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Abstract: The formulation of the Partial Information Decomposition (PID) framework by Williams
and Beer in 2010 attracted a significant amount of attention to the problem of defining redundant
(or shared), unique and synergistic (or complementary) components of mutual information that
a set of source variables provides about a target. This attention resulted in a number of measures
proposed to capture these concepts, theoretical investigations into such measures, and applications to
empirical data (in particular to datasets from neuroscience). In this Special Issue on “Information
Decomposition of Target Effects from Multi-Source Interactions” at Entropy, we have gathered current
work on such information decomposition approaches from many of the leading research groups
in the field. We begin our editorial by providing the reader with a review of previous information
decomposition research, including an overview of the variety of measures proposed, how they have
been interpreted and applied to empirical investigations. We then introduce the articles included in
the special issue one by one, providing a similar categorisation of these articles into: i. proposals of
new measures; ii. theoretical investigations into properties and interpretations of such approaches,
and iii. applications of these measures in empirical studies. We finish by providing an outlook on the
future of the field.

Keywords: mutual information; information decomposition; unique information; redundant information;
complementary information; redundancy; synergy

PACS: 89.70.Cf; 89.75.Fb; 05.65.+b; 87.19.lo

1. Background to Information Decomposition

Shannon information theory [1–3] has provided rigorous ways to capture our intuitive notions
regarding uncertainty and information, and it has made an enormous impact in doing so. One of the
fundamental measures here is mutual information I(S; T), which captures the average information
contained in samples s of a set of source variables S about samples t of another variable T, and vice
versa. If we have two source variables S1, S2 and a target T, for example, we can measure:

1. the information held by one source about the target I(S1; T),

Entropy 2018, 20, 307 1 www.mdpi.com/journal/entropy
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2. the information held by the other source about the target I(S2; T), and
3. the information jointly held by those sources together about the target I({S1, S2}; T).

Any other notion about the directed information relationship between these variables which can
be captured by classical information-theoretic measures (e.g., conditional mutual information terms
I(S1; T|S2) and I(S2; T|S1)) is redundant with those three quantities.

However, intuitively, there is a strong desire to measure further notions of how this directed
information interaction may be decomposed, e.g., for these two sources:

1. how much redundant or shared information R(S1, S2→T) the two source variables hold about
the target,

2. how much unique information U(S1\S2→T) source variable S1 holds about T that S2 does not,
3. how much unique information U(S2\S1→T) source variable S2 holds about T that S1 does

not, and
4. how much complementary or synergistic information C(S1, S2→T) can only be discerned by

examining the two sources together.

These notions go beyond the traditional information-theoretic view of a channel serving the
purpose of reliable communication, considering now the situation of multiple communication streams
converging on a single target. This is a common situation in biology, and in particular in neuroscience,
where, say, the ability of a target to synergistically fuse multiple information sources in a non-trivial
fashion is likely to have its own intrinsic value, independently of reliability of communication.

The absence of (completely satisfactory) measures for such decompositions into redundant,
unique and synergistic information has arguably been the most fundamental missing piece in classical
information theory. Contemporary work on this problem was triggered by the formulation of the
Partial Information Decomposition (PID) framework in a landmark paper by Williams and Beer [4]
in 2010 (note: this paper was refined under an alternate title, and circulated privately only as [5]).
This framework suggested that these quantities were related to the fundamental mutual information
measures as follows and shown in Figure 1 for two source variables (with more complex relations for
higher order interactions):

I({S1, S2}; T) = R(S1, S2→T) + U(S1\S2→T) + U(S2\S1→T) + C(S1, S2→T), (1)

I(S1; T) = R(S1, S2→T) + U(S1\S2→T), (2)

I(S2; T) = R(S1, S2→T) + U(S2\S1→T). (3)

Figure 1. Partial information diagram for two sources to a target showing the relationship of the
partial information quantities to the fundamental mutual information terms.
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Crucially, the PID framework proposed that all these components coexist, subverting what had
come to be the established interpretation [6] of the interaction information I I = I(S1; T|S2)− I(S1; T),
that I I > 0 implied a synergistic interaction whilst I I < 0 implied redundancy (and implying
them to be mutually exclusive). Indeed, the PID framework revealed I I as a net of synergy and
redundancy terms (i.e., net synergy). Crucially, the PID framework proposed a set of axioms—symmetry,
self-redundancy and monotonicity—that a measure of redundancy (for an arbitrary number of source
variables to a target) should satisfy [5] (see summary e.g., in [7]). While these axioms were not sufficient
to uniquely lock in a measure of redundancy, they do specify a partial ordering for redundancy terms
across various joint collections of sources, and an algebra for how to compute partial information atoms
attributed to such collections of sources (but no simpler collection) at nodes in a partial information lattice
representing the hierarchy according to this ordering. This approach proved particularly appealing to
the community.

In that paper, Williams and Beer [4] also proposed one measure of redundancy that satisfied
the axioms they had laid out, known as Imin. This measure found less favour in the community
than the framework itself, encountering various criticisms such as that it did not distinguish “the
same information or just the same amount of information” [8] (see also [7,9,10]), and did not satisfy
a chain rule across multiple target variables [8]. However, perhaps the most controversy surrounded
interpretation of the Two-bit-copy example (where a target is a copy of two IID input bits), which Imin

suggested to be 1 bit redundant and 1 bit synergistic information, yet other authors felt should be 1 bit
of unique information from each source because “the wires don’t even touch” [10], p. 167. Indeed,
the strong intuition some felt on this interpretation led Harder et al. [9] to suggest a 4th axiom (known
as identity) requiring the redundancy in such copying situations to be equal to the mutual information
between the two source variables.

Following these developments, the past few years witnessed a concentration of work by the
community in proposing, contrasting, and investigating new measures to capture these notions of
information decomposition. (See an earlier review by Wibral et al. [11], in Section 4 of that article).
Primarily amongst these were the information-geometry based Ired from Harder et al. [9], and SVK

from Griffith and Koch [10] and ŨI from Bertschinger et al. [12], all of which were presented only for
a pair of sources. The latter two approaches were later found to be equivalent, and attracted much
attention due to being placed on a particularly rigorous mathematical footing, despite computational
difficulties in solving the convex optimisation they require. For example, the derivation of the measure
by Bertschinger et al. [12] followed directly (rather than being posed ad-hoc) from an assumption that
existence of unique information depended only on the pairwise marginal distributions between
the individual sources and the target (known as “Assumption (*)”). Furthermore, the measure
was given an operational interpretation in terms of how unique information could be exploited
in decision problems. Finally, many mathematical properties of the approach were proven by
Bertschinger et al. [12] and in follow up papers by these authors [13,14].

Yet while many authors welcomed the new measures for satisfying the identity property, it was
quickly realised that they did not completely solve the search for a redundancy measure for an arbitrary
number of variables. This is because Rauh et al. [13] demonstrated that no redundancy measure can
satisfy the identity property along with the original axioms of Williams and Beer [4] and still provide
non-negative partial information atoms when we have more than two source variables.

As a consequence, the search for candidate redundancy measures continued, with various
groups considering to drop either the identity property or one or more of the original Williams
and Beer [4] axioms. Olbrich et al. [14] and Perrone and Ay [15] investigated the possibility of defining
synergy via projections of probability distributions to those retaining only certain orders of interactions
(in particular using exponential families), while Rosas et al. [16] sought similar decompositions for joint
entropies. Some approaches sought to construct intermediate variables that could be used to represent
components of the decomposition, e.g., the investigation of Gács-Körner common information by
Griffith et al. [17], Griffith and Ho [18] and constructions of variables to contain synergy only by
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Quax et al. [19]. Others investigated relatively simpler mechanisms such as the minimum mutual
information (MMI) provided by any source by Barrett [20] (and the related approach by Chatterjee
and Pal [21]).

Meanwhile, other theoretical developments were taking place in parallel. One line of work
considered how these measures relate to concepts of distributed information processing in terms
of information storage, transfer and modification [7,22–24]. Lizier et al. [7] made a case that
information decomposition approaches should (at least) be interpretable on pointwise or event-wise
realisations of the source and target variables, rather than only with their averages. Barrett [20] began
considering continuous-valued variables, and indeed showed that the minimum mutual information
was a unique form of the redundancy for linearly coupled Gaussian variables, for two sources,
under the Williams and Beer [4] axioms and Bertschinger et al.’s [12] Assumption (*). Others provided
detailed comparisons between the measures and catalogued results from various logic gates (e.g., [25]).

Despite the lingering issues surrounding a definitive measure of redundancy, the desire for
using such measures has been intense, and applications have been made drawing on the variety of
measures listed above. Computational neuroscience in particular emerged as a primary application
area due to significant interest in questions surrounding how target neurons integrate information
from large numbers of sources, as well as the availability of data sets on which to investigate these
questions. For example, Timme et al. [25] contrasted Imin with several earlier candidates regarding the
decomposition of information contributions between various electrode measurements from developing
neural cultures, concentrating in particular on how redundancy and synergy generally increase
during development. Later, Timme et al. [24] applied the PID view of information modification of
Lizier et al. [7] to study dynamics of spiking activity of neural cultures incorporating history vectors of
the target neuron, finding that neurons which modify “large amounts of information tended to receive
connections from high out-degree neurons” in the effective network structure. Stramaglia et al. [26] use
interaction information or net synergy interpretations to study interactions in electroencephalography
(EEG) measurements in pre-seizure states for an epileptic patient. Further, Wibral et al. [27] applied
PID to make various, theoretically proposed neural goal functions–such as infomax [28]–comparable,
and were able to clarify whether the theories do indeed represent the information components that they
had aimed at. Applications also began to emerge in examinations of biological data sets (e.g., [21,29]),
and in gambling [30].

2. Contents of the Special Issue

In December 2016 we held an informal workshop on Partial Information Decomposition at
the Frankfurt Institute for Advanced Studies and the Goethe University, bringing together some
of the leading research groups in the field to discuss their latest developments. The workshop
revealed a strong level of new activity in the area, and triggered deep discussions in particular
regarding how further progress towards a measure may be made and which axiom(s) may need to
be dropped/changed for this to occur. The attendees expressed a desire for publications of such new
activity to be gathered in a common location, resulting in this Special Issue. The issue seeks to bring
together the new efforts presented at the workshop, to capture a snapshot of current research, as well
as to provide impetus for and focused scrutiny on newer work. We also seek to present progress to the
wider community and attract further research in this area. In scope for the issue were research articles
proposing new measures or pointing out future directions, review articles on existing approaches,
commentary on properties and limitations of such approaches, philosophical contributions on how
such measures may be used or interpreted, applications to empirical data (e.g., neural data), and more.

The contributions we have published can be classified under three key themes: new PID measures,
theoretical investigations (including examinations of numerical estimators), and applications.

4
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2.1. New Measures of Redundancy

Considering the first, perhaps not-so surprising theme, our Special Issue carries three papers
proposing new measures of redundancy.

Rauh et al. [31] present the extractable shared information as a redundancy measure for the bivariate
case. The key feature of this measure is that, in contrast to previous proposals, it satisfies the property
of target or left monotonicity (i.e., that the redundancy is non-decreasing when more target variables
are added [8], or restated here as redundancy being non-increasing when a new target variable is
a function of the old target). This is achieved via a construction which translates any measure of
shared information into one that satisfies this property. The authors then explore the properties of this
measure, and show for example that it is not compatible with a Blackwell interpretation of unique
information (see their other contribution, [32], discussed in Section 2.2).

Ince [33] constructs a measure ICCS of redundancy by directly examining common values of
pointwise mutual information (or change in surprisal) in each realisation of the variables. Interestingly,
Ince [33] considers positive and negative pointwise information as fundamentally different and treats
their occurrence separately, counting redundancy only from pointwise co-information terms when
the signs of all relevant change in surprisal terms align. This necessitates considering redundant
misinformation as well as redundant information (and related terms such as unique misinformation).
The author argues for the justification of these new perspectives as well other properties of the
measure, including replacing a requirement of monotonicity with subset equality (which had usually
been considered only as part of monotonicity) and the use of a modified independent identity axiom
introduced here. Ince [33] also provides a game-theoretic operational interpretation to argue for
the approach presented, contrasting this with the decision-theoretic operational interpretation from
Bertschinger et al. [12]. This line of work continues in a companion paper [34].

From a similar pointwise perspective, Finn and Lizier [35] build on earlier work to now directly
identify positive and negative components of pointwise information from each source to the target as
specificity and ambiguity [36], and argue that redundancies in these should be treated independently to
avoid blurring them (in the same way that PID originally sought to avoid how interaction information
blurs synergy and redundancy). The authors introduce a new example called “Pointwise Unique”,
where in any pointwise configuration only one source holds non-zero information about the target.
They demonstrate that other existing measures do not identify unique information in this case, unlike
their new approach. They also introduce a new operational interpretation of redundancy in terms
of probability mass diagrams, and in allowing negative terms in net, show that their pointwise and
component-wise approach is unique in satisfying a chain-rule over target variables. The latter feature
also allows the approach to provide a consistent answer to Two-bit-copy of 1 bit redundant and 1 bit
synergistic information, regardless of the order in which target bits are decomposed.

It is interesting to note that the latter two of these new approaches independently make similar
departures from the status quo here: both taking a “bottom-up” pointwise information perspective,
considering negative partial information terms, dropping the identity axiom, and being extendible to
three or more source variables.

2.2. Theoretical Investigations

Next, the special issue contains a number of theoretical investigations into the properties of PID
approaches in general and with regard to specific measures.

James and Crutchfield [37] make the case for measures of information decomposition beyond the
standard Shannon measures by seeking to differentiate two examples of three variable systems:
one constructed with dyadic dependencies and the other with triadic. Via a comprehensive
analysis, they show that no standard Shannon measure can differentiate between the two examples,
whilst various measures of information decomposition, e.g., Gács-Körner common information and
the Bertschinger et al. [12] PID, are able to. Whilst these two PID approaches do provide such
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a differentiation, the authors express a general desire for the additional existence of a symmetric
decomposition that does not partition variables into sources and targets.

Pica et al. [38] examine a two-source one-target PID from three perspectives in total, i.e.,
one perspective for each variable as the target, in order to examine commonalities between the
perspectives. Assuming non-negativity but not any specific PID measure, they identify only seven
non-negative information subatoms that are required to construct each of the three PIDs in full, subject
to knowing the ordering of the three redundancy terms. The authors also suggest novel definitions
for a split between source redundancy (arising from correlations between the source variables) and
non-source redundancy. Indeed, the authors use their approach to provide further insights into the
information structure of the dyadic-vs-triadic example of James and Crutchfield [37].

Rauh [39] identifies the cryptographic interpretation of secret sharing as a useful model to consider
information decomposition, since secret sharing schemes incorporate specific understanding of which
subsets of participants have information about the secret. The author establishes correspondence
between secret sharing and PID, and then uses this approach as a model to explore the partial
information lattice. Negative terms in the lattice are identified for more than two participants
(analogous to the argument by Rauh et al. [13]), which leads the author to discuss whether and
how such terms could or should be interpreted, and subsequently questions whether the lattice needs
to be extended or improved in some fashion.

Rauh et al. [32] examine the decision-theoretic Blackwell partial order, which ranks information
channels (with a common input) according to the utility that can be obtained when decisions are
made on the channel outputs. The authors present the unexpected result that a coarse-graining of one
channel output may actually result in improved utility. They go on to compare the Blackwell ordering
to mutual information, and discuss implications of the result for information decomposition.

Faes et al. [40] utilise vector autoregressive Gaussian models and the MMI measure, coupled
with the aforementioned perspective of information modification, to examine the decomposition
of contributions from information sources to a target over various temporal scales. The method of
investigating the decomposition of contributions across different scales is achieved by a combination of
filtering and then downsampling, and synthetic examples in the first instance are used to demonstrate
that the method can reveal quite different decompositions at different temporal scales due to contrasting
fast and slow dynamics. The authors then apply the approach to intracranial EEG data obtained prior
to and during epileptic seizures, revealing in particular how synergistic and unique information
transfer components change with scale.

Makkeh et al. [41] consider the the convex optimisation problem that must be solved in order
to evaluate the Bertschinger et al. [12] approach, continuing on from the original observations by
Bertschinger et al. [12] that Mathematica could not directly solve these optimisation problems.
The authors provide both theoretical and practical perspectives, discussing various algorithmic
approaches to the problem and why some perform poorly, and empirically comparing the performance
of a number of software packages. Importantly, the authors identify two software packages which
perform satisfactorily, and make recommendations regarding their use here.

2.3. Applications of Information Decomposition

Applications of PID form a substantial class of papers in our special issue. As identified above,
neural applications (in addition to the EEG analysis by Faes et al. [40] above) account for the largest
portion of these.

Kay et al. [42] consider the PID between a neural receptive field input and the signal modulating
(amplifying or suppressing) it, giving rise to an output signal. In particular they demonstrate that,
contrary to intuition from some perspectives, a modulatory signal can affect the transmission of
information about other inputs without being transmitted itself. The authors go on to apply the
Ince [33] and Bertschinger et al. [12] PID measures, as well as a related decomposition of entropy by
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Ince [34], to results from a visual contrast detection task in order to demonstrate that such forms of
modulation may occur in real neural systems.

Wibral et al. [43] apply PID to decompose information storage, transfer and in particular
information modification in developing neural cultures, following the perspective of Lizier et al. [7].
Utilising the Bertschinger et al. [12] PID measure via the publicly available IDTxl toolkit [44],
the authors identify the aforementioned components of information processing from pairs of input
(multi-unit) spike train recordings to each output recording. They report that information modification
initially rose during development with maturation of the culture (indicating intricate processing
capabilities), followed by a decay when redundant information among neurons took over (possibly
due to a lack of external inputs).

Moving on to artificial neural computation then, Tax et al. [45] also use PID to analyse neural
development, but this time the development of a restricted Boltzmann machine during training.
The authors focus on decomposing the information held by (sample pairs of) individual hidden
neurons about the target variable to be classified, using Imin [4]. They observe a first phase where
neurons appear to learn predominantly redundant information about the target, followed by a second
phase where the neurons specialise to learn unique information about the target (also with a significant
synergistic component). Further, the authors report that while larger networks appear to utilise
higher order representations to a greater extent, individuals in smaller networks appear to learn more
unique details, and conclude that perhaps network size pressure on learning can lead to disentangled
representations.

Ghazi-Zahedi et al. [46] apply PID in order to further our understanding of morphological
computation, “processes in the body that would otherwise have to be conducted by the brain”.
Examining the embodied concept of the sensorimotor loop model, the authors quantify morphological
computation as synergistic information from the cognitive system’s actuators and the current world
state (incorporating both the system’s morphology and the part of the environment that can be affected
by and affects the system) to the next world state. The authors focus on the synergy measure of Perrone
and Ay [15] for this purpose, comparing it to previous measures and finding it to be generally more
reliably oriented with their intuition, though not in all cases.

As highlighted above, computational biology has also emerged as an interesting application area
for PID, and here Maity et al. [47] use PID to examine cross-talk in biochemical networks between
two mitogen-activated protein kinase (MAPK) pathways. The authors examine data from models of
these pathways, using Gaussian model calculations of the information-theoretic terms and quantifying
net synergy. They demonstrate differences in information decomposition between different pathway
architectures, e.g., signal integration motifs and signal bifurcation motifs.

Sootla et al. [48] turn our attention to various canonical complex systems, demonstrating how PID
can provide still new insights into these well-understood examples. Utilising the Bertschinger et al. [12]
PID (building on work by some of the authors on estimators for this measure in another contribution
to the special issue [41]), the authors begin by examining decomposition of information in triplets of
spins in the 2D Ising model, while the temperature is varied. They report that redundant information
is maximised at the critical point, whilst synergistic information peaks in the disordered phase. Next,
the authors decompose information of cells in 1D elementary cellular automata (ECA) from the
two neighbouring sources of those cells. They perform a dimensionality reduction on the PID atoms
(as dimensions), identifying some (but not perfect) distinction in characteristics between Wolfram’s
rule classes.

3. Outlook

Information decomposition into redundant, unique and synergistic components has been
recognised as a crucial theoretical problem which has proven far more difficult to solve than may
have been expected. Thankfully, there is very strong activity in the community leading to progress on
information decomposition approaches, which as outlined above is well reflected in this special issue.
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We hope that our presentation of these papers will further the debate regarding which is the “right”
measure of redundancy, which original assumptions or axioms may need to be dropped or changed
(as per new measures and challenges to current thinking in Section 2.1), and how the approaches can
and should be interpreted and/or extended (as per investigations in Section 2.2). Certainly there is
a hunger for applications of information decomposition (as per Section 2.3), and again we hope that
the special issue helps to disseminate and encourage these approaches.
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Abstract: We consider the problem of quantifying the information shared by a pair of random
variables X1, X2 about another variable S. We propose a new measure of shared information,
called extractable shared information, that is left monotonic; that is, the information shared about S
is bounded from below by the information shared about f (S) for any function f . We show that
our measure leads to a new nonnegative decomposition of the mutual information I(S; X1X2) into
shared, complementary and unique components. We study properties of this decomposition and
show that a left monotonic shared information is not compatible with a Blackwell interpretation of
unique information. We also discuss whether it is possible to have a decomposition in which both
shared and unique information are left monotonic.
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Blackwell order
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1. Introduction

A series of recent papers have focused on the bivariate information decomposition problem [1–6].
Consider three random variables S, X1, X2 with finite alphabets S , X1 and X2, respectively. The total
information that the pair (X1, X2) convey about the target S can have aspects of shared or redundant
information (conveyed by both X1 and X2), of unique information (conveyed exclusively by either X1

or X2), and of complementary or synergistic information (retrievable only from the the joint variable
(X1, X2)). In general, all three kinds of information may be present concurrently. One would like to
express this by decomposing the mutual information I(S; X1X2) into a sum of nonnegative components
with a well-defined operational interpretation. One possible application area is in the neurosciences.
In [7], it is argued that such a decomposition can provide a framework to analyze neural information
processing using information theory that can integrate and go beyond previous attempts.

For the general case of k finite source variables (X1, . . . , Xk), Williams and Beer [3] proposed
the partial information lattice framework that specifies how the total information about the target
S is shared across the singleton sources and their disjoint or overlapping coalitions. The lattice
is a consequence of certain natural properties of shared information (sometimes called the
Williams–Beer axioms). In the bivariate case (k = 2), the decomposition has the form

I(S; X1X2) = SI(S; X1, X2)︸ ︷︷ ︸
shared

+CI(S; X1, X2)︸ ︷︷ ︸
complementary

+ UI(S; X1\X2)︸ ︷︷ ︸
unique (X1 wrt X2)

+ UI(S; X2\X1)︸ ︷︷ ︸
unique (X2 wrt X1)

, (1)

I(S; X1) = SI(S; X1, X2) + UI(S; X1\X2), (2)

I(S; X2) = SI(S; X1, X2) + UI(S; X2\X1), (3)

Entropy 2017, 19, 328 11 www.mdpi.com/journal/entropy
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where SI(S; X1, X2), UI(S; X1\X2), UI(S; X2\X1), and CI(S; X1, X2) are nonnegative functions that
depend continuously on the joint distribution of (S, X1, X2). The difference between shared and
complementary information is the familiar co-information [8] (or interaction information [9]),
a symmetric generalization of the mutual information for three variables,

CoI(S; X1, X2) = I(S; X1)− I(S; X1|X2) = SI(S; X1, X2)− CI(S; X1, X2).

Equations (1) to (3) leave only a single degree of freedom, i.e., it suffices to specify either a measure
for SI, for CI or for UI.

Williams and Beer not only introduced the general partial information framework, but also
proposed a measure of SI to fill this framework. While their measure has subsequently been criticized
for “not measuring the right thing” [4–6], there has been no successful attempt to find better measures,
except for the bivariate case (k = 2) [1,4]. One problem seems to be the lack of a clear consensus on
what an ideal measure of shared (or unique or complementary) information should look like and what
properties it should satisfy. In particular, the Williams–Beer axioms only put crude bounds on the
values of the functions SI, UI and CI. Therefore, additional axioms have been proposed by various
authors [4–6]. Unfortunately, some of these properties contradict each other [5], and the question for
the right axiomatic characterization is still open.

The Williams–Beer axioms do not say anything about what should happen when the target
variable S undergoes a local transformation. In this context, the following left monotonicity property
was proposed in [5]:

(LM) SI(S; X1, X2) ≥ SI( f (S); X1, X2) for any function f . (left monotonicity)

Left monotonicity for unique or complementary information can be defined similarly. The
property captures the intuition that shared information should only decrease if the target performs
some local operation (e.g., coarse graining) on her variable S. As argued in [2], left monotonicity of
shared and unique information are indeed desirable properties. Unfortunately, none of the measures
of shared information proposed so far satisfy left monotonicity.

In this contribution, we study a construction that enforces left monotonicity. Namely, given
a measure of shared information SI, define

SI(S; X1, X2) := sup
f :S→S′

SI( f (S); X1, X2), (4)

where the supremum runs over all functions f : S → S′ from the domain of S to an arbitrary finite
set S′. By construction, SI satisfies left monotonicity, and SI is the smallest function bounded from
below by SI that satisfies left monotonicity.

Changing the definition of shared information in the information decomposition framework
Equations (1)–(3) leads to new definitions of unique and complementary information:

UI∗(S; X1\X2) := I(S; X1)− SI(S; X1, X2),

UI∗(S; X2\X1) := I(S; X2)− SI(S; X1, X2),

CI∗(S; X1, X2) := I(S; X1X2)− SI(S; X1, X2)−UI∗(S; X1\X2)−UI∗(S; X2\X1).

In general, UI∗(S; X1 \ X2) �= UI(S; X1 \ X2) := sup f :S→S′ UI( f (S); X1 \ X2). Thus, our
construction cannot enforce left monotonicity for both UI and SI in parallel.

Lemma 2 shows that SI, UI∗ and CI∗ are nonnegative and thus define a nonnegative bivariate
decomposition. We study this decomposition in Section 4. In Theorem 1, we show that our construction
is not compatible with a decision-theoretic interpretation of unique information proposed in [1].
In Section 5, we ask whether it is possible to find an information decomposition in which both
shared and unique information measures are left monotonic. Our construction cannot directly be
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generalized to ensure left monotonicity of two functions simultaneously. Nevertheless, it is possible
that such a decomposition exists, and in Proposition 1, we prove bounds on the corresponding shared
information measure.

Our original motivation for the definition of SI was to find a bivariate decomposition in which the
shared information satisfies left monotonicity. However, one could also ask whether left monotonicity
is a required property of shared information, as put forward in [2]. In contrast, Harder et al. [4] argue
that redundancy can also arise by means of a mechanism. Applying a function to S corresponds to
such a mechanism that singles out a certain aspect from S. Even if all the Xi share nothing about
the whole S, they might still share information about this aspect of S, which means that the shared
information will increase. With this intuition, we can interpret SI not as an improved measure of shared
information, but as a measure of extractable shared information, because it asks for the maximal amount
of shared information that can be extracted from S by further processing S by a local mechanism. More
generally, one can apply a similar construction to arbitrary information measures. We explore this
idea in Section 3 and discuss probabilistic generalizations and relations to other information measures.
In Section 6, we apply our construction to existing measures of shared information.

2. Properties of Information Decompositions

2.1. The Williams–Beer Axioms

Although we are mostly concerned with the case k = 2, let us first recall the three axioms that
Williams and Beer [3] proposed for a measure of shared information for arbitrarily many arguments:

(S) SI(S; X1, . . . , Xk) is symmetric under permutations of X1, . . . , Xk, (Symmetry)
(SR) SI(S; X1) = I(S; X1), (Self-redundancy)
(M) SI(S; X1, . . . , Xk−1, Xk) ≤ SI(S; X1, . . . , Xk−1),

with equality if Xi = f (Xk) for some i < k and some function f . (Monotonicity)

Any measure of SI satisfying these axioms is nonnegative. Moreover, the axioms imply the following:

(RM) SI(S; X1, . . . , Xk) ≥ SI(S; f1(X1), . . . , fk(Xk)) for all functions f1, . . . , fk. (right monotonicity)

Williams and Beer also defined a function

Imin(S; X1, . . . , Xk) = ∑
s

PS(s) min
i

{
∑
xi

PXi |S(xi|s) log
PS|Xi

(s|xi)

PS(s)

}
(5)

and showed that Imin satisfies their axioms.

2.2. The COPY example and the Identity Axiom

Let X1, X2 be independent uniformly distributed binary random variables, and consider the
copy function COPY(X1, X2) := (X1, X2). One point of criticism of Imin is the fact that X1 and X2

share Imin(COPY(X1, X2); X1, X2) = 1 bit about COPY(X1, X2) according to Imin, even though they are
independent. Harder et al. [4] argue that the shared information about the copied pair should equal
the mutual information:

(Id) SI(COPY(X1, X2); X1, X2) = I(X1; X2). (Identity)

Ref. [4] also proposed a bivariate measure of shared information that satisfies (Id). Similarly, the
measures of bivariate shared information proposed in [1] satisfies (Id). However, (Id) is incompatible
with a nonnegative information decomposition according to the Williams–Beer axioms for k ≥ 3 [2].

On the other hand, Ref. [5] uses an example from game theory to give an intuitive explanation
how even independent variables X1 and X2 can have nontrivial shared information. However, in any
case the value of 1 bit assigned by Imin is deemed to be too large.
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2.3. The Blackwell Property and Property (∗)

One of the reasons that it is so difficult to find good definitions of shared, unique or synergistic
information is that a clear operational idea behind these notions is missing. Starting from an operational
idea about decision problems, Ref. [1] proposed the following property for the unique information,
which we now propose to call Blackwell property:

(BP) For a given joint distribution PSX1X2 , UI(S; X1\X2) vanishes if and only if there exists a random
variable X′1 such that S− X2 − X′1 is a Markov chain and PSX′1

= PSX1 . (Blackwell property)

In other words, the channel S → X1 is a garbling or degradation of the channel S → X2. Blackwell’s
theorem [10] implies that this garbling property is equivalent to the fact that any decision problem
in which the task is to predict S can be solved just as well with the knowledge of X2 as with the
knowledge of X1. We refer to Section 2 in [1] for the details.

Ref. [1] also proposed the following property:

(∗) SI and UI depend only on the marginal distributions PSX1 and PSX2 of the pairs (S, X1) and
(S, X2).

This property was in part motivated by (BP), which also depends only on the channels S → X1

and S → X2 and thus on PSX1 and PSX2 . Most information decompositions proposed so far satisfy
property (∗).

3. Extractable Information Measures

One can interpret SI as a measure of extractable shared information. We explain this idea in a more
general setting.

For fixed k, let IM(S; X1, . . . , Xk) be an arbitrary information measure that measures one aspect
of the information that X1, . . . , Xk contain about S. At this point, we do not specify what precisely an
information measure is, except that it is a function that assigns a real number to any joint distributions
of S, X1, . . . , Xk. The notation is, of course, suggestive of the fact that we mostly think about one of the
measures SI, UI or CI, in which the first argument plays a special role. However, IM could also be
the mutual information I(S; X1), the entropy H(S), or the coinformation CoI(S; X1, X2). We define the
corresponding extractable information measure as

IM(S; X1, . . . , Xk) := sup
f

IM( f (S); X1, . . . , Xk), (6)

where the supremum runs over all functions f : S �→ S′ from the domain of S to an arbitrary
finite set S′. The intuition is that IM is the maximal possible amount of IM one can “extract” from
(X1, . . . , Xk) by transforming S. Clearly, the precise interpretation depends on the interpretation of IM.

This construction has the following general properties:

1. Most information measures satisfy IM(O; X1, . . . , Xk) = 0 when O is a constant random variable.
Thus, in this case, IM(S; X1, . . . , Xk) ≥ 0. Thus, for example, even though the coinformation can
be negative, the extractable coinformation is never negative.

2. Suppose that IM satisfies left monotonicity. Then, IM = IM. For example, entropy H and
mutual information I satisfy left monotonicity, and so H = H and I = I. Similarly, as shown
in [2], the measure of unique information ŨI defined in [1] satisfies left monotonicity, and so

ŨI = ŨI.
3. In fact, IM is the smallest left monotonic information measure that is at least as large as IM.

The next result shows that our construction preserves monotonicity properties of the other
arguments of IM. It follows that, by iterating this construction, one can construct an information
measure that is monotonic in all arguments.
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Lemma 1. Let f1, . . . , fk be fixed functions. If IM satisfies IM(S; f1(X1), . . . , fk(Xk)) ≤ IM(S; X1, . . . , Xk)

for all S, then IM(S; f1(X1), . . . , fk(Xk)) ≤ IM(S; X1, . . . , Xk) for all S.

Proof. Let f ∗ = arg max f
{

IM( f (S); f1(X1), . . . , fk(Xk))
}

. Then,

IM(S; f1(X1), . . . , fk(Xk)) = IM( f ∗(S); f1(X1), . . . , fk(Xk))

(a)
≤ IM( f ∗(S); X1, . . . , Xk) ≤ sup

f
IM( f (S); X1, . . . , Xk) = IM(S; X1, . . . , Xk),

where (a) follows from the assumptions.

As a generalization to the construction, instead of looking at “deterministic extractability,” one can
also look at “probabilistic extractability” and replace f by a stochastic matrix. This leads to the
definition

IM(S; X1, . . . , Xk) := sup
PS′ |S

IM(S′; X1, . . . , Xk), (7)

where the supremum now runs over all random variables S′ that are independent of X1, . . . , Xk given S.
The function IM is the smallest function bounded from below by IM that satisfies

(PLM) IM(S; X1, X2) ≥ IM(S′; X1, X2) whenever S′ is independent of X1, X2 given S.

(probabilistic left monotonicity)

An example of this construction is the intrinsic conditional information I(X; Y ↓ Z) :=
minPZ′ |Z I(X; Y|Z′), which was defined in [11] to study the secret-key rate, which is the maximal
rate at which a secret can be generated by two agents knowing X or Y, respectively, such that a third
agent who knows Z has arbitrarily small information about this key. The min instead of the max in the
definition implies that I(X; Y ↓ Z) is “anti-monotone” in Z.

In this paper, we restrict ourselves to the deterministic notions, since many of the properties we
want to discuss can already be explained using deterministic extractability. Moreover, the optimization
problem (6) is a finite optimization problem and thus much easier to solve than Equation (7).

4. Extractable Shared Information

We now specialize to the case of shared information. The first result is that when we apply our
construction to a measure of shared information that belongs to a bivariate information decomposition,
we again obtain a bivariate information decomposition.

Lemma 2. Suppose that SI is a measure of shared information, coming from a nonnegative bivariate information
decomposition (satisfying Equations (1) to (3)). Then, SI defines a nonnegative information decomposition;
that is, the derived functions

UI∗(S; X1\X2) := I(S; X1)− SI(S; X1, X2),

UI∗(S; X2\X1) := I(S; X2)− SI(S; X1, X2),

and CI∗(S; X1, X2) := I(S; X1X2)− SI(S; X1, X2)−UI∗(S; X1\X2)−UI∗(S; X2\X1)

are nonnegative. These quantities relate to the original decomposition by

a) SI(S; X1, X2) ≥ SI(S; X1, X2),

b) CI∗(S; X1, X2) ≥ CI(S; X1, X2),

c) UI( f ∗(S); X1\X2) ≤ UI∗(S; X1\X2) ≤ UI(S; X1\X2),

where f ∗ is a function that achieves the supremum in Equation (4).
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Proof.

a) SI(S; X1, X2) ≥ SI(S; X1, X2) ≥ 0,

b) CI∗(S; X1, X2) = SI(S; X1, X2)− CoI(S; X1, X2) ≥ SI(S; X1, X2)− CoI(S; X1, X2)

≥ CI(S; X1, X2) ≥ 0,

c) UI∗(S; X1\X2) = I(S; X1)− SI(S; X1, X2) ≤ I(S; X1)− SI(S; X1, X2) = UI(S; X1\X2),

UI∗(S; X1\X2) = I(S; X1)− SI(S; X1, X2) ≥ I( f ∗(S); X1)− SI( f ∗(S); X1, X2)

= UI( f ∗(S); X1\X2) ≥ 0,

where we have used the data processing inequality.

Lemma 3. 1. If SI satisfies (∗), then SI also satisfies (∗).
2. If SI is right monotonic, then SI is also right monotonic.

Proof. (1) is direct, and (2) follows from Lemma 1.

Without further assumptions on SI, we cannot say much about when SI vanishes. However,
the condition that UI∗ vanishes has strong consequences.

Lemma 4. Suppose that UI∗(S; X1\X2) vanishes, and let f ∗ be a function that achieves the supremum in
Equation (4). Then, there is a Markov chain X1 — f ∗(S) — S. Moreover, UI( f ∗(S); X1\X2) = 0.

Proof. Suppose that UI∗(S; X1\X2) = 0. Then, I(S; X1) = SI(S; X1, X2) = SI( f ∗(S); X1, X2) ≤
I( f ∗(S); X1) ≤ I(S; X1). Thus, the data processing inequality holds with equality. This implies that
X1 − f ∗(S)− S is a Markov chain. The identity UI( f ∗(S); X1\X2) = 0 follows from the same chain of
inequalities.

Theorem 1. If UI has the Blackwell property, then UI∗ does not have the Blackwell property.

Proof. As shown in the example in the appendix, there exist random variables S, X1, X2 and a function
f that satisfy

1. S and X1 are independent given f (S).
2. The channel f (S)→ X1 is a garbling of the channel f (S)→ X2.
3. The channel S → X1 is not a garbling of the channel S → X2.

We claim that f solves the optimization problem (4). Indeed, for an arbitrary function f ′,

SI( f ′(S); X1, X2) ≤ I( f ′(S); X1) ≤ I(S; X1) = I( f (S); X1) = SI( f (S); X1, X2).

Thus, f solves the maximization problem (4).
If UI satisfies the Blackwell property, then (2) and (3) imply UI( f (S); X1\X2) = 0 and

UI(S; X1\X2) > 0. On the other hand,

UI∗(S; X1 \ X2) = I(S; X1)− SI(S; X1, X2) = I(S; X1)− SI( f (S); X1, X2)

= I(S; X1)− I( f (S); X1) + UI( f (S); X1\X2) = 0.

Thus, UI∗ does not satisfy the Blackwell property.

Corollary 1. There is no bivariate information decomposition in which UI satisfies the Blackwell property and
SI satisfies left monotonicity.
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Proof. If SI satisfies left monotonicity, then SI = SI. Thus, UI = UI∗ cannot satisfy the Blackwell
property by Theorem 1.

5. Left Monotonic Information Decompositions

Is it possible to have an extractable information decomposition? More precisely, is it possible to
have an information decomposition in which all information measures are left monotonic? The obvious
strategy of starting with an arbitrary information decomposition and replacing each partial information
measure by its extractable analogue does not work, since this would mean increasing all partial
information measures (unless they are extractable already), but then their sum would also increase.
For example, in the bivariate case, when SI is replaced by a larger function SI, then UI needs to be
replaced by a smaller function, due to the constraints (2) and (3).

As argued in [2], it is intuitive that UI be left monotonic. As argued above (and in [5]), it is also
desirable that SI be left monotonic. The intuition for synergy is much less clear. In the following, we
restrict our focus to the bivariate case and study the implications of requiring both SI and UI to be left
monotonic. Proposition 1 gives bounds on the corresponding SI measure.

Proposition 1. Suppose that SI, UI and CI define a bivariate information decomposition, and suppose that SI
and UI are left monotonic. Then,

SI( f (X1, X2); X1, X2) ≤ I(X1; X2) (8)

for any function f .

Before proving the proposition, let us make some remarks. Inequality (8) is related to the identity
axiom. Indeed, it is easy to derive Inequality (8) from the identity axiom and from the assumption that
SI is left monotonic. Although Inequality (8) may not seem counterintuitive at first sight, none of the
information decompositions proposed so far satisfy this property (the function I� from [12] satisfies
left monotonicity and has been proposed as a measure of shared information, but it does not lead to a
nonnegative information decomposition).

Proof. If SI is left monotonic, then

SI( f (X1, X2); X1, X2) ≤ SI(COPY(X1, X2); X1, X2)

= I(COPY(X1, X2); X1)−UI(COPY(X1, X2); X1\X2).

If UI is left monotonic, then

UI(COPY(X1, X2); X1\X2) ≥ UI(X1; X1\X2) = I(X1; X1)− SI(X1; X1, X2).

Note that I(X1; X1) = H(X1) = I(COPY(X1, X2); X1) and

SI(X1; X1, X2) = I(X1; X2)−UI(X1; X2\X1) = I(X1; X2).

Putting these inequalities together, we obtain SI( f (X1, X2); X1, X2) ≤ I(X1; X2).

6. Examples

In this section, we apply our construction to Williams and Beer’s measure, Imin [3], and to the
bivariate measure of shared information, S̃I, proposed in [1].

First, we make some remarks on how to compute the extractable information measure
(under the assumption that one knows how to compute the underlying information measure itself).
The optimization problem (4) is a discrete optimization problem. The search space is the set of functions
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from the support S of S to some finite set S′. For the information measures that we have in mind,
we may restrict to surjective functions f , since the information measures only depend on events with
positive probabilities. Thus, we may restrict to sets S′ with |S′| ≤ |S|. Moreover, the information
measures are invariant under permutations of the alphabet S . Therefore, the only thing that matters
about f is which elements from S are mapped to the same element in S′. Thus, any function f : S → S′
corresponds to a partition of S , where s, s′ ∈ S belong to the same block if and only if f (s) = f (s′), and
it suffices to look at all such partitions. The number of partitions of a finite set S is the Bell number B|S|.

The Bell numbers increase super-exponentially, and for larger sets S , the search space of the
optimization problem (4) becomes quite large. For smaller problems, enumerating all partitions in
order to find the maximum is still feasible. For larger problems, one would need a better understanding
about the optimization problem. For reference, some Bell numbers include:

n 3 4 6 10

Bn 5 15 203 115975
.

As always, symmetries may help, and so in the COPY example discussed below, where |S| = 4, it
suffices to study six functions instead of B4 = 15.

We now compare the measure Imin, an extractable version of Williams and Beer’s measure Imin

(see Equation (5) above), to the measure S̃I, an extractable version of the measure S̃I proposed in [1].
For the latter, we briefly recall the definitions. Let Δ be the set of all joint distributions of random
variables (S, X1, X2) with given state spaces S , X1, X2. Fix P = PSX1X2 ∈ Δ. Define ΔP as the set of all
distributions QSX1X2 that preserves the marginals of the pairs (S, X1) and (S, X2), that is,

ΔP
..=
{

QSX1X2 ∈ Δ : QSX1 = PSX1 , QSX2 = PSX2 , ∀ (S, X1, X2) ∈ Δ
}

.

Then, define the functions

ŨI(S; X1\X2) ..= min
Q∈ΔP

IQ(S; X1|X2),

ŨI(S; X2\X1) ..= min
Q∈ΔP

IQ(S; X2|X1),

S̃I(S; X1, X2) ..= max
Q∈ΔP

CoIQ(S; X1, X2),

C̃I(S; X1, X2) ..= I(S; X1X2)− min
Q∈ΔP

IQ(S; X1X2),

where the index Q in IQ or CoIQ indicates that the corresponding quantity is computed with respect
to the joint distribution Q. The decomposition corresponding to S̃I satisfies the Blackwell property

and the identity axiom [1]. ŨI is left monotonic, but S̃I is not [2]. In particular, S̃I �= S̃I. S̃I can be

characterized as the smallest measure of shared information that satisfies property (∗). Therefore, S̃I is
the smallest left monotonic measure of shared information that satisfies property (∗).

Let X1 = X2 = {0, 1} and let X1, X2 be independent uniformly distributed random variables.
Table 1 collects values of shared information about f (X1, X2) for various functions f (in bits).

Table 1. Shared information about f (X1, X2) for various functions f (in bits).

f Imin Imin S̃I S̃I

COPY 1 1 0 1/2

AND/OR 3/4 log 4/3 3/4 log 4/3 3/4 log 4/3 3/4 log 4/3

XOR 0 0 0 0
SUM 1/2 1/2 1/2 1/2

X1 0 0 0 0
f1 1/2 1/2 0 0
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The function f1 : {00, 01, 10, 11} → {0, 1, 2} is defined as

f1(X1, X2) :=

{
X1, if X2 = 1,

2, if X2 = 0.

The SUM function is defined as f (X1, X2) := X1 + X2. Table 1 contains (up to symmetry) all possible
non-trivial functions f . The values for the extractable measures are derived from the values of the
corresponding non-extractable measures. Note that the values for the extractable versions differ only
for COPY from the original ones. In these examples, Imin = Imin, but as shown in [5], Imin is not left
monotonic in general.

7. Conclusions

We introduced a new measure of shared information that satisfies the left monotonicity property
with respect to local operations on the target variable. Left monotonicity corresponds to the idea that
local processing will remove information in the target variable and thus should lead to lower values
of measures which quantify information about the target variable. Our measure fits the bivariate
information decomposition framework; that is, we also obtain corresponding measures of unique
and synergistic information. However, we also have shown that left monotonicity for the shared
information contradicts the Blackwell property of the unique information, which limits the value of
a left monotonic measure of shared information for information decomposition.

We also presented an alternative interpretation of the construction used in this paper. Starting
from an arbitrary measure of shared information SI (which need not be left monotonic), we interpret
the left monotonic measure SI as the amount of shared information that can be extracted from S by
local processing.

Our initial motivation for the construction of SI was the question to which extent shared
information originates from the redundancy between the predictors X1 and X2 or is created by the
mechanism that generated S. These two different flavors of redundancy were called source redundancy
and mechanistic redundancy, respectively, in [4]. While SI cannot be used to completely disentangle
source and mechanistic redundancy, it can be seen as a measure of the maximum amount of redundancy
that can be created from S using a (deterministic) mechanism. In this sense, we believe that it is an
important step forward towards a better understanding of this problem and related questions.
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Appendix A. Counterexample in Theorem 1

Consider the joint distribution

f (s) s x1 x2 Pf (S)SX1X2

0 0 0 0 1/4
0 1 0 1 1/4
0 0 1 0 1/8
0 1 1 0 1/8
1 2 1 1 1/4

and the function f : {0, 1, 2} → {0, 1} with f (0) = f (1) = 0 and f (2) = 1. Then, X1 and X2 are
independent uniform binary random variables, and f (S) = AND(X1, X2). In addition, S− f (S)− X1

is a Markov chain. By symmetry, the joint distributions of the pairs ( f (S), X1) and ( f (S), X2) are
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identical, and so the two channels f (S)→ X1 and f (S)→ X2 are identical, and, hence, trivially, one
is a garbling of the other. However, one can check that the channel S → X1 is not a garbling of the
channel S → X2.

This example is discussed in more detail in Rauh et al. [13].
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Abstract: The problem of how to properly quantify redundant information is an open question that
has been the subject of much recent research. Redundant information refers to information about
a target variable S that is common to two or more predictor variables Xi. It can be thought of as
quantifying overlapping information content or similarities in the representation of S between the Xi.
We present a new measure of redundancy which measures the common change in surprisal shared
between variables at the local or pointwise level. We provide a game-theoretic operational definition
of unique information, and use this to derive constraints which are used to obtain a maximum entropy
distribution. Redundancy is then calculated from this maximum entropy distribution by counting
only those local co-information terms which admit an unambiguous interpretation as redundant
information. We show how this redundancy measure can be used within the framework of the Partial
Information Decomposition (PID) to give an intuitive decomposition of the multivariate mutual
information into redundant, unique and synergistic contributions. We compare our new measure
to existing approaches over a range of example systems, including continuous Gaussian variables.
Matlab code for the measure is provided, including all considered examples.

Keywords: mutual information; redundancy; synergy; pointwise; local; surprisal; partial information
decomposition; interaction information; co-information

1. Introduction

Information theory was originally developed as a formal approach to the study of man-made
communication systems [1,2]. However, it also provides a comprehensive statistical framework for
practical data analysis [3]. For example, mutual information is closely related to the log-likelihood
ratio test of independence [4]. Mutual information quantifies the statistical dependence between
two (possibly multi-dimensional) variables. When two variables (X and Y) both convey mutual
information about a third, S, this indicates that some prediction about the value of S can be made
after observing the values of X and Y. In other words, S is represented in some way in X and Y.
In many cases, it is interesting to ask how these two representations are related—can the prediction of
S be improved by simultaneous observation of X and Y (synergistic representation), or is one alone
sufficient to extract all the knowledge about S which they convey together (redundant representation).
A principled method to quantify the detailed structure of such representational interactions between
multiple variables would be a useful tool for addressing many scientific questions across a range of
fields [5–8]. Within the experimental sciences, a practical implementation of such a method would
allow analyses that are difficult or impossible with existing statistical methods, but that could provide
important insights into the underlying system.

Williams and Beer [6] present an elegant methodology to address this problem, with a non-negative
decomposition of multivariate mutual information. Their approach, called the Partial Information
Decomposition (PID), considers the mutual information within a set of variables. One variable is
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considered as a privileged target variable, here denoted S, which can be thought of as the independent
variable in classical statistics. The PID then considers the mutual information conveyed about this target
variable by the remaining predictor variables, denoted X = {X1, X2, . . . Xn}, which can be thought of
as dependent variables. In practice the target variable S may be an experimental stimulus or parameter,
while the predictor variables in X might be recorded neural responses or other experimental outcome
measures. However, note that due to the symmetry of mutual information, the framework applies
equally when considering a single (dependent) output in response to multiple inputs [7]. Williams and
Beer [6] present a mathematical lattice structure to represent the set theoretic intersections of the mutual
information of multiple variables [9]. They use this to decompose the mutual information I(X ; S)
into terms quantifying the unique, redundant and synergistic information about the independent
variable carried by each combination of dependent variables. This gives a complete picture of the
representational interactions in the system.

The foundation of the PID is a measure of redundancy between any collection of subsets
of X . Intuitively, this should measure the information shared between all the considered variables,
or alternatively their common representational overlap. Williams and Beer [6] use a redundancy
measure they term Imin. However as noted by several authors this measure quantifies the minimum
amount of information that all variables carry, but does not require that each variable is carrying the
same information. It can therefore overstate the amount of redundancy in a particular set of variables.
Several studies have noted this point and suggested alternative approaches [10–16].

In our view, the additivity of surprisal is the fundamental property of information theory that
provides the possibility to meaningfully quantify redundancy, by allowing us to calculate overlapping
information content. In the context of the well-known set-theoretical interpretation of information
theoretic quantities as measures which quantify the area of sets and which can be visualised with
Venn diagrams [9], co-information (often called interaction information) [17–20] is a quantity which
measures the intersection of multiple mutual information values (Figure 1). However, as has been
frequently noted, co-information conflates synergistic and redundant effects.

mutual information
I(X;Y)

I(X;Y)

+ -

H(X ,Y)

I(X ,Y; S) -I(X ; Y; S)

=

H(X)

H(X)

H(Y)

H(Y)

A

B C

negative interaction information
multiple mutual information

co-information

I(X; S)

I(X; S)

Red(X,Y; S)

Syn(X,Y; S)

I(X; S)

I(Y ; S)

I(Y ; S)

I(Y ; S)

Figure 1. Venn diagrams of mutual information and interaction information. (A) Illustration of
how mutual information is calculated as the overlap of two entropies; (B) The overlapping part
of two mutual information values (negative interaction information) can be calculated in the same
way—see dashed box in (A); (C) The full structure of mutual information conveyed by two variables
about a third should separate redundant and synergistic regions.

We first review co-information and the PID before presenting Iccs, a new measure of redundancy
based on quantifying the common change in surprisal between variables at the local or pointwise
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level [21–25]. We provide a game-theoretic operational motivation for a set of constraints over which
we calculate the maximum entropy distribution. This game-theoretic operational argument extends
the decision theoretic operational argument of [12] but arrives at different conclusions about the
fundamental nature of unique information. We demonstrate the PID based on this new measure with
several examples that have been previously considered in the literature. Finally, we apply the new
measure to continuous Gaussian variables [26].

2. Interaction Information (Co-Information)

2.1. Definitions

The foundational quantity of information theory is entropy, which is a measure of the variability or
uncertainty of a probability distribution. The entropy of a discrete random variable X, with probability
mass function P(X) is defined as:

H(X) = ∑
x∈X

p(x) log2
1

p(x)
(1)

This is the expectation over X of h(x) = − log2 p(x), which is called the surprisal of a particular value x.
If a value x has a low probability, it has high surprisal and vice versa. Many information theoretic
quantities are similarly expressed as an expectation—in such cases, the specific values of the function
over which the expectation is taken are called pointwise or local values [21–25]. We denote these local
values with a lower case symbol. Following [7] we denote probability distributions with a capital
latter, e.g., P(X1, X2), but denote values of specific realisations, i.e., P(X1 = x1, X2 = x2) with lower
case shorthand p(x1, x2).

Figure 1A shows a Venn diagram representing the entropy of two variables X and Y. One way to
derive mutual information I(X; Y) is as the intersection of the two entropies. This intersection can be
calculated directly by summing the individual entropies (which counts the overlapping region twice)
and subtracting the joint entropy (which counts the overlapping region once). This matches one of the
standard forms of the definition of mutual information:

I(X; Y) = H(X) + H(Y)− H(X, Y) (2)

= ∑
x,y

p(x, y)
[

log2
1

p(y)
− log2

1
p(y|x)

]
(3)

Here p(y|x) denotes the conditional probability of observing Y = y, given that X = x has been
observed: p(y|x) = p(y,x)/p(x). Mutual information is the expectation of i(x; y) = h(y)− h(y|x) =

log2
p(y|x)
p(y) , the difference in surprisal of value y when value x is observed. To emphasise this point we

use a notation which makes explicit the fact that pointwise information measures a change in surprisal

i(x; y) = Δyh(x) = h(x)− h(x|y) (4)

= Δxh(y) = h(y)− h(y|x) (5)

Mutual information is non-negative, symmetric and equals zero if and only if the two variables
are statistically independent (that is, p(x, y) = p(x)p(y)∀x ∈ X, y ∈ Y) [2].

A similar approach can be taken when considering mutual information about a target variable
S that is carried by two predictor variables X and Y (Figure 1B). Again the overlapping region can
be calculated directly by summing the two separate mutual information values and subtracting the
joint information. However, in this case the resulting quantity can be negative. Positive values of the
intersection represent a net redundant representation: X and Y share the same information about S.
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Negative values represent a net synergistic representation: X and Y provide more information about S
together than they do individually.

In fact, this quantity was first defined as the negative of the intersection described above,
and termed interaction information [17]:

I(X; Y; S) = I(X, Y; S)− I(X; S)− I(Y; S)

= I(S; X|Y)− I(S; X)

= I(S; Y|X)− I(S; Y)

= I(X; Y|S)− I(X; Y)

(6)

The alternative equivalent formulations illustrate how the interaction information is symmetric in
the three variables, and also represents for example, the information between S and X which is gained
(synergy) or lost (redundancy) when Y is fixed (conditioned out).

This quantity has also been termed multiple mutual information [27], co-information [19], higher-order
mutual information [20] and synergy [28–31]. Multiple mutual information and co-information
use a different sign convention from interaction information. For odd numbers of variables
(e.g., three X1, X2, S) co-information has the opposite sign to interaction information; positive values
indicate net redundant overlap.

As for mutual information and conditional mutual information, the interaction information as
defined above is an expectation over the joint probability distribution. Expanding the definitions of
mutual information in Equation (6) gives:

I(X; Y; S) = ∑
x,y,s

p(x, y, s) log2
p(x, y, s)p(x)p(y)p(s)
p(x, y)p(x, s), p(y, s)

(7)

I(X; Y; S) = ∑
x,y,s

p(x, y, s)
[

log2
p(s|x, y)

p(s)
− log2

p(s|x)
p(s)

− log2
p(s|y)
p(s)

]
(8)

As before we can consider the local or pointwise function

i(x; y; s) = Δsh(x, y)− Δsh(x)− Δsh(y) (9)

The negation of this value measures the overlap in the change of surprisal about s between values
x and y (Figure 1A).

It can be seen directly from the definitions above that in the three variable case the interaction
information is bounded:

I(X; Y; S) ≥ −min [I(S; X), I(S; Y), I(X; Y)]

I(X; Y; S) ≤ min [I(S; X|Y), I(S; Y|X), I(X; Y|S)]
(10)

We have introduced interaction information for three variables, from a perspective where one
variable is privileged (independent variable) and we study interactions in the representation of that
variable by the other two. However, as noted interaction information is symmetric in the arguments,
and so we get the same result whichever variable is chosen to provide the analysed information content.

Interaction information is defined similarly for larger numbers of variables. For example, with four
variables, maintaining the perspective of one variable being privileged, the 3-way Venn diagram
intersection of the mutual information terms again motivates the definition of interaction information:

I(W; X; Y; S) =− I(W; S)− I(X; S)− I(Y; S)

+ I(W, X; S) + I(W, Y; S) + I(Y, X; S)

− I(W, X, Y; S)

(11)
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In the n-dimensional case the general expression for interaction information on a variable set
V = {X , S} where X = {X1, X2, . . . , Xn} is:

I (V) = − ∑
T ⊆X

(−1)|T | I (T ; S) (12)

which is an alternating sum over all subsets T ⊆ X , where each T contains |T | elements of X .
The same expression applies at the local level, replacing I with the pointwise i. Dropping the
privileged target S an equivalent formulation of interaction information on a set of n-variables
X = {X1, X2, . . . , Xn} in terms of entropy is given by [18,32]:

I(X ) = − ∑
T ⊆X

(−1)|X |−|T |H (T ) (13)

2.2. Interpretation

We consider as above a three variable system with a target variable S and two predictor variables
X, Y, with both X and Y conveying information about S. The concept of redundancy is related to
whether the information conveyed by X and that conveyed by Y is the same or different. Within a
decoding (supervised classification) approach, the relationship between the variables is determined
from predictive performance within a cross-validation framework [33,34]. If the performance when
decoding X and Y together is the same as the performance when considering e.g., X alone, this indicates
that the information in Y is completely redundant with that in X; adding observation of Y has no
predictive benefit for an observer. In practice redundancy may not be complete as in this example;
some part of the information in X and Y might be shared, while both variables also convey unique
information not available in the other.

The concept of synergy is related to whether X and Y convey more information when observed
together than they do when observed independently. Within the decoding framework this means
higher performance is obtained by a decoder which predicts on a joint model of simultaneous X
and Y observations, versus a decoder which combines independent predictions obtained from X
and Y individually. The predictive decoding framework provides a useful intuition for the concepts,
but has problems quantifying redundancy and synergy in a meaningful way because of the difficulty of
quantitatively relating performance metrics (percent correct, area under ROC, etc.) between different
sets of variables—i.e., X, Y and the joint variable (X, Y).

The first definition (Equation (6)) shows that interaction information is the natural information
theoretic approach to this problem: it contrasts the information available in the joint response to
the information available in each individual response (and similarly obtains the intersection of the
multivariate mutual information in higher order cases). A negative value of interaction information
quantifies the redundant overlap of Figure 1B, positive values indicate a net synergistic effect between
the two variables. However, there is a major issue which complicates this interpretation: interaction
information conflates synergy and redundancy in a single quantity (Figure 1B) and so does not provide
a mechanism for separating synergistic and redundant information (Figure 1C) [6]. This problem
arises for two reasons. First, local terms i(x; y; s) can be positive for some values of x, y, s and negative
for others. These opposite effects can then cancel in the overall expectation. Second, as we will see,
the computation of interaction information can include terms which do not have a clear interpretation
in terms of synergy or redundancy.

3. The Partial Information Decomposition

In order to address the problem of interaction information conflating synergistic and redundant
effects, Williams and Beer [6] proposed a decomposition of mutual information conveyed by a set of
predictor variables X = {X1, X2, . . . , Xn}, about a target variable S. They reduce the total multivariate
mutual information, I(X ; S), into a number of non-negative atoms representing the unique, redundant
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and synergistic information between all subsets of X : in the two-variable case this corresponds to
the four regions of Figure 1C. To do this they consider all subsets of X , denoted Ai, and termed
sources. They show that the redundancy structure of the multivariate information is determined by
the “collection of all sets of sources such that no source is a superset of any other”—formally the
set of anti-chains on the lattice formed from the power set of X under set inclusion, denoted A(X ).
Together with a natural ordering, this defines a redundancy lattice [35]. Each node of the lattice
represents a partial information atom, the value of which is given by a partial information (PI) function.
Note there is a direct correspondence between the lattice structure and a Venn diagram representing
multiple mutual information values. Each node on a lattice corresponds to a particular intersecting
region in the Venn diagram. For two variables there are only four terms, but the advantage of the
lattice representation becomes clearer for higher number of variables. The lattice view is much easier
to interpret when there are a large number of intersecting regions that are hard to visualise in a Venn
diagram. Figure 2 shows the structure of this lattice for n = 2, 3. The PI value for each node, denoted
I∂, can be determined via a recursive relationship (Möbius inverse) over the redundancy values of
the lattice:

I∂(S; α) = I∩(S; α)− ∑
β≺α

I∂(S; β) (14)

where α ∈ A(X ) is a set of sources (each a set of input variables Xi) defining the node in question.

{12}

{12}

{12}{13}

{12}{13}{23}

{12}{23} {13}{23}

{13} {23}

{123}

{1}{2}

{1}{2}{3}

{1}{2} {1}{3} {2}{3}

{1}{23} {2}{13} {3}{12}

{1}

{1}

{2}

{2} {3}

A B

Figure 2. Redundancy lattice for (A) two variables; (B) three variables. Modified from [6].

The redundancy value of each node of the lattice, I∩, measures the total amount of redundant
information shared between the sources included in that node. For example, I∩(S; {X1}{X2})
quantifies the redundant information content about S that is common to both X1 and X2. The partial
information function, I∂, measures the unique information contributed by only that node (redundant,
synergistic or unique information within subsets of variables).

For the two variable case, if the redundancy function used for a set of sources is denoted
I∩ (S; A1, . . . , Ak) and following the notation in [6], the nodes of the lattice, their redundancy and their
partial information values are given in Table 1.
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Table 1. Full Partial Information Decomposition (PID) in the two-variable case. The four terms here
correspond to the four regions in Figure 1C.

Node Label
Redundancy

Function
Partial Information Represented Atom

{12} I∩(S; {X1, X2})
I∩(S; {X1, X2})
− I∩(S; {X1})− I∩(S; {X2})
+ I∩(S; {X1}{X2})

unique information in
X1 and X2 together (synergy)

{1} I∩(S; {X1})
I∩(S; {X1})
− I∩(S; {X1}{X2})

unique information in
X1 only

{2} I∩(S; {X2})
I∩(S; {X2})
− I∩(S; {X1}{X2})

unique information in
X2 only

{1}{2} I∩(S; {X1}{X2}) I∩(S; {X1}{X2})
redundant information
between X1 and X2

Note that we have not yet specified a redundancy function. A number of axioms have been
proposed for any candidate redundancy measure [6,11]:

Symmetry:

I∩ (S; A1, . . . , Ak) is symmetric with respect to the Ai’s. (15)

Self Redundancy:

I∩ (S; A) = I(S; A) (16)

Subset Equality:

I∩ (S; A1, . . . , Ak−1, Ak) = I∩ (S; A1, . . . , Ak−1) if Ak−1 ⊆ Ak (17)

Monotonicity:

I∩ (S; A1, . . . , Ak−1, Ak) ≤ I∩ (S; A1, . . . , Ak−1) (18)

Note that previous presentations of these axioms have included subset equality as part of the
monotonicity axiom; we separate them here for reasons that will become clear later. Subset equality
allows the full power set of all combinations of sources to be reduced to only the anti-chains under
set inclusion (the redundancy lattice). Self redundancy ensures that the top node of the redundancy
lattice, which contains a single source A = X , is equal to the full multivariate mutual information
and therefore the lattice structure can be used to decompose that quantity. Monotonicity ensures
redundant information is increasing with the height of the lattice, and has been considered an important
requirement that redundant information should satisfy.

Other authors have also proposed further properties and axioms for measures of redundancy [13,14].
In particular, Reference [11] propose an additional axiom regarding the redundancy between two
sources about a variable constructed as a copy of those sources:

Identity Property (Harder et al.):

I∩ ([A1, A2] ; A1, A2) = I(A1; A2) (19)

In this manuscript we focus on redundant and synergistic mutual information. However,
the concepts of redundancy and synergy can also be applied directly to entropy [36]. Redundant
entropy is variation that is shared between two (or more) variables, synergistic entropy is additional
uncertainty that arises when the variables are considered together, over and above what would be
obtained if they were statistically independent. Note that since the global joint entropy quantity
is maximised when the two variables are independent, redundant entropy is always greater than
synergistic entropy [36]. However, local synergistic entropy can still occur: consider negative local
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information terms, which by definition quantify a synergistic local contribution to the joint entropy
sum since h(x, y) > h(x) + h(y). A crucial insight that results from this point of view is that mutual
information itself quantifies both redundant and synergistic entropy effects—it is the difference
between redundant and synergistic entropy across the two inputs [36]. With H∂ denoting redundant
or synergistic partial entropy analogous to partial information we have:

I(A1; A2) = H∂({A1}{A2})− H∂({A1, A2}) (20)

This is particularly relevant for the definition of the identity axiom. We argue that the
previously unrecognised contribution of synergistic entropy to mutual information (pointwise
negative terms in the mutual information expectation sum) should not be included in an information
redundancy measure.

Note that any information redundancy function can induce an entropy redundancy function by
considering the information redundancy with the copy of the inputs. For example, for the bivariate
case we can define:

H∩({A1}{A2}) = I∩ ([A1, A2] ; A1, A2) (21)

So any information redundancy measure that satisfies the identity property [12] cannot measure
synergistic entropy [36], since for the induced entropy redundancy measure H∩({A1}{A2}) =

I(A1; A2) so from Equation (20) H∂({A1A2}) = 0. To address this without requiring introducing
in detail the partial entropy decomposition [36], we propose a modified version of the identity axiom,
which still addresses the two-bit copy problem but avoids the problem of including synergistic mutual
information contributions in the redundancy measure. When I(A1; A2) = 0 there are no synergistic
entropy effects because i(a1, a2) = 0 ∀a1, a2 so there are no misinformation terms and no synergistic
entropy between the two inputs.

Independent Identity Property:

I(A1; A2) = 0 =⇒ I∩ ([A1, A2] ; A1, A2) = 0 (22)

Please note that while this section primarily reviews existing work on the partial information
decomposition, two novel contributions here are the explicit consideration of subset equality separate
to monotonicity, and the definition of the independent identity property.

3.1. An Example PID: RDNUNQXOR

Before considering specific measures of redundant information that have been proposed for use
with the PID, we first illustrate the relationship between the redundancy and the partial information
lattice values with an example. We consider a system called RDNUNQXOR [10]. The structure of this
system is shown in Figure 3A [37]. It consists of two three bit predictors, X1 and X2, and a four bit
target S. This example is noteworthy, because an intuitive PID is obvious from the definition of the
system, and it includes by construction 1 bit of each type of information decomposable with the PID.

All three variables share a bit (labelled b in Figure 3A). This means there should be 1 bit of
redundant information. Bit b is shared between each predictor and the target so forms part of I(Xi; S),
and is also shared between the predictors, therefore it is shared or redundant information. All variables
have one bit that is distributed according to a XOR configuration across the three variables (labelled a).
This provides 1 bit of synergy within the system, because the value of bit a of S can only be predicted
when X1 and X2 are observed together simultaneously [10]. Bits c and d are shared between S and
each of X1 and X2 individually. So each of these contributes to I(Xi; S), but as unique information.

We illustrate the calculation of the PID for this system (Figure 3B,C, Table 2). From the
self-redundancy axiom, the three single-source terms can all be calculated directly from the classical
mutual information values. The single predictors each have 2 bits of mutual information (the two
bits shared with S). Both predictors together have four bits of mutual information with S, since the
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values of all four bits of S are all fully determined when both X1 and X2 are observed. Since by
construction there is 1 bit shared redundantly between the predictors, we claim I∩(S; {1}{2}) = 1 bit
and we have all the redundancy values on the lattice. Then from the summation procedure illustrated
in Table 1 we can calculate the partial information values. For example, I∂(S; {1}) = 2 − 1 = 1,
and I∂(S; {12}) = 4− 1− 1− 1 = 1.

