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Abstract: An increased land use intensity due to rapid urbanization and socio-economic development
would alter the structure and function of regional ecosystems and cause prominent environmental
problems. Revealing the impact of land use intensity on ecosystem services (ES) would provide
guidance for more informed decision making to promote the sustainable development of human and
natural systems. In this study, we selected the Hanjiang River Basin (HRB) in Hubei Province (China)
as our study area, explored the correlation between land use intensity and ecosystem Services’ Value
(ESV), and investigated impacts of natural and socio-economic factors on ESV variations based on the
Geographical Detector Model (GDM) and Geographically Weighted Regression (GWR). The results
show that (1) from 2000 to 2020, land use intensity in HRB generally showed an upward trend, with
a high spatial agglomeration in the southeast and low in the northwest; (2) the total ESV increased
from 295.56 billion CNY in 2000 to 296.93 billion CNY in 2010, and then decreased to 295.63 CNY
in 2020, exhibiting an inverted U-shaped trend, with regulation services contributing the most to
ESV; (3) land use intensity and ESV had a strong negative spatial correlation, with LH (low land use
intensity vs. high ESV) aggregations mainly distributed in the northwest, whereas HL (high land
use intensity vs. low ESV) aggregations were located in the southeast; (4) natural factors, including
annual mean temperature, the percentage of forest land, and slope were positively associated with
ESV, while socio-economic factors, including GDP and population density, were negatively associated
with ESV. To achieve the coordinated development of the socio-economy and the environment, ES
should be incorporated into spatial planning and socio-economic development policies.

Keywords: ecosystem services’ value (ESV); land use intensity; spatiotemporal characteristics; spatial
correlations; driving factors; Hanjiang River Basin (HRB)

1. Introduction

Land provides space for human activities and supports terrestrial ecosystem services
(ES) that are essential for human survival and development. ES are the goods (e.g., food,
water, etc.) and services (e.g., air purification, waste treatment, etc.) that ecosystems
provide to human society, which can be broadly classified into four categories, i.e., supply
services, regulation services, support services, and cultural services [1,2]. During the
process of rapid urbanization and industrialization, humans have drastically transformed
the landscape from natural surfaces (such as forest land and water areas) to surfaces
employed for artificial uses (such as cultivated land and built-up areas), and the land
use intensity has substantially increased, which greatly weakens the provision of vital ES
by ecosystems [3,4]. In light of this, promoting the coordination between humans and
ecosystems has become a hot topic for both governments and academia. For example, the
United Nations identified Goal 7: Ensure environmental sustainability as an indicator of
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the Millennium Development Goals and suggested that it be incorporated into country
policies and programs to reverse the loss of ES. Faced with prominent environmental issues,
the 18th National Congress of the Communist Party of China (CPC) in 2012 proposed the
ecological civilization construction strategy, which emphasized harmony between human
and nature [5].

Research on ES has begun to flourish since Costanza et al. (1997) published the fa-
mous paper, “The Value of the World’s Ecosystem Services and Natural Capital”, which
classified the global ES into 17 types and estimated their economic values [1]. Xie et al.
(2003 and 2008) [6,7] built upon Costanza et al. (1997) and proposed an evaluation method
suitable for assessing the economic value of terrestrial ES in China based on surveys of over
200 Chinese ecologists [8]. Much of the literature on ES has focused on the evaluation of ES
value (ESV) [9–11], the driving mechanism of ES variation [12–14], the integration of ES in
landscape planning and decision making [15,16], and analysis of ES synergies and trade-
offs [17,18]. Recent research has begun to investigate the coupling coordinative relationship
between ES and socio-economic development, such as sustainable development [19,20],
human activities’ intensity [21], urbanization [22], etc.

From the perspective of land use, Xi, et al. [23] analyzed the spatiotemporal character-
istics of the ESV of island cities based on land use/cover and predicted future ESV. Rahman
and Szabó [24] analyzed the impact of land use/cover change (LUCC) on the value of
urban ES in Dhaka, Bangladesh, and found that water areas contributed the most to ESV.
However, less attention has been drawn to the relationship between land use intensity and
ESV. Land use intensity reflects the extent to which land has been developed and utilized
by human activities. Some studies take it as an indicator of land use efficiency [25], while
others use it to measure the development of regional land parcels [26]. This study uses it
to measure the degree to which different land uses are developed by human beings. The
existing research on land use intensity has been widely studied in the literature, including
the intensity of cultivated land use [27], the response of land use intensity to urbaniza-
tion [26], and the relationship between land use intensity, the ecological environment [28],
and biodiversity [29]. In this study, we aim to explore spatial correlations between land use
intensity and ESV.

According to previous studies on the driving mechanism of ES change, the evolution
of regional ES is affected by a combination of natural and human factors [30]. Natural
factors include precipitation, temperature, and vegetation coverage [31]. The anthropogenic
aspect comprises the effects of human-induced climate change and LUCC, as well as the
effects of economic development and human activities [32,33]. The selected anthropogenic
factors primarily consist of population, urbanization rate, GDP, etc. The impacts of these
factors vary widely due to regional differences [34,35]. Understanding the influencing
factors and driving mechanisms of regional ES in different locations is essential for targeted
plans and measures to achieve environmental protection and sustainable development [36].

As the largest tributary of the Yangtze River, the socio-economic position of the
Hanjiang River Basin (HRB) is crucial for the Yangtze River Basin. With the development
of the Yangtze River Economic Belt, especially the opening of the middle route of the
South-to-North Water Diversion Project, the ecosystem of the Hanjiang River is under great
threat [37]. The reduction in the water volume and the destruction of vegetation in the upper
reaches of the Hanjiang River directly affect the water quality and hydrological conditions in
the middle and lower reaches, i.e., the HRB in Hubei Province. The Danjiangkou Reservoir
in Hubei Province is the core water source of the middle route of the South-to-North Water
Diversion Project [38], and the water transfer has a great impact on the production and
ecology of the middle and lower reaches of the Hanjiang River. Furthermore, the HRB in
Hubei Province plays a very important role in the development of the province, with more
than 50% of its population and GDP being distributed in the HRB. Hence, decision makers
attach great importance to the development and implementation of policy in Hubei Section
of HRB. Over the past two decades, rapid urbanization and over-reclamation of cultivated
land have resulted in an imbalance of land use structure in the HRB of Hubei Province.
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This imbalance is primarily manifested by the continuous expansion of built-up land at the
expense of high-quality cultivated land, forest land, and water area, resulting in resource
depletion and environmental pollution [39]. Due to increased human activities, the ability
of ecosystems in HRB to self-regulate has degraded.

Some scholars have investigated the ES of the HRB. For example, Li, et al. [40] took
the upper Hanjiang River as their study area and examined the changes of water-related
ES, such as soil conservation and flood control services, as a result of climate change.
Qi et al. [41] explored the role of forest restoration in ES in the HRB and found a positive
impact. Yu, et al. [42] explored the evolution of the social-ecological system in the Hubei
Section of the HRB and found that resources and the economy were important driving
forces of the change in social-ecological systems, and that human activity played a leading
role in its evolution. Existing studies in the HRB have focused on a single type of ES from
a micro perspective, and the majority of the study areas are located in the upper reaches.
Few studies have examined the overall ES in the basin and the correlation between land
use intensity and ES, as well as the driving force of ES, particularly in the middle and
lower HRB reaches. Additionally, as one of the most representative human activities, the
South-to-North Water Diversion Project has put great pressure on the environment and
society in the middle and lower reaches of the Hanjiang River. Our study period ranged
from 2000 to 2020, which allowed us to examine changes in the regional environmental
conditions before and after the implementation of the South-to-North Water Diversion
Project in 2014. It is of great value to investigate the relationship between land use intensity
and ES in this region for the sustainable development of human and the environment.
Thus, in this study, we selected the HRB in Hubei Province as our study area to investigate
the responses of ESV to changes in land use intensity. This study has four specific research
objectives: (1) to identify the spatiotemporal changes of land use intensity, (2) to assess the
spatiotemporal evolution of ESV, (3) to analyze the spatial correlations between land use
intensity and ESV, and (4) to reveal the driving factors affecting ESV changes in the Hubei
section of the HRB from 2000 to 2020.

2. Materials and Methods

2.1. Study Area

The Hanjiang River originates in the Qinling Mountains; flows primarily through
Shaanxi, Henan, and Hubei provinces, and has a total length of 1567 km and a total
area of 15.9 × 104 km2. It joins the Yangtze River from west to east and is the largest
tributary of the Yangtze River. The landform of the HRB descends a total of 1964 m from
mountains to plains [43]. Located in the subtropical monsoon climate zone, the HRB has an
annual average precipitation of 700–1800 mm, an annual average temperature of 14 ◦C, and
a relatively high vegetation coverage rate [44]. After passing through Baihe County, the
Hanjiang River enters Hubei Province from Yunxi County, turns southeast at Danjiangkou,
and passes through Xiangyang, Yicheng, Zhongxiang, and other counties on its way to
Wuhan City, where it joins the Yangtze River. The HRB in Hubei Province, encompassing
nearly the middle and lower reaches of the Hanjiang River, was selected as our study
area (Figure 1).

2.2. Data Sources

The land use raster dataset with a 100 m resolution for the years 2000, 2010, and 2020
was downloaded from the Data Center for Resources and Environmental Sciences, at the
Chinese Academy of Sciences (RESDC) (http://www.resdc.cn, accessed on 5 May 2022).
Annual mean temperature, annual mean precipitation, slope, GDP, and population density
were also obtained from RESDC. The distances to the county center, water system, and
road system were calculated using the Euclidean distance tool in ArcGIS 10.3 software
(ESRI, Environmental Systems Research Institute, Redlands, CA, USA). ArcGIS 10.3 was
also used to calculate the area of different land use types in each county. All datasets were
converted into the same coordinate system and the same pixel size (100 m × 100 m).
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Figure 1. Location of the study area.

2.3. Methods
2.3.1. Calculation of Land Use Intensity

Land is the material basis for the survival and development of human society. Land
use intensity reflects the extent to which land resources are developed and utilized by
human beings [45]. Referring to the method of land use intensity proposed by Zhuang
et al. [46] and the graded assignments of land use type (Table 1), the land use intensity can
be calculated with the following formula:

L = 100 ×
n

∑
i=1

Ri × Ai/At (1)

where L is the land use intensity, n is the number of land use types, Ri is the grade factor of
the i-th land use type, Ai is the area of the i-th land use type, and At is the total area of all
land use types.

Table 1. Graded assignments of land use intensity.

Types and
Grades

Unused
Land

Forest, Grassland,
and Water Land

Agricultural Land
Urban Settlement

Land

Land use
types Unused land

Forest land,
Grassland, Water

area

Cultivated land,
Garden

Land, Artificial
grassland

Towns, residential
areas, industrial

and mining,
transportation

land
Grade factor 1 2 3 4

2.3.2. Assessment of Ecosystem Services’ Value

The evaluation method proposed by Costanza et al. [1] and adapted by Xie et al. [6,7]
for China’s ecosystems has been widely adopted due to its high operability and convenient
method of data acquisition [8]. In general, ES is classified into four categories, i.e., supply
services, regulation services, support services, and cultural services, which can be further
divided into nine subtypes (Table 2). Based on the equivalent value per-unit area of ES pro-
posed by Xie et al. in 2008, we adjusted the economic value of a standard equivalent factor
and calculated the ESV of the study area. According to the functions and characteristics
of land use types, we matched forest land with forest in Xie et al.’s classification system,
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cultivated land with farmland, water area with rivers/lakes, unused land with desert, and
assigned built-up land an ESV of zero [47]. It should be noted that the economic value of
a standard equivalent factor equals 1/7 of the average market value of grain production.
Considering the grain yield per-unit area of the study area and the average grain prices in
2000, 2010, and 2020, the equivalent factor value was calculated as 1881.45 CNY/hm2. The
formula for estimating the total ESV in the study area is as follows:

ESV = ∑ k·Ei × Ai (2)

where k is the equivalent factor value of ES; Ei is the ESV per-unit area of the i-th land use
type; Ai is the area of the i-th land use type.

Table 2. Equivalent value per-unit area of ES by land use type in the HRB of Hubei Province (Unit:
CNY/hm2).

Categories
of ES

Subtypes
Cultivated

Land
Forest Land Grassland Water Area

Unused
Land

Built-Up
Land

Supply
services

Food production 1881.45 620.88 809.02 997.17 37.63 0.00
Raw material
production 733.77 5606.72 677.32 658.51 75.26 0.00

Regulation
services

Gas regulation 1354.64 8127.87 2822.18 959.54 112.89 0.00
Climate regulation 1825.01 7657.51 2935.06 3875.79 244.59 0.00

Hydrological
regulation 1448.72 7695.14 2859.81 35314.84 131.70 0.00

Waste disposal 2615.22 3236.10 2483.52 27,939.55 489.18 0.00
Support
services

Soil conservation 2765.73 7563.43 4214.45 771.39 319.85 0.00
Biodiversity 1919.08 8485.34 3518.31 6453.38 752.58 0.00

Cultural
services

Aesthetic
landscape 319.85 3913.42 1636.86 8353.64 451.55 0.00

2.3.3. Hot Spot Analysis

Getis–Ord Gi* is an index of local spatial autocorrelation used to explore the spatial
clustering of high values (hot spots) or low values (cold spots) of spatial variables [48].
The output can be represented with Z-score, p-value, and confidence level. We used the
Getis–Ord Gi* tool in ArcGIS 10.3 software to analyze the hot spots and cold spots of ESV
in the study area. See Appendix A.1.1 for more detailed description of the hot spot analysis
method.

2.3.4. Bivariate Spatial Autocorrelation Model

Spatial autocorrelation refers to the statistical correlation of a certain attribute value of
geographic objects with spatial location differences. Generally, the closer the two values
are, the greater the correlation. Spatial autocorrelation analysis is an important indicator
to measure the aggregation or discrete distribution of spatial elements, and is generally
described by global Moran’s I and local Moran’s I [49]. The global autocorrelation tests the
spatial vergence pattern of the spatial variables over the entire research range, while the
local spatial autocorrelation captures the correlation of the variables in different regional
units [50]. In this study, the bivariate spatial autocorrelation model was used to investigate
the spatial correlation between land use intensity and ESV using GeoDa 1.18 software.
Moran scatter plots and LISA cluster maps were adopted to analyze local spatial correlation
and reflect the significance level of spatial correlation. See Appendix A for a more detailed
description of the spatial autocorrelation model (Appendix A.1.2).

2.3.5. Analysis of the Driving Mechanism

It is well-established in the literature that changes in ES are driven by both natural
and human factors. The natural dimension includes climate factors (e.g., temperature and
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precipitation), topography (e.g., slope), and vegetation (e.g., the proportion of forest land),
which are found to directly affect ES supply and demand [51]. Human activities can be
represented by socio-economic factors, including GDP, population density, and percentage
of built-up land [35], which are often used to measure regional economic development and
urbanization level. In general, the higher the GDP, population density, and percentage of
built-up land, the higher the degree of human interference with the ecosystem. In addition,
geographic locations, such as distance to the county center, road, and water system, also
have impacts on ES, mainly affecting the spatial patterns of ESV [52].

Based on the above analyses, ten driving factors were selected as potential drivers
of ESV change (Table 3). Then, Geographical detector model (GDM) and Geographically
Weighted Regression (GWR) were used to detect and analyze the driving forces that affect
the ESV. GDM can detect not only the influence of driving factors but also their interactions.
The GWR model can be used to explore the directions and spatial distributions of the
impacts of each driving factor.

Table 3. Details of the driving factors.

Factors Type Indicator Description Calculation Reference

Natural

Temperature (X1) Annual mean temperature (◦C) ArcGIS raster statistics

[51]
Precipitation (X2) Annual mean precipitation (mm) ArcGIS raster statistics

Slope (X3) Slope (◦) ArcGIS raster statistics
Percentage of forest

land (X4) The percentage of forest land (%) Forest land area/total
land area

Distance to water
system (X5) Distance to the water system (m) ArcGIS raster statistics

and Euclidean Distance [52]

Socio-economic

GDP (X6) GDP per unit area (104 CNY/km2) ArcGIS raster statistics
[51]

Population density
(X7)

Number of people per square kilometer
(person/km2) ArcGIS raster statistics

Distance to the county
center (X8) Distance to the county center (m) ArcGIS raster statistics

and Euclidean Distance
[52]

Distance to road (X9) Distance to road (m) ArcGIS raster statistics
and Euclidean Distance

Percentage of built-up
land (X10) The percentage of built-up land (%) Built-up land area/total

land area [35]

Geographical Detector Model

GDM is comprised of risk detection, factor detection, ecological detection, and in-
teractive detection, which can be used to detect spatial variation and identify potential
influencing factors [53]. The GDM has been widely used in many fields, including social-
economy and the ecological environment [51,54]. See Appendix A.1.3 for a more detailed
description of the GDM.

Geographically Weighted Regression

GWR is an extension of the traditional regression analysis method that can estimate
data with spatial autocorrelation and reflect the spatial heterogeneity of parameters [55].
The GWR can reveal the direction and magnitude of influence of each factor in different
locations [56]. See Appendix A.1.3 for more detailed description of the GWR model.

The flow chart of the study is illustrated in Figure 2.
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Figure 2. The framework of this study.

3. Results

3.1. Spatiotemporal Characteristics of Land Use Intensity

Figure 3 depicts the land use intensity for each county in the HRB in Hubei Province
from 2000 to 2020. High-value areas of land use intensity were primarily concentrated in the
southeast, where economic development was relatively advanced, whereas low-value areas
were primarily distributed in the northwest, where the ecological environment was superior
and development was relatively lagging. This result indicates that land use intensity has
a spatial pattern of “centralized distribution”. A high-value central area was formed by
Jianghan, Hanyang, and Qiaokou districts of Wuhan City. Other counties close to the high-
value area also had higher levels of land use intensity. The land use intensity decreased
gradually from the county center to the county periphery as the distance increased.

Overall, land use intensity showed a slight upward trend from 2000 to 2020. The
counties with the most notable increases were located in the southeast of the study area.
For example, the land use intensity of Caidian District changed from weak to medium, and
Hanyang District and Qiaokou District changed from strong to strongest. In addition, the
disparity in land use intensity between counties was narrowing, and land use intensity in
the whole study area remained relatively stable.

3.2. Spatiotemporal Characteristics of ESV
3.2.1. Temporal Change of ESV

Forest land and cultivated land in the study area constituted the largest share of
the landscape, accounting for 48.88% and 38.71% of the total area in 2020, respectively,
followed by water area and grassland (Table 4). From 2000 to 2020, the area of cultivated
land and forest land decreased the most, by 1119.04 km2 and 245.83 km2, respectively. The
total ESV of the HRB in Hubei Province was 2955.62 × 108 CNY, 2969.34 × 108 CNY, and
2956.30 × 108 CNY in 2000, 2010, and 2020, respectively (1 CNY = 0.1450 US dollar in 2020),
with an inverted U-shaped trend of first increasing and then decreasing. Overall, the total
ESV increased by 68 million CNY, representing a change rate of 0.02%. Table 4 shows that
the ESV of forest land accounted for the largest proportion, greater than 70% throughout
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the study period, followed by cultivated land and water area, with the highest proportions
in 2000 and 2020, respectively, being 16.24% and 12.14%.

Figure 3. The spatial pattern of land use intensity in the HRB of Hubei Province for (a) 2000; (b) 2010;
(c) 2020.

Table 4. ESV of different land use types in the HRB of Hubei Province from 2000 to 2020.

Land Use Types
Cultivated

Land
Forest
Land

Grassland
Water
Area

Unused
Land

Built-Up
Land

Total

2000
Areas (km2) 32,289.44 39,609.20 2364.14 3843.85 87.14 2336.39 80,530.16

ESV (108 CNY) 479.93 2095.58 51.91 327.97 0.23 0.00 2955.62

2010
Areas (km2) 31,786.21 39,546.33 2357.83 4132.90 86.27 2620.62 80,530.16

ESV (108 CNY) 472.45 2092.25 51.77 352.63 0.23 0.00 2969.34

2020
Areas (km2) 31,170.40 39,363.37 2334.04 4207.03 84.04 3371.28 80,530.16

ESV (108 CNY) 463.30 2082.57 51.25 358.96 0.22 0.00 2956.30

2000–2010
Areas (km2) −503.23 −62.87 −6.31 289.05 −0.87 284.23 0.00

ESV (108 CNY) −7.48 −3.33 −0.14 24.66 0.00 0.00 13.72

2010–2020
Areas (km2) −615.81 −182.96 −23.79 74.13 −2.23 750.66 0.00

ESV (108 CNY) −9.15 −9.68 −0.52 6.33 −0.01 0.00 −13.04

2000–2020
Areas (km2) −1119.04 −245.83 −30.10 363.18 −3.10 1034.89 0.00

ESV (108 CNY) −16.63 −13.01 −0.66 30.99 −0.01 0.00 0.68

Figure 4 exhibits the changes in the ESV of different categories of ES in the study
area from 2000 to 2020. These changes were minor, and the structure of the ESV re-
mained relatively stable. The regulation services provided the largest value, reaching up to
1589.89 × 108 CNY in 2020. The ESV of cultural services was the lowest, at only 203.02
× 108 CNY in the same year. Among the nine subtypes of ES, the value of hydrological
regulation services was the largest, at 503.32 × 108 CNY in 2020, followed by biodiversity,
soil conservation, and climate regulation services, with values of 429.25 × 108 CNY, 397.04
× 108 CNY, and 381.49 × 108 CNY, respectively. During the study period, the hydrological
regulation and waste disposal services increased by 9.23 × 108 CNY and 6.35 × 108 CNY,
respectively, whereas all other types of ES showed a slight decline.
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Figure 4. ESV of different ecosystem service types from 2000 to 2020.

3.2.2. Spatial Distribution Characteristics of ESV

We used the ArcGIS 10.3 software to spatially visualize ESV and then classified
it into five grades using the natural breaks method. As shown in Figure 5, the ESV
exhibited clear spatial differentiation. From 2000 to 2020, the high-value areas of ESV
were mainly distributed in the west and northwest of the study area, especially in Maojian,
Fangxian, Baokang, and Shennongjia. The higher value of ESV was the result of the presence
of water bodies, forests, and vegetation in these counties. The low-value areas were
mainly distributed in the southeastern areas, where cultivated land and the economically
developed areas were concentrated. Overall, the spatial distribution of ESV was high in
the northwest and low in the southeast. Figure 5d depicts the spatial distribution of ESV
change rates from 2000 to 2020, indicating that the ESV decreases in the majority of counties
within the study area, with change rates ranging from −3.18% to 0.80%. The Qiaokou,
Jianghan, and Hanyang districts experienced the largest declines in ESV, with respective
change rates of −17.92%, −14.53%, and −12.75%; Xiantao witnessed the largest growth in
ESV, which was up to 14.23%. The spatial distribution of the ESV change rates was closely
related to the land use structures and regulation policies of different counties.

Based on a hot spot analysis, we further revealed the spatial agglomeration character-
istics and evolution of ESV in the HRB of Hubei from 2000 to 2020 (Figure 6). The spatial
agglomeration of ESV was insignificant in nearly two-thirds of the study area, and the
significant regions were mainly distributed in the northwest and southeast. The high-value
(hot spot) agglomeration areas of ESV were mainly distributed in the northwest, whereas
the low-value (cold spot) agglomeration areas were mainly distributed in the southeast,
forming the spatial pattern of high in the northwest and low in the southeast. From 2000
to 2020, the range of hot spot and cold spot agglomerations remained stable, with the
confidence level of hot spots for several counties reducing from 99% to 95%, while the
strength of the significance weakened.
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Figure 5. Spatial distribution of ESV (a–c) and the change rates (d) in the HRB of Hubei Province for
2000, 2010, and 2020.

3.3. Spatial Correlations between Land Use Intensity and ESV

The results from the global bivariate Moran’s I revealed significant negative spatial cor-
relations between land use intensity and ESV, regardless of the ES type
(all Moran’s I values < 0) (Figure 7). The global bivariate Moran’s I in 2000, 2010, and 2020
was −0.63, −0.65, and −0.66 respectively; the majority of the values are in the second and
fourth quadrants. The absolute values of Moran’s I from 2020 to 2020 also indicated that the
negative correlation was becoming increasingly stronger. This strongly demonstrates that
the deepening of land use intensity will lead to the decrease in ESV in the HRB. Figure 8
presents the bivariate local spatial autocorrelation LISA aggregation maps between land
use intensity and ESV at the county level for the years 2000, 2010, and 2020. The clustering
pattern of the correlation between land use intensity and ESV was obvious, and there
were only two types of spatial correlations between the two, namely, LH (low land use
intensity vs. high ESV) and HL (high land use intensity vs. low ESV). The LH areas were
mainly concentrated in the northwest of the study area, and the HL areas were in the
southeast. During the study period, the spatial correction between land use intensity and
ESV exhibited a slight shift in its clustering pattern. From 2000 to 2010, both Qianjiang
and Xiantao cities changed from HL to insignificant, and the changes in Shayang County
and Qiaokou District exhibited the opposite change pattern (Figure 8a,b). Tianmen City
changed from HL to not-significant land use during 2010–2020 (Figure 8c).
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Figure 6. Spatial agglomeration characteristics of ESV in the HRB of Hubei Province for (a) 2000,
(b) 2010, and (c) 2020.

 

(a)  (b)  (c)  

Figure 7. Moran scatter plots of land use intensity with ESV in the HRB of Hubei Province for
(a) 2000, (b) 2010, and (c) 2020.
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Figure 8. LISA cluster maps between land use intensity and ESV in the HRB of Hubei Province for
(a) 2000, (b) 2010, and (c) 2020.

3.4. Spatial Variability of Driving Factors on ESV Changes
3.4.1. Results of GDM

The factor detection module of the GDM was used to quantify the impacts of natural
and socio-economic factors on ESV (Table 5). Among the natural factors, the percentages
of forest land (X4) and slope (X3) had the greatest explanatory power (with q values of
0.87 and 0.81, respectively) for ESV spatial variation. Regarding the socio-economic factors,
the explanatory power of the percentage of built-up land (X10) and GDP (X6) on ESV
variations was 0.74 and 0.65, respectively, and both were significant at the 1% level. Only
the precipitation (X2) and distance to the water system (X5) did not have significant effects
on ESV.

Table 5. Factor detection results of driving factors of ESV.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

q statistic 0.75 0.19 0.81 0.87 0.27 0.65 0.55 0.41 0.50 0.74
p value 0.00 *** 0.37 0.00 *** 0.00 *** 0.13 0.00 *** 0.00 *** 0.03 ** 0.00 *** 0.00 ***

rank 3 10 2 1 9 5 6 8 7 4

Note: *** and ** represent that p is significant at the 0.01 and 0.05 levels, respectively.

According to the results of the interaction detector (Table 6), there was no mutual
weakening in the 45 pairs of interaction combinations, indicating that the impact of multiple
driving factors on ESV is greater than that of a single factor. Except for the interaction
results of the precipitation (X2) and the distance to a water system (X5), which are of the
nonlinear enhancement type, the interaction results of the other bivariate combinations
were enhanced. For example, the interaction between the percentage of forest land (X4) and
the distance to a road (X9) explained the ESV changes with the greatest explanatory power
(q value = 0.94), followed by the interaction between the percentage of forest land (X4) and
the distance to a water system (X5), as well as the percentage of forest land (X4) and GDP
(X6), with a q value of 0.92. The results of the interactive detection further verify that the
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percentage of forest land played a leading role in the spatial distribution of regional ESV
changes.

Table 6. Interaction detection results of driving factors of ESV.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

X1 0.75
X2 0.84 0.19
X3 0.83 0.84 0.81
X4 0.83 0.60 0.89 0.87
X5 0.87 0.75 # 0.87 0.92 0.27
X6 0.86 0.80 0.89 0.92 0.81 0.65
X7 0.88 0.69 0.89 0.90 0.61 0.82 0.55
X8 0.83 0.64 0.85 0.90 0.65 0.83 0.66 0.41
X9 0.78 0.69 0.85 0.94 0.80 0.82 0.76 0.71 0.50
X10 0.86 0.79 0.90 0.90 0.85 0.85 0.75 0.83 0.80 0.74

Note: # denotes nonlinear enhancement of any two factor; without # denotes enhancement of any two factor.

3.4.2. Results of GWR

Table 7 depicts the performance parameters of the GWR and the ordinary least squares
regression (OLS) model, which suggest that the GWR model has a better predictive ability
than the OLS, as it had higher R2 and adjusted R2 values, and a lower AICc value.

Table 7. Statistic coefficients for GWR and OLS.

R2 Adjusted R2 AICc

GWR 0.93 0.90 49.52
OLS 0.88 0.84 248.48

Since the GDM found that precipitation (X2) and the distance to a water system (X5)
have no significant impact on ESV, we removed these two factors and only explored the
spatial distribution of regression coefficients for the remaining eight factors. As illustrated
in Figure 9, each driving factor had an obvious spatial heterogeneity, indicating that the
same factor had different impacts on the ESV at different spatial locations, and there
was a significant spatial non-stationarity. Among the natural factors, ESV had a signifi-
cant positive correlation with temperature, slope, and the percentage of forest land, with
a higher correlation coefficient in the southeast and a lower correlation coefficient in the
northwest (Figure 9a–c). This indicates that the enhancement of these factors contributes
to the improvement of ESV. In terms of socio-economic factors, the regression coefficients
of GDP and population density were both negative, demonstrating that an increase in
these factors will weaken the ESV. The distance to the county center and the distance to
a road had negative correlations with ESV in most regions, and only a few counties in
the southeast had a positive correlation. The absolute values of the influence of GDP and
percentage of built-up land were consistent, with high values in the southeast and low
values in the northwest, which were spatially similar to the driving forces of natural factors.
The effects of population density, distance to county center, and distance to a road on ESV
were not only consistent in their correlation but were also similar in distribution, showing
values of high in the northwest and low in the southeast (Figure 9d–h). In conclusion,
the order for the size of the impacts of the eight driving factors on ESV was as follows:
percentage of forest land > population density > percentage of built-up land > slope >
temperature > GDP > distance to a road > distance to the county center (Figure 9).
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Figure 9. Spatial distribution of regression coefficients in GWR.
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4. Discussion

4.1. Spatial Relationship between Land Use Intensity and ESV

From 2000 to 2010, ESV experienced an inverted U-shaped trend. The changes in ESV
were mainly due to unreasonable land use planning and low land utilization rate, which
led to the rapid growth of built-up land at the expense of forest land, cultivated land, and
grassland. Land use intensity has a significant negative relationship with ESV [57]. Socio-
economic development led to dramatic changes in land use structure, and the increase in
land use intensity was the direct cause of ESV degradation [58,59]. To further explore the
characteristics of the spatial correlation between land use intensity and ESV, we used the
bivariate spatial autocorrelation method to study the spatial relationship between the two.
During the study period, the Moran’s I was entirely negative, and its absolute value showed
a trend of increasing (Figure 7). This indicated that the negative correlation between land
use intensity and ESV in the study area had become more pronounced over time, which
was in line with prior studies on the relationship between LUCC and ESV [60,61]. The
intensification of land use was mainly manifested in the increasing expansion of built-up
land; the continuous occupation of cultivated land, forest land, and grassland; the extensive
land utilization; and the low land utilization. Consequently, the ES provided by ecosystems
was deteriorating. The LISA cluster maps revealed a significant spatial correlation between
land use intensity and ESV (Figure 8). The LH areas were mainly distributed in the hilly
and mountainous areas with higher terrain and steeper slopes in the northwest of the study
area (such as the Shennongjia Mountain, Wudang Mountain, etc.), while HL areas were
mainly distributed in the middle and lower reaches of the Yangtze River with flat terrain
and dense lakes in the southeastern part of the study area, particularly in Wuhan—which
is known as the “city of a thousand lakes”—and the surrounding cities. This was due to
the mountainous and hilly terrain in the northwest region, which made land development
difficult and costly. In addition, the area of forest land in this region is large, which provides
human society with crucial ES such as biodiversity maintenance, climate regulation, and
ecological conservation; thus, the ESV was high. The situation in the southeast was the
opposite of that in the northwest. The unique natural environment created the conditions
for high-density population agglomeration and high-intensity land development, resulting
in the disorderly spread of built-up land and the occupation of ecological lands, especially
water bodies and cultivated land; thus, the ESV in this region was at a low level.

For the ecosystem in the HRB of Hubei Province, the middle route of the
South-to-North Water Diversion Project is undoubtedly one of the most representative
human activities. The opening of the project had a great impact on the aquatic ecological
environment, climate conditions, and people’s production and life in this area. Due to the
reduction in the water volume in the basin, there are problems such as the decline in the
water purification capacity, the reduction of aquatic organisms, the decrease in aquatic
environmental carrying capacity, and the deterioration of the aquatic ecological environ-
ment. At the same time, the industrial and agricultural sectors—with a great demand
for water—are facing a water shortage, and the industrial structure is changing, which
will affect the production and lifestyles of people in the region [62]. The construction of
the project also brought about the problem of immigration. The change from farmland
to settlement and the establishment of new residential areas for immigrants are among
the reasons for the expansion of built-up land and the reduction of cultivated land and
forest land [63].

4.2. Identifying Driving Factors Affecting ESV

According to the Geographical Detector Model (GDM) (Tables 5 and 6), the percentage
of forest land had the largest positive effect on ESV, which was consistent with previous
studies where regions with a large forest area provided greater regulation and support
services and had higher ESV [64,65]. Thus, strengthening the protection of forest land and
increasing the forest coverage rate of each county is of great significance for promoting
regional climatic improvement and alleviating the greenhouse and heat island effect. The
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results of the Geographically Weighted Regression (GWR) analysis further revealed the
dominant role of natural factors with respect to ESV and the growing trend of socio-
economic factors (Figure 9). Natural factors had positive impacts on ESV and the regions
with more favorable natural conditions had larger ESVs. However, the areas with high
driving coefficients of natural factors were concentrated in the economically developed
counties in the southeast. This was because better economic conditions in many regions
come at the expense of environmental degradation. Therefore, if the protection of the
natural environment of counties in this region is enhanced, based on the same input
conditions, the increase in ESV must be much higher than those of the regions with
relatively poor socio-economic conditions but a superior ecological environment. This
can also explain the “high in the northwest and low in the southeast” distribution of
socio-economic factors such as GDP. Nevertheless, not all socio-economic factors had the
same distribution of driving forces as GDP. For example, the distribution of the driving
coefficients of population density, the distance to the county center, and the distance
to a road was “low in the northwest and high in the southeast”. This indicated that
the improvement of socio-economic conditions had less of an effect on the ESV of the
undeveloped counties in the northwest. For these regions, the improvement in socio-
economic conditions would not result in a substantial decrease in ESV. However, for the
more economically developed and densely populated southeastern regions, the lack of
environmental protection would increase regional environmental pressure and lead to
a rapid decline in ESV [66]. The influence of the distance to the county center and the
distance to a road on ESV was predominantly negative, except for a few northwest counties.

In conclusion, ESV was influenced by both natural and socio-economic factors in
an interactive way [67]. Although multiple types of ES are provided by natural systems
to maintain human welfare, human activities have altered the structure and function of
ecosystems, which further affect the provision of vital ES by ecosystems [68]. Therefore,
it is important to protect and restore the crucial ecosystems through landscape planning,
regulative policies, and environmental programs.

4.3. Policy Implications

The increased land use intensity during rapid urbanization and social-economic de-
velopment has inevitably degraded the ecological environment [69,70], as evidenced by the
reduction of forest land and cultivated land, air pollution, severe climate change, waste
of land resources, etc. The existing land use planning and policies have not adequately
recognized the negative impact of land use intensification on ESV [71]. With a greater
emphasis on the sustainable development of humans and the environment in the future,
the protection of ecosystems will inevitably become the core of social and economic devel-
opment. Therefore, we should adhere to the developmental idea of “ecological priority”
and attach importance to the rational use of land to enhance ESV. This study proposes
the following practical policy recommendations for the Hanjiang River Basin in Hubei
Province. First, since the study area is a river basin, its regulation and support services are
particularly prominent. Therefore, the sustainability of the river basin should be based on
the protection of forest land and water areas [72,73]. Decision makers should increase the
vegetation coverage of river basins through forest restoration and reforestation programs,
increase the supervision of the aquatic environment, and moderately restore farmland to
forests and grasslands. Second, due to the imbalanced regional development, counties
with varying levels of socio-economic development should adopt locally differentiated
regulation policies and regulation measures. For mountain counties, ecological compen-
sation policies should be implemented to improve local economic and social conditions,
while for plain counties, it is necessary to strictly control the expansion of built-up land
and strengthen the protection of ecological land. It is possible to establish a long-term
cross-regional ecological compensation and monitoring mechanism between mountain
and plain counties. Third, to achieve the coordinated development of the socio-economy
and the environment, future decision-making should incorporate ES into spatial-planning
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and socio-economic development policies. The ESV should be evaluated before projects
progress to construction to mitigate the negative effects of human activities on ecosystems.

4.4. Limitations and Future Work

This study has several limitations. First, due to the opening of the middle route of the
South-to-North Water Diversion Project, the natural and socio-economic environment of
the HRB has been greatly affected by the change in water resources. However, the impacts
of the project on local ecosystems could not be fully revealed in this study. The ESV in this
study was estimated based on land use/cover data and their equivalent values proposed
by Xie et al. (2003 and 2008). The change in land use/cover area cannot fully reflect the
impact of the South-to-North Water Diversion Project on the ecosystem. Second, this study
mainly evaluated the ecosystem as a whole, without considering the in-depth analysis of
the primary and secondary services of the ecosystem. Furthermore, driving factors were
selected at the macro level, such as the annual mean temperature, slope, and GDP, without
considering the interactions with micro factors such as soil, the sediment concentration,
microelements, etc. Our future research will improve the assessment method of ESV and
evaluate ESV at the township level or grid scale [74], and the land types will be subdivided
to obtain a more accurate estimation of ESV.

5. Conclusions

The change in ESV is the result of the joint action of natural and human forces.
Exploring the temporal and spatial variation of ESV and revealing its driving factors
is crucial for promoting the harmonious coexistence between human and nature. Our study
analyzed how ESV changed over time due to the change in land use intensity. From 2000 to
2020, the area of built-up land increased from 2336.39 km2 to 3371.28 km2, while the area
of cultivated land, grassland, and forest land decreased. The ESV of the Han River Basin
in Hubei Province experienced an inverted U-shaped trend, with an increase followed by
a decrease, and had the spatial distribution characteristics of high in the northwest and low
in the southeast. The counties with larger forest land and water areas tended to have higher
ESVs. Additionally, there was a significant negative correlation between land use intensity
and ESV, which was most prominent in the northwest (LH type) and southeast (HL type)
of the study area. From the analysis of the driving forces, it was found that the interaction
between driving factors had a greater impact on the spatial variability of ESV than that
of single factors. The spatial regression results indicated that natural factors, such as the
percentage of forest land, temperature, and slope, have positive impacts on ESV, and their
influence gradually increased from northwest to southeast. There was a significant spatial
differentiation between socio-economic factors, i.e., both positive and negative relationships
existed, and the spatial distributions of the influence coefficients were opposite to those of
natural factors. In general, the influence of natural factors on ESV was greater and more
significant than that of socio-economic factors, while the impact and spatial heterogeneity
of socio-economic factors on ESV tended to increase. The findings in this study could
provide implications for spatial planning towards promoting the sustainable development
of ecosystems.
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Appendix A.

The detailed description of the methods used in this study can be found in Appendix A.

Appendix A.1. Methods

Appendix A.1.1. Hot Spot Analysis

Getis–Ord Gi* is an index of local spatial autocorrelation used to explore the spatial
clustering of high values (hot spots) or low values (cold spots) of spatial variables [48]. The
output can be represented with the Z-score, p-value, and confidence level. We used the
Getis–Ord Gi* tool in the ArcGIS 10.3 software to analyze the hot spots and cold spots of
ESV in the study area. The expression is as follows [75]:

G∗ =
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j=1 WijXj − X ∑n
i=1 Wij
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where G* is the Z-score; n is the number of units; Xi and Xj represent the observations of
variable X in i and j space units, respectively; Wij is a spatial weight matrix; and X and
s are the average value and standard deviation, respectively. The higher the Z-score, the
denser the high-values (hot spots) are, which means the higher the attribute value around
the unit, and vice versa.

Appendix A.1.2. Bivariate Spatial Autocorrelation Model

Spatial autocorrelation refers to the statistical correlation of a certain attribute value of
a geographic object with spatial location differences. Generally, the closer the two values
are, the greater the correlation. Spatial autocorrelation analysis is an important indicator
to measure the aggregation or discrete distribution of spatial elements, and is generally
described by global Moran’s I and local Moran’s I [49]. The Moran’s I value is expressed as
follows:

Moran′s I =
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(
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)2 (A4)

where n is the number of the geographic unit (i.e., 39 counties in this study); Xi and Xj

denote the actual attribute values in the sampling plots i and j, respectively; X is the average
value of X; and Wij is a spatial weight matrix. When Moran’s I < 0, it indicates a negative
correlation; when Moran’s I = 0, it indicates no correlation; and when Moran’s I > 0, it
indicates a positive correlation. The greater the value, the larger the correlation between
the observed values in the spatial distribution and the stronger the aggregation.

The global autocorrelation tests the spatial vergence pattern of the spatial variables
over the entire research range, while the local spatial autocorrelation captures the correlation
of the variables in different regional units [50]. The formula is as follows:

Ii
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n

∑
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Wijz
j
l (A5)
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where zi
k =

Xi
k−Xk
ek

, zj
l =

Xi
l− Xl

el
; Xi

k is the value of attribute k of sampling plot i; Xj
l is the

value of attribute l of sampling plot j; Xk and Xl is the average values of attributes k and l,
respectively; and ek and el are the variances of attributes k and l, respectively.

Appendix A.1.3. Analysis of the Driving Mechanism

Geographical Detector Model

The GDM comprises risk detection, factor detection, ecological detection, and in-
teractive detection, which can be used to detect spatial variation and identify potential
influencing factors [53]. The GDM has been widely used in many fields, including social
economy and ecological environments [51,54]. The expression of the GDM is as follows:

q = 1 − 1
Nσ2

L

∑
j=1

Njσ
2
j (A6)

where q represents the explanatory ability of the independent variable (including natural
and socio-economic factors) towards the dependent variable (ESV), and q ∈ [0, 1]; N is the
total sample size in the study area; σ2 is the variance; and j represents partition (j = 1,2,
. . . , L). When q is closer to 1, it indicates that the driving factor has a greater impact on the
independent variable and that the spatial heterogeneity is stronger, and vice versa.

Geographically Weighted Regression

The GWR is an extension of the traditional regression analysis method that can es-
timate data with spatial autocorrelation and reflect the spatial heterogeneity of parame-
ters [55]. The GWR can reveal the direction and magnitude of influence of each factor in
different locations [56]. The expression is as follows:

yk = β0(uk, vk) + ∑n
i=1 βi(uk, vk)xki + ck (A7)

where yk is the weighted regression value of k-th sample; β0 is the intercept; (uk, vk) is the
geographic center coordinate of the k-th sample; β0(uk, vk) is the constant term; βi(uk, vk)
is the coefficient of the k-th independent variable of i-th driving factor; xki is the i-th
independent variable of the k-th sample; and ck is the error term. In this study, ESV is the
dependent variable, and natural and socio-economic factors are the independent variables.

References

1. Costanza, R.; dArge, R.; deGroot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; Oneill, R.V.; Paruelo, J.; et al. The
value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [CrossRef]

2. Daily, G.C. Nature’s Services: Societal Dependence on Natural Ecosystems (1997). In The Future of Nature: Documents of Global
Change; Libby, R., Sverker, S., Paul, W., Eds.; Yale University Press: New Haven, CT, USA, 2013; pp. 454–464.

3. Hasan, S.; Shi, W.Z.; Zhu, X.L. Impact of land use land cover changes on ecosystem service value—A case study of Guangdong,
Hong Kong, and Macao in South China. PLoS ONE 2020, 15, e231259. [CrossRef] [PubMed]

4. Tolessa, T.; Senbeta, F.; Kidane, M. The impact of land use/land cover change on ecosystem services in the central highlands of
Ethiopia. Ecosyst. Serv. 2017, 23, 47–54. [CrossRef]

5. Zhu, S.; Huang, J.; Zhao, Y. Coupling coordination analysis of ecosystem services and urban development of resource-based
cities: A case study of Tangshan city. Ecol. Indic. 2022, 136, 108706. [CrossRef]

6. Xie, G.D.; Lu, C.X.; Xiao, Y.; Zheng, D. Ecological assets valuation of the Tibetan Plateau. J. Mt. Sci. 2003, 21, 50–55. [CrossRef]
7. Xie, G.D.; Zhen, L.; Lu, C.X.; Xiao, Y. Expert knowledgy based valuation method of ecosystem services in China. J. Nat. Resour.

2008, 23, 911–919.
8. Zheng, L.; Wang, Y.; Li, J. How to achieve the ecological sustainability goal of UNESCO Global Geoparks? A multi-scenario

simulation and ecological assessment approach using Dabieshan UGGp, China as a case study. J. Clean. Prod. 2021, 329, 129779.
[CrossRef]

9. Ge, Q.Q.; Xu, W.J.; Fu, M.C.; Han, Y.X.; An, G.Q.; Xu, Y.T. Ecosystem service values of gardens in the Yellow River Basin, China. J.
Arid. Land 2022, 14, 284–296. [CrossRef]

10. Su, K.; Wei, D.Z.; Lin, W.X. Evaluation of ecosystem services value and its implications for policy making in China—A case study
of Fujian province. Ecol. Indic. 2020, 108, 105752. [CrossRef]

19



Int. J. Environ. Res. Public Health 2022, 19, 10950

11. Zhao, H.; Zhang, H.L.; Wang, F.Q.; Kang, P.P.; Lu, S.B. Service value of wetland ecosystem in Sanmenxia Reservoir area. Glob.
Glob. Nest J. 2020, 22, 463–470. [CrossRef]

12. Wang, F.; Yuan, X.Z.; Zhou, L.L.; Liu, S.S.; Zhang, M.J.; Zhang, D. Detecting the Complex Relationships and Driving Mechanisms
of Key Ecosystem Services in the Central Urban Area Chongqing Municipality, China. Remote Sens. 2021, 13, 4248. [CrossRef]

13. Xiao, Z.L.; Liu, R.; Gao, Y.H.; Yang, Q.Y.; Chen, J.L. Spatiotemporal variation characteristics of ecosystem health and its driving
mechanism in the mountains of southwest China. J. Clean. Prod. 2022, 345, 131138. [CrossRef]

14. Zhang, K.L.; Liu, T.; Feng, R.R.; Zhang, Z.C.; Liu, K. Coupling Coordination Relationship and Driving Mechanism between
Urbanization and Ecosystem Service Value in Large Regions: A Case Study of Urban Agglomeration in Yellow River Basin, China.
Int. J. Environ. Res. Public Health 2021, 18, 7836. [CrossRef]

15. De Groot, R.S.; Alkemade, R.; Braat, L.; Hein, L.; Willemen, L. Challenges in integrating the concept of ecosystem services and
values in landscape planning, management and decision making. Ecol. Complex. 2010, 7, 260–272. [CrossRef]

16. Elmqvist, T.; Setala, H.; Handel, S.N.; van der Ploeg, S.; Aronson, J.; Blignaut, J.N.; Gomez-Baggethun, E.; Nowak, D.J.; Kronenberg,
J.; de Groot, R. Benefits of restoring ecosystem services in urban areas. Curr. Opin. Environ. Sustain. 2015, 14, 101–108. [CrossRef]

17. Pan, J.H.; Wei, S.M.; Li, Z. Spatiotemporal pattern of trade-offs and synergistic relationships among multiple ecosystem services
in an arid inland river basin in NW China. Ecol. Indic. 2020, 114, 106345. [CrossRef]

18. Ran, C.; Wang, S.J.; Bai, X.Y.; Tan, Q.; Zhao, C.W.; Luo, X.L.; Chen, H.; Xi, H.P. Trade-Offs and Synergies of Ecosystem Services in
Southwestern China. Environ. Eng. Sci. 2020, 37, 669–678. [CrossRef]

19. Chen, W.; Zeng, J.; Zhong, M.; Pan, S. Coupling Analysis of Ecosystem Services Value and Economic Development in the Yangtze
River Economic Belt: A Case Study in Hunan Province, China. Remote Sens. 2021, 13, 1552. [CrossRef]

20. Yang, Z.; Zhan, J.; Wang, C.; Twumasi-Ankrah, M.J. Coupling coordination analysis and spatiotemporal heterogeneity between
sustainable development and ecosystem services in Shanxi Province, China. Sci. Total. Environ. 2022, 836, 155625. [CrossRef]

21. Sun, Y.X.; Liu, S.L.; Shi, F.N.; An, Y.; Li, M.Q.; Liu, Y.X. Spatio-temporal variations and coupling of human activity intensity
and ecosystem services based on the four-quadrant model on the Qinghai-Tibet Plateau. Sci. Total Environ. 2020, 743, 140721.
[CrossRef]

22. Wang, J.L.; Zhou, W.Q.; Pickett, S.T.A.; Yu, W.J.; Li, W.F. A multiscale analysis of urbanization effects on ecosystem services supply
in an urban megaregion. Sci. Total Environ. 2019, 662, 824–833. [CrossRef]

23. Xi, H.H.; Cui, W.L.; Cai, L.; Chen, M.Y.; Xu, C.L. Evaluation and Prediction of Ecosystem Service Value in the Zhoushan Islands
Based on LUCC. Sustainability 2021, 13, 2302. [CrossRef]

24. Rahman, M.; Szabó, G. Impact of Land Use and Land Cover Changes on Urban Ecosystem Service Value in Dhaka, Bangladesh.
Land 2021, 10, 793. [CrossRef]

25. Yang, J.; Zeng, C.; Cheng, Y.J. Spatial influence of ecological networks on land use intensity. Sci. Total Environ. 2020, 717, 137151.
[CrossRef] [PubMed]

26. Xu, F.; Wang, Z.; Chi, G.; Zhang, Z. The impacts of population and agglomeration development on land use intensity: New
evidence behind urbanization in China. Land Use Policy 2020, 95, 104639. [CrossRef]

27. Ye, S.; Ren, S.; Song, C.; Cheng, C.; Shen, S.; Yang, J.; Zhu, D. Spatial patterns of county-level arable land productive-capacity and
its coordination with land-use intensity in mainland China. Agric. Ecosyst. Environ. 2022, 326, 107757. [CrossRef]

28. Zhang, Y.J.; Song, W.; Fu, S.; Yang, D.Z. Decoupling of Land Use Intensity and Ecological Environment in Gansu Province, China.
Sustainability 2020, 12, 2779. [CrossRef]

29. Ge, B.M.; Zhou, J.; Yang, R.P.; Jiang, S.H.; Yang, L.; Tang, B.P. Lower land use intensity promoted soil macrofaunal biodiversity on
a reclaimed coast after land use conversion. Agric. Ecosyst. Environ. 2021, 306, 107208. [CrossRef]

30. Wu, X.; Liu, S.; Zhao, S.; Hou, X.; Xu, J.; Dong, S.; Liu, G. Quantification and driving force analysis of ecosystem services supply,
demand and balance in China. Sci. Total Environ. 2019, 652, 1375–1386. [CrossRef]

31. Liu, S.N.; Lei, Y.; Zhao, J.S.; Yu, S.X.; Wang, L. Research on ecosystem services of water conservation and soil retention: A
bibliometric analysis. Environ. Sci. Pollut. Res. 2021, 28, 2995–3007. [CrossRef]

32. Zhou, Y.K.; Zhang, X.Y.; Yu, H.; Liu, Q.Q.; Xu, L.L. Land Use-Driven Changes in Ecosystem Service Values and Simulation of
Future Scenarios: A Case Study of the Qinghai-Tibet Plateau. Sustainability 2021, 13, 4079. [CrossRef]

33. Song, F.; Su, F.L.; Mi, C.X.; Sun, D. Analysis of driving forces on wetland ecosystem services value change: A case in Northeast
China. Sci. Total Environ. 2021, 751, 141778. [CrossRef] [PubMed]

34. Luo, Q.L.; Zhou, J.F.; Li, Z.G.; Yu, B.L. Spatial differences of ecosystem services and their driving factors: A comparation analysis
among three urban agglomerations in China’s Yangtze River Economic Belt. Sci. Total Environ. 2020, 725, 138452. [CrossRef]

35. Shao, M.; Wu, L.F.; Li, F.Z.; Lin, C.S. Spatiotemporal Dynamics of Ecosystem Services and the Driving Factors in Urban
Agglomerations: Evidence From 12 National Urban Agglomerations in China. Front. Ecol. Evol. 2022, 10, 804969. [CrossRef]

36. Chen, T.T.; Peng, L.; Liu, S.Q.; Wang, Q. Spatio-temporal pattern of net primary productivity in Hengduan Mountains area, China:
Impacts of climate change and human activities. Chin. Geogr. Sci. 2017, 27, 948–962. [CrossRef]

37. Yin, X.; Zhang, J.Y.; Chen, J. The Impact of Multi-Projects on the Alteration of the Flow Regime in the Middle and Lower Course
of the Hanjiang River, China. Water 2020, 12, 2301. [CrossRef]

38. Liu, C.X.; Wu, X.L.; Wang, L. Analysis on land ecological security change and affect factors using RS and GWR in the Danjiangkou
Reservoir area, China. Appl. Geogr. 2019, 105, 1–14. [CrossRef]

20



Int. J. Environ. Res. Public Health 2022, 19, 10950

39. Ren, W.; Zhang, X.; Peng, H. Evaluation of Temporal and Spatial Changes in Ecological Environmental Quality on Jianghan Plain
From 1990 to 2021. Front. Environ. Sci. 2022, 10, 884440. [CrossRef]

40. Li, X.P.; Zhang, L.W.; O’Connor, P.J.; Yan, J.P.; Wang, B.; Liu, D.L.; Wang, P.T.; Wang, Z.Z.; Wan, L.W.; Li, Y.J. Ecosystem Services
under Climate Change Impact Water Infrastructure in a Highly Forested Basin. Water 2020, 12, 2825. [CrossRef]

41. Qi, W.H.; Li, H.R.; Zhang, Q.F.; Zhang, K.R. Forest restoration efforts drive changes in land-use/land-cover and water-related
ecosystem services in China’s Han River basin. Ecol. Eng. 2019, 126, 64–73. [CrossRef]

42. Yu, G.M.; Li, M.X.; Tu, Z.F.; Yu, Q.W.; Jie, Y.; Xu, L.L.; Dang, Y.F.; Chen, X.X. Conjugated evolution of regional social-ecological
system driven by land use and land cover change. Ecol. Indic. 2018, 89, 213–226. [CrossRef]

43. Yang, N.; Zhang, K.; Hong, Y.; Zhao, Q.H.; Huang, Q.; Xu, Y.S.; Xue, X.W.; Chen, S. Evaluation of the TRMM multisatellite
precipitation analysis and its applicability in supporting reservoir operation and water resources management in Hanjiang basin,
China. J. Hydrol. 2017, 549, 313–325. [CrossRef]

44. Wang, Y.G.; Zhang, W.S.; Zhao, Y.X.; Peng, H.; Shi, Y.Y. Modelling water quality and quantity with the influence of inter-basin
water diversion projects and cascade reservoirs in the Middle-lower Hanjiang River. J. Hydrol. 2016, 541, 1348–1362. [CrossRef]

45. Huang, M.; Li, Y.; Xia, C.; Zeng, C.; Zhang, B. Coupling responses of landscape pattern to human activity and their drivers in the
hinterland of Three Gorges Reservoir Area. Glob. Ecol. Conserv. 2022, 33, e01992. [CrossRef]

46. Zhuang, D.F.; Liu, J.Y. Study on the model of regional differention of land use degree in China. J. Nat. Rescour. 1997, 12, 105–111.
47. Cao, L.; Li, J.; Ye, M.; Pu, R.; Liu, Y.; Guo, Q.; Feng, B.; Song, X. Changes of Ecosystem Service Value in a Coastal Zone of Zhejiang

Province, China, during Rapid Urbanization. Int. J. Environ. Res. Public Health 2018, 15, 1301. [CrossRef]
48. Getis, A.; Ord, J.K. The Analysis of Spatial Association by Use of Distance Statistics. Geogr. Anal. 1992, 24, 189–206. [CrossRef]
49. Anselin, L.J. Local indicators of spatial association—LISA. Geogr. Anal. 1995, 27, 93–115. [CrossRef]
50. Zhao, L.L.; Fan, X.C.; Lin, H.; Hong, T.; Hong, W. Impact of Urbanization on the Value of Ecosystem Services in Nanping City,

China. Pol. J. Environ. Stud. 2021, 30, 965–975. [CrossRef]
51. Fang, L.L.; Wang, L.C.; Chen, W.X.; Sun, J.; Cao, Q.; Wang, S.Q.; Wang, L.Z. Identifying the impacts of natural and human factors

on ecosystem service in the Yangtze and Yellow River Basins. J. Clean. Prod. 2021, 314, 127995. [CrossRef]
52. Wang, X.; Wu, J.; Liu, Y.; Hai, X.; Shanguan, Z.; Deng, L. Driving factors of ecosystem services and their spatiotemporal change

assessment based on land use types in the Loess Plateau. J. Env. Manag. 2022, 311, 114835. [CrossRef] [PubMed]
53. Wang, J.; Xu, C.J. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134.
54. Gao, J.B.; Jiang, Y.; Anker, Y. Contribution analysis on spatial tradeoff/synergy of Karst soil conservation and water retention for

various geomorphological types: Geographical detector application. Ecol. Indic. 2021, 125, 107470. [CrossRef]
55. Fotheringham, A.S.; Yang, W.B.; Kang, W. Multiscale Geographically Weighted Regression (MGWR). Ann. Am. Assoc. Geogr. 2017,

107, 1247–1265. [CrossRef]
56. Lu, B.B.; Charlton, M.; Harris, P.; Fotheringham, A.S. Geographically weighted regression with a non- Euclidean distance metric:

A case study using hedonic house price data. Int. J. Geogr. Inf. Sci. 2014, 28, 660–681. [CrossRef]
57. Li, B.W.; Yang, Z.F.; Cai, Y.P.; Xie, Y.L.; Guo, H.J.; Wang, Y.Y.; Zhang, P.; Li, B.; Jia, Q.P.; Huang, Y.P.; et al. Prediction and valuation

of ecosystem service based on land use/land cover change: A case study of the Pearl River Delta. Ecol. Eng. 2022, 179, 106612.
[CrossRef]

58. Hu, S.; Chen, L.Q.; Li, L.; Wang, B.Y.; Yuan, L.N.; Cheng, L.; Yu, Z.Q.; Zhang, T. Spatiotemporal Dynamics of Ecosystem Service
Value Determined by Land-Use Changes in the Urbanization of Anhui Province, China. Int. J. Environ. Res. Public Health 2019, 16,
5104. [CrossRef]

59. Zhang, P.Y.; Li, Y.Y.; Jing, W.L.; Yang, D.; Zhang, Y.; Liu, Y.; Geng, W.L.; Rong, T.Q.; Shao, J.W.; Yang, J.X.; et al. Comprehensive
Assessment of the Effect of Urban Built-Up Land Expansion and Climate Change on Net Primary Productivity. Complexity 2020,
2020, 8489025. [CrossRef]

60. Li, N.; Wang, J.Y.; Wang, H.Y.; Fu, B.L.; Chen, J.J.; He, W. Impacts of land use change on ecosystem service value in Lijiang River
Basin, China. Environ. Sci. Pollut. Res. 2021, 28, 46100–46115. [CrossRef]

61. Ye, Y.Q.; Zhang, J.E.; Wang, T.; Bai, H.; Wang, X.; Zhao, W. Changes in Land-Use and Ecosystem Service Value in Guangdong
Province, Southern China, from 1990 to 2018. Land 2021, 10, 426. [CrossRef]

62. Tan, L.; Yang, B.; Xue, Z.B.; Wang, Z.Q. Assessing Heavy Metal Contamination Risk in Soil and Water in the Core Water Source
Area of the Middle Route of the South-to-North Water Diversion Project, China. Land 2021, 10, 934. [CrossRef]

63. Gao, W.; Zeng, Y.; Zhao, D.; Wu, B.; Ren, Z. Land Cover Changes and Drivers in the Water Source Area of the Middle Route of the
South-to-North Water Diversion Project in China from 2000 to 2015. Chin. Geogr. Sci. 2020, 30, 115–126. [CrossRef]

64. Hu, B.A.; Kang, F.F.; Han, H.R.; Cheng, X.Q.; Li, Z.Z. Exploring drivers of ecosystem services variation from a geospatial
perspective: Insights from China’s Shanxi Province. Ecol. Indic. 2021, 131, 108188. [CrossRef]

65. Luo, Y.; Lu, Y.H.; Fu, B.J.; Zhang, Q.J.; Li, T.; Hu, W.Y.; Comber, A. Half century change of interactions among ecosystem services
driven by ecological restoration: Quantification and policy implications at a watershed scale in the Chinese Loess Plateau. Sci.
Total Environ. 2019, 651, 2546–2557. [CrossRef] [PubMed]

66. Zhang, Z.M.; Gao, J.F.; Fan, X.Y.; Lan, Y.; Zhao, M.S. Response of ecosystem services to socioeconomic development in the Yangtze
River Basin, China. Ecol. Indic. 2017, 72, 481–493. [CrossRef]

21



Int. J. Environ. Res. Public Health 2022, 19, 10950

67. Li, W.S.; Wang, L.Q.; Yang, X.; Liang, T.; Zhang, Q.; Liao, X.Y.; White, J.R.; Rinklebe, J. Interactive influences of meteorological and
socioeconomic factors on ecosystem service values in a river basin with different geomorphic features. Sci. Total Environ. 2022,
829, 154595. [CrossRef]

68. Zhang, Z.P.; Xia, F.Q.; Yang, D.G.; Huo, J.W.; Wang, G.L.; Chen, H.X. Spatiotemporal characteristics in ecosystem service value
and its interaction with human activities in Xinjiang, China. Ecol. Indic. 2020, 110, 105826. [CrossRef]

69. Guo, P.F.; Zhang, F.F.; Wang, H.Y. The response of ecosystem service value to land use change in the middle and lower Yellow
River: A case study of the Henan section. Ecol. Indic. 2022, 140, 109019. [CrossRef]

70. Long, H.L.; Liu, Y.Q.; Hou, X.G.; Li, T.T.; Li, Y.R. Effects of land use transitions due to rapid urbanization on ecosystem services:
Implications for urban planning in the new developing area of China. Habitat Int. 2014, 44, 536–544. [CrossRef]

71. Du, X.J.; Huang, Z.H. Ecological and environmental effects of land use change in rapid urbanization: The case of hangzhou,
China. Ecol. Indic. 2017, 81, 243–251. [CrossRef]

72. Hou, J.; Qin, T.L.; Liu, S.S.; Wang, J.W.; Dong, B.Q.; Yan, S.; Nie, H.J. Analysis and Prediction of Ecosystem Service Values Based
on Land Use/Cover Change in the Yiluo River Basin. Sustainability 2021, 13, 6432. [CrossRef]

73. Luo, Q.; Luo, L.; Zhou, Q.; Song, Y. Does China’s Yangtze River Economic Belt policy impact on local ecosystem services? Sci.
Total Environ. 2019, 676, 231–241. [CrossRef]

74. Shen, J.S.; Li, S.C.; Liu, L.B.; Liang, Z.; Wang, Y.Y.; Wang, H.; Wu, S.Y. Uncovering the relationships between ecosystem services
and social- ecological drivers at different spatial scales in the Beijing-Tianjin- Hebei region. J. Clean. Prod. 2021, 290, 125193.
[CrossRef]

75. Tran, D.X.; Pla, F.; Latorre-Carmona, P.; Myint, S.W.; Gaetano, M.; Kieu, H.V. Characterizing the relationship between land use
land cover change and land surface temperature. ISPRS J. Photogramm. Remote Sens. 2017, 124, 119–132. [CrossRef]

22



Citation: Zhang, D.; Wang, J.; Wang,

Y.; Xu, L.; Zheng, L.; Zhang, B.; Bi, Y.;

Yang, H. Is There a Spatial

Relationship between Urban

Landscape Pattern and Habitat

Quality? Implication for Landscape

Planning of the Yellow River Basin.

Int. J. Environ. Res. Public Health 2022,

19, 11974. https://doi.org/10.3390/

ijerph191911974

Academic Editor: Paul B. Tchounwou

Received: 16 August 2022

Accepted: 19 September 2022

Published: 22 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

International  Journal  of

Environmental Research

and Public Health

Article

Is There a Spatial Relationship between Urban Landscape
Pattern and Habitat Quality? Implication for Landscape
Planning of the Yellow River Basin

Dike Zhang 1, Jianpeng Wang 2,3, Ying Wang 4,*, Lei Xu 5, Liang Zheng 2,3,*, Bowen Zhang 4,

Yuzhe Bi 4 and Hui Yang 4

1 School of Foreign Languages, China University of Geosciences, Wuhan 430074, China
2 Changjiang Institute of Survey, Planning, Design and Research, Wuhan 430014, China
3 Key Laboratory of Changjiang Regulation and Protection of Ministry of Water Resources,

Wuhan 430014, China
4 Department of Land Resources Management, China University of Geosciences, Wuhan 430074, China
5 Wuhan Economic and Technological Development Zone (Hannan District) Natural Resources and Planning Bureau,

Wuhan 430056, China
* Correspondence: yingwang0610@cug.edu.cn (Y.W.); zl@cug.edu.cn (L.Z.); Tel.: +86-13349868196 (Y.W.);

+86-18164008400 (L.Z.)

Abstract: The extent to which landscape spatial patterns can impact the dynamics and distribu-
tion of biodiversity is a key geography and ecology issue. However, few previous studies have
quantitatively analyzed the spatial relationship between the landscape pattern and habitat quality
from a simulation perspective. In this study, the landscape pattern in 2031 was simulated using a
patch-generating simulation (PLUS) model for the Yellow River Basin. Then, the landscape pattern
index and habitat quality from 2005 to 2031 were evaluated using the Fragstats 4.2 and the Integrated
Valuation of Ecosystem Services and Tradeoffs (InVEST) model. Furthermore, we analyzed the spatial
distribution characteristics and spatial spillover effects of habitat quality using spatial autocorrelation
analysis. Finally, the spatial association between the landscape pattern index and habitat quality was
quantitatively revealed based on a spatial lag model. The simulation results showed that: (1) from
2005 to 2031, the landscape of the Yellow River Basin would be dominated by grassland and unused
land, and the areas of construction land and water body will increase significantly, while the area of
grassland will decrease; (2) patch density (PD) and Shannon’s diversity index (SHDI) show significant
increases, while edge density (ED), landscape shape index (LSI), mean patch area (AREA_MN), and
contagion index (CONTAG) decrease; (3) from 2005 to 2031, habitat quality would decrease. The
high-value areas of habitat quality are mainly distributed in the upper reaches of the Yellow River
Basin, and the low-value areas are distributed in the lower reaches. Meanwhile, both habitat quality
and its change rate present positive spatial autocorrelation; and (4) the spatial relationships of habitat
quality with PD and COHESION are negative, while ED and LSI have positive impacts on habitat
quality. Specifically, landscape fragmentation caused by high PD has a dominant negative influence
on habitat quality. Therefore, this study can help decision makers manage future landscape patterns
and develop ecological conservation policy in the Yellow River Basin.

Keywords: land-use simulation; landscape pattern; habitat quality; spatial autocorrelation; spatial
regression; Yellow River Basin

1. Introduction

Land-use/cover change (LUCC) resulting from the interaction between human activ-
ities and the natural environment on temporal-spatial scales is directly expressed in the
form of changes in surface landscape patterns [1]. Landscape patterns are defined as the
spatial composition and configuration of land use. However, the rapid growth of industrial-
ization and urbanization has intensified changes in land use and ecological issues, such as
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landscape fragmentation, occupation of natural habitat, environmental pollution, and loss
of biodiversity [2], leading to a drastic reduction in habitat quality [3]. Habitat quality refers
to the ability of the environment to provide conditions for human sustainable development
and is an important support for species diversity and reproduction [4,5]. Numerous studies
have shown that landscape pattern changes have a strong effect on habitat quality [6–9].
For example, landscape continuity, which is important for species to exchange materials,
information, and energy flows, can lead to an increase in habitat quality. The increase in
patches leads to landscape fragmentation, which is detrimental to animal migration and
plant pollen dispersal and leads to a decrease in habitat quality. Most studies have utilized
only the traditional linear equation approach to examine the influences of landscape pattern
changes on regional habitat quality [10], ignoring the spatial autocorrelation and spatial
spillover properties of habitat quality. However, spatial regression models are able to solve
this problem, which can quantitatively analyze the spatial relationship between habitat
quality and landscape pattern by considering spatial autocorrelation. The Yellow River
Basin, an important ecological barrier in China’s ecological security strategy pattern, plays
an important role in biodiversity conservation and healthy ecosystem maintenance. How-
ever, rapid socioeconomic development has led to the expansion of construction land and
the loss of natural habitats in the Yellow River Basin. Therefore, it is necessary to simulate
landscape patterns and analyze the spatiotemporal characteristics of habitat quality. More
importantly, quantitative analysis of the spatial relationship between habitat quality and
landscape patterns is of great importance for maintaining biodiversity and promoting
sustainable development.

In recent years, many assessment methods have been applied to evaluate habitat
quality, such Social Values for Ecosystem Services (SolVES), ARtificial Intelligence for
Ecosystem Services (ARIES), Multi-scale Integrated Models of Ecosystem Services (MIMES),
and Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) [11–15]. Among
these models, the InVEST model is becoming a popular tool because it is more mature and
easier to operate [16]. For example, Moreira et al. [17] adopted the InVEST model to assess
the conservation status of Azorean natural habitats. Nematollahi et al. [18] evaluated the
roads’ effects on the natural habitats of wild sheep based on the InVEST habitat quality
module. Hack et al. [19] used the InVEST model to evaluate the impacts of built-up areas,
roads, and water pollution on habitat quality. To conclude, the InVEST model can be
applied to evaluate habitat quality in combination with habitat suitability and human
activities and provides more detailed information about biodiversity [13,20]. Thus, the
InVEST model is used in this study to evaluate the habitat quality of the Yellow River Basin.

Meanwhile, landscape patterns and biodiversity conservation have become one of
the most popular issues in landscape ecology. The correlation of land use, landscape pat-
terns, and ecosystems has drawn the attention of international scholars [21]. For example,
Zhu et al. [22] used gray correlation analysis to explore the correlation between habitat
quality and landscape pattern indexes in the eastern Qinghai-Tibet Plateau. Wu et al. [23]
used Pearson’s correlation analysis methods to investigate the influential factors of habitat
quality and showed that vegetation cover, intensity of human activity, and land-use change
can cause a decline in habitat quality. Yushanjiang et al. [24] found that landscape pattern
indexes were positively and negatively correlated with the ecosystem value in the Ebinur
Lake Basin by using multiple linear regression models. However, most studies have ignored
the spatial spillover effects of ecosystems, which are influenced not only by their own unit
but also by the habitat quality of neighboring units. This will reduce the validity of conclu-
sions. Noteworthy to mention is that most recent studies have begun to explore the spatial
association between landscape patterns and ecosystems [1]. For instance, Zhu et al. [25]
explored the effects of urbanization and landscape pattern changes on habitat quality in
Hangzhou by using ordinary least squares (OLS) and geographically weighted regression
(GWR) models. Chen et al. [26] used a multiscale spatial panel regression analysis approach
to explore the impact of landscape patterns on ecosystem services. Thus, research on the
mechanism of landscape pattern influence on habitat quality is gradually shifting from
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traditional linear correlation analysis or regressions to spatial econometric models. Quanti-
tative analyses of the spatial association between landscape pattern and habitat quality can
help to better understand the impact of changes in landscape pattern on habitat quality.

The abovementioned studies are very important guidelines for advancing habitat
quality research, but they are all from the perspective of the past to analyze the spatiotem-
poral characteristics of habitat quality in the region. There is a growing need to explore the
evolution of habitat quality from a simulation perspective, which can provide insights for
ecological conservation planning and sustainable development. Cellular automata (CA) is
the basis of many land-use simulation models. Researchers have proposed constrained CA,
CA-Markov, the Conversion of Land Use and its Effects at Small regional extent (CLUE-S),
and Future Land-Use Simulation (FLUS) models by improving the algorithms and tech-
niques of CA and used these methods to predict habitat quality in the future. For example,
Ding et al. [27] used the FLUS model to assess habitat quality changes in Dongying city in
2030 under multiple scenarios. Gomes et al. [28] simulated land use and habitat quality
by using CA in Lithuania. Tang et al. [29] combined the CA-Markov and CLUE-S models
to predict the evolution of habitat quality in Changli city. Li et al. [30] simulated urban
growth and integrated habitat quality by using the SLEUTH model. However, most of the
models were simulated based on each meta-cell scale and lacked the ability to simulate
the evolution of patches with multiple land-use types. In this study, a patch-generating
simulation (PLUS) model developed by Liang et al. [31] is adopted to simulate landscape
pattern change. Compared with other CA-based models, PLUS has higher simulation
accuracy and more realistic indicators of landscape patterns, which could provide more
accurate quantitative assessment of the impact of landscape pattern on habitat quality.

The Yellow River Basin has been an important part of achieving balanced east-west
and north-south development in China and plays an irreplaceable role in overall ecosystem
health and biodiversity conservation in China. In the context of ecological protection
and high-quality development, the evolution characteristics and spatial relationships of
the landscape pattern and habitat quality in Yellow River Basin deserve unprecedented
attention. Therefore, taking the Yellow River Basin as an example, this study quantitatively
analyzes the spatial relationship between landscape pattern and habitat quality using a
simulation approach to (1) simulate the future land use of Yellow River Basin based on
the PLUS model and analyze the dynamic changes of the landscape pattern; (2) assess the
spatiotemporal characteristics of habitat quality in Yellow River Basin using the InVEST
model; (3) identify the spatial clusters of habitat quality and its rate of change from 2005 to
2031 based on univariate spatial autocorrelation; and (4) quantitatively evaluate the effect
of the landscape pattern index on habitat quality based on the spatial lag model.

2. Materials and Methods

2.1. Study Area

The Yellow River flows through nine provinces (i.e., Qinghai, Sichuan, Ningxia, Gansu,
Shaanxi, Shanxi, Inner Mongolia, Henan, and Shandong). Eight of them are included in the
boundary of the Yellow River Basin in this study (Figure 1), with Sichuan being excluded.
Sichuan is often considered a part of the Yangtze River Economic Belt [32,33]. Generally,
the Yellow River Basin has a high topography in the west and a low one in the east, with
an average annual precipitation of 200–650 mm. The average altitude of the western
headwaters region is above 4000 m, and the altitude of the central region is between
1000–2000 m. The Yellow River Basin is an important population catchment area and
ecological security barrier in China. With abundant mineral and energy resources, the
Yellow River Basin is one of the key areas of China’s socioeconomic development. It also
serves as an ecological corridor that connects the Qinghai-Tibet Plateau, Loess Plateau, and
North China Plain. Wetland resources are abundant, and species diversity is rich. There
are also 12 national key ecological function areas in the region. Exploring the influences of
landscape patterns on habitat quality is crucial for protecting biodiversity and improving
the high-quality development level in Yellow River Basin.
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Figure 1. Location of the study area.

2.2. Data Source

The basic data of this study include land-use maps, population density, Gross Domestic
Product (GDP), nighttime lights, Digital Elevation Model (DEM), slope, aspect, distance
from railway, distance from highway, distance from county center, distance from provincial
government, precipitation, temperature, soil type, and Normalized Difference Vegetation
Index (NDVI) (Table 1). The land-use data were obtained from the Chinese Academy of
Sciences Data Center for Resources and Environmental Sciences (http://www.resdc.cn/,
accessed on 12 May 2022), which were generated through remote sensing interpretation
and manual visual interpretation from Landsat remote sensing images with an accuracy of
30 m. The landscape was classified into six land-use types, including cultivated land, forest,
grassland, water body, construction land, and unused land. The DEM was obtained from
the Geospatial Data Cloud platform (http://www.gscloud.cn/, accessed on 12 May 2022)
and further used to derive the slope and aspect using the 3D Analyst tool in ArcGIS 10.2.
Other data were obtained from the China Statistical Yearbook and the Resource and Chinese
Academy of Sciences Data Center for Resources and Environmental Sciences, and all data
were extracted as a 1000 × 1000 m raster dataset by using ArcGIS 10.2.

2.3. Methods
2.3.1. Future LUCC Simulation Based on the PLUS Model

The PLUS model is a cutting-edge land-use simulation tool developed by Liang et al. in
2020 that includes two modules: the transformed rule mining framework (LEAS) based on a
land expansion analysis strategy and the CA model (CARS) based on a multitype stochastic
patch seeding mechanism [31]. It adopts the artificial neural network (ANN) algorithm to
integrate natural and socioeconomic driving factors and simulate the suitability probability
of each land-use type by combining the base period land-use data. Then, it uses the
adaptive inertia competition mechanism based on roulette selection to solve the uncertainty
and complexity of the interconversion of each type under the synergistic effects of natural
and socioeconomic factors. The land-use demand, neighborhood factor, and conversion
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cost are set to simulate the land use at a future time point. The LUCC simulation based on
the PLUS model involved five major steps.

Table 1. Data information and sources.

Data Type Data Name Data Source and Preprocessing

Land-use data
Basic land-use data at 30 m (2005)

Chinese Academy of Sciences Data Center for
Resources and Environmental Sciences

(http://www.resdc.cn, accessed on 12 May 2022)

Basic land-use data at 30 m (2018)

Driving factors Of LUCC

Spatial distribution of population density
Spatial distribution of GDP

Nighttime light
Rainfall

Temperature
Soil type

NDVI

DEM Geospatial Data Cloud (http://www.gscloud.cn/,
accessed on 12 May 2022)

Slope Extract from DEM by Using ArcGIS 10.2Aspect

Distance to railway

Extract by using ArcGIS Euclidean distance functionDistance to highway
Distance to provincial governments
Distance to prefectural governments

1. Selection of driving factors for LUCC. The landscape pattern of the Yellow River
Basin is affected not only by natural factors but also by socioeconomic and spatial
location factors [34–36]. Considering the availability, diversity, and representativeness
of the data, 14 driving factors were finally selected in this study, including rainfall,
temperature, elevation, slope, aspect, population density, GDP density, nighttime light,
soil type, NDVI, and distances to provincial governments, prefectural governments,
railways, and highways.

2. Cost matrix and setting of restricted expansion areas. The cost matrix can be used
to represent the cost of conversion between different land-use types (see Table S1 in
Supplementary Materials). A value of 0 indicates that this land-use conversion is
not allowed, while 1 means it is allowed [37]. In this study, the cost matrix and the
restricted expansion area were set based on previous studies and realistic conditions.
In reality, construction land is rarely converted to other land-use types. Therefore, this
study assumes that the conversion of construction land to other land-use types is not
allowed. To ensure food security, this study prohibits the conversion of cultivated land
to unused land. To promote ecological protection, the 1000 m buffer zone along the
main stream of the Yellow River was set as a restricted expansion area, and conversion
of landscape types in this area was prohibited.

3. Setting of neighborhood weight parameters. The neighborhood weight parameter
indicates the expansion intensity of each land-use type. The parameter ranges from
0 to 1, where values closer to 1 have stronger expansion abilities. In this study, the
expansion intensity of each land-use type was determined based on the experience
of existing studies and the characteristics of landscape evolution in the Yellow River
Basin (see Table S2 in Supplementary Materials).

4. Land-use demand prediction. This study used Markov models to predict the land-use
structure in 2031 based on the probability matrix of land-use changes from 2005–2018
and the current land-use development patterns in the Yellow River Basin.

5. Model validation. Based on the land-use data in 2005, we simulated the land use of the
Yellow River Basin in 2018 using the model parameters specified above and compared
it with the classified land-use map in 2018 from Landsat remote sensing images.
The kappa coefficient and figure of merit (FoM) were used to verify the simulation
accuracy. The validation results showed that the kappa coefficient and FOM were 0.84
and 0.28, respectively. The simulation accuracy achieved a high level, which indicated
that the PLUS model is reliable for future land-use simulations in 2031.
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2.3.2. Landscape Pattern Indexes Analysis

The landscape pattern index is an important tool to analyze the spatiotemporal char-
acteristics of landscape patterns by reflecting the composition and spatial configuration of
the landscape structure and the evolution of landscape patterns. The study selects land-
scape pattern indexes based on the diversity, aggregation, and complexity of the landscape
space. The selected landscape pattern indexes are patch density (PD), mean patch area
(AREA_MN), edge density (ED), landscape shape index (LSI), Shannon’s diversity index
(SHDI), patch cohesion index (COHESION), and contagion index (CONTAG) [38]. The
specific calculation was performed by using Fragstats 4.2 software.

2.3.3. Habitat Quality Evaluation

Stable habitat quality is a crucial basis for sustaining ecosystem biodiversity. In
this study, the habitat quality module of the InVEST model was adopted to evaluate
habitat quality [39,40]. As the researchers have established, higher levels of land use
and socioeconomic activity pose greater threat to habitat conservation and are correlated
with lower-quality habitat and vice versa [41]. The model combines the sensitivity of
different land-use types to threat factors and with intensity of external threats. Specifically,
cultivated land, construction land, and unused land are identified as the threat factors
of habitat quality in this study. The model parameters, including the maximum stress
distance, weight, type of spatial recession, and sensitivity of LUCC to habitat threat factors,
are specified according to the model’s manual and expert experience (Table 2) [42,43].

Table 2. Input data used for InVEST model.

Threat Factors
Maximum Duress

Distance (km)
Weights

Land-Use Types

Cultivated Land Forest Grassland Water Body Construction Land Unused Land

Habitat suitability

0.3 1 1 0.7 0.3 0.6

Threat factors

Cultivated land 4 0.6 0 0.6 0.8 0.5 0 0.6
Construction land 8 0.4 0.8 0.4 0.6 0.4 0 0.4

Unused land 6 0.5 0.4 0.2 0.6 0.2 0.1 0

The change rate in habitat quality is measured by the percentage change in regional
habitat quality at the beginning and the end of a time period, expressed as follows:

V = (Pt1 − Pt0)/Pt0 × 100% (1)

In Equation (1), V is the change rate of habitat quality, with a negative value indicating
decreasing habitat quality and vice versa; Pt0 and Pt1 are the initial and final values of
habitat quality in the t-th year, respectively.

2.3.4. Spatial Autocorrelation Analysis

A spatial autocorrelation approach was used to verify the spatial dependence and
spatial spillover effects of habitat quality [44]. Univariate spatial autocorrelation analysis
includes global and local autocorrelation analysis [45]. Moran’s I has been widely used for
representing global autocorrelation, i.e., the overall clustering pattern. The value of Moran’s
I ranges from −1 to 1. A higher Moran’s I value suggests a more significant positive spatial
autocorrelation of habitat quality. To explore the local spatial association and type of spatial
clusters of habitat quality in different prefecture-level cities, we used the local indicator
of spatial association (LISA) [46]. In addition, the spatial clusters of habitat quality in
this study were classified into four types, i.e., high-high (H-H), low-low (L-L), high-low
(H-L), and low-high (L-H). Specifically, the H-H clusters mean that the prefecture-level city
and its neighbors all had a high habitat quality that was higher than the average In the
Yellow River Basin. The L-L clusters indicate that the prefecture-level city and its neighbors
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had a low habitat quality that was lower than the average. The H-L clusters indicate that
the prefecture-level city and its neighbors had negative spatial autocorrelation of habitat
quality. That is, the prefecture-level cities with high habitat quality were surrounded by the
prefecture-level cities with low habitat quality and vice versa for the L-H clusters. Thus,
the H-H clusters and L-L clusters indicated that the habitat quality of the area was similar
to that of its neighbors. The formulas for global Moran’s I and local Moran’s I are shown
as follows:

I =
∑K

P=1 ∑k
q=1 Wpq

(
YP − Y

)(
Yq − Y

)
S2 ∑k

p=1 ∑k
q=1 Wpq

(2)

Ip =
Yp − Y

S2

k

∑
q=1

Wpq(Yp − Y) (3)

In Equations (2) and (3), I is the global Moran’s I for the whole area, and its value
ranges from −1 to 1; Ip is the local Moran’s I for prefecture-level city p; Yp and Yq are the
habitat quality of prefecture-level cities p and q; S2 is the discrete variance of Yq; Y is the
average value of habitat quality; k is the number of prefecture-level cities; Wpq is the spatial
weight matrix, representing that prefecture-level city p is adjacent to prefecture-level city q,
and the value of Wpq is 1 if they are adjacent and otherwise 0.

2.3.5. Spatial Regression Analysis

The spatial lag model (SLM) and spatial error model (SEM) are usually used for spatial
regression analysis [47,48]. To determine whether SLM or SEM is more appropriate in this
study, we used a Lagrange multiplier (LM) test and a robust Lagrange multiplier (RLM)
test to verify by using OLS [45]. We found that both LM (lag) and its RLM (lag) are more
significant than LM (error) and its RLM (error). Thus, we selected SLM to quantitatively
analyze the influence of the landscape pattern indexes on habitat quality in this study. The
OLS can be defined as follows:

Qpt = βLt + ε (4)

The SLM can be defined as follows:

Qpt = ρ�1Qpt + βLt + ε (5)

The SEM can be defined as follows:

Qpt = βLt + γ�2 + ε (6)

In Equations (4)–(6), Qpt is the habitat quality in prefecture-level city p in the t-th
year; ρ, γ is the spatial lag parameter and spatial error parameter; �1, �2 is the spatial
weight matrix of the lag terms and error terms, respectively; β is the parameter revealing
the correlations between habitat quality and landscape pattern indexes; Lt is the landscape
pattern index in the t-th year; and ε is a constant.

3. Results

3.1. Spatiotemporal Characteristics of Landscape Patterns from 2005 to 2031
3.1.1. Predicted Land-Use Changes

The simulated land-use pattern of the Yellow River Basin in 2031 using the PLUS
model is shown in Figure 2. Landscape change in the Yellow River Basin slows down from
2018 to 2031 compared to 2005–2018 (Table 3). The main landscape types in the Yellow
River Basin were grassland and unused land, while construction land and water bodies
accounted for the smallest proportion. From 2005 to 2031, landscape changes are mainly
characterized by the transformation of cultivated land and grassland into construction
land and forest. Specifically, from 2005 to 2018, the areas of cultivated land and grassland
decreased, and the highest reduction by 3.10% was observed in grassland. Construction
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land, forest, water bodies, and unused land were all expanding, with construction land
increasing by 37.48%. The predicted trend of landscape change from 2018 to 2031 is similar
to that in 2005–2018, with the area of cultivated land and grassland showing a decreasing
trend and the area of construction land, forest, water body, and unused land showing an
increasing trend.

Figure 2. The land-use simulation map of the Yellow River Basin. (a). 2005 represents the land use of
the Yellow River Basin in 2005; (b). 2018 represents the land use of the Yellow River Basin in 2018;
(c). 2018 simulation represents the simulated land use of the Yellow River Basin in 2018; (d). 2031
represents the simulated land use of the Yellow River Basin in 2031.

Table 3. Landscape type structure of the Yellow River Basin from 2005 to 2031 (unit: 104 km2).

Time Cultivated Land Forest Grassland Water Body Construction Land Unused Land

2005 54.46 36.17 120.79 5.84 6.43 75.50
2018 53.88 37.29 117.05 6.42 8.84 75.71
2031 53.75 38.17 113.89 6.94 10.64 75.79

2005–2018 −0.58 1.12 −3.74 0.58 2.41 0.21
2005–2018 −1.07% 3.10% −3.10% 9.93% 37.48% 0.28%
2018–2031 −0.13 0.88 −3.16 0.53 1.80 0.08
2018–2031 −0.24% 2.36% −2.70% 8.26% 20.36% 0.11%

3.1.2. Landscape Pattern Metrics

The landscape pattern indexes in the Yellow River Basin show different change trends
from 2005 to 2031 (Table 4). In particular, the PD and SHDI increase continuously by 3.23%
and 3.76%, respectively, from 2005 to 2031, indicating that the landscape in the Yellow
River Basin would become more fragmented. In contrast, the AREA_MN and CONTAG
decrease by 3.17% and 6.94%, respectively, which also demonstrates that the landscape
would be more heterogenous. According to AREA_MN, the average size of patches within
the landscape becomes smaller, indicating increasing fragmentation. The CONTAG index
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is used to describe the degree of clustering or extension trend of different patch types
within the landscape. The reduction of CONTAG indicates that the number of patches
with a certain dominant type of connectivity in the landscape is decreasing, and thus, the
fragmentation of the landscape is growing. Meanwhile, the ED and LSI indexes slightly
decrease by 0.55% and 0.48%, respectively, from 2005 to 2031. The decrease of ED and LSI
indicates patches within the landscape are becoming more spatially aggregated. However,
the ED and LSI increase from 2018 to 2031, reflecting the trend towards fragmentation and
complexity of the landscape pattern change. In addition, the COHESION remains basically
unchanged from 2005 to 2031.

Table 4. Landscape pattern indexes of Yellow River Basin.

Landscape Pattern Indexes 2005 2018 2031 2005–2018 2018–2031 2005–2031

PD 0.0526 0.0535 0.0543 1.71% 1.50% 3.23%
ED 5.8669 5.7729 5.8346 −1.60% 1.07% −0.55%
LSI 257.6114 253.6939 256.3796 −1.52% 1.06% −0.48%

AREA_MN 1902.8027 1869.4666 1842.4869 −1.75% −1.44% −3.17%
CONTAG 34.7186 33.3331 32.3093 −3.99% −3.07% −6.94%

COHESION 99.6430 99.6361 99.6225 −0.01% −0.01% −0.02%
SHDI 1.4385 1.4696 1.4926 2.16% 1.57% 3.76%

From the perspective of landscape types (see Table S3 in Supplementary Materials),
the LSI and PD of construction land, water bodies, unused land, and cultivated land show
increasing trends, while the LSI and PD of grassland and forest generally decrease. There
were no significant changes in the ED of cultivated land and forestland. The ED of water
bodies, construction land, and unused land significantly increases, and the ED of grassland
decreases. The AREA_MN and COHESION of water bodies, construction land, and forest
increase significantly, and that of grassland and unused land does not change significantly.

3.2. Spatiotemporal Characteristics of Habitat Quality from 2005 to 2031
3.2.1. Temporal Changes of Habitat Quality

Results indicate that the habitat quality in the Yellow River Basin displays a declining
tendency from 2005 to 2031. The average habitat quality in the Yellow River Basin decreases
by 0.98% and 1.05% from 2005 to 2018 and 2018 to 2031, respectively. From the perspective
of landscape types (Table 5), the average habitat quality of forest and construction land
remains stable, the average habitat quality of water body and grassland increased, and
grassland has the largest increase, with a specific increase of 0.05%. The average habitat
quality is highest in forests and grasslands, followed by water bodies and unused lands,
and lowest in cultivated land and construction land, which is mainly because of the high
habitat suitability of forests, grasslands, and water bodies, which are far from threat sources.
Therefore, natural vegetation (i.e., forest, grassland, etc.) plays a vital role in maintaining
the habitat quality of the Yellow River Basin.

Table 5. Average habitat quality of landscape types in the Yellow River Basin from 2005–2031.

Landscape Types 2005 2018 2031 Average

Cultivated land 0.2998 0.2997 0.2997 0.2997
Forest 0.9960 0.9960 0.9960 0.9960

Grassland 0.9881 0.9887 0.9886 0.9885
Water body 0.6943 0.6944 0.6947 0.6945

Construction land 0.0000 0.0000 0.0000 0.0000
Unused land 0.5997 0.5996 0.5996 0.5996

Yellow River Basin 0.7388 0.7315 0.7253 0.7319
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3.2.2. Spatial Evolution of Habitat Quality

From 2005 to 2031, the spatial distribution pattern of habitat quality in the Yellow River
Basin remains stable (Figure 3), and the overall habitat quality is high. In this study, habitat
quality is classified as highest (0.8–1.0), high (0.6–0.8), medium (0.4–0.6), low (0.2–0.4), and
lowest (0–0.2). Specifically, the highest-level and high-level habitat quality areas are mainly
distributed in areas with high vegetation cover, such as the Qinghai-Tibet Plateau and
northeastern Inner Mongolia. These areas are important ecological sources for maintaining
regional ecological security, and urban expansion should be strictly limited. Medium-
level habitat quality areas are concentrated in the Loess Plateau region represented by
Ningxia, Gansu, and Shaanxi. Low-level and lowest-level habitat quality areas are mainly
distributed in Henan, Shandong, and other provinces downstream of the Yellow River Basin
and present a clustered pattern. These areas are the main distribution areas of cultivated
land and towns and are also the areas with the highest intensity of human activities in the
Yellow River Basin. The contradiction between socioeconomic development and ecological
protection is prominent here, and urban development has already produced a strong duress
on the surrounding habitats. Therefore, excessive growth of urban space in the future
should be limited, especially excessive occupation of ecological land.

Figure 3. Distribution of habitat quality. (a). 2005 represents the habitat quality of the Yellow River
Basin in 2005; (b). 2018 represents the habitat quality of the Yellow River Basin in 2018; (c). 2031
represents the habitat quality of the Yellow River Basin in 2031.

3.3. Spatial Clustering Characteristics and Spatial Relationships
3.3.1. Univariate Spatial Autocorrelation Analysis

(1) Spatial autocorrelation of habitat quality

To analyze the spatial distribution characteristics and spatial spillover effects of habitat
quality in the Yellow River Basin, spatial autocorrelation analysis was performed for the
habitat quality by using prefecture-level cities as units of analysis. The global Moran’s
I values of each city in 2005, 2018, and 2031 are greater than 0.82 (0.8217, 0.8322, and
0.8248, respectively), and the p-values are less than or equal to 0.001, indicating that the
spatial distribution of habitat quality in the Yellow River Basin exhibits significant positive
spatial autocorrelations. In addition, according to the results of local spatial autocorrelation
(Figure 4), habitat quality shows a clear bipolar clustering feature in space (i.e., high-high
clusters and low-low clusters). The spatial clustering characteristics of habitat quality are
similar in 2005, 2018, and 2031. The high-high clusters of habitat quality in the Yellow
River Basin are concentrated in the Qinghai-Tibet Plateau, the southern Loess Plateau,
and western and eastern Inner Mongolia. The low-low clusters of habitat quality are
concentrated in Henan and Shandong in the lower reaches of the Yellow River Basin.
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Figure 4. LISA cluster map of habitat quality in the Yellow River Basin. (a). 2005 represents the LISA
cluster map of habitat quality of the Yellow River Basin in 2005; (b). 2018 represents the LISA cluster
map of habitat quality of the Yellow River Basin in 2018; (c). 2031 represents the LISA cluster map of
habitat quality of the Yellow River Basin in 2031.

(2) Spatial autocorrelation of the rate of change in habitat quality

According to the global spatial autocorrelation analysis of the rate of change in habitat
quality, the global Moran’s I values are 0.4280 and 0.3764 from 2005 to 2018 and 2018 to
2031, respectively. The results show that the spatial distribution of the rate of change in
habitat quality in Yellow River Basin presents significant positive spatial autocorrelations
from 2018 to 2031 (Figure 5). The H-H clusters of the rate of change in habitat quality in the
Yellow River Basin are mainly concentrated in the plateau areas from 2005 to 2031. This
result indicates that there is a significant improvement in habitat quality in the plateau
region during this period. From 2005–2018, the H-H agglomeration areas of the rate of
change in habitat quality are mainly distributed in most areas of Qinghai province and
parts of Gansu and Shaanxi provinces. The L-L agglomeration areas of the rate of change
in habitat quality are distributed in Shandong and parts of Henan, and there are no areas
of H-L clusters. From 2018 to 2031, the H-H agglomeration areas of the rate of change in
habitat quality are mainly distributed in most areas of Qinghai, the eastern part of Inner
Mongolia, and parts of Gansu and Shaanxi provinces. The L-L agglomeration areas of
the rate of change in habitat quality are distributed in Shandong and parts of Henan. The
L-H agglomeration areas of the rate of change in habitat quality are distributed in the
western part of Inner Mongolia. The H-L agglomeration areas of the rate of change in
habitat quality are distributed in the eastern part of Inner Mongolia. From 2005 to 2018,
the spatial aggregation characteristics of high or low values of the rate of change in habitat
quality in the Yellow River Basin are closely related to human activities, land-use policies,
and ecosystem protection engineering projects. From 2018 to 2031, the spatial aggregation
characteristics of habitat quality change rates are also influenced by the specification of cost
matrix and restricted areas in the land-use simulation. The results can provide data support
for biodiversity conservation and ecological priority area setting in the Yellow River Basin.

3.3.2. Spatial Regression Analysis

The above analysis confirmed the spatial autocorrelation of habitat quality. Therefore,
we can further explore the spatial spillover effect of habitat quality and its influential factors
by using a spatial regression model. In this study, the habitat quality of 95 prefecture-level
cities in the Yellow River Basin was included in the model as the dependent variable, while
the independent variables in the model were the landscape pattern indexes. In addition,
multicollinearity diagnosis of landscape pattern indexes was used to eliminate the presence
of multicollinearity in multiple landscape pattern indexes by using IBM SPSS Statistics.
Four factors with VIF < 8 were selected as independent variables of the model: PD, ED, LSI,
and COHESION.
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Figure 5. LISA cluster map of the rate of habitat quality change in the Yellow River Basin.
(a). 2005–2018 represents the LISA cluster map of the rate of habitat quality change in the Yellow
River Basin in 2005–2018; (b). 2018–2031 represents the LISA cluster map of the rate of habitat quality
change in the Yellow River Basin in 2018–2031.

As can be seen, the log likelihood of the spatial lag model is larger than that of the
OLS model (AIC and SC values are smaller than those of the OLS model) (see Table S4 in
Supplementary Materials), which indicates that the fitting degree of the spatial lag model
is better than that of the OLS model. Almost all the independent variables in the spatial
lag model (Table 6) are significant (p < 0.05) from 2005 to 2031. The spatial lag regression
results demonstrate that the spatial relationships between habitat quality and PD as well
as COHESION are negative, while ED and LSI had a positive impact on habitat quality.
Meanwhile, a 1% increase in PD led to decreases of 4.622%, 3.926%, and 4.041% in habitat
quality in 2005, 2018, and 2031, respectively. The impact of ED is positive, but its effect
size decays over time, as a 1% increase in ED can lead to increases of 0.031%, 0.036%, and
0.002% in habitat quality in 2005, 2018, and 2031, respectively. The impact of LSI fluctuates
over time and increases substantially from 2018 to 2031, e.g., a 1% increase in LSI can
lead to increases of 0.005%, 0.003%, and 0.038% in habitat quality in 2005, 2018, and 2031,
respectively. In addition, the impact of COHESION on habitat quality is negative and
decreases over time. The results show that PD is the dominant driving factor of the decrease
in habitat quality with the largest magnitude of effect. As displayed in Table 6, the PD
increases during the study period, demonstrating that the landscape in the Yellow River
Basin would become more fragmented. Specifically, the PD of water bodies and cultivated
land increases. Therefore, landscape fragmentation due to higher PD has a strong influence
on ecosystem structure, ecological processes, and biodiversity and causes degradation of
habitat quality.

Table 6. Regression results of SLM.

Variable
2005 2018 2031

Habitat Quality p Habitat Quality p Habitat Quality p

PD −4.6219 *** 0.0000 −3.9258 *** 0.0000 −4.0412 *** 0.0000
ED 0.0313 *** 0.0002 0.0362 ** 0.0018 0.0024 * 0.0471
LSI 0.0046 *** 0.0000 0.0026 * 0.0335 0.0381 ** 0.0014

COHESION −0.0381 *** 0.0000 −0.0184 * 0.0233 −0.0170 * 0.0366
CONSTANT 4.1951 *** 0.0000 2.1218 ** 0.0100 1.9812 * 0.0170

Spatial lag term 0.2734 *** 0.0000 0.4368 *** 0.0000 0.4349 *** 0.0000
Measures of fit
Log likelihood 91.1599 63.5760 61.8309

AIC −170.3200 −115.1520 −111.6620
SC −154.9970 −99.8288 −96.3386
R2 0.7814 0.6449 0.6328

Note: *** p ≤ 0.001, ** p ≤ 0.01, and * p ≤ 0.05. AIC, Akaike information criterion; SC, Schwartz’s.
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4. Discussion

4.1. Spatiotemporal Characteristics of Habitat Quality and Landscape Pattern

In this study, we examined spatiotemporal evolution characteristics of landscape
pattern and its impact on regional habitat quality and then combined the PLUS and InVEST
models to predict future habitat quality levels in the Yellow River Basin. The evaluation of
current habitat quality and projection of future habitat quality in the Yellow River Basin are
of great significance for ecological protection and high-quality development in the Yellow
River Basin.

In general, the landscape of the Yellow River Basin was dominated by grassland and
unused land. The area of construction land in the east was significantly larger than that in
the west. From 2005 to 2018, the area of arable land and grassland decreased, while the
area of construction land, forest, water body, and unused land increased. Meanwhile, PD
and SHDI increased significantly in the Yellow River Basin, while ED, LSI, AREA_MN, and
CONTAG decreased, and COHESION remained basically unchanged. The predicted trend
of landscape pattern changes from 2018 to 2031 is basically the same as it was from 2005
to 2018. Although the proportion of built-up land area in the total landscape area of the
Yellow River Basin is low, the expansion of built-up land in recent decades has caused the
destruction of forest, grassland, water, and other habitat landscapes. This phenomenon is
more obvious in the population and economic agglomeration areas in the lower reaches
of the Yellow River Basin (e.g., Henan and Shandong, etc.). This is because areas with
more intensified human activities and massive land-use changes have rapid population
and economic growth and great demands for housing, transportation, and public facilities,
leading to the occupation of many natural resources such as grasslands, water bodies, and
forests and increasing the degree of landscape diversity and fragmentation.

In addition, we assessed habitat quality in the Yellow River Basin. It was found that
the habitat quality of the western and northern Yellow River Basin along the Qinghai-
Tibet–Inner Mongolia was relatively high. The main reason is that the region has good
natural endowment and less construction occupation. It has also gradually established a
nature reserve management system with national parks as the main body, nature reserves
as the basis, and various nature parks as supplements. More importantly, due to the
intervention of afforestation, water conservation, and other ecological protection measures,
the number of forests and water bodies with high habitat quality in this area continues to
increase. However, habitat quality was at a low level in the middle and lower reaches of
the Yellow River Basin. The population and economic agglomeration effect is more obvious
in this region. The urban expansion continues to occupy natural resources, leading to the
degradation of habitat quality. The influence of the continuous expansion of construction
land on the degradation of habitat quality is mainly the reduction of cultivated land, forest,
and other landscape land area [49]. At the same time, severe landscape fragmentation
reduces landscape connectivity and affects the overall regional habitat, which is particularly
critical to the quality of regional habitat.

4.2. Impact of Landscape Pattern Change on Habitat Quality

The results showed that the influence of landscape pattern change on regional habitat
quality could not be ignored, and its impact direction and magnitude vary largely in
different regions. Therefore, it is of great significance to analyze the effect of landscape
pattern on habitat quality for regional landscape planning and ecological sustainable
development. Spatial regression was used to quantitatively analyze the correlation between
landscape pattern index and habitat quality in the Yellow River Basin. The results showed
that the change of landscape pattern had an important effect on habitat quality in the Yellow
River Basin. Landscape pattern indices (PD, ED, LSI, and cohesion) had significant effects on
habitat quality. The regression coefficients for LSI and ED were both positive, indicating that
increased LSI and ED improved habitat quality, while the regression coefficients for PD and
cohesion were negative, indicating that increased PD and cohesion resulted in decreased
habitat quality. Despite the positive contribution of LSI and ED to habitat quality, both LSI
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and ED values fluctuated during the study period. There was the greatest negative impact
of PD on habitat quality, and the PD value increased over time, which was a major factor
in the decline of habitat quality in the Yellow River Basin. In general, the effect of PD on
habitat quality reduction was greater than that of LSI and ED enhancement, and the increase
of PD implied that the landscape was more fragmented, and the landscape connectivity
was weakened, which was related to the decrease of biodiversity and habitat quality. Some
relevant studies support our findings. For example, Hu et al. used Geographically and
Temporally Weighted Regression (GTWR) and Multiscale Geographic Weighted Regression
(MGWR) methods to analyze the driving mechanisms of landscape patterns on habitat
quality and found that an increase in landscape connectivity in the urban center of Nanjing
significantly improved habitat quality, while an increase in fragmentation in high habitat
areas reduced habitat quality [50].

As part of spatial planning and land-use construction in the Yellow River Basin, it is
necessary to coordinate the relationship between development and protection to improve
regional habitat quality. It is important for the government to maintain the landscape
integrity of natural habitats (such as forests, rivers, and wetlands) as much as possible,
arrange agricultural landscapes reasonably, and improve the landscape diversity of urban
construction areas [25]. Specific measures can be adopted, including delineating ecological
protection red lines and delimiting permanent primary farmland, managing high- and low-
quality areas of ecological space [51], and establishing pocket parks and green corridors.

4.3. Strengths and Limitations

In this study, the PLUS model was used to simulate the LUCC of the Yellow River Basin
in 2031, with 2018 as the base period. Numerous studies adopting the CA-based model
have focused mainly on improving technical modeling procedures rather than simulating
the detailed patches of multiple land-use types that evolve over time. The PLUS model
developed by Liang et al. [31] has a powerful ability to simulate the evolution of land-use
types at patch scale. It has been confirmed that the PLUS model has higher simulation
accuracy and landscape pattern indicators that were closer to the real landscape than the
other CA-based models. This is essential for accurate quantitative assessment of the impact
of future landscape patterns on habitat quality and thus the development of policies to
manage future land use and landscape patterns in the Yellow River.

At the same time, spatial autocorrelation models and spatial regression models are
used to analyze the spatiotemporal characteristics of habitat quality and its response to
landscape pattern changes. Various ecological processes often lead to nonrandom spatial
distributions of land use, landscape, and biodiversity and show some dependence on
spatial patterns. Thus, spatial autocorrelation analysis is crucial for understanding how
ecological variables are related and vary in time and space, which can then be used to
understand and predict ecological processes and functions. In addition to traditional
factors, spatial autocorrelation is also an important factor that influences habitat quality
and landscape pattern, but this factor is often overlooked. In previous studies, linear
models are often used to analyze the relationship between landscape pattern and habitat
quality, which cannot capture the spatial dependence and spillover effects due to spatial
autocorrelation. Spatial regression models and spatial autocorrelation models are used to
overcome this shortcoming in this study.

However, there are several limitations in this study. First, the InVEST model was used
to evaluate the habitat quality of the Yellow River Basin by accumulating the effects of
threat factors. Despite this, InVEST does not take into account the interaction between the
threat factors, as their cumulative impact on habitat quality is not the same as their simple
accumulation [29]. Second, this study only analyzed the impact of seven landscape pattern
indexes that were recognized as significant, while other related landscape pattern indexes
were not comprehensively considered.
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5. Conclusions

This study analyzes the spatiotemporal characteristics of landscape patterns and
habitat quality, explores the spatial association between the landscape pattern indexes and
habitat quality, and proposes reasonable suggestions to protect and improve habitat quality
from the perspective of landscape pattern protection.

