur. (a) Incorrect genuine matching
before restoring motion blur, (b) correct genuine matching after restoring motion blur, (c) incorrect
imposter matching before restoring motion blur, and (d) correct imposter matching after restor-
ing motion blur. From the left, examples in (a–d) present the registered, input, and difference
images, respectively.

Figure 19 is an example of incorrect authentic matching and incorrect imposter match-
ing despite the restoration method proposed in this study is applied. In the case of incorrect
authentic matching, the difference in motion blur between the same classes is so severe
that it is recognized as an imposter even after restoration, resulting in incorrect matching.
In the case of incorrect imposter matching, the enrolled image and the input image appear
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similarly in dark shades, and the vein pattern is not clearly visible, so it recognized as
authentic even after restoration, resulting in incorrect matching.

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 19. Incorrect recognition examples after restoring motion blur. (a) Incorrect genuine matching
before restoring motion blur, (b) incorrect genuine matching after restoring motion blur, (c) incor-
rect imposter matching before restoring motion blur, and (d) incorrect imposter matching after
restoring motion blur. From the left, examples in (a–d) present the registered, input, and difference
images, respectively.

4.7. Processing Time of Proposed Method

For the next experiment, the inference time of the modified DeblurGAN proposed
in this study and DenseNet-161 for the finger-vein recognition method was measured.
The measurements were taken on the desktop described explained in Section 4.3 and
the Jetson TX2 embedded system [55] shown in Figure 20. The reason for measuring
using the embedded system is that on-board edge computing, which operates as an
embedded system attached to the entrance door, is involved for most access-controlled
type finger-vein recognition systems. Thus, it must be verified that on-board computing
is feasible on the system proposed. Jetson TX2 has an NVIDIA PascalTM-family GPU
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(256 CUDA cores), with 8-GB memory shared between the CPU and GPU, and 59.7-GB/s
of memory bandwidth. It uses less than 7.5 watts of power. As presented in Table 13, in
the case of the method proposed in this study, the recognition speed for one image was
16.2 ms on a desktop computer and 232.3 ms on the Jetson TX2 embedded system. This
corresponds to 61.72 frames/s (1000/16.2) and 4.3 frames/s (1000/232.3), respectively.
The processing time on the Jetson TX2 embedded system was longer than the desktop
computer, due to limited computing resources. However, through the experiment, it was
confirmed that the proposed method is applicable to an embedded system having limited
computing resources.

Figure 20. Jetson TX2 embedded system.

Table 13. Comparisons of processing speed by proposed method on desktop computer and embedded system (unit: ms).

Modified DeblurGAN
for Restoration

DenseNet-161
for Finger-Vein Recognition

Total

Desktop computer 3.4 12.8 16.2
Jetson TX2 6.1 226.2 232.3

4.8. Analysis of Feature Map
4.8.1. Class Activation Map of Restored Image

Figure 21 shows the result of visualizing each class activation map [56] based on the
original images and those restored by the proposed modified DeblurGAN in each layer
of DenseNet-161. The location from which the class activation map is output is the 1st
convolutional layer, the 1st transition layer, the 2nd transition layer, the 3rd transition
layer, and the last dense block layer from top to bottom. Figure 21a,b show examples
of authentic (genuine) and imposter matching. The left and middle images in (a) and
(b) are the original and restored images, respectively. Important features are represented
in red, whereas insignificant features are represented in blue in the class activation map.
Therefore, if the red and blue regions of the two images appear to be similar, it generally
indicates that the two images have similar characteristics. As shown in Figure 21a, in
authentic matching, class activation occurs in a similar location of the original image and
restored image. Accordingly, it was confirmed that the motion blurred finger-vein image
was effectively restored and correct acceptance is possible. As shown in Figure 21b, with
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imposter matching, class activation occurs in different locations in the original and restored
image, implying that correct rejection is possible.

   

   

   

   

   
(a) 

Figure 21. Cont.
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(b) 

Figure 21. Comparisons of the class activation maps between the original and restored images.
(a,b) are examples of authentic and imposter images, respectively. Images on the left of (a,b) are
the original images, whereas those on the middle are the restored image by proposed modified
DeblurGAN. In addition, the images on the right of (a,b) are the subtracted ones of the middle image
from the left one. For both (a,b), the images from top to bottom are the class activation maps output
from the 1st convolutional layer, the 1st transition layer, the 2nd transition layer, the 3rd transition
layer, and the last dense block.
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In addition, we included the subtracted CAM outputs of restored image from original
(motion blurred) one in the right images of Figure 21a,b. The reasons of such differences
in the subtracted CAM outputs are that the positions of important finger-vein features
extracted are different in original and restored images. Nevertheless, the case of authentic
matching (same class) shows the smaller differences as shown in the right image of the
last row of Figure 21a compared to that of imposter matching (different classes) in the
right image of the last row of Figure 21b. In addition, the reasons of such differences in
the subtracted CAM outputs are that the important features of finger-vein can be newly
extracted from the restored image (red color in the middle images of Figure 21a,b). However,
they cannot be extracted from vein areas in original (motion blurred) image (red color in
the left images of Figure 21a,b) due to the indistinctive vein patterns caused by motion
blurring, but they are extracted from the other skin areas except for vein regions.