~
a a
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b
c

c

b

b

~~~
+

X1

S

X2
d

d

~

A B C
{12}

{1}{2}

{1} {2}

{12}

{1}{2}

{1} {2}

1

1 1

1

1

2 2

4

Figure 3. Partial Information Decomposition for RDNUNQXOR (A) The structure of the RDNUNQXOR

system borrowing the graphical representation from [37]. S is a variable containing 4 bits (labelled
a, b, c, d). X1 and X2 each contain 3 bits. ∼ indicates bits which are coupled (distributed identically)
and ⊕ indicates the enclosed variables form the XOR relation; (B) Redundant information values on
the lattice (black); (C) Partial information values on the lattice (green).

Table 2. PID for RDNUNQXOR (Figure 3).

Node I∩ I∂

{1}{2} 1 1
{1} 2 1
{2} 2 1
{12} 4 1

3.2. Measuring Redundancy With Minimal Specific Information: Imin

The redundancy measure proposed by Williams and Beer [6] is denoted Imin and derived as the
average (over values s of S) minimum specific information [38,39] over the considered input sources.
The information provided by a source A (as above a subset of dependent variables Xi) can be written:

I(S; A) = ∑
s

p(s)I(S = s; A) (23)

where I(S = s; A) is the specific information:

I(S = s; A) = ∑
a

p(a|s)
[

log2
1

p(s)
− log2

1
p(s|a)

]
(24)

which quantifies the average reduction in surprisal of s given knowledge of A. This splits the overall
mutual information into the reduction in uncertainty about each individual target value. Imin is then
defined as:

Imin(S; A1, . . . , Ak) = ∑
s

p(s)min
Ai

I(S = s; Ai) (25)

This quantity is the expectation (over S) of the minimum amount of information about each
specific target value s conveyed by any considered source. Imin is non-negative and satisfies the axioms
of symmetry, self redundancy and monotonicity, but not the identity property (neither Harder et al. or
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independent forms). The crucial conceptual problem with Imin is that it indicates the variables share a
common amount of information, but not that they actually share the same information content [5,10,11].

The most direct example of this is the “two-bit copy problem”, which motivated the identity
axiom [5,10,11]. We consider two independent uniform binary variables X1 and X2 and define S as
a direct copy of these two variables S = (X1, X2). In this case Imin(S; {1}{2}) = 1 bit; for every s
both X1 and X2 each provide 1 bit of specific information. However, both variables give different
information about each value of s: X1 specifies the first component, X2 the second. Since X1 and X2

are independent by construction there should be no overlap. This illustrates that Imin can overestimate
redundancy with respect to an intuitive notion of overlapping information content.

3.3. Measuring Redundancy With Maximised Co-Information: Ibroja

A number of alternative redundancy measures have been proposed for use with the PID in order
to address the problems with Imin (reviewed by [26]). Two groups have proposed an equivalent
approach, based on the idea that redundancy should arise only from the marginal distributions
P(X1, S) and P(X2, S) ([12], their Assumption *) and that synergy should arise from structure not
present in those two marginals, but only in the full joint distribution P(X1, X2, S). Please note that
we follow their terminology and refer to this concept as Assumption * throughout. Griffith and
Koch [10] frame this view as a minimisation problem for the multivariate information I(S; X1, X2)

over the class of distributions which preserve the individual source-target marginal distributions.
Bertschinger et al. [12] seek to minimise I(S; X1|X2) over the same class of distributions, but as noted
both approaches result in the same PID. In both cases the redundancy, I∩(S; {X1}{X2}), is obtained
as the maximum of the co-information (negative interaction information) over all distributions that
preserve the source-target marginals:

Imax-nii(S; {X1}{X2}) = max
Q∈ΔP

−IQ(S; X1; X2) (26)

ΔP = {Q ∈ Δ : Q(X1, S) = P(X1, S), Q(X2, S) = P(X2, S)} (27)

We briefly highlight here a number of conceptual problems with this approach. First, this measure
satisfies the Harder et al. identity property (Equation (19)) [11,12] and is therefore incompatible with
the notion of synergistic entropy [36]. Second, this measure optimises co-information, a quantity
which conflates synergy and redundancy [6]. Given ([12], Assumption *) which states that unique
and redundant information are constant on the optimisation space, this is equivalent to minimizing
synergy [7].

Imax-nii(S; {X1}{X2}) = Ired(S; {X1}{X2})− Isyn-min(S; {X1}{X2}) (28)

where Isyn-min(S; {X1}{X2}) is the smallest possible synergy given the target-predictor marginal
constraints, but is not necessarily zero. Therefore, the measure provides a bound on redundancy
(under Assumption * [12]) but cannot measure the true value. Third, Bertschinger et al. [12] motivate
the constraints for the optimisation from an operational definition of unique information based
on decision theory. It is this argument which suggests that the unique information is constant on
the optimisation space ΔP, and which motivates a foundational axiom for the measure that equal
target-predictor marginal distributions imply zero unique information. However, we do not agree that
unique information is invariant to the predictor-predictor marginal distributions, or necessarily equals
zero when target-predictor marginals are equal. We revisit the operational definition in Section 4.3 by
considering a game theoretic extension which provides a different perspective. We use this to provide
a counter-example that proves the decision theoretic argument is not a necessary condition for the
existence of unique information, and therefore the Ibroja procedure is invalid since redundancy is not
fixed on ΔP. We also demonstrate with several examples (Section 5) how the Ibroja optimisation results

30



Entropy 2017, 19, 318

in coupled predictor variables, suggesting the co-information optimisation is indeed maximising the
source redundancy between them.

3.4. Other Redundancy Measures

Harder et al. [11] define a redundancy measure based on a geometric projection argument, which
involves an optimisation over a scalar parameter λ, and is defined only for two sources, so can
be used only for systems with two predictor variables. Griffith et al. [13] suggest an alternative
measure motivated by zero-error information, which again formulates an optimisation problem (here
maximisation of mutual information) over a family of distributions (here distributions Q which are
a function of each predictor so that H(Q|Xi) = 0). Griffith and Ho [16] extend this approach by
modifying the optimisation constraint to be H(Q|Xi) = H(Q|Xi, Y).

4. Measuring Redundancy With Pointwise Common Change in Surprisal: Iccs

We derive here from first principles a measure that we believe encapsulates the intuitive meaning
of redundancy between sets of variables. We argue that the crucial feature which allows us to directly
relate information content between sources is the additivity of surprisal. Since mutual information
measures the expected change in pointwise surprisal of s when x is known, we propose measuring
redundancy as the expected pointwise change in surprisal of s which is common to x and y. We term
this common change in surprisal and denote the resulting measure Iccs(S; α).

4.1. Derivation

As for entropy and mutual information we can consider a Venn diagram (Figure 1) for the change
in surprisal of a specific value s for specific values x and y and calculate the overlap directly using
local co-information (negative local interaction information). However, as noted before the interaction
information can confuse synergistic and redundant effects, even at the pointwise level. Recall that
mutual information I(S; X) is the expectation of a local function which measures the pointwise change
in surprisal i(s; x) = Δsh(x) of value s when value x is observed. Although mutual information itself is
always non-negative, the pointwise function can take both positive and negative values. Positive values
correspond to a reduction in the surprisal of s when x is observed, negative values to an increase in
surprisal. Negative local information values are sometimes referred to as misinformation [23] and can be
interpreted as representing synergistic entropy between S and X [36]. Mutual information is then the
expectation of both positive (information) terms and negative (misinformation) terms. Table 3 shows
how the possibility of local misinformation terms complicates pointwise interpretation of the local
negative interaction information (co-information).

Note that the fourth column represents the local co-information which quantifies the set-theoretic
overlap of the two univariate local information values. By considering the signs of all four terms,
the two univariate local informations, the local joint information and their overlap, we can determine
terms which correspond to redundancy and terms which correspond to synergy. We make an
assumption that a decrease in surprisal of s (positive local information term) is a fundamentally
different event to an increase in surprisal of s (negative local information). Therefore, we can only
interpret the local co-information as a set-theoretic overlap in the case where all three local information
terms have the same sign. If the joint information has a different sign to the individual informations
(rows 5 and 6) the two variables together represent a fundamentally different change in surprisal than
either do alone. While a full interpretation of what these terms might represent is difficult, we argue
it is clear they cannot represent a common change in surprisal. Similarly, if the two univariate local
informations have opposite sign, they cannot have any common overlap.
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Table 3. Different interpretations of local interaction information terms. ? indicates that combination of
terms does not admit a clear interpretation in terms of redundancy or synergy.

Δsh(x) Δsh(y) Δsh(x, y) −i(x; y; s) Interpretation

+ + + + redundant information
+ + + − synergistic information
− − − − redundant misinformation
− − − + synergistic misinformation
+ + − . . . ?
− − + . . . ?

+/− −/+ . . . . . . ?

The table shows that interaction information combines redundant information with synergistic
misinformation, and redundant misinformation with synergistic information. As discussed, it also
includes terms which do not admit a clear interpretation. We argue that a principled measure of
redundancy should consider only redundant information and redundant misinformation. We therefore
consider the pointwise negative interaction information (overlap in surprisal), but only for symbols
corresponding to the first and third rows of Table 3. That is, terms where the sign of the change in
surprisal for all the considered sources is equal, and equal also to the sign of overlap (measured with
local co-information). In this way, we count the contributions to the overall mutual information (both
positive and negative) which are genuinely shared between the input sources, while ignoring other
(synergistic and ambiguous) interaction effects. We assert that conceptually this is exactly what a
redundancy function should measure.

We denote the local co-information (negative interaction information if n is odd) with respect to a
joint distribution Q as cq(a1, . . . , an), which is defined as [20]:

cq(a1, . . . , an) =
n

∑
k=1

(−1)k+1 ∑
i1<···<ik

hq
(
ai1 , . . . , aik

)
(29)

where hq(a1, . . . , an) = − log q(a1, . . . , an) is pointwise entropy (surprisal). Then we define Iccs,
the common change in surprisal, as:

Definition 1.

Iccs(S; A1, . . . , An) = ∑
a1,...,an

p̃(a1, . . . , an)Δshcom(a1, . . . , an)

Δshcom(a1, . . . , an) =

⎧⎪⎨⎪⎩ cp̃(a1, . . . , an, s)
if sgn Δsh(a1) = . . . = sgn Δsh(an)

= sgn Δsh(a1, . . . , an) = sgn c(a1, . . . , an, s)
0 otherwise

(30)

where Δshcom(a1, . . . , an) represents the common change in surprisal (which can be positive or negative)
between the input source values, and P̃ is a joint distribution obtained from the observed joint
distribution P (see below). Iccs measures overlapping information content with co-information, by
separating contributions which correspond unambiguously to redundant mutual information at the
pointwise level, and taking the expectation over these local redundancy values.

Unlike Imin which considered each input source individually, the pointwise overlap computed
with local co-information requires a joint distribution over the input sources, P̃ in order to obtain
the local surprisal values hp̃(a1, . . . , an, s). We use the maximum entropy distribution subject to the
constraints of equal bivariate source-target marginals, together with the equality of the n-variate joint
target marginal distribution:
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Definition 2.

P̂(A1, . . . , An, S) = arg max
Q∈ΔP

∑
a1,...,an ,s

−q(a1, . . . , an, s) log q(a1, . . . , an, s)

ΔP =

{
Q ∈ Δ :

Q(Ai, S) = P(Ai, S) for i = 1, . . . , n
Q(A1, . . . , An) = P(A1, . . . , An)

} (31)

where P(A1, . . . , An, S) is the probability distribution defining the system under study and here Δ is
the set of all possible joint distributions on A1, . . . , An, S. We develop the motivation for the constraints
in Section 4.3.1, and for using the distribution with maximum entropy subject to these constraints in
in Section 4.3.2.

In a previous version of this manuscript we used constraints obtained from the decision theoretic
operational definition of unique information [12]. We used the maximum entropy distribution subject
to the constraints of pairwise target-predictor marginal equality:

Definition 3.

P̂ind(A1, . . . , An, S) = arg max
Q∈ΔP

∑
a1,...,an ,s

−q(a1, . . . , an, s) log q(a1, . . . , an, s)

ΔP =
{

Q ∈ Δ : Q(Ai, S) = P(Ai, S) for i = 1, . . . , n
} (32)

This illustrates Iccs can be defined in a way compatible with either operational perspective,
depending on whether it is calculated using P̂ or P̂ind. We suggest that if a reader favours the decision
theoretic definition of unique information [12] over the new game-theoretic definition proposed here
(Section 4.3.1) Iccs can be defined in a way consistent with that, and still provides advantages over
Ibroja, which maximises co-information without separating redundant from synergistic contributions
(Sections 3.3 and 4.3.2). We include Definition 3 here for continuity with the earlier version of this
manuscript, but note that for all the examples considered here we use P̂, following the game theoretic
operational definition of unique information (Section 4.3.1).

Note that the definition of Imin in terms of minimum specific information [39] (Equation (25))
suggests as a possible extension the use of a form of specific co-information. In order to separate
redundant from synergistic components this should be thresholded with zero to only count positive
(redundant) contributions. This can be defined both in terms of target-specific co-information following
Imin (for clarity these definitions are shown only for two variable inputs):

Itarget specific coI(S; A1, A2) = ∑
s

p(s)max [I(S = s; A1) + I(S = s; A2)− I(S = s; A1, A2), 0] (33)

or alternatively in terms of source-specific co-information:

Isource specific coI(S; A1, A2) = ∑
a1,a2

p(a1, a2)max [I(S; A1 = a1) + I(S; A2 = a2) (34)

− I(S; A1 = a1, A2 = a2), 0] (35)

Iccs can be seen as a fully local approach within this family of measures. The first key ingredient
of this family is to exploit the additivity of surprisal and hence use the co-information to quantify the
overlapping information content (Figure 1); the second ingredient is to break down in some way the
expectation summation in the calculation of co-information, to separate redundant and synergistic
effects that are otherwise conflated. We argue the fully local view of Iccs is required to fully separate
redundant from synergistic effects. In either specific co-information calculation, when summing the
contributions within the expectation over the non-specific variable any combination of terms listed
in Table 3 could occur. Therefore, these specific co-information values could still conflate redundant
information with synergistic misinformation.
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4.2. Calculating Iccs

We provide here worked examples of calculating Iccs for two simple example systems.
The simplest example of redundancy is when the system consists of a single coupled bit [10]
(Example RDN), defined by the following distribution P(X1, X2, S):

p(0, 0, 0) = p(1, 1, 1) = 0.5 (36)

In this example P̂ = P; the maximum entropy optimisation results in the original distribution.
Table 4 shows the pointwise terms of the co-information calculation. In this system for both possible
configurations the change in surprisal from each predictor is 1 bit and overlaps completely. The signs
of all changes in surprisal and the local co-information are positive, indicating that both these events
correspond to redundant local information. In this case Iccs is equal to the co-information.

Table 4. Pointwise values from Iccs(S; {1}{2}) for RDN.

(x1, x2, s) Δsh(x1) Δsh(x2) Δsh(x1, x2) c(x1; x2; s) Δshcom(x1, x2)

(0, 0, 0) 1 1 1 1 1
(1, 1, 1) 1 1 1 1 1

The second example we consider is binary addition (see also Section 5.2.2), S = X1 + X2,
with distribution P(X1, X2, S) given by

p(0, 0, 0) = p(0, 1, 1) = p(1, 0, 1) = p(1, 1, 2) = 1/4 (37)

In this example, again P̂ = P. The pointwise terms are shown in Table 5. For the events with
x1 = x2, both predictors provide 1 bit local change in surprisal of s, but they do so independently since
the change in surprisal when observing both together is 2 bits. Therefore, the local co-information
is 0; there is no overlap. For the terms where x1 �= x2, neither predictor alone provides any local
information about s. However, together they provide a 1 bit change in surprisal. This is therefore
a purely synergistic contribution, providing −1 bits of local co-information. However, since this is
synergistic, it is not included in Δshcom. Iccs(S; {1}{2}) = 0, although the co-information for this
system is −0.5 bits. This example illustrates how interpreting the pointwise co-information terms
allows us to select only those representing redundancy.

Table 5. Pointwise values from Iccs(S; {1}{2}) for SUM.

(x1, x2, s) Δsh(x1) Δsh(x2) Δsh(x1, x2) c(x1; x2; s) Δshcom(x1, x2)

(0, 0, 0) 1 1 2 0 0
(0, 1, 1) 0 0 1 −1 0
(1, 0, 1) 0 0 1 −1 0
(1, 1, 2) 1 1 2 0 0

4.3. Operational Motivation for Choice of Joint Distribution

4.3.1. A Game-Theoretic Operational Definition of Unique Information

Bertschinger et al. [12] introduce an operational interpretation of unique information based
on decision theory, and use that to argue the “unique and shared information should only
depend on the marginal [source-target] distributions” P(Ai, S) (their Assumption (*) and Lemma 2).
Under the assumption that those marginals alone should specify redundancy they find Ibroja via
maximisation of co-information. Here we review and extend their operational argument and arrive at
a different conclusion.
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Bertschinger et al. [12] operationalise unique information based on the idea that if an agent,
Alice, has access to unique information that is not available to a second agent, Bob, there should be
some situations in which Alice can exploit this information to gain a systematic advantage over
Bob ([7], Appendix B therein). They formalise this as a decision problem, with the systematic
advantage corresponding to a higher expected reward for Alice than Bob. They define a decision
problem as a tuple (p,A, u) where p(S) is the marginal distribution of the target, S, A is a set of
possible actions the agent can take, and u(s, a) is the reward function specifying the reward for
each s ∈ S a ∈ A. They assert that unique information exists if and only if there exists a decision
problem in which there is higher expected reward for an agent making optimal decisions based on
observation of X1, versus an agent making optimal decisions on observations of X2. This motivates
their fundamental assumption that unique information depends only on the pairwise target-predictor
marginals P(X1, S), P(X2, S) ([12] Assumption *), and their assertion that P(X1, S) = P(X2, S) implies
no unique information in either predictor.

We argue that the decision problem they consider is too restrictive, and therefore the conclusions
they draw about the properties of unique and redundant information are incorrect. Those properties
come directly from the structure of the decision problem; the reward function u is the same for both
agents, and the agents play independently from one other. The expected reward is calculated separately
for each agent, ignoring by design any trial by trial covariation in their observed evidence P(X1, X2),
and resulting actions.

While it is certainly true that if their decision problem criterion is met, then there is unique
information, we argue that the decision problem advantage is not a necessary condition for the
existence of unique information. We prove this by presenting below a counter-example, in which we
demonstrate unique information without a decision theoretic advantage. To construct this example,
we extend their argument to a game-theoretic setting, where we explicitly consider two agents playing
against each other. Decision theory is usually defined as the study of individual agents, while situations
with multiple interacting agents are the purview of game theory. Since the unique information setup
includes two agents, it seems more natural to use a game theoretic approach. Apart from switching
from a decision theoretic to a game theoretic perspective, we make exactly the same argument. It is
possible to operationalise unique information so that unique information exists if and only if there
exists a game (with certain properties described below) where one agent obtains a higher expected
reward when both agents are playing optimally under the same utility function.

We consider two agents interacting in a game, specifically a non-cooperative, simultaneous,
one-shot game [40] where both agents have the same utility function. Non-cooperative means the
players cannot form alliances or agreements. Simultaneous (as opposed to sequential) means the
players move simultaneously; if not actually simultaneous in implementation such games can be
effectively simultaneous as long as each player is not aware of the other players actions. This is a crucial
requirement for a setup to operationalise unique information because if the game was sequential,
it would be possible for information to “leak” from the first players evidence, via the first players
action, to the second. Restricting to simultaneous games prevents this, and ensures each game provides
a fair test for unique information in each players individual predictor evidence. One-shot (as opposed
to repeated) means the game is played only once as a one off, or at least each play is completely
independent of any other. Players have no knowledge of previous iterations, or opportunity to learn
from or adapt to the actions of the other player. The fact that the utility function is the same for the
actions of each player makes it a fair test for any advantage given by unique information—both players
are playing by the same rules. These requirements ensure that, as for the decision theoretic argument
of [12], each player must chose an action to maximise their reward based only the evidence they
observe from the predictor variable. If a player is able to obtain a systematic advantage, in the form of
a higher expected reward for some specific game, given the game is fair and they are acting only on
the information in the predictor they observe, then this must correspond to unique information in that
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predictor. This is the same as the claim made in [12] that higher expected reward in a specific decision
problem implies unique information in the predictor.

In fact, if in addition to the above properties the considered game is also symmetric and
non-zero-sum then this is exactly equivalent to the decision theoretic formulation. Symmetric means
the utility function is invariant to changes of player identity (i.e., it is the same if the players swap
places). Alternatively, an asymmetric game is one in which the reward is not necessarily unchanged if
the identity of the players is switched. A zero-sum game is one in which there is a fixed reward that is
distributed between the players while in a non-zero-sum game the reward is not fixed. The decision
problem setup is non-zero-sum, since the action of one agent does not affect the reward obtained by
the other agent. Both players consider the game as a decision problem and so play as they would in
the decision theoretic framework (i.e., to choose an action based only on their observed evidence in
such a way as to maximise their expected reward). This is because since the game is non-cooperative,
simultaneous and one-shot they have no knowledge of or exposure to the other players actions.

We argue unique information should also be operationalised in asymmetric and zero-sum games,
since these also satisfy the core requirements outlined above for a fair test of unique information.
In a zero-sum game, the reward of each agent now also depends on the action of the other agent,
therefore unique information is not invariant to changes in P(X1, X2), because this can change the
balance of rewards on individual realisations. Note that this does not require either player is aware of
the others actions (because the game is simultaneous), they still chose an action based only on their
own predictor evidence, but their reward depends also on the action of the other agent (although
those actions themselves are invisible). The stochastic nature of the reward from the perspective of
each individual agent is not an issue since, as for the decision theoretic approach, we consider only
one-shot games. Alternatively, if an asymmetry is introduced to the game, for example by allowing
one agent to set the stake in a gambling task, then again P(X1, X2) affects the unique information.
We provide a specific example for this second case, and specify an actual game which meets the above
requirements and provides a systematic advantage to one player, demonstrating the presence of unique
information. However, this system does not admit a decision problem which provides an advantage.
This counter-example therefore proves that the decision theoretic operationalisation of [12] is not a
necessary condition for the existence of unique information.

Borrowing notation from [12] we consider two agents, which each observe values from X1 and X2

respectively, and take actions a1, a2 ∈ A. Both are subject the same core utility function v(s, a), but we
break the symmetry in the game by allowing one agent to perform a second action—setting the stake
on each hand (realisation). This results in utility functions ui(s, ai, x1) = c(x1)v(s, ai), where c is a stake
weighting chosen by agent 1 on the basis of their evidence. This stake weighting is not related to their
guess on the value s (their action ai), but serves here as a way to break the symmetry of the game while
maintaining equal utility functions for each player. That is, although the reward here is a function
also of x1, it is the same function for both players, so a1 = a2 =⇒ u1(s, a1, x1) = u2(s, a2, x1)∀s, x1.
In general, in the game theoretic setting the utility function can depend on the entire state of the
world, u(s, ai, x1, x2), but here we introduce only an asymmetric dependence on x1. Both agents have
the same utility function as required for a fair test of unique information, but that utility function
is asymmetric—it is not invariant to switching the players. The second agent is not aware of the
stake weighting applied to the game when they choose their action. The tuple (p,A, u) defines the
game with u(s, a1, a2, x1) = [u1(s, a1, x1), u2(s, a2, x1)]. In this case the reward of agent 2 depends
on x1, introducing again a dependence on P(X1, X2). However, because both agents have the same
asymmetric utility function, this game meets the intuitive requirements for an operational test of
unique information. If there is no unique information, agent 1 should not be able to profit simply by
changing the stakes on different trials. If they can profit systematically by changing the stakes on trials
that are favourable to them based on the evidence they observe, that is surely an operationalisation of
unique information. We emphasise again that we are considering here a non-cooperative, simultaneous,
one-shot, non-zero-sum, asymmetric game. So agent 2 does not have any information about the stake
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weight on individual games, and cannot learn anything about the stake weight from repeated plays.
Therefore, there is no way for unique information in X1 to affect the action of agent 2 via the stake
weight setting. The only difference from the decision theoretic framework is that here we consider an
asymmetric utility function.

To demonstrate this, and provide a concrete counter-example to the decision theoretic
argument [12] we consider a system termed REDUCEDOR (Joseph Lizier, personal communication).
Figure 4A shows the probability distribution which defines this binary system. Table 6 shows the
PIDs for this system. Figure 4B shows the distribution resulting from the Ibroja optimisation procedure.
Both systems have the same target-predictor marginals P(Xi, S), but have different predictor-predictor
marginals P(X1, X2). Ibroja reports zero unique information. Iccs reports zero redundancy, but unique
information present in both predictors.
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Figure 4. REDUCEDOR. (A) Probability distribution of REDUCEDOR system; (B) Distribution resulting
from Ibroja optimisation. Black tiles represent outcomes with p = 0.5. Grey tiles represent outcomes
with p = 0.25. White tiles are zero-probability outcomes.

Table 6. Partial Information Decompositions (PIDs) for REDUCEDOR (Figure 4A).

Node I∂[Imin] I∂[Ibroja] I∂[Iccs]

{1}{2} 0.31 0.31 0
{1} 0 0 0.31
{2} 0 0 0.31
{12} 0.69 0.69 0.38

In the Ibroja optimised distribution (Figure 4B) the two predictors are directly coupled,
P(X1 = 0, X2 = 1) = P(X1 = 1, X2 = 0) = 0. In this case there is clearly no unique information.
The coupled marginals mean both agents see the same evidence on each realisation, make the same
choice and therefore obtain the same reward, regardless of the stake weighting chosen by agent 1.
However, in the actual system, the situation is different. Now the evidence is de-coupled, the agents
never both see the evidence xi = 1 on any particular realisation P(X1 = 1, X2 = 1) = 0. Assuming
a utility function v(s, a) = δsa reflecting a guessing game task, the optimal strategy for both agents
is to make a guess ai = 0 when they observe xi = 0, and guess ai = 1 when they observe xi = 1.
If Alice (X1) controls the stake weight she can choose c(x1) = 1 + x1 which results in a doubling of the
reward when she observes X1 = 1 versus when she observes X1 = 0. Under the true distribution of
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the system for realisations where x1 = 1, we know that x2 = 0 and s = 1, so Bob will guess a2 = 0
and be wrong (have zero reward). On an equal number of trials Bob will see x2 = 1, guess correctly
and Alice will win nothing, but those trials have half the utility of the trials that Alice wins due to the
asymmetry resulting from her specifying the gambling stake. Therefore, on average, Alice will have a
systematically higher reward as a result of exploiting her unique information, which is unique because
on specific realisations it is available only to her. Similarly, the argument can be reversed, and if Bob
gets to choose the stakes, corresponding to a utility weighting c(x2) = 1 + x2, he can exploit unique
information available to him on a separate set of realisations.

Both games considered above would provide no advantage when applied to the Ibroja distribution
(Figure 4B). The information available to each agent when they observe Xi = 1 is not unique, because
it always occurs together on the same realisations. There is no way to gain an advantage in any
game since it will always be available simultaneously to the other agent. In both decompositions
the information corresponding to prediction of the stimulus when xi = 1 is quantified as 0.31 bits.
Ibroja quantifies this as redundancy because it ignores the structure of P(X1, X2) and so does not
consider the within trial relationships between the agents evidence. Ibroja cannot distinguish between
the two distributions illustrated in Figure 4. Iccs quantifies the 0.31 bits as unique information in both
predictors, because in the true system each agent sees the informative evidence on different trials,
and so can exploit it to gain a higher reward in a certain game. Iccs agrees with Ibroja in the system in
Figure 4B, because here the same evidence is always available to both agents, so is not unique.

We argue that this example directly illustrates the fact that unique information is not invariant to
P(X1, X2), and that the decision theoretic operational definition of [12] is too restrictive. The decision
theory view says that unique information corresponds to an advantage which can be obtained only
when two players go to different private rooms in a casino, play independently and then compare their
winnings at the end of the session. The game theoretic view says that unique information corresponds
to any obtainable advantage in a fair game (simultaneous and with equal utility functions), even when
the players play each other directly, betting with a fixed pot, on the same hands at the same table.
We have shown a specific example where there is an advantage in the second case, but not the first
case. We suggest such an advantage cannot arise without unique information in the predictor and
therefore claim this counter-example proves that the decision theoretic operationalisation is not a
necessary condition for the existence of unique information. While this is a single specific system,
we will see in the examples (Section 5) that the phenomenon of Ibroja over-stating redundancy by
neglecting unique information which is masked when the inputs are coupled occurs frequently.
We argue this occurs because the Ibroja optimisation maximises co-information. It therefore couples
the predictors to maximise the contribution of source redundancy to the co-information, since the
game theoretic operationalisation shows that redundancy is not invariant to the predictor-predictor
marginal distribution.

4.3.2. Maximum Entropy Optimisation

For simplicity we consider first a two-predictor system. The game-theoretic operational definition
of unique information provided in the previous section requires that the unique information (and hence
redundancy) should depend only on the pairwise marginals P(S, X1), P(S, X2) and P(X1, X2).
Therefore, any measure of redundancy which is consistent with this operational definition should take
a constant value over the family of distributions which satisfy those marginal constraints. This is the
same argument applied in [12] but we consider here the game-theoretic extension to their decision
theoretic operationalisation. Co-information itself is not constant over this family of distributions,
because its value can be altered by third order interactions (i.e., those not specified by the pairwise
marginals). Consider for example XOR. The co-information of this distribution is −1 bits, but the
maximum entropy distribution preserving pairwise marginal constraints is the uniform distribution
with a co-information of 0 bits. Therefore, if Iccs were calculated using the full joint distribution it
would not be consistent with the game-theoretic operational definition of unique information.
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Since redundancy should be invariant given the specified marginals, our definition of Iccs

must be a function only of those marginals. However, we need a full joint distribution over
the trivariate joint space to calculate the pointwise co-information terms. We use the maximum
entropy distribution subject to the constraints specified by the game-theoretic operational definition
(Equation (31)). The maximum entropy distribution is by definition the most parsimonious way to
fill out a full trivariate distribution given only a set of bi-variate marginals [41]. It introduces no
additional structure to the 3-way distribution over that which is specified by the constraints. Pairwise
marginal constrained maximum entropy distributions have been widely used to study the effect of
third and higher order interactions, because they provide a surrogate model which removes these
effects [42–45]. Any distribution with lower entropy would by definition have some additional
structure over that which is required to specify the unique and redundant information following the
game-theoretic operationalisation.

Note that the definition of Ibroja follows a similar argument. If redundancy was measured with
co-information directly, it would not be consistent with the decision theoretic operationalisation [12].
Bertschinger et al. [12] address this by choosing the distribution which maximises co-information
subject to the decision theoretic constraints. While we argue that maximizing entropy is in general a
more principled approach than maximizing co-information, note that with the additional predictor
marginal constraint introduced by the game-theoretic operational definition, both approaches are
equivalent for two predictors (since maximizing co-information is equal to maximizing entropy
given the constraints). However, once the distribution is obtained the other crucial difference is
that Iccs separates genuine redundant contributions at the local level, while Ibroja computes the full
co-information, which conflates redundant and synergistic effects (Table 3) [6].

We apply our game-theoretic operational definition in the same way to provide the constraints
in Equation (31) for an arbitrary number of inputs. The action of each agent is determined by P(Ai, S)
(or equivalently P(S|Ai)) and the agent interaction effects (from zero-sum or asymmetric utility
functions) are determined by P(A1, . . . , An).

4.4. Properties

The measure Iccs as defined above satisfies some of the proposed redundancy axioms (Section 3).
The symmetry and self-redundancy axioms are satisfied from the properties of co-information [20].
For self-redundancy, consider that co-information for n = 2 is equal to mutual information at the
pointwise level (Equation (29)):

c(s, a) = h(s) + h(a)− h(s, a)

= i(s; a) = Δsh(a)
(38)

So sgn c(s, a) = sgn Δsh(a) ∀s, a and Iccs(S; A) = I(S; A). Subset equality is also satisfied.
If Al−1 ⊆ Al then we consider values al−1 ∈ Al−1, al ∈ Al with al = (al−1

l , a+l ) and al−1
l ∈ Al−1 ∩Al =

Al−1, a+l ∈ Al \Al−1. Then

p(ai1 , . . . , aij , al−1, al−1
l , a+l ) =

{
0 if al−1 �= al−1

l

p(ai1 , . . . , aij , al) otherwise
(39)

for any i1 < · · · < ij ∈ {1, . . . , l − 2}. So for non-zero terms in Equation (30):

h(ai1 , . . . , aij , al−1, al) = h(ai1 , . . . , aij , al) (40)

Therefore all terms for k ≥ 2 in Equation (29) which include al−1, al cancel with a corresponding
k− 1 order term including al , so

c(a1, . . . , al−1, al) = c(a1, . . . , al−1) (41)
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and subset equality holds.
Iccs does not satisfy the Harder et al. identity axiom [11] (Equation (19)); any distribution with

negative local information terms serves as a counter example. These negative terms represent
synergistic entropy which is included the standard mutual information quantity [36]. Therefore their
omission in the calculation of Iccs seems appealing; since they result from a synergistic interaction they
should not be included in a measure quantifying redundant information. Iccs does satisfy the modified
independent identity axiom (Equation (22)), and so correctly quantifies redundancy in the two-bit
copy problem (Section 3.2).

However, Iccs does not satisfy monotonicity. To demonstrate this, consider the following example
(Table 7, modified from [13], Figure 3).

Table 7. Example system with unique misinformation.

x1 x2 s p(x1, x2, s)

0 0 0 0.4
0 1 0 0.1
1 1 1 0.5

For this system,

I(S; X1) = I(S; X1, X2) = 1 bit

I(S; X2) = 0.61 bits

Because of the self redundancy property, these values specify I∩ for the upper 3 values of the
redundancy lattice (Figure 2A). The value of the bottom node is given by

I∂ = I∩ = Iccs(S; {1}{2}) = 0.77 bits

This value arises from two positive pointwise terms:

x1 = x2 = s = 0 (contributes 0.4 bits)

x1 = x2 = s = 1 (contributes 0.37 bits)

So Iccs(S; {1}{2}) > Iccs(S; {2}) which violates monotonicity on the lattice. How is it possible for
two variables to share more information than one of them carries alone?

Consider the pointwise mutual information values for Iccs(S; {2}) = I(S; X2). There are the same
two positive information terms that contribute to the redundancy (since both are common with X1).
However, there is also a third misinformation term of −0.16 bits when s = 0, x2 = 1. In our view,
this demonstrates that the monotonicity axiom is incorrect for a measure of redundant information
content. As this example shows a node can have unique misinformation.

For this example Iccs yields the PID:

I∂({1}{2}) = 0.77

I∂({1}) = 0.23

I∂({2}) = −0.16

I∂({12}) = 0.16

While monotonicity has been considered a crucial axiom with the PID framework, we argue that
subset equality, usually considered as part of the axiom of monotonicity, is the essential property that
permits the use of the redundancy lattice. We have seen this lack of monotonicity means the PID
obtained with Iccs is not non-negative. We agree that while “negative . . . atoms can subjectively be seen
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as flaw” [37], we argue here that in fact they are a necessary consequence of a redundancy measure
that genuinely quantifies overlapping information content. Please note that in an earlier version of this
manuscript we proposed thresholding with 0 to remove negative values. We no longer do so.

Mutual information is the expectation of a local quantity that can take both positive (local
information) and negative (local misinformation) values, corresponding to redundant and synergistic
entropy respectively [36]. Jensen’s equality ensures that the final expectation value of mutual
information is positive; or equivalently that redundant entropy is greater than synergistic entropy
in any bivariate system. We argue that when breaking down the classical Shannon information
into a partial information decomposition, there is no reason that those partial information values
must be non-negative, since there is no way to apply Jensen’s inequality to these partial values.
We have illustrated this with a simple example where a negative unique information value is obtained,
and inspection of the pointwise terms shows that this is indeed due to negative pointwise terms in
the mutual information calculation for one predictor that are not present in the mutual information
calculation for the other predictor: unique misinformation. Applying the redundancy lattice and
the partial information decomposition directly to entropy can provide some further insights into the
prevalence and effects of misinformation or synergistic entropy [36].

We conjecture that Iccs is continuous in the underlying probability distribution [46] from the
continuity of the logarithm and co-information, but not differentiable due to the thresholding with 0.
Continuity requires that, at the local level,

c(s, a1, a2) < min [i(s; a1), i(s; a2)] (42)

when sgn i(s; a1) = sgn i(s; a2) = sgn i(s; a1, a2) = sgn c(s, a1, a2). While this relationship holds for the
full integrated quantities [20], it does not hold at the local level for all joint distributions. However,
we conjecture that it holds when using the pairwise maximum entropy solution P̂, with no higher
order interactions. This is equivalent to saying that the overlap of the two local informations should
not be larger than the smallest—an intuitive requirement for a set theoretic overlap. However, at this
stage the claim of continuity remains a conjecture. In the Matlab implementation we explicitly test for
violations of the condition in Equation (42), which do not occur in any of the examples we consider here.
This shows that all the examples we consider here are at least locally continuous in the neighbourhood
of the specific joint probability distribution considered.

In the next sections, we demonstrate with a range of example systems how the results obtained
with this approach match intuitive expectations for a partial information decomposition.

4.5. Implementation

Matlab code is provided to accompany this article, which features simple functions for calculating
the partial information decomposition for two and three variables [47].This includes implementation
of Imin and the PID calculation of [6], as well as Iccs and Ibroja. Scripts are provided reproducing
all the examples considered here. Implementations of Iccs and Immi [26] for Gaussian systems are
also included. To calculate Ibroja and compute the maximum entropy distributions under marginal
constraints we use the dit package [48–50]

5. Two Variable Examples

5.1. Examples from Williams and Beer (2010) [6]

We begin with the original examples of ([6], Figure 4), reproduced here in Figure 5.
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Figure 5. Probability distributions for three example systems (A–C). Black tiles represent equiprobable
outcomes. White tiles are zero-probability outcomes. (A,B) modified from [6].

Table 8 shows the PIDs for the system shown in Figure 5A, obtained with Imin, Ibroja and Iccs.
Note that this is equivalent to the system SUBTLE in ([13], Figure 4). Iccs and Imin agree qualitatively
here; both show both synergistic and redundant information. Ibroja shows zero synergy. The pointwise
computation of Iccs includes two non-zero terms; when

x1 = 0, x2 = 1, s = 1 and when

x1 = 1, x2 = 0, s = 2

For both of these local values, x1 and x2 are contributing the same reduction in surprisal of s
(0.195 bits each for 0.39 bits overall redundancy). There are no other redundant local changes in
surprisal (positive or negative). In this case, both the Ibroja optimised distribution and the pairwise
marginal maximum entropy distribution are equal to the original distribution. So here Ibroja is
measuring redundancy directly with co-information, whereas Iccs breaks down the co-information to
include only the two terms which directly represent redundancy. In the full co-information calculation
of Ibroja there is one additional contribution of−0.138 bits, which comes from the x1 = x2 = s = 0 event.
In this case the local changes in surprisal of s from x1 and x2 are both positive (0.585), but the local
co-information is negative (−0.415). This corresponds to the second row of Table 3—it is synergistic
local information. Therefore this example clearly shows how the Ibroja measure of redundancy
erroneously includes synergistic effects.

Table 8. PIDs for example Figure 5A.

Node I∂[Imin] I∂[Ibroja] I∂[Iccs]

{1}{2} 0.5850 0.2516 0.3900
{1} 0.3333 0.6667 0.5283
{2} 0.3333 0.6667 0.5283
{12} 0.3333 0 0.1383

Table 9 shows the PIDs for the system shown in Figure 5B. Here Ibroja and Iccs agree, but diverge
qualitatively from Imin. Imin shows both synergy and redundancy, with no unique information carried
by X1 alone. Iccs shows no synergy and redundancy, only unique information carried independently
by X1 and X2. Reference [6] argue that “X1 and X2 provide 0.5 bits of redundant information
corresponding to the fact that knowledge of either X1 or X2 reduces uncertainty about the outcomes
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S = 0, S = 2”. However, while both variables reduce uncertainty about S, they do so in different
ways—X1 discriminates the possibilities S = 0, 1 vs. S = 1, 2 while X2 allows discrimination between
S = 1 vs. S = 0, 2. These discriminations represent different non-overlapping information content,
and therefore should be allocated as unique information to each variable as in the Iccs and Ibroja
PIDs. While the full outcome can only be determined with knowledge of both variables, there is no
synergistic information because the discriminations described above are independent.

Table 9. PIDs for example Figure 5B.

Node I∂[Imin] I∂[Ibroja] I∂[Iccs]

{1}{2} 0.5 0 0
{1} 0 0.5 0.5
{2} 0.5 1 1
{12} 0.5 0 0

To induce genuine synergy it is necessary to make the X1 discrimination between S = 0, 1
and S = 1, 2 ambiguous without knowledge of X2. Table 10 shows the PID for the system shown
in Figure 5C, which includes such an ambiguity. Now there is no information in X1 alone, but it
contributes synergistic information when X2 is known. Here, Imin correctly measures 0 bits redundancy,
and all three PIDs agree (the other three terms have only one source, and therefore are the same for all
measures from self-redundancy).

Table 10. PIDs for example Figure 5C.

Node I∂[Imin] I∂[Ibroja] I∂[Iccs]

{1}{2} 0 0 0
{1} 0 0 0
{2} 0.25 0.25 0.25
{12} 0.67 0.67 0.67

5.2. Binary Logical Operators

The binary logical operators OR, XOR and AND are often used as example systems [10–12].
For XOR, the Iccs PID agrees with both Imin and Ibroja and quantifies the 1 bit of information as fully
synergistic.

5.2.1. AND/OR

Figure 6 illustrates the probability distributions for AND and OR. This makes clear the equivalence
between them; because of symmetry any PID should give the same result on both systems. Table 11
shows the PIDs. In this system Imin and Ibroja agree, both showing no unique information. Iccs shows
less redundancy, and unique information in both predictors. The redundancy value with Iccs falls
within the bounds proposed in ([10], Figure 6.11).

To see where this unique information arises with Iccs we can consider directly the individual
pointwise contributions for the AND example (Table 12). Iccs({1}{2}) has a single pointwise
contribution from the event (0, 0, 0), only when both inputs are 0 is there redundant local information
about the outcome. For the event (0, 1, 0) (and symmetrically for 1, 0, 0) x1 conveys local information
about s, while x2 conveys local misinformation, therefore there is no redundancy, but a unique
contribution for both x1 and x2. We can see in the (1, 1, 1) event the change in surprisal of s from the
two predictors is independent, so again contributes unique rather than redundant information. So the
unique information in each predictor is a combination of unique information and misinformation terms.
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Figure 6. Binary logical operators. Probability distributions for (A) AND; (B): OR. Black tiles represent
equiprobable outcomes. White tiles are zero-probability outcomes.

Table 11. PIDs for AND/OR.

Node I∂[Imin] I∂[Ibroja] I∂[Iccs]

{1}{2} 0.31 0.31 0.10
{1} 0 0 0.21
{2} 0 0 0.21
{12} 0.5 0.5 0.29

Table 12. Pointwise values from Iccs(S; {1}{2}) for AND.

(x1, x2, s) Δsh(x1) Δsh(x2) Δsh(x1, x2) c(x1; x2; s) Δshcom(x1, x2)

(0, 0, 0) 0.415 0.415 0.415 0.415 0.415
(0, 1, 0) 0.415 −0.585 0.415 −0.585 0
(1, 0, 0) −0.585 0.415 0.415 −0.585 0
(1, 1, 1) 1 1 2 0 0

For Ibroja the specific joint distribution that maximises the co-information in the AND example
while preserving P(Xi, S) ([12], Example 30, α = 1/4) has an entropy of 1.5 bits. P̂(X1, X2, S) used
in the calculation of Iccs is equal to the original distribution and has an entropy of 2 bits. Therefore,
the distribution used in Ibroja has some additional structure above that specified by the individual
joint target marginals and which is chosen to maximise the co-information (negative interaction
information). As discussed above, interaction information can conflate redundant information with
synergistic misinformation, as well as having other ambiguous terms when the signs of the individual
changes of surprisal are not equal. As shown in Table 12, the AND system includes such ambiguous
terms (rows 2 and 3, which contribute synergy to the interaction information). Any system of the form
considered in ([12], Example 30) will have similar contributing terms. This illustrates the problem
with using co-information directly as a redundancy measure, regardless of how the underlying
distribution is obtained. The distribution selected to maximise co-information will be affected by
these ambiguous and synergistic terms. In fact, it is interesting to note that for the Ibroja distribution
(α = 1/4), p(0, 1, 0) = p(1, 0, 0) = 0 and the two ambiguous synergistic terms are removed from the
interaction information. This indicates how the optimisation of the co-information might be driven by
terms that cannot be interpreted as genuine redundancy. Further, the distribution used in Ibroja has
perfectly coupled marginals. This increases the source redundancy measured by the co-information.
Under this distribution, the (1, 1, 1) term now contributes 1 bit locally to the co-information. This is
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redundant because x1 = 1 and x2 = 1 always occur together. In the original distribution the (1, 1, 1)
term is independent because the predictors are independent.

We argue there is no fundamental conceptual problem with the presence of unique information in
the AND example. Both variables share some information, have some synergistic information, but also
have some unique information corresponding to the fact that knowledge of either variable taking
the value 1 reduces the uncertainty of s = 1 independently (i.e., on different trials). If the joint target
marginal distributions are equal, then by symmetry I∂({1}) = I∂({2}), but it is not necessary that
I∂({1}) = I∂({2}) = 0 ([12], Corollary 8).

5.2.2. SUM

While not strictly a binary logic gate, we also consider the summation of two binary inputs.
The AND gate can be thought of as a thresholded version of summation. Summation of two binary
inputs is also equivalent to the system XORAND [10–12]. Table 13 shows the PIDs.

Table 13. PIDs for SUM.

Node I∂[Imin] I∂[Ibroja] I∂[Iccs]

{1}{2} 0.5 0.5 0
{1} 0 0 0.5
{2} 0 0 0.5
{12} 1 1 0.5

.

As with AND, Imin and Ibroja agree, and both allocate 0 bits of unique information. Both of
these methods always allocate zero unique information when the target-predictor marginals are
equal. Iccs differs in that it allocates 0 redundancy. This arises for a similar reason to the differences
discussed earlier for REDUCEDOR (Section 4.3). The optimised distribution used in Ibroja has directly
coupled predictors:

Pbroja(X1 = 0, X2 = 0) = Pbroja(X1 = 1, X2 = 1) = 0.5

Pbroja(X1 = 0, X2 = 1) = Pbroja(X1 = 1, X2 = 0) = 0
(43)

While the actual system has independent uniform marginal predictors (P(i, j) = 0.25). In the
Ibroja calculation of co-information the local events (0, 0, 0) and (1, 1, 2) both contribute redundant
information, because X1 and X2 are coupled. However, the local co-information terms for the true
distribution show that the contributions of x1 = 0 and x2 = 0 are independent when s = 0 (see Table 5).
Therefore, with the true distribution these contributions are actually unique information. These
differences arise because of the erroneous assumption within Ibroja that the unique and redundant
information should be invariant to the predictor-predictor marginal distribution (Section 4.3).
Since they are not, the Ibroja optimisation maximises redundancy by coupling the predictors.

The resulting Iccs PID seems quite intuitive. Both X1 and X2 each tell whether the output
sum is in (0, 1) or (1, 2), and they do this independently, since they are distributed independently
(corresponding to 0.5 bits of unique information each). However, the final full discrimination of the
output can only be obtained when both inputs are observed together, providing 0.5 bits of synergy.
In contrast, Ibroja measures 0.5 bits of redundancy. It is hard to see how summation of two independent
variables should be redundant as it is not apparent how two independent summands can convey
overlapping information about their sum. For AND, there is redundancy between two independent
inputs. Iccs shows that this arises from the fact that if x1 = 0 then y = 0 and similarly if x2 = 0 then
y = 0. So when both x1 and x2 are zero they are both providing the same information content—that
y = 0, so there is redundancy. In contrast, in SUM, x1 = 0 tells that y = 0 or y = 1, but which of the
two particular outputs is determined independently by the values of x2. So the information each input
conveys is independent (unique) and not redundant.
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5.3. Griffith and Koch (2014) Examples

Griffith and Koch [10] present two other interesting examples: RDNXOR (their Figure 6.9) and
RDNUNQXOR (their Figure 6.12).

RDNXOR consists of two two-bit (4 value) inputs X1 and X2 and a two-bit (4 value) output
S. The first component of X1 and X2 redundantly specifies the first component of S. The second
component of S is the XOR of the second components of X1 and X2. This system therefore contains
1 bit of redundant information and 1 bit of synergistic information; further every value s ∈ S has both
a redundant and synergistic contribution. Iccs correctly quantifies the redundancy and synergy with
the PID (1, 0, 0, 1) (as do both Imin and Ibroja).

RDNUNQXOR consists of two three-bit (8 value) inputs X1 and X2 and a four-bit (16 value) output
S (Figure 3). The first component of S is specified redundantly by the first components of X1 and
X2. The second component of S is specified uniquely by the second component of X1 and the third
component of S is specified uniquely by the second component of X2. The fourth component of S is the
XOR of the third components of X1 and X2. Again Iccs correctly quantifies the properties of the system
with the PID (1, 1, 1, 1), identifying the separate redundant, unique and synergistic contributions
(as does Ibroja but not Imin).

Note that the PID with Iccs also gives the expected results for examples RND and UNQ from [10]
(see example scripts in the accompanying code [47]).

5.4. Dependence on Predictor-Predictor Correlation

To directly illustrate the fundamental conceptual difference between Iccs and Ibroja we construct
a family of distributions with the same target-predictor marginals and investigate the resulting
decomposition as we change the predictor-predictor correlation [51].

We restrict our attention to binary variables with uniformly distributed univariate marginal
distributions. We consider pairwise marginals with a symmetric dependence of the form

pc(0, 0) = pc(1, 1) = (1+c)/4

pc(0, 1) = pc(1, 0) = (1−c)/4
(44)

where the parameter c specified the correlation between the two variables. We fix c = 0.1 for the two
target-predictor marginals:

P(X1, S) = P0.1(X1, S)

P(X2, S) = P0.1(X2, S)
(45)

Then with P(X1, X2) = Pc(X1, X2) we can construct a trivariate joint distribution Pc(S, X1, X2) which
is consistent with these three pairwise marginals as follows [51]. This is a valid distribution for
−0.8 ≤ c ≤ 0.1.

pc(0, 0, 0) = c/4 + 1/4

pc(0, 0, 1) = 1/40− c/4

pc(0, 1, 0) = 1/40− c/4

pc(0, 1, 1) = c/4 + 1/5

pc(1, 0, 0) = 0

pc(1, 0, 1) = 9/40

pc(1, 1, 0) = 9/40

pc(1, 1, 1) = 1/20

(46)
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Figure 7 shows Ibroja and Iccs PIDs for this system. By design the values of unique and redundant
information obtained with Ibroja do not change as a function of predictor-predictor correlation when
the target-predictor marginals are fixed. With Iccs the quantities change in an intuitive manner.
When the predictors are positively correlated, they are redundant, when they are negatively correlated
they convey unique information. When they are independent, there is an equal mix of unique and
mechanistic redundancy in this system. This emphasises the different perspective also revealed
in the REDUCEDOR example (Section 4.3) and the AND example (Section 5.2.1). Ibroja reports the
co-information for a distribution where the predictors are perfectly coupled. For all the values of c
reported in Figure 7A, the Ibroja optimised distribution has coupled predictor-predictor marginals:

P(X1 = 0, X2 = 1) = P(X1 = 1, X2 = 0) = 0

P(X1 = 0, X2 = 0) = P(X1 = 1, X2 = 1) = 0.5
(47)

Therefore, Ibroja is again insensitive to the sort of unique information that can be operationalised
in a game-theoretic setting by exploiting the trial-by-trial relationships between predictors (Section 4.3).
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Figure 7. PIDs for binary systems with fixed target-predictor marginals as a function of
predictor-predictor correlation. Ibroja (A) and Iccs (B) PIDs are shown for the system defined in
Equation (46) as a function of the predictor-predictor correlation c.

6. Three Variable Examples

We now consider the PID of the information conveyed about S by three variables X1, X2, X3.
For three variables we do not compare to Ibroja, since it is defined only for two input sources.

6.1. A Problem With the Three Variable Lattice?

Bertschinger et al. [14] identify a problem with the PID summation over the three-variable
lattice (Figure 2B). They provide an example we term XORCOPY (described in Section 6.2.2) which
demonstrates that any redundancy measure satisfying their redundancy axioms (particularly the
Harder et al. identity axiom) cannot have only non-negative I∂ terms on the lattice. We provide here an
alternative example of the same problem, and one that does not depend on the particular redundancy
measure used. We argue it applies for any redundancy measure that attempts to measure overlapping
information content.

We consider X1, X2, X3 independent binary input variables. Y is a two-bit (4 value) output with
the first component given by X1 ⊕ X2 and the second by X2 ⊕ X3. We refer to this example as DBLXOR.
In this case the top four nodes have non-zero (redundant) information:

I∩({123}) = I({123}) = 2 bits

I∩({12}) = I∩({13}) = I∩({23}) = 1 bit

We argue that all lower nodes on the lattice should have zero redundant (and partial) information.
First, by design and from the properties of XOR no single variable conveys any information or can have
any redundancy with any other source. Second, considering synergistic pairs, Figure 8A graphically
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illustrates the source-output joint distributions for the two-variable sources. Each value of the pairwise
response (x-axes in Figure 8A) performs a different discrimination between the values of Y for each
pair. Therefore, there is no way there can be redundant information between any of these synergistic
pairs. Redundant information means the same information content. Since there are no discriminations
(column patterns in the figure) that are common to more than one pair of sources, there can be no
redundant information between them. Therefore, the information conveyed by the three two-variable
sources is also independent and all lower nodes on the lattice are zero.
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Figure 8. The DBLXOR example. (A) Pairwise variable joint distributions. Black tiles represent
equiprobable outcomes. White tiles are zero-probability outcomes; (B) Non-zero nodes of the
three variable redundancy lattice. Mutual information values for each node are shown in red;
(C) PID. I∂ values for each node are shown in green.

In this example, I∩({123}) = 2 but there are three child nodes of {123} each with I∂ = 1
(Figure 8B). This leads to I∂({123}) = −1. How can there be 3 bits of unique information in the
lattice when there are only 2 bits of information in the system? In this case, we cannot appeal to the
non-monotonicity of Iccs since these values are monotonic on the lattice. There are also no negative
pointwise terms in the calculation of I({123}) so there is no synergistic misinformation that could
explain a negative value.

In a previous version of this manuscript we argued that this problem arises because the three
nodes in the penultimate level of the lattice are not disjoint, therefore not independent, and therefore
mutual information is not additive over those nodes. We proposed a normalisation procedure to
address such situations. However, we now propose instead to accept the negative values. As noted
earlier (Section 4.4), negative values may subjectively be seen as a flaw [37], but given that mutual
information itself is a summation of positive and negative terms, there is no a priori reason why
a full decomposition must, or indeed can, be completely non-negative. In fact, in entropy terms,
negative values are an essential consequence of the existence of mechanistic redundancy [36].
While in an information decomposition they can also arise from unique or synergistic misinformation,
we propose that mechanistic redundancy is another explanation. In this particular example of DBLXOR,
the negative {123} term reflects a mechanistic redundancy between the three pairwise synergistic
partial information terms that cannot be accounted for elsewhere on the lattice.
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6.2. Other Three Variable Example Systems

6.2.1. Giant Bit and Parity

The most direct example of three-way information redundancy is the “giant bit” distribution [52].
This is the natural extension of example RDN (Section 4.2) with a single bit in common to all four
variables, defined as:

P(0, 0, 0, 0) = P(1, 1, 1, 1) = 0.5 (48)

Applying Iccs results in a PID with I∂(S; {1}{2}{3}) = 1 bit, and all other terms zero.
A similarly classic example of synergy is the even parity distribution, a distribution in which an

equal probability is assigned to all configurations with an even number of ones. The XOR distribution
is the even parity distribution in the three variable (two predictor) case. Applying Iccs results in a PID
with I∂(S; {123}) = 1 bit, and all other terms zero.

Thus, the PID based on Iccs correctly reflects the structure of these simple examples.

6.2.2. XORCOPY

This example was developed to illustrate the problem with the three variable lattice described
above [14,53]. The system comprises three binary input variables X1, X2, X3, with X1, X2 uniform
independent and X3 = X1 ⊕ X2. The output Y is a three bit (8 value) system formed by copying the
inputs Y = (X1, X2, X3). The PID with Imin gives:

I∂({1}{2}{3}) = I∂({12}{13}{23}) = 1 bit

But since X1 and X2 are copied independently to the output it is hard to see how they can share
information. Using common change in surprisal we obtain:

Iccs({1}{23}) = Iccs({2}{13}) = Iccs({3}{12}) = 1 bit

Iccs({12}{13}{23}) = 2 bits

The Iccs({i}{jk}) values correctly match the intuitive redundancy given the structure of the
system, but result in a negative value similar to DBLXOR considered above. There are 3 bits of unique
I∂ among the nodes of the third level, but only 2 bits of information in the system. This results in
the PID:

I∂({1}{23}) = I∂({2}{13}) = I∂({3}{12}) = 1 bit

I∂({12}{13}{23}) = −1 bit

As for DBLXOR we believe this provides a meaningful decomposition of the total mutual
information, with the negative value here representing the presence of mechanistic redundancy
between the nodes at the third level of the lattice. This mechanistic redundancy between synergistic
pairs seems to be a signature property of an XOR mechanism.

6.2.3. Other Examples

Griffith and Koch [10] provide a number of other interesting three variable examples based on XOR

operations, such as XORDUPLICATE (their Figure 6.6), XORLOSES (their Figure 6.7), XORMULTICOAL

(their Figure 6.14). For all of these examples Iccs provides a PID which matches what they suggest from
the intuitive properties of the system (see examples_3d.m in accompanying code [47]). Iccs also gives
the correct PID for PARITYRDNRDN (which appeared in an earlier version of their manuscript).
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We propose an additional example, XORUNQ, which consists of three independent input bits.
The output consists of 2 bits (4 values), the first of which is given by X1 ⊕ X2, and the second of which
is a copy of X3. In this case we obtain the correct PID:

I∂({3}) = I∂({12}) = 1 bit

Another interesting example from [10] is ANDDUPLICATE (their Figure 6.13). In this example Y is
a binary variable resulting from the binary AND of X1 and X2. X3 is a duplicate of X1. The PID we
obtain for this system is shown in Figure 9.
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Figure 9. The ANDDUPLICATE example. (A) Iccs values for AND; (B) Partial information values from
the Iccs PID for AND; (C) Iccs values for ANDDUPLICATE; (D) Partial information values from the Iccs

PID for ANDDUPLICATE.

We can see that as suggested by [10],

IANDDUP
∂ (S; {2}) = IAND

∂ (S; {2})
IANDDUP
∂ (S; {1}{3}) = IAND

∂ (S; {1})
IANDDUP
∂ (S; {1}{2}{3}) = IAND

∂ (S; {1}{2})
(49)

The synergy relationship they propose, IANDDUP
∂ (S; {12}{23}) = IAND

∂ (S; {12}) is not met,
although the fundamental general consistency requirement relating 2 and 3 variable lattices is [36,54]:

IAND
∂ (S; {12}) = IANDDUP

∂ (S; {12})
+ IANDDUP

∂ (S; {12}{13}) + IANDDUP
∂ (S; {12}{23})

+ IANDDUP
∂ (S; {12}{13}{23})

+ IANDDUP
∂ (S; {3}{12})

(50)

Note that the preponderance of positive and negative terms with amplitude 0.14 bits is at first
glance counter-intuitive, particularly the fact that IANDDUP

∂ (S; {1}) = IANDDUP
∂ (S; {3}) = −0.146 when

X3 is a copy of X1. However, the 0.14 bits comes from a local misinformation term in the univariate
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predictor-target mutual information calculation for AND, which is not present in the joint mutual
information calculation. This reflects the fact that, in entropy terms, I(S; X1) is not a proper subset of
I(S; X1, X2) [36]. A partial entropy decomposition of AND shows that H∂({1}{23}) = H∂({2}{13}) =
0.14. These are entropy terms that have an ambiguous interpretation and appear both in unique and
synergistic partial information terms. It is likely that a higher-order entropy decomposition could shed
more light on the structure of the ANDDUPLICATE PID.

7. Continuous Gaussian Variables

Iccs can be applied directly to continuous variables. Δshcom can be used locally in the same
way, with numerical integration applied to obtain the expectation. Functions implementing this for
Gaussian variables via Monte Carlo integration are included in the accompanying code [47]. Following
Barrett [26] we consider the information conveyed by two Gaussian variables X1, X2 about a third
Gaussian variable, S. We focus here on univariate Gaussians, but the accompanying implementation
also supports multivariate normal distributions. Reference [26] show that for such Gaussian systems,
all previous redundancy measures agree, and are equal to the minimum mutual information carried
by the individual variables:

I∩({1}{2}) = min
i=1,2

I(S; Xi) = Immi({1}{2}) (51)

Without loss of generality, we consider all variables to have unit variance, and the system is then
completely specified by three parameters:

a = Corr(X1, S)

c = Corr(X2, S)

b = Corr(X1, X2)

Figure 10 shows the results for two families of Gaussian systems as a function of the correlation,
b, between X1 and X2 ([26], Figure 3).

This illustrates again a key conceptual difference between Iccs and existing measures. Iccs is not
invariant to the predictor-predictor marginal distributions (Section 5.4). When the two predictors
have equal positive correlation with the target (Figure 10A,B), Immi reports zero unique information,
and a constant level of redundancy regardless of the predictor-predictor correlation b. Iccs transitions
from having the univariate predictor information purely unique when the predictors are negatively
correlated, to purely redundant when the predictors are strongly positively correlated. When the two
predictors have unequal positive correlations with the target (Figure 10C,D), the same behaviour is seen.
When the predictors are negatively correlated the univariate information is unique, as they become
correlated both unique informations decrease as the redundancy between the predictors increases.

Having an implementation for continuous Gaussian variables is of practical importance, because
for multivariate discrete systems sampling high dimensional spaces with experimental data becomes
increasingly challenging. We recently developed a lower-bound approximate estimator of mutual
information for continuous signals based on a Gaussian copula [3]. The Gaussian Iccs measure therefore
allows this approach to be used to obtain PIDs from experimental data.
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Figure 10. PIDs for Gaussian systems. (A) PID with Immi for a = c = 0.5 as a function of
predictor-predictor correlation b; (B) PID with Iccs for a = c = 0.5; (C) PID with Immi for a = 0.4, c = 0.6;
(D) PID with Iccs for a = 0.4, c = 0.6.

8. Discussion

We have presented Iccs, a novel measure of redundant information based on the expected
pointwise change in surprisal that is common to all input sources. Developing a meaningful
quantification of redundant and synergistic information has proved challenging, with disagreement
about even the basic axioms and properties such a measure should satisfy. Therefore, here we take a
bottom-up approach, starting by defining what we think redundancy should measure at the pointwise
level (common change in surprisal), and then exploring the consequences of this through a range
of examples.

This new redundancy measure has several advantages over existing proposals. It is conceptually
simple: it measures precisely the pointwise contributions to the mutual information which are shared
unambiguously among the considered sources. This seems a close match to an intuitive definition
of redundant information. Iccs exploits the additivity of surprisal to directly measure the pointwise
overlap as a set intersection, while removing the ambiguities that arise due to the conflation of
pointwise information and misinformation effects by considering only terms with common sign (since
a common sign is a prerequisite for there to be a common change in surprisal). Iccs is defined for
any number of input sources (implemented for 2 and 3 predictor systems), as well as any continuous
system (implemented for multivariate Gaussian predictors and targets). Matlab code implementing the
measure accompanies this article [47]. The code requires installation of Python and the dit toolbox [50].
The repository includes all the examples described herein, and it is straightforward for users to apply
the method to any other systems or examples they would like.
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To motivate the choice of joint distribution we use to calculate Iccs we review and extend
the decision theoretic operational argument of Bertschinger et al. [12]. We show how a game
theoretic operationalisation provides a different perspective, and give a specific example where
an exploitable game-theoretic advantage exists for each agent, but Ibroja suggests there should be no
unique information. We therefore conclude the decision theoretic formulation is too restrictive and that
the balance of unique and redundant information is not invariant to changes in the predictor-predictor
marginal distribution. This means that the optimisation in Ibroja is not only minimising synergy,
but could actually be increasing redundancy. Detailed consideration of several examples shows that
the Ibroja optimisation often results in distributions with coupled predictor variables, which maximises
the source redundancy between them. For example, in the SUM system, the coupled predictors make
the (0, 0, 0) and (1, 1, 2) events redundant, when in the true system the predictors are independent,
so those events contribute unique information. However, we note that if required Iccs can also be
calculated following the decision theoretic perspective simply by using P̂ind.

Iccs satisfies most of the core axioms for a redundancy measure, namely symmetry,
self-redundancy and a modified identity property which reflects the fact that mutual information
can itself include synergistic entropy effects [36]. Crucially, it also satisfies subset equality which has
not previously been considered separately from monotonicity, but is the key axiom which allows the
use of the reduced redundancy lattice. However, we have shown that Iccs is not monotonic on the
redundancy lattice because nodes can convey unique misinformation. This means the resulting PID
is not non-negative. In fact, negative terms can occur even without non-monotonicity because for
some systems (e.g., 3 predictor systems with XOR structures) mechanistic redundancy can result in
negative terms [36]. We argue that while “negative . . . atoms can subjectively be seen as flaw” [37] in
fact, they are a necessary consequence of a redundancy measure that genuinely quantifies overlapping
information content. We have shown that despite the negative values, Iccs provides intuitive and
consistent PIDs across a range of example systems drawn from the literature.

Mutual information itself is an expectation over positive and negative terms. While Jensen’s
inequality ensures that the overall expectation is non-negative, we argue there is no way to apply
Jensen’s inequality to decomposed partial information components of mutual information, whichever
redundancy measure is used, and thus no reason to assume they must be non-negative. An alternative
way to think about the negative values is to consider the positive and negative contributions to mutual
information separately. The definition of Iccs could easily be expanded to quantify redundant pointwise
information separately from redundant pointwise misinformation (rows 1 and 3 of Table 3). One could
then imagine two separate lattice decompositions, one for the pointwise information (positive terms)
and one for the pointwise misinformation (negative terms). We conjecture that both of these lattices
would be monotonic, and that the non-monotonicity of the Iccs PID arises as a net effect from taking
the difference between these. This suggests it may be possible to obtain zero unique information
from a cancellation of redundant information with redundant misinformation, analogous to how
zero co-information can result in the presence of balanced redundant and synergistic effects, and so
exploring this approach is an interesting area for future work. It is also important to develop more
formal analytical results proving further properties of the measure, and separate local information
versus local misinformation lattices might help with this.

Rauh [55] recently explored an interesting link between the PID framework and the problem of
cryptographic secret sharing. Intuitively, there should be a direct relationship between the two notions:
an authorized set should have only synergistic information about the secret when all elements of the
set are considered, and a shared secret scheme corresponds to redundant information about the secret
between the authorized sets. Therefore, any shared secret scheme should yield a PID with a single
non-negative partial information term equal to the entropy of the secret at the node representing the
redundancy between the synergistic combinations of each authorised set within the inclusion-minimal
access structure. Rauh [55] shows that if this intuitive relationship holds, then the PID cannot be
non-negative. This finding further supports our suggestion that it may not be possible to obtain a
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non-negative PID from a redundancy measure that meaningfully quantifies overlapping information
content; if such a measure satisfies the intuitive “secret sharing property” [55] it does not provide a
non-negative PID. We note that Iccs satisfies the secret sharing property for ([55], Example 1); whether
it can be proved to do so in general is an interesting question for future research. These considerations
suggest Iccs might be useful in cryptographic applications.

Another important consideration for future research is how to address the practical problems of
limited sampling bias [56] when estimating PID quantities from experimental data. Similarly, how
best to perform statistical inference with non-parametric permutation methods is an open question.
We suggest it is likely that different permutation schemes might be needed for the different PID terms,
since trivariate conditional mutual information requires a different permutation scheme than bivariate
joint mutual information [57].

How best to practically apply the PID to systems with more than three variables is also an
important area for future research. The four variable redundancy lattice has 166 nodes, which already
presents a significant challenge for interpretation if there are more than a handful of non-zero partial
information values. We suggest that it might be useful to collapse together the sets of terms that
have the same order structure. For example, for the three variable lattice the terms within the layers
could be represented as shown in Table 14. While this obviously does not give the complete picture
provided by the full PID, it gives considerably more detail than existing measures based on maximum
entropy subject to different order marginal constraints, such as connected information [43]. We hope it
might provide a more tractable practical tool that can still give important insight into the structure of
interactions for systems with four or more variables.

Table 14. Order-structure terms for the three variable lattice. Resulting values for the example systems
of a giant bit, even parity and DBLXOR (Section 6) are shown.

Level Order-Structure Terms Giant Bit Parity DBLXOR

7 (3) 0 1 -1
6 (2) 0 0 3
5 (2, 2) 0 0 0
4 (1), (2, 2, 2) 0, 0 0, 0 0, 0
3 (1, 2) 0 0 0
2 (1, 1) 0 0 0
1 (1, 1, 1) 1 0 0

We have recently suggested that the concepts of redundancy and synergy apply just as naturally
to entropy as to mutual information [36]. Therefore, the redundancy lattice and PID framework
can be applied to entropy to obtain a partial entropy decomposition. A particular advantage
of the entropy approach is that it provides a way to separately quantify source and mechanistic
redundancy [11,36]. Just as mutual information is derived from differences in entropies, we suggest
that partial information terms should be related to partial entropy terms. For any partial information
decomposition, there should be a compatible partial entropy decomposition. We note that Iccs is highly
consistent with a PID based on a partial entropy decomposition obtained with a pointwise entropy
redundancy measure which measures common surprisal [36]. More formal study of the relationships
between the two approaches is an important area for future work. In contrast, it is hard to imagine
an entropy decomposition compatible with Ibroja. In fact, we have shown that Ibroja is fundamentally
incompatible with the notion of synergistic entropy. Since it satisfies the Harder et al. identity axiom,
it induces a two variable entropy decomposition which always has zero synergistic entropy.

As well as providing the foundation for the PID, a conceptually well-founded and practically
accessible measure of redundancy is a useful statistical tool in its own right. Even in the relatively
simple case of two experimental dependent variables, a rigorous measure of redundancy can provide
insights about the system that would not be possible to obtain with classical statistics. The presence of
high redundancy could indicate a common mechanism is responsible for both sets of observations,
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whereas independence would suggest different mechanisms. To our knowledge the only established
approaches that attempt to address such questions in practice are Representational Similarity
Analysis [58] and cross-decoding methods such as the temporal generalisation method [59]. However,
both these approaches can be complicated to implement, have restricted domains of applicability and
cannot address synergistic interactions. We hope the methods presented here will provide a useful
and accessible alternative allowing statistical analyses that provide novel interpretations across a
range of fields.
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Abstract: What are the distinct ways in which a set of predictor variables can provide information
about a target variable? When does a variable provide unique information, when do variables share
redundant information, and when do variables combine synergistically to provide complementary
information? The redundancy lattice from the partial information decomposition of Williams and
Beer provided a promising glimpse at the answer to these questions. However, this structure was
constructed using a much criticised measure of redundant information, and despite sustained research,
no completely satisfactory replacement measure has been proposed. In this paper, we take a different
approach, applying the axiomatic derivation of the redundancy lattice to a single realisation from a set
of discrete variables. To overcome the difficulty associated with signed pointwise mutual information,
we apply this decomposition separately to the unsigned entropic components of pointwise mutual
information which we refer to as the specificity and ambiguity. This yields a separate redundancy lattice
for each component. Then based upon an operational interpretation of redundancy, we define measures
of redundant specificity and ambiguity enabling us to evaluate the partial information atoms in each
lattice. These atoms can be recombined to yield the sought-after multivariate information decomposition.
We apply this framework to canonical examples from the literature and discuss the results and the
various properties of the decomposition. In particular, the pointwise decomposition using specificity
and ambiguity satisfies a chain rule over target variables, which provides new insights into the so-called
two-bit-copy example.

Keywords: mutual information; pointwise information; information decomposition; unique information;
redundant information; complementary information; redundancy; synergy

PACS: 89.70.Cf; 89.75.Fb; 05.65.+b; 87.19.lo

1. Introduction

The aim of information decomposition is to divide the total amount of information provided
by a set of predictor variables, about a target variable, into atoms of partial information contributed
either individually or jointly by the various subsets of the predictors. Suppose that we are trying to
predict a target variable T, with discrete state space T , from a pair of predictor variables S1 and S2,
with discrete state spaces S1 and S2. The mutual information I(S1; T) quantifies the information S1

individually provides about T. Similarly, the mutual information I(S2; T) quantifies the information
S2 individually provides about T. Now consider the joint variable S1,2 with the state space S1×S2.
The (joint) mutual information I(S1,2; T) quantifies the total information S1 and S2 together provide
about T. Although Shannon’s information theory provides the prior three measures of information,
there are four possible ways S1 and S2 could contribute information about T: the predictor S1 could
uniquely provide information about T; or the predictor S2 could uniquely provide information about T;
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both S1 and S2 could both individually, yet redundantly, provide the same information about T; or the
predictors S1 and S2 could synergistically provide information about T which is not available in either
predictor individually. Thus we have the following underdetermined set of equations,

I(S1,2; T)= R(S1, S2→T) + U(S1\S2→T) + U(S2\S1→T) + C(S1, S2→T),

I(S1; T)= R(S1, S2→T) + U(S1\S2→T), (1)

I(S2; T)= R(S1, S2→T) + U(S2\S1→T),

where U(S1\S2→T) and U(S2\S1→T) are the unique information provided by S1 and S2 respectively,
R(S1, S2→T) is the redundant information, and C(S1, S2→T) is the synergistic or complementary
information. (The directed notation is utilise here to emphasis the privileged role of the variable T.)
Together, the equations in (1) form the bivariate information decomposition. The problem is to define
one of the unique, redundant or complementary information—something not provided by Shannon’s
information theory—in order to uniquely evaluate the decomposition.

Now suppose that we are trying to predict a target variable T from a set of n finite state predictor
variables S = {S1, . . . , Sn}. In this general case, the aim of information decomposition is to divide
the total amount of information I(S1, . . . , Sn; T) into atoms of partial information contributed either
individually or jointly by the various subsets of S. But what are the distinct ways in which these subsets
of predictors might contribute information about the target? Multivariate information decomposition
is more involved than the bivariate information decomposition because it is not immediately obvious
how many atoms of information one needs to consider, nor is it clear how these atoms should relate to
each other. Thus the general problem of information decomposition is to provide both a structure for
multivariate information which is consistent with the bivariate decomposition, and a way to uniquely
evaluate the atoms in this general structure.

In the remainder of Section 1, we will introduce an intriguing framework called partial information
decomposition (PID), which aims to address the general problem of information decomposition,
and highlight some of the criticisms and weaknesses of this framework. In Section 2, we will consider the
underappreciated pointwise nature of information and discuss the relevance of this to the problem of
information decomposition. We will then propose a modified pointwise partial information decomposition
(PPID), but then quickly repudiate this approach due to complications associated with decomposing the
signed pointwise mutual information. In Section 3, we will discuss circumventing this issue by examining
information on a more fundamental level, in terms of the unsigned entropic components of pointwise
mutual information which we refer to as the specificity and the ambiguity. Then in Section 4—the main
section of this paper—we will introduce the PPID using the specificity and ambiguity lattices and the
measures of redundancy in Definitions 1 and 2. In Section 5, we will apply this framework to a number
of canonical examples from the PID literature, discuss some of the key properties of the decomposition,
and compare these to existing approaches to information decomposition. Section 6 will conclude the main
body of the paper. Appendix A contains discussions regarding the so-called two-bit-copy problem in
terms of Kelly gambling, Appendix B contains many of the technical details and proofs, while Appendix B
contains some more examples.

1.1. Notation

The following notational conventions are observed throughout this article:

T, T , t, tc denote the target variable, event space, event and complementary event respectively;
S, S , s, sc denote the predictor variable, event space, event and complementary event respectively;

S, s represent the set of n predictor variables {S1, . . . , Sn} and events {s1, . . . , sn} respectively;
T t, S s denote the two-event partition of the event space, i.e., T t = {t, tc} and S s = {s, sc};

H(T), I(S; T) uppercase function names be used for average information-theoretic measures;
h(t), i(s, t) lowercase function names be used for pointwise information-theoretic measures.
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When required, the following index conventions are observed:

s1, s2, t1, t2 superscripts distinguish between different different events in a variable;
S1, S2, T1, T2 subscripts distinguish between different variables;

S1,2, s1,2 multiple superscripts represent joint variables and joint events.

Finally, to be discussed in more detail when appropriate, consider the following:

A1, . . . , Ak sources are sets of predictor variables, i.e., Ai∈P1(S) where P1 is the power set without ∅;
a1, . . . , ak source events are sets of predictor events, i.e., ai ∈ P1(s).

1.2. Partial Information Decomposition

The partial information decomposition (PID) of Williams and Beer [1,2] was introduced to address the
problem of multivariate information decomposition. The approach taken is appealing as rather than
speculating about the structure of multivariate information, Williams and Beer took a more principled,
axiomatic approach. They start by considering potentially overlapping subsets of S called sources,
denoted A1, . . . , Ak. To examine the various ways these sources might contain the same information,
they introduce three axioms which “any reasonable measure for redundant information [I∩] should
fulfil” ([3], p. 3502). Note that the axioms appear explicitly in [2] but are discussed in [1] as mere
properties; a published version of the axioms can be found in [4].

W&B Axiom 1 (Commutativity). Redundant information is invariant under any permutation σ of sources,

I∩
(

A1, . . . , Ak→T
)
= I∩

(
σ(A1), . . . , σ(Ak)→T

)
.

W&B Axiom 2 (Monotonicity). Redundant information decreases monotonically as more sources are included,

I∩
(

A1, . . . , Ak−1→T
)
≤ I∩

(
A1, . . . , Ak→T

)
with equality if Ak ⊇ Ai for any Ai ∈ {A1, . . . , Ak−1}.

W&B Axiom 3 (Self-redundancy). Redundant information for a single source Ai equals the mutual information,

I∩
(

Ai→T
)
= I

(
Ai ; T

)
.

These axioms are based upon the intuition that redundancy should be analogous to the set-
theoretic notion of intersection (which is commutative, monotonically decreasing and idempotent).
Crucially, Axiom 3 ties this notion of redundancy to Shannon’s information theory. In addition to
these three axioms, there is an (implicit) axiom assumed here known as local positivity [5], which
is the requirement that all atoms be non-negative. Williams and Beer [1,2] then show how these
axioms reduce the number of sources to the collection of sources such that no source is a superset
of any other. These remaining sources are called partial information atoms (PI atoms). Each PI atom
corresponds to a distinct way the set of predictors S can contribute information about the target
T. Furthermore, Williams and Beer show that these PI atoms are partially ordered and hence form
a lattice which they call the redundancy lattice. For the bivariate case, the redundancy lattice recovers the
decomposition (1), while in the multivariate case it provides a meaningful structure for decomposition
of the total information provided by an arbitrary number of predictor variables.

While the redundancy lattice of PID provides a structure for multivariate information decomposition,
it does not uniquely determine the value of the PI atoms in the lattice. To do so requires a definition
of a measure of redundant information which satisfies the above axioms. Hence, in order to complete
the PID framework, Williams and Beer simultaneously introduced a measure of redundant information
called Imin which quantifies redundancy as the minimum information that any source provides about
a target event t, averaged over all possible events from T. However, not long after its introduction Imin

was heavily criticised. Firstly, Imin does not distinguish between “whether different random variables
carry the same information or just the same amount of information” ([5], p. 269; see also [6,7]). Secondly,
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Imin does not possess the target chain rule introduced by Bertschinger et al. [5] (under the name left chain
rule). This latter point is problematic as the target chain rule is a natural generalisation of the chain rule of
mutual information—i.e., one of the fundamental, and indeed characterising, properties of information in
Shannon’s theory [8,9].

These issues with Imin prompted much research attempting to find a suitable replacement measure
compatible with the PID framework. Using the methods of information geometry, Harder et al. [6]
focused on a definition of redundant information called Ired (see also [10]). Bertschinger et al. [11]
defined a measure of unique information ŨI based upon the notion that if one variable contains
unique information then there must be some way to exploit that information in a decision problem.
Griffith and Koch [12] used an entirely different motivation to define a measure of synergistic information
SVK whose decomposition transpired to be equivalent to that of ŨI [11]. Despite this effort, none
of these proposed measures are entirely satisfactory. Firstly, just as for Imin, none of these proposed
measures possess the target chain rule. Secondly, these measures are not compatible with the PID
framework in general, but rather are only compatible with PID for the special case of bivariate predictors,
i.e., the decomposition (1). This is because they all simultaneously satisfy the Williams and Beers axioms,
local positivity, and the identity property introduced by Harder et al. [6]. In particular, Rauh et al. [13]
proved that no measure satisfying the identity property and the Williams and Beer Axioms 1–3 can
yield a non-negative information decomposition beyond the bivariate case of two predictor variables. In
addition to these proposed replacements for Imin, there is also a substantial body of literature discussing
either PID, similar attempts to decompose multivariate information, or the problem of information
decomposition in general [3–5,7,10,13–28]. Furthermore, the current proposals have been applied to
various problems in neuroscience [29–34]. Nevertheless (to date), there is no generally accepted measure
of redundant information that is entirely compatible with PID framework, nor has any other well-accepted
multivariate information decomposition emerged.

To summarise the problem, we are seeking a meaningful decomposition of the information provided
an arbitrarily large set of predictor variables about a target variable, into atoms of partial information
contributed either individually or jointly by the various subsets of the predictors. Crucially, the redundant
information must capture when two predictor variables are carrying the same information about the target,
not merely the same amount of information. Finally, any proposed measure of redundant information
should satisfy the target chain rule so that net redundant information can be consistently computed for
consistently for multiple target events.

2. Pointwise Information Theory

Both the entropy and mutual information can be derived from first principles as fundamentally
pointwise quantities which measure the information content of individual events rather than entire
variables. The pointwise entropy h(t) = − log p(t) quantifies the information content of a single event
t, while the pointwise mutual information

i(s; t) = log
p(t|s)
p(t)

= log
p(s, t)

p(s)p(t)
= log

p(s|t)
p(s)

, (2)

quantifies the information provided by s about t, or vice versa. To our knowledge, these quantities
were first considered by Woodward and Davies [35,36] who noted that the average form of
Shannon’s entropy “tempts one to enquire into other simpler methods of derivation [of the per state
entropy]” ([35], p. 51). Indeed, they went on to show that the pointwise entropy and pointwise mutual
information can be derived from two axioms concerning the addition of the information provided
by the occurrence of individual events [36]. Fano [9] further formalised this pointwise approach
by deriving both quantites from four postulates which “should be satisfied by a useful measure of
information” ([9], p. 31). Taking the expectation of these pointwise quantities over all events recovers
the average entropy H(T) =

〈
h(t)

〉
and average mutual information I(S; T) =

〈
i(s; t)

〉
first derived

by Shannon [8]. Although both approaches arrive at the same average quantities, Shannon’s treatment
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obfuscates the pointwise nature of the fundamental quantities. In contrast, the approach of Woodward,
Davis and Fano makes this pointwise nature manifestly obvious.

It is important to note that, in contrast to the average mutual information, the pointwise mutual
information is not non-negative. Positive pointwise information corresponds to the predictor event s
raising the probability p(t|s) relative to the prior probability p(t). Hence when the event t occurs it can
be said that the event s was informative about the event t. Conversely, negative pointwise information
corresponds to the event s lowering the posterior probability p(t|s) relative to the prior probability p(t).
Hence when the event t occurs we can say that the event s was misinformative about the event t. (Not to
be confused with disinformation, i.e., intentionally misleading information.) Although a source event
s may be misinformative about a particular target event t, a source event s is never misinformative
about the target variable T since the pointwise mutual information averaged over all target realisations
is non-negative [9]. The information provided by s is helpful for predicting T on average; however, in
certain instances this (typically helpful) information is misleading in that it lowers p(t|s) relative to
p(t)—typically helpful information which subsequently turns out to be misleading is misinformation.

Finally, before continuing, there are two points to be made about the terminology used to describe
pointwise information. Firstly, in certain literature (typically in the context of time-series analysis),
the word local is used instead of pointwise, e.g., [4,18]. Secondly, in contemporary information theory,
the word average is generally omitted while the pointwise quantities are explicitly prefixed; however,
this was not always the accepted convention. Woodward [35] and Fano [9] both referred to pointwise
mutual information as the mutual information and then explicitly prefixed the average mutual information.
To avoid confusion, we will always prefix both pointwise and average quantities.

2.1. Pointwise Information Decomposition

Now that we are familiar with pointwise nature of information, suppose that we have a discrete
realisation from the joint event space T ×S1×S2 consisting of the target event t and predictor events
s1 and s2. The pointwise mutual information i(s1; t) quantifies the information provided individually
by s1 about t, while the pointwise mutual information i(s2; t) quantifies the information provided
individually by s2 about t. The pointwise joint mutual information i(s1,2; t) quantifies the total
information provided jointly by s1 and s2 about t. In correspondence with the (average) bivariate
decomposition (1), consider the pointwise bivariate decomposition, first suggested by Lizier et al. [4],

i(s1,2; t)= r(s1, s2→ t) + u(s1\s2→ t) + u(s2\s1→ t) + c(s1, s2→ t),

i(s1; t)= r(s1, s2→ t) + u(s1\s2→ t), (3)

i(s2; t)= r(s1, s2→ t) + u(s2\s1→ t).

Note that the lower case quantities denote the pointwise equivalent of the corresponding upper
case quantities in (1). This decomposition could be considered for every discrete realisation on the
support of the joint distribution P(S1, S2, T). Hence, consider taking the expectation of these pointwise
atoms over all discrete realisations,

U(S1\S2→T) =
〈
u(s1\s2→ t)

〉
, R(S1, S2→T) =

〈
r(s1, s2→ t)

〉
,

U(S2\S1→T) =
〈
u(s2\s1→ t)

〉
, C(S1, S2→T) =

〈
c(s1, s2→ t)

〉
.

(4)

Since the expectation is a linear operation, this will recover the (average) bivariate decomposition (1).
Equation (3) for every discrete realisation, together with (1) and (4) form the bivariate pointwise
information decomposition. Just as in (1), these equations are underdetermined requiring a separate
definition of either the pointwise unique, redundant or complementary information for uniqueness.
(Defining an average atom is sufficient for a unique bivariate decomposition (1), but still leaves the
pointwise decomposition (3) within each realisation underdetermined).
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2.2. Pointwise Unique

Now consider applying this pointwise information decomposition to the probability distribution
Pointwise Unique (PWUNQ) in Table 1. In PWUNQ, observing 0 in either of S1 or S2 provides zero
information about the target T, while complete information about the outcome of T is obtained by
observing 1 or a 2 in either predictor. The probability distribution is structured such that in each of
the four realisations, one predictor provides complete information while the other predictor provides
zero information—the two predictors never provide the same information about the target which is
justified by noting that one of the two predictors always provides zero pointwise information.

Given that redundancy is supposed to capture the same information, it seems reasonable to
assume there must be zero pointwise redundant information for each realisation. This assumption is
made without any measure of pointwise redundant information; however, no other possibility seems
justifiable. This assertion is used to determine the pointwise redundant information terms in Table 1.
Then using the pointwise information decomposition (3), we can then evaluate the other pointwise
atoms of information in Table 1. Finally using (4), we get that there is zero (average) redundant
information, and 1/2 bit of (average) unique information from each predictor. From the pointwise
perspective, the only reasonable conclusion seems to be that the predictors in PWUNQ must contain
only unique information about the target.

Table 1. Example PWUNQ. For each realisation, the pointwise mutual information provided by each
individual and joint predictor events, about the target event has been evaluated. Note that one predictor
event always provides full information about the target while the other provides zero information.
Based on the this, it is assumed that there must be zero redundant information. The pointwise partial
information (PPI) atoms are then calculated via (3).

p s1 s2 t i(s1; t) i(s2; t) i(s1,2; t) u(s1\s2 → t) u(s2\s1 → t) r(s1, s2 → t) c(s1, s2 → t)

1/4 0 1 1 0 1 1 0 1 0 0
1/4 1 0 1 1 0 1 1 0 0 0
1/4 0 2 2 0 1 1 0 1 0 0
1/4 2 0 2 1 0 1 1 0 0 0

Expected values 1/2 1/2 1 1/2 1/2 0 0

However, in contrast to the above, Imin, Ired, ŨI, and SVK all say that the predictors in PWUNQ

contain no unique information, rather only 1/2 bit of redundant information plus 1/2 bit of complementary
information. This problem, which will be referred to as the pointwise unique problem, is a consequence of the
fact that these measures all satisfy Assumption (∗) of Bertschinger et al. [11], which (in effect) states that
the unique and redundant information should only depend on the marginal distributions P(S1, T) and
P(S2, T). In particular, any measure which satisfies Assumption (∗) will yield zero unique information
when P(S1, T) is isomorphic to P(S2, T), as is the case for PWUNQ. (Here, isomorphic should be taken
to mean isomorphic probability spaces, e.g., [37], p. 27 or [38], p. 4.) It arises because Assumption (∗)
(and indeed the operational interpretation the led to its introduction) does not respect the pointwise
nature of information. This operational view does not take into account the fact that individual events s1

and s2 may provide different information about the event t, even if the probability distributions P(S1, T)
and P(S2, T) are the same. Hence, we contend that for any measure to capture the same information
(not merely the same amount), it must respect the pointwise nature of information.

2.3. Pointwise Partial Information Decomposition

With the pointwise unique problem in mind, consider constructing an information decomposition
with the pointwise nature of information as an inherent property. Let a1, . . . , ak be potentially
intersecting subsets of the predictor events s = {s1, . . . , sn}, called source events. Now consider
rewriting the Williams and Beer axioms in terms of a measure of pointwise redundant information i∩
where the aim is to deriving a pointwise partial information decomposition (PPID).
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PPID Axiom 1 (Symmetry). Pointwise redundant information is invariant under any permutation σ of
source events,

i∩
(
a1, . . . , ak→ t

)
= i∩

(
σ(a1), . . . , σ(ak)→T

)
.

PPID Axiom 2 (Monotonicity). Pointwise redundant information decreases monotonically as more source
events are included,

i∩
(
a1, . . . , ak−1→ t

)
≤ i∩

(
a1, . . . , ak→ t

)
with equality if ak ⊇ ai for any ai ∈ {a1, . . . , ak−1}.

PPID Axiom 3 (Self-redundancy). Pointwise redundant information for a single source event ai equals the
pointwise mutual information,

i∩
(
ai→ t

)
= i

(
ai ; t

)
.

It seems that the next step should be to define some measure of pointwise redundant
information which is compatible with these PPID axioms; however, there is a problem—the pointwise
mutual information is not non-negative. While this would not be an issue for the examples like
PWUNQ, where none of the source events provide negative pointwise information, it is an issue in
general (e.g., see RDNERR in Section 5.4). The problem is that set-theoretic intuition behind Axiom 2
(monotonicity) makes little sense when considering signed measures like the pointwise mutual
information.

Given the desire to address the pointwise unique problem, there is a need to overcome this
issue. Ince [18] suggested that the set-theoretic intuition is only valid when all source events provide
either positive or negative pointwise information. Ince contends that information and misinformation
are “fundamentally different” ([18], p. 11) and that the set-theoretic intuition should be admitted
in the difficult to interpret situations where both are present. We however, will take a different
approach—one which aims to deal with these difficult to interpret situations whilst preserving the
set-theoretic intuition that redundancy corresponds to overlapping information.

By way of a preview, we first consider precisely how an event s1 provides information
about an event t by the means of two distinct types of probability mass exclusion. We show
how considering the process in this way naturally splits the pointwise mutual information into
particular entropic components, and how one can consider redundancy on each of these components
separately. Splitting the signed pointwise mutual information into these unsigned entropic components
circumvents the above issue with Axiom 2 (monotonicity). Crucially, however, by deriving these
entropic components from the probability mass exclusions, we retain the set-theoretic intuition of
redundancy—redundant information will correspond to overlapping probability mass exclusions in
the two-event partition T t = {t, tc}.

3. Probability Mass Exclusions and the Directed Components of Pointwise Mutual Information

By definition, the pointwise information provided by s about t is associated with a change from the
prior p(t) to the posterior p(t|s). As we explored from first principles in Finn and Lizier [39], this change is
a consequence of the exclusion of probability mass in the target distribution P(T) induced by the occurrence
of the event s and inferred via the joint distribution P(S, T). To be specific, when the event s occurs,
one knows that the complementary event sc = {S\s} did not occur. Hence one can exclude the probability
mass in the joint distribution P(S, T) associated with the complementary event, i.e., exclude P(sc, T),
leaving just the probability mass P(s, T) remaining. The new target distribution P(T|s) is evaluated by
normalising this remaining probability mass. In [39] we introduced probability mass diagrams in order to
visually explore the exclusion process. Figure 1 provides an example of such a diagram. Clearly, this process
is merely a description of the definition of conditional probability. Nevertheless, we content that by viewing
the change from the prior to the posterior in this way—by focusing explicitly on the exclusions rather than
the resultant conditional probability—the vague intuition that redundancy corresponds to overlapping
information becomes more apparent. This point will elaborated upon in Section 3.3. However, in order
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to do so, we need to first discuss the two distinct types of probability mass exclusion (which we do in
Section 3.1) and then relate these to information-theoretic quantities (which we do in Section 3.2).

t1

t2

s1

s2

s1

s3

P(S, T)
1/8

3/8

1/4

1/4

t1

t1c

s1

s1c

s1

s1c

P(s1, T)
1/8

1/4

t1

t1c

s1

s1

P(T|s1)

1/3

2/3

Figure 1. Sample probability mass diagrams, which use length to represent the probability mass
of each joint event from T ×S . (Left) the joint distribution P(S, T); (Middle) The occurrence of the
event s1 leads to exclusions of the complementary event s1c which consists of two elementary event,
i.e., s1c = {s2, s3}. This leaves the probability mass P(s1, T) remaining. The exclusion of the probability
mass p(s1c, t1) was misinformative since the event t1 did occur. By convention, misinformative
exclusions will be indicated with diagonal hatching. On the other hand, the exclusion of the probability
mass p(t1c, s1c) was informative since the complementary event t1c did not occur. By convention,
informative exclusions will be indicated with horizontal or vertical hatching; (Right) this remaining
probability mass can be normalised yielding the conditional distribution P(T|s1).

3.1. Two Distinct Types of Probability Mass Exclusions

In [39] we examined the two distinct types of probability mass exclusions. The difference between
the two depends on where the exclusion occurs in the target distribution P(T) and the particular target
event t which occurred. Informative exclusions are those which are confined to the probability mass
associated with the set of elementary events in the target distribution which did not occur, i.e., exclusions
confined to the probability mass of the complementary event p(tc). They are called such because
the pointwise mutual information i(s; t) is a monotonically increasing function of the total size of
these exclusions p(tc). By convention, informative exclusions are represented on the probability mass
diagrams by horizontal or vertical lines. On the other hand, the misinformative exclusion is confined to
the probability mass associated with the elementary event in the target distribution which did occur,
i.e., an exclusion confined to p(t). It is referred to as such because the pointwise mutual information
i(s; t) is a monotonically decreasing function of the size of this type of exclusion p(t). By convention,
misinformative exclusions are represented on the probability mass diagrams by diagonal lines.

Although an event s may exclusively induce either type of exclusion, in general both types of
exclusion are present simultaneously. The distinction between the two types of exclusions leads
naturally to the following question—can one decompose the pointwise mutual information i(s; t)
into a positive informational component associated with the informative exclusions, and a negative
informational component associated with the misinformative exclusions? This question is considered
in detail in Section 3.2. However, before moving on, there is a crucial observation to be made about the
pointwise mutual information which will have important implications for the measure of redundant
information to be introduced later.

Remark 1. The pointwise mutual information i(s; t) depends only on the size of informative and misinformative
exclusions. In particular, it does not depend on the apportionment of the informative exclusions across the set of
elementary events contained in the complementary event tc.

In other words, whether the event s turns out to be net informative or misinformative about the
event t—whether i(s; t) is positive or negative—depends on the size of the two types of exclusions;
but, to be explicit, does not depend on the distribution of the informative exclusion across the set of
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target events which did not occur. This remark will be crucially important when it comes to providing
the operational interpretation of redundant information in Section 3.3. (It is also further discussed in
terms of Kelly gambling [40] in Appendix A).

3.2. The Directed Components of Pointwise Information: Specificity and Ambiguity

We return now to the idea that one might be able to decompose the pointwise mutual information
into a positive and negative component associated with the informative amd misinformative exclusions
respectively. In [39] we proposed four postulates for such a decomposition. Before stating the postulates,
it is important to note that although there is a “surprising symmetry” ([41], p. 23) between the information
provided by s about t and the information provided by t about s, there is nothing to suggest that the
components of the decomposition should be symmetric—indeed the intuition behind the decomposition
only makes sense when considering the information is considered in a directed sense. As such, directed
notation will be used to explicitly denote the information provided by s about t.

Postulate 1 (Decomposition). The pointwise information provided by s about t can be decomposed into two
non-negative components, such that i(s; t) = i+(s→ t)− i−(s→ t).

Postulate 2 (Monotonicity). For all fixed p(s, t) and p(sc, t), the function i+(s → t) is a monotonically
increasing, continuous function of p(tc, sc). For all fixed p(tc, s) and p(tc, sc), the function i−(s → t) is
a monotonically increasing continuous function of p(sc, t). For all fixed p(s, t) and p(tc, s), the functions
i+(s→ t) and i−(s→ t) are monotonically increasing and decreasing functions of p(tc, sc), respectively.

Postulate 3 (Self-Information). An event cannot misinform about itself, i+(s→ s) = i(s; s) = − log p(s).

Postulate 4 (Chain Rule). The functions i+(s1,2→ t) and i−(s1,2→ t) satisfy a chain rule, i.e.,

i+(s1,2→ t) = i+(s1→ t) + i+(s2→ t|s1)

= i+(s2→ t) + i+(s1→ t|s2),

i−(s1,2→ t) = i−(s1→ t) + i−(s2→ t|s1)

= i−(s2→ t) + i−(s1→ t|s2)

In Finn and Lizier [39], we proved that these postulates lead to the following forms which are
unique up to the choice of the base of the logarithm in the mutual information in Postulates 1 and 3,

i+(s1→ t) = h(s1) = − log p(s1), (5)

i+(s1→ t|s2) = h(s1|s2) = − log p(s1|s2), (6)

i+(s1,2→ t) = h(s1,2) = − log p(s1,2), (7)

i−(s1→ t) = h(s1|t) = − log p(s1|t), (8)

i−(s1→ t|s2) = h(s1|t, s2) = − log p(s1|t, s2), (9)

i−(s1,2→ t) = h(s1,2|t) = − log p(s1,2|t). (10)

That is, the Postulates 1–4 uniquely decompose the pointwise information provided by s about t
into the following entropic components,

i(s; t) = i+(s→ t)− i−(s→ t)
= h(s)− h(s|t). (11)

Although the decomposition of mutual information into entropic components is well-known,
it is non-trivial that Postulates 1 and 3, based on the size of the two distinct types of probability mass
exclusions, lead to this particular form, but not i(s; t) = h(t)− h(t|s) or i(s; t) = h(s) + h(t)− h(s, t).
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It is important to note that although the original motivation was to decompose the pointwise
mutual information into separate components associated with informative and misinformative
exclusion, the decomposition (11) does not quite possess this direct correspondence:

• The positive informational component i+(s→ t) does not depend on t but rather only on s. This can
be interpreted as follows: the less likely s is to occur, the more specific it is when it does occur,
the greater the total amount of probability mass excluded p(sc), and the greater the potential for s
to inform about t (or indeed any other target realisation).

• The negative informational component i−(s→ t) depends on both s and t, and can be interpreted
as follows: the less likely s is to coincide with the event t, the more uncertainty in s given t,
the greater size of the misinformative probability mass exclusion p(sc, t), and therefore the greater
the potential for s to misinform about t.

In other words, although the negative informational component i−(s→ t) does correspond directly
to the size of the misinformative exclusion p(sc, t), the positive informational component i+(s→ t)
does not correspond directly to the size of the informative exclusion p(tc, sc). Rather, the positive
informational component i+(s→ t) corresponds to the total size of the probability mass exclusions
p(sc), which is the sum of the sum of the informative and misinformative exclusions. For the sake of
brevity, the positive informational component i+(s→ t) will be referred to as the specificity, while the
negative informational component i−(s→ t) will be referred to as the ambiguity. The term ambiguity is
due to Shannon: “[equivocation] measures the average ambiguity of the received signal” ([42], p. 67).
Specificity is an antonym of ambiguity and the usage here is inline with the definition since the
more specific an event s, the more information it could provide about t after the ambiguity is taken
into account.

3.3. Operational Interpretation of Redundant Information

Arguing about whether one piece of information differs from another piece of information
is nonsensical without some kind of unambiguous definition of what it means for two pieces of
information to be the same. As such, Bertschinger et al. [11] advocate the need to provide an operational
interpretation of what it means for information to be unique or redundant. This section provides
our operational definition of what it means for information to be the same. This definition provides
a concrete interpretation of what it means for information to be redundant in terms of overlapping
probability mass exclusions.

The operational interpretation of redundancy adopted here is based upon the following idea:
since the pointwise information is ultimately derived from probability mass exclusions, the same
information must induce the same exclusions. More formally, the information provided by a set of
predictor events s1, . . . , sk about a target event t must be the same information if each source event
induces the same exclusions with respect to the two-event partition T t = {t, tc}. While this statement
makes the motivational intuition clear, it is not yet sufficient to serve as an operational interpretation of
redundancy: there is no reference to the two distinct types of probability mass exclusions, the specific
reference to the pointwise event space T t has not been explained, and there is no reference to the fact
the exclusions from each source may differ in size.

Informative exclusions are fundamentally different from misinformative exclusions and hence
each type of exclusion should be compared separately: informative exclusions can overlap with
informative exclusions, and misinformative exclusions can overlap with misinformative exclusions.
In information-theoretic terms, this means comparing the specificity and the ambiguity of the sources
separately—i.e., considering a measure of redundant specificity and a separate measure of redundant
ambiguity. Crucially, these quantities (being pointwise entropies) are unsigned meaning that the
difficulties associated with Axiom 2 (Monotonicity) and signed pointwise mutual information in
Section 2.3 will not be an issue here.

The specific reference to the two-event partition T t in the above statement is based upon Remark 1
and is crucially important. The pointwise mutual information does not depend on the apportionment of
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the informative exclusions across the set of events which did not occur, hence the pointwise redundant
information should not depend on this apportionment either. In other words, it is immaterial if
two predictor events s1 and s2 exclude different elementary events within the target complementary
event tc (assuming the probability mass excluded is equal) since with respect to the realised target
event t the difference between the exclusions is only semantic. This has important implications for
the comparison of exclusions from different predictor events. As the pointwise mutual information
depends on, and only depends on, the size of the exclusions, then the only sensible comparison is
a comparison of size. Hence, the common or overlapping exclusion must be the smallest exclusion.
Thus, consider the following operational interpretation of redundancy:

Operational Interpretation (Redundant Specificity). The redundant specificity between a set of predictor
events s1, . . . , sn is the specificity associated with the source event which induces the smallest total exclusions.

Operational Interpretation (Redundant Ambiguity). The redundant ambiguity between a set of predictor
events s1, . . . , sn is the ambiguity associated with the source event which induces the smallest misinformative exclusion.

3.4. Motivational Example

To motivate the above operational interpretation, and in particular the need to treat the specificity
separately to the ambiguity, consider Figure 2. In this pointwise example, two different predictor
events provide the same amount of pointwise information since P(T|s1

1) = P(T|s1
2), and yet the

information provided by each event is in some way different since each excludes different sections
of the target distribution P(T). In particular, s1

1 and s1
2 both preclude the target event t2, while s1

2
additionally excludes probability mass associated with target events t1 and t3. From the perspective of
the pointwise mutual information the events s1

1 and s1
2 seem to be providing the same information as

i(s1
1→ t1) = i(s1

2→ t1) = log 4/3 bit. (12)

However, from the perspective of the specificity and the ambiguity it can be seen that information
is being provided in different ways since

i+(s1
1→ t1) = log 4/3 bit, i−(s1

1→ t1) = 0 bit,
i+(s1

2→ t1) = log 8/3 bit, i−(s1
2→ t1) = 1 bit.

(13)

Now consider the problem of decomposing information into its unique, redundant and
complementary components. Figure 2 shows where exclusions induced by s1

1 and s1
2 overlap where

they both exclude the target event t2 which is an informative exclusion. This is the only exclusion
induced by s1

1 and hence all of the information associated with this exclusion must be redundantly
provided by the event s1

2. Without any formal framework, consider taking the redundant specificity
and redundant ambiguity,

r+(s1
1, s1

2→ t1) = i+(s1
1→ t1) = log 4/3 bit, (14)

r−(s1
1, s1

2→ t1) = i−(s1
1→ t1) = 0 bit. (15)

This would mean that the event s1
2 provides the following unique specificity and unique ambiguity,

u+(s1
1\s1

2→ t1) = i+(s1
1→ t1)− r+(s1

1, s1
2→ t1) = 1 bit, (16)

u−(s1
1\s1

2→ t1) = i−(s1
1→ t1)− r−(s1

1, s1
2→ t1) = 1 bit. (17)

The redundant specificity log 4/3 bit accounts for the overlapping informative exclusion of the
event t2. The unique specificity and unique ambiguity from s1

2 are associated with its non-overlapping
informative and misinformative exclusions; however, both of these 1 bit and hence, on net, s1

2 is no
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more informative than s1
1. Although obtained without a formal framework, this example highlights

a need to consider the specificity and ambiguity rather than merely the pointwise mutual information.
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Figure 2. Sample probability mass diagrams for two predictors S1 and S2 to a given target T. Here
events in the two different predictor spaces provide the same amount of pointwise information about
the target event, log2 4/3 bits, since P(T|s1

1) = P(T|s1
2), although each excludes different sections of the

target distribution P(T). Since they both provide the same amount of information, is there a way to
characterise what information the additional unique exclusions from the event s1

2 are providing?

4. Pointwise Partial Information Decomposition Using Specificity and Ambiguity

Based upon the argumentation of Section 3, consider the following axioms:

Axiom 1 (Symmetry). Pointwise redundant specificity i+∩ and pointwise redundant ambiguity i−∩ are invariant
under any permutation σ of source events,

i+∩
(
a1, . . . , ak→ t

)
= i+∩

(
σ(a1), . . . , σ(ak)→ t

)
,

i−∩
(
a1, . . . , ak→ t

)
= i−∩

(
σ(a1), . . . , σ(ak)→ t

)
.

Axiom 2 (Monotonicity). Pointwise redundant specificity i+∩ and pointwise redundant ambiguity i−∩ decreases
monotonically as more source events are included,

i+∩
(
a1, . . . , ak−1, ak→ t

)
≤ i+∩

(
a1, . . . , ak−1→ t

)
,

i−∩
(
a1, . . . , ak−1, ak→ t

)
≤ i−∩

(
a1, . . . , ak−1→ t

)
.

with equality if ak ⊇ ai for any ai ∈ {a1, . . . , ak−1}.

Axiom 3 (Self-redundancy). Pointwise redundant specificity i+∩ and pointwise redundant ambiguity i−∩ for a
single source event ai equals the specificity and ambiguity respectively,

i+∩ (ai→ t) = i+(ai→ t) = h(ai),

i−∩ (ai→ t) = i−(ai→ t) = h(ai|t).

As shown in Appendix B.1, Axioms 1–3 induce two lattices—namely the specificity lattice and
ambiguity lattice—which are depicted in Figure 3. Furthermore, each lattice is defined for every discrete
realisation from P(S1, . . . , Sn, T). The redundancy measures i+∩ or i−∩ can be thought of as a cumulative
information functions which integrate the specificity or ambiguity uniquely contributed by each node
as one moves up each lattice. Finally, just as in PID, performing a Möbius inversion over each lattice
yielding the unique contributions of specificity and ambiguity from each sources event.

Similarly to PID, the specificity and ambiguity lattices provide a structure for information
decomposition, but unique evaluation requires a separate definition of redundancy. However, unlike
PID (or even PPID), this evaluation requires both a definition of pointwise redundant specificity and
pointwise redundant ambiguity. Before providing these definitions, it is helpful to first see how the
specificity and ambiguity lattices can be used to decompose multivariate information in the now
familiar bivariate case.
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{123}

{23}{13}{12}

{13}{23}{12}{23}{12}{13}

{12}{13}{23}{3}{2}{1}

{3}{12}{2}{13}{1}{23}

{2}{3}{1}{3}{1}{2}

{1}{2}{3}

{12}

{2}{1}

{1}{2}

Figure 3. The lattice induced by the partial order� (A15) over the sources A (s) (A14). (Left) the lattice
for s = {s1, s2}; (Right) the lattice for s = {s1, s2, s3}. See Appendix B for further details. Each node
corresponds to the self-redundancy (Axiom 3) of a source event, e.g., {1} corresponds to the source
event

{
{s1}

}
, while {12, 13} corresponds to the source event

{
{s1,2}, {s1,3}

}
. Note that the specificity

and ambiguity lattices share the same structure as the redundancy lattice of partial information
decomposition (PID) (cf. Figure 2 in [1]).

4.1. Bivariate PPID Using the Specificity and Ambiguity

Consider again the bivariate case where the aim is to decompose the information provided by s1

and s2 about t. The specificity lattice can be used to decompose the pointwise specificity,

i+(s1,2→ t) = r+(s1, s2→ t) + u+(s1\s2→ t) + u+(s2\s1→ t) + c+(s1, s2→ t),

i+(s1→ t) = r+(s1, s2→ t) + u+(s1\s2→ t), (18)

i+(s2→ t) = r+(s1, s2→ t) + u+(s2\s1→ t);

while the ambiguity lattice can be used to decompose the pointwise ambiguity,

i−(s1,2→ t) = r−(s1, s2→ t) + u−(s1\s2→ t) + u−(s2\s1→ t) + c−(s1, s2→ t),

i−(s1→ t) = r−(s1, s2→ t) + u−(s1\s2→ t), (19)

i−(s2→ t) = r−(s1, s2→ t) + u−(s2\s1→ t).

These equations share the same structural form as (3) only now decompose the specificity
and the ambiguity rather than the pointwise mutual information, e.g., r+(s1, s2→ t) denotes the
redundant specificity while u−(s1\s2→ t) denoted the unique ambiguity from s1. Just as in for (3),
this decomposition could be considered for every discrete realisation on the support of the joint
distribution P(S1, S2, T).
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There are two ways one can be combine these values. Firstly, in a similar manner to (4), one could
take the expectation of the atoms of specificity, or the atoms of ambiguity, over all discrete realisations
yielding the average PI atoms of specificity and ambiguity,

U+(S1\S2→T) =
〈
u+(s1\s2→ t)

〉
, U−(S1\S2→T) =

〈
u−(s1\s2→ t)

〉
,

U+(S2\S1→T) =
〈
u+(s2\s1→ t)

〉
, U−(S2\S1→T) =

〈
u−(s2\s1→ t)

〉
,

R+(S1, S2→T) =
〈
r+(s1, s2→ t)

〉
, R−(S1, S2→T) =

〈
r−(s1, s2→ t)

〉
,

C+(S1, S2→T) =
〈
c+(s1, s2→ t)

〉
. C−(S1, S2→T) =

〈
c−(s1, s2→ t)

〉
.

(20)

Alternatively, one could subtract the pointwise unique, redundant and complementary ambiguity
from the pointwise unique, redundant and complementary specificity yielding the pointwise unique,
pointwise redundant and pointwise complementary information, i.e., recover the atoms from PPID,

r(s1, s2→ t) = r+(s1, s2→ t)− r−(s1, s2→ t),

u(s1\s2→ t) = u+(s1\s2→ t)− u−(s1\s2→ t),

u(s2\s1→ t) = u+(s2\s1→ t)− u−(s2\s1→ t),

c(s1, s2→ t) = c+(s1, s2→ t)− c−(s1, s2→ t).

(21)

Both (20) and (21) are linear operations, hence one could perform both of these operations (in either
order) to obtain the average unique, average redundant and average complementary information,
i.e., recover the atoms from PID,

R(S1, S2→T) = R+(S1, S2→T)− R−(S1, S2→T),

U(S1\S2→T) = U+(S1\S2→T)−U−(S1\S2→T),

U(S2\S1→T) = U+(S2\S1→T)−U−(S2\S1→T),

C(S1, S2→T) = C+(S1, S2→T)− C−(S1, S2→T).

(22)

4.2. Redundancy Measures on the Specificity and Ambiguity Lattices

Now that we have a structure for our information decomposition, there is a need to provide
a definition of the pointwise redundant specificity and pointwise redundant ambiguity. However,
before attempting to provide such a definition, there is a need to consider Remark 1 and the operational
interpretation of in Section 3.3. In particular, the pointwise redundant specificity i+∩ and pointwise
redundant ambiguity i−∩ should only depend on the size of informative and misinformative exclusions.
They should not depend on the apportionment of the informative exclusions across the set of
elementary events contained in the complementary event tc. Formally, this requirement will be
enshrined via the following axiom.

Axiom 4 (Two-event Partition). The pointwise redundant specificity i+∩ and pointwise redundant ambiguity
i−∩ are functions of the probability measures on the two-event partitions Aa1

1 ×T t, . . . ,Aak
k ×T t.

Since the pointwise redundant specificity i+∩ is specificity associated with the source event
which induces the smallest total exclusions, and pointwise redundant ambiguity i−∩ is the ambiguity
associated with the source event which induces the smallest misinformative exclusion, consider the
following definitions.
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Definition 1. The pointwise redundant specificity is given by

r+min
(
a1, . . . , ak→ t

)
= min

ai
i+(ai→ t) = min

ai
h(ai). (23)

Definition 2. The pointwise redundant ambiguity is given by

r−min
(
a1, . . . , ak→ t

)
= min

ai
i−(ai→ t) = min

aj
h(aj|t). (24)

Theorem 1. The definitions of r+min and r−min satisfy Axioms 1–4.

Theorem 2. The redundancy measures r+min and r−min increase monotonically on the
〈
A (s),�

〉
.

Theorem 3. The atoms of partial specificity π+ and partial ambiguity π− evaluated using the measures r+min
and r−min on the specificity and ambiguity lattices (respectively), are non-negative.

Appendix B.2 contains the proof of Theorems 1–3 and further relevant consideration of
Defintions 1 and 2. As in (20), one can take the expectation of the either the pointwise redundant
specificity r+min or the pointwise redundant ambiguity r−min to get the average redundant specificity
R+

min or the average redundant ambiguity R−min. Alternatively, just as in (21), one can recombine the
pointwise redundant specificity r+min and the pointwise redundant ambiguity r−min to get the pointwise
redundant information rmin. Finally, as per (22), one could perform both of these (linear) operations
in either order to obtain the average redundant information Rmin. Note that while Theorem 3 proves
that the atoms of partial specificity π+ and partial ambiguity π− are non-negative, it is trivial to see
that rmin could be negative since when source events can redundantly provide misinformation about
a target event. As shown in the following theorem, Rmin can also be negative.

Theorem 4. The atoms of partial average information Π evaluated by recombining and averaging π± are
not non-negative.

This means that the measure Rmin does not satisfy local positivity. Nonetheless the negativity of
Rmin is readily explainable in terms of the operational interpretation of Section 3.3, as will be discussed
further in Section 5.4. However, failing to satisfy local positivity does mean that rmin and Rmin do not
satisfy the target monotonicity property first discussed in Bertschinger et al. [5]. Despite this, as the
following theorem shows, the measures do satisfy the target chain rule.

Theorem 5 (Pointwise Target Chain Rule). Given the joint target realisation t1,2, the pointwise redundant
information rmin satisfies the following chain rule,

rmin
(
a1, . . . , ak→ t1,2

)
= rmin

(
a1, . . . , ak→ t1

)
+ rmin

(
a1, . . . , ak→ t2|t1

)
,

= rmin
(
a1, . . . , ak→ t2

)
+ rmin

(
a1, . . . , ak→ t1|t2

)
.

(25)

The proof of the last theorem is deferred to Appendix B.3. Note that since the expectation is
a linear operation, Theorem 5 also holds for the average redundant information Rmin. Furthermore,
as these results apply to any of the source events, the target chain rule will hold for any of the PPI
atoms, e.g., (21), and any of the PI atoms, e.g., (22). However, no such rule holds for the pointwise
redundant specificity or ambiguity. The specificity depends only on the predictor event, i.e., does not
depend on the target events. As such, when an increasing number of target events are considered,
the specificity remains unchanged. Hence, a target chain rule cannot hold for the specificity, or the
ambiguity alone.
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5. Discussion

PPID using the specificity and ambiguity takes the ideas underpinning PID and applies them on
a pointwise scale while circumventing the monotonicity issue associated with the signed pointwise
mutual information. This section will explore the various properties of the decomposition in
an example driven manner and compare the results to the most widely-used measures from the
existing PID literature. (Further examples can be found in Appendix C.) The following shorthand
notation will be utilised in the figures throughout this section:

i+1 = i+(s1→ t), i+2 = i+(s2→ t), i+1,2 = i+(s1,2→ t),

i−1 = i−(s1→ t), i−2 = i−(s2→ t), i−1,2 = i−(s1,2→ t),

u+
1 = u+(s1\s2→ t), u+

2 = u+(s2\s1→ t), r+ = r+(s1, s2→ t), c+ = c+(s1, s2→ t),

u−1 = u−(s1\s2→ t), u−2 = u−(s2\s1→ t), r− = r−(s1, s2→ t), c− = c−(s1, s2→ t).

5.1. Comparison to Existing Measures

A similar approach to the decomposition presented in this paper is due to Ince [18], who also sought
to define a pointwise information decomposition. Despite the similarity in this regard, the redundancy
measure ICCS presented in [18] approaches the pointwise monotonicity problem of Section 2.3 in a different
way to the decomposition presented in this paper. Specifically, ICCS aims to utilise the pointwise
co-information as a measure of pointwise redundant information since it “quantifies the set-theoretic
overlap of the two univariate [pointwise] information values” ([18], p. 14). There are, however, difficulties
with this approach. Firstly (unlike the average mutual information and the Shannon inequalities), there are
no inequalities which support this interpretation of pointwise co-information as the set-theoretic overlap
of the univariate pointwise information terms—indeed, both the univariate pointwise information and
the pointwise co-information are signed measures. Secondly, the pointwise co-information conflates
the pointwise redundant information with the pointwise complementary information, since by (3) we
have that

co-i(s1; s2; t) := i(s1; t) + i(s2; t)− i(s1,2, t) = r(s1, s2→ t)− c(s1, s2→ t). (26)

Aware of these difficulties, Ince defines ICCS such that it only interprets the pointwise
co-information as a measure of set-theoretic overlap in the case where all three pointwise information
terms have the same sign, arguing that these are the only situations which admit a clear interpretation
in terms of a common change in surprisal. In the other difficult to interpret situations, ICCS defines the
pointwise redundant information to be zero. This approach effectively assumes that c(s1, s2→ t) = 0
in (26) when i(s1; t), i(s2; t) and co-i(s1; s2; t) all have the same sign.

In a subsequent paper, Ince [19] also presented a partial entropy decomposition which aims to
decompose multivariate entropy rather than multivariate information. As such, this decomposition
is more similar to PPID using specificity and ambiguity than Ince’s aforementioned decomposition.
Although similar in this regard, the measure of pointwise redundant entropy Hcs presented in [19]
takes a different approach to the one presented in this paper. Specifically, Hcs also uses the pointwise
co-information as a measure of set-theoretic overlap and hence as a measure of pointwise redundant
entropy. As the pointwise entropy is unsigned, the difficulties are reduced but remain present due to the
signed pointwise co-information. In a manner similar to ICCS, Ince defines Hcs such that it only interprets
the pointwise co-information as a measure of set-theoretic overlap when it is positive. As per ICCS,
this effectively assumes that c(s1, s2→ t) = 0 in (26) when all information terms have the same sign. When
the pointwise co-information is negative, Hcs simply ignores the co-information by defining the pointwise
redundant information to be zero. In contrast to both of Ince’s approaches, PPID using specificity and
ambiguity does not dispose of the set-theoretic intuition in these difficult to interpret situations. Rather,
our approach considers the notion of redundancy in terms of overlapping exclusions—i.e., in terms of the
underlying, unsigned measures which are amenable to a set-theoretic interpretation.
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The measures of pointwise redundant specificity r+min and pointwise redundant ambiguity r−min,
from Definitions 1 and 2 are also similar to both the minimum mutual information IMMI [17] and the
original PID redundancy measure Imin [1]. Specifically, all three of these approaches consider the
redundant information to be the minimum information provided about a target event t. The difference
is that Imin applies this idea to the sources A1, . . . , Ak, i.e., to collections of entire predictor variables
from S, while r±min apply this notion to the source events a1, . . . , ak, i.e., to collections of predictor
events from s. In other words, while the measure Imin can be regarded as being semi-pointwise (since
it considers the information provided by the variables S1, . . . , Sn about an event t), the measures r±min
are fully pointwise (since they consider the information provided by the events s1, . . . , sn about an
event t). This difference in approach is most apparent in the probability distribution PWUNQ—unlike
PID, PPID using the specificity and ambiguity respects the pointwise nature of information, as we will
see in Section 5.3.

PPID using specificity and ambiguity also share certain similarities with the bivariate PID induced
by the measure ŨI of Bertschinger et al. [11]. Firstly, Axiom 4 can be considered to be a pointwise
adaptation of their Assumption (∗), i.e., the measures r±min depend only on the marginal distributions
P(S1, T) and P(S2, T) with respect to the two-event partitions S s1

1 ×T t and S s2
2 ×T t. Secondly,

in PPID using specificity and ambiguity, the only way one can only decide if there is complementary
information c(s1, s2→ t) is by knowing the joint distribution P(S1, S2, T) with respect to the joint
two-event partitions S s1

1 ×S
s2
2 ×T t. This is (in effect) a pointwise form of their Assumption (∗∗).

Thirdly, by definition r±min are given by the minimum value that any one source event provides. This is
the largest possible value that one could take for these quantities whilst still requiring that the unique
specificity and ambiguity be non-negative. Hence, within each discrete realisation, r±min minimise the
unique specificity and ambiguity whilst maximising the redundant specificity and ambiguity. This is
similar to ŨI which minimises the (average) unique information while still satisfying Assumption (∗).
Finally, note that since the measure SVK produces a bivariate decomposition which is equivalent to
that of ŨI [11], the same similarities apply between PPID using specificity and ambiguity and the
decomposition induced by SVK from Griffith and Koch [12].

5.2. Probability Distribution XOR

Figure 4 shows the canonical example of synergy, exclusive-or (XOR) which considers two
independently distributed binary predictor variables S1 and S2 and a target variable T = S1 XOR S2.
There are several important points to note about the decomposition of XOR. Firstly, despite
providing zero pointwise information, an individual predictor event does indeed induce exclusions.
However, the informative and misinformative exclusions are perfectly balanced such that the posterior
(conditional) distribution is equal to the prior distribution, e.g., see the red coloured exclusions induced
by S1 = 0 in Figure 4. In information-theoretic terms, for each realisation, the pointwise specificity
equals 1 bit since half of the total probability mass remains while the pointwise ambiguity also equals
1 bit since half of the probability mass associated with the event which subsequently occurs (i.e., T = 0),
remains. These are perfectly balanced such that when recombined, as per (11), the pointwise mutual
information is equal to 0 bit, as one would expect.

Secondly, S1 = 0 and S2 = 0 both induce the same exclusions with respect to the target pointwise
event space T T=0. Hence, as per the operational interpretation of redundancy adopted in Section 3.3,
there is 1 bit of pointwise redundant specificity and 1 bit of pointwise redundant ambiguity in each
realisation. The presence of (a form of) redundancy in XOR is novel amongst the existing measures
in the PID literature. (Ince [19] also identifies a form of redundancy in XOR.) Thirdly, despite the
presence of this redundancy, recombining the atoms of pointwise specificity and ambiguity for each
realisation, as per (21), leaves only one non-zero PPI atom: namely the pointwise complementary
information c(s1, s2→ t) = 1 bit. Furthermore, this is true for every pointwise realisation and hence,
by (22), the only non-zero PI atom is the average complementary information C(S1, S2→T) = 1 bit.
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Figure 4. Example XOR. (Top) probability mass diagrams for the realisation (S1 = 0, S2 = 0, T = 0);
(Middle) For each realisation, the pointwise specificity and pointwise ambiguity has been evaluated
using (5) and (8) respectively. The pointwise redundant specificity and pointwise redundant ambiguity
are then determined using (23) and (24). The decomposition is calculated using (18) and (19).
The expected specificity and ambiguity are calculated with (20); (Bottom) The average information is
given by (22). As expected, XOR yields 1 bit of complementary information.

5.3. Probability Distribution PWUNQ

Figure 5 shows the probability distribution PWUNQ introduced in Section 2.2. Recombining the
decomposition via (21) yields the pointwise information decomposition proposed in Table 1—unsurprisingly,
the explicitly pointwise approach results in a decomposition which does not suffer from the pointwise
unique problem of Section 2.2.
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Figure 5. Example PWUNQ. (Top) probability mass diagrams for the realisation (S1 =0, S2 =1, T=1);
(Middle) For each realisation, the pointwise partial information decomposition (PPID) using specificity
and ambiguity is evaluated (see Figure 4 for details). Upon recombination as per (21), the PPI
decomposition from Table 1 is attained; (Bottom) as does the average information—the decomposition
does not have the pointwise unique problem.
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In each realisation, observing a 0 in either source provides the same balanced informative and
misinformative exclusions as in XOR. Observing either a 1 or 2 provides the same misinformative
exclusion as observing the 0, but provides a larger informative exclusion than 0. This leaves only
the probability mass associated with the event which subsequently occurs remaining (hence why
observing a 1 and 2 is fully informative about the target). Information theoretically, in each realisation
the predictor events provide 1 bit of redundant pointwise specificity and 1 bit of redundant pointwise
ambiguity while the fully informative event additionally provides 1 bit of unique specificity.

5.4. Probability Distribution RDNERR

Figure 6 shows the probability distribution redundant-error (RDNERR) which considers two predictors
which are nominally redundant and fully informative about the target, but where one predictor
occasionally makes an erroneous prediction. Specifically, Figure 6 shows the decomposition of RDNERR

where S2 makes an error with a probability ε = 1/4. The important feature to note about this probability
distribution is that upon recombining the specificity and ambiguity and taking the expectation over
every realisation, the resultant average unique information from S2 is U(S2\S1→T) = −0.811 bit.

On first inspection, the result that the average unique information can be negative may seem
problematic; however, it is readily explainable in terms of the operational interpretation of Section 3.3.
In RDNERR, a source event always excludes exactly 1/2 of the total probability mass, thus every
realisation contains 1 bit of redundant pointwise specificity. The events of the error-free S1 induce
only informative exclusions and as such provide 0 bit of pointwise ambiguity in each realisation.
In contrast, the events in the error-prone S2 always induce a misinformative exclusion, meaning that S2

provides unique pointwise ambiguity in every realisation. Since S2 never provides unique specificity,
the average unique information is negative on average.

Despite the negativity of the average unique information, in is important to observe that S2 provides
0.189 bit of information since S2 also provides 1 bit of average redundant information. It is not that S2

provides negative information on average (as this is not possible); rather it is that not all of the information
provided by S2 (i.e., the specificity) is “useful” ([42], p. 21). This is in contrast to S1 which only provides
useful specificity. To summarise, it is the unique ambiguity which distinguishes the information provided
by variable S2 from S1, and hence why S2 is deemed to provide negative average unique information.
This form of uniqueness can only be distinguished by allowing the average unique information to be
negative. This of course, requires abandoning the local positivity as a required property, as per Theorem 4.
Few of the existing measures in the PID literature consider dropping this requirement as negative
information quantities are typically regarded as being “unfortunate” ([43], p. 49). However, in the context
of the pointwise mutual information, negative information values are readily interpretable as being
misinformative values. Despite this, the average information from each predictor must be non-negative;
however, it may be that what distinguishes one predictor from another are precisely the misinformative
predictor events, meaning that the unique information is in actual fact, unique misinformation. Forgoing
local positivity makes the PPID using specificity and ambiguity novel (the other exception in this regard
is Ince [18] who was first to consider allowing negative average unique information.)
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Figure 6. Example RDNERR. (Top) probability mass diagrams for the realisations (S1 =0, S2 =0, T=0)
and (S1 =0, S2 =1, T=0); (Middle) for each realisation, the PPID using specificity and ambiguity
is evaluated (see Figure 4 for details); (Bottom) the average PI atoms may be negative as the
decomposition does not satisfy local positivity.

5.5. Probability Distribution TBC

Figure 7 shows the probability distribution two-bit-copy (TBC) which considers two independently
distributed binary predictor variables S1 and S2, and a target variable T consisting of a separate elementary
event for each joint event S1,2. There are several important points to note about the decomposition of
TBC. Firstly, due to the symmetry in the probability distribution, each realisation will have the same
pointwise decomposition. Secondly, due to the construction of the target, there is an isomorphism (Again,
isomorphism should be taken to mean isomorphic probability spaces, e.g., [37], p. 27 or [38], p. 4) between
P(T) and P(S1, S2), and hence the pointwise ambiguity provided by any (individual or joint) predictor
event is 0 bit (since given t, one knows s1 and s2). Thirdly, the individual predictor events s1 and s2 each
exclude 1/2 of the total probability mass in P(T) and so each provide 1 bit of pointwise specificity; thus,
by (23), there is 1 bit of redundant pointwise specificity in each realisation. Fourthly, the joint predictor
event s1,2 excludes 3/4 of the total probability mass, providing 2 bit of pointwise specificity; hence, by (18),
each joint realisation provides 1 bit of pointwise complementary specificity in addition to the 1 bit of
redundant pointwise specificity. Finally, putting this together via (22), TBC consists of 1 bit of average
redundant information and 1 bit of average complementary information.

Although “surprising” ([5], p. 268), according to the operational interpretation adopted in Section 3.3,
two independently distributed predictor variables can share redundant information. That is, since the
exclusions induced by s1 and s2 are the same with respect to the two-event partition T t, the information
associated with these exclusions is regarded as being the same. Indeed, this probability distribution
highlights the significance of specific reference to the two-event partition in Section 3.3 and Axiom 4.
(This can be seen in the probability mass diagram in Figure 7, where the events S1 = 0 and S2 = 0 exclude
different elementary target events within the complementary event 0c and yet are considered to be the
same exclusion with respect to the two-event partition T 0.) That these exclusions should be regarded as
being the same is discussed further in Appendix A. Now however, there is a need to discuss TBC in terms
of Theorem 5 (Target Chain Rule).
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Figure 7. Example TBC. (Top) the probability mass diagrams for the realisation (S1 =0, S2 =0, T=00);
(Middle) for each realisation, the PPID using specificity and ambiguity is evaluated (see Figure 4);
(Bottom) the decomposition of XOR yields the same result as Imin.

TBC was first considered as a “mechanism” ([6], p. 3) where “the wires don’t even touch” ([12], p. 167),
which merely copies or concatenates S1 and S2 into a composite target variable T1,2 = (T1, T2) where
T1 = S1 and T2 = S2. However, using causal mechanisms as a guiding intuition is dubious since different
mechanisms can yield isomorphic probability distributions ([44], and references therein). In particular,
consider two mechanisms which generate the composite target variables T1,3 = (T1, T3) and T2,3 = (T2, T3)

where T3 = S1 XOR S2. As can be seen in Figure 7, both of these mechanisms generate the same
(isomorphic) probability distribution P(S1, S2, T) as the mechanism generating T1,2. If an information
decomposition is to depend only on the probability distribution P(S1, S2, T), and no other semantic details
such as labelling, then all three mechanisms must yield the same information decomposition—this is not
clear from the mechanistic intuition.

Although the decomposition of the various composite target variables must be the same, there is no
requirement that the three systems must yield the same decomposition when analysed in terms of the
individual components of the composite target variables. Nonetheless, there ought to be a consistency
between the decomposition of the composite target variables and the decomposition of the component
target variables—i.e., there should be a target chain rule. As shown in Theorem 5, the measures rmin

and Rmin satisfy the target chain rule, whereas Imin, ŨI, Ired and SVK do not [5,7]. Failing to satisfy the
target chain rule can lead to inconsistencies between the composite and component decompositions,
depending on the order in which one considers decomposing the information (this is discussed further
in Appendix A.3). In particular, Table 2 shows how ŨI, Ired and SVK all provide the same inconsistent
decomposition for TBC when considered in terms of the composite target variable T1,3. In contrast, Rmin

produces a consistent decomposition of T1,3. Finally, based on the above isomorphism, consider the
following (the proof is deferred to Appendix B.3).

Theorem 6. The target chain rule, identity property and local positivity, cannot be simultaneously satisfied.
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Table 2. Shows the decomposition of the quantities in the first row induced by the measures in the
first column. For consistency, the decomposition of I(S1,2; T1,3) should equal both the sum of the
decomposition of I(S1,2; T1) and I(S1,2; T3|T1), and the sum of the decomposition of I(S1,2; T3) and
I(S1,2; T1|3). Note that the decomposition induced by ŨI, Ired and SVK are not consistent. In contrast,
Rmin is consistent due to Theorem 5.

I(S1,2; T1,3) I(S1,2; T1) I(S1,2; T3|T1) I(S1,2; T3) I(S1,2; T1|T3)