Firstly, the results showed that the landscape of the Yellow River Basin is dominated
by grassland and unused land, and the area of construction land in the east is significantly
greater than that in the west. From 2005 to 2031, the areas of cultivated land and grassland
decreased, while the areas of construction land, forest, water bodies, and unused land
increased. Then, it was found that a significant increase in PD and SHDI will occur in
the Yellow River Basin, while ED, LSI, AREA_MN, and CONTAG will decrease, and
COHESION remains almost unchanged. In general, landscape heterogeneity increases, and
landscape connectivity decreases. In addition, the habitat quality in the Yellow River Basin
shows a continuous decrease trend during the study period, but the change is not drastic.
This is because the landscape pattern evolution has both enhanced and diminished effects
on habitat quality, which offset each other to a certain extent. Forests, grasslands, and
water bodies have the highest habitat quality among landscape types, while construction
lands have the lowest. Finally, a spatial lag regression model was further applied to
quantitatively assessed the effects of the landscape pattern on habitat quality. The results
show that PD and COHESION have significant negative impacts on habitat quality, whereas
ED and LSI have significant positive impacts. Landscape fragmentation due to high PD
exerts the most significant negative effect on habitat quality. Therefore, we should consider
enhancing the connectivity of habitats in landscape planning and limiting the fragmentation
of ecological land caused by the uncontrolled expansion of construction land in order to
achieve biodiversity conservation and ecological sustainability.
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Abstract: Land factors are natural resources with fundamental and strategic significance in the
achievement of China’s 2035 modernization goals. Dilemmas caused by market-oriented or planning-
oriented allocation of land factors urgently call for new theoretical guidance and mode. After
conducting a systematic review of the literature, this paper built a new framework from the per-
spective of production–living–ecological spaces to facilitate a better understanding of China’s land
factors allocation looking forward to 2035. Inductive and deductive methods were both used to
interpret the applications of planning and market in land factors allocation. Our results show that:
(1) The allocation of land factors for production space is truth-oriented and needs the guidance of
market efficiency. The essential feature of “production” as the driving force in production space
requires that the allocation of land factors in production space must “respect rules, give play to the
agglomeration effect, and rationally carry out regional economic layout”. (2) For the allocation of
land factors for living space, it is necessary to pursue a kindness-oriented approach and establish a
reasonable housing supply system based on people. Among them, the ordinary commercial housing
and improving housing should rely on market forces to achieve multi-subject supply, while affordable
housing should be ensured through government intervention in a multi-channel way. (3) For the
allocation of land factors in ecological space, aesthetic-oriented planning should follow the rule
of territorial differentiation and realize the transformation of ecological function into ecological
value through market mechanisms. Top-down planning and bottom-up market represents the logic
of overall and individual rationality, respectively. The effective allocation of land factors requires
the utilization of both planning and market forces. However, the intersection needs be guided by
boundary selection theory. This research indicates that “middle-around” theory could be a possible
theoretical solution for future study.

Keywords: territorial space planning; land market; factors allocation; production–living–ecological
spaces; modernization

1. Introduction

Modernizing China’s governance system for territorial space and capacity is an im-
portant part of China’s efforts to achieve the strategic goal of socialist modernization by
2035 [1]. Looking backward, China’s rapid development in the past 40 years was mainly
driven by the factors represented by land. In particular, the successful reform of land
factors from total planning allocation to market allocation supported the rise of China’s
industrial manufacturing industry, the improvement of people’s living conditions, the
large-scale construction of urban infrastructure, and the accumulation of social wealth [2].
However, since Rittle and Webber introduced the concept of planning as a thorny problem
in the 1970s, today, in the 21st century, scholars are still baffled by the problem of planning
for complex urban environments [3]. The core of the complexity of planning comes from
human behavior, whether it is the behavior of supply producers or consumers, which will
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often form feedback loops. Good planning is, first of all, rational and should conform to
the balance of market supply and demand [4].

As a traditional agricultural country, China is trying to embrace industrial civilization
in the process of becoming a modern country. However, facing the basic national conditions
of more people with less land, China’s modernization process must achieve high-quality
development of production, satisfy people’s demand for a better life and at the same time
protect the fragile ecological environment to ensure the sustainability of modern develop-
ment, which requires China’s modern development to be guided by ecological civilization.
In this regard, China’s central government has put forward the overall requirements for
land and space development of “intensive and efficient production space, livable and mod-
erate living space, and beautiful ecological space”. However, China’s relatively lagging
territorial space governance system and reform capacity do not adapt to the huge changes
surrounding land factors. In the process of rapid urbanization and industrialization in
China, many contradictions have arisen due to the uncoordinated planning and market
means in the allocation of land factors. Disordered competition and interest conflicts among
local governments and departments have led to extensive land use. The existence of the
dual structure of urban and rural land has led to the dilemma that the urbanized agricul-
tural population is facing insufficient urban housing security and difficulties in realizing
rural land property rights. The regional division of development strategy lacks the support
of a flexible planning mechanism for the allocation of land factors, resulting in a lack of
necessary incentives and funds for ecological and environmental protection, which makes
it difficult to truly achieve the goal of ecological civilization construction.

In 2019, China announced the establishment of a new spatial planning system, which
integrates the traditional functional zoning planning, land use planning, and urban and
rural planning [5]. This new system provides basic principles for various development and
protection activities and provides a sustainable spatial development guide for realizing
the strategic goal of national modernization by 2035. However, the realization of these
grand development strategies requires the removal of the contradictions accumulated in the
previous development stage. Central to this problem is to straighten out the relationship
between planning and market in the allocation of land factors [6]. Existing theoretical
research either focuses on the guiding role of government planning [7,8], or focuses on
the regulating role of market allocation [9], or emphasizes that both are indispensable [10],
which does not reveal enough about the boundary selection theory between the two.
Therefore, this paper aims to address the achievement of effective allocation of land factors
looking toward 2035 by exploring a new framework and theoretical guidance.

2. Literature Review

2.1. The Allocation of Land Factors as Quasi-Public Goods

Public goods refer to the products and services consumed by the whole society, such
as national defense, public transportation, urban disaster prevention facilities, etc. Public
goods are characterized by high input, low return, and social necessities [11,12]. According
to the different degree of competition and exclusivity, public goods can be divided into pure
public goods and quasi-public goods. Generally, it is the responsibility of governments to
provide purely public goods such as defense and security. Quasi-public goods, however,
can be provided in a more flexible and diversified way according to their different degrees of
publicity [13]. Land resources have typical characteristics of quasi-public goods, which need
market and planning allocation in the real world. On the one hand, land is an important
factor of production, and market mechanism is a panacea to achieve the sustainability of
land supply [14]. Gebre and Demsis [15] surveyed public-private partnerships in Ethiopia’s
road sector, citing the lack of government funding, the inability of the public sector to
shoulder all project risks, social pressures on people due to poor road infrastructure, the
need for private sector skills and experience, and the need to improve service levels as the
main reasons for their cooperation. The results of the study provide solutions to problems
related to the delivery of road infrastructure [15]. On the other hand, land resources are
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quasi-public goods, whose allocation needs government intervention. This is because
weak competition environment (Cournot competition) can bring more public benefits
than strong competition environment (Bertrand competition) [16]. For instance, Rohman
evaluated the role of the government in the public-private partnership toll road project in
Indonesia [17]. In the consideration of land public goods, some governments gradually
attract the private sector to provide infrastructure through public-private partnership.
In addition, land use has externalities. For the negative externalities of environmental
pollution, Li Sufeng et al. [18] built a dynamic game model and analyzed the evolution and
development law of carbon emission reduction between governments and enterprises. It is
believed that carbon trading, as one of the effective market tools combining planning and
market, can promote the smooth implementation of the “dual carbon” goal [18].

2.2. Planning Allocation of Land Factors

Keynesianism believes that due to market failure, the government must actively in-
tervene to correct the defects of the market mechanism, and planning is one of the most
important and effective ways for the government to intervene in the allocation of land
resources [19]. Although many countries began to carry out territorial planning in succes-
sion from the early 20th century, most western countries did not begin to take effective
steps to regulate and intervene in regional development until after the Second World War.
Since the 1960s, due to the rapid industrial development and accelerated urbanization in
Western countries, the problems of population, resources and environment have become
prominent, especially the imbalance of regional development has become increasingly seri-
ous. Among them, the development problem of backward areas is very prominent, while
some prosperous core areas, such as Paris in France, the United Kingdom and the southeast
area centered around London, appear the problem of excessive concentration. in order
to overcome the phenomenon of “over-density” (over-concentration) and “over-sparse”
(low level of development) of the national industry in the region and realize the balanced
development of national economy, France [20], Britain [21] and other developed countries
have respectively adopted relevant policies to strengthen the planning and guidance of
regional development. Even in the United States, which has the most developed market
economy, planning as a public policy plays an important role in resource allocation [22].

From the general experience of developed countries in the world, space planning, as
an important public policy, is an important means for the government to conduct space
governance. The International Habitat Conference II has set “adequate housing for all”
as the core goal of the Habitat Agenda [23], and the right to housing is listed as a part
of the “right to a minimum standard of living” in the Universal Declaration of Human
Rights [24]. Therefore, planning should first meet peoples’ housing needs. Later, the New
Urban Agenda of Habitat III re-established the core status of cities in the world human
settlement environment, and pointed out that the planning should focus on the whole
urban system rather than a single urban element, that is to say, not only the planning
of a single element such as the road network structure, but also the solution of many
complex problems [25]. These complex issues include resilient cities, housing issues, food
issues, etc. For example, Sadegh Sabouri et al. explored the national practice of linking
and coordinating transportation and land use planning in the United States. The ultimate
goals of these projects were found to be similar throughout the case studies, namely to
reduce suburban sprawl and the associated need for road construction, and to create more
livable, sustainable, walkable, cyclable and passable communities within the region [26].
When it comes to China, in the deep development period of urbanization from “extension
type” to “concursive type”, spatial planning focuses on solving urban life problems such
as dislocation of employment and housing, traffic congestion, environmental pollution,
insufficient supporting public facilities and unbalanced development with surrounding
areas [27]. In addition, government planning and allocation of land is a multi-objective
public management activity, which can be in line with the 2030 Sustainable Development
Goals (SDGs). In the 2030 Development Agenda, 17 Sustainable Development Goals and
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169 targets are divided into three dimensions, namely “economic development”, “environ-
mental well-being”, and “social inclusion”. Domestic and foreign scholars have studied the
integration strategies of urban planning and resource management from the perspectives
of social stability and development as well as ecological environmental protection [28–33].

2.3. Market Allocation of Land Factors

The neoliberalism represented by Hayek criticized the government failure of Key-
nesian intervention. Hayek believed that the “invisible hand” of the market was highly
capable of self-regulation and risk prevention in complex market economic activities [34].
Since the late 20th century, the global society has been influenced by the neoliberal theory,
which has also penetrated the land factors allocation. The marketization mechanism of land
resource allocation is to follow the rule of value, the law of competition, the law of supply
and demand and other market laws to spontaneously reach the optimal allocation state.
Under the condition of market mechanism, land rights holders will utilize land resources
in accordance with the principle of profit maximization and promote intensive land use.
Whether any land is developed for commercial, residential or public services, market needs,
and development interests will usually give the best choice [35]. In developed capitalist
economies, it can be seen that there is a “market” model represented by the United States, in
which the allocation of housing resources largely depends on the incentive of information
channels and price mechanisms [36]. Deegen and Halbritter [37] analyzed the problem of
pure land allocation under certain market conditions when land use changes have different
impacts on commodity prices and production factor prices, and proposed three different
models: a completely open economy, a closed economy and an economy in which selection
prices are determined externally [37]. China, with its socialist market economy system,
is no exception. The transformation of urban land from planned allocation to market-
oriented allocation is an important part of China’s market-oriented economic reform, and
the marketization of land transfer can significantly promote economic growth in the long
run [38].

3. Allocation of Land Factors in China: Modes and Dilemmas

3.1. Planning-Oriented Allocation Mode and Its Performance

Planning is future-oriented, statutory, and holistic. As a government action, it can
make up for the failure and absence of market allocation and correct the disadvantages
of market allocation such as external diseconomy and information asymmetry. As a
resource in the planning system, the allocation of land factors is regarded as a part of
China’s macro-control, and it is also regarded as a policy tool of state governance. In the
allocation of land factors, planning mainly plays a leading and controlling role. Since
China’s reform and opening-up in 1978, the central government has given full play to
the leading and controlling role of planning in the allocation of land factors through the
preparation of land use planning. The law guarantees the effective implementation of the
plan. In the compilation of China’s first round of overall land use planning (Outline of
the National Land Use Planning (1986–2000)), indicators and zoning are two policy tools
that constitute the overall land use plan. Specifically, it first analyzes and evaluates the
utilization suitability of all land factors, and then it divides the available land factors into
cultivated land indicators and construction land indicators. After that, it allocates them
among different regions, departments, and industries, to ensure land factors better serve
the various needs of national economic development. However, on the one hand, the lack
of science and public participation in the overall land use plan compiled, and the persistent
pursuit of the perfection of the planning results lead to a disconnect between the overall
land use plan and the actual needs of social and economic development. On the other hand,
under the impact of China’s market economy reform, the lack of constraints and flexibility of
land use planning have led to a serious loss of cultivated land resources in China. Therefore,
in the preparation of the second round of overall land use planning (Outline of the National
Land Use Planning (1997–2010)), the protection of valuable cultivated land resources has
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become the primary goal. The cultivated land protection indicators approved by the central
government are allocated from top to bottom among local governments at different levels,
to realize the guidance and containment of development demand from supply side of
land factors. However, in practice, the relationship between the protection pressure of
cultivated land and the expansion of construction land demand has not been effectively
coordinated, which has challenged the forward-looking planning. In the preparation of
the third round of overall land use planning (Outline of the National Land Use Planning
(2006–2020)), the practice of local governments on the relationship between protection and
development in land use provided valuable information for the preparation of overall land
use planning. In this stage, land use control has become the most distinctive feature of
China’s land use planning system. This system has played an important role in ensuring
the realization of multi-dimensional goals of ecological environment protection, dynamic
balance of cultivated land resources, and intensive use of construction land.

3.2. Market-Oriented Allocation Mode and Its Performance

As a resource in the market system, market allocation tools should play a fundamental
and decisive role in land factors. Land is the spatial carrier for human economic and
social activities and the basic resource to be used. The increasingly diversified demands
for land resources from population growth, urban expansion, and social development
objectively require the market mechanism to play its role of allocating scarce land resources.
From a micro perspective, the market promotes the effective conversion of land resources
between different uses through the price mechanism, competition mechanism, and supply
and demand mechanism, and maximizes the use value of land resources. From a macro
perspective, as a factor commodity in national economic and social development, the im-
provement of its overall allocation efficiency still requires clear property rights and reduced
market transaction costs as a prerequisite [39]. As the reform and opening up, the market
allocation of rural land has greatly contributed to the increase of agricultural production
and provided capital and labor accumulation for industrialization and urbanization. The
marketization of urban land lease has significantly contributed to China’s economic growth
in the long term through two major channels: the financing effect and the resource alloca-
tion effect. The construction of industrial parks and real estate development in the context
of urban land market allocation has led to the rapid development of industrialization and
urbanization in China. The activation of the capital properties of land has given rise to the
land finance driven urban development and management mode, which on the one hand
has accumulated wealth for urban development, but on the other hand, the drawbacks of
the land finance mode have become increasingly evident [40].

3.3. Dilemmas from the Unclear Boundary between Planning and Market Allocation

In general, the planning role of land factor allocation emphasizes “top-down”, which
has the disadvantage of over-idealized planning allocation and often generates unavoid-
able conflicts between the rigidity of planning and the uncertainty and complexity of
reality [3]. When planning allocation is dominant, distortion and misallocation of land
factors arises. In addition, institutional factors, such as the lack of public participation and
supervision, may make it difficult for the planning to allocate land factors as expected.
It is foreseeable that the increasingly improved territorial spatial planning system will
overcome the drawbacks of “multiple planning”, promote the role of planning tools in land
factors allocation, and promote the modernization of territorial spatial governance system
and governance capacity, but this requires a more flexible, effective, and adequate interface
between planning intervention and market adjustment [41]. In contrast, the market role
of land factor allocation emphasizes “bottom-up”. However, market allocation tends to
focus on short-term interests and there are external diseconomies in the market mechanism,
which leads to disorder and imbalance when market allocation is dominant, manifesting
in extensive use of industrial land, duplication of construction and overcapacity, high
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housing prices and inadequate housing security, local debt and land financial risks, and
environmental pollution problems.

The effective combination of market mechanism and government planning is an
indispensable basis for realizing the Pareto optimization of land factors allocation. With the
increasing complexity and suddenness of human economic and social development, the
effective integration of the two becomes more important than ever. However, in the current
allocation of land factors, the boundary between planning and market is not clear, which
has created hurdles for their effective integration. Therefore, how to draw the boundary
between the two is the most significant issue.

4. Allocation of Land Factors from the Perspective of Production-Living-
Ecological Spaces

Production–living–ecological spaces is a classification perspective of land factors allo-
cation (Figure 1). Firstly, Production is a driving force. Production space is truth-oriented, a
philosophy between people and things, which follows rules and emphasizes agglomeration
effect. Secondly, Living is goal. Living space is kindness-oriented, a philosophy between
people and people, which follows the logic of people-oriented and emphasizes livability.
Thirdly, Ecology is the bottom line. Ecological space is aesthetic-oriented, a philosophy
between people and God, which needs to respect nature and stresses the guidance of
green development. Based on the above reasons, this study will explore the synergis-
tic application of planning and market in land factors allocation from the perspective of
production–living–ecological spaces.

Figure 1. Allocation of land factors from the perspective of production-living-ecological spaces.

4.1. Allocation of Land Factors for Production Space

The market-based reform of land allocation can unleash huge potential for economic
development and is of great significance to achieving steady and high-quality economic
growth. The land factor allocation oriented by market efficiency is firstly reflected in the
agglomeration of population and various production factors in geographical space, and
behind this agglomeration of factors is the agglomeration of industries. Take Dongguan
City in Guangdong province as an example. In 2020, the total population of the city reached
10.47 million, and the global market share of the computer mouse, keyboards and capacitors
had reached 70%. For this concentration of market allocation, Adam Smith opened the
Wealth of Nations with an example of making paper clips: The maximum efficiency of a
single person making paper clips is 1 to 20 per day (depending on their proficiency), while
a production chain of 10 people can produce 48,000 per day, an average of 4800 per person,
with an efficiency increase of 240 to 4800 times. The improvement of efficiency is the result
of the division of production, which is precisely based on the premise of agglomeration.
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In other words, the possibility of division of labor can only be provided by clustering
to a certain extent. In addition, if enterprises in a certain industry cluster in a region, it
will also attract enterprises from other industries to engage in production and operation
in the region [42]. At this time, the agglomeration economy broke through industrial
boundaries and was called the “urbanization economy”. From international experience,
the size of a town is closely related to economic development. According to the World
Bank report, more than half of the people in the high-income countries category live in big
cities with populations of more than 1 million, and less than a quarter live in small towns
with populations of less than 20,000. The opposite is true in low-income countries, where
only about 1 in 10 people live in large cities with populations of more than 1 million and
nearly three-quarters live in small towns with populations of less than 20,000 (Table 1). The
agglomeration rule is universal, including China. Therefore, the allocation of land factors
in production space should follow the law and emphasize the agglomeration effect, and the
development of big cities should become the support for the construction of small cities.

Table 1. The proportion of city size in different development types of countries.

Size of Population
Low-Income

Countries (%)
Middle-Income
Countries (%)

High-Income
Countries (%)

Small settlements:
Under 20,000 73 55 22

Middle Settlement:
2 million to 1 million 16 25 26

The Big Settlement:
More than 1 million 11 20 52

Source: World Development Report 2009.

From the above perspective, population agglomeration brings the scale effect of
production exchange and promotes the development of urban innovation, production, and
trade. However, on the negative side, the population agglomeration leads to pollution,
crowding and other problems. When the positive externalities brought by the urban
agglomeration effect cannot make up for the negative impacts brought by the urban
problems, the social relations within the city will deteriorate. Therefore, while giving full
play to the decisive role of the market in factors allocation, it is more important to rationally
plan the regional economic layout, and earnestly do a good job in basic security work such
as territorial and spatial planning, land property rights system and land legal system.

4.2. Allocation of Land Factors for Living Space

The living space is people oriented. The allocation of land factors needs planning and
market to both guide a reasonable housing supply system. As mentioned in the report,
Chinese modernization is characterized by a huge population, common prosperity for all
the people, harmony between material and spiritual civilization, harmonious coexistence
between man and nature, and the path of peaceful development. So, in this context, how to
build China’s housing system for 2035?

First, in the real estate market, we should focus on absorbing the rigid demand
caused by the current population structure and improving the demand. In the face of
such a huge population in China, it is impossible to rely on the government alone, so
we need to rely on the market power and multi-subject supply. The housing demand for
ordinary commodity housing can be realized through the distribution function of the free
market, whose production, distribution, circulation, and consumption are regulated by
the market mechanism. The operation of the real estate market with fierce competition
and its supply structure (such as high-grade commodity apartments, villas, etc.) are
basically within the scope of complete marketization. Besides maintaining the rules of fair
competition, the government mainly decides the relationship between supply and demand
according to market rules and market mechanism. Only in this way can we effectively
increase supply, meet diversified demand, and improve the efficiency of housing resource
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allocation. Although the demand for ordinary commodity housing can be realized through
the distribution function of the free market, ordinary commodity housing still needs to
adhere to the “housing does not stir” requirement. A profit tax could be one option to curb
property speculation. In addition, with the commercialization and liberalization of housing,
the rate of home ownership has been greatly increased, and people have a higher pursuit of
material and spiritual, and the demand for improving housing has become the main body
of the real estate market, among which the ecological housing that realizes the harmonious
modernization of human and nature can also be regarded as a kind of improving housing.
Although there are no complete statistics, it is predicted in the relevant research report
that there are many vacant houses, and many families own multiple homes. The “heavy
transaction, light possession” housing tax system has no longer meet the needs of the
current economic and social development. Levying resource occupancy tax on housing has
become an important policy choice and the source of new land transfer fees in the future.
Levying taxes and fees on the link of housing ownership and appropriately reducing the
transaction tax burden can revitalize the stock of real estate, reduce the vacancy rate, and
make full use of land and housing resources.

Second, under the market economy system, in order to realize the modernization
of common prosperity for all the people and ensure that everyone has a house to live
in, the government needs to implement some special policies and measures to help the
floating population groups separating from their household registrations to solve the
housing difficulties. The general term for this policy system is called the housing security
system. However, the unbalanced development of housing security in the new era is mainly
manifested in three aspects: the unbalanced distribution of supply and demand between
cities, the unbalanced distribution of urban interior space, and the unbalanced construction
and management of affordable housing. The construction of affordable housing ignores the
internal demand difference between big cities and small and medium-sized cities, leading
to short supply in big cities and oversupply in small and medium-sized cities. Public
housing and low-rent housing are usually built far away from industrial urban centers,
with poor transportation infrastructure, high commuting costs, and inadequate public
services. Qualification audit and follow-up supervision of affordable housing are not in
place. In view of the unbalanced development of housing security, the author believes that
under the background of new urbanization, it is necessary to carry out planning allocation
of land factors, formulate housing policies, and promote urban-rural integration. Through
the planning and promotion of affordable housing, rail transit terminals in big cities should
become an important choice of affordable housing. At the same time, only when the rural
floating population has housing security in the city can the reform of rural homestead
system be leveraged in a real sense to improve farmers’ property income and achieve
common prosperity.

4.3. Allocation of Land Factors for Ecological Space

During the 14th Five-Year Plan period, China’s ecological civilization construction
entered a critical period with carbon reduction as the key strategic direction, promoting
the synergistic effect of carbon reduction and pollution reduction, promoting the com-
prehensive green transformation of economic and social development, and realizing the
improvement of ecological environment quality from quantitative to qualitative change.
Ecological space is guided by beauty, and the external requirements of transforming carbon
to achieve carbon neutrality and peak carbon dioxide emissions are the internal driving
force of ecological civilization construction. At present, the shortage of available land in
China is becoming increasingly serious, while the demand for land use is constantly in-
creasing, which requires us to effectively carry out territorial space planning and ecological
environmental protection, by drawing various security bottom lines, implementing use
control and ecological restoration.

First, the ecological pattern still needs to be planned according to the rules of territorial
differentiation. Among them, the ecological protection red line is the lifeline to ensure
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ecological security and an important means for the state to control ecological space. It is
necessary to use scientific methods to identify high-value carbon sink spaces, quantitatively
assess the functional value of forest, grassland, wetland, ocean, and other ecological
systems protection in carbon sinks, and incorporate their spatial location into the ecological
protection red line of the national land control planning, strengthening the use control of
national land space and strictly protecting high-value carbon sink spaces. At the same time,
we should promote ecological restoration in the national territory and increase carbon sinks
in ecosystems.

Second, urban development needs to respect nature and make good use of planning
for top-level design. Among them, transport distance is the concentrated expression of
the basic spatial characteristics of human and nature, as well as the interaction between
humans and space. In particular, the geographical distance, density, segmentation, and
heterogeneity have great influence on the carbon emission of cities. For example, Russia
is much larger than Mexico, with a land area of 8.7 times greater. As a result, although
Russia and Mexico have the same population and per capita GDP in 2021, Russia’s per
capita carbon emission of 12.04 tons is 3.2 times that of Mexico. According to the “Research
on the Impact of Land Use Structure on Air Pollutants and carbon Emissions” project,
Chinese urban and construction land accounts for 1% of the country’s total land area, but
carbon emissions account for nearly 90% of the country’s total emissions. In addition,
if the construction land scale doubled, the carbon emissions will increase by 1.7 times.
Therefore, we need to conduct scale constraint and structural adjustment for all kinds of
land development and construction based on geographical distance, density, segmentation,
and heterogeneity. At the same time, we need to establish natural ethics, caring for the land,
and guide residents to transform their behavior to the green and low-carbon direction.

Finally, ecology is a resource that can be transformed into assets, and its land factors
allocation needs the assistance of the market. Through the market mechanism, ecological
function can be transformed into ecological values and the modernization of harmonious
coexistence between man and nature can be realized. Ecological environment and its
functional diversity determine the different attributes of ecological value. Some ecological
values take the products and services derived from the good ecological environment
to meet certain needs of people as the carrier, such as ecological agricultural products,
ecological tourism, etc., which are directly produced for peoples’ consumption or use,
so as to obtain certain monetary benefits and realize value transformation. In practice,
if the economic value of natural resources cannot be fully tapped, the ideal of “lucid
waters and lush mountains are invaluable assets” will not be realized. If we cannot benefit
from ecological protection and ensure the simultaneous development of social benefits
and corresponding economic benefits, ecological builders will lose their enthusiasm for
ecological protection and construction, and ecological environmental construction will
lose its power source. As far as we are concerned, ecological products and ecological
industrialization are an important means to realize the ideal of “lucid waters and lush
mountains are invaluable assets”.

4.4. Interaction of Production-Living-Ecological Spaces: A Perspective from Livable City

The modernization of China’s territorial space governance system and capacity looking
forward to 2035 not only requires production, living, and ecological spaces to achieve their
development goals respectively, but also requires an overall insight into the interactive
relationship among production–living–ecological spaces to make allocation of land factors
better serving for the optimization of territorial space layout at different scales. Cities are
the crystallization of modern human civilization. Human yearning for “livable cities” has
been reflected in Howard’s “Garden City” concept as early as the end of the 19th century. In
1933, The Athens Charter, the representative of urban spatial planning theory, put forward
the overall concept of the coordinated development of the city and its surrounding areas,
and divided the urban functions into work, residence, and recreation. This classification
perspective coincides with production–living–ecological spaces, where the work function
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corresponds to production space, the residential function corresponds to living space, and
the recreational function corresponds to ecological space. China’s development plan for
2035 also regards the construction of the “livable city” as an important goal. Therefore, we
try to take the construction of the “livable city” as an example to specifically explain the
interactive relationship between production–living–ecological spaces (Figure 2).

Figure 2. The interactive relationship of production–living–ecological spaces.

Livability is the primary goal of building a “livable city”. In urban spaces, the need
for intimate, continuous relationship comes first. Therefore, urban living spaces need
to pay close attention to the basic needs of people including social and spiritual needs.
This requires that urban planning must be primarily carried out at the human scale to
provide the necessary housing and basic public services. Second, production and living
are closely related, and the construction of a modern livable city cannot be separated from
the drive of production, which provides the necessary material basis for human beings
to live happily. On the one hand, innovative behavior in urban production space will
continue to provide employment for its residents, but on the other hand, it is also necessary
to control the pollution caused by agglomeration in production space. Furthermore, a
livable city should try to achieve a work-life balance as much as possible, ensure that
wages and rents match, and ensure that green spaces and fresh air are not sacrificed to earn
wages [43]. Finally, the urban ecological space reflects humans’ longing for poetic living. A
beautiful ecological environment can not only directly promote human physical and mental
health and realize “harmony between man and nature”, but also provide nature-based
habitat through ecological resource value conversion. In addition, ecological space can
also promote the sustainable development of production space through carbon neutrality.
As a result, production–living–ecological spaces of a livable city have achieved effective
interaction and established a virtuous circle. The overall optimization of livable urban space
that integrates production–living–ecological needs to systematically formulate land use
policies, fully consider the interactive relationship between production-living-ecological
spaces in the allocation of land factors. The integration of “truth-kindness-aesthetic” in
urban space is crucial to improving the overall welfare of the city and achieving sustainable
urban development.

5. Findings

5.1. The Logics of Planning and Market Allocation of Land Factors

In the face of an increasingly complex global environment, the allocation of land
factors shoulders the important task of coordinating development and security in the
modernization of a country. Planning and market essentially represent two different
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logics of land factors allocation. The control and guidance functions of planning help
build a security barrier for the development of national modernization, reflecting the
“top-down” factors allocation logic, which is a manifestation of the modernization of the
national governance system. The incentive and adjustment functions of market are the
fundamental driving force to promote the country’s development to a new level, reflecting
the “bottom-up” factors allocation logic, which reflects the modernization of national
governance capacity. On the one hand, the modernization of China’s territorial space
governance system and governance capacity, needs to follow the “top-down” logic, which
starts from the continuity of the planning system and the overall coordination of the region,
and realizes the allocation of land factors based on maximizing the overall social benefits.
On the other hand, it also needs to follow the “bottom-up” land factors allocation logic to
meet the interests of different individuals and stimulate the vitality and efficiency of market
mechanism. Therefore, to realize the complementarity of public interests and personal
interests in the development of national modernization requires a good connection between
“top-down” and “bottom-up” logic in terms of allocation of land factors.

5.2. The Theoretical Mechanisms of Market and Planning Allocation of Land Factors

Individual rationality is the starting point of market allocations of land factors. To
explain this argument, we introduce the “Centipede Paradox” model (Figure 3). It is a kind
of paradox found in the study of game theory and game logic, and it is a kind of paradox
of reasonable behavior choice. This game is called the “centipede game” because it spreads
like a centipede. It means that two players have a square box with N gold coins and two
round empty containers. First, you take two gold coins out of the box and put them both
in one of the containers. Then every time after that, you take two gold coins out of the
box and put one gold coin in each of the containers. The two players, A and B, take turns
choosing strategies to either end the game, choose the container with the most coins, or let
the game continue. Suppose A chooses first, then B, then A, and so on, and the number
of games between A and B is a finite 100 times. The respective returns of this game are
shown in Figure 1. For the first time, if A completes the decision, A and B get 2 and 0 gold
coins, respectively. For the second time, if B’s decision ends, A and B get 1 and 3 gold coins,
respectively. For the third time, if A completes the decision, A and B get 4 and 2 gold coins,
respectively, and so on. Based on the logic of the game, the rational person’s assumption is
that A is going to end the game on the second to last step. But the problem is that B is also
smart, he anticipates A’s motivation, and he ends the game on the third to last move. It is
not hard to see that in the reasoning process of this game, backward induction is used. If
the market pursues individual rationality too much, the composite whole may be irrational.
Therefore, planning is needed to supplement and correct market failures in the allocation
of land factors.

(a) (b) 

Figure 3. Centipede game model: (a) Description of game item: a square box with N − 6 gold coins
and two round containers with 4 and 2 gold coins respectively; (b) Description of the game process.
Before the comma is the return of A, after the comma is the return of B.
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Overall rationality is the starting point of planning allocations of land factors. A
social optimization model is introduced here to illustrate this point [44]. As shown in
Figure 4, there are two ice cream stands A and B on the coastline that offer exactly the
same goods and services. In order to gain a larger market, the positions of A and B
spontaneously developed from the initial state I to the stable state III of the balanced match
during the game. To reduce the overall transportation cost of residents along the coast,
the layout of ice cream stand A and B should be planned for social optimization, and A
and B should be placed in 1/4 and 3/4 places respectively. However, overall rationality
also needs to incorporate individual rationality. Facing the ever-changing economic and
social development environment, over-emphasis on the control and constraints of planning
may be counterproductive. The basic conclusion is that light control is the most effective,
while tight control can lead to overreaction and sometimes even the disintegration of the
machine. The compilation of territorial space planning needs to consider its variability,
adjustability, selectivity and reconfigurability.

Figure 4. Social optimization model: A and B are two ice cream stands on the coastline that offer
exactly the same goods and services.

5.3. Enlightenment of Middle-Around Theory

In China’s reform to promote the modernization of territorial space governance system
and capacity, we suggest that “middle-around” theory is a possible theoretical solution
to effectively connect planning and market in the allocation of land factors. The western
planning concept originates from city-state governance, with the city as the core and the
bottom-up orientation as the starting point and the leading; however, the planning concept
of China originated from irrigated agriculture. Since Yu controlled the flood, the core was
rural areas, emphasizing top-down. In modern China, the influence of “Western learning
to the east” and bottom-up Western planning concept influenced China. Especially after
the reform and development in 1978, the western planning trend of thought had more
and more profound influence on China. However, it conflicts with the deep-rooted top-
down planning concept in China, so different plans have different ideas. It is under this
background that “multi-planning integration” is proposed, and middle-around provides a
new planning theory for the future “multi-planning integration”.

Planning emphasizes goal orientation and usually starts from supply, so indicators
are decomposed layer by layer from top to bottom. Market focuses on problem solving
and tends to start from demand, which is a bottom-up demand orientation. “Middle-
around”, also known as theory of “Waist”, is the intersection of “top-down” planning
allocation theory and “bottom-up” market allocation theory (Figure 5), which is oriented
by the balance between supply and demand, to achieve the synergy of achieving goals and
solving problems. On the one hand, “middle-around” theory emphasizes that the rational
allocation of land factors requires planning and market to be used together, neither cannot
be neglected. On the other hand, it emphasizes that only by adaptively using government
and market functions in face of specific problems in the allocation of land factors can avoid
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the logical conflict between “top-down” and “bottom-up”, and truly release the power of
territorial space governance systems and capacity when driving modernization reforms.

Figure 5. “Middle-around” theory in allocation of land factors.

From the perspective of production-living-ecological spaces, this study analyzes how
China’s land factors allocation in the modernization development towards 2035 should use
the two methods of planning and market to achieve the overall requirement of “intensive
and efficient production space, livable and moderate living space, and beautiful ecological
space”. Territorial space is extremely complex, but spatial scale is an entry point to un-
derstand the internal rules of it. Combining the guidance of “middle-around” theory and
the starting point of spatial scales heterogeneity, we can better understand the differential
mode of government-market collaborative allocation of land factors of production–living–
ecological spaces. The first is global/country scale, which considers whether land resources
can be used. In the case of available land, it can be divided into use/non-use. The theory
needed here is sustainable development theory, including land ethics, global climate change
and suitability assessment; the second is regional scale, considering the scale allocation of
agricultural land and the utilization of non-agricultural construction land. The methods
used here are demand forecasting and indicator decomposition. Demand forecasts must
take into account the diversity of needs, including sustenance of food and housing, as
well as agricultural and industrial productivity. Index decomposition involves structural
adjustment; the third is local scale, considering the spatial layout, specifically the relation-
ship between ecological land and construction land, as well as the internal relationship of
construction land. The spatial layout should consider the social development stage, the in-
fluence of utilization and zoning planning, land use, location and transportation and other
factors. To sum up, “middle-around” theory can provide helpful solutions to the practice of
land factors allocation in developing countries, but the perfection of the theoretical solution
always needs practice tests, timely feedback, and continuous improvement.

6. Conclusions

Planning and market are two means to allocate land factors, but there is a boundary
between them. The territorial space is a complex system, current knowledge and cognition
of human beings is limited, and the future is full of numerous variables and uncertainties.
In this context, land factors allocation requires the synergistic allocation of planning and
market to achieve both development and safety goals looking forward to 2035. Further-
more, land factors allocation should also consider the spatial scale differences [45]. To be
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specific, the adoptions to planning and market should follow the rule of “globally fuzzy to
locally accurate” from top level to down level. The higher-level planning should be more
macroscopic, more standardized, and more stylized. When it comes to detailed planning at
lower level, the expression of spatial elements is more refined. For large-scale planning, it
is necessary to do a good job of strategic guidance, coordinate the development goals and
the bottom line of safety. For planning elements that must be implemented, such as urban
development boundaries, permanent basic farmland red lines, and ecological protection red
lines, planning should be strictly formulated, and relevant laws and regulations should be
implemented. However, Technical standards can be in the form of guidelines, recommenda-
tions, etc., to provide flexible solutions to uncertainties, and leave enough room for market.
For small-scale planning, due to the basic data information of clear research on market
demand, the planning can be made clearer and more detailed. The layout of various spaces
and facilities shall be coordinated to fully reflect the regional and cultural characteristics
according to the local population and resource conditions, the stage of economic and social
development, and the improvement requirements of the human settlements. Besides, it
needs pay attention to the dynamic monitoring in the later period, so that the planning can
be effectively implemented in the long run.
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Abstract: Understanding the complex relationship between ecosystem services and human well-being
during the rapid development of urban agglomerations can promote the sustainable development
of urban agglomerations. In this paper, the InVEST model and ArcGIS10.2 were used to analyze
the spatial and temporal evolution characteristics of ecosystem services and human well-being
in the Guanzhong Plain urban agglomeration. On this basis, the coupling coordination index is
used to reveal the spatiotemporal coupling relationship between them. (1) From 2010 to 2018,
the water conservation services, soil conservation services, and carbon sequestration services of the
Guanzhong Plain urban agglomeration showed a fluctuating downward trend. The spatial differences
of ecosystem services were significant. (2) From 2010 to 2018, human well-being in the Guanzhong
Plain urban agglomeration showed a fluctuating downward trend, with a decrease of 17%, and
regional differences tended to narrow. (3) The coupling coordination degree between ecosystem
services and human well-being has slightly decreased while maintaining the basic coordination state.
The results show that there was a significant relationship between the decline of ecosystem services
and the rapid development of the Guanzhong Plain urban agglomeration, and policies should be
classified according to the coupling coordination types of human well-being and ecosystem services
to promote the sustainable development of urban agglomerations.

Keywords: Guanzhong Plain urban agglomeration; ecosystem services; human well-being; InVEST
model; coupling coordination degree

1. Introduction

Since the 21st century, along with the continuous expansion of global cities, growth in
the intensity of human activities, and continuous increases in social demands and human
demands for water, land, and energy have been increasing. These factors have intensified
the exploitation of natural resources and severely damaged global ecosystem services [1].
Maintaining good ecosystem services in urban agglomerations and effectively improving
local human well-being are hot topics for researchers. Therefore, the Millennium Ecosystem
Assessment (MA), the Future Earth Program (GLP), and the 2030 Agenda for Sustainable
Development, proposed by international organizations, have coordinated ecological and
urbanization development as their goals. These international organizations have paid
much attention to the relationship between ecosystem services and human well-being [2].
China’s urban agglomerations are in a stage of rapid development. The high-quality
development of urban agglomerations, in addition to the high-level protection of ecological
environments, and ultimately the improvement of human well-being, are realistic issues
that need to be faced in the construction of urban agglomerations [3].

Ecosystem services are defined as the various benefits humans derive from ecosys-
tems [4] and are now recognized as provisioning services, regulating services, cultural
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services, and supporting services [5], which aim to improve human well-being [6]. Since
the 1990s, many scholars have conducted studies around the theory, method and practical
application of ecosystem service supply assessment. Extensive assessments of ecosystem
services have been conducted in different regions, scales, and types [5–8]. There are a
variety of quantitative assessment methods for ecosystem services. Cotatanza [4] et al.
used the value equivalent scale to estimate the total capital structure value of ecosystem
services. The InVEST model was used to visualize the value of ecosystem services, and
the sustainable and dynamic evaluation methods. These two methods are the most widely
used [9]. In contrast, human well-being has no standard definition and remains a contested
concept [10]. Now, it is generally believed that human well-being is multi-dimensional,
and the selected indicators are not the same under different research scales [11]. Easily
accessible statistical indicators are used in large-scale studies [12], such as the Human De-
velopment index (HDI) [11] and National Well-Being Index (NWI) [13], and comprehensive
well-being evaluations combining quality-of-life and material conditions [13,14].

2. Literature Review and Research Framework

2.1. Literature Review

The core issue of sustainable science is to extend the research on ecosystem services to
human well-being, and to study the relationship between them [15]. Yang Xueting et al. [16],
Liu Ziwen et al. [17], Willis C., and Kosanic et al. [18,19] explored the relationship between
ecosystem services and human well-being from the perspectives of provisioning services,
regulation services, and cultural services. Li [20] and Wei et al. [21] studied the impact
of the supply–demand ratio of ecosystem services and different types of supply–demand
mismatch on human well-being. Robinson B.E. et al. [22] proposed land management
strategies based on the dependence of farmers’ livelihoods on ecosystem services. Richard
S. et al. [23] studied the impact of different decisions on human well-being from the
community scale. Previous studies have shown that ecosystem services primarily play a
bearing or constraint role in human well-being in terms of provisioning, regulation, culture,
and support services [5], and the latter promotes or stresses ecosystem services as well as
their functions through the differentiation of economic, social, and environmental well-
being needs [24], thus forming a close bidirectional correlation between the two [25]. In the
process of deepening geographical research into human–earth system coupling, ecosystem
services and human well-being are increasingly closely interacting, and their correlation
and coupling have gradually become the focus and frontier issues of current research [26].

In general, there are a lack of studies on the coupling relationship between ecosystem
services and human well-being [26]. With the rapid development of urban agglomeration,
many urban environmental problems have become increasingly prominent, and the ability
of ecosystem to supply human well-being has been declining [27]. Assessing the coupling
relationship between ecosystem service value and human well-being from the perspective
of urban agglomerations can help cities maintain ecosystem service capacity and improve
human well-being. This has important theoretical and practical significance for realizing
the sustainable development of urban agglomerations.

2.2. Research Framework

The Guanzhong Plain urban agglomeration is an ecologically sensitive area, located
in an important area of ecological function. The special geographical location and com-
plex topography aggravate the vulnerability of the regional ecological environment; the
environmental capacity is close to its limit. As a typical Western urban agglomeration
with the prominent contradiction of “human–land”, urban development and economic
growth have intensified the waste of resources and resource constraints. At present, it
is urgent to reveal the coupling relationship between human well-being and ecosystem
services as well as to formulate a reasonable urban development strategy. Therefore, taking
the Guanzhong Plain urban agglomeration as a research case, we used the InVEST model,
coupling coordination degree, and other methods to analyze the coupling relationship
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and spatiotemporal evolution characteristics between ecosystem services and human well-
being. In this way, the feedback of human well-being to ecosystem service changes and
the well-being-driven effect of ecosystem service values were investigated. This provides
a reference for the relationship between ecosystem services and well-being in the rapid
urbanization of less developed regions around the world. The overall research framework
is illustrated in Figure 1.

Figure 1. Research framework.

3. Materials and Methods

3.1. Study Area

As the second largest urban agglomeration in western China, the Guanzhong Plain
urban agglomeration is an important growth pole, leading the development of the western
region, and an important gateway facing the central and eastern regions. It includes the
Guanzhong region of Shaanxi Province and some cities in Shanxi and Gansu Provinces,
with a total of 90 counties (cities and districts). With an area of 10.71 × 104 km, and an
average altitude of 400–3700 m (Figure 2), it possesses a temperate semi-humid monsoon
climate. The rainfall decreases from west to east and from south to north. The regional
geology and landforms are complex, with the mountains of the Southern Shaanxi and the
Qinling Mountains to the south, the Loess Plateau to the north, and the Weihe River Lower
Valley Plain in the middle, showing a basin topography with high surroundings and a low
center. It is the core area of the middle reaches of the Yellow River Basin, and an important
grain-producing area in China.

At the end of 2018, its permanent human population was 39.4853 million; its GDP was
more than CNY 2 trillion, accounting for about 2.3% of the total GDP of China. However,
the capacity of the natural ecological environment in this region is weak. Water resources
are scarce, and groundwater overexploitation is prominent. The per capita water resources
are less than one third that of the national average, and the spatial distribution of water
resources is uneven. Water pollution in some sections of the Weihe River and Fenhe
River Basin is serious. The massive mining of mineral resources has caused problems,
such as soil erosion and soil pollution. It is necessary to strengthen the construction of
ecological civilization and ecological environment protection in the future. The relationship
between ecosystem services and human well-being is of great significance for solving the
contradiction between ecological protection and economic construction in the Guanzhong
Plain urban agglomeration.
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Figure 2. Overview of Guanzhong Plain urban agglomeration: (a) location in China; (b) administra-
tive divisions; (c) elevation.

3.2. Data Sources

This paper mainly includes meteorological data, soil data, land use data, and statis-
tical yearbook data. The meteorological data are from resources and environment data
cloud platform (https://www.resdc.cn/Default.aspx (accessed on 6 December 2021)). The
potential evapotranspiration data are from the Global Drought Index and Potential Evapo-
transpiration (ET0) Climate Database V2. Soil data are from the World Soil Database. The
land use data of 2010, 2015, and 2018 were from China Land Use/Land Cover Remote
Sensing Monitoring Database with a resolution of 100 × 100 m. DEM data are from geospa-
tial data cloud (http://www.gscloud.cn/ (accessed on 8 December 2021)). All raster data
were reclassified and transformed into projections in GIS, the resolution was uniformly
transformed into 100 m × 100 m, and the projection was uniformly transformed into Albers
projection. The data for the assessment of human well-being are mainly from the 2010, 2015,
and 2018 China Urban Statistical Yearbook, China County Statistical Yearbook, and the
statistical yearbooks of 90 counties (districts) in the Guanzhong Plain urban agglomeration.

3.3. Research Methods
3.3.1. Ecosystem Services

1. Water Yield model

As a typical water-scarce area, the Guanzhong area has rapidly increased the de-
mand for water resources. The InVEST Water Yield model is used to calculate the water
conservation services of the region, detailed in the following equations [28]:

Yxj =

(
1 − AETxj

Px

)
× Px
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AETxj

Px
=

1 + ωxRxj

1+ωxRxj +
(

1
Rxj

)

ωx= Z
AWCx

Px

Rxj =
Kxj × ETx

Px

where Yxj is the annual water volume (mm) of the land cover type j in pixel x. AETxj is the
actual evapotranspiration (mm) of land cover type j in pixel x. Px is precipitation (mm) of
pixel x. ωx is to correct the ratio of annual vegetation available water and precipitation.
Rxj is the dry coefficient. Z is Zhang’s coefficient, which is 30 [29] in this paper, according
to previous studies. AWCx is the effective soil water content (mm) of raster cell x. Kxj is
the evapotranspiration coefficient of vegetation of land cover type j in pixel x. ETx is the
reference crop evapotranspiration.

2. Sediment Delivery Ratio (SDR) model

Soil erosion is a serious environmental problem faced by human beings that restricts
the sustainable development of the global economy and society. Serious soil erosion can
destroy land productivity, reduce biodiversity, threaten the regional ecological environment,
and exacerbate poverty in mountainous areas. The Guanzhong Plain urban agglomeration
is located in a fragile ecological environment. The soil erosion is very strong because of the
combined action of natural and human factors. The Guanzhong Plain urban agglomeration
is the key area of soil erosion research in the world. The soil retention in this area is
calculated by the SDR Model in the InVEST model [30]:

SEDERTx= RKLSx − USLEx

where SEDERTx denotes soil conservation (t) of pixel x. RKLSx and USLEx denote potential
soil erosion (t) and actual soil erosion (t), respectively.

RKLSx= Rx × Kx × LSx

USLEx= Rx × Kx × LSx × Cx × Px

where Rx is rainfall erosivity [MJ·mm/(hm·h·a)]. Kx is the soil erodibility. LSx is the slope
length and slope factor. Cx is the vegetation cover factor. Px is the management factor.

3. Carbon Storage and Sequestration model

We calculated carbon Sequestration services of Guanzhong Plain urban agglomeration
through the Carbon Storage and Sequestration in InVEST model. Carbon sequestration
mainly includes aboveground carbon sequestration, underground carbon sequestration,
soil carbon sequestration, and biological carbon sequestration. The carbon density data are
from the literature [31].

GC= Gabove+Gbelow+Gdead+Gsoil

where GC is the total carbon sequestration of the ecosystem (t). Gabove is the aboveground
carbon sequestration (t). Gbelow is the underground partial carbon sequestration (t). Gdead
is the carbon sequestration of dead organic matter (T). Gsoil is the soil carbon sequestration
(t).

3.3.2. Human Well-Being Level

1. The construction and evaluation of human well-being indicators

According to the Millennium Ecosystem Assessment Report, well-being mainly refers
to the material, spiritual, and health needs of human beings, including basic living materials,
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safety, health, good social relations, and freedom of choice as well as action [32]. Generally,
easy-to-obtain statistical indicators are selected for large-scale evaluation [13]. Based on
the well-being connotations and related research in the Millennium Ecosystem Assessment
Report, in addition to the availability of data, this paper constructed a well-being evaluation
index body for humans in the Guanzhong Plain urban agglomeration from four dimensions:
income, material needs and health, living environment, and safety (Table 1).

Table 1. The human well-being index system of humans in Guanzhong Plain urban agglomeration.

The Target Layer Level Indicators The Secondary Indicators Weight

Human well-being

Income
Disposable income of urban humans 19.00%

Per capita net income of farmers 17.00%

Material needs and health
Per capita food consumption 13.00%
Per capita meat consumption 7.00%

Per capita vegetable consumption 9.00%

Living environment Air quality index 15.00%
Green rate of built-up area 1.00%

Safety
Per capita cultivated land area 5.00%

Per capita grain production 3.00%
Per capita water resources 11.00%

Among them, the need for a good life are not confined to the need for food and clothing;
they include those necessary for pursuing a high quality of life, living environment beauty,
and happiness of a better life. Basic substances for a good life include residents’ income,
purchasing power, and quality of life [32]. This paper will address residents’ income and
consumption of grain, meat, and vegetables to measure the material needs of residents to
farmers, as well as their health. Living environments are an important source of residents’
happiness. With the improvement of living standards, people pay more and more attention
to the surrounding environment, and the degree of greenness and air quality are often the
issues that are of most concern to urban residents [33]. Therefore, this paper includes an air
quality index and the green rate of built-up areas in the evaluation indexes of human well-
being [34]. In the arid region of northwest China, the ecological environment is fragile and
the problems of soil erosion, desertification, and soil salinization are serious and threaten
the livelihood and well-being of residents. Water resource security and food security are
important factors affecting the well-being of residents [35,36]. Therefore, the per capita
water resources, per capita cultivated land area, and per capita grain yield are used as the
evaluation indexes of security.

In the evaluation, the entropy weight method was used to determine the weight of
each index. The entropy weight method can determine the index weight according to the
variation degree of the index value of each indicator. It is an objective weight method
that avoids the deviations caused by human factors, gives full play to the advantages
when determining the weights of many different indicators, and reflects the differences
in the degree of fluctuation of different well-being dimensions [37]. Therefore, this paper
first uses a range standardization method to standardize each index and determines the
weight of each indicator via the entropy weight method. The well-being index of each
county and district in the Guanzhong Plain urban agglomeration was then calculated via
weighted summation. Finally, the overall well-being level of humans in the Guanzhong
Plain urban agglomeration was evaluated through the average value of human well-being
in each county.
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2. Analysis of hot and cold spots

The spatial agglomeration degree of human well-being in Guanzhong Plain urban
agglomeration was effectively identified by the cold–hot spot analysis.

G∗
i (d) =

Kxj × ∑n
i=1 Wij(d)xi

∑n
i=1 Px

where Wij is weight. xi is the sample value of i. G∗
i (d) is the degree used to effectively

identify the spatial agglomeration degree of human well-being. If the value is positive, the
area is a high-value agglomeration area of human well-being. Otherwise, it is a low-value
agglomeration area.

3.3.3. The Coupling Relationship between Ecosystem Services and Human Well-Being

In this paper, the coupling degree index was introduced to construct the coupling
coordination degree [29–32] measurement model of urban ecosystem services and human
well-being in the Guanzhong Plain. We studied the degree of interaction between ecosystem
services and human well-being and characterized whether the functions are mutually
promoting at high levels or constraining at low levels.

D =
√

C × T

TY = ∂Yi + βUi, TS = ∂Si + βUi, TG = ∂Gi + βUi

CY= 2 ×
{

Yi × Ui

(Yi + Ui)
2

}1/2

, CS= 2 ×
{

Si × Ui

(Si + Ui)
2

}1/2

, CG= 2 ×
{

Gi × Ui

(Gi + Ui)
2

}1/2

where D is the degree of coupling coordination. C represents the coupling value and
characterizes the degree of interaction between ecosystem services and human well-being,
0 ≤ C ≤ 1. T is a comprehensive evaluation index for the coordinated development of
ecosystem services and human well-being, indicating the overall synergistic effect or the
contribution of the two. Yi, Si, and Gi are water conservation service, soil conservation
service, and carbon sequestration service, respectively. Ui is the human well-being index. ∂
and β are coefficients to be determined. Due to the coordinated development of ecosystem
services and human well-being, both ∂ and β are set as 0.5.

Based on results of existing studies [12,38–40] and the actual situation of this study,
the coupling coordination degree of “ecosystem services-human well-being” was classified
into five types(Table 2).

Table 2. Types of coupling coordination degree between ecosystem services and human well-being.

Coupling Coordination Degree Coupling Coordination Type Characteristics

D ∈ (0, 0.2] Serious imbalance

Ecosystem services and human well-being are mutually
restricted. Excessive and disorderly development of urban

agglomeration has seriously squeezed ecological space.
This is contrary to human well-being.

D ∈ (0.2, 0.4] Moderate imbalance

There are certain constraints on ecosystem services and
human well-being. The ecological problems arising from

the construction of urban agglomeration have become
prominent, with a negative impact on human well-being.

D ∈ (0.4, 0.6] Basic coordination
The relationship between ecosystem services and human
well-being is basically harmonious. The construction of

urban agglomeration can maintain healthy development.
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Table 2. Cont.

Coupling Coordination Degree Coupling Coordination Type Characteristics

D ∈ (0.6, 0.8] Moderate coordination
Ecosystem services and human well-being can promote
each other at a high level, and the construction of urban

agglomerations can healthy develop.

D ∈ (0.8, 1.0] High coordination

Ecosystem services and human well-being mutually
promote each other at a high level, and urban

agglomeration construction is developing in an orderly
manner.

4. Results

4.1. Spatial–Temporal Characteristics of Ecosystem Services
4.1.1. Spatial–Temporal Characteristics of Water Conservation Services

From 2010 to 2018, the water content of the Guanzhong Plain urban agglomeration
showed an overall fluctuating decreasing trend, from 6.88 × 1011 mm in 2010 to 6.34 ×
1011 mm in 2018, a decrease of 7.8%. From 2010 to 2015, the water conservation of the
Guanzhong Plain urban agglomeration significantly decreased, from 6.88 × 1011 mm to 6.11
× 1011 mm, a decrease of 11.3%. From 2015 to 2018, the annual water conservation slightly
increased, from 6.11 × 1011 mm to 6.34 × 1011 mm, an increase of 3.8% (Figure 3). From
2010 to 2018, the coefficient of variation of water conservation services in the Guanzhong
Plain urban agglomeration showed an overall downward trend, with a decrease of 16%
(Figure 3). The aforementioned information indicates that the regional differences in water
conservation services in this region were gradually narrowed.

  

Figure 3. Total ecosystem services and coefficient of variation of ecosystem services.

Water conservation in the Guanzhong Plain urban agglomeration shows an overall
distribution pattern of “high in the south and low in the north, decreasing from south
to north”. The high-value areas of water conservation were mainly distributed in the
northern foothills of the Qinling Mountains. The second highest value areas of water
conservation were mainly distributed in the upper reaches of the Weihe River, the northwest
of the Guanzhong Basin, and the east of the Guanzhong Plain urban agglomeration. The
low-value areas of water conservation were mainly distributed in the northwest of the
Guanzhong Plain urban agglomeration and the Longdong region of the Gansu Province.
This is consistent with the spatial distribution pattern of rainfall in the Guanzhong Plain
urban agglomeration. From 2010 to 2018, the high-value areas of water conservation in
the Guanzhong Plain urban agglomeration showed an expansion trend from east to west,
whereas the low-value areas tended to shrink. From 2010 to 2015, the high-value areas were
mainly distributed in the southeast and south of the Guanzhong Basin, with an expanding
trend. From 2015 to 2018, the high-value area continued to expand westward, basically
forming a distribution pattern consistent with the ecological barrier zone in the Qinba
Mountains area in the south of the Guanzhong Plain urban agglomeration.
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4.1.2. Spatial–Temporal Characteristics of Soil Conservation Services

From 2010 to 2018, the soil conservation in the Guanzhong Plain urban agglomeration
showed a fluctuating downward trend from 4.96 × 1011 t to 4.05 × 1011 t, a decrease of
18.3%. From 2010 to 2015, the decreasing trend was significant, from 4.96 × 1011 t to
3.91 × 1011 t, a decrease of 21.2%. From 2015 to 2018, it slightly increased from 3.91 × 1011 t
to 4.05 × 1011 t, an increase of 3.6%. The coefficient of variation of soil conservation services
in the Guanzhong Plain urban agglomeration was decreased by 6.8% from 2010 to 2018.
This indicates that the regional differences in soil conservation in the Guanzhong Plain
urban agglomeration tended to narrow.

From 2010 to 2018, soil conservation in the the Guanzhong Plain urban agglomeration
showed a spatial distribution of “high in the south and low in the north, high in the west
and low in the east”. The high-value areas were mainly distributed in the northern foothills
of Qinling and the southeast of Longlong in the south of the Guanzhong Plain urban
agglomeration. The low-value areas were mainly distributed in the Weihe River Valley and
the Fenhe River Valley. From the perspective of interannual changes, the overall spatial
distribution of soil conservation did not change much. The overall soil conservation in 2018
was less than that in 2010. However, the soil conservation in the Longdong area, especially
Tianshui, was more than that in 2010.

4.1.3. Spatial–Temporal Characteristics of Carbon Sequestration Services

From 2010 to 2018, the carbon sequestration of Guanzhong Plain urban agglomeration
was decreased from 6.36 × 108 t to 6.35 × 108 t, but the decrease was less than 1%. From 2010
to 2015, the carbon sequestration was decreased from 6.36 × 108 t to 6.34 × 108 t, a decrease
of 0.3%. From 2015 to 2018, the carbon sequestration was increased from 6.34 × 108 t to
63.5 × 108 t. From 2010 to 2018, the coefficient of variation of carbon sequestration service
in the Guanzhong Plain urban agglomeration showed an overall upward trend. This
indicates that the regional difference in carbon sequestration service tended to increase, but
the increase was small (0.92%). This indicates that the spatial variation of soil conservation
was small during this period.

From 2010 to 2018, the spatial distribution of carbon sequestration in the Guanzhong
Plain urban agglomeration was “high in southwest China and low in northeast China”.
The high-value areas were mainly distributed in the northern part of the Guanzhong Plain
urban agglomeration, the northern part of Guanzhong Basin, the interlaced zone between
the Liupan Mountains and the Guanzhong Basin, and the interlaced zone between the
Taihang Mountains and the Jinshan Basin. The low-value areas were mainly distributed in
the Weihe River Valley and the Fenhe River Valley. From the perspective of inter-annual
variation, the overall spatial distribution of carbon sequestration did not change much.
However, the carbon sequestration in 2018 was less than that in 2010 (Figure 4).

65



Int. J. Environ. Res. Public Health 2022, 19, 12535

Figure 4. Spatial–temporal distribution of water conservation, soil conservation, and carbon seques-
tration in Guanzhong Plain urban agglomeration from 2010 to 2018.

4.2. Spatial-Temporal Differentiation of Human Well-Being

From 2010 to 2018, the comprehensive human well-being in the Guanzhong Plain
urban agglomeration showed a fluctuating downward trend, from 0.53 in 2010 to 0.44 in
2018, a decrease of 17%. From 2010 to 2015, the human well-being showed a downward
trend, from 0.53 to 0.42, a decrease of 21%. From 2015 to 2018, the human well-being
showed a slow upward trend, from 0.42 to 0.44, an increase of 5%. The coefficient of
variation of human well-being in the Guanzhong Plain urban agglomeration showed a
downward trend, from 0.19 in 2010 to 0.14 in 2018, a decrease of 26% (Figure 5). This
indicates that the regional differences in human well-being in the Guanzhong Plain urban
agglomeration tended to narrow.

 

Figure 5. Changing trend of human well-being in Guanzhong Plain urban agglomeration from 2010
to 2018.

We classified the human well-being into five levels: high well-being, higher well-being,
moderate well-being, lower well-being, and low well-being, by natural break point method
(Figure 6). From 2010 to 2018, the overall human well-being in Guanzhong Plain urban
agglomeration showed the spatial distribution of “high in the west and low in the east,
high in the middle and low in the surrounding areas”. In 2010, the high well-being areas
were mainly concentrated in the urban functional developed areas of the Weihe River
Valley and surrounding areas, with a stepped distribution from high to low from the
center to surrounding areas. From 2010 to 2015, the urban functional developed areas and
surrounding high well-being areas in the Weihe Valley expanded westward. A total of
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10.5% of the counties and districts were transformed from medium- and low-level areas
to high well-being areas, forming a stepped distribution of high-level districts with Xi’an
and Baoji as the dual cores in the urban functional developed areas of the Wei River Valley.
Therefore, high well-being generally shows an expansion trend. Low well-being areas
expand eastward from Yuncheng City and Linfen City in the interlaced area of the Taihang
Mountains and the Shanxi-Shaanxi Basin, but the overall change was not significant. From
2015 to 2018, 16.7% of counties and districts were transferred from low-level and high-level
well-being areas to medium-level and high-level well-being areas. The regional difference
in human well-being was further narrowed. In addition, high well-being areas expanded
to the northwest on the basis of the previous stage. A total of 7.8% of the counties and
districts were transferred to low-level areas. Xianyang City and Zhouzhi County in the
central part of the study area, and Shangluo City in the southeast of Guanzhong Basin were
transferred from moderate well-being areas and high well-being areas to low-level areas.
There was a slight shrinking of high well-being areas, and the distribution was dispersed.

Figure 6. Spatial distribution of human well-being in Guanzhong Plain urban agglomeration from
2010 to 2018.

From 2010 to 2018, the spatial relationship of human well-being in the urban ag-
glomeration in the Guanzhong area showed a “double contraction” trend, that is, the
agglomeration of high-level and low-level areas of human well-being in the Guanzhong
Plain urban agglomeration tended to weaken (Figure 7). From 2010 to 2015, the spatial rela-
tionship of human well-being showed a trend of “thermal contraction and cold expansion”.
The hot spots were mainly distributed in Xi’an, Xianyang, and eastern Baoji in the Weihe
Valley. The cold spot area expanded from Linfen City and Yuncheng City in the intersection
of the Taihang Mountains and the Shanxi-Shaanxi Basin to the Shanxi-Shaanxi junction
area. From 2015 to 2018, the hot area and cold spot area both tended to shrink, and the hot
area continued to shrink on the basis of the previous stage. Baoji City and Pingliang City at
the border of Guanzhong Basin and the Longdong region were the core of the sub-hot area.
The cold spot area turns from Linfen and Yuncheng in the Shanxi-Shaanxi border area to
the northern part of the Guanzhong Basin.

Figure 7. Spatial agglomeration characteristics of human well-being in Guanzhong Plain urban
agglomeration from 2010 to 2018.
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4.3. Spatiotemporal Coupling between Ecosystem Services and Human Well-Being
4.3.1. Spatial–Temporal Characteristics of Coupling Coordination between Water
Conservation Services and Human Well-Being

The coupling coordination degree of “water conservation and human well-being”
was significantly higher than that of “soil conservation services and human well-being”
and “carbon sequestration services and human well-being” in the Guanzhong Plain urban
agglomeration during the same period (Figure 8).

Figure 8. Spatiotemporal coupling patterns of water conservation, soil conservation, carbon seques-
tration, and human well-being in Guanzhong Plain urban agglomeration from 2010 to 2018.

In the spatial dimension, the coupling coordination degree of “water conservation
and human well-being” gradually spread out from the core of urban functional developed
areas of central cities, with a significant spatial distribution of “high around and low in
the middle”. The high-value areas were mainly distributed in the ecological protection
areas with the Loess Plateau ecological barrier zone and the Qinba mountain ecological
barrier zone, whereas the low-value areas were mainly concentrated in the central urban
functional developed areas. The low-value areas were centered on the urban functional
developed areas, and gradually expanded in the form of circle, and its influence scope was
gradually enlarged.

In the temporal dimension, the overall coupling coordination degree of “water con-
servation and human well-being” was decreased from moderate coordination to basic
coordination. The average level of coupling coordination degree was decreased from
0.64 to 0.60. In 2010, the coupling coordination degree was [0.46, 0.89], and the coupling
coordination types mainly included basic coordination, moderate coordination, and high
coordination, accounting for 41.11%, 51.11%, and 7.78%, respectively. The overall level was
relatively high, and most of them were moderate coordination. In 2015, the coupling coor-
dination degree was [0.42, 0.85]. In this period, the coupling coordination types of “water
conservation and human well-being” were still basic coordination, moderate coordination,
and high coordination, accounting for 48.9%, 46.6%, and 4.5%, respectively. The overall
level was lower than that of 2005. In addition, the proportion of high coordination was
lower than that of 2015. In 2018, the coupling coordination degree of “water conservation
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and human well-being” was between [0.39, 0.84]. The coupling coordination types in
this period were moderate imbalance, basic coordination, moderate coordination, and
high coordination, accounting for 1.1%, 47.8%, 46.7%, and 4.4%, respectively. The overall
coordination level was moderate coordination.

The results show that the coupling coordination degree of “water conservation ser-
vices and human well-being” of all districts and counties in the Guanzhong Plain urban
agglomeration has a downward trend from moderate coordination to basic coordination.

4.3.2. Spatial–Temporal Characteristics of Coupling Coordination between Soil
Conservation Services and Human Well-Being

The coupling coordination degree of “soil conservation services and human well-
being” showed a fluctuation pattern of “increase first and then decrease”, and the overall
level was low.

In the spatial dimension, the low-value areas of coupling coordination degree of “soil
conservation services and human well-being” in the Guanzhong Plain urban agglomeration
were mainly distributed in the northern and central Guanzhong Plain urban functional
developed areas, with the overall spatial distribution of “high in the south and low in the
north”. The high-value areas were concentrated in the northern Qinba mountain area, and
the low-value areas were distributed in the northern Guanzhong Basin bounded by the
Weihe River Valley.

In the temporal dimension, the coupling coordination degree of “soil conservation
services and human well-being” in the Guanzhong Plain urban agglomeration showed
a gradual decline from basic coordination to moderate imbalance. The average level of
coupling coordination degree was decreased from 0.42 to 0.4. In 2010, the degree of coupling
coordination was [0.30, 0.66]. The types of coupling coordination were mainly from
basic coordination to moderate imbalance, basic coordination, and moderate coordination,
accounting for 46.67%, 51.11%, and 2.22%, respectively. The overall level was relatively
high and was in the state of basic coordination. In 2015, the coupling coordination degree
was [0.32, 0.69]. The coupling coordination types of “soil conservation services and human
well-being” were moderate imbalance, basic coordination, and moderate coordination,
accounting for 51.11%, 46.67%, and 2.22%, respectively. The proportion of moderate
coordination was decreased. The overall level was lower than that in 2010. In 2018,
the coupling coordination degree of “soil conservation services-human well-being” in
Guanzhong plain urban agglomeration was [0.28, 0.65]. The types of coupling coordination
degree of “soil conservation services and human well-being” were moderate imbalance,
basic coordination, and moderate coordination, accounting for 58.89%, 38.89%, and 2.22%,
respectively. The overall level was moderate imbalance.

In general, the coupling coordination degree of “soil conservation services and human
well-being” in the Guanzhong Plain urban agglomeration showed a fluctuating downward
trend from basic coordination to moderate imbalance. The regional differentiation of cou-
pling coordination degree did not change, but different regions showed different evolution
trends. The overall coupling coordination degree in the northern Weihe River Valley con-
tinued to decline. However, the regional ecosystem services and human well-being in the
southern Qinba Mountain and the southern Longdong Loess Plateau mutually promoted
each other, orderly and benign high-level coupling coordination.

4.3.3. Spatial–Temporal Characteristics of Coupling Coordination between Carbon
Sequestration Services and Human Well-Being

The coupling coordination degree of “carbon sequestration services and human well-
being” in the Guanzhong Plain urban agglomeration was poor. The overall coupling coor-
dination was at a low level. The carbon sequestration services were relatively weakened.

In the spatial dimension, the coupling coordination degree of “carbon sequestration
services and human well-being” in the Guanzhong Plain urban agglomeration showed a
significant spatial distribution of “high in the south and low in the north, and high in the
west and low in the east”. The high-value areas were concentrated in the northern Qinba
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Mountains in the south. The low-value areas were mainly distributed in the areas with
developed urban functions, such as Xi’an and Xianyang in the Guanzhong Plain, the Loess
Plateau of Longdong, and the northeastern and western parts of the Guanzhong Plain.

In the temporal dimension, the coupling coordination degree of “carbon sequestration
services and human well-being” in the Guanzhong Plain urban agglomeration showed a
gradual declining trend from basic coordination to moderate imbalance. The average level
of coupling coordination degree was decreased from 0.59 to 0.54. In 2010, the coupling
coordination degree was [0.44, 0.86]. The coupling coordination types were basic coordina-
tion, moderate coordination, and high coordination, accounting for 67.78%, 28.89%, and
3.33%, respectively. The overall level was relatively high as basic coordination. In 2015,
the coupling coordination degree was [0.39, 0.82]. The high-value areas in the southeast
of the Guanzhong Plain urban agglomeration expanded to Fenhe Valley with Shangluo
as the core, whereas the high-value areas in the west gradually shrunk with Tianshui in
the southeast of the Longhe Plain as the core. The coupling coordination types of “carbon
sequestration services and human well-being” were moderate imbalance, basic coordina-
tion, moderate coordination, and high coordination, accounting for 1.1%, 78.89%, 17.78%,
and 2.22%, respectively. The overall level was lower than that in 2010. In 2018, the cou-
pling coordination degree of “carbon sequestration services and human well-being” in the
Guanzhong plain urban agglomeration was [0.36, 0.77]. The coupling coordination degree
of “carbon sequestration services and human well-being” was promoted. The “Shangluo-
Xi’an” cluster gradually shrunk, and the “Tianshui-Baoji” cluster shifted to the west while
shrinking. The low-value area was gradually expanding outward with the urban functional
developed areas in the Guanzhong Plain, especially the urban area of Xi’an as the core.
There are three types in this period: moderate imbalance, basic coordination, and moderate
coordination, accounting for 3.33%, 76.67%, and 20%, respectively. The overall level was
basic coordination.

In general, the coupling coordination degree of “carbon sequestration services and
human well-being” in districts and counties of the Guanzhong Plain urban agglomeration
maintained the basic coordination state, whereas the overall level slightly decreased. The
overall ordered and coordinated coupling coordination degree of “carbon sequestration ser-
vices and human well-being” was degraded, and the number of high-value areas decreased
(Figure 9).

Figure 9. Changes of coupling coordination degree between ecosystem services and human well-
being in Guanzhong Plain urban agglomeration from 2010 to 2018.

5. Discussion

As an ecologically sensitive area, the Guanzhong Plain urban agglomeration has
a relatively fragile ecosystem. With the rapid development of urbanization, population
density is increasing, industrial structures are changing, and construction land is expanding.
These aspects lead to resource consumption and environmental pollution, which make the
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ecosystem face more severe pressure. This paper found that the three types of ecosystem
services in the Guanzhong Plain urban agglomeration showed a downward trend from
2010 to 2018. This is closely related to the long-term human activities in the Guanzhong
Plain. In the process of urban agglomeration construction, urban expansion encroaching
on cultivated land space is serious. The vegetation coverage around the city has been
severely damaged, resulting in serious pressure on the ecosystem. Wu Jiansheng et al. [41]
found that the land carrying capacity in Guanzhong was decreasing, and that the land
ecological deficit was increasing year by year. The sustainable development situation was
not optimistic. Second, it is greatly influenced by geographical conditions and climatic
factors. The most direct influencing factors are the interannual variation in precipitation
and vegetation coverage. Severe soil and water loss as well as extreme water shortages in
the Guanzhong Plain led to a reduction in vegetation. This greatly restricted the large-area
coverage of vegetation. From 2010 to 2018, the area of forest land in the region decreased
by 5.21%, the area of grassland decreased by 11.3%, and the annual rainfall decreased by
8.2%. These led to a decrease in the demand for ecosystem services. Bai Yujuan et al. [42]
found that plants in the Loess Plateau mainly rely on precipitation for growth. However,
there were serious water shortages in this region, and the vegetation coverage was low.
Therefore, ecosystem services were declining.

From 2010 to 2018, human well-being in the Guanzhong Plain urban agglomeration
showed a fluctuating downward trend, with a decrease of 17%. From 2010 to 2015, human
well-being showed a downward trend. From 2015 to 2018, human well-being showed
an upward trend, but did not return to the level seen in 2010. The human well-being
indicators in this paper are mainly constructed from four dimensions: income, material
needs and health, living environment, and safety. From 2010 to 2015, income as well as
material needs and health in the Guanzhong Plain urban agglomeration increased, but
living environment and safety significantly decreased. Air quality, urban area, the area of
cultivated land per capita, green area, and per capita grain output all showed a downward
trend. In the construction of the urban agglomeration the population increased, arable
land was occupied, and per capita cultivated land decreased. In addition, many farmers
began to work in cities, leaving their farmland abandoned. The air pollution in the urban
development is relatively serious. Xi’an and Xianyang were the most concentrated areas of
atmospheric pollution. As a result, human well-being is declining. The implementation
of the national food security strategy and targeted poverty alleviation strategy proposed
at the 2013 Central Rural Work Conference has greatly increased humans’ income and
improved farmland protection. In addition, Yang Ke et al. found that although the annual
average PM2.5 concentration in the Guanzhong Plain urban agglomeration showed an
overall downward trend from 2015 to 2019, it still exceeded China’s air quality Level II
(35 μg/m3) [43]. Therefore, human well-being recovered from 2015 to 2018 but did not
reach its initial level.

Human well-being is strongly dependent on the services provided by well-functioning
ecosystems. Changes in the ecological functioning of systems can have direct or indirect
effects on human well-being. The sustainable development of the Guanzhong Plain can only
be ensured by realizing the coordinated development of human well-being and ecological
environments. From 2010 to 2018, the level of coupling coordination between ecosystem
services and human well-being in the Guanzhong Plain urban agglomeration showed a
downward trend. Moreover, the spatial–temporal coupling relationship between ecosystem
services and human well-being was lower in the developed urban areas and higher in
the ecological protection areas dominated by the Loess Plateau ecological barrier zone
and the Qinba Mountains ecological barrier zone. The results show that the disorderly
expansion of the Guanzhong Plain urban agglomeration and the decrease in ecosystem
services were significantly related to the rapid development of the Guanzhong Plain urban
agglomeration. In the central region of urban functional developed areas, the economy has
rapidly developed, and the land types dramatically changed in the urban agglomeration.
The construction land occupied other types of land, especially in the urban fringe area
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where the ecological stress was the most serious. The main source of new construction
land in urban expansion was cultivated land. Therefore, the coupling coordination degree
between ecosystem services and human well-being was low. In the ecological protection
areas dominated by the ecological barrier belt of the Loess Plateau and the Qinba Mountains,
the quality requirements of the ecological environment are constantly improving, and the
ecological environment is relatively good. The support of ecological compensation and
poverty alleviation policies in the protection zones has significantly increased human well-
being; human well-being was rapidly promoted in urban functionally developed areas.
Therefore, the regional ecosystem services are highly coordinated with human well-being.

This paper studies the complex relationship between ecosystem services and human
well-being during the rapid development of urban agglomerations, which provides a basis
for the regional sustainable development of urban agglomerations in the arid region of
northwest China. However, there are also some shortcomings. For example, in the process
of assessing ecosystem services, some parameters in the InVEST model are based on the
model user manual and the results of previous studies. In the future, field monitoring
will be conducted to enhance the accuracy of the parameters in the study area, so as to
improve the accuracy of ecosystem services’ assessment results. This paper takes counties
as the research units, and we focus on the macro level of ecosystem services as well as the
welfare of the mutual influence between them; however, we found that the accessibility of
medical facilities, the development of traffic, and a balanced diet are also important factors
influencing human well-being. Due to these data, our paper positions itself within the
research as a study on welfare into the future.

6. Conclusions and Suggestion

6.1. Conclusions

Understanding the complex relationship between ecosystem services and human
well-being can promote the sustainable development of urban agglomerations. Taking the
Guanzhong Plain urban agglomeration as a case area, we used the InVEST model and the
coupling coordination model to analyze the spatial–temporal pattern and the coupling
coordination degree of ecosystem services and human well-being, based on the water
conservation, soil conservation, and carbon sequestration services of the Guanzhong Plain
urban agglomeration in 2010, 2015, and 2018. We have the following conclusions:

(1) From 2010 to 2018, three types of ecosystem services in the Guanzhong Plain urban
agglomeration showed a downward trend. The amount of water conservation services
showed a fluctuating downward trend, with a decrease of 7.8%. It showed a spatial
distribution of “high in the south and low in the north, decreasing from south to
north”. The amount of soil conservation services showed a fluctuating downward
trend, with a decrease of 18.3%. It showed a spatial distribution of “higher in the
south and lower in the north, higher in the west and lower in the east”. The carbon
sequestration services showed a fluctuating downward trend, with a decrease of less
than 1%. It showed a spatial distribution of “high in the southwest and low in the
northeast”, and the regional differences tended to expand.

(2) From 2010 to 2018, human well-being in the Guanzhong Plain urban agglomeration
showed a fluctuating downward trend, with a decrease of 17%. It showed a spatial
distribution of “high in the middle and low around”. Regional differences tended to
narrow, and the agglomeration of high-level and low-level areas of human well-being
tended to weaken.

(3) From 2010 to 2018, the coupling coordination degree between ecosystem services and
human well-being in the Guanzhong Plain urban agglomeration showed a downward
trend. The coupling coordination degree of “water conservation services and human
well-being” showed a spatial distribution of “high around and low in the middle”. The
overall coordination decreased from moderate to basic coordination. The coupling
coordination degree of “soil conservation services-human well-being” showed a
distribution of “high in the south and low in the north”. Different regions showed
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different evolution trends. The overall trend decreased from basic coordination to
moderate imbalance. The coupling coordination degree of “carbon sequestration
services and human well-being” showed a significant distribution of “higher in the
south and lower in the north, higher in the west and lower in the east”. The overall
level was slightly degraded while maintaining the basic coordination state.

6.2. Suggestion

Based on the above conclusions, we classified and implemented policies based on the
coupling coordination types of human well-being and ecosystem services to promote the
sustainable development of the Guanzhong Plain urban agglomeration.

The following are suggestions for areas with lagging water conservation services. In
the construction of future urban agglomerations, we should give priority to water resource
protection and water conservation, optimize the distribution pattern and efficiency of water
resources, and optimize the urban spatial layout, industrial structure, and population
size with the carrying capacity of water resources. The government should adhere to the
bottom line for the sustainable development of the Guanzhong Plain, Qinling, and Wei
River as well as Fenhe River basin ecologically sensitive areas, such as water conservation
functions, and speed up the development and protection of ecological sources in the urban
functionally developed areas of the Wei River valley. Improving the security of water
supplies and water conservation can expand the space of city development and promote
human well-being. For the areas with lagging soil conservation services, it is necessary
to coordinate soil and water conservation with urban agglomeration construction and
regional high-quality development in future urban agglomeration construction processes.
We should implement the ecological red line and return sloping land above 25◦ to forest
(grass), soil and water conservation, and the comprehensive treatment of soil and water
loss to promote urban greening construction and improve urban livability. In addition, it
should be noted that the conversion of farmland into forest is not suitable for all regions,
especially the Loess Plateau region in the north, where water resources are limited. There-
fore, ecological conversion should be arranged according to scientific laws. For areas with
lagging carbon sequestration services, it is necessary to change the development ideas and
the methods of economic growth, accelerate industrial structure optimization, reduce the
degree of interference with ecological systems, strictly control energy-intensive and highly
polluting industries of low benefit, set up green industry systems, strengthen the protec-
tion and construction of forest ecological systems, and promote the mutual promotion of
urban agglomeration construction as well as ecosystem protection and restoration, thereby
achieving the coordinated development of ecosystem services and human well-being. By
regulating ecosystem services to improve air quality, we can improve the health of urban
humans and the overall ecological environment. Ecological corridors are unevenly dis-
tributed in the urban agglomeration, and the main ecological sources and corridors are
concentrated in the southern Qinling region of the urban agglomeration. In the future
development planning of the urban agglomeration, we should pay more attention to the
ecological construction of the Qinling National Park and accelerate the ecological corridor.

Ecosystem services and human well-being are important extensions of sustainable
development theory. The carrying capacities of regional environments are important
limiting factors for the coordinated development of urban agglomerations. The services
provided by good ecosystems within urban agglomerations can effectively improve local
human well-being. At present, China’s urban agglomerations are in a stage of rapid
development. To improve the spatial utilization efficiency of urban agglomerations, we
should consider many factors, such as industries, spatial layouts, and ecological corridors,
solve the environmental protection problems in the past single-city development mode
stage, and coordinate the relationship between ecological protection and social as well as
economic development. The coordination between the related goals of improving human
well-being in urban agglomerations and the status quo of urban ecological protection is
not only conducive to guiding the rational spatial layouts of urban agglomerations, but
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also crucial to improving internal ecological joint prevention and control ability in addition
to the sustainable development of urban agglomerations. The construction of ecosystem
security patterns is of great significance for the comprehensive management of hills, water,
forests, fields, lakes, and grass, the formulation of multi-level ecological security policies,
and the promotion of the resilience of urban agglomerations as well as the sustainable
development goals of human well-being. In future research, it will be necessary to combine
economic and social development factors, explore the internal source construction of
urban agglomerations under the balance of the supply and demand of ecosystem services,
strengthen the comprehensive management of urban agglomerations, and promote the
regional integration in addition to high-quality development of urban agglomerations.
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Abstract: Arable land protection is critical to the sustainable development of agriculture in China
and acceleration of the realization of the trinity protection goal of the quantity, quality, and ecology
of arable land. As a new program of behavioral science to promote social development, nudge
has gradually gained the favor of researchers and policy makers due to its unique advantages of
small cost and substantial effect. However, current research and practical exploration of arable land
protection behavior intervention based on the idea of nudging are still lacking. Implicit nudging
strategies directly target the heuristic and analytic systems of arable land protection behavior of
each stakeholder and possess more advantages than traditional intervention strategies. Therefore,
this article designs six arable land protection behavior nudging strategies from the perspectives of
cognition and motivation to realize the theoretical discussion of “generating medium-scale returns
with nano-level investment”. The nudging strategies of the cognitive perspective include default
options, framing effects, and descriptive norms, while those of the motivation perspective aim to
stimulate home and country, and heritage and benefit motives to promote arable land protection
behavior of various stakeholders. The utility of nudge to arable land protection behavior may be
controversial in practice. Therefore, the implementation in China should be based on the division of
farmers, the number of options should be appropriate, and the external environment of arable land
protection behavior should be fully considered.

Keywords: arable land protection behavior; nudging strategies; behavioral intervention; theoretical
discussion; China

1. Introduction

Arable land is not only the most powerful guarantee for national food security but
also determines the coordination and sustainability of socio-economic development and
ecological environmental protection in a country or region to a large extent [1]. Food
security is a national strategy in China, and arable land protection is especially important
for such a country with a population of 1.4 billion [2,3]. Therefore, the No. 1 Document of
the Central Committee of the Communist Party of China was proposed in 2019 to stabi-
lize grain production, fully implement the special protection system for permanent basic
farmland, and ensure the establishment of 800 million mu (mu, Chinese measurement
that is commonly 666.7 square meters) of high-standard farmland by 2020. However, the
contradiction between limited arable land resources and the construction land expansion
has become increasingly serious with the acceleration of industrialization and urbanization,
and the massive loss phenomenon of arable land resources has intensified [4,5]. Simulta-
neously, improper use of arable land and environmental pollution have degraded arable
land quality, thus also becoming increasingly serious [6,7]. The survey shows that the
degraded area of arable land accounts for more than 40% of the total arable land area at
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this stage, the productivity of arable land has declined, and the over-standard rate of soil
heavy metals has reached 1.4% (data from the Ministry of Agriculture and Rural Affairs
of China in 2018). Arable land users are the key stakeholders of the quantity, quality, and
ecological investment of arable land [8,9]. A gap still exists between arable land protection
behaviors and policy expectations despite the improvement of the micro-level arable land
protection practices under the impetus of laws and regulations, No. 1 Central Documents,
and various special plans [10,11]. Therefore, encouraging micro-stakeholders to adopt
arable land protection measures actively is necessary to restore and improve the health
level of arable land in China.

The central government is the maker of arable land protection policies and the ultimate
regulator of arable land protection activities [12]. The central government focuses on long-
term sustainability and stock in the management of arable land, hoping that different
stakeholders (local governments and farmers) can use arable land in a balanced manner
over time. Facing the strategic behavior of illegal occupation of arable land by local
governments or farmers, the central government uses command-control and economic
incentive tools to restrain and encourage the spontaneous arable land protection behaviors
of various stakeholders [13,14]. Command-control tools are backed by national compulsory
power [15] and directly stipulate the production behavior and utilization methods of arable
land users through administrative orders or established regulations and standards. The
economic incentive tool aims to use economic means or market forces to take subsidy
measures or establish price mechanisms for arable land protection behaviors (such as soil
fertilization behavior of farmers and transformation behavior of weak arable land) to realize
the internalization of the negative externalities of arable land use [16]. These strategies
for protecting arable land can be attributed to the two paths of carrot and stick, which
belong to traditional social governance methods [17]. However, insurmountable difficulties
are found in the design and implementation of simple paternalism management methods
due to the differences in the interests of the main stakeholders of arable land protection.
Therefore, a new low-cost and non-mandatory incentive strategy for arable land protection
behavior should be formulated.

The essence of arable land protection is a management activity involving multiple
subjects. However, due to the problems of inconsistent goals, non-equilibrium incentives,
and differences in constraint pressures among various types of subjects in the process of
arable land protection, it is easy for different subjects to take actions for their own interests
in the process of arable land protection. The bad result is to gradually distort the original
intention of arable land protection goal setting, and ultimately lead to the failure of the
arable land protection policy. Therefore, the protection of arable land is inseparable from
the joint efforts of multiple subjects. It is necessary for everyone to work together around
the common goal of arable land protection, cooperate with each other, and finally form a
joint force. Moreover, from the perspective of governance, how to promote the interaction
of the participation of various subjects and mobilize the endogenous power of different
subjects has become an important direction and path for the arable land protection in the
future [18]. The main subjects of arable land protection include the central government, local
governments, and farmers. The interest of central government is to ensure food security. In
order to stimulate the endogenous motivation of local governments to protect arable land,
while restraining their opportunistic behaviors, the central government implements a two-
pronged management model of strict supervision and enhanced compensation to ensure
the occurrence of arable land protection behaviors. The interests of local governments are
the economic development and promotion trophies. Under the triple pressure of food
security, economic performance and political promotion, local governments usually do
not incorporate food security into the objective function, but are more inclined to the
huge benefits brought by land finance. Therefore, local governments will adopt flexibility
and collusion to deal with the goal of arable land protection, resulting in the dilemma of
arable land management. The interests of farmers are to maximize their own interests. The
comparative benefits of farmers operating arable land are low and the expected returns
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are unstable, which makes farmers gradually separated from the agricultural sector to the
non-agricultural sector driven by economic interests, resulting in a serious shortage of labor
force and a serious aging phenomenon in rural areas. Despite land attachment or limited
non-agricultural skills, there are still some farmers who continue to engage in agricultural
production by transferring, taking over, or renting the arable land of the remaining farmers.
However, in view of the harsh natural environment, the serious marginalization of arable
land, and the psychological gap brought about by low agricultural returns, agriculture has
weakened and arable land has become “non-food”, “non-agricultural”, “abandoned” and
other phenomena. Therefore, arable land protection is essentially a behavioral planning
issue of stakeholders from the perspective of behavioral science, and behavior is the result of
individual decision-making choices [19]. Influencing individuals to make correct decisions
is an effective way to intervene individual arable land protection behaviors to increase the
scale of arable land, improve arable land quality, and enhance the arable land structure.
Behavioral economists Richard H. Thaler and Cass R. Sunstein first proposed the concept
of nudge in 2008; that is, a nudge is any aspect of the choice architecture that alters people’s
behavior in a predictable way without forbidding any options or significantly changing
their economic incentives [20]. The boost strategy integrates psychology and behavioral
economics into public policy making, avoiding the shortcomings of pure paternalism
or libertarian. This strategy is neither carrot nor stick; thus, it is called the fifth way
of social governance (the four remaining roads are hierarchy, markets, networks, and
persuasion) [21]. The multiple advantages of the nudging strategies have received extensive
attention from the academic community and the government. At present, applied research
has been conducted in various fields, such as health (including a healthy diet, medical
treatment and health, and weight loss), environmental protection, social security, education,
and charity, and has shown good application value [22–25]. Nudging is also applicable
in the field of arable land protection behavior. For example, the central government can
establish an assessment mechanism linking arable land protection goals with political
performance, thereby enhancing the role of arable land protection in the performance
assessment of local governments and mobilizing the inherent incentives for arable land
protection. In addition, the central government can also strengthen dissemination on
the effectiveness of arable land protection through publicity and guidance tools, so that
more farmers can truly recognize and understand the market value and non-market value
brought by arable land protection. The publicity and guidance tools are to disseminate
the arable land protection policy by means of media, so as to reduce the cost of arable
land protection, reduce the pressure of policy implementation, strengthen the consensus
of various subjects on the applicability of the policy, and then consolidate the behavior
of farmers to participate in arable land protection. Effective policy dissemination can not
only reduce farmers’ indifference or resistance to arable land protection, but also enable the
government to obtain timely feedback from public opinion to improve the policy content.
There are still many typical nudging tools. In reality, different nudging strategies should
be adopted according to different arable land resource endowments and different social
scenarios, and in many situations, it is even a comprehensive application of many nudging
strategies. Thus, this article aims to provide a simple and low-cost architecture choice
through nudge. Therefore, arable land protection behavior will change in the expected
direction, and an attempt to generate medium-scale returns with nano-level investment
can be realized.

2. Nudge Theory

2.1. What Is Nudge?

Behavioral economics has three basic assumptions concerning human nature: limited
rationality, willpower, and self-interest. The decision-making rationality of humans is
limited, not only restricted by the limitation of knowledge but also by the decision-making
environment. The limitations of human cognitive abilities, such as greed, impulsivity,
inertia, and other weaknesses, lead to various cognitive biases, such as selective percep-
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tion, proximity effect, correlation fallacy, and overconfidence in the judgment of decision-
making [26]. The decision-making choices demonstrate abnormal phenomena, such as loss
aversion, contention with the status quo, and short-term preferences. In addition, human
behavior is often affected by social factors and cannot be truly autonomous. Thus, people
often encounter difficulties when facing complex and major decision-making issues, failing
to make correct decisions that conform to their wishes and well-being.

Therefore, how should government managers deal with the systematic biases of human
behavior? The paternalism management method advocates that individuals lack rationality
and self-control and supports mandatory restraints on individual behavior [27]. Mean-
while, the liberalism management method advocates that the individual’s right to choose is
inalienable and does not approve of mandatory intervention in individual behavior [28].
The nudge management method advocates the concept of libertarian paternalism, which
finds the factors that are ignored by traditional economists in the selection environment
to influence individual decision-making choices while ensuring that free choice of indi-
vidual decision makers is not reduced, and objective payment and remuneration remain
unchanged. Thus, individual decision-making will develop in the direction of improving
personal and social welfare. [29]. The typical nudge is the change in choice architecture.
The core of choice architecture is that policy makers create specific situations and change
specific conditions by grasping the psychology of policy executors; thus, the latter can
make decisions according to the hope of the former. Moreover, this process is low cost and
highly rewarding, which is similar to “nudging with an elbow or other parts of the body”,
making it easy for people to do what they want [30].

Nudge attempts to influence and change the decision-making behavior of the public
with small non-mandatory measures by understanding the psychological mechanism of
behavior. Thus, on the basis of maximizing resource saving, nudge plays an important
role in reducing impulsive behavior and improving rational behavior. Intervention on
individual behavior through the nudge method reveals the small entry point but grasps the
nature of the problem from the behavior, and the behavior stems from the choice. Therefore,
the rational use of nudging strategies can promote social development.

2.2. Why Do We Need Nudge for Arable Land Protection Behavior?

Currently, the nudging theory has been widely used by different scholars in different
fields around the world. For example, Zhang et al. [31] argue that effective diffusion of
electric vehicles could help China achieve carbon neutrality by 2060. Moreover, the paper
points out that the combination of nudging policies and charging infrastructure can have
a greater publicity effect than subsidies for car purchases. In other words, the role of
nudging policies in information promotion helps Chinese people to accept electric vehicles
more easily. Wang [32] believed that humans are often unable to make optimal behavioral
decisions due to their limited attention span and limited computing power. With the
development of behavioral economics, nudge has become an important tool to improve
human irrational behavior and ultimately achieve happiness. Among them, commitment
devices and default options can help people stick to their decisions; social comparison and
incentives can encourage people to realize their behavioral intentions; message framing
and simplifying complex information can lead to increased service usage. The flexible
use of nudging strategies by social workers can facilitate policy formulation and practice
design. Chen et al. [33] proposed that ozone pollution poses serious health risks and
premature death. Additionally, gas stations are a significant source of organic compounds
released by cities. The government’s call on car owners to refuel at night is one of the
important strategies for green nudging. The results of its research show that the preferential
policy of refueling at night will contribute to the reduction of ozone concentration and
bring great benefits to human health. It can be seen that the nudging strategies consider
both the motivation and control of human behavior, and can effectively change people’s
behavior through the ingenious design of some mechanisms. In turn, it promotes people to
make certain behaviors that meet specific goals, but at the same time does not compromise
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people’s freedom of choice. Moreover, the core of nudging is to influence and change the
behavioral decision-making of the public with non-coercive measures by understanding
the mechanism of psychology. On the basis of saving resources to the greatest extent, it can
help reduce impulsiveness and improve rational behavior [34–36]. Therefore, this paper
tries to propose nudging strategies based on behavioral economics by analyzing the status
quo of arable land protection behaviors of various subjects in China.

Different from daily life decision-making, people have relatively little knowledge
in the field of arable land protection. For example, people mistakenly believe that soil
pollution can quickly disappear with the reduction in the large-scale use of fertilizers and
pesticides. However, unlike mobile pollution, such as water and gas, soil environmental
degradation, pollution, and hazards have the characteristics of accumulation, concealment,
and inhomogeneity. Unless it is removed and repaired by manual measures, it will remain
for a long time and cause various hazards along with the arable land use [37,38]. In addition,
people generally blindly believe that the arable land ecosystem can be restored through
governance measures. However, the destruction of arable land due to natural disasters,
arable land abandonment, and extensive use of arable land has become an irreversible
process of land degradation [39,40].

Psychologists believe that human judgment and decision-making usually involve
two major cognitive systems: a heuristic system based on intuition (system 1) and an
analytical system based on reason (system 2) [41] (Figure 1). System 2 is characterized by its
consciousness, energy consumption, and control. This system needs to mobilize attention
to analyze and solve problems. Moreover, this system is not prone to errors despite its
slow operation [42]. The formulation of traditional intervention strategies for arable land
protection is mostly based on the assumption that individuals are rational people, that
is, individuals are believed to be able to use system 2 to conduct rational analysis and
take the behavior of sustainable use of arable land [43]. However, numerous studies in
behavioral economics show that the process of individual judgment and decision-making
is not completely rational [44]. Especially in the case of relatively limited knowledge in the
field of arable land protection, using the information processing mode of system 2 to make
decisions becomes fairly difficult, and people are inclined to implement rapid automated
decision-making based on system 1. Compared with system 2, system 1 is a conscious and
automated system, which runs fast and is full of emotions. However, people often focus on
the short-term benefits of arable land use and neglect long-term considerations, leading to
phenomena, such as arable land pollution, arable land desertification, and soil erosion [45].
Moreover, people have substantially limited experience and are prone to decision-making
errors due to the deterioration of the arable land ecological environment and the long and
complex dynamic change process of arable land spatial patterns [46]. Thus, nudge is a
necessary strategy for decision-making and behavioral intervention.

In addition, the result of the trade-off between the input cost and the expected benefits
of arable land protection determines the behavioral decisions of various stakeholders
despite the sufficient knowledge of people in the field of arable land protection. Arable
land protection costs mainly include direct input, non-agricultural opportunity, and policy
implementation costs; the benefit is to guarantee the space for the future social economy and
sustainable development of the region [47]. The behavioral cost of arable land protection is
currently certain, but its benefits will be full of uncertainty in the future. This asymmetry
between costs and benefits easily lowers the motivation of people to protect arable land [48].
In addition, this asymmetry is reflected in that the cost belongs to the stakeholders of arable
land protection, while the benefit belongs to the society. As a special ecosystem, arable land
has the attributes of public goods. The ecological (such as water conservation, soil and
water conservation, climate adjustment, and environmental purification) and social (such
as ensuring food security and maintaining social stability) benefits produced by arable
land have not been included in the benefits of arable land use due to the characteristics of
universal supply, non-exclusion, and non-competitiveness of public goods. This imperfect
arable land use mechanism reduces the enthusiasm of stakeholders to protect arable land,
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which makes it impossible to realize the non-market value of arable lands, and contributes
to the lack of public welfare existing in the externality of arable land [49,50]. A variety of
specific measures can be formulated for the objectives of arable land protection based on
the flexibility of nudging. These measures can circumvent the lack of motivation of the
stakeholders of arable land protection and promote their effective decision-making.

Figure 1. Nudging Strategies for Arable Land Protection Behavior in China.

People have relatively minimal knowledge and experience in the field of arable land
protection, thus relying on system 1 for decision-making. However, the decision path
that relies on system 1 has the characteristics of modular closed operation, automatic re-
sponse, and susceptibility to stereotyped impression, and this path is prone to unreasonable
behavior. By contrast, the costs and benefits of arable land protection are asymmetrical
at the two levels of present–future and internality–externality, which lead to insufficient
micro-motivation and enthusiasm of relevant stakeholders of arable land protection. There-
fore, arable land protection behavior can be nudged from the following four perspectives.
(1) Cognition is the prerequisite for various stakeholders to participate in the arable land
protection. The improvement of cognition level plays a decisive role in its willingness to
pay for participating in arable land protection. The increase in the various values of arable
land can introduce benefits and welfare improvements to the stakeholders of arable land
protection. Therefore, the psychological source of unreasonable arable land protection
behaviors is emphasized and nudging measures are used to avoid cognitive biases and
abnormal choices of decision makers, thus achieving the purpose of changing behaviors
of stakeholders. (2) The policy design of arable land protection should conform to the
psychological laws of decision-making of various stakeholders. Moreover, the choice archi-
tecture should be reasonably designed to guide the stakeholders to change their arable land
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protection behaviors to conform to individual interests and social well-being. (3) From the
perspective of psychological cognition, the individual’s perception of arable land protection
behavior is accompanied by the cognitive process comprising elements, such as feeling,
perception, memory, thinking, and imagination. Introducing the analytical framework of
behavioral economics into the field of arable land protection behavior has theoretical consis-
tency and necessity. (4) “Very cherish, rational use, and effective protection of arable land”
has become the basic national policy in China, and improving the quality and efficiency of
arable land use has become an important theme of the policy formulation of the Chinese
government. However, behavior-based intervention mechanisms in the existing arable land
protection policy toolbox are still lacking. Therefore, one of the most appropriate reasons
for introducing the nudging mechanism in the field of arable land protection behavior
is to incorporate the psychology, motivation, and cognition of each stakeholder into the
policy action framework and establish arable land protection as a solid foundation for the
continued prosperity of rural areas and the happy lives of farmers.

In addition, the current restraint mechanism of arable land protection mainly relies on
the top-down management mode. The reason is that the conventional public governance
model usually fails when intractable public crises and public problems arise. At that time, it
is necessary to force the decree through the administrative force, and then decompose and
manage the pressure-oriented goals and tasks from the top to the bottom in the bureaucratic
structure. As a public resource, arable land has the general attributes of a public resource.
Taking a top-down approach in the management process can effectively reduce ambiguity
and randomness, thereby ensuring the implementation of policy goals. However, in
the top-down arable land protection management mode, there are two obvious defects.
First, for a bureaucratic organization with complex and super-large scales, long information
dissemination channels and multiple principal-agent mechanisms responsible for each level
can easily lead to the absence of arable land protection supervision. Second, this approach to
arable land protection pays too much attention to the compulsory control of the government,
and tends to ignore the initiatives, demands and actual conditions of other subjects. This
easily leads to the diversity, deviation and uncertainty of the actual action results, which
has been widely criticized by the academic circles. As a bottom-up management method,
nudging tends to pay more attention to the arable land protection process of each subject at
the micro-scale. The most important feature of nudging is: nudging can pay attention to
the practical problem of the inconsistency between the overall system design of arable land
protection and the micro-behavior level. Arable land protection can produce windfall gains
or wipe-out losses, resulting in uneven interests of land users. Agricultural production
on arable land is not only inefficient in terms of economic benefits, but its non-market
value has certain attributes of public goods. To a certain extent, the protection of arable
land sacrifices the opportunities and space for local governments and farmers to develop
non-agricultural construction, and gives up the greatest opportunity cost that can be
obtained by converting arable land into construction land. Therefore, although traditional
administrative intervention strategies can improve the target population’s awareness of the
risk of arable land destruction or their willingness to protect arable land in a short period of
time, they may not actually lead to effective behavior changes. Moreover, even if the arable
land protection behavior can be effectively improved, the time and economic costs required
for administrative intervention, economic intervention and continuous monitoring are huge.
Therefore, perhaps we can learn from the nudge theory to carry out empirical, unconscious,
and automatically triggerable arable land protection behaviors, and then turn them into
habits to help people overcome the gap between arable land protection intentions and
arable land protection behaviors. Drawing on the toolkits used in past nudging, this study
divides nudging mechanisms into six categories: default option, framing effects, descriptive
norms, home and country sentiments, heritage motives, and benefit motives. The default
option refers to re-examining the existing default options and taking arable land protection
as a default option with potential economic, social, and ecological benefits, so as to improve
the possibility of each subject taking arable land protection behaviors. The framing effect
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refers to the phenomenon that different representations of the same information lead to
different decision-making effects. The framing effect in arable land protection refers to the
phenomenon that the decision-making behavior of each subject is affected by the media
or leaders’ frame representation of cultivated land protection issues, and shows different
decision-making preferences. The descriptive norm refers to the obvious role model effect
and group effect among various subjects in the process of arable land protection. It reflects
that the attitude and participation enthusiasm of a subject towards arable land protection
will have a significant impact on whether other subjects continue to participate in arable
land protection. For example, inter-neighborhood exchanges and demonstrations can
increase farmers’ willingness to apply environmentally friendly technologies more than
government policy interventions. The home and country sentiment refers to the moral
rationality that emphasizes the value and meaning of individual life must rely on the value
and meaning of the country, and also refers to the individual’s psychological, emotional
attachment and satisfaction to family, hometown, and patriotic feelings. The Chinese
people have a strong sense of home and country, as well as patriotic cultural values and
corresponding behavior patterns. Moreover, the arable land protection is also a major
support for China’s national security strategy. Therefore, there is a high social consensus on
the arable land protection and the guarantee of food security. The heritage motive refers to
the economic behavior of older generations to pass on a portion of their income and wealth
to the next generation. Arable land has important social security value and social stability
value. The elderly farmers pass the arable land to the next generation, in fact, they hope
that the income of young farmers will be more diversified. For them, arable land is the last
guarantee for the survival of family members and an asset that may greatly appreciate in
the future. Benefit motives means that each subject is an independent operating subject
pursuing the maximization of their own profits. In view of this, only when each subject
believes that arable land protection is profitable, will the supply behavior of arable land
protection be increased.

Therefore, nudges can influence people’s choices, but they don’t force people to
change their choices, nor do they make choices for people, but help people make better
choices at insignificant increased costs. However, due to the constraints of information
acquisition, cognitive ability, and self-control, people’s daily decision-making usually
shows the characteristics of bounded rationality. People often rely on empirical judgments
of various heuristics, and thus often make inefficient decisions that are inconsistent with
their own well-being. The nudging strategies is aimed at improving this situation. It is
unique in that it does not need to resort to executive orders or economic leverage, but
to change people’s behavior in the desired direction by providing an appropriate choice
framework. Of course, nudging cannot solve all the problems arising in the process of
arable land protection. In practice, it still needs to be managed through tough measures
such as arable land occupation tax, arable land dynamic monitoring, and arable land use
control. However, nudge is a new insight from behavioral economists based on psychology,
and provides a new perspective for understanding and predicting economic behavior. The
purpose of this study is to try to use nudge (this low-cost and high-efficiency regulatory
method) to intervene in the micro-level arable land protection behavior more finely, so that
each subject can make decisions in a more optimized way, thereby improving the arable
land environment.

3. Cognitive Perspective of the Nudging Strategies of Arable Land Protection Behavior

The cognitive perspective of the nudging strategies of arable land protection behavior
aims to avoid the cognitive bias and abnormal selection of decision makers by designing a
reasonable choice architecture to promote their rational arable land protection behaviors.
This article focuses on the application of default options, framing effects, and descriptive
norms in the field of arable land protection behavior. Default options and framing effects
can encourage the arable land protection behavior by cleverly presenting decision-making
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information, while the descriptive norms promote arable land protection behavior through
customized information.

3.1. Default Options Nudge Arable Land Protection Behavior

The default option refers to the option to be accepted when the individual has not
yet made a decision [51]. The decision will be affected by the framework in the absence
of a formed value or preference of an individual, and the default option is then used as a
reference point [52,53]. Therefore, people tend to keep the default options without making
any changes during decision-making. This phenomenon is the default option effect. In
the application and research of public policies, the nudging strategies of default options
are widely used in environmental protection [54], consumer food choices (Just et al., 2018),
and public health [55]. Policy designers should focus on the use of default options to
make minor adjustments in the design of arable land protection policy to cause significant
changes in the arable land protection behavior of each stakeholder and then achieve the
goal of arable land protection. For example, land-use change caused by the increase in
various types of construction land is one of the most significant features of urbanization.
The essence of urbanization is the transformation process of land use function. Population
agglomeration, industrial structure agglomeration, and infrastructure construction must be
realized through the reconfiguration of land [56,57]. However, urban expansion invaded
and occupied a large amount of arable and ecological lands, which directly led to a sharp
decline in the amount of arable land and the occurrence of ecological and environmental
problems, posing a serious threat to food security and ecological protection in China [58].
Therefore, optimizing the allocation of limited land resources and realizing the coordinated
development of urban expansion, arable land protection, and ecological conservation is a
serious challenge facing sustainable land use in China.

At present, delimiting urban growth boundaries, establishing arable land occupation
tax, restricting basic arable land zoning, and setting up land regulatory agencies have
become important means to control urban expansion and protect arable land. The central
government has paid huge administrative costs and financial investment, and has been
improving the governance efforts of illegal activities on arable land yearly. However, illegal
cases of arable land became increasingly concealed and challenging to investigate when lo-
cal officials conspired to participate in such illegal use. In response to this problem, Wu [59]
believes that high-, medium-, and low-gradient quota systems can be set in the construction
land quota application system according to the development of each region and resource
endowments. In the high-gradient quota application system, local governments will face
problems, such as a large number of application materials, complicated approval proce-
dures, and long waiting times for approval. The procedure is simplified and the application
is easy in the medium- and low-gradient quota application systems, and this option is set
as the default. Local governments have the political task of ensuring regional economic
development and fiscal balance and reducing unemployment and social stability. Thus,
they may not choose the low-gradient option. However, the local government may choose
the default option because the high-gradient option has the characteristics of complexity,
rigorous approval process, and prohibitive length of approval time.