4.8.2. Feature Maps of Difference Image

Second, similar to Figure 21, the feature maps of DenseNet-161 were analyzed accord-
ing to the layer depth in which the difference image between the restored enrolled and
restored recognized image as input. The input of DenseNet-161 is the finger-vein image re-
stored by the modified DeblurGAN. As the feature map dimension is too large, the feature
maps presented in Figure 22 are each channel’s output. Figure 22 presents the examples of
the feature maps extracted from genuine and imposter matching images in several layers
of DenseNet-161. Examples in Figure 22a–e are the feature maps extracted from the 1st
convolutional layer, the 1st transition layer, the 2nd transition layer, the 3rd transition layer,
and the last dense block, respectively. In addition, Figure 22f is the 3-dimensional feature
map images created by averaging the feature map values of Figure 22e. The top and bottom
images in Figure 22 show authentic and imposter matching, respectively.

  
(a) 

  

(b) 

Figure 22. Cont.
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(c) 

  
(d) 

  
(e) 

Figure 22. Cont.
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(f) 

Figure 22. Feature maps extracted from a genuine matching image and an imposter matching image from several layers
of the DenseNet-161. (a) Feature maps from the 1st convolutional layer; (b) feature maps from the 1st transition layer;
(c) feature maps from the 2nd transition layer; (d) feature maps from the 3rd transition layer; (e) feature maps from the
last dense block, and (f) 3D feature maps created by averaging feature map values of (e). Upper and lower examples in
(a–f) represent genuine matching feature maps and imposter matching feature maps, respectively.

As shown in Figure 22, abstract features were extracted as the layer became deeper.
For example, low-level features, such as lines and corners of the original image, were
maintained in Figure 22a, whereas, in Figure 22e, only the abstracted features remained,
and shape information mostly disappeared. As shown in Figure 22a–e, the feature maps of
authentic and imposter matching do not seem to have a significant difference. However,
as shown in Figure 22f, although the changes in the 3-dimensional feature map values
drawn by calculating the average of feature map values for the authentic matching results
from a step before the classification layer were mostly flat, the results of imposter matching
showed that the changes in the feature-map values were greater than those of authentic
matching. Therefore, the difference in the CNN feature maps of authentic and imposter
matching by the proposed method was confirmed.

5. Conclusions

In this study, a motion blurred finger-vein image was restored to solve the problem of
deterioration of finger-vein recognition performance due to motion blur, and a recognition
method using deep CNN was studied to evaluate the performance of the restored image.
A modified DeblurGAN was proposed by modifying the original DeblurGAN, which was
a restoration model. Using two open databases, the recognition error rate was lower when
recognition was performed using the restoration method proposed in this study than when
images were not restored. Furthermore, based on the comparative experiments using
various state-of-the-art restoration models, the proposed method was more effective in
restoring an image from motion blur and had more improved recognition performance.
Also, based on the analysis of class activation maps and feature maps, it was confirmed that
the proposed modified DeblurGAN sufficiently maintained the effective characteristics
for classifying authentic and imposter matching. However, as mentioned in Figure 19, it
was confirmed that incorrect matching cases occurred despite the proposed restoration
method. Therefore, in future studies, a method of increasing restoration and recognition
performance by overcoming the extreme difference in motion blur in intra-class and
reducing the degree of similarity between inter-classes will be studied. In our research,
we used the previous methods [27,29,30] for the ROI detection of finger region, and just
focused on the restoration of motion-blur by our proposed modified DeblurGAN and
finger-vein recognition by our CNN with the selected ROI. That is because the performance
analysis is difficult if both the ROI detection and feature extraction of finger-vein are
affected by motion blurring. Therefore, we assume that the ROI without motion blurring
is correctly detected by the previous methods [27,29,30], and we only consider that the
detected ROI is motion blurred. We would research the motion blurring effect on the
boundary detection of ROI in future work.
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If the enrolled and recognized images are captured from different camera settings, the
performance of finger-vein recognition based on image difference can be affected. However,
the enrolled and recognized images are captured from the same capturing device including
same camera setting in usual cases of actual finger-vein recognition system. In addition,
in this case, the recognition based on image difference showed the better accuracies than
those based on original image with the extracted feature vector [20]. Therefore, we use this
scheme of image difference for recognition because we mainly focused on the restoration
of motion blurring by proposed modified DeblurGAN. We would research the recognition
method with the enrolled and recognized images captured from different camera settings
in future work.

People usually put their finger on the device with some guiding bar in the actual
finger-vein acquisition device (with fixed finger direction) [29,31]. Therefore, there exist
only the limited variations of the horizontal and vertical translation and in-plane rotation
in the captured finger-vein image. Our data augmentation method aims at covering
these individual variations, and it can reduce the recognition error (false rejection case).
However, horizontal and vertical mirroring does not happen in the case of a finger-vein
image acquisition of the actual capturing device. Therefore, the mirroring generates the
images of different classes, which increases the complexity of training data and difficulties
of model training. As shown in [57,58], singular value decomposition (SVD) can generate
the images of various styles, which can also produce the images of different classes, and
it can also increase the complexity of training data and difficulties of model training.
Therefore, we use our simple data augmentation method. In future work, we would
research the various data augmentation method including SVD and mirroring.

Also, the application of the proposed motion blur restoration method to other biomet-
ric modalities, such as iris, face, and palm-vein recognition, will be examined. Moreover,
a lighter model that can shorten the processing time will be studied. In future work,
we would also research the method with the cases of two open databases combined. In
addition, as a future work, we would introduce different types of blurring to the images
and develop a generic solution.
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