ŨI, Ired,
SVK

U(S1\S2→T1,3)=1

U(S2\S1→T1,3)=1
U(S1\S2→T1)=1 U(S2\S1→T3|T1)=1 C(S1, S2→T3)=1 R(S1, S2→T1|T3)=1

Rmin
R(S1, S2→T1,3) = 1

C(S1, S2→T1,3) = 1

U(S2\S1→T1)=−1

R(S1, S2→T1)=1

C(S1, S2→T1)=1
U(S2\S1→T3|T1)=1 C(S1, S2→T3)=1 R(S1, S2→T1|T3)=1

5.6. Summary of Key Properties

The following are the key properties of the PPID using the specificity and ambiguity. Property 1
follows directly from the Definitions 1 and 2. Property 2 follows from Theorems 3 and 4. Property 3
follows from the probability distribution TBC in Section 5.5. Property 4 was discussed in Section 4.2.
Property 5 is proved in Theorem 5.

Property 1. When considering the redundancy between the source events a1, . . . , ak, at least one source event
ai will provide zero unique specificity, and at least one source event aj will provide zero unique ambiguity.
The events ai and aj are not necessarily the same source event.

Property 2. The atoms of partial specificity and partial ambiguity satisfy local positivity, π± ≥ 0. However,
upon recombination and averaging, the atoms of partial information do not satisfy local positivity, Π ≥ 0.

Property 3. The decomposition does not satisfy the identity property.

Property 4. The decomposition does not satisfy the target monotonicity property.

Property 5. The decomposition satisfies the target chain rule.

6. Conclusions

The partial information decomposition of Williams and Beer [12] provided an intriguing
framework for the decomposition of multivariate information. However, it was not long before
“serious flaws” ([11], p. 2163) were identified. Firstly, the measure of redundant information Imin failed
to distinguish between whether predictor variables provide the same information or merely the same
amount of information. Secondly, Imin fails to satisfy the target chain rule, despite this addativity
being one of the defining characteristics of information. Notwithstanding the problems, the axiomatic
derivation of the redundancy lattice was too elegant to be abandoned and hence several alternate
measures were proposed, i.e., Ired, ŨI and SVK [6,11,12]. Nevertheless, as these measures all satisfy
the identity property, they cannot produce a non-negative decomposition for an arbitrary number of
variables [13]. Furthermore, none of these measures satisfy the target chain rule meaning they produce
inconsistent decompositions for multiple target variables. Finally, in spite of satisfying the identity
property (which many consider to be desirable), these measures still fail to identify when variables
provide the same information, as exemplified by the pointwise unique problem presented in Section 2.

This paper took the axiomatic derivation of the redundancy lattice from PID and applied it to
the unsigned entropic components of the pointwise mutual information. This yielded two separate
redundancy lattices—the specificity and the ambiguity lattices. Then based upon an operational
interpretation of redundancy, measures of pointwise redundant specificity r+min and pointwise redundant
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ambiguity r−min were defined. Together with specificity and ambiguity lattices, these measures were used to
decompose multivariate information for an arbitrary number of variables. Crucially, upon recombination,
the measure rmin satisfies the target chain rule. Furthermore, when applied to PWUNQ, these measures do
not result in the pointwise unique problem. In our opinion, this demonstrates that the decomposition is
indeed correctly identifying redundant information. However, others will likely disagree with this point
given that the measure of redundancy does not satisfy the identity property. According to the identity
property, independent variables can never provide the same information. In contrast, according to the
operational interpretation adopted in this paper, independent variables can provide the same information
if they happen to provide the same exclusions with respect to the two-event target distribution. In any
case, the proof of Theorem 6 and the subsequent discussion in Appendix B.3, highlights the difficulties
that the identity property introduces when considering the information provided about events in separate
target variables. (See further discussion in Appendix A.3).

Our future work with this decomposition will be both theoretical and empirical. Regarding future
theoretical work, given that the aim of information decomposition is to derive measures pertaining
to sets of random variables, it would be worthwhile to derive the information decomposition from
first principles in terms of measure theory. Indeed, such an approach would surely eliminate the
semantic arguments (about what it means for information to unique, redundant or complementary),
which currently plague the problem domain. Furthermore, this would certainly be a worthwhile
exercise before attempting to generalise the information decomposition to continuous random variables.
Regarding future empirical work, there are many rich data sets which could be decomposed using this
decomposition including financial time-series and neural recordings, e.g., [28,33,34].
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Appendix A. Kelly Gambling, Axiom 4, and TBC

In Section 3.3, it was argued that the information provided by a set of predictor events s1, . . . , sk about
a target event t is the same information if each source event induces the same exclusions with respect
to the two-event partition T t = {t, tc}. This was based on the fact that pointwise mutual information
does not depend on the apportionment of the exclusions across the set of events which did not occur
tc. It was argued that since the pointwise mutual information is independent of these differences,
the redundant mutual information should also be independent of these differences. This requirement
was then integrated into the operational interpretation of Section 3.3 and was later enshrined in the form
of Axiom 4. This appendix aims to justify this operational interpretation and argue why redundant
information in TBC is not “unreasonably large” ([5], p. 269).

Appendix A.1. Pointwise Side Information and the Kelly Criterion

Consider a set of horses T running in a race which can be considered a random variable T with
distribution P(T). Say that for each t ∈ T a bookmaker offers odds of o(t)-for-1, i.e., the bookmaker
will pay out o(t) dollars on a $1 bet if the horse t wins. Furthermore, say that there is no track take as
∑t∈T 1/o(t) = 1, and these odds are fair, i.e., o(t) = 1/p(t) for all t ∈ T [40]. Let b(T) be the fraction of
a gambler’s capital bet on each horse t ∈ T and assume that the gambler stakes all of their capital on
the race, i.e., ∑t∈T b(t) = 1.
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Now consider an i.i.d. series of these races T1, T2, . . . such that P(Tk) = P(T) for all k ∈ N and let
tk ∈ T represent the winner of the k-th race. Say that the bookmaker offers the same odds on each
race and the gambler bets their entire capital on each race. The gambler’s capital after m races Dm is
a random variable which depends on two factors per race: the amount the gambler staked on each
race winner tk, and the odds offered on each winner tk. That is,

Dm =
m

∏
k=1

b(tk) o(tk), (A1)

where monetary units $ have been chosen such that D0 = $1. The gambler’s wealth grows (or shrinks)
exponentially, i.e.,

Dm = 2m W(b,T) (A2)

where

W(b, T) =
1
m

log Dm =
1
m

m

∑
k=1

log b(tk) o(tk) = E
[

log b(tk) o(tk)
]

(A3)

is the doubling rate of the gambler’s wealth using a betting strategy b(T). Here, the last equality is by
the weak law of large numbers for large m.

Any reasonable gambler would aim to use an optimal strategy b∗(T) which maximises the
doubling rate W(b, T). Kelly [40,43] proved that the optimal doubling rate is given by

W∗(T) = max
b

W(b, T) = E
[

log b∗(tk) o(tk)
]

(A4)

and is achieved by using the proportional gambling scheme b∗(T) = P(T). When the race Tk occurs
and the horse tk wins, the gambler will receive a payout of b∗(tk) o(tk) = $1, i.e., the gambler receives
their stake back regardless of the outcome. In the face of fair odds, the proportional Kelly betting
scheme is the optimal strategy—non-terminating repeated betting with any other strategy will result
in losses.

Now consider a gambler with access to a private wire S which provides (potentially useful) side
information about the upcoming race. Say that these messages are selected from the set S , and that the
gambler receives the message sk before the race Tk. Kelly [40,43] showed that the optimal doubling
rate in the presence of this side information is given by

W∗(T|S) = max
b

W(b, T|S) = E
[

log b∗(tk|sk) o(tk)
]
, (A5)

and is achieved by using the conditional proportional gambling scheme b∗(T|sk) = P(T|sk). Both the
proportional gambling scheme b∗(T) and the conditional proportional gambling scheme b∗(T|S)
are based upon the Kelly criterion whereby bets are apportioned according to the best estimation of
the outcome available. The financial value of the private wire to a gambler can be ascertained by
comparing their doubling rate of the gambler with access to the side wire to that of a gambler with no
side information, i.e.,

ΔW = W∗(T|S)−W∗(T) = E
[

log b∗(tk|sk) o(tk)
]
− E

[
log b∗(tk) o(tk)

]
= E

[
i(sk; tk)

]
= I(S; T).

(A6)

This important result due to Kelly [40] equates the increase in the doubling rate ΔW due to
the presence of side information, with the mutual information between the private wire S and the
horse race T. If on average, the gambler receives 1 bit of information from their private wire, then on
average the gambler can expect to double their money per race. Furthermore, as one would expect,
independent side information does not increase the doubling rate.
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With no side information, the Kelly gambler always received their original stake back from the
bookmaker. However, this is not true for the Kelly gambler with side information. Although their
doubling rate is greater than or equal to that of the gambler with no side information, this is only true
on average. Before the race Tk, the gambler receives the private wire message sk and then, the horse tk
wins the race. From (A6), one can see that the return Δwk for the k-th race is given by the pointwise
mutual information,

Δw = i(sk; tk). (A7)

Hence, just like the pointwise mutual information, the per race return can be positive or negative:
if it is positive, the gambler will make a profit; if it is negative, the gambler will sustain a loss.
Despite the potential for pointwise loses, the average return (i.e., the doubling rate) is, just like the
average mutual information, non-negative—and indeed, is optimal. Furthermore, while a Kelly
gambler with side information can lose money on any single race, they can never actually go bust.
The Kelly gambler with side information s still hedges their risk by placing bets on all horses with
a non-zero probability of winning according to their side information, i.e., according to P(T|sk).
The only reason they would fail to place a bet on a horse is if their side information completely
precludes any possibility of that horse winning. That is, a Kelly gambler with side information will
never fall foul of gambler’s ruin.

Appendix A.2. Justification of Axiom 4 and Redundant Information in TBC

Consider TBC semantically described in terms of a horse race. That is, consider a four horse race
T where each horse has an equiprobable chance of winning, and consider the binary variables T1, T2,
and T3 which represent the following, respectively: the colour of the horse, black 0 or white 1; the sex
of the jockey, female 0 or male 1; and the colour of the jockey’s jersey, red 0 or green 1. Say that the
four horses have the following attributes:

Horse 0 is a black horse T1 =0, ridden by a female jockey T2 =0, who is wearing a red jersey T3 =0.
Horse 1 is a black horse T1=0, ridden by a male jockey T2=1, who is wearing a green jersey T3=1.
Horse 2 is a white horse T1=1, ridden by a female jockey T2=0, who is wearing a green jersey T3=1.
Horse 3 is a white horse T1 = 1, ridden by a male jockey T2 = 1, who is wearing a red jersey T3 = 0.

There are two important points to note. Firstly, the horses in the race T could also be uniquely
described in terms of the composite binary variables T1,2, T1,3 or T2,3. Secondly, if one knows T1 and T2

then one knows T3 (which can be represented by the relationship T3 = T1 XOR T2). Finally, consider
private wires S1 and S2 which independently provide the colour of the horse and the colour of the
jockey’s jersey (respectively) before the upcoming race, i.e., S1 = T1 and S2 = T2.

Now say a bookmaker offers fair odds of 4-for-1 on each horse in the race T. Consider two
gamblers who each have access to one of S1 and S2. Before each race, the two gamblers receive their
respective private wire messages and place their bets according to the Kelly strategy. This means that
each gambler lays half of their, say $1, stake on each of their two respective non-excluded horses:
unknowingly, both of the gamblers have placed a bet on the soon-to-be race winner, and each gambler
has placed a distinct bet on one of the two soon-to-be losers. The only horse neither has bet upon is
also a soon-to-be loser. (See [5] for a related description of TBC in term of the game-theoretic notions of
shared and common knowledge). After the race, the bookmaker pays out $2 dollars to each gambler:
both have doubled their money. This happens because both of the gamblers had one bit of 1 bit of
information about the race, i.e., pointwise mutual information. In particular, both gamblers improved
their probability of predicting the eventual race winner. It did not matter, in any way, that the gamblers
had each laid distinct bets on one of the three eventual race losers. The fact that they laid different
bets on the horses which did not win, made no difference to their winnings. The apportionment of the
exclusions across the set of events which did not occur, makes no difference to the pointwise mutual
information. With respect to what occurred (i.e., with respect to which horse won), the fact the that
they excluded different losers is only semantic. When it came to predicting the would-be-winner,
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both gamblers had the same predictive power; they both had the same freedom of choice with regards
to selecting what would turn out to be the eventual race winner—they had the same information.
It is for this reason that this information should be regarded as redundant information, regardless
of the independence of the information sources. Hence, the introduction of both the operational
interpretation of redundancy in Section 3.3 and Axiom 4 in Section 4.2.

Now consider a third gambler who has access to both private wires S1 and S2, i.e., S1,2. Before the
race, this gambler receives both private wire messages which, in total, precludes three of the horses from
winning. This gambler then places the entirety of their $1 stake on the remaining horse which is sure to
win. After the race, the bookmaker pays out $4: this gambler has quadrupled their money as they had
2 bit of pointwise mutual information about the race. Having both private wire messages simultaneously
gave this gambler a 1 bit informational edge over the two gamblers with access to a single side wire.
While each of the singleton gamblers had 1 bit of independent information, the only way one could profit
from the independence of this information is by having both pieces of information simultaneously—this
makes this 1 bit of information complementary. Although this may seem “palpably strange” ([12], p. 167),
it is not so strange when from the following perspective: the only way to exploit two pieces of independent
information is by having both pieces together simultaneously.

Appendix A.3. Accumulator Betting and the Target Chain Rule

Say that in addition to the 4-for-1 odds offered on the race T, the bookmaker also offers fair odds of
2-for-1 on each of the binary variables T1, T2 and T3. Now, in addition to being able to directly gamble on
the race T, one could indirectly gamble on T by placing a so-called accumulator bet on any pair of T1, T2 and
T3. An accumulator is a series of chained bets whereby any return from one bet is automatically staked on
the next bet; if any bet in the chain is lost then the entire chain is lost. For example, a gambler could place
4-for-1 bet on horse 0 by placing the following accumulator bet: a 2-for1 bet on a black horse winning
that chains into a 2-for-1 bet on the winning jockey being female (or equivalently, vice versa). In effect,
these accumulators enable a gambler to bet on T by instead placing a chained bet on the independent
component variables within the (equivalent) joint variables T1,2, T1,3 and T2,3. Now consider again the
three gamblers from the prior section, i.e., the two gamblers who each have a private wire S1 and S2,
and the third gamble who has access to S1,2. Say that they must each place a, say $1, accumulator bet on
T1,3—what should each gambler do according to the Kelly criterion?

For the sake of clarity, consider only the realisation where the horse T = 0 subsequently wins (due
to the symmetry, the analysis is equivalent for all realisations). First consider the accumulator whereby
the gamblers first bet on the colour of the winning horse T1, which chains into a bet on the colour
of the winning jockey’s jersey T3. Suppose that the private wire S1 communicates that the winning
horse will be black, while the private wire S2 communicates that the winning horse will be ridden by
a female jockey, i.e., S1 = 0 and S2 = 0. Following to the Kelly strategy, the gambler with access to
S1 = 0 takes out two $0.5 accumulator bets. Both of these accumulators feature the same initial bet on
the winning horse being black since T1 = S1 = 0. Hence both bets return $1 each which become the
stake on the next bet in each accumulator. This gambler knows nothing about the colour of the jockey’s
jersey T3. As such, one accumulator chains into a bet on the winning jersey being red T3 = 0, while the
other chains into a bet on it being green T3 = 1. When the horse T = 0 wins, the stake bet on the green
jersey is lost while bet on red jersey pays out $2. This gambler had 1 bit of side information and so
doubled their money. Now consider the gambler with private wire S2, who knows nothing about T1

or T3 individually. Nonetheless, this gambler knows that the winner must be a female jockey T2 = 0.
As such, this gambler knows that if a black horse T1 = 0 wins then its jockey must be wearing a red
jersey T3 = 0, or if a white horse T1 = 0 wins then its jockey must be wearing a green jersey T3 = 1
(since T3 = T1 XOR T2). Thus this gambler can also utilise the Kelly strategy to place the following
two $0.5 accumulator bets: the first accumulator bets on the winning horse being black T1 = 0 and
then chains into a bet on the winner’s jersey being red T3 = 0, while the second accumulator bets on
the winning horse being white T1 = 1 and then chains into a bet on the winner’s jersey being green
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T3 = 1. When the horse T = 0 wins, the first accumulator pays out $2, while the second accumulator is
be lost. Hence, this gambler also doubles their money and so also had 1 bit of side information. Finally,
consider the gambler with access to both private wires S1,3, who can place an accumulator on the black
horse T1 = 0 winning chaining into a bet on the winning jockey wearing red T3 = 0. This gambler can
quadruple their stake, and so must possess 2 bit of side information.

Each of the three gamblers have the same final return regardless of whether the gamblers are betting
on the variable T, or placing accumulator bets on the variables T1,2, T1,3 or T2,3. However, the paths to
the final result differs between the gamblers, reflecting the difference between the information the each
gambler had about the sub-variables T1, T2 or T3. Given the result of Kelly [40], the proposed information
decomposition should reflect these differences, but yet still arrive at the same result—in other words,
the information decomposition should satisfy a target chain rule. This is clear if the Kelly interpretation of
information is to remain as a “duality” ([43], p. 159) in information theory.

Appendix B. Supporting Proofs and Further Details

This appendix contains many of the important theorems and proofs relating to PPID using
specificity and ambiguity.

Appendix B.1. Deriving the Specificity and Ambiguity Lattices from Axioms 1–4

The following section is based directly on the original work of Williams and Beer [1,2]. The difference
is that we now consider sources events ai rather than sources Ai.

Proposition A1. Both i+∩ and i−∩ are non-negative.

Proof. Since ∅ ⊆ ai for any ai, Axioms 2 and 3 imply

i+∩
(
a1, . . . , ak→ t

)
≥ i+∩

(
a1, . . . , ak, ∅→ t

)
= i+∩

(
∅→ t

)
= h(∅) = 0, (A8)

i−∩
(
a1, . . . , ak→ t

)
≥ i−∩

(
a1, . . . , ak, ∅→ t

)
= i−∩

(
∅→ t

)
= h(∅|t) = 0. (A9)

Hence, both i+∩
(
a1, . . . , ak→ t

)
and i−∩

(
a1, . . . , ak→ t

)
are non-negative.

Proposition A2. Both i+∩ and i−∩ are bounded from above by the specificity and the ambiguity from any single
source event, respectively.

Proof. For any single source ai, Axioms 2 and 3 yield

h(ai)= i+∩
(
ai→ t

)
= i+∩

(
ai, ai→ t

)
≥ i+∩

(
ai, . . .→ t

)
, (A10)

h(ai|t)= i−∩
(
ai→ t

)
= i−∩

(
ai, ai→ t

)
≥ i+∩

(
ai, . . .→ t

)
, (A11)

as required.

In keeping with Williams and Beer’s approach [1,2], consider all of the distinct ways in which
a collection of source events a = {a1, . . . , ak} could contribute redundant information. Thus far we have
assumed that the redundancy measure can be applied to any collection of source events, i.e., P1(a) where
P1 denotes the power set with the empty set removed. Recall that the sources events are themselves
collections of predictor events, i.e., P1(s). That is, we can apply both i+∩ and i−∩ to elements of P1

(
P1(s)

)
.

However, this can be greatly reduced using Axiom 2 which states that if ai ⊆ aj, then

i+∩
(
aj, ai, . . .→ t

)
= i+∩

(
ai, . . .→ t

)
, (A12)

i−∩
(
aj, ai, . . .→ t

)
= i−∩

(
ai, . . .→ t

)
. (A13)
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Hence, one need only consider the collection of source events such that no source event is
a superset of any other in order,

A (s) =
{

α ∈ P1
(
P1(s)

) ∣∣ ∀ ai, aj ∈ α, ai �⊂ aj

}
. (A14)

This collection A (s) captures all the distinct ways in the source events could provide
redundant information.

As per Williams and Beer’s PID, this set of source events A (s) is structured. Consider two sets
of source events α, β ∈ A (s). If for every source event b ∈ β there exists a source event a ∈ α such
that a ⊆ b, then all of the redundant specificity and ambiguity shared by b ∈ β must include any
redundant specificity and ambiguity shared by a ∈ α. Hence, a partial order � can be defined over the
elements of the domain A (s) such that any collection of predictors event coalitions precedes another
if and only if the latter provides any information the former provides,

∀α, β ∈ A (s),
(
α � β ⇐⇒ ∀ b ∈ β, ∃ a ∈ α | a ⊆ b

)
. (A15)

Applying this partial ordering to the elements of the domain A (s) produces a lattice which has
the same structure as the redundancy lattice from PID, i.e., the structure of the sources events here is
the same as the structure of the sources in PID. (Figure 3 depicts this structure for the case of 2 and 3
predictor variables.) Applying i+∩ to these sources events yields a specificity lattice while applying i−∩ yields
an ambiguity lattice.

Similar to I∩ in PID, the redundancy measures i+∩ or i−∩ can be thought of as a cumulative
information functions which integrate the specificity or ambiguity uniquely contributed by each node
as one moves up each lattice. In order in evaluate the unique contribution of specificity and ambiguity
from each node in the lattice, consider the Möbius inverse [45,46] of i+∩ and i−∩ . That is, the specificity
and ambiguity of a node α is given by

i±∩ (α→ t) = ∑
β�α

i±∩ (β→ t) ∀ α, β ∈ A (s). (A16)

Thus the unique contributions of partial specificity i+∂ and partial ambiguity i−∂ from each node can
be calculated recursively from the bottom-up, i.e.,

i±∂ (α→ t) = i±∩ (α→ t)− ∑
β≺α

i±∂ (β→ t). (A17)

Theorem A1. Based on the principle of inclusion-exclusion, we have the following closed-from expression for
the partial specificity and partial ambiguity,

i±∂ (α→ t) = i±∩ (α→ t) − ∑
∅ �=γ⊆α−

(−1)|γ|−1 i±∩ (
∧

γ→ t) (A18)

Proof. For B ⊆ A (s), define the sub-addative function f±(B) = ∑β∈B = i±(β→ t). From (A16),
we get that i±∩ (α→ t) = f±(↓ α) and

i±∂ (α→ t) = f±(↓ α)− f±(
.
↓ α) = f±(↓ α)− f±(

⋃
β∈α−

↓ β). (A19)

By the principle of inclusion-exclusion (e.g., see [46], p. 195) we get that

i±∂ (α→ t) = f±(↓ α) − ∑
∅ �=γ⊆α−

(−1)|γ|−1 f±(
⋂

β∈γ

β) (A20)

85



Entropy 2018, 20, 297

For any lattice L and A ⊆ L, we have that ∩a∈A ↓ a = ↓ (∧ A) (see [47], p. 57) thus

i±∂ (α→ t) = f±(↓ α) − ∑
∅ �=γ⊆α−

(−1)|γ|−1 f±(
∧

γ)

= f±(↓ α)− ∑
∅ �=γ⊆α−

(−1)|γ|−1 i±(
∧

γ→ t) (A21)

as required.

Similarly to PID, the specificity and ambiguity lattices provide a structure for information
decomposition—unique evaluation requires a separate definition of redundancy. However, unlike PID (or
even PPID), this evaluation requires both a definition of pointwise redundant specificity and pointwise
redundant ambiguity.

Appendix B.2. Redundancy Measures on the Lattices

In Section 4.2, Definitions 1 and 2 provided the require measures. This section will prove some
of the key properties of these measures when they are applies to the lattices derived in the previous
section. The correspondence with the approach taken by Williams and Beer [1,2] continues in this
section. However, sources events ai are used in place of sources Ai and the measures r±min are used in
place of Imin. Note that the basic concepts from lattice theory and the notion used here are the same as
found in ([1], Appendix B).

Theorem 1. The definitions of r+min and r−min satisfy Axioms 1–4.

Proof. Axioms 1, 3 and 4 follow trivially from the basic properties of the minimum. The main
statement of Axiom 2 also immediately follows from the properties of the minimum; however, there is
a need to verify the equality condition. As such, consider ak such that ak ⊇ ai for some ai ∈
{a1, . . . , ak−1}. From Postulate 4, we have that h(ak) ≥ h(ai) and hence that minaj∈{a1,...,ak} h(aj) =

minaj∈{a1,...,ak−1} h(aj), as required for r+min. Mutatis mutandis, similar follows for r−min.

Theorem 2. The redundancy measures r+min and r−min increase monotonically on the
〈
A (s),�

〉
.

The proof of this theorem will require the following lemma.

Lemma A1. The specificity and ambiguity i±(a→ t) are increasing functions on the lattice
〈
P1(s),⊆

〉
Proof. Follows trivially from Postulate 4.

Proof of Theorem 2. Assume there exists α, β ∈ A (s) such that α ≺ β and r±min(β→ t) < r±min(α→ t).
By definition, i.e., (23) and (24), there exists b ∈ β such that i±(b→ t) < i±(a→ t) for all a ∈ α. Hence,
by Lemma A1, there does not exist a ∈ α such that a ⊆ b. However, by assumption α ≺ β and hence
there exists a ∈ α such that a ⊆ b, which is a contradiction.

Theorem A2. When using r±min in place of the general redundancy measures i±∩ , we have the following
closed-from expression for the partial specificity π+ and partial ambiguity π−,

π±(α→ t) = r±min(α→ t)−max
β∈α−

min
b∈β

i±(b→ t). (A22)

Proof. Let i+∩ = r+min and i−∩ = r−min in the general closed form expression for i±∂ in Theorem A1,

π±(α→ t) = r±min(α→ t) − ∑
∅ �=γ⊆α−

(−1)|γ|−1 min
b∈∧ γ

i±(b→ t). (A23)
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Since α ∧ β = α ∪ β (see [1], Equation (23)), and by Postulate 4, we have that

π±(α→ t) = r±min(α→ t) − ∑
∅ �=γ⊆α−

(−1)|γ|−1 min
β∈γ

min
b∈β

i±(b→ t). (A24)

By the maximum-minimums identity (see [48]), we have that, max α− = ∑∅ �=γ⊆α−(−1)|γ|−1 min γ,
and hence

π±(α→ t) = r±min(α→ t)−max
β∈α−

min
b∈β

i±(α→ t). (A25)

as required.

Theorem 3. The atoms of partial specificity π+ and partial ambiguity π− evaluated using the measures r+min
and r−min on the specificity and ambiguity lattices (respectively), are non-negative.

Proof. It α =⊥, the π±(α→ t) = r±min ≥ 0 by the non-negativity of entropy. If α �=⊥, assume there
exists α ∈ A (s)\{⊥} such that π±(α→ t) < 0. By Theorem A2,

π±(α→ t) = min
a∈α

i±(a→ t)−max
β∈α−

min
b∈β

i±(b→ t). (A26)

From this it can be seen that there must exist β ∈ α− such that for all b ∈ β, we have that
i±(a→ t) < i±(b→ t) for some a ∈ α. By Postulate 4 there does not exist b ∈ β such that b ⊂ a.
However, since by definition, β ≺ α there exists b ∈ β such that b ⊂ a, which is a contradiction.

Theorem 4. The atoms of partial average information Π evaluated by recombining and averaging π± are
not non-negative.

Proof. The proof is by the counter-example using RDNERR.

Appendix B.3. Target Chain Rule

By using the appropriate conditional probabilities in Definitions 1 and 2, one can easily obtain the
conditional pointwise redundant specificity,

r+min
(
a1, . . . , ak→ t1|t2

)
= min

ai
h(ai|t2), (A27)

or the conditional pointwise redundant ambiguity,

r−min
(
a1, . . . , ak→ t1|t2

)
= min

aj
h(aj|t1,2). (A28)

As per (21) these could be recombined, e.g., via (21), to obtain the conditional redundant information,

rmin
(
a1, . . . , ak→ t1|t2

)
= r+min

(
a1, . . . , ak→ t1|t2

)
− r−min

(
a1, . . . , ak→ t1|t2

)
. (A29)

The relationship between the regular forms and the conditional forms of the redundant specificity
and redundant ambiguity has some important consequences.

Proposition A3. The conditional pointwise redundant specificity provided by a1, . . . , ak about t1 given t2 is
equal to pointwise redundant ambiguity provided by a1, . . . , ak about t2 with the conditioned variable,

r+min
(
a1, . . . , ak→ t1|t2

)
= r−min

(
a1, . . . , ak→ t2

)
. (A30)

Proof. By (24) and (A27).
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Proposition A4. The pointwise redundant specificity provided by a1, . . . , ak is independent of the target event
and even the target variable itself,

r+min
(
a1, . . . , ak→ t1

)
= r+min

(
a1, . . . , ak→ t2

)
∀ t1, t2, T1, T2. (A31)

Proof. By inspection of (23).

Proposition A5. The conditional pointwise redundant ambiguity provided by a1, . . . , ak about t1 given t2 is
equal to the pointwise redundant ambiguity provided by a1, . . . , ak about t1,2,

r−min
(
a1, . . . , ak→ t1|t2

)
= r−min

(
a1, . . . , ak→ t1,2

)
. (A32)

Proof. By (24) and (A28).

Note that specificity itself is not a function of the target event or variable. Hence, all of the target
dependency is bound up in the ambiguity. Now consider the following.

Theorem 5 (Pointwise Target Chain Rule). Given the joint target realisation t1,2, the pointwise redundant
information rmin satisfies the following chain rule,

rmin
(
a1, . . . , ak→ t1,2

)
= rmin

(
a1, . . . , ak→ t1

)
+ rmin

(
a1, . . . , ak→ t2|t1

)
,

= rmin
(
a1, . . . , ak→ t2

)
+ rmin

(
a1, . . . , ak→ t1|t2

)
.

(25)

Proof. Starting from rmin, by Corollary A4 and Corollary A5 we get that

rmin
(
a1, . . . , ak→ t1,2

)
= r+min

(
a1, . . . , ak→ t1,2

)
− r−min

(
a1, . . . , ak→ t1,2

)
,

= r+min
(
a1, . . . , ak→ t1

)
− r−min

(
a1, . . . , ak→ t2|t1

)
,

(A33)

Then, by Corollary A3 we get that

rmin
(
a1, . . . , ak→ t1,2

)
= r+min

(
a1, . . . , ak→ t1

)
− r−min

(
a1, . . . , ak→ t1

)
+ r−min

(
a1, . . . , ak→ t1

)
− r−min

(
a1, . . . , ak→ t2|t1

)
,

= r+min
(
a1, . . . , ak→ t1

)
− r−min

(
a1, . . . , ak→ t1

)
+ r+min

(
a1, . . . , ak→ t2|t1

)
− r−min

(
a1, . . . , ak→ t2|t1

)
,

= rmin
(
a1, . . . , ak→ t1

)
+ rmin

(
a1, . . . , ak→ t2|t1

)
, (A34)

as required for the first equality in (25). Mutatis mutandis, we obtain the second equality in (25).

Theorem 6. The target chain rule, identity property and local positivity, cannot be simultaneously satisfied.

Proof. Consider the probability distribution TBC, and in particular, the isomorphic probability
distributions P(T1,2) and P(T1,3). By the identity property,

U(S1\S2→T1,2) = 1 bit, U(S2\S1→T1,2) = 1 bit, (A35)

and hence, R(S1, S2→T1,2) = 0 bit. On the other hand, by local positivity,

C(S1, S2→T3) = 1 bit, R(S1, S2→T1|T3) = 1 bit (A36)

Then by the target chain rule,

C(S1, S2→T1,3) = 1 bit R(S1, S2→T1,3) = 1 bit, (A37)
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Finally, since P(T1,2) is isomorphic to P(T1,3) we have that, R(S1, S2→ T1,3) = R(S1, S2→ T1,2),
which is a contradiction.

Theorem 6 can be informally generalised as follows: it is not possible to simultaneously satisfy the
target chain rule, the identity property, and have only C(S1, S2→T) = 1 bit in the probability distribution
XOR without having negative (average) PI atoms in probability distributions where there is no ambiguity
from any source. To see this, again consider decomposing the isomorphic probability distributions P(T1,2)

and P(T1,3). In line with (A35), decomposing T1,2 via the identity property yields C(S1, S2→T1,2) = 0 bit.
On the other hand, decomposing T1,3 yields C(S1, S2→T3) = 1 bit. Since P(T1,2) is isomorphic to P(T1,3),
the target chain rule requires that,

C(S1, S2→T1|T3) = −1 bit, U(S1\S2→T1|T3) = 1 bit, U(S2\S1→T1|T3) = 1 bit. (A38)

That is, one would have to accept the negative (average) PI atom C(S1, S2 → T1|T3) = −1 bit
despite the fact that there are no non-zero pointwise ambiguity terms upon splitting any of i(s1; t1|t3),
i(s2; t1|t3) and i(s1,2; t1|t3) into specificity and ambiguity. Although this does not constitute a formal
proof that the identity property is incompatible with the target chain rule, one would have to accept and
find a way to justify C(S1, S2→T1|T3) = −1 bit. Since there is no ambiguity in i(s1; t1|t3), i(s2; t1|t3)

and i(s1,2; t1|t3), this result is not reconcilable within the framework of specificity and ambiguity.

Appendix C. Additional Example Probability Distributions

Appendix C.1. Probability Distribution TBEP

Figure A1 shows the probability distribution three bit–even parity (TBEP) which considers binary
predictors variables S1, S2 and S3 which are constrained such that together their parity is even. The target
variable T is simply a copy of the predictors, i.e., T = T1,2,3 = (T1, T2, T3) where T1 = S1, T2 = S2 and
T3 = S3. (Equivalently, the target can be represented by any four state variable T.) It was introduced
by Bertschinger et al. [5] and revisited by Rauh et al. [13] who (as mentioned in Section 5.5) used it to
prove the following by counter-example: there is no measure of redundant average information for more
than two predictor variables which simultaneously satisfies the Williams and Beer Axioms, the identity
property, and local positivity. The measures Ired, ŨI and SVK these properties. Hence, this probability
distribution which has been used to demonstrate that these measures are not consistent with the PID
framework in the general case of an arbitrary number of predictor variables.

This example is similar to TBC in the several ways. Firstly, due to the symmetry in the probability
distribution, each realisation will have the same pointwise decomposition. Secondly, there is an
isomorphism between the probability distributions P(T) and P(S1, S2, S3), and hence the pointwise
ambiguity provided by any (individual or joint) predictor event is 0 bit (since given t, one knows s1, s2

and s3). Thirdly, the individual predictor events s1, s2 and s3 each exclude 1/2 of the total probability mass
in P(T) and so each provide 1 bit of pointwise specificity. Thus, there is 1 bit of three-way redundant,
pointwise specificity in each realisation. Fourthly, the joint predictor event s1,2,3 excludes 3/4 of the total
probability mass, providing 2 bit of pointwise specificity (which is similar to TBC). However, unlike TBC,
one could consider the three joint predictor events s1,2, s1,3 and s2,3. These joint pairs also exclude 3/4

of the total probability mass each, and hence also each provide 2 bit of pointwise specificity. As such,
there is 1 bit of pointwise, three-way redundant, pairwise complementary specificity between these three
joint pairs of source events, in addition to the 1 bit of three-way redundant, pointwise specificity. Finally,
putting this together and averaging over all realisations, TBEP consists of 1 bit of three-way redundant
information and 1 bit of three-way redundant, pairwise complementary information. The resultant
average decomposition is the same as the decomposition induced by Imin [5].
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Figure A1. Example TBEP. (Top) probability mass diagram for realisation (S1=0, S2=0, S3=0, T=000);
(Bottom left) With three predictors, it is convenient to represent to decomposition diagrammatically.
This is especially true TBEP as one only needs to consider the specificity lattice for one realisation; (Bottom

right) The specificity lattice for the realisation (S1=0, S2=0, S3=0, T=000). For each source event the
left value corresponds to the value of i+∩ , evaluated using r+min, while the right value (surrounded by
parenthesis) corresponds to the partial information π+.

Appendix C.2. Probability Distribution UNQ

Figure A2 shows the decomposition of the probability distribution unique (UNQ). Note that this
probability distribution corresponds to RDNERR where the error probability ε = 1/2, and hence the
similarity in the resultant distributions. The results may initially seem unusual, that the predictor S1 is
not uniquely informative since U(S1\S2→T) = 0 bit as one might intuitively expect. Rather it is deemed
to be redundantly informative RI = 1 bit with the predictor S2 which is also uniquely misinformative
U(S2\S1→T) = −1 bit. This is because both S1 and S2 provide I+(S1→T) = I+(S2→T) = 1 bit of
specificity; however the information provided by S2 is unique in that the 1 bit provided is not “useful” ([42],
p. 21) and hence I(S2→T) = 1 bit while I(S2→T) = 1 bit. Finally, the complementary information
C(S1, S2→T) = 1 bit is required by the decomposition in order to balance this 1 bit of unique ambiguity.
The results in this example partly explain our preference for term complementary information as opposed to
synergistic information—while C(S1, S2→T) = 1 bit is readily explainable, it would be dubious to refer to
this as synergy given that S1 enables perfect predictions of T without any knowledge of S2.
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R(S1, S2→T) = 1 bit U(S1\S2→T) = 0 bit U(S2\S1→T) = −1 bit C(S1, S2→T) = 1 bit

Figure A2. Example UNQ. (Top) the probability mass diagrams for every single possible realisation;
(Middle) for each realisation, the PPID using specificity and ambiguity is evaluated (see Figure 4);
(Bottom) the atoms of (average) partial infromation obtained through recombination of the averages.

Appendix C.3. Probability Distribution AND

Figure A3 shows the decomposition of the probability distribution and (AND). Note that the
probability distribution or (OR) has the same decomposition as the target distributions are isomorphic.
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Figure A3. Example AND. (Top) the probability mass diagrams for every single possible realisation;
(Middle) for each realisation, the PPID using specificity and ambiguity is evaluated (see Figure 4);
(Bottom) the atoms of (average) partial infromation obtained through recombination of the averages.
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Abstract: Accurately determining dependency structure is critical to understanding a complex
system’s organization. We recently showed that the transfer entropy fails in a key aspect
of this—measuring information flow—due to its conflation of dyadic and polyadic relationships.
We extend this observation to demonstrate that Shannon information measures (entropy and mutual
information, in their conditional and multivariate forms) can fail to accurately ascertain multivariate
dependencies due to their conflation of qualitatively different relations among variables. This has
broad implications, particularly when employing information to express the organization
and mechanisms embedded in complex systems, including the burgeoning efforts to combine complex
network theory with information theory. Here, we do not suggest that any aspect of information
theory is wrong. Rather, the vast majority of its informational measures are simply inadequate
for determining the meaningful relationships among variables within joint probability distributions.
We close by demonstrating that such distributions exist across an arbitrary set of variables.

Keywords: stochastic process; transfer entropy; causation entropy; partial information decomposition;
network science
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1. Introduction

Information theory is a general, broadly applicable framework for understanding a system’s
statistical properties [1]. Due to its focus on probability distributions, it allows one to compare
dissimilar systems (e.g., species abundance to ground state configurations of a spin system)
and has found many successes in the physical, biological and social sciences [2–19] far outside its
original domain of communication. Often, the issue on which it is brought to bear is discovering
and quantifying dependencies [20–25]. Here, we define a dependency to be any deviation
from statistical independence. It is possible for a single multivariate distribution to consist of many,
potentially overlapping, dependencies. Consider the simple case of three variables X, Y, Z, where X
and Y are coin flips and Z is their concatenation. We would say here that there are two dependencies: an
XZ dependency and a YZ dependency. It is important to note that, though there are some similarities,
this notion of a dependency is distinct from that used within the Bayesian network community.

The past two decades, however, produced a small, but important body of results detailing
how standard Shannon information measures are unsatisfactory for determining some aspects
of dependency and shared information. Within information-theoretic cryptography, the conditional
mutual information has proven to be a poor bound on secret key agreement [26,27]. The conditional
mutual information has also been shown to be unable to accurately measure information flow ([28]
and references therein). Finally, the inability of standard methods of decomposing the joint entropy
to provide any semantic understanding of how information is shared has motivated entirely new
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methods of decomposing information [29,30]. Common to all these is the fact that conditional mutual
information conflates intrinsic dependence with conditional dependence. To be clear, the conditional
mutual information between X and Y given Z cannot distinguish the case where X and Y are related
ignoring Z (intrinsic dependence) from the case where X and Y are related due to the influence of Z
(conditional dependence).

Here, we demonstrate a related, but deeper issue: Shannon information measures—entropy,
mutual information and their conditional and multivariate versions—can fail to distinguish joint
distributions with vastly differing internal dependencies.

Concretely, we start by constructing two joint distributions, one with dyadic sub-dependencies
and the other with strictly triadic sub-dependencies. From there, we demonstrate that no standard
Shannon-like information measure, and exceedingly few nonstandard methods, can distinguish
the two. Stated plainly: when viewed through Shannon’s lens, these two distributions are erroneously
equivalent. While distinguishing these two (and their internal dependencies) may not be relevant
to a mathematical theory of communication, it is absolutely critical to a mathematical theory
of information storage, transfer and modification [31–34]. We then demonstrate two ways in which
these failures generalize to the multivariate case. The first generalizes our two distributions
to the multivariate and polyadic case via “dyadic camouflage”. The second details a method
of embedding an arbitrary distribution into a larger variable space using hierarchical dependencies,
a technique we term “dependency diffusion”. In this way, one sees that the initial concerns
about information measures can arise in virtually any statistical multivariate analysis. In this short
development, we assume a working knowledge of information theory, such as found in standard
textbooks [35–38].

2. Development

We begin by considering the two joint distributions shown in Table 1. The first represents
dyadic relationships among three random variables X, Y, and Z. Additionally, the second, the triadic
relationships among them. (This distribution was first considered as RDNXOR in [39], though for
other, but related reasons.) These appellations are used for reasons that will soon be apparent. How
are these distributions structured? Are they structured identically or are they qualitatively distinct? It
is clear from inspection that they are not identical, but a lack of isomorphism is less obvious.

We can develop a direct picture of underlying dependency structure by casting the random
variables’ four-symbol alphabet used in Table 1 into composite binary random variables, as displayed
in Table 2. It can be readily verified that the dyadic distribution follows three simple rules: X0 = Y1,
Y0 = Z1 and Z0 = X1; in particular, three dyadic rules. The triadic distribution similarly follows
simple rules: X0 + Y0 + Z0 = 0 mod 2 (the XOR relation [40], or equivalently, any one of them is
the XOR of the other two), and X1 = Y1 = Z1; two triadic rules.

While this expansion to binary sub-variables is not unique, it is representative of the distributions.
One could expand the dyadic distribution, for example, in such a way that some of the sub-variables
would be related by XOR. However, those same sub-variables would necessarily be involved in other
relationships, limiting their expression in a manner similar to that explored in [41]. This differs from
our triadic distribution in that its two sub-dependencies are independent. That these binary expansions
are, in fact, representative and that the triadic distribution cannot be written in a way that relies only
on dyadic relationships can be seen in the connected information explored later in the section. For the
dyadic distribution, there is no difference between the maximum entropy distribution constraining
pairwise interactions from the distribution itself. However, the maximum entropy distribution obtained
by constraining the pairwise interactions in the triadic distribution has a larger entropy than the triadic
distribution itself, implying that there is structure that exists beyond the pairwise interactions.
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Table 1. The (a) dyadic and (b)triadic probability distributions over the three random variables X, Y
and Z that take values in the four-letter alphabet {0, 1, 2, 3}. Though not directly apparent from their
tables of joint probabilities, the dyadic distribution is built from dyadic (pairwise) sub-dependencies,
while the triadic from triadic (three-way) sub-dependencies.

(a) Dyadic (b) Triadic

X Y Z Pr X Y Z Pr

0 0 0 1/8 0 0 0 1/8
0 2 1 1/8 1 1 1 1/8
1 0 2 1/8 0 2 2 1/8
1 2 3 1/8 1 3 3 1/8
2 1 0 1/8 2 0 2 1/8
2 3 1 1/8 3 1 3 1/8
3 1 2 1/8 2 2 0 1/8
3 3 3 1/8 3 3 1 1/8

Table 2. Expansion of the (a) dyadic and (b) triadic distributions. In both cases, the variables
from Table 1 were interpreted as two binary random variables, translating, e.g., X = 3 into
(X0, X1) = (1, 1). In this light, it becomes apparent that the dyadic distribution consists of the
sub-dependencies X0 = Y1, Y0 = Z1 and Z0 = X1, while the triadic distribution consists of
X0 + Y0 + Z0 = 0 mod 2 and X1 = Y1 = Z1. These relationships are pictorially represented in
Figure 1.

(a) Dyadic (b) Triadic

X Y Z X Y Z

X0 X1 Y0 Y1 Z0 Z1 Pr X0 X1 Y0 Y1 Z0 Z1 Pr

0 0 0 0 0 0 1/8 0 0 0 0 0 0 1/8
0 0 1 0 0 1 1/8 0 1 0 1 0 1 1/8
0 1 0 0 1 0 1/8 0 0 1 0 1 0 1/8
0 1 1 0 1 1 1/8 0 1 1 1 1 1 1/8
1 0 0 1 0 0 1/8 1 0 0 0 1 0 1/8
1 0 1 1 0 1 1/8 1 1 0 1 1 1 1/8
1 1 0 1 1 0 1/8 1 0 1 0 0 0 1/8
1 1 1 1 1 1 1/8 1 1 1 1 0 1 1/8

These dependency structures are represented pictorially in Figure 1. Our development
from this point on will not use any knowledge of these structures, but rather, it will attempt
to distinguish the structures using only information measures.

What does an information-theoretic analysis say? Both the dyadic and triadic distributions
describe events over three variables, each with an alphabet size of four. Each consists of eight joint
events, each with a probability of 1/8. As such, each has a joint entropy of H [X, Y, Z] = 3 bit (The SI
standard unit for time is the second, and its symbol is s; analogously, the standard (IEC 60027-2,
ISO/IEC 80000-13) unit for information is the bit, and its symbol is bit. As such, it is inappropriate
to write 3 bits, just as it would be inappropriate to write 3 ss). Our first observation is that any
entropy—conditional or not—and any mutual information—conditional or not—will be identical
for the two distributions. Specifically, the entropy of any variable conditioned on the other two vanishes:
H [X | Y, Z] = H [Y | X, Z] = H [Z | X, Y] = 0 bit; the mutual information between any two variables
conditioned on the third is unity: I [X : Y | Z] = I [X : Z | Y] = I [Y : Z | X] = 1 bit; and the three-way
co-information also vanishes: I [X : Y : Z] = 0 bit. These conclusions are compactly summarized
in the form of the information diagrams (I-diagrams) [42,43] shown in Figure 2. This diagrammatically
represents all of the possible Shannon information measures (I-measures) [43] of the distribution:
effectively, all the multivariate extensions of the standard Shannon measures, called atoms. It is
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important to note that the analogy between information theory and set theory should not be taken
too far: while set cardinality is strictly nonnegative, information atoms need not be; see [38] for more
details. The values of the information atoms are identical between the two distributions.

As a brief aside, it is of interest to note that it has been suggested (e.g., in [44,45], among others)
that zero co-information implies that at least one variable is independent of the others; that is, in this
case, a lack of three-way interactions. Krippendorff [46] early on demonstrated that this is not the case,
though these examples more clearly exemplify this fact.

We now turn to the implications of the two information diagrams, Figure 2a,b, being identical.
There are measures [20,22,44,47–53] and expansions [54–56] purporting to measure or otherwise
extract the complexity, magnitude or structure of dependencies within a multivariate distribution.
Many of these techniques, including those just cited, are sums and differences of atoms in these
information diagrams. As such, they are unable to differentiate these distributions.

0

1

0

1

0

1

0

1

0

1

1

0

X

Y Z

∼

∼

∼
(a) Dyadic

0

1

0

1

0

1

1

1 1

0

0 0

X

Y Z

⊕

∼

∼

∼

(b) Triadic

Figure 1. Dependency structure for the (a) dyadic and (b) triadic distributions. Here,∼ denotes that two
or more variables are distributed identically, and⊕ denotes the enclosed variables form the XOR relation.
Note that although these dependency structures are fundamentally distinct, their information diagrams
(Figure 2) are identical.
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Figure 2. Information diagrams for the (a) dyadic and (b) triadic distributions. For the three-variable
distributions depicted here, the diagram consists of seven atoms: three conditional entropies (each
with value 0 bit), three conditional mutual information (each with value 1 bit) and one co-information
(0 bit). Note that the two diagrams are identical, meaning that although the two distributions are
fundamentally distinct, no standard information-theoretic measure can differentiate the two.

To drive home the point that the concerns raised here are very broad, Table 3 enumerates the result
of applying a great many information measures to this pair of distributions. It is organized from top
to bottom into four sections: entropies, mutual information, common information and other measures.

None of the entropies, dependent only on the probability mass function of the distribution,
can distinguish the two distributions. Nor can any of the mutual information, as they are functions
of the information atoms in the I-diagrams of Figure 2.

The common information, defined via auxiliary variables satisfying particular properties,
can potentially isolate differences in the dependencies. Though only one of them—the Gács–Körner
common information K [•] [57,58], involving the construction of the largest “subrandom variable”
common to the variables—discerns that the two distributions are not equivalent because the triadic
distribution contains the subrandom variable X1 = Y1 = Z1 common to all three variables.

Finally, only two of the other measures identify any difference between the two. Some fail because
they are functions of the probability mass function. Others, like the TSE complexity [59] and erasure
entropy [60], fail since they are functions of the I-diagram atoms. Only the intrinsic mutual information
I [• ↓ •] [26] and the reduced mutual information I [• ⇓ •] [27] distinguish the two since the dyadic
distribution contains three dyadic sub-variables each of which is independent of the third variable,
whereas in the triadic distribution, the conditional dependence of the XOR relation can be destroyed.
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Table 3. Suite of information measures applied to the dyadic and triadic distributions, where: H [•] is
the Shannon entropy [35], H2 [•] is the order-2 Rényi entropy [61], Sq [•] is the Tsallis entropy [62], I [•]
is the co-information [44], T [•] is the total correlation [47], B [•] is the dual total correlation [48,63], J [•]
is the CAEKL mutual information [49], II [•] is the interaction information [64], K [•] is the Gács–Körner
common information [57], C [•] is the Wyner common information [65,66], G [•] is the exact
common information [67], F [•] is the functional common information,a M [•] is the MSS common
information,b I [• ↓ •] is the intrinsic mutual information [26],c I [• ⇓ •] is the reduced intrinsic mutual
information [27],c ,d X [•] is the extropy [68], R [•] is the residual entropy or erasure entropy [60,63],
P [•] is the perplexity [69], D [•] is the disequilibrium [51], CLMRP [•] is the LMRP complexity [51]
and TSE [•] is the TSE complexity [59]. Only the Gács–Körner common information and the intrinsic
mutual information, highlighted, are able to distinguish the two distributions; the Gács–Körner
common information via the construction of a sub-variable (X1 = Y1 = Z1) common to X, Y and Z and
the intrinsic mutual information via the relationship X0 = Y1 being independent of Z.

Measures Dyadic Triadic

H [X, Y, Z] 3 bit 3 bit
H2 [X, Y, Z] 3 bit 3 bit
S2 [X, Y, Z] 0.875 bit 0.875 bit

I [X : Y : Z] 0 bit 0 bit
T [X : Y : Z] 3 bit 3 bit
B [X : Y : Z] 3 bit 3 bit
J [X : Y : Z] 1.5 bit 1.5 bit
II [X : Y : Z] 0 bit 0 bit

K [X : Y : Z] 0 bit 1 bit
C [ X : Y : Z] 3 bit 3 bit
G [X : Y : Z] 3 bit 3 bit

F [X : Y : Z] a 3 bit 3 bit
M [X : Y : Z] b 3 bit 3 bit

I [X : Y ↓ Z] c 1 bit 0 bit
I [X : Y ⇓ Z] c,d 1 bit 0 bit

X [X, Y, Z] 1.349 bit 1.349 bit
R [X : Y : Z] 0 bit 0 bit
P [X, Y, Z] 8 8
D [X, Y, Z] 0.761 bit 0.761 bit

CLMRP [X, Y, Z] 0.381 bit 0.381 bit
TSE [X : Y : Z] 2 bit 2 bit

a F [{Xi}] = min
⊥⊥Xi |V

V= f ({Xi})

H [V], where ⊥⊥ Xi |V means that the Xi are conditionally independent given V.

b M [{Xi}] = H
[
∨(Xi ↘ Xi)

]
, where X ↘ Y is the minimal sufficient statistic [35] of X about Y, and ∨

denotes the informational union of variables. c Though this measure is generically dependent on which
variable(s) is chosen to be conditioned on, due to the symmetry of the dyadic and triadic distributions,
the values reported here are insensitive to permutations of the variables. d The original work [27] used
the slightly more verbose notation I [• ↓↓ •].

Figure 3 demonstrates three different information expansions—that, roughly speaking, group
variables into subsets of difference sizes or “scales”—applied to our distributions of interest. The first
is the complexity profile [55]. At scale k, the complexity profile is the sum of all I-diagram atoms
consisting of at least k variables conditioned on the others. Here, since the I-diagrams are identical,
so are the complexity profiles. The second profile is the marginal utility of information [56], which
is a derivative of a linear programming problem whose constraints are given by the I-diagram, so
here, again, they are identical. Finally, we have Schneidman et al.’s connected information [70], which
comprise the differences in entropies of the maximum entropy distributions whose k- and k− 1-way
marginals are fixed to match those of the distribution of interest. Here, all dependencies are detected
once pairwise marginals are fixed in the dyadic distribution, but it takes the full joint distribution to
realize the XOR sub-dependency in the triadic distribution.
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Figure 3. Suite of information expansions applied to the dyadic and triadic distributions:
the complexity profile [55], the marginal utility of information [56] and the connected information [70].
The complexity profile and marginal utility of information profiles are identical for the two distributions
as a consequence of the information diagrams (Figure 2) being identical. The connected information,
quantifying the amount of dependence realized by fixing k-way marginals, is able to distinguish
the two distributions. Note that although each of the x-axes is a scale, exactly what that means depends
on the measure. Furthermore, while the scale for both the complexity profile and the connected
information is discrete, the scale for the marginal utility of information is continuous.

While it is well known that causality cannot be determined from probability distributions
alone [71], here we point out a related, though different issue. While causality is, in some sense,
the determination of the precedence within a dependency, the results above demonstrate that
many measures of Granger-like causality are insensitive to the order (dyadic, triadic, etc.) of a
dependency (Note that here we do not demonstrate that the order of a dependency cannot be
determined from the probability distribution, as Pearl has done for causality [71]. Rather, our
demonstration is limited to Shannon-like information measures.). Neither the transfer entropy [20],
the transinformation [53], the directed information [52], the causation entropy [22], nor any of their
generalizations based on conditional mutual information differentiate between intrinsic relationships
and those induced by the variables they condition on (As discussed there, the failure of these measures
stems from the possibility of conditional dependence, whereas the aim for these directed measures is
to quantify the information flow from one time series to another excluding the influences of the second.
In this light, we propose T′X→Y = I

[
Xt

0 : Yt ↓ Yt
0
]

[26] as an incremental improvement over the transfer
entropy). This limitation underlies prior criticisms of these functions as measures of information
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flow [28]. Furthermore, separating out these contributions to the transfer entropy has been discussed
in the context of the partial information decomposition in [72].

A promising approach to understanding informational dependencies is the partial information
decomposition (PID) [29]. This framework seeks to decompose a mutual information of the form
I [(I0, I1) : O] into four nonnegative components: the information R that both inputs I0 and I1

redundantly provide the output O, the information U0 that I0 uniquely provides O, the information
U1 that I1 uniquely provides O and, finally, the information S that both I0 and I1 synergistically or
collectively provide O.

Under this decomposition, our two distributions take on very different characteristics
(Here, we quantified the partial information lattice using the best-in-class technique of [73], though
calculations using three other techniques [74–76] match. There is a recent debate suggesting
that the measure of Bertschinger et al. is not in fact correct, but it is likely, due to the agreement
among these measures, that any “true” measure of redundancy would result in the same decomposition.
The original PID measure Imin, however, assigns both distributions: 1 bit of redundant information
and 1 bit of synergistic information.). For both, the decomposition is invariant as far as which variables
are selected as I0, I1 and O. For the dyadic distribution, PID identifies both bits in I [(I0, I1) : O]

as unique, one from each input Ii, corresponding to the dyadic sub-dependency shared by Ii and O.
Orthogonally, for the triadic distribution PID identifies one of the bits as redundant, stemming
from X1 = Y1 = Z1, and the other as synergistic, resulting from the XOR relation among X0, Y0 and Z0.
These decompositions are displayed pictorially in Figure 4.

1 10

0
I [(X, Y ) : Z]

I [X : Z] I [Y : Z]

(a) Dyadic

0 01

1
I [(X, Y ) : Z]

I [X : Z] I [Y : Z]

(b) Triadic

Figure 4. Partial information decomposition diagrams for the (a) dyadic and (b) triadic distributions.
Here, X and Y are treated as inputs and Z as output, but in both cases, the decomposition is invariant
to permutations of the variables. In the dyadic case, the relationship is realized as 1 bit of unique
information from X to Z and 1 bit of unique information from Y to Z. In the triadic case, the relationship
is quantified as X and Y providing 1 bit of redundant information about Z while also supplying 1 bit of
information synergistically about Z.
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Another somewhat similar approach is that of integrated information theory [77].
However, this approach requires a known dynamic over the variables and is, in addition, highly
sensitive to the dynamic. Here, in contrast, we considered only simple probability distributions without
any assumptions as to how they might arise from the dynamics of interacting agents. That said, one
might associate an integrated information measure with a distribution via the maximal information
integration over all possible dynamics that give rise to the distribution. We leave this task for a
later study.

3. Discussion

The broad failure of Shannon information measures to differentiate the dyadic and polyadic
distributions has far-reaching consequences. Consider, for example, an experiment where a practitioner
places three probes into a cluster of neurons, each probe touching two neurons and reporting zero when
they are both quiescent, one when the first is excited but the second quiescent, two when the second is
excited, but the first quiescent, and three when both are excited. Shannon-like measures—including
the transfer entropy and related measures—would be unable to differentiate between the dyadic
situation consisting of three pairs of synchronized neurons, the triadic situation consisting of a trio
of synchronized neurons and a trio exhibiting the XOR relation, a relation requiring nontrivial sensory
integration. Such a situation might arise when probing the circuitry of the Drosophila melanogaster
connectome [78], for instance.

Furthermore, while partitioning each variable into sub-variables made the dependency structure
clear, we do not believe that such a refinement should be a necessary step in discovering such a structure.
Consider that we demonstrated that refinement is not strictly needed, since the partial information
decomposition (as quantified using current techniques) was able to discover the distribution’s internal
structure without it.

These results, observations and the broad survey clearly highlight the need to extend Shannon’s
theory. In particular, the extension must introduce a fundamentally new measure, not merely sums
and differences of the standard Shannon information measures. While the partial information
decomposition was initially proposed to overcome the interpretational difficulty of the (potentially
negative valued) co-information, we see here that it actually overcomes a vastly more fundamental
weakness with Shannon information measures. While negative information atoms can subjectively
be seen as a flaw, the inability to distinguish dyadic from polyadic relations is a much deeper
and objective issue.

This may lead one to consider the partial information decomposition as the needed extension
to Shannon theory. As it currently stands, we do not. The partial information decomposition
depends on interpreting some random variables as “inputs” and others as “outputs”. While this
may be perfectly natural in some contexts, it is not satisfactory in general. It is possible that,
were an agreeable multivariate partial information measure to be developed, the decomposition
of, e.g., I [(X0, X1, X2) : X0X1X2] could lead to a satisfactory symmetric decomposition. In any case,
there has been longstanding interest in creating a symmetric decomposition analogous to the partial
information decomposition [46] with some recent progress [79–81].

4. Dyadic Camouflage and Dependency Diffusion

The dyadic and triadic distributions we analyzed thus far were deliberately chosen to have
small dimensionality in an effort to make them and the failure of Shannon information measures
as comprehensible and intuitive as possible. Since a given dataset may have exponentially many
different three-variable subsets, even just the two distributions examined here represent hurdles that
information-based methods of dependency assessment must overcome. However, this is simply
a starting point. We will now demonstrate that there exist distributions of arbitrary size whose
k-way dependencies are masked, meaning the k-way co-information (k ≥ 3) are all zero, and so,
from the perspective of Shannon information theory, are indistinguishable from a distribution
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of the same size containing only dyadic relationships. Furthermore, we show how any such distribution
may be obfuscated over any larger set of variables. This likely mandates a search over all partitions
of all subsets of a system, making the problem of finding such distributions in the EXPTIME
computational complexity class [82], meaning such a procedure will take time exponential in the
size of the distribution.

Specifically, consider the four-variable parity distribution consisting of four binary variables such
that X0 + X1 + X2 + X3 = 0 mod 2. This is a straightforward generalization of the XOR distribution
used in constructing the triadic distribution. We next need a generalization of the “giant bit” [63], which
we call dyadic camouflage, to mix with the parity, informationally “canceling out” the higher-order
mutual information even though dependencies of such orders exist in the distribution. An example
dyadic camouflage distribution for four variables is given in Figure 5.

W X Y Z Pr

0 0 0 0 1/8
0 1 3 1 1/8
1 0 2 2 1/8
1 1 1 3 1/8
2 2 3 3 1/8
2 3 0 2 1/8
3 2 1 1 1/8
3 3 2 0 1/8

(a) Distribution

0

0 0

0

0

0

0

0

0

0

1

11

1

-1

W

X Y

Z

(b) I-diagram

Figure 5. Dyadic camouflage distribution: This distribution, when uniformly and independently
mixed with the four-variable parity distribution (in which each variable is the parity of the other
three), results in a distribution whose I-diagram incorrectly implies that the distribution contains
only dyadic dependencies. The atoms of the camouflage distribution are constructed so that they
cancel out the “interior” atoms of the parity distribution (whose I [W : X : Y|Z] = I [W : X : Z|Y] =
I [W : Y : Z|X] = I [X : Y : Z|W] = −1 and I [W : X : Y : Z] = 1), leaving just the parity distribution’s
pairwise conditional atoms: I [W : X|YZ], I [W : Y|XZ], I [W : Z|XY], I [X : Y|WZ], I [X : Z|WY],
and I [Y : Z|WX], all equal to one, while all others are zero.

Generically, consider an n-variable parity distribution, that is a distribution where ∑ Xi = 0
mod 2. It has an associated n-variable dyadic camouflage distribution with an alphabet size

for each random variable of 2n−2, and the entire joint distribution consists of 2
(n−2)·(n−1)

2 equally
likely outcomes, both numbers determined due to entropy considerations. Specifically, in a parity
distribution, each variable has 1 bit of entropy, and when mixed with its camouflage, it should
have n− 1 bits. Therefore, each variable in the camouflage distribution needs n− 2 bits of entropy
and needs, with uniform probability over those outcomes, 2n−2 characters in the alphabet.
Furthermore, since the parity distribution itself has n− 1 bits total, while its camouflaged form will
have n choose two (=(n − 2) · (n − 1)/2) bits and, again with uniform probability, there must be
2(n−2)·(n−1)/2 outcomes. The distribution is constrained such that any two variables are completely
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determined by the remaining n− 2. Moreover, each m-variable (m < n) sub-distribution consists of m
mutually independent random variables.

The goal, then, is to construct such a distribution. One method of doing so is to begin by writing
down one variable in increasing lexicographic order such that it has the correct number of outcomes;
e.g., column W in Figure 5a. Then, find n− 1 permutations of this column such that any two columns
are determined from the remaining n− 2. While such a search may be difficult, a distribution with these
properties provably exists [83].

Finally, one can obfuscate any distribution by embedding it in a larger collection of random
variables. Given a distribution D over n variables, associate each random variable i of D
with a k-variable subset of a distribution D′ in such a way that there is a mapping from the k-outcomes
in the subset of D′ to the outcome of the variable i in D. For example, one can embed the XOR

distribution over X, Y, Z into six variables X0, X1, Y0, Y1, Z0, Z1 via X0 ⊕ X1 = X, Y0 ⊕ Y1 = Y
and Z0 ⊕ Z1 = Z. In other words, the parity of (Z0, Z1) is equal to the XOR of the parities
of (X0, X1) and (Y0, Y1). In this way, one must potentially search over all partitions of all subsets
of D′ in order to discover the distribution D hiding within. We refer to this method of obfuscation
as dependency diffusion.

The first conclusion is that the challenges of conditional dependence can be found in joint
distributions over arbitrarily large sets of random variables. The second conclusion, one that heightens
the challenge to discovery, is that even finding which variables are implicated in polyadic dependencies
can be exponentially difficult. Together, the camouflage and diffusion constructions demonstrate how
challenging it is to discover, let alone work with, multivariate dependencies. This difficulty strongly
implies that the current state of information-theoretic tools is vastly underpowered for the types
of analyses required of our modern, data-rich sciences.

It is unlikely that the parity plus dyadic camouflage distribution discussed here is the only
example of Shannon measures conflating the arity of dependencies and thus producing an information
diagram identical to that of a qualitatively distinct distribution. This suggests an important challenge:
find additional, perhaps simpler, joint distributions exhibiting this phenomenon.

5. Conclusions

To conclude, we constructed two distributions that cannot be distinguished using conventional
(and many non-conventional) Shannon-like information measures. In fact, of the more than two dozen
measures we surveyed, only five were able to separate the distributions: the Gács–Körner common
information, the intrinsic mutual information, the reduced intrinsic mutual information, the connected
information and the partial information decomposition.

The failure of the Shannon-type measures is perhaps not surprising: nothing in the standard
mathematical theories of information and communication suggests that such measures should be able
to distinguish these distributions [84]. However, distinguishing dependency structures such as dyadic
from triadic relationships is of the utmost importance to the sciences; consider for example determining
multi-drug interactions in medical treatments. Critically, since interpreting dependencies in random
distributions is traditionally the domain of information theory, we propose that new extensions
to information theory are needed.

These results may seem like a deal-breaking criticism of employing information theory
to determine dependencies. Indeed, these results seem to indicate that much existing empirical
work and many interpretations have simply been wrong and, worse even, that the associated methods
are misleading while appearing quantitatively consistent. We think not, though. With the constructive
and detailed problem diagnosis given here, at least we can see this issue. It is now a necessary step to
address it. This leads us to close with a cautionary quote:

“The tools we use have a profound (and devious!) influence on our thinking habits, and,
therefore, on our thinking abilities” (Edsger W. Dijkstra [85]) .
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Appendix A. A Python Discrete Information Package

Hand calculating the information quantities used in the main text, while profitably done for a few
basic examples, soon becomes tedious and error prone. We provide a Jupyter notebook [86] making
use of dit (“Discrete Information Theory”) [87], an open source Python package that readily calculates
these quantities.
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Abstract: In a system of three stochastic variables, the Partial Information Decomposition (PID) of
Williams and Beer dissects the information that two variables (sources) carry about a third variable
(target) into nonnegative information atoms that describe redundant, unique, and synergistic modes
of dependencies among the variables. However, the classification of the three variables into two
sources and one target limits the dependency modes that can be quantitatively resolved, and does not
naturally suit all systems. Here, we extend the PID to describe trivariate modes of dependencies in
full generality, without introducing additional decomposition axioms or making assumptions about
the target/source nature of the variables. By comparing different PID lattices of the same system,
we unveil a finer PID structure made of seven nonnegative information subatoms that are invariant
to different target/source classifications and that are sufficient to describe the relationships among
all PID lattices. This finer structure naturally splits redundant information into two nonnegative
components: the source redundancy, which arises from the pairwise correlations between the source
variables, and the non-source redundancy, which does not, and relates to the synergistic information
the sources carry about the target. The invariant structure is also sufficient to construct the system’s
entropy, hence it characterizes completely all the interdependencies in the system.

Keywords: information theory; information decomposition; redundancy; synergy;
multivariate dependencies

1. Introduction

Shannon’s mutual information [1] provides a well established, widely applicable tool to
characterize the statistical relationship between two stochastic variables. Larger values of mutual
information correspond to a stronger relationship between the instantiations of the two variables in
each single trial. Whenever we study a system with more than two variables, the mutual information
between any two subsets of the variables still quantifies the statistical dependencies between these
two subsets; however, many scientific questions in the analysis of complex systems require a finer
characterization of how all variables simultaneously interact [2–6]. For example, two of the variables,
A and B, may carry either redundant or synergistic information about a third variable C [7–9],
but considering the value of the mutual information I((A, B) : C) alone is not enough to distinguish
these qualitatively different information-carrying modes. To achieve this finer level of understanding,
recent theoretical efforts have focused on decomposing the mutual information between two subsets
of variables into more specific information components (see e.g., [6,10–12]). Nonetheless, a complete
framework for the information-theoretic analysis of multivariate systems is still lacking.

Characterizing the fine structure of the interactions among three stochastic variables can improve
the understanding of many interesting problems across different disciplines [13–16]. For instance, this

Entropy 2017, 19, 451 109 www.mdpi.com/journal/entropy



Entropy 2017, 19, 451

is the case for many important questions in the study of neural information processing. Determining
quantitatively how two neurons encode information about an external sensory stimulus [7–9] requires
describing the dependencies between the stimulus and the activity of the two neurons. Determining
how the stimulus information carried by a neural response relates to the animal’s behaviour [17–19]
requires the analysis of the simultaneous three-wise dependencies among the stimulus, the neural
activity and the subject’s behavioral report. More generally, a thorough understanding of even the
simplest information-processing systems would require the quantitative description of all different
ways two inputs carry information about one output [20].

In systems where legitimate assumptions can be made about which variables act as sources of
information and which variable acts as the target of information transmission, the partial information
decomposition (PID) [10] provides an elegant framework to decompose the mutual information that
one or two (source) variables carry about the third (target) variable into a finer lattice of redundant,
unique and synergistic information atoms. However, in many systems the a priori classification of
variables into sources and target is arbitrary, and limits the description of the distribution of information
within the system [21]. Furthermore, even when one classification is adopted, the PID atoms do not
characterize completely all the possible modes of information sharing between the sources and the
target. For example, two sources can carry redundant information about the target irrespective of the
strength of the correlations between them and, as a consequence, the PID redundancy atom can be
larger than zero even if the sources have no mutual information [3,22,23]. Hence, the value of the PID
redundancy measure cannot distinguish how the correlations between two variables contribute to the
information that they share about a third variable.