Cases in real life, wherein the absolute superiority option (that is, a better option
than others in all dimensions) is among the choices that people face, are relatively few.
Most decision-making tasks involve the comparison of alternatives with default options
and objectively equivalent losses and gains. People tend to regard the default option as a
reference point during decision-making. Judgments of people regarding losses and gains
are prone to change due to reference point dependence. People argue that the loss of
abandoning the default option is larger than the benefit of choosing an alternative option
(loss aversion) [60]. The individual subjective susceptibility caused by the loss is substantial;
thus, people usually keep the default option and are unwilling to make changes to avoid
the psychological loss caused by abandoning the default option, leading to the generation
of the default effect (settle for the status quo) [61]. The above-mentioned characteristics
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of human habitual thinking provide a practical idea for nudging arable land protection
behavior. That is, replacing traditional options with arable land protection ones as the
default, thereby guiding people to make arable land protection behaviors.

3.2. Framing Effects Nudge Arable Land Protection Behavior

The framing effects can also effectively avoid the cognitive bias in decision-making
caused by human loss aversion, thereby nudging arable land protection behavior. The
framing effects mean that attitudes and preferences of people toward the event will change
or even be reversed when presented with essentially the same events only because of
the modified way of presentation. That is to say, different ways of expressing the same
problem may cause individuals to make different decision-making results. Researchers
generally believe that intuitive experience and emotional preference, which are crucial for
the decision-making system, are the underlying causes of framing effects [62]. This section
mainly discusses the influence of delay–advance and goal framing effects on the behavioral
decisions of various stakeholders in the arable land protection.

The delay–advance framing effects indicate that people have different perceptions of
waiting time under delayed and advanced conditions due to the reference point. Therefore,
delays and advances are often regarded as losses and gains, respectively [63,64]. The
agricultural subsidy policy, which aims to protect and develop agriculture, is an important
program of strengthening and benefiting farmers in China [65]. At present, adjusting
the agricultural subsidy policy and linking the issuance of various agricultural subsidies
with the effect of arable land protection, which forms an agricultural subsidy system with
arable land protection as the core, plays an important role in increasing the income of
farmers and ensuring national food security. However, the issuance time of agricultural
subsidies in China significantly varies in different regions. Some regions can be issued
before the end of March, while others have to be delayed until the end of April or even
later. At present, in the face of continuously increasing agricultural production materials,
the government needs to issue agricultural subsidies promptly to ensure the enthusiasm
of farmers for arable land protection. Therefore, governments at various levels should
adjust the timing of the issuance of agricultural subsidies to the beginning of the year to
mobilize the enthusiasm of farmers for growing grain effectively and prevent the increasing
phenomenon of non-grainization.

The goal framing effects refer to the changes in the willingness of individuals to
implement the behavior when describing the relationship between the implementation or
non-implementation of certain behavior and the realization of the goal [66]. For example,
the value of arable land mainly includes economic production, social security, ecological
conservation, and cultural inheritance [67,68]. Among these values, economic production
value can provide farmers with agricultural economic income and agricultural products;
social security value can provide farmers with employment opportunities and reduce
the risk of farmers going out to work; ecological conservation value can consolidate the
foundation of agricultural reproduction and reduce the loss of agricultural output and
production costs; and cultural inheritance value can increase the recognition and respect of
farming culture by future generations. Therefore, the arable land protection behavior can be
described as follows: “if you protect arable land, you will increase family income, increase
employment security, reduce reinvestment in agricultural production, and be praised
by future generations” or “if you do not protect arable land, then you will significantly
reduce the level of agricultural income, lose the most basic social security, increase the
cost of agricultural production, and is not conducive to ensuring the livelihood of future
generations”. Therefore, the information expression of the goal framing can significantly
affect the willingness of farmers to protect arable land.

Different delay–advance and goal framing will generally affect individual arable land
protection decisions. In practice, rational use of the framing effects and finding the key
variables in these effects can promote the arable land protection behavior of individuals.
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3.3. Descriptive Norms Nudge Arable Land Protection Behavior

The default options and framing effects nudge the arable land protection behavior of
people by masterly presenting decision-making information, while the descriptive norms
nudge such behavior by directly providing customized information. When arable land
protection behavior becomes a descriptive norm, which is a typical practice of most people
in a certain situation, the possibility of individuals taking arable land protection behavior
will remarkably increase. Descriptive norms convey information to individuals regarding
the behavior of most people in a specific situation. This information is equivalent to telling
the individual what to do in a specific situation and is most likely to be effective and
suitable, providing a basis for the decision-making of an individual; thus, people can
behave in accordance with the behavior of most individuals [69,70].

Conservation tillage refers to a technical system with surface mulch, straw return,
and no-tillage as the core technology using comprehensively supporting measures, such
as reduced tillage, no-tillage, surface micro-topography modification technology, surface
cover, and rational planting [71,72]. Most farmers are subjectively cautious due to their
education level and smallholder management restrictions, which is not conducive to
the promotion and application of conservation tillage. The producer, who is the first
to adopt a new mode of production, faces the largest uncertainty, while the followers
encounter a relatively small amount of uncertainty [73]. Therefore, a demonstration is
the best way to reduce the uncertainty faced by farmers in adopting conservation tillage.
In addition, farmers often make choices based on the adoption of conservation tillage by
influential farmers or individuals (such as large-scale growers, cooperative leaders, village
officials, and rural elites) in the village. The adoption behavior of this part of farmers has
descriptive and silent dissemination effects. Therefore, the government should explore the
establishment of a conservation tillage training and promotion mechanism for rural elites
while guiding them to play a positive role. Thus, farmers can subtly learn new knowledge
of conservation tillage during the communication process to accelerate the adoption and
diffusion improvement of new technologies in the social network of farmers.

Therefore, the government should actively build experimental demonstration bases
for conservation tillage in various regions and use them as carriers to conduct conservation
tillage promotion and new-type professional farmer training and actively cultivate appli-
cation entities that support conservation tillage. In addition, technology demonstrations
can reduce the risk expectations of farmers and increase their enthusiasm for applying
conservation tillage technologies.

4. Motivated Perspective of the Nudging Strategies of Arable Land Protection Behavior

Two asymmetries are observed in the costs and benefits of arable land protection
behavior: “present–future” and “individual–society”. Moreover, under the incentive of the
substantial benefits of non-agriculturalization of arable land, each stakeholder lacks the
exogenous implementation power of arable land protection behavior due to the imperfec-
tion or absence of the incentive mechanism for arable land protection behavior. On the one
hand, the home and country sentiments and heritage motives can be stimulated to raise the
attention of people to the future food security, the inheritance of farming culture, and the
preservation of arable land resources for future generations. Consequently, the “present–
future” asymmetry between the costs and benefits of arable land protection behavior can
be alleviated. On the other hand, it can stimulate the benefit motives of each stakeholder to
enhance their recognition of the multi-functional value of arable land and the arable land
development rights. Consequently, the “present–future” asymmetry between the costs
and benefits of arable land protection behavior can be alleviated. Therefore, home and
country sentiments and heritage and benefit motives can nudge the occurrence of arable
land protection behavior.
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4.1. Home and Country Sentiments Nudge Arable Land Protection Behavior

Adopting arable land protection behavior is the result of weighing the current costs and
future benefits of each stakeholder. The stakeholders often act unfavorably to the ecological
environment of arable land mainly because they are short-sighted and cannot see the value
of sustainable use of arable land. Therefore, they lack the motivation to invest in arable
land protection. For example, the behavioral decisions of local governments regarding
arable land protection are often inconsistent with their social goals. This inconsistency is
mainly due to the inherent requirements of regional economic development goals, which
drive local governments to choose to provide land at a low price in the process of attracting
investments. Local governments provide excessive attention to the transfer of arable land
to achieve the practical needs of fiscal revenue increase [74]. Therefore, a nudging design
that allows various stakeholders to see the future value of arable land will encourage their
participation in arable land protection behavior. Considering the country, people intuitively
perceive a long future for the country when its history is long. This intuitive feeling easily
stimulates the sense of responsibility of people for the future of the country [75,76] to
allow effective consideration of such future and conduct additional arable land protection
behaviors. The feelings of home and country are the quintessence of the traditional culture
of the Chinese nation. Awakening home and country sentiments and raising awareness of
arable land protection are crucial in the current situation.

The development of rural slogans in rural areas of China is crucial due to the scattered
geographical distribution of villages, weak cultural environment, and single access to
information. Rural slogans are highly praised by the vast rural areas because of their
short, concise, easy-to-remember, easy-to-recognize, and catchy features. Slogans are
not only an important and direct teaching material for farmers to learn and understand
various policies and guidelines but are also effective in guiding and educating farmers
to form correct values. Rural slogans play an irreplaceable role to a large extent [77].
Therefore, the rural slogan can elicit home and country sentiments of people regarding
arable land protection (for example, “the land is connected to thousands of families, and the
supervision depends on you, me, and him”.). This slogan also makes easily recognizable
arable land protection-related policies and choice architecture of people, thereby increasing
the selection chance. In addition, rural slogans are an important tool and carrier for “policy
to the countryside”. Rural slogans have the characteristics of wide coverage, conformity
to audience awareness, and low economic costs, which are particularly suitable for arable
land protection policy dissemination in rural communities. Basic-level administrative
organizations have transformed arable land protection policies and regulations into an
easily understandable language to facilitate comprehension and acceptance of the broad
masses of farmers.

4.2. Heritage Motives Nudge Arable Land Protection Behavior

Stimulating home and country sentiments solves the short-sighted problem of people.
However, the long period and excessively far away return on investment from future gener-
ations is also another psychological obstacle that affects the arable land protection behavior.
People focus more on the current self-interest than on the future social interests (future
generations), thus generally showing low willingness to protect arable land. Heritage
motives theory is an economic concept that studies intergenerational exchange and wealth
transfer within a family. The wealth accumulation of the micro family is through family
savings, consumption, and asset allocation decisions, macro investment, and public policy
choices [78]. Therefore, raising the attention of people to the interests of future generations
may nudge their arable land protection behavior.

The heritage value of arable land is the allocation question of arable land resources
between generations. That is to say, contemporary farmers are willing to pay a certain
amount of fees to protect the arable land resources considering the arable land resources
usufruct for future generations. Thus, future generations can also enjoy the effects of arable
land resources. However, the main focus of agricultural policy in China has long been on
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the pure or narrow economic value of arable land resources. The unsustainability of arable
land protection policies and the decline of arable land ecosystem service functions are easily
induced due to the lack of consideration of the heritage value of arable land resources in
agricultural policies. Therefore, the government should open up the useful life of arable
land and provide strong guarantees for stable investments and operations of farmers
by continuously extending the contracting period of arable land. In the past, capitalist
landowners tended to shorten the lease term to capture the excess profits generated by the
additional investment of operators in the land. Consequently, arable land operators often
choose to exploit the land fertility as much as possible during the lease term. The long-term
unchanging arable land contracting period guarantees the actual operating stakeholders to
gain the usufruct right to the excess profits of the arable land for an extended period [79,80].
In addition, the old generation of farmers can pass on their accumulated land capital to
the next generations, thus fully stimulating the enthusiasm of farmers to protect arable
land. Governments at all levels can consider including elements of heritage motives when
promoting the concept of arable land ecological environment to enhance awareness and
behavioral level of people considering arable land protection.

4.3. Benefit Motives Nudge Arable Land Protection Behavior

Home and country sentiments and heritage motives aim to nudge the arable land
protection behavior through the attention of people to the future of the country and future
generations. In addition, rationally designing the choice architecture to realize consistent
arable land protection decision-making with the interests of different stakeholders can
stimulate the benefit motives of each stakeholder and then nudge the occurrence of arable
land protection behavior. For example, the intensive application of chemical fertilizers and
pesticides meets the need to increase food production under the guidance of production
targets to a certain extent but also causes serious resource and environmental problems,
such as soil compaction, soil acidification, water pollution, and excessive emission of
greenhouse gases [81]. Therefore, the No. 1 Central Document in 2019 once again proposed
the green agricultural development goal of achieving a negative growth in the use of
chemical fertilizers. From the perspective of the efficient use of agricultural waste and the
maintenance of arable land capital, organic fertilizer substitution technology, which can also
promote sustainable agricultural development, is necessary to realize green agriculture [82].
However, the price of organic fertilizers on the market is generally higher than that of
chemical fertilizers, and the application of organic fertilizers often requires additional
capital investment. Thus, these requirements generally decrease the willingness and
behavioral level of farmers to buy organic fertilizers.

In reality, farmers often simplistically divide the products on the market into “green
and environmentally friendly but expensive” and “not environmentally friendly but rel-
atively cheap”. However, this division is only the result of the excessive attention of
farmers on the initial purchase cost of the product and is not the real case. Compared
with traditional chemical fertilizers, many new organic fertilizers have complete nutrients
and long-lasting fertilizer effects despite their high initial purchase cost. The total cost of
new organic fertilizer is low due to its advantages in improving soil quality, enhancing
crop quality, and reducing agricultural non-point source pollution. Life cycle cost refers
to the sum of all costs related to the life cycle of the product system, including initial and
operating costs [83]. If life cycle cost information can be indicated for new organic and tra-
ditional chemical fertilizers, then the preference of farmers for new organic fertilizers can be
nudged, and the proportion of organic fertilizers usage can be gradually increased. There-
fore, stimulating individual benefit motives can effectively resolve the “individual-society”
asymmetry between the cost and benefit of arable land protection behavior.
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5. Discussion: Controversies That May Exist in the Practice of Nudge in Arable Land
Protection Behavior

The six nudge-based intervention strategies for arable land protection behavior pro-
posed in this article reveal that nudge not only ensures the free choice of each stakeholder
but also reflects the policy intentions of quantity control and quality and ecological man-
agement of arable land. Therefore, nudge is a new tool for smooth and effective policy
intervention. In addition, the growth rate of fiscal revenue has slowed down while fis-
cal expenditure has rapidly grown after the entrance of economic development in China
into the economic new normal, and cost constraints of arable land protection policy in-
terventions have continued to increase. However, unlike traditional interventions that
change arable land protection behavior of people by modifying the cost–benefit structure
of decision-making at a considerable economic cost, the nudging strategies trigger only
the intuition, feelings, and automatic decision-making process of individuals. Nudge can
also achieve the goal of arable land protection through simple clues and small changes in
the selection environment. Moreover, nudge is a low-cost intervention that can be widely
used. The advantages of nudge have achieved convincing results in different countries
and research fields and have shown remarkable application value. However, questions
and disputes regarding the validity, reliability, and ethics of nudge frequently arise due to
its novelty [84,85]. The following disputes may emerge upon the implementation of the
nudging strategies of arable land protection behavior.

5.1. Nudge May Be Evil?

The most direct objection to nudge theory comes from “evil nudge”, which is a certain
form of despotism or control threat theory. That is, people with ulterior motives use
cognitive biases and other psychological laws to guide the behavior of decision makers
to realize beneficial resulting behaviors to specific interest groups. For example, some
local governments are accustomed to adopting “transactional”, “bribery”, and “buying-
out” methods to increase the non-agricultural income of farmers. Therefore, the rights-
safeguarding mechanism is not sound when its channel is rough. Moreover, farmers will
feel pessimistic regarding rights protection and are inclined to assist the local government
in implementing CLPP flexibly when the cost of rights-safeguarding is relatively high.
However, as a method and technology, nudge has no moral and ethical issues. Any method
can be abused, but such abuse is not a problem of the method itself; instead, the problem
mainly lies in the purpose of the person using such a method. Restraining possible abusive
behavior in the practice of nudging is necessary. Simultaneously, the positive effect of
nudging methods on arable land protection behavior should be affirmed.

5.2. Nudge Leads to Childization?

The implementation of the nudging strategies compensates for the defects of thinking
systems of people and relies on system 1 for decision-making to guide them and produce
choices close to the goal of arable land protection. However, this guidance method does
not transfer knowledge to the stakeholders and does not improve their decision-making
skills, which hinders the accumulation of knowledge of arable land protection and the
ability of independent selection of the stakeholders to a certain extent. This kind of
operation will cause people to become dependent and threaten them to think naively.
People who have the above doubts often overestimate the role of autonomy. In the absence
of nudges, local governments also have strong political and economic demands, and
their consideration focuses on developing the local economy, achieving rapid growth in
fiscal revenue, and maximizing political performance during the term of office. Driven by
comparative interests, an increasing number of rural laborers choose to abandon traditional
agriculture and enter non-agricultural industries, and the proportion of non-agricultural
income is gradually increasing [86]. Therefore, under the condition of cost–benefit, a
considerable amount of critical reflection that people invest in the process of autonomous
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formation and adjustment does not necessarily guide individuals to make the most correct
response. Thus, verifying whether nudge will lead to childization will take a long time.

5.3. Can Nudge Be Effective in the Long Term?

Simultaneously, some scholars argue that the role of nudging strategies has been exag-
gerated. In a real environment, nudging strategies may not be able to solve complex social
problems [87]. The various nudging strategies of arable land protection behavior in this
article are still a preliminary discussion on the theoretical level despite their capability to
provide strong evidence for their effectiveness. These measures require further experiments
and research by the government to evaluate their feasibility, cost, and effectiveness. Subse-
quent research should also further integrate the institutional design and decision-making
mechanism of arable land protection policies in China, observe the cognitive behavior
patterns of farmers in different regions, explain the differences in the nudging strategies
formulated by local governments at different levels and regions, and then propose practical
and feasible nudging strategies.

6. Policy Implications: Effective Use of Nudge to Promote Arable Land Protection
Behavior in China

As a country with the largest population, the top priority of China is to protect
arable land for national well-being and the livelihood of people. Such a priority is not
only essential to achieving sustainable social and economic developments in China but is
also of considerable strategic significance for ensuring world food security and stabilizing
international food prices. As a rational method of behavioral science that attempts to change
the psychology and behavior of people to promote social development, nudge will play
a unique and irreplaceable role in this process. Considering national conditions in China
when the nudging strategies are implemented is necessary to achieve the intervention goal.

6.1. Selection of Nudging Strategies Based on the Subdivision of Farmer Groups

Similar to traditional intervention strategies, the choice of nudging strategies should
be based on the subdivision of farmer groups. Facing farmers with different character-
istics, the same nudging strategies may have different effects for various intervention
contents. Therefore, the policy makers of the nudging strategies should first clarify the
characteristics of the target farmers. The existing literature classifies the types of farmers in
a variety of ways: the types of farmers based on their employment and economic status,
their decision-making behavior goals, and age as an intergenerational difference [88,89].
Under the internal and external stimuli of four new modernizations and the reform of
the rural economic system in China, farmers have rapidly differentiated and transformed
along various paths and methods. Significant differences are also found in the willingness
and behavioral response of different types of farmers to arable land protection. For ex-
ample, Xie et al. [90] divides farmers into young farmers, middle-aged farmers and old
farmers according to the intergenerational differences. In addition, Xie believes that the
need for livelihood security for elderly farmers makes them more dependent on arable
land. Middle-aged farmers tend to achieve a state of moderate-scale operation through
arable land transfer. In addition, the scale of arable land has a significant positive impact
on the occurrence of arable land protection behavior, and these farmers are more inclined
to adopt environmentally friendly technologies to use and manage arable land; due to
fact that young farmers have more opportunities to obtain non-agricultural income and
employment opportunities, they are prone to abandoning arable land. Based on the rice
planting data of 537 Chinese farmers, Cai et al. [91] analyzes how the differentiation of
farmers’ livelihoods affects the pesticide use status of Chinese farmers. The results of the
study found that, compared with pure farmers, part-time farmers were more inclined to
reduce the use of pesticides to maintain the quality of cultivated land resources. The reason
is that arable land plays an important role in social security for part-time farmers, and
maintaining the quality of arable land can increase the diversity of their income. Therefore,
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formulating different nudging strategies according to different types of farmers, mobiliz-
ing the enthusiasm and initiative of various types of farmers in arable land protection,
and focusing on their subjective functions is an important guarantee for improving the
effectiveness and promoting the orderly development of arable land protection.

6.2. Number of Options for the Nudging Strategies Should Be Appropriate

Four to five are appropriate considering the options provided by the choice architec-
ture [92–94]. Providing additional options can help cater to the needs of farmers. However,
the burden of decision-making on the stakeholders of arable land protection will increase
with the number of options. Therefore, the designer of the choice architecture needs to
balance the two above-mentioned factors according to the characteristics of farmers in
practice. For example, providing an excessive number of options at once when promoting
environmentally friendly technologies or green agricultural products to elderly farmers is
inappropriate. This inappropriate behavior is due to the preference of elderly farmers with
poor information processing capabilities to choose from fewer options than young farmers.
For example, Zhao et al. [95] conducted a random sampling survey of farmers who grow
grain in Jiangsu Province, China, and analyzed the differences in farmers’ willingness to
choose arable land protection technologies based on micro-data. The research results show
that from the perspective of individual characteristics of farmers, the age of farmers and the
health of farmers have hindering effects on arable land protection technology, which is also
due to the fact that arable land protection requires a certain amount of physical strength
and energy. The health status, physical strength and energy of farmers have a significant
impact on arable land protection behavior. Therefore, it is impossible to require elderly
farmers to understand and master a certain number of arable land protection technolo-
gies in a short period of time. Xie et al. [96] used the meta-analysis method to conduct a
comprehensive analysis of 77 empirical studies to reveal the influencing factors, sources
of heterogeneity and influence effects of farmers on the adoption of pro-environmental
technologies. The results of the study show that the gender, age, and education level of
farmers are regarded by many literatures as the decisive factors for farmers to adopt pro-
environmental technologies. Therefore, age has a significant negative impact on farmers’
adoption of pro-environmental technologies, suggesting that as farmers age, they are less
likely to adopt these technologies. The number of options matching different characteristics
of farmers is not the same. Thus, providing four to five options can be used as a general
guideline without the restriction of additional factors.

6.3. Clarification of the External Environment That Nudges the Arable Land Protection Behavior

Arable land protection is not only a personal behavior problem but also a social prob-
lem. This phenomenon is the result of the joint influence of internal psychological resources
and the external environment. If policy makers do not consider external environmental
factors and blindly rely on nudge to achieve the goal of arable land protection, then its ef-
fectiveness will be severely limited. The external environment of nudge can be divided into
underutilized and unprepared environments [97]. Underutilized environments mean that
the central government has introduced the most stringent arable land protection system
and is fully equipped with corresponding agricultural infrastructure. However, problems
regarding the pessimistic effect of arable land protection and the biased implementation
of arable land protection policies remain. These problems emerge due to the imperfect
psychological system of the public, often making decisions that are not conducive to the
arable land environment. The use of social governance methods of nudge can effectively
circumvent the cognitive and motivational limitations of people at this time and guide
them to act in the direction of arable land protection.

Unprepared environments refer to locations that lack agricultural supporting infras-
tructure. Only the nudging strategies designed for choice architecture fail in such environ-
ments. For example, agricultural infrastructure is an important material condition and core
element to support the development of agricultural modernization in China and is also a
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crucial investment that takes advantage of cost-saving measures, such as agricultural scale
operation and technological progress [98]. However, agricultural infrastructure in China
is still facing problems and challenges, such as insufficient total supply, low satisfaction
rate of farmers, and failure to meet the construction needs of new forms of agricultural
operations effectively. Therefore, improving the efficiency of investment and financing of
agricultural infrastructure, as well as the benefits of construction and use, has become the
top priority for promoting arable land protection behavior. Further improvement of arable
land protection policies and the construction of agricultural supporting infrastructure
will help the formation of the external environment and improve its effects. Thus, policy
makers can effectively evaluate the external environment of nudges to design reasonable
and effective intervention programs to protect the ecological environment of arable land.
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Abstract: Increasing land-use eco-efficiency can alleviate human-land conflict in urban areas as
well as improve regional urbanization quality to achieve sustainable development. As the central
urban agglomeration in China, the Middle Reaches of Yangtze River (MRYR) has experienced rapid
urbanization and huge land-use change during 2000 to 2020, which poses great threats to its ecological
environment. This study adopted the Super-Slack-Based Data Envelopment Analysis (Super SBM-
DEA) model to evaluate the eco-efficiency of land use in MRYR. The result shows that the average
eco-efficiency value of land use is above 0.77 for each year, indicating that the general efficiency is at
a middle level. The trend of the evolution of the eco-efficiency can be summarized as a “U-shape”
style curve. The variance between the four urban agglomerations of the MRYR changed over time.
Not all capital cities or cities with higher GDP per capita obtain higher eco-efficiency in this study.
Policy intervention, population and land use, technique, and environmental pollution are influencing
factors of land-use eco-efficiency. Based on slacks analysis, this study proposed the optimization of
the land-use structure to improve eco-efficiency from four aspects of land-use structure, investment
and labor, ecosystem services value (ESV) and environment pollution, and industry structure.

Keywords: eco-efficiency of land use; the middle reaches of Yangtze River; Super SBM-DEA model;
ecosystem services value; slacks analysis

1. Introduction

Sustainable development promotes economic growth while also taking into account
the need to maintain the environment for future generations [1]. Ecological civilization
is an inevitable requirement for the harmonious development of man and nature, and
the construction of ecological civilization is fundamental for the sustainable development
of China. According to the European Environmental Agency (EEA), eco-efficiency is the
ability to maximize the benefits of fewer natural resources [2].

This can be used to gauge how resource utilization, pollution emissions, and economic
growth are related [3,4]. The fact that eco-efficiency connects the environment and the
economy makes it a crucial instrument for assessing sustainable development [5]. Mean-
while, regulations that encourage efficiency are more likely to be implemented than those
that limit economic activity, particularly in developing countries such as China [6]. Thus,
eco-efficiency research has become a hot issue in sustainable development research [7–9].
Urbanization has had a significant impact on the world. Large-scale land conversion is a
significant issue in China, where growing urbanization has also created major land-use
problems [10]. Land resources play a vital role in the ecological environment, and should
be used sparingly and efficiently. The sustainable and efficient use of land resources is
intimately tied to the eco-efficiency of land use. Eco-efficiency of land use can be defined
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as the reduction in inputs from land resources, in order to attain sustainable development
goals and to achieve a mutually beneficial situation for the economy, resources, and en-
vironment. Eco-efficiency of land use cannot be quantified in absolute terms, but it does
depend on the socioeconomic activities carried out on it [11]. Research on the eco-efficiency
of land use in China is extremely valuable, in order to preserve land resources, safeguard
the environment, and advance sustainable development.

Urban agglomeration is the area where land-use change and production activities
are most concentrated. The land of urban agglomeration is a gathering place for social
and economic activities, and its utilization process causes a certain degree of impact on
the environment and ecosystem [7]. In East Asia, urban agglomerations have grown in
Japan and South Korea since the 1950s. From the 1960s through the 1980s, South Korea
relied on traditional heavy chemical industries, processing, and export industries to achieve
rapid economic growth. Since the 1990s, with the disappearance of the demographic
dividend and the establishment of the WTO, the domestic and foreign environments that
supported South Korea’s continued rapid economic growth have undergone major changes.
This has forced South Korea to achieve industrial transformation and upgrade through
reform, and embark on an efficient, intensive, and environmentally friendly high-quality
development path. Japan’s Tokyo Metropolitan Area and the Tokyo Bay Area, as a world-
class mega city group, have brought considerable agglomeration economic effects to Japan.
Compared with China, Japan’s economic center is more concentrated. The polarization of
the metropolitan area is so severe that it differs too much from other cities. This enlightens
China to establish a multi-dimensional urban agglomeration, to cooperate with each other
and complement each other, and to form a coordinated urban agglomeration development
model with coordinated industrial land use. In China, urban agglomerations mainly began
to develop in the 1990s. Since the beginning of the revolution, the Yangtze River Delta
(YRD) urban agglomeration, the Pearl River Delta (PRD) urban agglomeration, and the
Beijing-Tianjin-Hebei (BTH) metropolitan area have been recognized as the three major
growth poles of China’s economic development. The middle reaches of the Yangtze River,
by building a new urbanization frontier zone in the central and western regions, can be
built into a green growth pole of China. Although the socioeconomic development of urban
agglomerations has achieved remarkable achievements, there are also increasing ecological
and environmental threats. An extensive economy has been promoted in China for a long
time [2]. In the context of this, the threat that urban agglomerations’ economic expansion
poses to ecosystems has increased, making it a highly concentrated and intensifying highly
sensitive area of a series of ecological and environmental problems.

In terms of research scales, most studies related to the eco-efficiency of land use have
been assessed from the perspective of national and provincial levels [12,13]. However,
few studies have integrated the analysis of ecosystems and socioeconomic elements at the
regional scale in the context of sustainable development. Due to this, there is a lack of
theoretical foundation for developing strategies and policies for urban agglomerations. In
terms of research methods, at the moment, the most widely used modeling methods are
stochastic frontier analysis (SFA), slack-based measurement (SBM), and data envelopment
analysis (DEA). Traditional DEA methods do not account for the influence of slack variables
and do not exhibit the characteristics of non-parametric statistics [14]. Traditional SFA
requires the definition of a specific function of the error term consisting of a null term
and a random error term, which has specification and estimation problems [15]. Because
the influences of environmental and stochastic factors are not taken into consideration,
traditional SBM has the disadvantage of not being able to compute the efficiency values of
all decision units, and traditional SBM-DEA has the issue of bias in arithmetic efficiency [16].
In terms of research contents, previously, the studies of land-use efficiency mainly discussed
the land-use efficiency of built-up land in urban areas [17–20]. In recent years, scholars have
combined the study of land-use-cover change study with eco-efficiency; how to measure
land-use efficiency in the context of environmentally friendly developments [21–23]. Eco-
efficiency is not prioritized by scholars. Instead, they concentrate on either pure economic
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efficiency or holistic efficiency. At the same time, scholars have focused more on the eco-
efficiency of a certain type of land, such as industrial land and cultivated land, or land
of a certain function, for example, mining land. In fact, the land-use adjustment should
consider all kinds of land-use types. This enables the analysis of the eco-efficiency of land
use in light of the structural composition of the land. In terms of environmental policy,
spatial planning, and other regulations, environmental impact assessment can significantly
lessen the harmful effects of initiatives on the environment and contribute significantly to
sustainable development [24]. The weak points of the environmental impact assessment
process are frequently noted as the lack of sufficient scientific evidence in impact assessment
studies and the minimal engagement of experts in policy and decision-making [25]. A
crucial instrument for determining environmental sustainability in the context of assuring
economic growth is the ex-ante environmental evaluation [24]. In fact, the eco-efficiency
of land use is analyzed, helping to design pertinent regulations specifically in the context
of pre-assessment. The need for expert knowledge and citizen participation in fostering
innovation and broad adoption of strategic plans for spatial planning [26]. Starting with
land-use type research on the eco-efficiency of land use can help regulate the structure
of land use and offer some theoretical groundwork for the creation of pertinent spatial
planning.

In this paper, we introduce ecosystem services value (ESV) as the ecological output in
the process of land use and utilize the Super-SBM model. By reclassifying all types of land
data into three categories-farming land, construction land, and other land-we employ all
types of land data acquired from remote sensing images as the input for land resources. It
can raise the value of the results, provide precise and targeted land-use adjustment targets,
and help with the creation of pertinent policies.

As shown in Figure 1, this paper builds an evaluation system with the eco-efficiency of
land use as the core. The eco-efficiency of land use in urban agglomerations is centered on
the input of land resources and the output of ecological and economic value. It obtains the
economic value and ecological service value and the negative impact on the environment
in the land-use process, and the comprehensive ability to achieve the goal of using the
land resource efficiently. Improving the eco-efficiency of land use requires the coordinated
development of the socioeconomic subsystem and the ecological environment subsystem.

Figure 1. Framework of the input and output factors in the assessment of the ecological efficiency of
land use. Source: own elaboration.

The evaluation of land-use eco-efficiency takes three basic production factors, land,
capital, and labor as the input, and environmental pollution, ecosystem service value, and
economic output value as the output. Focusing on the core of land-use eco-efficiency, it
first expounds the impact and interaction mechanism of the land-use process on resources,
environment, ecology, and economy. Secondly, the interaction between input and output
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factors is analyzed. Let us take the example of a city called S. In the process of the utilization
of farming land, construction land, and other natural ecological land, S city in the urban
agglomeration invests labor resources and capital, and finally produces ecosystem service
value and economic output value, accompanied by certain environmental pollution. The
environmental pollution caused by the process changes the land-use pattern, limiting
economic development and industrial upgrading.

2. Methodology and Data Sources

2.1. Study Area

The Yangtze River is the largest river in China and the third largest river in the world,
and “The Yangtze River Economic Belt Strategy” is one of China’s national strategies. In
the Yangtze River Basin, the connection between cities is relatively close, and the natural
“golden waterway” can greatly reduce transportation costs (http://www.gov.cn/xinwen
(accessed on 10 September 2014)). As an important part of it, the Middle Reaches of Yangtze
River (MRYR) is identified as the new growth pole by the State Council of China. In the
national “14th Five-Year Plan” outline, the positioning of the MRYR urban agglomeration
has been upgraded to the same echelon as the Beijing-Tianjin-Hebei, Yangtze River Delta,
and Pearl River Delta (http://www.gov.cn/zhengce (accessed on 15 February 2022)). It has
experienced dramatic urbanization during the study period, and land for future develop-
ment has become a scarce commodity. Studying the eco-efficiency of land use is crucial for
the sustainable development of the study area as well as the entire nation. As can be seen
from Figure 2, this paper takes the four city groups of the MRYR urban agglomerations,
which contains 31 prefecture-level cities as the study area. In the year 2020, the study area
contributes about 9.3% of GDP (“Bulletin of Statistics for national economic and social
development (2020)”). With a total land area of 326,000 square kilometers, accounting
for 3.4% of the country, it is the largest urban agglomeration in China, 1.5 times that of
the Yangtze River Delta and 6 times that of the Pearl River Delta (China Urban Statistical
Yearbook 2018). The permanent population is about 130 million people, accounting for
9.1% (http://www.gov.cn/zhengce (accessed on 15 February 2022)) of the country, only
lower than the Yangtze River Delta.

Figure 2. Geographical location and main cities of the middle reaches of the Yangtze River. Source:
National Foundation Geographic Information Center and own elaboration.

(1) Wuhan City Circle and Xiang-Jing-Yi City Belt

The Wuhan city circle includes “1 + 8” cities, which are Wuhan and Huangshi, Ezhou,
Huanggang, Xiaogan, Xianning, Xiantao, Qianjiang, and Tianmen around it. The natural
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environment of the land in the Wuhan city circle is diverse and the land resources are
distributed in a multi-level circle. Same in the Hubei province. The Xiang-Jing-Yi City Belt
includes Xiangyang, Jingmen, Jingzhou, and Yichang. It is an urban economic development
belt in western Hubei formed by the Jiaoliu Railway, E’guang Expressway, and Hanjiang
River. The two city groups use 64.6% land area contributing up to 90.9% GDP of Hubei
province in 2020 in Table 1.

Table 1. List of cities of MRYR.

City Circle City Area (km2)
GDP ( CNY
100 Million)

City Circle City Area (km2)
GDP (CNY

100 Million)

Poyang Lake
City Circle

Fuzhou 18,799 1573

Wuhan
City Circle

Ezhou 1594 1005
Ji’an 25,373 2169 Huanggang 17,457 2170

Jingdezhen 5261 957 Huangshi 4583 1641
Jiujiang 19,798 3241 Qianjiang 558 765

Nanchang 7402 5746 Tianmen 440 617
Pingxiang 3831 964 Wuhan 8494 15,616
Shangrao 22,791 2624 Xiantao 598 828

Xinyu 3178 1001 Xianning 10,033 1525
Yichun 18,669 2790 Xiaogan 8910 2194
Yingtan 3560 983

Chang-Zhu-
Tan

City Circle

Changde 18,910 3749

Xiang-Jing-Yi
City Belt

Jingmen 12,404 1906
Hengyang 15,303 3509 Jingzhou 14,067 2369

Loudi 8119 1680 Xiangyang 19,728 4602
Xiangtan 5008 2343 Yichang 21,230 4261
Yiyang 12,320 1853

Yueyang 14,858 4002
Changsha 11,816 12,143
Zhuzhou 11,272 3106

Data sources: “Bulletin of Statistics for national economic and social development (2020)” of cities in China; Hubei
Statistical Yearbook (2020); Hunan Statistical Yearbook (2020); Jiangxi Statistical Yearbook (2020).

(2) Poyang Lake City Circle

The city cluster around Poyang Lake covers 10 cities including Nanchang, Jingdezhen,
Yingtan, Jiujiang, Xinyu, Pingxiang, Fuzhou, Yichun, Shangrao, and Ji’an. The land area
is 128,662 square kilometers, which occupies 77.1% of the land area of Jiangxi Province.
The GDP accounts for 85.8% of Jiangxi Province. The infrastructure construction of the
Poyang Lake city circle has been continuously improved, and the urban layout structure
has basically formed.

(3) Chang-Zhu-Tan City Circle

The Chang-Zhu-Tan City Circle consists of 8 cities of Changsha, Zhuzhou, and Xiang-
tan, and the surrounding Changde, Yiyang, Yueyang, Hengyang, and Luodi. The distances
between Changsha and Zhuzhou are 49 km away, Xiangtan and Zhuzhou are 37 km away,
and Changsha and Xiangtan are 51 km away. The layout of the three medium-sized cities is
compact, and the transportation between the cities is very convenient. The total land area
of the Chang-Zhu-Tan City Circle is about 97,606 square kilometers, accounting for 46% of
the province’s land area.

2.2. Data Sources

The research data of this paper come from “Geospatial Information Platform of Chinese
Academy of Sciences”, “China Urban Statistical Yearbook 2001–2020”, “China Urban
Construction Statistical Yearbook 2001–2020”, “The Middle Reaches of Yangtze River
Development Plan 2015”, and other provinces and cities’ statistical yearbooks and various
annual reports from the government websites. The spatial dataset is from Geospatial
Information Platform of Chinese Academy of Sciences. The original remote sensing image
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with 30 m accuracy of Landsat TM is from the United States Geological Survey (USGS) of
Jiangxi Province, Hunan Province, Hubei Province. Remote sensing interpretation derived
from the National Fundamental Geographic Information Systems in China.

2.3. Super SBM-DEA Model

At present, DEA models are the primary methods to measure land-use efficiency; the
evaluation methods mainly focus on DEA models, and SFA [21,23,27–30]. They are a non-
parametric efficiency estimation method that does not need the specific form of production
frontier and are easier to deal with when using multiple outputs. DEA provided by Charnes
et al. in 1978 [31] was based on the relative efficiency of similar decision unit multi-index
evaluation of the concept of input and output efficiency of a linear programming model,
known as the “Charnes-Cooper-Rhodes (CCR)” model [31]. After updating the model
for variable returns to scale the “Banker-Charnes-Cooper (BCC)” model [32]. The two
measures with the efficiency of the unit are based on the radial and angular dimensions,
when non-zero slack calculation results will be large. Tone (2001) [33] proposed the non-
radial slack-based measure (SBM) model, which can deal with the redundancy problem
of unexpected output. Effectively handle the input factors “crowded” or “relaxation”
phenomenon. The efficiency of the SBM model calculated the maximum value to be
1; when there are a number of cities at the efficiency of 1, it will not be able to further
determine which cities are more efficient. Tone (2002) [34] solved the problem with the
Super Efficiency SBM model. The model can be described as follows:

ρ = min
1 − 1

m ∑m
i=1

s−i
xi0

1+ 1
k ∑k

r=1
s+r
yr0

s.t. x ≥ Xλ+ s−, y0 ≤ Yλ− s+,
λ ≥ 0, s− ≥ 0, s+ ≥ 0

(1)

where ρ means efficiency value evaluation of standard; input vector x0 has m kind of
input elements, its elements, respectively, for xi0= ( i = 1, 2, . . . , m ); output vector y0
has k kind of output elements, its elements, respectively, for yr0= ( i = 1, 2, . . . , k ); X
and Y, respectively, for input elements matrix and output elements matrix; s− stands for
input redundant, its elements for s−i = ( i = 1, 2, . . . , m ), s+ stands for output shortage,
its elements s+r = ( r = 1, 2, . . . , k ). When ρ ≥ 1, the production unit is fully effective.
When ρ < 1, there is loss in the DMU, which can be improved by optimizing the input
and output factors.

To consider the undesirable output factors, scholars have extended the above model
to divide the output vector into desired output a and undesired output b, the input
vector x ∈ Rm, the desired output ya ∈ Ra, the undesired output yb ∈ Rb; the in-
put element matrix, the desired output matrix, and the undesired output matrix are
X = [ x 1, . . .., xn ] ∈ Rm×n, Ya= [ y a

1, . . .., ya
n ] ∈ Ra×n, Yb= [ yb

1, . . . ., yb
n ] ∈ Rb×n, as-

suming that X, Ya, and Yb are greater than zero, and the production possibility set is
defined under CRS as: P =

{
( x, y a, yb )| x ≥ Xλ, ya ≤ Yaλ, yb ≥ Ybλ, λ ≥ 0

}
, the

SBM-undesirable model:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρ∗= min
1 − 1

m ∑m
i=1

s−i
xi0

1+ 1
a+b

[
∑a

r=1
sa
r

ya
r0
+∑b

r=1
sb
r

yb
r0

]
s.t. x0 = Xλ+ s−, ya

r0= Yaλ − sa, yb
r0= Ybλ+ sb ,

λ ≥ 0, s− ≥ 0, sa ≥ 0, sb ≥ 0

where ρ∗ denotes the efficiency value evaluation criterion; the input vector x0 has m input
elements, whose elements are xi0= ( i = 1, 2, . . . , m ); the desired output vector ya

0 has a few
kinds of output elements, whose elements are ya

r0= ( r = 1, 2, . . . , a ); the undesired output
vector yb

0 has b kinds of output elements, whose elements are yb
r0= ( r = 1, 2, . . . , b );
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s− denotes input redundancy, whose elements are s−i = ( i = 1, 2, . . . , m ), sa denotes
desired output deficiency, whose elements are sa

r = ( r = 1, 2, . . . , a ), sb denotes non-
desired output redundancy with elements sb

r = ( r = 1, 2, . . . , b ). Similarly, when ρ∗ ≥ 1,
then we have s−= 0, sa= 0, sb= 0, indicating that there is no input and non-expected
output redundancy and expected output deficiency, i.e., the decision unit is valid. When
0 < ρ∗ < 1, then, the decision unit is inefficient and can be improved by optimizing inputs
and outputs.

2.4. Calculate the ESV

In 1997, Costanza et al. [35] divided ecosystem service functions into 9 items, and
calculated the total value and each sub value of ecosystem services worldwide. Their study
focuses can be summed up as follows: Firstly, classify the ecosystems according to certain
classification standards, such as different environment and land type of the study area.
Secondly, calculate the ecosystem service value of each ecosystem according to various
standards and methods. Finally, summarize the ecosystem service value of the study area.
Obtain the general structure table in the area. The specific model is as follows:

Vt =
n

∑
i=1

n

∑
j=1

Si × Mij (2)

where Vt represents the total value of ecosystem services in the region in year t (CNY); Si
represents the area of i land use type (hm2); Mij stands for coefficient of class j ecosystem
service function of class j ecosystem (CNY/hm2); i represents the numbers of land-use
types; j stands for numbers of ecosystem services.

In 2008, Xie Gaodi et al. [36] formulated the research results of Costanza et al. and
updated the calculation table combined with the geographical characters of China to make
it more suitable for the country. They conducted a questionnaire survey of 700 professionals
with ecological backgrounds in China in 2002 and 2006 to derive a new ecosystem service
valuation system. The comparison showed that the expert knowledge-based ecosystem
service unit price system obtained from the survey was more comparable with the quality-
based ecosystem service value. This expert knowledge-based ecosystem service valuation
system can be used for known land-use areas, and can obtain more accurate results in a
shorter period of time.

The model they worked out is the initial model, according to the regional actual and
time-scale grain unit price; the total value of regional ecosystem services is calculated.

The model was based on research conducted nationwide. However, there are vari-
ations in the geographical environment and vegetation growth in different regions. In
this study, we use the net primary productivity (NPP) of vegetation to make regional
adjustments. The adjustment process is as follows:

Pij =
Bij

Baverage
(3)

where Pij is NPP space-time regulators, Bij refers to NPP of the j month of the i region of
this type of ecosystem, and Baverage refers to NPP of the annual average of this ecosystem
nationwide.

2.5. Index Selection

The input and output indicators of economic, social, and ecological aspects related to
land utilization are selected in Table 2 in order to construct a comprehensive and objective
evaluation of the land-use eco-efficiency of the urban agglomerations in the middle reaches
of the Yangtze River. There are 3 aspects of input: (1) Land resources, which are divided
into 3 types: farming land (FAR), construction land (CON), and other land (OTH). (2)
Capital resources (CAP), we choose the investment in fixed assets to measure the capital
input on the land. (3) Labor resources (LAB), we choose the number of people employed
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in the whole society to measure the labor input on the land. At the same time, the paper
chooses 3 aspects of output: (1) Ecological value (ESV), the paper calculates the Ecosystem
Service Value using a certain estimate method, using it to describe the output of the land
use. (2) Economic value, the added value of the first (FIR), secondary (SEC), and tertiary
(TER) industries are selected. (3) Environmental pollution, the paper selects industrial
sulfur-dioxide emissions (SO2) and industrial wastewater discharge (WAS) according to
the principles of data availability and precision.

Table 2. Index selection of input and output.

Indicators Units Mean Max Min Std. dev.

Input indicators
Land resources [23,28]

Farming land hm2 417,021.27 991,976.67 76,749.21 241,549.89
Construction land [7] hm2 39,760.90 118,698.03 7330.41 23,151.40
Other land hm2 671,166.13 1,815,773.94 21,200.49 510,568.82

Capital resource [28]
Investment in fixed assets [7,19,29,37] CNY 10 thousand 11,456,262.07 95,856,748.59 49,835.00 16,168,281.28

Labor resource [28,38]
Number of people employed [7] 10 thousand persons 233.03 603.79 47.20 127.93

Output indicators
Ecological value [39]

ESV CNY 10 thousand 1,558,322.27 4,033,055.02 128,802.86 1,109,511.41
Economic value [23,28,38]

First industry CNY 100 million 146.38 513.01 10.85 121.54
Secondary industry CNY 100 million 642.72 5557.47 21.30 890.34
Tertiary industry CNY 100 million 615.14 9656.40 20.80 1149.71

Environmental pollution [23,28]
Industrial sulfur dioxide emission ton 35,338.50 133,442.00 408.00 29,130.17
Industrial wastewater discharge 10 thousand ton 6278.34 40,661.00 229.07 6139.99

Data sources: Urban Statistical Yearbook of China (2001–2021); China Statistical Yearbook (2001–2021); Hubei Statistical
Yearbook (2001–2021); Land cover data of 3 central provinces from “Geospatial Information Platform of Chinese
Academy of Sciences”.

3. Results

3.1. Isotonicity Analysis

Before using DEA models, it is necessary to test whether the data meet the assumptions
of the models. First, the number of units should be at least twice the number of inputs and
outputs. The number of DMUs in this study was much larger than the number of inputs
and outputs, which met the quantity conditions. In addition, the input-output indicators
must satisfy the isotonicity assumption that an increase in any input should not result in
a decrease in any output. In this study, the Pearson correlation coefficient was used for
testing (Figure 3). The correlation coefficient table shows that all input-output indicators
passed the isotonicity test. Thus, the constructed indicator system can be analyzed using
DEA models.
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(a) b

Figure 3. Correlation of inputs and outputs of 2015 (a) and 2020 (b).

3.2. Temporal-Spatial Trends of Land-Use Eco-Efficiency
3.2.1. Land-Use Eco-Efficiency of four City Groups

• Wuhan City Circle and Xiang-Jing-Yi City Belt

Wuhan City Circle and the Xiang-Jing-Yi City Belt are both located in Hubei Province,
which is the geographically central province of China. Wuhan, the capital city of the
province, is known as the “thoroughfare of nine provinces”. From Figure 4, it can be
seen that Wuhan’s eco-efficiency of land-use level improved after 2010, when it was lower
due to the excessive pollution emissions and insufficient agricultural production values.
Wuhan’s eco-efficiency of the land-use level was at the middle level in the province in 2000,
2005, and 2015, especially, in 2020 when it reached a higher level among all cities in the
study area. Huangshi’s eco-efficiency of land use has the lowest value of eco-efficiency of
land use in Hubei province, and the large input of labor and land resources without the
corresponding economic output made its value of eco-efficiency of land use at the lowest
level in most years. Qianjiang, Tianmen, and Xiantao, as the three county-level cities under
the province’s administration, maintained high-efficiency levels from 2000 to 2020, mainly
due to various land-use policies and the development of green industries. Tianmen City,
with its ecological environment and other advantages, was at a high level of efficiency
value except for 2010, and reached the maximum provincial efficiency value in 2020. The
efficiency values of Huanggang and Xianning show a “W-shaped” trend. From 2000 to
2005, the eco-efficiency of land use in Huanggang and Xianning showed a sharp downward
trend, as the area of construction land increased dramatically while the ecological and
economic output remained constant. From 2015 to 2020, the efficiency values showed an
upward trend attributable to the industrial reorganization from high-polluting industries
to tourism. Ezhou city showed an upward trend in eco-efficiency of land use during the
study period, which indicates that the city’s land-use is developing toward rationalization
and high-efficiency with high-quality.
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Figure 4. The results of the Ecological Efficiency of land use.

In the Xiang-Jing-Yi urban belt, Xiangyang city has a low level of eco-efficiency of land
use and shows a “U-shaped” trend of first rising and then falling, which is due to the fact
that Xiangyang’s production factor inputs are at a medium level while its economic output
is at a low level. Jingmen City shows a decreasing trend in general, whereas Jingzhou City
and Yichang City show a medium level overall; this is because these cities have more land
input than other cities in the province, but insufficient economic output.

• Poyang Lake City Circle

In Poyang Lake City Circle, Nanchang, the capital of Jiangxi Province, had a higher
value of eco-efficiency of land use in 2000 and a lower value of eco-efficiency of land use
ranking afterward, which may be due to the waste of land caused by the blind expansion
of the city and the environmental pollution caused by the unreasonable industrial structure
since 2000, which has further exacerbated the decrease in land-use eco-efficiency until 2020.
Fuzhou, Shangrao, and Yichun converge with Nanchang. The eco-efficiency of land use
in Jingdezhen, Ji’an, Yingtan, and Pingxiang first decreases and then increases steadily in
a “U-shaped” trend, which may be explained by the region’s low economic growth. The
eco-efficiency of land use in Xinyu city declined and remained at a low level during the
study period. The eco-efficiency of land use in Jiujiang City showed a general upward trend
and decreased in some years, mainly owing to the same problem of insufficient economic
output, which led to the lack of obvious economic benefits of land inputs.

• Chang-Zhu-Tan City Circle

In the Chang-Zhu-Tan City Circle, Changsha, as the capital of Hunan province, is the
national “two-type society” comprehensive supporting reform pilot area. From Figure 4,
we can see that the value of eco-efficiency of land use in Changsha City has been on the rise
since 2005 during the study period, until 2020, when Changsha City’s value of eco-efficiency
of land use was second only to Changde City, reaching an efficiency value of 1.52. This
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is closely related to the fact that Changsha and Changde do not blindly pursue urban
expansion and have a friendly development policy orientation. Zhuzhou City, Hengyang
City, Yiyang City, and Yueyang City all maintain high levels of land-use eco-efficiency.
Loudi and Xiangtan cities have been at a low level of land-use eco-efficiency value, and
according to statistical data, their economic output value is insufficient as the main reason.

3.2.2. Trends of the Eco-Efficiency of Land Use

From Figure 5, the middle reaches of the Yangtze River urban agglomeration have
average annual land-use eco-efficiency values over 0.77, which indicates that the overall
efficiency is in the middle to upper range. The eco-efficiency of land use in MRYR shows a
decreasing and then increasing trend, which we summarize as a “U-shaped” curve. From
the perspective of urban clusters, the average eco-efficiency of four urban clusters in MRYR
is ranked as WH (average 0.95) > XJY (average 0.94) > PYL (average 0.93) > CZT (average
0.87). In 2000, XJY had the highest average efficiency value and WH had the lowest; in 2005,
WH had the highest value and PYL Circle had the lowest. PYL and XJY show “W-shaped”
curves from 2000 to 2020, twice experiencing a rise and fall. WH and CZT show “U-shaped”
curves, with higher eco-efficiency of land use in 2000 and 2020, and lower eco-efficiency of
land use in 2005, 2010, and 2015.

Figure 5. Average eco-efficiency of 4 urban agglomerations.

3.2.3. Focused Cities’ Eco-Efficiency of Land Use

From the perspective of cities in Figure 6, the cities with the highest eco-efficiency
of land use are, in order, Huanggang (2000), Tianmen (2005), Changde (2010), Changsha
(2015), and Changde (2020), and the cities with the lowest eco-efficiency of land use are
Loudi (2000), Yingtan (2005), Xinyu (2010) Huangshi (2015, 2020). During 2000-2005, most
cities showed a decreasing trend, and the eco-efficiency of land use of Ezhou City increased
the most from 0.67 to 1.03; the eco-efficiency of land use of Huanggang City decreased
the most from 1.35 to 0.76. During 2005-2010, most cities showed an increasing trend, and
the eco-efficiency of land use of Jingdezhen City increased the most from 0.57 to 1.01; the
eco-efficiency of land use of Xinyu City decreased the most, from 1.00 to 0.47. From 2010
to 2015, most cities show a decreasing trend, with Wuhan City’s eco-efficiency of land
use increasing the most from 0.68 to 1.00, and Xiaogan City’s eco-efficiency of land use
decreasing the most from 1.00 to 0.56. From 2015 to 2020, most cities show an increasing
trend. The eco-efficiency of land use in Changde City increased the most from 0.95 to
1.71, and the eco-efficiency of land use in Loudi City decreased the most from 0.73 to 0.66.
Among the provincial capital cities, Changsha has a “U-shaped” trend with the highest
mean value; Wuhan has a “V-shaped” trend with the second highest mean value; and
Nanchang has a “W-shaped” trend with the lowest mean value. The provincial capital
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cities have bottlenecks regarding the problem of how to use land resources efficiently
and ecologically, which will be improved to some extent in 2020 under a series of policy
interventions and other influencing factors.

Figure 6. Capital cities’ eco-efficiency of land use.

3.3. Influencing Factors
3.3.1. Policy Summary

China pursues comprehensive and coordinated sustainable development, and ecologi-
cal safety in the Yangtze River basin is of increasing concern. From 2000 to 2005, efficiency
values dropped significantly. The rapid growth of GDP at this stage relied on the high
consumption of resources, resulting in high environmental pollution. At the same time,
all kinds of environmental problems broke out intensively, and environmental protection
became an important trigger point for social conflicts of interest.

In 2002, the report of the 16th National Congress of the Communist Party of China
put forward the goal of building a well-off society in an all-around way, requiring the
continuous enhancement of sustainable development capabilities, the improvement of the
ecological environment, and the significant increase in resource utilization efficiency. In
2017, the 19th National Congress of the Communist Party of China proposed high-quality
economic development and other environmental regulating measures, China’s economy
is progressively transitioning to high-quality intense development. Among these policies,
the ecological compensation policy is an important one, aiming at protecting the ecological
environment and using economic instruments to coordinate the interests of stakeholders
in favor of sustainable development. Ecological compensation will be implemented in
terms of environmental pollution, economic status, and ecosystem values, which are closely
linked to the measurement of eco-efficiency of land use. In the context of China’s ecological
compensation policy, Dong [15] measured the eco-efficiency of land use in small watersheds,
and the results showed that the efficiency gradually improved under the first round of
ecological compensation policy implementation.

3.3.2. Population and Land Use

With the rapid advancement of the urbanization process, urban development has
attracted more and more attention from society. Most local governments equate “urban-
ization” with “urban construction”, placing too much emphasis on the growth of built-up
areas at the expense of urban population clustering and social security implementation
after clustering. From 2000 to 2011, the area of urban built-up areas increased by 76.4%,
which was much higher than the growth rate of the urban population of 50.5%, and “land
urbanization” was significantly faster than “population urbanization”. Continuous ur-
banization has brought about a number of issues, including deteriorating environmental
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quality, a lack of cultivated land, and deterioration of ecosystem processes, which have
altered the structure and operation of regional ecosystems [40]. The results of Shan’s [41]
research show that large population living in cities, increasing urban population density,
and the demand for resources from city dwellers all harm the environment and lower
efficiency levels.

The urban-rural dualist system, economic growth, and land-use regulations are all
connected with land-use concerns in China, which have distinctively Chinese characteristics.
Large-scale land conversion due to rapid urbanization has led to major issues with land
use, including the loss of cultivated land, the abandonment of cultivated land, and the
formation of hollow villages, which pose a threat to China’s resources and food security.
As the carrier of urban social, economic, political, and cultural activities, urban land is the
spatial basis for the realization of the overall function of the city. In the process of urban
development, the fact that the scale of land use has expanded too fast, the extensive use of
construction land, and the continuous erosion of cultivated land and ecological land have
brought serious consequences to urban construction and social and economic development,
making the already scarce land resources suffer. With large-scale enclosures such as “new
districts”, “new towns”, and “development zones”, the contradiction between land-use
supply and demand has become more prominent, the demand for new construction land
is large, and the situation of cultivated land protection is severe. Land-use conditions
can have different effects on the eco-efficiency of different areas [11]. In our study, land
resources were divided into three categories of farming land, construction land, and other
land, and different land-use types were used as input factors to explore the eco-efficiency of
land use. According to Lu [42], cultivated land resources are both a source of agricultural
products and a significant source of carbon emissions, which can have an impact on the
stability of regional ecosystems. This shows that the ecological efficiency of land use is
significantly influenced by land use.

3.3.3. Techniques and Social Factors

In China, energy savings and emission reductions have gained considerable attention
due to environmental pollution and excessive resource consumption caused by rapid eco-
nomic growth and urban expansion. Since entering the 21st century, China’s clean energy
has developed rapidly. The installed capacity of hydropower, solar thermal utilization,
wind power, and solar power generation have successively become the first in the world.
As of the end of 2018, the proportion of hydropower in China’s installed capacity of clean
energy had dropped from 100% in 1949 to 45.52%, while the installed capacity of wind
power had reached 23.81%, the installed capacity of photovoltaic power generation had
reached 22.57%, the installed capacity of nuclear power had reached 5.77%, and the in-
stalled capacity of biomass power generation had reached 2.3%. The development and
expansion of terminal applications have also led to the comprehensive development of
China’s clean energy industry chain. According to Yang [43], higher levels of research and
development can help facilitate innovation in cleaner production methods, accomplish
cleaner production at the source, lower the intensity of resource consumption, and produce
more of the desired output while decreasing more of the undesirable output. This shows
that improvements in land-use eco-efficiency are facilitated by developments in science
and technology.

Environmental pollution is a major challenge to the sustainable development of human
societies and natural ecosystems. Carbon emissions have gained a lot of attention from
people all over the world. Agricultural carbon sources, such as the generation of agricultural
waste, rice cultivation, and the burning of biological tissues, are directly related to land-use
activities [44]. Kuang [13] explores the efficiency of provincial cultivated land use in China,
using carbon emissions as an undesirable output. Dong [15] measures the efficiency of
chemical elements such as lead, total phosphorus, fluoride, and selenium while taking
into account pollution from home sewage and fertilizers. Environmental pollution is an
important factor affecting the eco-efficiency of land use.
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3.4. Slacks Analysis and Optimization Adjustment

The paper calculated the eco-efficiency of land use of the study area and briefly
analyzed the previously reported potential influence factors. Based on that, this paper
summarizes the slacks of the inputs and outputs of the model, to figure out the targeted
constraints to the eco-efficiency of land use of the city groups. The Super-SBM model is
used in the evaluation of the eco-efficiency of land use. When measuring efficiency, the
DEA model is evaluated according to the input and output levels of each decision-making
unit. The efficiency value that is measured is relative efficiency; the level of efficiency in
comparison to the most efficient decision unit [45]. Therefore, cities not found to be DEA
effective may have constraints from inputs, outputs, or both inputs and outputs. Those are
factors that limit efficiency improvement. The variables that constrain efficiency gains in
the data envelopment model are referred to as slacks, including “input redundancy” and
“output insufficient”. “Input redundancy” means the quantity of inputs that can be saved
from the associated resources in order to attain efficiency; “output insufficient” means the
number of outputs that must be increased in order to achieve efficiency; in this article, we
found that the corresponding ecological and economic values can be improved and the
potential for pollutions can be reduced. The input and output factors can be seen in Table 3;
the paper takes the first three letters to give a short-term for the factors in this analysis part.
This part is to analyze the slacks, and make progress on the input and output of each city
group on this basis. Scientific and reasonable optimization is conducive to realizing the
most optimal land use structure.

Table 3. Summary of slacks of input and output factors of the city groups.

PYL (2000) WH (2000) XJY (2000) CZT (2000) PYL (2005) WH (2005) XJY (2005) CZT (2005) PYL (2010) WH (2010)

FAR 17,565.81 12,141.54 356,716.81 115,491.05 143,545.48 203,402.96 647,902.37 111,301.54 282,065.76 24,217.07
CON 7943.45 18,241.37 23,220.75 2165.35 56,315.08 46,447.90 47,722.22 9613.66 54,778.64 38,856.25
ECO 103,009.95 29,752.10 0.00 36,812.74 380,220.94 227,122.64 243,699.72 30,202.43 76,967.56 0.00
INV 52,359.85 193,986.57 533,404.58 427,900.74 45,640.84 588,068.49 0.00 606,673.91 0.00 475,709.54
LAB 52.35 56.67 0.00 151.23 278.75 158.32 15.82 218.71 107.35 150.42
ESV 2,161,125.56 2,076,313.64 1,759,700.52 449,768.73 1,204,294.50 60,810.98 268,904.44 80,595.93 1,286,006.34 91,228.77
WAS 11.47 47.02 0.00 159.21 83.41 6.30 5.65 85.83 27.59 12.34
SUL 135.22 280.56 143.14 466.28 1200.63 112.50 202.52 425.99 313.34 121.93
FIR 63.17 102.72 12.14 38.74 99.71 30.38 29.13 93.83 158.70 281.43
SEC 156.59 0.00 13.70 68.82 177.20 337.17 33.40 70.52 227.72 127.38
TER 105.61 39.46 3.90 187.36 125.19 64.81 0.75 0.69 2335.83 307.32

XJY (2010) CZT (2010) PYL (2015) WH (2015) XJY (2015) CZT (2015) PYL (2020) WH (2020) XJY (2020) CZT (2020)

FAR 266,797.90 26,065.09 479,828.46 366,794.66 671,361.84 129,560.57 21,979.83 100,085.56 336,390.11 49,779.53
CON 33,081.76 13,080.42 58,225.20 48,923.33 15,792.13 0.00 15,167.92 15,542.98 22,773.50 3786.50
ECO 77,843.26 15,710.24 6259.88 0.00 0.00 14,871.61 2758.74 327,514.55 866.28 4449.11
INV 407,062.82 1,875,769.44 5,692,966.97 0.00 0.00 599,826.50 5,822,738.28 6,206,309.79 3,606,866.86 7,238,377.27
LAB 72.94 163.01 201.55 237.70 10.69 121.63 42.35 101.69 2.29 36.40
ESV 640,261.14 499,817.29 374,269.74 62,219.58 303,286.41 359,972.31 2,699,105.25 661,178.44 2,066,729.26 3,921,942.00
WAS 0.73 18.06 25.31 6.58 8.41 5.34 1.68 1.53 0.43 1.55
SUL 5.09 164.73 257.11 101.04 32.77 97.04 17.71 6.08 1.63 8.47
FIR 45.69 125.24 350.45 16.38 0.00 126.49 15.94 379.30 319.07 762.86
SEC 222.26 698.01 314.30 955.92 138.91 1198.40 19.21 1714.26 225.22 3759.41
TER 139.19 408.92 3874.85 2424.61 2212.25 2041.21 13.29 5138.07 294.33 5933.15

3.4.1. Land-Use Structure

In terms of input factors, all urban agglomerations have some degree of redundancy in
most years. In terms of land resources, there is a surplus of agricultural land, construction
land, and other land from 2000 to 2020, which indicates a certain degree of waste in the
use of land resources. However, it differs from one urban agglomeration to another in
different years. For the year 2000, the main land structure problem in the Xiang-Jing-Yi
City Belt is the excess input of agricultural land and construction land. For WH, the main
problem is the excess input of construction land. For CZT, the main problem is the excess
input of agricultural land as well as ecological and other land. For PYL, the main problem
is the excess input of ecological and other land. The four agglomerations all experienced
redundancy in 2005 and 2010. In 2015, there was some redundancy of agricultural land
and construction land in PYL, XJY, and WH, and redundancy of agricultural land and
ecological and other land in CZT. In 2020, there was overcapacity in agricultural land and
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construction land in XJY, and there was input overcapacity in other land in Wuhan City
Circle. The results show that most cities in the middle reaches of the Yangtze River urban
agglomeration have a certain degree of unreasonable land-use structure, with the most
prominent problem of non-intensification of construction land. Among them, 45% of the
cities had different degrees of redundancy of construction land in 2005. The comparative
analysis shows that the redundancy rate of construction land differs among cities, but there
is a certain commonality in the land-use structure adjustment programs between provincial
capital cities and cities in urban areas.

3.4.2. Investment and Labor Force

In terms of fixed asset investment, excluding XJY and PYL in 2005 and WH and XJY in
2015, there is some redundancy in all four urban clusters in other study years. In terms of
employment, most of the urban agglomerations have labor redundancy, excluding XJY in
2000. In 2000, the capital and labor redundancy in CZT is at a high level in comparison.
Within the Chang-Zhu-Tan City Circle, redundancy in fixed asset investment is concen-
trated in Changsha, Zhuzhou, and Loudi, and redundancy in the number of employees
is concentrated in Loudi and Xiangtan. In 2005, WH shows significant redundancy in
investment and labor force, but there are differences among cities. The only cities having
redundancy in fixed asset investment are Wuhan and Tianmen, and the only cities having
redundancy in the labor force are Huanggang and Xianning. In 2010, the redundancy
was mainly concentrated in CZT. In 2015, the redundancy of the labor force was mainly
concentrated in Wuhan City Circle and Poyang Lake city circle; meanwhile, the redun-
dancy of capital investment was mainly concentrated in PYL. In 2020, there is no obvious
redundancy of labor force input in most of the city groups, and the urban development
and ecological efficiency of land use improve to absorb the surplus labor force. However,
there was a large surplus of fixed capital input in that year, which may have been due to
the influence of the high percentage of land finance.

3.4.3. Ecological Output and Environmental Pollution

During the years of the study area, all four urban agglomerations included in the
middle reaches of the Yangtze River urban agglomeration had the problem of insufficient
ESV output, indicating that further land use control is needed to protect the ecological
environment and enhance the service function of the ecosystem. Statistically, most cities in
the study area had serious industrial SO2 emissions and industrial wastewater discharge
pollution in most of the years from 2000 to 2010. After 2015, the pollution was greatly
modified. In terms of output insufficiency analysis, industrial wastewater discharges in
the four metropolitan agglomerations are currently within a reasonable range and have no
discernible effects on the improvement of land-use eco-efficiency.

3.4.4. Industrial Structure

During the study years, the shortage of economic output value was mainly concen-
trated in the tertiary industry. The amount of redundancy of tertiary industry output
differs among the four urban groups. If the optimization results of the DEA model can
be realized, in 2020, the output value of the primary industry can be increased by CNY
147.717 billion, the secondary industry by CNY 571.810 billion, and the tertiary industry
by CNY 113.884 billion, which is equivalent to about 2% of the total GDP of China in that
year. Industrial upgrading is an issue that must be considered to enhance the ecological
efficiency of land use.

4. Discussion

The paper here proposed some suggestions and recommendations for land-use man-
agement based on the study results above.

The paper discussed the changes in land-use eco-efficiency during the years 2000 to
2020; we summarize the land-use-cover change, industrial structure change, pollution, etc.,
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to analyze the reasons. These results point us in the direction of improvement in the green
and efficient use of land resources.

Sustainable development should be emphasized throughout the entire decision-
making procedure [46,47]. The government should take activities to deal with the conflicts
between land use and the ecological environment [30]. It is an important guarantee for
economic development and security of food rations through the combination of land use
and land cultivation, the utilization of cultivated land guaranteeing the current production.

The improvement of eco-efficiency of land use should be set as one of the core factors
of local government performance evaluation. The improvement of urban eco-efficiency in
China depends largely on the further reforming of performance evaluation mechanisms [48].
During the process, the eco-efficiency of land use needs to be improved according to local
conditions, and the four city groups in the MRYR have their own characteristics. Cities
should be based on their own functional positioning, economic vitality, and resource
endowments determining their land use layout [49,50], fully tapping the potential of all
kinds of land, to avoid blindly expanding the city. At the same time, the thresholds should
be used to limit high energy consumption and high pollution.

According to the land use and industrial layout of different cities, the division of labor
and cooperation will be carried out to advance industrial upgrading. Industrial upgrading
is an important way to improve the level of eco-efficiency, which is a key factor affecting
energy consumption intensity and pollution emission intensity [51].

This study has some deficiencies, first of all, there is no temporal continuity in the
land-use data, so the efficiency is measured intermittently. As a result, the calculated
efficiency value cannot reflect the trend of change and spatial differentiation patterns,
and the inflection point of efficiency values cannot be determined. Secondly, the idea of
eco-efficiency only makes sense when viewed through the lens of sustainable development.
Meanwhile, this article is based on the city level, which cannot take into account the
differences within the region. Further study can be conducted at the county level to discuss
the efficiency of land-use structures to improve the present practical guidance. Third, as
the number of decision-making units increases, the system of input-output indicators could
also be appropriately expanded to allow for more perspectives to consider the benefits of
land use and comprehensively measure the structure of land-use efficiency. Last, but not
least, a comprehensive comparison of the input and output status of the land should be
made on the basis of efficiency. It is more appropriate to evaluate the effectiveness of land
use by considering the negative impact of the land-use process on the environment.

5. Conclusions

China’s high-quality development policy has required high-efficiency of land use,
and it is of great significance to ensure green development while improving land-use
efficiency. Therefore, the concept of achieving eco-efficiency should be widely used in land-
use management. The paper constructed an evaluation system of land-use eco-efficiency of
the urban agglomeration in MPYR using the Super-SBM model based on previous studies
of the urban-land-use efficiency of various regions of China. After the analysis of the results
of the eco-efficiency of the four city groups of the MRYR, the paper briefly summarized
the changes in policy, population, land use, techniques, and social factors during the study
period and how they possibly contribute to the evaluation results. At last, the paper
analyzed the slacks of the input and output factors.

During the years 2000 to 2020, the eco-efficiency values are generally in a relatively
upper-middle average. There exists an upside potential of improving the eco-efficiency in
many cities. Each city’s efficiency varies and is heterogeneous, yet there is a general trend
of falling and then rising. Most of the high-efficiency scores occur between 2000 and 2020.

The variance between the four city groups of the MRYR urban agglomeration changed
every year. In 2000, the highest average efficiency value is XJY, and the lowest is WH; In
2005, the highest is WH, and the lowest is PYL Circle. PYL and XJY experienced two ups
and downs from 2000 to 2020 as they move along a “W-shaped” curve. WH and CZT show
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“U-shaped” curves, with higher land use eco-efficiency in 2000 and 2020, and lower land
use eco-efficiency in 2005, 2010, and 2015.

Not all capital cities or cities with higher GDP per capita had higher eco-efficiency in
this study. Cities such as Nanchang, Changsha, and Wuhan, as the capital of their provinces,
are also the economic center of the central region, with good location conditions and a
large proportion of construction land. However, their eco-efficiency turns out to be at an
average level for some years because of their environmental problems and extensive land-
use pattern. Although some of the relatively developed cities have the highest pollution,
their economic output has an absolute advantage, making their eco-efficiency still reach
the optimal level. Some economically underdeveloped areas also showed high land-use
levels, such as Pingxiang and Yiyang, because of their high level of green development.
Some cities are in the middle level of both economic and the eco-efficiency, which may be
because the advantages of the urban economy in this study are not very prominent, but in
the process of development, extensive land use has produced higher pollution emissions,
and undesirable environmental output has pulled down the overall land-use level.

In this paper, the main ecological protection policies in the research period are sorted
out and the influencing factors of the policies are analyzed qualitatively. Considering
China’s national conditions, the promulgation and implementation of policies have a
certain time consistent with the changes in the eco-efficiency of urban agglomerations. In
addition to government factors, population, land-use patterns, technical progress, etc., may
have significant effects on efficiency values.

The slacks analysis can be used to optimize the land-use structure and industrial
structure. The optimization can be conducted from the four aspects of land use structure,
investment and labor, ESV, and undesirable environmental output and industry structures.
There are certain differences in the direction and magnitude of the adjustment.
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Abstract: Rice-aquatic animal integrated systems can alleviate food and environmental insecurity.
Understanding how this practice is adopted by farmers is significant for promoting the development
of the agricultural industry. Given the information inadequacy and information frictions in agri-
cultural society in China, farmers are susceptible to the behaviors of their neighbors through social
interaction. This paper defines neighboring groups that are both spatially and socially connected to
identify whether neighbors influence farmers’ adoption of rice–crayfish integrated systems using
a sample in the lower and middle reaches of the Yangtze River in China. The findings reveal that
for every one-unit increase in neighbors’ adoption behavior, the probability of farmers’ adoption
increases by 0.367 units. Therefore, our results may have great value for policymakers seeking to
take advantage of the neighborhood effect to complement formal extension systems and promote the
developments of China’s ecological agriculture.

Keywords: neighborhood effect; rice–crayfish integrated system; technology adoption

1. Introduction

In recent years, rice–aquatic animal integrated systems (i.e., co-farming with aquatic
animals such as crayfish, crab, soft-shelled turtle, etc.) have gained increasing attention
for their potential for alleviating food and environmental insecurity. Rice–aquatic animal
integrated systems can bring about high yields and low environmental impacts and have
been widely explored through field experiments [1,2] and household surveys [3]. Among
them, rice–crayfish integrated systems have experienced explosive growth in China since
2016 and are considered to be a valid approach for ensuring the supply of food and
aquatic products, increasing farmers’ incomes and promoting rural revitalization [4,5].
Rice–crayfish integrated systems allow for the efficient internal recycling of crayfish and
rice. In this practice, on the one hand, the rice field provides a habitat for crayfish, and
the straw in the field creates a heat preservation effect which facilitates the hatching of
crayfish seedlings. Meanwhile, rice straw corrosion facilitates the growth of plankton in
the water, which are regarded as nourishment for crayfish and effectively address the straw
burning issue in China. On the other hand, integrated farming can take advantage of
agricultural byproducts to decrease dependence on agroindustry inputs such as fertilizers
and pesticides. To be more specific, crayfish digest and utilize rice straw and can eliminate
the presence of pests in the straw. The excreta of crayfish also supply organic fertilizer for
rice growth, and the crayfish in paddy fields constrain the use of pesticides and fertilizers
due to their being sensitive to chemical inputs. Thus, integrated systems are regarded as an
ecological agricultural practice.

According to the statistical data, rice–crayfish integrated systems constitute 52.95%
of the total land areas used for rice–fish integrated systems. Additionally, 83.54% of the
total production of crayfish is through rice–crayfish integrated systems [6]. The increased
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use of this type of integrated system can be partly attributed to political subsidies, field
demonstrations and technical instructions from local extension agents. However, the
implementation of rice–crayfish integrated systems involves intensive knowledge and
requires deep insight into recycling and execution to ensure high crayfish and rice yields
and a low environmental impact. Thus, farmers are not able to master the core techniques
through simple learning and typical demonstration visits. Moreover, integrated systems
require large investments (e.g., proprietary equipment) and involve increased flood and
drought associated risks [7]. Clarifying the micro-mechanisms of farmers’ adoption of
rice–crayfish integrated systems is significant for promoting the development of ecological
agricultural practices in general.

In Chinese culture, which emphasizes collectivism and “acquaintance”, neighbors are
considered to be one essential driver of family decision making [8]. Given the information
inadequacy in agricultural society in China and the existing information frictions between
farmers and extension agents, farmers share farming information and techniques with
their neighbors and assist each other with farm work. Through these frequent and close
interactions, farmers are influenced by the behaviors of their neighbors [9], which forms a
neighborhood effect. Studies have demonstrated that farmers in proximity to each other
tend to have similar adoption behavior toward new technologies to reduce learning costs
through information sharing [10]. Even though the role of the neighborhood effect is
acknowledged in the literature, many studies focus on geographical criteria [11,12] (i.e.,
distance and location) to define neighboring units and have not specified the strength of
interactions between neighboring units. The presence of the neighborhood effect usually
amplifies this effect, which implies that a multiplier effect exists through social interaction
that is strongly conditioned by the geographic distance between individuals [13]. Moreover,
many studies have examined the neighborhood effect on simple technology adoption (e.g.,
biogas adoption [14] and water conservation [15]).

Our study expands the literature in two aspects. First, we define neighboring groups at
the village level using samples of small communities. Individual farmers and their neighbors
are both spatially and socially connected, which indicates the existence of real— and thus more
relevant—social interactions. Usually, community-based definitions of neighbors or peers are
too broad and may include irrelevant reference individuals. However, this concern may not
appear in our village-based sample for the following reasons. Families in one village usually
have lived there for generations and the farmers are familiar with each other, which maintains
strong social relationships between farming households [16]. The natural and exogenous
characteristics of rural villages suggest that the definition of neighbors in our sample includes
both friends and non-friend acquaintances and excludes strangers. Such village-based neigh-
boring groups are not self-selected networks; thus, their exogeneity is unlikely to interfere
with our desired outcome. Second, little empirical research has concentrated on exploring
the relationship between the neighborhood effect and farmers’ integrated farming system
adoption. Our paper expands the existing literature by providing direct evidence of the
neighborhood effect in integrated farming system adoption.

In this article, we consider both geographic and socioeconomic criteria when defining the
neighbor group to examine the presence of the neighborhood effect in farmers’ rice–crayfish
integrated system adoption behavior. Understanding how new practices are disseminated
through these interactions is helpful for developing agricultural policies that target specific
agricultural areas or communities or even farmers where certain technologies should be
introduced to achieve the desired impact.

The reminder of this paper is structured as follows. Section 2 is a review of the
literature. Section 3 describes the data and empirical methods. In Section 4, we present the
results and a discussion. Section 5 concludes.

2. Literature Review

Previous studies have identified many factors of farmers’ adoption behavior and
indicated that subsidies, agricultural extension services, field schools, and field demon-
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strations can improve farmers’ adoption rates [17,18]. Studies have also suggested that
household characteristics, such as age, education, farm size, and income level as well as
perception of technology adoption, environmental concern, behavioral goals, and attitude
have important roles [19–23]. The costs and benefits of the technology also affect farmers’
adoption decisions [24,25]. Furthermore, the nudge theory, or “altering people’s behavior in
a predictable way without forbidding any options or significantly changing their economic
incentives,” has been widely discussed as a factor in farmers’ adoption behavior [26,27].
In addition to these factors, economists and policymakers have argued that individual
behaviors vary with the behavior of the group through mechanisms other than economic
aspects [15,28,29], namely, the neighborhood effect.

Many studies have confirmed the presence of the neighborhood effect in farmers’
decision-making processes in settings ranging from rural housing demand [30], rural
labor mobility [31], commercial health insurance purchasing [32], and response to climate
change [33]. Exploring the impact that neighbors or social interactions have on individual
farmers’ technology adoption have also been widely explored. One strand of the literature
focuses on the mechanism of the neighborhood effect in terms of information sharing and
social norms. Xiong and Payne [34] investigated how peer effects occur and found that
family members sharing experimental resources and production externalities between
contiguous plots of land positively impacts farmers’ Artemisia slengensis (AS) adoption.
Di Falco and Doku [35] argued that the peer effect occurs through information diffusion
by observing peer farmers’ choices, which encourages farmers to adopt multiple climate
adaption strategies at the household level. Tran-Nam and Tiet [36] considered organic
farming neighbors or peers as a source of information, knowledge, and motivation to
help farmers transition to organic farming. Crudeli and Mancinelli [37] focused on peer
approval and examined how the social norm of being a “good farmer” influences farmers’
innovation adoption.

Another strand of research has concentrated on identifying the presence of the neigh-
borhood effect. Many studies have identified the spatial or geographic neighboring effect.
Sampson and Perry [11] take spatial bands around each water right as a peer group and
find that spatial neighboring effects in the adoption of LEPA (i.e., low-energy precise appli-
cation) diminishes with distance. Bollinger and Burkhardt [15] found peer effects in water
conservation. Their identification strategy relies on quasi-experimental variation from
consumer migration in which new households move into peer groups and make water
consumption and landscape changes. Kolady and Zhang [38] use location-specific survey
data to define farmers’ peer group through physical proximity, and the results show that
spatially mediated peer effects are important in the adoption of conservation tillage and
diverse crop rotation. Skevas and Skevas [20] discovered that peer effects arise from both
nearby farmers’ adoption of unmanned aerial vehicles and the spatial spillover of other
farmers’ characteristics.

More research has identified the neighborhood effect through social interactions
between individuals and their neighboring group. Gao and Grebitus [39] reveal that
hog farmers’ genomics adoption time frames are positively correlated with other closely
related hog farmers’ time frames. Ward and Pede [40] define same-village membership
and geographical distance as spatial network systems and demonstrate that the distance
between hybrid rice adopters affects farmers’ adoption of hybrid rice.

3. Data and Methods

3.1. Data

The data of this study are from a survey of rice farmers we conducted in the provinces of
Hubei, Hunan, and Anhui in the middle and lower reaches of the Yangtze River of China in
July 2019. These three provinces are the main originating location of rice–crayfish integrated
systems in China. This region is characterized as a subtropical monsoon with a humid climate
and an average annual temperature ranging between 14 ◦C and 18 ◦C and a forest-free
period ranging between 210 and 270 days. The annual average precipitation is approximately
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1000–1500 mm. These three provinces were chosen as the study area for the following reasons.
First, they are major producers of rice and aquaculture products—especially crayfish—in
China due to their climate conditions and the rich water resources in the middle and lower
Yangtze Plain. Rice–crayfish integrated systems were first developed in Jianli, Hubei province,
and over the years, this cultivation system has been adopted by a growing number of farmers
in this region. Second, local governments in this area recognize the environmental and
economic benefits of such systems and thus promote them using a wide range of policy
instruments, from offering direct subsidies to farmers who adopt them to providing technical
assistance through agricultural extension services. As a result, it is estimated that these three
provinces have a great amount of farming areas that use rice–crayfish integrated systems,
among which Hubei province ranks first [6]. A map of the study area is shown in Figure 1.

Figure 1. Location of the study area.

A multistage stratified sampling procedure was used to choose a representative sam-
ple of rice farming households in the region. In the first stage, three counties within each
province were chosen to account for the distribution of land used for rice–crayfish inte-
grated systems and the general level of economic development within these provinces. In
the second stage, around 1000 rice farming households were randomly chosen from villages
in each county. Most farming families have lived in their village for generations and are
within walking distance of each other. We used a structured questionnaire to obtain farmers’
information. The questionnaire consisted of six parts: household and farm characteristics
(e.g., age, education, farm size, labor, and assets); sources of new technology; crop planting
methods (e.g., the adoption of rice–crayfish integrated systems) and related inputs and
outputs; farmers’ utilization of agricultural socialization services (e.g., agricultural mech-
anization services); farmers’ perception of rice–crayfish integrated systems; and village
characteristics (e.g., infrastructure). We conducted face-to-face interviews with farmers
through trained qualified postgraduates majoring in agricultural economic management
in our research group based on a survey questionnaire. Since this study analyzes the
influence of group behaviors, we deleted samples (≤3) with fewer than three neighbors.
After dropping observations with missing information for key variables, we obtained a
final sample of 980 households, 695 of which had adopted rice–crayfish integrated systems
to some degree.
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3.2. Methodology and Variables

There are several situations that may have led us to mix other effects with the neigh-
borhood effect when we observed similar behavioral outcomes between individual farmers
and their neighboring group. Therefore, measuring the neighborhood effect presents sev-
eral challenges [13,40–43] which include: (1) the contextual effect, which reflects the fact
that neighbors’ exogenous characteristics will directly affect individuals’ behavior (i.e., a
farmer’s propensity to adopt will be affected by the mean age within their neighboring
group); (2) the correlation effect, which indicates that individuals behave similarly in one
group with which they tend to have similar characteristics or are confronted with a common
set of unobserved characteristics (i.e., farmers may be affected by regional policies, such
as the same agricultural subsidy policy, to have the same behaviors); (3) the self-selection
problem, which implies that individuals select neighbors based on their preferences and
backgrounds and have similar behaviors simply resulting from similar income levels or
proximity; and (4) the reflection problem, by which individuals and their neighboring group
make decisions or behave simultaneously. As a result, individuals forming a unilateral
causal relationship with their neighboring group will cause an endogeneity problem.

To overcome the above problems, we applied a set of empirical strategies. We collected
samples of 980 farming households in three major provinces in the lower and middle
reaches of the Yangtze River in China in 2019, and formed plausible empirical neighbor
groups given the small community nature of rural villages. In the context of our research
setting, there are typically strong socio-economic ties in Chinese culture and thus we define
farmers living in the same administrative village as a neighboring group. The reason
for this is that choosing a village as a dataset contributes to solving the self-selection
issue to some extent [30]. On the one hand, the household registration system of China
and restrictions on rural–urban mobility hinders migration to villages. On the other
hand, the formation of a village often spans generations [43]. Households settled in
rural areas are unlikely to choose their neighbors through migration [44,45]. Moreover,
this paper took neighboring farmers’ background characteristics, village characteristics,
and provincial dummy variables into account to limit the importance of contextual and
correlation effects [43]. Last, to estimate the effect of neighboring farmers’ adoption, we
applied the instrumental variable method (IVs) to overcome the simultaneity issue and
identify two exogenous variables as instrumental variables, “Village diversity in surnames”
and “The proportion of paddy field area in the village”, to improve our identification of the
neighborhood effect. After that, we conducted several robustness checks to confirm the
presence of the neighborhood effect.

Since the explained variable, farmers’ adoption behavior, is binary, we chose the probit
model as a benchmark model [45,46]. The basic formula is specified as follows:

Probit (Adoptionc
i = 1) = ϕ(β0 + β1NAdoptionc

−i + β2Xi + β3Yc
−i + β4Zi + ProvinceDummy. (1)

In this formula, Adoptionc
i is an indicator of the rice–crayfish integrated system adop-

tion of farmer i in village c (1 = yes; 0 = no). These data stem from a question in the
questionnaire, namely, “Does your family adopt a rice–crayfish integrated system?”

The key explanatory variable is NAdoptionc
−i (i.e., the neighborhood effect), which

indicates the average adoption within a neighboring group, except for farmer i. The size
and significance of the coefficient on β1 are of particular interest to us. To ensure the
accuracy of the results, the scope of “neighborhood” must be cautiously defined. Thus, we
calculated the neighborhood effect using the following equation:

NAdoptionc
−i =

∑n
1 Adoptionc

i − Adoptionc
i

n − 1
(2)

Equation (2) denotes neighboring farmers’ behavior in this paper. Neighbors’ influence
should exclude the effects of the focal farmer; thus, farmer i is not included. c is the number
of sampled farmers in the village.
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Xi is a vector of exogenous characteristics of the sampled farming household, including
the age of the head of the household, education, risk preference, job status, perception of
the economic benefits of rice–crayfish integrated systems, agricultural extension training
attendance, scale of operations, agricultural labors, investment, cooperation membership
status, proportion of agricultural income to total household income, and the furthest
distance between two plots.

Yc
−i denotes a vector of neighbors’ characteristic variables. To minimize the contextual

effect, we controlled neighbors’ head of household age, education, job status and cooperation
membership status in the basic regression. The calculations followed Equation (2) (i.e., the
average value within the neighboring group, but not the focal farmer in the same village).

Two measures were taken to suppress the correlation effect issue: conducting a
province-varying fixed effects model and controlling village-based variables (Zi), including
the proportion of the effective irrigated area in the village and the effective traffic rate of
the village’s road. The details of the variables are presented in Table 1.

Table 1. Definition of variables and summary statistics.

Variable
Category

Variables Variables Description Mean SD

Dependent
variable

Farmers’ adoption
behavior

Whether your family adopted rice–crayfish integrated
systems in 2018? Dummy (1 = yes; 0 = no) 0.710 0.454

Explanatory
variable Neighborhood effect Average adoption behavior in neighbors’ household.

(range: 0–1) 0.292 0.289

Instrumental
variables

Village diversity in
surnames

Whether your village is a miscellaneous surname village?
(1 = yes; 0 = no) 0.699 0.459

Proportion of paddy
field area

The proportion of paddy field area to cultivated land in the
village. (range: 0–1) 0.848 0.141

Household
characteristics

Age Household head age. Number 54.791 9.261

Education Education of the household head. Number 7.276 3.204

Risk preference 1 What’s your risk preference? (3 = high risk preference;
2 = neutral risk preference; 1 = low risk preference) 1.63 0.765

Job status Whether you engaged in part-time job? (1 = yes; 0 = no) 0.33 0.47

Perception on
economic benefits

Whether you think rice–crayfish integrated systems are
highly profitable? (1 = yes; 0 = no) 0.805 0.491

Perception on
population

Rice–crayfish integrated systems are popular in your village?
(5 = strongly agree; 4 = agree; 3 = not sure; 2 = disagree;

1 = strongly disagree)
3.609 0.897

Information access
You can easily get information on rice–crayfish integrated

system. (5 = strongly agree; 4 = agree; 3 = not sure;
2 = disagree; 1 = strongly disagree)

3.348 1.06

Agricultural extension
training attendance

You have attended agricultural extension training many
times in 2018? (5 = frequently; 4 = often; 3 = some time;

2 = rarely; 1 = none)
3.417 1.045

Scale of operations How many farmlands you have operated in 2019. (mu) 91.655 202.729

Agricultural labors How many agricultural labors in your family? Number 2.028 0.68

Own capital
investment proportion

What’s the proportion of own possessed capital investment
to the whole agricultural investment? (%) 90.099 20.949

Cooperation
membership status

Is your family any member of the village cooperation?
(1 = yes; 0 = no) 0.191 0.393

Proportion of
agricultural income

What’s the proportion of agricultural income to total
household income? (%) 0.693 0.272

Plots distance How far away is your furthest two plots? (kilometers) 0.653 1.895
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Table 1. Cont.

Variable
Category

Variables Variables Description Mean SD

Neighborhood
characteristics

g_age The average age of household heads within neighboring
group. Number 54.791 4.421

g_education The average education of household heads within
neighboring group. Number 7.276 1.48

g_job status The average part-time job of household heads within
neighboring group. Number 0.33 0.167

g_corperation
membership status

The average member of corporation of household heads
within neighboring group. Number 0.191 0.189

Village
characteristics

Agents How many agents who buy rice and crayfish within the
village? Number 7.297 8.038

Effective irrigated area What’s the proportion of effective irrigated area
in villages? (%) 94.548 11.708

Mechanical plough
road

What’s the effective traffic rate of the village mechanical
plough road? (%) 90.536 17.835

Region variables

Anhui Household from Anhui province. (1 = yes; 0 = no) 0.33 0.47

Hunan Household from Hunan province. (1 = yes; 0 = no) 0.335 0.472

Hubei Household from Hubei province. (1 = yes; 0 = no) 0.334 0.472
1 The measurement method of ‘risk preference’ is by asking famers the following question. If there are two
varieties of rice (Seed A and Seed B), their yields may vary in the following three scenarios, what would you
choose? (1 jin = 0.5 kg; 1 mu = 666 m2) 1© A.900–1100 jin/ mu, B.800–1300 jin/ mu; 2© A.900–1100 jin/ mu,
B.700–1600 jin/ mu; 3© A.900–1100 jin/ mu, B.600–1800 jin/ mu. If the farmer chooses A in the three scenarios,
we define them as low-risk preference; if the farmer chooses B in the three scenarios, we define them as high-risk
preference. Otherwise, we define them as neutral risk preference. SD denotes standard deviation; One mu is
about 0.0667 hm2.

As mentioned above, endogenous threats that arise from simultaneity should be
controlled [45–47]. We applied the IV method to control the reflection problem [29]. We
followed Gaviria and Raphael [48], Li and Zang [45] and Ling and Zhang [49] and select
two exogenous natural characteristic variables as instruments. It must be clarified that the
IV variables were not related to the individual adoption probability of the focal farmer
because these two variables were considered exogenous natural characteristics and did not
significantly affect the adoption behavior of individual farmers. Second, they were related
to the mean adoption behavior of the endogenous neighborhood farming group.

4. Empirical Results and Discussion

4.1. Baseline Results of the Neighborhood Effect on Farmers’ Adoption Behavior

In this study, we began by identifying the neighborhood effect in farmers’ rice–crayfish
integrated system adoption behavior. The empirical results are shown in Table 2, which
reports the probit model, fixed effect (FE), and instrumental variable (IV) estimates in Column
1, Column 3, and Column 5, respectively. To compare the coefficients, all results are reported
as the marginal effect of the variables in all tables, and all specifications control the impact of
household characteristics, neighboring farmers’ characteristics, and village characteristics.

First, in Models 1 and 2, it can be seen that the coefficients on the neighborhood effect
are both positive and significant at the 1% level, as expected. The size and significance of
the coefficients do not change much (i.e., from 0.426 to 0.379), which indicates that farmers’
probability of adoption increases by 0.379 percentage points for each percentage point
increase in the neighbors’ adoption rate. The results of Models 1 and 2 preliminarily confirm
that the average integrated system adoption behavior within neighboring groups have a
significantly positive influence on farmers’ adoption behavior. Thus, the neighborhood
effect exists in farmers’ rice–crayfish integrated systems adoption.
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Our focused specification is Model 3 (i.e., the IV method). As Manski [28] points
out, individuals and their reference group can affect each other simultaneously, which can
cause an endogeneity problem. We applied the instrumental variable method to solve this
problem. For instruments, we consider whether the village is diverse in surnames and the
proportion of paddy field area to cultivated land. The maximum likelihood estimation
(MLE) is used to acquire the marginal effect of the IV probit model. The results are shown
in Model 3 in Table 2.

Table 2. Neighborhood effect in farmers’ adoption behavior.

Panel A

Variables
Model 1: Probit Model 2: FE Model 3: IV Probit

Coef. P Coef. P Coef. P

Neighborhood adoption behavior (NE) 0.426 *** (0.034) 0.379 *** (0.042) 0.367 *** (0.124)
Age −0.003 *** (0.001) −0.003 *** (0.001) −0.003 ** (0.001)
Educ −0.005 * (0.003) −0.005 * (0.003) −0.005 * (0.003)

Risk preference 0.020 (0.013) 0.020 (0.013) 0.020 (0.013)
Job status −0.050 *** (0.019) −0.049 *** (0.019) −0.050 ** (0.020)

Perception on economic benefits 0.043 ** (0.019) 0.039 ** (0.019) 0.037 * (0.020)
Perception on population 0.030 *** (0.010) 0.027 *** (0.010) 0.027 ** (0.012)

Information access 0.075 *** (0.011) 0.077 *** (0.011) 0.077 *** (0.015)
Extension training attendance −0.011 (0.009) −0.012 (0.009) −0.012 (0.010)

Scale of operations −0.000 (0.000) −0.000 (0.000) −0.000 (0.000)
Agricultural labors −0.009 (0.013) −0.010 (0.013) −0.010 (0.014)

Investment proportion −0.002 *** (0.001) −0.002 *** (0.001) −0.002 ** (0.001)
Cooperation membership status 0.076 *** (0.029) 0.072 ** (0.029) 0.072 *** (0.027)

Proportion of agricultural income −0.084 ** (0.037) −0.089 ** (0.037) −0.089 ** (0.042)
Plots distance −0.008 ** (0.003) −0.007 ** (0.003) −0.008 (0.005)

g_age 0.003 (0.003) 0.001 (0.003) 0.001 (0.006)
g_educ 0.005 (0.008) 0.003 (0.009) 0.003 (0.009)

g_Job status 0.063 (0.053) 0.051 (0.053) 0.047 (0.062)
g_ corperation Membership status −0.103 * (0.053) −0.097 * (0.053) −0.096 (0.065)

Agents 0.004 ** (0.001) 0.004 *** (0.002) 0.004 (0.003)
Effective_irrigated_area −0.000 (0.001) −0.000 (0.001) 0.000 (0.001)

Mechanical_plough_road 0.001 (0.001) 0.001 (0.001) 0.001 (0.001)
Hubei 0.056 ** (0.027) 0.052 (0.044)
Anhui 0.002 (0.026) −0.006 (0.027)

Panel B: First-stage estimation results
Village diversity in surnames −0.011 *** (0.001)
Proportion of paddy field area 0.027 *** (0.004)

First-stage F value—Weak identification test 61.23
DWH p-Value—Endogeneity test 0.090

Amemiya-Lee-Newey minimum chi-sq
statistic p-Value—Over-identification test 0.632

***, **, * denotes p < 0.01, p < 0.05, and p < 0.1, respectively. The ‘Coef.’ presented in Panel A is the marginal effects
(dy/dx) of the variables, taking Hunan as the reference group.

Column 5 in Table 2 presents the IV probit estimates. The results suggest that as
neighboring groups’ adoption improves by one percentage point, and farmers’ likelihood of
rice–crayfish integrated systems adoption increases by 0.367 percentage points. Compared
to Models 1 and 2, the coefficient on neighborhood effect has a noticeable decrease. This
result also proved that the probit and FE models both overestimate the neighborhood
effect. Taken together, this IV probit estimation supports the hypothesis that changes in
neighbors’ adoption behaviors will in turn affect the focal farmer’s adoption behavior. One
possible explanation for this finding is that focal farmers presume that their neighbors
possess superior information. It is also possible that certain farmers are afraid to become
“special” under the cultural background of the “Doctrine of the Mean” in China, so they
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tend to behave like their neighbors. This finding is in accordance with those of Di Falco
and Doku [35] and Tran-Nam and Tiet [36].

The first-stage estimation results in Panel B indicate that the first IV (“Village diversity in
surnames”) negatively affects neighbors’ adoption behavior, and “The proportion of paddy
field area to cultivated land in the village” positively affects it. The degree of communication
and trust between the farming households in mixed villages is relatively low compared to
that in non-mixed villages, and the mutual influence between the farmers is relatively small,
which may decrease the adoption effect. Rice–crayfish integrated systems are suitable for
production in flat and water-rich fields, and good natural conditions may increase farmers’
output and revenue. Therefore, the higher the proportion of paddy field area in the village,
the higher the possibility that farmers in the village will adopt integrated systems.

In addition, we empirically examined the validity of the instrumental variables using
a series of tests. To exclude the assumption of weak instrumental variables, we used the
two-step method (2SLS) to report the first-stage estimates. As shown in Panel B in Table 2,
the F-statistic is 61.23 with a p-value of less than 1% (0.000), which implies that the weak-
instrument issue should not be a concern in our estimates. The Amemiya–Lee–Newey
minimum p-value of the over-identification test is 0.632, which is higher than 0.1. This result
indicates that the joint null hypothesis should not be rejected, and the over-identification
restriction is satisfied. Additionally, the p-value of the Durbin-Wu-Hausman test is 0.090,
which rejects the null hypothesis. This result proves that variable of the neighborhood
effect (NE) is endogenous, which implies the existence of the endogeneity problem. Thus,
the chosen variables are valid as the instrumentals for the neighborhood effect.

Moreover, many control variables have a significant effect on farmers’ adoption behav-
ior (e.g., ‘information access’ is an indicator to measure a farmer’s openness). Farmers who
have more information access are more likely to obtain pro-adoption information and be
open-minded to produce market-oriented products. This conclusion has been suggested in
previous studies, which find that accesses to extension services and peers predict technol-
ogy adoption [50,51]. The “perception of economic benefits” and “perception of population”
items reflect farmers’ perception and judgement of rice–crayfish integrated systems, both of
which result in a higher probability of adoption behavior. Investment proportion indicates
the farmer’s adoption capacity; the higher the proportion of their own capital investment
to the whole agricultural investment, the less likely they are to adopt. A possible reason for
this finding is that their self-owned funds are relatively sufficient, thus indicating that their
economic situation is good. This proves that the original allocation efficiency of farmers’
funds, land, and labor is high. Therefore, farmers are unwilling to adopt time-consuming
and laborious practices to increase their household income. Moreover, there is a positive
correlation relation between cooperation membership and agents, as the cooperation may
disseminate more technology information and supply related inputs to encourage adoption.
Agents can relieve farmers’ concerns about product distribution after adoption. This result
has important implications that related agricultural administrative departments and exten-
sion agents should emphasize to expand the channels of rice–crayfish integrated system
knowledge dissemination.

4.2. Robustness Checks

In this section, we performed several robustness tests to further validate the stability
of the results. The results are presented in Table 3. These robustness checks have confirmed
the presence of the neighborhood effect on farmers’ adoption behavior.

In Column 1, we deleted farmer samples with fewer than five neighbors to eliminate
the issues that farmers interact with alternative social groups or have less opportunity
to interact with neighboring groups; that is, farmers with fewer than five neighbors may
choose other groups to acquire agricultural information or are even unlikely to get a chance
to form a community with others. After excluding the samples, the coefficient on key
explanatory variable ‘neighborhood effect’ increased (from 0.379 to 0.383) and remained
significantly positive.
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Another concern was that we took the average adoption rate within neighboring
groups in a village as the proxy variable to define the ‘neighborhood effect’. Considering
rice–crayfish integrated systems are capital-intensive, farmers’ adoption behavior may be
affected by neighbors having the same levels of income, instead of by the mean within
neighboring group [49]. Thus, we eliminated the sample farmers in the top 30% of high-
income earners in the village. The result in Column 2 reveals that the neighborhood effect
was still significant.

Table 3. Robustness checks of the neighborhood effect on farmers’ adoption behavior.

Robustness Checks 1 Robustness Checks 2 Robustness Checks 4 Robustness Checks 5

coef.
(p-Value)

coef.
(p-Value)

coef.
(p-Value)

coef.
(p-Value)

Neighborhood effect 0.383 ***
(0.122)

0.413 ***
(0.128)

0.803 ***
(0.148)

0.372 ***
(0.100)

Instrumental variables YES YES YES YES
Household

characteristics Controlled Controlled Controlled Controlled

Neighborhood
characteristics Controlled Controlled Controlled Controlled

Village characteristics Controlled Controlled Controlled Controlled
Provincial dummies Controlled Controlled Controlled Controlled

Observations 930 727 980 980

*** denotes p < 0.01.

Then, we modified the estimation model. In Column 3 of Table 3, we show the
results of the ordinary least squares (OLS) estimation. The neighborhood effect remained
significantly positive, which further validated the robustness of our findings.

As a final check, we followed other studies [52] in introducing external group informa-
tion, which is independent from neighborhood farming groups, to construct IV variables.
Then, we selected the mean adoption behavior of neighboring farmers’ relatives and friends
as IV variables (The validity of the instrumental variable is verified). The average number
of adoptions within relatives and friends of neighboring farmers will have an impact on
neighboring farmers’ adoption behavior, but it will not affect focal farmers, which meets
the requirements of instrumental variables. Furthermore, the neighbors’ relatives and
friends do not live in the same village, which further suppresses the association effect. The
estimations in Column 5 of Table 3 demonstrate that the neighborhood effect is significant
and thus the results are confirmed.

5. Conclusions

Rice–crayfish integrated systems create both economic and ecological benefits. To
study how this practice experienced explosive growth in China is significant for promoting
the development of ecological agricultural practices in general. Farmers are subject to
information inadequacies information frictions; thus, they are susceptible to their neighbors’
behavior via social interaction. In this paper, we identify the role of the neighborhood effect
on farmers’ adoption behavior using 980 rural households in the middle reaches of the
Yangtze River in China. To solve the potential identification problem, this paper adopts a
set of empirical strategies. To control the self-selection problem, we use rural household
survey data to define neighboring groups that are both spatially and socially connected.
We control a series of neighboring farmers’ characteristics and village characteristics to
eliminate the contextual and correlation effects. We apply the instrumental variables (IV)
method to address the simultaneity problem. The empirical results reveal that a one-unit
increase in neighbors’ adoption behavior increases the adoption probability of individual
farmers by 0.367 units, which provides evidence of the significance of the neighborhood

126



Int. J. Environ. Res. Public Health 2023, 20, 4399

effect in farmers’ rice–crayfish integrated system adoption decisions. The four robustness
tests also confirm the presence of the neighborhood effect in farmers’ adoption behavior.

Based on the above findings, this paper improves the understanding of farmers’
adoption in ecological agricultural practices in rural China. When the agricultural admin-
istrative institutions or extension agents attempt to develop relevant policies or improve
farmers’ adoption behavior, they should not be confined to an economic perspective. The
networking or social interaction between farmers should be fully exploited. Therefore,
neighborhood effect can be seen as an effective approach to complement formal extension
systems and promote the development of China’s ecological agriculture.

Finally, we reflect on the limitations of this paper. First, although this paper has
addressed several challenges associated with our measurement of the neighborhood effect,
we did not conduct a further investigation into effects such as the snowballing or social mul-
tiplier effects [13] given the limitations of cross-sectional data used in our study. Therefore,
future studies may target the social multiplier effect using longitudinal data. Second, we
have confirmed that the neighborhood effect matters in farmers’ adoption behavior, but we
did not explore the mechanism of the neighborhood effect on farmers’ adoption behavior. It
is highly suggested that future studies analyze how neighbors influence farmers’ adoption
behaviors. Third, the adoption of farming practices is a process, and we only used a binary
variable to measure adoption, which cannot reflect farmers’ dynamic adoption behaviors.
Future studies may, therefore, extend this work by utilizing panel data.
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Abstract: One of the most effective ways to achieve sustainable land use and the regional coordinated
development of urban agglomerations lies in improving the urban land use efficiency (ULUE) of both
large, medium, and small cities and small towns. However, in previous studies, less attention has
been paid to pathways for potential improvement, especially at the county level. The main purpose
of this paper is to examine potential improvement paths for the ULUE at the county level in urban
agglomerations, while attempting to provide more practical targets for improvement and formulate
more reasonable improvement steps for inefficient counties. Therefore, a total of 197 counties in
the Beijing-Tianjin-Hebei urban agglomeration (BTHUA) in 2018 were taken as examples to build a
context-dependent data envelopment analysis (DEA) model based on the closest target. In addition,
by utilizing methods such as the significant difference test and system clustering analysis, the shortest
path and steps to achieve efficiency were identified for inefficient counties, and the characteristics
of improvement paths at different levels were summarized. Furthermore, improvement pathways
were compared for two dimensions: administrative type and region. The results showed that the
causes of polarization for ULUE at different levels were mainly reflected in more complex targets to
be improved in the middle- and low-level counties than at high levels. Improving environmental and
social benefits was essential to achieving efficiency in most inefficient counties, especially at the middle
and low levels. The improvement paths for inefficient counties between different administrative
types, as well as the prefecture-level cities, were heterogeneous. The results of this study can provide
a policy and planning basis for improving urban land use. This study is of practical significance
in accelerating the development of urbanization and the promotion of regional coordination and
sustainable development.

Keywords: urban land use efficiency; Beijing-Tianjin-Hebei urban agglomeration; improvement
pathways; county level

1. Introduction

Cities are centers of economic activity, innovation, and culture in countries and re-
gions [1]. Large-scale urbanization has led to the ongoing expansion of urban construction
while also accelerating the development of urban economies. Nevertheless, it has also
caused a series of problems, such as the extensive utilization of urban land [2], reductions
in cultivated land [3], intensified energy consumption [4], environmental pollution [5],
traffic congestion [6], etc. These have threatened the sustainable development of countries
and regions, and it has been proven that the improvement of urban land use efficiency
(ULUE) is not only a precondition for promoting urban sustainable development but also a
way to balance the development of urban economies and sustainable land use [7]. Hence,
it is necessary to change the mode from the extensive one to an intensive one during the
process of urban land use. Moreover, significant attention should be paid to the integration
of the economic, social, and ecological benefits of land use in order to promote sustainable
development for cities [8].
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Urban agglomerations are the most dynamic and high-potential regions in China and
they play an irreplaceable role in promoting urbanization [9]. In recent years, studies on
the ULUE of urban agglomerations have become increasingly popular, including studies
on single urban agglomerations such as Beijing-Tianjin-Hebei [10] and the Yangtze River
Delta [11], as well as comparative studies of multiple other urban agglomerations [12].
Scholars have mainly emphasized two categories of problems in research on ULUE. The
first is referred to as “efficiency evaluation”. Establishing the evaluation index system and
determining evaluation methods are the preconditions for evaluating ULUE. With advances
in the study of the various conceptions of ULUE, evaluation indexes have evolved from a
single index focusing on economic output to a comprehensive index system considering
economic, social, and ecological benefits [13]. In the comprehensive index system, the role
of environmental factors in ULUE changed from a constraint condition on the quality of
economic development to an essential component of comprehensive benefits [14,15]. In
terms of evaluation methods, the SFA method has the advantage of having a more explicit
economic meaning [16], while data envelopment analysis (DEA) is more suitable for
evaluating comprehensive problems with multiple targets [17]. Therefore, the DEA method
is used for ULUE by most scholars [18]. The other category is referred to as the “mechanism
of efficiency”. Among these approaches, analyzing influencing factors for ULUE helps to
understand the driving mechanism behind urban land use [19]. The mechanism research
provides guidance for the formulation of macro-level policies. Various influencing factors
for ULUE have been addressed extensively in the previous literature [20–22].