In this paper, we address these limitations by extending the PID framework without introducing
further axioms or assumptions about the three-variable (or trivariate) structure to analyze. We compare
the atoms from the three possible PID lattices that are induced by the three possible choices for the target
variable in the system. By tracking how the PID information modes change across different lattices,
we move beyond the partial perspective intrinsic to a single PID lattice and unveil the finer structure
common to all PID lattices. We find that this structure can be fully described in terms of a unique
minimal set of seven information-theoretic quantities, which is invariant to different classifications of
the variables. These quantities are derived from the PID atoms based on the relationships between
different PID lattices.

The first result of this approach is the identification of two nonnegative subatomic components
of the redundant information that any pair of variables carries about the third variable. The first
component, that we name source redundancy (SR), quantifies the part of the redundancy which
arises from the correlations of the sources. The second component, that we name non-source
redundancy (NSR), quantifies the part of the redundancy which is not related to the source correlations.
Interestingly, we find that whenever the non-source redundancy is larger than zero then also the
synergy is larger than zero. The second result is that the minimal set induces a unique nonnegative
decomposition of the full joint entropy H(X, Y, Z) of the system. This allows us to dissect completely
the distribution of information of any trivariate system in a general way that is invariant with
respect to the source/target classification of the variables. To illustrate the additional insights of
this new approach, we finally apply our framework to paradigmatic examples, including discrete and
continuous probability distributions. These applications confirm our intuitions and clarify the practical
usefulness of the finer PID structure. We also briefly discuss how our methods might be extended to
the analysis of systems with more than three variables.

2. Preliminaries and State of the Art

Williams and Beer proposed an influential axiomatic construction that, in the general multivariate
case, allows decomposing the mutual information that a set of sources has about a target into a series
of redundant, synergistic, and unique contributions to the information. In the bivariate source case, i.e.,
for a system with two sources, this decomposition can be used to break down the mutual information
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I(X : (Y, Z)) that two stochastic variables Y, Z (the sources) carry about a third variable X (the target)
into the sum of four nonnegative atoms [10]:

• the Shared Information SI(X : {Y; Z}), which is the information about the target that is shared
between the two sources (the redundancy);

• the Unique Informations UI(X : {Y\Z}) and UI(X : {Z\Y}), which are the separate pieces of
information about the target that can be extracted from one of the sources, but not from the other;

• the Complementary Information CI(X : {Y; Z}), which is the information about the target that is
only available when both of the sources are jointly observed (the synergy).

This construction is commonly known as the Partial Information Decomposition (PID). Sums of
subsets of the four PID atoms provide the classical mutual information quantities between each of
the sources and the target, I(X : Y) and I(X : Z), and the conditional mutual information quantities
whereby one of the sources is the conditioned variable, I(X : Z|Y) and I(X : Y|Z). Such relationships
are displayed with a color code in Figure 1.

(a)

Z

UI(X: {Y\Z})

SI(X: {Y;Z})

CI(X: {Y;Z})

Y
X

UI(X: {Z\Y})

I(X:Y)

I(X:Z)

(b)

Figure 1. The Partial Information Decomposition as defined by Williams and Beer’s axioms [10].
(a) The mutual information of the sources Y, Z about the target X is decomposed into four atoms: the
redundancy SI(X : {Y; Z}), the unique informations UI(X : {Y\Z}), UI(X : {Z\Y}), and the synergy
CI(X : {Y; Z}). The colored rectangles represent the linear equations that relate the four PID atoms to
four Shannon information quantities; (b) An exploded view of the allotment of information between
the sources Y, Z and the target X: each PID atom of panel (a) corresponds to a thick dotted line, while
the colored stripes represent the two pairwise mutual informations between each of the sources and
the target (with the same color code as in (a)). Each of the mutual informations splits into the sum of
the redundancy with its corresponding unique information. The circuit-diagram symbol for the XOR
operation is associated to the synergistic component CI(X{Y; Z}) only for illustration, as XOR is often
taken as a paradigmatic example of synergistic interaction between variables.

The PID decomposition of Ref. [10] is based upon a number of axioms that formalize some
properties that a measure of redundancy should have. These axioms are expressed in simple terms
as follows: (1) the redundancy should be symmetric under any permutation of the sources (weak
symmetry); (2) for a single source, the redundancy should equal the mutual information between
the source and the target (self-redundancy); (3) the redundancy should not increase if a new source
is added (monotonicity) [3,24]. However, these axioms do not determine univocally the value of
the four PID atoms. For example, some definitions of redundancy imply that all PID atoms are
nonnegative (global positivity) [10,11,22], while some authors have questioned that this property
should be always satisfied [25]. Further, the specific redundancy measure proposed in Ref. [10] has
been questioned as it can lead to unintuitive results [22], and thus many attempts have been devoted
to finding alternative measures [22,25–30] compatibly with an extended number of axioms, such as
the identity axiom proposed in [22]. Other work has studied in more detail the lattice structure that
underpins the PID, indicating the duality between information gain and information loss lattices [12].
Even though there is no consensus on how to build partial information decompositions in systems
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with more than two sources, for trivariate systems the measures of redundancy, synergy and unique
information defined in Ref. [11] have found wide acceptance (as a terminology note, it is common
in the literature to refer to PID decompositions for systems containing a target and two sources as
bivariate decompositions. That is, while the system is trivariate, the decomposition is sometimes
referred to as bivariate based on the number of sources). In this paper, we will in fact make use of
these measures when a concrete implementation of the PID will be required.

Even in the trivariate case with two sources and one target, however, there are open problems
regarding the understanding of the PID atoms in relation to the interdependencies within the
system. First, Harder et al. [22] pointed out that the redundant information shared between the
sources about the target can intuitively arise from the following two qualitatively different modes of
three-wise interdependence:

• the source redundancy, which is redundancy which ’must already manifest itself in the mutual
information between the sources’ (Note that Ref. [22] interchangeably refers to the sources as
’inputs’: we will discuss this further in Section 4 when addressing the characterization of source
redundancy);

• the mechanistic redundancy, which can be larger than zero even if there is no mutual information
between the sources.

As pointed out by Harder and colleagues [22], a more precise conceptual and formal separation
of these two kinds of redundancy still needs to be achieved, and presents fundamental challenges.
The very notion that two statistically independent sources can nonetheless share information about a
target was not captured by some earlier definitions of redundancy [31]. However, Ref. [3] provided a
game-theoretic argument to show intuitively how independent variables may share information about
another variable. Nonetheless, several studies [23,32] described the property that the PID measures of
redundancy can be positive even when there are no correlations between the sources as undesired.
On a different note, other authors [20] pointed out that the two different notions of redundancy can
define qualitatively different modes of information processing in (neural) input-output networks.

Other issues were recently pointed out by James and Crutchfield [21], who indicated that the very
definition of the PID lattice prevents its use as a general tool for assessing the full structure of trivariate
(let alone multi-variate) statistical dependencies. In particular, Ref. [21] considered dyadic and triadic
systems, which underlie quite interesting and common modes of multivariate interdependencies.
They showed that, even though the PID atoms are among the very few measures that can distinguish
between the two kinds of systems, a PID lattice with two source variables and one target variable
cannot allot the full joint entropy H(X, Y, Z) of either system. The decomposition of the joint entropy
in terms of information components that reflect qualitatively different interactions within the system
has also been subject of recent research, that however relies on constructions differing substantially
from the PID lattice [29,33].

In summary, the PID framework, in its current form, does not yet provide a satisfactorily fine and
complete description of the distribution of information in trivariate systems. The PID atoms do assess
trivariate dependencies better than Shannon’s measures, but they cannot quantify interesting finer
interdependencies within the system, such as the source redundancy that the sources share about the
target and the mechanistic redundancy that even two independent sources can share about the target.
In addition, they are limited to describing the dependencies between the chosen sources and target,
thus enforcing a certain perspective on the system that does not naturally suit all systems.

3. More PID Diagrams Unveil Finer Structure in the PID Framework

To address the open problems described above, we begin by pointing out the feature of the PID
lattice that underlies all the issues in the characterization of trivariate systems outlined in Section 2.
As we illustrate in Figure 1a, while a single PID diagram involves the mutual information quantities
that one or both of the sources (in the figure, Y and Z) carry about the target X, it does not contain the

112



Entropy 2017, 19, 451

mutual information between the sources I(Y : Z) and their conditional mutual information given the
target I(Y : Z|X). This precludes the characterization of source redundancy with a single PID diagram,
as it prevents any comparison between the elements of the PID and I(Y : Z). Moreover, it also signals
that a single PID lattice with two sources and one target cannot in general account for the total entropy
H(X, Y, Z) of the system.

These considerations suggest that the inability of the PID framework to provide a complete
information-theoretic description of trivariate systems is not a consequence of the axiomatic
construction underlying the PID lattice. Instead, it follows from restricting the analysis to the limited
perspective on the system that is enforced by classifying the variables into sources and target when
defining a PID lattice. We thus elaborate that significant progress can be achieved, without the addition
of further axioms or assumptions to the PID framework, if one just considers, alongside the PID diagram
in Figure 1a, the other two PID diagrams that are induced respectively by labeling Y or Z as the
target in the system. When considering the resulting three PID diagrams (Figure 2), the previously
missing mutual information I(Y : Z) between the original sources of the left-most diagram is now
decomposed into PID atoms of the middle and the right-most diagrams in Figure 2, and the same
happens with I(Y : Z|X).

Figure 2. The three possible PIDs of a trivariate probability distribution p(x, y, z) that follow from the
three possible choices for the target variable: on the left the target is X, in the middle it is Y and on the
right it is Z. The coloured rectangles highlight the linear relationships between the twelve PID atoms
and the six Shannon information quantities. Note that the orientations of the PIDs for I(X : (Y, Z)) and
I(Z : (X, Y)) are rotated with respect to the PID for I(Y : (X, Z)) to highlight their reciprocal relations,
as will become more apparent in Figure 4.

In the following we take advantage of this shift in perspective to resolve the finer structure of
the PID diagrams and, at the same time, to generalize its descriptive power going beyond the current
limited framework, where only the information that two (source) variables carry about the third
(target) variable is decomposed. More specifically, even though the PID relies on setting a partial
point of view about the system, we will show that describing how the PID atoms change when we
systematically rotate the choice of the PID target variable effectively overcomes the limitations intrinsic
to one PID alone.

3.1. The Relationship between PID Diagrams with Different Target Selections

To identify the finer structure underlying all the PID diagrams in Figure 2, we first focus on the
relationships between the PID atoms of two different diagrams, with the goal of understanding how to
move from one perspective on the system to another. The key observation here is that, for each pair
of variables in the system, their mutual information and their conditional mutual information given
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the third variable appear in two of the PID diagrams. This imposes some constraints relating the PID
atoms in two different diagrams. For example, if we consider I(X : Y) and I(X : Y|Z), we find that:

I(X : Y) = SI(X : {Y; Z}) + UI(X : {Y\Z}) = SI(Y : {X; Z}) + UI(Y : {X\Z}), (1)

I(X : Y|Z) = CI(X : {Y; Z}) + UI(X : {Y\Z}) = CI(Y : {X; Z}) + UI(Y : {X\Z}), (2)

where the first and second equality in each equation result from the decomposition of I(X : (Y, Z))
(left-most diagram in Figure 2) and I(Y : (X, Z)) (middle diagram in Figure 2), respectively. From
Equation (1) we see that, when the roles of a target and a source are reversed (here, the roles of X and Y),
the difference in redundancy is the opposite of the difference in unique information with respect to the
other source (here, Z). Similarly, Equation (2) shows that the difference in synergy is the opposite of the
difference in unique information with respect to the other source. Combining these two equalities, we
also see that the difference in redundancy is equal to the difference in synergy. Therefore, the equalities
impose relationships across some PID atoms appearing in two different diagrams.

These relationships are depicted in Figure 3. The eight PID atoms appearing in the two diagrams
can be expressed in terms of only six subatoms, due to the constraints of the form of Equations (1)
and (2). In particular, to select the smallest nonnegative pieces of information resulting from the
constraints, we define:

RSI(X Z↔ Y) :=min[SI(X : {Y; Z}), SI(Y : {X; Z})], (3a)

RCI(X Z↔ Y) :=min[CI(X : {Y; Z}), CI(Y : {X; Z})], (3b)

RUI(X Z↔ Y) :=min[UI(X : {Y\Z}), UI(Y : {X\Z})]. (3c)

The above terms are called the Reversible Shared Information of X and Y considering Z (RSI(X Z↔ Y);
the orange block in Figure 3), the Reversible Complementary Information of X and Y considering

Z (RCI(X Z↔ Y); the gray block in Figure 3), and the Reversible Unique Information of X and Y

considering Z (RUI(X Z↔ Y); the magenta block in Figure 3). The attribute reversible highlights that,
when we reverse the roles of target and source between the two variables at the endpoints of the
arrow in RSI, RCI, or RUI (here, X and Y), the reversible pieces of information are still included in
the same type of PID atom (redundancy, synergy, or unique information with respect to the third
variable). For example, the orange block in Figure 3 indicates a common amount of redundancy in both

PID diagrams: as such, RSI(X Z↔ Y) contributes both to redundant information that Y and Z share
about X, and to redundant information that X and Z share about Y. By construction, these reversible
components are symmetric in the reversed variables. Note that, when we reverse the role of two
variables, the third variable (here, Z) remains a source and is thus put in the middle of our notation in

Equation (3a)–(3c). We also define the Irreversible Shared Information IRSI(X Z← Y) between X and Y
considering Z (the light blue block in Figure 3) as follows:

IRSI(X Z← Y) := SI(X : {Y; Z})− RSI(X Z↔ Y). (4)

The attribute irreversible in the above definition indicates that this piece of redundancy is specific

to one of the two PIDs alone. More precisely, the uni-directional arrow in IRSI(X Z← Y) indicates
that this piece of information is a part of the redundancy with X as a target, but it is not a part of the
redundancy with Y as a target (In this paper, directional arrows never represent any kind of causal
directionality: the PID framework is only capable to quantify statistical (correlational) dependencies).

Correspondingly, at least one between IRSI(X Z← Y) and IRSI(Y Z← X) is always zero. More generally,
IRSI quantifies asymmetries between two different PIDs: for example, when moving from the left

to the right PID in Figure 3, the light blue block IRSI(X Z← Y) indicates an equivalent amount of
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information that is lost for the redundancy SI(X : {Y; Z}) and the synergy CI(X : {Y; Z}) atoms, and
is instead counted as a part of the unique information UI(Y : {X\Z}) atom. In other words, assuming
that the two redundancies are ranked as in Figure 3, we find that:

IRSI(X Z← Y) = SI(X : {Y; Z})− SI(Y : {X; Z}) (5a)

= CI(X : {Y; Z})− CI(Y : {X; Z}) (5b)

= UI(Y : {X\Z})−UI(X : {Y\Z}). (5c)

While the coarser Shannon information quantities that are decomposed in both diagrams in
Figure 3, namely I(X : Y) and I(X : Y|Z), are symmetric under swap of X ↔ Y, their PID
decompositions (see Equations (1) and (2)) are not: Equation (5) show that IRSI quantifies the amount
of this asymmetry. More precisely, the PID decompositions of I(X : Y) and I(X : Y|Z) will preserve

the X ↔ Y symmetry if and only if IRSI(X Z← Y) = IRSI(Y Z← X) = 0. Note that the differences of
redundancies, of synergies, and of unique information terms are always constrained by equations
such as Equation (5a)–(5c). Hence, unlike for the reversible measures, we do not need to consider
independent notions of irreversible synergy or irreversible unique information.

ba

Figure 3. (a) The relationships between the PID atoms from two diagrams with different target
selections. When we swap a target and a source, the differences in the amount of redundancy, synergy,
and unique information with respect to the third variable are not independent due to equations of the
type of Equations (1) and (2). Here, we consider the PID diagram of I(X : (Y, Z)) (left) and I(Y : (X, Z))
(right) from Figure 2, under the assumption that SI(Y : {X; Z}) ≤ SI(X : {Y; Z}); (b) The reversible

pieces of information RSI(X Z↔ Y) (orange block), RCI(X Z↔ Y) (gray block) and RUI(X Z↔ Y)
(magenta block) contribute to the same kind of atom across the two PID diagrams. The irreversible

piece of information IRSI(X Z← Y) (light blue block) contributes to different kinds of atom across the
two PID diagrams. The remaining two unique information atoms (black dots) are not constrained by
equations of the type of Equations (1) and (2) when only X or Y are considered as target.

In summary, the four subatoms in Equations (3a)–(3c) and (4), together with the two remaining
unique information terms (the black dots in Figure 3), allow us to characterize both PIDs in Figure 3
and to understand how the PID atoms change when moving from one PID to another. We remark that
in all cases the subatoms indicate amounts of information, while the same subatom can be interpreted
in different ways depending on the specific PID atom to which it contributes. In other words, the fact
that two atoms contain the same subatom does not indicate that there is some qualitatively equivalent
information contained in both atoms. For example, both the redundancy SI(X : {Y; Z}) and the

synergy CI(X : {Y; Z}) in Figure 3 contain the same subatom IRSI(X Z← Y), even though the
PID construction ensures that the redundancy and the synergy contain qualitatively different pieces
of information.
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3.2. Unveiling the Finer Structure of the PID Framework

So far we have examined the relationships among the PID atoms corresponding to two different
perspectives we hold about the system, whereby we reverse the roles of target and source between two
variables in the system. We have seen that the PID atoms of different diagrams are not independent,
as they are constrained by equations of the type of Equations (1) and (2). More specifically, the eight
PID atoms of two diagrams can be expressed in terms of only six independent quantities, including
reversible and irreversible pieces of information. The next question is how many subatoms we need
to describe all the three possible PIDs (see Figure 2). Since there are six constraints, three equations
of the type of Equation (1) and three equations of the type of Equation (2), one may be tempted
to think that the twelve PID atoms of all three PID diagrams can be expressed in terms of only six
independent quantities. However, the six constraints are not independent: this is most easily seen from
the symmetry of the co-information measure [34], which is defined as the mutual information of two
variables minus their conditional information given the third (e.g., Equation (1) minus Equation (2)).
The co-information is invariant to any permutation of the variables, and this property highlights that
only five of the six constraints are linearly independent. Accordingly, we will now detail how seven
subatoms are sufficient to describe the relationships among the atoms of all three PIDs: we call these
subatoms the minimal subatoms’ set of the PID diagrams.

In Figure 4 we see how the minimal subatoms’ set builds the PID diagrams. We assume, without
loss of generality, that SI(Y : {X; Z}) ≤ SI(X : {Y; Z}) ≤ SI(Z : {X; Y}). Then, we consider the three
possible instances of Equation (5) for the three possible choices of the target variable, and we find that
the same ordering also holds for the synergy atoms: CI(Y : {X; Z}) ≤ CI(X : {Y; Z}) ≤ CI(Z : {X; Y}).
This property is related to the invariance of the co-information: indeed, Ref. [10] indicated that the
co-information can be expressed as the difference between the redundancy and the synergy within
each PID diagram, i.e.,

coI(X; Y; Z) = SI(i : {j; k})− CI(i : {j; k}), (6)

for any assignment of X, Y, Z, to i, j, k.
These ordering relations are enough to understand the nature of the minimal subatoms’ set:

we start with the construction of the three redundancies, which can all be expressed in terms of
the smallest RSI and two subsequent increments. In Figure 4, these correspond respectively to

RSI(X Z↔ Y) = SI(Y : {X; Z}) (orange block), IRSI(X Z← Y) (light blue block) and IRSI(Z Y← X)

(yellow block). In parallel, we can construct the three synergies with the smallest RCI and
the same increments used for the redundancies. In Figure 4, these correspond respectively to

RCI(X Z↔ Y) = CI(Y : {X; Z}) (gray block) and the same two IRSI used before. To construct
the unique information atoms, it is sufficient to further consider the three independent RUI defined
by taking all possible permutations of X, Y and Z in Equation (3c). In Figure 4, these correspond to

RUI(X Z↔ Y) = UI(X : {Y\Z}) (magenta block), RUI(X Y↔ Z) = UI(Z : {X\Y}) (brown block), and

RUI(Y X↔ Z) = UI(Z : {Y\X}) (blue block). We thus see that, in total, seven minimal subatoms are
enough to describe the underlying structure of the three PID diagrams of any system. Among these
seven building blocks, five are reversible pieces of information, i.e., they contribute to the same kind
of PID atom across different PID diagrams; the other two are irreversible pieces of information, that
contribute to different kinds of PID atom across different diagrams. The complete minimal set can
only be determined when all three PIDs are jointly considered and compared. That is, after the PID
atoms have been evaluated, the subatoms provide a complete description of the structure of the PID
atoms. As shown in Figure 3, pairwise PIDs’ comparisons can at most distinguish two subatoms in
any redundancy (or synergy), while the three-wise PIDs’ comparison discussed above allowed us to
discern three subatoms in SI(Z : {X; Y}) (and CI(Z : {X; Y}); see also Figure 4). The full details of
the mathematical construction of the decomposition presented in Figure 4 is described in Appendix A.
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b

a

Increasing

Figure 4. Constructing the full structure of the three PID diagrams in Figure 2 in terms of a minimal
set of information subatoms. (a) All the 12 PID atoms in Figure 2 can be expressed as sums of seven
independent PID subatoms that are displayed as coloured blocks in (b) (as in Figure 2, the orientations
of the PIDs for I(X : (Y, Z)) and I(Z : (X, Y)) are rotated with respect to the PID for I(Y : (X, Z)) to
highlight their reciprocal relations). Five of these subatoms are reversible pieces of information, that are
included in the same kind of PID atom across different PID diagrams; the other two subatoms are the
irreversible pieces of information, that can be included in different kinds of PID atom across different
diagrams. Assuming, without loss of generality, that SI(Y : {X; Z}) ≤ SI(X : {Y; Z}) ≤ SI(Z : {X; Y}),
the five reversible subatoms are: RSI(X Z↔ Y) (orange), RCI(X Z↔ Y) (gray), RUI(X Z↔ Y) (magenta),

RUI(Y X↔ Z) (blue), and RUI(X Y↔ Z) (brown). The two irreversible subatoms are IRSI(X Z← Y)

(light blue) and IRSI(Z Y← X) (yellow).

Importantly, while the definition of a single PID lattice relies on the specific perspective adopted on
the system, which labels two variables as the sources and one variable as the target, the decomposition
in Figure 4 is invariant with respect to the classification of the variables. As described above, it only
relies on computing all three PID diagrams and then using the ordering relations of the atoms,
without any need to classify the variables a priori. As illustrated in Figure 4, the decomposition of
the mutual information and conditional mutual information quantities in terms of the subatoms
is also independent of the PID adopted. Our invariant minimal set in Figure 4 thus extends the
descriptive power of the PID framework beyond the limitations that were intrinsic to considering an
individual PID diagram. In the next sections, we will show how the invariant minimal set can be used
to identify the part of the redundant information about a target that specifically arises from the mutual
information between the sources (the source redundancy), and to decompose the total entropy of any
trivariate system.

Remarkably, the decomposition in Figure 4 does not rely on any extension of Williams and Beer’s
axioms. We unveiled finer structure underlying the PID lattices just by considering more PID lattices
at a time and comparing PID atoms across different lattices. The operation of taking the minimum
between different PID atoms that defines the reversible pieces of information in Equation (3a)–(3c)
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might be reminiscent of the minimum operation that underlies the definition of the redundancy
measures Imin in Ref. [10] and Ired in Ref. [22]. However, the minimum in Equation (3a)–(3c) operates
on pieces of information about different variables and identifies a common amount of information
between different PID atoms, while the minimum in Imin and Ired always operates on pieces of
information about the same variable (the target) and aims at identifying information about the target
that is qualitatively common between the two sources. We further remark that the decomposition
in Figure 4 does not rely in any respect on the specific definition of the PID measures that is used to
calculate the PID atoms: it only relies on the axiomatic PID construction presented in Ref. [10].

4. Quantifying Source Redundancy

The structure of the three PID diagrams that was unveiled with the construction in Figure 4
enables a finer characterization of the modes of information distribution among three variables than
what has previously been possible. In particular, we will now address the open problem of quantifying
the source redundancy, i.e., the part of the redundancy that ’must already manifest itself in the mutual
information between the sources’ [22]. Consider for example the redundancy SI(X : {Y; Z}) in

Figure 4: it is composed by RSI(X Z↔ Y) (orange block) and IRSI(X Z← Y) (light blue block). We can
check which of these subatoms are shared with the mutual information of the sources I(Y : Z). To do
this, we have to move from the middle PID diagram in Figure 4, that contains SI(X : {Y; Z}), to any
of the other two diagrams, that both contain I(Y : Z). Consistently, in these other two diagrams
I(Y : Z) is composed by the same four subatoms (the orange, the light blue, the yellow and the blue
block), and the only difference across diagrams is that these subatoms are differently distributed
between unique information and redundancy PID atoms. In particular, we can see that both the
orange and the light blue block which make up SI(X : {Y; Z}) are contained in I(Y : Z). Thus,
whenever any of them is nonzero, we know at the same time that Y and Z share some information
about X (i.e., SI(X : {Y; Z}) > 0) and that there are correlations between Y and Z (i.e., I(Y : Z) > 0).
Accordingly, in the scenario of Figure 4 the entire redundancy SI(X : {Y; Z}) is explained by the
mutual information of the sources: all the redundant information that Y and Z share about X arises
from the correlations between Y and Z.

If we then consider the redundancy SI(Y : {X; Z}), that coincides with the orange block, we also
find that it is totally explained in terms of the mutual information between the corresponding sources
I(X : Z), which indeed contains an orange block. However, if we consider the third redundancy
SI(Z : {X; Y}), that is composed by an orange, a light blue and a yellow block, we find that only
the orange and the light blue block contribute to I(X : Y), while the yellow does not. The source
redundancy that X and Y share about Z should thus equal the sum of the orange and the light blue
block, that are common to both the redundancy SI(Z : {X; Y}) and the mutual information I(X : Y).
To quantify in full generality the amounts of information that contribute both to the redundancy SI
and to the mutual information of its sources, we define the source redundancy that two sources S1 and
S2 share about a target T as:

SR(T : {S1; S2}) := max{RSI(T
S2↔ S1) , RSI(T

S1↔ S2)}
= max{min [SI(T : {S1; S2}), SI(S1 : {S2; T})] ,

min [SI(T : {S1; S2}), SI(S2 : {S1; T})]}.

(7)

One can easily verify that Equation (7) identifies the blocks that contribute to both SI(T : {S1; S2})
and I(S1 : S2) in Figure 4, for any choice of sources and target (for instance, T = Z, S1 = X and
S2 = Y). This definition can be justified as follows: each RSI measure in Equation (7) compares
SI(T : {S1; S2}) with one of the other two redundancies that are contained in the mutual information
between the sources I(S1 : S2) (namely, SI(S1 : {S2; T}) and SI(S2 : {S1; T})). Some of the subatoms
included in I(S1 : S2) are contained in one of these two redundancies, but not in the other, as they
move to the unique information mode when we change PID. Therefore, by taking the maximum in
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Equation (7) we ensure that SR(T : {S1; S2}) precisely captures all the common subatoms of I(S1 : S2)

and SI(T : {S1; S2}), without double-counting. In a complementary way, we can define the non-source
redundancy that two sources share about a target:

NSR(T : {S1; S2}) := SI(T : {S1; S2})− SR(T : {S1; S2}). (8)

In particular, if we consider the redundancy SI(Z : {X; Y}) in Figure 4, NSR(Z : {X; Y})
corresponds to the yellow block. As desired, whenever this block is larger than zero, X and Y can
share information about Z (i.e., SI(Z : {X; Y}) > 0) even if there is no mutual information between
the sources X and Y (i.e., I(X : Y) = 0).

4.1. The Difference between Source and Non-Source Redundancy

Equations (7) and (8) show how we can split the redundant information that two sources share
about a target into two nonnegative information components: when the source-redundancy SR is
larger than zero there are also correlations between the sources, while the non-source redundancy NSR
can be larger than zero even when the sources are independent. SR is thus seen to quantify the pairwise
correlations between the sources that also produce redundant information about the target: this discussion is
pictorially summarized in Figure 5. In particular, the source redundancy SR is clearly upper-bound by
the mutual information between the sources, i.e.,

SR(T : {S1; S2}) ≤ I(S1 : S2). (9)

On the other hand, NSR does not arise from the pairwise correlations between the sources: let us
calculate NSR in a paradigmatic example that was proposed in Ref. [22] to remark the subtle possibility
that two statistically independent variables can share information about a third variable. Suppose
that Y and Z are uniform binary random variables, with Y ⊥⊥ Z, and X is deterministically fixed by the
relationship X = Y ∧ Z, where ∧ represents the AND logical operation. Here, SI(X : {Y; Z}) ≈ 0.311 bits
(according to different measures of redundancy [11,22]) even if I(Y : Z) = 0. Indeed, from our
definitions in Equations (7) and (8) we find that, since SI(Y : {X; Z}), SI(Z : {X; Y}) ≤ I(Y : Z) = 0,
here NSR(X : {Y; Z}) = SI(X : {Y; Z}) > 0 even though I(Y : Z) = 0. We will comment more
extensively on this instructive example in Section 6.

Interestingly, the non-source redundancy NSR is a part of the redundancy that is related to the
synergy of the same PID diagram. Indeed, two of the three possible NSR defined in Equation (8)
are always zero, and the third can be larger than zero if and only if the yellow block in Figure 4 is
larger than zero. From Figures 4 and 5 we can thus see that, whenever we find positive non-source
redundancy in a PID diagram, the same amount of information (the yellow block) is also present in
the synergy of that diagram. Thus, while there is source redundancy if and only if there is mutual
information between the sources, the existence of non-source redundancy is a sufficient (though not
necessary) condition for the existence of synergy. We can thus interpret NSR as redundant information
about the target that implies that the sources carry synergistic information about the target: we give a graphical
characterization of NSR in Figure 5. In particular, the non-source redundancy is clearly upper-bound
by the corresponding synergy:

NSR(T : {S1; S2}) ≤ CI(T : {S1; S2}). (10)

In the specific examples considered in Harder et al. [22], where the underlying causal structure
of the system is such that the sources always generate the target, the non-source redundancy can
indeed be associated with the notion of ’mechanistic redundancy’ that was introduced in that work:
the causal mechanisms connecting the target with the sources induce a non-zero NSR that contributes
to the redundancy independently of the correlations between the sources. In general, since the causal
structure of the analyzed system is unknown, it is impossible to quantify ’mechanistic redundancy’ with
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statistical measures, while it is always possible to quantify and interpret the non-source redundancy as
described in Section 4.

Y

UI(Z: {X\Y})

SI(Z: {X;Y})

CI(Z: {X;Y})

X
Z

UI(Z: {Y\X})

I(X:Z)

I(Y:Z)

I(X:Y)

SR(Z:{X;Y}) NSR(Z:{X;Y})

Figure 5. Exploded view of the information that two variables X, Y carry about a third variable Z.
The mutual informations of each source about the target are decomposed into PID atoms as in Figure 1b,
but the PID atoms are now further decomposed in terms of the minimal subatoms’ set: the thick colored
lines represent the subatoms with the same colour code as in Figure 4. Here, we assume that the
variables are ordered as in Figure 4. The finer structure of the PID atoms allows us to identify the
source redundancy SR(Z : {X; Y}) (orange line + light blue line) as the part of the full redundancy
SI(Z : {X; Y}) that is apparent in the mutual information between the sources I(X : Y). Instead,
the amount of information in the non-source redundancy NSR(Z : {X; Y}) (yellow line) also appears
in the synergy CI(Z : {X; Y}).

In Section 6 we will examine concrete examples to show how our definitions of source and
non-source redundancy refine the information-theoretic description of trivariate systems, as they
quantify qualitatively different ways that two variables can share information about a third.

We conclude this Section with more general comments about our quantification of source
redundancy. We note that the arguments used to define the source redundancy in Section 4 can be
equally used to study common or exclusive information components of other PID terms. For example,
we can identify the magenta subatom as the component of the mutual information between the sources
X and Y that cannot be related to their redundant information about Z. Similarly, we could consider
which part of a synergy is related to the conditional mutual information between the sources.

5. Decomposing the Joint Entropy of a Trivariate System

Understanding how information is distributed in trivariate systems should also provide a
descriptive allotment of all parts of the joint entropy H(X, Y, Z) [21,33]. For comparison, Shannon’s
mutual information enables a semantic decomposition of the bivariate entropy H(X, Y) in terms of
univariate conditional entropies and I(X : Y), that quantifies shared fluctuations (or covariations)
between the two variables [33]:

H(X, Y) = I(X : Y) + H(X|Y) + H(Y|X). (11)

However, in spite of recent proposals to decompose the joint entropy [29,33], a univocal descriptive
decomposition of the trivariate entropy H(X, Y, Z) in terms of nonnegative information-theoretic
quantities is still missing to date. Since the PID axioms in Ref. [10] decompose mutual information
quantities, one might hope that the PID atoms could also provide a descriptive entropy decomposition.
Yet, at the beginning of Section 3, we pointed out that a single PID lattice does not include the
mutual information between the sources and their conditional mutual information given the target:
this suggests that a single PID lattice with two sources and one target cannot in general contain
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the full H(X, Y, Z). More concretely, Ref. [21] has recently suggested precise examples of trivariate
dependencies, i.e., dyadic and triadic dependencies, where a single PID lattice with two sources and
one target cannot account for, and thus describe the parts of, the full H(X, Y, Z).

We will now show how the novel finer PID structure unveiled in Section 3 can be used to decompose
the full entropy H(X, Y, Z) of any trivariate system in terms of nonnegative information-theoretic
quantities. Then, to show the descriptive power of this decomposition, we will analyze the dyadic
and triadic dependencies that were considered in Ref. [21], and that are described in Figure 6. Both kinds
of dependencies underlie common modes of information sharing among three and more variables,
but in both cases the atoms of a single PID diagram only sum up to two of the three bits of the full
entropy H(X, Y, Z) [21]. We will illustrate how the missing allotment of the third bit of entropy in those
systems is not due to intrinsic limitations of the PID axioms, but just to the limitations of considering a
single PID diagram at a time—the common practice in the literature so far.

x y z p(x, y, z)
0 0 0 1/8
0 2 1 1/8
1 0 2 1/8
1 2 3 1/8
2 1 0 1/8
2 3 1 1/8
3 1 2 1/8
3 3 3 1/8

(a)

x y z p(x, y, z)
0 0 0 1/8
1 1 1 1/8
0 2 2 1/8
1 3 3 1/8
2 0 2 1/8
3 1 3 1/8
2 2 0 1/8
3 3 1 1/8

(b)

Figure 6. Dyadic and triadic statistical dependencies in a trivariate system, as defined in Ref. [21].
The tables display the non-zero probability values p(x, y, z) as a function of the possible outcomes of
the three stochastic variables X, Y, Z with domain {0, 1, 2, 3}. X ∼ (X1, X2), Y ∼ (Y1, Y2), Z ∼ (Z1, Z2)

(the symbol ∼ here means ’is distributed as’), where X1, X2, Y1, Y2, Z1, Z2 are binary uniform random
variables. (a) The underlying rules that give rise to dyadic dependencies are X1 = Y2, Y1 = Z2, Z1 = X2;
(b) The underlying rules that give rise to triadic dependencies are X1 = Y1 ⊕ Z1, X2 = Y2 = Z2.

5.1. The Finer Structure of the Entropy H(X, Y, Z)

The minimal subatoms’ set that we illustrated in Figure 4 allowed us to decompose all three
PID lattices of a generic system. However, to fully describe the distribution of information in
trivariate systems, we also wish to find a generalization of Equation (11) to the trivariate case, i.e.,
to decompose the full trivariate entropy H(X, Y, Z) in terms of univariate conditional entropies and
PID quantities. With this goal in mind, we first subtract from H(X, Y, Z) the terms which describe
statistical fluctuations of only one variable (conditioned on the other two). The sum of these terms was
indicated as H(1) in Ref. [33], and there quantified as

H(1) = H(X|Y, Z) + H(Y|X, Z) + H(Z|Y, X). (12)
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This subtraction is useful because H(1) is a part of the total entropy which does not overlap with any of
the 12 PID atoms in Figure 2. The remaining entropy H(X, Y, Z)− H(1) was defined as the dual total
correlation in Ref. [35] and recently considered in Ref. [33]:

DTC := H(X, Y, Z)− H(1). (13)

DTC quantifies joint statistical fluctuations of more than one variable in the system. A simple
calculation yields

DTC = I(X : Y|Z) + I(Y : Z|X) + I(X : Z|Y) + coI(X; Y; Z), (14)

which is manifestly invariant under permutations of X, Y and Z, and shows that DTC can be written
as a sum of some of the 12 PID atoms. For example, expressing the co-information as the difference
I(X : Z)− I(X : Z|Y), we can arbitrarily use the four atoms from the left-most diagram in Figure 2 to
decompose the sum I(X : Y|Z) + I(X : Z) and then add UI(Y : {Z\X}) + CI(Y : {X; Z}) from the
middle diagram to decompose I(Y : Z|X). If we then plug this expression of DTC in Equation (13),
we achieve a decomposition of the full entropy of the system in terms of H(1) and PID quantities:

H(X, Y, Z) = H(1) + SI(X : {Y; Z}) + UI(X : {Y\Z}) + UI(X : {Z\Y})
+ CI(X : {Y; Z}) + UI(Y : {Z\X}) + CI(Y : {X; Z}), (15)

which provides a nonnegative decomposition of the total entropy of any trivariate system. However,
this decomposition is not unique, since the co-information can be expressed in terms of different pairs
of conditional and unconditional mutual informations, according to Equation (6). This arbitrariness
strongly limits the descriptive power of this kind of entropy decompositions, because the PID atoms
on the RHS can only be interpreted within individual PID perspectives.

To address this issue, we construct a less arbitrary entropy decomposition by using the invariant
minimal subatoms’ set that was presented in Figure 4: importantly, that set can be interpreted without
specifying an individual, and thus partial, PID point of view that we hold about the system.

Thus, after we name the variables of the system such that SI(Y : {X; Z}) ≤ SI(X : {Y; Z}) ≤
SI(Z : {X; Y}), we express the coarser PID atoms in Equation (15) in terms of the minimal set to obtain:

H(X, Y, Z)− H(1) = RSI(Y Z↔ X) + 2 RCI(Y Z↔ X) (16)

+ RUI(X Z↔ Y) + RUI(Y X↔ Z) + RUI(X Y↔ Z)

+ 2 IRSI(Z Y← X) + 3 IRSI(X Z← Y).

Unlike Equation (15), the entropy decomposition expressed in Equation (16) and illustrated in
Figure 7 fully describes the distribution of information in trivariate systems without the need of a
specific perspective about the system. Importantly, this decomposition is unique: even though the
co-information can be expressed in different ways in terms of conditional and unconditional mutual
informations, in terms of the subatoms it is uniquely represented as the orange block minus the gray
block (see Figure 7). Similarly, the conditional mutual information terms of Equation (14) are composed
by the same blocks independently of the PID, as highlighted in Figure 4.
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Figure 7. The joint entropy of the system H(X, Y, Z) is decomposed in terms of the minimal set
identified in Figure 4, once the univariate fluctuations quantified with H(1) have been subtracted
out (see Equation (16)). As in Figure 4, we assume without loss of generality SI(Y : {X; Z}) ≤
SI(Z : {X; Y}) ≤ SI(X : {Y; Z}). The finer PID structure unveiled in this work enables a general
entropy decomposition in terms of quantities that can be interpreted without relying on a specific
PID point of view, even though they have been defined within the PID framework. The colored areas
represent the Shannon information quantities that are included in the DTC of Equation (14), with the
same color code of Figure 2.

We remark that the entropy decomposition in Equation (16) does not rely in any respect on the
choice of a specific redundancy measure, but it follows directly after the calculation of the minimal
subatoms’ set according to any definition of the PID.

5.2. Describing H(X, Y, Z) for Dyadic and Triadic Systems

To show an application of the finer entropy decomposition in Equation (16), we now compute
its terms for the dyadic and the triadic dependencies considered in Ref. [21] and defined in Figure 6.
For this application, we make use of the definitions of PID that were proposed in Ref. [11]. In both cases
H(1) = 0. For the dyadic system, there are only three positive quantities in the minimal set: the three

reversible unique informations RUI(X Y↔ Z) = RUI(Y X↔ Z) = RUI(X Z↔ Y) = 1 bit. For the triadic

system, there are only two positive quantities in the minimal set: RSI(X Z↔ Y) = RCI(X Z↔ Y) = 1

bit, but RCI(X Z↔ Y) is counted twice in the DTC. We illustrate the resulting entropy decompositions,
according to Equation (16), in Figure 8.

The decompositions in Figure 8 enable a clear interpretation of how information is finely
distributed within dyadic and triadic dependencies. The three bits of the total H(X, Y, Z) in the
dyadic system are seen to be distributed equally among unique information modes: each variable
contains 1 bit of unique information with respect to the second variable about the third variable.
Further, these unique information terms are all reversible, which reflects the symmetry of the system
under pairwise swapping of the variables. This description provides a simple and accurate summary of
the total entropy of the dyadic system, which matches the dependency structure illustrated in Figure 6a.

The three bits of the total H(X, Y, Z) in the triadic system consist of one bit of the smallest
reversible redundancy and two bits of the smallest reversible synergy, since the latter appears twice
in H(X, Y, Z). Again, the reversible nature of these pieces of information reflects the symmetry of
the system under pairwise swapping of the variables. Further, the bit of reversible redundancy
represents the bit of information that is redundantly available to all three variables, while the two
bits of reversible synergy are due to the three-wise XOR structure (see Figure 6b). Why does the XOR
structure provide two bits of synergistic information? Because if X = Y ⊕ Z then the only positive
quantity in the set of subatoms in Figure 4b is the smallest RCI, which however appears twice in the
entropy H(X, Y, Z). Importantly, these two bits of synergy do not come from the same PID diagram:
our entropy decomposition in Equation (16) could account for both bits only because it fundamentally
relies on cross-comparisons between different PID diagrams, as illustrated in Figure 4.
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Figure 8. The joint entropy H(X, Y, Z) = 3 bits of a dyadic (upper panel) and a triadic (lower panel)
system, as defined in Figure 6, is decomposed in terms of the minimal set as illustrated in Figure 7.
In the dyadic system, H(X, Y, Z) is decomposed into three pieces of (reversible) unique information:
each variable contains 1 bit of unique information with respect to the second variable about the third
variable. In the triadic system, H(X, Y, Z) is decomposed into one bit of information shared among all
three variables (the reversible redundancies) and two bits of (reversible) synergistic information due to
the three-wise XOR structure.

We remark that the results and the interpretations presented in this subsection depend on our
use of the PID definition presented in Ref. [11]. If a different redundancy measure is adopted,
the subatoms that decompose the entropy H(X, Y, Z) in Figure 8 would still be the same, but their
value could change.

6. Applications of the Finer Structure of the PID Framework

The aim of this Section is to show the additional insights that the finer structure of the PID
framework, unveiled in Section 3.2 and Figure 4, can bring to the analysis of trivariate systems.
We examine paradigmatic examples of trivariate systems and calculate the novel PID quantities of
source and non-source redundancy that we described in Section 4. Most of these examples have been
considered in the literature [11,22,23,26,33] to validate the definitions, or to suggest interpretations,
of the PID atoms. We also discuss how SR matches the notion of source redundancy introduced in
Ref. [22] and discussed in Ref. [20]. Finally, we suggest and motivate a practical interpretation of the
reversible redundancy subatom RSI.

The decomposition of the PID lattices in terms of the minimal subatoms’ set that we illustrated in
Figure 4 is to be calculated after the traditional PID atoms have been computed. Since it relies only on
the lattice relations, the subatomic decomposition can be attained for any of the several measures that
have been proposed to underpin the PID [10,11,22,26]. In some cases the value of the atoms can be
derived from axiomatic arguments, hence it does not depend on the specific measure selected; in other
cases it has to be actually calculated choosing a particular measure, and it can differ for different
measures. In the latter cases, our computations rely on the definitions of PID that were proposed
in Ref. [11], which are widely accepted in the literature for trivariate systems. Whenever we needed
a numerical computation of the PID atoms, we performed it with a Matlab package we specifically
developed for this task, which is freely available for download and reuse through Zenodo and Github
(https://doi.org/10.5281/zenodo.850362).
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6.1. Computing Source and Non-Source Redundancy

6.1.1. Copying—The Redundancy Arises Entirely from Source Correlations

Consider a system where Y and Z are random binary variables that are correlated according
to a control parameter λ [22]. For example, consider a uniform binary random variable W that
’drives’ both Y and Z with the same strength λ. More precisely, p(y|w) = λ/2 + (1− λ)δyw and
p(z|w) = λ/2 + (1− λ)δzw [22]. This system is completed by taking X = (Y, Z), i.e., a two-bit random
variable that reproduces faithfully the joint outcomes of the generating variables Y, Z.

We consider the inputs Y and Z as the PID sources and the output X as the PID target,
thus selecting the left-most PID diagram in Figure 2. Figure 9a shows our calculations of the full
redundancy SI(X : {Y; Z}), the source redundancy SR(X : {Y; Z}) and the non-source redundancy
NSR(X : {Y; Z}), based on the definitions in Ref. [11]. The parameter λ is varied between λ = 0,
corresponding to Y = Z, and λ = 1, corresponding to Y ⊥⊥ Z. Since NSR(X : {Y; Z}) = 0 for any
0 ≤ λ ≤ 1, we interpret that all the redundancy SI(X : {Y; Z}) arises from the correlations between Y
and Z (which are tuned with λ). This property was presented as the identity axiom in Ref. [22], where
the authors argued that in the ’copying’ example the entire redundancy should be already apparent in
the sources. Indeed, the PID definitions of Ref. [11] that we use here abide by the identity axiom, and
these results would not change if we used other PID definitions that still satisfy the identity axiom.

(a) (b)

Figure 9. The binary random variables Y and Z are uniformly distributed inputs that determine the
output X as X = (Y, Z) in panel (a) and as X = Y ∧ Z in panel (b). Correlations between Y and Z
decrease with increasing λ, from perfect correlation (λ = 0) to perfect independence (λ = 1). The full
redundancy SI(X : {Y; Z}), the source redundancy SR(X : {Y; Z}) and the non-source redundancy
NSR(X : {Y; Z}) of the inputs about the output are plotted as a function of λ. (a) Since the output
variable X copies the inputs (Y, Z), all of SI(X : {Y; Z}) can only come from the correlations between
the inputs, which is reflected in NSR(X : {Y; Z}) being identically 0 for all values of λ. (b) For all
values of λ > 0 we find NSR(X : {Y; Z}) > 0, i.e., there is a part of the redundancy SI(X : {Y; Z})
which does not arise from the correlations between the inputs Y and Z. Accordingly, NSR(X : {Y; Z})
also appears in the synergy CI(X : {Y; Z}).

6.1.2. AND Gate: The Redundancy is not Entirely Related to Source Correlations

Consider a system where the correlations between two binary random variables, the inputs
Y and Z, are described by the control parameter λ as in Section 6.1.1, but the output X is determined by
the AND function as X = Y ∧ Z [22]. As the causal structure of the system would suggest, we consider
the inputs Y and Z as the PID sources and the output X as the PID target, thus selecting the left-most
PID diagram in Figure 2. Figure 9b shows our calculations of the full redundancy SI(X : {Y; Z}),
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the source redundancy SR(X : {Y; Z}) and the non-source redundancy NSR(X : {Y; Z}), based on
the definitions in Ref. [11].

SR and NSR now show a non-trivial behavior as a function of the Y− Z correlation parameter
λ. If λ = 0 and thus Y = Z, the full redundancy is made up entirely of source redundancy—trivially,
both SI(X : {Y; Z}) and SR(X : {Y; Z}) equal the mutual information I(Y : Z) = H(Y) = 1 bit.
When λ increases, the full redundancy decreases monotonically to its minimum value of ≈0.311 bits
for λ = 1 (when Y ⊥⊥ Z). Importantly, SR(X : {Y; Z}) decreases monotonically as a function of λ to
its minimum value of zero bits when λ = 1: this behavior is indeed expected from a measure that
quantifies correlations between the sources that also produce redundant information about the target
(see Section 4). On the other hand, NSR(X : {Y; Z}) > 0 for λ > 0, and it increases as a function of λ.
When λ = 1, i.e., when Y ⊥⊥ Z, NSR corresponds to the full redundancy. This is compatible with our
description of non-source redundancy (see Section 4) as redundancy that is not related to the source
correlations; indeed, NSR > 0 implies that the sources also carry synergistic information about the
target (here, due to the relationship X = Y ∧ Z). NSR thus also quantifies the notion of mechanistic
redundancy that was introduced in Ref. [22] with reference to this scenario.

6.1.3. Dice Sum: Tuning Irreversible Redundancy

Consider a system where Y and Z are two uniform random variables, each representing
the outcome of a die throw [22]. A parameter λ controls the correlations between the two dice:
p(y, z) = λ/36+ (1− λ)/6 δyz. Thus, for λ = 0 the dice throws always match, for λ = 1 the outcomes
are completely independent. Further, the output X combines each pair (y, z) of input outcomes as
x = y + α z, where α ∈ {1, 2, 3, 4, 5, 6}. This example was suggested in Ref. [22] specifically to point
out the conceptual difficulties in quantifying the interplay between the redundancy and the source
correlations, that we addressed with the identification of SR and NSR (see Section 4).

Harder et al. calculated redundancy by using their own proposed measure Ired, which also abides
by the PID axioms in Ref. [10] but is different than the measure SI(X : {Y; Z}) introduced in Ref. [11].
However, Ref. [11] also calculated SI(X : {Y; Z}) for this example: they showed that the differences
between SI(X : {Y; Z}) and Ired in this example are only quantitative (and there is no difference
at all for some values of α), while the qualitative behaviour of both measures as a function of λ is
very similar.

Figure 10 shows our calculations of the full redundancy SI(X : {Y; Z}), the source redundancy
SR(X : {Y; Z}) and the non-source redundancy NSR(X : {Y; Z}), based on the definitions in Ref. [11].
We display the two ‘extreme’ cases α = 1, α = 6 for illustration.

With α = 6, X is isomorphic to the joint variable (Y, Z): for any λ, this implies on one hand
SI(X : {Y; Z}) = SI((Y; Z) : {Y; Z}) = I(Y : Z), and on the other UI(Y : {Z\X}) = 0 and thus
SI(Y : {X; Z}) = I(Y : Z) (see Equation (1)). According to Equation (7), we thus find that the
source redundancy SR(X : {Y; Z}) saturates, for any λ, the general inequality in Equation (9): all
correlations between the inputs Y, Z also produce redundant information about X (see Section 4).
Further, according to Equation (8), we find NSR(X : {Y; Z}) = 0 for any λ (see Figure 10b): we thus
interpret that all the redundancy SI(X : {Y; Z}) arises from correlations between the inputs. Instead, if
we fix λ and decrease α, the two inputs Y, Z are more and more symmetrically combined in the output
X: with α = 1, the pieces of information respectively carried by each input about the output overlap
maximally. Correspondingly, the full redundancy SI(X : {Y; Z}) increases [22]. However, keeping λ

fixed does not change the inputs’ correlations. Thus, we expect that the relative contribution of the
inputs’ correlations to the full redundancy SI(X : {Y; Z}) should decrease proportionally. Indeed, in
Figure 10a we find NSR(X : {Y; Z}) > 0 for λ > 0, which signals that a part of SI(X : {Y; Z}) is not
related to the inputs’ correlations.
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(a) (b)

Figure 10. Two dice with uniformly distributed outcomes (y, z) ranging from 1 to 6 are the inputs
fed to an output third variable X as follows: (a) x = y + z; (b) x = y + 6 z. The parameter λ controls
the correlations between Y and Z (from complete correlation for λ = 0 to complete independence for
λ = 1). In panel (a) the inputs Y, Z are symmetrically combined to determine the output X, while
in panel (b) this symmetry is lost: accordingly, for any fixed λ the full redundancy SI(X : {Y; Z})
is larger in (a) than in (b). Since the value of α does not change the inputs’ correlations, the relative
contribution of the inputs’ correlations to the full redundancy SI(X : {Y; Z}) increases from (a) to (b).
Indeed, in panel (a) NSR(X : {Y; Z}) > 0 for λ > 0, while in (b) SI(X : {Y; Z}) = SR(X : {Y; Z}) for
any λ, i.e., the redundancy arises entirely from inputs’ correlations.

We finally note that also in this paradigmatic example the splitting of the redundancy into SR
and NSR addresses the challenge of separating the two kinds of redundancy outlined in Ref. [22].

6.1.4. Trivariate Jointly Gaussian Systems

Barrett considered in detail the application of the PID to trivariate jointly Gaussian systems
(X, Y, Z) in which the target is univariate [23]: he showed that several specific proposals for calculating
the PID atoms all converge, in this case, to the same following measure of redundancy:

SI(X : {Y; Z}) = min[I(X : Y), I(X : Z)]. (17)

We note that Equation (17) highlights the interesting property that, in trivariate Gaussian systems
with a univariate target, the redundancy is as large as it can be, since it saturates the general inequalities
SI(X : {Y; Z}) ≤ I(X : Y), I(X : Z).

Direct application of our definitions in Equations (7) and (8) to such systems yields:

SR(X : {Y; Z}) = min[I(X : Y), I(X : Z), I(Y : Z)],

NSR(X : {Y; Z}) = min[I(X : Y), I(X : Z)]−min[I(X : Y), I(X : Z), I(Y : Z)]. (18)

Thus, we find that in these systems the source redundancy is also as large as it can be, since
it also saturates the general inequalities SR(X : {Y; Z}) ≤ I(X : Y), I(X : Z), I(Y : Z) (which
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follow immediately from its definition in Equation (7)). Further, combining Equation (17) with
Equation (18) gives:

SR(X : {Y; Z}) =
{

SI(X : {Y; Z}), if I(Y : Z) ≥ SI(X : {Y; Z}),
I(Y : Z), otherwise;

(19)

NSR(X : {Y; Z}) =
{

0, if I(Y : Z) ≥ SI(X : {Y; Z}),
SI(X : {Y; Z})− I(Y : Z), otherwise.

(20)

This identification of source redundancy, which quantifies pairwise correlations between the sources
that also produce redundant information about the target (see Section 4), provides more insight about the
distribution of information in Gaussian systems. Indeed, the property that source redundancy is
maximal indicates that the correlations between any pair of source variables (for example, {Y; Z} as
considered above) produces as much redundant information as possible about the corresponding
target (X as considered above). Accordingly, when I(Y : Z) < SI(X : {Y; Z}), the redundancy also
includes some non-source redundancy NSR(X : {Y; Z}) > 0 that implies the existence of synergy, i.e.,
CI(X : {Y; Z}) > 0.

6.2. RSI Quantifies Information between two Variables That also Passes Monotonically Through the Third

In this section, we discuss a practical interpretation of the reversible redundancy subatom RSI defined

in Equation (3a). We note that RSI(X Z↔ Y) appears both in SI(X : {Y; Z}) and in SI(Y : {X; Z}), i.e., it
quantifies a common amount of information that Z shares with each of the two other variables about the

third variable. We shorten this description into the statement that RSI(X Z↔ Y) quantifies ’information
between X and Y that also passes through Z’. Reversible redundancy is further characterized by the
following Proposition:

Proposition 1. RSI(X (Z,Z’)↔ Y) ≥ RSI(X Z↔ Y).

Proof. Both SI(X : {Y; (Z, Z′)}) ≥ SI(X : {Y; Z}) and SI(Y : {X; (Z, Z′)}) ≥ SI(Y : {X; Z}) [10].

Thus, RSI(X Z↔ Y) = min[SI(X : {Y; Z}), SI(Y : {X; Z})] ≤ min[SI(X : {Y; (Z, Z′)}),
SI(Y : {X; (Z, Z′)})] = RSI(X

(Z,Z’)↔ Y).

Indeed, the fact that RSI always increases whenever we expand the middle variable corresponds
to the increased capacity of the entropy of the middle variable to host information between the endpoint
variables. We discuss this interpretation of RSI by examining several examples, where we can motivate
a priori our expectations about this novel mode of information sharing.

6.2.1. Markov Chains

Consider the most generic Markov chain X → Z → Y, defined by the property that
p(x, y|z) = p(x|z)p(y|z), i.e., that X and Y are conditionally independent given Z. The Markov
structure allows us to formulate a clear a priori expectation about the amount of information between
the endpoints of the chain, X and Y, that also ’passes through the middle variable Z’: this information
should clearly equal I(X : Y), because whatever information is established between X and Y must pass
through Z.

Indeed, the Markov property I(X : Y|Z) = 0 implies, as we see immediately from Figure 2, that
SI(X : {Y; Z}) = SI(Y : {X; Z}) = I(X : Y). By virtue of Equations (3a) and (4), in accordance with
our expectation, we find

RSI(X Z↔ Y) = I(X : Y), (21)
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which holds true independently of the marginal distributions of X, Y and Z. Notably, the symmetry

of RSI(X Z↔ Y) under swap of the endpoint variables X ↔ Y is also compatible with the property
that X → Z → Y is a Markov chain if and only if Y → Z → X is a Markov chain. In words, whatever
information flows from X through Z to Y equals the information flowing from Y through Z to X.

More generally, the Markov property I(X : Y|Z) = 0 implies that RCI(Y Z↔ X) = IRSI(X Z← Y)

= RUI(X Z↔ Y) = 0: thus, only four of the seven subatoms of the minimal set in Figure 4 can be larger
than zero. Following the procedure illustrated in Section 3.2, we decompose the three PIDs of the
system in terms of the minimal subatoms’ set as shown in Figure 11. In particular, we see that also

RSI(X Y↔ Z) = I(X : Y), thus matching our expectation that in the Markov chain X → Z → Y the
information between X and Z that also passes through Y still equals I(X : Y). We finally note that
none of the results regarding Markov chains depends on specific definitions of the PID atoms: they
were derived only on the basis of the PID axioms in Ref. [10].

Figure 11. The finer structure of the three PID diagrams, as defined in Figure 4, in the case of a generic
Markov chain X → Z → Y. Three of the seven subatoms of the minimal set described in Figure 4 are
forced to zero by the Markov property I(X : Y|Z) = 0.

6.2.2. Two Parallel Communication Channels

Consider five binary uniform random variables X1, X2, Y1, Y2, Z with three parameters

0 ≤ λ1, λ2, λ3 ≤ 1 controlling the correlations X1
λ1↔ Z

λ2↔ Y1, X2
λ3↔ Y2 (in the same way λ

controls the Y λ↔ Z correlations in Section 6.1.1). We consider the trivariate system (X, Y, Z) with
X = (X1, X2) and Y = (Y1, Y2) (see Figure 12). Given that (X1, Z, Y1) ⊥⊥ (X2, Y2), we intuitively
expect that the information between X and Y that also passes through Z, in this case, should
equal I(X1 : Y1), which in general will be smaller than I(X : Y) = I(X1 : Y1) + I(X2 : Y2).
Indeed, if we use the PID definitions of Ref. [11], (X1, Z, Y1) ⊥⊥ (X2, Y2) implies that SI((X1X2) :
{(Y1Y2); Z}) = SI(X1 : {Y1; Z}) + SI(X2 : {Y2; ∅}) = SI(X1 : {Y1; Z}) [11] and, similarly,
SI((Y1Y2) : {(X1X2); Z}) = SI(Y1 : {X1; Z}). However, from the previous subsection we find
that SI(X1 : {Y1; Z}) = I(X1 : Y1) and SI(Y1 : {X1; Z}) = I(X1 : Y1). Thus, we find that

RSI(X Y↔ Z) = I(X1 : Y1), in agreement with our expectations.
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Figure 12. X = (X1, X2) and Y = (Y1, Y2) share information via two parallel channels: one passes
through Z, the other does not. The parameters λ1, λ2, λ3 control the correlations as depicted with the
arrows. If we use the PID definitions in Ref. [11], we find that, in agreement with the interpretation in

Section 6.2, RSI(X Z↔ Y) here quantifies information between X and Y that also passes through Z, as it
is equal to I(X1 : Y1).

6.2.3. Other Examples

To further describe the interpretation of RSI(X Z↔ Y) as information between X and Y that also
passes through Z, we here reconsider the examples, among those discussed before Section 6.2, where
we can formulate intuitive expectations about this information sharing mode. In the dyadic system
described in Figure 6a, our expectation is that there should be no information between two variables

that also passes through the other: indeed, RSI(X Z↔ Y) = 0 in this case. Instead, in the triadic system
described in Figure 6b, we expect that the information between two variables that also passes through
the other should equal the information that is shared among all three variables, which amounts to

1 bit. Indeed, we find RSI(X Z↔ Y) = 1 bit. In the ’copying’ example in Section 6.1.1 X = (Y, Z), thus
we expect that I(Y : Z) corresponds to information between Y, Z that also passes through X, but also

to information between X and Z that also passes through Y. Indeed, RSI(X Z↔ Y) = RSI(X Y↔ Z) =
I(Y : Z). We remark that all the values of RSI in these examples depend on the specific definitions of
the PID atoms in Ref. [11].

7. Discussion

The Partial Information Decomposition (PID) pioneered by Williams and Beer has provided
an elegant construction to quantify redundant, synergistic, and unique information contributions
to the mutual information that a set of sources carries about a target variable [10]. More generally,
it has generated considerable interest as it addresses the difficult yet practically important problem of
extending information theory beyond the classic bivariate measures of Shannon to fully characterize
multivariate dependencies.

However, the axiomatic PID construction, as originally formulated by Williams and Beer,
fundamentally relied on the separation of the variables into a target and a set of sources. While this
classification was developed to study systems in which it is natural to identify a target, in general it
introduces a partial perspective that prevents a complete and general information-theoretic description
of the system. More specifically, the original PID framework could not quantify some important
modes of information sharing, such as source redundancy [22], and could not allot the system’s full
joint entropy [21]. The work presented here addresses these issues focusing on trivariate systems,
by extending the original PID framework in two respects. First, we decomposed the original PID atoms
in terms of finer information subatoms with a well defined interpretation that is invariant to different
variables’ classifications. Then, we constructed an extended framework to completely decompose the
distribution of information within any trivariate system.

Importantly, our formulation did not require the addition of further axioms to the original PID
construction. We proposed that distinct PIDs for the same system, corresponding to different target
selections, should be evaluated and then compared to identify how the decomposition of information
changes across different perspectives. More specifically, we identified reversible pieces of information
(RSI, RUI, RCI) that contribute to the same kind of PID atom if we reverse the roles of target and
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source between two variables. The complementary subatomic components of the PID lattices are the
irreversible pieces of information (IRSI), that contribute to different kinds of PID atom for different
target selections. These subatoms thus measure asymmetries between different decompositions of
Shannon quantities pertaining to two different PIDs of the same system, and such asymmetries reveal
the additional detail with which the PID atoms assess trivariate dependencies as compared to the
coarser and more symmetric Shannon information quantities.

The crucial result of this approach was unveiling the finer structure underlying the PID lattices:
we showed that an invariant minimal set of seven information subatoms is sufficient to decompose the
three PIDs of any trivariate system. In the remainder of this section, possible uses of these subatoms
and their implications for the understanding of systems of three variables are discussed.

7.1. Use of the Subatoms to Map the Distribution of Information in Trivariate Systems

Our minimal subatoms’ set was first used to characterize more finely the distribution of
information among three variables. We clarified the interplay between the redundant information
shared between two variables A and B about a third variable C, on one side, and the correlations
between A and B, on the other. We decomposed the redundancy into the sum of source-redundancy
SR, which quantifies the part of the redundancy which arises from the pairwise correlations between the sources
A and B, and non-source redundancy NSR, which can be larger than zero even if the sources A and
B are statistically independent. Interestingly, we found that NSR quantifies the part of the redundancy
which implies that A and B also carry synergistic information about C. The separation of these qualitatively
different components of redundancy promises to be useful in the analysis of any complex system
where several inputs are combined to produce an output [20].

Then, we used our minimal subatoms’ set to extend the descriptive power of the PID framework in
the analysis of any trivariate system. We constructed a general, unique, and nonnegative decomposition
of the joint entropy H(X, Y, Z) in terms of information-theoretic components that can be clearly
interpreted without arbitrary variable classifications. This construction parallels the decomposition of
the bivariate entropy H(X, Y) in terms of Shannon’s mutual information I(X : Y). We demonstrated
the descriptive power of this approach by decomposing the complex distribution of information in
dyadic and triadic systems, which was shown not to be possible within the original PID framework [21].

We gave practical examples of how the finer structure underlying the PID atoms provides more
insight into the distribution of information within important and well-studied trivariate systems.
In this spirit, we put forward a practical interpretation of the reversible redundancy RSI, and future
work will address additional interpretations of the components of the minimal subatoms’ set.

7.2. Possible Extensions of the Formalism to Multivariate Systems with Many Sources

The insights that derive from our extension of the PID framework suggest that the PID lattices
could also be useful to characterize the statistical dependencies in multivariate systems with more
than two sources. Our approach does not rely on the adoption of specific PID measures, but only on
the axiomatic construction of the PID lattice. Thus, it could be extended to the multivariate case by
embedding trivariate lattices within larger systems’ lattices [12]: a further breakdown of the minimal
subatoms’ set could be obtained if the current system were embedded as part of a bigger system.
However, the implementation of these generalizations is left for future work. We anticipate that such
generalizations would be computationally as expensive as the implementation of the multivariate PID
method proposed by Williams and Beer. Indeed, after the computation of the traditional PID lattices,
our approach only requires the comparison of different PID lattices, that relies on computing pairwise
minima between PID atoms—a computationally trivial operation.

Further, when systems with more than two sources are considered, the definition of source
redundancy might be extended as to determine which subatoms of a redundancy can be explained
by dependencies among the sources (for example, by replacing the mutual information between two
sources with a measure of the overall dependencies among all sources, such as the total correlation
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introduced in Ref. [36]). More generally, the idea of comparing different PID diagrams that partially
decompose the same information can also be generalized to identify finer structure underlying
higher-order PID lattices with different numbers of variables. These identifications might also help
addressing specific questions about the distribution of information in complex multivariate systems.

7.3. Potential Implications for Systems Biology and Systems Neuroscience

A common problem in system biology is to characterize how the function of the whole biological
system is shaped by the dependencies among its many constituent biological variables. In many
cases, ranging from gene regulatory networks [37] to metabolic pathways [14] and to systems
neuroscience [38–40], an information-theoretic decomposition of how information is distributed and
processed within different parts of the system would allow a model-free characterization of these
dependencies. The work discussed here can be used to shed more light on these issues by allowing to
tease apart qualitatively different modes of interaction, as a first necessary step to understanding the
causal structure of the observed phenomena [41].

In systems neuroscience, the decomposition introduced here may be important for studying
specific and timely questions about neural information processing. This work can contribute to
the study of neural population coding, that is the study of how the concerted activity of many
neurons encodes information about ecologically relevant variables such as sensory stimuli [40,42].
In particular, a key characteristic of a neural population code is the degree to which pairwise or
higher-order cross-neuron statistical dependencies are used by the brain to encode and process
information, in a potentially redundant or synergistic way, across neurons [7–9] and across time [43].
Moreover, characterizing different types of redundancy may also be relevant to further study the
relation between the information of neural responses and neural connectivity [44]. Our work is also of
potential relevance to study another timely issue in neuroscience, that is the relevance for perception
of the information about sensory variables carried by neural activity [19,45]. This is a crucial issue to
resolve the diatribe about the nature of the neural code, that is the set of symbols used by neurons to
encode information and produce brain function [46–48]. Addressing this problem requires mapping
the information in the multivariate distribution of variables such as the stimuli presented to the
subject, the neural activity elicited by the presentation of such stimuli, and the behavioral reports
of the subject’s perception. More specifically, it requires characterizing the information between
the presented stimulus and the behavioral report of the perceived stimulus that can be extracted
from neural activity [19]. It is apparent that developing general decompositions of the information
exchanged in multivariate systems, as we did here, is key to succeeding in rigorously addressing these
fundamental systems-level questions.
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Appendix A. Summary of the Relationships Among Distinct PID Lattices

In this Section we report the full set of equations and definitions that determine the finer structure
of the three PID diagrams, as described in Section 3.2 and Figure 4 in the main text. Without loss of
generality, we assume that

SI(Y : {X; Z}) ≤ SI(X : {Y; Z}) ≤ SI(Z : {X; Y}).
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We start by writing down explicitly all the permutations of Equations (1), (2), and (6), relating traditional
information quantities to the PID:

I(X : Y) = SI(X : {Y; Z}) + UI(X : {Y\Z}) = SI(Y : {X; Z}) + UI(Y : {X\Z}), (A1a)

I(X : Z) = SI(X : {Y; Z}) + UI(X : {Z\Y}) = SI(Z : {X; Y}) + UI(Z : {X\Y}), (A1b)

I(Y : Z) = SI(Y : {X; Z}) + UI(Y : {Z\X}) = SI(Z : {X; Y}) + UI(Z : {Y\X}); (A1c)

I(X : Y|Z) = CI(X : {Y; Z}) + UI(X : {Y\Z}) = CI(Y : {X; Z}) + UI(Y : {X\Z}), (A2a)

I(X : Z|Y) = CI(X : {Y; Z}) + UI(X : {Z\Y}) = CI(Z : {X; Y}) + UI(Z : {X\Y}), (A2b)

I(Y : Z|X) = CI(Y : {X; Z}) + UI(Y : {Z\X}) = CI(Z : {X; Y}) + UI(Z : {Y\X}); (A2c)

CoI(X; Y; Z) = SI(X : {Y; Z})− CI(X : {Y; Z})
= SI(Y : {X; Z})− CI(Y : {X; Z})
= SI(Z : {X; Y})− CI(Z : {X; Y}).

(A3)

By using only the relations above, together with assumption (*) and the definitions of RSI, RCI,
RUI and IRSI (Equations (3a)–(3c) and (4)), we will now show how all PID elements, and hence
all information quantities above, can be decomposed in terms of the minimal set of seven subatoms
depicted as elementary blocks in Figure 4.

By applying the definitions of RSI (Equation (3a)) and IRSI (Equation (4)), assumption (*) implies
the following:

IRSI(Y Z← X) = SI(Y : {X; Z})− RSI(Y Z↔ X)

= SI(Y : {X; Z})−min[SI(X : {Y; Z}), SI(Y : {X; Z})]
= SI(Y : {X; Z})− SI(Y : {X; Z})
= 0,

(A4)

as well as

IRSI(X Z← Y) = SI(X : {Y; Z})− RSI(X Z↔ Y)

= SI(X : {Y; Z})−min[SI(X : {Y; Z}), SI(Y : {X; Z})]
= SI(X : {Y; Z})− SI(Y : {X; Z})
= CI(X : {Y; Z})− CI(Y : {X; Z})
= UI(Y : {X\Z})−UI(X : {Y\Z}),

(A5)

where the fourth equality follows from Equation (A3), and the fifth from Equation (A2a). Analogously,
using Equations (A3) and (A2b), we get

IRSI(Z Y← X) = SI(Z : {X; Y})− RSI(Z Y↔ X)

= SI(Z : {X; Y})−min[SI(X : {Y; Z}), SI(Z : {X; Y})]
= SI(Z : {X; Y})− SI(X : {Y; Z})
= CI(Z : {X; Y})− CI(X : {Y; Z})
= UI(X : {Z\Y})−UI(Z : {X\Y}).

(A6)

Using the relations above, we can express the SI atoms of the three PIDs in terms of the RSI and
IRSI subatoms:

SI(Y : {X; Z}) = RSI(X Z↔ Y) + IRSI(Y Z← X) = RSI(X Z↔ Y), (A7)
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where we used Equation (A4),

SI(X : {Y; Z}) = RSI(X Z↔ Y) + IRSI(X Z← Y), (A8)

where we used Equation (A5), and

SI(Z : {X; Y}) = SI(X : {Y; Z}) + [CI(Z : {X; Y})− CI(X : {Y; Z})]

= RSI(X Z↔ Y) + IRSI(X Z← Y) + [CI(Z : {X; Y})− CI(X : {Y; Z})]

= RSI(X Z↔ Y) + IRSI(X Z← Y) + IRSI(Z Y← X),

(A9)

where the first equality follows from Equation (A3), the second from Equation (A8) and the third from
Equation (A6). Analogously, we can express the CI atoms in terms of RCI and IRSI:

CI(Y : {X; Z}) = RCI(X Z↔ Y) + IRSI(Y Z← X) = RCI(X Z↔ Y), (A10)

CI(X : {Y; Z}) = RCI(X Z↔ Y) + IRSI(X Z← Y), (A11)

and

CI(Z : {X; Y}) = CI(X : {Y; Z}) + [SI(Z : {X; Y})− SI(X : {Y; Z})]

= RCI(X Z↔ Y) + IRSI(X Z← Y) + [SI(Z : {X; Y})− SI(X : {Y; Z})]

= RCI(X Z↔ Y) + IRSI(X Z← Y) + IRSI(Z Y← X).

(A12)

Note how the same IRSI terms appear in Equations (A8) and (A11), and in Equations (A9) and (A12),
in agreement with the invariance of the co-information (Equation (A3)).

Finally, to study the UI atoms, we observe that, given (*), Equation (A1a) implies
UI(X : {Y\Z}) ≤ UI(Y : {X\Z}), Equation (A1b) implies UI(Z : {X\Y}) ≤ UI(X : {Z\Y}), and
Equation (A1c) implies UI(Z : {Y\X}) ≤ UI(Y : {Z\X}). These inequalities, in turn, imply that

RUI(X Z↔ Y) = min[UI(X : {Y\Z}), UI(Y : {X\Z})] = UI(X : {Y\Z}),

RUI(X Y↔ Z) = min[UI(X : {Z\Y}), UI(Z : {X\Y})] = UI(Z : {X\Y}),

RUI(Y X↔ Z) = min[UI(Y : {Z\X}), UI(Z : {Y\X})] = UI(Z : {Y\X}),

which we can rewrite as

UI(X : {Y\Z}) = RUI(X Z↔ Y), (A13)

UI(Z : {X\Y}) = RUI(X Y↔ Z), (A14)

UI(Z : {Y\X}) = RUI(Y X↔ Z). (A15)

Hence,

UI(Y : {X\Z}) = UI(X : {Y\Z}) + [SI(X : {Y; Z})− SI(Y : {X; Z})]

= RUI(X Z↔ Y) + IRSI(X Z← Y),
(A16)
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where the first equality follows from Equation (A1a), and the second from Equations (A5) and (A13).
Similarly,

UI(X : {Z\Y}) = UI(Z : {X\Y}) + [SI(Z : {X; Y})− SI(X : {Y; Z})]

= RUI(X Y↔ Z) + IRSI(Z Y← X),
(A17)

where we used Equations (A1b), (A6) and (A14), and

UI(Y : {Z\X}) = UI(Z : {Y\X}) + [SI(Z : {X; Y})− SI(Y : {X; Z})]

= RUI(Y X↔ Z) + IRSI(Z Y← X) + IRSI(Z Y← X),
(A18)

where we used Equations (A1c), (A7), (A9) and (A15).
Equations (A7)–(A18) thus describe all atoms of the three PIDs using the following seven subatoms:

IRSI(X Z← Y)

IRSI(Z Y← X)

RSI(X Z↔ Y)

RCI(X Z↔ Y)

RUI(X Z↔ Y)

RUI(X Y↔ Z)

RUI(Y X↔ Z).

This description is illustrated graphically in Figure 4, where each subatom is represented as a
coloured block.
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Abstract: Secret sharing is a cryptographic discipline in which the goal is to distribute information
about a secret over a set of participants in such a way that only specific authorized combinations
of participants together can reconstruct the secret. Thus, secret sharing schemes are systems
of variables in which it is very clearly specified which subsets have information about the secret.
As such, they provide perfect model systems for information decompositions. However, following this
intuition too far leads to an information decomposition with negative partial information terms,
which are difficult to interpret. One possible explanation is that the partial information lattice
proposed by Williams and Beer is incomplete and has to be extended to incorporate terms
corresponding to higher-order redundancy. These results put bounds on information decompositions
that follow the partial information framework, and they hint at where the partial information lattice
needs to be improved.
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1. Introduction

Williams and Beer [1] have proposed a general framework to decompose the multivariate mutual
information I(S; X1, . . . , Xn) between a target random variable S and predictor random variables
X1, . . . , Xn into different terms (called partial information terms) according to different ways in which
combinations of the variables X1, . . . , Xn provide unique, shared, or synergistic information about S.
Williams and Beer argue that such a decomposition can be based on a measure of shared information.
The underlying idea is that any information can be classified according to “who knows what”. However,
is this true?

A situation where the question “who knows what?” is easy to answer very precisely is secret
sharing—a part of cryptography in which the goal is to distribute information (the secret) over
a set of participants such that the secret can only be reconstructed if certain authorized combinations
of participants join their information (see [2] for a survey). The set of authorized combinations is called
the access structure. Formally, the secret is modelled as a random variable S, and a secret sharing scheme
assigns a random variable Xi to each participant i in such a way that if {i1, . . . , ik} is an authorized
set of participants, then S is a function of Xi1 , . . . , Xik ; that is, H(S|Xi1 , . . . , Xik ) = 0; and, conversely,
if {i1, . . . , ik} is not authorized, then H(S|Xi1 , . . . , Xik ) > 0. It is assumed that the participants know the
scheme, and so any authorized combination of participants can reconstruct the secret if they join their
information. A secret sharing scheme is perfect if non-authorized sets of participants know nothing
about the secret; i.e., H(S|Xi1 , . . . , Xik ) = H(S). Thus, in a perfect secret sharing scheme, it is very
clearly specified “who knows what”. In this sense, perfect secret sharing schemes provide model
systems for which it should be easy to write down an information decomposition.

One connection between secret sharing and information decompositions is that the set of access
structures of secret sharing schemes with n participants is in one-to-one correspondence with the partial
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information terms of Williams and Beer. This correspondence makes it possible to give another
interpretation to all partial information terms: namely, the partial information term is a measure of how
similar a given system of random variables is to a secret sharing scheme with a given access structure.

This correspondence also allows the introduction of the secret sharing property that makes the above
intuition precise: An information decomposition satisfies this property if and only if any perfect
secret sharing scheme has just a single partial information term (which corresponds to its access
structure). Lemma 2 states that the secret sharing property is implied by the Williams and Beer axioms,
which shows that the secret sharing property plays well together with the ideas of Williams and Beer.
Proposition 1 shows that in an information decomposition that satisfies a natural generalization of this
property, it is possible to prescribe arbitrary nonnegative values to all partial information terms.

These results suggest that perfect secret sharing schemes fit well together with the ideas
of Williams and Beer. However, following this intuition too far leads to inconsistencies. As Theorem 4
shows, extending the secret sharing property to pairs of perfect secret sharing schemes leads to negative
partial information terms. While other authors have started to build an intuition for negative partial
terms and argue that they may be unavoidable in information decompositions, the concluding section
collects arguments against such claims and proposes as another possible solutions that the Williams
and Beer framework is incomplete and is missing nodes that represent higher-order redundancy.

Cryptography, where the goal is not only to transport information (as in coding theory)
but also to keep it concealed from unauthorized parties, has initiated many interesting developments
in information theory; for example, by introducing new information measures and re-interpreting
older ones (see, for example, [3,4]). This manuscript focuses on another contribution of cryptography:
probabilistic systems with well-defined distribution of information.

The remainder of this article is organized as follows: Section 2 summarizes definitions and results
of secret sharing schemes. Section 3 introduces different secret sharing properties that fix the values
that a measure of shared information assigns to perfect secret sharing schemes and combinations
thereof. The main result of Section 4 is that the pairwise secret sharing property leads to negative
partial information terms. Section 5 discusses the implications of this incompatibility result.

2. Perfect Secret Sharing Schemes

We consider n participants among whom we want to distribute information about a secret in such
a way that we can control which subsets of participants together can decrypt the secret.

Definition 1. An access structure A is a family of subsets of {1, . . . , n}, closed to taking supersets.
Elements of A are called authorized sets.

A secret sharing scheme with access structure A is a family of random variables S, X1, . . . , Xn such that:

• H(XA, S) = H(XA), whenever A ∈ A.

Here, XA = (Xi)i∈A for all subsets A ⊆ {1, . . . , n}. A secret sharing scheme is perfect if

• H(XA, S) = H(XA) + H(S), whenever A /∈ A.

The condition for perfection is equivalent to H(S|XA) = H(S). See [2] for a survey on
secret sharing.

Theorem 1. For any access structure A and any h > 0, there exists a perfect secret sharing scheme with access
structure A for which the entropy of the secret S equals H(S) = h.

Proof. Perfect secret sharing schemes for arbitrary access structures were first constructed
by Ito et al. [5]. In this construction, the entropy of the secret equals 1 bit. Combining n copies of
such a secret sharing scheme gives a secret sharing scheme with a secret of n bit. As explained
in [2] (Claim 1), the distribution of the secret may be perturbed arbitrarily (as long as the support
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of the distribution remains the same). In this way it is possible to prescribe the entropy of the secret
in a perfect secret sharing scheme.

Example 1. Let Y1, Y2, Y3, S be independent uniform binary random variables, and let A = (Y1, Y2 ⊕ S),
B = (Y2, Y3 ⊕ S), C = (Y3, Y1 ⊕ S), where ⊕ denotes addition modulo 2 (or the XOR operation).
Then (S, A, B, C) is a perfect secret sharing scheme with access structure

{A, B}, {A, C}, {B, C}, {A, B, C}.

It may be of little surprise that integer addition modulo k is an important building block in many
secret sharing schemes.

While the existence of perfect secret sharing schemes is solved, there remains the problem of
finding efficient secret sharing schemes in the sense that the variables X1, . . . , Xn should be as small as
possible (in the sense of a small entropy), given a fixed entropy of the secret. For instance, in Example 1,
H(Xi)/H(S) = 2 for all i (see [2] for a survey).

Since an access structure A is closed to taking supersets, it is uniquely determined by its
inclusion-minimal elements

A :=
{

A ∈ A : if B ⊆ A and B �= A, then B /∈ A
}

.

For instance, in Example 1, the first three elements belong to A. The set A has the property
that no element of A is a subset of another element of A. Such a collection of sets is called
an antichain. Conversely, any such antichain equals the set of inclusion-minimal elements of a unique
access structure.

The antichains have a natural lattice structure, which was used by Williams and Beer to order
the different values of shared information and organize them into what they call the partial information
lattice. The same lattice also has a description in terms of secret sharing.

Definition 2. Let (A1, . . . , Ak) and (B1, . . . , Bl) be antichains. Then

(A1, . . . , Ak) � (B1, . . . , Bl) :⇐⇒ for any Bi there exists Aj with Aj ⊆ Bi.

The partial information lattice for the case n = 3 is depicted in Figure 1.

{123} : 2

{12} : 2 {13} : 2 {23} : 2

{12}{13} : 2 {12}{23} : 2 {13}{23} : 2

{1} : 1 {2} : 1 {3} : 1 {12}{13}{23} : ?

{1}{23} : 1 {2}{13} : 1 {3}{12} : 1

{1}{2} : 0 {1}{3} : 0 {2}{3} : 0

{1}{2}{3} : ?

Figure 1. The partial information lattice for n = 3. Each node is indexed by an antichain. The values
(in bit) of the shared information in the XOR example from the proof of Theorem 2 according
to the pairwise secret sharing property are given after the colon.
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Lemma 1. LetA be an access structure on {1, . . . , n}, and let (B1, . . . , Bl) be an antichain. Then B1, . . . , Bl are
all authorized for A if and only if A � (B1, . . . , Bl).

Proof. The statement directly follows from the definitions.

3. Information Decompositions of Secret Sharing Schemes

Williams and Beer [1] proposed to decompose the total mutual information I(S; X1, . . . , Xn)

between a target random variable S and predictor random variables X1, . . . , Xn according to different
ways in which combinations of the variables X1, . . . , Xn provide unique, shared, or synergistic
information about S. One of their main ideas is to base such a decomposition on a single measure
of shared information I∩, which is a function I(S; Y1, . . . , Yk) that takes as arguments a list of random
variables, of which the first, S, takes a special role. To arrive at a decomposition of I(S; X1, . . . , Xn),
the variables Y1, . . . , Yk are taken to be combinations XA = (Xi)i∈A of X1, . . . , Xn, corresponding
to subsets A of {1, . . . , n}. For simplicity, I∩(S; XA1 , . . . , XAk ) is denoted by I∩(S; A1, . . . , Ak) for all
A1, . . . , Ak ⊆ {1, . . . , n}.

Williams and Beer proposed a list of axioms that such a measure I∩ should satisfy. It follows
from these axioms that it suffices to consider the function I∩(S; A1, . . . , Ak) in the case that (A1, . . . , Ak)

is an antichain. Moreover, I∩(S; ·) is a monotone function on the partial information lattice
(Definition 2).

Thus, it is natural to write each value I∩(S; A1, . . . , Ak) on the lattice as a sum of local terms I∂

corresponding to the antichains that lie below (A1, . . . , Ak) in the lattice:

I∩(S; A1, . . . , Ak) = ∑
(B1,...,Bl)�(A1,...,Ak)

I∂(S; B1, . . . , Bl).

The terms I∂ are called partial information terms. This representation always exists, and the partial
information terms are uniquely defined (using a Möbius inversion). However, it is not guaranteed that
I∂ is always nonnegative. If I∂ is nonnegative, then I∩ is called locally positive.

Williams and Beer also defined a function denoted by Imin that satisfies their axioms and that
is locally positive. While the framework is intriguing and has attracted a lot of further research
(as this special issue illustrates), the function Imin has been criticized as not measuring the right thing.
The difficulty of finding a reasonable measure of shared information that is locally positive [6,7]
has led some to argue that maybe local positivity is not a necessary requirement for an information
decomposition. This issue is discussed further in Section 5.

The goal of this section is to present additional natural properties for a measure of shared
information that relate secret sharing with the intuition behind information decompositions.
In a perfect secret sharing scheme, any combination of participants knows either nothing or everything
about S. This motivates the following definition:

Definition 3. A measure of shared information I∩ has the secret sharing property if and only if for any access
structure A and any perfect secret sharing scheme (X1, . . . , Xn, S) with access structure A, the following holds:

I∩(S; A1, . . . , Ak) =

{
H(S), if A1, . . . , Ak are all authorized,

0, otherwise,
for all A1, . . . , Ak ⊆ {1, . . . , n}.

Lemma 2. The secret sharing property is implied by the Williams and Beer axioms.

Proof. The Williams and Beer axioms imply that

I∩(S; A1, . . . , Ak) ≤ I(S; Ai) = 0
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whenever Ai is not authorized. On the other hand, when A1, . . . , Ak are all authorized, then the
monotonicity axiom implies

I∩(S; A1, . . . , Ak) ≥ I∩(S; A1, . . . , Ak, S) = I∩(S; S) = H(S).

Perfect secret sharing schemes lead to information decompositions with a single nonzero partial
information term:

Lemma 3. If I∩ has the secret sharing property and if (X1, . . . , Xn, S) is a perfect secret sharing scheme with
access structure A, then

I∂(S; A1, . . . , Ak) =

{
H(S), if A = {A1, . . . , Ak},

0, otherwise,
for all A1, . . . , Ak ⊆ {1, . . . , n}. (1)

Proof. Suppose thatA = {A′1, . . . , A′k′ }, and let J∂(S; A1, . . . , Ak) be the right hand side of Equation (1).
We need to show that I∂ = J∂. Since the Möbius inversion is unique, it suffices to show that J∩ = I∩, where

J∩(S; A1, . . . , Ak) = ∑
(B1,...,Bl)�(A1,...,Ak)

J∂(S; B1, . . . , Bl).

By Lemma 1,

J∩(S; A1, . . . , Ak) =

{
H(S), if A1, . . . , Ak are all authorized,

0, otherwise,

for any A1, . . . , Ak ⊆ {X1, . . . , Xn}, from which the claim follows.

What happens when we have several secret sharing schemes involving the same participants?
In order to have a clear intuition, assume that the secret sharing schemes satisfy the following definition:

Definition 4. Let A1, . . . ,Al be access structures on {1, . . . , n}. A combination of (perfect) secret sharing
schemes with access structures A1, . . . ,Al consists of random variables S1, . . . , Sl, X1, . . . , Xn such that
(Si, X1, . . . , Xn) is a (perfect) secret sharing scheme with access structure Ai for i = 1, . . . , l and such that

H(Si|S1, . . . , Si−1, Si+1, . . . , Sl , XA) = H(Si) if A /∈ Ai.

This definition ensures that the secrets are independent in the sense that knowing some
of the secrets provides no information about the other secrets. Formally, one can see that the secrets are
probabilistically independent as follows: For any A /∈ Ai (for example, A = ∅),

H(Si|S1, . . . , Si−1, Si+1, . . . , Sl) ≥ H(Si|S1, . . . , Si−1, Si+1, . . . , Sl , XA) = H(Si).

In Definition 4, if two access structures Ai,Aj are identical, then we can replace Si and Sj by a
single random variable (Si, Sj) and obtain a smaller combination of (perfect) secret sharing schemes.

In a combination of perfect secret sharing schemes, it is very clear who knows what: Namely,
a group of participants knows all secrets for which it is authorized, while it knows nothing
about the remaining secrets. This motivates the following definition:

Definition 5. A measure of shared information I∩ has the combined secret sharing property if and only if
for any combination of perfect secret sharing schemes with access structures A1, . . . ,Al ,

I∩
(
(S1, . . . , Sl); A1, . . . , Ak

)
= H

(
{Si : A1, . . . , Ak ∈ Ai}

)
(2)
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(the entropy of those secrets for which A1, . . . , Ak are all authorized). I∩ has the pairwise secret sharing
property if and only if the same holds true in the special case l = 2.

The combined secret sharing property implies the pairwise secret sharing property. The pairwise
secret sharing property does not follow from the Williams and Beer axioms. For example, Imin satisfies
the Williams and Beer axioms, but not the pairwise secret sharing property (as will become apparent
in Theorem 2). So one can ask whether the pairwise and combined secret sharing properties are
compatible with the Williams and Beer axioms. This question is difficult to answer, since currently
there are only two proposed measures of shared information that satisfy the Williams and Beer axioms,
namely Imin and the minimum of mutual informations [8]:

IMMI(S; A1, . . . , Ak) := min
i=1,...,k

I(S; Ai).

Both measures do not satisfy the pairwise secret sharing property.
While there has been no further proposal for a function that satisfies the Williams and Beer

axioms for arbitrarily many arguments, several measures have been proposed for the “bivariate case”
k = 2, notably Ired of Harder et al. [9] and S̃I of [10]. The appendix shows that S̃I at least satisfies
the combined secret sharing property “as far as possible”.

Combinations of l perfect secret sharing schemes lead to information decompositions with at most
l nonzero partial information terms.

Lemma 4. Assume that I∩ has the combined secret sharing property. If (S1, . . . , Sl, X1, . . . , Xn) is a
combination of perfect secret sharing schemes with pairwise different access structures A1, . . . ,Al , then

I∂

(
(S1, . . . , Sl); A1, . . . , Ak

)
=

{
H(Si), if Ai = {A1, . . . , Ak} for some i ∈ {1, . . . , l},

0, otherwise,

for any A1, . . . , Ak ⊆ {X1, . . . , Xn}.

The proof is similar to the proof of Lemma 3 and is omitted.
The combined secret sharing property implies that any combination of nonnegative values can be

prescribed as partial information values.

Proposition 1. Suppose that a nonnegative number hA is given for any antichainA. For any measure of shared
information that satisfies the combined secret sharing property, there exist random variables S, X1, . . . , Xn

such that the corresponding partial measure I∂ satisfies I∂(S; A1, . . . , Ak) = hA1,...,Ak for all antichains
A = (A1, . . . , Ak).

Proof. By Theorem 1, for each antichain A there exists a perfect secret sharing scheme SA,
X1,A, . . . , Xn,A with H(SA) = hA. Combine independent copies of these perfect secret sharing schemes
and let

S = (SA)A, X1 = (X1,A)A, . . . , Xn = (Xn,A)A,

where A runs over all antichains. Then S, X1, . . . , Xn is an independent combination of perfect secret
sharing schemes, and the statement follows from Lemma 4.

Unfortunately, not every random variable S can be decomposed in such a way as a combination
of secret sharing schemes. However, Proposition 1 suggests that, given a measure I∩ of shared
information that satisfies the combined secret sharing property, I∂(S;A) can informally be interpreted
as a measure that quantifies how much (X1, . . . , Xn, S) looks like a perfect secret sharing scheme
with access structure A.
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Lemma 5. Suppose that I∩ is a measure of shared information that satisfies the pairwise secret sharing property.
If X1 and X2 are independent, then I∩

(
(X1, X2); X1, X2

)
= 0.

In the language of [11], the lemma says that the pairwise secret sharing property implies
the independent identity property.

Proof. Let S1 = X1, S2 = X2. Then S1, S2, X1, X2 is a pair of perfect secret sharing schemes with access
structures A1 =

{
{1}

}
and A2 =

{
{2}

}
. The statement follows from Definition 5, since X1 is not

authorized for A2 and X2 is not authorized for A1.

4. Incompatibility with Local Positivity

Unfortunately, although the combined secret sharing property very much fits the intuition
behind the axioms of Williams and Beer, it is incompatible with a nonnegative decomposition according
to the partial information lattice:

Theorem 2. Let I∩ be a measure of shared information that satisfies the Williams–Beer axioms and has
the pairwise secret sharing property. Then, I∂ is not nonnegative.

Proof. The XOR example, which was already used by Bertschinger et al. [6] and Rauh et al. [7] to
prove incompatibility results for properties of information decompositions, can also be used here.

Let X1, X2 be independent binary uniform random variables, let X3 = X1 ⊕ X2, and let S =

(X1, X2, X3). Observe that the situation is symmetric in X1, X2, X3. In particular, X2, X3 are also
independent, and X1 = X2 ⊕ X3. The following values of I∩ can be computed from the assumptions:

• I∩
(
S; X1, (X2X3)

)
= I∩

(
S; X1, (X1X2X3)

)
= I∩(S; X1) = 1 bit, since X1 is a function of (X2, X3)

and by the monotonicity axiom.
• I∩(S; X1, X2) = I∩

(
(X1X2X3); X1, X2

)
= I∩

(
(X1X2); X1, X2

)
= 0 by Lemma 5.

By monotonicity, I∩(S; X1, X2, X3) = 0. Moreover, I∩
(
S; (X1X2), (X1X3), (X2X3)

)
≤ 2 bit,

since 2 bit is the total entropy in the system. Then, however,

I∂

(
S; (X1X2), (X1X3), (X2X3)

)
= I∩

(
S; (X1X2), (X1X3), (X2X3)

)
− I∩

(
S; X1, (X2X3)

)
− I∩

(
S; X2, (X1X3)

)
− I∩

(
S; X3, (X1X2)

)
± 0

≤ 2 bit− 3 bit = −1 bit,

where ±0 denotes values of I∩ that vanish. Thus, I∂ is not nonnegative.

Note that the random variables (S = (X1, X2, X3), X1, X2, X3) from the proof of Theorem 2 form
three perfect secret sharing schemes that do not satisfy the definition of a combination of perfect secret
sharing schemes. The three secrets X1, X2, X3 are not independent, but they are pair-wise independent
(and so Lemma 4 does not apply).

Remark 1. The XOR example from the proof of Theorem 2 (which was already used by Bertschinger et al. [6]
and Rauh et al. [7]) was criticized by Chicharro and Panzeri [12] on the grounds that it involves random variables
that stand in a deterministic functional relation (in the sense that X3 = X1 ⊕ X2). Chicharro and Panzeri
argue that in such a case it is not appropriate to use the full partial information lattice. Instead, the functional
relationship should be used to eliminate (or identify) nodes from the lattice. Thus, while the monotonicity
axiom of Williams and Beer implies I∩(S; X3, (X2, X3)) = I∩(S; X3) (and so {3; 23} is not part of the partial
information lattice), the same axiom also implies that I∩(S; X3, (X1, X2)) = I∩(S; X3) in the XOR example,
and so {3; 12} should similarly be excluded from the lattice when analyzing this particular example. Note,
however, that the first argument is a formal argument that is valid for all joint distributions of S, X1, X2, X3,
while the second argument takes into account the particular underlying distribution.
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It is easy to work around this objection. The deterministic relationship disappears when an arbitrarily
small stochastic noise is added to the joint distribution. To be precise, let X1, X2 be independent binary random
variables, and let X3 be binary with

P(X3 = x3|X1 = x1, X2 = x2) =

{
1− ε, if x3 = x1 ⊕ x2,

ε, otherwise,

for 0 ≤ ε ≤ 1. For ε = 0, the example from the proof is recovered. Assuming that the partial information terms
depend continuously on this joint distribution, the partial information term I∂

(
S; (X1X2), (X1X3), (X2X3)

)
will still be negative for small ε > 0. Thus, assuming continuity, the conclusion of Theorem 2 still holds
true when the information decomposition according to the full partial information lattice is only considered
for random variables that do not satisfy any functional deterministic constraint.

Remark 2. Analyzing the proof of Theorem 2, one sees that the independent identity axiom (Lemma 5) is
the main ingredient to arrive at the contradiction. The same property also arises in the other uses of the XOR
example [6,7].

5. Discussion

Perfect secret sharing schemes correspond to systems of random variables in which it is very
clearly specified “who knows what”. In such a system, it is easy to assign intuitive values to the shared
information nodes in the partial information lattice, and one may conjecture that the intuition
behind this assignment is the same intuition that underlies the Williams and Beer axioms, which define
the partial information lattice. Moreover, following the same intuition, independent combinations
of perfect secret sharing schemes can be used as a tool to construct systems of random variables
with prescribable (nonnegative) values of partial information.

Unfortunately, this extension to independent combinations of perfect secret sharing schemes is
not without problems: By Theorem 2, it leads to decompositions with negative partial information
terms. What does it mean, however, that the examples derived from the same intuition as the Williams
and Beer axioms contradict the same axioms in this way? Is this an indication that the whole idea
of information decomposition does not work (and that the question posed in the first paragraph
of the introduction cannot be answered affirmatively)?

There are several ways out of this dilemma. The first solution is to assign different values
to combinations of perfect secret sharing schemes. This solution will not be pursued further
in this text, as it would change the interpretation of the information decomposition as measuring
“who knows what”.

The second solution is to accept negative partial values in the information decomposition.
It has been argued that negative values of information can be given an intuitive interpretation
in terms of confusing or misleading information. For event-wise (also called “local”) information
quantities, such as the event-wise mutual information i(s; x) = log(p(s)/p(s|x)), this interpretation
goes back to the early days of information theory [13]. Sometimes, this phenomenon is called
“misinformation” [11,14]. However, in the usual language, misinformation refers to “false or incorrect
information, especially when it is intended to trick someone” [15], which is not the effect that is
modelled here. Thus, the word misinformation should be avoided, in order not to mislead the reader
into the wrong intuition.

While negative event-wise information quantities are well-understood, the situation is more
problematic for average quantities. When an agent receives side-information in the form of the value
x of a relevant random variable X, she changes her strategy. While the prior strategy should be
based on the prior distribution p(S), the new strategy should be based on the posterior p(S|X = x).
Clearly, in a probabilistic setting, any change of strategy can lead to a better or worse result in a single
instance. On average, though, side-information never hurts (and it is never advantageous on average
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to ignore side-information), which is why the mutual information is never negative. Similarly, it is
natural to expect non-negativity of other information quantities. It is difficult to imagine how correct
side-information (or an aspect thereof) can be misleading on average. The situation is different
for incorrect information, where the interpretation of a negative value is much easier.

More conceptually, I would suspect that an (averaged) information quantity that may change
its sign actually conflates different aspects of information, just as the interaction information (or
co-information) conflates synergy and redundancy [1] (and one can argue whether the same should be
true for event-wise quantities; cf. [16]).

In any case, allowing negative partial values alters the interpretation of an information
decomposition to a point where it is questionable whether the word “decomposition” is still
appropriate. When decomposing an object into parts, the parts should in some reasonable way
be sub-objects. For example, in a Fourier decomposition of a function, the Fourier components are
never larger than the function (in the sense of the L2-norm), and the sum of the squared L2-norms
of the Fourier coefficients equals the squared L2-norm of the original function. As another example,
given a (positive) amount of money and two investment options, it may indeed be possible to invest
a negative share of the total amount into one of the two options in order to increase the funds that
can be invested in the second option. However, such short selling is regulated in many countries
with much stronger rules than ordinary trading.

I do not claim that an information decomposition with negative partial information terms cannot
possibly make sense. However, it has to be made clear precisely how to interpret negative terms,
and it is important to distinguish between correct information that leads to a suboptimal decision
due to unlikely events happening (“bad luck”) and incorrect information that leads to decisions being
based on the wrong posterior probabilities (as opposed to the “correct” conditional probabilities).

A third solution is to change the underlying lattice structure of the decomposition. A first
step in this direction was done by Chicharro and Panzeri [12], who propose to decompose mutual
information according to subsets of the partial information lattice. However, it is also conceivable that
the lattice has to be enlarged.

Williams and Beer derived the partial information lattice from their axioms together with the
assumption that everything can be expressed in terms of shared information (that is, according to
“who knows what”). Shared information is sometimes equivalently called redundant information, but it
may be necessary to distinguish the two. Information that is shared by several random variables is
information that is accessible to each single random variable, but redundancy can also arise at higher
orders. An example is the infamous XOR example from the proof of Theorem 2: In this example,
each pair Xi, Xj is independent and contains of two bits, but the total system X1, X2, X3 has only two
bits. Therefore, there is one bit of redundancy. However, this redundancy bit is not located anywhere
specifically: It is not contained in either of X1, X2, X3, and thus it is not shared information. Since the
redundant bit is not part of X1, it is not “shared” by X1 in this sense. This phenomenon corresponds to
the fact that random variables can be pairwise independent without being independent.

This kind of higher-order redundancy does not have a place in the partial information lattice, so it
may be that nodes corresponding to higher-order redundancy have to be added. When the lattice
is enlarged in this way, the structure of the Möbius inversion is changed, and it is possible that
the resulting lattice leads to nonnegative partial information terms, without changing those cumulative
information values that are already present in the original lattice. If this approach succeeds, the answer
to the question from the introduction will be negative: Simply classifying information according
to “who knows what” (i.e., shared information) does not work, since it does not capture higher-order
redundancy. The analysis of extensions of the partial information lattice is the scope of future work.
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Appendix A. Combined Secret Sharing Properties for Small k

This section discusses the defining Equation (2) of the combined secret sharing property for k = 1
and k = 2. The case k = 1 is incorporated in the definition of a combination of perfect secret
sharing schemes: The following lemma implies that any measure of shared information that satisfies
self-redundancy satisfies Equation (2) for k = 1. Recall that Williams and Beer’s self-redundancy
axiom implies that I∩(S; XA) = I(S; XA).

Lemma A1. Let (S1, . . . , Sl , X1, . . . , Xn) be a combination of perfect secret sharing schemes with access
structures A1, . . . ,Al . Then

I
(
(S1, . . . , Sl); XA

)
= H

(
{Si : A ∈ Ai}

)
.

Proof. Suppose that the secret for which A is authorized are S1, . . . , Sm. Then

H(S1, . . . , Sl |XA) = H(S1, . . . , Sm|XA) + H(Sm+1, . . . , Sl |S1, . . . , Sm, XA)

= H(Sm+1, . . . , Sl |S1, . . . , Sm, XA) ≤ H(Sm+1, . . . , Sl) ≤
l

∑
i=m+1

H(Si).

On the other hand,

H(Sm+1, . . . , Sl |S1, . . . , Sm, XA) =
l

∑
i=m+1

H(Si|S1, . . . , Si−1, XA)

≥
l

∑
i=m+1

H(Si|S1, . . . , Si−1, Si+1, . . . , Sl , XA) =
l

∑
i=m+1

H(Si).

By independence (remark after Definition 4), ∑l
i=m+1 H(Si) = H(Sm+1, . . . , Sl) and ∑m

i=1 H(Si) =

H(S1, . . . , Sm). Thus,

I
(
(S1, . . . , Sl); XA

)
= H(S1, . . . , Sl)− H(S1, . . . , Sl |XA) = H(S1, . . . , Sm).

The next result shows that the bivariate measure of shared information S̃I(S; X, Y) proposed by
Bertschinger et al. [10] satisfies Equation (2) for k ≤ 2. The reader is referred to loc. cit. for definitions
and elementary properties of S̃I.

Proposition A1. Let (S1, . . . , Sl , X1, . . . , Xn) be a combination of perfect secret sharing schemes with access
structures A1, . . . ,Al , Then

S̃I
(
(S1, . . . , Sl); XA1 , XA2

)
= H

(
{Si : A ∈ A1 ∩A2}

)
.

Proof. For given A1, A2, suppose that S1, . . . , Sm are the secrets for which at least one of A1 or A2 is
authorized and that Sm+1, . . . , Sl are the secrets for which neither A1 nor A2 is authorized alone.

Let P be the joint distribution of S1, . . . , Sl , XA1 , XA2 . Let ΔP be the set of alternative joint
distributions for S1, . . . , Sl , XA1 , XA2 that have the same marginal distributions as P on the subsets
(S1, . . . , Sl , XA1) and (S1, . . . , Sl , XA2). According to the definition of S̃I, we need to compare
P with the elements of ΔP and find the maximum of HQ

(
(S1, . . . , Sl)

∣∣XA1 , XA2

)
over Q ∈ ΔP,

where the subscript to H indicates with respect to which of these joint distributions the conditional
entropy is evaluated.
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Define a distribution Q∗ for S1, . . . , Sl , XA1 , XA2 by

Q∗(s1, . . . , sl , x1, x2) = P(s1, . . . , sl)P(xA1 = x1|s1, . . . , sl)P(xA2 = x2|s1, . . . , sl).

Then Q∗ ∈ ΔP. Under P, the secrets Sm+1, . . . , Sl are independent of XA1 (marginally)
and independent of XA2 , and so Sm+1, . . . , Sl are independent of the pair (XA1 , XA2) under Q∗.
On the other hand, S1, . . . , Sm are a function of either XA1 or XA2 under P, and so S1, . . . , Sm is
a function of (XA1 , XA2) under Q∗. Thus,

HQ∗(S1, . . . , Sl |XA1 , XA2) = HQ∗(Sm+1, . . . , Sl) = HP(Sm+1, . . . , Sl).

On the other hand, under any joint distribution Q ∈ ΔP, the secrets S1, . . . , Sm are functions
of XA1 , XA2 , whence

HQ(S1, . . . , Sl |XA1 , XA2) ≤ HQ(Sm+1, . . . , Sl) = HP(Sm+1, . . . , Sl).

It follows that Q∗ solves the optimization problem in the definition of S̃I.
Suppose that the secrets for which XA1 is authorized are S1, . . . , Sr and that the secrets for which

XA2 is authorized are Ss, . . . , Sm (with 1 ≤ r, s ≤ m). One computes

IQ∗
(
(S1, . . . , Sl); XA1

∣∣XA2

)
= H(S1, . . . , Ss−1) =

s−1

∑
i=1

H(Si) and

IQ∗
(
(S1, . . . , Sl); XA1

)
= H(S1, . . . , Sr) =

r

∑
i=1

H(Si),

whence

S̃I
(
(S1, . . . , Sl); XA1 , XA2

)
= IQ∗

(
(S1, . . . , Sl); XA1

)
− IQ∗

(
(S1, . . . , Sl); XA1

∣∣XA2

)
=

r

∑
i=s

H(Si) = H(Ss, . . . , Sr).
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Abstract: Suppose we have a pair of information channels, κ1, κ2, with a common input. The
Blackwell order is a partial order over channels that compares κ1 and κ2 by the maximal expected
utility an agent can obtain when decisions are based on the channel outputs. Equivalently, κ1 is said to
be Blackwell-inferior to κ2 if and only if κ1 can be constructed by garbling the output of κ2. A related
partial order stipulates that κ2 is more capable than κ1 if the mutual information between the input
and output is larger for κ2 than for κ1 for any distribution over inputs. A Blackwell-inferior channel
is necessarily less capable. However, examples are known where κ1 is less capable than κ2 but not
Blackwell-inferior. We show that this may even happen when κ1 is constructed by coarse-graining
the inputs of κ2. Such a coarse-graining is a special kind of “pre-garbling” of the channel inputs.
This example directly establishes that the expected value of the shared utility function for the
coarse-grained channel is larger than it is for the non-coarse-grained channel. This contradicts the
intuition that coarse-graining can only destroy information and lead to inferior channels. We also
discuss our results in the context of information decompositions.

Keywords: Channel preorders; Blackwell order; degradation order; garbling; more capable;
coarse-graining

MSC: 62C05; 62B15; 94A15

1. Introduction

Suppose we are given the choice of two channels that both provide information about the same
random variable, and that we want to make a decision based on the channel outputs. Suppose that
our utility function depends on the joint value of the input to the channel and our resultant decision
based on the channel outputs. Suppose as well that we know the precise conditional distributions
defining the channels, and the distribution over channel inputs. Which channel should we choose?
The answer to this question depends on the choice of our utility function as well as on the details of the
channels and the input distribution. So, for example, without specifying how we will use the channels,
in general we cannot just compare their information capacities to choose between them.

Nonetheless, for certain pairs of channels we can make our choice, even without knowing the
utility functions or the distribution over inputs. Let us represent the two channels by two (column)
stochastic matrices κ1 and κ2, respectively. Then, if there exists another stochastic matrix λ such
that κ1 = λ · κ2, there is never any reason to strictly prefer κ1; if we choose κ2, we can always make
our decision by chaining the output of κ2 through the channel λ and then using the same decision
function we would have used had we chosen κ1. This simple argument shows that whatever the three
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stochastic matrices are and whatever the decision rule we would use if we chose channel κ1, we can
always get the same expected utility by instead choosing channel κ2 with an appropriate decision rule.
In this kind of situation, where κ1 = λ · κ2, we say that κ1 is a garbling (or degradation) of κ2. It is much
more difficult to prove that the converse also holds true:

Theorem 1. (Blackwell’s theorem [1]) Let κ1, κ2 be two stochastic matrices representing two channels with the
same input alphabet. Then the following two conditions are equivalent:

1. When the agent chooses κ2 (and uses the decision rule that is optimal for κ2), her expected utility is always
at least as big as the expected utility when she chooses κ1 (and uses the optimal decision rule for κ1),
independent of the utility function and the distribution of the input S.

2. κ1 is a garbling of κ2.

Blackwell formulated his result in terms of a statistical decision maker who reacts to the outcome
of a statistical experiment. We prefer to speak of a decision problem instead of a statistical experiment.
See [2,3] for an overview.

Blackwell’s theorem motivates looking at the following partial order over channels κ1, κ2 with a
common input alphabet:

κ1 ≤ κ2 :⇐⇒
{

one of the two statements

in Blackwell’s theorem holds true.

We call this partial order the Blackwell order (this partial order is called degradation order by other
authors [4,5]). If κ1 ≤ κ2, then κ1 is said to be Blackwell-inferior to κ2. Strictly speaking, the Blackwell
order is only a preorder, since there are channels κ1 �= κ2 that satisfy κ1 ≤ κ2 ≤ κ1 (when κ1 arises from
κ2 by permuting the output alphabet). However, for our purposes, such channels can be considered
as equivalent. We write κ1 < κ2 if κ1 ≤ κ2 and κ1 �≥ κ2. By Blackwell’s theorem, this implies that κ2

performs at least as well as κ1 in any decision problem and that there exist decision problems in which
κ2 outperforms κ1.

For a given distribution of S, we can also compare κ1 and κ2 by comparing the two mutual
informations I(S; X1), I(S; X2) between the common input S and the channel outputs X1 and X2.
The data processing inequality shows that κ2 ≥ κ1 implies I(S; X2) ≥ I(S; X1). However, the converse
implication does not hold. The intuitive reason is that for the Blackwell order, not only the amount of
information is important. Rather, the question is how much of the information that κ1 or κ2 preserve is
relevant for a given fixed decision problem (that is, a given fixed utility function).

Given two channels κ1, κ2, suppose that I(S; X2) ≥ I(S; X1) for all distributions of S. In this case,
we say that κ2 is more capable than κ1. Does this imply that κ1 ≤ κ2? The answer is known to be negative
in general [6]. In Proposition 2 we introduce a new surprising example of this phenomenon with a
particular structure. In fact, in this example, κ1 is a Markov approximation of κ2 by a deterministic
function, in the following sense: Consider another random variable f (S) that arises from S by applying
a (deterministic) function f . Given two random variables S, X, denote by X ← S the channel defined
by the conditional probabilities PX|S(x|s), and let κ2 := (X ← S) and κ1 := (X ← f (S)) · ( f (S)← S).
Thus, κ1 can be interpreted as first replacing S by f (S) and then sampling X according to the conditional
distribution PX|S(x| f (s)). Which channel is superior? Using the data processing inequality, it is easy
to see that κ1 is less capable than κ2. However, as Proposition 2 shows, in general κ1 �≤ κ2.

We call κ1 a Markov approximation, because the output of κ1 is independent of the input S
given f (S). The channel κ1 can also be obtained from κ2 by “pre-garbling” (Lemma 3); that is, there is
another stochastic matrix λ f that satisfies κ1 = κ2 · λ f . It is known that pre-garbling may improve the
performance of a channel (but not its capacity) as we recall in Section 2. What may be surprising is that
this can happen for pre-garblings of the form λ f , which have the effect of coarse-graining according
to f .
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The fact that the more capable preorder does not imply the Blackwell order shows that “Shannon
information,” as captured by the mutual information, is not the same as “Blackwell information,”
as needed for the Blackwell decision problems. Indeed, our example explicitly shows that even though
coarse-graining always reduces Shannon information, it need not reduce Blackwell information. Finally,
let us mention that there are further ways of comparing channels (or stochastic matrices); see [5] for
an overview.

Proposition 2 builds upon another effect that we find paradoxical: Namely, there exist random
variables S, X1, X2 and there exists a function f : S → S′ from the support of S to a finite set S′ such
that the following holds:

1. S and X1 are independent given f (S).
2. (X1 ← f (S)) ≤ (X2 ← f (S)).
3. (X1 ← S) �≤ (X2 ← S).

Statement (1) says that everything X1 knows about S, it knows through f (S). Statement (2) says
that X2 knows more about f (S) than X1. Still, (3) says that we cannot conclude that X2 knows more
about S than X1. The paradox illustrates that it is difficult to formalize what it means to “know more.”

Understanding the Blackwell order is an important aspect of understanding information
decompositions; that is, the quest to find new information measures that separate different aspects
of the mutual information I(S; X1, . . . , Xk) of k random variables X1, . . . , Xk and a target variable S
(see the other contributions of this special issue and references therein). In particular, [7] argues that
the Blackwell order provides a natural criterion when a variable X1 has unique information about S
with respect to X2. We hope that the examples we present here are useful in developing intuition
on how information can be shared among random variables and how it behaves when applying a
deterministic function, such as a coarse-graining. Further implications of our examples on information
decompositions are discussed in [8]. In the converse direction, information decomposition measures
(such as measures of unique information) can be used to study the Blackwell order and deviations
from the Blackwell order. We illustrate this idea in Example 4.

The remainder of this work is organized as follows: In Section 2, we recall how pre-garbling can
be used to improve the performance of a channel. We also show that the pre-garbled channel will
always be less capable and that simultaneous pre-garbling of both channels preserves the Blackwell
order. In Section 3, we state a few properties of the Blackwell order, and we explain why we find these
properties counter-intuitive and paradoxical. In particular, we show that coarse-graining the input can
improve the performance of a channel. Section 4 contains a detailed discussion of an example that
illustrates these properties. In Section 5 we use the unqiue information measure from [7], which has
properties similar to the Le Cam’s deficiency, to illustrate deviations from the Blackwell relation.

2. Pre-Garbling

As discussed above (and as made formal in Blackwell’s theorem (Theorem 1)), garbling the output
of a channel (“post-garbling”) never increases the quality of a channel. On the other hand, garbling
the input of a channel (“pre-garbling”) may increase the performance of a channel, as the following
example shows.

Example 1. Suppose that an agent can choose an action from a finite set A. She then receives a utility u(a, s)
that depends both on the chosen action a ∈ A and on the value s of a random variable S. Consider the channels

κ1 =

(
0.9 0
0.1 1

)
and κ2 = κ1 ·

(
0 1
1 0

)
=

(
0 0.9
1 0.1

)
,

and the utility function
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s 0 0 1 1
a 0 1 0 1

u(s, a) 2 0 0 1

For uniform input, the optimal decision rule for κ1 is

a(0) = 0, a(1) = 1

and the opposite
a(0) = 1, a(1) = 0

for κ2. The expected utility with κ1 is 1.4, while using κ2, it is slightly higher (1.45).
It is also not difficult to check that neither of the two channels is a garbling of the other (cf. Propsition 3.22

in [5]).

The intuitive reason for the difference in the expected utilities is that the channel κ2 transmits
one of the states without noise and the other state with noise. With a convenient pre-processing, it is
possible to make sure that the relevant information for choosing an action and for optimizing expected
utility is transmitted with less noise.

Note the symmetry of the example: each of the two channels arises from the other by a convenient
pre-processing, since the pre-processing is invertible. Hence, the two channels are not comparable by
the Blackwell order. In contrast, two channels that only differ by an invertible garbling of the output
are equivalent with respect to the Blackwell order.

The pre-garbling in Example 1 is invertible, and so it is more aptly described as a pre-processing.
In general, though, pure pre-garbling and pure pre-processing are not easily distinguishable, and it
is easy to perturb Example 1 by adding noise without changing the conclusion. In Section 3, we will
present an example in which the pre-garbling consists of coarse-graining. It is much more difficult to
understand how coarse-graining can be used as sensible pre-processing.

Even though pre-garbling can make a channel better (or, more precisely, more suited for a
particular decision problem at hand), pre-garbling cannot invert the Blackwell order:

Lemma 1. If κ1 < κ2 · λ, then κ1 �≥ κ2.

Proof. Suppose that κ1 < κ2 · λ. Then the capacity of κ1 is less than the capacity of κ2 · λ, which is
bounded by the capacity of κ2. Therefore, the capacity of κ1 is less than the capacity of κ2.

Additionally, it follows directly from Blackwell’s theorem that

κ1 ≤ κ2 implies κ1 · λ ≤ κ2 · λ

for any channel λ, where the input and output alphabets of λ equal the input alphabet of κ1, κ2. Thus,
pre-garbling preserves the Blackwell order when applied to both channels simultaneously.

Finally, let us remark that certain kinds of simultaneous pre-garbling can also be “hidden” in
the utility function; namely, in Blackwell’s theorem, it is not necessary to vary the distribution of S
as long as the support of the (fixed) input distribution has full support S (that is, every state of the
input alphabet of κ1 and κ2 appears with positive probability). In this setting, it suffices to look only at
different utility functions. When the input distribution is fixed, it is more convenient to think in terms
of random variables instead of channels, which slightly changes the interpretation of the decision
problem. Suppose we are given random variables S, X1, X2 and a utility function u(a, s) depending on
the value of S and an action a ∈ A as above. If we cannot look at both X1 and X2, should we choose to
look at X1 or at X2 to make our decision?
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Theorem 2. (Blackwell’s theorem for random variables [7]) The following two conditions are equivalent:

1. Under the optimal decision rule, when the agent chooses X2, her expected utility is always at least as large
as the expected utility when she chooses X1, independent of the utility function.

2. (X1 ← S) ≤ (X2 ← S).

3. Pre-Garbling by Coarse-Graining

In this section we present a few counter-intuitive properties of the Blackwell order.

Proposition 1. There exist random variables S, X1, X2 and a function f : S → S from the support of S to a
finite set S′ such that the following holds:

1. S and X1 are independent given f (S).
2. (X1 ← f (S)) < (X2 ← f (S)).
3. (X1 ← S) �≤ (X2 ← S).

This result may at first seem paradoxical. After all, property (3) implies that there exists a decision
problem involving S for which it is better to use X1 than X2. Property (1) implies that any information
that X1 has about S is contained in X1’s information about f (S). One would therefore expect that, from
the viewpoint of X1, any decision problem in which the task is to predict S and to react on S looks
like a decision problem in which the task is to react to f (S). But property (2) implies that for such a
decision problem, it may in fact be better to look at X2.

Proof of Proposition 1. The proof is by Example 2, which will be given in Section 4. This
example satisfies

1. S and X1 are independent given f (S).
2. (X1 ← f (S)) ≤ (X2 ← f (S)).
3. (X1 ← S) �≤ (X2 ← S).

It remains to show that it is also possible to achieve the strict relation (X1 ← f (S)) < (X2 ← f (S)) in
the second statement. This can easily be done by adding a small garbling to the channel X1 ← f (S)
(e.g., by adding a binary symmetric channel with sufficiently small noise parameter ε). This ensures
(X1 ← f (S)) < (X2 ← f (S)), and if the garbling is small enough, this does not destroy the property
(X1 ← S) �≤ (X2 ← S).

The example from Proposition 1 also leads to the following paradoxical property:

Proposition 2. There exist random variables S, X and there exists a function f : S → S′ from the support of S
to a finite set S′ such that the following holds:

(X ← f (S)) · ( f (S)← S) �≤ X ← S.

Let us again give a heuristic argument for why we find this property paradoxical. Namely,
the combined channel (X ← f (S)) · ( f (S)← S) can be seen as a Markov chain approximation of the
direct channel X ← S that corresponds to replacing the conditional distribution

PX|S(x|s) = ∑
f (s)

PX|S f (S)(x|s, f (s))Pf (S)|S( f (s)|s).

by

∑
f (s)

PX| f (S)(x| f (s))Pf (S)|S( f (s)|s).
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Proposition 2 together with Blackwell’s theorem states that there exist situations where this
approximation is better than the correct channel.

Proof of Proposition 2. Let S, X1, X2 be as in Example 2 in Section 4 that also proves Proposition 1,
and let X = X2. In that example, the two channels X1 ← f (S) and X2 ← f (S) are equal. Moreover,
X1 and S are independent given f (S). Thus, (X ← f (S)) · ( f (S) ← S) = (X1 ← S). Therefore,
the statement follows from (X1 ← S) �≤ (X2 ← S).

On the other hand, the channel (X ← f (S)) · ( f (S)← S) is always less capable than X ← S:

Lemma 2. For any random variables S, X, and function f : S → S , the channel (X ← f (S)) · ( f (S)← S)
is less capable than X ← S.

Proof. For any distribution of S, let X′ be the output of the channel (X ← f (S)) · ( f (S)← S). Then, X′

is independent of S given f (S). On the other hand, since f is a deterministic function, X′ is independent
of f (S) given S. Together, this implies I(S; X′) = I( f (S); X′). Using the fact that the joint distributions
of (X, f (S)) and (X′, f (S)) are identical and applying the data processing inequality gives

I(S; X′) = I( f (S); X′) = I( f (S); X) ≤ I(S; X).

The setting of Proposition 2 can also be understood as a specific kind of pre-garbling. Namely,
consider the channel λ f defined by

λ
f
s′ ,s := PS| f (S)(s

′| f (s)).

The effect of this channel can be characterized as a randomization of the input: the precise value
of S is forgotten, and only the value of f (S) is preserved. Then, a new value s′ is sampled for S
according to the conditional distribution of S given f (S).

Lemma 3. (X ← f (S)) · ( f (S)← S) = (X ← S) · λ f .

Proof. ∑
s1

PX|S(x|s1)PS| f (S)(s1| f (s)) = ∑
s1,t

PX|S(x|s1)PS| f (S)(s1|t)Pf (S)|S(t|s)

= ∑
t

PX| f (S)(x|t)Pf (S)|S(t|s),

where we have used that X− S− f (S) forms a Markov chain.

While it is easy to understand that pre-garbling can be advantageous in general (since it can work
as preprocessing), we find it surprising that this can also happen in the case where the pre-garbling is
done in terms of a function f ; that is, in terms of a channel λ f that does coarse-graining.

4. Examples

Example 2. Consider the joint distribution

f (s) s x1 x2 Pf (S)SX1X2

0 0 0 0 1/4
0 1 0 1 1/4
0 0 1 0 1/8
0 1 1 0 1/8
1 2 1 1 1/4

and the function f: {0, 1, 2} → {0, 1} with f(0) = f(1) = 0 and f(2) = 1. Then, X1 and X2 are independent
uniform binary random variables, and f (S) = AND(X1, X2). By symmetry, the joint distributions of the pairs
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( f (S), X1) and ( f (S), X2) are identical, and so the two channels X1 ← f (S) and X2 ← f (S) are identical.
In particular, (X1 ← f (S)) ≤ (X2 ← f (S)).

On the other hand, consider the utility function

s a u(s, a)
0 0 0
0 1 0
1 0 1
1 1 0
2 0 0
2 1 1

To compute the optimal decision rule, let us look at the conditional distributions:

s x1 PS|X1
(s|x1)

0 0 1/2
1 0 1/2
0 1 1/4
1 1 1/4
2 1 1/2

s x2 PS|X2
(s|x2)

0 0 3/4
1 0 1/4
0 1 0
1 1 1/2
2 1 1/2

The optimal decision rule forX1 is a(0) = 0, a(1) = 1, with expected utility

uX1 := 1/2 · 1/2 + 1/2 · 1/2 = 1/2.

The optimal decision rule for X2 is a(0) = 0, a(1) ∈ {0, 1} (this is not unique in this case), with
expected utility

uX2 := 1/2 · 1/4 + 1/2 · 1/2 = 3/8 < 1/2.

How can we understand this example? Some observations:

• It is easy to see that X2 has more irrelevant information than X1: namely, X2 can determine
relatively precisely when S = 0. However, since S = 0 gives no utility independent of the
action, this information is not relevant. It is more difficult to understand why X2 has less relevant
information than X1. Surprisingly, X1 can determine more precisely when S = 1: if S = 1, then X1

“detects this” (in the sense that X1 chooses action 0) with probability 2/3. For X2, the same
probability is only 1/3.

• The conditional entropies of S given X2 are smaller than the conditional entropies of S given X1:

H(S|X1 = 0) = log(2), H(S|X1 = 1) = 3
2 log(2),

H(S|X2 = 0) = 2 log(2)− 3
2 log(3) ≈ 0.4150375 log(2), H(S|X2 = 1) = log(2).

• One can see in which sense f (S) captures the relevant information for X1, and indeed for the whole
decision problem: knowing f (S) is completely sufficient in order to receive the maximal utility for
each state of S. However, when information is incomplete, it matters how the information about
the different states of S is mixed, and two variables X1, X2 that have the same joint distribution
with f (S) may perform differently. It is somewhat surprising that it is the random variable that
has less information about S and that is conditionally independent of S given f (S) which actually
performs better.

Example 2 is different from the pre-garbling Example 1 discussed in Section 2. In the latter, both
channels had the same amount of information (mutual information) about S, but for the given decision
problem the information provided by κ2 was more relevant than the information provided by κ1.
The first difference in Example 2 is that X1 has less mutual information about S than X2 (Lemma 2).
Moreover, both channels are identical with respect to f (S); i.e., they provide the same information
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about f (S), and for X1 it is the only information it has about S. So, one could argue that X2 has
additional information that does not help, but decreases the expected utility instead.

We give another example which shows that X2 can also be chosen as a deterministic function of S.

Example 3. Consider the joint distribution

f (s) s x1 x2 Pf (S)SX1X2

0 0 0 0 1/6
0 0 1 0 1/6
0 1 0 1 1/6
0 1 1 1 1/6
1 2 1 1 1/3

The function f is as above, but now also X2 is a function of S. Again, the two channels X1 ← f (S) and
X2 ← f (S) are identical, and X1 is independent of S given f (S). Consider the utility function

s a u(s, a)
0 0 0
0 1 0
1 0 0
1 1 1
2 0 0
2 1 -1

One can show that it is optimal for an agent who relies on X2 to always choose action 0, which brings no
reward (and no loss). However, when the agent knows that X1 is zero, he may safely choose action 1 and has a
positive probability of receiving a positive reward.

To add another interpretation to the last example, we visualize the situation in the following
Bayesian network:

X ← S → f (S)→ X′,

where, as in Proposition 2 and its proof, we let X = X2, and we consider X′ = X1 as an approximation
of X. Then, S denotes the state of the system that we are interested in, and X denotes a given set
of observables of interest. f (S) can be considered as a “proxy” in situations where it is difficult to
observe X directly. For example, in neuroimaging, instead of directly measuring the neural activity X,
one might look at an MRI signal f (S). In economic and social sciences, monetary measures like the
GDP are used as a proxy for prosperity.

A decision problem can always be considered as a classification problem defined by the utility
u(s, a) by considering the optimal action as the class label of state S. Proposition 2 now says that
there exist S, X, f (S), and a classification problem u(s, a), such that the approximated features X′

(simulated from f (S)) allow for a better classification (higher utility) than the original features X.
In such a situation, looking at f (S) will always be better than looking at either X or X′. Thus, the

paradox will only play a role in situations where it is not possible to base the decision on f (S) directly.
For example, f (S) might still be too large, or X might have a more natural interpretation, making it
easier to interpret for the decision taker. However, when it is better to base a decision on a proxy rather
than directly on the observable of interest, this interpretation may be erroneous.

5. Information Decomposition and Le Cam Deficiency

Given two channels κ1, κ2, how can one decide whether or not κ1 ≤ κ2? The easiest way is to check
whether the equation κ1 = λ · κ2 has a solution λ that is a stochastic matrix. In the finite alphabet case,
this amounts to checking the feasibility of a linear program, which is considered computationally easy.
However, when the feasibility check returns a negative result, this approach does not give any more
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information (e.g., how far κ1 is away from being a garbling of κ2). A function that quantifies how far
κ1 is from being a garbling of κ2 is given by the (Le Cam) deficiency and its various generalizations [9].
Another such function is given by UI defined in [7] that accounts for the fact that the channels we
consider are of the form κ1 = (X1 ← S) and κ2 = (X2 ← S); that is, they are derived from conditional
distributions of random variables. In contrast to the deficiencies, UI depends on the input distribution
to these channels.

Let PSX1X2 be a joint distribution of S and the outputs X1 and X2. Let ΔP be the set of all joint
distributions of the random variables S, X1, X2 (with the same alphabets) that are compatible with the
marginal distributions of PSX1X2 for the pairs (S, X1) and (S, X2); i.e.,

ΔP :=
{

QSX1X2 ∈ Δ : QSX1 = PSX1 , QSX2 = PSX2

}
.

In other words, ΔP consists of all joint distributions that are compatible with κ1 and κ2 and that
have the same distribution for S as PSX1X2 . Consider the function

UI(S; X1\X2) := min
Q∈ΔP

IQ(S; X1|X2),

where IQ denotes the conditional mutual information evaluated with respect to the the joint
distribution Q. This function has the following property: UI(S; X1\X2) = 0 if and only if κ1 ≤ κ2 [7].
Computing UI is a convex optimization problem. However, the condition number can be very bad,
which makes the problem difficult in practice.

UI is interpreted in [7] as a measure of the unique information that X1 conveys about S (with
respect to X2). So, for instance, with this interpretation Example 2 can be summarized as follows:
neither X1 nor X2 has unique information about f (S). However, both variables have unique
information about S, although X1 is conditionally independent of S given f (S) and thus—in contrast
to X2—contains no “additional” information about S. We now apply UI to a parameterized version of
the AND gate in Example 2.

Example 4. Figure 1a shows a heat map of UI computed on the set of all distributions of the form

f (s) s x1 x2 Pf (S)SX1X2

0 0 0 0 1/8 + 2b
0 1 0 0 1/8− 2b
0 0 0 1 1/8 + a
0 1 0 1 1/8− a
0 0 1 0 1/8 + a/2 + b
0 1 1 0 1/8− a/2− b
1 2 1 1 1/4

where −1/8 ≤ a ≤ 1/8 and −1/16 ≤ b ≤ 1/16. This is the set of distributions of S, X1, X2 that satisfy the
following constraints:

1. X1, X2 are independent;
2. f (S) = AND(X1, X2), where f is as in Example 2; and
3. X1 is independent of S given f (S).

Along the secondary diagonal b = a/2, the marginal distributions of the pairs (S, X1) and (S, X2) are
identical. In such a situation, the channels (X1 ← S) and (X2 ← S) are Blackwell-equivalent, and so UI
vanishes. Further away from the diagonal, the marginal distributions differ, and UI grows. The maximum value
is achieved at the corners for (a, b) = (−1/8, 1/16), (1/8,−1/16). At the upper left corner (a, b) = ±(−1/8, 1/16),
we recover Example 2.
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Figure 1. Heatmaps for the function UI in (a) Example 4, and (b) Example 5.

Example 5. Figure 1b shows a heat map of UI computed on the set of all distributions of the form

f (s) s x1 x2 Pf (S)SX1X2

0 0 0 0 a2/(a+b)

0 0 1 0 ab/(a+b)

0 1 0 1 ab/(a+b)

0 1 1 1 b2/(a+b)

1 2 1 1 1 - a - b

where a, b ≥ 0 and a + b ≤ 1. This extends Example 3, which is recovered for a = b = 1/3. This is the set of
distributions of S, X1, X2 that satisfy the following constraints:

1. X2 is a function of S, where the function is as in Example 3.
2. X1 is independent of S given f (S).
3. The channels X1 ← f (S) and X2 ← f (S) are identical.

Acknowledgments: We thank the participants of the PID workshop at FIAS in Frankfurt in December 2016 for
many stimulating discussions on this subject. Nils Bertschinger thanks h.c. Maucher for funding his position.

Author Contributions: The research was initiated by J.R. and carried out by all authors. Computer experiments
to find and analyze the examples were done by P.K.B. D.W. simplified Example 1. J.J. and N.B. added interpretation.
The manuscript was written by J.R., P.K.B., E.O. and D.W. Nobody played the synthesizer. All authors have read
and approved the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Blackwell, D. Equivalent Comparisons of Experiments. Ann. Math. Stat. 1953, 24, 265–272.
2. Torgersen, E. Comparison of Statistical Experiments; Cambridge University Press: New York, NY, USA, 1991.
3. Le Cam, L. Comparison of Experiments—A Short Review. Stat. Probab. Game Theory 1996, 30, 127–138.
4. Bergmans, P. Random coding theorem for broadcast channels with degraded components. IEEE Trans.

Inf. Theory 1973, 19, 197–207.
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Abstract: Exploiting the theory of state space models, we derive the exact expressions of the
information transfer, as well as redundant and synergistic transfer, for coupled Gaussian processes
observed at multiple temporal scales. All of the terms, constituting the frameworks known as interaction
information decomposition and partial information decomposition, can thus be analytically obtained
for different time scales from the parameters of the VAR model that fits the processes. We report
the application of the proposed methodology firstly to benchmark Gaussian systems, showing
that this class of systems may generate patterns of information decomposition characterized by
prevalently redundant or synergistic information transfer persisting across multiple time scales
or even by the alternating prevalence of redundant and synergistic source interaction depending on
the time scale. Then, we apply our method to an important topic in neuroscience, i.e., the detection
of causal interactions in human epilepsy networks, for which we show the relevance of partial
information decomposition to the detection of multiscale information transfer spreading from the
seizure onset zone.

Keywords: information dynamics; information transfer; multiscale entropy; multivariate time series
analysis; redundancy and synergy; state space models; vector autoregressive models

1. Introduction

The information-theoretic treatment of groups of correlated degrees of freedom can reveal their
functional roles as memory structures or information processing units. A large body of recent work
has shown how the general concept of “information processing” in a network of multiple interacting
dynamical systems described by multivariate stochastic processes can be dissected into basic elements
of computation defined within the so-called framework of information dynamics [1]. These elements
essentially reflect the new information produced at each moment in time about a target system
in the network [2], the information stored in the target system [3,4], the information transferred
to it from the other connected systems [5,6] and the modification of the information flowing from
multiple source systems to the target [7,8]. The measures of information dynamics have gained more
and more importance in both theoretical and applicative studies in several fields of science [9–18].
While the information-theoretic approaches to the definition and quantification of new information,
information storage and information transfer are well understood and widely accepted, the problem
of defining, interpreting and using measures of information modification has not been fully addressed
in the literature.

Information modification in a network is tightly related to the concepts of redundancy and synergy
between source systems sharing information about a target system, which refer to the existence of
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common information about the target that can be retrieved when the sources are used separately
(redundancy) or when they are used jointly (synergy) [19]. Classical multivariate entropy-based
approaches refer to the interaction information decomposition (IID), which reflects information
modification through the balance between redundant and synergetic interaction among different source
systems influencing the target [20–22]. The IID framework has the drawback that it implicitly considers
redundancy and synergy as mutually exclusive concepts, because it quantifies information modification
with a single measure of interaction information [23] (also called co-information [24]) that takes positive
or negative values depending on whether the net interaction between the sources is synergistic or
redundant. This limitation has been overcome by the elegant mathematical framework introduced
by Williams and Beer [25], who proposed the so-called partial information decomposition (PID) as a
nonnegative decomposition of the information shared between a target and a set of sources into terms
quantifying separately unique, redundant and synergistic contributions. However, the PID framework
has the drawback that the terms composing the PID cannot be obtained unequivocally from classic
measures of information theory (i.e., entropy and mutual information), but a new definition of either
redundant, synergistic or unique information needs to be provided to implement the decomposition.
Accordingly, much effort has focused on finding the most proper measures to define the components
of the PID, with alternative proposals defining new measures of redundancy [25,26], synergy [27,28]
or unique information [29]. The proliferation of different definitions is mainly due to the fact that
there is no full consensus on which axioms should be stated to impose desirable properties for the PID
measures. An additional problem which so far has seriously limited the practical implementation of
these concepts is the difficulty in providing reliable estimates of the information measures appearing
in the IID and PID decompositions. The naive estimation of probabilities by histogram-based methods
followed by the use of plug-in estimators leads to serious bias problems [30,31]. While the use of
binless density estimators [32] and the adoption of schemes for dimensionality reduction [33,34]
have been shown to improve the reliability of estimates of information storage and transfer [35],
the effectiveness of these approaches for the computation of measures of information modification has
not been demonstrated yet. Interestingly, both the problems of defining appropriate PID measures and
of reliably estimating these measures from data are much alleviated if one assumes that the observed
variables have a joint Gaussian distribution. Indeed, in such a case, recent studies have proven the
equivalence between most of the proposed redundancy measures to be used in the PID [36] and have
provided closed form solutions to the issue of computing any measure of information dynamics from
the parameters of the vector autoregressive (VAR) model that characterizes an observed multivariate
Gaussian process [17,37,38].

The second fundamental question that is addressed in this study is relevant to the computation
of information dynamics for stochastic processes displaying multiscale dynamical structures. It is
indeed well known that many complex physical and biological systems exhibit peculiar oscillatory
activities, which are deployed across multiple temporal scales [39–41]. The most common way to
investigate such activities is to resample at different scales, typically through low pass filtering and
downsampling [42,43], the originally measured realization of an observed process, so as to yield
a set of rescaled time series, which are then analyzed employing different dynamical measures.
This approach is well established and widely used for the multiscale entropy analysis of individual
time series measured from scalar stochastic processes. However, its extension to the investigation of the
multiscale structure of the information transfer among coupled processes is complicated by theoretical
and practical issues [44,45]. Theoretically, the procedure of rescaling alters the causal interactions
between lagged components of the processes in a way that is not fully understood and, if not properly
performed, may alter the temporal relations between processes and thus induce spurious detection
of information transfer. In practical analysis, filtering and downsampling are known to degrade
severely the estimation of information dynamics and to impact consistently the detectability, accuracy
and data demand [46,47].
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In recent works, we have started tackling the above problems within the framework of linear
VAR modeling of multivariate Gaussian processes, with the focus on the multiscale computation of
information storage and information transfer [48,49]. In this study, we aim at extending these recent
theoretical advances to the multiscale analysis of information modification in multivariate Gaussian
systems performed through the IID and PID decomposition frameworks. To this end, we exploit the
theory of state space (SS) models [50] and build on recent theoretical results [44,45] to show that exact
values of interaction transfer, as well as redundant and synergistic transfer can be obtained for coupled
Gaussian processes observed at different time scales starting from the parameters of the VAR model
that fits the processes and from the scale factor. The theoretical derivations are first used in examples
of benchmark Gaussian systems, reporting that these systems may generate patterns of information
decomposition characterized by prevalently redundant or synergistic information transfer persisting
across multiple time scales or even by alternating the prevalence of redundant and synergistic source
interaction depending on the time scale. The high computational reliability of the SS approach is then
exploited in the analysis of real data by the application to a topic of great interest in neuroscience, i.e.,
the detection of information transfer in epilepsy networks.

The proposed framework is implemented in the msID MATLAB R© toolbox, which is uploaded as
Supplementary Material to this article and is freely available for download from www.lucafaes.net/
msID.html and https://github.com/danielemarinazzo/multiscale_PID.

2. Information Transfer Decomposition in Multivariate Processes

Let us consider a discrete-time, stationary vector stochastic process composed of M real-valued
zero-mean scalar processes, Yn = [Y1,n · · ·YM,n]

T , −∞ < n < ∞. In an information-theoretic
framework, the information transfer between scalar sub-processes is quantified by the well-known
transfer entropy (TE), which is a popular measure of the “information transfer” directed towards
an assigned target process from one or more source processes. Specifically, the TE quantifies the
amount of information that the past of the source provides about the present of the target over and
above the information already provided by the past of the target itself [5]. Taking Yj as target and Yi as
source, the TE is defined as:

Ti→j = I(Yj,n; Y−i,n|Y−j,n) (1)

where Y−i,n = [Yi,n−1, Yi,n−2 · · · ] and Y−j,n = [Yj,n−1, Yj,n−2 · · · ] represent the past of the source and target
processes and I(·; ·|·) denotes conditional mutual information (MI). In the presence of two sources Yi
and Yk and a target Yj, the information transferred toward Yj from the sources Yi and Yk taken together
is quantified by the joint TE:

Tik→j = I(Yj,n; Y−i,n, Y−k,n|Y−j,n). (2)

Under the premise that the information jointly transferred to the target by the two sources is
different than the sum of the amounts of information transferred individually, in the following, we
present two possible strategies to decompose the joint TE (2) into amounts eliciting the individual TEs,
as well as redundant and/or synergistic TE terms.