However, the endogenous differences, meaning equal efficiency scores but signifi-
cantly different redundant structures in decision making units (DMU), were ignored in
the previous literature on mechanism studies. The DEA methods can not only quantify
the performance of DMUs, but can also provide improvement benchmarks for inefficient
DMUs [23]. Through projection analysis—in other words, comparing the gap between
actual and target inputs and outputs—the causes of inefficiency can be identified from a
micro-level perspective, and a path to improving efficiency can be determined. The study
of the improvement paths for the ULUE is an extension and complement of the above two
categories of issues. On the one hand, the analysis of improvement paths further identifies
the input and output redundancy of inefficient DMUs based on the efficiency evaluation.
On the other hand, compared with the indirect mechanistic analysis of the influencing
factors, the analysis of the improvement paths is a direct causal analysis based on effi-
ciency decomposition. However, there are few studies related to efficiency improvement in
research on ULUE. Moreover, only a few scholars have conducted empirical analyses at
the city level. Fu et al. utilized the slack-based measures (SBM) to evaluate the ULUE of
13 cities in Jiangsu Province and compared the redundancy of undesirable outputs among
cities [24]. Han et al. measured the input redundancy of 287 cities in China by constructing
an SBM model and revealed the distribution characteristics and regional differences of
different redundant factors [25]. Two research perspectives were shown for improvement
path analysis in ULUE. One was to analyze which resources are misallocated or wasted
from a reasonableness perspective. The other was to identify improvement priorities based
on potential targets in economic, social, and environmental benefits from a development
perspective, compared to the extent to which different aspects contribute to improving the
overall efficiency.

The previous study on improvement paths of ULUE mainly had two deficiencies. One
was that the previous ones were too theoretical. More specifically, the practicality of targets
for improvement and the actual implementation ability of the research objects was often
neglected. The other deficiency was that there were few empirical studies, and the research
setting scale was limited. Firstly, from the improvement target perspective, selecting targets
that are more in line with experience is a precondition for determining potential pathways
for improvement. The improvement targets for inefficient DMUs depend on the distance
function of different DEA models [26]. In research on ULUE, DEA models such as Charnes,
Cooper, and Rhodes (CCR), slack-based measures (SBM), and their extended models were
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often used by scholars [27,28]. However, the potential improvements of inefficient DMUs
might be overestimated by the traditional DEA model based on the “furthest” targets;
meanwhile, the improvement targets obtained in this manner may not be practical targets
for inefficient DMUs [29]. Some scholars have pointed out these problems and proposed
using DEA models based on the closest target. Minimum distance to a strong efficient
frontier (MinDS) is a non-radial DEA model based on the closest target, proposed by
Aparicio [30]. The projected point on the frontier obtained by the MinDS model is the
nearest efficient projection, meaning achieving efficiency with less effort, to the inefficient
DMUs. At present, the closest-target method has been applied to many research fields,
such as carbon emission efficiency [31], port efficiency [26], and financial efficiency [32],
but, so far, not ULUE.

From the improvement steps perspective, there are certain limitations in analyzing
the improvement paths for ULUE utilizing single-frontier DEA models. Previous studies
have pointed out that the ULUE of urban agglomerations in China is generally low, and
there is an obvious polarization phenomenon [8,33]. In reality, it is difficult to significantly
reduce the input or increase the output in the short term. Therefore, the empirical results
obtained by using traditional DEA models lack practical significance. Despite the fact
that the closest-target DEA model can identify the nearest improvement targets, it may
still be difficult to achieve efficiency in one step for inefficient DMUs at short-term time
scales. The context-dependent DEA model was proposed by Seiford and Zhu [34]. This
model identifies all evaluated DMUs at different layers, which can be seen as multiple
frontiers. The efficient projection of inefficient DMUs on the top frontier can be obtained as
the ultimate targets, which can be seen as intermediate targets on other frontiers [35]. Thus,
the context-dependent DEA model is based on the closest target (context-dependent MinDS,
CD-MinDS), which is conducive to exploring a more reasonable and feasible improvement
pathway for inefficient DMUs.

In addition, the development strategy of new-type urbanization has been advanced
in China since 2012, which pursues the coordinated development of large, medium, and
small cities and small towns based on the context of urban agglomerations. However,
most existing ULUE studies have been carried out at the city level, mainly focusing on
the performance of urban areas while neglecting the evaluation of surrounding county
towns. County towns are essential parts of China’s urban system and necessary spaces
for promoting industrialization and urbanization [36]. Therefore, it is necessary to take
county towns into account in the ULUE study of urban agglomerations. In addition, urban
areas were generally evaluated as a whole in research carried out at the city level. In recent
years, however, “city–county mergers” have become the primary way for the government
to advance urbanization [37]. There are many differences between inner cities and suburbs
regarding functional orientation, development levels, and so on. Hence, the ULUE study
of urban agglomerations at the county level is helpful in understanding the features and
differences of various administrative units, such as inner cities, suburbs, county-level cities,
and county towns. From an epistemological perspective, county-level ULUE studies can
help to understand more comprehensively and accurately the characteristics and differences
in the relative efficiency of different territorial units within urban agglomerations. From
the perspective of the ULUE mechanism study, taking county units as research objects
can help to further reveal the differences in the causes of different administrative types of
inefficient counties in urban agglomerations. The problems of the extensive use of urban
land and unbalanced regional development have been still faced by different regions in
the Beijing-Tianjin-Hebei urban agglomeration (BTHUA), which is the epitome of China’s
urban agglomerations at this point [36]. Therefore, as a research context, the BTHUA is
very typical.

In summary, this paper selected 197 counties in the BTHUA as a case study. It utilized
the context-dependent DEA based on the closest target to identify the improvement paths
for the ULUE. This paper intended to answer the following research questions: (1) Could
using context-dependent DEA based on the closest target provide a more practical and rea-

133



Int. J. Environ. Res. Public Health 2023, 20, 4429

sonable improvement path for inefficient counties than traditional DEA methods? (2) What
were the main characteristics of inefficient counties with different levels of efficiency in
terms of improvement paths and the impact of economic, social, and environmental benefits
on improving efficiency? (3) Were there differences in the improvement paths for inefficient
counties by administrative types and regions, and how can we improve the efficiency of
different inefficient counties? This paper, by supplementing the existing research meth-
ods on urban agglomeration ULUE, adds to the body of empirical research conducted at
the county level, thereby assisting China and other developing countries in promoting
sustainable urbanization and regionally coordinated development.

2. Materials and Methods

2.1. Study Area

The BTHUA, located in the northern part of the North China Plain (36◦03′–42◦40′ N,
113◦27′–119◦50′ E), includes two municipalities, Beijing and Tianjin, as well as the other
cities in Hebei Province. According to the China Statistical Yearbook, in 2018, the urban
population of the BTHUA reached 74.24 million, accounting for 5.32% of the country’s
total population. The gross domestic product (GDP) was 8513.989 billion yuan, making up
9.47% of the national GDP. The urban construction land area was around 3 million hectares,
accounting for 7.63% of the total construction land area of the country. China currently has
four primary administrative levels: national, provincial, prefecture-level city, and county.
The county-level administrative districts, including counties, districts, and county-level
cities, are included in the prefecture-level city’s administrative area. In this paper, the
districts are further divided into inner cities and suburbs. A total of 197 counties in the
BTHUA were selected as research subjects, including 36 inner cities, 43 suburbs, 21 county-
level cities, and 97 county towns. There are only two types of counties in Beijing and Tianjin,
with 6 inner cities and 10 suburbs, respectively. Hebei Province has a total of 165 counties,
including 24 inner cities, 23 suburbs, 21 county-level cities, and 97 county towns.

2.2. Index System and Data Sources

The index system proposed in this paper aims to reflect the relation between input
and output in urban economic and social activities, as well as the role of urban land as a
geographical space. At present, China’s urbanization has evolved from a period of rapid
growth to high-quality development. Therefore, significant attention must be paid to the
coordinated development of economic, social, and environmental benefits for urban land
use. In particular, not only the level of economic output but also the social welfare and
environmental quality should be considered in the examination of efficiency [38]. Therefore,
as shown in Table 1, the labor input was expressed as the number of employees per land
area and the capital input was expressed as the amount of the fixed asset investment per
land area in this paper. In terms of the output of economic benefits, the development level of
urban productivity was reflected by the added value of the secondary and tertiary industries
per land area. In terms of social benefits, the living and consumption level of residents was
expressed by the total retail sales of consumer goods per land area. In addition, the public
service level was reflected by the density of points of interest (POI), i.e., the number of POIs
per land area [39]. These include four types of data—namely, science and education cultural
services, medical care services, transportation facilities and services, government agencies,
and social organizations. In terms of environmental benefits, as the BTHUA is among the
regions with the most serious air pollution problems in China, air quality improvement
is an important goal of high-quality development in this region. In this paper, the annual
average concentration of particulate matter (PM2.5) was taken as the undesirable output to
reflect the level of environmental quality [40].
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Table 1. Urban land use efficiency measurement indexes.

Types Names Details

Input index Employees per land area Number of employees in the secondary and
tertiary industries/Construction land area

Fixed asset investment per
land area

Fixed asset investment of the whole
society/Construction land area

Desirable
output index

Added value of the secondary
industry per land area

Added value of the secondary
industry/Construction land area

Added value of the tertiary
industry per land area

Added value of the tertiary
industry/Construction land area

Per capita disposable income
of urban residents

Per capita disposable income of urban
residents

Density of POI
Number of POI (medical care services,
living facilities, science and education

cultural services)/Construction land area
Green coverage rate in

built-up area Greenland area/Construction land area

Undesirable
output index Concentration of PM2.5 Annual average concentration of PM2.5

concentration

Among the relevant data, data on employees, fixed asset investment, the added value
of secondary and tertiary industries, the per capita disposable income of urban residents,
and the BGR were derived from the 2019 Beijing Area Statistical Yearbook, Tianjin Statistical
Yearbook, and the statistical yearbooks of all prefecture-level cities in Hebei Province.

2.3. Research Methods
2.3.1. DEA

To explore the influence of different improvement targets and steps on efficiency
improvement, several DEA methods were employed in this paper to measure the same
sample. First of all, in order to measure the influence of different improvement targets, the
SBM model and MinDS model was used to calculate an efficiency score, which served as
the basis for the identification of improvement targets. Second, the CD-MinDS model was
used to identify the efficiency levels for inefficient counties and measure the gap between
inefficient counties and improvement targets, including ultimate and intermediate targets.

SBM and its extended models are among the most widely used DEA models in ULUE
research. This model, proposed by Tone et al. in 2001, measures DMU efficiency by the
slack of input and output [41]. The model works as follows:

minρ =
1− 1

m ∑m
i=1

s−i
xik

1+ 1
q+g (∑

q
r=1

s+r
yrk

+∑
g
h=1

s−h
zhk

)

s.t.

⎧⎪⎪⎨
⎪⎪⎩

∑ λjxij + s−i = xik
∑ λjyrj + s+r = yrk
∑ λjzhj + s−h = zhk
λj, s−i , s+r , s−h ≥ 0

(1)

In this model, ρ represents the efficiency value of DMU. s+r , s−i and s−h are the slack
of the i input, the r desirable output and the h undesirable output, respectively. λj is the
weight variable of the j unit. xik, yrk and zhk are the DMUk input, desirable and undesirable
output values of DMUs, respectively. However, the objective function of the SBM model is
to minimize the efficiency value ρ, i.e., to maximize the redundancy of the input and output
values. From the perspective of the distance function, the projection point of the DMU
is the furthest point on the frontier, meaning that the input and output values for DMUs
must be adjusted to the greatest extent. This is obviously contrary to the actual needs of the
evaluated objects.
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To this end, Aparicio et al. propose the MinDS model to improve the practicality of the
SBM model [29]. The objective function of the MinDS model is to maximize the efficiency
value ρ by increasing the mixed-integer linear constraint, with the effective DMUs as the
reference set and confined to the same hyperplane. The model is described as follows:

maxρ =
1− 1
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xik

1+ 1
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q
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yrk
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...

− m
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vixij +
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τhzhj + dj = 0

vi, μr, τh ≥ 1
dj ≤ Mbj, λj ≤ M

(
1 − bj

)
, bj ∈ {0, 1} , j ∈ E

(2)

The constraint conditions of the MinDS model consist of three parts, among which the
first part is the same as the constraint conditions of the SBM model. The common purpose
of the second and third parts is to ensure that the reference rods lie in the same hyperplane.

In combination with the MinDS model, the context-dependent model proposed by
Seiford and Zhu [34] was employed to provide staged intermediate targets for ineffi-
cient counties. The reference set Jl =

{
DMUj, j = 1, · · · , n

}
was defined as the set

containing all DMUs. The iterative reference set Jl+1 = Jl − El was defined such that
El =

{
DMUk ∈ Jl

∣∣∣ρ = 1
}

was the set of effective units in the reference set Jl . When l = 1,

the model was the MinDS model, El constituted the global frontier, and the units in the
set were effective units. When l = 2, the new subset J2 was taken as the reference set and
recalculated. E2 constituted the second-level frontier. The units in the set were inefficient
units whose efficiency level was lower than that of the effective units, but higher than that
of other inefficient units. All DMUs were divided into different sets by circular calculation.
The model is described as follows:
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DMUk ∈ Jl | ρ(l, k) = 1
}

l0 ∈ {2, · · · , L}
p ∈ {1, · · · , l0 − 1}

(3)

In this model, the reciprocal of ρ∗ was the progress value of DMUk based on El0−p,
representing the improvement degree required for DMUk to raise the efficiency level to
El0−p,. Here, 1/ρ∗ > 1, and the higher the 1/ρ∗ value, the greater the improvement
degree. When DMUk had multiple superior frontiers, ρ∗(p + 1) < ρ∗(p). In addition, the
improvement ratio of input and output elements (I/O elements) in DMUk was used to
characterize the statistical redundancy for each element—that is, the ratio of the slack of
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each element to the actual value. The improvement ratios of input, desirable output and
undesirable output are as follows:

s−i
xik

,
s+r
yrk

,
s−h
zhk

(4)

2.3.2. Paired-Samples t-Test and One-Way ANOVA

To determine reasonable improvement targets and steps, the mean difference sig-
nificance test was used to judge whether the results obtained by the DEA model were
statistically different. The paired-samples t-test can be used to test whether there is a
significant difference in the mean values of the two groups’ paired sample data. As men-
tioned above, in terms of DEA principles, the shortest improvement paths for inefficient
counties can be identified by the closest target. In other words, the MinDS model proposes
more practical ways to improve efficiency for inefficient counties, enabling them to become
efficient with less effort. To verify the validity of the MinDS model for the ULUE study,
the MinDS model was compared with the SBM model, which was widely used to evaluate
ULUE. Specifically, suppose that the efficiency scores of the SBM model are significantly
lower than that of the MinDS model. In this case, it indicates that the MinDS model can
identify the more practical paths for improving ULUE in inefficient counties. Furthermore,
the one-way ANOVA test can be used to test for significant differences between multiple
sample data. Therefore, the improvement steps of inefficient counties were determined
via a one-way ANOVA test according to the improvement degrees of inefficient counties
at different levels. Suppose that the improvement degree significantly differs based on
the global frontier in inefficient counties at different levels. In this case, the improvement
steps for inefficient counties at low levels are unreasonable, and the intermediate targets
should be added to reduce the improvement degrees of each step. Finally, the overall
improvement degrees of inefficient counties were compared to test whether there were
significant differences between one-step and step-by-step by the paired-samples t-test. If
the overall improvement degree of the step-by-step is less than that of the one-step, then
a more practical and reasonable improvement path can be identified by the CD-MinDS
model. Otherwise, the improvement path needs to be weighed between the one-step and
step-by-step.

2.3.3. System Clustering Analysis

As an exploratory method, system clustering analysis can be divided into variable clus-
tering (Mode R) and sample clustering (Mode Q). The method classifies objects with similar
properties according to the degree of closeness between variables or samples. In this paper,
Mode Q systematic clustering was used to identify the similarity of redundant elements
among inefficient counties based on the adjusted cosine similarity, and this was used to
classify the key elements for improvement at each stage.

3. Results

3.1. Efficiency of the Closest and Furthest Targets

In order to compare the influence of different improvement targets on inefficient
counties, the efficiency scores based on the furthest target (the SBM model) and the closest
target (the MinDS model) were measured according to Formulas (1) and (2), and the results
were compared by using the paired-samples t-test. The most effective and ineffective
counties obtained by the two models were the same, 26 and 171, respectively. As shown
in Table 2, the efficiency scores based on the nearest target were significantly higher than
those of the furthest target (p < 0.01), and there was a significant correlation between them
(p < 0.01). This shows that the influence of different measurement benchmarks was clear
when both the frontier and inefficient counties were the same in the two groups of samples.
For inefficient counties, taking the projection identified by the nearest-target method as the
improvement goal can achieve the same effect with relatively small improvements.
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Table 2. Paired-samples t-test results based on efficiency scores of the SBM and MinDS models.

Samples Mean N t-Value Sig. Correlation Sig.

SBM 0.364
197 −38.009 0.001 0.822 0.001MinDS 0.731

Note: N—number of samples.

According to Formula (3), the inefficient counties were stratified to further distinguish
the efficiency level among inefficient counties. As shown in Figure 1, the counties of the
BTHUA were divided into seven levels. The counties located at the frontier of the first level
(global frontier) were effective counties, and those located at the frontier (local frontier) of
the 2nd–7th levels were inefficient counties. The efficiency level of counties at the same
level was the same, and showed a decreasing trend from first to seventh. The number of
counties in the 2nd–5th levels was relatively large (30–35), while that in the seventh level
was relatively small (13). From the regional perspective, the counties of Beijing and Tianjin
occupied most of the counties in the first level. Most of the counties in the 3rd–7th levels
were in Hebei. This indicates that the efficiency levels of Beijing and Tianjin counties in the
BTHUA were similar, and the efficiency performance was better. In contrast, the efficiency
levels of counties in Hebei Province ranged more widely and the efficiency performance
was relatively poor.

Figure 1. Number and regional distribution of nine efficiency levels in counties.

3.2. Intermediate Targets and Steps for Improvement

In order to compare the improvement degrees for inefficient counties at different levels,
the progress values based on the global frontier were calculated according to Formula (3).
This was done in order to characterize the improvement degrees required to reach the
efficient level. The results were then compared by using ANOVA. As shown in Table 3, the
Levene statistic was 1.709, with a significance level of over 0.05, meeting the requirements
of ANOVA. The F statistic for the ANOVA test was 7.524, with a significance level of less
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than 0.05, indicating that there were significant differences in the average improvement
degrees of the counties at various levels. Through multiple comparisons among different
levels of counties (Figure 2), it was found that there were significant gradient differences in
the improvement degrees for counties at different levels. There were significant differences
among high-level (the second level), middle-level (the third and fourth levels), and low-
level (the 5th–7th levels) counties, but there were no significant differences within the
groups. The improvement degree was the highest in low-level counties, followed by
middle-level counties and then high-level counties. This shows that the improvement
process for counties at all levels was asynchronous, and it was obviously longer in middle
and low-level counties. Therefore, it is necessary to further set intermediate targets and
formulate progressive improvement steps.

Table 3. Homogeneity of variance and F-value test of global progress values of counties at different
levels.

Test Variable Classification Levene Statistic F-Value

Global progress value 2nd–7th level 1.709 7.524 ***
Note: *** show significance at the 1% level, respectively.

Figure 2. Comparison of global progress values of counties at different levels. Note: Different letters
represent a significant difference at 5% level.

The intermediate targets are determined according to the differences in their improve-
ment degrees. In terms of the 5th–7th levels of counties, the improvement degrees based
on the global frontier were significantly greater than that of the high- and middle-level
counties, with the smallest difference for the fourth level of counties. Therefore, the fourth
level can be regarded as the intermediate target of the first step, and the second level can be
regarded as the intermediate target of the second step, dividing the improvement process
into three steps. Similarly, the frontiers for the second level are taken as the intermediate
targets for counties at the 3rd–4th levels. The improvement processes for three groups of
counties at high, middle and low levels have one, two and three steps, respectively. Table 4
presents the inspection results based on intermediate targets. It should be noted that the
improvement degrees for the second and third steps were calculated by taking the target
input and output of the previous step as the actual input and output of this step. It can be
seen from the results that there was no significant difference in terms of the improvement
degrees of counties at all levels during the three steps, and the average improvement
degree in the three steps was relatively low. This means that the improvement process
for middle- and low-level counties can be decomposed by setting intermediate targets so
that the improvement degree of each step is in a more reasonable range. Therefore, it is
appropriate to take the frontiers of the second and fourth levels as the intermediate targets
of the middle- and low-level counties.
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Table 4. Homogeneity of variance and F-value test of local progress values of counties at different
levels.

Test Variable Classification Mean Levene Statistic F Value

Local progress value (1st step) 2nd–7th level 1.436 1.178 0.856
Local progress value (2nd step) 3rd–7th level 1.367 1.359 1.554
Local progress value (3rd step) 5th–7th level 1.321 1.530 1.622

To further explore the reasons that there were various improvement degrees, the
redundancy (improvement ratio) of elements of input and output in inefficient counties
was calculated based on Formula (4) and the redundant quantity in each county was
counted. Figure 3 presents the statistical redundancy of the elements of input and output
in the case of one-step and step-by-step in high-, middle- and low-level counties, as well as
the proportions of different redundant quantities. On the whole, middle- and low-level
counties had larger redundant quantities and greater redundancy, indicating that there
are more aspects to be improved in middle- and low-level counties, with more difficulties
during the improvement. The establishment of intermediate targets plays a role in screening
and focusing on the improvement elements. In other words, when the local frontiers that
are more similar to themselves are considered as benchmarks, there are smaller quantities
and lower redundancy. Therefore, setting intermediate targets can help to recognize the
main weaknesses of each stage, and improvement in these aspects may be a shorter path to
advance efficiency.

Figure 3. Differences for input and output redundancy among high-, middle- and low-level counties.
(a): boxplot of redundancy improvement ratio for counties at each level. (b): proportion structure of
the redundant quantities of counties at each level.
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In addition, paired-samples t-tests were used to compare the progress values for the
two groups to further explore the overall improvement degrees for both one-step and step-
by-step. The slack of the elements of input and output during the step-by-step method was
the sum of the slack in each stage. As shown in Table 5, there was a significant difference
between the progress values for the two groups (p < 0.01). The progress value in terms of
step-by-step was considerably lower than that of the one-step context, showing a significant
correlation between the two (p < 0.01). Thus, the method of step-by-step is a shorter path
for middle- and low-level counties to achieve efficiency using a step-by-step method, which
supports the conclusion above.

Table 5. Paired-samples t-test results for progress values of the one-step and the step-by-step contexts.

Samples Mean N t-Value Sig. Correlation Sig.

step-by-step 1.327
184 −12.913 0.001 0.826 0.001one step 1.504

Note: N—number of samples.

3.3. Improvement Elements of Inefficient Counties

In this paper, the Q-type system clustering method was used to classify the input and
output redundancy of inefficient counties for exploring the characteristics of improvement
elements at each stage. In Figure 4, the six improvement elements in the first step are shown.
On the whole, one improvement element had the most prominent improvement ratio in
each type, which was significantly higher than that of other redundancies, indicating the
existence of one major improvement element. From the perspective of the improvement
elements, there were mainly deficiencies in economic, social, and environmental benefits,
reflecting the low degree of intensive utilization of urban land in inefficient counties,
and the continuation of the extensive land use mode, to some extent. In terms of the
number of counties of various types, the number of counties with tertiary industry as the
key improvement element was the largest (47), followed by counties with the secondary
industry, resident income, AQI or BGR as the major improvement element. It was revealed
that the improvement elements in the first step were diverse. The types of improvement
elements in the second and third steps were slightly fewer than in the first step, both
showing four types (Figure 5). In these two steps, most counties needed to further improve
the output of economic and environmental benefits on the basis of the first step to achieve
the final goal. This means that the output of economic and environmental benefits in the
middle- and low-level counties was generally insufficient, with a large gap compared with
the highest level in the urban agglomeration. In terms of the numbers of counties, in the
second step, counties taking the BGR as the improvement element were obviously greater
in number. In the third step, similarly, the number of counties with the BGR and tertiary
industry as the improvement element was larger. This initially reflects that BGR and tertiary
need to be focused on both in the middle- and low-level counties.
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Figure 4. Types of key improvement elements in the first step. Note: 2nd_ind—secondary industry;
3rd_ind—tertiary industry; Income—resident income; Pub_serv—public services; AQI—air quality;
BGR—green development level.

Figure 5. Types of key improvement elements in the second and third steps. Note: 2nd_ind—
secondary industry; 3rd_ind—tertiary industry; Income—resident income; Pub_serv—public services;
AQI—air quality; BGR—green development level.
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Combining the improvement elements in different steps, 54 ULUE improvement paths
were formed in 171 inefficient counties (Figure 6). The number of paths was the largest
in low-level counties, followed by middle-level counties and high-level counties. On the
whole, most high-level counties needed to focus on improving economic benefits. In
addition to economic benefits, middle- and low-level counties generally needed to promote
social or environmental benefits. On the basis of the similarity in terms of improvement
elements, 54 improvement paths could be summarized as the economic (Ec.), economic–
social (Ec.–Soc.), economic–environmental (Ec.–Env.), social–environmental (Soc.–Env.) and
economic–social–environmental (Ec.–Soc.–Env.). The number of counties was the largest
for the Ec.–Env. category (68), followed by Ec. (45), Ec.–Soc.–Env. (24), Soc.–Env. (18) and
Ec.–Soc. (16). Figure 7 shows the proportions of various improvement elements in high-,
middle- and low-level counties from both short-term and long-term perspectives. In the
short term, the improvement elements for high-level counties were mainly those related
to tertiary industry. The improvement elements for middle- and low-level counties had
significant heterogeneity, and the proportion of each element did not exceed 25%. In the
long run, the middle- and low-level counties were characterized by great differences in
terms of the social and environmental domains. The middle-level counties had a more
significant direction of improving efficiency in the social context, while the environmental
domain was more critical for low-level counties as key improvement elements.

Figure 6. Forty-one improvement paths in inefficient counties. Note: 2nd_ind—secondary industry;
3rd_ind—tertiary industry; Income—resident income; Pub_serv—public services; AQI—air quality;
BGR—green development level.

143



Int. J. Environ. Res. Public Health 2023, 20, 4429

Figure 7. (a): Proportions of short-term improvement element of high-, middle- and low-level
counties. (b): proportions of long-term improvement element of high-, middle- and low-level
counties. Note: 2nd_ind—secondary industry; 3rd_ind—tertiary industry; Income—resident income;
Pub_serv—public services; AQI—air quality; BGR—green development level.; Ec.—economic; Ec.–
Soc.—economic–social; Ec.–Env.—economic–environmental; Soc.–Env.—social–environmental; Ec.–
Soc.–Env.—economic–social–environmental.

3.4. Improvement Paths of Different Types and Regions

In this section, the improvement paths of the inefficiency units were compared further
from the dimensions of administrative types and regions (prefecture-level cities). Figure 8
presents the proportions of high-, middle- and low-level counties that are different types
and located in regions. From the perspective of administrative types, most of the inner
cities, suburbs and county-level cities were high-level and middle-level counties, while
the county towns were mostly low-level counties. In terms of regions, the difference was
obvious between cities; however, it was not significant within the cities. There were mainly
high-level counties in Beijing and Tianjin. Four cities in Hebei along Beijing and Tianjin,
and the Langfang–Tangshan–Qinhuangdao Axis, were mainly middle-level counties. The
majority of the six cities in the central south were low-level counties. The results above
mean that, in terms of improvement steps, the regional difference is more prominent,
showing a pattern of difference between the north and south. The urban land use and
management may have boundary effects—namely, the urban land use levels of various
counties within the city area are relatively similar.

Figure 9 demonstrates the differences in improvement elements in terms of different
types of settlements and regions. From the short-term perspective, the proportions of
improvement elements of the four types of counties were all less than 35%. Furthermore,
the improvement elements with the highest proportion are in inner cities and suburbs,
which belong to tertiary industry. In contrast, the highest proportion of elements in county-
level cities and county towns are public services and air quality. This phenomenon also
took place within the cities where improvement elements presented obvious heterogeneity,
as well. From a longer-term perspective, the improvement elements for county-level
cities and county towns were relatively concentrated, similar to the seven cities in Hebei.
Specifically, county-level cities and county towns were mainly associated with the economic
and environmental contexts, which is the same as four cites—the traditional industrial city.
In addition, two cities in Northern Hebei, Chengde, and Zhangjiakou, were associated
mainly with the social context in Northern Hebei. The traditional industrial city in Southern
Hebei, as well as Xingtai and Handan, were mainly associated with the economic–social–
environmental contexts. It is evident that the functional layout of each region within cities
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is not currently reasonable, and some portions of cities have common problems in terms of
the process of efficiency improvement, which needs to be advanced in general.

Figure 8. (a): Proportions of high-, middle- and low-level counties within county towns, county-level
cities, suburbs and inner cities. (b): Proportions of high-, middle- and low-level counties within 13
prefecture-level cities in Beijing-Tianjin-Hebei urban agglomeration.

Figure 9. (a) Proportions of medium- and short-term improvement elements in four types of counties
(inner cities, suburbs, county-level cities and county towns). (b) Proportions of medium- and
short-term improvement elements within 13 prefecture-level cities. (c) Proportions of medium- and
long-term improvement elements in four types of counties. (d) Proportions of medium- and long-term
improvement elements within 13 prefecture-level cities.
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In this paper, cross-analyses from the dimensions of administrative types and cities
were conducted and presented in the form of a matrix heat chart (Figure 10) in order to
further examine whether there were common features in the short-term improvement
elements of inefficient counties belonging to different types and located in various regions.
In Figure 10, there are 52 regional units composed of 4 administrative types and 13 cities.
This concentration reflects the proportion of the dominant improvement elements in the
unit, i.e., the ratio of the number of counties with that improvement element to the total
number of counties in the unit. It can be seen that 16 region units shared consistency
in short-term improvement elements, accounting for 30.77%, distributed in seven cities.
According to the number of these units, the improvement element was dominated by air
quality, followed by green space, public services, secondary industry and resident income.
The results demonstrate that a small number of regions in the BTHUA have common
features in the short-term improvement elements, with a relatively scattered distribution.

Figure 10. Concentration of short-term improvement elements in inefficient counties with different
administrative types and located in various prefecture-level cities. Note: The concentration indicates
the proportion of the dominant improvement elements in the unit, i.e., the ratio of the number
of counties with that improvement element to the total number of counties in the unit. 2nd_ind—
secondary industry; 3rd_ind—tertiary industry; Income—resident income; Pub_serv—public services;
AQI—air quality; BGR—green development level.

4. Discussion

4.1. Theoretical Implications

The DEA method has been widely adopted in ULUE research. In this paper, improve-
ment paths for inefficient counties in the BTHUA were analyzed by combining the nearest
target and context-dependent DEA. The results show that, with the same technology fron-
tier and in the same inefficient counties, selecting different benchmarks as improvement
targets can have a significant impact on redundant information. From the perspective of
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efficiency improvement, it is a more desirable choice for inefficient counties to achieve the
same effect with relatively small adjustments. In previous studies, the SBM model was
mainly used to evaluate ULUE [42]. However, the SBM model maximized the redundancy
of input and output, thus leading to an underestimation of efficiency. This paper has
compared the results based on the nearest target (MinDS) and the furthest target (SBM) by
utilizing paired-samples t-tests, indicating that the efficiency of MinDS was significantly
greater than that of SBM. This means that identifying the redundant information of ineffi-
ciency units through the context-dependent DEA based on the closest target helps to find
shorter improvement paths. Moreover, the principle of the nearest target method is to take
the projection of the most similar actual input and output of the inefficiency county as the
evaluation benchmark. Therefore, the redundant information and improvement targets at
the basis of the method are more practical and instructive.

Adding intermediate targets is helpful in providing shorter improvement paths for
middle- and low-level counties and the improvement degrees, keeping them within a
reasonable range at different stages. With the CD-MinDS model, improvement degrees
for inefficient counties were calculated and compared under the conditions of both the
single benchmark (one-step) and the multi-level benchmark (step-by-step). According to
our results, improvement degrees during the step-by-step improvement were significantly
lower than those during the one-step. The reason is that the inefficient counties in urban
agglomerations have high heterogeneity in terms of land use modes, economic and social
development levels, etc. The number of counties constituting the global frontier is small and
relatively homogeneous in type. The evaluation results based on a single benchmark may
be prone to miscalculation due to heterogeneity, leading to the overestimation of potential
improvements. As the types of counties constituting the local frontier are more diverse
and more similar to the evaluated counties, the miscalculation caused by heterogeneity is
reduced to some extent. In addition, for middle- and low-level counties, the improvement
information provided by a single benchmark is too general, while the intermediate targets
can serve as a guide and help to better understand the key improvement elements at
each step.

In this study, the improvement paths of ULUE were analyzed for the BTHUA in
2018 at the county level. The results showed that, among the 197 counties, there were
184 inefficient counties, including 21 high-level counties, 59 middle-level counties and
104 low-level counties. Significant gradient differences were evident in the improvement
degrees for high-, middle- and low-level counties. There was also a large gap between the
efficiency level for most counties and the highest efficiency level of the urban agglomeration.
Within the urban agglomeration, there was a spatial non-equilibrium characteristic of
polarization. In other words, the efficiency level for each county in the core city was the
highest and the differences were considerable between surrounding cities versus within
the cities. This is again consistent with an overall pattern of high levels in the north
and low levels in the south. The results were similar to those of other studies on other
urban agglomerations in China, such as those in the Yangtze River Delta [11], the Pearl
River Delta [42] and the Shandong Peninsula [43]. These results are in accordance with
the findings of Fang et al. that the urban agglomerations in China are still in the initial
stage of development or the fast-growing stage, emphasizing the fact that the sustainable
development of urban agglomerations should follow an agglomerated effect strategy and
borrowed size [44]. In addition, compared to the existing study, the causes of efficiency
differences were further analyzed by identifying redundancy characteristics in inefficient
counties at different levels as improvement elements. The improvement elements of high-,
middle- and low-level counties were classified to reveal the direction of improvement
of ULUE. The types of improvement elements were more concentrated in the high-level
counties, and the economic contexts, especially the tertiary industry, accounted for the
majority. The types of improvement elements are more diverse in the middle- and low-level
counties compared to the high-level counties. Specifically, the short-term improvement
elements in most middle- and low-level counties are social or environmental contexts, and
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the share of each element is below 25%. Meanwhile, the long-term improvement elements
in these counties contain two to three improvement elements, with a high percentage of
them containing both economic and environmental contexts, followed by economic, social
and environmental or social and environmental. The results indicate that the cause of the
polarization of ULUE in the BTHUA is the presence of more weaknesses in the outputs of
middle- and low-level counties. On the other hand, environmental and social benefits are
the key to improving ULUE in the short term in middle- and low-level counties. They are
also necessary conditions to achieve full efficiency.

Industrial growth enhances overall economic strength [21], as well as ULUE. How-
ever, increasing the share of services in the industrial structure is considered to be a more
general view to promote higher ULUE [45,46]. In addition, stressing the regulation of
environmental pollution and increasing public service expenditures also have a significant
positive impact on ULUE [47,48]. In this study, however, the improvement paths for in-
efficient counties were identified from the micro-level perspective. The results showed
that obvious heterogeneity was manifested in the improvement elements for inefficient
counties with different administrative types and regions. From the short-term perspec-
tive, the improvement elements in most inner cities are economic contexts. In contrast,
the improvement elements in county-level cities and county towns are mainly social or
environmental contexts. Similarly, the improvement elements of inefficient counties in
Beijing and Tianjin are mainly economic contexts, while inefficient counties in most of
Hebei’s prefecture-level cities are social or environmental. From a long-term perspec-
tive, the types of improvement elements in county cities and county-level cities are more
concentrated, mostly economic–environmental, while the improvement elements in in-
ner cities and suburbs are mainly economic or economic–environmental. The types of
improvement elements of inefficient counties within each prefecture-level city in Hebei
are more concentrated, mostly economic–environmental and a few economic. In contrast,
the improvement elements in Beijing and Tianjin are more diverse, including economic,
economic–social and economic–environmental. The results demonstrate that the causes of
ineffectiveness are different across the administrative types and regions of counties and
that inefficient counties need to be targeted for improvement according to their critical
weaknesses to achieve efficiency. Future ULUE studies on urban agglomerations should
take into account the heterogeneous background of the research subjects, while at the same
time comprehensively analyzing and discussing the influence mechanisms and efficiency
improvement from both macro- and micro-level perspectives.

4.2. Policy Implications

In the past decade or so, China has experienced a surge in urbanization. For example,
during the period between 2012 and 2018, all 13 prefecture-level cities except Xingtai and
Cangzhou in the BTHUA expanded their urban scales by the means of a “city–county
merger”. In terms of ULUE, large-scale urbanization has not brought significant efficiency
advantages, especially in the Hebei cities. As China’s old industrial bases and resource-
based cities, these cities are facing the dilemma of transforming and upgrading their leading
industries. In terms of accelerating the restructuring of economies, local governments have
guided the transfer of secondary industries, which are mainly labor-intensive and resource-
intensive, from the inner cities to suburbs and surrounding counties. This leads high-tech
industries and producer services to be the new driving forces for urban development.
Through the improvement elements of various counties within the prefecture-level cities,
it is evident that, in the inner cities, the secondary and tertiary industries make up major
proportions. In the suburbs and county towns, on the other hand, secondary industries and
air quality account for more. On the one hand, this reflects the ineffectiveness of the main
urban areas in attracting and nurturing emerging industries, as well as the continuation
of the extensive urban land use mode in peripheral areas. On the other hand, this reflects
a lack of industrial support and collaboration capacity within the cities. Therefore, it is
necessary to strengthen the coordinating role of regional governments and to break down
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the administrative barriers between cities. This allows them to benefit from the other’s
comparative advantages through cross-city collaboration, which promotes effective urban
land use in each region of the urban agglomeration.

In the BTHUA, inefficient counties belonging to different types and located in various
regions have obvious heterogeneity in the improvement degrees and elements, indicating
that more precise governance must be implemented. The governance of urban agglomera-
tions needs to focus on adopting policies based on regional and special planning, while
adhering to systematic and comprehensive approaches. From an administrative type per-
spective, the inner city is a multifunctional center within the prefecture-level city limits,
generating a substantial economic radiation role in the surrounding areas. The improve-
ment of the inner cities in the BTHUA, mainly in Hebei, was economic output, including
secondary and tertiary industries. Inner cities with relatively low efficiency should continue
the strategy of industrial transformation. It is vital to devise more positive industrial and
land use policies to increase the share of productive services and high-tech industries in the
economic output and promote the redevelopment of inefficient urban land. The suburbs
bear the function of taking over the industrial transfer from the inner cities and are poten-
tially densely populated areas in the urbanization process. The direction for improving
ULUE in the suburbs was mainly economic and environmental, primarily tertiary industry
and BGR. The suburbs should adopt the strategy of city–industry integration to provide
more attractive talent policies and focus on improving the business environment to im-
prove the local industrial structure. Meanwhile, it is necessary to implement a sustainable
urban operation model and expand the size of urban green spaces. County-level cities
and county towns are satellite towns closely linked to the central urban areas and regional
centers that surround the rural hinterland. Compared with the inner cities and suburbs,
most county-level cities and county towns have more improvement elements and steps.
A long-term and tailored development plan is essential. For instance, industrial-oriented
county towns should adopt a strategy of industrial upgrading and subsidize R&D and
innovation for township enterprises to achieve higher-quality economic output, thereby
improving local living standards and reducing negative environmental impacts.

4.3. Limitations and Future Improvements

This study has certain limitations. First, this is a study on ULUE for a single urban
agglomeration, the BTHUA. Considering the diversity and complexity of cities in China,
it is necessary to include a wider range of urban agglomerations as samples for research.
Second, this paper used cross-sectional data to explore the improvement paths for ULUE
at the county level. In the future, introducing panel data will be required to further
identify and compare the improvement paths for inefficient counties in the process of
dynamic change. Moreover, in terms of the construction of the evaluation index system, in
order to explore green use and sustainable development for urban land more thoroughly,
data sources must be further broadened in the future by including energy consumption,
carbon emissions, etc., in the evaluation and analysis of ULUE. In addition, in terms of
research methods, this paper has mainly discussed efficiency improvement for inefficient
counties from the micro-level perspective. From the macro-level perspective, however,
the improvement of ULUE is also influenced by various exogenous drivers. Therefore, in
the future, making further efforts to combine micro- and macro-level perspectives will be
necessary to explore the mechanisms and improvement paths for ULUE.

5. Conclusions

In this study, the nearest targets and context-dependent DEAs were combined to
evaluate and identify ULUE and improvement paths for 197 counties in the BTHUA in 2018.
The improvement targets and steps for inefficient counties were compared and analyzed
using ANOVA and paired-samples t-tests. The improvement elements for inefficient
counties were classified and summarized according to the Q-type system clustering method,
and improvement paths for inefficient counties belonging to different types and located in
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various regions were further compared. The main conclusions are as follows. (1) Compared
to previous DEA methods for ULUE, better-matched improvement targets are identified by
CD-MinDS, resulting in significantly shorter improvement paths. The decomposition of
the improvement process by adding intermediate targets helps to identify more reasonable
steps and more practical guidance for middle- and low-level counties during the step-by-
step method. (2) The inefficient counties in the BTHUA account for more than 85% of the
total, and the improvement processes for inefficient counties at high, middle and low levels
have one, two and three steps, respectively. The types of improvement elements are more
concentrated in the high-level counties and more diverse in the middle- and low-level
counties. The economic benefits have a widespread impact on the improvement efficiency
of inefficient counties at all levels. However, the environmental and social benefits have a
crucial impact on achieving full efficiency for most middle- and low-level counties. (3) The
obvious heterogeneity is revealed in the improvement elements for inefficient counties
with different administrative types and regions in the short and long term. The inefficient
counties should make targeted improvements to achieve efficiency by addressing their
critical weaknesses at different stages.
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Abstract: Rural community resilience (RCR) is crucial to rural sustainable development in the context
of rural decline globally. Previous studies seem to underestimate the role of the built environment
(BE) in the proactive aspect of RCR (P-RCR), that is, a rural community’s ability to cope with change
proactively. This study explores BE’s effects on P-RCR with a holistic framework involving objective
BE (OBE), perceived BE (PBE), place attachment (PA) and P-RCR, using structural equation modeling
(SEM) based on a sample of 7528 rural respondents from eastern, central and western China. The
results are as follows: (1) Both OBE (population density and accessibility) and PBE (perceptions
of facilities, surrounding environment and safety) can significantly affect P-RCR in terms of social,
economic and environmental dimensions. (2) In all regions, PBE’s impacts were consistent and
positive on social and economic dimensions at both the individual and community levels (except
the community-level economic dimension in western regions), but negative on the individual-level
environmental dimension; OBE’s impacts were varied among regions. (3) In certain regions, PA and
PBE were mediators in the BE-P-RCR relationship. This study can help researchers to construct a
more detailed picture of the BE-P-RCR relationship and identify BE-related factors that contribute to
P-RCR enhancement.

Keywords: rural community resilience; objective built environment; perceived built environment;
place attachment; China

1. Introduction

Fostering rural community resilience (RCR) is gaining increasing attention along with
a series of rural issues confronted by many rural communities around the world, such
as depopulation, economic depression, employment reduction and increasing disaster
vulnerability [1–4]. RCR explains rural communities’ reactive and proactive responses to
disturbances for their survival and development [5–7], providing new theoretical perspec-
tives and strategies for rural communities to deal with the abovementioned issues [2–4,8].
Two aspects of RCR have been observed [6]. The reactive aspect of RCR (R-RCR), which
ensures a rural community’s original state of maintenance and short-term recovery in
the face of disturbances, typically involves the community’s ability to resist and absorb
disturbance [6,9]. Additionally, the proactive aspect of RCR (P-RCR), which facilitates a
rural community’s long-term survival and prosperity despite constant changes, usually
combines personal and collective ability to respond to change proactively with diverse
community resources [5,6,10]. Through this proactive aspect, resilient rural communities
can deliberately utilize and develop those resources to adapt to change and transform
themselves into a new state that is usually more resilient than the original one [6,10,11].
The enhancement of RCR not only improves the viability of rural communities exposed to
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fast-onset disasters, but also allows them to adapt to slow-onset demographic, socioeco-
nomic and environmental changes more successfully and find new development pathways
to overcome adversities [7,12,13]. Fostering RCR has been viewed as essential to reduce
and prevent disaster risks in rural areas [3], to maintain rural populations, to improve rural
life quality and diversify rural economies in the context of rural decline [2,8,14].

As a result, researchers have shown great interest in factors that enhance or undermine
RCR [15], including built environment (BE) factors [16]. BE refers to “all of the physi-
cal structures and elements of the human-made environments in which we live, work,
travel, and play” [17], as well as the design and planning of these structures and elements
(e.g., urban design, land use planning, building codes) [18]. Whether a community can
withstand and rapidly recover from disasters usually depends on the performance of BE
during these disasters [19], and BE is also seen as an important resource for communities
coping with constant change [10]. In previous studies, great attention has been paid to BE’s
impacts on R-RCR. A range of BE attributes or components that dramatically influence the
level of R-RCR have been identified, including lifelines and critical infrastructure, quality of
building construction, land use planning, and design codes [16,20]. However, with respect
to P-RCR, the effects of BE are either omitted [21] or limited in a facility-economy way.
Most researchers tend to simplify BE to “infrastructure” or “facility” and view it as one
of the indicators comprising the economic dimension of P-RCR due to its monetary value
for rural communities [22–24]. For example, facilities provide services for the needs of
people and companies, attracting businesses that help rural communities develop their
economic resources [25]. One of the reasons leading to RCR researchers’ disproportional
attention to BE might be that the role of BE in P-RCR is not as explicit as in the process of
rural communities withstanding disasters.

Nevertheless, studies in rural health, psychology and environmental psychology indi-
cate that BE, either objectively measured (OBE) or perceived (PBE), is not dispensable to
P-RCR and has multiple approaches to influence P-RCR not merely through the facility-
economy way. Researchers focusing on rural health and the resilience of individuals find
that “facilities” also are of non-monetary value to rural communities and their resilience by
offering locations for people’s social interactions and influencing social networks through
perceived availability (PBE attribute) [26–28]. The non-facility BE attributes, for example,
perceived aesthetics of buildings and streets (PBE attribute), have impacts on rural commu-
nities’ economic diversity by attracting settlers to the area [28], and objectively measured
population density (OBE attribute) is associated with the environmental conditions of rural
communities [29]. Those social, economic and environmental factors are the key elements
that constitute three fundamental dimensions of P-RCR [30]. Moreover, environmental
psychology researchers note that place attachment (PA) can be impacted by OBE or PBE [31],
while PA is an important factor closely related to P-RCR [32]. These findings imply that
OBE/PBE may indirectly affect P-RCR through PA.

However, although a few researchers test the links between rural people’s perceptions
of facilities and P-RCR in case studies [2], the implications of OBE and PBE have not yet
been further examined simultaneously and holistically in empirical studies on P-RCR. In
addition, there is also a lack of a framework that depicts BE’s effects on P-RCR from an
integrative perspective. To fill this gap, we explored whether and how OBE and PBE affect
P-RCR in different dimensions with a holistic framework and structural equation modeling
(SEM) based on a sample of 7528 rural community residents from China. This sample was
nationally representative and divided into eastern, central, and western region groups
according to communities’ geographic locations. The reasons we selected Chinese rural
communities as our research objects were as follows. First, compared to developed coun-
tries, resilience research on communities attracts limited attention in developing economies,
with a particular gap in research in China regarding P-RCR [33]. Moreover, these com-
munities are experiencing demographic and socioeconomic changes that have been seen
as global issues in rural areas or termed as rural decline [1]. Therefore, research on the
relationship between BE and P-RCR in China will help domestic as well as international
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researchers develop a more detailed picture of RCR in the context of rural decline globally.
Second, what those resilience communities need to improve urgently is the proactive aspect.
Along with rapid urbanization and industrialization, the rural population in China began
to decrease dramatically in 1995 [34]. The size of the rural population declined by about
0.36 billion from 1995 (0.86 billion) to 2021 (0.50 billion) [35]. The outmigration of rural
laborers has accompanied this, leading to the reduction in human resources in traditional
agriculture, a decline in the agricultural income of rural households, hollowed-out villages
and the deterioration of traditional values [36]. To solve rural problems including depop-
ulation, lack of economic opportunity and the weakening of agricultural social cohesion,
a “rural revitalization strategy” was proposed in China in 2017 [37]. As a continuation
of this strategy, the Chinese government issued the “Rural Revitalization Strategic Plan
(2018–2022)” in 2018, with the revitalization of rural communities as its essential part [38].
Against this backdrop, fostering P-RCR in China is critical and urgent because, for revital-
ization and sustainable development, rural communities undergoing these changes require
intentional adaptation and transformation rather than maintenance of their original state,
which hardly exists amid constant socioeconomic change [13]. Further, those changes also
weaken RCR in China, including P-RCR [33,38]. In the face of such changes, the resilience
of rural communities faces challenges in community resources as well as residents’ will-
ingness and capacity to assume responsibility for community development [39]. Third,
exploring the BE-P-RCR relationship is key to P-RCR enhancement and sustainable rural
reconstruction in China. Top-down and bottom-up BE reconstruction have long been
seen as important approaches to reverse the trend of rural decline and as strategies for
achieving rural renaissance in China [40,41]. A series of policies with a central focus on BE
have been implemented since 2005, including new rural reconstruction and scenic rural
development [42]. However, though remarkable achievements have been made in these
reconstruction efforts, there are criticisms that farmers’ interests and social connections
are often ignored in those BE transformations, causing social contradictions [41,42] that
decrease P-RCR. As a result, investigating BE’s influences on P-RCR is necessary for a
better rural BE and improved P-RCR in China. It can be useful for planners and architects
identifying specific BE attributes that reinforce P-RCR as well as contribute to sustainable
rural reconstruction.

Specifically, in this study, we focused on the following questions:

1. Do OBE and PBE significantly affect P-RCR in the social, economic and environmental
dimensions?

2. How do OBE and PBE affect these dimensions, respectively?
3. Does PA or PBE play a mediating role in the BE-P-RCR relationship?

2. Theoretical Framework of the BE-P-RCR Relationship

We propose a holistic framework (Figure 1) to depict the BE-P-RCR relationship based
on an extensive literature review on BE, P-RCR and PA, which we will explain in the
following subsections. We applied this framework as our research scheme and the basis
of the structural equation models we used for statistical analysis in Section 3. In this
framework, there were six paths in total, including the paths from OBE to PBE, OBE to
P-RCR, OBE to PA, PBE to P-RCR, PBE to PA and PA to P-RCR. These paths represent the
OBE-PBE relationship and the potential ways OBE and PBE affect P-RCR in the social (Soc),
economic (Eco) and environmental (Env) dimensions.

2.1. The Path from OBE to PBE

We used both PBE and OBE to explore BE’s impacts on P-RCR, and we recognized
that OBE has effects on PBE based on the framework proposed by Marans [43]. Except
for distinctions in measurement approach, the differences between OBE and PBE have
led to considerations of the OBE-PBE relationship [43,44] and the issues of relying solely
on one approach to explore BE [45]. Many researchers have noticed that OBE cannot be
equal to PBE, even considering the similar environmental attributes, since different people
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might have different views on the same objective attributes [43,44]. To further explain this,
Marans [43] asserts that PBE reflects people’s perceptions and assessments of OBE, which
is influenced by their past experiences and OBE itself, and OBE has impacts on people’s
satisfaction with their community through PBE. In addition, Lewicka [45] suggests that
depending merely on residents’ perceptions of BE in PA studies is less reliable due to the
biases that may exist in these perceptions. As a result, our framework incorporated both
OBE and PBE with a pathway from OBE to PBE.

Figure 1. Theoretical framework of the BE-P-RCR relationship. PBE = perceived built environment;
OBE = objective built environment; PA = place attachment; P-RCR = the proactive aspect of rural
community resilience; Soc = social dimension of P-RCR; Eco = economic dimension of P-RCR;
Env = environmental dimension of P-RCR.

2.2. Direct Paths from OBE/PBE to P-RCR with Three Fundamental Dimensions
2.2.1. Three Fundamental Dimensions of P-RCR

Social, economic and environmental capital are fundamental to P-RCR. P-RCR relies
on the personal and collective agency of members [6,11,46], as well as community resources
or capital (e.g., social, economic, environmental, and cultural capital) that can be deployed
to deal with change [10,11,47]. It is enhanced through deliberate development and engage-
ment of these resources or capital by community members [10], and well-developed capital
often represents a high level overall or specific dimensions of P-RCR [22,23]. Soc, Eco and
Env are seen as fundamental dimensions of P-RCR [5], because they embody community
members’ willingness and ability to work together [10] as well as the critical resources
or capital communities use to respond to change [11,47]. Soc, including factors such as
the social networks between individuals and groups [30], trust [30], and happiness [13],
is fundamentally about the community members’ willingness and capacity to participate
in actions for coping with change [10]. Eco is the financial base of a rural community
and its members and includes components such as community economic well-being [47],
individual financial stability [13], and economic diversity [24]. Env often refers to the
ecological conditions of a rural community such as soil conditions [47], water quality [47]
and biodiversity [48], and the pro-environmental attitudes or behaviors of the community
members [5].

2.2.2. The Influences of OBE/PBE on P-RCR

The existing work suggests that OBE/PBE may influence P-RCR in terms of all three
dimensions. Regarding Soc, BE components such as schools, stores, and recreational and
healthcare facilities provide physical spaces for rural residents’ social interactions [26,28].
Consequently, the low perceived availability of facilities or infrastructures weakens rural
people’s social networks and lead to a decrease in resilience [28]. Moreover, although
lacking validation in rural communities, researchers find that objectively measured ac-
cessibility and perceived adequacy of facilities have independent impacts on social cap-
ital in suburban communities [49], and perceptions of safety are associated with social
capital in urban communities [50]. Concerning Eco, facilities contribute to the rural econ-
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omy in multiple ways (e.g., financial and retail services, job provision, tourism encour-
agement, consumption) [27], which implies that accessibility may be important for the
economic dimension of P-RCR. Meanwhile, the attractiveness of BE, such as aesthetic
perceptions of buildings and streetscapes, is helpful in the economic diversification of rural
communities [28]. Regarding Env, it is plausible that some PBE attributes (e.g., percep-
tions of litter and refuse) are associated with garbage pollution in rural China [29]. Some
researchers also notice that insufficient facilities decrease residents’ willingness to partici-
pate in environmental projects [51], and the population density (objectively measured) of
Chinese rural communities can influence their environment [29].

2.2.3. Direct Paths from OBE/PBE to Different Dimensions of P-RCR

It should be noted that the abovementioned influences of OBE/PBE on P-RCR might
be direct, indirect or both. We assume that OBE/PBE affects P-RCR in both ways. Direct
paths from OBE/PBE to P-RCR are included in the framework.

2.3. The Path from PA to P-RCR

PA is described as “an emotional connection to a place” [52] (p. 560). Usually, PA
has been seen as a good thing for P-RCR, since it motivates rural people’s participation in
community organizations and helps them cope with social, economic and environmental
problems and disasters in most cases [32,53], though some researchers also notice the
adverse effects of certain kinds of PA on RCR [54].

2.4. The Path from OBE/PBE to PA

In rural or agriculture studies relevant to BE, researchers have found the importance
of OBE/PBE to PA. For example, Bunkus et al. [55] emphasize that population density
reflecting the quantity of interactions impacts farmers’ PA in Germany directly and indi-
rectly; Christiaanse and Haartsen [56] confirm that the decreasing numbers of rural facilities
have disrupted the PA between rural people and these facilities and resulted in negative
emotional reactions and collective actions; researchers also recognize that within the context
of Chinese rural land consolidation, rural residents’ perceptions of BE are closely related to
their place identity [57], which has been viewed as an important component of PA [58].

3. Materials and Methods

3.1. Data

The data used in this study were derived from China Family Panel Studies (CFPS).
CFPS, conducted by the Institute of Social Science Survey (ISSS) of Peking University,
is a national and comprehensive social survey aiming to collect longitudinal data at the
individual, family and community levels in contemporary China for research on Chinese
social phenomena [59]. It covers 25 provinces, municipalities or autonomous regions in
China (except Hong Kong, Macao, Taiwan, Xinjiang, Qinghai, Inner Mongolia, Ningxia
and Hainan) and is carried out in waves every 2 years [59]. The data of CFPS contain many
datasets, including datasets related to communities and adult family members. We used
different datasets and waves of CFPS (Table 1), because the variables in our study involved
many aspects of rural life that connect with several CFPS datasets released so far, and parts
of these variables were collected in different waves.
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Table 1. Datasets and CFPS waves used in this study.

Variables Data Source (Datasets) Data Source (Waves)

OBE community CFPS 2014
PBE adult CFPS 2016
PA adult CFPS 2016

P-RCR community; adult CFPS 2014
P-RCR adult CFPS 2016

OBE = objective built environment; PBE = perceived built environment; P-RCR = the proactive aspect of rural
community resilience; CFPS 2014/2016 = China Family Panel Studies in 2014/2016.

Specifically, we combined the variables of OBE and P-RCR (Soc, Env and part of Eco)
from CFPS 2014 (datasets on communities and adults), the variables of PBE, P-RCR (Eco
pertaining to individuals) and PA from 2016 (adult dataset) by linking “community ID”
after keeping all samples of rural communities (communities in rural areas and urban
residential areas newly transformed from villages). However, we excluded the respondents
who had moved to a new residential address or had a primary job and income change
during 2014–2016, for these respondents may make less reliable evaluations of OBE and
individual economic well-being in the context of our study. At last, we obtained a sample
of 7528 rural community respondents in China.

We divided this sample into three groups based on the geographic locations of
25 provinces (municipalities or autonomous regions). These were the groups of eastern
regions (n = 2719), central regions (n = 2130) and western regions (n = 2679) (Table 2). This
was because besides the community-scale factors, factors outside the community can also
influence RCR (e.g., regional policies, markets and natural resources) [13,22]. External
factors, such as unbalanced rural industrial development and rural income inequality in
coastal and inland regions in China [60,61], could interfere with our study, which concen-
trated on community-scale BE impacts on P-RCR. As a result, the effects of BE on P-RCR in
this study were explored separately using three groups of data. STATA Version15 was used
for data cleaning and grouping.

Table 2. The eastern, central and western regions.

Regions Provinces, Municipalities or Autonomous Regions Sample Size

Eastern Beijing, Tianjin, Hebei, Liaoning, Shanghai, Jiangsu, Zhejiang,
Fujian, Shandong, Guangdong, Guangxi 2719

Central Shanxi, Jilin, Heilongjiang, Anhui, Jiangxi, Henan, Hubei, Hunan 2130

Western Chongqing, Sichuan, Guizhou, Yunnan, Shaanxi, Gansu 2679

3.2. Variables
3.2.1. OBE

For our research purpose, OBE in this study was quantified with accessibility and pop-
ulation density [49,62,63]. We measured these two variables using the equations proposed
by Sun et al. [64]. In CFPS 2014, the data relating to OBE included size of community admin-
istrative area (square kilometers), permanent resident population and numbers of facilities
(stores, kindergartens, primary schools, middle schools, hospitals or clinics, pharmacies,
churches, ancestral halls, temples, activity facilities or community service centers for the
elderly, nursing homes, physical exercise facilities and playgrounds) in the community.
Based on Sun et al.’s study [64], we treated population density and accessibility of facilities
as two observation variables of OBE and calculated them as follows:

d = P/A (1)

a = N/A (2)
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where d is population density, a is accessibility, P is permanent resident population of the
community, N is the number of facilities in the community, A is size of administrative area
(square kilometers). A higher proportion accounted for higher population density and
better accessibility.

3.2.2. PBE and PA

For PBE assessment, we used the data on residents’ perceptions of their neighborhood
BE in CFPS 2016. It contains overall perceptions of public facilities, safety and surrounding
environment of neighborhood (e.g., aesthetics and noise), which have been seen as critical
PBE attributes in studies pertaining to a rural context, social capital or PA [65,66]. We
treated PBE as a latent variable consisting of these three kinds of perceptions. PA was
estimated using data from the residents’ evaluations of their emotional attachment to the
community in CFPS 2016. All indicators of PBE and PA were rated with a 5-point scale,
ranging from 1 (very good or very much) to 5 (very poor or not at all). We reversed the
code for the convenience of explaining that a higher score represented a better perception
of BE.

3.2.3. Key Dimensions of P-RCR

In this study, P-RCR was quantified based on the framework explored by
Markantoni et al. [5], which integrated the frameworks proposed by Steiner and
Markantoni [13] and Wilson [30] to measure Soc, Eco and Env at the individual and
community levels. Since this framework focuses on socioeconomic changes of rural areas
and estimates the three key dimensions of P-RCR through both individual and collective
levels, it seemed appropriate for our study.

At the individual level, Soc was assessed by happiness [13], and based on Shen
and Jia [67], we used self-evaluated happiness (10-point scale, ranging from “lowest”
to “highest”), life satisfaction (5-point scale, ranging from “very unsatisfied” to “very
satisfied”) and confidence in the future (5-point scale, ranging from “not confident at all”
to “very confident”) derived from CFPS 2014 as the measurement indicators of happiness.
Individual-level Eco was evaluated by personal financial stability [13], and the data on
income satisfaction (5-point scale, ranging from “very unsatisfied” to “very satisfied”),
overall job satisfaction (5-point scale, ranging from “very unsatisfied” to “very satisfied”)
and working environment satisfaction (5-point scale, ranging from “very unsatisfied” to
“very satisfied”) obtained from CFPS 2016 were used to measure this stability. Individual-
level Env was estimated on the basis of pro-environmental attitudes or behavior [5], using
the severity of environmental problems rated by adult respondents (10-point scale, ranging
from “not severe” to “extremely severe”) in CFPS 2014 as the indicator. This was because
people facing severe environmental problems are more likely to support environmental
protection [68]. At the community level, Soc, Eco and Env were measured in terms of
trust in neighborhood [30], community economic well-being [47] and biodiversity [48],
respectively. The data obtained from CFPS 2014 (adult dataset) were used to quantify these
dimensions, including neighborhood trust (10-point scale, ranging from “distrustful” to
“very trustworthy”), net income per capita (CNY) and the proportion of forest and/or land
with fruit trees in the community administrative area. For all levels, a higher rating score,
income or proportion represented better PBE or greater Soc, Eco and Env.

3.2.4. Covariate

The covariate was the socioeconomic status of residents. Lewicka [45] asserts that the
predictors of PA include physical factors (e.g., objective BE features) as well as social factors
(e.g., safety, social ties), and the relative importance of these factors depends on residents’
socioeconomic status in some cases. Since PA was an important endogenous variable in
our study, overlooking the differences in residents’ socioeconomic status might have led to
imprecision in our study. Therefore, we used socioeconomic status as the covariate and
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employed the data on self-reported social and economic status (5-point scale, ranging from
lowest to highest) obtained from CFPS 2014 (adult dataset) to measure this covariate.

3.2.5. Questions Used for Variable Measurement

Specific questions used to derive indicators of PBE, PA, different dimensions of P-RCR
and the covariate are displayed in Table 3.

Table 3. Questions used to derive indicators of PBE, PA, P-RCR and the covariate.

Variables Indicators Questions Source

PBE

Community
Environment

How is the surrounding environment of your community
(noise, trash disposal, etc.)? (reversed code ranging from
1 = very poor to 5 = very good)

CFPS 2016 Full
QuestionnairesSafety

How is the public safety around your community?
(reversed code ranging from 1 = very poor to
5 = very good)

Public Facilities
What do you think of the public facilities around your
community? (reversed code ranging from 1 = very poor to
5 = very good)

P-RCR

Individual-level

Social
Dimension

1. Are you happy? (ranging from 1 = lowest to
10 = highest)
2. How confident are you about your future? (ranging
from 1 = not confident at all to 5 = very confident)
3. Are you satisfied with your life? (ranging from 1 = very
unsatisfied to 5 = very satisfied)

CFPS 2014 Full
Questionnaires;
CFPS 2016 Full
Questionnaires

Economic
Dimension

1. How satisfied are you with your current income from
this job? (ranging from 1 = very unsatisfied to
5 = very satisfied)
2. In general, how satisfied are you with this job? (ranging
from 1 = very unsatisfied to 5 = very satisfied)
3. How satisfied are you with the working environment in
this job? (ranging from 1 = very unsatisfied to
5 = very satisfied)

Environmental
Dimension

How would you rate the severity of the environmental
problem in China? (ranging from 1 = not severe to
10 = extremely severe)

Community-level

Social
Dimension

How much do you trust your neighborhood? (ranging
from 1 = distrustful to 10 = very trustworthy)

CFPS 2014 Full
Questionnaires

Economic
Dimension The net income per capita in your village (yuan)

Environmental
Dimension

1.The total area of forest and/or land with fruit trees in
your village (mu)
2. What is the current administrative area of your
village/residential community? (kilometer2/mu)

PA Emotional
Attachment

How would you rate your emotional attachment to your
community? (ranging from 1 = very good to 5 = very poor)

CFPS 2016 Full
Questionnaires

Covariate
Self-reported
Socioeconomic
Status

1. What is your relative income level in your local area?
(ranging from 1 = lowest to 5 = highest)
2. What is your social status in your local area? (ranging
from 1 = lowest to 5 = highest)

CFPS 2014 Full
Questionnaires

BE = built environment; PBE = perceived built environment; P-RCR = the proactive aspect of rural community
resilience; PA = place attachment. CFPS 2014/2016 = China Family Panel Studies in 2014/2016.

3.3. Methods

Structural equation modeling (SEM) has been an important tool for analyzing the
interactions between the physical environment and rural society [55,57]. SEM consists of a
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measurement model that can measure the reliability and validity of latent variables, and a
structural equation that can be used to analyze the paths between the constructs.

The reasons we employed SEM as an analytical tool in this study were manifold. First,
SEM allows researchers to investigate complex relationships between multiple constructs
in a single model and provides an easier way to discuss the model [55,69]. Therefore, it
fit well with our study, which attempted to explore the associations between OBE, PBE,
PA and three different dimensions of P-RCR in one holistic framework. Second, SEM is
usually applied to verify a theoretical hypothesis by analyzing observations and latent
variables through statistical procedures including path analysis, regression and structural
equations [55,57]. As a result, it could be a useful tool for testing the BE-P-RCR relationship
we postulated in this study. The statistical analysis in this study was built on three steps:

1. Step one: Measurement model testing and descriptive statistical analysis

In this step, confirmatory factor analysis (CFA) was performed using different groups
of data and AMOS Version 26. Meanwhile, descriptive statistical analysis was conducted
using STATA Version15.

2. Step two: Structural equation model building

In this step, two basic structural equation models were established based on the
framework shown in Figure 1, including the individual-level model (with the variables of
OBE, PBE, PA and Soc, Eco, Env at the individual level) and the community-level model
(with the variables of OBE, PBE, PA and Soc, Eco, Env at the community level). Figure 2
demonstrates the structure of the two basic models.

Figure 2. The structure of individual- and community-level models (Source: authors).

3. Step three: Application of structural equation model

Since population density and accessibility are highly correlated, these two indicators
were examined separately in the basic models for multicollinearity reduction. Consequently,
there were four models we needed to explore:

1. Individual-level model with population density (Model 1);
2. Individual-level model with accessibility (Model 2);
3. Community-level model with population density (Model 3);
4. Community-level model with accessibility (Model 4).

Each model was tested using three groups of data separately; therefore, 12 models
were applied using AMOS Version 26, and the paths to all endogenous variables were
controlled for the covariate.

4. Results

4.1. The Results of CFA and Descriptive Statistics

All composite reliability (CR) values for latent variables with multiple indicators
derived from three groups of data were above 0.6 (0.776 ≥ CR ≥ 0.631), indicating a high
degree of internal consistency [70] (Table A1). For acceptable convergent validity, generally
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an average variance extracted (AVE) value should be 0.5 or above [70]. However, Chin [71]
suggests that most loadings should be at least 0.60 to ensure each measure can explain half
or more of the variance in the latent variable, which indicates that the threshold of the AVE
value should be at least 0.36. In this study, all AVE values exceeded or were close to 0.5
(0.539 ≥ AVE ≥ 0.428), except AVE for PBE and individual-level Soc in western regions
(above 0.36) (Table A1). Moreover, the square root of the AVE value for each latent variable
with multiple indicators was greater than the values of its correlations with other multiple
indicator variables, demonstrating a high discriminant validity of our models (Table A2).

Table 4 displays the average population density (natural logarithm) and the standard
deviation (sd) in eastern, central and western regions, which were 5.649 (sd = 1.461), 5.885
(sd = 1.352), and 5.196 (sd = 1.234), respectively. The average accessibility (natural logarithm)
and the standard deviation in eastern, central and western regions were 0.728 (sd = 1.426),
0.855 (sd = 1.353), and 0.239 (sd = 1.263), respectively. Most respondents evaluated PBE
as fair, as the median values for public facilities, surrounding environment and public
safety in three regions were all 3 (“fair” option), while the interquartile ranges (IQR) of
these values were all 1, which represents a central tendency of these values. Moreover,
respondents are somewhat emotionally attached to their communities (all Median = 4,
IQR ≤ 2). On average, respondents reported similar levels of life satisfaction (Mean ≈ 3.8)
and confidence in their future (Mean ≈ 4.1) in all regions, but higher happiness levels in
the eastern and central regions (Mean ≈ 7.5) than in the western regions (Mean ≈ 6.9).
Most respondents reported their income (all Median = 3, IQR ≤ 2), working environment
(all Median = 3, IQR = 1 except Median = 4 in central regions) and overall job satisfaction
(all Median = 3, IQR = 1) as fair. Eastern and central region respondents reported higher
average severity of environmental problems, neighborhood trust degree and net income per
capita (natural logarithm) than their western region counterparts. The average biodiversity
(natural logarithm) and the standard deviation were 6.978 (sd = 5.765) in eastern, 4.453
(sd = 5.531) in central and 6.925 (sd = 5.853) in western regions.

Table 4. Descriptive statistics for the covariate, individual- and community-level variables derived
from samples of the eastern (n = 2719), central (n = 2130) and western regions (n = 2679).

Eastern Regions Central Regions Western Regions

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Variables
Median
(Mean)

IQR
(sd)

Min Max
Median
(Mean)

IQR
(sd)

Min Max
Median
(Mean)

IQR
(sd)

Min Max

Population Density * (5.649) (1.461) 2.907 9.076 (5.885) (1.352) 2.907 9.076 (5.196) (1.234) 2.907 8.976
Accessibility * (0.728) (1.426) −2.676 4.605 (0.855) (1.353) −2.676 4.605 (0.239) (1.263) −2.676 3.519

Public Facilities 3 1 1 5 3 1 1 5 3 1 1 5
Surrounding
Environment 3 1 1 5 3 1 1 5 3 1 1 5

Public Safety 3 1 1 5 3 1 1 5 3 1 1 5
Emotional Attachment 4 1 1 5 4 1 1 5 4 2 1 5

Happiness (7.534) (2.269) 0 10 (7.484) (2.250) 0 10 (6.904) (2.403) 0 10
Life Satisfaction (3.782) (1.051) 1 5 (3.874) (1.009) 1 5 (3.823) (1.021) 1 5

Confidence in the Future (4.053) (1.046) 1 5 (4.144) (1.004) 1 5 (4.031) (1.052) 1 5
Income Satisfaction 3 2 1 5 3 1 1 5 3 1 1 5

Working Environment
Satisfaction 3 1 1 5 4 1 1 5 3 1 1 5

Overall Job Satisfaction 3 1 1 5 3 1 1 5 3 1 1 5
Severity of

Environmental Problems (6.541) (2.845) 0 10 (6.447) (2.770) 0 10 (6.078) (2.698) 0 10

Trust in Neighborhood (6.895) (2.260) 0 10 (6.894) (2.218) 0 10 (6.455) (2.258) 0 10
Net Income Per Capita

(CNY) * (8.517) (0.798) 6.685 9.903 (8.181) (0.647) 6.685 9.903 (7.976) (0.691) 6.685 9.107

Biodiversity * (6.978) (5.765) 0 14.57 (4.453) (5.531) 0 14.57 (6.925) (5.853) 0 14.57

* We took the natural logarithm of these variables. Biodiversity = proportion of forest (and/or land with fruit
trees) land area in administrative area. sd = standard deviation; IQR = interquartile range.

4.2. Analysis of the Results of the Structural Equation Model

All 12 models had acceptable goodness of fit. Because in each model, the Chi-
square/degrees of freedom < 5, the comparative fit index > 0.95, the root mean square error
of approximation < 0.05, and the standardized root mean square residual was below 0.05.
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The specific fits of each model are shown in Appendix A Table A3. As shown in Figure 2,
direct effects included the impacts of direct paths from OBE/PBE to three dimensions of
P-RCR. The indirect effects consisted of the impacts of paths from OBE to three dimensions
of P-RCR through PA and first PA, then PBE, as well as the paths from PBE to three di-
mensions of P-RCR via PA. Total effects were the sum of direct effects and indirect effects.
It represents all of the effects an exogenous variable had on an endogenous variable in
this study.

To examine whether and how BE influenced three dimensions of P-RCR, we first
focused on whether there were positive or negative significant total effects of OBE/PBE
on three dimensions of P-RCR, since it was more rational to infer that BE can affect P-RCR
when significant total effects of BE are identified. Then, we paid attention to the indirect
effects that PA or PBE can mediate. We highlighted the mediating role that PA and PBE play
in the BE-P-RCR relationship when the total effects of OBE/PBE on P-RCR are significant.
This study did not elaborate on the significant mediation effects related to insignificant
total effects.

4.2.1. Total and Indirect Effects of PBE on P-RCR

Table 5 shows that the total effects of PBE on Soc and Eco were significant and positive
in all three regions at the individual and community levels, apart from community-level
Eco in the western regions (significant and negative). Regarding Env, significant and
negative total effects of PBE were identified at the individual level in all regions, while at
the community level, the total effects of PBE were negative in the eastern regions, positive
in central regions and insignificant in western regions.
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Table 5. Total, direct and indirect effects of PBE on P-RCR in terms of Soc, Eco and Env.

Pathways
and Effects

Dimensions

Model 1 Model 2 Model 3 Model 4

Point
Estimate

Standard
Error

Point
Estimate

Standard
Error

Point
Estimate

Standard
Error

Point
Estimate

Standard
Error

Eastern Regions

PBE→PA→
Indirect Effects

Soc 0.058 *** 0.010 0.057 *** 0.010 0.164 *** 0.029 0.163 *** 0.029
Eco 0.031 *** 0.009 0.031 *** 0.009 −0.022 ** 0.009 −0.022 ** 0.009
Env 0.047 0.033 0.048 0.033 −0.067 0.064 −0.076 0.064

Direct Effects
Soc 0.172 0.031 0.172 0.031 0.274 0.091 0.277 0.091
Eco 0.434 0.037 0.432 0.037 0.132 0.031 0.133 0.031
Env −0.654 0.122 −0.658 0.122 −0.711 0.230 −0.682 0.230

Total Effects
Soc 0.230 *** 0.030 0.230 *** 0.030 0.438 ** 0.085 0.440 ** 0.086
Eco 0.465 *** 0.035 0.463 *** 0.035 0.110 *** 0.029 0.111 *** 0.029
Env −0.607 *** 0.113 −0.611 *** 0.113 −0.778 ** 0.213 −0.758 ** 0.214

Central Regions

PBE→PA→
Indirect Effects

Soc 0.021 ** 0.008 0.021 ** 0.008 0.102 *** 0.029 0.101 *** 0.029
Eco 0.005 0.009 0.005 0.009 0.001 0.008 0.000 0.007
Env 0.091 ** 0.034 0.091 ** 0.034 −0.095 0.068 −0.075 0.068

Direct Effects
Soc 0.099 0.033 0.099 0.033 0.556 0.115 0.549 0.115
Eco 0.494 0.038 0.492 0.038 0.090 0.029 0.089 0.028
Env −0.713 0.132 −0.712 0.132 0.666 0.262 0.765 0.271

Total Effects
Soc 0.121 *** 0.031 0.120 *** 0.031 0.658 *** 0.111 0.651 *** 0.111
Eco 0.499 *** 0.036 0.497 *** 0.036 0.091 ** 0.027 0.089 ** 0.027
Env −0.622 *** 0.123 −0.622 *** 0.123 0.571 ** 0.247 0.689 ** 0.256

Western Regions

PBE→PA→
Indirect Effects

Soc 0.013 0.008 0.014 0.008 0.040 0.029 0.040 0.029
Eco 0.016 0.009 0.016 0.009 0.003 0.008 0.002 0.008
Env 0.043 0.032 0.043 0.033 0.054 0.073 0.045 0.073

Direct Effects
Soc 0.081 0.031 0.086 0.031 0.226 0.116 0.239 0.116
Eco 0.533 0.051 0.537 0.051 −0.090 0.035 −0.080 0.036
Env −0.461 0.142 −0.466 0.143 −0.150 0.299 −0.189 0.301

Total Effects
Soc 0.094 ** 0.030 0.099 ** 0.030 0.267 * 0.110 0.279 * 0.110
Eco 0.549 *** 0.048 0.553 *** 0.049 −0.087 ** 0.033 −0.078 * 0.033
Env −0.418 ** 0.135 −0.423 ** 0.135 −0.097 0.281 −0.144 0.283

Underlined and bold values represent significant total and mediation effects (5000 bootstrap samples, 95% bias-
correct confidence level). *** p < 0.001; ** p < 0.01; * p < 0.05. PBE = perceived built environment; PA = place
attachment; Soc = social dimension; Eco = economic dimension; Env = environmental dimension; “PBE→PA→”
refers to the pathways from PBE to Soc/Eco/Env through PA.

In eastern regions, the mediation effects of PA were found in the relationships be-
tween PBE and Soc/Eco at the individual and community levels. In central regions, PA
significantly mediated the effects of PBE on Soc (individual- and community-level) and
individual-level Env. No mediation effect of PA was observed in the western regions.

4.2.2. Total and Indirect Effects of OBE on P-RCR

The values in Table 6 illustrate that the total effects of population density and accessi-
bility on Soc were significant and negative in the eastern regions at the individual level.
Referring to Eco, in the eastern regions, a significant and negative total effect of accessibility
on Eco was only identified at the individual level. The values listed in Tables 7 and 8
show that in the central and western regions, both accessibility and population density had
significant total effects on Eco at the individual and community levels. Regarding Env, the
total effects of population density and accessibility were significant at the community level
but insignificant at the individual level in all regions.

Concerning indirect effects, the values in Table 6 indicate that both PA and PBE signifi-
cantly mediated the influences of OBE (population density/accessibility) on individual-
level Soc and accessibility on individual-level Eco in the eastern regions. However, when
considering all of the indirect paths from OBE to individual-level Soc in the eastern regions,
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OBE had insignificant total indirect effects on individual-level Soc, since the effects of OBE
on Soc through the PBE path (negative) and firstly PA, then the PBE, path (negative) offset
the PA path effects (positive). The values in Tables 6–8 demonstrate that PBE could also be
a mediator in the relationship between OBE and community-level Env in the eastern and
central regions, as well as between OBE and Eco in the western regions.

Table 6. Total, direct and indirect effects of OBE on P-RCR (eastern regions).

Pathways and Effects
(Eastern Regions) Dimensions

Model 1 Model 2 Model 3 Model 4

Point
Estimate

Standard
Error

Point
Estimate

Standard
Error

Point
Estimate

Standard
Error

Point
Estimate

Standard
Error

OBE→PBE→PA→
Indirect Effects

Soc −0.002 *** 0.001 −0.002 *** 0.001 −0.005 0.002 −0.005 0.002
Eco −0.001 0.000 −0.001 0.000 0.001 0.000 0.001 0.000
Env −0.002 0.001 −0.002 0.001 0.002 0.002 0.002 0.002

OBE→PBE→
Indirect Effects

Soc −0.006 *** 0.002 −0.006 *** 0.002 −0.009 0.004 −0.009 0.004
Eco −0.015 0.004 −0.014 *** 0.004 −0.004 0.002 −0.004 0.002
Env 0.022 0.007 0.022 0.007 0.024 ** 0.011 0.022 ** 0.010

OBE→PA→
Indirect Effects

Soc 0.005 *** 0.002 0.004 ** 0.002 0.014 0.005 0.011 0.004
Eco 0.003 0.001 0.002 ** 0.001 −0.002 0.001 −0.001 0.001
Env 0.004 0.003 0.003 0.003 −0.006 0.006 −0.005 0.005

Total Indirect Effects
Soc −0.003 0.003 −0.004 0.003 −0.001 0.006 −0.004 0.006
Eco −0.013 0.005 −0.013 ** 0.005 −0.006 0.002 −0.005 0.002
Env 0.025 0.008 0.023 0.008 0.020 0.012 0.020 * 0.012

Direct Effects
Soc −0.018 0.009 −0.020 0.009 −0.013 0.028 0.000 0.029
Eco −0.003 0.010 −0.014 0.010 0.019 0.012 0.027 0.012
Env 0.027 0.036 0.012 0.036 −0.314 0.076 −0.225 0.078

Total Effects
Soc −0.021 * 0.010 −0.023 * 0.010 −0.014 0.028 −0.004 0.029
Eco −0.017 0.010 −0.028 ** 0.010 0.013 0.012 0.022 0.012
Env 0.051 0.035 0.035 0.036 −0.294 ** 0.076 −0.206 * 0.077

Underlined and bold values represent significant total and mediation effects (5000 bootstrap samples, 95% bias-
correct confidence level). *** p < 0.001; ** p < 0.01; * p < 0.05. PBE = perceived built environment; PA = place attach-
ment; Soc = social dimension; Eco = economic dimension; Env = environmental dimension. “OBE→PBE→PA→”
refers to the pathways from OBE to Soc/Eco/Env first through PBE, then PA; “OBE→PBE→” refers to the path-
ways from OBE to Soc/Eco/Env through PBE. “OBE→PA→” refers to the pathways from OBE to Soc/Eco/Env
first through PA.
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Table 7. Total, direct and indirect effects of OBE on P-RCR (central regions).

Pathways and Effects
(Central Regions) Dimensions

Model 1 Model 2 Model 3 Model 4

Point
Estimate

Standard
Error

Point
Estimate

Standard
Error

Point
Estimate

Standard
Error

Point
Estimate

Standard
Error

OBE→PBE→PA→
Indirect Effects

Soc 0.000 0.000 −0.001 0.000 −0.002 0.001 −0.003 0.001
Eco 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Env −0.002 0.001 −0.002 0.001 0.002 0.002 0.002 0.002

OBE→PBE→
Indirect Effects

Soc −0.002 0.002 −0.002 0.002 −0.014 0.007 −0.014 0.007
Eco −0.011 0.006 −0.012 0.006 −0.002 0.001 −0.002 0.001
Env 0.017 0.010 0.018 0.009 −0.016 * 0.011 −0.019 * 0.012

OBE→PA→
Indirect Effects

Soc −0.001 0.001 −0.001 0.001 −0.005 0.004 −0.006 0.004
Eco 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.000
Env −0.005 0.003 −0.005 0.004 0.004 0.005 0.004 0.005

Total Indirect Effects
Soc −0.004 0.002 −0.004 0.002 −0.021 0.009 −0.022 0.009
Eco −0.012 0.006 −0.013 * 0.006 −0.002 0.001 −0.002 0.001
Env 0.010 0.009 0.010 0.009 −0.010 0.011 −0.013 0.012

Direct Effects
Soc −0.003 0.010 −0.008 0.010 0.028 0.035 −0.008 0.035
Eco 0.049 0.011 0.046 0.011 −0.077 0.010 −0.101 0.009
Env −0.045 0.044 −0.043 0.043 −0.453 0.083 0.324 0.085

Total Effects
Soc −0.007 0.010 −0.013 0.010 0.007 0.035 −0.030 0.035
Eco 0.037 ** 0.012 0.033 ** 0.012 −0.079 *** 0.010 −0.103 *** 0.009
Env −0.035 0.044 −0.033 0.043 −0.463 *** 0.083 0.311 *** 0.085

Underlined and bold values represent significant total and mediation effects (5000 bootstrap samples, 95% bias-
correct confidence level). *** p < 0.001; ** p < 0.01; * p < 0.05. PBE = perceived built environment; PA = place attach-
ment; Soc = social dimension; Eco = economic dimension; Env = environmental dimension. “OBE→PBE →PA→”
refers to the pathways from OBE to Soc/Eco/Env first through PBE, then PA; “OBE→PBE→” refers to the path-
ways from OBE to Soc/Eco/Env through PBE. “OBE→PA→” refers to the pathways from OBE to Soc/Eco/Env
first through PA.

Table 8. Total, direct and indirect effects of OBE on P-RCR (western regions).

Pathways and Effects
(Western Regions) Dimensions

Model 1 Model 2 Model 3 Model 4

Point
Estimate

Standard
Error

Point
Estimate

Standard
Error

Point
Estimate

Standard
Error

Point
Estimate

Standard
Error

OBE→PBE→PA→
Indirect Effects

Soc −0.001 0.000 −0.001 0.000 −0.002 0.001 −0.002 0.001
Eco −0.001 0.000 −0.001 0.000 0.000 0.000 0.000 0.000
Env −0.002 0.002 −0.002 0.002 −0.002 0.003 −0.002 0.004

OBE→PBE→
Indirect Effects

Soc −0.004 0.002 −0.004 0.002 −0.010 0.006 −0.011 0.006
Eco −0.024 *** 0.006 −0.026 *** 0.006 0.004 ** 0.002 0.004 ** 0.002
Env 0.021 0.008 0.023 0.008 0.007 0.013 0.009 0.015

OBE→PA→
Indirect Effects

Soc −0.001 0.001 0.000 0.000 −0.002 0.002 −0.001 0.001
Eco −0.001 0.001 0.000 0.001 0.000 0.000 0.000 0.000
Env −0.002 0.002 −0.001 0.002 −0.002 0.004 −0.001 0.003

Total Indirect Effects
Soc −0.005 0.002 −0.005 0.002 −0.013 0.006 −0.014 0.006
Eco −0.025 *** 0.006 −0.027 *** 0.006 0.004 ** 0.002 0.004 * 0.002
Env 0.017 0.008 0.019 0.008 0.002 0.013 0.006 0.014

Direct Effects
Soc 0.007 0.009 0.020 0.009 0.035 0.036 0.064 0.035
Eco −0.010 0.012 0.000 0.011 0.087 0.011 0.105 0.010
Env −0.019 0.043 −0.035 0.042 0.562 0.092 0.343 0.089

Total Effects
Soc 0.002 0.009 0.014 0.009 0.022 0.036 0.049 0.035
Eco −0.035 ** 0.012 −0.028 ** 0.011 0.090 *** 0.011 0.109 *** 0.009
Env −0.003 0.042 −0.016 0.041 0.564 *** 0.090 0.349 *** 0.088

Underlined and bold values represent significant total and mediation effects (5000 bootstrap samples, 95%. bias-
correct confidence level). *** p < 0.001; ** p < 0.01; * p < 0.05. PBE = perceived built environment; PA = place attach-
ment; Soc = social dimension; Eco = economic dimension; Env = environmental dimension. “OBE→PBE→PA→”
refers to the pathways from OBE to Soc/Eco/Env first through PBE, then PA; “OBE→PBE→” refers to the path-
ways from OBE to Soc/Eco/Env through PBE. “OBE→PA→” refers to the pathways from OBE to Soc/Eco/Env
first through PA.
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5. Discussion

5.1. Significant Effects of PBE/OBE on Three Dimensions of P-RCR

Our findings show that both PBE and OBE significantly affected three dimensions
of P-RCR. PBE had significant total effects on three dimensions of P-RCR in all regions
at both the individual and community levels (except community-level Env in western
regions). OBE significantly affected individual-level Soc (eastern regions), Eco (individual-
and community-level Eco in central and western regions; individual-level Eco in eastern
regions) and community-level Env (all regions). These findings statistically support that the
way BE influences P-RCR is varied rather than constrained in a facility-economy approach.

5.2. Differences between Effects of PBE/OBE on Three Dimensions of P-RCR

PBE’s impacts on P-RCR were consistent among regions regarding Soc, Eco and
individual-level Env. PBE was positively associated with Soc and Eco in all regions at
both levels, with the single exception of community-level Eco in the western regions. This
indicates that better PBE leads to a greater P-RCR in Soc and Eco in most cases. This is
in line with the findings based on a Western context that perceived adequacy of facilities,
attractive BE and feelings of safety contribute to richer social capital and greater economic
resilience [28,49,50]. Referring to Env, a negative link between PBE and individual-level Env
was observed. One of the potential explanations for why PBE predicts residents’ negative
attitudes toward environmental protection is that residents’ willingness and actions to
protect the environment are frequently associated with environmental deterioration [68].
However, good PBE is more likely to correlate with a good residential environment. In terms
of community-level Env, PBE’s impacts showed an inconsistency in different regions. In
central regions, better evaluations of PBE increased the likelihood of higher forest (and/or
fruit tree) coverage in rural communities. It may be evidence of the finding that sufficient
facilities or infrastructure raise farmers’ willingness to participate in the Grain-for-Green
Project in China [51]. However, this was not applicable for explaining the correlations
between PBE and community-level Env in the eastern (negative) and western regions
(insignificant). Therefore, further research is needed to ascertain the relationship between
PBE and community-level Env.

Compared to PBE, OBE’s impacts on the three dimensions of P-RCR were varied
in different regions and levels. This implies that regional disparities may be critical to
OBE’s impacts on P-RCR, and OBE plays different roles in fostering individual- and
community-level P-RCR. For instance, our results show that in the eastern coastal regions
where rural industrial development levels were higher and rural income inequality levels
were lower [60,61], higher population density or accessibility may result in lower levels
of happiness and undermine Soc, but no similar correlation was found in inland central
and western regions where rural industrial development levels were lower, and income
inequality levels were higher. In terms of OBE’s impacts on different levels of P-RCR, in
central regions, higher population density or accessibility may have contributed to a greater
Eco at the individual level but not at the community level; the exact reverse was the case in
the western regions.

5.3. The Significant Mediation Roles PA and PBE Play in the BE-P-RCR Relationship

Our findings indicate that there are two significant mediation roles that PA plays in
the BE-P-RCR relationship. One is the positive role in P-RCR enhancement. PA provides
a critical indirect path through which better PBE bring an increment in Soc (eastern and
central regions) and individual-level Eco (eastern regions). It counteracts the negative
effects of OBE (accessibility/density) on happiness and OBE (accessibility) on personal
financial stability in the eastern regions. It offsets the adverse effects of PBE on residents’
attitudes toward environmental protection in the central regions. The other is the negative
role in P-RCR enhancement. In the eastern regions, it reduces the positive impacts PBE has
on community economic well-being. This suggests that the mediation effects of PA are not
always beneficial to P-RCR, which is in line with the findings that different types of PA
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play different roles in RCR [54]. For example, residents with stability-oriented PA are often
unwilling to change their current economic lifestyle closely related to rural facilities and
services, which may not be good for enhancing community-level resilience [54].

In the western regions, OBE significantly influences Eco through PBE, and in eastern
regions, accessibility has significant impacts on individual-level Eco through PBE. This
supports the OBE-PBE relationship proposed by Marans [43] and the impacts of OBE/PBE
on Eco. PBE also mediates the influences of OBE on community-level Env in the eastern
and central regions, although the mechanisms remain unclear.

5.4. Strengths and Limitations

This study focused on the questions of whether and how BE affects P-RCR, subjects
that attracted less attention in previous studies but are crucial to RCR enhancement. We
investigated the effects of OBE/PBE on three dimensions of P-RCR using SEM based on
the empirical data obtained from CFPS and a holistic framework combining OBE/PBE, PA
and P-RCR. Our findings provide a more-detailed picture of the BE-P-RCR relationship
and new empirical evidence of BE’s multi-effects on P-RCR in terms of Soc, Eco and Env.

This study has several limitations. First, it was difficult to determine whether BE
positively or negatively influences the overall level of P-RCR based on our study, since OBE
and PBE had inverse effects on the same dimension at different levels in specific regions,
and their effects on different dimensions were also inverse sometimes. Nevertheless, our
findings are useful for researchers in understanding BE’s impacts on specific dimensions
and levels of P-RCR. Second, as stated earlier, the mechanism leading to PBE’s impacts
on community-level Env is still unclear. This may be a result of our measurement strate-
gies (e.g., using biodiversity for community-level Env measurement) and data limitation.
Therefore, more data and sophisticated research designs are required to understand the
relationships between PBE and Env in future study. Third, the data we used in this study
was collected in different waves, which might not have been beneficial for our research in
terms of reliability. However, many researchers recognize that it is acceptable to apply data
obtained from different waves of CFPS in the same analysis or SEM model considering the
reality of China [64,72]. Moreover, we restricted respondents’ residential addresses, income
and professions when using 2014 and 2016 data for reliability improvement. As a result,
applying data derived from 2014 to 2016 in this study would still be acceptable and reliable.
Fourth, although our sample covered a large number of rural communities in China, our
study was cross-sectional and limited to causality assessment. We could not verify the
potential reciprocal causation between BE and P-RCR in this study, though resilient rural
communities may intentionally increase built capital investments that improve BE qualities.
This is not only because the exact pathways and scales by which P-RCR affects BE are still
unclear, but also because the cross-sectional data can not statistically estimate reciprocal
causation due to the lack of temporal precedence [73]. An improved model and panel data
are needed in future studies. At last, the datasets we used were not recent, though they
were the most recent datasets available in relation to BE in the released CFPS datasets.
However, we believe the advantages of using these datasets were evident and that our
findings are still valid for the current realities. The reasons are as follows. First, these
datasets were longitudinal and nationally representative, providing high-quality and large
sample-size data. Moreover, they can be updated in the future and facilitate our follow-up
study with panel data. Second, at the core of our study was the BE-P-RCR relationship,
which closely relates to psychological factors not easily changing with time, such as human
cognition, emotions and behaviors. This means that for this study, the time factor might not
be decisive. The consistency between our findings and some earlier study results discussed
in the discussion section might be seen as evidence.

5.5. Implications

The results of our study imply that BE’s impacts on P-RCR are multifaceted and
should be fully considered in RCR study and practice, especially with regard to Soc and
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Eco. When assessing or analyzing P-RCR in terms of Soc and Eco, rather than simplifying
BE as facilities that purely increase rural communities’ economic resilience, specific PBE
and OBE attributes should be taken into account. To enhance P-RCR, besides the number
of facilities and population density, PBE may be a key factor. Furthermore, one-size-fits-
all criteria for accessibility might not be appropriate in different rural communities, for
the effects of accessibility on P-RCR may be uneven among regions. Additionally, greater
consideration needs to be given to the influences of PA on Soc and Eco at both the individual
and community levels (e.g., happiness, trust, satisfaction with job and income) when any
BE changes occur within rural reconstruction.

Based on our findings, the following recommendations are offered for rural community
development and P-RCR enhancement in China or other countries or regions facing rural
issues similar to those in China:

1. Improvements to the rural built environment, such as new rural reconstruction and ru-
ral settlement remediation, should not focus only on infrastructure development while
ignoring people’s perceptions and evaluations of their surrounding environment.

2. Top-down planning activities initiated by the government should develop more
detailed and targeted planning schemes for rural service accessibility and village
mergers, which will be helpful for increasing P-RCR in different regions.

3. The development and implementation of built environment policies should consider
rural people’s emotional ties with their communities, including both the pros and
cons of these emotional ties for P-RCR.

6. Conclusions

To explore BE’s effects on P-RCR, this study proposes a framework holistically de-
picting the BE-P-RCR relationship and tested this framework using SEM with a sample of
7528 rural respondents from eastern, central and western China. Our findings include the
following: (1) Both OBE and PBE can significantly affect three fundamental dimensions
of P-RCR; (2) apart from community-level Eco in western regions, PBE consistently and
positively influenced Soc and Eco but negatively influenced individual-level Env despite
regional disparities; OBE’s impacts on three dimensions of P-RCR were varied among
regions; (3) PA and PBE were mediators in the BE-P-RCR relationship in certain regions.
Based on these findings, we argue that the multi-effects of BE on P-RCR should be taken
into account in RCR research and practice, especially regarding Soc and Eco.
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Appendix A

Table A1. Composite reliability (CR) and average variance extracted (AVE) for latent variables with
multiple indicators.

Regions CR and AVE PBE 1 Individual-Level
Soc 2

Individual-Level
Eco 3 Covariate 4

Eastern CR 0.715 0.740 0.772 0.730
AVE 0.456 0.490 0.533 0.474

Central CR 0.724 0.702 0.776 0.722
AVE 0.468 0.446 0.539 0.464

Western CR 0.644 0.631 0.759 0.692
AVE 0.380 0.367 0.514 0.428

1 PBE = perceived built environment; 2 Soc = social dimension of proactive aspect of rural community resilience;
3 Eco = economic dimension of proactive aspect of rural community resilience; 4 Covariate = self-reported
socioeconomic status.

Table A2. Discriminant validity for latent variables with multiple indicators.

Variables PBE 1 Individual-Level
Soc 2

Individual-Level
Eco 3

Covariate
4

Eastern Regions

PBE 1 0.675

Individual-level Soc 2 0.285 0.700

Individual-level Eco 3 0.465 0.296 0.730

Covariate 4 0.166 0.510 0.257 0.688

Central Regions

PBE 1 0.684

Individual-level Soc 2 0.252 0.668

Individual-level Eco 3 0.496 0.261 0.734

Covariate 4 0.226 0.596 0.248 0.681

Western Regions

PBE 1 0.616

Individual-level Soc 2 0.163 0.606

Individual-level Eco 3 0.460 0.246 0.717

Covariate 4 0.146 0.568 0.229 0.654

The square roots of AVE values are shown in bold font. 1 PBE = perceived built environment; 2 Soc = social
dimension of proactive aspect of rural community resilience; 3 Eco = economic dimension of proactive aspect of
rural community resilience; 4 Covariate = self-reported socioeconomic status.

Table A3. Specific model fits of each model.

Models * CMIN/DF CFI RMSEA SRMR

Eastern Regions

Model 1 3.556 0.979 0.031 0.0247
Model 2 3.564 0.979 0.031 0.0247
Model 3 2.236 0.990 0.021 0.0140
Model 4 2.236 0.990 0.021 0.0141

Central Regions

Model 1 3.411 0.974 0.034 0.0260
Model 2 3.083 0.978 0.031 0.0247
Model 3 3.711 0.973 0.036 0.0222
Model 4 3.633 0.974 0.035 0.0220
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Table A3. Cont.

Models * CMIN/DF CFI RMSEA SRMR

Western Regions

Model 1 4.584 0.961 0.037 0.0279
Model 2 4.677 0.960 0.037 0.0284
Model 3 4.106 0.965 0.034 0.0207
Model 4 4.269 0.964 0.035 0.0215

* Model 1 refers to individual-level model with population density as the exogenous variable; Model 2 refers to
individual-level model with accessibility as the exogenous variable; Model 3 refers to community-level model
with population density as the exogenous variable; Model 4 refers to community-level model with accessibility as
the exogenous variable. CMIN/DF = Chi-square/degrees of freedom; CFI = comparative fit index; RMSEA = root
mean square error of approximation; SRMR = standardized root mean square residual.
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Abstract: Natural habitats are damaged by human interference to varying degrees during the
urbanization process, which can impede a region’s high-quality development. In this study, we
examined the spatial–temporal evolution characteristics of habitat quality and urbanization in the
Lower Yellow River from 2000 to 2020 using the integrated valuation of ecosystem services and
tradeoffs (InVEST) model and the comprehensive indicator method. We also evaluated the coupling
relationship between the habitat quality and urbanization using the coupling coordination degree
model. The findings indicate the following aspects: (1) Between 2000 and 2020, the Lower Yellow
River’s habitat quality was typically mediocre, with a steady declining trend. The majority of cities
displayed a trend toward declining habitat quality. (2) Both the urbanization subsystem and the
urbanization level in 34 cities have demonstrated a consistent growth tendency. The urbanization
level is most affected by economic urbanization among the subsystems. (3) The coupling coordination
degree have revealed an ongoing trend of growth. In most cities, the relationship between habitat
quality and urbanization has been evolving toward coordination. The results of this study have
some reference value for ameliorating the habitat quality of the Lower Yellow River and solving the
coupling coordination relationship between habitat quality and urbanization.

Keywords: habitat quality; InVEST; urbanization; coupling coordination; Lower Yellow River

1. Introduction

The ability of a habitat to supply biological communities with stable conditions is
referred to as habitat quality (HQ) [1,2]. On one hand, the background circumstances
of local natural resources affect the HQ. On the other hand, the HQ also depends on
the intensity of outside disturbances [3]. Human intervention during the urbanization
process has significantly altered natural environments. It is believed that human activity
during the urbanization process directly threatens the quality of the local habitats. Severe
environmental degradation has occurred in such habitats [4,5]. In an earlier study, the HQ
was typically evaluated using the indicator assessment method, which built a system of
indicators using data from field surveys. To measure the HQ of Chinese provinces, Fu [6]
chose 12 indicators, such as soil erosion, land salinization, and solid waste contamination.
However, the laborious processes of field sampling and field surveys make it challenging to
apply the indicator assessment method to large-scale HQ assessments [7]. Model evaluation
has increasingly grown in importance as a research method for HQ due to the maturity
of technical instruments such as remote sensing systems and the quick development of
HQ assessment models [8,9]. For long-term HQ monitoring, the model assessment method
has a number of advantages over the integrated indicator evaluation method [10]. The
habitat suitability index (HSI) model [11], social values for ecosystem services (SolVES)
model [12,13], and InVEST model [14,15] are examples of common models. The InVEST
model assesses biodiversity based on the quantity of the habitat exposed to external threats,
which it deems to be the primary factor contributing to the degradation of HQ [16,17]. In
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comparison to other models, the InVEST model has better evaluation accuracy and is more
convenient for data acquisition. As a result, the InVEST model is increasingly being used
in dynamic habitat quality evaluations [18].

Urbanization is a concept with multiple implications. Numerous topics are covered,
including populations, economies, social security, culture, and health care [19,20]. The
understanding of urbanization varies among academics from various disciplines, which has
a significant impact on how urbanization levels are quantified [21–24]. The comprehensive
index method may quantify the urbanization level more thoroughly than other methods
of evaluation. One of the most important factors in determining the urbanization level
using the comprehensive indicator method is the selection of indicators. In terms of the
construction of the indicator system, the study of building the urbanization indicator
system from the four aspects of space, population, economy, and society has a significant
impact [25]. Urbanized systems and natural ecosystems interact in a complex way. In order
to systematically analyze the coupling and coordination relationship between urbanization
and habitats, we chose the comprehensive indicator method to evaluate the transformation
of the urbanization level in the Lower Yellow River.

The impact of urbanization on ecological environments is one of the important issues
in the study of human–land relationships. Earlier studies focused more on the impacts of
urbanization on single environmental factors such as air and water [26]. These environmen-
tal factors are usually closely related to human health. The natural ecosystem is a complex
system which includes soil, water, organisms, and other environmental elements [27]. Since
the negative impacts of intense human activities on the authenticity and stability of natural
ecosystems have been widely recognized, the interaction between urbanization and natural
ecosystems has gradually become the focus of scholars. In recent years, scholars have
analyzed the relationship between urbanization and ecological environments from the per-
spectives of ecosystem services [28] and landscape fragmentation [29–31], but the research
on the coupling relationship between HQ and urbanization is insufficient. The quality of a
habitat is determined by the natural background condition of habitat and the intensity of
external threats represented by human activities. The quantitative study of the coupling
relationship between HQ and urbanization plays an important role in coordinating the
human–land relationship and is worthy of further study.

The Yellow River Basin is an important biological barrier in China, and it is vital to
coordinate basin protection and development issues in order to ensure long-term national
stability [32]. The ecological preservation and sustainable development of the Yellow River
Basin have recently emerged as crucial national strategies. The Yellow River Basin’s eco-
logical conservation is a hot topic of research right now [33]. Studies on the relationship
between the ecological environment and urbanization in the Yellow River Basin have
primarily concentrated on the basin as a whole or on arid and semi-arid regions such as
Shaanxi and Ningxia [34–36]. There haven’t been many studies on the relationship between
HQ and urbanization in the Lower Yellow River. The Lower Yellow River has higher resi-
dent population density and gross regional product in the Yellow River Basin. The Lower
Yellow River has become more essential for its ability to sustain regional economic growth
and habitat protection [37]. The interactive coupling link between HQ and urbanization
development in the Lower Yellow River must be quantitatively studied. Understanding the
characteristics of the coupling coordination involving HQ and urbanization is strategically
important for promoting HQ and high-quality economic growth in the Lower Yellow River.
This is also a key issue for coordinating the interactions between people and the land and
fostering sustainable development.

Based on this, the two primary scientific questions addressed in this study are as
follows: (1) How did the coupling relationship between the natural habitat and urban-
ization evolve in the Lower Yellow River from 2000 to 2020? (2) How do the coupling
relationships between different urbanization subsystems and the ecological environment
differ? In order to tackle these scientific questions, our study uses the InVEST model to
evaluate the HQ of the Lower Yellow River from 2000 to 2020, generates urbanization
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indicators to describe the regional urbanization level using socioeconomic data, and uses
the coupling and coordination degree model (CCDM) to reveal the relationship between
HQ and the urbanization level. More particularly, our research aims to (1) describe the
spatial and temporal distribution of the habitat quality in the Lower Yellow River from
2000 to 2020; (2) assess the urbanization level of urban agglomerations in the Lower Yellow
River from population, economics, social security, and space perspectives; and (3) disclose
the spatiotemporal evolution of the coupling coordination relationship between HQ and
urbanization in the Lower Yellow River.

2. Data Material Sources and Research Methods

2.1. Definition of the Study Area

Geographically speaking, the Lower Yellow River refers to the stretch of the river
that runs through the provinces of Shandong and Henan from Taohuayu to the estuary.
Meanwhile, the integrity of the administrative unit should be preserved as much as is
feasible in the coupling research of the ecological environment and urbanization. In order
to do this, we adhered to the maxim of “taking the natural watershed of the Yellow River
as the core scope and protecting the integrity of the administrative unit in every feasible
way” [38]. We defined the Lower Yellow River’s geographic scope as 34 cities in the
provinces of Henan and Shandong (Figure 1).

 

Figure 1. Location of the study area.

2.2. Data Sources and Processing

The five epochs of land use data of the Lower Yellow River were obtained from the
Resource and Environment Science and Data Center of the Chinese Academy of Sciences
(https://www.resdc.cn/), accessed on 1 September 2022. With the exception of marshes,
we combined the six secondary land use classifications as unused land (the primary land
use classification) based on the original categorization system. The socioeconomic data
needed for the construction of the urbanization index system were obtained from the
Shandong Province Statistical Yearbook, the Henan Province Statistical Yearbook, and the
China Urban Statistical Yearbook.