2.1. Interaction Information Decomposition

The first strategy, which we denote as interaction information decomposition (IID), decomposes
the joint TE (2) as:

Tik→j = Ti→j + Tk→j + Iik→j, (3)

where Iik→j is denoted as interaction transfer entropy (ITE) because it is equivalent to the interaction
information [23] computed between the present of the target and the past of the two sources,
conditioned to the past of the target:

Iik→j = I(Yj,n; Y−i,n; Y−k,n|Y−j,n). (4)
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The interaction TE quantifies the modification of the information transferred from the source
processes Yi and Yk to the target Yj, being positive when Yi and Yk cooperate in a synergistic way and
negative when they act redundantly. This interpretation is evident from the diagrams of Figure 1:
in the case of synergy (Figure 1a), the two sources Yi and Yk taken together contribute to the target
Yj with more information than the sum of their individual contributions (Tik→j > Ti→j + Tk→j),
and the ITE is positive; in the case of redundancy (Figure 1b), the sum of the information amounts
transferred individually from each source to the target is higher than the joint information transfer
(Ti→j + Tk→j > Tik→j), so that the ITE is negative.

Figure 1. Venn diagram representations of the interaction information decomposition (IID) (a,b) and
the partial information decomposition (PID) (c). The IID is depicted in a way such that all areas in the
diagrams are positive: the interaction information transfer Iik→j is positive in (a), denoting net synergy,
and is negative in (b), denoting net redundancy.

2.2. Partial Information Decomposition

An alternative expansion of the joint TE is that provided by the so-called partial information
decomposition (PID) [25]. The PID evidences four distinct quantities measuring the unique information
transferred from each individual source to the target, measured by the unique TEs Ui→j and
Uk→j, and the redundant and synergistic information transferred from the two sources to the target,
measured by the redundant TERik→j and the synergistic TE Sik→j. These four measures are related to
each other and to the joint and individual TEs by the following equations (see also Figure 1c):

Tik→j = Ui→j + Uk→j +Rik→j + Sik→j, (5a)

Ti→j = Ui→j +Rik→j, (5b)

Tk→j = Uk→j +Rik→j. (5c)

In the PID defined above, the terms Ui→j and Uk→j quantify the parts of the information transferred
to the target process Yj, which are unique to the source processes Yi and Yk, respectively, thus reflecting
contributions to the predictability of the target that can be obtained from one of the sources alone,
but not from the other source alone. Each of these unique contributions sums up with the redundant
transfer Rik→j to yield the information transfer from one source to the target as is known from the
classic Shannon information theory. Then, the term Sik→j refers to the synergy between the two sources
while they transfer information to the target, intended as the information that is uniquely obtained
taking the two sources Yi and Yk together, but not considering them alone. Compared to the IID defined
in (3), the PID (5) has the advantage that it provides distinct non-negative measures of redundancy and
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synergy, thereby accounting for the possibility that redundancy and synergy may coexist as separate
elements of information modification. Interestingly, the IID and PID defined in Equations (3) and (5)
are related to each other in a way such that:

Iik→j = Sik→j −Rik→j, (6)

thus showing that the interaction TE is actually a measure of the ‘net’ synergy manifested in the
transfer of information from the two sources to the target.

An issue with the PID (5) is that its constituent measures cannot be obtained through classic
information theory simply subtracting conditional MI terms as done for the IID; an additional
ingredient to the theory is needed to get a fourth defining equation to be added to (5) for providing
an unambiguous definition of Ui→j, Uk→j,Rik→j and Sik→j. While several PID definitions have been
proposed arising from different conceptual definitions of redundancy and synergy [26,27,29], here, we
make reference to the so-called minimum MI (MMI) PID [36]. According to the MMI PID, redundancy
is defined as the minimum of the information provided by each individual source to the target. In terms
of information transfer measured by the TE, this leads to the following definition of the redundant TE:

Rik→j = min{Ti→j, Tk→j}. (7)

This choice satisfies the desirable property that the redundant TE is independent of the correlation
between the source processes. Moreover, it has been shown that, if the observed processes have a joint
Gaussian distribution, all previously-proposed PID formulations reduce to the MMI PID [36].

3. Multiscale Information Transfer Decomposition

3.1. Multiscale Representation of Multivariate Gaussian Processes

In the linear signal processing framework, the M-dimensional vector stochastic process
Yn = [Y1,n · · ·YM,n]

T is classically described using a vector autoregressive (VAR) model of order p:

Yn =
p

∑
k=1

AkYn−k + Un (8)

where Ak are M× M matrices of coefficients and Un = [U1,n · · ·UM,n]
T is a vector of M zero mean

Gaussian processes with covariance matrix Σ ≡ E[UnUT
n ] (E is the expectation operator). To study

the observed process Y at the temporal scale identified by the scale factor τ, we apply the following
transformation to each constituent process Ym, m = 1, . . . , M:

Ȳm,n =
q

∑
l=0

blYm,nτ−l . (9)

This rescaling operation corresponds to transforming the original process Y through a two-step
procedure that consists of the following filtering and downsampling steps, yielding respectively the
processes Ỹ and Ȳ :

Ỹn =
q

∑
l=0

blYn−l , (10a)

Ȳn = Ỹnτ , n = 1, . . . , N/τ (10b)

The change of scale in (9) generalizes the averaging procedure originally proposed in [42], which
sets q = τ − 1 and bl = 1/τ and, thus, realizes the step of filtering through the simple procedure
of averaging τ subsequent samples. To improve the elimination of the fast temporal scales, in this study,
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we follow the idea of [43], in which a more appropriate low pass filter than averaging is employed.
Here, we identify the bl as the coefficients of a linear finite impulse response (FIR) low pass filter
of order q; the FIR filter is designed using the classic window method with the Hamming window [51],
setting the cutoff frequency at fτ = 1/2τ in order to avoid aliasing in the subsequent downsampling
step. Substituting (8) in (10a), the filtering step leads to the process representation:

Ỹn =
p

∑
k=1

AkỸn−k +
q

∑
l=0

BlUn−l (11)

where Bl = blIM (IM is the M×M identity matrix). Hence, the change of scale introduces a moving
average (MA) component of order q in the original VAR(p) process, transforming it into a VARMA(p, q)
process. As we will show in the next section, the downsampling step (10b) keeps the VARMA
representation, altering the model parameters.

3.2. State Space Processes

3.2.1. Formulation of State Space Models

State space models are models that make use of state variables to describe a system by a set
of first-order difference equations, rather than by one or more high-order difference equations [52,53].
The general linear state space (SS) model describing an observed vector process Y has the form:

Xn+1 = AXn + Wn (12a)

Yn = CXn + Vn (12b)

where the state Equation (12a) describes the update of the L-dimensional state (unobserved) process
through the L× L matrix A, and the observation Equation (12b) describes the instantaneous mapping
from the state to the observed process through the M× L matrix C. Wn and Vn are zero-mean white
noise processes with covariances Q≡ E[WnW T

n ] and R≡ E[VnV T
n ] and cross-covariance S≡ E[WnV T

n ].
Thus, the parameters of the SS model (12) are (A, C, Q, R, S).

Another possible SS representation is that evidencing the innovations En = Yn −E[Yn|Y−n ], i.e.,
the residuals of the linear regression of Yn on its infinite past Y−n = [YT

n−1YT
n−2 · · · ]T [53]. This new SS

representation, usually referred to as the “innovations form” SS model (ISS), is characterized by the
state process Zn = E[Xn|Y−n ] and by the L×M Kalman gain matrix K:

Zn+1 = AZn + KEn (13a)

Yn = CZn + En (13b)

The parameters of the ISS model (13) are (A, C, K, V), where V is the covariance of the innovations,
V ≡ E[EnET

n ]. Note that the ISS (13) is a special case of (12) in which Wn = KEn and Vn = En, so that
Q = KVKT , R = V and S = KV.

Given an SS model in the form (12), the corresponding ISS model (13) can be identified by solving
a so-called discrete algebraic Riccati equation (DARE) formulated in terms of the state error variance
matrix P [45]:

P = APAT + Q− (APCT + S)(CPCT + R)−1(CPAT + ST) (14)

Under some assumptions [45], the DARE (14) has a unique stabilizing solution, from which the
Kalman gain and innovation covariance can be computed as:

V = CPCT + R

K = (APCT + S)V−1,
(15)

thus completing the transformation from the SS form to the ISS form.
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3.2.2. State Space Models of Filtered and Downsampled Linear Processes

Exploiting the close relation between VARMA models and SS models, first we show how to convert
the VARMA model (11) into an ISS model in the form of (13) that describes the filtered process Ỹn.
To do this, we exploit Aoki’s method [50] defining the state process Z̃n = [YT

n−1 · · ·YT
n−pUT

n−1 · · ·UT
n−q]

T

that, together with Ỹn, obeys the state Equation (13) with parameters (Ã, C̃, K̃, Ṽ), where:

Ã =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 · · · Ap−1 Ap B1 · · · Bq−1 Bq

IM · · · 0M 0M 0M · · · 0M 0M
...

...
...

...
...

...
0M · · · IM 0M 0M · · · 0M 0M
0M · · · 0M 0M 0M · · · 0M 0M
0M · · · 0M 0M IM · · · 0M 0M

...
...

...
...

...
...

0M · · · 0M 0M 0M · · · IM 0M

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
C̃ =

[
A1 · · · Ap B1 · · · Bq

]
K̃ =

[
IM 0M×M(p−1) B−T

0 0M×M(q−1)

]T

and Ṽ = B0 Σ BT
0 , where Ṽ is the covariance of the innovations Ẽn = B0Un.

Now, we turn to show how the downsampled process Ȳn can be represented through an ISS model
directly from the ISS formulation of the filtered process Ỹn. To this end, we exploit recent theoretical
findings providing the state space form of downsampled signals (Theorem III in [45]). Accordingly,
the SS representation of the process downsampled at scale τ, Ȳn = Ỹnτ has parameters (Ā, C̄, Q̄, R̄, S̄),
where Ā = Ãτ , C̄ = C̃, Q̄ = Qτ , R̄ = Ṽ and S̄ = Sτ , with Qτ and Sτ given by:

Sτ = Ãτ−1K̃Ṽ

Qτ = ÃQτ−1ÃT + K̃ṼK̃T , τ ≥ 2

Q1 = K̃ṼK̃T , τ = 1.

(16)

Therefore, the downsampled process has an ISS representation with state process Z̄n = Z̃nτ ,
innovation process Ēn = Ẽnτ and parameters (Ā, C̄, K̄, V̄), where K̄ and V̄ are obtained solving the
DARE (14) and (15) for the SS model with parameters (Ā, C̄, Q̄, R̄, S̄).

To sum up, the relations and parametric representations of the original process Y , the filtered
process Ỹ and the downsampled process Ȳ are depicted in Figure 2a. The step of low pass filtering
(FLT) applied to a VAR(p) process yields a VARMA(p, q) process (where q is the filter order, and the
cutoff frequency is fτ = 1/2τ); this process is equivalent to an ISS process [50]. The subsequent
downsampling (DWS) yields a different SS process, which in turn can be converted to the ISS
form solving the DARE. Thus, both the filtered process Ỹn and the downsampled process Ȳn can
be represented as ISS processes with parameters (Ã, C̃, K̃, Ṽ) and (Ā, C̄, K̄, V̄) which can be derived
analytically from the knowledge of the parameters of the original process (A1, . . . , Ap, Σ) and of the
filter (q, fτ). In the next section, we show how to compute analytically any measure appearing in
the information decomposition of a jointly Gaussian multivariate stochastic process starting from
its associated ISS model parameters, thus opening the way to the analytical computation of these
measures for multiscale (filtered and downsampled) processes.
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Figure 2. Schematic representation of a linear VAR process and of its multiscale representation obtained
through filtering (FLT) and downsampling (DWS) steps. The downsampled process has an innovations
form state space model (ISS) representation from which submodels can be formed to compute the
partial variances needed for the computation of information measures appearing in the IID and PID
decompositions. This makes it possible to perform multiscale information decomposition analytically
from the original VAR parameters and from the scale factor.

3.3. Multiscale IID and PID

After introducing the general theory of information decomposition and deriving the multiscale
representation of the parameters of a linear VAR model, in this section, we provide expressions
for the terms of the IID and PID decompositions of the information transfer valid for multivariate
jointly Gaussian processes. The derivations are based on the knowledge that the linear parametric
representation of Gaussian processes given in (8) captures all of the entropy differences that define
the various information measures [37] and that these entropy differences are related to the partial
variances of the present of the target given its past and the past of one or more sources, intended
as variances of the prediction errors resulting from linear regression [15,17]. Specifically, let us
denote as Ej|j,n = Yj,n − E[Yj,n|Y−j,n], Ej|ij,n = Yj,n − E[Yj,n|Y−i,n, Y−j,n] the prediction error of a linear

regression of Yj,n performed respectively on Y−j,n and (Y−j,n, Y−i,n) and as λj|j = E[E2
j|j,n], λj|ij = E[E2

j|ij,n],
the corresponding prediction error variances. Then, the TE from Yi to Yj can be expressed as:

Ti→j =
1
2

ln
λj|j
λj|ij

. (17)

In a similar way, the joint TE from (Yi, Yk) to Yj can be defined as:

Tik→j =
1
2

ln
λj|j

λj|ijk
, (18)

where λj|ijk = E[E2
j|ijk,n] is the variance of the prediction error of a linear regression of Yj,n on

(Y−j,n, Y−i,n, Y−k,n), Ej|ijk,n = Yj,n − E[Yj,n|Y−i,n, Y−j,n, Y−k,n]. Based on these derivations, one can easily
complete the IID decomposition of TE by computing Tk→j as in (17) and deriving the interaction
TE from (3) and the PID decomposition, as well by deriving the redundant TE from (7), the synergistic
TE from (6) and the unique TEs from (5).

Next, we show how to compute any partial variance from the parameters of an ISS model in
the form of (13) [44,45]. The partial variance λj|a, where the subscript a denotes any combination
of indexes ∈ {1, . . . , M}, can be derived from the ISS representation of the innovations of a submodel
obtained removing the variables not indexed by a from the observation equation. Specifically, we need
to consider the submodel with state Equation (13b) and observation equation:

Y(a)
n = C(a)Zn + E(a)

n , (19)
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where the superscript (a) denotes the selection of the rows with indices a of a vector or a matrix. It is
important to note that the submodels (13a) and (19) are not in innovations form, but are rather an SS
model with parameters (A, C(a), KVKT , V(a, a), KV(:, a)). This SS model can be converted to an ISS
model with innovation covariance V(a) solving the DARE (14) and (15), so that the partial variance
λj|a is derived as the diagonal element of V(a) corresponding to the position of the target Yj. Thus,
with this procedure, it is possible to compute the partial variances needed for the computation of
the information measures starting from a set of ISS model parameters; since any VAR process can be
represented at scale τ as an ISS process, the procedure allows computing the IID and PID information
decompositions for the rescaled multivariate process (see Figure 2).

It is worth remarking that, while the general formulation of IID and PID decompositions
introduced in Section 2 holds for arbitrary processes, the multiscale extension detailed in Section 3
is exact only if the processes have a joint Gaussian distribution. In such a case, the linear VAR
representation captures exhaustively the joint variability of the processes, and any nonlinear extension
has no additional utility (a formal proof of the fact that a stationary Gaussian VAR process must be
linear can be found in [37]). If, on the contrary, non-Gaussian processes are under scrutiny, the linear
representation provided in Section 3.1 can still be adopted, but may miss important properties in
the dynamics and thus provide only a partial description. Moreover, since the close correspondence
between conditional entropies and partial variances reported in this subsection does not hold anymore
for non-Gaussian processes, all of the obtained measures should be regarded as indexes of (linear)
predictability rather than as information measures.

4. Simulation Experiment

To study the multiscale patterns of information transfer in a controlled setting with known
dynamical interactions between time series, we consider a simulation scheme similar to some already
used for the assessment of theoretical values of information dynamics [15,17]. Specifically, we analyze
the following VAR process of order M = 4:

Y1,n = 2ρ1cos2π f1Y1,n−1 − ρ2
1Y1,n−2 + U1,n, (20a)

Y2,n = 2ρ2cos2π f2Y2,n−1 − ρ2
2Y2,n−2 + cY1,n−1 + U2,n, (20b)

Y3,n = 2ρ3cos2π f3Y3,n−1 − ρ2
3Y3,n−2 + cY1,n−1 + U3,n, (20c)

Y4,n = bY2,n−1 + (1− b)Y3,n−1 + U4,n, (20d)

where Un = [U1,n · · ·U4,n]
T is a vector of zero mean white Gaussian noises with unit variance and

uncorrelated with each other (Σ= I). The parameter design in Equation (20) is chosen to allow
autonomous oscillations in the processes Yi, i = 1, . . . , 3, obtained placing complex-conjugate poles
with modulus ρi and frequency fi in the complex plane representation of the transfer function
of the vector process, as well as causal interactions between the processes at a fixed time lag of
one sample and with strength modulated by the parameters b and c (see Figure 3). In this study,
we set the coefficients related to self-dependencies to values generating well-defined oscillations
in all processes (ρ1 = ρ2 = ρ3 = 0.95) and letting Y1 fluctuate at slower time scales than Y2 and Y3

( f1 = 0.1, f2 = f3 = 0.025). We consider four configurations of the parameters, chosen to reproduce
paradigmatic conditions of interaction between the processes:

(a) isolation of Y1 and Y2 and unidirectional coupling Y3 → Y4, obtained setting b = c = 0;
(b) common driver effects Y2 ← Y1 → Y3 and unidirectional coupling Y3 → Y4, obtained setting

b = 0 and c = 1;
(c) isolation of Y1 and unidirectional couplings Y2 → Y4 and Y3 → Y4, obtained setting b = 0.5

and c = 0;
(d) common driver effects Y2 ← Y1 → Y3 and unidirectional couplings Y2 → Y4 and Y3 → Y4,

obtained setting b = 0.5 and c = 1.
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Figure 3. Graphical representation of the four-variate VAR process of Equation (20) that we use to
explore the multiscale decomposition of the information transferred to Y4, selected as the target process,
from Y2 and Y3, selected as the source processes, in the presence of Y1, acting as the exogenous process.
To favor such exploration, we set oscillations at different time scales for Y1 ( f1 = 0.1) and for Y2

and Y3 ( f2 = f3 = 0.025), induce common driver effects from the exogenous process to the sources
modulated by the parameter c and allow for varying strengths of the causal interactions from the
sources to the target as modulated by the parameter b. The four configurations explored in this study
are depicted in (a–d).

With this simulation setting, we compute all measures appearing in the IID and PID decompositions
of the information transfer, considering Y4 as the target process and Y2 and Y3 as the source processes.
The theoretical values of these measures, computed as a function of the time scale using the IID and
the PID, are reported in Figure 4. In the simple case of unidirectional coupling Y3 → Y4 (b = c = 0,
Figure 4a), the joint information transferred from (Y2, Y3) to Y4 is exclusively due to the source Y3

without contributions from Y2 and without interaction effects between the sources (T23→4 = T3→4 =

U3→4, T2→4 = U2→4 = 0, I23→4 = S23→4 = R23→4 = 0).
When the causal interactions towards Y4 are still due exclusively to Y3, but the two sources Y2

and Y3 share information arriving from Y1 (b = 0, c = 1; Figure 4b), the IID evidences that the joint
information transfer coincides again with the transfer from Y3 (T23→4 = T3→4), but a non-trivial
amount of information transferred from Y2 to Y4 emerges, which is fully redundant (T2→4 = −I23→4).
The PID highlights that the information from Y3 to Y4 is not all unique, but is in part transferred
redundantly with Y2, while the unique transfer from Y2 and the synergistic transfer are negligible.

In the case of two isolated sources equally contributing to the target (b = 0.5, c = 0, Figure 4c),
the IID evidences the presence of net synergy and of identical amounts of information transferred to Y4

from Y2 or Y3 (I23→4 > 0, T2→4 = T3→4). The PID documents that there are no unique contributions,
so that the two amounts of information transfer from each source to the target coincide with the
redundant transfer, and the remaining part of the joint transfer is synergistic (U2→4 = U3→4 = 0,
T2→4 = T3→4 = R23→4, S23→4 = T23→4 −R23→4).

Finally, when the two sources share common information and contribute equally to the target
(b = 0.5, c = 1; Figure 4d), we find that they send the same amount of information as before, but in
this case, no unique information is sent by any of the sources (T2→4 = T3→4, U2→4 = U3→4 = 0).
Moreover, the nature of the interaction between the sources is not trivial and is scale dependent:
at low time scales, where the dynamics are likely dominated by the fast oscillations of Y1, the IID
reveals net redundancy, and the PID shows that the redundant transfer prevails over the synergistic
(I23→4 < 0,R23→4 > S23→4); at higher time scales, where fast dynamics are filtered out and the slow
dynamics of Y2 and Y3 prevail, the IID reveals net synergy, and the PID shows that the synergistic
transfer prevails over the redundant (I23→4 > 0, S23→4 > R23→4).
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Figure 4. Multiscale information decomposition for the simulated VAR process of Equation (20). Plots
depict the exact values of the entropy measures forming the interaction information decomposition (IID,
upper row) and the partial information decomposition (PID, lower row) of the information transferred
from the source processes Y2 and Y3 to the target process Y4 generated according to the scheme of
Figure 3 with four different configurations of the parameters. We find that linear processes may generate
trivial information patterns with the absence of synergistic or redundant behaviors (a); patterns with
the prevalence of redundant information transfer (b) or synergistic information transfer (c) that persist
across multiple time scales; or even complex patterns with the alternating prevalence of redundant
transfer and synergistic transfer at different time scales (d).

5. Application

As a real data application, we analyze intracranial EEG recordings from a patient with
drug-resistant epilepsy measured by an implanted array of 8 × 8 cortical electrodes and two left
hippocampal depth electrodes with six contacts each. The data are available in [54], and further details
on the dataset are given in [55]. Data were sampled at 400 Hz and correspond to 10-s segments recorded
in the pre-ictal period, just before the seizure onset, and 10 s during the ictal stage of the seizure,
for a total of eight seizures. Defining and locating the seizure onset zone, i.e., the specific location in
the brain where the synchronous activity of neighboring groups of cells becomes so strong so as to be
able to spread its own activity to other distant regions, is an important issue in the study of epilepsy
in humans. Here, we focus on the information flow from the sub-cortical regions, probed by depth
electrodes, to the brain cortex. In [21], it has been suggested that Contacts 11 and 12, in the second
depth electrode, are mostly influencing the cortical activity; accordingly, in this work, we consider
Channels 11 and 12 as a pair of source variables for all of the cortical electrodes and decompose the
information flowing from them using the multiscale IID and PID here proposed, both in the pre-ictal
stage and in the ictal stage. An FIR filter with q = 12 coefficients is used, and the order p of the VAR
model is fixed according to the Bayesian information criterion. In the analyzed dataset, the model
order assessed in the pre-ictal phase was p = 14.61± 1.07 (mean ± std. dev.across 64 electrodes and
eight seizures) and during the ictal phase decreased significantly to p = 11.09± 3.95.

In Figure 5, we depict the terms of the IID applied from the two sources (Channels {11, 12})
to any of the electrodes as a function of the scale τ, averaged over the eight seizures. We observe
a relevant enhancement of the joint TE during the seizure, w.r.t. the pre-ictal period. This enhancement
is determined by a marked increase of both the individual TEs from Channels 11 and 12 to all of the
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cortical electrodes; the patterns of the two TEs are similar to each other in both stages. The pattern
of interaction information transfer displays prevalent redundant transfer for low values of τ and
prevalent synergistic transfer for high τ, but the values of the interaction TE have relatively low
magnitude and are only slightly different in pre-ictal and ictal conditions. It is worth stressing that at
scale τ, the algorithm analyzes oscillations, in the time series, slower than 1

2τ fs
s, where fs = 400 Hz.

Figure 5. Interaction information decomposition (IID) of the intracranial EEG information flow
from subcortical to cortical regions in an epileptic patient. The joint transfer entropy from depth
Channels 11 and 12 to cortical electrodes (a); the transfer entropy from depth Channel 11 to cortical
electrodes (b); the transfer entropy from depth Channel 12 to cortical electrodes (c) and the interaction
transfer entropy from depth Channels 11 and 12 to cortical electrodes (d) are depicted as a function
of the scale τ, after averaging over the eight pre-ictal segments (left column) and over the eight ictal
segments (right column). Compared with pre-ictal periods, during the seizure, the IID evidences
marked increases of the joint and individual information transfer from depth to cortical electrodes
and low and almost unvaried levels of interaction transfer.

In Figure 6, we depict, on the other hand, the terms of the PID computed for the same data.
This decomposition shows that the increased joint TE across the seizure transition seen in Figure 5a
is in large part the result of an increase of both the synergistic and the redundant TE, which are
markedly higher during the ictal stage compared with the pre-ictal. This explains why the interaction
TE of Figure 5d, which is the difference between two quantities that both increase, is nearly constant
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moving from the pre-ictal to the ictal stage. The quantity that, instead, clearly differentiates between
Channels 11 and 12 is the unique information transfer: indeed, only the unique TE from Channel 12
increases in the ictal stage, while the unique TE from Channel 13 remains at low levels.

Figure 6. Partial information decomposition (PID) of the intracranial EEG information flow
from subcortical to cortical regions in an epileptic patient. The synergistic transfer entropy from
depth Channels 11 and 12 to cortical electrodes (a); the redundant transfer entropy from depth
Channels 11 and 12 to cortical electrodes (b); the unique transfer entropy from depth Channel
11 to cortical electrodes (c) and the unique transfer entropy from depth Channel 12 to cortical
electrodes (d) are depicted as a function of the scale τ, after averaging over the eight pre-ictal segments
(left column) and over the eight ictal segments (right column). Compared with pre-ictal periods, during
the seizure, the PID evidences marked increases of the information transferred synergistically and
redundantly from depth to cortical electrodes and of the information transferred uniquely from one of
the two depth electrodes, but not from the other.

In order to investigate the variability across trials of the estimates of the various information
measures, in Figure 7, we depict the terms of both IID and PID expressed for each ictal episode as
average values over all 64 cortical electrodes. The analysis shows that the higher average values
observed in Figures 5 and 6 at Scales 1–4 during the ictal state for the joint TE, the two individual
TEs, the redundant and synergistic TEs and the unique TE from depth Channel 12 are the result of
an increase of the measures for almost all of the observed seizure episodes.
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These findings are largely in agreement with the increasing awareness that epilepsy is a network
phenomenon that involves aberrant functional connections across vast parts of the brain on virtually
all spatial scales [56,57]. Indeed, our results document that the occurrence of seizures is associated
with a relevant increase of the information flowing from the subcortical regions (associated with the
depth electrode) to the cortex and that the character of this information flow is mostly redundant both
in the pre-ictal and in the ictal state. Here, the need for a multiscale approach is testified by the fact
that several quantities in the ictal state (e.g., the joint TE, the synergistic ITand the unique ITfrom
Channel 12) attain their maximum at scale τ > 1.

Moreover, the approaches that we propose for information decomposition appear useful to
improve the localization of epileptogenic areas in patients with drug-resistant epilepsy. Indeed,
our analysis suggests that Contact 12 is the closest to the seizure onset zone, and it is driving the
cortical oscillations during the ictal stage, as it sends unique information to the cortex. On the other
hand, to disentangle this effect, it has been necessary to include also Channel 11 in the analysis
and to make the PID of the total information from the pair of depth channels to the cortex; indeed,
the redundancy between Channels 11 and 12 confounds the informational pattern unless the PID
is performed.

Figure 7. Multiscale representation of the measures of interaction information decomposition (IID, top)
and partial information decomposition (PID, bottom) computed as a function of the time scale for each
of the eight seizures during the pre-ictal period (black) and the ictal period (red). Values of joint transfer
entropy (TE), individual TE, interaction TE, redundant TE, synergistic TE and unique TE are obtained
taking the depth Channels 11 and 12 as sources and averaging over all 64 target cortical electrodes.
Increases during seizure of the joint TE, individual TEs from both depth electrodes, redundant and
synergistic TE and unique TE from the depth electrode 12 are evident at low time scales for almost all
considered episodes.

6. Conclusions

Understanding how multiple inputs may combine to create the output of a given target is
a fundamental challenge in many fields, in particular in neuroscience. Shannon’s information theory
is the most suitable frame to cope with this problem and thus to assess the informational character
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of multiplets of variables describing complex systems; IID indeed measures the balance between
redundant and synergetic interaction within the classical multivariate entropy-based approach.
Recently Shannon’s information theory has been extended, in the PID, so as to provide specific
measures for the information that several variables convey individually (unique information),
redundantly (shared information) or only jointly (synergistic information) about the output.

The contribution of the present work is the proposal of an analytical frame where both IID and
PID can be exactly evaluated in a multiscale fashion, for multivariate Gaussian processes, on the
basis of simple vector autoregressive identification. In doing this, our work opens the way for both
the theoretical analysis and the practical implementation of information modification in processes
that exhibit multiscale dynamical structures. The effectiveness of the proposed approach has been
demonstrated both on simulated examples and on real publicly-available intracranial EEG data.
Our results provide a firm ground to the multiscale evaluation of PID, to be applied in all applications
where causal influences coexist at multiple temporal scales.

Future developments of this work include the refinement of the SS model structure to
accommodate the description of long-range linear correlations [58] or its expansion to the description
of nonstationary processes [59] and the formalization of exact cross-scale computation of information
decomposition within and between multivariate processes [60]. A major challenge in the field
remains the generalization of this type of analysis to non-Gaussian processes, for which exact
analytical solutions or computationally-reliable estimation approaches are still lacking. This constitutes
a main direction for further research, because real-world processes display very often non-Gaussian
distributions, which would make an extension to nonlinear models or model-free approaches beneficial.
The questions that are still open in this respect include the evaluation of proper theoretical definitions of
synergy or redundancy for nonlinear processes [25–29], the development of reliable entropy estimators
for multivariate variables with different dimensions [6,35,61] and the assessment of the extent to which
non-linear model-free methods really outperform the linear model-based approach adopted here and
in previous investigations [62].

Supplementary Materials: Supplementary Material to this article and is freely available for download from
www.lucafaes.net/msID.html and https://github.com/danielemarinazzo/multiscale_PID.
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Abstract: Bertschinger, Rauh, Olbrich, Jost, and Ay (Entropy, 2014) have proposed a definition
of a decomposition of the mutual information MI(X : Y, Z) into shared, synergistic, and unique
information by way of solving a convex optimization problem. In this paper, we discuss the solution
of their Convex Program from theoretical and practical points of view.
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1. Introduction

Bertschinger, Rauh, Olbrich, Jost, and Ay [1] have proposed to compute a decomposition of the
mutual information MI(X : Y, Z) into shared, synergistic, and unique contributions by way of solving
a convex optimization problem. It is important to mention that William and Beer in [2] were the first to
propose a measure for information decomposition. That measure suffered from serious flaws, which
prompted a series of other papers [3–5] trying to improve these results. Denote by X the range of the
random variable X, by Y the range of Y, and by Z the range of Z. Further, let

byx,y = P
(
X = x ∧ Y = y

)
for all x ∈ X, y ∈ Y

bzx,z = P
(
X = x ∧ Z = z

)
for all x ∈ X, y ∈ Y

the marginals. Then the Bertschinger et al. definition of synergistic information is

C̃I(X : Y; Z) := MI(X : Y, Z)−min
q

MI(x,y,z)∼q(x : y, z),

where MI denotes mutual information, and (x, y, z) ∼ q stands for (x, y, z) is distributed according to
the probability distribution q. The minimum ranges over all probability distributions q ∈ [0, 1]X×Y×Z

which satisfy the marginal equations

qx,y,∗ = byx,y for all (x, y) ∈ X×Y

qx,∗,z = bzx,z for all (x, z) ∈ X× Z.

We use the notational convention that an asterisk “∗” is to be read as “sum over everything that can be
plugged in here”; e.g.,

qx,y,∗ := ∑
w

qx,y,w.

(We don’t use the symbol ∗ in any other context).
As pointed out in [1], the function q �→ MI(x,y,z)∼q(x : y, z) is convex and smooth in the interior

of the convex region, and hence, by textbook results on convex optimization, for every ε > 0,
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an ε-approximation of the optimum—i.e., a probability distribution q� for which MI(x,y,z)∼q�(x : y, z) is
at most ε larger than the minimum—can be found in at most O(α2/ε2) rounds of an iterative algorithm
(e.g., Proposition 7.3.1 in [6]), with a parameter α (the asphericity of the feasible region) depending
on the marginals by, bz. Each iteration involves evaluating the gradient of MI(x,y,z)∼q�(x : y, z) with
respect to q, and O(|X×Y× Z|) additional arithmetic operations.

In Appendix A of their paper, Bertschinger et al. discuss practical issues related to the solution
of the convex optimization problem: They analyze the feasible region, solve by hand some of the
problems, and complain that Mathematica could not solve the optimization problem out of the box.

Our paper is an expansion of that appendix in [1]. Driven by the need in application areas
(e.g., [7]) to have a robust, fast, out-of-the-box method for computing C̃I, we review the required
convex optimization background; discuss different approaches to computing C̃I and the theoretical
reasons contributing to the poor performance of some of them; and finally compare several of these
approaches on practical problem instance. In conclusion, we offer two different practical ways of
computing C̃I.

The convex optimization problem in [1] is the following:

minimize MI(x,y,z)∼q(x : y, z) over q ∈ R
X×Y×Z

subject to qx,y,∗ = byx,y for all (x, y) ∈ X×Y

qx,∗,z = bzx,z for all (x, z) ∈ X× Z

qx,y,z ≥ 0 for all (x, y, z) ∈ X×Y× Z

(CP)

This is a Convex Program with a non-linear, convex continuous objective function
q �→ MI(x,y,z)∼q(x : y, z), which is smooth in all points q with no zero entry. The feasible region
(i.e., the set of all q satisfying the constraints) is a compact convex polyhedron, which is nonempty,
as the distribution of the original random variables (X, Y, Z) is a feasible solution. Clearly, the condition
that q should be a probability distribution is implied by it satisfying the marginal equations.

In the next section, we review some background about convex functions and convex optimization,
in particular with respect to non-smooth functions. Section 3 aims to shed light on the theoretical
properties of the convex program (CP). In Section 4, we present the computer experiments which we
conducted and their results. Some result tables are in the Appendix A.

2. Convex Optimization Basics

Since the target audience of this paper is not the optimization community, for the sake of easy
reference, we briefly review the relevant definitions and facts, tailored for our problem: the feasible
region is polyhedral, the objective function is (convex and continuous but) not everywhere smooth.

Let f be a convex function defined on a convex set C ⊆ Rn; let x ∈ C and d ∈ Rn. The directional
derivative of f at x in the direction of d is defined as the limit

f ′(x; d) := lim
ε↘0

f (x + εd)− f (x)
ε

∈ [−∞, ∞]. (1)

Remark 1 ([8], Lemma 2.71). The limit in (1) exists in [−∞, ∞], by the convexity of f .

A subgradient of f at a point x ∈ C is a vector g ∈ Rn such that, for all y ∈ C, we have
f (y) ≥ f (x) + g!(y− x).

There can be many subgradients of f at a point. However:

Remark 2. If f is differentiable at x, then ∇ f (x) is the only subgradient of f at x.

Lemma 1 ([8], Lemma 2.73). If g is a subgradient of f at x ∈ C, and y ∈ C, then g!(y− x) ≤ f ′(x; y− x).
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We state the following lemma for convenience (it will be used in the proof of Proposition 2). It is a
simplification of the Moreau-Rockafellar Theorem ([8], Theorem 2.85).

Lemma 2. Let Ci ⊂ R�, i = 1, . . . , k be a closed convex sets, fi : Ci → R continuous convex functions, and

f (x) =
k

∑
i=1

fi(xi)

for x = (x1, . . . , xk) ∈ ∏k
i=1 Ci ⊂ R(�)k. If, for i = 1, . . . , k, gi is a subgradient of fi at xi, then

g := (g1, . . . , gk) is a subgradient of f at x. Moreover, all subgradients of f at x are of this form.

For the remainder of this section, we reduce the consideration to convex sets C of the form
given in the optimization problem (CP). Let A be an m× n matrix, and b an m-vector. Assume that
C = {x ∈ Rn | Ax = b ∧ x ≥ 0}. Suppose f is a convex function defined on C. Consider the convex
optimization problem min

x∈C
f (x).

Let x ∈ C. A vector d ∈ Rn is called a feasible descent direction of f at x, if

(a) for some ε > 0, x + εd ∈ C (“feasible direction”); and
(b) f ′(x; d) < 0 (“descent direction”).

Clearly, if a feasible descent direction of f at x exists, then x is not a minimum of f over C.
The following theorem is a direct consequence of ([8], Theorem 3.34) adapted to our situation.

Theorem 1 (Karush-Kuhn-Tucker). Suppose that for every j = 1, . . . , n, there is an x ∈ C with xj > 0.
The function f attains a minimum over C at a point x ∈ C if, and only if, there exist

• a subgradient g of f at x
• and an m-vector λ ∈ Rm

such that A!λ ≤ g, and for all j ∈ {1, . . . , n} with xj > 0, equality holds: (A!λ)j = gj.

The condition “xj = 0 or (A!λ)j = gj” is called complementarity.

2.1. Convex Optimization Through Interior Point Methods

For reasons which will become clear in Section 3, it is reasonable to try to solve (CP) using a
so-called Interior Point or Barrier Method (we gloss over the (subtle) distinction between IPMs and
BMs). The basic idea of these iterative methods is that all iterates are in the “interior” of something.
We sketch what goes on.

From a theoretical point of view, a closed convex set C is given in terms of a barrier function,
i.e., a convex function F : C → R with F(x) → ∞ whenever x approaches the boundary of C.
The prototypical example is C := [0, ∞]n, and F(x) := −∑j ln xj. The goal is to minimize a linear
objective function x �→ ∑j cjxj over C.

To fit problems with nonlinear (convex) objective f into this paradigm, the “epigraph form” is
used, which means that a new variable s is added along with a constraint f (q) ≤ s, and the objective is
“minimize s”.

The algorithm maintains a barrier parameter t > 0, which is increased gradually. In iteration k,
it solves the unconstrained optimization problem

x(k) := argmin
x∈Rn

(
tk · c!x + F(x)

)
(2)

The barrier parameter is then increased, and the algorithm proceeds with the next iteration.
The fact that the barrier function tends to infinity towards the boundary of C makes sure that the
iterates x(k) stay in the interior of C for all k.
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The unconstrained optimization problem (2) is solved using Newton’s method, which is itself
iterative. If x is the current iterate, Newton’s method finds the minimum to the second order Taylor
expansion about x of the objective function g : x �→ tk · c!x + F(x):

argmin
y∈Rn

(
g(x) +∇g(x)!(y− x) + 1

2 (y− x)Hg(x)(y− x)
)

= x− Hg(x)−1∇g(x).

where Hg(x) denotes the Hessian of g at x. Then Newton’s method updates x (e.g., by simply replacing
it with the argmin).

Note that Hg(x) = HF(x), so the convergence properties (as well as, whether it works at all or
not), depend on the properties of the barrier function. Suitable barrier functions are known to exist for
all compact convex sets [9,10]. However, for a given set, finding one which can be quickly evaluated
(along with the gradient and the Hessian) is sometimes a challenge.

A more “concrete” point of view is the following. Consider f and C as above:
C := {x | Ax = b, x ≥ 0} and f is convex and continuous on C, and smooth in the interior of C
(here: the points x ∈ C with xj > 0 for all j) which we assume to be non-empty. A simple barrier-type
algorithm is the following. In iteration k, solve the equality-constrained optimization problem

x(k) := argmin
x∈Rn

Ax=b

(
tk · f (x)−

n

∑
j=1

ln(xj)

)
. (3)

The equality-constrained problem is solved by a variant of Newton’s method: If x is the current
iterate, Newton’s method finds the minimum to the second order Taylor expansion about x of the
function g : x �→ tk f (x)−∑ ln(xj) subject to the equations Ax = b, using Lagrange multipliers, i.e.,
it solves the linear system

Hg(x)y + A!λ = −∇g(x)

Ax = b,

with Hg(x) = tk H f (x) + Diagj(1/x2
j ) and ∇g(x) = tk∇ f (x)−Diagj(1/xj), where Diag(·) denotes a

diagonal matrix of appropriate size with the given diagonal.
By convexity of f , H f (x) is positive semidefinite, so that adding the diagonal matrix results in a

(strictly) positive definite matrix. Hence, the system of linear equations always has a solution.
The convergence properties of this simple barrier method now depend on properties of f . We refer

the interested reader to ([11], Chapter 11) for the details.
Generally speaking, today’s practical Interior Point Methods are “Primal-Dual Interior

Point Methods”: They solve the “primal” optimization problem and the dual—the system in
Theorem 1—simultaneously. After (successful) termination, they return not only an ε-approximation x
of the optimum, but also the Lagrange multipliers λ which certify optimality.

3. Theoretical View on Bertschinger et al.’s Convex Program

We will use the following running example in this section.

Example 1 (Part 1/4). Let X := {0, 1, 2, 3}, Y, Z := {0, 1}.

by0,0 := 1/4 by0,1 := 0 bz0,0 := 1/4 bz0,1 := 0
by1,0 := 0 by1,1 := 1/4 bz1,0 := 0 bz1,1 := 1/4

by2,0 := 1/8 by2,1 := 1/8 bz2,0 := 1/8 bz2,1 := 1/8

by3,0 := 1/8 by3,1 := 1/8 bz3,0 := 1/8 bz3,1 := 1/8
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Among all q ∈ RX×Y×Z (16 dimensions) satisfying the 16 equations

qx,y,∗ = byx,y ∀x, y, qx,∗,z = bzx,z ∀x, z,

and the 16 inequalities qx,y,z ≥ 0 for all x, y, z, we want to find one which minimizes MI(x,y,z)∼q(x : y, z).

3.1. The Feasible Region

In this section, we discuss the feasible region:

¶(b) :=
{

q ∈ R
X×Y×Z
+

∣∣∣ ∀x, y, z : qx,y,∗ = byx,y & qx,∗,z = bzx,z

}
We will omit the “(b)” when no confusion can arise. We will always make the

following assumptions:

1. by and bz are probability distributions.
2. ¶(b) is non-empty. This is equivalent to byx,∗ = bzx,∗ for all x ∈ X.
3. No element of X is “redundant”, i.e., for every x ∈ X we have both byx,∗ > 0 and bzx,∗ > 0.

First of all, recall the vectors d̄ ∈ RX×Y×Z from Appendix A.1 of [1], defined by

d̄x,y,z,y′ ,z′ := 1x,y,z + 1x,y′ ,z′ − 1x,y,z′ − 1x,y′ ,z, (4)

(where 1... is the vector with exactly one non-zero entry in the given position, and 0 otherwise) satisfy
d̄x,y,∗ = d̄x,∗,z = 0 for all x, y, z (we omit the superscripts for convenience, when possible).

Our first proposition identifies the triples (x, y, z) for which the equation qx,y,z = 0 holds for all
q ∈ ¶(b).

Proposition 1. If qx,y,z = 0 holds for all q ∈ ¶(b), then byx,y = 0 or bzx,z = 0.

Proof. Let x, y, z ∈ X × Y × Z, and assume that byx,y �= 0 and bzx,z �= 0. Take any p ∈ ¶(b) with
px,y,z = 0—if no such p exists, we are done. Since the marginals are not zero, there exist y′ ∈ Y \ {y}
and z′ ∈ Z \ {z} with px,y′ ,z > 0 and px,y,z′ > 0. Let d̄ := d̄x,y,z,y′ ,z′ . By the remarks preceding the
proposition, p + δd̄ satisfies the marginal equations for all δ ∈ R. Since px,y′ ,z > 0 and px,y,z′ > 0, there
exists a δ > 0 such that q := p + δd̄ ≥ 0. Hence, we have q ∈ ¶(b) and qx,y,z > 0, proving that the
equation qx,y,z = 0 is not satisfied by all elements of ¶(b).

The proposition allows us to restrict the set of variables of the Convex Program to those triples
(x, y, z) for which a feasible q exists with qx,y,z �= 0 (thereby avoiding unneccessary complications in
the computation of the objective function and derivatives; see the next section); the equations with
RHS 0 become superfluous. We let

J (b) :=
{
(x, y, z) ∈ X×Y× Z

∣∣ byx,y > 0 ∧ bzx,z > 0
}

(5)

denote the set of remaining triplets. We will omit the “(b)” when no confusion can arise.

Example 2 (Part 2/4). Continuing Example 1, we see that the equations with RHS 0 allow to omit the variables
qx,y,z for the following triples (x, y, z):

(0, 1, 0) (0, 0, 1)
(0, 1, 1) (0, 1, 1)

(1, 0, 0) (1, 0, 0)
(1, 0, 1) (1, 1, 0)

Hence, J :=
{
(0, 0, 0), (1, 1, 1), (2, y, z), (3, y′, z′) | y, z, y′, z′ ∈ {0, 1}

}
(10 variables), and we are left

with the following 12 equations:
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q0,0,∗ = by0,0 = 1/4 q0,∗,0 = bz0,0 = 1/4

q1,1,∗ = by1,1 = 1/4 q1,∗,1 = bz1,1 = 1/4

q2,0,∗ = by2,0 = 1/8 q2,1,∗ = by2,1 = 1/8 q2,∗,0 = bz2,0 = 1/8 q2,∗,1 = bz2,1 = 1/8

q3,0,∗ = by3,0 = 1/8 q3,1,∗ = by3,1 = 1/8 q3,∗,0 = bz3,0 = 1/8 q3,∗,1 = bz3,1 = 1/8.

We can now give an easy expression for the dimension of the feasible region (with respect to the
number of variables, |J (b)|).

Corollary 1. The dimension of ¶(b) is

|J (b)|+ |X| −
∣∣{(x, y) | byx,y > 0}

∣∣− ∣∣{(x, z) | bzx,z > 0}
∣∣.

Proof. For x ∈ X, the set Yx := {y ∈ Y | byx,y > 0} is non-empty, by assumption 3; the same is true for
Zx := {z ∈ Z | bzx,z > 0}. Note that J (b) is the disjoint union of the sets {x} ×Yx × Zx, x ∈ X.

Lemmas 26 and 27 of [1] now basically complete the proof of our corollary: It implies that the
dimension is equal to

∑
x∈X

(|Yx| − 1)(|Zx| − 1).

As J (b) is the disjoint union of the sets {x} ×Yx × Zx, x ∈ X, we find this quantity to be equal to

|J (b)|+ |X| − ∑
x∈X

(
|Yx|+ |Zx|

)
.

Finally,

∑
x∈X

(
|Yx|+ |Zx|

)
=
∣∣{(x, y) | byx,y > 0}

∣∣+ ∣∣{(x, z) | bzx,z > 0}
∣∣,

which concludes the proof of the corollary.

Example 3 (Part 3/4). Continuing Example 1, we find that the values for the variables q0,0,0 and q1,1,1 are fixed
to 1/4, whereas each of two sets of four variables q2,y,z, y, z ∈ {0, 1}, and q3,y,z, y, z ∈ {0, 1}, offers one degree of
freedom, so the dimension should be 2. And indeed: |J |+ |X| −

∣∣{(x, y) | byx,y > 0}
∣∣− ∣∣{(x, z) | bzx,z > 0}

∣∣ =
10 + 4− 12 = 2.

3.2. The Objective Function and Optimality

We now discuss the objective function. The goal is to minimize

MI(x,y,z)∼q(x : y, z) = H(x,y,z)∼q(x)− H(x,y,z)∼q(x | y, z).

Since the distribution of x is fixed by the marginal equations, the first term in the sum is a
constant, and we are left with minimizing negative conditional entropy. We start by discussing
negative conditional entropy as a function on its full domain (We don’t assume q to be a probability
distrbution, let alone to satisfy the marginal equations): f : RJ+ → R (with J = J (b) for arbitrary but
fixed b)

f : q �→ ∑
(x,y,z)∈J

qx,y,z ln
(

qx,y,z

q∗,y,z

)
, (6)

where we set 0 ln(. . . ) := 0, as usual. The function f is continuous on its domain, and it is smooth on
[0, ∞]J . Indeed, we have the gradient(

∇ f (q)
)

x,y,z
= ∂x,y,z f (q) = ln

( qx,y,z

q∗,y,z

)
, (7)
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and the Hessian

(
H f (q)

)
(x,y,z),(x′ ,y′ ,z′)

= ∂x,y,z∂x′ ,y′ ,z′ f (q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, if (y′, z′) �= (y, z)

−1
q∗,y,z

, if (y′, z′) = (y, z), x �= x′

q∗,y,z − qx,y,z

qx,y,z q∗,y,z
, if (x′, y′, z′) = (x, y, z).

(8)

It is worth pointing out that the Hessian, while positive semidefinite, is not positive definite,
and, more pertinently, it is not in general positive definite on the tangent space of the feasible region,
i.e., r!H f (q)r = 0 is possible for r ∈ RJ with r(x, y, ∗) = r(x, ∗, z) = 0 for all (x, y, z). Indeed,
if, e.g., J = X × Y × Z, it is easy to see the kernel of H f (q) has dimension |Y× Z|, whereas the
feasible region has dimension |X|(|Y| − 1)(|Z| − 1) = |X×Y× Z| − |X||Y| − |X||Z| + 1. Hence,
if |Y× Z| > |X||Y|+ |X||Z| − 1, then for every q(!) the kernel of H f (q) the must have a non-empty
intersection with the tangent space of the feasible region.

Optimality condition and boundary issues. In the case of points q which lie on the boundary of
the domain, i.e., qx,y,z = 0 for at least one triplet (x, y, z), some partial derivatives don’t exist. For y, z,
denote Xyz := {x | (x, y, z) ∈ J }. The situation is as follows.

Proposition 2. Let q ∈ ¶.

(a) If there is a (x, y, z) ∈ J with qx,y,z = 0 but q∗,y,z > 0, then f does not have a subgradient at q. Indeed,
there is a feasible descent direction of f at q with directional derivative −∞.

(b) Otherwise—i.e., for all (x, y, z) ∈ J , qx,y,z = 0 only if q∗,y,z = 0—subgradients exist. For all y, z, let
�y,z ∈ [0, 1]Xyz be a probability distribution on Xyz. Suppose that, for all y, z with q∗,y,z > 0,

�
y,z
x =

qx,y,z

q∗,y,z
for all x ∈ Xyz. (9)

Then g defined by gx,y,z := ln(�y,z
x ), for all (x, y, z) ∈ J , is a subgradient of f at q.

Moreover, g′ is a subgradient iff there exists such a g with

• g′x,y,z ≤ g for all (x, y, z) ∈ J with qx,y,z = 0;
• g′x,y,z = g for all (x, y, z) ∈ J with qx,y,z > 0.

Proof. For Proposition 2, let (y, z) ∈ Y × Z with q∗,y,z > 0, and x ∈ Xyz with qx,y,z = 0. There exist
y′, z′ such that qx,y′ ,z, qx,y,z′ > 0. This means that d̄ := d̄x,y,z,y′ ,z′ as defined in (4) is a feasible direction.
Direct calculations (written down in [12]) show that f ′(q; d̄) = −∞. Invoking Lemma 1 yields
non-existence of the subgradient.

As to Proposition 2, we prove the statement for every pair (y, z) ∈ Y× Z for the function

fyz : R
Xyz
+ → R : q �→ ∑

x∈Xyz

qx ln(qx/q∗),

and then use Lemma 2.
Let us fix one pair (y, z). If qx,y,z > 0 for all x ∈ Xyz holds, then we fy,z is differentiable at q, so we

simply apply Remark 2.
Now assume q∗,y,z = 0. A vector g ∈ R

Xyz is a subgradient of fyz, iff

∑
x∈Xyz

rx,y,z ln(rx,y,z/r∗,y,z) = fyz(q + r)
!
≥ fyz(q) + g!r = fyz(q) + ∑

x∈Xyz

rxgx (10)

holds for all r ∈ RJ with rx,y,z ≥ for all (x, y, z) ∈ J , and r∗ > 0.
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We immediately deduce gx ≤ 0 for all x. Let �′x := egx for all x, and �x := �′x/C, with C := �′∗.
Clearly, � is a probability distribution on Xyz. Moreover, the difference LHS-RHS of (10) is equal to

DKL(r/r∗‖ρ) + ln C,

with DKL denoting Kullback-Leibler divergence. From the usual properties of the Kullback-Leibler
divergence, we see that this expression is greater-than-or-equal to 0 for all r, if and only if C ≥ 1, which
translates to

∑
x

egx ≤ 1.

From this, the statements in Proposition 2 follow.

From the proposition, we derive the following corollary.

Corollary 2. Suppose a minimum of f over ¶(b) is attained in a point q with qx,y,z = 0 for a triple (x, y, z)
with byx,y > 0 and bzx,z > 0. Then qu,y,z = 0 for all u ∈ X.

Proof. This follows immediately from the fact, expressed in item Proposition 2 of the lemma, that a
negative feasible descent direction exists at a point q which with qx,y,z = 0 for a triple (x, y, z) ∈ J (b)
with q∗,y,z > 0.

Based on Proposition 2 and the Karush-Kuhn-Tucker conditions, Theorem 1, we can now write
down the optimality condition.

Corollary 3. Let q ∈ ¶(b). The minimum of f over ¶(b) is attained in q if, and only if, (a) q∗,y,z = 0 holds
whenever there is an (x, y, z) ∈ J (b) with qx,y,z = 0; and (b) there exist

• λx,y ∈ R, for each (x, y) with byx,y > 0;
• μx,z ∈ R, for each (x, z) with bzx,z > 0;

satisfying the following: For all y, z with q∗,y,z > 0,

λx,y + μx,z = ln
( qx,y,z

q∗,y,z

)
holds for all x ∈ Xyz;

for all y, z with q∗,y,z = 0 (but Xyz �= ∅), there is a probability distribution � ∈ ]0, 1]Xyz on Xyz such that

λx,y + μx,z ≤ ln(�y,z
x ) holds for all x ∈ Xyz.

Example 4 (Part 4/4). Continuing Example 1, let us now find the optimal solution “by hand”. First of all,
note that q0,0,0 = 1/4 = q1,1,1 holds for all feasible solutions. By Corollary 2, if q is an optimal solution, since
q0,0,0 > 0, we must have qx,0,0 > 0 for x = 2, 3; and similarly, qx,1,1 > 0 for x = 2, 3.
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To verify whether or not a given q is optimal, we have to find solutions λx,y, μx,z to the following system of
equations and/or inequalities:

λ0,0 + μ0,0 = ln(1/4/(1/4 + q2,0,0 + q3,0,0))

λ2,0 + μ2,0 = ln(q2,0,0/(1/4 + q2,0,0 + q3,0,0))

λ3,0 + μ3,0 = ln(q3,0,0/(1/4 + q2,0,0 + q3,0,0))

λ2,0 + μ2,1

{
= ln(q2,0,1/(q2,0,1 + q3,0,1)), if q∗,0,1 > 0

≤ ln(�01
2 ), if q∗,0,1 = 0

λ3,0 + μ3,1

{
= ln(q3,0,1/(q2,0,1 + q3,0,1)), if q∗,0,1 > 0

≤ ln(�01
3 ), if q∗,0,1 = 0

λ2,1 + μ2,0

{
= ln(q3,1,0/(q2,1,0 + q3,1,0)), if q∗,1,0 > 0

≤ ln(�10
2 ), if q∗,1,0 = 0

λ3,1 + μ3,0

{
= ln(q3,1,0/(q2,1,0 + q3,1,0)), if q∗,1,0 > 0

≤ ln(�10
3 ), if q∗,1,0 = 0

λ1,1 + μ1,1 = ln(1/4/(1/4 + q2,1,1 + q3,1,1))

λ2,1 + μ2,1 = ln(q2,1,1/(1/4 + q2,1,1 + q3,1,1))

λ3,1 + μ3,1 = ln(q3,1,1/(1/4 + q2,1,1 + q3,1,1)).

(11)

The �’s, if needed, have to be found: both �01 and �10 must be probability distributions on {2, 3}.
From the conditions on the zero-nonzero pattern of an optimal solution, we can readily guess an optimal q.

Let’s guess wrongly, first, though: q2,y,z = q3,y,z = 1/16 for all y, z. In this case, all of the constraints in (11)
become equations, and the �’s don’t occur. We have a system of equations in the variables λ·,· and μ·,·. It is easy
to check that the system does not have a solution.

Our next guess for an optimal solution q is: q2,0,1 = q3,0,1 = 0; q2,1,0 = q3,1,0 = 0; q2,0,0 = q3,0,0 = 1/8;
q2,1,1 = q3,1,1 = 1/8. In (11), the constraints involving (y, z) = (0, 1), (1, 0) are relaxed to inequalities,
with the freedom to pick arbitrary probability distributions �01 and �10 in the RHSs. We choose the following:
λx,y = μx,z =

1
2 ln(1/2) for all x, y, z. The equations are clearly satisfied. The inequalities are satisfied if we take

�01
0 = �01

1 = 1/2; �01
0 = �01

1 = 1/2.

3.3. Algorithmic Approaches

We now discuss several possibilities of solving the convex program (CP): Gradient descent and
interior point methods; geometric programming; cone programming over the so-called exponential
cone. We’ll explain the terms in the subsections.

3.3.1. Gradient Descent

Proposition 2 and Corollary 2 together with the running example make clear that the boundary
is “problematic”. On the one hand, the optimal point can sometimes be on the boundary. (In fact,
this is already the case for the AND-gate, as computed in Appendix A.2 of [1].) On the other hand,
by Corollary 2, optimal boundary points lie in a lower dimensional subset inside the boundary
(codimension ≈ |X|), and the optimal points on the boundary are “squeezed in” between boundary
regions which are “infinitely strongly repellent” (which means to express that the feasible descent
direction has directional derivative −∞).

From the perspective of choosing an algorithm, it is pertinent that subgradients do not exist
everywhere on the boundary. This rules out the use of algorithms which rely on evaluating
(sub-)gradients on the boundary, such as projected (sub-)gradient descent. (And also generic active set
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and sequential quadratic programming methods (We refer the interested reader to [13] for background
on these optimization methods); the computational result in Section 4 illustrate that.

Due to the huge popularity of gradient descent, the authors felt under social pressure to present at
least one version of it. Thus, we designed an ad-hoc quick-and-dirty gradient descent algorithm which
does its best to avoid the pitfalls of the feasible region: it’s boundary. We now describe this algorithm.

Denote by A the matrix representing the LHS of the equations in (CP); also reduce A by
removing rows which are linear combinations of other rows. Now, multiplication by the matrix
P := A!(A!A)−1 A amounts to projection onto the tangent space {d | Ad = 0} of the feasible region,
and P∇ f (q) is the gradient of f in the tanget space, taken at the point q.

The strategy by which we try to avoid the dangers of approaching the boundary of the feasible
region in the “wrong” way is by never reducing the smallest entry of the current iterate q by more then
10%. Here is the algorithm.

Algorithm 1: Gradient Descent

1 Construct the matrix A
2 Compute P := A!(A!A)−1 A
3 Initialize q to a point in the interior of the feasible region
4 repeat

5 Compute f (q) if f (q) better than all previous solutions then

6 store q
7 Compute the gradient ∇ f (q)
8 Compute the projection of the gradient g := P∇ f (q)
9 Determine a step size η, ensuring qxyz > ηgxyz for all xyz

10 Update q = q− ηg
11 until stopping criterion is reached

There are lots of challenges with this approach, not the least of which is deciding on the step size η.
Generally, a good step size for gradient descent is 1 over the largest eigenvalue of the Hessian—but
the eigenvalues of the Hessian tend to infinity.

The stopping criterion is also not obvious: we use a combination of the norm of the projected
gradient, the distance to the boundary, and a maximum of 1000 iterations.

None of these decisions are motivated by careful thought.

3.3.2. Interior Point Methods

Using Interior Point Methods (IPMs) appears to be the natural approach: While the iterates can
converge to a point on the boundary, none of the iterates actually lie on the boundary, and that is
an inherent property of the method (not a condition which you try to enforce artificially as in the
gradient descent approach of the previous section). Consequently, problems with gradients, or even
non-existing subgradients, never occur.

Even here, however, there are caveats involving the boundary. Let us consider, as an example,
the simple barrier approach sketched in Section 2.1 (page 4). The analysis of this method (see [11])
requires that the function F : q �→ t f (q)−∑xyz ln(qxyz) be self-concordant, which means that, for some
constant C, for all q, h

D3F(q)[h, h, h] ≤ C ·
(
h!HF(q)h

)3/2, (12)

where D3 denotes the tensor of third derivatives. The following is proven in [12]:

188



Entropy 2017, 19, 530

Proposition 3. Let n ≥ 2, and consider the function

F : q �→ t
n

∑
x=1

qx ln(qx/q∗)−∑
x

ln(qx)

There is no C and no t such that (12) holds for all q ∈ [0, ∞]n and all h.

The proposition explains why, even for some IPMs, approaching the boundary can be problematic.
We refer to [12] for more discussions about self-concordancy issues of the (CP).

Corollary 4. The complexity of the interior point method via self-concordant barrier for solving (CP) is
O(M · log 1/ε), where M is the complexity of computing the Newton step (which can be done by computing and
inverting the Hessian of the barrier)

Proof. This follows immediately from the fact that a 3-self concordant barrier exists for (CP) (see [12])
and the complexity analysis of barrier method in [11], Chapter 11.

Still, we find the IPM approach (with the commercial Interior Point software “Mosek”) to be the
most usable of all the approaches which we have tried.

3.3.3. Geometric Programming

Geometric Programs form a sub-class of Convex Programs; they are considered to be more easily
solvable than general Convex Programs: Specialized algorithms for solving Geometric Programs
have been around for a half-century (or more). We refer to [14] for the definition and background
on Geometric Programming. The Langrange dual of (CP) can be written as the following Geometric
Program in the variables λ ∈ RX×Y, μ ∈ RX×Y (for simplicity, assume that all the right-hand-sides b�

are strictly positive):

minimize ∑
(x,y)∈X×Y

byx,yλx,y + ∑
(x,z)∈X×Z

bzx, z · μx,z

subject to ln
(

∑
x∈X

exp
(
λxy + μxz

))
≤ 0 for all (y, z) ∈ Y× Z.

(GP)

3.3.4. Exponential Cone Programming

Cone Programming is a far-reaching generalization of Linear Programming, which may contain
so-called generalized inequalities: For a fixed closed convex cone K, the generalized inequality “a ≤K b”
simply translates into b− a ∈ K. There is a duality theory similar to that for Linear Programming.

Efficient algorithms for Cone Programming exist for some closed convex cones; for example for
the exponential cone [15], Kexp, which is the closure of all triples (r, p, q) ∈ R3 satisfying

q > 0 and qer/q ≤ p.

For q > 0, the condition on the right-hand side is equivalent to r ≤ q ln(p/q), from which it can
be easily verified that the following “Exponential Cone Program” computes (CP). The variables are
r, q, p ∈ RX×Y×Z.
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maximize ∑
x,y,z

rx,y,z

subject to qx,y,∗ = byx,y for all (x, y) ∈ X×Y

qx,∗,z = bzx,z for all (x, z) ∈ X× Z

q∗,y,z − px,y,z = 0 for all (x, y, z) ∈ X×Y× Z

(rx,y,z, qx,y,z, px,y,z) ∈ Kexp for all (x, y, z) ∈ X×Y× Z.

(EXP)

The first two constraints are just the marginal equations; the third type of equations connects the
p-variables with the q-variables, and the generalized inequality connects these to the variables forming
the objective function.

There are in fact several ways of modeling (CP) as an Exponential Cone Program; here we present
the one which is most pleasant both theoretically (the duality theory is applicable) and in practice (it
produces the best computational results). For the details, as well as for another model, we refer to [12].

4. Computational Results

In this section, we present the computational results obtained by solving Bertschinger et al.’s
Convex Program (CP) on a large number of instances, using readily available software out-of-the-box.
First we discuss the problem instances, then the convex optimization solvers, then discuss the results.
Detailed tables are in the Appendix A.

4.1. Data

In all our instances, the vectors by and bz are marginals computed form an input probability
distribution p on X × Y × Z. Occasionally, “noise” (explained below) in the creation p leads to the
phenomenon that the sum of all probabilities is not 1. This was not corrected before computing by and
bz, as it is irrelevant for the Convex Program (CP).

We have three types of instances, based on (1) “gates”—the “paradigmatic examples” listed in
Table 1 of [1]; (2) Example 31 and Figure A.1 of [1]; (3) discretized 3-dimensional Gaussians.

(1) Gates. The instances of the type (1) are based on the “gates” (RDN, UNQ, XOR, AND, RDNXOR,
RDNUNQXOR, XORAND) described Table 1 of [1]:

RDN X = Y = Z uniformly distributed.
UNQ X = (Y, Z), Y, Z independent, uniformly distributed in {0, 1}.
XOR X = Y XOR Z, Y, Z independent, uniformly distributed in {0, 1}.
AND X = Y AND Z, Y, Z independent, uniformly distributed in {0, 1}.
RDNXOR X = (Y1 XOR Z1, W), Y = (Y1, W), Z = (Z1, W), Y1, Z1, W independent, uniformly

distributed in {0, 1}.
RDNUNQXOR X = (Y1 XOR Z1, (Y2, Z2), W), Y = (Y1, Y2, W); Z = (Z1, Z2, W),

Y1, Y2, Z1, Z2, W independent, uniformly distributed in {0, 1}.
XORAND X = (Y XOR Z, Y AND Z), Y, Z independent, uniformly distributed in {0, 1}.

Each gate gives rise to two sets of instances: (1a) the “unadulterated” probability distribution
computed from the definition of the gate (see Table A1); (1b) empirical distributions generated
by randomly sampling from W and computing (x, y, z). In creating the latter instances, we
incorporate “noise” by perturbing the output randomly with a certain probability. We used
5 levels of noise, corresponding to increased probabilities of perturbing the output. For example,
AND 0 refers to the empirical distribution of the AND gate without perturbation (probability = 0),
AND 4 refers to the empirical distribution of the AND gate with output perturbed with
probability 0.1. The perturbation probabilities are: 0, 0.001, 0.01, 0.05, 0.1. (See Tables A2 and A3).

(2) Example-31 instances. In Appendix A.2 of their paper, Bertschinger et al. discuss the following
input probability distribution: X, Y, Z are independent uniformly random in {0, 1}. They present
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this as an example that the optimization problem can be “ill-conditioned”. We have derived
a large number of instances based on that idea, by taking (X, Y, Z) uniformly distributed on
X×Y× Z, with |X| ranging in {2, . . . , 5} and |Y| = |Z| in {|X|, . . . , 5 · |X|}. These instances are
referred to as “independent” in Table A4. We also created “noisy” versions of the probability
distributions by perturbing the probabilities. In the results, we split the instances into two groups
according to whether the fraction |Y|/|X| is at most 2 or greater than 2. (The rationale behind
the choice of the sizes of |X|, |Y|, |Z| is the fact mentioned in Section 3.2, that the Hessian has a
kernel in the tangent space if the ratio is high.)

(3) Discretized gaussians.We wanted to have a type of instances which was radically different
from the somewhat “combinatorial” instances (1) and (2). We generated (randomly) twenty
3× 3 covariance matrices between standard Gaussian random variables X, Y, and Z. We then
discretized the resulting continuous 3-dimensional Gaussian probability distribution by
integrating numerically (We used the software Cuba [16] in version 4.2 for that) over boxes
[0, 1]3, [0, 0.75]3, [0, 0.5]3, [0, 0.25]3; and all of their translates which held probability mass at
least 10−20.

We grouped these instances according to the number of variables, see Table A5: The instances in
the “Gauss-1” group are the ones with at most 1000 variables; “Gauss-2” have between 1000 and 5000;
“Gauss-3” have between 5000 and 250,000, “Gauss-4” between 25,000 and 75,000.

4.2. Convex Optimization Software We Used

For our computational results, we made an effort to use as many software toolboxes as we could
get our hands on. (The differences in the results are indeed striking.) Most of our software was coded
in the Julia programming language (version 0.6.0) using the “MathProgBase” package see [17] which
is part of JuliaOpt. (The only the CVXOPT interior point algorithm and for the Geometric Program did
we use Python.) On top of that, the following software was used.

• CVXOPT [18] is written and maintained by Andersen, Dahl, and Vandenberghe. It transforms
the general Convex Problems with nonlinear objective function into an epigraph form
(see Section 2.1), before it deploys an Interior Point method. We used version 1.1.9.

• Artelys Knitro [19] is an optimization suite which offers four algorithms for general Convex
Programming, and we tested all of them on (CP). The software offers several different convex
programming solvers: We refer by “Knitro_Ip” to their standard Interior Point Method [20];
by “Knitro_IpCG” to their IPM with conjugate gradient (uses projected cg to solve the linear
system [21]); “Knitro_As” is their Active Set Method [22]; “Knitro_SQP” designates their
Sequential Quadratic Programming Method [19]. We used version 10.2.

• Mosek [23] is an optimization suite which offers algorithms for a vast range of convex
optimization problems. Their Interior Point Method is described in [24,25]. We used version 8.0.

• Ipopt [20] is a software for nonlinear optimization which can also deal with non-convex objectives.
At its heart is an Interior Point Method (as the name indicates), which is enhanced by approaches
to ensure convergence even in the non-convex case. We used version 3.0.

• ECOS. We are aware of only two Conic Optimization software toolboxes which allow to solve
Exponential Cone Programs: ECOS and SCS.
ECOS is a lightweigt numerical software for solving convex cone programs [26], using an Interior
Point approach. We used the version from Nov 8, 2016.

• SCS [27,28] stands for Splitting Conic Solver. It is a numerical optimization package for solving
large-scale convex cone problems. It is a first-order method, and generally very fast. We used
version 1.2.7.

4.3. Results

We now discuss the computational results of every solver. The tables in Appendix A give
three data points for each pair of instance (group) and solver: Whether the instance was solved, or,
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respectively, which fraction of the instances in the group were solved (“solved”); the time (“time”)
or, respectively, average time “avg. tm” needed (All solvers had a time limit 10,000.0 s. We used a
computer server with Intel(R) Core(TM) i7-4790K CPU (4 cores) and 16GB of RAM) to solve it/them.
The third we call the “optimality measure”: When a solver reports having found (optimal) primal and
dual solutions, we computed:

• the maximum amount by which any of the marginal equations is violated;
• the maximum amount by which any of the nonnegativity inequaities is violated;
• the maximum amount by which the inequality “A!λ ≤ g” in Theorem 1 is violated;
• the maximum amount by which the complementarity

∣∣xj
∣∣∣∣A!λ)j − gj

∣∣ is violated.

Of all these maxima we took that maximum to have an indication of how reliable the returned
solution is, with respect to feasibility and optimality. In the tables, the maximum is then taken over all
the instances in the group represented in each row of the table. We chose this “worst-case” approach
to emphasize the need for a reliable software.

4.3.1. Gradient Descent

The Gradient Descent algorithm sketched in the previous section finds its limits when the matrix P
becomes too large to fit into memory, which happens for the larger ones of the Gaussian instances.

Even before that, the weakness of the algorithm are clear in the fact that the best solution it finds
is often not optimal (the other methods produce better solutions). The running times are mid-field
compared to the other methods.

It is probable that a more carefully crafted gradient descent would preform better, but the
conceptual weaknesses of the approach remain.

4.3.2. Interior Point algorithms

Cvxopt It terminated with optimal solution on all the noiseless discrete gates except “RDN”see
Tables A1–A3. But whenever the noise was added it started failing except on “XOR”. So as the number
of samples increased even when decreasing the noise it still failed. The optimality measure was always
bad except on some of the noiseless gates. Mainly the dual solution was weakly feasible on the solved
ones. It bailed out 56% due to KKT system problems and the rest was iteration and time limit.

For the uniformly binary gates again Cvxopt failed on the noisy distributions with 34% success on
Noisy 1 and 0% on Noisy 2. It solved all the independent correctly with acceptable optimality measure.

For the Gaussian, it totally failed with 40% computational problems in solving the KKT system
and 38% time limit and the rest were iteration limit. The solver was slowest compared to others and
required high memory to store the model.

Knitro_Ip It terminated with optimal solution on all the discrete gates with good optimality
measure see Tables A1–A4. But for the Gaussian, it failed most of the time. It solved only 5% of all
Gaussian instances where 75% of the solved have less than 1000 variable Table A5. 25% of the unsolved
instances couldn’t get a dual feasible solution. The rest stopped due to iteration or time limit but still
they had either infeasible dual or the KKT conditions were violated.

Kintro_Ip was a little bit slower than Mosek on most of the discrete gates. On the Gaussian, it very
slow. For most of the instances, Mosek had its optimality measure 1000 times better than Knitro_Ip.
Even though it worked well for the discrete gates we can’t rely on it for this problem since it is not
stable with the variables number.

Knitro IpCG. It terminated with optimal solution on all the discrete gates except “XOR” and
“RDNXOR” see Tables A2 and A3. For those two particular gates, it reached the iteration limit. For the
Gaussian, it did a little better than Knitro_Ip since the projected conjugate gradient helps with large
scale problems. It was able to solve only 6.2% none of which had less than 1000 variables and with
50% having more than 8000 variables see Table A5. 25% of the unsolved instances couldn’t get a
dual feasible solution. The rest stopped due to iteration or time limit with similar optimality measure
violation as Knitro_Ip.
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Knitro_IpCG was considerably slower than Mosek and Knitro_Ip. And it had worse optimality
measure than Mosek on most of its solved instances. Since Knitro_IpCG couldn’t solve a big set of
instances this solver is unreliable for this problem.

Mosek terminated with reporting an optimal solution almost on all instances. For the gates, with
sufficient optimality measure see Tables A1–A4. For the Gaussian gates, it terminated optimally for
70% of the instances see Table A5. 25% bailed out mainly since the gap between the primal and dual is
negligible with the dual solution and primal are weakly feasible. Most of the latter instances had more
than 10,000 variables. For the last 5% Mosek reached its iteration limit.

For all discrete gates Mosek terminated within milliseconds except “RDNUNQXOR” it terminated
in at most 1 s. For the Gaussians only those with more than 25,000 variables took up to 5 s to be solved,
the rest was done in less than a second.

Ipopt failed on the unadulterated “AND”, “UNQ”, and “XORAND” distributions since the
optimal solution lays on the boundary and Ipopt hits the boundary quit often. Also, it couldn’t solve
any of the noiseless with sampling “AND” and “UNQ” gates, but managed to solve 30% of those
of “XORAND”. When the noise was applied, it worked 90% with some noisy “RDNXOR” gates, but
bailed out on “RDNUNQXOR” gate with 10%, 5%, and 1%. Note that the optimality measure was
highly violated even when Ipopt terminates optimally see Tables A1–A4 The violation mainly was in
the dual feasibility and for the instances which had the solution on the boundary.

With the Gaussians, Ipopt couldn’t solve any instance see Table A5. In 55% of the instances it
terminated with computational errors or search direction being to small. 25% terminated with iteration
limit and the rest with time limit. Same as for discrete case the optimality measure was not good.
For discrete gates Ipopt was as fast a Mosek. Overall Ipopt is an unreliable solver for this problem.

4.3.3. Geometric Programming: CVXOPT

CVXOPT has a dedicated Geometric Programming interface, which we used to solve the
Geometric Program (GP). The approach cannot solve a single instance to optimality: CVXOPT
always exceeds the limit on the number of iterations. Hence, we have not listed it in the tables.

4.3.4. Exponential Cone Programming: ECOS & SCS

SCS failed on each and every instance. For ECOS, however, on average the running times were
fast, but the results were mildly good. For types 1 and 2 instances, ECOS was most of the time the
fastest solver. It terminated optimally for all the instances of types 1 and 2.

ECOS terminated suboptimal on 90% of the Gaussian instances. On the rest of the Gaussian gates
it ran into numerical problems, step size became negligible, and terminated with unfeasible solutions.

ECOS handled types 1 and 2 instances pretty well. It was mostly slow on the Gaussian instances.
For example, some Gaussian instances took ECOS more than seven hours to terminate sub-optimally.
Modeling the problem as an exponential cone programming seems to be a good choice. ECOS vigorous
performance makes it a reliable candidate for this optimization problem.

4.3.5. Miscellaneous Approaches

We include the following in the computational results for completeness. From what we discussed
in the previous section, it is no surprise at all that these methods perform badly.

Knitro_SQP failed on the unadulterated “AND” and “RDNUNQAND” distributions see Table A1.
When the noise was added to the discrete gates it couldn’t solve more than 35% per gate see Tables A2