2.3. Methods
2.3.1. Evaluation of Habitat Quality

We calculated the habitat quality (HQ) index based on the InVEST model. The HQ is
based on the degree to which each land use type is compatible with the habitat, manner,
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and radius of the threat source’s influence and the susceptibility of the land class to the
danger source [39]. The formula is shown below as follows:

Qxj = Hj

[
1 −
(

Dxj

Dxj + k

)]
(1)

where Qxj represents the habitat quality index of raster cell x of land use type j, and Hj is the
habitat suitability of land use type j. Here, Dxj is the habitat degradation index of raster cell
x of land use type j, and it is calculated using Equation (2); k is a semi-saturated parameter
whose value is equal to half of the maximum value of the habitat degradation index:

Dxj =
R

∑
r=1

Yr

∑
y=1

⎛
⎜⎜⎜⎝ wr

R
∑

r=1
wr

⎞
⎟⎟⎟⎠ryirxyβxSjr (2)

where R is the number of threat sources, y represents a grid cell in the threat source layer r,
Yr is the total number of grid cells of the threat source r, wr is the weight of threat source
r, Sjr is the sensitivity of land use type j to threat source r, and βx is the degree of legal
protection. Here, ry is an auxiliary value used to determine the position of the threat source
raster in the layer. In the threat source layer, if the raster y belongs to the threat source,
ry = 1, otherwise ry = 0. As shown in the equation below, irxy is calculated in two ways, as a
linear decline and exponential decline:

irxy = 1 −
(

dxy

drmax

)
if linear (3)

irxy = exp
(
−2.99

(
dxy

drmax

))
if exponential (4)

where dxy represents the distance between raster x and y; drmax represents the maximum
influence distance of threat source r.

From the above equations, we can conclude that identifying the threat sources and
threat parameters is crucial for the efficient operation of the InVEST model. The Lower
Yellow River is an important grain-producing area in China. This region includes the
urban agglomerations of Zhongyuan and the Shandong peninsula. In this situation, the
major threats to the environment are cropped land and construction land because they are
directly tied to human activities. The unutilized land’s natural background state is poor,
posing a danger to the surrounding habitat. Given the features of the study area, relevant
studies, and experts’ opinions, we chose paddy field, dry land, urban construction land,
rural residential land, and other land use types as threat sources. Tables 1 and 2 show the
model input parameters, whose values are derived from the InVEST model guidebook,
scholars’ research [40–42], and experts’ opinions.

Table 1. Maximum impact distances, weights, and spatial recession types of threat sources.

Threat Source (r) Maximum Threat Distance (drmax)/km Weight (wr) Decay

Paddy field 1 0.5 linear
Dry land 1 0.5 linear

Urban construction land 8 1 exponential
Rural residential land 4 0.7 exponential

Other construction land 9 0.9 exponential
Other unutilized land 1 0.3 linear
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Table 2. Habitat suitability of land use types and their sensitivity to threat sources.

Land Type (j)
Habitat

Suitability
(Hj)

Sensitivity (Sjr)

Paddy
Field

Dry
Land

Urban
Construction

Land

Rural
Residential

Land

Other
Construction

Land

Other
Unutilized

Land

Paddy field 0.4 0 0.7 0.3 0 0 0.7
Dry land 0.3 0 0.6 0.2 0 0 0.6

Forest land 0.9 0.6 0.9 0.5 0.6 0.6 0.85
Scrub woodland 0.8 0.5 0.85 0.45 0.5 0.5 0.75
Sparse woodland 0.75 0.5 0.85 0.45 0.5 0.5 0.75
Other woodland 0.65 0.45 0.85 0.4 0.45 0.45 0.7

High-coverage grassland 0.7 0.55 0.9 0.5 0.55 0.55 0.85
Medium-coverage grassland 0.6 0.5 0.85 0.45 0.5 0.5 0.75

Low-coverage grassland 0.55 0.45 0.8 0.4 0.45 0.45 0.75
River 0.9 0.6 0.9 0.5 0.6 0.6 0.85
Lake 1 0.6 0.9 0.5 0.6 0.6 0.85

Reservoir 0.7 0.55 0.8 0.45 0.55 0.55 0.75
Mudflat 0.5 0.4 0.75 0.4 0.4 0.4 0.7
Beach 0.5 0.4 0.75 0.4 0.4 0.4 0.7

Swamp 0.55 0.45 0.8 0.4 0.45 0.45 0.7
Sea 0.85 0.6 0.6 0.85 0.7 0.9 0.5

Other unutilized land 0.15 0.35 0.35 0.55 0.4 0.55 0

2.3.2. Evaluation of Urbanization

Considering the data accessibility and comparability, we selected 17 indicators from the
population, economic, social security, and space categories. The urbanization evaluation
index system is shown in Figure 2. We utilized the linear weighted sum approach to
evaluate the urbanization levels. The calculation formula is shown below:

Ui =
n

∑
j=1

wj × Uij (5)

Here, wj stands for the indicator j’s weight, and Uij for the indicator j’s normalized
value in city i. Each indicator’s weights were calculated using the entropy weight approach.

2.3.3. Coupling Coordination Degree Model

The coupling coordination degree model, which contains the coupling degree C, the
comprehensive evaluation index T, and the coupling coordination degree D, is able to
quantify the degree of coherence in the system’s development [43]. However, it is diffi-
cult to objectively reflect the level of synergy between systems by relying on the coupling
degree alone, so T and D are defined to reflect the degree of system contribution to coordina-
tion [44]. In order to analyze the status of HQ and urbanization in the coupling coordination
link, a synchronous development index E is constructed to explain the synchronous or
lagging state of the two processes:

C = 2

√
U1U2

(U1 + U2)
2 (6)

T = aU1 + bU2 (7)

D =
√

CT (8)

E = U1/U2 (9)

where U1 and U2 denote the HQ and urbanization level, respectively; a and b are coefficients
to be determined; a + b = 1, a, b are used to characterize the importance of the HQ and
urbanization level. Referring to the studies by Ma et al. [45] and Tang et al. [46], we
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considered the habitat quality system as equally important as the urbanization system, so
we set a, b = 0.5. The values of C, D are between 0 and 1. The type of coupling coordination
was divided as shown in Figure 3.

 

Figure 2. The Lower Yellow River’s urbanization evaluation index system.

 

Figure 3. Coupling coordination types of urbanization and HQ.
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3. Results

3.1. Variations in Habitat Quality through Time and Space along the Lower Yellow River

Using the InVEST model, we evaluated the Lower Yellow River’s HQ status in the
years 2000, 2005, 2010, 2015, and 2020. We divided the HQ into five categories: low
(0.0–0.02), relatively low (0.2–0.4), medium (0.4–0.6), relatively high (0.6–0.8), and high
(0.8–1). The findings indicated that the Lower Yellow River’s HQ was generally in poor
condition and has been declining steadily from 2000 to 2020, with mean values of 0.368,
0.366, 0.365, 0.364, and 0.357, respectively. The HQ values of several cities in the research
area varied dramatically between 2000 and 2020, ranging from 0.239 to 0.621. Sanmenxia
consistently maintained the highest level of HQ, followed by Luoyang and Jiyuan at various
points in time. The HQ values of Nanyang, Xinyang, Yantai, Pingdingshan, and Zibo were
all higher than the study area average, while more than 67% of the cities were lower to
varying degrees (Figure 4).

Figure 4. Habitat quality of each city in the Lower Yellow River from 2000 to 2020.

In terms of the spatial distribution, the HQ in the study region had a pattern of poor
HQ in the center and high HQ around it (Figure 5). The research region’s HQ grades are
primarily rather low, with more than 60% of the land falling into this category, which is
mostly spread in the low-altitude plains. About 13% of the region is low-grade, which
includes construction land and some cultivated land that is scattered. Approximately 17%
of the areas are of relatively high and high grades; these areas primarily include wetlands
near rivers, lakes, and seashores, as well as forest and grassland areas at higher altitudes.

Regarding temporal variations in HQ, more than 19% of the regions displayed a
decline in the HQ grade, almost 15% exhibited an increase in the HQ grade, and roughly
66% were unaltered. The Lower Yellow River showed a significant change in HQ between
2000 and 2020, which was mostly reflected in the trend of the cities with poorer HQ. The
number of cities with reduced HQ increased from 27 to 33 and subsequently declined to
24 during the study period. The HQ of Kaifeng, Zhumadian, Xinyang, Binzhou, Dongying,
Weifang, Jiyuan, and Nanyang improved with time, while the HQ of the other cities in the
research area declined to varying degrees.

181



Int. J. Environ. Res. Public Health 2023, 20, 4734

Figure 5. Spatial distribution of habitat quality along the Lower Yellow River from 2000 to 2020.

3.2. Variations in Urbanization through Time and Space along the Lower Yellow River

Between 2000 and 2020, the urbanization levels of 34 cities in the Lower Yellow
River progressively grew, as did regional disparities in the urbanization levels between
cities. During the study period, the urbanization levels of Xinyang, Zhumadian, Zhouko,
Nanyang, Shangqiu, and Heze were consistently lower than the study area’s average,
while those of Jinan, Qingdao, Zhengzhou, Weihai, Yantai, and Dongying were consistently
higher than the average (Figure 6). The urbanization levels in the Lower Yellow River
region ranged from 0.084 to 0.307 between 2000 and 2005, and the urbanization growth
was rather sluggish. The urbanization levels of Jinan, Qingdao, Weihai, and other cities
dramatically grew between 2005 and 2010, widening the disparity in regional urbanization
levels. The overall urbanization level of the Lower Yellow River significantly increased
from 2010 to 2020, spurred by Jinan, Qingdao, Zhengzhou, and other cities, and the regional
urbanization has evolved quickly, with an urbanization level between 0.312 and 0.636.

The examination of the four urbanization subsystems revealed that although each
subsystem’s urbanization level in the Lower Yellow River varied considerably, they all
displayed a consistent upward tendency (Figure 6). The level of economic urbanization,
which is substantially larger than that of the other three subsystems, is the factor that most
affects the amount of urbanization along the Lower Yellow River. In comparison to other
cities in the research area, Jinan, Qingdao, Yantai, Dongying, Zhengzhou, and Luoyang have
obviously higher degrees of economic urbanization, whereas Liaocheng, Heze, Dezhou,
and Linyi have lower levels—falling below the regional average in all periods.

In terms of social urbanization, this is the fastest growing and most regionally diversi-
fied subsystem. The social urbanization is more advanced in Jinan, Zhengzhou, and Weihai,
followed by Jinan, Weihai, and Zhengzhou, but it is consistently less advanced in Zhoukou,
Zhumadia, Nanyang, and Heze. The spatial urbanization increased more quickly between
2000 and 2010 and less rapidly between 2010 and 2020. Higher spatial urbanization levels
can be seen in Qingdao, Weihai, Kaifeng, and Zhengzou, followed by Rizhao, Binzhou,
and Luohe, while Sanmenxia, Xinyang, and Nanyang have lower levels. In comparison to
the other subsystems, the increase in demographic urbanization was quite small. The rate
of demographic urbanization rose by only 13% between 2000 and 2020, whereas the rate
of urbanization for the other three subsystems was more than twice as high in 2020 as it
was in 2000. Zhoukou, Shangqiu and Heze have comparatively low levels of demographic
urbanization, whereas Zhengzhou, Jinan, and Weihai have quite high levels.
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Figure 6. Urbanization levels and subsystem urbanization levels of each city in the Lower
Yellow River from 2000 to 2020: (1) Zhengzhou; (2) Kaifeng; (3) Luoyang; (4) Pingdingshan;
(5) Anyang; (6) Hebi; (7) Xinxiang; (8) Jiaozuo; (9) Puyang; (10) Xuchang; (11) Luohe; (12) San-
menxia; (13) Nanyang; (14) Shangqiu; (15) Xinyang; (16) Zhoukou; (17) Zhumadian; (18) Jiyuan;
(19) Jinan; (20) Qingdao; (21) Zibo; (22) Zaozhuang; (23) Dongying; (24) Yantai; (25) Weifang; (26) Jin-
ing; (27) Taian; (28) Weihai; (29) Rizhao; (30) Linyi; (31) Dezhou; (32) Liaocheng; (33) Binzhou;
(34) Heze.

3.3. Coupling Coordination Relationship between Urbanization and Habitat Quality in the Lower
Yellow River

The coupling coordination degree (CCD) between the HQ and urbanization level
exhibited a consistent upward trend from 2000 to 2020, and the variation in CCD values
between cities was striking. Only a few cities showed a decline in the coupling coordination
relationship involving HQ and urbanization according to Figure 7, which shows that the
majority of cities are moving in a coordinated manner. The vast majority of cities had
a CCD below 0.6 in 2000, which is a relatively low value. Moderate coordination and
high coordination levels were not included in the coupling coordination category. There
were 17 cities with primary coordination, 14 with moderate incoordination, and 3 with
extreme incoordination. The number of cities with extreme incoordination decreased to
zero between 2000 and 2005, whereas the number of cities with moderate incoordination
decreased and cities with moderate coordination increased from zero to seven. From 2005
to 2015, the number of cities with moderate incoordination and primary coordination
dropped. The number of cities with moderate coordination increased. The level of CCD in
the study area further improved between 2015 and 2020, whereas it declined in some cities.
The number of cities with primary coordination and moderate incoordination declined,
and the number of cities with high coordination increased from 0 to 3. However, the
degree of coupling coordination in Liaocheng decreased from moderate incoordination to
extreme incoordination.
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Figure 7. Coupling and coordination types of urbanization levels and subsystem urbanization
levels with HQ for each city in the Lower Yellow River from 2000 to 2020: (a) urbanization level;
(b) demographic urbanization level; (c) economic urbanization level; (d) social urbanization level;
(e) spatial urbanization level.

In terms of the CCD between the HQ and the four subsystems of urbanization, the
CCD of the cities in the Lower Yellow River typically displayed a rising tendency. In the
coupling coordination relationship between the four urbanization subsystems and HQ,
the social urbanization CCD increased the fastest, the CCD values of the economic and
demographic urbanization were relatively high, and the CCD of the spatial urbanization
exhibited the least regional variation. The coupling and coordination interactions between
various urbanization subsystems and HQ differ significantly, yet in the same city, the
relationships between the four urbanization subsystems and HQ are largely positive. In a
city, if the CCD of the demographic urbanization level with HQ is relatively high, the other
three urbanization subsystems with HQ are also likely to have a high CCD. There were
four cities, however, where the CCD between the urbanization subsystems and HQ did
not follow the above pattern. For the demographic urbanization and spatial urbanization,
Luoyang had a low CCD, whereas the economic urbanization and social urbanization
had a high CCD. Dezhou, Binzhou, and Heze had a relatively high CCD for demographic
urbanization but a low CCD for other urbanization subsystems. Among the remaining
cities, Zhengzhou, Sanmenxia, Jinan, and Weihai all had extraordinarily high CCD values
for subsystem urbanizations, whereas Luohe, Shangqiu, Zhoukou, and Liaocheng all had
relatively low CCD values for subsystem urbanizations.

Using Equation (7), we divided the coupling coordination characteristics between HQ
and urbanization in the Lower Yellow River into three categories: urbanization lagging,
urbanization–HQ synchronization, and HQ lagging. From 2000 to 2020, Luohe, Puyang,
Liaocheng, Heze, Dezhou, and Binzhou all belonged to HQ lagging, whereas Sanmenxia,
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Nanyang, Xinyang, Luoyang, and Jiyuan all belonged to urbanization lagging. The abun-
dance of resources in these cities has a significant impact on this. Figure 8 shows that the
number of cities with lagging urbanization has steadily declined, while the number of cities
with lagging HQ has steadily increased. The following section provides a description of
the type of transformation process during this time.

 

Figure 8. Relative development relationships of the urbanization level and subsystem urbanization
level with HQ for each city along the Lower Yellow River between 2000 and 2020: (a) urbanization
level; (b) demographic urbanization level; (c) economic urbanization level; (d) social urbanization
level; (e) spatial urbanization level.

In 2000, there were 24 cities in the research region that belonged to the urbanization
lagging category, accounting for more than 70% of all cities. The environment received
little effect from anthropogenic activities throughout this time, and the habitat’s condition
was fairly positive. The Lower Yellow River’s urbanization level is relatively low, and
improving inhabitants’ living conditions and stimulating quick economic growth remain
the primary goals of urbanization development. Between 2000 and 2005, 50% of all cities
underwent a type shift, primarily moving from urbanization–HQ synchronization and
urbanization lagging to HQ lagging. From 2005 to 2010, a transition from urbanization
lagging to urbanization–HQ synchronization mostly occurred, with around 33% of the
total number of cities experiencing this shift. During this timeframe, the study area’s level
of urbanization continuously increased, the gap between urbanization and HQ gradually
shrank, and the number of cities with urbanization–HQ synchronization greatly increased.
However, as the urbanization levels rose quickly, a possible risk of urban growth affecting
HQ slowly became apparent. Between 2010 and 2020, the majority of cities underwent
a type change, changing from urbanization–HQ synchronization to HQ lagging. Over
the course of the study period, fewer cities experienced a type shift, and the coupling
coordination relationship between urbanization and HQ gradually stabilized.
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4. Discussion

In this study, the mean value of the HQ in the Lower Yellow River fell from 0.368
to 0.357 between 2000 and 2020, with a definite downward trend. Among the grades
of HQ in the Lower Yellow River, the low-grade areas increased, while the high-grade
areas decreased. This may be attributed to the increase in the area of threatening sources
represented by building land and the decrease in the area of land use types with higher
ecological value, which is consistent with the conclusions found by Zhou et al. [47] and
Lin et al. [48]. Therefore, in order to promote the long-term optimization of the ecological
environment, governments and pertinent departments at all levels should adhere to the
principles of environment-first and eco-friendly development, judiciously manage the
growth of built-up areas, and stop the inefficient and unequal distribution of construction
land from eroding ecological land [49].

It is worth noting that the overall habitat quality in the Lower Yellow River showed a
downward trend, but the area changes in the regions of a relatively high grade and medium
grade did not follow this rule. Compared with the area changes of other grades, the
relatively high-grade area increased significantly while the medium-grade area decreased
significantly from 2015 to 2020. From the change in quantity of each grade, the increase
in relatively high-grade areas came mainly from medium-grade areas. This shift may be
related to environmental governance in areas of medium grade. This phenomenon shows
that ecological restoration in areas of medium habitat quality is one of the most effective
ways to improve the overall habitat quality in the region. In order to achieve the goal of
improving habitat quality, we should vigorously promote the “urban and rural greening”
action and focus on environmental governance in areas with moderate habitat quality [50].
In such areas, the government should promote the development of regional habitat quality
in a positive direction by expanding public green spaces, creating urban green parks, and
buffering shelterbelts.

In terms of the CCD between HQ and urbanization, cities in the middle of the Lower
Yellow River usually fall into the moderate incoordination and extreme incoordination
categories. Their level of urbanization is low. Additionally, these cities’ HQ is mediocre in
comparison to their urbanization. Cities with lagging HQ, such as those in the center Lower
Yellow River, should identify the unsolved habitat issues as soon as possible and rectify the
negative impacts of urbanization on the ecosystem. Next, they should address the subjective
and objective problems that prevent high-quality urbanization and provide favorable
socioeconomic conditions for habitat improvements. The remaining cities essentially fall
into two categories, moderate coordination and high coordination, with minimal variance
in terms of urbanization and HQ. These cities are further classified as having lagging
urbanization and lagging HQ based on the relative states of the two systems. Cities that are
part of the HQ lagging category should be aware of any potential HQ problems brought
on by urbanization. For sustainable urban development, the government must provide an
eco-friendly platform [51,52]. In light of their unique circumstances, cities with different
relative development relationships between HQ and urbanization should create their urban
development strategies.

In terms of the coupling relationship between the four subsystems and HQ, the CCD
of the economic urbanization and demographic urbanization is higher. Yun [53] evaluated
the coupling coordination between the ecological environment and urbanization in the
Yellow River Basin and found that the coupling coordination index of the demographic
urbanization was lower than that of the other three urbanization subsystems. Yun’s
conclusion is somewhat different from the results of this study, where we highlighted
the evolution of the coupling coordination relationship between HQ and urbanization
in regions with high levels of demographic and economic urbanization. The coupling
coordination relationship between the demographic subsystem and HQ in the Lower Yellow
River Basin is very different from that in the Yellow River Basin. This important difference
also indicates that the study of the coupling relationship between HQ and urbanization
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in the Lower Yellow River is of great significance for revealing the coupling relationship
between urbanization and HQ in densely populated and economically developed areas.

This study looked at the spatial and temporal evolution of HQ and urbanization and
their interactions, which can operate as a factual support for the high-quality development
of socioeconomic activities and the environment in the Lower Yellow River. Additionally,
this study could serve as a reliable source for determining metrics for HQ evaluations
and for investigating the connections between HQ and urbanization in comparable places.
However, our study still has several limitations. To begin with, the range of indicators
available is limited due to the accuracy of publicly available urbanization-related data. In
further research, we will try to obtain more indicators to enrich the urbanization indicator
system. Second, the InVEST model is one of the most critical tools for habitat quality
assessments and has been broadly applied in large-scale and meso-scale habitat quality
studies. However, the InVEST model still has the limitations, in that it ignores the habitat
quality variation among the same habitats and cannot fully reflect the actual habitat quality
conditions. Finally, our study did not include the driving factors. Along with our upcoming
research, we will attempt to delve deeper into the drivers of the relationship between HQ
and urbanization in the Lower Yellow River.

5. Conclusions

We first characterized the spatial and temporal variations in HQ and urbanization
levels using the InVEST model and the comprehensive indicator method, and then we
applied the CCDM to tackle their interaction. From 2000 to 2020, the studies revealed
an overall poor state of HQ along the Lower Yellow River, with a continuous downward
tendency. More than 60% of the study areas had a low HQ grade. The pattern of HQ in
the Lower Yellow River was poor in the middle and high around the edges. Significant
disparities existed in the HQ of various cities, and while most cities displayed a trend
toward declining HQ, the number of cities that did so gradually declined.

The 34 cities’ urbanization levels, as well as the urbanization levels of each subsystem,
showed a stable growth tendency in terms of temporal variability in urbanization levels.
Between 2000 and 2020, Jinan, Qingdao, and Zhengzhou showed higher urbanization
levels, while Xinyang, Nanyang, and Heze showed lower urbanization levels. Economic
urbanization has the greatest impact on the Lower Yellow River’s urbanization level, while
social urbanization is the fastest expanding subsystem with the greatest regional disparity.

The CCD of the Lower Yellow River showed a consistent upward tendency between
2000 to 2020. In most cities, the relationship between HQ and urbanization moved in the
direction of coordination, while only a few cities saw a decline in the coupling coordination
relationship. The spatial distribution of the CCD is characterized by high values in the east
and west and low values in the middle, meaning that the eastern part of Henan Province
and the western part of Shandong Province have high CCD values, while the junction of
these two provinces has low values of CCD. The number of cities with moderate coordina-
tion has increased significantly, while the number of cities with moderate incoordination
and extreme incoordination has decreased. The number of cities with lagging urbanization
has decreased, while the number of cities with lagging HQ has increased. On the whole,
the evolution of the coupling coordination relationship between HQ and urbanization is
positive. However, the HQ in the Lower Yellow River has gradually lagged behind urban-
ization, which is a potential threat to the coupling coordination between regional HQ and
urbanization. This phenomenon deserves close attention. The coupling coordination levels
between the four urbanization subsystems and HQ differ significantly. The CCD levels
of demographic and economic urbanization are particularly high among the subsystems.
Our research is critical for improving the habitat quality and coordinating the relationship
between the habitat quality and urbanization in the Lower Yellow River, and it can serve as
a scientific reference for government agencies’ ecological regulations.
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Abstract: The frequent occurrence of floods in urban areas caused by climate change challenges
urban resilience. This research aims to construct an ecological security pattern (ESP) that is adaptive
to floods to enhance urban resilience in the hope that it will help cities cope with floods better. In this
research, the main urban area of Wuhan (WUH) represents the study area. The lakes were selected
as the ecological sources and the Soil Conservation Service-Curve Number (SCS-CN) model was
used to calculate the runoff volume corresponding to each land type and, based on this, assign
resistance values to the land types; as such, the land type surface is referred to as the runoff resistance
surface, and the runoff resistance surface is then modified by ecosystem service capabilities. The
Minimum Cumulative Resistance (MCR) model was used to extract the connecting corridors between
the sources. This research plan includes 18 ecological sources, 10 key ecological corridors, and
22 potential ecological corridors, with a total length of about 344.21 km. Finally, it provides a two-axis
and three-core urban ecological resilience optimization strategy for decision makers and a new
approach for controlling floods in urban areas from the perspective of ecological resilience.

Keywords: SCS-CN model; flood adaptation; ecological security pattern; resilient city

1. Introduction

Due to climate change and urbanization, floods in urban areas are occurring more
frequently. Climate change also causes extreme rainfall [1,2], while urbanization increases
impervious underlying surfaces, causing waterlogging [3–5]. The traditional flood control
and drainage measures promote the construction of traditional gray infrastructure, such as
drainage pipes and flood control revetments. Although these facilities are flood-resistant,
their static defense cannot fully adapt to the increasing flood risks and cannot automatically
recover after damage occurs. Therefore, gray infrastructure is not sustainable. In other
words, cities should develop more effective ecological methods to prevent floods [6].

As a comprehensive urban development concept, a resilient city is characterized by its
flexibility, adaptability, and transformative ability [7]. Likewise, it provides theoretical support
for solving current flood-related problems in cities. Many cities have introduced resilient
retrofit programs, such as New York [8], Melbourne [9], Rotterdam [10], etc. In China, a sponge
city represents a comprehensive solution for various water-related problems, such as water
shortage, water pollution, and floods [11]. Researchers conducted extensive studies on the
planning and design [12,13] and index control [14], including the unit area, runoff coefficient,
expected rainfall, etc. There has also been significant exploration of the system construc-
tion [15] of sponge cities, but researchers have also conducted case studies [16] on some pilot
areas in sponge cities, including the synergy between green and gray infrastructure [17,18],
flood control capability [19], contamination risks [20], etc. Some studies also optimize the
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layout of sponge cities in terms of the rainfall runoff, pollutant discharge, minimization
of construction and operation costs, and maximization of environmental benefits [21]. A
sponge city improves the storage capacity of the underlying surface, regulates the infiltration,
interception, storage, purification, reuse, and discharge of rainwater, and enhances flood
resilience of the city through disaster reduction. However, sponge cities have exposed many
deficiencies in the process of their construction and use. These deficiencies are the ecological
risks to soil and groundwater caused by the decomposition of the Sponge City filler during
rainfall, cumulative effect of pollutants, ecological pressure and economic burden caused by
the clogging of the filling and the recycling of the waste fill, weak ecological service capability,
uneven distribution, and lack of integrity [6]. This means that cities should be made more
resilient from an ecological perspective.

While some studies [22–24] have systematically evaluated the urban resilience of Wuhan
city and proposed detailed guidance schemes for policy makers, this study will be conducted
from the perspective of spatial analysis and ecological planning. The resilient city theory
holds that urban ecosystems with complex structures resist disturbances from outside the city
better. The ecological security pattern (ESP) is a spatial configuration scheme that combines
the ecological or human elements in the region through a combination of points, lines, and
surfaces [25], and is a complex network structure with a holistic and multi-patch [26] connec-
tivity designed to adapt to floods, complement the sponge city, and enhance urban ecological
resilience. Most traditional research on ecological security patterns follows a single ecological
protection perspective [27–29] or combines human activities [30,31], natural geographical
elements (such as slope and elevation) [32,33], habitat protection [34], economy [35,36], etc.
However, the study of the interaction between flooding and ecological security patterns is not
well understood. Some studies [26] have also proposed ecological improvement measures
for the central area of Wuhan from the perspective of spatial analysis, but their results cannot
effectively guide the construction of ecological corridors within the urban area.

This research takes the main urban area of Wuhan (WUH) as the study area in order
to enhance the ecological resilience of the city and study the flood adaptability of the
urban ESP. The lakes are protected as ecological sources, the blueways and greenways are
combined with each other as ecological corridors which look like river parks, and ecological
corridors are planned to connect the waters of the lakes to each other to form a holistic and
resilient ecological network. In this, the blueways can quickly divert runoff during heavy
rainfall and the interconnected lakes have greater storage capacity, which can increase the
threshold of precipitation needed for creating urban flooding. In addition, to differentiate
from the traditional gray infrastructure, the study incorporates ecosystem service functions
to ensure that the ESP provides ecological services to the city even during non-flooding
periods. This study also introduces a gravity model to guide the priority of corridor
construction and field investigations to find a target paradigm for corridor construction,
which hopefully will help relevant authorities to take better relevant measures. The main
urban area of WUH is key for rainwater management and control. Research into the ESP
that is adaptive to floods can provide theoretical and methodological support for WUH
and other cities to improve their ecological resilience.

2. Study Area

The main urban area of WUH is affiliated with Wuhan City in the Hubei Province. It
covers an area of 450 km2 [37] and is located at the intersection of the Yangtze and Hanjiang
Rivers. Wuhan has many lakes, namely the East Lake, Yanxi Lake, South Lake, Moon Lake,
MoShui Lake, Nantaizi Lake, Wanjia Lake, etc. Due to its location in the alluvial plain in the
middle reaches of the Yangtze River, the soils in the study area are dominated by paddy and
chao soil [38] under the influence of groundwater movement and farming activities, both
of which are characterized by a clay-like texture and poor permeability. Wuhan’s climate is
humid and subtropical, characterized by monsoons, with an annual average temperature
of 17.4 ◦C, a mean monthly maximum temperature of 30.8 ◦C, an annual average rainfall
of 129 days, and an annual average rainfall of 1317.5 mm (the 2009–2019 average) [39].
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In 2021 [40], the average precipitation in May to October during the flood season was
998.2 mm, accounting for 74.3% of the annual precipitation; the average precipitation from
mid-June to July was 329.5 mm, accounting for 24.5% of the annual precipitation; the month
with the most precipitation was August, with 310.0 mm; the least precipitative month was
December, with 8.7 mm. There are 574 million m3 of surface water resources in the main
city of Wuhan, with 791.2 billion m3 of transit water.

In addition to the Yangtze River and Han River, there are three major water systems:
the Daoshui River, the Nieshui River, and the Jushui River. There are also many tributary
systems, such as the Tongshun River and the Jinshui River [41]. The river network is
crisscrossed and the water system is huge. Wuhan is known as the City of a Hundred
Lakes and the city of wetlands, and the lake ecosystem plays a decisive role in urban flood
control. Flood control has been very effective in WUH, but there are still certain risks,
mainly with three aspects: (1) there are many water systems and the pressure on flood
control is high; (2) extreme weather is increasing, so the risk of severe floods is still present;
(3) waterlogging is frequent. In addition, urban construction has encroached upon many
lake ecosystems [42], which increased Wuhan’s vulnerability to severe floods. According to
People’s Daily [43], the lakes in Wuhan have shrunk by 106 km2 in the past three decades.
These shrinking lakes continue to weaken the ecological service capacity, threatening
regional ecological security and greatly weakening urban ecological resilience. The location
and land use types of the study area are shown in Figure 1.

Figure 1. Map of the main urban area in Wuhan.

In the map above, the Hubei Province is in south-central China. The location of the
main urban area of Wuhan within the city is shown in the upper right part of the box.

3. Methodology and Data Sources

3.1. Data Sources

The daily data of precipitation come from Hubei Meteorological Administration, the
elevation data (DEM) with 30 M accuracy from the Chinese Academy of Sciences Geospatial
Data Cloud (http://www.gscloud.cn/search, accessed on 18 November 2021), and the land
use data in the main urban area of Wuhan come from the Wuhan Bureau of Natural Re-
sources and Planning (ghttp://zrzyhgh.wuhan.gov.cn/zwgk_18/fdzdgk/ghjh/zzqgh/20
2001/t20200107_602858.shtml, accessed on 20 November 2021), Wuhan soil data with 30 M
accuracy comes from the Harmonized World Soil Database (https://www.fao.org/soils-
portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/,
accessed on 10 December 2021), the spatial distribution data of waterlogging points are
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from the Wuhan Municipal Water Affairs Authority (http://swj.wuhan.gov.cn/tzdt/jcss/
202005/t20200511_1309387.html, accessed on 25 December 2021), the net primary pro-
ductivity (NPP) data of vegetation in the main urban area of Wuhan with 30 M accuracy
comes from the Resource and Environmental Science and Data Center of the Chinese
Academy of Sciences (https://www.resdc.cn/, accessed on 10 March 2022), the data of
points of interest (POI) in the main urban area of Wuhan are from Baidu Map Open Plat-
form (https://lbsyun.baidu.com/, accessed on 25 December 2021), and the rest of the
meteorological data in Wuhan comes from the “Wuhan Statistical Yearbook” (2010–2020)
(http://tjj.wuhan.gov.cn/tjfw/tjnj/, accessed on 18 November 2021).

3.2. The Methodological Framework

Sources are patches that influence the stability, integrity, and functionality of ESP and
are the basis of ESP. In this research, lakes in the main urban area of WUH were selected
as ecological sources. The Soil Conservation Service-Curve Number (SCS-CN) model is
used to calculate the surface runoff volume of each category after a rainstorm, which is
spatially expressed in ArcGIS and transferred to a raster map after assigning resistance
values, called the runoff resistance surface. Likewise, the water connotation function and
the recreation and leisure function are rasterized and assigned resistance values, which are
called water connotation resistance surface and recreation and leisure resistance surface.
The raster calculator tool of ArcGIS is used to superimpose the three resistance surfaces
to get the comprehensive resistance surface (the quantitative expression of the degree of
difficulty of moving matter and energy through a certain surface). Ecological corridors were
constructed using the Minimum Cumulative Resistance (MCR) model. Furthermore, the
location of ecological corridors was optimized based on the runoff path (Figure S1) and the
waterlogging points (Figure S2) issued by the Wuhan Municipal Water Affairs Authority.
Finally, the gravity model was used to prioritize the construction of the ecological corridor.
The specific experimental flow is shown in Figure 2.

 

Figure 2. The methodological framework of the study.
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3.3. Runoff Calculation Based on the SCS-CN Model

The variety of land types have their own impervious areas and unique substrate
properties, which determine their different runoff-generating capacities in the face of
rainfall processes. In this research, the SCS-CN model [44] was used to calculate the runoff
volume generated by different land types after heavy rain, and then the values of the runoff
volume were connected with the vector land type distribution map in ArcGIS to derive the
spatial distribution of runoff volume corresponding to different land types. The SCS-CN
model is a simple model with a clear physical concept and few required parameters [45].
The regular formula for the SCS-CN model is [46]:

F
S
=

Q
P − Ia

(1)

where P represents the total precipitation (mm), and Ia the initial abstraction (mm), includ-
ing the initial loss of ground filling, interception, surface water storage, and infiltration.
F is the loss after the generation of surface runoff, i.e., the actual cumulative infiltration
(mm) (excluding Ia); Q is the direct runoff (mm); S is the possible retention amount (mm).

The water balance equation is as follows [47]:

P = Ia + F + Q (2)

Combining Equation (1) with Equation (2), eliminating F, we obtain Equation (3) [48].
It should be noted that runoff cannot be generated when the initial loss is satisfied.{

Q = (P − Ia)
2

P + S − Ia
, P ≥ 1

Q = 0, P < 1
(3)

Equation (3) is the equation for calculating the yield flow of the SCS-CN model. Since
Ia data were not obtained, the parameter initial loss rate λ was used to establish a linear
relationship between Ia and S [49]:

Ia = λS (4)

where λ usually has the standard value of 0.2 [44]. If the value of λ is 0.2, the yield
calculation formula of the surface runoff of the SCS-CN model is [49]:{

Q = (P − 0.2S)2

P + 0.8S , P ≥ 0.2S
Q = 0, P < 0.2S

(5)

The S value in all of the above equations is usually calculated from the equation with
the CN value parameter [49]:

S = 25, 400/CN − 254(international system of units) (6)

In the formula, CN is a dimensionless constant reflecting the antecedent soil moisture
condition (AMC) in the basin, and CN values are influenced by multiple factors such
as land types, vegetation, and soil texture [46]. Since the United States and China have
different land types, the original CN values could not be used directly in this study, and
the optimization and adaptation methods of the model are not focused on here. This study
also concluded that, in urban areas, CN values are more likely to be influenced by land
types, so this research used the CN value of Suzhou City [50], which has similar land types,
soil textures, and climatic and hydrological conditions to Wuhan City, as a reference to
correct the CN value. According to the soil texture and the model standards, soil is divided
into four categories: A, B, C, and D (Table 1) [46]. The content of clay is relatively high
in Wuhan, making it a part of category C. Therefore, the CN value under category C was
selected. AMC was divided into three types: AMC-I (dry), AMC-II (general), and AMC-III
(wet), according to precipitation in the previous five days. Based on historical records of

195



Int. J. Environ. Res. Public Health 2023, 20, 385

rainfall in Wuhan, this research selected the rainfall value of the past ten years starting from
6 July 2016, which marked a 12 h long rainfall of 179.3 mm in a single day. The precipitation
in the first five days was moderate, so AMC-II conditions were selected to simulate the
runoff in the study area.

Table 1. SCS model soil hydrology group classification criteria.

Soil Hydrology Group Soil Texture Minimum Permeability (mm/h)

A Thick sand, thick loess, and agglomerated silt 7.26–11.43
B Thin loess, sandy loam 3.81–7.26

C Clay loam, thin sandy loam, low organic matter or high
clay soil 1.27–3.81

D Soils that swell significantly after absorbing water,
plastic soils, some saline soils 0–1.27

Since the generation of flood risk does not depend entirely on the runoff volume
(runoff depth) but also on the distribution area of each land type in the study area, in order
to investigate the contribution of different land types to the volume of rainwater retained
on the surface of the study area, this study used ArcGIS to count the distribution area of
different land types in the study area and calculate the volume of runoff corresponding
to different land types. In this study, the total runoff volume was used as a proxy for the
runoff volume.

3.4. Water Conservation Capability Assessment

Water conservation capacity is the ability of an ecosystem to regulate water flow
and the water cycle [51]. The overflow of sediments in the Yangtze River and the urban
expansion of Wuhan have affected lakes and wetlands, weakening their water conservation
capacity. Water conservation services function by enhancing soil infiltration and moderating
surface runoff [52] to improve the ecosystem service capacity of the ESP while correcting
the resistance distribution of runoff. This research used the water conservation capacity to
modify the simulation results of the SCS-CN model. The ecosystem water conservation
service capability index [53] was selected for the evaluation index of water conservation.
The formula is as follows [53]:

WR = NPPmean × Fsic × Fpre × (1 − Fslo) (7)

where WR is the ecosystem water conservation service capacity index; NPPmean is the
annual average net primary productivity of the ecosystem; Fsic is the soil infiltration
capacity factor; Fpre is the annual average precipitation; Fslo is the slope value. All four
values were normalized. Finally, the four factors were calculated by overlaying them using
ArcGIS’s raster calculator tool.

3.5. Leisure and Recreation Capability Assessment

In addition to flood control and ecological functions, leisure and recreational functions
are also important features that distinguish ESP from traditional gray infrastructure. The
deeply buried pipeline has a single function and does not provide an additional service
during non-flooding periods, while the ecological corridor combining the blueway and
greenway not only has better flood resistance during flooding periods, but also provides
leisure and recreational services for urban residents during non-flooding periods. The
accessibility of ecological space and cultural services in residential areas is important for
promoting the physical and mental wellbeing of residents [54]. This study uses a crawler
tool called easypoi to crawl the point data coded as parks, scenic spots, and green spaces in
the Baidu map open platform, generate vector point data, and import them into ArcGIS. With
the Kernel Density tool in ArcGIS, the density of the POI data of the ecological space and
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cultural services in the main urban area of Wuhan was calculated and used as the basis for
evaluating the accessibility of the ecological space.

3.6. The MCR Model

In order to find the corridor development and construction mode with the lowest
impact and the best drainage effect, it was necessary to extract the lowest cost path between
the various sources. Based on the MCR model, this research used ArcGIS to extract the
lowest cost path between each ecological source:

MCR =
∫

min
∑
(

Dij × Ri
)

(8)

where Dij refers to the field distance from lake j to the environmental unit i in the region;
Ri refers to the resistance coefficient of environmental unit I; Ri represents the ease of
passage of matter and energy [55].

3.7. DEM-Based Runoff Path Analysis

Runoff paths are the locations of the most likely stream channels in the study area
extracted from DEM data using ArcGIS hydrologic analysis, and are contiguous segments
of a number of continuous low elevation locations where rainfall is more likely to collect in
the study area during rainfall. The hydrological analysis tool was used to extract the stream
channels and compare the maps to remove the existing streams to obtain the potential
stream channels in the study area. These potential channels can be used as a basis for
guiding the construction of artificial rivers. According to the spatial distribution of runoff
paths, the optimization of the urban ESP enhances the infiltration capacity of ecological
corridors and maximizes ecological benefits, which is in line with the requirements of urban
elastic transformation.

3.8. Gravity Model

The development and construction of ecological corridors are usually carried out in
stages. In order to provide guidance on timing the construction of corridors, the gravity
model was used to calculate the strength of the interaction between ecological sources. The
data were then used to judge the relative importance of each corridor. The formula is as
follows [56]:

Gij =
Ni Nj

Dij
2 =

[
1
Pi
× ln(Si)

][
1
Pj
× ln

(
Sj
)]

( Lij
Lmax

)2 =
L2

maxlnSilnSj

L2
ijPiPj

(9)

where Gij is the interaction force between sources i and j; Ni and Nj are the weighting values
of sources i and j, respectively; Dij is the normalized value of the minimum cumulative
resistance between sources i and j; Pi and Pj are the resistance values (extracted from the
raster layer attribute table of the ecological corridor) of sources i and j; Si and Sj are the areas
of sources i and j; Lij is the minimum cumulative resistance value between sources i and j;
Lmax refers to the maximum cumulative resistance of all the corridors in the study area.

3.9. ESP Construction Principles
3.9.1. Selection of Ecological Sources

The ecological source is the source of species dispersal, the place where rainwater
collects, and the cornerstone of urban resilience. It should have the following characteristics:
1© a higher ecosystem service value; 2© a larger water volume; 3© a larger land area. A

higher ecosystem service value can ensure a stable provision of ecological services and
a higher protection value [57]. A larger water volume can reduce the flood peaks and
regulate and store water from floods. A larger land area can ensure the stability of the ESP.
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3.9.2. Construction of Resistance Surfaces

The ESP that is adaptive to floods should integrate the three functions of flood regula-
tion and storage and ecological and cultural services. Therefore, this research selected the
spatial distribution of the runoff simulated in the SCS-CN model as the basic resistance
surface. Furthermore, it used the spatial distribution of water conservation and recreation
capacity to correct the resistance surface. Because the absolute value of resistance has no
practical significance, and since the tendency to assign resistance is more important [58],
this research chose 1–50 as the assignment interval and assigned runoff resistance values
to different patches based on the degree of development impact, construction cost, and
stormwater management and control goals. The difficulty of constructing and developing
ecological corridors and the cost of construction were proportional to the resistance value.
The lower the construction difficulty and cost, the lower the resistance value. To regulate
rainwater, this research used the runoff as the basis for resistance assignment. The larger
the total runoff volume was, the lower the resistance value of the corresponding land type
was. The next step was to connect the resistance values to the land type and then convert
to raster output. The two ecosystem service capacity values are then used as the basis for
assigning resistance values. These three resistance surfaces are combined to obtain the
integrated resistance surface.

3.9.3. Extraction of Ecological Corridors

Based on the MCR model, the shortest path from one source to the other was extracted
as the base ecological corridor using the cost distance and cost path analysis tools of
the distance analysis module in ArcGIS. Through hydrological analysis, the runoff path
data were extracted from DEM. Based on the waterlogging risk points in the main urban
area, the coordinates of each waterlogging road section were imported into ArcGIS. Using
the waterlogging risk points as the source points, the ecological corridors between the
waterlogging risk points were obtained through the MCR model. The ecological corridor
between the runoff path and each waterlogging risk point was used to optimize base
ecological corridors.

4. Results

4.1. Corresponding Runoff Analysis by Land Type

ArcGIS was used to vectorize the land use planning map of the main urban area of
Wuhan (Figure 3) and count the area corresponding to each land type. The total runoff
volume corresponding to each land type is shown in Table 2 and its distribution is shown
in Figure 4.

Table 2. Total runoff volume corresponding to each land type.

Land Use Types CN Value S (mm) Q (mm) Area (m2) Total Runoff Volume (m3)

Protect green space 72 98.78 196.55 507,492.75 99,745.64
Logistics and warehousing 91 25.12 431.80 2,100,792.94 907,117.32
Administrative office space 82 55.76 297.80 3,813,765.88 1,135,734.66

Other green spaces 67 125.10 157.98 37,262,863.73 5,886,628.39
Production green space 75 84.67 223.09 16,904,581.75 3,771,311.36

Park green space 66 130.85 151.00 54,656,304.71 8,253,315.63
Entertainment and sports land 90 28.22 414.07 9,021,995.04 3,735,721.10

Municipal utilities 90 28.22 414.07 20,276,203.44 8,395,730.74
Commercial and business facility 92 22.09 450.41 20,041,809.81 9,027,042.93

Education and research 91 25.12 431.80 26,388,219.08 11,394,369.34
Residential 77 75.87 242.46 122,887,264.91 29,794,771.57

Industrial manufacturing 91 25.12 431.80 62,441,887.42 26,962,256.36
Waters 98 5.18 584.91 115,447,026.19 67,525,774.34
Road 98 5.18 584.91 177,813,282.11 104,004,234.32
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Figure 3. Distribution of land types on vector map.

Figure 4. Spatial distribution of total runoff volume.

According to Figure 4, bodies of water, roads, industrial land, and residential areas are
the most likely to collect rainwater. In particular, roads had the largest CN value and area,
generating the most surface runoff. This suggests that stormwater management and road
control should be priorities. The main reason for the great influx of industrial real-estate is
the area’s considerable size. The area also has a rigid underlying surface with a high CN
value, resulting in a high capacity for rainwater retention. Residential areas and educational
land generated more surface runoff as they accounted for a quarter of the total study area.
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4.2. Distribution Characteristics of Two Ecosystem Services

The spatial distribution of the two ecosystem services showed a complementary trend
(Figures 5 and 6). In terms of their water conservation capacity, high value areas were
mainly distributed in 1© the East Lake–Yanxi Lake area, Hanyang Ecological Zone (an
area with a well-developed internal structure and a complete ecological function that
can exist on its own.), 2© the Zhujia River–Fu River area, 3© the Wuchang Institute of
Technology–Hubei University of Technology, and 4© the East of Hanyang Ecological Zone,
while the low value area was located in the Hankou and Wuchang Ecological Zones.
When it comes to their leisure and recreation capacity, the high value areas were mainly
concentrated in 5© the South of Hankou Ecological Zone, 6© the Wuhan Garden Expo Park,
7© the Moon Lake–Moshui Lake area, 8© the intersection between the Yangtze and the

Hanjiang Rivers, and 9© the East Lake Scenic Area. In terms of the accessibility of ecological
spaces and cultural services, residents of urban centers have an advantage over those in
the urban periphery.

Figure 5. Distribution of the water conservation capacity.

Figure 6. Distribution of the leisure and recreation capacity.
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4.3. Construction of a Flood-Adaptive ESP
4.3.1. Distribution of Ecological Sources

According to the geographical and hydrological characteristics of Wuhan and its urban
land type, 18 lakes in the main urban area were selected as ecological sources (Figure 7). It
was found that the total area of the ecological sources is 29.54 km2, accounting for 6.56% of
the study area. As for mountainous and woodland areas, both were excluded from this
paper because of their small size and weak flood storage capacity.

Figure 7. Distribution of ecological sources.

4.3.2. Construction of the Resistance Surface

The distribution of runoff resistance values is shown in Figure 8c. Low resistance
values were mainly concentrated on roads and bodies of water. Compared to residential,
commercial, and financial land types, the construction and development of roads and
bodies of water had the advantages of a lower development impact and low costs.

The values of water conservation and leisure and recreation capacity are negatively
correlated with the resistance values. The distribution of the resistance values for leisure
and recreation and water conservation are shown in Figure 8a and b, respectively. The
three raster resistance surfaces a, b, and c were overlaid using the Raster Calculator tool
in ArcGIS. The comprehensive resistance is shown in Figure 8d. After the correction, the
comprehensive resistance was found to be low in the center and high in the surrounding
area. The low value was mainly distributed in 1© the Yiyuan Community–Chezhanlufuren
Community and 2© the Changfeng sub-district–Garden Expo Park sub-district in the
Hankou Ecological Zone, 3© Parrot sub-district–Wulidun sub-district and 4© Xianzheng
Street Community in the Hanyang Ecological Zone, 5© the Xinhe sub-district–Jiyuqiao sub-
district–Zhonghua Road sub-district, and 6© the East Lake–Yangchun Lake Community–
Beiyangqiao Community area in the Wuchang Ecological Zone.
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(a) (b) 

 
(c) (d) 

Figure 8. Resistance distribution: (a) leisure and Recreational resistance distribution, (b) Water
conservation resistance distribution, (c) Runoff resistance distribution and (d) Comprehensive
resistance distribution.

4.3.3. Identification and Optimization of Corridors

The distribution of ecological corridors is shown in Figure 9.
As shown in Figure 9, there are 19 ecological sources (As shown by the bolded num-

bers) and 32 ecological corridors (As shown by the circled numbers) in the study area, 9 of
which are in the Hankou Ecological Zone; they are generally scattered and long. Of these
nine corridors, Corridors No. 6 and 9 meet on the west side of Wuhan No. 17 Middle School.
In total, 16 ecological corridors were found in the Hanyang Ecological Zone, accounting for
half of the total of ecological corridors in the study area. Their distribution is concentrated,
and the corridors are generally short, of which Corridors No. 10, 6, and 9 intersect on the
west side of Wuhan No. 17 Middle School. Seven ecological corridors were found in the
Wuchang Ecological Zone, roughly showing the spatial distribution pattern of three verticals
and three horizontals, of which Corridors No. 26 and 30 are connected to the north side
of Hubei Shuiguohu High School. Corridors No. 29 and 28 meet at Shouyi Park, while
Corridors No. 29 and 32 meet south of the Wuchang Institute of Technology. The specific
distribution of these 32 corridors is shown in Table S1.
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Figure 9. Distribution of ecological corridors.

According to Figure 9, the ecological corridors in the Wuchang Ecological Zone have
the most extensive connectivity range. Although there are fewer communication channels
between the ecological sources, the source area is relatively large. Furthermore, the ecologi-
cal corridors in the Hanyang Ecological Zone are small in scale but strong in connectivity,
and the corridors are compact and short. The ecological source area of the Hankou Eco-
logical Zone is small and scattered, resulting in long corridors. Therefore, the width of the
corridors should be increased to enhance their anti-interference ability and ensure that the
ecological corridors function properly.

4.4. Identification of Construction Priorities

Based on the gravity model, this research constructed a matrix of interactions between
ecological sources (Table S2) to identify the strength of the interaction between ecological
sources and select key ecological corridors (Figure 10).

The key corridors identified by the gravity model should become priorities for con-
struction so as to reduce the impact of corridor development and improve the efficiency of
corridor construction. From Figure 9 and Table S2, it can be seen that the strength of the
connection between source 2 (Chestnut Lake–Huanzi Lake Group) and 5 (Moon Lake) was
weak. However, Corridor 7, as a key link between the north and south of the Hanjiang
River, was critical for the overall connectivity of the study area and should be given priority.
The strength of the connection between source 11 (Tang Lake) and 13 (South Taizi Lake)
was also weak. Corridors No. 24 and 25 were important passages connecting Tanghu Lake
and the Hanyang Ecological Zone. They were used as key corridors for construction, which
can improve the ecological service capacity of the southern part of the Hanyang Ecological
Zone. Overall, the strength of the connection between the sources weakened from west
to east and from south to north. In particular, the strength of the connection between Tazi
Lake and other sources in the northwest was the weakest.

203



Int. J. Environ. Res. Public Health 2023, 20, 385

Figure 10. Distribution of key corridors.

By ArcGIS statistics, the total cumulative length of the 32 ecological corridors in the
main urban area of Wuhan is 344.21 km. In total, 10 key corridors with a total length of
63.56 km were mainly distributed around the East Lake and the Hanyang Ecological Zone.
There were 22 potential corridors with a total length of 280.65 km located north of the
Hanjiang River and south of Wuchang District. By planning ecological corridors to connect
to important ecological sources north and south of the main urban area and adding the
ecological resources of the Yangtze River to the overall cycle of the ESP, the whole study
area can respond to the floods in a more dynamic, proactive, and resilient manner.

5. Discussion

5.1. Comparison of Current Status

In the past decade or so, the Wuhan municipal government has proposed a plan to
improve the ecology of the region, called Six Lakes Linkage [59], which would connect some
of the rivers and lakes through canals. Therefore, this paper compares the results of the
study with the current situation and investigates the merits and shortcomings of the plan.

Firstly, comparison of real-time satellite maps shows that corridors already exist
between the four ecological sources (source 5, 6, 7, and 8). Four existing corridors were
found in the right location as the research results, namely, Corridors No. 12, 13, 14, and 15.
There were two corridors with partially identical results, i.e., the North Prince Lake–Haitang
section of Corridor No. 19 and the East Lake–Shahu section of Corridor No. 26.

Secondly, two existing corridors were mislocated. In particular, Corridor No. 2 was
mislocated and not long enough. Due to the construction difficulty, the Begonia Road–South
Taizi Lake section of Corridor No. 19 cut a corner and took a straight route, abandoning the
closer route along Jiangcheng Avenue and opting for one block farther along Wisteria Road.
There was already a corridor (East Lake Harbor) connecting the Yangtze River to Yangchun
and East Lake. However, the curved shape of East Lake Harbor led to an excessively long
corridor in the East Lake–Yangchun Lake section compared to Corridor No. 27 in the
research results. Excessively long and mislocated corridors can impede the transfer of
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ecological materials and energy between source places and weaken the ecological service
capacity of ecological corridors. The existing zigzag corridors make it difficult to absorb and
discharge stormwater and tend to cause stormwater accumulation, which is not conducive
to the prevention of floods in urban areas.

Lastly, the lack of connecting corridors between the remaining source sites affects the
flow of ecological materials and energy. Likewise, it does not facilitate the discharge and
dissipation of stormwater during the flood season, weakening the resilience of the main
urban area.

5.2. Exploration of the Development Model

The largest number of ecological corridors was found in the Hanyang Ecological Zone,
which is the product of the Hanyang District Six Lakes Linkage Project [59] ongoing since 2005
that was originally developed to curb the deterioration of lakes’ water quality with the
natural water power of the Yangtze River. The construction method incorporated parallel
blueways and greenways, that is, it included artificial river channels and supplemented
them with greenways on either side. Firstly, the interconnected lakes can increase the overall
storage capacity by increasing water storage space, thus offering an advantage in dealing
with floods. Constructing greenways can also provide a path for stormwater transfer.
Likewise, the flexible underlaying surface can increase the infiltration of stormwater during
the transfer process and reduce the water amount. During the construction of ecological
corridors, the lakes were seen as ecological sources able to curb the damage from urban
construction activities. Corresponding plants in the areas were selected to control runoff
pollution in response to the local runoff pollution characteristics of the study area.

The ESP that is adaptive to floods aims to build a resilient city and connect the major
lakes in the main urban area of WUH through ecological corridors to form a regional and
systematic ecological network. This network can, in turn, improve the ecological resilience
of the main urban area. Through the flood-adaptive design of the ESP, the threshold of
precipitation from floods is increased, while the speed of flood dissipation and transfer is
enhanced, giving rise to a city resilient to floods.

5.3. Methodology Advantage

Compared to traditional gray infrastructure with a single function and no integrity, an
ESP adaptive to floods is more holistic, diverse, economical, environmentally friendly, and
less impactful.

Although traditional gray infrastructure is taller and more solid, it loses its single
function [60] during non-flooding periods. The hard surface of the infrastructure is neither
aesthetically pleasing nor safe, as well. The ESP that is adaptive to floods can not only
cope with floods in urban areas but can also provide recreational and ecological services
for urban residents during the non-flooding period.

Furthermore, traditional gray infrastructure negatively impacts the environment [61,62].
Hard levee separates lake and river ecosystems from other ecosystems, blocking the normal
exchange of ecological materials and energy and increasing the risk of ecological fragility. The
construction of traditional gray infrastructure, such as levees, not only occupies more of the
lake’s natural space, but also deprives the lake of its hydrophilic vitality. However, the ESP
that is adaptive to floods adopts a “sparse” approach to enhance ecosystem service capacity
of rivers and lakes while also minimizing the impact of floods. In addition, the natural force
of the river can be used to improve the water quality of the urban lakes by connecting them to
natural water systems, such as the Yangtze and Han Rivers.

In terms of the construction impact, the construction of ecological corridors does not
have to happen overnight. The corridors can be built first as key ones and then as potential
ones. This step-by-step construction has less impact on the corridors’ functionality and
can greatly reduce construction investment. This research developed two specific ways
of construction: 1© it adopted the culvert connection, i.e., maintaining the elevation of
the roadbed and digging under the road to form the culvert. This specific method was
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used in road construction of Mudu Ancient Town in Wuzhong District, Suzhou. The
advantage is that the construction cost is low, while the disadvantages are that the corridor
cannot realize the functions of leisure and recreation, runoff pollution control, and cultural
education, and the public perception is also greatly reduced; 2© this research also used an
artificial river with a road bridge above it, so that the part under the bridge becomes a
park and the bridge becomes a road. This example refers to the effect of the Wuhan City
Hanyang District–South Third Ring Road–Wetland Park–Meizi Interchange. However, its
disadvantages are high construction costs, long lead time, and management difficulties.

In terms of economic impact, ESP has lower construction and maintenance costs and
adds ecological and cultural value [63]. On the other hand, traditional gray infrastructure is
not only costly, but also puts a certain amount of pressure on local finances for maintenance.

Compared to sponge cities, an ESP that is adaptive to floods is holistic and dynamic,
complements the static defense of sponge cities, and relieves their storage pressure. Taking
advantage of the natural hydraulics of the Yangtze and Hanjiang Rivers supplemented by
plants can make up for the deficiencies of the sponge city in controlling runoff pollution [20].
An ESP that is adaptive to floods is also more advantageous in terms of cultural and
educational services and public perception. The combination of a flood-adaptive ESP and
sponge city can effectively improve a city’s resilience.

Based on the existing green space and river system in the main urban area of WUH,
it was found that the existing blueways were limited in path selection by straight lines or
original old river channels. The ESP that is adaptive to floods proposed in this research
used the SCS-CN model to visualize and express the retention of surface water volume
during floods. Because stormwater management should be given priority, corridor paths
were extracted based on cost and distance using the MCR model. In traditional ESP
studies [64,65], descriptions of the ecological corridor locations are not specific enough,
causing difficulties in locating them precisely during construction. In this research, the
specific locations of corridors were narrowed down to the street level. The suggestions
about construction were made by comparing existing plans, so the research results are
more practical, which is beneficial to governments for precise policy making and reducing
decision-making costs.

6. Conclusions

This paper analyzed the spatial distribution of stormwater runoff under extreme
precipitation and constructed an ESP that is adaptive to floods.

The SCS-CN model guided flood control objectives and derived the surface volume
and spatial distribution of the runoff. The volume and spatial distribution were subse-
quently used to develop ecological corridors. The surface runoff path and the distribution
of waterlogging points were used to optimize the corridor locations.

This research identified 19 ecological sources, 3 ecological zones, 32 ecological corri-
dors, 10 key corridors, and 22 potential corridors using the gravity model. The Wuchang
Ecological Zone exhibited a three vertical and three horizontal spatial distribution patterns
with East Lake as the core. Furthermore, the Hankou Ecological Zone had a dispersed
distribution pattern with Chestnut Lake–Huanzi Lake Group as the center. Lastly, the
Hanyang Ecological Zone showed a clustered distribution. The research finally proposed a
two-axis and three-core urban ecological resilience optimization strategy for decision makers,
consisting of three ecological zones and two rivers.

In conclusion, enhancing urban ecological resilience can help cities cope with severe
floods and can provide new methods and approaches for rainfall and flood control in
Wuhan. Likewise, it can provide ideas for maintaining the ecological service capacity of
lakes, realizing urban resilience, and ensuring regional ecological security.

The shortcomings of this research are as follows. (1) Hydrological heterogeneity within
the same land type was not studied due to data limitations. Therefore, landscape design
for controlling runoff pollution needs further research. (2) This research proposed the
location of the corridors, but did not clarify their width, so subsequent studies should
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supplement this aspect to serve urban construction better. (3) Since there are few examples
of how to construct flood-adaptive ESPs, it was difficult to quantify their functionality;
thus, future studies need to address this problem. These questions are to be addressed in a
follow-up study.
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Abstract: Urban construction land (UCL) change is a significant cause of changes in urban carbon
emissions. However, as the extent of this effect is currently unclear, cities cannot easily formulate
reasonable carbon reduction policies in terms of land use. Taking the city of Wuhan, China, as an
example, this paper combines data on land use and carbon emissions from 1995 to 2019 and uses
spatial analysis, curve estimation, and correlation evaluation to explore the direct and indirect effects
of the UCL changes on carbon emissions. The results show that: (1) Between 1995 and 2019, the
UCL area in Wuhan increased by 193.44%, and carbon emissions increased by 78.63%; moreover,
both changes showed a gradually increasing spatial correlation, and the quantitative relationship
could be better fitted with a composite function model; (2) The UCL change had mainly an indirect
impact on carbon emissions via factors such as population and energy use intensity per unit of carbon
emissions; (3) The maximum value of carbon emissions inside a unit area decreased during the study
period, with an average annual decrease of about 2.02%. Therefore, the city of Wuhan can promote
the achievement of its carbon emissions reduction targets by improving the existing land use policies,
for example, by dividing the city into multiple functional zones.

Keywords: UCL; carbon emissions; spatial and temporal variation; Wuhan

1. Introduction

Large amounts of carbon emissions can lead to global meteorological changes, which
can cause serious natural disasters [1,2]. In Climate Change and Land, the IPCC (Inter-
governmental Panel on Climate Change) pointed out the interactive relationship between
land-use change and climate change and that reasonable land-use management policies
can help achieve the carbon emissions reduction targets of the Paris Agreement [3]. Some
scholars have demonstrated that land-use change significantly impacts carbon emissions
and meteorological changes [4–6]. Land-use change affects not only the carbon stock of
soil but also carbon emissions from human activities by changing the linkages between
socioeconomic and natural systems [7–9]. Land-use change is also the second cause of the
increase in carbon emissions from fossil energy combustion [10–12]. Therefore, it is neces-
sary to clarify the extent of the impact of land-use change on carbon emissions to support
the formulation of rational land-use policies and carbon emissions reduction measures.

Current research on the relationship between land-use change and carbon emissions
has focused on the following hot topics:

(1) Determining the role of land-use change on carbon emissions. Houghton et al. [13]
explored the relationship between land-use change and carbon emissions by taking Asia as
the research object; they found that forestry activities and land-use change in South and
Southeast Asia released 43.5 Pg of carbon into the atmosphere during the period 1850–1995.
By reconstructing Land-Use and Land-Cover Change (LUCC) data, Pacala et al. [14] found
that carbon emissions from terrestrial ecosystems in the United States from 1700 to 1945
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were about 27 ± 6 Pg. Ge [15] took China as a case study and used the “thin record model”
to measure carbon emissions due to land-use change in the previous 300 years. Later studies
focused on the effect of small-scale land-use change on carbon emissions. Ren et al. [16]
took Dongliao County, China, as the research object and used land-use change data from
1980 to 2018 to study the effect of land-use change on the carbon stock of the ecosystem.

(2) Land-use carbon emissions accounting methods and standards. In 1980, Houghton [17]
proposed and refined a thin-notation model based on an annual time-series bookkeeping
model with extensive survey and empirical data, which laid the foundations for numerous
subsequent studies proposing models to estimate carbon emissions. Ge [15] used a model
estimation method to measure the changes in carbon emissions due to land-use change in
China over the previous 300 years; Fang et al. [18] studied the forest vegetation carbon pool
in China and its spatial and temporal variation by using the resource inventory data of the
Senjin system and associated statistical records in China in the past 50 years. Zhao et al. [19]
used remote-sensing statistics and Gross Primary Productivity (GPP) data to build a model
to estimate carbon emissions changes in the United States. Although these three methods
are widely used for carbon emission calculation, due to the complexity and variability of
the underlying data, classification system, research methods, and empirical parameters,
accounting results can vary greatly for the same research object. Therefore, it is extremely
important to employ a reasonable carbon emissions accounting standard [20]. The National
Greenhouse Gas Inventory Program (NGGIP), a thematic working group under the IPCC,
has established a database of greenhouse gas emission factors, which is regularly updated
and provides a basis for carbon emission accounting in various countries and regions [21].
Fang et al. [22], Zheng et al. [23], Lai [21], Zhang et al. [24], and Ye et al. [25] estimated the
carbon sinks of various land types in China using agricultural statistics, remote sensing
images, ground observation data, and previous research results, and obtained carbon
emission factors for forest land, cropland, unused land, watershed, and grassland, which
provided a basis for later scholars to use the factor measure to calculate the carbon emissions
of different regions of China.

(3) The mechanism of land-use change on carbon emissions. Xia et al. [26] used
ecological network analysis to explore the ecological relationship between different land-
use changes and proposed a land-carbon correlation rate to describe the impact of land-use
changes on carbon balance. Yuan et al. [27] explored the relationship between urbanization
and land-use change in three representative models by simulating land use in 13 cities in
the Beijing–Tianjin–Hebei urban agglomeration, China and using environmental Kuznets
curves; they found that land-use patterns at different levels of urbanization have other
effects on carbon emissions. Rounsevell [28] analyzed the impact of land-use change on
carbon emissions in the UK, finding that socioeconomic and technological changes may be
the most important drivers of land-use change, which in turn determines carbon emissions
changes. The above-mentioned studies have initially revealed the role of land use on carbon
emissions; however, they mainly focused on analyzing the impact of land-use changes
on carbon emissions in provincial areas. As such, they have the following shortcomings:
(1) They lack an analysis of the impact of land-use changes on carbon emissions within
cities from a spatial perspective and fail to reveal the extent of the influence of land-
use changes on carbon emissions in a comprehensive way by establishing quantitative
models; (2) They lack an urban-scale exploration of carbon emissions from land use, and
the existing carbon emission assessments at the city level are limited to the estimation of
energy consumption [29–31], which is not helpful for urban land use and carbon reduction
development, and does not allow to provide more precise guidance.

In recent years, with the implementation of the national strategy of the “Yangtze River
Economic Belt”, the industrialization and urbanization level of the city of Wuhan, which
is located in the middle reaches of the Yangtze River, has been rapidly advancing, and
the UCL area has been rapidly increasing. The population size, technology development
level, and energy use have changed accordingly, affecting urban carbon emissions and
posing a remarkable risk to the city’s sustainable development. Therefore, the issue of
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optimizing the layout of land use and coordinating the relationship between land use and
carbon emissions has become urgent for the city of Wuhan. In this study, we quantitatively
evaluated the spatial and temporal variation characteristics between the UCL area and
carbon emissions in Wuhan and determined the spatial connection between UCL change
and carbon emissions change through spatial correlation analysis; then, we quantified
the degree of impact of the UCL change on carbon emissions using curve estimation,
and analyzed the relationship between carbon emissions influences, identified by Kaya’s
constant equation, and changes in UCL using grey correlation; finally, we established the
direct and indirect relationship between the change in UCL area and the change in carbon
emissions in Wuhan city during the study period. The results of this study can provide
suggestions for cities to formulate rational land use policies and promote sustainable urban
development.

2. Materials and Methods

2.1. Materials
2.1.1. Study Area

Wuhan is located between 29◦58′–31◦22′ N latitude and 113◦41′–115◦05′ E longitude,
at the confluence of the Yangtze River and the Han River. This area is characterized by
several lakes and a well-developed water system; the landscape is low and flat in the central
part, hilly in the northern and southern parts, and low mountainous in the north (Figure 1).

Figure 1. Wuhan city location map. (a) Location of Wuhan; (b) longitude and latitude of Wuhan.

With the implementation of the Outline of the Yangtze River Economic Belt Develop-
ment Plan in September 2016, Wuhan has become the main city for the development of the
Yangtze River Economic Belt. Therefore, its ability to achieve efficient and low-carbon land
use in rapid development is of tremendous importance for the future construction of an
ecologically prioritized, green, coordinated, and sustainable society; moreover, Wuhan will
also play a leading position in the low-carbon improvement of neighboring cities.

2.1.2. Data Collection

The main data sources employed in this study are shown in Table 1.
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Table 1. Data Source.

Name of Data Source of Data

The land-use data European Space Agency (ESA)
(https://viewer.esa-worldcover.org/worldcover/ (accessed on 9 November 2022))

Socioeconomic and energy
consumption data

The Wuhan Statistical Yearbook
(http://tjj.wuhan.gov.cn/tjfw/tjnj/ (accessed on 9 November 2022))

Carbon Emission factors of
energy source

The 2006 IPCC Guidelines for National Greenhouse Gas Inventories.
(https://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html

(accessed on accessed on 9 November 2022)) [32]
Carbon emission factors of

land types Research achievements of Li [21], Fang et al. [22], Zheng [23], Zhang et al. [24], Ye et al. [25].

2.2. Methods
2.2.1. Calculation of Carbon Emissions

The coefficient measurement method was used to calculate carbon emissions. This
method is easy to implement, has robust convincing power, and is widely used to calculate
carbon emissions [26,27]. The calculation formula employed is as follows:

C = ∑6
i=1 Ci = ∑6

i=1 Ai × Si, (1)

where C represents the total carbon emissions; Ci represents the carbon emissions for each
land category; Ai represents the carbon emission factor for each land category; and Si
represents the utilized area for each land category. i was assigned a value from 1 to 6 to
indicate Cropland, Water, Forestland, Grassland, Unused land, and UCL, respectively.

The human activities in UCL vary from city to city; hence, using a fixed carbon
emission factor was impossible. However, as UCL mainly hosts social production activities,
in this study, the method of Xiao et al. [33] was adopted, which expresses UCL carbon
emissions (C6) in terms of carbon emissions generated through energy consumption as
follows:

C6 = ∑ Bt × Qt, (2)

where Bt represents the carbon emission factor of each energy source; and Qt represents the
quantity of use of each energy source.

The carbon emission coefficients of Forestland, Unused land, Water, Grassland, and
Cropland in Wuhan and the carbon emission coefficients of major energy sources are shown
in Table 2.

Table 2. Carbon emission coefficients for each type of land use and each major energy source.

Land Use Type
Carbon Emission

Factor (t/km2)
Energy

Carbon Emission
Factor (t/tce)

Energy
Carbon Emission

Factor (t/tce)

Cropland 49.7 [23] Coal 0.7559 [32] Kerosene 0.5714 [32]
Forestland −64.4 [22] FC 0.7559 [32] RDG 0.4602 [32]
Grassland −2.4 [25] Coke 0.8559 [32] LP 0.5042 [32]

Water −46 [24] Crude Oil 0.5857 [32] COG 0.3548 [32]
Unused land −0.5 [21] Fuel Oil 0.6185 [32] Heat 0.26 [32]

UCL - Gasoline 0.5538 [32] Electricity 2.5255 [32]
Diesel 0.5921 [32] BFG 0.3548 [32]

Where the carbon emission factor of the land class is less than zero, it means that the land class is a carbon sink
class and has carbon absorption capacity; FC—Finished coal; RDG—Refinery Dry Gas; LP—Liquefied Petroleum;
COG—Coke oven gas; BFG—Blast furnace gas.

2.2.2. Land-Use Changes Dynamic Attitude

Land use dynamic attitude represents the magnitude of changes in the way various
land-use categories are utilized over a certain period and can be used to quantitatively
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measure the magnitude of land-use change [34]. In this study, we used a single land-use
dynamic attitude to assess the change in land-use types in Wuhan, as follows:

LCi =
Ub − Ua

Ua
× 1

T
× 100%, (3)

where LCi represents the dynamic attitude of using single land areas; Ua and Ub repre-
sent the area of single land use sorts at the beginning and the end of the study period,
respectively, and T represents the temporal interval.

2.2.3. Spatial Correlation Analysis

In this study, the spatial autocorrelation analysis was used to explore the spatial and
temporal characteristics of the impact of the UCL change on carbon emissions in Wuhan.
This type of analysis is articulated into global and local spatial autocorrelation analysis [35].

Global spatial autocorrelation analysis can be used to determine the average degree
of correlation and spatial distribution between attributes of a region and to reflect the
similarity between each unit and the neighboring units in the entire study area. The
Moran’s I index is often used to measure global spatial correlation. Its value is in the range
[−1, 1]; higher values indicate a stronger correlation between the overall attributes of a
region. The Moran’s I index was calculated as follows [36]:

Ii
pq =

Yi
p − Yp

T2
p

·∑n
j=1 Wij·

Yi
q − Yq

T2
q

, (4)

where Ii
pq denotes the spatial correlation between the p-attribute and the q-attribute of the

i-th spatial unit; Yi
p denotes the value of the p attribute on the i-th spatial unit; Yp denotes

the mean of all spatial unit p attributes in the study area; T2
p denotes the variance of all

spatial unit p attributes in the study area; Yi
q denotes the value of attribute q on the i-th

spatial unit; Yq denotes the mean of all spatial unit q attributes in the study area; T2
q denotes

the variance of all spatial unit q attributes in the study area; Wij denotes the weight matrix
based on the row criterion; and n denotes the number of spatial units.

Local spatial autocorrelation analysis can determine the possible spatial correlation
patterns and local spatial distribution characteristics of different spatial locations. The
autocorrelation of the local space can be analyzed by employing the local Moran’s I index.
A Local Indicators Spatial Autocorrelation (LISA) clustering map was drawn based on the
Z-test (p < 0.05). Five types of clusters were identified: H-H clusters, where the attribute
values of the observed area and its surrounding areas are high, and other clusters are
similar; L-L clusters; H-L clusters; L-H clusters; and NS clusters. The formula for the local
spatial Moran’s I index was as follows [36]:

Ii =
Yi − Y

T2
i

·∑n
i=1,j �=1 Wij·

(
Yi − Y

)
, (5)

where Yi denotes the attribute value of the i-th spatial unit; Y denotes the mean of the
attribute values of all spatial units in the study area; T2 denotes the variance of the attribute
values of all spatial units in the study area; Wij denotes the weight matrix based on the row
criterion; and n denotes the number of spatial units.

2.2.4. Curve Estimation

To further quantify the influence of the UCL change on carbon emissions, scatter plots
were drawn considering the UCL area as the independent variable and carbon emissions as
the dependent variable. A suitable mathematical model was selected for curve estimation
based on the scatter plot, and the best-fit equation was determined using the significance
test. In this study, we use Linear Model (Equation (6)), Logarithmic Model (Equation (7)),
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Quadratic Model (Equation (8)), Three times Model (Equation (9)), Composite Model
(Equation (10)), Power Model (Equation (11)). These formulas employed were as follows:

y = β0 + β1x (6)

y = β0 + β1 ln x (7)

y = β0 + β1x + β2x2 (8)

y = β0 + β1x + β2x2 + β3x3 (9)

y = β0 ∗ β1
x (10)

y = β0xβ1 (11)

The goodness of match of the regression model was determined by using the equation
fit coefficient R2, whereby the closer the R2 to 1, the better the model fits the change in
carbon emissions and the change in UCL. Moreover, the significance test was employed
to determine the validity of the regression equation, whereby the smaller the significance
coefficient p, the more valid the equation is in responding to the effect of the UCL change
on carbon emissions. Generally speaking, this equation is considered extremely valid when
p < 0.05 [37].

2.2.5. Indirect Impacts of UCL Changes on Carbon Emissions

While the direct impact of UCL changes on carbon emissions was determined by
assessing the qualitative and quantitative relationship between these two elements, the
indirect impact was determined by assessing the relationship between UCL changes and
the factors influencing carbon emissions. The carbon emissions impact factors were then
determined by employing Kaya’s constant equation.

Kaya’s constant equation was first proposed by the Japanese scholar Yoichi Kaya [38].
This equation links the general macro factors, such as society and economy, to carbon
emissions, and considers carbon emissions as the result of the combined effect of four
factors: GDP per capita; energy consumption per 10,000 Yuan GDP; energy use intensity
per unit of carbon emissions; and population. Due to its simple structure and robust
explanatory power of the change factors, it is widely recommended by the IPCC to analyze
the characteristics of carbon emissions changes and its influencing factors [39,40]. As such,
it has been widely recommended by the IPCC to analyze the characteristics of carbon
emissions changes and their influencing factors. The formula employed is as follows:

C ∝
C
E
∗ E

GDP
∗ GDP

P
∗ P, (12)

where C is carbon emission; E is energy use; p is population number; C
E denotes energy

use intensity per unit of carbon emission; E
GDP denotes energy use per 10,000 Yuan; GDP

P
denotes GDP per capita.

The gray correlation analysis was used to explore the relationship between UCL
changes and factors influencing carbon emissions. The gray correlation analysis can
measure the connection between two elements and is suitable for small samples and in
cases of poor information and uncertainty. The greater the gray correlation, the closer the
relationship between the two elements [41]. The formula employed is as follows:

γ0(i) =
1
m ∑m

k=1 ξi(k), (13)

where ξi(k) =
min

i
min

k
|x0(k)−xi(k)|+ρmax

i
max

k
|x0(k)−xi(k)|

|x0(k)−xi(k)|+ρmax
i

max
k

|x0(k)−xi(k)| ; γ0(i) and ξij represent the gray cor-

relation coefficient and the correlation degree corresponding to xi(k) and the reference
sequence x0(k), respectively; ρ represents the resolution, and is generally assigned a value
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of ρ = 0.5; and x0(k) and xi(k) represent the reference series and the k-th term of the i-th
variable, respectively.

3. Results

3.1. Analysis of Urban Land-Use Change and Carbon Emissions Change
3.1.1. Urban Land-Use Change Analysis

The results of the spatial analysis of land use in Wuhan from 1995–2019 are shown
in Figure 2. UCL was mainly located in the central urban area of Wuhan, while in other
areas, it showed a concentrated distribution with multiple land-use centers, as well as a
star-shaped spreading pattern from the center to the surrounding area. The total area of
UCL increased from 391.55 km2 in 1995 to 1148.96 km2 in 2019, with an average annual
increase of 2.79%. Furthermore, the Cropland area decreased from 6382.86 km2 in 1995
to 5573.21 km2 in 2019, with an average annual decrease of 33.74 km2. The water area
is located in the central and southern sections of the city; its extension decreased from
1225.62 km2 in 1995 to 1194.268 km2 in 2019, following a fluctuating downward trend of
increase–decrease–increase–decrease. Forestland is mainly located in the northwestern
region and in the northeastern fringe area, while the other land types are scattered in the
central and southern regions, with the total area following a trend of first decreasing and
then increasing.

Figure 2. Land use in Wuhan, 1995–2019. (Take six points in time from 1995–2019: 1995, 2000, 2005,
2010, 2015, 2019).

In the process of UCL changes, the annual growth showed a fluctuating change of
decrease-increase-decrease; the period with the highest growth was 2005–2010, with an
average annual growth of 43.06 km2, while that with the lowest growth was 2000–2005,
with an average annual increase of 23.81 km2. The period with the greatest change in
land-use dynamics was 1995–2000, reaching as high as 6.91%, while the lowest change was
2015–2019, with 2.88% (Figure 3).
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Time

Figure 3. Area of the UCL change and UCL dynamic attitude in Wuhan, 1995–2019 (Divide the years
1995–2019 into five time periods: 1995–2000, 2000–2005, 2005–2010, 2010–2015, and 2015–2019).

During the study period, the new UCL occupied the largest amount of Cropland, i.e.,
about 713.97 km2, accounting for about 94.40% of the new UCL, followed by water with
34.28 km2, accounting for about 4.53% of the new UCL.

Looking at different study periods, the proportion of new UCL originating from
Cropland varied widely, with the highest proportion in 2010–2015, accounting for 100.46%
of new UCL, and the lowest in 1995–2000, at 90.24%. In addition, the period with the
largest proportion of the water conversion of new UCL occurred in 2000–2005, at 8.84%.
The proportion of the sum of other land types to the new UCL fluctuated, with the highest
proportion of 1.53% calculated for 1995–2000. The proportion of the transformed part of
each land type to the new UCL continued to change due to the scattered distribution of
multiple land types within Wuhan and the principle of proximity in the expansion of the
UCL (Table 3).

Table 3. Sources of new UCL in Wuhan, 1995–2019.

Cropland Water Forest Land Grassland Wasteland Totally

1995–2000 122.10 11.12 1.02 0.87 0.18 135.19
2000–2005 107.45 10.52 0.63 0.22 0.15 118.97
2005–2010 200.74 11.57 0.76 1.37 0.24 214.68
2010–2015 169.70 −2.70 0.5 1.38 0.04 168.92
2015–2019 114.08 3.77 0.18 0.48 0.06 118.57

1995–2019 713.97 34.28 3.09 4.32 0.67 756.33

Unit: km2.

3.1.2. Carbon Emissions Analysis

In general, Wuhan’s carbon emissions showed an upward trend, rising from 21,187,800 t
in 1995 to 38,972,400 t in 2019, corresponding to an increase of 78.63% in 24 years, with
an average annual increase rate of 2.45%. More in detail, carbon emissions from energy
consumption on urban construction sites, which is the main source of carbon emissions in
Wuhan, increased from 21,594,600 t in 1995 to 38,793,700 t in 2019, with an average annual
increase rate of 2.47%. The carbon emissions coefficient of the UCL, determined as the ratio
of total carbon emissions to land area, decreased continuously throughout the study period,
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with an average annual decrease of 2.02%. The energy consumption per 10,000 Yuan GDP
in Wuhan also decreased continuously, with an average annual decrease of 10.99%; the
largest decline of 64.20% was measured from 2005 to 2010, with an average annual decrease
of 18.57% during that period. The decreasing trend of the energy use intensity per unit of
carbon emissions, on the other hand, was confirmed, with an average annual decline of
1.42%; the highest decline was measured from 2000–2005, with an average annual decline
of 2.67%, while a brief upward trend occurred from 2015–2019. However, this increase was
not significant, equaling 1.39% (Table 4).

Table 4. Wuhan Carbon Emissions-Related Indices, 1995–2019.

Total Energy Consumption Per 10,000
Yuan GDP(t of Standard Coal)

Energy Use Intensity Per Unit
of Carbon Emissions

Total Carbon
Emissions (104 t)

The Carbon Emission
Factor of UCL (104 t/km2)

1995 2.78 1.03 2181.78 5.515095
2000 1.43 0.95 2352.93 4.424664
2005 0.81 0.83 2705.73 4.155276
2010 0.29 0.76 3096.16 3.571424
2015 0.19 0.72 3662.59 3.537729
2019 0.17 0.73 3897.24 3.376421

During the study period, carbon emissions from the direct consumption of fossil
energy have always remained above 50% of total carbon emissions (Figure 4), and the
consumption of fossil energy such as coal, washed coal, coke, and crude oil has always
remained above 75% of the total energy consumption. This is consistent with the fact that
China is expected to continue using fossil energy in the future [42].

Figure 4. Energy consumption ratio in Wuhan, 1995–2019.

3.2. Spatial Correlation Analysis

ArcGIS 10.2 was used to draw a 1 km × 1 km grid map, where the city of Wuhan was
divided into several spatial units according to their spatial locations, which were graded
using the natural breakpoint method to obtain the distribution of carbon emissions within
a unit area of Wuhan city during the study period. UCL area in the spatial cells was used
as the spatial indicator of the UCL, and GeoDa was used to conduct a bivariate spatial
analysis of urban land use and carbon emissions.

219



Int. J. Environ. Res. Public Health 2023, 20, 922

3.2.1. Urban Land-Use Carbon Emissions

During the study period, the average carbon emissions of each Wuhan area showed
an increasing trend. The number of low carbon emissions areas decreased, and the number
of other types of areas increased. Moreover, the upper limit for classifying each level of
carbon emissions within a unit area also decreased (Table 5).

Table 5. Carbon emissions per unit area in Wuhan, 1995–2019.

Low Lower Medium Higher High

1995
Upper (t) 2733.84 10,072.52 22,556.94 38,686.81 55,150.90
Lower (t) −64.40 2733.85 10,072.53 22,556.95 38,686.82
Number 7795 695 238 142 146

2000
Upper (t) 2662.07 9228.44 19,773.40 32,708.65 44,246.60
Lower (t) −64.40 2662.08 9228.45 19,773.41 32,708.66
Number 7491 878 294 166 181

2005
Upper (t) 2445.65 8351.33 18,243.34 30,601.90 41,552.80
Lower (t) −64.40 2445.66 8351.34 18,243.35 30,601.91
Number 7124 1042 389 221 232

2010
Upper (t) 2646.76 8532.18 17,194.60 27,131.87 35,714.20
Lower (t) −64.40 2646.77 8532.19 17,194.61 27,131.88
Number 6938 1005 464 286 324

2015
Upper (t) 2773.28 8634.01 17,167.13 26,952.47 35,377.47
Lower (t) −64.40 2773.29 8634.02 17,167.14 26,952.48
Number 6638 1072 534 373 395

2019
Upper (t) 3024.05 9175.16 17,383.56 26,225.59 33,764.20
Lower (t) −64.40 3024.06 9175.17 17,383.57 26,225.60
Number 6559 1074 561 385 437

The analysis of the spatial distribution of carbon emissions per unit area in Wuhan
city indicated a gradual decrease from the central to the surrounding areas; more in
detail, the overall distribution from north to south and east to west was low-medium-high-
medium-low (Figure 5). The high-carbon emissions areas were mainly located in the city
center, gradually expanding to the surrounding areas from a scattered to a more integrated
distribution, and the area gradually increased. The carbon emissions in the central-northern
areas and local northeastern areas gradually increased, while those in the southeastern and
southwestern areas generally did not record a considerable change. It is noteworthy that
some areas with high carbon emissions were found to have low carbon emissions, and their
distribution corresponded to the distribution of water.

Figure 5. Spatial distribution of carbon emissions within a unit area in Wuhan, 1995–2019.
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3.2.2. Global Autocorrelation

The values of Moran’s I index between UCL and carbon emissions during the study
period were all greater than 0 and continued to increase, passing the significance test
(Table 6). This indicates an important and increasingly positive correlation between the
area of urban land-use change and carbon emissions change.

Table 6. Spatial correlation between carbon emissions and UCL area in Wuhan City, 1995–2019 and
the significance test results.

1995 2000 2005 2010 2015 2019

Moran’s I
index 0.799 0.808 0.817 0.829 0.832 0.833

p-value 0.001 0.001 0.001 0.001 0.001 0.001
z-value 108.73 111.48 110.88 111.79 112.26 112.30

3.2.3. Local Autocorrelation

Based on the results of the local autocorrelation analysis of carbon emissions and UCL
in Wuhan from 1995–2015 (Table 7), it clearly emerged that the overall spatial clustering
relationship between carbon emissions and UCL varied greatly over time (Figure 6).

Table 7. Results of spatial local autocorrelation analysis between carbon emissions and UCL area in
Wuhan, 1995–2019.

1995 2000 2005 2010 2015 2019

H-H 453 538 661 915 1051 1117
H-L 2 1 1 1 0 0
L-H 22 21 29 36 40 39
L-L 1353 1398 1497 1638 1786 1875
NS 7188 7060 6830 6428 6141 5987

Figure 6. Spatial distribution of spatially localized autocorrelation results between carbon emissions
and UCL area in Wuhan, 1995–2019.

In 1995, the spatial clusters were mainly L-L clusters, and were scattered in various
areas of Wuhan; H-H clusters were mainly located in the central part of Wuhan and
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accounted for a small share of the whole area; in parallel, a large number of L-H clusters
were distributed in-between H-H clusters, showing a linear arrangement; finally, H-L
clusters were located in the inner part of the city, adjacent to L-L clusters. In 2000, the
spatial clustering changed compared to 1995. These changes mainly include the increase in
the number of H-H clustering areas, the gradual concentration of L-L cluster areas, and
the development trend to the periphery. More in detail, the number of L-H cluster areas
decreased; these were mainly located in-between H-H cluster areas, and the distribution
pattern did not change much. The number of H-L cluster areas decreased; these were
mainly located in the central and southern parts of the city. In 2005, some L-L cluster areas
transformed into H-H cluster areas, further increasing their extension.

Moreover, the number of L-L cluster areas continued to enlarge in the peripheral
areas of Wuhan; the number of L-H cluster areas increased, and was mainly distributed
around the H-H cluster areas, and the number of H-L cluster areas was the same as in
2000. In 2010 and 2015, the number of H-H cluster areas increased continuously; these
were mostly located in the central area of Wuhan. In 2010 and 2015, the number of H-H
clusters continued to increase; these were located in the central region of Wuhan, with a
small number located in the central-northern and central-southern areas. The number of
L-L clusters continued to increase, gradually concentrating in the urban periphery, while
the area of L-H clusters continued to increase, and the H-L clusters gradually disappeared.
In 2019, the areas of concentration of the H-H clusters continued to expand outward, and
their number increased compared to 2015. Moreover, the number of L-H clusters decreased
by one compared to 2015 and were mainly located near the H-H cluster regions. Finally,
the number of L-L cluster regions further increased, and the overall development trend
changed less compared to the past.

3.3. Impact of UCL Changes on Carbon Emissions

Using UCL area and carbon emission data of Wuhan city for the period 1995–2015, a
scatter plot was drawn to represent the changes in UCL and carbon emissions, considering
UCL area as the independent variable (x) and carbon emissions as the dependent variable
(y), as shown in Figure 7. The linear function model, the quadratic function model, the
cubic function model, the composite function model, and the power function model were
employed for curve estimation fitting. The obtained fitting results of each function model
are shown in Table 8.
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Figure 7. Changes in UCL and carbon emissions, 1995–2019.
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Table 8. Summary of curve estimation models and parameter estimates.

Model
Model Summary Parameter Estimates

R2 F df1 df2 Sig. Constants b1 b2 b3

Linear 0.982 162.844 1 3 0.001 1206.105 2.306
Logarithmic 0.937 44.455 1 3 0.007 −6921.337 1500.012
Quadratic 0.992 130.818 2 2 0.008 1815.085 0.405 0.001

Three times 0.993 49.190 3 1 0.104 1177.880 3.477 −0.003 2.186 × 10−6

Composite 0.991 329.357 1 3 0.000 1570.584 1.001
Power 0.964 80.619 1 3 0.003 87.136 0.533

Dependent variable: Carbon emissions. Independent variable: UCL area.

As shown in Table 8, although the fit of the function models used in the study (R2)
was greater than 0.9, the fit of the quadratic function (Equation (14)) and the composite
function model (Equation (15)) was higher (R2 > 0.99, p < 0.01). The following model was
thus established:

y = 1815.08512 + 0.4047x + 0.0013x2 (14)

y = 1570.5844 ∗ 1.0008x (15)

These two models were used as alternative models, and UCL area and carbon emis-
sions data of Wuhan in 2019 were used as test data to evaluate the prediction accuracy
of these two models using the error between the predicted and the true values of the
two models and to determine the final curve estimation results. The results obtained by
substituting the test data into the alternative model, are presented in Table 9.

Table 9. Results of secondary and compound model tests.

Quadratic Model Composite Function Model

Predicted results (104 t) 4035.27 3987.31
Real Results (104 t) 3897.24 3897.24

Prediction error (104 t) 138.03 90.07
Error rate 3.54% 2.31%

The prediction error of the composite model was found to be low; therefore, the
composite function model (Equation (15)) was used as the final curve estimation model.

4. Discussion

4.1. Impact of Spatial and Temporal Changes in UCL on Carbon Emissions

By investigating the land-use scenarios and carbon emissions in Wuhan from 1995–2019,
it was found that the UCL area in Wuhan increased by 757.41 km2 and carbon emissions
rose by 17,154,600 t during the study period. This is the same as the results of Houghton [13],
Pacala [14], and Ren et al. [16]. However, unlike this study, Houghton and Pacala et al.
derived their results from the analysis of a large study area of terrestrial ecology in Asia
and the United States, while Ren explored the effects of land-use change on carbon stocks.
In this study, it is worth noting that the largest change and the largest increase in the UCL
area occurred in the periods 2005–2010 and 1995–2000, respectively, while both the largest
change and the largest increase in carbon emissions occurred in the period 2010–2015.
Looking at the spatial distribution of carbon emissions, it was found that carbon emissions
from other land types in large low-carbon emission areas increased rapidly when they were
converted into UCL. High-carbon emission areas gradually spread from the urban center to
the surrounding areas, and gradually connected with high-carbon emission areas in other
areas to form a patch, roughly following the same direction as the expansion of UCL. In
contrast, the land types in the urban fringe areas mostly played the role of carbon sinks,
and their utilization changed less during urban development. Hence, it may be concluded
that the carbon emissions in the fringe areas did not change considerably from 1995 to 2019.
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At the same time, the present study found that, although overall carbon emissions in
Wuhan were increasing, the upper limit of high-carbon emission areas identified by the
natural breakpoint method was decreasing; at the same time, total energy consumption
per 10,000 Yuan GDP and carbon emission intensity per unit of energy were also found
to decrease. These outcomes were mostly due to the continuous enhancement of energy
utilization effectiveness and the partial elimination of energy-dependent industries in the
process of industrial upgrading thanks to continuous technological advances in Wuhan [43].
This indicates that reasonable carbon emission reduction policies can have an important
impact on carbon emissions.

4.2. Qualitative and Quantitative Relationships between UCL Changes and Carbon Emissions

The application of the spatial autocorrelation evaluation method allowed us to find a
positive spatial correlation between the changes in the UCL area and the changes in carbon
emissions in Wuhan, i.e., both changes showed to follow the same spatial development
trend. The finding is comparable to those of Li et al. [44], with the difference that the latter
used panel records to analyze the effect of land-use change on carbon emissions in Anhui
Province from a spatial perspective. In contrast, the finding that changes in the UCL area
and carbon emissions were not synchronized needed to be further investigated by building
a quantitative model.

The extension of H-H cluster areas increased from 1995 to 2019 in Wuhan, mainly
because of the city’s continuous development, such that the other land types around UCL
continuously transformed into UCL. The extension of the L-H cluster area changed. The
reason mainly lies in that the early development of Wuhan city relied on the convenience of
water resources conditions and that the core urban area was built by the river. In that period,
Wuhan city vigorously developed tourism and heavy industry, and human activities in
water increased together with carbon emissions. After 2010, the development strategy of
Wuhan changed; the city began to pay attention to ecological protection, and the carbon
emissions in water decreased continuously, determining the spatial clustering of some
areas in the form of L-H/H-H/L-H clusters. In the first part of the study period, the L-L
cluster areas were scattered between the urban fringe and the H-H cluster areas and then
gradually concentrated in the urban fringe. Although urban fringe areas were less affected
by land-use changes, the overall average carbon emissions in these areas increased. This
is mainly due to the development of the central part of the city and the promotion of the
synergistic development of fringe areas, accompanied by an increase in economic activities,
which in turn resulted in an increase in carbon emissions. The H-L cluster areas were not
found to have high carbon emissions per unit area; this occurred mainly because these
areas were composed mostly of Cropland and a small portion of UCL. As Cropland is also
a source of carbon emissions, carbon emissions reduction policies for Cropland should also
be considered in future development [45,46].

The results of the developed complex function model showed an overall positive
relationship between the UCL area and carbon emissions. For every 1 km2 expansion
of the UCL area, carbon emission increased to reach about 1.001 times the level before
expansion. This quantitative relationship proves that the increase of the UCL area increased
the generation of carbon emissions.

4.3. Relationship between UCL Change and Carbon Emissions Influencing Factors

Using Kaya’s constant equation, carbon emissions were decomposed into four factors:
energy consumption per 10,000 Yuan GDP; energy use intensity per unit of carbon emis-
sions; GDP per capita; and population. Then, a gray correlation analysis was conducted
between these four factors and the UCL area (Table 10). The results of this analysis showed
that the three factors of population, energy use intensity per unit of carbon emissions,
and energy consumption per 10,000 Yuan GDP were strongly correlated with the UCL
area; this indicates that the changes in the UCL area had a strong interaction with these
factors and, thus, affected carbon emissions. This is similar to the findings of Yuan [27] and
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Rounsevell M. et al. [28]: socioeconomic, technological and other elements are considered
to play an important role in the process of land-use change affecting carbon emission
changes. However, unlike this study, Yuan investigated the mechanism of land-use change
on carbon emission from the perspective of analyzing different urbanization levels of cities,
in which more socioeconomic and technological indicators are included in the indicators
of urbanization level; Rounsevell M investigated the mechanism of land-use change on
carbon emission from a macro perspective, taking the UK as an example.

Table 10. Gray correlation analysis of carbon emissions and Kaya’s constant decomposition factor.

Factor Correlation

Population 0.98
Energy use intensity per unit of carbon emissions 0.93
Total energy consumption per 10,000 Yuan GDP 0.89

GDP per capita 0.68

In the future, the relationship between the UCL area and these factors should be
coordinated to achieve carbon emissions reduction. The correlation between GDP per
capita and the UCL area was poor. This indicates that the changes in the UCL area did not
considerably influence the changes in carbon emissions through the interaction with GDP
per capita; on the other hand, it also indicates that the increase in the UCL area did not
necessarily improve GDP per capita, and urban development should be separated from
“blind expansion”.

4.4. Study Shortcomings and Future Research

The shortcomings of this study may be summarized as follows:
(1) In this study, the carbon emission coefficients of various land types in Wuhan were

calculated by summarizing those derived from previous studies. However, the latter may
vary according to the natural vegetation conditions, ground cover, and energy intensity of
each place, which may affect the accuracy of the final results.

(2) This study only focused on the impact of spatial and temporal changes in the UCL
area on carbon emissions. However, the mechanism of the effects of the UCL changes
on carbon emissions is complex. It includes several factors, such as population size and
economic development level, which are more or less related to the UCL policy [47]. In the
future, we should explore the interaction between these factors and the changes in urban
land use and assess how these elements affect carbon emissions through UCL changes from
a spatial perspective.

(3) In this study, only the effect of the UCL changes on carbon emissions was analyzed,
as this is the major factor affecting land-use change. The assessment of the influence of
the UCL changes of other land types on carbon emissions was ignored, which affected the
comprehensiveness of the study results.

5. Conclusions

Based on previous studies, this study firstly quantifies the characteristics of urban land-
use changes in Wuhan city and measures the changes in carbon emissions based on them;
after that, using spatial autocorrelation analysis and curve estimation, Kaya’s constant
equation and gray correlation analysis, the relationship between spatial and temporal
changes of the UCL on carbon emissions is explored from a spatial perspective; finally,
the direct and indirect effects of the UCL changes on carbon emissions are determined.
The results of the study are as follows: (1) In 2019, the UCL area and carbon emissions
in Wuhan were about 2.93 times and 1.79 times those in 1995. The expansion of the UCL
area showed to follow a star-shaped spreading from the central area to the surrounding
areas, and the areas of carbon emissions increase within the unit area showed an outward
expansion in all directions. The spatial distribution and development direction of the areas
of carbon emissions increase within a unit area and of the UCL change areas were roughly
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the same, and were found to have a positive spatial correlation that was increasing year
by year. The fitting effect of the composite model on the relationship between UCL area
changes and carbon emissions changes in Wuhan was more scientific and rational than
other curve estimation models. The proposed model allowed us to find that the growth
of the UCL entailed an increase in carbon emissions of about 1.001 times those before the
expansion for every 1 km2 of the UCL area.

(2) The correlation between UCL area and population, energy use intensity per unit of
carbon emission, energy consumption per 10,000 Yuan GDP, and GDP per capita gradually
decreased during the study period. More in detail, the correlation between population and
energy use intensity per unit of carbon emissions was greater than 0.9, indicating that the
UCL area changes will indirectly impact urban carbon emissions by affecting population
and energy use intensity per unit of carbon emissions.

(3) The maximum value of carbon emissions within a unit area decreased during the
study period, such that the value in 1995 was about 1.63 times that in 2019. This indicates
that reasonable policies will positively affect the reduction of carbon emissions, and reason-
able land-use policies will promote the achievement of carbon emissions reduction goals in
Wuhan on an existing basis.

To achieve the objective of decreasing carbon emissions and promoting sustainable
social development, this study suggests adopting the following measures. Firstly, suitable
functional areas, such as economic development areas and carbon sink areas, should be
established based on the actual situation of each district, avoiding encouraging economic
growth and reducing human production activities in the carbon sink areas, as well as
strengthening the construction of “satellite cities”. Secondly, we should change our thinking
on development, promote technological innovation, optimize and upgrade the existing
UCL, improve the resource allocation rate, and promote the optimization and upgrading of
existing industries and their development towards low carbonization. Finally, we should
make reasonable use of the stock of the UCL, improve land-use conservation, slow down
the expansion of the UCL, and give priority to the encroachment of land with weak carbon
sink capacity in exchange for the protection of land with strong carbon sink capacity when
expanding UCL.
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Abstract: At present, the focus of global attention is on implementing rural revitalization strategies.
However, constructing a set of scientifically based evaluation indexes for the evaluation of the
effectiveness of rural revitalization implementation, exploring the implementation plan for rural
revitalization, has become a common concern and a focus of discussion in political and academic
circles. This study used a typical rural revitalization demonstration area in China as an example.
We proposed a theoretical framework for rural revitalization research and constructed an index
evaluation system for the evaluation of the effectiveness of rural revitalization implementation and
influencing factors from two perspectives: material life and spiritual life. The results were as follows:
Differences were found in the implementation effectiveness of rural revitalization strategies in the
study area; especially, in areas with obvious rural cultural characteristics, their implementation
level was relatively high. The implementation effectiveness of rural revitalization strategies was
the result of multi-factor interactions. The village greening rate, innovation ability, and the age of
village supporters were the main factors affecting rural revitalization, and the interaction effects of a
village’s innovation ability and other factors were significant. Therefore, we argue that in the process
of promoting the sustainable development of villages, it is necessary to prominent the characteristics
of village construction and improve the effectiveness of the implementation of village revitalization
strategies at both the material and spiritual levels.

Keywords: rural revitalization; evaluation; rural revitalization demonstration area; TOPSIS model;
geographic probe; impact mechanism

1. Introduction

The village generally refers to where the agricultural population engaged in agrarian
activities gathers, including farmhouses, livestock sheds, warehouses, yards, roads, canals,
green spaces beside houses, and ancillary facilities required under specific environmental
and professional production conditions. It is a regional complex with natural, social, and
economic characteristics and also has multiple functions of production, life, ecology, culture,
etc. Compared with cities, the development status of rural areas is often in a secondary
position. Still, they promote and coexist with the urban regional system and together
constitute the main space for human activities. At present, about 45% of the world’s popu-
lation lives in rural areas [1]. Its production and life conditions are also widely concerning,
such as public infrastructure construction, the improvement of human settlements, the
inclination of educational resources, the improvement of general security, etc. Research
shows that maintaining the high-quality development of rural areas makes an essential
contribution to regional economic growth, is the basis for maintaining the balance of the
people–land system, and is also a prerequisite for the harmonious coexistence of man and
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nature [2]. However, in fact, the sustainable development of rural areas involves many
aspects, including respect for nature, culture, and history, and the protection of the ecologi-
cal environment. Therefore, improving the competitiveness of villages, building livable
villages, and achieving sustainable and high-quality rural development have gradually
become a focus for politicians and researchers in China and abroad [3,4]. While developed
countries in the West started to pay attention to sustainable rural development relatively
early and have more mature research frameworks and methods, research on sustainable
rural development in developing countries needs to be strengthened [5–8].

Social problems in developed countries primarily exist in cities, while social problems
in developing countries mainly exist in rural areas. This is an important difference between
eastern and western cultures and is a concrete manifestation of the global development
imbalance problem [6]. At present, rural development worldwide faces many challenges [2],
including rural poverty and environmental degradation. In particular, solving the problem
of rural poverty is also a primary goal in the United Nations’ efforts to achieve sustainable
development [9]. Thus, countries around the world have summarized many classical
models using their own rural development characteristics to promote the prosperous re-
creation of villages, thereby realizing sustainable rural development. For example, Japan’s
one village one product (OVOP) movement, which was proposed and implemented in
the 1970s, intends to promote the development of villages by leveraging their endogenous
power [10,11]. Furthermore, the one tambon (sub-district) one product (OTOP) movement
in Thailand, which is being implemented with the help of the government, aims to improve
the rural economy by subsidizing farmers and providing professional skill training to
improve the international competitiveness of villages by strengthening their governance
capacity and promoting domestic consumption [11]. To protect rural ecology, the rural
landscape construction movement was launched in Germany [12]. In addition, the rural
urbanization movement in the United States aims to alleviate the economic gap between
rural and urban areas to maintain their economic balance by encouraging families and
companies to leave urban centers and choose suburban settlements [13]. The new village
movement (NVM) in Korea is dedicated to reducing the gap between urban and rural
areas, improving rural competitiveness, and achieving a balance between urban and rural
development by encouraging farmers to be self-reliant and build cooperative relationships
among farmers [14]. It can be seen that, due to different national conditions, the strategies
adopted for rural development are also different. Overall, the process of rural revitalization
in these countries has gone through transformations in rural infrastructure, rural production
mode, and rural development thought, resulting in different experiences that have shaped
national rural development in recent decades.

As the world’s largest developing country with a long history of agrarian culture,
China has emerged as a modern economy. By the end of 2021, China’s urbanization rate
was 64.72% [15]. This was the result of one of the largest population migration movements
in human history [16]; however, 510 million people still live in rural areas in China. The
development of the rural population not only affects China’s food security, rural indus-
trial prosperity, traditional cultural landscape, and sustainable rural development but
also affects the global socioeconomic balance and urban–rural integration [17–19]. With
continuous economic and social progress, the unbalanced development of people’s lives
has become the main contradiction of Chinese society, and the incomplete development of
rural areas has become the focus of social contradictions in China; furthermore, the demand
for the spiritual needs of farmers (paying attention to the spiritual needs of farmers and
bringing about a dynamic equilibrium between the supply of and demand for farmers’
spiritual culture are essential tasks in the constructing of the new socialist countryside;
improving the quality of the spiritual needs of farmers is not only the strong desire of a
vast number of peasants but also an essential part of the construction of new rural areas;
therefore, it is not only a critical means to promote the all-round development of farmers,
but also an important measure to implement peasant-oriented revitalization, and it is not
only a fundamental way to eliminate the gap between urban and rural areas but also an
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important measure to achieve urban–rural integration) is getting higher and higher. Espe-
cially given the rapid advancement of industrialization, informatization, and urbanization,
rural problems such as the urban–rural development imbalance, rural population loss,
and rural aging have gradually emerged [20–22], and phenomena such as leaving children
behind [23], outdated farming systems [24], irregularity of land use [25,26], rural environ-
mental defacement [27–29], weak legal awareness [30], and rural cultural depression [31]
are common in rural China. According to researchers, in the coming decades, the popula-
tion carrying capacity of rural China is forecasted to accommodate 400 million more people
and to provide more diverse services to the world [4]. To this end, the Chinese government
first proposed the strategy of “implementing rural revitalization” in a governmental work
report in 2017 [32]. The main body of its revitalization is farmers. Revitalization includes
the comprehensive revitalization of industry, talent, culture, ecology, and organization.
The purpose is to solve the problems of agriculture, rustic areas, and farmers, further
narrowing the gap between urban and rural areas to achieve sustainable rural development
and ultimately achieve the general goal of industrial prosperity, ecological livability, rustic
style civilization, effective governance, and affluent life [33]. In 2018, plans were formulated
to specify and actualize industrial, talent, cultural, ecological, and organizational revitaliza-
tion, in which they were emphasized and refined again [34]. In 2021 and 2022, important
documents were released to clarify the work priorities for the implementation of rural
revitalization, listing new requirements and indicating new directions for the realization of
high-quality rural development [35,36].

After drawing on reports of successful cases of revitalizing the countryside in other
countries around the world [37,38], Chinese researchers analyzed the characteristics and
nature of the successful transformation of the Chinese countryside [18]. They started from
the path of rural industrial development [39], the mechanisms and pathways of rural
reconstruction [40], the new dynamics of urbanization and construction [41], the path-
ways and means of the transformation of farmers [42], the role of land improvement [43],
and the new directions and systems for strengthening agricultural and rural science and
technological innovations [44] to deeply analyze the essence of the countryside and to
lay a strong foundation for exploring the implementation of rural revitalization in China.
Specifically, the achievements related to the evaluation of the implementation effect of rural
revitalization are mainly reflected in the following aspects: Researchers evaluated the im-
plementation level of rural revitalization from different perspectives, including industrial
development [45], ecological protection [46], grassroots governance [47], and information
construction [48], based on the goals of rural revitalization in an attempt to identify the
shortcomings of rural development. In particular, some researchers not only studied the
problem of rural sustainability but also initiated discussions on rural development [10–14].
For example, Liu et al. [2] argued that villages not only contain local development history
but are also microexpressions of global development. Qiao et al. [49] pointed out that the
villages located in the plain–mountain interfaces, and its economic development is better.
Village development also reflects the development history of a country, and even that of
global civilization, at the micro-level through policy adjustment and village construction,
as well as the life needs of the residents. In terms of research methodology, most cases
or combinations of multiple cases were analyzed qualitatively [50], used in model explo-
ration [51], or subjected to comparative analysis [52]. In terms of data collection, data were
generally primarily obtained through in-depth interviews [53] or using a combination of
statistical data review and small conference discussions [54]. In the word, the evaluation
of the implementation effect of rural revitalization shows diversified characteristics. The
village is the smallest organic unit of agricultural area development, and the evaluation
system can better reflect the implementation effectiveness of rural revitalization by taking
the village area or farm household as the evaluation unit, framing the evaluation system
from the combined material and spiritual perspectives [55], and obtaining data through
farm household participation [56]. However, studies exploring the implementation effec-
tiveness of rural revitalization and its influencing factors and enhancement paths at this
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microscopic scale are lacking [57]. With the implementation of China’s rural revitaliza-
tion strategy, evaluating the effectiveness of its implementation is an important aspect
of understanding rural development differences and summarizing the shortcomings of
rural development. This not only provides guidance for rural revitalization implementers
in terms of overcoming problems but also helps the government to formulate targeted
development strategies [58]. However, rural development is a complex, long-term, gradual,
multidisciplinary, intersectional, and multi-party participatory process; thus, constructing
a set of scientifically based and universal evaluation indexes for the effectiveness of rural
revitalization implementation has become a common concern and a focus of discussions in
political and academic circles.

Therefore, in this study, a theoretical framework of rural revitalization was constructed
by sorting out the current situation of rural development in China. This analysis enriches
the theory of rural development and the existing research results for China and is of great
significance for the national macroeconomic regulation of the rural development strategy.
Finally, taking a Chinese rural revitalization demonstration area with typical revolutionary
culture as a case study, we measured the implementation level of the rural revitalization
at the village level and explored the main influencing factors. The results of this study
provide a reference for local governments to formulate rural revitalization policies. These
research results also provide a decision-making reference for local governments to differen-
tiate their rural revitalization policies and provide useful case studies for reference in the
implementation of sustainable rural development in other regions.

2. Theoretical Framework for Evaluation of Rural Revitalization
Implementation Effectiveness

Sustainable development has been an enduring topic in the pursuit of a harmonious
human–land relationship because it not only sustains the interests of the state, society,
and enterprises but is also crucial to the realization of human civilization and individual
welfare [59]. China’s countryside is highly diverse and uneven due to its unique natural,
social, and multi-ethnic characteristics [60,61]. Therefore, the countryside also faces a series
of pressures in the process of development, such as life pressure, production pressure, and
ecological pressure. For these characteristics, the Chinese government stresses that industry
is the core of rural revitalization; talent is the driving force of rural development; culture is
the soul of a region; ecology is the support point of rural revitalization; and organization is
the link between economic management and administration in the implementation of rural
revitalization [34].

On this basis, according to the concept of rural revitalization and current scholars’ re-
search on rural revitalization, this paper focuses on the potential and external environment
of rural development and establishes a theoretical framework for evaluating the implemen-
tation effect of rural revitalization (Figure 1). Research shows that the village contains a
kind of people–land–money wisdom, with strong local characteristics [62], while the village
is faced with production, life, ecology, and other pressures in the process of development.
Realizing rural revitalization is actually the result of implementing the recreation of rural
values, as well as the result of the coupling and coordinated development of industry,
talent, culture, ecology, organization, etc. It is also the specific manifestation of farmers’
high-quality life. This not only requires the external stimulation of the countryside but also
needs to strengthen the endogenous driving force of the countryside. Through the joint
action of endogenous and exogenous driving factors, the countryside can enrich its material
life, enhance its production strength, and enrich the spiritual life of farmers, so as to achieve
the overall revitalization of the countryside. In addition, the level of implementation of
rural revitalization cannot be judged solely based on material conditions, but rather it
should also consider the spiritual needs of farmers, such as the desire for knowledge, the
respect of others or social groups for themselves, and the enjoyment of democratic rights.
Therefore, the evaluation of the implementation effect of rural revitalization can be carried
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out from both the material living standard and the spiritual affluence, which can better
help researchers to understand the regional status of rural development.

Figure 1. Framework for evaluating the effectiveness of the implementation of rural revitalization
in China.

3. Research Methodology and Data Sources

3.1. Overview of the Study Area

Jinggangshan is located in the southwestern part of Jiangxi Province, in the middle
of Luoxiao Mountains, at the junction of Jiangxi and Hubei provinces (Figure 2). The
total area of the mountainous region accounts for 87% of the study area, with an average
altitude of 381.5 m. By the end of 2021, the permanent population of Jinggangshan was
155,900, of which the urbanization rate was 63.18% and the total rural population was
140,200. The economic activities of the city are dominated by the tertiary industry, which
accounts for 71.3% of the total. The agricultural activities are dominated by tea, garden
fruit planting, and aquaculture. The per capita disposable income of urban residents in
the city is RMB 42,495, and that of rural residents is RMB 14,551. In the late 1920s, the
older generation of Chinese leaders carried out fierce revolutionary struggles in this area,
creating a strong revolutionary culture in this region and leaving behind many valuable
cultural resources. [63]. Revolutionary culture refers to the culture built up by the Chinese
people during the great struggle led by the Communist Party of China. It is an advanced
culture with distinctive Chinese characteristics, taking Marxism as the guidance, taking
“revolution” as the spiritual core and value orientation, inheriting the excellent traditional
culture of China, and drawing on the great achieved civilization. Breath is an essential
place for learning revolutionary culture and a 5A tourist attraction (the quality of tourist
attractions in China is divided into five levels: the higher the level is, the greater its tourism
value is; tourist attractions are classified, therefore, from high to low, as AAAAA, AAAA,
AAA, AA, and A) in China (Figure 3).
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Figure 2. Map showing the location and elevation map of the study area.

Figure 3. (A) Shrimp breeding base. (B) A tourist village with lots of tea.

According to the criteria for identifying key counties for poverty alleviation and
development in rural China [64] and based on the education, health, culture, employment,
economy, and social security conditions, a total of 4638 poor households containing 16,934
people were identified in Jinggangshan. These were among the first batch of key counties for
poverty alleviation and development in China [65]. In 2017, Jinggangshan became one of the
first counties in China to escape poverty, and its poverty incidence rate dropped from 6.06%
to 1.60% [66], laying a solid foundation for further sustainable rural development. The study
area was centered on Maoping Village (MP) in Jinggangshan, which is a nationally famous
revolutionary cultural site and radiates surrounding villages with strong revolutionary
culture, with a total area of 268.703 km2 and a total population of 25,137. Dalong Village (DL)
is where the town government of Maoping Town is located. Berlu Village (BL) is located
in the middle of the revolutionary base area in Jinggangshan Mountains. Changfuqiao
Village (CFQ) is a place where there are many talents. Gutian Village (GT), which is
located at the Long-shi exit of Jingmu Expressway, has convenient transportation links
to other villages. Mayuan Village (MY) is a model village with rich resources. The area
retains old revolutionary sites where important meetings were conducted, including the
residences of the old revolutionaries. This was one of the main birthplaces of the Jinggang
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Mountain spirit and is an important demonstration area for the implementation of the rural
revitalization strategy in China.

3.2. Rural Revitalization Evaluation System

According to the framework for evaluating the effectiveness of the implementation
of rural revitalization strategies, the general requirements for the rural revitalization of
the industry, culture, ecology, organization, and talent were taken as the purpose; a series
of policy requirements, instructions, national standards, and action plans issued by the
Chinese government were used as the basis [34,67,68], and the existing research results
reported by Feng et al. [44], Chih-H et al. [69], Gao et al. [70], and Du et al. [71] on rural
revitalization evaluation were referred to. Based on the principles of scientific objectivity,
accuracy, representativeness, universality, and the accessibility of indicators, 20 elements
were extracted from five dimensions, namely, industrial development, ecological con-
struction, cultural development, rural governance, and farmers’ lives, and 35 evaluation
indicators that could provide feedback on the material level of rural areas and the living
standards of rural residents were constructed to comprehensively evaluate the effectiveness
of the implementation of rural revitalization strategies (Table 1). The indicators and the
categories they fell under were as follows: Industry is the core of sustainable development
in villages. Indicators such as the new characteristic planting and breeding industries in
villages, the new agricultural production and development talents, the total output value
of the industrial development, and the total amount of village credit loans were selected
to characterize the vitality and potential of village industrial development and the ability
to expand the development of regional characteristics [23,72]. Ecological construction is
the foundation of sustainable development in villages. Seven indicators for this were se-
lected, including the greening coverage of villages, centralized water supply covering farm
households, new domestic waste treatment facilities, and the comprehensive utilization
of livestock and poultry manure generated by farming to provide feedback on the status
of ecological protection and restoration in villages, as well as the status of comprehensive
waste treatment in villages [28,29]. Culture is the soul of sustainable rural development.
The main focus was on the richness of the cultural and sports activities of village residents,
the inheritance of revolutionary culture, and the promotion of changes in customs. In-
dicators such as the number of cultural and sports activities organized for villagers, the
number of cultural activities held in the village by units at all levels, the average number of
participants per cultural activity held in the village, the number of revolutionary culture
education activities carried out in the village, and the number of activities carried out in
the village to change customs and traditions were selected to provide feedback on the
construction of village culture [2,31]. Organizational construction includes three aspects,
i.e., organizational leadership construction, the villagers’ autonomy, and the rule of law,
covering nine indicators such as the number of newly developed party members, the
number of villagers’ congresses conducted, law promotion and publicity, the number of
criminal cases, and the number of public security investigations and punishments, which
reflect the modernized governance system of rural social synergy, public participation, and
the protection of the rule of law [23,25]. The living conditions of rural residents are the most
direct feedback of sustainable rural development. Eight indicators, including the number
of households using public toilets with water flushing, the number of new cultural squares,
the number of farm households with internet broadband access in the village, the village’s
collective economic income, and the per capita disposable income of rural residents, were
selected to provide feedback on the rural residents’ sense of access, happiness, and security
given the rural living environment, economic status, village affluence, and informatization
level [2,73].
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Table 1. Index system for evaluating the effectiveness of rural revitalization.

Dimensional
Layer

Element Layer Indicator Layer Attribute AVG MAX MIN SD

Industrial
development

Cultivating or improving
rural specialty industries

The village’s new special planting
area (m2) + 50 200 0 71.6473

New special breeding scale (one) + 1725 2100 1000 376.1095

Improving agricultural
production and

management, and scientific
and technological

personnel

The village’s new agricultural
production and management, and the

development of talent (people)
+ 8.3333 13 4 3.2998

Total income growth of
agricultural and rural
specialty industries

Total industrial development output
value (million CNY) + 160.8333 520 0 188.3352

Specialty industry output value
(million CNY) + 80 220 0 100

Total rural credit Total amount of credit in the
village (million CNY) + 240.8833 463 30.1 161.5218

Ecological
construction

Greening of the countryside Village greening coverage (%) + 71.1567 75.65 66.71 3.5697

Rural roads and production
(tourism) road construction

and management

New traffic roads (km) + 0.8167 1.1 0.5 0.2115

New production roads (km) + 0.975 1.2 0.8 0.1216

Drinking water safety Farmers covered by centralized water
supply (households) + 272.6667 385 155 81.9932

Amount of harmless rural
waste treatment

New domestic sewage treatment
facilities in the village (per year) + 0.5 1 0 0.5

New domestic waste treatment
equipment (per year) + 0.6667 3 0 1.1055

Comprehensive utilization
of livestock and poultry

manure

Comprehensive utilization rate of
livestock manure generated from

farming (%)
+ 90.6667 98 80 6.4205

Cultural
development

Enriching the cultural and
sports lives of farmers

Organizing villagers to participate in
cultural and sports activities (events) + 1.8333 3 1 0.8975

Units at various levels that come to
the village to hold cultural activities

(events)
+ 1.8333 3 1 0.8975

Units at all levels that come to the
village to hold cultural activities on

average per
event (people)

+ 101.3333 270 30 84.7480

Focusing on revolutionary
culture heritage

Revolutionary culture education in
the village (times) + 2.6667 5 1 1.2472

Promoting the changes in
customs and traditions

The number of activities to change
customs and traditions in the village

(times)
+ 2 3 1 0.5774

Organization
Building

Strengthening grassroot
party organizations

Number of newly developed party
members (people) + 1.1667 2 0 0.6872

Number of times per quarter in which
the village party assembles and the

branch are held (1.0 times, 2.1-2 times,
3.3 times, 4.4 times, and above)

+ 2.5 4 2 0.7638

Energizing villagers’
self-governance

Number of times the village held a
village assembly (times) + 2.3333 5 1 1.2472

Number of village representatives
in the

village (number)
+ 23.3333 36 13 8.8255

Number of meetings of village
representatives (times) + 4.5 6 3 1.1180

Number of consultation activities
organized in the village (times) + 6 10 2 3.1091

Promoting the rule of law
in villages

Number of legal literacy campaigns
conducted in the village (times) + 4.3333 6 3 1.2472

Criminal cases tried (times) + 0 0 0 0
Village security investigation (people) + 0 0 0 0
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Table 1. Cont.

Dimensional
Layer

Element Layer Indicator Layer Attribute AVG MAX MIN SD

Farmers’
lives

Promoting the
improvement of rural toilet

facilities

Number of public toilets that flush + 2.1667 3 1 0.6872
Number of public toilets available in

the village + 2.1667 3 1 0.6872

Farmer households using flush toilets + 297.8333 402 150 88.0841

Promoting the construction
of village-level public
service infrastructure

Number of new sports and fitness
places in the village + 0.5 2 0 0.7638

Number of new cultural squares + 0.8333 1 0 0.3727

Coverage of broadband
internet

Farmer households with internet
access in the village + 218 307 125 63.4928

Development of village’s
collective economy

The village’s collective economic
income (CNY) – 388,450 507,000 314,400 58,983.0979

Increase in income level of
residents

Per capita disposable income of
farmers in the village in 2021 (CNY) – 15,169 16,400 14,600 589.2410

Note: “+” it means that a larger indicator value was more favorable. “–” it means that a larger indicator value was
more unfavorable.

3.3. Factors Influencing the Effectiveness of the Implementation of Rural Revitalization Strategies

To further confirm the factors affecting the implementation level of rural revitaliza-
tion, we constructed 12 indicators from three dimensions, i.e., rural development, rural
construction, and rural governance (Figure 4), and quantitatively analyzed the decisive
influence factors of six model villages in the demonstration area in Jinggangshan using a
geographic detector model. The size of the q-value of the influencing factor reflected the ex-
planatory power of the effect of the changes in the factor on the level of rural revitalization.
Based on the results of previous studies [4] and considering the scientific, systematic, and
representative nature of constructing indicators, the accessibility of data, and the feedback
about the problem, natural capital (X1), village innovation capacity (X2), production po-
tential (X3), collective economic status of the village (X4), greening rate in the village (X5),
public facilities (X6), transportation status (X7), informatization rate (X8), age optimization
of village supporters (X9), village rule-of-law situation (X10), villagers’ autonomy status
(X11), and revolutionary culture inheritance (X12) were selected as the specific factors for
exploring the level of implementation of the rural revitalization strategies. The q-values of
each indicator in the geodetector were summed, and the average value was taken as the
comprehensive q-value of each dimension.

Figure 4. Factors influencing the rural revitalization level in the Jinggangshan rural revitalization
demonstration area.
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3.4. Research Methods
3.4.1. Entropy Weighting Method

The entropy value of an indicator reflects the amount of information it provides to
decision makers, and it can objectively reflect the importance of the indicator. Therefore, the
entropy value method is widely used to determine the weights of evaluation indicators [74].
The specific calculation process is shown below.

(1) Standardization: The standardization of the raw data of the indexes was performed
using the polar difference method [74]. The calculation was performed as shown
below. Positive indicators:

yij =
xij − min(xij)

max(xij)− min(xij)
(1)

Inverse indicators:

yij =
max(xij)− xij

max(xij)− min(xij)
(2)

In Equations (1) and (2), yij is the standardized value; xij is the original value of the
indicator; and max(xij) and min(xij) are the maximum and minimum values of the
jth indicator for the ith village. When a larger indicator value was more favorable to
the development level of rural revitalization, the positive indicator was standardized
using Equation (1); conversely, when a larger indicator value was more unfavorable
to the development level of rural revitalization, Equation (2) was used.

(2) Calculation of weights:

Wij =
1 + k

m
∑

i=1
[ln(pij)Xij/

m
∑

i=1
Xij]

n
∑

i=1

{
1 + k

m
∑

i=1
[ln(pij)Xij/

m
∑

i=1
Xij]
} (3)

where Wij denotes the weight of each indicator; pij denotes the proportion of the jth
indicator of the ith village to the sum of the jth indicator; and eij represents the entropy
value of each indicator in the interval [0,1]. k = 1/ln(hm), where m is the number of
evaluation indicators, n is the year, and h is the number of villages.

3.4.2. TOPSIS Model

The technique for order preference by similarity to ideal solution (TOPSIS) method
was first proposed in 1981, and it is also known as the superior–inferior solution distance
method. The TOPSIS model is used to evaluate the relative superiority and inferiority of an
objective. If the evaluation object is the closest to the optimal solution and the farthest from
the worst solution, it is considered to be the best solution. Otherwise, it is non-optimal [75].
The specific calculation process is as shown below.

(1) Establish the weight specification matrix, Oij:

Oij = Wij × yij(i = 1, 2, 3, · · · , n; j = 1, 2, 3, · · · , m) (4)

(2) Determine the positive and negative ideal solutions:

S+
j = max(O1j, O2j, · · ·, Onj); S−

j = min(O1j, O2j, · · ·, Onj) (5)

(3) Determine the sum of the Euclidean distance of each evaluation unit from the optimal
and inferior solutions:

D+
i =

√√√√ n

∑
j=1

(S+
i − Oij)

2 (6)
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D−
i =

√√√√ n

∑
j=1

(S−
i − Oij)

2 (7)

(4) Calculate the closeness between the index value and the ideal value for each evaluation
area:

Ci =
D−

i
D+

i + D−
i

(8)

where Ci is [0~1]. The closer the value of Ci to 1 is, the closer the solution is to the
ideal solution, and the closer the value is to the ideal value for the evaluation area;
that is, the higher the level of the rural revitalization of the ith village was, and the
lower the level of rural revitalization was [75].

3.4.3. Geodetector

A geodetector is a statistical method for detecting spatial dissimilarity by analyzing
the spatial similarity between independent and dependent variables to reveal the driving
forces [76]. Current geodetector methods include factor detection, risk detection, interaction
detection, and ecological detection. These have mostly been used in research fields such as
natural and social sciences [76]. In this study, we relied on factor detection and interaction
detection in the geodetector method to explore and identify the differences in the degrees
of influence of the factors on the development level of rural revitalization. The specific
model is as follows:

q = 1 −

L
∑

h=1
Nhσ2

h

Nσ2 = 1 − SSW
SST

(9)

SSW =
L

∑
h=1

Nhσ2, SST = Nσ2 (10)

where q is the degree of explanation of the influencing factors on the heterogeneity of
the rural revitalization development level in the rural revitalization demonstration area
in Jinggangshan, and the range of values is between 0 and 1. The larger the q-value
was, the greater the differentiation of the rural revitalization development level was. If
the stratification was generated by an influencing factor, then the closer the q-value was
to 1, the stronger the explanatory power of this factor was for the differentiation of the
rural revitalization and development level. When q = 0, the factor had no impact on
the rural revitalization and development level. L is the level of rural revitalization and
development or the stratification of the various influencing factors, i.e., the stratification of
the independent variables or dependent variables. NH and N are the numbers of units in
layer h and the entire region, respectively. Parameters σ2

h and σ2 are the variances of the Y
values in stratum h and the entire district, respectively. SSW is the sum of the variances
within the strata, and SST is the total variance of the district [76].

Interaction detectors are usually used to identify the characteristics of interactions
between different influencing factors, i.e., to determine whether the effects of a two-factor
interaction on dependent variable Y are mutually independent by comparing the q-value
of a single factor with that of a two-factor interaction. The detection value of q (Xi ∩ Xj) is
judged to identify whether the driving factor of the interaction enhances or weakens the
explanatory power of the analyzed variables. The details of the judgment process were
described by Wang et al. [76].

3.5. Data Sources

In 2021, the Chinese government selected a total of 40 demonstration areas for rural
revitalization in less developed, old revolutionary regions based on whether the villages
had a strong revolutionary cultural foundation, beautiful rural nature and idyllic scenery,
sound infrastructure, a certain rural industrial base, and rural residents living and working
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in peace and harmony. Based on the characteristics of rural development, the selected
villages in these areas are representative in terms of production and life and could fully
reflect characteristics such as local cultural vitality and the rural industrial development
potential. The rural revitalization demonstration zone in Jinggangshan, Jiangxi Province,
includes six villages in three townships. We conducted field research in 2022 on six villages
in three townships (Figure 5). Through interviews with industry departments, townships,
villages, and farmers within these counties, we collected detailed information about these
villages, including the basic situation of the county, industrial development status, con-
struction of the demonstration zone, the development of special breeding industries, rural
economic development status, rural ecological environment, villagers’ living standard,
rural governance status, farmers’ spiritual lives, and other data and textual information
that could reflect the material implementation level of rural revitalization and the farmers’
spiritual life status. These data were used to form an important village database.

Figure 5. Photo of farmer interview.

4. Results and Analysis

4.1. Measurement of the Development Level
4.1.1. Overall Measurement

The overall rural revitalization implementation level was clearly differentiated in
the six villages. Based on the evaluation index of the rural revitalization implementation
level and the resource characteristics of the rural revitalization demonstration villages in
Jinggangshan, we calculated the closeness (C) value of each village using the TOPSIS model
(Figure 6). The top-ranked village was MP, with a closeness (C) value of 0.474, followed
by DL (C value of 0.470); GT (C value of 0.454); BL, which is located in the middle of the
Jinggangshan revolutionary base area (C value of 0.414); MY (C value of 0.340); and finally
CFQ (C value of 0.237). By analyzing the closeness ranking of each demonstration village,
we concluded that there were differences in the level of rural revitalization among the six
model villages, and the differences were relatively clear, with the maximum closeness value
being twice as high as the minimum closeness value. The implementation level of rural
revitalization in areas with strong revolutionary culture was significantly higher than that
in other areas. Taking MP as an example, we dug deeper into the potential connotations of
revolutionary culture; enriching revolutionary culture elements; adherence to the concept
of revolutionary culture leading and green development; the creation of a comprehensive
scenic spots integrating food, accommodations, transportation, entertainment, tourism, and
shopping; development from a single industry to full industry structure; and revitalizing
culture to feed the revitalization of industry. It was found that the implementation of these
measures had achieved considerable results.
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Figure 6. Evaluation of the closeness of rural revitalization in Jinggangshan.

4.1.2. Analysis of the Dimensions of Implementation Effectiveness

Based on the results of the development level of rural revitalization, the top two
closeness values of the five dimensions (i.e., industrial development, ecological construction,
cultural development, organizational construction, and farmers’ lives) were defined as the
main effects and side effects.

The main side effects of the five dimensions were significantly differentiated.
Based on a horizontal comparison (Figure 7), the main role of the rural revitalization

implementation level in CFQ’s was the dimension of farmers’ lives, with a closeness value
of 0.295, while ecological construction and cultural development together constituted the
side effects of the village, with closeness values of 0.271 and 0.294, respectively. The main
role in MP was organizational construction, with a closeness value of 0.613; and there were
two side effects, namely, industrial and cultural development, with closeness values of
0.549 and 0.512, respectively. The main role in MY was organizational construction and
ecological construction, with closeness values of 0.553 and 0.469, respectively. The main role
in DL was ecological construction, with a closeness value of 0.770, and the side effect was
the farmers’ lives, with a closeness value of 0.486. The main role in GT was the industrial
development and cultural development dimension, with closeness values of 0.609 and
0.545, respectively, and the side effects were ecological construction and farmers’ lives,
with closeness values of 0.386 and 0.368, respectively. The main role in BL was farmers’
lives, with a closeness value of 0.637; and the side effects were industrial development
and cultural development, with closeness values of 0.455 and 0.452, respectively. Thus, it
can be seen that in the implementation of rural revitalization in the demonstration area in
Jinggangshan, the roles of each dimension were significantly differentiated and exhibited
a gradient and hierarchical distribution. The village with the largest gradient span was
DL, ranking first in the closeness of farmers’ lives but sixth in the closeness of ecological
construction. CFQ had a gentler gradient ranking between 4 and 6 in the closeness of each
dimension with a strong dependence among the dimensions.
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Figure 7. Evaluation of the closeness of each dimension of the rural revitalization level in the
demonstration area in Jinggangshan.

The differentiation of the effects of the five dimensions on the model villages was
significant.

The longitudinal analysis (Figure 6) revealed that there was a balance in the mean
levels of the effects of the five dimensions on the overall effects in the six model villages,
with the maximum mean difference being 0.047. The mean value of the effect of the
organizational construction dimension on the level of rural revitalization in the six model
villages was the largest (0.4015), and the mean value of industrial development was the
smallest (0.3548). By contrast, the difference in the effect of ecological construction on the
level of rural revitalization in the six model villages was the greatest, with a difference of
0.564, and the closeness value of DL was 0.770, while the closeness value of BL was 0.206. In
descending order, the values were as follows: cultural development (0.350) > organizational
construction (0.380) > farmers’ lives (0.424) > industrial development (0.524) > ecological
construction (0.564). Based on the analysis of the overall effect level of each dimension,
although there was a balance in the average level of the effect of each dimension in the
six model villages overall, the variability in the effect force of cultural development in the
six model villages was smaller than that of ecological construction, indicating that rural
cultural development had a strong driving effect on improving the overall development
level of the villages.

4.2. Analysis of Factors Influencing the Level
4.2.1. Main Controlling Factors

Overall, the influencing factors with the greatest explanatory power on the imple-
mentation level of rural revitalization in the demonstration area in Jinggangshan were
ranked as shown in Figure 8. In descending order, they were X5 (0.8465) > X2 (0.8379) > X9
(0.7220), X4 (0.7220) > X8 (0.3886) > X11 (0.3746) > X1 (0.3352) > X3 (0.3025) > X7 (0.2831)
> X10 (0.2256) > X12 (0.1552) > X6 (0.1321). By analyzing the q-value magnitude of the
effect of each dimensional influencing factor, we found that rural development had the
highest intensity effect on the level of implementation of rural revitalization development
(0.5494), followed by rural construction (0.4126), and rural governance (0.3694) had the
lowest intensity effect on the implementation level of rural revitalization development.
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Figure 8. Results of impact factor detection of rural revitalization level in the Jinggangshan rural
revitalization demonstration area.

The single-factor detection analysis revealed that there were significant differences in
the explanatory powers of the different influence factors on the implementation level of
rural revitalization, and the interactions between the influencing factor exhibited non-linear
enhancement or two-factor enhancement effects, indicating that the result of the interaction
between any two of the 12 influencing factors was greater than the sum of the individual
effects of the two selected factors or was greater than the maximum value (Table 2). Based
on the analysis of the two-factor interaction detection results, we concluded that the two-
factor enhancement effect was significant for the interactions of each dominant factor,
meaning that the q-values of the interactions of most of the dominant factors were greater
than the q-values of the interaction of each single factor. Furthermore, the complementary
enhancement effect, 1 + 1 > 2, i.e., the non-linear enhancement effect, occurred for the
interaction of some of the dominant factors. In particular, the factors that interacted with
X6, X10, and X11 exhibited a non-linear enhancement effect, and the driving effect was
more apparent. In addition, regarding the intensity of the interaction detection of each
dominant factor, the village innovation capacity (X2) interacted with 72.73% of the other
dominant factors. The interaction q-value of the village innovation capacity (X2) was
greater than 0.996, indicating that the combination of the village innovation capacity (X2)
and the other factors was more helpful in improving the implementation level of rural
revitalization. For the best interaction factors, the interaction between village development
and the village governance factors was the most significant, but the degrees of influence
of the specific factors varied, and the interaction results were differentially distributed,
generally exhibiting a two-factor enhancement effect.

4.2.2. Influence Mechanism

Based on the results of previous studies [39,62] and the results presented in Section 4.2.1,
the influence mechanism of the implementation effect of rural revitalization was further
analyzed (Figure 9) to provide a reference for realizing localized and need-based solutions
to rural problems, enhancing rural competitiveness, improving rural development, and
realizing comprehensive rural revitalization.
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Table 2. Results of factor interaction analysis.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

X1 0.3352
X2 0.9962 0.8379
X3 0.4816 0.8688 0.3025
X4 0.9962 0.9962 0.8386 0.7220
X5 0.9847 1 0.9477 0.8758 0.8465
X6 0.9962 0.8649 0.8688 0.8004 0.8759 0.1321
X7 0.9656 0.8987 0.6982 0.8285 0.9477 0.4606 0.2831
X8 0.9847 1 0.7009 0.9998 0.9846 0.5504 0.7009 0.3886
X9 0.9962 0.9962 0.8386 0.7683 0.8758 0.8004 0.8285 0.9998 0.7220

X10 0.9656 1 0.8386 0.8386 1.0000 0.5504 0.9656 0.5504 0.8386 0.2256
X11 1.0000 1 0.5395 0.7780 0.9998 0.8285 0.5294 0.7007 0.7780 0.8386 0.3746
X12 0.9656 1 0.7009 0.8759 0.8759 0.3396 0.4201 0.7009 0.8759 0.9656 0.7009 0.1552

Note: If the interaction detection result is C(A + B) > A + B, this is defined as two-factor enhancement. If the
interaction detection result is C(A + B) > max(A,B), this is defined as non-linear enhancement. The red font
indicates a two-factor enhancement effect, while the black font indicates a non-linear enhancement effect.

Figure 9. Influence mechanism of the level of rural revitalization in the Jinggang Mountain rural
revitalization demonstration area, Jiangxi Province.

China’s rural development is challenged by many external factors, including poor
policy inclination towards rural areas and insufficient resource development. It is also
constrained by internal factors such as old and weak village cadres, poor industrial de-
velopment status, weak rural governance capacity, and insufficient cultural vitality. As
an important part of the development principles of the five-year plan for implementing
the rural revitalization strategy (2016–2020), rural green development focuses on reducing
environmental risks, protecting rural landscapes, and creating an economically efficient,
socially harmonious, and ecologically friendly path to sustainable rural development for
the benefit of human well-being [28]. The green development of the countryside is a key
factor in the improvement of the level of rural revitalization. The long-term greening
level of Chinese villages is not high; the level of environmental damage is serious; the
village organization is disorganized; the dependence on policy tilt in carrying out rural
revitalization is too high; the level of social capital integration is low; and the attraction
of talent and industrial development used to promote the vitality of rural development
is low, resulting in villages having a low capacity to actively develop by improving their
own abilities. The direct result of this phenomenon is that the endogenous power for
village development is insufficient, and the impact on the implementation level of village
revitalization is significant. As the main birthplace of the Chinese revolution, the city of
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Jinggangshan in Jiangxi Province is rich in culture, and the revolutionary spirit of their
ancestors has had a strong influence on the area. The villagers generally have a higher
concept of the rule of law, and cultural heritage and development have less influence on
the implementation level of rural revitalization. Therefore, the low level of village greening
and the lack of attractiveness of the villages in turn lead to the low ability of villages to
attract talent, the high pressure of industrial development, and the low level and single
source of the village’s collective economic income being the most important factors that
affect the implementation of rural revitalization.

Rural development is the key to the implementation of rural revitalization, and it is
a dynamic process that is constantly optimized through self-organization and structure.
Rural development is the result of endogenous drivers, exogenous drivers, physical spaces,
humanistic spaces, and the joint action of these factors in the different stages of devel-
opment; and the interaction among factors can be considered to be part of a dissipative
structure and nonlinear open system that is far from equilibrium [77,78]. Rural construction
is an important task in the implementation of the rural revitalization strategy, and the basis
of all of this is rural governance.

First, overall, rural development plays the greatest role in influencing the implementa-
tion level of rural revitalization, while rural governance plays a smaller role. This indicates
that with the development of urbanization and informatization, the overall quality of farm
households has been significantly improved; the situation of rural rule-of-law construc-
tion has been significantly improved; and there is already a solid foundation for China’s
countryside to enter the next stage of upgrading and transformation [79].

Second, specifically, the concept of green development is still a key element in the
process of rural revitalization [29]. The Chinese government pays increasing attention
to the concept of green development [80,81]. At present, green development has created
significant wealth for the development of China’s countryside, and the increase in the value
of resources has made a great contribution to the ecological protection and sustainable
development of China’s countryside. The progress of implementing the concept of rural
green development (which aims to alleviate the contradiction in the process of economic
development by reducing resource consumption and strengthening environmental and
ecological governance, which essentially reflects the concept of sustainable development)
directly affects the potential for sustainable rural development [23], and this in turn restricts
the introduction of rural talents and social capital investment, while stimulating the vitality
of rural development requires not only government intervention but also the inflow of
talents and social participation. For example, 87% of the Jinggangshan rural revitalization
demonstration zone is mountainous. According to data from Forest Resource Management
in Jinggangshan in 2020, the greening rate (greening rate = [(area of tree forest + area of
bamboo forest + area of shrub forest + area of four-sided tree cover)/total land area] ×
100%) of the demonstration zone was 70.79% in 2020. In 2021, the greening rate was 75%
(data provided by Jinggangshan Forestry Bureau), and the greening rate of the countryside
is increasing. This can provide an ecological environmental basis for the revitalization
of the countryside in the demonstration area. However, the greening rate is still lower
than the overall rate in Jinggangshan (>86% in 2021) [82], and the greening level of the
demonstration area plays an important role in the implementation of rural revitalization.

Third, regarding the countryside itself, the area is rich in natural and cultural capital.
However, the development of such a large village database requires the participation of
all sectors. To a certain extent, the age composition of the village leaders reflects that the
ability of the village in accepting new technologies, information, and to introduce network
development, while a higher collective economic village income reflects a better economic
base, higher tolerance rate, and greater attractiveness to social capital [71].

Fourth, regarding the endogenous power of villages, the implementation of rural
revitalization should not adopt a one-size-fits-all approach but rather should be promoted
based on the local rural characteristics. Culture is the soul of a country, and cultural
self-confidence is the strength that a country and a nation present to the world [31]. At
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present, most of the countryside in China retains a primitive state of culture, and rural
revitalization is the most powerful way to build villages with distinctive characteristics and
advantages, to develop cultural and sports industries with rural characteristics, to promote
the revitalization of traditional crafts in rural areas, to activate and make prosperous
the rural cultural market, and to drive villagers to develop independently [83]. The
center of the demonstration area is Maoping Village, which has a strong revolutionary
culture, and its influence radiates to the surrounding area, developing the countryside
with its revolutionary sites and culture, leveraging social capital investment through the
central lottery 50 million public welfare fund and policy financial funds, providing a
strong financial guarantee for the rural construction of the demonstration area, relying on
revolutionary culture, and building an industry-academia-research framework through
market-oriented operation. Based on the revolutionary culture, the education base is
built through market-oriented operations. The integration of agriculture and tourism has
developed into a specialized residential industry; special cultural industry parks have been
created, and the implementation of rural revitalization has been promoted.

Fifth, the construction of public facilities also had a certain influence on the construc-
tion of rural revitalization in the demonstration area, but its influence degree was lower
than those of the remaining 11 factors.

5. Discussion

5.1. Development and Enhancement Path of Rural Revitalization

In recent years, the issue of rural development has been the focus of researchers world-
wide. The study of the sustainable development of rural areas and the development of rural
culture is quite popular in social science research both in China and abroad [2,21,23]. Based
on the example of the rural revitalization demonstration area in Jinggangshan, Jiangxi
Province, a region that has a typical revolutionary culture, in this study, the implementation
level of rural revitalization and its influencing factors were explored from a microscopic
perspective, and these issues were evaluated in the context of the current level of devel-
opment, thereby enriching the previous research results [71,74,84]. The analysis results
also provide a reference for policymakers in decision making regarding rural revitalization
and provide a case study for the implementation of rural revitalization in China. However,
this study differs from previous studies in terms of the selection of the study area and the
construction of the evaluation indicators [71,85]. For example, regarding the design of the
rural revitalization evaluation indexes, the data used in this study were obtained through
four-level semi-structured interviews at the county, township, village, and farmer levels. In
addition, the research unit was more microscopic and closer to the actual cases, so it had
stronger explanatory power for rural areas [9,85]. The evaluation system was constructed
from the two perspectives of rural material living conditions and spiritual life, and we
investigated farmers’ perceptions of rural areas and their lives. In addition, the evaluation
system investigated the awareness of rural households and their personal feelings about
rural development to determine the needs of the first beneficiaries of rural development,
making the evaluation of the effectiveness of rural revitalization more reasonable.

Based on the results of the effectiveness of the implementation of rural revitalization,
the overall differentiation was clearly significant, and there was an equalization of the
average levels of the different evaluation dimensions on the implementation effectiveness
of rural revitalization. The smallest variability in the mean value of the effect of industrial
development on the effectiveness of the implementation of rural revitalization indicated
that the countryside paid more attention to the industry in the development process. This
finding was consistent with the studies by Du et al. [71] and Robert et al. [86]. Moreover,
rural cultural development had a relatively strong driving effect on enhancing rural com-
petitiveness, and this research result was mainly due to rural culture and the development
of cultural continuity in the rural planning process [49,69,87].

From the analysis of the factors influencing rural revitalization, the greening rate of the
countryside, the innovation ability of the countryside, and the age optimization of the vil-
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lage cadres had significant impacts on the implementation level of rural revitalization and
were very important elements in the process of rural development. This indicates that in
the process of rural revitalization, the vitalization development of villages is the basis for all
rural development and construction, and it is also an important supporting element for the
regional development of a village [23,88]. In addition, the green development of villages is
a prerequisite and necessary condition for maintaining sustainable development [28]. This
is also consistent with the results obtained by Wang et al., who proposed that improving
the environment of the habitat area has a positive effect on enhancing the development of
agricultural agglomeration and promoting the sustainable development of rural areas [89].
The rejuvenation of village leaders is an important guarantee of the sustainable develop-
ment of village businesses as well as a booster of the sustainable development of villages.
This result effectively complemented current research on village development [23,28].

5.2. Revelation of Rural Revitalization

Taking the old revolutionary cultural area in Jinggangshan, Jiangxi Province, China,
as an example, in this study, we revealed the effectiveness, influencing factors, and mecha-
nisms of rural revitalization implementation, and we further summarized the universal
experience of implementing a rural revitalization strategy. These analysis results improve
our understanding of the rural territorial system itself and the comprehensive development
of the countryside and its complex relationships. The results of this study provide a basis
for rural revitalization and sustainable rural development. However, rural revitalization
still faces many problems and challenges [23], and the multiple values of rural cultural
resources such as history, economy, and ecology need to be further explored [90].

Culture is the soul of the countryside and forms a foundation for the extension of
rural society. The Chinese government encourages to lead and drive rural revitalization
from the perspective of cultural industry, calls for multi-participation with farmers as the
main body, government-led market operation and scientific planning, and coordinates
five aspects of industry, talent, organization, culture and ecology to realize and promote
the implementation of cultural empowerment of rural revitalization. Studies showed
that the decline of traditional Chinese villages is generally manifested in two ways: the
disappearance of traditional natural villages and the decline in culture. The causes of
rural decline can be divided into two types: the impact of modern industrialization and
urbanization development, and the decline in rural elite culture [23,24,91]. Based on this,
we constructed a theoretical framework (Figure 10) in terms of two guiding ideas and
evolutionary paths of cultural revitalization to provide feedback concerning the role of
rural cultural development in the implementation of a rural revitalization strategy and to
provide a new implementation perspective for sustainable rural development. Accordingly,
the cultural industry is divided into two parts: natural resources and human resources. The
cultural industry empowers rural humanities and natural resources to produce feedback
for multiple values of rural culture, such as history, economy, ecology, and remediation. It
also combines the synergy of government guidance, market operation, social regulation,
talent return, village collective implementation, and farmer participation to stimulate rural
cultural vitality; inherit farming civilization (which refers to a cultural collection of national
system, etiquette and custom system, culture, and education established by people in
long-term agricultural production to meet the needs of agricultural production and life);
promote industry and sales; coordinate the integration of agriculture, culture, and tourism;
and promote the integrated development of agriculture, industry, and service industries.
Thus, the new pattern of "strong agriculture, rich farmers and beautiful countryside" can
be realized by developing cultural industries. These factors aid in the implementation of
the five types of revitalization and promote the overall revitalization of the countryside.
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Figure 10. Schematic diagram showing the framework of rural revitalization from the perspective of
cultural revitalization.

5.3. Recommendations to Promote Rural Revitalization

The implementation of rural revitalization requires the joint efforts of many parties,
and this paper attempts to put forward development suggestions in the below aspects.

For policymakers, it is important to comprehensively grasp factors such as material,
spiritual, and social relationship forms to deeply analyze the development history of rural
civilization, to form a basic picture of development, to understand the inner mechanisms
and the evolutionary path of civilization in each region, to strengthen integrated planning
and scientific layouts, and to increase the implementation of policies related to the composi-
tion of cultural zones to connect the dots into lines and the lines into surfaces to constitute
cultural zones and improve the creativity and comprehensive strength of rural culture.

Regarding the specific responsible parties, when considering the needs of urban and
rural populations in all aspects, they should pay more attention to the expectations of
rural residents for rural development and construct implementation plans in a targeted
manner by identifying and coordinating the opinions of different groups, such as the
elderly, middle-aged, youth, adolescents, children, and immigrants to create an ecologically
livable countryside from a spiritual perspective while satisfying the residential and living
environment of farm households to achieve common prosperity in the countryside.

For social scientists engaged in rural revitalization research, there is still a lack of
systematic, detailed, and in-depth analyses of the theoretical aspects of the level of rural
revitalization from the perspective of rural cultural development, as well as the construc-
tion of indicators for the evaluation of the effectiveness of the implementation of rural
revitalization strategies and the pathways and methods of improvement. Intangible culture
is transformed into tangible services, and the value of the services is evaluated as a way
to encourage working decision makers to sustainably stimulate rural development; to
explore the ecological and economic values of rural culture; to seek a model of coupled
development of rural culture and industry emphasizing coordinated social, cultural, and
economic properties at the urban–rural interface; and to provide development that can
sustainably maintain the level of social expectations [49,78,85].

6. Conclusions

Based on the background of the macro-policy regulation of rural revitalization, in
this study, we constructed an index system for evaluating the effectiveness of the imple-
mentation of rural revitalization that considers rural residents’ material needs and their
spiritual lives. Made more accurate by further analyzing the factors with the analysis
results and data affecting the implementation of rural revitalization in the case study areas,
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this study enriched existing research results with several interesting findings; for instance,
we found that the implementation of rural revitalization requires not only a focus on the
development of industries but also an increase in the development and utilization of the
inner resources of the rural areas, such as the rural unique cultural resources. Based on the
analysis of the influencing factors, the implementation of rural revitalization was a result of
the joint effect of multiple factors. In general, village development had a stronger influence
on the implementation level of rural revitalization than village construction and village
governance. Based on the analysis of each influencing factor, the harmonious development
of human and nature was found to be still the primary task of rural revitalization, which
was also consistent with the SDGs. At the same time, the important task of rural industrial
development and the foundation of rural revitalization were both rural innovation capabil-
ities. In the foreseeable future, it is expected that the results of this study and the proposed
policy recommendations are expected to provide theoretical references for sustainable
rural development and high-quality rural development in different countries and regions,
as well as provide microscopic indicators for the evaluation of the effectiveness of rural
revitalization. In addition, the evaluation of the rural culture can utilize feedback regarding
the status of rural industrial development (the status of the economic enhancement of cul-
tural tourism integration and the status of the industry–academia–research scheme), which
can better reflect the relationship between cultural revitalization and rural revitalization
implementation. This has significance and value for the cultural development of other
areas. For the design of rural revitalization evaluation indexes, the index system of rural
culture and education can be enriched by constructing indicators such as the number of
rural elementary schools, the number of rural teachers, the age of rural teachers, and the
number of rural libraries [92], which makes the setting of the rural revitalization evaluation
index system more perfect.
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Abstract: The carbon sequestration of food crops is of great significance to slow down agricultural
greenhouse gas emissions in agricultural production and management. This paper analyzes the
dynamic change and regional differences of net carbon sequestration of food crops from temporal and
spatial perspectives for the case study area of the Yangtze River economic belt (YREB) in China. We
use the calculation formula of carbon sequestration and carbon emission to calculate the net carbon
sequestration in the Yangtze River economic belt. On this basis, we analyze the dynamic trend and
regional differences of net carbon sequestration in the Yangtze River economic belt. Furthermore, we
use the Gini coefficient to measure the quantitative gap of net carbon sequestration of grain crops
in different regions of the Yangtze River economic belt. The results show that: (1) from 2000–2018,
the net carbon sequestration of food crops keeps rising within the studied area, while the carbon
emission shows a fluctuating downward trend; (2) remarkable regional differences in the net carbon
sequestration of food crops have occurred, and most provinces (cities) show an upward trend for
the studied area; (3) the unequitable distribution of net carbon sequestration of food crops is clearly
displayed in the upper, middle, and lower reaches of the studied area. Moreover, the most uneven
place is located on the lower reaches, and the least uneven place is in the upper reaches. These
findings are important points of reference for reducing the carbon emissions of the agricultural
industry in the Yangtze River economic belt of China and in China more generally.

Keywords: Yangtze River economic belt (YREB); grain-planting industry; net carbon sequestration;
carbon emission; Gini coefficient

1. Introduction

Nowadays, food security and greenhouse gas emissions are two important issues in
agricultural production all over the world [1–3]. It is well known that there are two ways
to reduce greenhouse gas emissions, i.e., reducing the absolute amount of carbon emissions
from the source and increasing carbon sequestration. With regard to food security, scholars
pay more attention to the economic value of food crops [4,5] but often ignore the ecological
value of food crops [6–8]. Food crops can absorb carbon dioxide, regulate the climate, and
return farmland soil and straw to the field, which can also fix carbon. Therefore, food
crops have an important carbon sequestration function. The carbon sequestration in grain
production mainly refers to the carbon absorption in the process of grain growth, which
is caused by photosynthesis, while the carbon emission in grain production mainly refers
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to the emission of greenhouse gases such as CO2, CH4, and N2O on farmlands, which is
caused by the input of agricultural materials and the growth of grain crops. The net carbon
sequestration in food crops refers to the difference between carbon sequestration and carbon
emission. According to relevant scholars [9,10], there are a lot of carbon sequestrations
in crop biomass, which can not only increase the organic carbon content of agricultural
soil, improve the soil fertility, and increase the grain yield, but they also can reduce the
agricultural greenhouse gas emissions and gradually form a valuable ecosystem.

Compared with other sectors, the food production sector is a special sector with dual
attributes of carbon source and carbon sequestration. On the one hand, a large number of
greenhouse gases are produced in the process of food production, related to the application
of petrochemical production such as pesticides and fertilizers. At present, among the
carbon dioxide emissions from global human activities, the total carbon dioxide emissions
from agricultural production and land-use change account for 24% [11]. In 2017, China
accounted for about 29.01% of the total agricultural carbon emissions in Asia and about
12.54% of the total agricultural carbon emissions in the world [12]. On the other hand, the
process of crop production can also produce carbon sequestration, offsetting part of the
carbon emissions produced from food production itself. That is to say, crops can absorb a
large amount of carbon dioxide through photosynthesis during the growth process, which
plays a role in purifying the air to a certain extent. As an important agricultural base,
China has important contribution to carbon sequestration for food crops [13,14]. Especially,
at the general debate of the 75th UN General Assembly, China announced that it would
strive to reach the peak of carbon dioxide emissions by 2030 and achieve carbon neutrality
by 2060 [15]. Therefore, the study on China’s grain net carbon sequestration is of great
significance for achieving the carbon peak and carbon neutrality commitment of the Paris
Agreement [16].

Food crops’ carbon sequestration is an important part of agricultural carbon seques-
tration, and it is very meaningful to study it. At present, the research on food crops’ carbon
sequestration is relatively few, and it is mainly focusing on agricultural production. Agri-
cultural carbon sequestration mainly focuses on the following four aspects. Firstly, many
scholars have launched the quantitative measurement of agricultural carbon sequestra-
tions. Vleeshouwers et al. [17] constructed a model including climate, agricultural soil,
and crops to measure carbon sequestrations in European agricultural soils and found that
due to the interaction between crops, soil, and climate, there are great regional differences
in the effectiveness of agricultural emission reduction measures and substantial differ-
ences in the spatial pattern between carbon sequestrations caused by different measures.
Alamdarlo [18] estimated carbon sequestrations in the agricultural sector in the Iranian
provinces based on Kuznets and space econometric theory. Dhananjay et al. [19] predicted
agricultural carbon emissions in Saskatchewan, Canada, by improving the process-based
denitrification decomposition (DNDC) models and concluded that prudent management of
agricultural irrigation and fertilizers has a significant impact on enhancing the provincial
agricultural carbon sequestration potential. Secondly, the influencing factors of agricultural
carbon sequestrations receive much attention, which includes the differences in agricultural
systems [20], organic fertilizer inputs and conservation farming [21], land-use change [22],
and consumption of agricultural material energy such as straw combustion, feces man-
agement, etc. [23,24]. Thirdly, there is research on the agricultural carbon sequestration
trading and compensation mechanism. Existing scholars mainly pay attention to ecological
compensation issues, compensation principles, compensation methods and standards for
agricultural carbon sequestration [25], monitoring, report, and verification (MRV) systems
of forest carbon sequestration trading and related systems and policies [26], comparison of
similarities and differences in carbon trading across countries [27,28], and so on. Fourthly, it
is about the development prospects of agricultural carbon sequestrations. Hoffert et al. [29]
consider that changing traditional farming patterns can contribute to reducing agricultural
emissions and increasing remittances, especially by implementing conservation farming
methods. Ugur et al. [30] used the Granger causal test to explore the relationships between
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economic growth, agricultural carbon emissions, and energy consumption in Turkey and
found that Turkey can promote steady economic growth by effectively reducing agricultural
carbon emissions.

A few scholars have studied food crops’ carbon sequestration. She et al. [31] evaluated
the carbon inputs and outputs of crop production systems in six typical agricultural regions
in China. The results showed that the carbon sequestration of the same crop in different
regions was significantly different, as well as different crops in the same region. Among
the three major crops in China, the total annual net carbon sink of rice was the highest.
Kang et al. [32] analyzed the impact of grain production on ecological carbon sink in China.
Research shows that grain production helps to increase ecological carbon sink. Compared
with northeast and western regions, the carbon sink effect of grain production in eastern
and central regions is greater.

In summary, scholars have carried out a lot of research on measuring agricultural
carbon sequestration, influencing factors of carbon sequestration, the carbon sequestration
trading and compensation mechanism, carbon sequestration development prospects, etc.

However, from the perspective of research object, the existing research mainly takes
forest carbon sequestration as the research object, and there is less research taking food
crops as the research object; from the perspective of research content, the research about
carbon sequestration rarely considers the impact of carbon emission. Therefore, based on
the calculation of the carbon sequestration and carbon emission of grain crops, taking grain
crops as the research object, the net carbon sink as the research content, and the Yangtze
River economic belt (YREB) as a case study area, this paper analyzes the dynamic changes
and regional differences of net carbon sequestration of grain crops in different regions of
China’s Yangtze River economic belt.

This paper has three specific objectives to obtain: (1) to estimate the net carbon
sequestration of grain crops from two aspects, i.e., carbon sources and carbon sequestrations;
(2) to analyze the dynamic trend and regional differences of net carbon sequestration; (3) to
measure the quantitative gap of net carbon sequestration of grain crops in different regions
by using the Gini coefficient.

2. Materials and Methods

2.1. Site Description

The Yangtze River economic belt (YREB) lies between 20◦–35◦ N and 90◦–122◦ E,
covering the three major regions of east, middle, and west in China, which consist of eleven
provinces (cities), including Shanghai, Jiangsu, Zhejiang, Anhui, Jiangxi, Hubei, Hunan,
Chongqing, Sichuan, Yunnan, Guizhou, etc. (Figure 1). Its area is about 2,052,300 km2,
accounting for 21.4% of total area of China. Moreover, its population and gross production
value all surpass 40% of that of China. The YREB can be divided into upper reaches, middle
reaches, and lower reaches. The upper reaches include Chongqing, Sichuan, Guizhou, and
Yunnan, the middle reaches include Jiangxi, Hubei, and Hunan, and the lower reaches
include Shanghai, Jiangsu, Zhejiang, and Anhui. In November 2018, Chinese government
fully exerted the location advantage of the YREB, guided by ecological priority and green
development, to promote the coordinated development of the upper, middle, and lower
reaches of the Yangtze River and the high-quality development of the regions along the
Yangtze River.
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Figure 1. Location map of Yangtze River economic belt.

The YREB is an important food production base in China. It is abundant in natural
resources, especially arable land, which together cover one third of the total area of China. In
addition, the output value of agriculture, forestry, animal husbandry, and fishery accounts
for about 40% of that of China. The YREB consists of several plains, such as Jianghan Plain
in Hubei province, Dongting Lake Plain in Hunan province, Chengdu Plain in Sichuan
province, Poyang Lake Plain in Jiangxi province, and Taihu Plain in Jiangsu and Zhejiang
province and other country-level commodity grain bases. Its grain production accounts for
about 40% of the country.

Based on the differences in conditions of geography, soil, climate, technology, etc., as
well as the total amount of food production and consumption in different regions of the
studied area, China is divided into three regions, i.e., the main grain-producing area, the
main grain marketing area, and the grain balance area. Main grain-producing area refers to
key grain production areas that have suitable natural resource conditions for cultivating
food crops and have certain technical advantages and economic effects. The main grain
marketing area refers to the grain consumption area with more people and less land, low
food self-sufficiency with rate of grain, and large gap in grain production and demand,
which is mainly distributed in economically developed areas, such as the southeast coast of
China and large cities. The grain balance area refers to the western region of China which is
mainly located in remote areas with relatively backward economy, self-sufficiency in food
production, and basic balance between production and demand in food.

The YREB has six main grain-producing areas, two main grain marketing areas, and
three grain balance areas. The six main grain-producing areas are distributed in Sichuan,
Hubei, Hunan, Jiangsu, Jiangxi, and Anhui provinces. The two main grain marketing
areas are located on Zhejiang province and Shanghai city. The three grain balance areas
are situated in Yunnan, Guizhou provinces, and Chongqing city. The Chinese government
has committed to building the YREB as a good ecological environment and high-quality
development economic belt.

As the planting industry is the main agricultural area type in the studied area, ex-
ploring the net carbon sequestration of grain-planting industry is of great significance
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to promote the green transformation of grain production and protect the agricultural
ecological environment in the studied area.

2.2. Research Methods
2.2.1. Research Framework

In this paper, the net carbon sequestration of food crops is estimated in the following
steps (as shown in Figure 2). First, it is clarified that the net carbon sequestration is influ-
enced by both carbon sequestration and carbon emission (consisting of three components:
agricultural materials, rice growth, and grain growing fields), and on this basis, a regional
difference evaluation model is constructed using the Gini coefficient. Then, this paper
analyzes the dynamic change and regional differences of net carbon sequestration of food
crops for the case study area of the YREB in China. In terms of time, this paper separately
analyzes the dynamic change trend of net carbon sequestration in the whole study area, and
based on this, the net carbon sequestration and the level of carbon sequestration of food
crops in 11 provinces (cities) were analyzed dynamically. In terms of space, through the
Gini coefficient, this paper analyzes provincial differences of the net carbon sequestration
level in the whole study area and the regional differences of the net carbon sequestration
level in in the upper, middle, and lower reaches of the YREB. Finally, the results of this
paper are discussed, and feasible suggestions and future research directions are given.

Figure 2. Research framework.

2.2.2. Estimation on the Carbon Sequestration of Food Crops

The net carbon sequestration of food crops is the difference between carbon seques-
tration and carbon emission, and the carbon sequestration level of food crops is the ratio
of carbon sequestration to carbon emission. If the value is greater, the capacity of the
net carbon sequestration is stronger, which can better reflect the effect of the net carbon
sequestration in a region. The carbon sequestration of food crops was calculated as follows:

Ct =
k

∑
i=1

Ci =
k

∑
i=1

ri·yi·(1 − wi)/ECi (1)

where Ct represents the total carbon absorption of food crops; i is the type of food crops;
Ci, ri, yi , wi, and ECi are the carbon absorption, the carbon absorption rate, the economic
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yield, water content, and economic coefficient of certain food crops, respectively. The
carbon absorption rate, water content, and economic coefficient of various food crops are
from the Intergovernmental Panel on Climate Change (IPCC) report [33] (Table 1).

Table 1. Economic coefficients, water content, and carbon absorption rates of major food crops
in China.

Category Economic Coefficient Water Content/% Carbon Absorption Rate

Rice 0.45 12 0.414
Wheat 0.40 12 0.485
Corn 0.40 13 0.471
Beans 0.34 13 0.450
Tubers 0.70 70 0.423

2.2.3. Estimation on the Carbon Emission of Food Crops

The carbon emission of food crops consists of three parts. The first part comes from
the input of agricultural materials, which mainly include chemical fertilizer, pesticide,
agricultural film, plastic film, agricultural diesel, and agricultural land irrigation, etc. Here,
we apply the weight coefficient A to separate the input of the food production from the
generalized input of agricultural production. Especially, the weight coefficient A = the
area of food crops sowing/the area of crops sowing. The second part originates from CH4
emissions caused by the rice growth. The emission factor is taken as a comprehensive
emission factor that takes into account regional differences, climate change, etc., which is
more convincing and more realistic than a single emission coefficient, as shown in Table 2.
The relevant coefficients are recommended by the report of IPCC [33]. The third part comes
from N2O emissions caused by grain growing fields [33]. As such, the carbon emission of
food crops can be calculated with following equation:

Et =
k

∑
i=1

Ei =
k

∑
i=1

Ti·δi (2)

where i is the type of carbon sources; k is the number of carbon sources; Et is the total
carbon emission from the food crops; Ei is the amount of carbon emission from each carbon
source; Ti is the amount of each carbon source; δi is the carbon emission coefficient of each
carbon source.

Table 2. The CH4 emission coefficient of rice during its growth cycle in different regions of Yangtze
River economic belt (g/m2).

Region Early Rice Late Rice Mid-Season Rice Region Early Rice Late Rice Mid-Season Rice

Shanghai 12.41 27.5 53.87 Hunan 14.71 34.1 56.28
Jiangsu 16.07 27.6 53.55 Chongqing 6.55 18.5 25.75

Zhejiang 14.37 34.3 57.96 Sichuan 6.55 18.15 25.73
Anhui 16.75 27.6 51.24 Guizhou 5.1 21 22.05
Jiangxi 15.47 45.8 65.42 Yunnan 2.38 7.6 7.25
Hubei 17.51 39 58.17

2.2.4. Construction of Regional Difference Evaluation Model of Net Carbon Sequestration

Gini coefficient is an important index that can measure the inequality of income
and wealth distribution, which can comprehensively investigate the difference of income
distribution among residents. As such, this paper uses Gini coefficient to measure the
regional distribution fairness of carbon sequestration from food crops in the YREB and
further to investigate the regional differences of net carbon sequestration of food production.
Here, we propose a hypothesis: if the proportion of carbon sequestration from food crops
of each province (city) in the overall region is completely consistent with the proportion
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of carbon emission from food crops of one, there is absolute fairness among the regional
distributions of net carbon sequestration in the YREB.

Otherwise, we consider there are regional differences. From Figure 3, A represents
the area between the absolute average distribution curve of carbon sequestration and
the actual distribution curve of carbon sequestration. B is the area between the actual
distribution curve of carbon sequestration and horizontal axis. The Gini coefficient of net
carbon sequestration from food crops is A/(A + B).

 

Figure 3. Lorentz curve diagram of net carbon sequestration.

Generally, the Gini coefficient is between 0 and 1. The smaller the Gini coefficient is,
the more even the distribution is. On the contrary, the larger the Gini coefficient is, the
more uneven the distribution is. Based on the value of Gini coefficient, we can obtain five
types, i.e., absolute average, relatively average, relatively reasonable, large gap, and wide
gap, which are represented by below 0.2, between 0.2 and 0.3, between 0.3 and 0.4, between
0.4 and 0.5, and more than 0.5, respectively [34]. Moreover, 0.4 is usually regarded as the
“warning line” of income gap. According to this international standard, the distribution
equity of net carbon sequestration from food crops is calculated with following equation:

Ginicoe f f icient = 1 − ∑n
j=1

(
Xj − Xj−1

)(
Yj + Yj−1

)
(3)

where j is the province; Xj is the cumulative percentage of carbon sequestration from
food crops; Yj is the cumulative percentage of carbon emissions from food crops. When
j = 1, Xj−1, and Yj−1 are regarded as 0, the horizontal axis represents the cumulative
percentage of carbon sequestration from food crops of each province (city) in the overall
region. When the proportion of carbon sequestration from food crops in certain province
(city) is greater than that of carbon emission, it means that the ecological environment of
this province (city) is good for food production. Meanwhile, this indicates the region has
higher ecological capacity and can share part of the carbon emission from food crops for
other provinces (cities).

2.3. Data Sources

This paper takes the five kinds of main food crops as the research objects, i.e., rice,
wheat, corn, beans, and tubers, and the time range is 2000–2018.

For the indicator of the carbon sequestration of food crops, the data on the carbon
absorption, the carbon absorption rate, the economic yield, water content, and economic
coefficient of certain food crop are from the IPCC report, and the data on the economic
yield are from the China Rural Statistical Yearbook; for the indicator of the carbon emission of
food crops, the data on the output of various food crops, the sowing area of the rice, the
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amount of chemical fertilizer, pesticide, agricultural film, plastic film, agricultural diesel,
and the agricultural land irrigation invested in the food production are from the China
Rural Statistical Yearbook, and the data on the CH4 emissions caused by the rice growth and
the N2O emissions caused by grain growing fields are from the IPCC report.

3. Results and Analysis

3.1. Dynamic Analysis on the Net Carbon Sequestration of Food Crops
3.1.1. Overall Dynamic Analysis on the Net Carbon Sequestration of Food Crops

The total amount of the carbon sequestration, carbon emission, and net carbon seques-
tration from food crops in the YREB from 2000–2018 is shown in Figure 4. The net carbon
sequestration of food crops maintains an upward trend, while the carbon emission shows a
fluctuating downward trend. From 2000–2018, the net carbon sequestration of the region
increases from 7.70669 × 107 t to 1.306066 × 108 t, which increases by 69.47%. The carbon
emission decreases from 9.02022 × 107 t to 7.78215 × 107 t, which decreases by 15.09%.
The total carbon sequestration increases from 1.672690 × 108 t to 2.024332 × 108 t, which
increases by 21.02%. On the whole, the carbon sequestration from food crops in the YREB
is gradually increasing. The carbon emission shows a “decline-rise-decline” trend, which
indicates that the ecological environment of the food production in the YREB is gradually
improving.

Figure 4. The total carbon sequestration, total carbon emission, and net carbon sequestration from
food crops in the YREB (104 t C).

3.1.2. Dynamic Analysis on the Net Carbon Sequestration of Food Crops in Various
Provinces (Cities)

The levels of net carbon sequestration of food crops in various provinces (cities) in
the YREB are shown in Figure 5. Here, we only show the results of 2000, 2006, 2012, and
2018 in Figure 5. The detailed results are presented in the Supplementary File (Table S1).
Compared with 2000, the net carbon sequestration of food crops in various provinces
(cities) in 2018 shows obvious regional differences. Except for Shanghai and Guizhou,
the other nine provinces (cities) show an upward trend. Especially, Guizhou as a grain
balance area shows the largest decline rate of 18.88%. In addition, Shanghai as a main
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grain sales area has a decline rate of 12.19%. The possible reason is that the grain sown
area has been greatly reduced with the transformation of industrial structure in Guizhou
and Shanghai, which leads to a decrease of carbon sequestration accordingly. According to
the China Statistical Yearbook, the grain-sowing area of Guizhou falls from 3153.3 thousand
hm2 to 2740.2 thousand hm2 from 2000 to 2018, and the grain-sowing area of Shanghai
falls from 258.8 thousand hm2 to 133.1 thousand hm2. In addition, the rising range of
the net carbon sequestration in Anhui is the largest, which increases by 183.59%, which
is followed by Hunan and Jiangxi, i.e., 171.67% and 137.87%, respectively. Although the
ranking of net carbon sequestration in Hubei and Jiangsu province in 2018 is not at the
top, with the gradual increase of grain-sowing area, the net carbon sequestration is also
increasing gradually.

Figure 5. Changes of total net carbon sequestration of food crops in 11 provinces (cities) of YREB.

Taking 2018 as a horizontal comparison year, the net carbon sequestration of food
crops in 11 provinces (cities) of the YREB is ranked as follows: Anhui > Jiangsu > Sichuan
> Yunnan > Hubei > Hunan > Guizhou > Chongqing > Zhejiang > Jiangxi > Shanghai.
Five provinces in the major grain-producing area are at the top of the ranking, i.e., Anhui,
Jiangsu, Sichuan, Hubei, and Hunan. Two provinces in the main grain sales area list in
the lower ranking, i.e., Shanghai and Zhejiang, and two provinces in the grain balance
area are in the middle of the ranking, i.e., Yunnan and Guizhou. We demonstrate that the
main grain-producing area receives more attention to the protection of grain ecological
environment, compared with the main grain sales area and the grain balance area. The
gap of net carbon sequestration of food crops is very large in the major grain-producing
area, i.e., 2.74751 × 107 t for Anhui, 2.24578 × 107 t for Jiangsu, only 1.33197 × 107 t for
Hubei, and 1.15972 × 107 t for Hunan, respectively. The possible reason is that Anhui
and Jiangsu have relatively advanced agricultural production technology and production
concept, which results in a relatively good agricultural ecological environment.

3.2. Dynamic Analysis on the Carbon Sequestration Level of Food Crops in Various
Provinces (Cities)

The carbon sequestration levels of food crops in various provinces (cities) are shown in
Figure 6. The carbon sequestration level of food crops in 2018 is ranked as follows: Yunnan
> Sichuan > Guizhou > Chongqing > Anhui > Jiangsu > Hubei > Shanghai > Hunan >

261



Int. J. Environ. Res. Public Health 2022, 19, 13229

Zhejiang > Jiangxi. Compared with the ranking of net carbon sequestration, the ranking of
Yunnan, Sichuan, and Guizhou is relatively at the top, while that of Jiangsu, Hubei, and
Hunan lags behind. In addition, the rising range of Anhui is the largest, attaining 90.59%.
Correspondingly, the rising range of Guizhou is the smallest, attaining only 90.59%.

Figure 6. Changes of carbon sequestration level of food crops in 11 provinces (cities) of YREB. (Note:
The level of carbon sequestrations is the ratio between carbon sequestrations and carbon emissions).

According to the time series changing characteristics of carbon sequestration level in
each province (city), we can divide 11 provinces (cities) into three types of areas, i.e., the
continuous growth area, the fluctuating growth area, and the fluctuating descent area. For
the continuous growth area, the level of carbon sequestration shows an increasing trend
at each time point compared with the previous time point. As such, six provinces (cities)
such as Anhui, Jiangsu, Chongqing, Jiangxi, Hubei, and Hunan meet this characteristic.
For the fluctuating growth area, the level of carbon sequestration shows an upward trend
on the whole and a downward trend at some time points. As such, three provinces such as
Zhejiang, Sichuan, and Yunnan meet this characteristic. For the fluctuating descent area,
the level of carbon sequestration shows a downward trend on the whole and an upward
trend at some time points. As such, two provinces (cities) such as Shanghai and Guizhou
meet this characteristic.

3.3. Regional Difference Analysis on the Net Carbon Sequestration of Food Crops

In this paper, the regional differences of the net carbon sequestration level of food
crops are analyzed in the upper, middle, and lower reaches of the YREB.

3.3.1. Regional Differences of Net Carbon Sequestration Level of Food Crops in 11
Provinces (Cities) of the YREB

From Figure 7, the Gini coefficient of the net carbon sequestration level of food crops
in 11 provinces (cities) shows an upward trend overall from 0.234 in 2000 to 0.287 in 2018,
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which increases by 22.65% during the studied period. It shows that the regional difference
of the net carbon sequestration level of food crops in various provinces (cities) is gradually
expanding. The Gini coefficient value indicates that the distribution characteristics of the
net carbon sequestration level in various provinces (cities) are in the state of “relatively
average” from 2000–2018. Especially, the regional difference of net carbon sequestration
level in various provinces (cities) became smaller from 2006–2016, while becoming wider
after 2016.

Figure 7. The Gini coefficient of the net carbon sequestration level of food crops in the 11 provinces
(cities) of the YREB.

3.3.2. Regional Differences of Net Carbon Sequestration Level of Food Crops in the Upper,
Middle, and Lower Reaches of Yangtze River Economic Belt

As is shown in Figure 8, the values of the Gini coefficient in the upper, middle,
and lower reaches of the YREB are ranked as follows: lower reaches > middle reaches
> upper reaches. This indicates that the regional difference in the lower reaches is the
largest, followed by the middle reaches and the upper reaches, which may be caused by
the differences of food production in various provinces (cities). Taking the lower-reaches
region as an example, the food-sowing area in Zhejiang and Shanghai is relatively small and
declining year by year. The food-sowing area in Jiangsu and Anhui is gradually increasing,
from 5304.3 thousand hm2 to 5475.9 thousand hm2 in Jiangsu and from 6183.8 thousand
hm2 to 7316.3 thousand hm2 in Anhui during the studied period. The regional difference
of the net carbon sequestration level in the middle reaches is relatively small, which is
attributed to the small difference of the food-sowing area.

From Figure 8, the Gini coefficient value in the upper-reaches region is between 0.171
and 0.218, which indicates the distribution characteristic of the net carbon sequestration
level changes from the “absolute average” state to the “comparative average” state, show-
ing a fluctuating upward trend. Moreover, the value of the Gini coefficient in 2007 is
the smallest, which indicates that the regional difference of the distribution of net carbon
sequestration was the smallest. In 2013, the value of Gini coefficient reached the maxi-
mum value, which signifies that the regional difference of the distribution of net carbon
sequestration was the largest.

The values of the Gini coefficient for food crops in the lower reaches are between 0.252
and 0.293, which indicates the distribution characteristics are in a “comparative average”
state. The change trend is similar with that in the middle reaches. However, the regional
difference of the net carbon sequestration is larger than that in the middle-reaches region,
which generally presents a “decline-rise-decline-rise” state. In 2006, the Gini coefficient
reached the minimum value, which indicates that the regional difference of net carbon
sequestration in 2006 was the smallest. In 2000, the Gini coefficient reached the maximum
value, so the regional difference of the distribution of net carbon sequestration in 2000 was
the largest.
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Figure 8. Evolution of intra-regional gap of net carbon sequestration of grain food crops in the YREB.

The values of Gini coefficient in the middle reaches are between 0.235 and 0.309, which
indicates the distribution of net carbon sequestration changed from the “comparative
average” state to the “relatively reasonable” state. The regional distribution difference
of the middle reaches is between the upper reaches and lower reaches, and the change
trend shows a “decline-up” state. In 2005, the Gini coefficient reached the minimum, so the
regional difference of the distribution of net carbon sequestration in 2005 was the smallest.
In addition, the Gini coefficient reached the maximum value in 2017, which indicates the
regional difference of the distribution of net carbon sequestration in 2017 was the largest.

4. Discussion

4.1. The Spatio-Temporal Patterns of Net Carbon Sequestration of Food Crops in the YREB

The net carbon sequestration of food crops in the YREB experiences two different
stages from declining to increasing over the study period. In the first stage (2000–2003), the
net carbon sequestration continued to decline; this is probably because farmers’ enthusiasm
for planting the food crops is reduced by the heavy tax burden, which directly affected the
production of rice, wheat, and maize, resulting in a decline in the net carbon sequestration of
food crops during this period. In the second stage (2004–2018), the net carbon sequestration
was on a rising trend. Since 2004, the agricultural tax has been abolished in China, which
promoted the increase of grain-sowing areas, and the total output of grain in the Yangtze
River economic belt continued to grow, resulting in the continuous increase of net carbon
sequestration of food crops.

Understanding and analyzing the heterogeneous heterogeneity characteristics of the
net carbon sequestration level in different areas’ provinces and cities contributes to estab-
lishing the corresponding emission reduction concept. The net carbon sequestration of food
crops in various provinces (cities) shows obvious regional difference from 2000 to 2018;
except for Shanghai and Guizhou, the other nine provinces (cities) show an upward trend.
The carbon sequestration of food crops in the main grain-producing areas is higher than that
in other areas, from which can be inferred that the provinces in the main grain-producing
areas pay more attention to the protection of environment.

The petrochemical agriculture that relies on the input of chemical fertilizers and
pesticides contributes to the increase of grain production in a certain period time, but it
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also brings great damage to the environment such as water resources, arable land, and
the atmosphere, as well as food quality. As such, the green transformation needs to be
implemented to increase the organic matter content of soil, improve the quality of water
resources and air, and finally ensure food safety. At the same time, technicians should
perform demonstrations and training of green conservation farming technology, such as
straw returning, green control of diseases and insect pests, soil testing formulas, scientific
fertilization, and medicine, so as to reduce carbon emissions from food production at
the source.

4.2. The Regional Differences of Net Carbon Sequestration of Food Crops in the YREB

The values of the Gini coefficient indicate that the regional difference in the lower
reaches is the largest, followed by the middle reaches and the upper reaches. The main
reason for the above differences may lie in the differences of grain-sowing areas in the upper,
middle, and lower reaches of the Yangtze River economic belt. Among all regions, the level
of economic development in the lower reaches is the highest, and with the increase of the
urbanization rate, a large amount of agricultural land has been occupied by industrial land;
thus, the area of cultivated land has gradually shrunk in some provinces, such as in Zhejiang
and Shanghai. As a result, the difference of grain-sown areas in this region is growing.
However, there are many mountains in the downstream area; thus, there is less arable
land in some provinces, such as Yunnan and Guizhou, so there is also a certain difference
in this region. The provinces in the middle reaches are mainly the main grain-producing
provinces, so the difference of grain-sown areas in this region is relatively small.

To avoid the above problems, the government should carry out the following tactics,
including the expansion of the sown area, curbing the non-agricultural conversion of arable
land, improving the multiple cropping index of the arable land, increasing the investment in
grain breeding technology, speeding up the modernization of the entire grain industry chain,
etc., so as to expand the sown area of food, increase the carbon sequestration of food crops,
and finally reduce the regional differences of net carbon sequestration of food crops in the
YREB. In addition, downstream provinces should also give some ecological compensation
to midstream provinces to reward their contributions to food carbon sequestration.

4.3. Advantages and Limitations of This Study and Future Research Directions

Compared with previous studies, the research vision of this study is further expanded.
This study develops an objective framework for evaluating the environmental benefits of
grain planting from the perspective of net carbon sequestration and analyzes the spatial
and temporal characteristics of the net carbon sequestration in different areas. It is no
longer limited to the single-perspective research of agricultural carbon emission, and it con-
ducts research from the two perspectives of agricultural carbon emission and agricultural
carbon sequestration, which can better analyze the environmental problems of agricultural
production. In this study, the concept of net carbon sequestration is used to analyze carbon
sequestration and carbon emission in the same framework.

However, there are also some limitations in this study. Firstly, there are some limita-
tions in the definition and calculation system of carbon emission, carbon sequestration, and
net carbon sequestration, which need to be further refined and improved. Secondly, due to
the limitations of the existing data, we apply the same indicators in different areas of the
YREB, where they may have different features such as economic coefficient, water content,
and carbon absorption in the upper, middle, and lower reaches. Thirdly, factors such as
population growth, the industrialization rate, and other influencing factors also have an
impact on the carbon sequestration of food production. However, the existing methods for
measuring carbon emissions and carbon sequestration of food crops mainly consider the
internal factors related to the growth of food crops and do not consider the external factors
such as population and industrialization rate. In future research, we will use econometric
research methods to analyze the impact of population, industrialization rate, and other
influencing factors on carbon emissions and carbon sequestration of food crops. In addition,
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this study does not analyze the economic benefits of net carbon sequestration of food crops,
which will be taken into consideration in future studies.

5. Conclusions

This study analyzes the dynamic change and regional differences of net carbon se-
questration of food crops from temporal and spatial perspectives for the case study area of
11 provinces (cities) of the YREB from 2000–2018 in China. The net carbon sequestration
of food crops keeps continuously increasing, while carbon emissions show a fluctuating
downward trend over the study period. Remarkable regional differences in the net carbon
sequestration of food crops exist, and most provinces (cities) show an upward trend for the
studied area. Except for Shanghai and Guizhou, the remaining nine provinces (cities) show
an upward trend, and the decline range of Guizhou is the largest. The spatial distributions
of the net carbon sequestration of food crop show obvious heterogeneity in the upper,
middle, and lower reaches of studied area. Specifically, the Gini coefficient value in the
YREB is ranked as: lower reaches > middle reaches > upper reaches. That is to say that
the most uneven place is located on the lower reaches, followed by the middle reaches,
and the least uneven place is in the upper reaches. To further facilitate the activity related
to reducing the carbon emissions of the agricultural production sector, we will explore
the economic benefits and the influencing factors of net carbon sequestration from food
production in the future.
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Abstract: The acceleration of the urbanization process brings about the expansion of urban land use,
while changes in land-use transformation affect the urban habitat quality, and land-use change brings
a threat to regional sustainable development. Against such a backdrop, the assessment of land use on
the habitat quality and the relationship between the intensity of human activities is becoming a hot
spot in terms of the current land use coordinated with habitat quality. Based on the land-use data of
Guiyang in 2000, 2005, 2010, 2015 and 2020, the spatial–temporal evolution characteristics of habitat
quality in the study area, combined with the spatial correlation between human activity intensity
and habitat quality, were hereby analyzed using the InVEST model. The impact of human activity
intensity on habitat quality was correspondingly analyzed. The results show that: (1) From 2000 to
2020, the habitat quality level in Guiyang remained stable without drastic changes, but the changes
showed hierarchical distribution and were scattered, mainly reflected in the urban expansion areas of
the urban–rural fringe and the key areas of industrial development, and the ecological environment
quality fluctuated in a small range. (2) From 2000 to 2020, the intensity of human activities in Guiyang
was mainly affected by the relatively concentrated distribution, featuring obvious and significant
changes. From 2010 to 2015, the high-impact area surrounded the Guanshan Lake New Area, and the
regional habitat quality presented a downward trend. In 2020, the high-impact area of the main urban
area and the key industrial development zone was expected to be formed, while the low-impact area
was still distributed in forest areas with complex natural conditions. (3) From 2000 to 2020, there was a
significant positive correlation between human activity intensity and habitat quality in Guiyang, and
such a spatial correlation was weak from 2000 to 2005. The period from 2015 to 2020 witnessed the
rapid development of urban construction in Guiyang, human construction activities continue to affect
the urban habitat quality. The results show that the intensity of human activities on the promoting
function of land use, and the dependencies between them should be considered at the same time,
and that explorations on the influence of human activities on land-use intensity and habitat quality
of space link are crucial to improving the efficiency of urban land use and ecological environment
protection, as well as the coordination between land use and the sustainability of urban development.

Keywords: land-use change; habitat quality; mountainous cities; human activity intensity; Guiyang City

1. Introduction

With the acceleration of the urban industrialization and urbanization process, as
well as the constant enhancement of the scale and intensity of human transformation of
natural resources, human economic activities have been continuously exerting a certain
impact on the function, structure and space of the regional ecological environment. At
the same time, due to the unique natural attributes and complexity of the mountain
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structure, the blindness of urban development and construction has led to the deterioration
of the ecological environment and the frequent occurrence of secondary disasters, such as
geological disasters in mountain cities, which seriously restricts the healthy development
of cities and the quality of habitats [1,2]. Based on such a background, assessment of the
correlation between the intensity of human activities and the spatial–temporal changes in
habitat quality has become a hot issue in the research field in the case of evaluating the
health and habitat quality level in mountain cities [3,4].

The types of geological structure in mountainous cities affect the layout of urban
construction, while urban expansion and change affect the change of the types of regional
land resource structure, thereby leading to the transformation of urban cultivated land,
grassland, woodland and construction land, and bringing a certain degree of negative
impact on the fragmentation and sustainability of the ecological landscape pattern [5].
Urban expansion and change increase the demand for land resources. Land is the basis
of urban development, and affects the change of urban ecological environment and land-
use map spots, which also results in the change of the land-use spatial pattern. In this
case, analyzing the impact of spatio-temporal changes in land use on habitat quality and
exploring the correlation characteristics between changes in human activity intensity and
habitat quality are endowed with an important reference value for the ecological protection
in urban areas and the healthy development in mountainous cities [6]. Based on the
previous study of the impact of land use change on habitat quality, scholars have carried
out several assessment studies from different perspectives, scales, and regions combined
with diversified methods. In the early studies, habitat quality changes of wildlife habitats
were evaluated mainly through biodiversity and habitat changes [7]. This method is time-
consuming and laborious, affected by the carrying capacity of the natural environment,
and subject to a strong subjectivity and limited regional conditions, making it difficult to
carry out investigations on different scales. Then, the InVEST model was generated to
better simulate the changes in land ecological service quality under different land cover
backgrounds. The qualitative and quantitative methods were used to evaluate the changes
in habitat quality, thereby realizing the spatial and visual expression of habitat quality
function assessment, and vividly describing the spatial–temporal variation characteristics
of habitat quality. It provides a reference basis for decision makers to evaluate the benefit
and impact of human activity intensity. The advantages of fewer data requirements and
high simulation accuracy of the InVEST model have made it widely used in the field
of habitat quality assessment [8]. At present, both domestic and foreign scholars have
used the assessment model for the ecological service value, NPP and NDVI habitat index
evaluation, geographic detector, human activity intensity and geographic regression model
to quantitatively evaluate the spatial change and impact of habitat quality [9–12]. However,
there are relatively few studies on assessing habitat quality changes in mountainous cities
using the InVEST model, and few studies are conducted on the correlation with human
activity intensity. To this end, evaluating the impact of land use on habitat quality using
quantitative methods has become one of the hot issues in the qualitative assessment of
habitat quality change [13], and the application of land-use change data to the analysis
on regional habitat quality changes is of great practical significance for the qualitative
assessment of urban habitat quality and sustainability.

Guiyang is an innovative city in southwest China, also a typical karst landform region
city, and most of the cities are mountainous landforms. In this case, the influencing factors
of human activity intensity on habitat quality were hereby discussed, and the correlation
between them was analyzed by taking Guiyang city as an example. The results possess
certain representativeness and typicality for the development and health quality assessment
of mountain cities in southwest China. Based on the land-use change data of 2000, 2005,
2010, 2015 and 2020, the interaction between habitat quality evolution and regional human
activity intensity in Guiyang was hereby explored, which is endowed with important
research significance for the development of ecological environment quality in regional
mountain cities. Research on the land-use change of time and space on the effect of land
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environment quality was conducted, and the results show a correlation between the two
assumptions. Quantitative evaluation of the habitat quality change of Guiyang City from
2000 to 2020 was conducted by virtue of the InVEST model and through many index
map overlay analysis human activity intensity index (HAI). Finally, the bivariate spatial
autocorrelation and geographically weighted regression model methods were used to
explore the impact of human activity intensity on habitat quality and its correlation, so as to
provide a reference for the study of urban construction and ecological environment quality
in Guiyang, as well as the ecological environment and sustainability of mountainous cities
in southwest China.

2. Data Material Sources and Research Methods

2.1. Overview of the Study Area

Guiyang City is located in the middle part of the original hills of the central Guizhou
Mountains, which belongs to the watershed zone of the Yangtze River and the Pearl River.
The terrain is high in the southwest and low in the northeast. The highest elevation
of the province is 2885 m and the lowest is 152 m. The geomorphology here mainly
consists of mountainous and hilly areas (Figure 1), among which, the mountain area covers
about 4217 km2, accounting for 52.43%, while the hill area is about 2840 km2, taking up
35.31%, and other types of land account for about 12.26%. By the end of 2020, the total
population was 5.9898 million, the primary industry value was USD 0.0025 billion, that
of the secondary industry was USD 0.0214 billion, that of the tertiary industry was USD
0.0355 billion, the per capita GDP was USD 9940.76, and the total financial revenue was
USD 12,136.9624 billion. The total land area of the city is 8043 km2 in the year 2022, and
the land type area is taken as an example. Among them, the cultivated land area covers an
area of 2112.49 km2, accounting for 26.26%; the forestland area is 3906.57 km2, accounting
for 48.57%; the grassland area is 1342.58 km2, accounting for 16.69%; the water body area is
135.19 km2, taking up 1.68%; the construction land area covers 542.36 km2, accounting for
6.74%; and the unutilized land is 3.84 km2, accounting for 0.047%.

Figure 1. Geographic location and elevation of Guiyang City.
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2.2. Data Sources

In this paper, the land-use change data were downloaded from the Resources and
Environment Data Sharing Center of Chinese Academy of Sciences (http://www.resdc.cn),
(accessed on 1 January 2020). After cutting and splicing, the land-use data of Guiyang
City were intercepted. The spatial resolution of the data is the 30 m × 30 m data type, and
the data accuracy can reach more than 90% after testing. The data included the economic
development data from the statistical yearbook published by the People’s Government
of Guiyang (http://www.guiyang.gov.cn), (accessed on 1 January 2020), the data in 2020
economic development in 2021 Guiyang City from statistical yearbook data, and DEM
elevation data of the spatial resolution of 30 m. The base map derived from the geo-
graphic information public service platform (https://guizhou.tianditu.gov.cn), (accessed
on 1 January 2020) in the administrative division scope of data in Guizhou, Guiyang City
on the basis of Guiyang City in 2021 (not including Guian new district).

2.3. Research Framework

The research is based on the land use change data for 2000, 2005, 2010, 2015 and
2020. Firstly, the research data and DEM data were collected for preprocessing. After
vectorization, accuracy testing and verification procedures were carried out. Secondly,
for land data and statistical yearbook data, the characteristics of land spatial change were
described using the transfer matrix, atlas analysis, InVEST model and other methods.
Thirdly, the human activity intensity index and bivariate spatial autocorrelation were
adopted to analyze the closeness and influence of their spatial connection. Finally, the
spatial characteristics based on the characteristics of land-use change and habitat quality
change in these five periods were summarized, and the response trend of habitat quality
change was analyzed. The research framework was shown in Figure 2.

Figure 2. Research framework.

3. Research Methods

3.1. Habitat Quality

Land change is the most direct factor affecting habitat quality. Through the habitat
quality module in the InVEST model, it evaluates the habitat quality of the region. This
module combines the regional landscape type information, and evaluates the sensitive
sources of threat factors using threat factors and land-use types on the basis of land-use
change data, and is generally used to represent the characteristics of regional habitat quality
change [14]. The calculation formula is as follows:

Qxj=Hj

(
1 −

Dz
xj

Dz
xj + KZ

)
(1)
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where Qxj represents the habitat quality index of raster x in land type j; Hj, the habitat
suitability of type j land types; Dxj, the threat degree of raster x in the land type j; K is half
satiety constant; and z is constant 2.5. The formula of the threat degree is:

Dxj =
R

∑
r=1

Yr

∑
y=1

(
wr

∑R
r=1 wr

)
ryirxyβxSjr (2)

where R denotes the threat factor; y is the total number of r threat grids; Yr is the number of
a set of threat grids in r threat factors; Wr is the weight of threat factor; ry is the threat factor
value of grid y; irxy is the threat level of grid x of threat factor ry of threat grid y; βx is the
legal protection level of grid cell x; Sjr, the sensitivity degree of land type j to threat factor r;
Dxy is the straight-line distance between grid x and y; and Drmax is the maximum distance
of threat factor r. The linear formula of irxy can be expressed as:

irxy = 1 −
(

dxy

drmax

)
( Linear distance decay function) (3)

irxy = exp
(
−
(

2.99
d rmax

)
dxy

)
( Exponential distance decay function) (4)

According to the existing results of urban habitat quality research and the actual
situation of Guiyang, the reference value range given by the model was determined.
Zhou T, He J and Liu J [15–17] selected the cultivated land, the construction land and the
unutilized land as threat factors in relevant studies, and consulted experts in related fields.
The sources and weights of habitat quality threats (Table 1) and the relative sensitivity of
habitat suitability and threat sources (Table 2) in Guiyang were thus formulated.

Table 1. Maximum influenced distance and weight of threat factors.

Threat Factor Maximum Distance (km) Weight Decay Type

Cultivated land 4 0.6 Linear
Construction land 8 0.4 Exponential

Unutilized land 6 0.5 Linear

Table 2. Habitat suitability of land-use types and relative sensitivity to various threat factors.

Land-Use Type
Habitat

Suitability

Threat Factor

Cultivated
Land

Construction
Land

Unutilized
Land

Cultivated land 0.3 0 0.5 0.3
Forestland 1.0 0.8 1 0.4
Grassland 0.9 0.8 0.6 0.3

Water body 0.7 0.6 0.7 0.3
Construction land 0.0 0.6 0.9 0.3

Unutilized land 0.5 0 0 0

3.2. Human Activity Intensity

Human activity intensity is an important driving factor affecting regional habitat qual-
ity change. Quantitative assessment of human activity intensity is the basis for analyzing
ecosystem stability. The index model for human activity intensity was hereby used to
quantitatively describe the impact of regional ecosystem change, and then to evaluate
the relationship between human activities and land-use change. The index model for
human activity intensity, which can describe the impact of human activity intensity on the
ecosystem, was selected for evaluation [18], and its calculation formula is as follows:
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HAI = ∑n
i=1

AiPi

TA
(5)

where HAI stands for human activity intensity index; n is the number of land types; Ai
is the area of Class i land type; Pi is the intensity coefficient of human activities of type i
ecological value; and TA is the total area.

According to the existing research results [19], the coefficient table for human activity
intensity (Table 3) of different land types was determined for calculation, and the value of
the human activity intensity index in the unutilized land was taken as the reference [20].
According to the calculation results, the impact types were divided into five grades, i.e., low
HAI ≤ 0.2, low 0.2 < HAI ≤ 0.4, medium 0.4 < HAI ≤ 0.6, high 0.6 < HAI ≤ 0.8 and high
0.8 < HAI [20].

Table 3. Human activity intensity coefficient of different land-use types.

Parameter Grassland Forestland
Cultivated

Land
Unutilized

Land
Reservoir
and Pond

Construction
Land

Lohani 0.09 0.12 0.61 0.05 0.33 0.96
Leopold 0.08 0.14 0.59 0.07 0.29 0.94
Delphi 0.09 0.13 0.64 0.08 0.35 0.96

Average
value 0.09 0.14 0.61 0.07 0.32 0.95

3.3. Bivariate Autocorrelation Analysis

The spatial distribution characteristics and aggregation degree of factor attributes
were explored, and spatial correlation and tests were conducted through global and local
spatial autocorrelation. The global Moran’s I index verifies the spatial agglomeration trend
of relevant attributes in the region [21], and the calculation formula is as follows:

I = n
n

∑
i=1

n

∑
j=1

Wij
(
Xi − X

)(
Xj − X

)
/

n

∑
i=1

n

∑
j=1

Wij

n

∑
i=1

(
Xi − X

)2 (6)

where Xi and Xj are the observed values of the elements in the i and j regions; and Wij, the
weight matrix of the i and j spatial positions. When i and j are adjacent, Wij = 1; otherwise,
Wij = 0. The global Moran’s index I is between (−1, 1), and Moran’s index value is positive,
suggesting that the spatial autocorrelation is spatially clustered; otherwise, the spatial
distribution tends to be scattered when the elements are significantly different; and the
random distributions are irrelevant when Moran’s index is 0.

The bivariate spatial autocorrelation method was used by Anselin et al., to analyze
the spatial relationship between human activities and habitat quality [22]. The formula of
Moran’s I index can be expressed as:

Ii
kl = zi

k

n

∑
j=1

wij zj
l (7)

where Wij stands for i and j space position weight matrix, respectively; Zi
k =

xi
k−xk

k

Zi
l =

Xi
l−xl
l , xk, xl , is the average of the properties of K and L; and xi

k, Xi
l are the values of i

attribute k and L, respectively;
According to the calculation of Local Moran’s I index, the regions of the birth environ-

ment quality and the human activity type were divided into four types of human activity
and habitat quality types: high high, low high, low low and high low.
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3.4. Analysis of Geographically Weighted Regression Model

The geographically weighted regression model is a spatial analysis technique for
parameter estimation, which is based on the establishment of a traditional regression model
(OLS), and can simulate the spatial non-stationarity of different geographic spaces and
verify the influence of different geospatial variables on regions [23]. The calculation formula
can be expressed as:

yi = β0(ui + vi) + ∑k βK(ui + vi) x ik + εi (8)

where yi is the influence value of variable regression; (ui, vi) is the geographic coordinates of
i samples; xik is the value of the k independent variable in the i sample unit; k is the number
of independent variables; i is the number of sample units; εi is a random interference term;
and βk(ui, vi), the unit value of continuous function βk(u, v) in sample i.

4. Results and Analysis

4.1. Spatial Evolution Characteristics of Habitat Quality

Through the habitat quality module of the InVEST model, the habitat quality level
area and change ratio table of Guiyang (Table 4) and the habitat quality spatial change
distribution map of Guiyang from 2000 to 2020 (Figure 3) were obtained. Referring to
previous research results [16], the results of habitat quality assessment in Guiyang were
divided into five categories, i.e., low (0–0.2), relatively low (0.2–0.4), moderate (0.4–0.6),
relatively high (0.6–0.8) and high (0.8–1), according to the Equal Interval method in ArcMap
using ArcGIS10.3 software.

Table 4. Area and change proportion of habitat quality grade in Guiyang from 2000 to 2020.

Habitat
Quality Grade

2000 Year 2005 Year 2010 Year 2015 Year 2020 Year

Area/km2 Proportion% Area/km2 Proportion% Area/km2 Proportion% Area/km2 Proportion% Area/km2 Proportion%

Low 190.90 2.37 225.86 2.81 251.68 3.13 290.95 3.66 559.26 6.95
Relatively low 2565.49 31.90 2739.62 34.06 2578.42 32.06 2529.74 31.81 2487.48 30.93

Moderate 831.04 10.33 929.39 11.56 813.57 10.12 816.74 10.27 831.13 10.33
Relatively high 1406.02 17.48 1396.46 17.36 1368.57 17.02 1371.45 17.25 1456.94 18.11

High 3049.34 37.91 2751.47 34.21 3030.56 37.68 2943.22 37.01 2707.99 33.67

Figure 3. Spatial variation of habitat quality in Guiyang from 2000 to 2020.

From the time scale perspective, due to the acceleration of urbanization construction,
habitat quality changed around the urban core area, and small range fluctuation was
observed from 2000 to 2010. From 2010 to 2020, the demand for the land to be used for
industrialization and urban construction in Guiyang increased continuously, resulting in
a small range of fluctuations in the land map spots in non-central urban areas. Areas
with more obvious changes included Guanshanhu District, Baiyun District, Huaxi District,
Zazuo Town, Zhandjie Town and other areas with significantly reduced habitat quality.

From the spatial scale perspective, the habitat quality grade in Guiyang mainly be-
longed to the low and high categories, which was relatively concentrated on the whole.
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The variation characteristics of the habitat quality area from 2000 to 2020 were 2565.49 km2

in 2000, accounting for 31.90%, and 2487.48 km2 in 2020, taking up 30.93%. The area with
low habitat quality was 0.97% in space, and the decline rate was rather limited. In 2000, the
area with high habitat quality in Guiyang was 3049.34 km2, 37.91%, which was changed to
2707.99 km2 in 2020, accounting for 33.67%. The area with high habitat quality decreased
to 341.35 km2, accounting for 4.24%. Mainly affected by urbanization and industrialization,
some forest resources and ecological land were destroyed, thereby resulting in a gradual
decline in habitat quality.

In general, the habitat quality in Guiyang was good and relatively stable from 2000 to
2020, and there were few areas with large fluctuations. However, small area fluctuations
were found in the core areas of economic development and urban expansion areas such as
Yanshanhong Town, Zazuo Town and Zhanjie Town in the suburban area of the study area.

4.2. Spatio-Temporal Characteristics of Human Activity Intensity

ArcGIS10.3 software was used to evaluate the driving factors of the impact of regional
habitat quality, and analyze the ecosystem stability by the change of human activity in-
tensity, and the human activity intensity index was calculated by the 1 km × 1 km unit.
The human activity intensity index of Guiyang in the five periods of 2000, 2005, 2010,
2015 and 2020 was obtained (Figure 4). The intensity of human activities in Guiyang from
2000 to 2020 in the study area was dominated by a relatively concentrated distribution of
impacts, with obvious changes and significant differences found in the spatial impacts. HAI
2000 high concentration distribution in Yunyan District and the main Nanming portions
characterized and Baiyun District, the main reason is that the main population central-
ization degree is higher, and is related to the height of the middle part of the industrial
concentration. Low activity areas are mainly concentrated in Kaiyang, the map of Xifeng
County, a remote area of the region, and the forest coverage rate is higher. In 2005, the in-
fluence area of HAI increased significantly, and the high activity influence mainly extended
outward around the central city, forming the structure layout of an echelon encircle with
the high influence part. From 2010 to 2015, the high-impact human activity space moved to
Guanshan Lake District, and some exurb counties such as Chengguan Town in Kaiyang
County were also subject to a certain impact. In 2020, the human activity intensity space in
Guiyang formed a high-impact area represented by Yunyan District, Nanming District and
Huaxi District. The human activity intensity in this area had a great impact on regional
habitat quality, showing a positive correlation between human activity intensity and habitat
quality. At the same time, the counties in Kaiyang, Xiuwen and Xifeng counties and the
towns with better economic development showed a high spatial pattern influenced by the
intensity of human activities. In addition, the areas with low impact of human activities in
2020 were distributed in areas with high forest coverage and complex topography, which
had less impact of human activities and relatively high habitat quality.

Figure 4. Spatial distribution of human activity intensity in Guiyang from 2000 to 2020.
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4.3. Bivariate Spatial Correlation of Human Activity Intensity

The spatial autocorrelation index between human activity intensity and habitat quality
in Guiyang from 2000 to 2020 was analyzed using Geoda 095i software, and the scatter
plot of Moran’s I from 2000 to 2020 was obtained (Figure 5). As shown in the figure, the
distribution of Moran’s I is relatively uniform in all quadrants, with more distributed in
the first quadrant, indicating the obvious spatial correlation characteristics of the intensity
of human activities and habitat quality space. The scatter analysis of Moran’s I trend
shows that the intensity of human activities and habitat quality space in the study area are
correlated, and that the correlation is relatively significant. The correlation between the
two periods from 2000 to 2005 was weak, presenting a gradually weakening trend. The
first quadrant of 2010 showed a relatively obvious positive correlation, and the change
from 2015 to 2020 was relatively significant, indicating a negative correlation. The spatial
correlation between the intensity of human activities and habitat quality was weak from
2000 to 2005. Considering the constraints of economic development and the topographic
conditions, less amount of land was used for ecological land transfer and construction in
Guiyang during this period, and the impact of human economic activities on urban habitat
quality was weak as well. In 2010, due to the implementation of the policy of returning
farmland to forest or grassland, the regional habitat quality was improved to a certain
extent. However, the habitat quality in Guiyang decreased significantly from 2015 to 2020,
which was attributed to the upsurge of urban construction in Guiyang, and the intensity of
human activities affected the regional habitat quality level. The transformation of a large
number of ecological land and water body areas into construction land gave rise to the
relatively obvious and frequent spatial land-use map changes. The spatial differentiation
of the regions with correlation in Moran’s scatter plot was analyzed using the LISA cluster
analyzing method, and the LISA cluster map was drawn by the Z test (P = 0.05) (Figure 6).
The relationship between human activity intensity and habitat quality was significant, but
the high-high and the low-low types showed a clustering trend. From 2000 to 2020, the
proportion of high-high agglomeration distribution areas presented a trend of gradual
decrease, and the decrease was not obvious. The significance level of LISA cluster analysis
shows that most areas of Guiyang are not significant, while the high-high type showed
a high significance level that was staggered in the 0.01 and the 0.05 region. From 2000 to
2020, the distribution with a significance level of 0.01 showed a dynamic change. In 2010,
the area of 0.01 distribution decreased, representing an increase in the spatial difference,
while the area of 0.05 distribution increased, indicating that the spatial difference was being
gradually narrowed.

Figure 5. Moran’s scatter plot of changes in human activity intensity and habitat quality in Guiyang
from 2000 to 2020.
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Figure 6. LISA clustering analysis and significance level of human activity intensity and habitat
quality changes in Guiyang from 2000 to 2020.

4.4. Spatial Variation of the Impact of Human Activity Intensity on Habitat Quality

The least square model and geographically weighted regression model were ana-
lyzed using ArcGis10.3 software, and the AICc values were −5063.480 and −8781.726,
respectively. When the AICc value of the least square method and the geographically
weighted regression model is greater than 3, the results of the geographically weighted
regression simulation are more reasonable [23]. In this study, the difference between the
two is 3718.246, indicating a better result of geographically weighted regression than that of
the least square model. The R2 of the geographically weighted regression model increased
to 0.410, further indicating the favorability and suitability of the simulation results of the
geographically weighted regression for this study (Figure 7).

Figure 7. Spatial distribution map of regression coefficients of human footprint index in Guiyang
from 2000 to 2020.

From the time scale perspective, the human activity intensity index exercised a signifi-
cant impact on habitat quality in Guiyang from 2000 to 2020, with the negatively affected
area covering an area of 21.52% in 2000, 16.95% in 2015 and 18.32% in 2020, presenting
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dynamic change characteristics and an unstable trend. From 2000 to 2020, there was a
positive correlation between the surrounding area of Guiyang and the area with a high
forest coverage rate. The habitat quality in this area, such as Huaxi District and Xiuwen
County, maintained a favorable trend due to the regional land nature. The areas with the
negative impact of human activity intensity and habitat quality were mainly distributed in
the main urban areas and key areas of economic development, where the regional habitat
quality was declining due to urban construction and other reasons.

From the spatial scale perspective, the intensity of human activities on the spatial
difference of habitat had a significant difference in the quality and performance as the
impact significant of the Guiyang City core area, while the impact of the city’s surrounding
areas is weak. Most of the core areas of the main city are negative value areas, while the
marginal areas and forest areas are positive value areas. Based on this phenomenon, shows
that the impact of human activity intensity on habitat quality mainly was negative. It is
mainly caused by the restriction of territorial space planning and the influence of regional
natural conditions. Especially in recent years, the development and construction of the new
city in Guanshanhu District have been greatly accelerated, resulting in the intensification of
human activities, which exerts a significant impact on the local regional habitat quality. In
this case, attention should be paid to the harmonious relationship between habitat quality
for the local land use and development, and the promotion of the sustainability of regional
habitat quality development.

5. Discussion

Previous studies on the quality of human settlements in Guiyang are mainly based
on the evaluation of a single habitat quality unit in the city, and the lack of comprehensive
consideration of the spatio-temporal coupling relationship between habitat quality changes
and human activity intensity. Based on the land-use change data of Guiyang from 2000 to
2020, the spatial and temporal characteristics of habitat quality changes in Guiyang were
hereby analyzed using the habitat quality module of InVEST model. At the same time,
the human activity intensity index, bivariate autocorrelation method and geographically
weighted regression model were used to analyze the impact and spatial correlation char-
acteristics of habitat quality, and to evaluate the spatial and temporal changes of habitat
quality evolution. The results are endowed with a reference value and practical significance
for the analysis of factors affecting the development, construction and habitat quality
change of similar cities in the study area.

Habitat quality is an index reflecting regional ecological environment change, while
land use change is an important factor affecting habitat quality change. Urban land use
and development lead to the continuous expansion of the scale and scope of land use, but
also have a certain impact on the quality of the ecological environment. Land-use transfer
and change, with cultivated land, grassland and forestland converted into construction
land as the main type, jointly form the habitat quality change pattern of “urban and rural
areas and key industrial development areas”, which also confirms that urban development
and industrial construction affect habitat quality change [14,24–26].

The impact of human activities intensity on habitat quality presents a spatial correla-
tion, indicating that the intensity of human activities in the study area affects the habitat
quality change, and the impact of population aggregation, economic development and
policies make the changes mainly concentrated on the central urban area and the densely
populated areas. From 2015 to 2020, the quality of urban habitat in Guiyang showed a
continuously declining trend, which is consistent with the rapid urban development period
of Guiyang [27].

Guiyang City is a typical karst mountain city in southwestern China, and is provided
with unique ecological resource advantages in the process of urban construction and
development, but is also exposed to the problem of inefficient land utilization, affected
by the natural factors in the process of relatively concentrated land use, and driven by
the economic driver and inappropriate land development that present the declining trend
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in urban habitat quality, which also brings certain pressure to the urban planning and
management, and future land use should take into consideration the market economy and
administrative intervention. The development models of ecological quality are favorable,
regulating the functions of urban land examination and approval, the intensive economical
utilization of land, as well as the city and the habitat quality of balanced and sustainable
economic development.

However, limited by the sources and methods of data, the study is still subject to
problems concerning the selection of variables, the accuracy of land-use data, and the
selection of sensitive sources, threat factors and weights of the InVEST model. Although
it refers to the existing literature, the selection of data is still subjective to some extent. In
future research, more qualitative and quantitative evaluation methods should be integrated
into the research for higher-level data accuracy, for the better selection of index factors, and
also for the improvement of the research methods, so as to provide more data and method
support for the research. It is expected that the research results can be of practical signifi-
cance and guidance for the coordination of urban economic development and ecological
environment.

6. Conclusions

Land change is the most direct factor affecting habitat quality. This paper innovatively
proposes a comprehensive regional factor index for evaluating urban habitat quality assess-
ment and land use. This index comprehensively considers the correlation between habitat
quality change and human activity intensity, and reveals the spatio-temporal characteristics
of land use, human activity intensity and urban spatial pattern evolution. We evaluated the
impact of land use change on habitat quality and the coordination between them. Based on
the data on land use change in 2000, 2010 and 2020, the spatial and temporal characteristics
of urban development and the interaction between land use were analyzed, and urban
development was identified as a better level for the promotion of habitat quality, thereby
providing references and suggestions for the improvement of relevant problems. Based on
the above ideas and methods, the conclusions can be drawn as follows:

(1) From 2000 to 2020, the habitat quality level in Guiyang remained stable without
drastic changes, but the changes showed a hierarchical and scattered distribution,
mainly reflected in the urban expansion areas of the urban–rural fringe and the key
areas of industrial development, and the ecological environment quality fluctuated in
a small range.

(2) From 2000 to 2020, the intensity of human activities in Guiyang was mainly affected by
the relatively concentrated distribution, presenting obvious and significant changes.
From 2010 to 2015, the high-impact area surrounded the Guanshan Lake New Area,
and the regional habitat quality showed a downward trend. In 2020, the high-impact
area of the main urban area and key industrial development zone was formed, while
the low-impact area was still distributed in forest areas with complex natural condi-
tions, which was less affected by the intensity of human activities.

(3) From 2000 to 2020, there was a significantly negative correlation between human
activity intensity and habitat quality in Guiyang. The spatial correlation between
the intensity of human activities and habitat quality was weak from 2000 to 2005.
Considering the constraints of economic development and the topographic conditions,
less amount of land was used for ecological land transfer and construction in Guiyang
during this period, and the impact of human economic activities on urban habitat
quality was weak as well. The period from 2015 to 2020 is a period featuring the rapid
development of urban construction in Guiyang, when human construction activities
continued to affect the urban habitat quality, and the land use map spots changed
frequently and obviously. The land use change is the main reason for the habitat
quality change.

(4) Limitations of the Study. Some limitations exist in our study. For example, land-use
change is an uncertain and dynamic process. Due to the heavy workload of data
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processing and the difficulty of data collection, the data used in this study covers the
period from 2000 to 2020. In future research, data from more stages can be obtained for
comparison, so as to explore the spatio-temporal evolution law of human settlement’s
environment quality and its influencing factors from more micro levels. The study
can be enriched by obtaining air pollution volatility indices and other natural factors
in certain sectors of the study area. This will be the focus of our future research.
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Abstract: The main function zone (MFZ) is the major strategy of China’s economic development and
ecological environment protection. Clarifying the logical relationship between “MFZ strategy” and
“territorial spatial layout” is vital to construct regional economic layout and territorial spatial supporting
system of high-quality development. However, few studies have revealed the evolution process and
formation mechanism of the production-living-ecological space (PLES) structure of China’s MFZ over
a long period of time. To bridge the gap, based on the land use dataset in China from 1980 to 2020,
this study analyzed the evolution patterns of PLES in China’s MFZs using multiple methods and
measured the formation mechanism of PLES in different types of MFZs with the GeoDetector
model. Results showed that the spatial structure of China’s national territory has evolved drastically
in the past 40 years, showing significant horizontal regional differentiation and vertical gradient
differentiation. Ecological space has been continuously decreasing, while production space and living
space have been continuously increasing, and the evolution of PLES varied significantly in different
MFZs. During the study period, the gravity center of PLES in China all moved westward. The spatial
distribution pattern of production space and living space was from northeast to southwest, and the
ecological space was from east to west. The evolution of China’s territorial spatial structure was
subject to the combined effects of natural and socio-economic factors, exhibiting significant differences
in different MFZs. Land use intensity had the most prominent influence on the formation of PLES,
followed by elevation. The influences of different factors on PLES structure were strengthened mainly
through two types of nonlinear enhancement and dual-factor enhancement. This study can provide
scientific support for the optimal management and high-quality development of territorial space
in China.

Keywords: main function zone; territorial space; production-living-ecological space; influencing
factors; formation mechanism; China

1. Introduction

The past 40 years has witnessed remarkable achievements in China’s socio-economic
development and has also brought about drastic changes in territorial spatial pattern [1,2].
The long-standing lack of spatial layout planning in China has led to disordered territorial
spatial development, tightening resource constraints, and imbalanced regional develop-
ment issues in the process of rapid urbanization in China [3–5]. In 2021, the Outline of the
People’s Republic of China 14th Five-Year Plan for National Economic and Social Development
and Long-Range Objectives for 2035 put forward the further implementation of regional
major strategy, regional coordinated development strategy, main function zone (MFZ)
strategy to improve the system of regional harmonious development mechanism, and
achieve high-quality development of the regional economic layout and the supporting
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system for the territorial spatial development [6]. How to build high-quality development
of regional economic layout and territorial spatial support system has become the cur-
rent focus of attention [5,7]. The planning of MFZ is a major innovation of coordinated
regional development in China. It is an innovative spatial control method proposed to
solve the problems of disordered territorial spatial development and imbalanced regional
development under China’s rapid economic growth [8,9]. The MFZ was first proposed in
China’s 11th Five-Year Plan [8]. Since then, MFZ has evolved from planning to regional
strategy to national basic system and has currently become the overall plan of China’s “one
blueprint to the end” [9,10]. According to the National Plan for Main Function Zones issued
by the State Council and the Plan for China’s Main function Zoning (V1.0), the MFZs are
divided into optimized development zone, key development zone, restricted development
zone, and prohibited development zone according to their development modes [11,12].
The restricted development zones are divided into main agricultural production zone
and key eco-function zone. As prohibited development zone is a kind of functional zone
superimposed on the other three functional zones, the area of which is relatively small
compared with the other three functional zones, it is not considered in this study [13].

Pieces of previous research have been conducted on the MFZ, mainly focusing on the
conceptual theory [10,14–16], zoning [17], structural analysis [15], monitoring and evalua-
tion [5,18], simulation [19–21], coordinated development [5,7,22], pattern optimization [23–26],
influence mechanism [5,27], and supporting policies [28]. As the strategic background of
national planning, the MFZ is the prospect of the overall pattern of China’s territorial spatial
protection and development in the future [11,14], which can guide the quantity distribution
and spatial layout of production-living-ecological space (PLES) through territorial spatial
planning, three-zones and three-lines management and control [11]. However, previous
literature on the evolution of the spatial structure of the MFZ mainly analyzed its struc-
tural evolution based on socio-economic development (e.g., per capita GDP, population,
urbanization) [29,30], ecological function [31], and construction land [13,32]. Few studies
have revealed the evolution process and formation mechanism of the PLES structure of
China’s MFZ over a long period of time. Thus, a systematical review of the evolution of
China’s PLES structure over a long period of time is an important basis for exploring the
optimization strategy of the pattern of MFZ and improving the development strategy and
spatial governance system of China’s territorial space [33].

PLES is the carrier and path of territorial spatial optimization, which can not only
reflect the development and utilization orientation of national strategy at the level of
territorial space but also mirror the public’s real demands for PLES [16]. Land is the carrier
of ecological protection and high-quality development, and the coordinated development
of PLES will promote such protection and development [5]. The geographical space
classification system of PLES is a comprehensive land spatial zoning method and the
related research is mainly focused on China [34]. In China, the classification of PLES is
based on the theory of multi-functionality of land use in Europe [35]. Thus, land use
change is a direct reflection of PLES change. Previous studies on PLES mainly focused on
PLES theory [16], classification [36], pattern evolution [17,37,38], optimization coordination,
and conflict regulation [39,40], whereas few studies explored the structural evolution
characteristics of PLES based on MFZ. PLES inherits the strategic positioning in territorial
spatial planning under the MFZ strategy and is reflected in the quantity and spatial layout
of PLES [41]. MFZs differ significantly in economic development, development intensity,
resource and environmental carrying capacity, development potential, and development
direction. Therefore, it is particularly necessary to understand the driving mechanism of
the MFZ structure of different types of MFZs, which will help to promote the formation of a
spatial development pattern with effective main function constraints and orderly territorial
space development. Previous studies have explored the driving mechanism of natural
factors and socio-economic conditions on territorial spatial differentiation in river basins
and mountainous areas [4,41], but research on the process of PLES change and regional
differentiation mechanism of national MFZ is still insufficient.
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China is a vast country with significant regional differences in natural environment,
resource endowment, stage, and characteristics of socio-economic development. It is vital
to explore the evolution process of PLES structure and regional differentiation mechanism
of China’s MFZ over a long period of time for the construction of high-quality regional
economic layout and territorial spatial support system [42]. Therefore, based on the land
use data in China in 1980, 1990, 2000, 2010, and 2020, this study introduced land spatial
transfer matrix, landscape pattern metrics, and standard deviation ellipse to measure the
evolution characteristics of PLES structure of China’s MFZ. Meanwhile, with the help of
GeoDetector model, the formation mechanism of the regional differentiation of PLES in four
types of MFZs is explored. Specifically, the study aims to (1) Identify the spatio-temporal
evolution patterns of PLES in China from the perspective of MFZ. (2) Explore the formation
mechanism of PLES in China. (3) Provide theoretical reference and decision-making basis
for the development of national space and the optimization of MFZ.

2. Data Sources and Methods

2.1. Data Sources

The data of 1 × 1 km land use data in China in 1980, 1990, 2000, 2010, and 2020 were
obtained from Resources and Environmental Science and Data Center of Chinese Academy
of Sciences (RESDC) (http://www.resdc.cn/, accessed on 12 July 2022). Based on Landsat
TM/ETM and Landsat 8 remote sensing images, this dataset was generated by Liu et al.
through manual visual interpretation with 5-year interval [43]. Land use types include
6 first-level types and 25 second-level types. A distance of 1 km resolution DEM, annual
precipitation, and annual mean temperature data were also obtained from RESDC. The
2000, 2010, and 2020 collections of China’s population density data are supplied by the
WorldPop website (https://www.worldpop.org/, accessed on 12 July 2022), with a resolu-
tion of 100 × 100 m. The data of MFZ used in this study were derived from the National
Planning for MFZ issued by The State Council and the Plan for China’s Main Function Zoning
(V1.0) [11]. To fully reveal the evolution process and formation mechanism of PLES in
different MFZs, this study combined optimized development zone, key development zone,
major agricultural production zone, and key eco-function zone (Figure 1).

Figure 1. Spatial distribution of MFZ and elevation in China.

2.2. Classification System of Production-Living-Ecological Space

Building a scientific and reasonable classification system of PLES is the premise and basis
for studying the structural evolution of PLES [44]. Territorial spatial pattern is a comprehensive
reflection of the interaction and coupling between natural ecological process and humanistic
social system [45], and territorial space is a multi-functional complex [18,34,46,47]. Scholars
have conducted a large number of studies on the classification of PLES, mainly based on the
dominant functions of different land use types [5,44]. Based on previous studies, this study
took the multi-function of territorial space as the entry point, combined with the land use
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classification system of Chinese Academy of Sciences and Current Land Use Classification
(GB/T21010-2007), classified the PLES in China, and constructed the classification system
of PLES in China for specific reference [5,48–50] (Table 1).

Table 1. Land use types based on dominant function.

Land Use Classification Based on Dominant Function and
Production-Living-Ecological Land Types

National Land Use Classification System

First-Level Type Second-Level Type

Production space Agricultural production space Paddy field, dry land
Industrial and mining production space Mining and transportation land

Ecological space

Forestland ecological space Forestland, shrub area, wood land, other forest land

Grassland ecological space High coverage grassland, medium coverage grassland,
low coverage grassland

Water ecological space

River and canals
Lakes

Reservoir, pit, and ponds
bottom land

Other ecological space Swampland, bare soil
Bare rock

Living space Urban living space Urban land
Rural living space Rural residential land

2.3. Methods
2.3.1. National Spatial Transfer Matrix

The national spatial transfer matrix takes the land use transfer area as the matrix,
reflecting the structure and current situation of the dynamic change of land use [51].
Transfer matrix is usually used to analyze and estimate the rate of land use change and
quantitatively describe the structural characteristics of land use [49]. The specific equation
is as follow:

Sij =

∣∣∣∣∣∣∣∣∣∣

s11 s12 · · · s1n
s21 s22 · · · s2n
s31
· · ·

s32
· · ·

· · ·
· · ·

s3n
· · ·

sn1 sn2 · · · snn

∣∣∣∣∣∣∣∣∣∣
(1)

where, Sij is the area of category i territorial spatial type at the early stage of the study
converted to category j territorial spatial type at the late stage of the study; n is the number
of types of territorial spatial utilization.

2.3.2. Landscape Pattern Metrics

Landscape pattern metrics can well represent landscape dynamics and functions [52,53].
The evolution patterns of territorial space in spatial form are subject to different aspects of
landscape pattern, such as the area, density, and proximity. Meanwhile, landscape structure,
function, and change are scale dependent [54]. Thus, scale effects must be incorporated
when selecting specific indicators to characterize different aspects. With reference to
relevant studies [55–58] and the actual situation of the study scale of this research, five
landscape pattern indices, namely percentage of landscape (PLAND), patch cohesion index
(COHESION), patch density (PD), largest patch index (LPI), and mean Euclidean nearest
neighbor distance (ENN_MN), were selected from the aspects of proximity, area edge, and
aggregation dispersion to measure the evolution process of landscape patterns in the recent
40 years in China.
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2.3.3. Standard Deviation Ellipse

Standard deviation ellipse method can quantitatively and accurately reveal the spatial
distribution characteristics of geographical and socio-economic elements, such as centrality,
spatial range, and evolution direction, through the parameters of ellipse center, long axis,
short axis, azimuth angle, and flattening [59,60]. In this study, standard deviation ellipse
was used to identify the gravity center position and its spatial movement trend of territorial
spatial type area. The specific equations are as follows:

Xw =
n

∑
i=1

wixi

/
n

∑
i=1

wi (2)

Yw =
n

∑
i=1
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/
n

∑
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)2
/
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/
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where
(
Xw, Yw

)
is the weighted average center; (xi, yi) is the geometric center coordinate

of county unit i; wi is the weight; θ is azimuth; δx and δy are, respectively, the standard
deviation along the major axis and the minor axis.

2.3.4. GeoDetector Model

To reveal the evolution mechanism of PLES structure in different MFZs in China,
this study intended to use the Geodetector model to quantitatively detect the regional
differentiation of PLES and its driving forces [61,62]. This method can effectively detect
the influence of various factors and identify the strength of interaction among multiple
factors [63]. The specific equation is as follow:

PD,H = 1 − 1
Nσ2

L

∑
h=1

Nhσ2
h (6)

where PD,H is the detection power indicator of factors influencing the differentiation of
PLES, and it values 0~1. If the independent variable has stronger explanatory power
to the dependent variable, the value of PD,H will be higher. N and Nh are the number
of sample units in the study area and the number of sample units in the sub-level area,
respectively. L is the number of layers or partitions of independent variables or dependent
variables; σ2 and σh

2 are the variances of the whole region and the sub-region. GeoDetector
mainly includes four detectors, namely factor detection, interaction detection, risk area
detection, and ecological detection. This study focused on the formation mechanism of
PLES detection, so factor detection and interaction detection are selected for quantitative
elaboration and analysis. The types of interaction between two factors can be divided into
the following five categories (Table 2).

Referring to previous studies, territorial spatial evolution is formed under the compre-
hensive action of natural and socio-economic factors [4,49,64]. In this study, six influencing
factors, including land use intensity (X1), normalized difference vegetation index (NDVI,
X2), population density (X3), annual average temperature (X4), annual average precipita-
tion (X5), and average elevation (X6) were selected from two aspects of natural factors and
socio-economic factors. Socio-economic factors mainly include X1 and X3, among which
X1 can effectively measure the intensity of human activities [65]. X3 is used to represent
the pressure of population pressure on territorial space development and utilization [66].
X2 was used to characterize the effect of vegetation growth on PLES structure. X4 and X5

287



Int. J. Environ. Res. Public Health 2022, 19, 9910

are used to represent the influence of climate factors on the evolution of territorial spatial
structure, while X6 is used to represent the impact of topographic factors on territorial
spatial evolution [4,49,64]. The PLES and influencing factors in 2000, 2010, and 2020 were
spatialized by ArcGIS 10.3 software, and the PLES and influencing factors index database
of different MFZs of county units in China was constructed.

Table 2. Interaction types of Geodetector model.

Criterion Interaction

q(X1∩X2) < min[q(X1), q(X2)] The interaction of X1 and X2 factors weakens the nonlinearity

min[q(X1), q(X2)] < q(X1∩X2) < max[q(X1), q(X2)] The interaction of X1 and X2 factors weakens the
single-factor nonlinearity

q(X1∩X2) > max[q(X1), q(X2)] The interaction of X1 and X2 factors enhances the dual-factor
q(X1∩X2) = q(X1) + q(X2) The X1 and X2 factors are independent
q(X1∩X2) > q(X1) + q(X2) The interaction of X1 and X2 factors enhances the nonlinearity

3. Results

3.1. Spatio-Temporal Evolution Pattern of Territorial Space in China from 1980 to 2020

From 1980 to 2020, ecological space played an absolutely dominant role in China’s
territorial space, accounting for a significantly higher proportion than production space
and living space. During the study period, the proportion of ecological space continued
to decrease from 79.87% in 1980 to 78.40% in 2020. Production space and living space
continued to increase, with production space increasing from 18.67% in 1980 to 19.30% in
2020 and living space from 1.46% in 1980 to 2.29% in 2020 (Figure 2). There are significant
differences in the proportion of PLES in different types of MFZs. Specifically, ecological
space of different types of MFZs showed a reduction in the overall trend. Among them,
the ecological space area of restricted development zone (key eco-function zone) accounts
for the highest proportion (nearly 90%), followed by restricted development zone (major
agricultural production zone), accounting for about 66%, and the ecological space of
optimized development zone accounts for the lowest proportion, less than 30%.

During the study period, the production space of different types of MFZs varied greatly.
The proportion of production space in optimized development zone was the highest (>50%)
and showed a gradual decline trend, followed by the proportion of production space in key
development zone (>36%), which also showed a continuous decline trend. The proportion
of production space in restricted development zone (key eco-function zone) is <10%, and
the proportion of production space in restricted development zone (major agricultural
production zone) is approximately 30%, both showing a continuous increase trend. During
the study period, the living space of different types of MFZs showed an overall increasing
trend. The living space proportion of restricted development zone (key eco-function zone)
was the lowest (<0.60%), followed by restricted development zone (major agricultural
production zone), which accounted for <4%; while the living space proportion of optimized
development zone was the highest, which increased from 9.90% in 1980 to 22.28% in 2020.

Owing to its vast territory, complex terrain, and diverse climate, China’s territorial
space utilization types are significantly different. Production space and living space showed
similar spatial distribution patterns during the study period, mainly distributed in the
east of Hu line (Figure 3). Specifically, production space and living space are mainly
distributed in the Sichuan Basin, North China Plain, Guanzhong Plain, Northeast Plain, the
Middle-Lower Yangtze River Plain, and the Pearl River Delta Region. In addition, there
is more production space and living space in the surrounding areas of provincial capital
cities, urban agglomeration areas, and major transportation routes. Ecological space is
concentrated in the west of Hu line and mountainous areas in the east of Hu line, such as the
Lesser Khingan Mountains, Changbai Mountains, T’ai-hang Mountains, Dabie Mountains,
Wushan Mountains, Xuefeng Mountains, Nan Mountains, and Wuyi Mountains. Besides,
the vertical gradient of China’s territorial space is obviously differentiated (Figure 4). A total
of 27.60% of the total territorial space is concentrated below 500 m, accounting for 15.81%
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within 500~1000 m, 17.88% within 1000~1500 m, and 6.68% within 1500~2000 m. The
proportion of territorial space above 4000 m is 20.00%. From 1980 to 2020, the proportion of
PLES at different elevations did not change significantly. With the increase in elevation,
the proportion of living space continued to decrease, the proportion of production space
first decreased, then increased, and then decreased, whereas the proportion of ecological
space first increased, then decreased, and then increased. Specifically, the proportion of
production space in the range of 0~1200 m continued to decrease and gradually increased
in the range of 1200~1600 m, and then showed an overall decreasing trend. The change
trend of ecological space showed the opposite. Below 100 m, production space was more
than 50%, while ecological space was over 30%. The ecological space between 100 and
200 m accounted for >50%, while the production space accounted for >40%. In China,
the proportions of 0~2◦, 2~5◦, 5~8◦, 8~15◦, 15~25◦, and >25◦ are 40.89%, 16.95%, 10.51%,
15.77%, 10.88%, and 5.01%, respectively. It can be found that the territorial space is mainly
concentrated below 5◦ (Figure 5). From 1980 to 2020, the proportion of PLES in different
slopes had little change. The proportion of production space and living space decreased
with the increase in slope, while the proportion of ecological space increased.

Figure 2. Proportion of PLES in major functional zones in China (%). Note: Production space and
ecological space correspond to the main axis (left); living space corresponds to the sub-axis (right).
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Figure 3. Spatial distribution of PLES at county level in China in 2020.

Figure 4. Changes in the proportion of PLES in different elevations in China from 1980–2020.
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Figure 5. Changes in the proportion of PLES in different slopes in China from 1980–2020.

3.2. Spatial Transfer Matrix of Production-Living-Ecological Space in China from 1980 to 2020

Based on the conversion of PLES between 1980 and 2020, this study visualized land
use transition matrices of four periods by using Sankey diagram (Figure 6). From 1980
to 1990, the range of grassland ecological space and agricultural production space to
forestland ecological space was 25,325.47 km2 and 251,574.11 km2, respectively. The
area of grassland ecological space converted to other space was the largest, reaching
681,424.70 km2. Meanwhile, the area of other space converted to grassland ecological space
was also the largest, reaching 672,171.73 km2. The area of agricultural production space
converted to other space reached 578,143.31 km2. The conversion of industrial and mining
production space to other space was the smallest, and the area of other space to forestland
ecological space was also relatively large, reaching 543,864.98 km2. From 1990 to 2000,
the conversion of forestland ecological space to agricultural production space, forestland
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ecological space to grassland ecological space, and other ecological space to grassland
ecological space were relatively evident, accounting for 21.95%, 21.34%, and 18.19% of the
national spatial transformation area, respectively. From 1990 to 2000, the area of grassland
ecological space converted to other space was the largest, reaching 695,586.91 km2, followed
by agricultural production space and forestland production space converted to other space,
reaching 582,231.59 km2 and 555,507.73 km2. The grassland ecological space converted
from other space was the largest, reaching 668,095.14 km2, followed by the agricultural
production space and forestland ecological space converted from other space, reaching
611,079.11 km2 and 543,198.54 km2, respectively.

Figure 6. Sankey diagram of territorial space transfer matrix (Unit: 105 km2).

From 2000 to 2010, grassland ecological space turned into agricultural production space,
agricultural production space turned into urban living space, and grassland ecological space
turned into forestland ecological space, accounting for 11.94%, 9.51%, and 7.94% of the
transformation area of territorial space from 2000 to 2010, respectively. From 2010 to 2020, the
transition between other ecological space and grassland ecological space was the most intense,
accounting for 28.73% of the national spatial transformation area from 2010 to 2020, followed
by grassland ecological space to forestland ecological space, accounting for 9.73% of the
national spatial transformation area. From 2010 to 2020, the area of grassland ecological space
converted to other space was 1,066,650.67 km2, followed by the agricultural production space
converted to other space, reaching 607,092.58 km2. From 2010 to 2020, the area of other space
converted to grassland ecological space was the largest, reaching 7,760,669.25 km2, followed
by other space to other ecological space and agricultural production space, 615,643.26 km2

and 603,473.00 km2, respectively.
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3.3. Landscape Pattern of Production-Living-Ecological Space in China from 1980 to 2020

During the study period, the proportions of industrial and mining production space,
urban living space, and rural living space continued to increase, while the water ecological
space decreased from 1980 to 1990 and continued to increase from 1990 to 2020. From
1980 to 2000, the agricultural production space increased continuously, and then decreased
continuously in the following 20 years. On the contrary, the forestland ecological space
decreased continuously from 1980 to 2000 and increased continuously in the following
20 years. During the study period, grassland ecological space continued to decrease, while
other ecological space showed a general decline trend. The COHESION index of ecological
space was significantly higher than that of living space and production space, and the
COHESION index of rural living space was the lowest (Figure 7b). During the study
period, the COHESION index of urban living space and rural living space continued to
increase, indicating that the agglomeration degree of living space increased significantly,
while the ecological space of water area continued to decrease, and the COHESION index
of industrial and mining production space increased first and then decreased, while other
types of territorial space had little change. The LPI of forestland ecological space, grassland
ecological space, and other ecological space was significantly higher than that of other
territorial space types, and the proportion of industrial and mining production space,
urban living space, and rural living space was relatively low (Figure 7c). The PD index
of agricultural production space and grassland ecological space was higher than that
of industrial and mining production space and urban living space (Figure 7d). The PD
of industrial and mining production space, urban living space, rural living space, and
forestland ecological space increased during the study period. The ENN_MN of industrial
and mining production space and urban living space is relatively larger, followed by rural
living space and water ecological space (Figure 7e).

3.4. Changes in the Direction of Territorial Expansion in China from 1980 to 2020

Based on Equations (2)–(5), this study drew the standard deviation ellipse of PLES in
China from 1980 to 2020, which was used to analyze the overall patterns of China’s territo-
rial spatial distribution and its spatial movement direction (Figure 8). Production space and
living space form a northeast–southwest spatial distribution pattern, and ecological space
form an east–west spatial distribution pattern. From 1980 to 2020, the standard deviation
ellipse area of China’s production space increased, and the growth in the Y-axis direction
was significantly higher than that in the X-axis direction, indicating that the production
space expanded significantly along the Y-axis direction, namely the northwest to southeast
direction. The gravity center of production space shifted 50.931 km to the northwest from
1980 to 2000, and 66.426 km to the northwest from 2000 to 2020 (Table 3). During the study
period, the standard deviation ellipse area of living space increased, and the growth in the
Y-axis direction was significantly higher than that in the X-axis direction, indicating that
the living space expanded significantly along the Y-axis direction, namely the northwest to
southeast direction. From 1980 to 2010, the gravity center of living space shifted 55.550 km
to the southwest, and 51.639 km to the northwest from 2010 to 2020. During the study
period, the standard deviation ellipse area of ecological space was small, and the center of
ecological space gravity shifted 25.224 km to southwest China from 1980 to 2020.

3.5. Mechanism of Regional Differentiation in China from 2000 to 2020
3.5.1. Detection of Territorial Spatial Regional Differentiation Mechanism

Based on Equation (6), this study explored the mechanism of territorial spatial regional
differentiation in the whole country and four types of MFZs. The results showed that
the evolution of PLES structure in China was influenced by natural and socio-economic
factors. In general, X1 had the most prominent influence on the formation of PLES, while
other influencing factors had significant differences in different regions. Specifically, from a
national scale, the impact of X1 on PLES gradually increased during the study period, and
the similar impact of X2 on PLES also gradually increased. The impact of X3 on ecological

293



Int. J. Environ. Res. Public Health 2022, 19, 9910

space was greater than that of living space and production space, while the impact of X4,
X5, and X6 on ecological space was stronger than that of production space and living space.
In major agricultural producing areas, the impact of X2 on living space was significantly
lower than that of production space and ecological space. Similar to the national scale, the
impact of X3 on ecological space was higher than that of living space and production space.
The impact of X4 on living space was stronger than that of production space and ecological
space, while the impact of X5 on living space was lower than that of production space and
ecological space. The impact of X6 on PLES was lower than that of X1, and the impact of
X6 on production space was lower than that of living space and ecological space.

Figure 7. Landscape pattern index of territorial space in China during 1980–2020.

In the optimized development zone, the impact of each influencing factor on PLES
fluctuated greatly in different years. Specifically, the impact of X2 and X3 on production
space and living space in 2000 was significantly higher than that in 2010 and 2020, while
the impact of X2 and X3 on ecological space in 2010 and 2020 was significantly higher than
that in 2000. The impact of X4 on ecological space was higher than that of production space
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and living space, the impact of X5 on production space was significantly higher than that
of living space and ecological space, and the impact of X6 on living space was the biggest.
In key development zone, the impact of X2 on production space and living space was
significantly higher than that of ecological space, and the impact of X3 on ecological space
was significantly higher than that of living space and production space. The impact of X4
and X5 on living space was significantly lower than that of production space and ecological
space. The impact of X6 on ecological space was significantly higher than that of living
space and production space. In key eco-function zone, the impact of X2 on PLES increased
gradually, while the impact of X3 on production space and ecological space gradually
decreased, and the impact on living space gradually increased. The impact of X4 and X5
on production space were higher than those of ecological space and living space, and the
impact of X6 on ecological space was significantly higher than those of production space
and living space.

 

Figure 8. Standard deviation ellipse of PLES pattern in China during 1980–2020.

Table 3. Standard deviation ellipse parameter of PLES pattern during 1980–2020.

Year

Ecological Space Production Space Living Space

Latitude and
longitude of
Central Point

Major
Axis/km

Minor
Axis/km

Azimuth
Angle

Major
Axis/km

Minor
Axis/km

Azimuth
Angle

Major
Axis/km

Major
Axis/km

Minor
Axis/km

Azimuth
Angle

Major
Axis/km

1980 35.20◦ N;
113.39◦ E 1267.67 894.70 36.41 35.81◦ N

115.58◦ E 1091.73 824.22 23.55 36.82◦ N
100.99◦ E 1583.86 1144.9 85.95

1990 35.31◦ N;
113.48◦ E 1280.55 892.98 36.49 35.86◦ N

115.55◦ E 1103.07 852.33 23.65 36.80◦ N
100.94◦ E 1571.62 1142.22 86.57

2000 35.59◦ N;
113.64◦ E 1309.96 896.53 36.61 35.65◦ N

115.49◦ E 1095.45 845.51 21.39 36.74◦ N
100.83◦ E 1569.92 1142.87 87.48

2010 35.700◦ N;
113.49◦ E 1315.49 934.95 38.04 35.32◦ N

115.49◦ E 1086.94 844.13 18.80 36.72◦ N
100.85◦ E 1568.43 1141.37 87.38

2020 35.85 N;
113.10 E 1341.54 1012.80 41.90 35.44◦ N

115.29◦ E 1062.34 893.53 23.51 36.69◦ N
100.81◦ E 1591.54 1142.16 88.04

3.5.2. Evolution Mechanism of Territorial Space

The results of interactive detection by GeoDetector model showed that the evolution
of China’s territorial spatial pattern was formed by the combined effects of natural and
socio-economic factors through nonlinear enhancement and dual-factor enhancement, with
the nonlinear enhancement the dominant, showing the synergistic enhancement effect.
By comparing the interaction factor values of different zones, it could be found that the
interaction between X1 and other factors was significantly stronger than the interaction
between other factors (Figure 9). The increase in X1 would accelerate the evolution of
territorial space. Therefore, the interaction degree between X1 and various factors is the
most complex. The evolution of China’s territorial space was influenced by the integration
of natural and socio-economic factors. In different regions, there were significant differences
in natural environment background, resource and environment carrying capacity, location
characteristics, environmental capacity, existing development density, economic structure
characteristics, population agglomeration, and participation in international division of
labor. However, it could be found that the intensity of interaction between X6 and other
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factors in different MFZs was second only to X1. As an important natural element, X6
can effectively limit the range of X2 and affect the evolution characteristics of territorial
spatial structure.

Figure 9. Contribution rates of influence factors from 2000 to 2020. Notes: Variables X1–X6 in the
figure represent land use intensity, NDVI, population density, average annual temperature, average
annual precipitation, and average elevation, respectively.
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4. Discussion

As a big strategic background, the MFZ carries the national will and transmits it
to all kinds of planning, and finally guides the layout of PLES through the three-zones
and three-lines [4,49,64]. The quantitative relationship and spatial layout of PLES are
the application guidance of national strategy at the level of territorial space, and also
the real appeal of the public for affluent life, efficient production, and ecological living
conditions [5,34,67,68]. Meanwhile, it is also a response to the sustainable development
goals of the United Nations [69]. In Europe, land-use functions are classified into three main
functions: social, economic, and environmental functions [35]. In China, the classification
of PLES is based on the theory of multi-functionality of land use in Europe [34]. For
example, Liu et al. scored different land use types according to the primary and secondary
functions of the land [44], while Liao et al. established a PLE land classification system for
southwestern China [70]. These studies provide the research basis for the classification of
PLES in this study.

Based on the remote sensing data of land use monitoring in China and a series of
theories and methods of territorial spatial evolution analysis, through the construction of
PLES classification system, this study analyzed the evolution patterns of PLES structure of
China’s MFZs in the past 40 years. In addition, the GeoDetector model was used to detect
the mechanism of territorial spatial regional differentiation of different MFZs. Studies
consistently consider that natural and socio-economic factors jointly influence the evolution
of territorial spatial structure, most notably human activity [22]. However, the evolution of
territorial spatial structure is also affected by national strategic policies and public appeals.
Meanwhile, the demarcation of China’s MFZ is based on the differences in economic
development level, development intensity, resource and environment carrying capacity,
development potential, and development direction within the region. The delineation of
optimized development zone, key development zone, restricted development zone, and
prohibited development zone will certainly affect the quantity and layout of PLES, and the
public demand will also appeal to PLES. Thus, future research needs to further strengthen
the research on the impact of national macro strategies and public appeals on the evolution
of territorial spatial structure. Besides, it is vital to scientifically explore the evolution
process and formation mechanism of PLES in China’s MFZs in the past 40 years, and to
effectively connect and provide feedback on the PLES between MFZs, territorial spatial
planning, and three-zones and three-lines. Based on the analysis of the evolution process of
China’s territorial space over a long period of time and the detection results of regional
differentiation mechanism, this study puts forward the following suggestions.

Firstly, the development of the optimized development zone need to focus on im-
proving and upgrading the quality and the transformation of production and living space.
However, at present, the living space expansion rate of the optimized development zone in
China is the fastest among all MFZs. In the future, it is necessary to further optimize living
space, improve supporting functional facilities, and control urban sprawl, and promote
more scientific and reasonable layout of living space.

Secondly, key development zone is important carrier to support the country’s future
economic development and population agglomeration. This study found that the pro-
duction space of the key development zone in the last 40 years has decreased, while the
increase in living space is not significant. In the future, it is necessary to further improve
the urban infrastructure and public services and promote the population and economy to
cluster in the urban agglomeration and the core area of the main axis.

Thirdly, the main agricultural producing zone is an important area to guarantee the
supply safety of agricultural products in China. The production space of major agricultural
producing zone in the past 40 years only increased by 1.22%. In the future, we need to
step up efforts to comprehensively improve territorial space and restore the ecological
environment, strengthen agricultural infrastructure, improve the distribution and structure
of agricultural production, and increase the intensity of development in major agricultural
production zone.
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Lastly, restricted development zone is an important guarantee for ecological security
in China. However, in the past 40 years, the production space and living space in China’s
key eco-function zone have increased by 0.98% and 0.22%, respectively, while the ecological
space has decreased by 1.20%. In the future, it is necessary to further restrict large-scale
and high-intensity industrialization and urbanization in territorial space development and
optimize the ecosystem pattern.

5. Conclusions

Based on China’s land use data from 1980 to 2020, this study explored the evolution
process and the formation mechanism of the PLES structure of China’s MFZs in the past
40 years by combining the theories and methods of territorial spatial pattern evolution,
such as territorial spatial transfer matrix, landscape pattern index, standard deviation
ellipse, and GeoDetector model. The results are as follows:

(1) During the study period, China’s ecological space was absolutely dominant, and
its proportion continued to decrease, while the production space and living space
continued to increase. There were significant differences in the proportion of PLES in
different types of MFZs.

(2) During the study period, the conversion between land types was frequent, among
which the conversion between grassland and other land use spaces was the most
frequent. From 1980 to 2000 and 2000 to 2010, the largest conversion was grassland
ecological space to other space, and from 2000 to 2010, it was the grassland ecological
space to agricultural production space; while from 2010 to 2020, other land use space
converted to grassland ecological space was the largest.

(3) During the study period, the COHESION index of ecological space was significantly
higher than that of living space and production space, and the COHESION index of
rural living space was the lowest. The PD index of agricultural production space and
grassland ecological space was high, while the ENN_MN of industrial and mining
production space and urban living space was relatively large.

(4) The spatial distribution pattern of production space and living space was northeast to
southwest, and the spatial distribution pattern of ecological space was east to west.
There was a gradual shift of the PLES to the west during the study period.

(5) The land use intensity had the most prominent influence on the formation of PLES,
and the intensity of other influencing factors varied significantly in different regions.
The evolution of China’s territorial spatial pattern was a synergistic enhancement
effect of natural factors and socio-economic factors through nonlinear enhancement
and dual-factor enhancement.

It is expected that the results of this study and the proposed policy recommendations
can provide scientific support for the optimal management and high-quality development
of territorial space in China and other regions with similar dominant functions.
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Abstract: Limited by China’s mixed land ownership model, which is divided into collective and state
ownership, national parks’ strict ecological protection measures of restricting land use patterns and
intensity are subject to the decisions made by collective landowners and contract operators, namely,
rural households in national park communities. The disposition and intention of community farmers
regarding collective land ownership is related to the nature conservation effect of the national park.
In the context of national park land functions for ecological conservation, environmental education,
leisure and recreation, scientific research, and “nest eggs” (basic living guarantees), the research on
the influencing factors of farmers’ intentions to reallocate their land (expropriated or transferred)
will provide a basis for a National Parks Administration (NPA) to develop supporting policies for
collective land reallocation in different functional zones and to prevent community conflicts. The
research took Shennongjia National Park as an example and, combined with literature analysis,
used the Structural Equation Model (SEM) to explore the influencing factors of community farmers’
land reallocation intentions and drew the following conclusions: farmers’ intentions to leave their
land for nature conservation purposes and for urbanization purposes are different. In the five land
function situations above, farmers’ perceptions of land function in national parks did not directly
affect their land reallocation intentions, while their trust in the land management ability of NPA
was a complete mediator. Farmers’ preferences for the economic value of land had no significant
moderating effect on land reallocation intentions. Farmers’ characteristics have a moderating effect on
different land function situation models. Older and less educated farmers are more likely to receive
livelihood compensation rather than monetary compensation after leaving their land. Therefore,
some management suggestions are put forward, such as strengthening the capacity for building
national park land and other natural resources management, adapting to the collective land policy in
different function zones, and paying attention to the livelihood compensation of community farmers
after they leave the land.

Keywords: community farmers; land reallocation intentions; Shennongjia National Park; structural
equation model; situational analysis

1. Introduction

Establishing a new natural reserve system with national parks as the main body was
proposed by the report of the 19th National Congress of the Communist Party of China
(CPC) in 2017, noting that China’s natural reserve system construction has entered the era of
national parks. Land protection measures must be sensitive to the rudiments of these land
tenure arrangements. National parks fulfill the important function of protecting national
ecological security through strict restriction of land use mode and intensity. The ownership
of natural resources such as land directly affect the protection effect [1–4]. Collective Land
Ownership and State Land Ownership are the two most dominant forms of land tenure in
China and are similar to the complex mosaic of land tenure of rangelands in the United
States and other countries [5]. Collective Land Ownership means that the ownership of
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the land belongs to the village collective, but the farmer households have the contract and
management rights to the land and are the actual controllers of the collective land.

If strict protection measures are implemented on the premise that all land under
protection is owned by the state, the resistance to strict protection will undoubtedly be
greatly reduced. However, this is not the reality. Strategies to amalgamate China’s Protected
Lands into the national parks structure face dichotomous difficulties. As most lands are
under Collective Ownership and the large numbers in the indigenous population [6], strict
land management protection measures are bound to be counterproductive and encounter
resistance under these conditions of diverse land tenure.

The Overall Plan for the Establishment of a National Park System (2018) calls for
“ensuring that natural resource assets owned by the state occupy a dominant position and are
managed with feasibility”. This is to be realized using three distinct strategies, covering
the following:

1. Creating a unified, standardized, and highly efficient National Park Management
Structure/System,

2. Prioritizing protection of ecological and natural assets, and
3. Prioritizing public and social welfare.

This tripartite objective will result in two important transformations in land man-
agement within the new national parks structure. Firstly, the state will expropriate all
Collective Lands, and secondly, according to Wang, et al. (2014) [7], it will undertake
stringent land use policies that may potentially deprive local communities of important
extended living spaces. Under the circumstance that the natural ecosystem and the com-
munity in the protected area have been deeply interbedded in China, if all the land is
“universally” acquired by the state, although conducive to the realization of the goal of the
“unified, standardized, and highly efficient” treatment of the national park, it is not feasible
in management. The reasons are as follows.

First, the “one size fits all” expropriation of these lands limits the space for community
development, essentially depriving community residents of their sources of livelihood [8].
When an alternative livelihood is not replaced in time, it is easy to cause community
conflicts, possibly leading to the destruction of the ecological environment in the com-
munity [9]. This has been learned from previous “isolated island” protection practices.
Therefore, whether this action can promote the improvement of the efficiency of ecological
protection is still debatable. Second, gaps created between the implementation of the
national park structure and the possible disruptions in the traditional community socio-
economic and cultural activities that are aligned to the land will need to be filled early in
the process. It is necessary to defend and protect traditional cultural and social practices.
Finally, there are concerns regarding the move of establishing the National Parks System
and its ability to eventually promote ecological conservation. This is especially disquieting
since there will the need for legislation to expropriate collective lands by the state, which
is likely to require some sort of compensation involving land tenure arrangements. This
will undoubtedly cause significant pressure on the state’s economic resources, due to the
sheer number of people involved [10]. Land compensation also places great economic
pressure upon the government [8], so the exploration of community protected areas is also
required [11]. Accordingly, how to deal with collective land ownership has become an
important issue in the pilot process of the national park system.

The Guidance on Establishing a Nature Reserve System with National Parks as the
Main Body (2019) was published jointly by the General Office of the CPC Central Com-
mittee and the State Office. The Guidelines proposed by the report postulate that, given
the principles of volunteerism and compensation, the state should explore strategies to
safeguard the rights and interests of property owners. This should also involve approaches
that realize the diverse protectionist policies of the collective land tenure arrangements
and the social and cultural dynamics of the indigenous and rural populations. These
protectionist policies are proposed to be realized in the various natural protected areas
by means of lease, relocation and replacement, purchase and cooperation. Formulating
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strategies unique to each functional zone will eliminate the “one size fits all” approach
and leave room for better land management. According to the current functional zoning
of national parks, strictly protected areas adhere to the state ownership of land and the
orderly expropriation of collective land; the collective land in the general control area is
allowed to explore various land circulation methods, such as leasing and redeeming, while
the National Park Administration (NPA), on behalf of the state, is responsible for obtaining
the management (protection) easement for all the land, limiting the extensive land use
mode and intensity [8].This diversified land ownership model not only strictly implements
the principle of the national park ecological protection first but also takes into account the
needs of community development, so it is a feasible way to solve community conflicts.

In this research, collective land expropriation, transfer, lease, replacement, and other
forms of abandoning the original land use and intensity are defined as “land reallocation”.
In all forms of land reallocation, the national park will enforce the conservation easement
of all collective land to ensure that the use of collective land will not be abused after
reallocation to a third party [12]. Of the 10 national parks areas currently across China,
approximately 50% have at least one third of the land falling under some Collective Land
Ownership regime. As such, the interest of farmers whose land tenure is classified as
unclear and collective must be strategically considered, whether their lands are expropri-
ated by the state or allowed to be transferred, to minimizes the farmers’ displacement
and disenfranchisement. The NPA must also consider the attitude and perception that
the farmers, who are under Collective Land Ownership, have towards land expropriation
and relocation. The management of these farmers will determine the overall success of the
national parks project [7]. Detecting the willingness and overall attitude of farmers under
Collective Land Ownership to abandon their rights to land will undoubtedly complicate
the process of establishing China’s national parks project. Consequently, there is a need to
determine the factors influencing land surrender and reallocation intentions. Determining
the responses to these and other Collective Land Ownership concerns will be an important
basis for the formulation of policy and planning for the establishment of national parks.
Resolving these concerns will reduce potential community conflicts and foster farmers’
willingness to participate in the project. At the same time, the current academic research
on willingness to leave land and its influencing factors almost all focus on the research on
land reallocation intentions from the perspective of rural labor transfer or the economy
under the background of urbanization [13,14]. In the context of protected nature areas,
research on farmers’ willingness to leave land is relatively lacking in situations where the
functions of national park land are for ecological protection, environmental education,
scientific research, leisure and recreation, “nest eggs”, and so on.

In conclusion, it is an urgent task to clarify the land reallocation intentions of rural
households in national park communities under different land function situations. There-
fore, the research took Shennongjia National Park as an example, using questionnaire and
semi-structured interviews to explore community farmers’ land reallocation intentions and
their influencing factors in national parks under different land function situations. We use
the Structural Equation Model (SEM) method to investigate the mechanism and causal
relationship between farmers perceptions of park land function, farmers’ trust in park land
management abilities, farmers’ land economic value preferences, household characteristics,
and land reallocation intentions. The research results provide a scientific, reasonable, and
effective basis for the Collective Land Ownership disposition of the national parks.

2. Literature Review and Research Hypothesis

2.1. Research Hypothesis

The research attempts to answer three questions: first, what are the factors that
influence farmers’ land reallocation intention (LRI) under different situations of land
functions in national parks? The integrated approaches of a literature review and the
understanding of the reality of China were used to find out the influencing factors of
farmers’ land reallocation intentions in national parks. Community farmers’ perceptions
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about the land function of national parks, land management ability of NPA, characteristics
of farmers, and farmers’ preferences of land economic value were taken as influencing
factors for land reallocation intention. Second, how do the influencing factors affect the
land reallocation intention? The Structural Equation Model (SEM) is used to reveal the
mechanism of action. Third, is there a difference in the land reallocation intentions for the
purpose of urbanization vs. that for nature conservation? A comparative study was applied
to infer the differences of farmers’ land reallocation intentions against the background of
nature conservation and urbanization.

Therefore, based on practical experience and existing research literature, this study
proposed the following hypotheses:

Hypothesis 1 (H1). Community farmers’ perceptions of national park land function (PNPLF)
affect their land reallocation intention (LRI).

According to cognitive behavioral theory, farmers’ land reallocation intentions are
affected by their perception of land functions [15,16]. Land function is different from land
value [17], but a large amount of the literature does not clearly distinguish between land
function and land value. This research considers that land value is the economic mani-
festation of land function. To some extent, land value assessment can urge landowners
to pay attention to ecological protection, scientific research, cultural carriers, and other
functions of land. Farmers’ land values have a certain degree of influence on land realloca-
tion intentions. Wang et al. (2018) hold that the consistent relationship between farmers’
cognition and behavior regarding farmland ownership adjustment is an important content
of theoretical research on farmland ownership adjustment [18]. There is also much research
on the relationship between land function perception and land reallocation intention. For
example, Xu (2014) studied the relationship between land function preferences and farm-
land reallocation and proved that farmers’ different preferences for land functions had
different degrees of influence on the transfer intention [19].

Land functions are expanding with the development of society and the change of
demand. Agricultural land had multiple functions [20]. At the practical level, the function
of farmland depends on the nation demand for land use. Land function is situational, and
different land use situations determine the various land functions. Therefore, the land
function of national parks in China is different from general agricultural land. The primary
function of farmland is mainly a supply function, including a production function and car-
rier function. The former refers to food production and cash crop planting, while the latter
mainly refers to the carrying of traditional culture and values, which is a non-economic
factor [21]. In the context of China, as the land has been dominated by farming culture since
ancient times, land is also the source of livelihood for farmers and the basic guarantee for
their pension, employment, medical care, and life necessities [22]. Therefore, agricultural
land has the “nest egg” function, which means a basic living guarantee. The land owner-
ship policy of national parks cannot deprive farmers of basic living security, and the land
“nest egg” function still needs to be realized within the scope of national parks. Moreover,
according to the Guidelines for the National Park Function Zoning, which is a Forestry
Industry Standard of the People’s Republic of China (LY/T2933-2018), the functional zoning
of national parks is divided into strictly protected zones, ecological conservation zones,
traditional utilization zones, and environmental education zones. Consequently, land func-
tions of national parks should also include ecological conservation, recreation, scientific
research, environmental education, and so on. To sum up, the hypothesis is proposed as
follows: land functions that include the ecological conservation function (ECF), nest egg
function (NEF), leisure and recreation function (LRF), scientific research function (SRF) and
environmental education function (EEF) will affect the land reallocation intention (LRI).
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Hypothesis 2 (H2). Farmers’ trust in the land management ability (TLMA) of the national
parks administration is the mediating factor between the perception of land function and land
reallocation intention.

Studies have shown that farmers’ willingness to transfer land will be affected by the
credibility of the government. Farmers with high trust in the government have higher
willingness to transfer land. For example, Wang et al. (2017) and Pu et al. (2018) concluded
through case studies that farmers with high trust in the government have higher willingness
to transfer agricultural land [23,24]. On the premise of high trust in the government, the
probability of mass conflicts in the process of land expropriation will be low [25,26]. The
failure of government behavior to meet public psychological expectations is the main reason
for reducing government credibility [27]. The promotion of management or governance
ability to credibility has been verified in relevant studies [28].

In the context of national parks, the NPA manages and operates the national parks
on behalf of the central government, and its management ability is one of the main factors
affecting credibility. When the land management ability of NPA is not sufficient to meet the
expectations of community farmers, or the community farmers are full of doubts about the
land management ability of NPA, this is likely not only to affect the community farmers’
trust in NPA but also the farmers’ land reallocation willingness. Therefore, TLMA is taken
as a mediator, and we discuss its influence mechanism on LRI.

Hypothesis 3 (H3). Farmers’ land preferencse for economic value (PEV) in the national park have
a moderating effect on LRI.

The preference for the economic value of land will lead to large differences in farmers’
willingness to relocate from land [16]. Based on the survey data of farmers in Shuyang
County, Jiangsu province, Zhao et al. (2012) concluded that the direct economic value
of land (grain production, etc.) was negatively correlated with farmers’ willingness to
leave their land, while the indirect economic value, such as the expectation of land transfer
(rent per unit area), was positively correlated with their land reallocation intention [15].
Yang et al. (2013) conducted a questionnaire survey among rural households in suburban
villages and suburban villages in Hongta District, Yuxi City, Yunnan, China and found
that rural households’ awareness of land compensation function was lower than that
in suburban villages, which would affect farmers’ willingness to transfer land to some
extent [29]. Xu (2014) conducted an empirical study on peasant households’ willingness to
transfer land in developed and undeveloped regions and proved that peasant households
in developed regions preferred the property function of land, and the economic value of
land was relatively high [19]. The land reallocation could bring them higher economic
income and guarantee their living standards. Therefore, peasant households in developed
regions had a strong desire to leave their land. However, farmers in undeveloped areas
prefer the land production function, and the economic income brought by land reallocation
is not high, so the land reallocation intention in undeveloped areas is low [16]. Previous
research has shown that the economic development level will affect farmers’ cognition of
the land’s economic function. When land brings considerable indirect economic income,
such as rent and compensation, farmers tend to transfer land and have a stronger desire to
reallocate land. However, in the case of natural ecological protected areas, how farmers’
preference for the economic value of land affects their willingness to leave the land remains
to be verified. Therefore, this study proposes the hypothesis that farmers’ land economic
value preference has a moderating effect on land reallocation intention in national parks.

Hypothesis 4 (H4). The household characteristics (HC) of the national park community have a
moderating effect on the LRI.

The research defines the characteristics of farmers as individual characteristics and
family characteristics [30]. In the existing literature on farmers’ reallocation intention,
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individual factors of farmers include their education level, age, and gender [30,31]. The type
of landowner is related to the way the land is used [32], and thus the characteristics of the
farmers must be considered. The characteristics of peasant households include household
resources (whether they have off-farm employment skills) [15,31] and the percentage of
agricultural income making up their total income [33]. The higher the proportion of
agricultural income in the total household income, the lower the willingness to engage in
land transfer [16]. Farmers’ willingness to leave land is closely related to off-agricultural
employment to a large extent [15].

In conclusion, combined with the national park context, the research proposes the
hypothesis that the characteristics of farmers in the national park community have a
moderating effect on farmers’ willingness to leave the land. Characteristics of farmers
include age, education, household income, and off-farm employment skills.

2.2. Theoretical Model Construction

Based on the four research hypotheses proposed above, we constructed a theoretical
model of influencing factors of farmers’ land reallocation intention in national parks
(Figure 1). Although the theoretical model is based on the research results of influencing
factors of farmland ownership adjustment under the background of rapid urbanization, it
also considers the land function demands of national park ecological protection, leisure
and recreation, scientific research, environmental education, basic living guarantees, and
the role of farmers’ trust in the land management ability of NPA.

Figure 1. The conceptual model.

3. Overview of the Research Area

The system pilot area of Shennongjia National Park, which is also a World Natural
Heritage Area, is located in the southwest of Shennongjia Forest district, Hubei province,
covering an area of 1169.88 km2, accounting for 35.97% of the total area of Shennongjia
Forest district. The national park includes Jiuhu Town, Xiaguping Town, Muyu Town,
Hongping Town, and Song Luo township. According to the General Plan of Shennongjia
National Park (hereafter referred to as The Plan), the state-owned land area of the park
system pilot area is 1005.79 km2, and the collective land area is 164.09 km2. During the
system pilot period (2016–2020), the southern land of Shennongjia Forest district was
entrusted to Shennongjia National Park. After the end of the pilot period (2021–2025), the
trust area will be officially included in the Shennongjia National Park. The total area of the
national park will be increased to 1325.06 km2, of which the collective land area will be
increased to 307.37 km2, accounting for 23.2% of the total area of the national park. The
general situation of land ownership in Shennongjia National Park is shown in Figure 2.
During the vision planning period (2026–2030), the area of the park will be extended to the
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whole Shennongjia area, and Hubei Padong Golden Monkey National Nature Reserve and
Hubei Longmen River National Forest Park will also be included in the vision planning
area of the park.

Figure 2. Land ownership of Shennongjia National Park.

The gradual expansion of Shennongjia National Park in different stages of develop-
ment in The Plan is a temporary solution to the current tense relationship between people
and land. In the pilot phase, the zoning of Shennongjia National Park deliberately avoided
collectivized land and densely populated areas. Shennongjia Forest district has a population
of nearly 80,000, and the relationship between people and land is complicated. Hongping
Town and Songluo Township in the north of the park are more densely populated, with
more development activities and complex land ownership, so they were partly excluded
from the scope of the national park during the pilot period. Xiaguping township and the
southern area of Muyu Town were designated as the national park trust area. Among
them, 92.33% of the trust area is collective land, which can avoid community conflicts
and financial pressure caused by land ownership. However, according to the long-term
planning of Shennongjia National Park, the area of the park will be gradually expanded in
the future, and the areas mentioned above with complicated land property rights will be
gradually assigned to the national park, and the land ownership problem will gradually
become prominent. In this context, this study not only provides a basis for making policies
on the transfer or reallocation of collectively owned land in the current pilot areas but also
lays a foundation for making land policies in the future expansion of national parks.

4. Methodology

4.1. Survey Questionnaire Design

On the basis of literature analysis, and in combination with the situational design
questionnaire for national parks, the research contains 32 observed variables. Among them,
27 observed variables were combined into 7 latent variables (shown in Table 1). The 7 latent
variables are as follows: farmers’ perception of land ecological conservation function (ECF),
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land environment education function (EEF), leisure and recreational function (LRF), “nest
egg” function (NEF), scientific research function (SRF), land reallocation intentions (LRI),
and farmers’ trust in the land management ability (TLMA) of the NPA. The other 5 observed
variables covered the farmers’ preference of economic value (PEV) and the 4 characteristics
of farmers: age, education, family income, and off-farm employment skills. Except for
the 4 household characteristic variables, all other observed variables were measured by a
5-level Likert scale.

Table 1. The CR and AVE of the scale based on CFA.

Latent
Variable

Items Std (λ) SMC (θ)
Cronbach’
Alpha (α)

CR AVE

Ecosystem
Conservation

Function
(ECF)

A6 Forest, grassland, and other land ecosystems
are the main ecosystems on the earth. 0.714 0.509

0.930 0.930 0.655

A7 Humans are not the only owners of the land.
The land is also home to plants and animals. 0.794 0.631

A8
Land is the foundation of the growth of all
living things and the space carrier of natural
ecosystem.

0.870 0.756

A9
Land is the carrier of traditional culture, and
the destruction of land ecology will affect the
inheritance of traditional culture.

0.753 0.567

A10
National parks are nature protected areas, and
their land use should be based on ecological
protection.

0.859 0.738

A11
The land can be used for vegetation growth to
regulate climate, purify the environment, and
reduce noise pollution.

0.832 0.692

A12
The conservation of the land ecology in
national parks preserves development
opportunities for future generations.

0.832 0.691

Nest Eggs
Function

(NEF)

A13 Land can provide a minimum livelihood for
family members. 0.723 0.523

0.857 0.862 0.678A14 Land gives family members pension security. 0.874 0.764

A15 Land can provide unemployment insurance
for family members. 0.864 0.746

Leisure &
Recreation
Function

(LRF)

A16 National park land is the carrier of natural and
cultural tourism resources. 0.786 0.617

0.884 0.880 0.647

A17 National park land provides space for human
recreation and leisure activities. 0.752 0.565

A18

The recreation and leisure industry of a
national park can provide employment
chances for the local community and promote
incomes of local families.

0.828 0.685

A19
The development of national park tourism
industry can activate tradition culture, and the
tradition culture can be inherited.

0.848 0.719
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Table 1. Cont.

Latent
Variable

Items Std (λ) SMC (θ)
Cronbach’
Alpha (α)

CR AVE

Scientific
Research
Function

(SRF)

A20 The land ecosystem is the vital research subject
in the science area. 0.784 0.615

0.881 0.876 0.703A21

The land science research works try to balance
the relationship between development and
conservation and provide the basis for wise
land use.

0.821 0.674

A22 Land science knowledge is the significant
content of environment education. 0.905 0.819

Environmental
Education
Function

(EEF)

A23

Environment education in a national park can
enable people to understand the land
ecosystem and increase environment protect
knowledge.

0.900 0.810

0.917 0.917 0.786A24
Environment education in a national park can
promote people’s awareness of environment
protection.

0.875 0.766

A25
Environment education in a national park can
cause people to engage in environment
protection behavior.

0.884 0.782

Trust in Land
Management

Ability
(TLMA)

A26 The national park service knows better how to
preserve the land ecological environment. 0.797 0.634

0.851 0.853 0.593

A27 The national park service knows better how to
wisely explore and use land. 0.812 0.659

A28
The national park service can obtain land
ownership with important ecological
functions.

0.752 0.565

A29 The national park service has the power to
regulate the use of all land within the park. 0.716 0.512

Land
Reallocation

Intention
(LRI)

A30
If monetary compensation is reasonable, I am
willing to transfer land property to the
national park.

0.799 0.638

0.858 0.858 0.669A31
If national parks provide alternative
livelihoods, I am willing to transfer land
property to the national park.

0.875 0.765

A32 I prefer livelihood security to monetary
compensation in terms of land reallocation. 0.777 0.604

4.2. Questionnaire Distribution

Questionnaires were distributed to Xiaguping, Muyu, and Dajiuhu in Shennongjia
National Park. In total, 170 questionnaires were distributed in two periods, which covered
July 2019 and then July 2020. In total, 281 questionnaires on network communication were
collected from December 2020 to February 2021 through the Shennongjia National Park
Administration and Shennongjia poverty alleviation work QQ group. The departments
of Shennongjia National Park Administration, including the Community Affairs, Policies,
and Publicity and Education Division frequently communicate with community farmers
in their daily work. The staff in the above-mentioned departments shared the QR code or
link for the online questionnaire to the farmers when they were working in the villages,
and the farmers filled in the questionnaire online and submitted it directly. In addition,
as the Shennongjia National Park has a large number of farmers scattered living in the
mountains more than 1000 m above sea level, it was difficult for researchers to collect
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questionnaires on a large scale. As a result, in our research, the staff in the Shennongjia
poverty alleviation work QQ group assisted in issuing questionnaires to reduce costs and
improve work efficiency. Finally, a total of 451 questionnaires were issued in this study.
Among these, 121 questionnaires were collected from Xiaguping, 213 from Dajiuhu, and
117 from Muyu. In order to avoid the high redundancy in the questionnaire, the researchers
only collected one questionnaire for each peasant household.

4.3. The Questionnaire Response

All questionnaire responses were reviewed, and invalid questionnaires were deleted.
The identification of invalid questionnaires followed these criteria: first, for the network
recovered questionnaires, we judged whether the questionnaires were from the same
IP address according to the submission time (the questionnaires filled from the same IP
address were invalided and deleted). Second, the standard deviation of all samples was
tested, and each sample with a standard deviation of 0 or close to 0 was deleted. Finally,
questionnaires with missing values were marked invalid, and the missing values were
deleted or supplemented with the mean value, which did not exist in all questionnaires
collected in this study. In accordance with the above principles, 61 invalid questionnaires
were removed from the recovered questionnaires, and a total of 390 questionnaires were
finally used in the research. The effective rate of the questionnaire was 86.47%.

5. Research Results and Analysis

5.1. CFA Test of Scale Reliability and Validity
5.1.1. Composite Reliability and Convergence Validity

Mplus7.4 was used to perform Confirmatory Factor Analysis (CFA) for the seven
latent variables in the oblique models to obtain the standard indicator loading estimate and
Squared Multiple Correlations (SMC) of observe variables. Then, the Composite Reliability
(CR) and Average of Variance Extracted (AVE) of latent variables were calculated. In this
research, AVE is represented by the Convergence Validity (CV). Traditionally, the most
common indicator of calculating the scale or testing reliability is Cronbach’s Alpha (α), where,
in congeneric tests with unrelated errors, the α underestimates the reliability except for
tests where τ is equivalent [34], and when the error is positively correlated, the α coefficient
will overestimate the reliability. After the application of the CFA method, CR and AVE were
used to calculate the internal consistency reliability [35,36]. The calculation formulas are
shown in Formulas (1) and (2):

CR =
(∑ λ)2[

(∑ λ)2 + ∑(1 − θ)
] (1)

AVE =

(
∑ λ2)

[(∑ λ2) + ∑(1 − θ)]
(2)

where λ is the standardized factor loading estimate value, and θ is SMC. The composite
reliability and convergence validity of latent variables in the scale are shown in Table 1.
SPSS22.0 was used to calculate the Cronbach’s Alpha (α) of the scale.

First, the higher the CR value, the higher the internal consistency, where 0.7 is the
acceptable threshold. Fornell and Larcker (1981) suggested a value of 0.6 or above as
acceptable. Table 1 shows that the minimum CR value and Cronbach’s Alpha (α) of the latent
variables in the scale are 0.853 and 0.851, respectively, which are ideal, indicating that the
internal consistency of all latent variables is high. AVE then shows how much variation
explained by potential variables is from measurement error. If AVE is higher, the percentage
of variation explained by latent variables is higher, and the relative measurement error is
smaller, which implies that the questionnaire has higher reliability and convergence validity.
The ideal value should be greater than 0.5 [37], with 0.36~0.5 as the acceptable threshold.
Table 1 shows that the AVE value of latent variable is at least 0.593, which is close to ideal.
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Finally, the standardized factor load estimation values of all observed variables in the scale
were all greater than 0.7, and SMC values were all greater than 0.5, which was ideal.

5.1.2. Discriminant Validity

There are various methods to verify Trauernichant validity, such as mean variation
extraction [37], competitive model comparison [38], and the confidence interval method
of correlation coefficients [39]. If the correlation between latent variables is below the
absolute value of 0.7, the AVE method can be used for evaluation. If the correlation between
latent variables is above the absolute value of 0.7, it is recommended to use the confidence
interval method for estimation [40]. The correlation values of some latent variables in
Table 2 were greater than 0.7, and the confidence interval method was used to test the
discriminant validity of the scale by repeating the sampling 2000 times and calculating
the 95% Confidence Interval (CI) of the correlation coefficient. If by calculating Φ ± 2σ,
the bias-corrected and percentile method to calculate the correlation coefficient between
the latent variables of the CI does not contain a value of 1.0, this shows good discriminant
validity [31,33,39]. As shown in Table 2, the CI of the correlation coefficient calculated
by the above three methods didn’t contain 1.0. Therefore, the latent variables set in this
research have good discriminant validity.

Table 2. Discriminate validity results.

Pairs of Correlation Estimate S.E.
Φ ± 2σ

95% CI

Bias-Correct Percentile

Lower Upper Lower Upper p Lower Upper p

NEF ↔ LRF 0.513 0.052 0.409 0.617 0.362 0.654 0.001 0.351 0.649 0.001
NEF ↔ SRF 0.448 0.055 0.338 0.558 0.295 0.597 0.001 0.286 0.587 0.001
NEF ↔ EEF 0.485 0.052 0.381 0.589 0.341 0.628 0.001 0.327 0.621 0.001
NEF ↔ TLMA 0.495 0.054 0.387 0.603 0.342 0.626 0.001 0.340 0.625 0.001
NEF ↔ LRI 0.502 0.053 0.396 0.608 0.357 0.644 0.001 0.357 0.644 0.001
NEF ↔ ECF 0.348 0.058 0.232 0.464 0.158 0.521 0.001 0.158 0.521 0.001
LRF ↔ SRF 0.866 0.024 0.818 0.914 0.788 0.930 0.001 0.779 0.924 0.001
LRF ↔ EEF 0.887 0.020 0.847 0.927 0.817 0.940 0.001 0.813 0.938 0.001
LRF ↔ TLMA 0.766 0.034 0.698 0.834 0.671 0.850 0.001 0.660 0.845 0.001
LRF ↔ LRI 0.710 0.039 0.632 0.788 0.587 0.812 0.001 0.586 0.811 0.001
LRF ↔ ECF 0.765 0.031 0.703 0.827 0.605 0.877 0.001 0.607 0.878 0.001
SRF ↔ EEF 0.850 0.024 0.802 0.898 0.769 0.921 0.001 0.762 0.915 0.001
SRF ↔ TLMA 0.730 0.037 0.656 0.804 0.603 0.845 0.000 0.584 0.834 0.000
SRF ↔ LRI 0.592 0.047 0.498 0.686 0.437 0.718 0.001 0.437 0.716 0.001
SRF ↔ ECF 0.734 0.033 0.668 0.800 0.580 0.830 0.002 0.597 0.839 0.001
EEF ↔ TLMA 0.782 0.031 0.720 0.844 0.670 0.868 0.001 0.660 0.859 0.001
EEF ↔ LRI 0.709 0.038 0.633 0.785 0.584 0.818 0.001 0.579 0.815 0.001
EEF ↔ ECF 0.688 0.036 0.616 0.760 0.532 0.803 0.001 0.534 0.804 0.001

TLMA ↔ LRI 0.819 0.032 0.755 0.883 0.713 0.898 0.001 0.701 0.896 0.001
TLMA ↔ ECF 0.603 0.045 0.513 0.693 0.438 0.741 0.001 0.437 0.740 0.001

LRI ↔ ECF 0.547 0.048 0.451 0.643 0.367 0.679 0.001 0.376 0.685 0.001

5.2. Model Validation
5.2.1. Model Fitting Degree

Mplus7.4 was used to verify the five scenario models of ECF, EEF, LRF, SRF, and NEF,
and the fitting indicators are shown in Table 3. According to the judgment criteria, in five
situations, except when the land has the function of environmental education (EEF), the
model fitting indicator is not satisfactory, and other models all meet the fitting standard.
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Table 3. Test of fitting degree of SEM.

Fit
Indicator

Criteria
Scenario Model

ECF NEF LRF SRF EEF

X2 The smaller, the better 184.999 70.389 116.632 85.064 156.971
X2

d f <3 2.569 2.271 2.926 2.744 5.064

CFI ≥0.9 0.960 0.977 0.962 0.970 0.940
TLI ≥0.9 0.950 0.966 0.948 0.957 0.913

RMSEA ≤0.08 0.074 0.066 0.081 0.078 0.118
SRMR ≤0.08 0.050 0.047 0.044 0.041 0.054

5.2.2. Path Coefficient and Significance

Table 4 shows the non-standardized coefficient and significance of the influencing
factors model of farmers’ land reallocation in different situations. Farmers’ perception
of five types of land functions and the direct influence of land reallocation intention is
not significant.

Table 4. Unstandardized path coefficients and significance of the model.

Scenario Path
Estimate

(Regression
Weight)

S.E. Est./S.E.
Two-Tailed

p-Value

ECF
TLMA ← ECF 0.495 0.109 4.451 ***

LRI ← TLMA 0.998 0.156 6.415 ***
LRI ← ECF 0.134 0.096 1.399 0.162

NEF
TLMA ← NEF 0.429 0.093 4.635 ***

LRI ← TLMA 1.018 0.158 6.426 ***
LRI ← NEF 0.138 0.095 1.455 0.146

LRF
TLMA ← LRF 0.690 0.109 6.312 ***

LRI ← TLMA 0.882 0.187 4.718 ***
LRI ← LRF 0.240 0.172 1.397 0.162

SRF
TLMA ← SRF 0.616 0.095 6.460 ***

LRI ← TLMA 1.068 0.214 5.003 ***
LRI ← SRF −0.015 0.175 −0.086 0.932

EEF
TLMA ← EEF 0.603 0.107 5.637 ***

LRI ← TLMA 0.877 0.195 4.502 ***
LRI ← EEF 0.206 0.160 1.292 0.196

* p < 0.1, ** p < 0.05, *** p < 0.01.

The above research results do not show the research conclusion that the perception
of land function directly affects the land reallocation intention but indirectly affects the
land reallocation intention through the mediating variable of TLMA. Hypothesis 1 and
Hypothesis 2 were found to hold. Table 5 shows that the mediating effect of TLMA is
obviously different in the five situations, and the situations where the mediating effect is
from strong to weak are SRF (0.658), LRF (0.609), EEF (0.529), ECF (0.494), and NEF (0.437).
The data show that when the land is used for scientific research, leisure, or environmental
education, it is necessary for farmers to gain enough trust in the land management ability
of NPA for them to leave the land. The reason is that scientific research, leisure, and
environmental education in national parks are not land functions in the common sense, and
farmers have limited knowledge of the land functions of the above national parks, requiring
the NPA to make more efforts to gain farmers’ trust in their land management capabilities.
In actuality, when the main function of land is ecological protection or living security, it
is necessary to gain less trust in the land management ability of NPA, and farmers will
then leave the land for it. The Chinese government initiated two nation-wide conservation
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policies in the late 1990s: the Natural Forest Conservation Program and the Grain-To-Green
Program [41]. The Shennongjia Forest district is also involved in the two projects, and as
a result, natural forest harvesting has been completely stopped. Farmers’ awareness of
ecological protection has a long history, and the concept of reforestation in mountains and
changing production has already taken shape. Farmers have benefited a great deal from
the tourism industry, and their livelihood does not depend entirely on the consumption of
natural resources. Therefore, farmers trust the government’s land management ability in
terms of ecological protection and the ability to guarantee their basic livelihood.

Table 5. Path coefficient and significance of PEV moderating effect model.

Scenario
model

Path
Estimate

(Regression
Weight)

S.E. Est./S.E.
Two-Tailed

p-Value

ECF

LRI ← TLMA 0.977 0.147 6.628 ***
LRI ← ECF −0.084 0.262 −0.322 0.747
LRI ← ECF * PEV −0.034 0.036 −0.929 0.353
LRI ← PEV 0.187 0.280 0.669 0.504

TLMA ← ECF 0.519 0.111 4.691 ***

NEF

LRI ← TLMA 0.940 0.160 5.883 ***
LRI ← NEF 0.023 0.117 0.199 0.843
LRI ← NEF * PEV 0.020 0.083 0.237 0.813
LRI ← PEV 0.323 0.187 1.731 0.083 (*)

TLMA ← NEF 0.449 0.094 4.783 ***

LRF

LRI ← TLMA 0.873 0.182 4.796 ***
LRI ← LRF 0.049 0.359 0.138 0.891
LRI ← LRF * PEV −0.047 0.042 −1.119 0.263
LRI ← PEV 0.183 0.368 0.498 0.618

TLMA ← LRF 0.711 0.108 6.567 ***

SRF

LRI ← TLMA 1.032 0.205 5.042 ***
LRI ← SRF −0.380 0.312 −1.217 0.224
LRI ← SRF * PEV −0.068 0.039 −1.747 0.081 (*)
LRI ← PEV 0.457 0.355 1.287 0.198

TLMA ← SRF 0.636 0.096 6.651 ***

EEF

LRI ← TLMA 0.846 0.185 4.585 ***
LRI ← EEF 0.070 0.217 0.321 0.748
LRI ← EEF * PEV −0.030 0.035 −0.868 0.385
LRI ← PEV 0.190 0.226 0.839 0.401

TLMA ← EEF 0.627 0.111 5.647 ***

* p < 0.1, ** p < 0.05, *** p < 0.01.

5.3. Test of Moderating Effect
5.3.1. Moderating Effect of PEV

The purpose of this research was to investigate whether PEV is the moderator between
the perceptions of land function and land reallocation intention by using Latent Moderated
Structural Equations (LMSE). LMSE model analysis results are shown in Table 5. In the
scenario model of NEF, ECF, EEF, and LRF, the interaction term of PEV and land function
has no significant influence on LRI, so the variable PEV has no significant moderating effect
on LRI. In the scenario model of SRF, the PEV negatively affects LRI only at the significance
level of 10%. The analysis results reject Hypothesis 3.

The conclusions presented by the analysis above are not consistent with the previous
research [19] against the background of urbanization, which holds that the higher the PEV
is, the stronger the LRI is. A study in India shows that states with more rental-market
activity feature less misallocation and reallocate land more efficiently over time [42]. The
Shennongjia National Park, the case of this study, is located in Shennongjia Forest district,
Hubei Province. Since the implementation of the Natural Forest Conservation Program
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and the Grain-To-Green Program in this administrative region in the late 1990s, ecological
protection policy has been put into practice for almost 20 years and has become solidified
in farmers’ ideology. This land is located in a mountainous area, and the topographic
and geomorphic conditions with a large slope are not suitable for large-scale urbanization
development, so the land does not show economic value under the background of urban-
ization. It is unrealistic and difficult for farmers to obtain high economic returns through
land transfer or expropriation. As a result, in the four situations where land functions are
ecological conservation, “nest eggs”, leisure and recreation, and environmental education,
the moderating effect of PEV on farmers’ LRI is not significant. This conclusion is in line
with the conclusions of Yang et al. (2013) and Xu et al. (2014) that farmers in underdevel-
oped areas and distant suburbs do not have a strong perception of the economic value of
land [19,29]. Under the condition that the land function is for scientific research, farmers
have a low perception of the local economic value of land, which is also the actual situation
in such cases, so farmers are inclined to transfer land under these circumstances. However,
when the economic value of the land is high, farmers will keep the land, and the NPA must
gain enough trust from farmers to improve the willingness of farmers to leave the land.
This shows that when national parks realize the function of scientific research, NPA play an
important role in LRI. It also implies that farmers do not quite understand and recognize
the scientific research function of national parks.

5.3.2. Moderating Effect of HC

Multiple group analysis is used to explore whether group variables (farmer character-
istics) have the function of moderating the theoretical model. The software AMOS21.0 was
used for multi-group analysis of the samples. According to age, education level, household
income, and off-farm employment skills, the sample was divided into high and low groups
to measure the differences in LRI between the two groups, as shown in Table 6.

Table 6. Grouping according to sample characteristics.

Characteristics Grouping Criterion Low Group High Group

Personal
characteristics

Age The low group is under 25 years of age; age 25 and above
is the high group. 247 143

Education Tertiary education and above are in the high group;
below college education level is the low group. 136 254

Household

Household
income

Ministry of Agriculture: In 2017, the per capita
disposable income of rural residents is about 13,000 yuan.
Based on the three members of a nuclear family, incomes
of 40,000 yuan and above are classified as the high group.
The low group earns 40,000 yuan or less.

202 188

Off-farm
employment

skills

Non-agricultural employment skills were sorted into the
high group; skills without off-farm employment were
sorted into the low group.

121 269

The purpose of this study was to test whether the model path has unique structure
invariance between different groups by conducting the test for partial invariance through
AMOS21.0. According to the research literature of Wen et al. (2005), Zhao (2007), and Xu
(2010), we followed the steps listed below [43–45].

First, the data were grouped according to the characteristics of farmers. Second, we
set the two models, namely the Unconstrained Model and Structural Weights Model: the
Unconstrained Model was not limited to any parameters, while the Structural Weights
Model defined two groups in which the latent variable path regression coefficient was equal.
The above two models form the Nested Model, and we determined the signifcance of Δχ2

in Δd f . As if Δχ2 reached a significant level (p < 0.01, p < 0.05 or p < 0.1), this indicated that
the model path had no causal structural invariance in different groups; that is, the group
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variables (characteristics of farmers) had a moderating effect on the model. The model’s
χ2/df, CFI, TLI, RMSEA, SRMR are basically within the ideal range, with a good fitting
degree. The significance of the comparison results of the Nested Model is shown in Table 7.

Table 7. The significant of Nested Model comparisons (p-value).
��������������Scenario

Characteristics
Age Education Income

Off-Farm
Skill

NEF 0.009 (***) 0.003 (***) 0.006 (***) 0.009 (***)
ECF 0.013 (**) 0.132 0.000 (***) 0.326
LRF 0.213 0.002 (***) 0.256 0.024 (**)
SRF 0.078 (*) 0.001 (***) 0.042 (**) 0.230
EEF 0.408 0.406 0.165 0.094 (*)

* p < 0.1, ** p < 0.05, *** p < 0.01.

By combining the path coefficient of multiple groups and data in Table 7, the following
results were obtained. The unreported path coefficients were insignificant.

Age has a significant moderating effect on the scenario models of NEF, ECF, and SRF.
In the NEF scenario model, the mediating effect was 0.215 in the high group and 0.656 in
the low group, and the direct effect was 0.188 in the high group. The mediating effect of
the ECF scenario model was 0.224 in the high group and 0.521 in the low group, and the
direct effect was 0.159 in the low group. The mediating effect of the SRF scenario model
was 0.372 in the high group and 0.649 in the low group. It can be seen that the LRI of the
low group is stronger. Against the background of China’s current urbanization, the rural
hollowing out phenomenon is becoming increasingly serious—the elderly and children
were left behind on the land, and the young migrant workers were more likely to give up
land—especially when the land functions only for nest eggs, ecological conservation, and
scientific research, land does not directly bring economic benefits. The low age group of
farmers were not attracted by land, and they were more likely to give up land. On the
other hand, due to the lack of off-farm skill learning ability, high group farmers were more
inclined to stay on the land to obtain basic security. When the land function is leisure and
recreation and environmental education, age does not have a significant moderating effect
on the model. In the LRF scenario model, the mediator effect of the low group was 0.791,
the direct effect was 0.298, and the mediating effect of the high group was 0.459. In the
EEF scenario model, the mediating effect of the low group was 0.571, the mediating effect
of the high group was 0.324, and the direct effect was 0.422. As recreation and ecological
education can bring direct economic benefits to local communities and promote community
development, communities have a higher degree of support for the construction of national
parks, which is reflected in the willingness of farmers to hand over their land to the NPA
regardless of their age level.

Education shows a very significant moderating effect on the scenario models of NEF,
LRF, and SRF. Forest persistence was positively affected by increases of basic education
percentage [46]. In the NEF scenario model, the direct and mediating effects of the low
group are significant, the sum of which is 0.410, while the mediating effects of the high
group are only slightly significant, at 0.644. In the LRF scenario model, the LRI of the low
group is only affected by the mediation path, with a mediation effect of 0.436. The direct
and mediating effects of high group farmers on LRI were 0.335 and 0.683, respectively, and
the sum of the effects was 1.018. In the SRF scenario model, the LRIs of farmers in the low
group and the high group were only affected by the mediation path, and the mediating
effect was 0.319 and 0.703, respectively. Thus, it can be seen that farmers with a higher
education level have a better understanding of the functions of land for nest eggs, leisure
and recreation, and scientific research in national parks and are more willing to leave the
land in order to realize these functions. In addition, they will consider whether the NPA
has enough ability to manage these lands well when they leave the land.

Family income has a significant moderating effect on the scenario models of NEF,
ECF, and SRF. In the NEF scenario model, the direct effect of the low group was 0.230, the
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mediating effect was 0.545, and the sum of the effects was 0.775. In the high group, only the
mediating effect was significant, at 0.315. In the ECF scenario model, farmers’ LRIs were
only affected by the mediation path, and the mediating effects of the low group and the
high group were 0.565 and 0.223, respectively. Thus, when the land function is for nest eggs
and ecological conservation, the added value of land cannot be reflected, and the direct
benefits brought by it are low. Farmers in the low-income family group are more inclined
to give up the land and seek for a more sustainable kind of livelihood. In the SRF scenario
model, farmers’ cognition of the land’s scientific research function can only affect the LRI
through the mediating variable, and the mediating effects of the low group and the high
group are 0.586 and 0.662, respectively. This reveals that farmers will give up their land
only if they have enough trust in the NPA, and farmers in high income families are more
willing to give up land. This also shows that farmers do not quite understand the scientific
research function of national parks, and the NPA needs to strengthen the publicity of the
scientific research function of national parks.

Off-farm employment skills have a significant moderating effect on the scenario
models of NEF, LRF, and EEF. The mediating effect and direct effect of the EEF scenario
model were both present. The mediating effect of the low group was 0.411, the direct
effect was 0.342 and the sum was 0.753. In the high group, the mediating effect was 0.523,
the direct effect was 0.177, and the sum was 0.700. The sum of the two groups of effects
was basically the same. When the land function was environmental education, there was
no significant difference in LRI, regardless of off-farm employment skills. However, in
the NEF scenario model, farmers only generated land reallocation intentions through the
mediation path, with the mediating effect of 0.550 in the low group and 0.391 in the high
group. In the LRF scenario model, the LRI of the low group was not significant, while the
LRI was generated by the high group only through the mediating path, with a mediating
effect of 0.583. This indicates that when the land function is for leisure and recreation and
life security, farmers will only give up the land if they have enough trust in the NPA. At
the same time, when the land function is leisure and recreation, farmers with off-farm
employment skills are more likely to give up the land. These farmers will make use of
their off-farm employment skills to benefit by participating in leisure and recreation, such
as catering, accommodation, and other reception businesses or providing guide services.
When the land function is life security, farmers without off-farm employment skills are
more likely to give up their land. This may not be consistent with common sense, but
it is common practice in China. The natural resources of the protected land are strictly
protected, and the function of farmers to ensure a minimum standard of living through
farming activities on the land cannot be guaranteed in some core protected areas. As a result,
a lack of off-farm employment skills means that farmers cannot get income from the land,
which will only aggravate their poverty level. So, farmers without off-farm employment
skills are more likely to give up their land. The Chinese government is addressing the
above problem through the relocation of poverty alleviation, ecological migration, and
other measures. There is a robust negative effect of land reallocation on the amount of time
that villagers devote to off-farm work [47].

5.4. Characteristics of Farmers and Compensation Form of Land Reallocation

In this study, three observed variables (A30, A31, and A32) were used to measure
the latent variable LRI. A32 is a five-level quantification of the degree to which “I prefer
livelihood security to monetary compensation in terms of land reallocation”. The results of
the comparative mean analysis and the ANOVA test are shown in Table 8.
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Table 8. The compensation for land reallocation according to the characteristics of farmers.

Characteristics Mean N Ratio (%)
Standard
Deviation

ANOVA
Intergroup

Significance

Age

18–25 3.95 247 47.18 1.023

0.024 **
26–35 4.24 51 9.74 1.051
36–45 4.41 62 11.79 1.024
46–55 4.37 22 4.10 0.806
>56 4.5 8 1.54 0.837

Education

Without education 4 4 0.77 1

0.019 **
Primary school 4.57 9 1.79 0.787

Junior high school 4.36 48 9.23 0.99
High school 4.36 74 14.10 0.93

Junior college and above 3.95 254 48.46 1.045

Off-farm employment
skills

No 4.13 121 23.08 1.019
0.903Yes 4.08 269 51.28 1.034

Income
(yuan per year)

3000–5000 4.06 48 9.23 1.068

0.559
5000–10,000 4.1 55 10.51 1.114

10,000–20,000 3.88 66 12.56 1.033
20,000–30,000 4.17 32 6.15 1.007

>30,000 4.16 188 35.90 0.994

total 4.09 390 100 1.026 –

* p < 0.1, ** p < 0.05, *** p < 0.01.

The data showed that the quantitative score of observation variable A32 was 4.09,
and farmers were more willing to get livelihood compensation. At the same time, off-
farm employment skills and household income do not have a significant impact on the
willingness to take livelihood compensation; age and education level had a significant
influence on the willingness to take livelihood compensation among the groups, and
farmers with an advanced age and lower education level were more likely to be eligible for
livelihood compensation.

6. Conclusions

First, farmers’ cognition of the land functions in national parks affects their land real-
location intention through mediation variables, and farmers’ trust in the land management
ability of NPA is a complete mediator between farmers’ land function cognition and their
willingness to leave the land. In the five land function scenario models of scientific research,
leisure and recreation, environmental education, ecological protection, and livelihood secu-
rity, the mediating effect value of the variable of farmers’ trust in NPA’s land management
ability decreased gradually. The results showed that rural households did not understand
the non-conventional functions of national parks, such as scientific research, recreation, and
environmental education. Therefore, when land is used for scientific research, recreation,
and environmental education, the NPA needs to gain sufficient trust from farmers in order
to improve farmers’ willingness to leave land.

Second, PEV has no significant positive moderating effect on the relationship between
land functions (ECF, EEF, NEF, LRF, SRF) and land reallocation intention (LRI). According
to the actual situation in the case study, if farmers perceive that the economic value of the
land is low in the scenario of SRF, they are inclined to transfer the land. However, when the
economic value of the land is higher, the farmers tend to reserve the land. At this time, the
NPA must gain high trust from farmers to promote the improvement of farmers’ willingness
to leave the land. PEV has a negative moderating effect on the relationship between the
land function of scientific research and land reallocation intention. This also reveals that
farmers’ cognition of the scientific research function of national parks is insufficient.
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Third, the moderating effects of peasant household characteristics on different situation
models are not the same. 1© Age has a significant moderating effect on the scenario models
of NEF, ECF, and SRF. The land reallocation intention was stronger among the farmers
of the younger age group. This is supported by the research of Hu et al. (2018) [48] and
Tang et al. (2014) [49]. 2© Education shows a very significant moderating effect on the
scenario models of NEF, LRF, and SRF. The willingness of highly educated farmers to
leave their land is stronger, and with the improvement of education level, the willingness
of highly educated farmers to leave their land will increase with the degree of trust in
the land management ability of NPA. This conclusion was confirmed in the study of
Tang et al. (2014) [49]. 3© Family income has a significant moderating effect on the scenario
models of NEF, ECF, and SRF. Due to the strict ecological protection restrictions, the
livelihood of farmers in the low-income family group is not sustainable, and they are
more inclined to give up their land. This is consistent with the research conclusion of
Hu et al. (2018) [48]. 4© Off-farm employment skills have a significant moderating effect on
the scenario models of NEF, LRF, and EEF. When the land function is leisure and recreation,
farmers with off-farm employment skills are more inclined to give up their land. When the
land function is life security, farmers without off-farm employment skills are more likely to
give up their land.

Fourth, compared with material or monetary compensation, land-losing farmers are
more willing to receive livelihood compensation, and the less educated and older farmers
are more willing to receive livelihood compensation after land reallocation.

Finally, in the context of nature conservation and urbanization in China, there are
differences in farmers’ willingness to leave the land. 1© Against the background of urban-
ization, when the economic value of land is high, farmers are willing to leave the land to
obtain compensation [16], but against the background of nature protection, the economic
value of land has no significant moderating effect on the willingness of farmers to leave
the land. 2© The management ability of NPA is a completely mediating factor for the
peasants’ land reallocation intention, but the government’s land management ability is
rarely mentioned in the study of land reallocation intention against the background of ur-
banization. 3© Farmers without off-farm employment skills in nature reserve communities
were more likely to give up their land, while farmers without off-farm employment skills
were not found to be likely to do so in the context of urbanization [14,50]. The reason is that,
against the background of nature protection, the land use mode and intensity are strictly
restricted, and the minimum subsistence security function of the land cannot be ensured,
so the farmers have to give up the land to find another livelihood. Farmers with off-farm
employment skills can benefit from participation in recreational and ecotourism operations,
so they tend to stay on their land.

7. Applications

According to the Guidelines, national parks are divided into two functional zones:
the Strictly Protected Zone (SPZ) and Generally Controlled Zone (GCZ). Of these, the SPZ
is devoted to carrying out ecological protection and the scientific research function of the
land, while the GCZ can be further refined to consider land functions such as leisure and
recreation, environmental education, and living guarantees to promote community devel-
opment. The land function situations in this study can be combined with the functional
zoning of national parks in the Guidelines. In order to adhere to the principle of ecological
protection first, the collective land in the Strict Protection Zones needs to be nationalized.
In order to protect the rights and interests of community development, collective land in
zjr GCZ need not be fully expropriated, but the mode and intensity of land use need to
be limited and can be transferred to the park management agency or a third party when
necessary. In any type of land function scenario, the NPA needs to deal with Collective
Land Ownership. To prevent community conflicts, this study proposes the following
collective land management recommendations.
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The capacity for the building of national parks to manage natural resources such as
land needs to be strengthened. The construction of park natural resource management
capacity is the key to realize the strict collection of collective land in protected areas and
the transfer of collective land in general controlled areas.

A national park community communications and support department should be
established within the NPA with the purpose of strengthening the communication between
the national park and the community and popularizing the background and significance
of the park construction in the community to improve the cognition of the community
farmers of the basic functions of the national park. The key points of the work are to
strengthen farmers’ cognition of the scientific research function of national parks, to increase
communication with young and highly educated people with off-farm employment skills
and a low living guarantee whose land is located in the general control zone in order
to gain their trust in the NPA, to help community farmers to improve their off-farm
employment skills and raise their household income, and finally to increase investment in
basic community education needs. The NPA should work with schools in the compulsory
education stage in the park community to carry out national park education and improve
young people’s awareness of the functions of national parks to foster a positive emotional
connection with national parks.

Attention should be paid to the compensation method of community farmers’ land
reallocation. In the process of acquiring land control rights, the NPA should give preference
to livelihood compensation for farmers who are older or less educated, so that farmers can
acquire lasting “nest eggs”. In the process of the ecological migration of the original Dajiuhu
Village in Shennongjia National Park, the NPA leased the collective land located in SPZ
(Dajiuhu Wetland) for 30 years. For the Dajiuhu immigrants who have moved to Pingqian
Town, the NPA has guided the immigrants to engage in accomodation, catering, and other
service industries in Pingqian Town through systematic tourism training. The NPA has
also given preferential interest rates for loans to the accomodation operators of ecological
migrants. At present, Pingqian Town is another important tourist node in Shennongjia
National Park besides Muyu Town. It has been proved that Shennongjia National Park pays
attention to farmers’ demands for livelihood compensation in the disposal of the Collective
Land Ownership of protected land and obtains community support through diversified
land compensation methods, realizing a win–win situation of ecological protection and
community development.

8. Limitation and Prospect

The statistical data of the samples in this research show that farmers with a college
education or a graduate degree and young farmers account for a large proportion of the
samples, which may be due to the large proportion of questionnaires collected through the
Internet. The penetration rates of smart phones and the Internet are higher among farmers
who are young or have a high education. Limited by objective factors, the sample data
collection rate from the field household survey was not high, which is the limitation of
this research.

At present, among the 10 national parks in China, the collective land of Sanjiangyuan,
Qilian Mountain, Northeast Hubao, Puda Cuo, and Hainan tropical rain forest accounts
for less than 20%, and the largest proportion of the collective land area is 80.73% in
Qianjiangyuan, followed by 74.74% in Wuyi Mountain, 64.42% in Nanshan Mountain,
and 28.59% in Giant Panda. In this case, the collective land of Shennongjia National Park
(including the area of the trust area) accounts for 23.2%, which is at a medium level. The
research on the difference of the reallocation intention of collective land in different types
and regions of national parks can be taken as a future research direction. Especially after
the end of the national park system pilot project, China’s national parks will continue to
expand. By then, the comparative study on the land reallocation intentions of community
farmers of collective land in national parks in southern, northern, and central China will
provide a scientific basis for differentiated land ownership policies in protected areas.
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Abstract: The improvement of green economic efficiency (GEE) should be realized under reasonable
urban land development intensity (ULDI). Improving GEE can also help alleviate the negative
externalities of excessive or unreasonable ULDI. Clarifying the interactive response mechanism
between GEE and ULDI is a key link in regional sustainable development. Therefore, this paper
uses the super-efficiency slack-based model (SBM) method, panel entropy method, and panel vector
auto regression model to comprehensively analyze the interactive response relationship between
GEE and ULDI in 283 prefecture-level cities in China from 2003 to 2019. This paper finds that:
(1) during the research period, both the GEE and ULDI showed a relatively obvious upward trend,
which is manifested in the fact that ULDI increased year by year while GEE overall increased in
volatility. The growth and evolution trend of ULDI and GEE has the characteristics of interaction and
coordination; (2) there is a two-way interactive Granger causality between ULDI and GEE, showing a
positive interactive response effect; and (3) both ULDI and GEE have positive inertial growth and
self-enhancement mechanisms. In the long run, GEE has a greater impact on the change of ULDI.

Keywords: green economic efficiency; urban land development intensity; interactive response

1. Introduction

The complex interaction between economic development and urban land use has
always been the focus of global sustainable development. Although there is a big gap
between developed and developing countries [1], they are both faced with the problem
that economic growth is not sustainable because of the rigid restriction of the total amount
of urban land resources [2]. The whole world chooses to implement green economic de-
velopment and higher intensity urban land use to solve the unsustainable problem of
the traditional economic development model. Since the 20th century, China’s economic
development achievements have attracted worldwide attention. However, the reality is
that China’s traditional economic development model of high pollution and extensive uti-
lization still exists [3,4]. Economic development is strongly dependent on the development
and utilization of land resources [5], and the problems of high-intensity or unreasonable
urban land use, such as the disorderly expansion of urban construction land, structural
imbalance, and overall low level of resource allocation efficiency, are becoming increasingly
prominent [6,7]. Realizing the benign interaction between urban land development and
green economic development is a strategic task and an important path for China, which
is in the transition stage to green and low-carbon development, both at present and for a
long time in the future. At the same time, studying the interaction between green economic
development and urban land use intensity, and summarizing China’s experience in the
above aspects, can provide path reference and experience for other developing countries to
achieve sustainable development.

Green economic efficiency (GEE) reflects the economic efficiency of a country or region
after comprehensive consideration of resource depletion and environmental impact, and is
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directly related to the green economy development in the future [8]. In the research on the
measurement of GEE, existing studies incorporated the cost of environmental pollution con-
trol into the production function as an undesired output, and used the Solow residual value
method to measure green economy productivity to judge whether a country or region could
achieve green economic development [9–11]. With the continuous deepening of the index
system and method innovation research on GEE, scholars have selected indicators based on
the traditional indicator system of labor, capital, resource input, economic expected output,
and environmental pollution discharge as undesired output [12], adding consideration for
the input and output of factors such as technology and smog [13]. The parametric method
and the non-parametric method are two methods to measure green economy efficiency.
Among them, the parameter method is used to measure the GEE by setting the specific form
of the production function, and the more commonly used method is the stochastic frontier
analysis method (SFA) [14]. Nonparametric methods mainly refer to data envelopment
analysis (DEA) and its derived models [15,16]. The DEA model can measure the GEE under
multiple input factors and multiple input–output conditions, but it can easily lead to biased
results because it cannot consider the influence of input–output slack variables. In recent
years, scholars have mostly used the slack-based model (SBM) based on slack variables
proposed by Tone (2001) [17] and the super-efficient SBM model that can make up for the
SBM model to measure the efficiency value of multiple decision-making units with a unit
of 1 [18].

Urban land development intensity (ULDI) is an index to comprehensively evaluate
the status of urban land development and utilization, including the comprehensive char-
acterization of the urban land development scale, urban land development benefits, and
urban land development structure [19–22]. In the above definition, the actual performance
of urban land development is the expansion of the scale of construction land and the
reduction in cultivated land, forest land, water areas, etc. [23,24]. In this process, the
same urban land development scale produces different functions and benefits because
of different urban land-use structures [25]. Scholars in various countries have reached a
general consensus that the ULDI is an important part of the urban space management and
control system, and its scientific measurement and evaluation analysis is an important
path to optimize the urban land development pattern [19,26]. Under the background of
this theoretical research, Chinese scholars have achieved quite rich results in the concept
and connotation measurement of ULDI. There are usually two research approaches. The
first is to use a single indicator, such as the proportion of regional construction land area
to regional land area [27], building density [28], compactness [29], and plot ratio [30,31]
to measure ULDI. In recent years, scholars mainly directly use the proportion of the con-
struction land area in the urban area to the total land area in the urban area to measure the
urban land development intensity [32]. The second is to construct an index system from
multiple levels for comprehensive evaluation according to the characteristics of urban land
development. For example, Wang et al. [33] selected indicators from six aspects including
construction land development intensity, population density, economy, ecological envi-
ronment, infrastructure, and public service facility intensity to comprehensively evaluate
the ULDI of typical Chinese cities. Liu Yanjun et al. [34] constructed a theoretical analysis
framework for ULDI including the level and extent of construction land use, population,
and socio-economic bearing intensity in urban areas, and selected corresponding indicators
from three aspects of quantity, structure, and benefit to measure ULDI in northeast China.
Kong Xuesong et al. [35] selected indicators from three aspects of urban land development
density, development benefit, and development degree to measure and evaluate the ULDI
of county-level units in Jiangsu Province.

Existing studies have explored the interaction between ULDI and GEE. Some scholars
regard construction land scale and land-use structure changes as the dominant charac-
teristics of urban land development [36,37] and focus on discussing the economic, social,
and ecological benefits brought about by construction land scale changes and different
urban land-use structures [38,39]. Changes in the scale of urban construction land can have
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a positive impact on the quality of the economy, society, and ecological environment in
the development of green economy, but the rapid expansion of urban construction land
has adversely affected the urban ecological environment and the lives of urban residents,
thereby reducing the GEE [40]. At the same time, the changes in social structure, economic
structure, and ecological structure caused by green development economy will ultimately
be reflected in the urban land-use structure and its changes [41,42]. Some scholars have
also studied the impact of green economic development on the ULDI. Factor agglomeration
and efficient allocation are typical features of GEE improvement [43]. The agglomeration
economy, technological innovation and investment expansion caused by the agglomeration
of factors and the efficient allocation of resources significantly affect the ULDI. Schol-
ars generally agree that industrial agglomeration, industrial structure upgrading, and
technological innovation are the direct reasons that affect the optimization of urban land
development [44–46]. However, with the continuous agglomeration of factors, there may
be a “crowding effect”, resulting in problems such as the intensification of the contradiction
between man and land and the blind expansion of construction land [47]. Scholars are
also concerned about environmental regulation as an effective means for green economic
development to influence urban land development [48]. Environmental regulation plays
a certain role in alleviating excessive or unreasonable urban land development through
structural effects, innovation effects, spillover effects, etc., and improves the efficiency of
resource allocation, thereby affecting the intensity of urban land development [49,50].

There is an interaction and mutual influence between ULDI and GEE. The optimization
of urban land development can promote green economy development, and economic
transformation and green development can also control the total scale of urban land
development and optimize the pattern of urban land development. However, the existing
research mainly studies the one-way effect of GEE on ULDI or ULDI on GEE. These studies
have not given the dynamic relationship between GEE and ULDI, and the research on the
interaction and response mechanism between GEE and ULDI is still insufficient. Therefore,
the contribution of this paper is to construct the evaluation index system of GEE and ULDI,
respectively, and expand the depth and breadth of existing research on the relationship
between GEE and ULDI. This paper will take 283 prefecture-level and above cities in
China as the research objects and select the sample data from 2003 to 2019. First, the
paper uses the super-efficiency SBM model and the panel entropy method to measure
GEE and ULDI, respectively, reveal their evolutionary characteristics, and preliminarily
determine the relationship between the two. Second, the paper uses the panel vector
autoregression (PVAR) model to explore the dynamic interaction mechanism between the
two. Finally, policies and suggestions are put forward to better realize the good interaction
and sustainable development between ULDI and GEE.

2. Methods and Data

2.1. GEE Evaluation Model
2.1.1. The Super-Efficiency SBM Model

We adopt the super-efficiency SBM model based on undesired output to measure GEE.
Charnes and Cooper (1990) [51] first proposed the data envelopment analysis (DEA), and
then in 2001, Tone [17] proposed a non-radial slacks-based measure (SBM) model based on
the traditional DEA model. In 2002, Tone proposed a super-efficiency SBM model based on
the non-radial SBM model with modified slack variables [52]. The super-efficiency SBM
model can not only consider slack variables and avoid the bias caused by the selection
of radial and angular selections, but also further rank effective research units with an
efficiency value greater than or equal to 1. The super-efficiency SBM model that incorporates
undesired outputs is widely used by scholars to measure efficiency. It is of great significance
especially in the study of ecological efficiency in economic development and economic
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development efficiency under the constraints of resources and environment [53]. The
calculation model is:

minρSE =
1
m ∑m

i=1(x/xik)

1
r1+r2

(
∑r1

j=1 yd/yd
jk + ∑r2

q=1 yu/yu
qk

) (1)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x ≥ ∑n
j=1, �=k xijλj; yd ≤ ∑n

j=1, �=k yd
sjλj;

yd ≥ ∑n
j=1, �=k yd

qjλj; x ≥ xk;

yd ≤ yd
k ; yu ≥ yu

k ;
λj ≥ 0, i = 1, 2, . . . , m; j = 1, 2, . . . , n;

s = 1, 2, . . . , r1; q = 1, 2, . . . , r2;

(2)

In the formula, assume there are n decision making units (DMUs). Each DMU has
m inputs, r1 expected outputs, and r2 undesirable outputs. x is the elements in the input
matrix. yd is the elements in the desired output matrix. yu is the elements in the undesired
output matrix. ρ is the GEE value obtained from the measure.

2.1.2. Selection of Indicators

Based on the existing research results, the GEE measurement index system is con-
structed from three aspects: input, expected output, and undesired output (Table 1).

Table 1. GEE evaluation index system.

Target Index Category Indicator Explanation

GEE

input

Labor input Number of employees (person)
capital input Fixed asset investment (RMB 10,000)

Technology input Number of green patents (pieces)

Energy input Electricity consumption of the whole
society (100 million kWh)

output

expected output GDP (RMB 10,000)

undesired output

Industrial wastewater discharge (tons)
Industrial exhaust emissions (tons)

Industrial solid waste discharge (tons)
Carbon emissions (tons)

The input factors in GEE include non-resource input factors and resource input factors.
Non-resource input factors mainly consider labor, capital, and technology input. We select
the number of employees and capital stock as the corresponding index to measure labor
input and capital input. Green technology innovation is an effective way for China’s eco-
nomic transformation to green development to achieve sustainable development goals [54].
In existing research, R&D funding is an index to measure technology input in economic
efficiency [55], but not all R&D funding goes to green innovation. Patent applications can
reflect the progress of technological innovation [56], among which the green patent number
can be used to evaluate the field of green technological innovation [57,58]. Therefore, this
paper chooses the number of green patents as an indicator to measure technology input
in GEE. The resource input element is mainly represented by the indicator of electricity
consumption in the whole society.

The expected output is expressed by the indicator of GDP. The undesired output is
generally represented by the comprehensive index of industrial pollution and, taking into
account the current “dual carbon” goal vision, carbon emissions are also included in the
undesired output.
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2.2. ULDI Evaluation Model
2.2.1. Panel Entropy Method

We adopt the panel entropy method to measure ULDI. The entropy method determines
the indicator weight according to the size of the information provided by the indicator
observations. Entropy is derived from the physical concept of thermodynamics and was
introduced to information theory by Shannon in 1948. In information theory, entropy
is used to measure uncertainty. The smaller the amount of information, the greater the
uncertainty, and the greater the entropy [59]. Based on this characteristic, the entropy value
can be calculated to determine the degree of dispersion of an index. The greater the degree
of dispersion of the index, the greater the impact on the comprehensive evaluation of the
comprehensive index, and the greater the weight given to the index. The entropy value
method can determine the index weight according to the degree of variation of the index
value, which can avoid the lack of objectivity that is due to the subjective judgment in the
subjective weighting method, and can also avoid the lack of information in the principal
component analysis method. The entropy value method applied in practice is the most
extensive. Moreover, the traditional entropy method to determine the weight can only
deal with cross-sectional data, which makes it difficult to compare between different years.
In this paper, the time variable is introduced into the improved panel entropy method to
assign the index weight. The calculation model is:

The first step is to select indicators. There are m city t years n indicators, then xijk
represents the value of the k-th index in the j-th year of the i-th city. In this paper, xijk is the
index selected to judge the ULDI.

The second step is to standardize the indicators. Due to the differences in dimensions
and units of different indicators, the extreme value method is selected to standardize
the indicators. After the positive and negative indicators are determined, normalization
is performed:

x′ijk =
xijk − xmink

xmaxk − xmink
(3)

where xmink represents the minimum values of the k-th index in the j-th year of the i-th
city. xmaxk represents the maximum values of the k-th index in the j-th year of the i-th city.
The x′ijk obtained after the normalization of xijk represents the relative size in m cities and t
years, and the value is between 0 and 1.

The third step is to determine the indicator weight:

yijk = x′ijk/∑
i

∑
j

x′ijk (4)

The fourth step is to calculate the entropy value of the k-th indicator:

ek = −1
θ ∑

i
∑

j
yijk ln(yijk) (5)

where the constant θ > 0, and θ is only related to the number of samples m · t. We generally
make θ = ln(m · t), then 0 ≤ ek ≤ 1, ln is the natural logarithm.

The fifth step is to calculate the information utility value of the k-th indicator:

gk = 1 − ek (6)

The sixth step is to calculate the weight of the information utility value of the
k-th indicator:

wk = (1 − ek)/∑
k
(1 − ek) (7)
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The seventh step is to calculate the comprehensive score of each city’s ULDI:

Hij = ∑
k

wkx′ijk (8)

2.2.2. Selection of Indicators

Urban land development intensity is a comprehensive characterization of urban land
development scale, urban land development benefit, and urban land development structure
(Table 2).

Table 2. ULDI evaluation index system.

Target Category Indicator Explanation

ULDI

The scale of urban land development The ratio of construction land area to total land area in
the region (%)

Economic benefits of urban land development Industrial non-agricultural rate (%)
GDP output per land (10,000 RMB/square kilometer)

Social benefits of urban land development
Per capita disposable income (yuan/person)

Per capita residential land area (square meters/person)
Per capita road area (square meters/person)

Ecological benefit of urban land development green space per capita (square meters/person)

Urban land development structure Information entropy of construction land structure

The total scale of urban construction land is the main content of the scale of urban
land development, which is represented by the ratio of the area of construction land in the
region to the total land area of the region.

The purpose of urban land development is to produce economic, social, and ecological
benefits through the development and utilization of land resources to meet the needs of
human production and life. In terms of economic benefits, this paper selects the industrial
non-agricultural rate and GDP per land to characterize the economic benefits of urban land
development. The social benefits are reflected in the support of people’s income, settlement,
and public services. Three indicators, namely per capita disposable income, per capita
residential land area, and per capita road area, are selected. In terms of ecological benefits,
regional green space is an important component of ecological space, which can provide
ecological assistance for social and economic development by improving the ecological
environment. This paper selects the green space per capita as an indicator.

In this paper, the information entropy index of construction land structure is selected
as the index to judge the urban land development structure. The urban land development
structure is reflected in various construction land types. The actual manifestation of urban
land development is the expansion of the number and scale of construction land and
the reduction in cultivated land, forest land, water areas, etc. With the changes in the
degree of urban land development affected by human social and economic activities, the
type of structure of construction land has been further significantly changed. The specific
method is to first refer to the Standard for Classification of Urban Land and Planning
and Construction Land (GB501372011) and determine that the construction land mainly
includes eight types of land. Second, calculate the ratio of various types of construction
land to the total area of regional construction land, expressed as P1,2,...,8. Finally, according

to the entropy formula − 8
∑

i=1
Pi lnPi, the entropy value of the construction land structure

information is calculated.

2.3. Panel VAR Model

We use the panel vector autoregression (PVAR) model to reveal the dynamic interaction
mechanism between green economic efficiency and urban land development intensity.
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Based on the univariate autoregression (AR) model, Sims proposes a vector autoregression
(VAR) model. The vector autoregression model is used for the prediction research of time
series variables and the analysis of variables affected by random disturbances by realizing
the regression analysis of the current variables on several lag variables of all variables. It
is now widely used to analyze the dynamic correlation between multivariate time series
variables. However, since the VAR model cannot handle long-term panel data, a PVAR
model for panel data analysis was proposed.

The previous studies on the interaction between GEE and ULDI above showed that
the relationship between GEE and ULDI is complex. There is a mutual influence between
GEE and ULDI, which means that endogenous causality may occur among GEE and ULDI.
Therefore, this paper constructs a PVAR model to accurately identify the interaction and
response mechanism between GEE and ULDI. The calculation model is:

yit = α1 +
n

∑
p=1

βpyit−p + γxit + εit (9)

where yit is a multi-dimensional endogenous variable, which is GEE and ULDI; p is a lag
period; yit−p is a lag period variable; xit is an exogenous variable; and εit is the disturbance
vector. The disturbance vector is only related to the current variable, independent of lag
variables; α is the intercept term; and β and γ are the coefficient.

2.4. Research Samples and Data Sources

This paper takes prefecture-level cities in China as the research sample area. Consider-
ing the availability and completeness of data, the sample to be investigated in this paper
is ultimately 283 prefecture-level and above cities in China. The study sample period is
2003–2019. Except for the green patent data from the CNRDS China Research Data Service
Platform, other data related to index variables are all from the “China Urban Statistical
Yearbook”, “China Urban Construction Statistical Yearbook”, statistical yearbooks over the
years, and national economic and social development during the sample period. For very
few cities, the missing data in some years were supplemented by interpolation.

3. Results

3.1. Evolutionary Characteristics of ULDI and GEE

As can be seen from Figure 1, the ULDI increased year by year from 0.0309 in 2003 to
0.0820 in 2019. The measurement results show that during the study period, the overall
ULDI in China showed a trend of gradual increase over time. The ULDI kept increasing
with the rapid advancement of industrialization and urbanization. The GEE increased
from 0.6839 in 2003 to 0.8655 in 2019. The measurement results show that during the study
period, China’s GEE showed a trend of gradual improvement over time. However, the
average green economic efficiency in each year has not reached the effective value. From
the perspective of time series evolution, China’s GEE shows a staged characteristic of a
steady rise in fluctuations. From 2003 to 2010, the change of green economic efficiency was
dominated by “fluctuations, supplemented by rising” and green economic efficiency did
not form a stable upward trend. From 2010 to 2016, GEE showed a steady upward trend.
From 2016 to 2019, GEE showed an upward trend after a significant decline in 2017.

The evolutionary characteristics of ULDI and GEE show that both ULDI and GEE
showed an upward trend from 2003 to 2019. It shows that the support efficiency of China’s
urban land development to the improvement of green economic efficiency continues to
increase, and urban land development tends to develop in a good operation and adaptation
state. However, the changing trends of ULDI and GEE are different. During the sample
period, the ULDI was in a relatively steady upward trend year by year, while the GEE
showed a fluctuating upward trend of “decrease first and then increase”. When the GEE is
on the rise, the increase in the ULDI is larger than that when the GEE is on the decline.
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Figure 1. Calculation results and time-series trend characteristics of GEE and ULDI.

3.2. Analysis on the Interactive Response between ULDI and GEE

The PVAR is built in the following four steps [21,60]. First, we used the unit root to
test the stationarity of the time-series data, and use the Granger method to test whether
there is a causal relationship between GEE and ULDI. Second, we chose the suitable lag
order and use the generalized moment method to determine the regression result among
GEE and ULDI. The impulse response functions will be tested third.

3.2.1. Stationarity and Causality Tests

Time-series variables need to be tested for their stationarity by unit root, and the PVAR
model cannot predict the change law of nonstationary time-series data. The commonly
used test methods of Levin-Lin-Chu (LLC), Im-Pesaran-Shin (IPS), and Fisher-type (ADF-
Fisher, PP-Fisher) are comprehensively used. The results are shown in Table 3. As can be
seen from Table 3, the p-values of the LLC, IPS, Fisher-ADF, and Fisher-PP test statistics of
green economic efficiency and territorial space development intensity are all 0.0000, and
the original data are all stationary data.

Table 3. Unit root test results.

Variables
LLC IPS Fisher-ADF Fisher-PP

Statistics p-Value Statistics p-Value Statistics p-Value Statistics p-Value

ULDI −28.831 0.000 −10.505 0.000 6.524 0.000 24.153 0.000
GEE −49.157 0.000 −34.443 0.000 47.999 0.000 75.619 0.000

The Granger method is used to test the causality between ULDI and GEE. The results
are shown in Table 4. As can be seen from Table 4, the p-values of the Granger causality
test of ULDI for GEE and GEE for ULDI are both 0.000, indicating that the Granger null
hypothesis is rejected. There is a two-way interactive Granger causality between ULDI
and GEE.
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Table 4. Granger causality test results.

Null Hypothesis Z-Bar Tilde p-Value Conclusion

ULDI ULDI is not the Granger reason for GEE 27.690 0.000 Reject the null hypothesis
GEE GEE is not the Granger reason for ULDI 15.706 0.003 Reject the null hypothesis

3.2.2. PVAR Model Regression Analysis

According to the constructed formula (9), we can use the Stata15.0 software to deter-
mine the regression result among GEE and ULDI. The implementing of the PVAR model
first needs to determine the optimal lag order. Same as in the existing literature [21], we
used Akaike’s information criterion (AIC), Baysian information criterion (BIC), and Hannan
and Quinn information criterion (HQIC) to select the optimal lag order (Table 5). It can be
found from Table 5 that when the lag order is 4, the statistics of AIC, BIC, and HQIC are
the minimum. Therefore, 4 is the lag order selected to establish the PVAR (9) model.

Table 5. Results of multi-criteria joint judgement.

Lag AIC BIC HQIC

1 −2.317 −1.463 −2.015
2 −2.551 −1.641 −2.228
3 −2.811 −1.836 −2.464
4 −3.342 −2.291 −2.966
5 −3.308 −2.171 −2.900

We used the generalized method of moments (GMM) method to estimate the PVAR
model [60]. The results are shown in Table 6, among which the ULDI equation under
“Type” represents the effect of ULDI and GEE on ULDI, and the GEE equation under “Type”
represents the effect of GEE and ULDI on GEE, and L1. represents the variable of the
first-period lag, L2. represents the variable of the second-period lag, L3. represents the
variable of the third-period lag, and L4. represents the variable of the fourth-period lag.

Table 6. Estimation results of PVAR model based on GMM method.

Type Variable Coefficient Variable Coefficient

ULDI equation

L1.TSDI 0.504 (0.08) *** L1.GEE 0.063 (0.02) ***
L2.TSDI 0.049 (0.06) L2.GEE 0.042 (0.02) **
L3.TSDI 0.087 (0.06) L3.GEE 0.070 (0.02) ***
L4.TSDI 0.059 (0.05) L4.GEE 0.032 (0.01) ***

GEE equation

L1.GEE 0.044 (0.01) *** L1.TSDI 0.064 (0.03) **
L2.GEE −0.005 (0.01) L2.TSDI −0.008 (0.02)
L3.GEE 0.470 (0.02) *** L3.TSDI 0.016 (0.02)
L4.GEE −0.062 (0.01) *** L4.TSDI −0.006 (0.02)

Note: *** and ** show significance at the 1% level and 5% level, respectively. Std. Err. of estimated value is given
in parentheses.

As shown in Table 6, in the ULDI equation, the L1., L2., L3., and L4. of both ULDI
and GEE have positive influence coefficients on ULDI in the current period. However, the
impact of the L1., L2., L3., and L4. of ULDI on the current is only significant in L1. ULDI
generally has a large degree of path-dependent inertia in the subsequent development
process, but because of the limitation of land resources, this path dependence gradually
weakens over time. The positive effect of L1., L2., L3., and L4. of GEE on ULDI is
consistently significant. The improvement of GEE is an important reason affecting ULDI
and the impact of the improvement of GEE on ULDI has a positive cumulative effect on the
time scale.

In the GEE equation shown in Table 6, the L1., L2., L3., and L4. of GEE have alternating
positive and negative effects on GEE in the current period. GEE has a large degree of self-
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adjustment mechanism, and this self-adjustment is manifested as self-promotion. The L1.,
L2., L3., and L4. of ULDI also showed alternating positive and negative effects on GEE.
The influence effect of ULDI on GEE has nonlinear characteristics, which is manifested
as a divergent promoting effect on GEE in the early and middle stages of green economic
development, and a convergent hindering effect in the short-term and late stages of green
economic development. In the long run, the positive effect of ULDI on GEE is greater than
the negative effect.

3.2.3. Impulse Response Analysis

We also use the Stata15.0 software based on Equation (9) to analyze the impulse
response between ULDI and GEE. We set up 200 Monte Carlo simulations to investigate the
impact of random disturbances under unit standard deviation on the dynamic evolution
of current and future values of variables to reveal the interactive response mechanism of
China’s ULDI and GEE in the next 10 years. Figures 2 and 3 show the graph of the impulse
response function of ULCI to itself and GEE. Figures 4 and 5 show the graph of the impulse
response function of GEE to itself and ULCI.

As shown in Figure 2, ULDI has a positive effect on the impulse response of its
own unit, and the impact effect is severe. When it is impacted by its own unit standard
deviation, ULDI quickly responds to the peak value in the current period, and then this
positive response shows a fluctuating downward trend and converges to 0.

Figure 2. Impulse response of ULDI to ULDI.

As shown in Figure 3, the impulse response of ULDI to GEE is positive. It shows that
the current response is 0, and then the positive response speed is accelerated, reaching the
highest value in the fourth period, and each period after the fourth period has a relatively
stable positive response.
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Figure 3. Impulse response of ULDI to GEE.

As shown in Figure 4, when subjected to one standard deviation shock of ULDI, GEE
showed a positive response in the 10th period, but its impulse response showed periodic U-
shaped fluctuations. It shows that ULDI has a volatile promoting effect on the improvement
of GEE. ULDI has always been the driving force for the improvement of GEE, but in this
process, it is necessary to continuously improve the efficiency of resource utilization and
weaken the restrictive effect of urban land development on the improvement of GEE.

Figure 4. Impulse response of GEE to ULDI.

As shown in Figure 5, when subjected to its own unit standard deviation, GEE also
showed a positive response. The specific performance is that it also responds quickly in
the current period and reaches the peak value. After that, it showed the characteristics of
reciprocating change, of which the positive effect decreases in the first period, tends to be
weak in the second period, and increases in the third period.
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Figure 5. Impulse response of GEE to GEE.

4. Discussion

This paper defines the ULDI including the urban construction land scale, the internal
type of urban construction land, and the economic, social, ecological benefits of urban land
development. It reflects the current important measures to realize the sustainable develop-
ment of urban land development in China, that is, to control the disorderly expansion of
the scale of construction land in breadth, to optimize the types of urban construction land
through internal potential tapping to the limit, and to continuously improve the benefits of
urban land development in depth. This provides a reference for other developing countries
to pay attention to the ULDI in the process of development.

However, only the internal improvement of ULDI is effective in the short term, but
unsustainable in the long run. The rapid growth of China’s economy depends on the direct
pull of the wide supply of urban land. China is faced with the problem of insufficient capital
in the early stage of economic development. China’s unique land system, with the compul-
sory low-cost land acquisition system and the government-monopolized state-owned land
transfer system as the core arrangement, ensures a wide supply of land and makes land
resource utilization a source of capital for economic development [61]. A large amount
of low-cost supply of land has become an important tool for local governments to attract
investment and obtain more investment in fixed assets, and promote the development of
local industrialization [62,63]. Especially after the reform of the tax-sharing system, local
governments have obtained a large amount of land transfer income and tax by increasing
the supply of urban development land, bringing a large amount of land fiscal revenue [64].
Land fiscal revenue and land financing mortgage funds have become important sources
of funds for local governments to realize infrastructure construction, and further attract
the inflow of capital and talents [65]. Land has become a factor of production as important
as technology, capital, and labor in the process of economic development, and urban land
development as a tool has created a miracle of economic growth in China.

Many problems have begun to emerge from this traditional economic development
model accumulated with the extension of the time domain and the frequency domain.
First, the economic development model that relies too much on land resource utilization is
unsustainable because of the real constraints of a scarcity of land resources. In addition, the
development model of land capitalization in which local governments bundle land transfer
fees and reserve land mortgage financing has accumulated a lot of financial risks [66]. These
further inhibit economic growth and urbanization. Second, environmental problems such
as carbon emissions and industrial pollutant emissions are significant. Local governments
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rely on low-cost land supply to attract a large number of low-end manufacturing industries
with high energy consumption and high pollution, which has greatly promoted the process
of industrialization. However, in the long run, enterprises with poor prospects and low
production capacity squeeze land resources, and the “crowding out effect” of technology-
intensive and capital-intensive high-value-added industries reduces industrial output
value [67]. Third, bound by the law of diminishing marginal returns, the economic output
that can be brought about by an increase in unit land investment is becoming more and
more limited, and the engine function of land driving economic growth and regulating
economic rhythm begins to decline [68]. Ultimately, China’s economy has to face the
transformation of old and new economic growth drivers.

China chooses a green way of economic development. From 2003 to 2010, China
transformed the traditional economic development model of high pollution and high energy
consumption. During this period, China’s “Eleventh Five-Year Development” plan has
placed emphasis and strategic arrangements on structural adjustment, energy conservation
and emission reduction, and coordinated regional development. After comprehensively
considering economic growth and resource environmental protection, the GEE has declined.
From 2010 to 2016, with technological innovation, industrial restructuring, environmental
regulation, and other measures, the GEE began to rise steadily. Since then, China’s green
economy model has continued to make new achievements. Because there is a direct elastic
mechanism of urban land development, unit land input will bring about an increase in
output. Therefore, even if China’s economy completes the phased transformation of new
and old kinetic energy, urban land development as a traditional economic growth kinetic
energy still exists, and the scale of urban land development and its growth rate still needs
to be maintained at a certain level. Moreover, the green economy development faces
the dual goals of increasing total demand and improving efficiency [69]. The increase in
aggregate demand for economic development will inevitably lead to and coerce an increase
in aggregate supply, that is, an increase in total economic output will inevitably lead to an
increase in the scale or marginal output of capital, labor, and land [70]. At the same time,
urban land development faces the constraints of limited total land resources and conforms
to the law of marginal diminishing returns to land. Only by ensuring the sustainability of
ULDI can we achieve the level of total economic output and improve the GEE.

Therefore, our findings confirm that there is a mutual influence and mutual promotion
between urban land development and green economic development. Land resources are
an indispensable element of economic development. The driving effect of urban land
development on economic development will not be significantly adjusted or changed.
No matter what kind of economic development mode, the input of urban land resources
is required. Under the green economic development model, the development of the
green economy presents a strong self-adjustment mechanism, which can adjust itself
according to the actual development situation to ensure the sustainable development of
the green economy. In addition, through technological innovation, industrial structure
transformation, and upgrading, etc. to improve the GEE, it can effectively promote the
sustainability of urban land development and achieve a balance between urban land
development and protection. To achieve sustainable development goals, whether it is for
China or other developing countries, it is not sustainable to rely solely on the optimization
within the urban land development system or within the economic development system,
but to achieve a benign interaction and collaborative development between urban land
development and green economy are promising.

5. Conclusions

This paper has explored the dynamic relationship between ULDI and GEE. It mainly
draws the following two conclusions: (1) from 2003 to 2019, China’s ULDI and GEE showed
a relatively obvious upward trend, and the increase in ULDI in the period of increasing
GEE was larger than that in the period of declining GEE. The growth and evolution trend
of ULDI and GEE has the characteristics of interaction and coordination. (2) There is a two-
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way interactive Granger causality between ULDI and GEE. The GMM model estimation
results show that both ULDI and GEE have positive inertial growth and self-enhancement
mechanisms. The interaction between GEE and ULDI has nonlinear characteristics, which
is manifested as a positive cumulative effect on the time scale of the effect of GEE on ULDI,
but the effect of ULDI on GEE only has a significant positive enhancement effect in the
short term, but this contribution gradually weakened as the number of ULDI lag periods
increased. From the results of impulse response analysis, ULDI has a positive response to
GEE, which tends to be stable after reaching the highest value in the fourth period and has
a significant positive enhancement effect in the long run. The results of impulse response
analysis also showed that GEE also had a significant positive response to ULDI, and its
impulse response showed a phased “U”-shaped fluctuation trajectory, and ULDI has a
fluctuating promoting effect on GEE.

When discussing sustainable development issues from the perspective of urban land
use and economic development, it is different from looking at issues from one side. Our
novel research perspective is to examine the bidirectional dynamic relationship between
GEE and ULDI. The empirical test based on the interaction and response mechanism
between GEE and ULDI provides a basis for realizing the path of sustainable development
by realizing the urban land development system, the green economic development system,
and promoting the good mutual feedback evolution between the two. It can be seen that
the development of ULDI can play a positive role in improving GEE. With the expansion of
construction land scale, the adjustment of land-use type structure and the improvement of
urban land development functions, the green economy development can be continuously
promoted. However, when the ULDI reaches a certain level, its influence on GEE will
continue to weaken or even have a negative impact. However, at the same time, when GEE
is improved through technological innovation, industrial structure transformation, and
upgrading, it can continuously optimize the urban land development structure and improve
the comprehensive benefits of urban land development, and reduce the dependence of
economic development on urban land resources to a greater extent. Similarly, when GEE
increases to a certain range, its impact on ULDI will continue to weaken and eventually
stabilize. This means that under the support of a certain ULDI, GEE has been improved to
a certain level, a new balance has been achieved between ULDI and GEE, and the whole
society is in a state of a virtuous circle of sustainable development. However, simply
relying on the internal optimization of the urban land development system to improve the
ULDI or relying on the internal optimization of the green economic development system
to improve GEE is not sustainable. Regional sustainable development plans and policies
should be formulated from the perspective of the coordinated development of urban land
development and green economy according to their own development conditions.

Admittedly, this study has several limitations. For example, first, there are other
indicators and methods for measuring the status quo of urban land development and green
economy development. Even the existing index system in this paper also needs to be further
supplemented and improved according to the actual situation of each country or city. Sec-
ond, this study only considers the interactive response between green economic efficiency
and urban land development intensity. Studies have shown that resource endowment,
population size, and structural characteristics, policies, and regulations have significant
impacts on urban land development intensity and green economic efficiency. The current
study does not incorporate these factors into the analytical framework. Third, there are
significant regional heterogeneities in the resource endowment conditions and social and
economic development levels of various countries, and there may be regional differences
in the interactive response effect between green economic efficiency and the intensity of
national land and space development. Future research will explore the construction of a
more scientific index system and method for measuring urban land development intensity
and green economic efficiency, and incorporate regional heterogeneity into the study of
the relationship between the two. It is also a future research direction to refine the internal
dimension of green economic efficiency improvement and the internal dimension of urban
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land development intensity to reveal the interactive response mechanism between green
economic efficiency and urban land development intensity at a deeper level.
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Abstract: The United Nations Educational, Scientific and Cultural Organization (UNESCO) Global
Geoparks (UGGp) and geotourism activities not only improve people’s scientific quality by popu-
larizing geoscience knowledge, but also play important roles in protecting precious geoheritages
and promoting the development of regional economies. However, tourism activities also have a
negative impact on the local ecological environment, placing the regional ecological system under
great pressure. Therefore, this paper constructed a tourism ecological security evaluation indica-
tor system suitable for geoparks by using the “Driving-Pressure-State-Impact-Response” (DPSIR)
model. The spatial autocorrelation and obstacle degree model are used to analyze the spatio-temporal
characteristics and influencing factors of the tourism ecological security index (TESI) of Huanggang
Dabieshan UGGp in 2000, 2005, 2010, 2015 and 2018, respectively. The results indicate that the TESI
of the study area has gradually improved from 2000 to 2018. Spatially, the level of TESI presents a
gradient distribution from the townships where the main scenic spots are located to the surrounding
townships. The main obstacle factors affecting TESI include: per capita tourism income, proportion
of comprehensive tourism revenue in GDP, per capita net income of rural residents, proportion of
tertiary industry in GDP, coverage of nature reserves, planning integrity of geopark, informatization
of geopark, growth rate of tourists, comprehensive utilization rate of solid waste, etc. The influencing
factors of TESI varied from time to time. Balancing the conflict between local tourism activities and
environmental protection, encouraging the participation of local communities, and strengthening
science popularization for the local public will effectively improve the tourism ecological security
of geoparks.

Keywords: tourism ecological security; Driving-Pressure-State-Impact-Response (DPSIR) model;
spatial autocorrelation; obstacle analysis; Huanggang Dabieshan UNESCO Global Geopark (UGGp)

1. Introduction

In recent decades, the vigorous development of the tourism industry has brought a
lot of environmental pressure and influence, which seriously threaten ecological security
and has received great attention. The development of tourism destinations, tourism re-
sources and tourism markets has promoted the rapid development of the regional economy,
increased foreign exchange income; promoted the development of the service industry,
provided a large number of jobs, improved infrastructure, and increased the visibility of
tourism destinations [1]. However, tourism has brought enormous pressures and risks on
the local ecological environment mainly caused by the development of tourism resources,
the construction of scenic spots, the passenger flow of tourists, and so on [1,2].
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According to statistics, tourism has contributed much to global greenhouse gas emis-
sions, accounting for 12.5% of total global emissions [3]. Research shows that emissions
caused by tourism are projected to double from 2005 to 2035 [4]. Tourism activities such
as transportation and accommodation involve higher energy consumption and carbon
intensity, which have a big impact on the climate [5,6]. Moreover, some tourism activities
have directly interfered with the local flora and fauna communities and the associated
ecosystems, and disturbed the habitats of birds [7–9]. The consumption of resources and
the destruction of ecological environments not only affect the diversity and functionality of
the ecosystems of tourism destinations, but also seriously threaten the ecological security
of these places.

Ecological security is an emerging research field in recent years, which has received
extensive attention from academics [10–14]. It refers to the state in which an ecosystem
provides material resources and services for the survival of human society and promotes
economic development on the basis of ensuring its own integrity and health [15]. Ecological
security assessment research has been carried out from national and regional perspec-
tives [16–20]. The research objects include cities, land, river basins, ecologically fragile
areas, ecological protection areas and so on [21–28]. Tourism ecological security is the
concrete practice of ecological security in the tourism discipline. The concept of ecological
security has been integrated into research on ecotourism and sustainable tourism for a long
time [29–32]. Many studies have shown that tourism development can balance conflicts
between socio-economic development and environmental protection in these regions to a
certain extent [33]. Therefore, the ecological security of tourism destinations has always
been a subject of widespread concern [34–36]. At the same time, it is also one of the impor-
tant fields in the study of tourism destination sustainable development [35]. Consequently,
tourism ecological security can be roughly summarized as a state that, through the ra-
tional development of tourism resources and the governance of ecological environment,
the ecosystem of tourism destination keeps structural stability and functional diversity,
provides a rich material foundation and environmental space for tourism development,
and maintains the coordinated and sustainable development of the nature-society-economy
complex ecosystem.

The study of tourism ecological security involves the fields of ecology, tourism science,
geography, environmental science, energy science, etc. [37–41]. Early studies on tourism
ecological security mainly focused on the impact of tourism activities on the environment,
including tourism environmental capacity, tourism environmental protection, tourism
carrying capacity and sustainable tourism [30,42–47]. Subsequently, more research has
been done on the evaluation and measurement, spatial and temporal pattern, driving
mechanism, prediction and early warning of tourism ecological security [48–53].

The evaluation of tourism ecological security mainly focuses on evaluation indi-
cators and methods. The “Pressure-State-Response” (PSR) model, “Driving-Pressure-
State-Impact-Response” (DPSIR) model, “Pressure-State-Response-Environment-Economy-
Society” (PSR-EES) model, and other quantitative models are usually used to establish
the evaluation indicator system of tourism ecological security [25,49,54,55]. Quantitative
research methods mainly include tourism environmental carrying capacity, ecological
footprint (EF) method, comprehensive index method, analytic hierarchy process (AHP)
method, improved Technique for Order Preference by Similarity to Ideal Solution (TOPSIS)
method, grey relation projection method, and so on [27,56–60]. The grey correlation degree
and obstacle degree model are usually used to analyze influencing factors [53,61,62]. Com-
pared with other evaluation models, the DPSIR model is more comprehensive, logical and
systematic. It has high applicability for tourism ecological security evaluation [50], which
can effectively identify the operating status of the tourism ecosystem. It can not only fully
reflect the interactive relationship among human activities, the ecological environment and
socioeconomic development, but also indicate the cyclic characteristics of system develop-
ment [51]. The obstacle degree model can quantify the obstruction degree of influencing
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factors [63], which is conducive to accurately identifying the main obstacle indicators for
further evaluation. Therefore, they are selected as the research methods for this paper.

From the existing literature, the evaluation and methods of tourism ecological se-
curity usually depend on the research object. Therefore, it is necessary to establish an
appropriate evaluation indicator system [27]. Many kinds of tourism destinations have
been studied, e.g., forest, lake, mountain areas, island and other different types of tourism
destinations [48,58,64–66]. However, little research has been focused on geoparks, which
aim to achieve geoheritage conservation and regional sustainable development. The United
Nations World Tourism Organization (UNWTO) recommended five central pillars for
sustainable development through tourism in 2017, including inclusive and sustainable
economic growth, employment and poverty alleviation, environmental protection and
climate change, heritage and cultural values, mutual understanding, peace, and secu-
rity [47]. The United Nations Educational, Scientific and Cultural Organization (UNESCO)
proposed the establishment of the Global Geoparks Network (GGN) in 1999 to manage
and protect geoheritages and landscapes of international geological significance, and ad-
vocate the sustainable utilization of natural resources and sustainable tourism [67]. The
“International Geoscience and Geoparks Programme (IGGP)” was officially approved in
2015, updating GGN to UNESCO Global Geoparks (UGGp). The Geoparks Initiative high-
lights the potential for interaction between the development of social economy and culture
and the conservation of eco-environment [68]. At present, the research on geoparks is
mainly focused on the classification and evaluation of geoheritage resources, geoheritage
characteristics and geomorphological formation processes, tourist behavior characteristics
and perception, geotourism projects design and geoproducts innovation, local community
participation, etc. [69–75]. In fact, with the development of geopark construction and the
increase in tourism activities, the local ecosystem faces great pressure. Thus, this paper
aims to establish a tourism ecological security evaluation indicator system for geoparks,
to enrich the theory of tourism ecology and ecological security. It can provide feasible
paths and improvement measures for the sustainable development of geoparks through
the tourism ecological security evaluation.

In this paper, Huanggang Dabieshan UGGp is selected as a typical case for the fol-
lowing reasons. Firstly, the widely distributed geoheritages and landscapes in Huanggang
Dabieshan UGGp are of great international significance in terms of geological and ecological
aesthetics. The study area is an important part of the “geological-geographical-climatic-
ecological” dividing line in eastern China. It is also rich in biodiversity, which is a relatively
well-preserved storehouse of species resources in Central China. Secondly, in the past
decade, with the rapid development of tourism, both the landscape and the ecosystem of
Huanggang Dabieshan UGGp have been under pressure from the consumption of tourism
resources and human activities. It has posed a great threat to the geoheritages and ecosys-
tems. Thirdly, compared with other tourism destinations, geoparks have their unique
features, mainly in the unique geotourism resources and geological science popularization
and education functions. Finally, few studies on tourism ecological security take geoparks
as the object so that this paper tries to fill the gap and puts forward some suggestions
for reference.

Therefore, the purpose and significance of this paper are as follows: (1) establish a
tourism ecological security evaluation model for Huanggang Dabieshan UGGp. A compre-
hensive multi-factors evaluation indicator system based on the DPSIR model is constructed
and some evaluation indicators are selected that are different from other tourism des-
tinations, which can enrich the theoretical research of geopark and ecological security.
(2) explore the tourism ecological security index (TESI) of Huanggang Dabieshan UGGp
and its spatio-temporal distribution characteristics. The spatial and temporal distribution
trend is obtained through spatial autocorrelation analysis. The changes of the TESI level
throughout the study area are analyzed in different dimensions. (3) diagnose the main
influencing factors affecting tourism ecological security. The core factors affecting the TESI
of Huanggang Dabieshan UGGp in different periods are identified through an obstacle
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degree model. (4) discuss the countermeasures and suggestions for ecotourism and sus-
tainable development of geoparks, so as to provide theoretical guidance for Huanggang
Dabieshan UGGp and other geoparks to coordinate the relationship between conservation
and tourism development. It is conducive to promote the formulation and implementation
of relevant policies.

The research framework is shown in Figure 1.

Figure 1. The framework of tourism ecological security evaluation of Huanggang Dabieshan UGGp.

2. Materials and Methods

2.1. Study Area

Huanggang Dabieshan UGGp is situated in Eastern Asia, Huanggang City, Hubei
Province of the People’s Republic of China, with a total area of 2625.54 square kilometers
(Figure 2). The administrative division of the study area involves Macheng City, Luotian
County and Yingshan County, including 25 townships.

Huanggang Dabieshan UGGp is characterized by a continental orogenic belt, a tectonic
deformation metamorphic belt and granite mountain landforms. The terrain of the geopark
gradually tilts from north to south. Among them, there are 96 peaks with an altitude of
more than 1000 m in the north. The highest peak, at 1729.13 m above sea level, is located at
the junction of Luotian County and Yingshan County in the northeast.

During the ongoing geological evolution, various typical geological landscapes have
been formed in this area, which mainly includes 4 global-level, 5 national-level, 21 provincial-
level and 23 local-level geoheritages. The unique location belonging to the subtropical
monsoon climate zone produces excellent natural conditions, which have created a region
with dazzling biodiversity. Huanggang Dabieshan UGGp boasts valuable geoheritages,
unique ecological landscapes and beautiful cultural sights, which has made it a rare and
significant geopark and geoheritages reserve in the world.
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Figure 2. Geographical location of Huanggang Dabieshan UGGp.

The study area was approved as a national geopark in 2009 and became a member
of UGGps in 2018. As the main tourism destination in the east of Hubei Province and
Huanggang City, Huanggang Dabieshan UGGp has attracted a large number of tourists
from local and surrounding cities, and promoted the development of the local tourism
economy and related service industries. The tourism economy in Huanggang City has
grown at an annual rate of more than 20%, with Huanggang Dabieshan UGGp as the
leading tourism industry [76]. In 2018, the number of tourists in Huanggang City increased
to 36.45 million and total tourism revenue reached 3.85 billion dollars.

The main tourist areas of Huanggang Dabieshan UGGp include Tiantangzhai, Bo-
daofeng, Wujiashan, Guifengshan, Jiulongshan, etc. The typical geological tourist attrac-
tions are granite pictographic stone landscapes, including Philosopher Peak, Guifeng Peak
(Stone Tortoise), Longtan Gorge, etc. Every spring and summer, Huanggang Dabieshan
UGGp is crowded with tourists enjoying flowering rhododendrons and their summer
vacation. According to incomplete statistics, the geopark’s ticket revenue alone reached
101 million dollars in 2018. The comprehensive tourism revenue reached 957million dollars,
accounting for 31% of the regional Gross Domestic Product (GDP).

After more than a decade of tourism development, the huge tourist flow and the
development of resources and tourism projects inevitably brought a series of negative
impacts on the ecological environment. The evaluation of tourism ecological security in
Huanggang Dabieshan UGGp can not only obtain the influencing factors affecting the envi-
ronment in this area, but also explore the appropriate development direction of the geopark,
and provide a scientific basis for the sustainable and healthy development of Huanggang
Dabieshan UGGp, which has important research value and practical significance.

2.2. Data Sources

The land use data, spatial distributions of population density, GDP, Normalized
Difference Vegetation Index (NDVI) and other data of the study area were obtained from
the Resource and Environment Science and Data Center of Chinese Academy of Sciences
(http://www.resdc.cn/, accessed on 5 April 2022). The administrative boundaries, nature
reserves, and tourism resources came from field investigation and project statistics provided
by Huanggang Dabieshan National Geopark Administrative Office.
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Other socio-economic data were collected from Hubei Statistical Yearbook, Huanggang
Statistical Yearbook, China County Statistical Yearbook, the environmental quality report of
Huanggang City, etc. Some missing data were filled by the moving average method.

Due to the large sample size, this paper only selected five periods of data in 2000, 2005,
2010, 2015 and 2018 for analysis. The spatial and temporal distribution characteristics of
TESI in the study area will be presented in 25 townships.

2.3. Methods
2.3.1. Evaluation Indicator System for Tourism Ecological Security

Academics have established many indicator systems for evaluating research [25,55,60].
Among them, the “Driving-Pressure-State-Impact-Response” (DPSIR) model was estab-
lished by the European Environment Agency (EEA) in 1993. It has integrated the “Pressure-
State-Response” (PSR) model and the “Driving Force-State-Response” (DSR) model, and
added “Impact” indicators in its framework [77]. The DPSIR model can effectively reflect
the interaction between elements in a system. It has been widely applied to quantitative
research, such as environmental assessment, water resources ecological security assessment,
sustainable development capacity assessment, etc. [78–80].

In the tourism ecosystem, the DPSIR model can effectively measure the relationship
between tourism activities and the ecological environment, and reflect the positive feedback
of human society [51]. The operational mechanism of the DPSIR model can be summarized
as follows [81–84]: as the long-term driving force (D) affecting the tourism ecological
security, social and economic factors have imperceptibly caused various pressures (P) on the
natural environment, ecology and social resources. These pressures (P) are directly reflected
in the changes of the regional social economy and environmental state (S). Furthermore,
it has a series of impacts (I) on the regional ecosystem, prompting human to take a series
of positive response (R) measures to achieve the goal of sustainable development. At the
same time, these response (R) measures not only act on the system composed of human
economy and society (D), but also directly have a positive impact (I) on pressure (P) and
state (S), so as to form a circular, closed loop (Figure 3).

 

Figure 3. The operational mechanism of the DPSIR model.

Considering the impact of natural conditions, human activities, economic growth,
social development and other factors on the tourism ecosystem of geopark, the DPSIR
model is chosen as the evaluation model of the tourism ecological security of Huang-
gang Dabieshan UGGp. Combined with the previous literature, field investigation and
interviews and acquired data [25,27,49–53,85], 25 indicators are selected.
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Driving indicators represent human socio-economic activities. The growth of popula-
tion, urbanization, national economy, and tourism demand are the most basic driving forces.

Pressure indicators describe the load of the exploitation on the ecological environment.
The reasons for the change are given from the perspectives of population density, tourism
economic density, and annual average concentration of pollutants.

State indicators reflect the ecological environment and socio-economic development
of the study area. The regional development index is the ratio of the total area of regional
cultivated land and construction land to the total area of regional land, reflecting the
development state of human activities and urbanization process in a period. The com-
pliance rate of air quality and NDVI indicate air quality status and vegetation coverage
status, respectively.

Impact indicators refer to the indicators that bring changes to the maintenance of
tourism ecological security and industrial development when the ecological environment or
socio-economic system changes. Tourism revenue, rural residents’ income, and proportion
of tertiary industry in GDP reflect that the higher the scale of tourism and tertiary industry
is, the more investment will be made in improving tourism ecological security, and the
greater the positive impact will be produced on TESI.

Response indicators reflect the positive measures taken by the government and the
geopark to improve the regional tourism ecological security. Domestic waste treatment
rate, sewage treatment rate, and comprehensive utilization rate of solid waste represent the
situation of cleaner production, environmental treatment and the degree of resources recy-
cling and reuse. The coverage of nature reserves reflects the degree of local government’s
protection and attention to the ecological environment. The proportion of education ex-
penditure in GDP indicates the importance of education development in the region, which
indirectly reflects the education level of the local residents. Planning integrity, interpretive
coverage and informatization of geopark refer to the management response of Huanggang
Dabieshan UGGp. The better the management, the greater the role of promotion for the
TESI. Since the study area is a geopark, the selection of indicators should be distinguished
from other tourism destinations. The UNESCO Global Geopark Applicant’s Evaluation Docu-
ment A—Self Evaluation is an assessment document officially released by UNESCO, which
is referential [86]. The contents relate to overall planning, a science popularization interpre-
tation system, and informatization construction are extracted and summarized into the last
three indicators. The value is assigned by calculating the ratio of the total self-assessment
score of planning, interpretation and informatization to the total standard score. As an
official document that UGGps need to be evaluated every four years, it is applicable to all
the geoparks.

The complete evaluation indicator system is shown in Table 1.

Table 1. Evaluation indicator system for tourism ecological security.

First-Level
Indicator

Second-Level Indicator Number Unit Attribute Weight

Driving

Growth rate of natural population X1 ‰ − 0.0256
Per capita GDP X2 dollar − 0.0211

Urbanization rate X3 % − 0.0034
Growth rate of tourists X4 % − 0.0237

Growth rate of
comprehensive tourism revenue X5 % − 0.0108

Pressure

Population density X6 per/km2 − 0.0048
Density of tourism economy X7 ten thousand yuan/km2 − 0.0098

Annual average concentration of SO2 X8 μg/m3 − 0.0312
Annual average concentration of NO2 X9 μg/m3 − 0.0126

Annual average concentration of
inhalable particulate matter (PM10) X10 μg/m3 − 0.0316

349



Int. J. Environ. Res. Public Health 2022, 19, 8670

Table 1. Cont.

First-Level
Indicator

Second-Level Indicator Number Unit Attribute Weight

State
Regional development index X11 % − 0.0144
Compliance rate of air quality X12 % + 0.0301

NDVI X13 + 0.0141

Impact

Per capita tourism income X14 dollar + 0.1038
Proportion of comprehensive

tourism revenue in GDP X15 % + 0.0654

Per capita net income of rural residents X16 dollar + 0.0639
Proportion of tertiary industry in GDP X17 % + 0.0337

Response

Domestic waste treatment rate X18 % + 0.0654
Sewage treatment rate X19 % + 0.0316

Comprehensive utilization rate of solid waste X20 % + 0.0418
Coverage of nature reserves X21 % + 0.1684

Proportion of education expenditure in GDP X22 % + 0.0234
Planning integrity of geopark X23 % + 0.0541

Interpretive coverage of geopark X24 % + 0.0599
Informatization of geopark X25 % + 0.0555

Note: “+” indicates positive indicator and “−“ indicates negative indicator.

2.3.2. Comprehensive Index Method

Because of the difference in dimension and order of magnitude, the original data need
to be standardized. For the positive indicator,

x′ij =
(
xij − xjmin

)
/
(

xjmax − xjmin
)

(1)

and for the negative indicator,

x′ij =
(
xjmax − xij

)
/
(

xjmax − xjmin
)

(2)

In the above formulas, x′ij stands for the standardized value of the original data; xij
stands for the original value of indicator j in year i; ximax and xjmin stands for the maximum
and minimum values of indicator j among all years, respectively.

The entropy weight method is used to calculate the weight of each indicator in the
evaluation system. It can analyze the degree of correlation between indicators based on ob-
jective information, and reduce the impact of subjective factors to a certain extent [19,53,58].
The formulas are as follows:

pij = x′ij/
n

∑
j=1

x′ij + 0.000001 (3)

Ej = −k
n

∑
j=1

pij ln pij (4)

wj =
(
1 − Ej

)
/

n

∑
j=1

(
1 − Ej

)
(5)

In the above formulas, pij represents the proportion of the standardized value of
indicator j in year i to the sum of all the standardized values of indicator j. Since ln pij is
meaningless when pij = 0, the formula is revised to (3).

Ej represents the entropy of indicator j; k represents the Boltzmann constant, k = 1/ln(n);
wj represents the information entropy weight of indicator j. The weights of all indicators
are shown in Table 1.
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The TESI can be calculated by the comprehensive index method. The formula is
as follows:

TESIi =
n

∑
j=1

wjx′ij (6)

where TESIi is the TESI in year i; wj and x′ij are the weight and standardized value of indicator
j; and n is the number of indicators in the evaluation system. The TESI level can be classified
into 5 types [35,53,58]: unsafe, less unsafe, critical safe, relatively safe, and safe (Table 2).

Table 2. Classification of TESI level.

Level I II III IV V

Category Unsafe Less unsafe Critical safe Relatively safe Safe
Range (0, 0.2] (0.2, 0.4] (0.4, 0.6] (0.6, 0.8] (0.8, 1]

2.3.3. Spatial Autocorrelation Analysis

Spatial autocorrelation analysis is a method of exploratory spatial data analysis,
which reveals the similarity and spatial correlation of attribute values of adjacent re-
gions [50,51,87–89]. This method is usually measured by Moran’s I, including the Global
Moran Index and the Local Moran Index. The interval of Moran’s I value ranges from −1
to 1. If Moran’s I value is greater than 0 and passes the autocorrelation significance test, it
illustrates that the change trend of a spatial unit is the same as that of adjacent units. That
is, the spatial autocorrelation is positive and there is aggregation. If Moran’s I value is less
than 0, the spatial autocorrelation is negative. The larger the absolute value of Moran’s I is,
the stronger the spatial autocorrelation will be. When the value is equal to 0, the spatial
autocorrelation is random. The formulas are as follows:

IG =
n

∑
i=1

n

∑
j �=i

wj(yi − y)
(
yj − y

)
/S2

n

∑
i=1

n

∑
j �=i

wij (7)

IL =
yi − y

S2

n

∑
j �=i

wij(yi − y) (8)

where IG is the Global Moran Index; IL is the Local Moran Index; n is the number of spatial
units; yi and yj are the observed values of spatial units; y is the average of the observed
values; S2 is the variance of the observed values; wij is a weight matrix based on the spatial
adjacency relationship.

2.3.4. Obstacle Analysis

Obstacle factors refer to the barriers that restrict and hinder the tourism ecological
security of geoparks. It is helpful to improve the level of TESI by evaluating the barrier
effect of each indicator and finding out the main obstacle factors [58,62,90]. The obstacle
degree model consists of three indexes: deviation degree (Iij), factor contribution degree
(wij) and obstacle degree (Oij). The formula is as follows:

Iij = 1 − x′ij (9)

Oij = Iijwij/
n

∑
j=1

Iijwij × 100% (10)

where Iij indicates the gap degree between the indicator j and the target of tourism eco-
logical security; wij is expressed by the weight of each indicator, which represents the
contribution degree of a single factor to the overall objective of tourism ecological security;
Oij is the obstacle degree of indicator j on tourism ecological security in year i.
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3. Results

3.1. Spatio-Temporal Characteristics of TESI
3.1.1. TESI of Huanggang Dabieshan UGGp

It is shown from Table 3 that the TESI of Huanggang Dabieshan UGGp has gradually
increased from 2000 to 2018, and that the security level has improved from less unsafe to
relatively safe.

Table 3. TESI of Huanggang Dabieshan UGGp from 2000 to 2018.

Year 2000 2005 2010 2015 2018

TESI 0.176 0.227 0.440 0.551 0.657
Level I II III III IV

According to the overall change of TESI in the study area, it can be divided into
three stages. In the unsafe stage (2000-2005), the TESI increased very slowly from 0.176 to
0.227, which were all in the status of unsafe. Various social, economic and environmental
problems have serious constraints on the tourism ecological security. In the critical safe
stage (2010-2015), the TESI continued to grow from 0.44 to 0.551. The tourism ecological
security of Huanggang Dabieshan UGGp has reached the status of critical safe from unsafe.
In the relatively safe stage (2018), the TESI rose to 0.657. The study area is basically in a
relatively safe status.

3.1.2. Evolution of TESI Level in Different Townships

Taking 25 townships as evaluation units, the TESI of each township is calculated and
shown in Figure 4. It can be seen that, in terms of time, the TESI of each township has
shown a steady upward trend. The TESI of all the townships was at a low level in 2000 and
2005, and then presented a multi-level development state since 2010. ArcGIS software is
used for visualization, as shown in Figure 5.

 

Figure 4. TESI of each township in Huanggang Dabieshan UGGp from 2000 to 2018.
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Figure 5. Distribution of TESI in Huanggang Dabieshan UGGp from 2000 to 2018.

3.2. Spatial Pattern Analysis

The Moran’s I value of TESI from 2000 to 2018 was calculated by GeoDa software. The
Global Moran’s I values of these 5 phases were greater than 0, and passed the significance
test of 5%. It revealed that the TESI in Huanggang Dabieshan UGGp from 2000 to 2018
had a significant positive correlation, which means it had obvious spatial distribution
characteristics of aggregation. The townships with higher TESI tended to be adjacent, as
did the townships with lower TESI.

From the perspective of time series, Moran’s I value showed a “W” trend of increasing
fluctuation, and reached its highest level in 2018. The decrease in Moran’s I value showed
that the uniformity of TESI distribution in Huanggang Dabieshan UGGp had reduced, as
townships with changes in TESI had increased. The increase in Moran’s I value indicated
that the level of TESI had been increased and the uniformity of TESI distribution had
been improved. The spatial correlation of TESI had been gradually strengthened, as the
distribution of TESI tended to be stable.

As illustrated in Figure 6, the TESI showed an obvious spatial disparity. The TESI of
most townships were in “High-High (HH)” and “Low-Low (LL)” quadrants, indicating
that it had strong local autocorrelation and the overall pattern was relatively stable. Most
townships were surrounded by townships with similar security level; that is, it had a strong
spatial dependence.

According to Figure 7, the TESI generally presented dynamic spatial agglomeration
with “HH” type and “LL” type, which showed positive local spatial autocorrelation. From
2000 to 2018, “HH” agglomeration was successively concentrated in the Guifengshan scenic
spot, Guishan, Shengli, Jiuzihe, and Shitouzui, which were little different to the neighboring
townships and belonged to local homogeneous distribution. “LL” agglomeration was
successively distributed in Fengshan, Kongjiafang, Leijiadian, Sanlifan, and Yanjiahe.
“Low-High (LH)” agglomeration indicated the low level of TESI in “LH” township and
high level of TESI in neighboring townships, which only existed in Zhangjiafan in 2010.
“High-Low (HL)” agglomeration showed the high level of TESI in “HL” township and
low level of TESI in neighboring townships, presenting an obvious polarization effect and
negative correlation. It did not exist in the study area throughout the study period.
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Figure 6. Moran scatter plot of TESI in Huanggang Dabieshan UGGp from 2000 to 2018. HH,
High-High agglomeration; HL, High-Low agglomeration; LL, Low-Low agglomeration; LH, Low-
High agglomeration.

Figure 7. Local indicators of spatial autocorrelation (LISA) cluster maps of TESI in Huanggang
Dabieshan UGGp from 2000 to 2018. HH, High-High agglomeration; LL, Low-Low agglomeration;
LH, Low-High agglomeration.

354



Int. J. Environ. Res. Public Health 2022, 19, 8670

3.3. Obstacle Factors of TESI

This paper only lists the top 8 obstacle factors of obstruction degree each year due to
lack of space. As shown in Table 4, the main obstacles to the tourism ecological security of
Huanggang Dabieshan UGGp included: per capita tourism income (X14), proportion of
comprehensive tourism revenue in GDP (X15), per capita net income of rural residents (X16),
proportion of tertiary industry in GDP (X17), coverage of nature reserves (X21), planning
integrity of geopark (X23), informatization of geopark (X25), growth rate of tourists (X4),
comprehensive utilization rate of solid waste (X20), etc.

Table 4. Ranking of Obstacle factors of TESI.

Year Item
Ranking

1 2 3 4 5 6 7 8

2000
Obstacle factor X21 X14 X15 X18 X16 X24 X25 X23

Degree of obstruction (%) 20.563 12.673 7.987 7.987 7.802 7.316 6.782 6.602

2005
Obstacle factor X21 X14 X18 X15 X16 X24 X25 X23

Degree of obstruction (%) 21.944 13.511 8.591 8.046 7.920 7.682 6.734 6.596

2010
Obstacle factor X14 X16 X15 X20 X17 X25 X4 X23

Degree of obstruction (%) 23.379 11.691 10.808 10.015 8.093 5.977 4.054 3.853

2015
Obstacle factor X14 X8 X4 X15 X1 X20 X16 X17

Degree of obstruction (%) 18.334 10.816 8.198 8.017 7.363 7.306 6.118 6.052

2018
Obstacle factor X20 X1 X2 X11 X22 X7 X8 X12

Degree of obstruction (%) 18.445 17.702 14.550 9.928 7.779 6.768 5.756 5.486

Among these influencing factors, per capita tourism income (X14), proportion of
comprehensive tourism revenue in GDP (X15), and per capita net income of rural residents
(X16) were the main obstacles to the tourism ecological security of the geopark from 2000
to 2015. The impact of per capita tourism income (X14) was strong and remained a major
barrier until 2015.

Coverage of nature reserves (X21), planning integrity of geopark (X23) and informati-
zation of geopark (X25) were the main obstacles to tourism ecological security from 2000
to 2010.

From 2000 to 2005, domestic waste treatment rate (X18) and interpretive coverage of
geopark (X24) showed that poor ecological environment quality and weak management
also had a certain impact on tourism ecological security.

The common obstacles in 2010-2015 were: growth rate of tourists (X4), proportion
of tertiary industry in GDP (X17), and comprehensive utilization rate of solid waste (X20).
The common barriers in 2015-2018 were natural population growth rate (X1) and annual
average concentration of SO2 (X8).

The greatest barriers in 2015 and 2018 were per capita tourism income (X14) and
comprehensive utilization rate of solid waste (X20), respectively. In 2018, per capita GDP
(X2), density of tourism economy (X7), regional development index (X11), compliance rate
of air quality (X12), comprehensive utilization rate of solid waste (X20) and proportion of
education expenditure in GDP (X22) also became important obstacle factors to tourism
ecological security.

4. Discussion

4.1. Selection of Evaluation Indicators

In order to explore the reasons and trends of tourism ecological security, the mate-
rial basis and ecological environmental conditions, which were provided by the tourism
destination ecosystem for tourism and socio-economic development, should be comprehen-
sively evaluated. A multi-dimensional evaluation is carried out by taking into account the
pressure of resource consumption and emission brought about by tourism development
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and human social activities, as well as the response and maintenance measures taken by
socio-economic systems and geoparks. By summarizing the existing literature and field
investigations, and considering the availability of data, the indicators selected in this paper
included the development of geopark tourism, population, economy, current situation
of ecological environment, environmental protection and governance, etc. Most of the
indicators had a high occurrence rate in the existing literature.

The driving indicators were selected from the aspects of geopark tourism and socio-
economic development [84]. The growth rate of tourists and the growth rate of compre-
hensive tourism revenue represented the development of the tourism industry, reflecting
that the more popular and attractive the geopark is to tourists, the higher the indirect
threats to the ecosystem would be. The growth rate of natural population, per capita GDP
and urbanization rate indicate the regional social and economic development, which can
indirectly reflect the negative impacts of socio-economic development on regional resources
consumption and ecological environment.

The pressure indicators are selected from the damage caused by tourism and human
activities to the ecosystem. Population density indicates that resources consumption will
increase ecological and environmental problems. Some scholars take tourism economic
density as an impact indicator [50,51], but this paper holds that the density of tourism
economy is the tourism economic income carried on the unit land, which indirectly reflects
the consumption of regional resources and the threat faced by ecological environment, so it
is used as a pressure indicator. The emission of pollutants also shows the negative damage
of economic development on regional ecological environment. Similar indicators such as
industrial wastewater discharge, industrial SO2 emission, industrial smoke dust emission
and total exhaust emission should be selected based on the availability of data [22,49,50,52].

The state indicators were selected from the urbanization process and the health degree
of ecological environment. The regional development index reflects human activities
and the process of urbanization. The existing literature also used indicators such as the
number of star hotels and the number of tourism practitioners [27,49]. This study did not
conduct a complete survey of all the townships in the study area, so the data cannot be
supported. Future research can consider these indicators that reflect the current situation
of tourism development. The compliance rate of air quality and NDVI reflect the degree
of air pollution and vegetation coverage in the region. Indicators such as per capita green
area and green coverage rate of built-up areas are mostly used for urban and other research
areas [27,50,52]. The study area in this paper is located in mountainous areas, with good
overall vegetation coverage and relatively less construction land, so only NDVI was used.
Forest coverage index, biodiversity index and ecological vulnerability index can be used to
reflect the status of ecological resources in the future work.

The impact indicators reflect the impacts and changes of natural ecology and social
resources under pressure, which are usually expressed in terms of per capita tourism
income, per capita net income of rural residents, proportion of comprehensive tourism
revenue in GDP and proportion of tertiary industry in GDP [50–53]. These indicators
usually reflect positive impacts. Geoparks that benefit from tourism activities will pay more
attention to the capital investment in tourism development and ecological environmental
protection. Residents who benefit from tourism activities will cherish and participate in the
tourism industry, and form a mutually beneficial and win-win situation with the geopark.
The tertiary industry reflects the regional industrial structure. It is dominated by the service
industry, with less resource consumption and light environmental pollution. The larger the
proportion of the tertiary industry, the less damage and threat the ecological environment
will suffer from.

The response indicators are selected from the positive measures taken by the govern-
ment and managers to improve the regional tourism ecological security. The treatment
of domestic waste, sewage and solid waste is the key factor for the sustainability of the
ecological environment, so that the related indicators are used frequently. The coverage
of nature reserves indicates the degree of local government’s attention to the ecological
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environmental protection. The number of college students has been used to reflect the edu-
cation level of local residents [51,52]; this paper replaced it by the proportion of education
expenditure in GDP due to the difficulty of data acquisition. The problems they reflect are
basically the same, which mean the long-term measures of talent education. Some studies
have used the proportion of investment in environmental protection [52,58], which is not
used in this paper due to incomplete statistical data, but is necessary to be considered in the
future. The indicators of management response of the geopark are selected according to the
characteristics of the study area, so that other study areas should choose the corresponding
indicators on the basis of their own actual situation.

In summary, the indicators of tourism ecological security evaluation should be scien-
tific and reasonable, and have been widely accepted and used. Indicators that are relatively
important, frequently used and proved useful in the existing literature should be adopted.
The characteristics of the study area need to be reflected. The availability of data needs to
be sufficiently considered.

4.2. Dynamic Change of TESI Level

Consistent with previous research, with the development of tourism economy, the TESI
of Huanggang Dabieshan UGGp generally shows an upward trend [27,51,53]. When the
geopark had not been established, the study area was dominated by traditional extensive
agriculture. The awareness of ecological and environmental protection was weak, and the
TESI level of the region was low. Since completion of the national geopark in 2009, in order
to support the tourism development, build the tourism brand of Huanggang City and
Eastern Hubei Province, the government of Huanggang City paid enough attention to the
construction of the geopark and invested enough funds to comprehensively improve the
ecological environment and ecotourism development. The tourism ecological security level
of the study area has improved since 2010. In order to apply for UGGp and make tourism
more ecological, the management agency formulated a reasonable development plan since
2013, such as the strengthening of management, the construction of a tourism talent team,
the improvement of supporting infrastructure and the formulation of regulations on the
protection of geoheritages and other resources.

At the same time, with the implementation of the 11th five-year plan, the construction
of ecological civilization, the strategy of “two circles and one belt”, and the construction of
“Ecological Hubei”, resource-saving and environment-friendly society became the main
objective of current development [22], which contributed to the gradual improvement of
the ecological environment in Huanggang City and the study area.

Moreover, with the popularization of basic education in China, the scientific and
cultural quality of the resident population is constantly improving. It has been verified that
a high level of educational attainment can promote pro-environmental behavior [91,92].
Accordingly, it has enhanced the tourism ecological awareness of the majority of local
residents and tourists, and promoted the tourism ecological security of the study area to a
certain extent.

From the development level of each township, the townships with a high level of
TESI are the main scenic spots of Huanggang Dabieshan UGGp. With the development
of geopark construction and tourism activities, more and more attention has been paid to
these townships, and supporting measures such as investment, management and protection
have also gradually been followed up. Furthermore, Huanggang Dabieshan UGGp has
carried out a lot of work in the fields of geoscience popularization and education, ecological
environmental protection, and township renovation in order to apply for UGGp. Therefore,
the improvement of tourism ecological security is more obvious than in other townships. In
addition, in townships with high security levels, there are various kinds of nature reserves,
such as Dabieshan National Nature Reserve, Wujiashan National Forest Park, Zhangjiazui
National Wetland Park, Tiantanghu National Wetland Park, etc. The natural conditions also
have an important effect on the TESI of each township in Huanggang Dabieshan UGGp.
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Townships with low TESI have also been positively affected by the development of the
tourism economy and the comprehensive tourism income has increased continuously, but at
the same time, it has also put pressure on tourist flow and the ecological environment. Due
to the distribution of more cultivated land and construction land, higher population density,
more resource consumption, and lower or no coverage of nature reserves, these townships
have a relatively low level of TESI compared with other townships in the same period.

4.3. Spatial Pattern of TESI

Previous research has found that tourism ecological security has spatial dependence
and spatial correlation, and the spatial spillover effect is obvious [50,93]. In this paper, the
fluctuation of Moran’s I value of TESI indicates that the spatial correlation and agglomer-
ation of tourism ecological security are increasing, which is consistent with the previous
research results. The TESI level of a township is not independent in geographical space.
It is often affected by neighboring townships and has a spatial interaction effect. Most
townships are surrounded by townships with a similar security level, which also shows
that tourism ecological security has spatial dependence and spillover effect.

“HH” agglomeration areas are mainly distributed in the Guifengshan scenic spot,
Shengli, Jiuzihe, and Shitouzui. With the passage of time, the agglomeration area has
transferred from northwest to northeast, which has played an active role in promoting
the security level of surrounding townships, with radiation and spatial diffusion effect.
The “LL” agglomeration area is mainly concentrated in Fengshan, Kongjiafang, Leijiadian,
Sanlifan, and Yanjiahe. It has undergone several changes with the trend of “southwest-
southeast-southwest-northwest”, which were jointly affected by macro policies and natural
resource conditions. Only Zhangjiafan is “LH” type in 2010 because of the lack of outstand-
ing tourism resources, excellent natural conditions and regional cooperation. Although
it was adjacent to a township with a high level of TESI, it had not been driven by spatial
dependence and spillover.

The great differences in the TESI of townships indicate that the regional tourism eco-
logical security has obvious spatial differentiation characteristics, which accords with the
conclusion of Ruan et al. [51]. In addition, in accordance with the previous research, eco-
nomic advantages have an important impact on tourism ecological security [51,94]. There
are more tourism activities in the townships where the tourist attractions are located. The
development level of tourism economy here is higher, so there is more capital investment
and maintenance. Therefore, the TESI level of these townships is relatively higher than that
of other townships.

4.4. Identification of Obstacle Factors

It is profitable to penetrate into the restrictive factors and driving mechanisms of
the tourism ecological security level in a region by obstacle analysis. A decision-making
basis for tourism industry development, ecological environment protection, and industrial
structure adjustment in geopark and surrounding areas can be provided in the future, too.

During the study period, tourism economic factors and ecological factors have played
an important role in TESI, which is consistent with Tang’s conclusion [27]. Through the
sorting and comparison, it can be seen that before the establishment of the geopark, the
level of socio-economic development of the study area was relatively low, and the tourism
industry had not yet started. The contribution of tourism economy was particularly small,
accounting for only 1% of regional GDP. The overall planning of regional development was
insufficient. Little attention was paid to ecological environmental protection. In addition,
the low living standard of local residents led to their lack of awareness of environmental
and ecological protection. A series of reasons had restricted the TESI of the research area
during 2000 to 2005. Accordingly, per capita tourism income, proportion of comprehensive
tourism revenue in GDP, per capita net income of rural residents, proportion of tertiary
industry in GDP, domestic waste treatment rate, coverage of nature reserves, planning
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integrity of geopark, interpretive coverage of geopark, and informatization of geopark
were important influencing factors.

With the construction of Huanggang Dabieshan UGGp in 2013 and the development
of the tourism industry, the economic benefits brought by tourism were increasing gradu-
ally, and the investment indirectly used for development and protection was increasing.
The growth of the proportion of tertiary industry in GDP reflected the optimization of
industrial structures. Services and business-oriented industries consumed fewer resources
and produced less environmental pollution, thus causing less damage and fewer threats to
the ecological environment. All of these made the obstruction degree of indicators which
are related to tourism and economy showed a downward trend in 2015. However, at the
initial stage of geopark construction, the number of tourists showed an explosive growth,
reflecting the lack of tourists’ density control, making the growth rate of tourists the most
important obstacle factor in 2015.

With the rapid growth of tourism income, the resource consumption caused by the
investment in tourism development and urbanization had been increasing, which had
led to the aggravation of environmental pollution and the deterioration of ecological
quality to a certain extent. These changes indicated that resource utilization and ecological
environmental management were facing increasing pressure. This had been confirmed by
the research of York, Tang and Wang et al. [2,95,96]. Therefore, density of tourism economy,
annual average concentration of SO2, regional development index, compliance rate of air
quality, and comprehensive utilization rate of solid waste were important factors hindering
tourism ecological security in 2018. Overall, the obstruction degree of these socio-economic
factors, although the main hindrances, were decreasing relative to the earlier period because
TESI was generally developing in a good direction.

In addition, the proportion of education expenditure in GDP became a more significant
barrier in 2018, suggesting that local education spending had remained at the same level
for a long time. Although the general public was constantly becoming better educated, the
disadvantage of the proportion of education expenditure in GDP was obvious when the
economic and ecological indicators had noticeably improved. Consequently, the govern-
ment needed to pay more attention to public education. The high scientific and cultural
quality levels of residents will encourage their behavior to be more civilized, which will be
more beneficial to the promotion of TESI of Huanggang Dabieshan UGGp.

4.5. Policy Implications

Over the past 20 years, China has made unremitting efforts to promote the construction
of geoparks. By the end of 2021, 41 geoparks in China have become members of UGGps, and
281 geoparks have been officially named National Geoparks in China. The establishment
of geoparks effectively protect precious and non-renewable geoheritage resources, as well
as other natural, ecological and cultural landscape resources in an area. In addition, the
construction of a nature reserve system with national parks as the main body has become
one of the key tasks of China’s ecological civilization construction [97]. These measures
have engendered a vital impact on the development of national and local tourism and the
protection of the ecological environment. Huanggang Dabieshan UGGp should not only
respond to national policy, but also explore a way suitable for its own development.

Firstly, balancing the conflict between human activities and ecosystem protection is
the key to achieving the natural and socioeconomic sustainability of geoparks [76]. On the
one hand, based on the existing overall plan, the administration should strictly implement
the regulation of “no development in core protection areas and appropriate construction of
tourism supporting facilities in non-core areas”, in order to abate negative effects on the eco-
logical environment caused by human activities. On the other hand, the government needs
to fully consider the coordination of local tourism policies and environmental protection
policies, and gradually eliminate the weaknesses of tourism development and management.
The government should also innovate environmental governance mechanisms, strengthen
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the construction of environmental treatment infrastructures, reduce the emission of various
pollutants, and establish an early warning system for tourism ecological security.

Secondly, tourism enterprises need to be supported, and the investment of environ-
mental protection funds should be increased. An ecological compensation mechanism
should be set up with the support of regional public environmental protection finance.

Thirdly, promoting sustainable tourism, creating jobs and advertising local culture
and products are some of the goals of UGGp [98]. Encouraging the participation of local
communities in geotourism activities is instrumental in creating new employment op-
portunities and generating economic income for people living in rural areas [99]. When
the geopark obtains economic benefits, it is bound to better increase the protection and
economic strength, and thus local residents will pay more attention to protection because
of the benefit from development.

Finally, it is essential to strengthen science popularization for the local public. Geoher-
itages, other natural resources, and cultural heritages are inheritances. Education in the
form of teaching and entertainment can enhance the residents’ awareness of geoheritages
and ecological environmental protection, which is conducive to enabling them to sponta-
neously maintain and improve the ecological environment of Huanggang Dabieshan UGGp.

4.6. Limitations

Some limitations need to be explained here. Due to the limitation of the data, this
study only analyzed the data from 2000, 2005, 2010, 2015 and 2018. It is difficult to obtain
the township-level data corresponding to some indicators, so that other data with similar
meanings are used instead, which may cause deviation in the results. The variety and
typicality of the data need to be further improved. The assessment of the greatest threats
to the values of geopark may also affect TESI to some extent. It might be helpful to take
the assessment into consideration. In addition, only one geopark is selected for evaluation,
and the research scale is small. Consequently, further studies are essential to compare and
analyze tourism ecological security in different geoparks in order to explore the overall
spatio-temporal pattern of tourism ecological security of geoparks in China. It will be
effective to master the driving mechanism of tourism ecological security of geoparks, and
provide a theoretical reference for management strategies and sustainable development
of geoparks.

5. Conclusions

On the basis of the DPSIR model, this paper constructs the tourism ecological security
evaluation indicator system for the geopark. In this paper, the entropy weight method,
comprehensive index method, spatial autocorrelation and obstacle degree model are used
to examine the tourism ecological security of Huanggang Dabieshan UGGp. It analyzes the
spatial and temporal evolution pattern and the influencing factors of TESI in the study area
from 2000 to 2018. The conclusions are as follows:

1. The TESI of Huanggang Dabieshan UGGp shows a steady growth trend. During 2000
to 2005, the TESI was generally low in all the townships. In 2010, the TESI entered a
critical safety level, and by 2018, the TESI had reached a relatively safe level. Especially,
the TESI is higher in the townships where tourism resources are concentrated, tourism
infrastructure is perfect, and tourism economy is highly developed.

2. The results of spatial autocorrelation analysis illustrated that the spatial agglomeration
degree in Huanggang Dabieshan UGGp had shown a trend of first slowing down and
then strengthening from 2000 to 2018. It indicated significant global and local spatial
aggregation characteristics, and the overall pattern tended to be stable. The townships
with different TESI levels represented obvious zone effects in spatial distribution,
which showed the law of spatial decline. The TESI of townships where the main
tourist attractions were located were at a high level, and the TESI of surrounding
townships were at a low level.
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3. Through obstacle analysis, it can be seen that the main obstacle factors included
per capita tourism income, proportion of comprehensive tourism revenue in GDP,
per capita net income of rural residents, proportion of tertiary industry in GDP,
coverage of nature reserves, planning integrity of geopark, informatization of geopark,
growth rate of tourists, comprehensive utilization rate of solid waste, etc. National
policies, environmental governance, tourism load level, tourism development level,
and geopark management have different impacts on the tourism ecological security
in different periods.
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Abstract: During urbanization in developing countries, fragmentation of green infrastructure due to
increasing populations and the expansion of construction land leads to an extremely serious imbal-
ance between the supply and demand for urban ecosystem services. In this study, the central city of
Zhengzhou, a central city in central China, was selected as the study area and the excessive demand
for six ecosystem services, namely, air purification, flood regulation, heat regulation, hydrological
regulation, CO2 sequestration and recreational services, was quantitatively evaluated. The entropy
method was used to calculate the weights of various ecosystem services, and spatial overlay analysis
was performed to obtain the comprehensive ecosystem service excessive demand. Finally, bivariate
spatial autocorrelation analysis was used to explore the response of population density to compre-
hensive excessive demand for ESs. The results of this study indicate that: (1) The most prevalent need
is for more CO2 regulation service throughout the study area. (2) Except for hydrological regulation
service, the spatial distribution of the remaining highly excessive ecosystem service demands are
mostly concentrated in old neighborhoods. (3) Of the six excessively demanded economic services,
rainwater regulation obtained the greatest weight, reflecting the poor urban infrastructure config-
uration for countering the rapidly increasing threat of flooding caused by climate change in the
city. (4) The comprehensive ecosystem service excessive demand results show that there are eight
priority green infrastructure implementation blocks in the central city of Zhengzhou. (5) There were
three agglomeration types between population density and comprehensive excessive demand for
ESs: high-high type, low-high type and low-low type. The spatial distribution characteristics of
population density and comprehensive ES demand are positively correlated. The results of this study
could help to provide information for decision making when delineating the priority areas and types
of green infrastructure implementation in developing cities.

Keywords: urban ecosystem services; green infrastructure; excessive demand; spatial priority evaluation;
urban block

1. Introduction

Ecosystem services (ESs) that directly and indirectly benefit people are partitioned into
four different types: provisioning, regulating, cultural and support services [1]. ESs and
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the natural capital stock that produces them are critical for the functioning and sustainable
development of human society. Urban ecosystem services (UESs) can increase urban
resilience [2], whereas green infrastructure (GI) is the “natural life support system” that
includes all green open spaces around and within the city and constitutes the supply system
of UESs [3,4]. UESs depend directly on the quantity, quality and diversity of the GI that
produces them, whereas urban ES demand reflects the number of ESs that society expects
to receive [2,5].

In the context of rapid urbanization, the continuous expansion of urban construction
land has led to a decrease in the size and type of GI and an increase in fragmentation,
resulting in a continual decrease in the supply capacity of UESs [4]. Human beings over-
consume ecological resources, which causes cities to exhibit a serious imbalance between
the supply and demand for ESs in terms of quantity and space. The existing supply and
demand configuration of GI does not meet the real ES needs of cities, which is a challenge
for current research to determine the capacity of an ecosystem to supply services and the
social demand for those services [6]. When the supply of ESs cannot meet the demand,
there is an excessive demand for them [7]. Identifying the areas of ecosystem service
excessive demand within a city can be used as a priority evaluation method for GI planning
to provide a basis for GI construction within a city.

Concerning the research scale, current research related to assessing the supply and
demand for ESs is mainly focused on macroregions [7–14]. Although many researchers
have made innovative explorations on street-scale GI design [15–18], the complex dynamic
supply and demand mechanism still needs to be combined with urban functional zoning
and specific demand groups for more systematic studies. In terms of research methods, the
basic idea behind existing ecosystem service supply and demand assessment methods is
mainly to calculate and superimpose aggregate supply and aggregate demand separately
to identify excessive supply or excessive demand. The quantitative assessment of aggre-
gate supply is usually based on the land use/land cover (LULC) supply or expert scoring
calculations [7,19,20]. Quantitative methods and indicators of aggregate demand include
unit demand values based on LULC [2], unit demand based on socioeconomic spatial
characteristics, the proportion of affected groups or infrastructure [21], and public will-
ingness statistics [22]. When evaluating the spatial allocation of ecosystem service supply
and demand, these aforementioned indicators or methods are usually mixed and a single
technique is used to identify excessive demand or supply values by directly subtracting the
supply and demand values or by normalizing both and then superimposing them. How-
ever, the above methods are not applicable to small-scale spatial studies. Since it is usually
difficult to balance ecosystem service supply and demand, assessing the spatial allocation
by direct superposition and normalization tends to obscure and ignore the absolute ranges
of supply and demand, and thus, cannot yield accurate and valuable assessment results.

The main objective of the present study is to explore a quantitative assessment
method for direct ecosystem service excessive demand on the urban neighborhood scale
in Zhengzhou, and use the assessment results as the basis for the optimization of urban
GI construction. At the same time, the research methods can also provide a reference for
microscale GI planning of other similar cities. In this study, we take the central area of
Zhengzhou City, Henan Province, China as the research area and select the appropriate
urban ecosystem service types, as well as the corresponding quantitative indicators and crit-
ical thresholds of excessive demand, and conduct a comprehensive quantitative assessment
and spatial mapping of its excess demand to obtain the types and spatial distribution of
ecosystem service excessive demand in this city. Finally, GIS spatial statistics and bivariate
spatial correlation were used to analyze the correspondence between ES excessive demand
and population density.
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2. Materials and Methods

2.1. The Study Area

Zhengzhou, the capital of the central province of Henan in China, is located at lon-
gitude 112◦42′–114◦14′ E and latitude 34◦16′–34◦58′ N. The specific area of study is the
center of the city (Figure 1). The study area contains 106 streets (townships) with a total
area of 628 km2, a total population of 5.726 million, and an average population density of
0.9118 million/km2.

Figure 1. Administrative boundaries (a), geographic location (b) and topography (c) of Zhengzhou city.

The climate type of the study area is temperate continental with four distinct seasons,
where it has high temperature and rain in the summer and is cold and dry in the winter.
The average annual rainfall in the last 10 years was 796.93 mm, with the highest continuous
rainfall reaching 624.1 mm in 10 h; the annual maximum temperature is 39 ◦C, the minimum
temperature is −4.2 ◦C and the maximum urban heat island temperature difference reaches
43.2 ◦C. In addition, as a developing city since 2000, Zhengzhou has entered a phase of
rapid urban expansion and the ecological space within the city has been severely eroded
and destroyed. Moreover, natural disasters such as floods, high temperatures and air
pollution occur frequently. Due to heavy industrial complexes in the provinces and cities
to the north of the city and the influence of the northwest monsoon in the winter, air
pollution is significant in the autumn and winter seasons. Based on the ecological and
environmental problems occurring in the study area mentioned above, improving the living
space within the city, meeting the urban demand for ESs, and increasing the city’s ability
to withstand natural disasters are matters that need to be urgently addressed during its
current stage of development. Although Zhengzhou has been aware of ecological problems
and put forward some improvement measures in recent years, there is no qualitative
basis for uneven GI utilization benefits in different regions, especially in the old city, and
the problem of too many people and too little green space is very serious. Our study is
dedicated to quantitatively assessing the actual demand for ecosystem services on the
neighborhood scale and providing a relevant planning and construction basis for the
rational allocation of GI.
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2.2. City Ecosystem Service Types amd Threshold Selection

Urban ecosystem service demand assessment from a GI perspective should take the
spatial mobility characteristics of urban ecosystem services, the service supply capacity
of GI [3,12] and the demand of the city into account to determine which of the ecosystem
services need to be assessed. Our selection of ecosystem service types is based on the
following criteria:

(1) GI elements within the city and the demand for urban ecosystem services. For
some regulatory services (rainfall, temperature, hydrological regulation, etc.) and
cultural services (recreation, spiritual services, aesthetic enjoyment, etc.), the area of
GI implementation will determine whether such services can be used effectively.

(2) Concern for stakeholders. For example, persistent haze, the summer heat island effect,
and water pollution in Zhengzhou over the past 10 years, especially due to climate
change, summer rainstorms and floods, have become predominant problems faced by
the city in the past two years that have largely affected its sustainable development.

(3) Policy requirements for carbon emissions. To ensure the implementation of the United
Nations 2030 Agenda for Sustainable Development, the country has set the goal of
“striving to peak CO2 emissions by 2030 and achieving carbon neutrality by 2060”.

(4) Data accessibility. Given the above, we finally selected five ESs (air purification, flood
regulation, heat regulation, hydrological regulation and CO2 sequestration) and one
cultural service (recreational) for excessive demand assessment.

Combined with previous studies [20,23–26], urban ESs have helped to improve and
maintain environmental quality under a certain degree of ecological pressure. However,
when the latter exceeds a specified limit, the ecosystem service supply fails to maintain
good environmental quality; i.e., ecosystem service demand is not fully satisfied. Therefore,
we can use environmental quality standards for the expectation threshold associated with
regulating the demand for ESs, and similarly, we can use the corresponding industry
normative standards for cultural services, thereby establishing the same critical thresholds
for excessive demand.

2.3. Data Preparation

Data for the study area included PM2.5 concentrations from the 2020 daily air quality
reports from the monitoring stations of the Zhengzhou Ecological Environment Bureau
(http://sthjj.zhengzhou.gov.cn, accessed on 9 April 2021), population levels from the
2020 Zhengzhou Statistical Yearbook (https://navi.cnki.net/knavi/yearbooks, accessed on
15 March 2021), days of urban flooding from Landsat 8 OLI remote-sensing data of Zhengzhou
in 2020 (http://www.gscloud.cn, accessed on 22 May 2020), surface temperatures from the
2020 Zhengzhou Meteorological Observatory statistics (https://earthexplorer.usgs.gov/,
accessed on 11 June 2020), accessibility of regional parks in towns from the park green space
of Zhengzhou in 2020 (https://google-earth.gosur.com/cn/, accessed on 20 May 2020), wa-
ter quality from the report of the Zhengzhou Ecological Environment Bureau on the water
quality ranking of the rivers within the city in 2020 (slt.henan.gov.cn/bmzl/szygl/szygb/,
accessed on 28 March 2021) and CO2 emissions from motor vehicle carbon emission data
and 2020 neighborhood green-space carbon absorption data (https://navi.cnki.net/knavi/
yearbooks, accessed on 15 May 2021), with excessive data from on-site research (Table 1).

In addition, it should be noted that we used precipitation data from 2021 because
Zhengzhou experienced historically rare, heavy rainfall in July 2021, during which the
maximum depth of the water reached 3 m and covered more than 95% of the city. The
disaster paralyzed the entire city and affected 9 counties and cities downstream. This is a
situation that had not occurred in this partially arid inland city in the past century, and thus
it is necessary to highlight and add weight to the excessive demand for rainfall regulation
in the city in this study.
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Table 1. ES excessive demand evaluation indicators and demand thresholds.

ES Indicators Secondary Indicators
Excess Demand

Threshold
Data

Air purification PM2.5 pollution
risk index

PM2.5 concentration 35 μg/m3
Daily average PM2.5 concentration

data at monitoring stations in
Zhengzhou in 2020

Population density - Population statistics by neighborhood
in Zhengzhou in 2020

Social vulnerability - Share of elderly and child population

Flood regulation Flood risk index

Simulated water
damage depth 15 cm Modeled waterlogging depth data for

2020; rainfall statistics for 2021

Number of affected
infrastructure and

population
-

Remote-sensing data on urban
buildings and roads; 2019 population

statistics by neighborhood in
Zhengzhou

Social vulnerability - Share of elderly and child population

Heat regulation
High-

temperature risk
index

Surface temperature 35 ◦C Remote-sensing image data for
Zhengzhou City in 2020

Population density - Population statistics by neighborhood
in Zhengzhou in 2020

Social vulnerability - Share of elderly and child population

Hydrological
regulation

Water quality
safety index

Average annual water
quality Excellent

Zhengzhou Ecological Environment
Bureau Report on Water Quality of
Rivers in Zhengzhou City in 2019

Population density - Population statistics by neighborhood
in Zhengzhou in 2020

Social vulnerability - Share of elderly and child population

CO2
sequestration

CO2 emission risk
index

CO2 emission -

Neighborhood population carbon
emissions data in 2020; neighborhood
green-space carbon sequestration data

in 2020

Population density - Population statistics by neighborhood
in Zhengzhou in 2020

Social vulnerability - Share of elderly and child population

Recreational
services

Low recreational
opportunity
population

Park accessibility 15 min Park land and road vector data for
Zhengzhou in 2020

Population density - Population statistics by neighborhood
in Zhengzhou in 2020

2.4. Quantification Index Selection and Calculation

The frequency and severity of events usually do not fully reflect the magnitude and
damage of a disaster, and the exposure and vulnerability of the city to a disaster need
to be considered simultaneously. Therefore, to quantify the risk of disaster (risk, R), we
selected the disaster risk assessment framework proposed by the Intergovernmental Panel
on Climate Change (IPCC) based on “Hazard-Exposure-Vulnerability” [27], as expressed in
the following equation:

R = H × E × V (1)

where R is the corresponding disaster risk when hazard H exceeds the critical threshold,
exposure E is the direct exposure carrier of the disaster and vulnerability V is the ability
of the affected object to withstand or cope with the disaster. We calculated the selected
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indicators based on the disaster assessment framework in the evaluation of the following
six ESs.

2.4.1. Air Purification

Due to the influence of the geographical location and seasonal climate, air pollution
in the study area is the highest in winter and alternates in the winter, spring and autumn–
winter seasons. Haze is the predominant problem affecting urban air quality in the area,
with the primary pollutant being PM2.5. Therefore, we used the PM2.5 pollution risk index
as an excessive demand evaluation indicator for air purification. The risk index should
be used to measure vulnerability in socioeconomic terms more comprehensively than by
simply using indicators such as concentration or the number of occasions that the pollution
limit is exceeded, because the lower the vulnerability the stronger the demand for the
ecosystem service. Therefore, we used PM2.5 concentration, population density and social
vulnerability as secondary indicators (Table 1). Firstly, we used the annual average PM2.5
concentration limit (35 μg/m3) specified in the Ambient Air Quality Standards (GB 3095-
2012) as the excessive demand threshold. The selection of the annual average indicator for
evaluation can reflect the ecosystem service demand levels for different neighborhoods,
and the selection of extreme values can affect the actual objectivity of the assessment results.
By using a reclassification tool, areas with annual average PM2.5 concentrations of less
than 35 μg/m3 were classified as 0, whereas other areas were classified into five levels
from 1 to 5 using the natural breakpoint method (with “1” indicating the lowest level of
stress and “5” indicating the highest level of stress) as the stress index. The population
density and the proportions of the elderly and children in the population on the street
scale within an urban area were similarly reclassified and assigned values from 1 to 5,
which were used as the exposure evaluation index and the social vulnerability evaluation
index, respectively.

Subsequently, we normalized the indicators as follows:

x′ = x − xmin

xmax − xmin
(2)

where x is the original value, x′ is the normalized value, xmin is the minimum value and
xmax is the maximum value.

Finally, according to the risk assessment framework in Equation (1), the PM2.5 risk
index for the study area was obtained and reclassified using six levels from 0 (no excessive
demand) to 5 (the most excessive demand).

2.4.2. Flood Regulation

As a relatively arid inland city, Zhengzhou has rarely experienced heavy rainfall or
flooding in the past 50 years. However, since 2000, the rapid expansion of the city size and
the inability of infrastructure development to meet the demands of urban development
has resulted in frequent and multi-scale flooding within the city during rainfall events.
Coupled with global climate change and environmental deterioration, the city has been
highlighted by heavy rainfall and flooding in the past two years. Therefore, we selected the
flood risk index as a quantitative indicator to assess the excessive demand for a rainfall and
flood regulation service in urban neighborhoods within the study area and selected the
simulated waterlogging depth, the quantity of affected infrastructure and population, and
social vulnerability as secondary indicators (Table 1). Satellite remote-sensing monitoring
technology was used to obtain the inundation extent, and the ArcGIS spatial analysis and
data management functions were applied to obtain the inundation depth in combination
with the ground elevation data of the study area to obtain the flood risk index. According
to the evaluation criteria of the inundation level in the Planning Standards for Urban
Inundation Prevention and Control issued by the Ministry of Housing and Urban-Rural
Development, a water depth of 15 cm on a road was taken as the excessive demand
threshold for the rainfall regulation service. The disaster-bearing bodies for an internal
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flooding disaster, including road network density, building area density and population
density, were selected for the exposure index evaluation.

2.4.3. Heat Regulation

The prominent environmental problem in the study area in summer is urban high
temperature with a significant heat island phenomenon. The maximum daily temperature
in urban areas reached 39 ◦C in 2020, and the temperature in many places is 6–8 ◦C
higher than in suburban areas. We selected surface temperature, population density and
social vulnerability as secondary indicators to construct an urban high-temperature risk
assessment index system to assess excessive demand for heat regulation services (Table 1).
According to the group standard for climate recreational site evaluation issued by the
National Weather Service Association and the three levels of high-temperature warning
signals established by the meteorological department for hot weather (yellow, orange and
red warnings mean that the maximum temperature will be above 35 ◦C for 3 consecutive
days, rise to 37 ◦C within 24 h and rise to 40 ◦C within 24 h, respectively), we selected 35 ◦C
as the threshold value for the temperature regulation service demand in this evaluation.

We selected the Landsat 8 thermal infrared remote-sensing band for a day in summer
2020 and used the ENVI remote-sensing processing software to perform remote-sensing
inversion of the surface temperature in the study area by employing the atmospheric cor-
rection method. The surface temperature obtained from the inversion was then reclassified
to obtain the corresponding high-temperature risk disaster-stress index. The exposure and
vulnerability indices were calculated in the same way as for the air purification service.

2.4.4. Hydrological Regulation

We selected the water quality security index as a quantitative index to assess the
excessive demand for the urban water hydrological regulation service. We graded the
water bodies in the urban districts in the study area that did not reach the excellent standard
from 1–5 according to the report of the Zhengzhou Ecological Environment Bureau on the
water quality ranking of the rivers within Zhengzhou in 2019, whereas neighborhoods
without water bodies were graded as 0. The index was calculated by using the China
surface water environmental quality class 3 standard (GB3838-2002) and urban sewage
treatment plant pollutant discharge class 1 A standard (GB18918-2002). For local water
bodies where the water quality was not being monitored (e.g., rivers and local water runoff
areas with intermittent flow during particular months), we conducted on-site research and
supplemented the missing data.

2.4.5. CO2 Sequestration

We selected the CO2 emission risk index as the quantitative indicator of excessive
demand for the CO2 regulation service, and CO2 emission, population density and social
vulnerability as secondary indicators (Table 1), indicating the degree of stress hazard , ex-
posure index and the proportion of the elderly and children in the population, respectively.
Because the scope of this study involves the inner city on the neighborhood scale, we added
together the carbon emissions from people and motor vehicles and carbon sequestration
from green spaces as the total carbon emissions (Equations (3)–(6)). By combining the
data from the IPCC Technical Report and Methodological Guidelines [28] and previous
studies [29,30], the carbon emissions per vehicle per year for motor vehicles were assumed
to be 2.7 t, the CO2 exhalation per person per year was assumed to be 0.079 t, and the
carbon emission factor for urban green spaces was assumed to be −5.77 t/(hm2·a).

Carbon emissions from motor vehicles can be calculated by using:

Ce = ∑(Pn × θn) (3)

where Ce denotes the CO2 emissions from Pn motor vehicles in the region and θn denotes
the CO2 emissions per motor vehicle per year.
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Carbon emissions from human respiration can be calculated using the following formula:

Cp = ∑(Pi × θi) (4)

where Cp denotes the CO2 emissions per person in the region, Pi denotes the number of
people in the region and θi denotes the CO2 emissions per person per year.

The equation for calculating carbon emission in urban green spaces is as follows:

Cl = ∑(Si × δi) (5)

where Cl indicates the CO2 uptake in the green space, Si indicates its area and δi indicates
the rate of carbon sequestration per unit area of the green space.

Thus, total carbon emissions can be calculated as:

C = Ce + Cp + Cl (6)

Due to limited available data, the population and motor vehicle carbon emissions
used are not representative of all carbon emissions in the study area; thus, we used the
natural breakpoint method to directly classify the processed data into levels from 0–5.

2.4.6. Recreational Services

Accessibility is an important indicator affecting the degree of urban green-space use
that reflects the ease with which residents can overcome spatial resistance to approach and
use park land and the relationship between urban green space and potential use demand
within a regional unit [31,32]. We used open space opportunities as a primary quantitative
indicator of excessive demand and the number of people with low open space opportunities
as a secondary indicator. We applied use of the point-of-interest (POI) method to obtain
the base data for urban neighborhood discrimination and location data for green spaces
by cleaning and classifying the POI data and using ArcGIS to obtain the park service
capacity for the total green-space area in the neighborhood. To take the “boundary effect
into consideration”, we included neighboring parks outside the study area in the analysis
process. According to the “Service Radius Classification Requirements for Urban Parks”,
an excessive demand threshold of 15 min was used as the criterion for good accessibility.
The number of people in the low accessibility range in each neighborhood was obtained
by superimposing the population density. Finally, the excessive demand for recreational
services was reclassified from 0–5.

2.5. Weighting Calculation

We determined the weights for each excessive demand from the perspective of overall
fairness based on measuring the discrete degree of each excessive demand index using
MATLAB software and the entropy method in the objective assignment method. The
specific calculation steps are as follows.

Normalize the indicators:

xij =
Dij − Djmin

Djmax − Djmin
(7)

Calculate the share of excessive demand for the ecosystem service item j in block i:

Xij =
xij

∑x
i=1 xij

(8)

Calculate the information entropy of each requirement:

ej = − 1
ln m

m

∑
i=1

Xij ln Xij, ej ∈ [0, 1] (9)
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Calculate the information entropy redundancy:

dj = 1 − ej (10)

Calculate the weight of each excessive demand:

Wj =
dj

∑n
i=1 dj

(11)

Based on the weights, the comprehensive ecosystem service excessive demand value
for each neighborhood can be calculated as:

Si =
n

∑
j=1

Wjxij (12)

In Equations (7)–(12), Dij is the value of the jth ecosystem service demand in the ith
block; Djmax and Djmin are the maximum and minimum values of the matrix column in
which the jth ecosystem service excessive demand is located, respectively; m is the number
of blocks and n is the total number of ecosystem service excessive demands evaluated.

2.6. Bivariate Moran’s I Calculation

After preliminary analysis, we found that the spatial numerical distribution of compre-
hensive ES excessive demand and population had a certain degree of spatial autocorrelation.
Bivariate spatial autocorrelation has high applicability and effectiveness in describing the
spatial correlation and dependence characteristics of two geographic elements [33]. At
present, this method has not been found to be used to explore the spatial relationship
between ES demands and population distribution. Therefore, we innovatively attempted
to adopt this method.

Bivariate Moran’s I is an extension and expansion based on Moran’s I index, which
measures the correlation between the attribute values of spatial units and other attribute
values in adjacent spaces [34,35]. It can be used as an effective method to analyze the
correlation characteristics between comprehensive UES demand and population density.
Bivariate Moran’s I is divided into two levels: global Moran’s I and local Moran’s I. The
calculation formula is as follows:

Iab =

(
xma − xa

δa

)(
xab − xb

δb

)
∑n

j=1 wmo (13)

In Equation (13), xma is the value of the variable a of the spatial unit m, xab is the value
of the variable b of the spatial unit o, xa and xb are the mean values of a and b, respectively,
δa and δb are the variances of a and b, wmo is the spatial weight matrix between unit m and o,
and Iab is the Moran’s I statistic and its value is between (−1, 1): less than 0 means negative
correlation, equal to 0 means no correlation and greater than 0 means positive correlation.
Data processing was conducted in GeoDa 1.6.7.

3. Results

3.1. Excessive Demand Evaluation for Each UES

Figure 2 shows the evaluation results for each ecosystem service excessive demand.
The numbers of blocks with the air purification service excessive demand from 5 to 0
were 3, 2, 7, 21, 58 and 1; there are obvious differences in the spatial distribution, with
the areas having high excessive demand being concentrated in the old blocks with high
populations and building densities in Guancheng District, including Beixia, Nanguan
and East Hanghai blocks. Guancheng District is the old city of Zhengzhou, with dense
buildings and population, and a lack of green space, including the Beixia block with an
area of 1.2 km2, a population of 89,886, and a green area of 0.017 km2; the Nanguan block
with an area of 1.7 km2, a population of 43,884, and a green area of 0.078 km2; and the
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East Hanghai block with an area of 8.6 km2, a population of 39,043, and a green area of
0.7 km2. The above three blocks are mostly covered by small roads, and there is almost
no three-dimensional greening and rooftop greening, thus it is difficult to improve the air
quality effectively.

Figure 2. The results of excessive demand evaluation for each urban ecosystem service.

The numbers of blocks with excessive demand for flood regulation from 5 to 0 were
3, 4, 9, 12, 59 and 1; the numbers of blocks with excessive demand for heat regulation
from 5 to 0 were 3, 5, 12, 52 and 1. The results for the high-demand neighborhoods are
the same as for air purification, indicating that not only are the dense building popu-
lation and the extreme lack of green-space resources a problem, but also the various
infrastructures for drainage and the construction of pavements and buildings in such old
neighborhoods are relatively outdated and unable to meet the requirements of energy effi-
ciency and environmental protection, so much so that they cannot meet the needs of current
urban development.

The numbers of blocks with excessive demand for hydrological regulation from 5 to 0
were 5, 9, 16, 31, 10 and 1. Wutong and Shuangqiao blocks in Gaoxin District, Yingbin
and Yangjin blocks in Huiji District, and the Binhe block in Hangkonggang District have
high demand. Among these areas, Wutong, Shuangqiao and Yingbin blocks have black
smelly water bodies, and the rest of the blocks are located in the middle and lower reaches
of urban rivers where some of their river water quality classes are monitored as V. That is
the main reason for the high overall demand value of hydrological regulation of the blocks.

The numbers of blocks with excessive demand for CO2 sequestration from 5 to 0
were 30, 21,14, 13, 15 and 1. The results in Figure 2 show that CO2 regulation is the
indicator with the highest number of high-demand neighborhoods among all single ES
demand services, and the demand for CO2 regulation has the widest spatial distribu-
tion, which reflects the serious inequality between carbon emissions and carbon seques-
tration within the city. The high-demand neighborhoods are mainly located in Jinshui
District (Fengqing, Nanyangxincun, Nanyang, Dashiqiao, Wenhua, Jingba, Fengchan and
Fenghuangtai blocks), Zhongyuan District (Mianfang, Jianshe and Linshanzhai blocks),
Eerqi District (Wulibao, Minggong, Mifengzhang, Jiefang, Dehua, Yima, Jianzhong and
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Huaihe blocks), Guancheng District (Xidajie, Nanguan, Dongdajie, Longhai, Erligang and
East Hanghai blocks), Jingkai District (Jinghang block), which is located in the southern
part of the new city near the surrounding industrial land, and Hangkonggang District
(Zhenggang, Xingang and Yinhe blocks). The high demand for CO2 regulation in the old
city is directly related to the high density of human life and motor vehicle emissions, as well
as the small and sporadic distribution of the GI area, which makes it difficult to neutralize
the continuously increasing CO2 emissions. The main reason for the high demand for
CO2 regulation is the proximity of these neighborhoods to industrial areas and expanding
construction areas on the outskirts of the city, (although we did not count the CO2 emissions
from the industry here) the high motor vehicle emissions from industrial and construction
transportation, and the lack of GI land for CO2 absorption in these neighborhoods. The
GI land area of the Jinghang block is 0.0001 km2, and the GI land areas of Zhenggang,
Xingang and Yinhe blocks are 7.06 km2, 9.59 km2 and 14.52 km2, respectively, thus the final
calculation shows that the excessive demand is high.

The numbers of blocks with excessive demand for recreational services from 5 to 0
were 3, 5, 8, 15, 51 and 1. As can be seen from Figure 2, the excessive demand for recreation
services is more concentrated in the south of Jinshui District, the east of Zhongyuan
District, and the north of Erqi and Guancheng Districts, which are among the earliest
developed central urban areas of Zhengzhou City where the green infrastructure and
recreation space allocated at the beginning of development were not serious considerations
of the government at the time of planning and construction; therefore, there is woefully
inadequate public open green space. In particular, the Dehua block in Erqi District and
Nanguan and East Hanghai blocks in Guancheng District have the highest demand for
recreation services in terms of walking arrival time.

3.2. Evaluation of the Comprehensive Excessive Demand for UESs

According to the weighted calculation results, excessive demand for flood regulation
had the largest weight of 0.406, followed by air purification (0.305), heat regulation (0.119),
recreational services (0.074), CO2 regulation (0.073) and hydrological regulation (0.021).
ArcGIS software was used to comprehensively stack the obtained weight values and obtain
the comprehensive ecosystem service excessive demand after recalculating the classification
(Figure 3). The results show that the numbers of blocks with comprehensive ecosystem
service excessive demand values from 5 to 0 were 8, 21, 31, 25, 9 and 0, among which there
were eight with particularly high excessive demands: Minggong, Jiefang and Dehua blocks
in Erqi District; Duling block in Jinshui District; and Beixia, Xidajie, Nanguan and East
Hanghai blocks in Guancheng District. (Table 2). From the spatial structure perspective,
the areas with high excessive demands are mainly distributed in the old blocks in the city,
whereas the blocks with low excessive demands are mainly distributed in the areas near
the urban edge or new urban areas.

Improving the GI unit efficiency supply regulation should be based on comprehen-
sive demand rather than on a single benefit or purpose. The above eight blocks with
the highest excessive demands for comprehensive ESs should be prioritized for GI con-
struction in the central city of Zhengzhou in the future. It should be emphasized that
using the comprehensive ES excessive demand identifies high-priority areas for GI imple-
mentation, whereas the specific implementation type of GI is obtained by analyzing each
excessively demanded ES. First of all, according to the comprehensive ES excessive demand
results obtained by weighted superposition, the eight blocks with high comprehensive
ES excessive demand can be set as priority implementation areas for GI, after which the
corresponding single excessively demanded ES for each area can be analyzed. For instance,
the ecosystem service excessive demands for the Xidaijie block follow this pattern: CO2
regulation (5) > recreational services (4) and heat regulation (4) > air purification (3) = flood
regulation (3) > hydrological regulation. Therefore, CO2 regulation should be the primary
goal for the future GI planning of this street. Overall, among the eight blocks with high,
comprehensive ecosystem service excessive demand, CO2 regulation ranks first, which also
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indicates that for the GI construction for the central city of Zhengzhou, priority should be
given to reducing CO2 emissions in the future. In addition, the improvement of urban air
quality, prevention of flooding and dealing with urban high temperatures are second only
to the reduction of CO2 emissions for the implementation of GI.

Table 2. High, comprehensive ES excessive demand blocks.

ES High-Value
Neighborhood

District
Air

Purification
Rainfall

Regulation
Temperature
Regulation

Hydrological
Regulation

CO2

Regulation
Recreational

Services

Jiefang Erqi District 4 4 4 1 5 4

Nanguan Guancheng
District 5 5 5 2 5 5

East Hanghai Guancheng
District 5 5 5 2 5 5

Beixia Guancheng
District 5 5 5 2 4 4

Dehua Erqi District 4 4 4 2 5 5

Xidajie Guancheng
District 3 3 4 2 5 4

Minggong Erqi District 4 4 4 0 5 3

Duling Guancheng
District 4 4 4 0 5 4

Figure 3. Evaluation of the comprehensive excessive demand for UESs.

3.3. Bivariate Spatial Autocorrelation Analysis

Using GeoDa software, the bivariate spatial autocorrelation analysis was carried out
with population density (PD) as the first variable (X) and comprehensive excessive de-
mands for ESs (CEDES) as the second variable (Y). The global Moran’s I was 0.259 (Figure 4).
Randomization 999 was selected in GeoDa for the significance test. The results showed
that the p values were all 0.001, indicating a significant spatial positive correlation between
LST and habitat quality under the confidence of 99.9%; that is, with the increase in popu-
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lation density, the comprehensive excessive demand for ESs in the center of Zhengzhou
also increases.

Figure 4. The Moran’s I scatter diagram of population density and comprehensive excessive demands
for ESs.

The global Moran’s I only represents the overall correlation trend of the two variables
and cannot reflect the agglomeration differences in specific spatial locations. Therefore, the
local Moran’s I was further calculated, and the results (LST-habitat quality) were divided
into three aggregation types: high-high (H-H), low-high (L-H) and low-low (L-L). The
LISA (local indicators of spatial association) cluster map of population density and compre-
hensive excessive demand for ESs clearly shows the spatial agglomeration characteristics
of regions that passed the significance test (Figure 5).

The H-H type is scattered in Erqi District and Guancheng District. Erqi District
includes Duling, Jiefang, Yimalu and Dehua blocks; Guancheng District includes Beixia,
Xidajie, Dongdajie and Longhai blocks. The above areas are located in the center of the old
blocks in Zhengzhou, with typical characteristics of high population density, high building
density and very little GI distribution. Among these blocks, the highest population density
is found in the Dehua block, which is 162,325 persons/km2, and the lowest is in the Longhai
Road block, with 18,711 people/km2. Their high demand for ESs is reflected in all aspects
of GI configuration, including improving air quality, reducing waterlogging, lowering
summer temperatures, increasing recreational space, etc.

The L-H type is distributed in Guancheng District and Jinshui District. Guancheng
District includes South Zijingshan and Erligang blocks; Jinshui District includes Renmin
and Fenghuangtai blocks. The population density is 9274 people/km2 in the South Zi-
jingshan block, 7244 people/km2 in the Erligang block, 16,381 people/km2 in the Renmin
block and 11,137 people/km2 in the Fenghuangtai block. The reasons for the relatively
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low population density and high additional demand are the high traffic flow in the South
Zijingshan block and the excessive building density in the residential area; the Erligang
block, Renmin block and Fenghuangtai block’s inclusion is mainly caused by the high
demand for CO2 regulation.

Figure 5. Local indicators of spatial association cluster map of population density and comprehensive
excessive demand for ESs.

The L-L type is mainly distributed in the fringes of the central urban area. These blocks
were developed late, with low population density and relatively complete infrastructure.
The layout of buildings and roads in the blocks is more reasonable. In addition to the
surrounding suburbs, there are large areas of green space to reduce the risk of disasters in
these areas.

4. Discussion

4.1. Excessive Demand Evaluation for Each UES

At present, the versatility of GI has been widely accepted and recognized, but research
into and implementing it are often carried out to bestow a single benefit [36]. This ignores
the overall benefits of GI to some extent and is not conducive to the efficient use of social
capital. In addition, most of the benefits generated by GI are highly localized and located in
or near supply areas, making decisions on their allocation important for local environmental
and social equity. This is why we assessed several ES needs, including regulation services
and cultural services, separately.

Taking the central area of Zhengzhou as an example, we conducted a single quanti-
tative evaluation and spatial mapping on six excessively demanded ESs (air purification,
flood regulation, heat regulation, hydrological regulation, CO2 regulation and recreational
services) based on environmental quality standards with the block as the basic unit. The
results show that:
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(1) Comparing the evaluation results of the six indicators, except for hydrological reg-
ulation and CO2 regulation, the other four indicators show that the high-demand
areas are located in the old urban areas, which were the first to be developed but
now have poor environmental conditions. Therefore, in terms of supply, old urban
areas need to be equipped with GI facilities that can solve air pollution, waterlogging,
high temperature and lack of open space, and the corresponding solution strategy
needs to be based on the construction characteristics of each neighborhood, such
as adding three-dimensional greening and green roofs for buildings that meet the
implementation goals. For example, the rational design of road space and pavement,
with rainwater gutters and permeable paving materials that can both increase the road
space and pavement can be reasonably designed, and the rain gutters and permeable
paving materials can not only increase the water permeability and water storage but
also increase the planting space; furthermore, small, abandoned spaces around the
streets can be used to create recreational places and so on.

(2) The evaluation of hydrological regulation in this study focuses on the water quality of
rivers and public-space landscape lakes in urban areas; there are neighborhoods with-
out river or lake distribution and these areas cannot be evaluated, thus their demand
value is 0. As a result, in the calculation process of evaluating the comprehensive
ES demand, this indicator has the lowest weight value, which has no influence on
the final results. From the final evaluation results, the water environment quality in
the areas located in the northwest and southeast of the central city is poor, mainly
because: firstly, there are more rivers in the northwest of the city, but the construction
along the rivers is lagging behind, there is a lack of coherent green space, and there is
more unused land distribution, which makes it easy to have garbage accumulation or
sewage discharge; secondly, the southeast of the city is located downstream of the city
rivers, plus the area is in the expansion and construction stage and there is a certain
industrial distribution in the periphery, which makes the water body more vulnerable
to pollution. The implementation of GI in the river area should focus on increasing
the spatial coherence and the purification effect of plants on water bodies, as to form
an urban greenway combining blue and green spaces.

(3) Combined with the evaluation results of CO2 regulation, the central old city and the
new city in the southeast, as the high-value areas of CO2 emissions, are influenced
by the daily activities of residents and construction and industrial development,
respectively. Based on the above factors, firstly, in the neighborhoods with high CO2
emissions in the old city, the implementation of GI should focus on increasing the
planting space that can collect CO2 as much as possible while focusing on the use of
relevant energy-saving facilities; secondly, for the economic development zone and
aviation port area in the southeast, there is a larger area of space for GI construction,
and thus it is necessary to reserve enough land for GI and build energy-saving and
emission-reducing green buildings at the early stage of planning and construction.

4.2. Comprehensive Excessive Demand for UESs

Based on the results of the individual ES demand evaluation, we then assessed the
additional demand for comprehensive ESs in each neighborhood within the central city
of Zhengzhou. The purpose of the comprehensive ES demand evaluation was to identify
priority areas for GI implementation, which helps decision-making authorities to make
decisions with limited financial and resource support that are more equitable to the local
environment and society. Compared with previous studies on ecosystem services [37,38],
we paid more attention to the practicality of comprehensive demand of ES supply and
demand in urban GI planning and construction. For example, Morse Wayde C et al. ex-
plored the relationship between outdoor recreation and ecosystem services, and Ruchira
Gangahagedara et al. proposed research trends and research priors for ESs related to multi-
directional biodiversity and climate change. Based on the results of this study, the following
optimization measures about the implementation of GI are proposed for the future:
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(1) In terms of spatial priority, the results of excessive ES demand after comprehensive
superposition indicate that there are eight high-demand blocks in total, and all of them
are clustered at the junction of Guancheng District and Erqi District. These blocks
belong to the earliest developed areas in Zhengzhou. Therefore, the implementation
of GI should give priority to old neighborhoods and old city renewal. Here, we
propose two preliminary strategies: hard GI and soft GI. First, hard GI includes the
use of permeable and water-storage materials in the road pavement and energy-saving
facilities in buildings, etc. Hard GI is an effective supplement to the original, backward
infrastructure in the neighborhood that enhances the drainage function inside the
streets and reduces CO2 emissions and excessive use of energy. Secondly, soft GI
includes green space mainly for planting. On the one hand, in the old neighborhoods
with extremely limited land space there are small spaces with poor or unreasonable
utilization, such as street corners and street edges, in which GI layout can be utilized
in the form of pocket parks and where miniature dotted and strip planting can be
used for renewal and renovation; on the other hand, three-dimensional greening
and rooftop greening can be added to buildings and structures with feasibility. In
short, the scattered layout of soft GI in the form of “stitching” can improve the
neighborhood air quality, reduce the heat island effect of small-scale space, absorb
waterlogging and meet the residents’ recreational needs with maximum efficiency. In
addition, enhancing and maintaining the development and the quality of the green
infrastructure in the blocks should not be ignored, and improving the development
level of green infrastructures such as rivers, parks and road green belts can enhance
the function of ESs such as hydrology and climate in the blocks.

(2) In terms of the excessively demanded ESs for the center of Zhengzhou, the decision-
makers should first consider the supply of GI to improve the CO2 regulation service.
There is a close relationship between carbon emissions and air quality. The reason
for this result is directly related to the backward energy-saving facilities, excessive
population and building density in old blocks. Therefore, in addition to the above
measures, a more in-depth study of tree species selection and enhanced connectivity
for non-motorized mobility within the GI could increase CO2 uptake by plants and
improve the convenience of low-carbon travel for the population to some extent.

4.3. Bivariate Spatial Autocorrelation Analysis

We conducted a spatial autocorrelation analysis of population density and compre-
hensive ES demand. The calculation results of the Moran’s I and LISA cluster map can
help us to analyze the reasons for additional ES demand in different neighborhoods in the
city more thoroughly and can scientifically verify the demand types of GI calculated by
the established ES excessive demand evaluation system and the areas in urgent need of
priority construction. For example, it can be seen from the analysis results that although
population density and ES demand have the most direct correlation, high-demand and
high-population density blocks do not equate. Therefore, we should focus on four areas of
GI functionality configuration:

(1) For H-H type blocks, GI should be allocated based on low per capita resources
and small available space, and environmental issues directly related to people’s
health should be primarily solved, such as improving air quality and alleviating high
temperatures in summer.

(2) For L-H type blocks, due to the relatively low population density, GI configuration
has a large role to play. Therefore, a GI supply strategy should be proposed for these
blocks one by one, based on the single ES demand assessment results of each block.

(3) For L-L type blocks, which are mainly distributed in new areas around central ur-
ban areas, the population density and demand for ecosystem services are relatively
low. However, our on-the-spot investigation found that a large amount of green
infrastructure, such as street green spaces, greenways and comprehensive parks,
in these blocks is inefficiently utilized. Therefore, GI configuration needs to pay
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attention to individual blocks with high demand for a single ES and be based on
functional supplement.

(4) For blocks with high ES demand not reflected in the above three types, such as Ming-
gong, Nanguan and East Hanghai blocks, we need to further analyze the main reasons
for high ES demand and propose corresponding GI supply strategies according to the
results of individual ES evaluation.

5. Conclusions

The aim of the present study was to provide effective auxiliary information to aid
decision-making on GI from two aspects: the implementation area and the type of GI.
Based on the above research, the conclusions of this paper are as follows:

(1) We attempted to establish a new evaluation system in the context of the mismatch of
urban GI supply and demand and use environmental quality standards and industry
code standards to establish excessive demand thresholds for ESs. We demonstrated the
applicability of the evaluation system in regulation services and recreation services.

(2) Our evaluation method can effectively maximize the urban GI configuration by pro-
viding intuitive quantitative results to reflect the actual demand for ESs in urban
areas and improve the ability of urban areas to resist natural disasters. The assess-
ment method based on establishing excessive demands for ESs could be applied
to other ecologically fragile ecological areas affected by urban development and
climate change.

(3) In the implementation of GI, many researchers provide measures to enhance resilience
and prevent natural disasters. For example, Daeyoung Jeong et al. proposed a GI
planning strategy for disaster prevention and evacuation in coastal cities [39]. We
recommend that more quantitative environmental assessments be incorporated into
planning, particularly in GI planning.

(4) The present study has some limitations. Firstly, we did not consider subjective service
needs outside of the ecological environment, such as aesthetics, historical and cultural
heritage, etc. Secondly, our assessment method is for excessive demand for ESs on
the urban scale. However, in practice, green-space planning on only one scale may
not enable full realization of the effect of providing GI on a larger scale. In addition,
In this study, we only analyzed the autocorrelation between population density and
comprehensive ES demand. Due to the limitations of collectible data, etc., there was
no one-by-one analysis between population density and ES individual indicators. In
the future, we will continue to study the internal driving mechanism quantitatively
and combine corresponding engineering techniques to help maximize the ecological
benefits of GI. For example, in old, built-up urban areas, GI supplements should
be carried out by planting landscapes such as roof gardens, vertical greening and
street green spaces, and GI such as permeable roads and drainage facilities should be
improved or increased in areas where conditions permit. In later expansion areas, the
GI construction should mainly focus on increasing recreational places and green land,
improving water-permeable facilities in large areas, and encouraging the large-scale
implementation of roof greening and vertical greening in new buildings.

(5) In the follow-up study, we will improve the evaluation system from two aspects: on
the one hand, we will further consider adding more evaluation indicators, such as
biodiversity, travel efficiency, urban style, etc. On the other hand, we will further
explore the internal mechanism of high and low imbalance, including how to regulate
population from the planning scale, the developmental direction of built-up areas,
the construction of the interconnected ecological network, etc. Therefore, our next
task is to consider how to carry out large-scale and multi-level ecosystem service
assessments and GI planning in the context of territorial space planning, with the
focus on smaller-scale convergence and coordination, which is also an important
challenge in this field of research.
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The above research results can help the city stakeholders to prioritize green spaces
and categories of GI implementation and provide more objective auxiliary information for
decision-making in regard to the planning and implementation of GI. Our method aug-
ments GI allocation for green-space system planning by taking background socioeconomic
factors into account and helps to maximize the comprehensive ecosystem service benefits
provided by GI.
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