and A3. It didn’t have better optimality measure than Mosek except on “RDN 1” which is can’t be
built on since Knitro_SQP solved only 8% of those instances. Note that on the unsolved instances,
Knitro_SQP was the only solver which gave wrong answers (30% of the unsolved) i.e., claimed that
the problem is infeasible.
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Similarly, on Gaussian it failed in 78% of the instances due to computational problems and the
rest were iteration or time limit see Table A5. This confirms that such type of algorithms is unsuitable
for our problem; see Section 3.

Knitro_As. It failed on all the instances, trying to evaluate the Hessian at boundary points.

5. Conclusions

A closer look at the Convex Program proposed by Bertschinger et al. [1] reveals some subtleties
which makes the computation of the information decomposition challenging. We have tried to solve
the convex program using a number of software packages out-of-the-box (including, BTW, [29]).

Two of the solvers, namely, Mosek and ECOS work very satisfactorily. Even though, ECOS
sometimes was 1000 times faster than Mosek, on some of types 1 and 2 instances, the time difference was
no more than 5 s making this advantage rather dispensable. Nevertheless, on these instances, Mosek
had better optimality measures. Note that on the hard problems of type 1, namely, “RDNUNQXOR”,
Mosek was faster than ECOS see Figure 1.

On the other hand, ECOS was slower than Mosek on the Gaussian instances especially when
the (CP) had a huge number of variables. For these instances, the time difference is significant (hours)
see Figure 2, which is rather problematic for ECOS.

Hence each of the two solvers has its pros and cones. This means that using both solvers is an
optimal strategy when approaching the problem. One suggestion would be to use ECOS as a surrogate
when Mosek fails to give a solution. Earlier ad-hoc approaches, which were based on CVXOPT and on
attempts to “repair” a situation when the solver failed to converge, appear to be redundant.

Figure 1. Comparison Between the running times of Mosek and ECOS for problems whose number of
variables is at below 10,500.
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Figure 2. Comparison Between the running times of Mosek and ECOS for problems whose number of
variables is at least 16,000.

Supplementary Materials: The source code in Julia used for the computations can be found here:
github.com/dot-at/BROJA-Bivariate-Partial_Information_Decomposition.
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Appendix A. Tables of Instances and Computational Results

Table A1. Results for type (1a) instances: Gates—unadulterated probability distributions.

Instance CVXOPT Knitro_Ip Knitro_IpCG Knitro_As Knitro_SQP Mosek Ipopt ECOS GD
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XOR y 1 0.06 y 0.7 0.31 y 98 0.8 n y 2 0.63 y 0.18 0.28 y 0.15 1.5 y 0.03 0.001 25
AND y 0.5 21e7 y 30 0.5 y 52 13 n n y 0.06 0.15 y 0.09 10 y 0.03 0.01 25
UNQ y 0.5 0.02 y 0.1 81e−4 y 0.17 0.04 n y 0.8 21e−12 n 0.07 1e−4 n y 0.02 0.01 14
RDN y 0.4 0.007 y 0.07 1e−7 y 0.09 0.38 n y 0.1 41e−12 y 0.03 0.025 n y 0.02 0.002 15
XORAND y 0.6 21e6 y 0.2 0.53 y 0.9 0.14 n y 0.6 1e−7 y 0.09 0.2 n y 0.03 0.005 14
RDNXOR y 3 0.12 y 0.2 0.06 y 271 0.3 n y y 0.2 2e−4 y 0.2 2e4 y 0.05 0.002 24
RDNUNQXOR y 14 0.4 y 1.3 0.001 y 537 0.09 n n y 0.01 6e−7 y 0.5 150 y 0.16 0.008 77
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Table A2. Results for type (1b) instances: Gates (XOR, AND, UNQ, RDN) with noise.

Instance CVXOPT Knitro_Ip Knitro_IpCG Knitro_As Knitro_SQP Mosek Ipopt ECOS GD
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XOR 0 100 0.01 3e6 100 0.9 0.46 100 150 1.06 0 30 4 0.87 100 4 0.004 100 0.1 2e6 100 0.04 0.01 28
XOR 1 100 2.2 3e6 100 1 0.98 89 254 2.02 0 17 4 0.67 100 1.9 0.0066 100 0.2 3e6 100 0.03 0.01 35
XOR 2 100 2 3e6 100 1 0.92 63 259 1 0 26 9 0.91 100 12 0.0053 100 0.3 2e6 100 0.04 0.01 36
XOR 3 99 2 4e6 100 1 0.96 70 363 1 0 27 7 0.99 100 7 0.0056 100 0.2 2e6 100 0.03 0.01 36
XOR 4 100 1 4e6 100 1.3 1 98 40 1 0 20 13 0.98 100 8 0.0052 100 0.1 1e6 100 0.03 0.01 32

AND 0 100 300 0.6 100 40 0.7 100 76 22.5 0 0 100 0.07 0.41 0 100 0.03 0.01 27
AND 1 65 2 2e7 100 1 2.9 100 17 3.2 0 0 100 0.9 24 100 0.3 2e6 100 0.04 0.01 42
AND 2 67 3 1e6 100 2 1.7 100 4.9 4 0 0 100 1.2 0.11 100 0.3 1e7 100 0.04 0.01 40
AND 3 51 3 2e7 100 1.9 1.9 100 2 18 0 0 100 1.4 0.04 100 4 2e6 100 0.04 0.01 39
AND 4 54 2 2e7 100 1 5.4 100 2 9 0 0 100 0.5 41 100 0.5 4e4 100 0.04 0.01 40

UNQ 0 100 0.4 2e4 100 0.4 3e−3 100 0.5 0.09 0 100 1.4 6e−12 100 0.04 1e−4 0 100 0.02 0.007 16
UNQ 1 100 4 4e6 100 1 6 100 1.9 9 0 33 6 5 100 0.6 0.036 100 0.7 3e5 100 0.07 0.01 42
UNQ 2 100 5 5e6 100 2 0.04 100 2 0.84 0 26 13 0.46 100 0.69 0.12 100 0.7 4e5 100 0.07 0.008 44
UNQ 3 100 5 7e7 100 2 6 100 1 40 0 38 9 10 100 0.7 0.022 100 0.6 4e5 100 0.07 0.004 44
UNQ 4 20 4 0.09 100 1.5 0.04 100 1 21 0 18 8 2.6 100 0.6 0.0019 100 0.7 3e5 100 0.08 0.005 42

RDN 0 – 2 2e6 100 0.4 6e−4 100 0.4 0.51 0 100 0.6 1e−12 100 1 0.0029 30 0.5 1e5 100 0.02 0.01 16
RDN 1 0 100 1 2.8 100 1.2 2.8 0 8 2 2e−12 100 0.3 0.005 100 0.3 2e7 100 0.04 0.01 41
RDN 2 0 100 1.9 6.7 100 1.9 6.2 0 14 4.5 2e−10 100 1.1 0.01 100 0.5 2e6 100 0.04 0.01 40
RDN 3 0 100 1.7 4.1 100 1.8 9.8 0 35 4 2.7 100 0.4 2e−4 100 0.6 4e6 100 0.05 0.01 41
RDN 4 1 12 2e6 100 0.9 0.07 100 0.8 1 0 3 3 2e−6 100 0.2 1e−5 100 0.4 4e6 100 0.04 0.008 41

Table A3. Results for type (1b) instances: Gates (XORAND, RDNXOR, RDNUNQXOR) with noise.

Instance CVXOPT Knitro_Ip Knitro_IpCG Knitro_As Knitro_SQP Mosek Ipopt ECOS GD
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XORAND 0 100 0.6 20 100 0.6 0.74 100 0.9 0.2 0 100 2 2e−6 100 0.1 0.4 0 100 0.03 0.01 27
XORAND 1 94 6 1e7 100 1.1 5 100 5 6.2 0 35 9 4.9 100 1 0.5 100 0.6 8e5 100 0.08 18 43
XORAND 2 67 8 12.6 100 2 6.2 100 10 8.2 0 15 22 5.4 100 1.3 0.4 100 0.8 1e3 100 0.09 0.01 42
XORAND 3 12 100 2 5.7 100 2 8.7 0 15 16 6.9 100 1.3 2.2 100 1 6e4 100 0.1 0.03 42
XORAND 4 0 100 2 7.2 100 3 8 0 93 2 100 0.7 40 100 0.8 4e4 100 0.1 0.04 43

RDNXOR 0 100 3 3.11 100 1 0.46 70 407 1 0 30 6 0.23 100 1 2e−9 100 0.2 2e4 100 0.06 0.01 27
RDNXOR 1 0 100 3.5 18.2 100 2 30 0 0 100 25 5 1 261 0.016 100 0.3 0.01 40
RDNXOR 2 1 190 170 100 9 60 100 3 250 0 0 100 250 50 90 10 1.9 100 0.4 0.01 41
RDNXOR 3 0 100 8 93 100 3 30 0 1 100 15 0.01 99 4.7 0.02 100 0.3 0.01 40
RDNXOR 4 1 145 2e7 100 6 90 100 5 31 0 0 100 15 0.01 100 5 0.02 100 0.4 0.01 43

RDNUNQXOR 0 90 25 3e6 100 2 0.34 100 636 1 0 0 100 6 0.2 100 0.7 234 100 0.3 0.008 75
RDNUNQXOR 1 0 100 57 297 100 34 107 0 0 100 269 0.4 0 100 200 0.01 1156
RDNUNQXOR 2 0 100 110 364 100 60 128 0 0 100 483 4 0 100 195 0.01 1170
RDNUNQXOR 3 0 100 130 561 100 91 597 0 0 100 307 20 0 100 224 0.01 1140
RDNUNQXOR 4 0 100 129 422 100 132 1e4 0 0 100 388 0.003 92 437 207 100 555 0.024 1160

Table A4. Results for type (2) instances: Example-31.

Instance CVXOPT Mosek Ipopt ECOS GD
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Independent 1 100 28 1.15 100 4 91e−4 100 18 31e−3 100 0.5 0.01 100
Independent 2 100 255 0.2 100 22 0.003 92 437 207 100 2 0.02 802
Noisy 1 34 113 21e7 100 87 0.008 38 6.2 21e3 100 2.8 0.014 100
Noisy 2 0 100 648 0.011 7 602 21e−3 100 8 0.016 813
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Table A5. Results for type (3) instances: Discretized 3-dimensional Gaussians.

Instance CVXOPT Knitro_Ip Knitro_IpCG Knitro_As Knitro_SQP Mosek Ipopt ECOS GD
%

so
lv

ed

ti
m

e
(1

0−
2 )

op
t.

m
ea

s.
(1

0−
6 )

%
so

lv
ed

ti
m

e
(1

0−
2 )

op
t.

m
ea

s.
(1

0−
6 )

%
so

lv
ed

ti
m

e
(1

0−
2 )

op
t.

m
ea

s.
(1

0−
6 )

%
so

lv
ed

ti
m

e
(1

0−
2 )

op
t.

m
ea

s.
(1

0−
6 )

%
so

lv
ed

ti
m

e
(1

0−
2 )

op
t.

m
ea

s.
(1

0−
6 )

%
so

lv
ed

ti
m

e
(1

0−
2 )

op
t.

m
ea

s.
(1

0−
6 )

%
so

lv
ed

ti
m

e
(1

0−
2 )

op
t.

m
ea

s.
(1

0−
6 )

%
so

lv
ed

ti
m

e
(1

0−
2 )

op
t.

m
ea

s.
(1

0−
6 )

ti
m

e
(1

0−
2 )

Gauss-1 0 21 820 4 0 0 0 71 0.27 0.4 0 100 4.2 0.19 1940
Gauss-2 0 2.7 950 10 5 1020 300 0 0 75 7.6 4 0 96 52 1.06 1890
Gauss-3 0 0 11 2170 900 0 0 65 551 2 0 96 632 6 –
Gauss-4 0 0 7 2560 2000 0 0 57 4e4 60 0 75 3e5 400 –
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Abstract: Information processing within neural systems often depends upon selective amplification
of relevant signals and suppression of irrelevant signals. This has been shown many times by
studies of contextual effects but there is as yet no consensus on how to interpret such studies.
Some researchers interpret the effects of context as contributing to the selective receptive field
(RF) input about which neurons transmit information. Others interpret context effects as affecting
transmission of information about RF input without becoming part of the RF information transmitted.
Here we use partial information decomposition (PID) and entropic information decomposition (EID)
to study the properties of a form of modulation previously used in neurobiologically plausible neural
nets. PID shows that this form of modulation can affect transmission of information in the RF input
without the binary output transmitting any information unique to the modulator. EID produces
similar decompositions, except that information unique to the modulator and the mechanistic shared
component can be negative when modulating and modulated signals are correlated. Synergistic and
source shared components were never negative in the conditions studied. Thus, both PID and EID
show that modulatory inputs to a local processor can affect the transmission of information from
other inputs. Contrary to what was previously assumed, this transmission can occur without the
modulatory inputs becoming part of the information transmitted, as shown by the use of PID with the
model we consider. Decompositions of psychophysical data from a visual contrast detection task with
surrounding context suggest that a similar form of modulation may also occur in real neural systems.

Keywords: information theory; partial information decomposition; entropic information decomposition;
synergy; redundancy; contextual modulation; neural information processing

1. Introduction

Amplifiers, such as hearing aids, for example, are designed to increase signal strength without
distorting the informative content that it transmits, i.e., its “semantics”. Though independence of
semantics has been a truism of information theory since its inception, information decomposition
may help distinguish the effects of amplifying inputs from driving inputs which determine what the
output transmits information about, which is what we will refer to here as its “semantics”. It may seem
intuitively obvious that any output must necessarily transmit information about all inputs that affect it,
but that intuition is misleading. Here, we use information decomposition to show that a modulatory
input can influence the transmission of information about other inputs while remaining distinct from
that information.

This may help resolve a long-standing controversy within the cognitive neurosciences concerning
the nature of “contextual modulation”. Many see the wide variety of psychophysical and physiological
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phenomena that are grouped under this heading as demonstrating that the concept of a neuron’s
receptive field, i.e., what the cell transmits information about, needs to be extended to include an
extra-classical receptive field; see e.g., [1]. In contrast to that many others see these phenomena as
evidence that contextual modulation does not change the cell’s receptive field semantics; see e.g., [2–4].

Resolution of this issue requires an adequate definition of “modulation”, which is used in several
different, and often undefined, ways. It is frequently used to mean simply that one thing affects
another. That unnecessary use of the term introduces substantial confusion, however, because the
term is also often used to refer to a three-term interaction. It could be used to refer to any three-way
interaction in which A effects the transmission of information about B by C. Our use is more specific
than that, however. The essence of the modulatory interaction that we study here is that the modulator
affects transmission of information about something else without becoming part of the information
transmitted. The effect of the volume control on a radio provides a simple example. It changes
signal strength without becoming part of the message conveyed. The use of the term “modulation”
in telecommunications potentially adds further confusion, however, because in either amplitude
modulation (AM) or frequency modulation (FM) it is the “modulatory” signal that is used to convey
the message to be transmitted. That is the opposite of what we and many others in the cognitive and
neurosciences refer to as “modulation”. While awaiting a consensus that resolves this terminological
confusion we define our usage of the term “modulation” as explicitly and as clearly as we can.
Modulation that increases output signal strength is referred to as “amplification” or “facilitation”.
Modulation that decreases output signal strength is referred to as “disamplification”, “suppression”,
or “attenuation”.

Information decomposition could help clarify the notion of “modulation” as used within the
cognitive and neurosciences in at least three ways. First, by requiring formal specifications to which
decompositions can be applied it enforces adequate definition. Second, by being applied to a transfer
function explicitly designed to be modulatory, it deepens our understanding of the information
processing operations performed by such interactions. Third, decomposition of a modulatory
interaction that is formally specified shows the conditions under which it can be distinguished from
additive interactions and provides patterns of decomposition to which empirically observed patterns
can be compared.

In this paper we apply information decomposition to a transfer function specifically designed
to operate as a modulator within a formal neural network that uses contextually guided learning
to discover latent statistical structure within its inputs [5]. We show that this transfer function has
the properties required of a modulator, and that they can be clearly distinguished from additive
interactions that do contribute to output semantics. A thorough understanding of this modulatory
transfer function is of growing importance to neuroscience because recent advances suggest that
something similar occurs at an intracellular level in neocortical pyramidal cells, and may be closely
related to consciousness [6,7]. It is also important to machine learning because the information
processing capabilities of networks such as those used for deep learning might be greatly enhanced if
given the context-sensitivity that such modulatory interactions can provide.

Modulatory interactions distinguish the contributions of two distinct inputs to an output, so they
imply some form of multivariate mutual information decomposition. Various forms of decomposition
have been proposed, however, and they may offer different resolutions to this issue. We therefore
compare resolutions that arise from two proposals discussed elsewhere in this Special Issue. One is Partial
Information Decomposition [8–11]. The other is Entropic Information Decomposition [12,13]. We find
that though there are important differences between these two proposed forms of decomposition, they
are in agreement with respect to their implications for the issue of distinguishing between additive
and modulatory interactions.

The notion of modulation is essentially a three-term interaction in which one input variable
modulates transmission of information about a second input variable by an output. The two inputs
therefore make fundamentally different kinds of contribution to the output. In contrast to that,
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additive interactions do not require the two inputs to remain distinct because their contributions can
be summarized via a single integrated value. Many information decomposition spectra and surfaces
are displayed in the following, demonstrating their expressive power and the variety of information
processing operations that a single transfer function can perform.

2. Notation and Definitions

In this section we describe our notation and define the information-theoretic concepts which are
used in the sequel. A generic “p” is used to denote a probability mass function, with the argument of
the function signifying which distribution is being described. Capital letters are used to denote random
variables, with their realised values appearing in lower-case. We denote the conditional probability
that Y = y, given that X1 = x1 and X2 = x2 by the conditional mass function p(y|x1, x2) for y ∈ B,
and (x1, x2) ∈ B2, where B = {−1,+1}.

In [14], the RF and contextual field (CF) inputs were multivariate, but here we consider the special
case of the local processor in [14] having two binary inputs, X1 and X2, and one binary output, Y,
with all three random variables having range space B. The joint distribution of (Y, X1, X2) is given by
the probability mass function (p.m.f.) p(y, x1, x2), where

p(y, x1, x2) = Pr(Y = y, X1 = x1, X2 = x2), (y, x1, x2) ∈ B3.

This distribution will be considered in the form

p(y, x1, x2) = p(y|x1, x2)p(x1, x2), (1)

and we will separately specify a joint p.m.f p(x1, x2) and a conditional p.m.f. p(y|x1, x2).
In the local processor in Figure 1, the value of X1 provides the receptive field (RF) input to

the local processor, while the value of X2 is the input from the contextual field (CF). The value
of the RF input, X1, is multiplied by the signal strength s1 to form the integrated RF input and
similarly for the CF input, X2. Therefore, the values taken by the integrated RF and CF inputs are
r = s1x1 and c = s2x2. These integrated values have both strength and a sign. The strength is a constant
property of the defined system, while the sign can change from sample to sample. The signal strengths,
si, are positive real numbers. The manner in which these signals are combined in the output unit will
be described in Section 3.

In this study, it is assumed that Pr(X1 = 1) = Pr(X2 = 1) = 1
2 and that the correlation between

X1 and X2 is d, where −1 < d < 1. This means that

λ ≡ Pr(X1 = 1, X2 = 1) = Pr(X1 = −1, X2 = −1)=
1 + d

4
, (2)

μ ≡ Pr(X1 = 1, X2 = −1) = Pr(X1 = −1, X2 = 1) =
1− d

4
. (3)

It is also assumed that the conditional output probability has a logistic form, with

Pr(Y = 1|X1 = x1, X2 = x2) = 1/(1 + exp (−T(x1, x2))), (4)

where T is a transfer function which depends also on the signal strengths, s1, s2. In Section 3,
the two transfer functions that are used in this study are specified. It should be noted that we
are actually considering a class of trivariate probability distributions that are indexed by (s1, s2, d),
where s1 > 0, s2 > 0,−1 < d < 1, although this indexation is suppressed in the sequel for ease of
notation. The various classical measures of information and measures of partial information used are
calculated using a member of the class of trivariate probability distributions, defined in (1)–(4), that is
given by a particular choice of (s1, s2, d).
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Y

X1

s1

X2s2
r

c
T(r, c)
θ, m

RF Input

CF Input

Output

Figure 1. A local processor with binary receptive field (RF) input X1, contextual field (CF) input X2

and output Y. The weights on the connections from the RF and CF inputs into the output unit are s1, s2,
which represent the strengths given to the input signals. The integrated RF input, r, and the integrated
CF input, c, are passed through a transfer function T and a logistic nonlinearity within the output unit
to produce the conditional output probability, θ, as well as the output conditional mean, m.

We now define the standard information theoretic terms that are required in this work and based
on results in [15]. We denote by the function H the usual Shannon entropy, and note that any term
with zero probabilities makes no contribution to the sums involved. The total mutual information that
is shared by Y and the pair (X1, X2) is given by,

I[Y; (X1, X2)] = H(Y) + H(X1, X2)− H(Y, X1, X2). (5)

The information that is shared between Y and X1 but not with X2 is

I[Y; X1|X2] = H(Y, X2) + H(X1, X2)− H(X2)− H(Y, X1, X2), (6)

and the information that is shared between Y and X2 but not with X1 is

I[Y; X2|X1] = H(Y, X1) + H(X1, X2)− H(X1)− H(Y, X1, X2). (7)

Finally, the co-information of (Y, X1, X2) has several equivalent forms

I[Y; X1; X2] = I[Y; X1]− I[Y; X1|X2] = I[Y; X2]− I[Y; X2|X1] = I[X1; X2]− I[X1; X2|Y], (8)

where, for i = 1, 2,

I[Y; Xi] = H(Y) + H(Xi)− H(Y, Xi), and I[X1; X2] = H(X1) + H(X2)− H(X1, X2). (9)

We note that classical Shannon information measures have been used in neural coding studies to
investigate measures of synergy and redundancy; see for example [16].

When we come to define measures of partial information it will be necessary to calculate these
information quantities with respect to another p.m.f., say q(y, x1, x2), and to denote this we add the
subscript “q” to such terms, e.g., Iq(Y; X1; X2). This means that the p.m.f. q(y, x1, x2) is used in the
computation rather than the original p.m.f. p(y, x1, x2).
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3. An Interaction Designed to Be Modulatory

Our concern here is with variables that can take either positive or negative values, which can be
seen as being analogous to excitation and inhibition in neural systems. We model that decision as a
probabilistic binary variable that chooses between the values 1 and −1. The criteria to be met by a
modulatory transfer function in this case have been stated and discussed in many previous papers;
see e.g., [17–19]. The criteria for a modulatory interaction were stated for a local processor receiving
two inputs: the integrated RF input, r, and the integrated CF input, c. The requirements were stated in
terms of the level of activation within the local processor, although in this paper we use this term to
denote the value of the transfer function, and they are amended slightly here. Please note that the term
’integrated’ was used in previous work to refer to the weighting and summing of the components of a
multivariate input; we continue to use this term here even though the input to each field is univariate.
The value of the transfer function is fed into a logistic function to compute the conditional probability
that a 1 will be transmitted. Stated in those terms the CF input modulates transmission of information
about the RF input if four criteria are met:

1. If the integrated RF input is extremely weak, then the value of the transfer function is close to zero.
2. If the integrated CF input is extremely weak, then the value of the transfer function should be

close to the integrated RF input.
3. If the integrated RF and CF inputs have the same sign, then the absolute value of the transfer

function should be greater than when based on the RF input alone. On the other hand, if the RF
and CF inputs are of opposite sign then the absolute value of the transfer function should be less
than when based on the RF input alone.

4. The sign of the value of the transfer function is that of the integrated RF, so that the context cannot
change the sign of the conditional mean of the output.

In general terms, the CF input would have no modulatory effect on the output when the output and
the CF input are conditionally independent given the value of the RF input, which is equivalent to the
conditional mutual information I[Y; X2|X1] being equal to zero. One case where this happens for any
member of the class of trivariate binary distributions defined in (1)–(4) is when the correlation between
the inputs X1, X2 is ±1, for then I[Y; X2|X1] = 0; see Theorem 5. On the other hand, in situations
where this conditional mutual information is non-zero then X2 influences the prediction of the output
Y by the input X1 in the sense that

Pr(Y = y|X1 = x1, X2 = x2) �= Pr(Y = 1|X1 = x1),

for at least one (y, x1, x2) ∈ B3. This is a very general form of modulation, but the type of modulation
defined in requirements 1–4 is very specific and we call it “contextual modulation”. This contextual
modulation is relevant within the local processor at the level of individual system inputs and outputs.
On the other hand, the following conditions express the notion of contextual modulation for the whole
ensemble of inputs and outputs:

M1: If the RF signal is strong enough and the CF input is extremely weak then I[Y; X1|X2] can have
its maximum value, I[Y; X1] can be maximised and I[Y; X2|X1] is close to zero. This shows that
the RF input is sufficient, thus allowing the information in the RF to be transmitted, and that the
CF input is not necessary.

M2: I[Y; X2|X1] and I[Y; X1] are close to zero when the RF input is extremely weak no matter how
strong the CF input. This shows that the RF input is necessary for information to be transmitted,
and that the CF input is not sufficient to transmit the information in the RF input.

M3: When s1 < s2 and when the RF input is weak, I[Y; X1] and I[Y; X1|X2] are both larger when
the CF input is moderate than when the CF input is weak. Thus the CF input modulates the
transmission of information about the RF input.
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One might expect that these two definitions of contextual modulation are linked. In the limiting
situation of s1 → 0 it is possible to show that requirement 1 implies M1, and as s2 → 0 one finds that
requirement 2 implies M2. It seems difficult to prove more general connections and so this matter is
considered computationally in Section 3.1.

Multivariate binary processors were also considered in [5], thus allowing for choice between many
more than two alternatives. It was also shown that the coherent infomax learning rule also applies to
this multivariate case such that the contextually guided learning discovers variables defined on the RF
input space that are statistically related to variables specified in, or discovered by, other streams of
processing within the network. Thus it implements a multi-stream, non-linear, form of latent structure
analysis. There are two distinct aspects of semantics in this system, i.e., the receptive field selectivity of
each unit within a local processor and the positivity or negativity of its output. Here we are primarily
concerned with that latter aspect. We show below that:

(i) the modulatory input affects output only when the primary driving integrated RF input is
non-zero but weak;

(ii) that even when it does have an effect it has no effect on the sign of the conditional mean
output, and

(iii) that it can have those modulatory effects without the binary output transmitting any unique
information about the modulator.

In the case where the processor has a binary output, the transfer function has the form

T(x1, x2) = r [k1 + (1− k1) exp (k2rc)] , (k2 > 0, 0 < k1 < 1),

where r = s1x1, c = s2x2, k1 and k2 are constants, and here we take k1 = 1
2 and k2 = 1.

This transfer function was designed to effect a modulatory interaction between two input sources,
with one source being the primary driver while the role of the the second “contextual” source is to
modulate transmission of information about the primary source. The effect of the contextual source
is to amplify or disamplify the strength of the signal from the primary source in such a way that
the semantic content (the sign) of the primary source is not changed. Neither of the PID and EID
considered in this paper has previously been applied to this kind of signal and we now show this to
be possible.

In this paper, the version of the modulatory transfer function we use takes the form

TM(x1, x2) =
1
2 r [1 + exp (rc)] = 1

2 s1x1 [1 + exp (s1x1 × s2x2)] , (10)

for given values x1, x2 of the random variables X1, X2, and given signal strengths s1, s2. Here the
integrated RF input is r = s1x1 and the integrated CF input is c = s2x2, and they both have a sign and
a strength. The output conditional probability is given by

θ = Pr(Y = 1|X1 = x1, X2 = x2) = 1/[1 + exp (−TM(x1, x2))]. (11)

Whether this probability is greater than or less than 1
2 is determined solely by the value of x1(±1),

and the form of TM ensures that the contextual signal cannot change the sign of the output conditional
mean. Thus the output produced has semantic content, and also the value of the output conditional
probability, θ, gives the semantic content a measure of strength in the sense that values of θ closer to 0
or 1 indicate a more definite decision. The conditional variance of Y is 4θ(1− θ), and so uncertainty
in the output decision is largest when θ = 1/2 and zero when θ = 0 or 1. An alternative description
is to say that the precision (reciprocal variance) is least when θ = 1/2 and it tends to infinity as θ

approaches 0 or 1. Within the local processor the conditional mean of the output, m = 2θ − 1, is also
computed. It has both a sign and a strength.
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Given the form of TM, the integrated RF will be amplified in magnitude whenever the signs of x1

and x2 agree, and it will be disamplified when these signs do not agree. The role of the integrated CF
is to modify the strength of the conditional mean output without conveying its own semantic content
(i.e., its sign). This form of transfer function ensures that the maximum extent of any disamplification
of the primary signal is by a factor of 2.

By way of contrast, we also consider an additive transfer function by simply adding together the
integrated RF and CF inputs, r, c, to give

TA(x1, x2) = r + c = s1x1 + s2x2, (12)

with the output conditional probability given by

Pr(Y = 1|X1 = x1, X2 = x2) = 1/[1 + exp (−TA(x1, x2))]. (13)

The use of this transfer function also affects the values of θ and m but, unlike the modulatory
transfer function, this additive transfer function can change the sign of the output conditional mean
m, which is not consistent with the fourth condition for a modulatory transfer function described
above. The additive transfer function does satisfy condition M1 but does not satisfy condition M2 or
M3. This additive transfer function can be seen as a simple version of the common assumption within
neurobiology that neurons function as integrate-and-fire point processors. While this assumption does
not imply that all integration is linear it does mean that such integration computes a single value per
local processor. The results produced using the these two different transfer functions will be discussed
in Sections 5–8.

Please note that in the sequel we normally abbreviate the terms “integrated RF input” and
“integrated CF input” by using just “RF input” and “CF input”, respectively. In particular, whenever a
strength is implied for the RF or CF input, then we mean that the ‘integrated’ values of these inputs
are being considered.

3.1. Analysis Using Classical Shannon Measures

We start in this section by presenting results involving the classical Shannon measures for the
system defined in Sections 2 and 3. First we recall that λ and μ are defined in (2) and (3) and set up
some further simplifying notation which is used in the results. We set

u = Pr(Y = 1|X1 = 1, X2 = 1), and v = Pr(Y = 1|X1 = 1, X2 = −1). (14)

The parameters u and v are function of s1 and s2, and u takes the value uM or uA depending on
which transfer function is being used; similarly for v. From (10) for transfer function TM

uM = 1/(1 + exp (− 1
2 s1(1 + exp (s1s2))), and vM = 1/(1 + exp (− 1

2 s1(1 + exp (−s1s2))), (15)

whereas, from (12), for transfer function TA

uA = 1/(1 + exp (−(s1 + s2)), and vA = 1/(1 + exp (−(s1 − s2)). (16)

Finally, we define

z = 2λu + 2μv, w = 2λu + 2μ(1− v) and h(v) = −v log(v)− (1− v) log(1− v), (17)

where 0 < v < 1. We note also that the value of z has two forms: zM when transfer function TM is used
and zA when transfer function TA is employed; similarly for w. We now collect together our results in
the following theorem, proof of which is relegated to the appendix.
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Theorem 1. It is assumed that s1 > 0, s2 > 0. For the probability distribution defined in (1)–(4), the following
results hold.

(a) I[Y; X1|X2] = h(w)− 2λh(u)− 2μh(v);
(b) I[Y; X2|X1] = h(z)− 2λh(u)− 2μh(v);
(c) I[Y; X1] = 1− h(z);
(d) I[Y; X2] = 1− h(w);
(e) I[Y; X1; X2] = 1− h(z)− h(w) + 2λh(u) + 2μh(v);
(f) I[Y; (X1, X2)] = 1− 2λh(u)− 2μh(v),

where from (15) and (16), u = uM, v = vM when the transfer function TM is employed and u = uA, v = vA
when the transfer function TA is used.

Since we are particularly interested in interactions among the three variables, Y, X1, X2, we
now show the classic Shannon information measures defined in (6)–(9), with surface plots given in
Figures 2 and 3. A correlation between the inputs of 0.78 was considered to ensure that these measures
have the same maximum possible value of 0.5 bits, and a zero correlation was considered to represent
the case of independent inputs. One purpose is to discuss the general links between requirements 1–4
and conditions M1–M3 from Section 3 and also the use of the transfer functions defined in (10) and (12).

First, we notice in Figure 2 that the modulatory and additive transfer functions produce very
different surfaces. In Figure 2a,b, the surface for TM rises more quickly to its maximum than the surface
for TA, and in Figure 2a sections parallel to the s1 axis are similar for s2 ≥ 2, whereas the surface for
TA is symmetric about the line s1 = s2. Figures 2d,f,h,j and 3d,f,h,j for TA show clear asymmetry about
the line s1 = s2.

When the strength of the CF input, s2, is very small we notice in Figures 2e and 3e that I[Y; X2|X1]

is close to zero. Figure 2c shows that I[Y; X1|X2] rises quickly, then gradually, towards its maximum at
0.5 as the strength of the RF input, s1, increases, as does the surface in Figure 3c although there the
maximum value is higher at 1. Figures 2g and 3g show that I[Y; X1] rises towards a maximum value
of 1; this rise is much steeper when the correlation is 0.78 than when it is zero. These observations
provide support for condition M1 when the modulatory transfer function is used. Similar observations
on the corresponding figures based on the use of the additive transfer function show that condition
M1 is satisfied in this case also.

Figures 2e,g and 3e,g show, when s1 is close to zero, that I[Y; X2|X1] and I[Y; X1] are both close
to zero, thus supporting condition M2 when the modulatory transfer function is used. This is not
the case when the additive transfer function is employed, as can be seen from Figures 2f,h and 3f,h.
It is important to note that these figures do not all use the same scales for the heights of the surface.
For example, the scales of Figures 2e and 3e are expanded because I[Y; X2|X1] is always small when
the transfer function is modulatory.

Also, when the strength of the RF input is weak (say s1 = 1), we notice in Figures 2c,g and 3c,g
that both I[Y; X1] and I[Y; X1|X2] are larger for moderate CF strengths (say s2 = 5) than when the
the strength of the CF input is extremely weak (s2 = 0.05, say), with this effect being stronger
when the correlation between inputs is 0.78. This provides support for condition M3 when the
modulatory transfer function is used. Inspection of the corresponding plots based on the additive
transfer function show this effect only for I[Y; X1] in Figure 2h, and so condition M3 does not hold for
the additive function.

206



Entropy 2017, 11, 560

(a) Modulatory, I[Y; X1; X2] (b) Additive, I[Y; X1; X2]

(c) Modulatory, I[Y; X1|X2] (d) Additive, I[Y; X1|X2]

(e) Modulatory, I[Y; X2|X1] (f) Additive, I[Y; X2|X1]

(g) Modulatory, I[Y; X1] (h) Additive, I[Y; X1]

(i) Modulatory, I[Y; X2]
(j) Additive, I[Y; X2]

Figure 2. Classical Shannon measures (in bits), based on additive and modulatory transfer functions,
and a correlation between inputs of 0.78.
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In Figure 3a,b, the surfaces of the co-information I[Y; X1; X2] are negative, as expected from (8),
since the correlation between X1 and X2 is zero and so their mutual information is zero.

Finally we focus discussion on the phenomenon of particular relevance to the subject of this paper
by considering the surface plots of I(Y; X2|X1). In Figure 2e, an interesting pattern emerges. There is a
steep rise for small values of s1 and for all values of s2 ≥ 2, and then the surface quickly dies away.
This pattern is repeated in Figure 3e. This suggests that X2 is affecting the information shared between
Y and X1, indicating that modulation of some form might be taking place.

It could be argued, however, that X2 is part of the output semantics in the sense that the output
contains information specifically about X2 itself. Since I[Y; X2|X1] is clearly positive for these values
of s1, s2, it is impossible to know whether or not this is the case based on this classical Shannon
measure. It was shown in [8], that I[Y; X2|X1] could be decomposed into two terms: the unique
information that X2 conveys about Y as well as synergistic information that is not available from X2

alone, but rather gives the information that X1 and X2, acting jointly, have about the output Y. We now
apply information decompositions in order to resolve these different interpretations. For discussion of
some limitations of classical Shannon measures and the need for new measures of information, see [20].

(a) Modulatory, I[Y; X1; X2] (b) Additive, I[Y; X1; X2]

(c) Modulatory, I[Y; X1|X2] (d) Additive, I[Y; X1|X2]

(e) Modulatory, I[Y; X2|X1] (f) Additive, I[Y; X2|X1]

Figure 3. Cont.
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(g) Modulatory, I[Y; X1] (h) Additive, I[Y; X1]

(i) Modulatory, I[Y; X2]
(j) Additive, I[Y; X2]

Figure 3. Classical Shannon measures (in bits), based on additive and modulatory transfer functions,
and a zero correlation between inputs.

4. Information Decompositions

Williams and Beer [8] introduce a framework called the Partial Information Decomposition (PID)
which decomposes mutual information between a target and a set of multiple predictor variables into
a series of terms reflecting information which is shared, unique or synergistically available within and
between subsets of predictors. Here we focus on the case of two input predictor variables, denoted
X1, X2, and an output target Y. The information decomposition can be expressed as

I[Y; (X1, X2)] = Iunq[Y; X1|X2] + Iunq[Y; X2|X1] + IshdS+M[Y; (X1, X2)] + Isyn[Y; (X1, X2)]

and it is the basis of both the information decompositions described in Sections 4.1 and 4.2.
Adapting the notation of [21] we express our joint input mutual information in four terms as follows:

UnqX1 ≡ Iunq[Y; X1|X2] denotes the unique information that X1 conveys about Y;

UnqX2 ≡ Iunq[Y; X2|X1] is the unique information that X2 conveys about Y;

SharS+M ≡ IshdS+M[Y; (X1, X2)] gives the common (or redundant or shared) information that both
X1 and X2 have about Y;

Syn ≡ Isyn[Y; (X1, X2)] is the synergy or information that the joint variable (X1, X2) has
about Y that cannot be obtained by observing X1 and X2 separately.

It is possible to make deductions about a PID by using the following four equations which give a
link between the components of a PID and certain classical Shannon measures of mutual information.
The following are from Equations (4) and (5) in [21], with amended notation; see also [8].

I[Y; X1] = UnqX1 + SharS+M, (18)

I[Y; X2] = UnqX2 + SharS+M, (19)

I[Y; X1|X2] = UnqX1 + Syn, (20)

I[Y; X2|X1] = UnqX2 + Syn. (21)
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We will refer to these results in Section 5 and use them in Section 6.
We consider here two different information decompositions. Although there are clear conceptual

differences between the two, where they agree we can have some confidence we are accurately
decomposing information as we would like. Where they disagree, we hope this may shed light
on particular properties of the modulatory systems we study here, and also provide interesting
comparisons of the two approaches.

It has been noted [22] that there are two different ways shared information can emerge.
Source shared information refers to shared information that arises simply because the two inputs are
correlated. For example, if Y = X1 but X1 and X2 are correlated then there will be some I(Y; X2) and
some redundancy IshdS+M[Y; (X1X2)], even though X2 plays no role in the computation implemented
by the local processor. However, redundancy can also occur in systems where the inputs are statistically
independent—in this case, it is referred to as mechanistic shared information, since it arises as a property
of the function of the local processor. We denote IshdS+M as the standard PID measure of shared
information which quantifies both of these types together. However, both decompositions we consider
provide a way to separately quantify these two types of shared information, which we denote by IshdS
and IshdM for source and mechanistic respectively.

4.1. The Ibroja PID

In the Ibroja PID [9,10], the shared information component is based on an assumption that the
information shared between two predictors about a target should not be affected by the marginal
distribution of the two inputs (X1, X2) when the output is ignored. Instead, the shared information is
a function only of the individual input-output marginal distributions of (Y, X1) and (Y, X2). In other
words, the information about the output which is shared between the two inputs is independent of
the correlation between the two inputs. In [9], this is motivated with an operational definition of
unique information based on decision theory. It is claimed that unique information in input X1 should
correspond to the existence of a decision problem where two agents must try to guess the value of the
output Y in which an agent acting optimally on evidence from X1 can do systematically better (higher
expected utility) than an agent acting optimally based on evidence from X2; see also Appendix B2 in [21].

Following notation in [9], we consider a given joint distribution p for (Y, X1, X2), we let Δ be the
set of all joint distributions of Y, X1 and X2, and define

Δp = {q ∈ Δ : q(y, x1) = p(y, x1) and q(y, x2) = p(y, x2), for all (y, x1, x2) ∈ B3} (22)

as the set of all joint distributions which have the same (Y, X1) and (Y, X2) marginal distributions as p.
In Lemma 4 in [9] five equivalent optimisation problems are defined involving various information

components. In this work we chose to minimise the total mutual information I[Y; (X1, X2)] in order to
find the optimal distribution q, denoted by q̂. For the description of EID in Section 4.2, we note that
this is equivalent to finding the distribution in Δp which maximizes the co-information I[Y; X1; X2].
This optimal distribution q̂ is then used to calculate the four partial information measures:

UnqX1 = Iq̂[Y; X1|X2], (23)

UnqX2 = Iq̂[Y; X2|X1], (24)

SharS+M = Iq̂[Y; X1; X2], (25)

Syn = Ip[Y; (X1, X2)]− Iq̂[Y; (X1, X2)], (26)

and the information quantities, except Ip[Y; (X1, X2)], are calculated with respect to the optimal
distribution q̂.
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Using equations (7) & (8) from [23], the shared information can be split into non-negative source
and mechanistic components that are defined as follows (in amended notation).

IshdS[Y; (X1, X2)] = max{min(IshdS+M[Y; (X1, X2)], IshdS+M[X1; (X2, Y)]),

min(IshdS+M[Y; (X1, X2)], IshdS+M[X2; (X1, Y)])}
IshdM[Y; (X1, X2)] = IshdS+M[Y; (X1, X2)]− IshdS[Y; (X1, X2)]

A particular advantage of the Ibroja approach is that it results in a decomposition consisting of
non-negative terms. A possibly counter-intuitive feature is that in our two input, one output local
processor context, one might expect that IshdS+M[Y; (X1, X2)] should change depending on the marginal
distribution of the inputs, (X1, X2), in that source shared information should increase as the correlation
between the inputs increases (assuming the individual input-output marginals are fixed). In the
systems defined in Section 2, however, the marginal distributions of (Y, X1) and (Y, X2) do depend on
the correlation between the inputs, and so the Ibroja PID does change as this correlation changes.

4.2. The EID Using Iccs

An alternative measure of shared information was recently proposed in [12]. Since at a local
or pointwise level [24–28] (i.e., the terms inside the expectation), information is equal to change in
surprisal, Iccs seeks to measure shared information as the change in surprisal that is common to the
input variables (hence CCS, Common Change in Surprisal). For two inputs, Iccs is defined as:

Iccs[Y; (X1, X2)] = ∑
y,x1,x2

p(y, x1, x2)hcom
y (x1, x2)

hcom
y (x1, x2) =

{
iq̃(y; x1; x2) if sgn iq̃(y; x1; x2) = sgn iq̃(y; x1) = sgn iq̃(y; x2) = sgn iq̃(y; x1, x2)

0 otherwise

iq̃(y; x1; x2) = iq̃(y; x1) + iq̃(y; x2)− iq̃(y; x1, x2)

q̃ = arg max
q∈Δ2

p

∑
y,x1,x2

−q(y, x1, x2) log q(y, x1, x2)

Δ2
p =

{
q ∈ Δ :

q(y, x1) = p(y, x1), q(y, x2) = p(y, x2)

q(x1, x2) = p(x1, x2), for all (y, x1, x2) ∈ B3

}

where lower case symbols indicate the local or pointwise values of the corresponding information
measures, i.e., Iq̃(Y; X1) = ∑y,x1

p(y, x1)iq̃(y, x1). The sign conditions ensure that only terms
corresponding to genuine shared information are included; terms not meeting the sign equivalence
represent either synergistic or ambiguous effects [12].

This approach has two fundamental conceptual differences from the Ibroja PID. The first is that
in [12] a game theoretic operational definition of unique information is introduced. This is very
similar to the decision theoretic argument in [9] but extends the considered situations to include games
where the utility function is asymmetric or the game is zero-sum. Both of these extensions induce a
dependency on the marginal distribution of (X1, X2). A specific example system is provided in [12] as
well as a specific game which demonstrates unique information even when there is none available
from the decision theoretic perspective.

The second conceptual difference is the way in which shared information is actually measured,
within the constraints imposed by the respective operational definitions. In the Ibroja PID, shared
information is measured as the maximum co-information over the optimization space Δp. Iccs also
relies on co-information, but breaks down the pointwise contributions and includes only those terms
that unambiguously correspond to redundant information between the inputs about the output. This is
important because co-information conflates redundant and synergistic effects [8,12] so cannot itself
be expected to fully separate them. Iccs is calculated using the distribution with maximum entropy
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subject to the game theoretic operational constraints (equality of all pairwise marginals). However,
note that maximizing co-information subject to the extended game theoretic constraints is equivalent
to maximizing entropy.

A decomposition of mutual information can be obtained using Iccs following the partial
information decomposition framework [8].

UnqX1 = I[Y; X1]− Iccs[Y; (X1, X2)],

UnqX2 = I[Y; X2]− Iccs[Y; (X1, X2)],

SharS+M = Iccs[Y; (X1, X2)],

Syn = I[Y; (X1, X2)]− I[Y; X1]− I[Y; X2] + Iccs[Y; (X1, X2)],

The inclusion of p(x1, x2) in the constraints for q̃ means that the measured shared and unique
information is not invariant to the predictor-predictor marginal dependence. With Iccs this affects
the decomposition in an intuitive way: negative or no correlation between predictors results in more
unique information, while when correlation between the predictors increases, shared information
increases (driven by increased source shared information) and unique information decreases; see
Figure 7 in [12]. However, the PID computed with Iccs is not non-negative. In particular, the unique
information terms can take negative values, which can be challenging to interpret.

In [13], it was recently suggested that the PID formalism could be applied to decompose
multivariate entropy directly. The concepts of redundancy and synergy can apply just as naturally
to entropy, resulting in a Partial Entropy Decomposition (PED) which can separate a bivariate
entropy into four terms representing shared uncertainty, unique uncertainty in each variable, and
synergistic uncertainty which arises only from the system as a whole. This approach shows that mutual
information is actually the difference between redundant and synergistic entropy:

I[Y; X] = Hshd[(Y, X)]− Hsyn[(Y, X)]

and this relationship holds for any measure of shared entropy which satisfies the PED axioms.
This shows that mutual information does not only quantify common, shared or overlapping entropy,
but is also affected by synergistic effects between the variables. At the global level since joint entropy is
maximised when the two variables are independent (alternatively mutual information is non-negative),
this implies that Hshd[(Y, X)] ≥ Hsyn[(Y, X)]. Mutual information is the expectation over local
information terms that can themselves be positive, representing an decrease in the surprisal of event
y when event x is observed, or negative, representing an increase in the surprisal of y when x is
observed. Negative local information terms, which have been called “misinformation” [26], arise for
symbols where h(x, y) > h(x) + h(y); that is, those symbols provide a synergistic contribution to the
joint entropy expectation sum. The existence of such locally synergistic entropy terms suggest that
synergistic entropy is a reasonable thing to quantify within the PED framework. A shared entropy
measure (Hcs) can be defined in a manner consistent with Iccs as [13]:

Hcs(Y, X1, X2) = ∑
y,x1,x2

q̃(y, x1, x2)hcs(y, x1, x2)

hcs(y, x1, x2) = max
[
−iq̃(y, x1, x2), 0

]
This entropy perspective can give some insight into the meaning of negative terms within the Iccs

PID. With Iccs, shared information is calculated as shared entropy with the target that is common to
both inputs (positive local co-information terms in Iccs) minus synergistic entropy with the target that
is common to both inputs (negative local co-information terms in Iccs). Negative unique information
terms can therefore arise when there is more unique synergistic entropy between a target and the
predictor than there is unique shared entropy between the target and the predictor. Unique synergistic
entropy means there is synergistic entropy between say X2 and Y which is not shared with X1. This can
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arise for example, whenever the calculation of I[Y; X2] includes negative local terms in the expectation
(for some values of y, x2), but I[Y; X1] does not. In such cases, these negative local contributions to
the mutual information must be unique; they do not appear in I[Y; X1] since that calculation has no
negative terms.

The PED of our three variables also provides a way to separate the Iccs shared information into
mechanistic and source shared terms. The source shared information can be obtained from the three
way partial entropy term, Hshd[(Y, X1, X2)]. This term represents the entropy that is common to
all three variables, therefore it is included in the calculation of both I[Y; X1] and I[Y; X2] and so is
shared information. However, it is possible that this quantity also includes some mechanistic shared
information. This can only happen if Hcs[(Y, X1, X2)] > Hcs[(X1, X2)]—i.e., the two inputs share more
entropy in the context of the full system then they do when ignoring (by marginalising away) the
output. This corresponds to a negative partial entropy term Hshd[(X1, X2)]. Therefore we calculate
source and mechanistic shared information, from Equation (32) in [13], as:

IshdS[Y; (X1, X2)] = min (Hcs[(Y, X1, X2)], Hcs[(X1, X2)]) ,

IshdM[Y; (X1, X2)] = Iccs[Y; (X1, X2)]− IshdS[Y; (X1, X2)]

The first expression quantifies the source shared entropy: it is the three-way shared entropy
with any mechanistic shared entropy removed. Since Iccs quantifies source and mechanistic shared
information together, we obtain the mechanistic shared information by subtracting off the calculated
source shared information. Source shared information defined in this way is always positive,
but mechanistic shared information can be negative. Negative mechanistic shared information can
arise when, for example, both I[Y; X1] and I[Y; X2] contain negative local information terms, and those
local information terms are common, reflected in a negative local co-information term. Alternatively,
there is synergistic entropy between Y and X1 that overlaps with synergistic entropy between Y and
X2. Synergistic entropy between the target and a predictor is by definition a mechanistic effect, since
it is uncertainty that does not arise in the predictor alone, but is only obtained when the output
(i.e., the mechanism) is considered. Please see [13] for further details. Since this approach relies on
terms from the partial entropy decomposition as well as the partial information decomposition using
Iccs, we refer to it here as an Entropic Information Decomposition (EID).

5. Information Decomposition (ID) Spectra

We now describe a simple visual display [29] in which all the transmitted mutual information
components appear, together with the residual output entropy. These displays are referred to as
“spectra” because different colours are used for different components. Here the spectra are shown as
stacked bar charts, which facilitates presentation of many spectra in a single figure. These spectra
convey a simple but important message when applied to the goal of distinguishing between modulatory
and additive interactions, whether in real or artificial neural systems. The important message is that
modulatory and additive forms of interaction can have similar or even identical effects under some
conditions, but very different effects under others. Such plots can also be used to compare the
information processing performed in a system under different parameter regimes. They can also be
used to compare the kinds of information processing performed by individual subjects or groups of
subjects when completing psychophysical tasks; see Section 8.

5.1. Definition and Illustrations

The first five components are the partial information measures considered in Section 4: unique
informations, shared source and mechanistic information and synergy. To this is added the residual
output entropy.
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The residual output entropy is H(Y)res = H(Y|X1, X2), which appears in the following
decomposition, from Equation (6) in [21],

H(Y) = Iunq[Y; X1|X2] + Iunq[Y; X2|X1] + IshdS+M[Y; (X1, X2)]+ Isyn[Y; (X1, X2)]+ H(Y|X1, X2) (27)

and here we also use the decomposition

IshdS+M[Y; (X1, X2)] = IshdS[Y; (X1, X2)] + IshdM[Y; (X1, X2)].

In our discussion, we consider four different spectra as an illustrative test set. First, we take
s1 = 10.0 and s2 = 0.05 to represent the situation where the RF input is strong and the CF input is
extremely weak. Secondly, in the case where s1 = 0.05, s2 = 10.0, the RF input is extremely weak
while the CF input is strong. Thirdly, when s1 = 1.0, s2 = 0.05 the RF input is weak and the CF
input is extremely weak. Finally, when s1 = 1.0, s2 = 5.0, the RF input is weak and the CF input is of
moderate strength.

5.2. Ibroja Spectra

It is useful to bear in mind when interpreting these spectra that the information components are
not independent quantities since they satisfy the constraints (18)–(21) and (27); so these non-negative
components are negatively correlated. Figure 4a,b show PID decompositions when the two inputs
have a correlation of either 0.78 or 0. In both cases modulatory and additive transfer functions lead to
very similar decompositions when the RF input is strong (charts M1 and A1), or of moderate strength
(charts M3 and A3), and the CF input is very weak, since there is little or no difference between
charts M1 and A1 and between M3 and A3. Thus, when context is absent or very weak the modulatory
transfer function becomes effectively equivalent to an additive function.

When the RF input is either very weak (charts M2 and A2) or less weak but with strong CF
input (charts M4 and A4), modulatory and additive transfer functions have very different effects.
Consider the case where the RF input is very weak and the CF is strong. The modulatory function
transmits little or no input information (chart M2), implying that RF input is necessary to information
transmission. In contrast, the additive transfer function in that case transmits information unique
to the CF input with shared information if the two inputs are correlated (chart A2). Cases where RF
input is present but weak show the modulatory effect of the CF input. Consider transmission in the
case of weak RF input with extremely weak CF input (charts M3 and A3). The output residuals are
then high, showing that little information is transmitted. What is transmitted is a combination of
shared information and information unique to the RF input. If the RF input is weak but the CF input is
strong, however, then the modulatory function transmits more unique information about the RF than
when the CF input is weak, together with some synergy, some mechanistic shared, and some source
shared if the inputs are correlated (chart M4). In contrast, the additive transfer function transmits no
information unique to the RF but only information unique to the CF and shared information if the
inputs are correlated (chart A4).
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(a) PID spectra, correlation of 0.78

M1 A1 M2 A2 M3 A3 M4 A4
0.0

0.2

0.4

0.6

0.8

1.0

(b) PID spectra, correlation of zero

(c) EID spectra, correlation of 0.78 (d) EID spectra, correlation of zero

Figure 4. Partial information decomposition (PID) and entropic information decomposition (EID)
spectra (in bits), based on additive (A) and modulatory (M) transfer functions for four combinations
of signal strengths: 1. (s1 = 10.0, s2 = 0.05), 2. (s1 = 0.05, s2 = 10.0), 3. (s1 = 1.0, s2 = 0.05),
4. (s1 = 1.0, s2 = 5.0), and two values of the correlation between inputs: 0.78 and zero.

5.3. EID Spectra

The EID spectra can have negative partial information measures, and so when interpreting them
it is useful to bear in mind the constraints (18)–(21). Therefore, for example, if the UnqX1 component
is negative then, since the classical Shannon measures are fixed, it would follow from (18) and (20)
that the components SharS+M and Syn would be larger than if the UnqX1 component were equal to
zero; of course the component SharS+M is split further into Source and Mechanistic terms, as discussed
in Section 4. In particular, if it were the case that I[Y; X1|X2] were equal to zero then the synergy
component would be positive and equal in magnitude to the UnqX1 component. Therefore, when a
negative component is present this is likely to make the relative magnitudes of the partial information
components appear different than in the corresponding Ibroja spectra, even though the same essential
message might be being expressed.

Consider Figure 4c. We note that the use of the modulatory and the additive transfer functions
leads to very similar spectra in charts M1 and A1, and M3 andA3. In charts M1 and A1, we see that
when the RF input is strong the residual output is zero and the information is transmitted mainly via
the source-shared component, but with some synergy and some unique information about the RF,
as well as some unique misinformation from the CF. Charts M2 and A2 reveal a marked difference
in the spectra due to the transfer functions. When the modulatory transfer function is employed
and the RF input is extremely weak then almost no information is transmitted. In contrast, the use
of the additive transfer function leads to all the information being transmitted, mostly in the form
of source shared information, with some synergy, some unique information about the CF and some
misinformation from the RF. In charts M3 and A3, the output residual is very high and so very little
information is transmitted when the RF input is weak and the CF input is extremely weak, and what is
transmitted is a combination of positive source shared information and negative mechanistic shared
information. Chart M4, where the CF input is moderate but the RF input is weak, indicates that more
information about the RF is transmitted than was the case in chart M3, since the output residual is
smaller. This information is transmitted mainly via source shared information and synergy, with some
unique misinformation from the CF.
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We now briefly consider Figure 4d. Charts M1 and A1 show that all the information is transmitted
in a form unique to the RF. We see a striking difference between charts M2 and A2, with no information
being transmitted in M1 and all the information unique to the CF being transmitted in A2. Charts M3
and A3 appear to be identical, with some information unique to the RF being transmitted and a high
output residual. Chart M4 shows that about one-half of the information is transmitted, mainly due to
that unique to the RF and synergy but also with some mechanistic shared and a little unique to the CF.
Much more information is transmitted in A4, predominantly in a form unique to the CF. A pleasing
feature of Figure 4d is that the source shared information component is zero in all the charts, while the
mechanistic shared component in chart M4 is positive; this is exactly what would be expected when
the inputs are uncorrelated, and here there are no negative mechanistic shared components unlike in
Figure 4c where the inputs are strongly correlated.

5.4. Contextual Modulation and Information Decompositions

In Section 3, the conditions M1–M3 express the notion of contextual modulation. Here, we
translate these conditions using (18)–(21) into corresponding expressions of contextual modulation for
ID measures, denoted by S1–S3 for non-negative decompositions, with amended conditions S1’–S2’ for
the EID when it has negative components.

S1: If the RF signal is strong enough, and the CF input is extremely weak, then both UnqX2 and
Syn are close to zero, UnqX1 can have its maximum value, and the sum of UnqX1 and SharS+M

can equal the total output entropy. This shows that the RF input is sufficient, thus allowing the
information in the RF to be transmitted, and that the CF input is not necessary.

S2: All five partial information components are close to zero when the RF input is extremely weak no
matter how strong the CF input. This shows that the RF input is necessary for information to be
transmitted, and that the CF input is not sufficient to transmit the information in the RF input.

S3: When s1 < s2 and when the RF input is weak, then the sum of UnqX1 and Syn is larger when the
CF input is moderate than it is when the CF input is weak. The same is true of the sum of UnqX1
and SharS+M. Thus the CF input modulates the transmission of information about the RF input.

The following conditions provide amendments to S1-S2 when the EID has negative components:

S1’: When UnqX2 < 0, UnqX2 and Syn are approximately of the same magnitude, the sum of UnqX1
and Syn can have its maximum value, and the sum of UnqX1 and SharS+M can equal the total
output entropy.

S2’: If at least one component is negative, then we can set the left-hand sides of (18)–(21) to zero and
use the rule that the sum of the magnitudes of the negative components is approximately equal to
the sum of the magnitudes of the positive components. If in any of (18)–(21) there is no negative
term then all terms on the right-hand side are close to zero.

We now discuss the spectra in relation to the these conditions. First we discuss the PID charts in
Figure 4a. In charts M1 and A1, we see that Syn and UnqX2 are apparently equal to zero and that
the sum of UnqX1 and SharS+M is equal to 1, the value of the total output entropy; UnqX1 is equal to
0.5 which is presumably the maximum value it can take. Therefore Condition S1 is satisfied for the
modulatory and the additive transfer function. For charts M2 and A2, we see in M2 that all five of the
components are apparently zero, and hence condition S2 holds for the modulatory transfer function,
but this is not the case with the additive transfer function in A2 since the values of UnqX2 and SharS

are appreciable. Inspection of charts M3 and M4 shows that the sum of Syn and UnqX1 and the sum of
UnqX1 and SharS+M are larger in M4 than in M3, thus supporting condition S3. In charts A3 and A4
we see the same for the sum of UnqX1 and SharS+M, but the opposite for the sum of Syn and UnqX1,
and so S3 is not fully supported in the additive case.

We now consider the EID charts in Figure 4c. In charts M1 and A1, UnqX2 is negative and
UnqX2 and Syn have approximately the same magnitude. Therefore, the sum of UnqX1 and SharS+M
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is equal to 1, the value of the total output entropy. Also, UnqX1 is just larger than 0.2, presumably
the largest value it can take. Therefore, the conditions of S1’ are satisfied in both the modulatory
and additive cases. For charts M2 and A2, we see in M2 that the residual output entropy is almost
equal to 1, that UnqX1, UnqX2 and Syn are apparently zero and that the little negative mechanistic
shared information is counterbalanced by a similar amount of positive source shared information, thus
supporting condition S2’, since all the right-hand sides in (18)–(21) are close to zero. This condition
is, however, not supported in the additive case since the values of UnqX2, SharS, Syn and UnqX1
(negative) are all appreciable. Considering charts M3 and M4, we notice that the sum of Syn and UnqX1
and also the sum of UnqX1 and SharS+M are larger in M4 than in M3, thus supporting condition S3.
In charts A3 and A4 we see the same for the sum of UnqX1 and SharS+M, but the opposite for the sum
of Syn and UnqX1, and so S3 is not fully supported in the additive case. Hence, when the correlation
between inputs is strong, we find that the conclusions for both PID and EID are the same with regard
to the use of modulatory and additive transfer functions.

In Figure 4b,d, the respective PID and EID spectra are virtually identical, and so the same
conclusions will hold for both decompositions. In charts M1 and A1, UnqX2 and Syn are apparently
zero, the sum of UnqX1 and SharS+M is equal to the total output entropy and this time UnqX1 is fully
maximized. Therefore condition S1 is supported in both charts. In chart M2 the residual output entropy
is close to 1 and so all five information components are close to zero, thus supporting condition S2.
We notice that the sum of Syn and UnqX1 and also the sum of UnqX1 and SharS+M are larger in M4
than in M3, thus supporting condition S3. In charts A3 and A4 we see that both these sums are smaller
in A4 than in A3, and so S3 is not supported in the additive case.

5.5. Comparison of PID and EID

Close comparison of the EID and PID spectra sheds light on both the information processing
properties of the form of modulation considered here, and on relations between PID and EID.
Most importantly for the purposes of this paper both PID and EID show the distinctive properties of the
modulatory interaction, in which the modulatory transfer function is employed. First, no information
dependent on the inputs is transmitted when the RF input is very weak whatever the value of the
CF input. This shows that the RF input is necessary for this transfer function to transmit information
about the input and that the CF input is not sufficient. Second, information is transmitted about the
RF input for all states of the CF input including those in which it is absent or very weak. This shows
that the RF input is sufficient for this transfer function to transmit information about the input and
that the CF input is not necessary. Third, when the RF input is strong no information dependent on
the CF input is transmitted by the output, but when the RF input is present but weak then the output
transmits less information dependent on the the RF input when context is very weak.

This shows the modulatory effect of the CF input. Fourth, modulatory interactions produce
the same components as additive interactions when the CF input is very weak, but very different
components when the CF input is stronger and the RF input is present but weak. This shows conditions
that distinguish these two forms of interaction. In general, the two inputs have equivalent opportunities
to effect the output for additive interactions, whereas the effects of the CF input are conditional upon
the RF input for the modulatory interaction. Fifth, when the two inputs are uncorrelated there is little
difference between the EID and PID decompositions other than the splitting of shared into source and
mechanistic by EID.

The spectra displayed may also shed some light on the negative components of EID, which still
await a clear and widely accepted interpretation. First, negative components are zero or tiny when
the two inputs are uncorrelated. Second, synergy and source shared were never negative in the
conditions studied. Third, negative unique components seem to be compensated for by positive
synergistic components. Fourth, source shared is never negative and positive only when the two
inputs are correlated. Whether these observations will aid interpretation of the negative components
remains to be seen.
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The spectra shown here are all for specific values of the two input strengths, so to see whether
the observations listed in the two preceding paragraphs hold for other values of those strengths the
following section presents surfaces showing each of the output components that depend on input as a
function of the two input strengths.

6. Analysis of the Transfer Functions Using the Ibroja PID over a Wide Range of Input Strengths

The five Ibroja surfaces were constructed as a function of the RF and CF signal strengths, s1 and s2.
In Figure 5, we notice the striking differences in the surfaces for each measure between the use of the
modulatory and the additive transfer function. In Figure 5b,d, there is a clear asymmetry that mimics
that shown in Figure 2d,f.

We notice, in particular, that it appears that UnqX1 is zero when s2 > s1 while UnqX2 is zero for
s1 > s2. In Figure 5a, UnqX1 rises towards its maximum as s1 increases, and the rise is similar for
s2 > 2. For s1 > 2 the shape of this plot matches that in Figure 2c. In Figure 5c, we note that UnqX2

appears to be zero for all values of s1 and s2. In Figure 5f,h,j plots of SharS, SharM and Synergy are
symmetric about the line s1 = s2 when based on the additive transfer function, and the maximum
values of SharM and Synergy happen along the line s1 = s2, while SharS flattens quite quickly onto a
plateau for most values of s1 and s2. On the other hand, there is no symmetry in Figure 5e,g,i, where
the surfaces of SharM and Synergy rise and fall as s1 increases and the pattern is similar for s2 > 2,
while the SharS surface rises quickly onto a plateau. The plot of synergy in Figure 5g appears to match
exactly the plot of I[Y; X2|X1] in Figure 2e, as expected, since it appears from Figure 5c that UnqX2 = 0.

In Figure 6, the surfaces for UnqX1 and UnqX2 are similar to the corresponding plots in Figure 5.
In particular, we note that again it appears from Figure 6c that UnqX2 = 0. Again, Figure 6g appears
to match the corresponding plot of I[Y; X2|X1] in Figure 2e. In Figure 6e,f, the SharS surface is zero for
all values of s1 and s2; this is expected since the source shared information should be zero when the
inputs are uncorrelated. By inspecting the surfaces in Figures 5e,f and 6e,f, we notice (as expected)
that the source shared information is much larger when the inputs are strongly correlated than when
they are uncorrelated. The plots of mechanistic shared information in Figures 5g,h and 6g,h indicate
that the presence of strong correlation does not have much effect. In Figure 6h,j, symmetry is again
apparent, with the maximum values occurring along the line s1 = s2.

Of special interest is the finding that UnqX2 appears to be zero. This suggests that X2 can modify
the transmission of information from the receptive field input X1 to the output Y without transmitting
any unique information about itself. This conclusion would be much stronger if it were possible to
prove mathematically that UnqX2 = 0, given the system defined in Sections 2 and 3. We now state
some formal results which indicate that this is indeed the case. We also define a class of transfer
functions, that includes our modulatory transfer function TM, for which UnqX2 = 0.

We saw also in the surfaces of UnqX1 and UnqX2, produced by the additive transfer function,
that UnqX2 appears to be zero when s1 > s2, and also that UnqX1 appears to be zero when s1 < s2.
We also state some mathematical results to confirm these impressions, as well as proving that when
s1 = s2 both uniques are zero. Then, using (18)–(21), the exact Ibroja decomposition is derived. Proofs
are given in the appendix. We now state the results.
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(a) Modulatory, UnqX1 (b) Additive, UnqX1

(c) Modulatory, UnqX2 (d) Additive, UnqX2

(e) Modulatory, SharS (f) Additive, SharS

(g) Modulatory, SharM (h) Additive, SharM

(i) Modulatory, Synergy (j) Additive, Synergy

Figure 5. Ibroja surfaces, based on additive and modulatory transfer functions, and a correlation
between inputs of 0.78.
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(a) Modulatory, UnqX1 (b) Additive, UnqX1

(c) Modulatory, UnqX2 (d) Additive, UnqX2

(e) Modulatory, SharS (f) Additive, SharS

(g) Modulatory, SharM
(h) Additive, SharM

(i) Modulatory, Synergy (j) Additive, Synergy

Figure 6. Ibroja surfaces, based on additive and modulatory transfer functions, and zero correlation
between inputs.

Let F be a function of two real variables, x, y, which has the property that

F(−x,−y) = −F(x, y) and F(−x, y) = −F(x,−y), for x > 0, y > 0. (28)
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We consider F(r, c) as a transfer function, for integrated RF input r and integrated CF input c, and,
as in Section 3, we pass the value of F through a logistic nonlinearity to obtain output conditional
probabilities of the form, with r = s1x1 and c = s2x2,

Pr(Y = 1|X1 = x1, X2 = x2) = 1/(1 + exp [−F(s1x1, s2, x2)]). (29)

We also assume that the joint p.m.f. for (X1, X2) has the form given in (1)–(3).

Theorem 2. For the trivariate probability distribution defined in (1)–(3), (29) and a transfer function as defined
in (28), suppose that g ≥ 1

2 and h ≥ 1
2 but g and h are not both equal to 1

2 , where g and h are defined by

g = Pr(Y = 1|X1 = 1, X2 = 1) and h = Pr(Y = 1|X1 = 1, X2 = −1). (30)

Suppose also that λ �= 0, μ �= 0, s1 > 0, s2 > 0. Then, for such a system, UnqX2 = 0 in the Ibroja PID.

The conclusion of Theorem 2 also holds when the conditions on g, h are: g ≤ 1
2 , h ≤ 1

2 but both
g, h are not equal to 1

2 . The conclusion also holds when g = 1
2 , h = 1

2 , although in this case all of the
information components are zero since the total mutual information I[Y; (X1, X2)] = 0, because Y is
independent from (X1, X2).

We now state the results for the two transfer functions used in this study.

Corollary 1. If the modulatory transfer function TM is used in the system described in Theorem 2, and under
the conditions stated there, then UnqX2 = 0 in the Ibroja PID.

Corollary 2. If the additive transfer function TA is used in the system described in Theorem 2, and under the
conditions stated there, then UnqX2 = 0 in the Ibroja PID when s1 ≥ s2.

It is shown by Theorem 2 that there is a general class of transfer functions which, when used in
the system described in Sections 2 and 3, and which satisfy the conditions of the Theorem 2, have the
property of not transmitting any unique information about the modulator. The modulatory transfer
function used in this work is a member of this class. The additive transfer function TA is also a member
of this class but it does not satisfy the conditions required in Theorem 2 for all values of s1 and s2.

We now present a result regarding UnqX1 and UnqX2 when the additive transfer function is used
in the system considered in Sections 2 and 3.

Theorem 3. For the trivariate probability distribution defined in Sections 2 and 3, with the additive transfer
function TA, suppose that λ �= 0, μ �= 0, s1 > 0, s2 > 0. Then, for such a system, UnqX1 = 0 in the Ibroja
PID when s1 ≤ s2. When s1 = s2 then both UnqX1 and UnqX2 are zero in the Ibroja PID.

Given the results of Theorems 2 and 3, and since the Ibroja PID is a non-negative decomposition,
we can now state the following exact results.

Theorem 4. For the trivariate probability distribution defined in (1)–(4), suppose that λ �= 0, μ �= 0, s1 > 0,
s2 > 0. Then, with uM, vM, uA, vA defined in (15)–(16), we have

(a) When transfer function TM is employed then

(i) Syn = I(Y; X2|X1) = h(zM)− 2λh(uM)− 2μh(vM);

(ii) SharS+M = I(Y; X2) = 1− h(wM);

(iii) UnqX1 = I(Y; X1|X2)− I(Y; X2|X1) = h(wM)− h(zM), and UnqX2 = 0.
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(b) When the transfer function TA is used and s1 = s2 then

(i) Syn = I(Y; X2|X1) = h(zA)− 2λh(uA)− 2μ;

(ii) SharS+M = I(Y; X1) = 1− h(zA);

(iii) UnqX1 = UnqX2 = 0;

(c) When the transfer function TA is used and s1 < s2 then

(i) Syn = I(Y; X1|X2) = h(wA)− 2λh(uA)− 2μh(vA);

(ii) SharS+M = I(Y; X1) = 1− h(zA);

(iii) UnqX2 = I(Y; X2|X1)− I(Y; X1|X2) = h(zA)− h(wA) and UnqX1 = 0.

(d) When the transfer function TA is used and s1 > s2 then

(i) Syn = I(Y; X2|X1) = h(zA)− 2λh(uA)− 2μh(vA);

(ii) SharS+M = I(Y; X2) = 1− h(wA);

(iii) UnqX1 = I(Y; X1|X2)− I(Y; X2|X1) = h(wA)− h(zA), and UnqX2 = 0.

For the trivariate binary system considered in Sections 2 and 3, these results show that the Ibroja
PID is a minimum mutual information PID, as was found in [30,31] for the trivariate Gaussian system.
Finally, we give the PID for any non-negative decomposition in the case where λ = 0 or μ = 0, so that
the correlation between inputs is −1 or +1, respectively.

Theorem 5. Consider the probability distribution defined in (1)–(4). When the correlation between the inputs,
X1, X2, is +1, we have that

(a) UnqX1 = UnqX2 = Syn =0, and SharS+M = 1− h(u).

when the correlation between the inputs, X1, X2, is −1, we have that

(b) UnqX1 = UnqX2 = Syn =0, and SharS+M = 1− h(v),

where, from (15)–(16), u = uM, v = vM when the transfer function TM is employed and u = uA, v = vA when
the transfer function TA is used.

7. Analysis of the Transfer Functions Using EID over a Wide Range of Input Strengths

As in the previous section, five EID surfaces were constructed as a function of the RF and CF
signal strengths, s1 and s2, in the definition of the trivariate binary system. Many of the properties
of the resulting surfaces are common with the Ibroja PID surfaces: the opposite asymmeteries of the
unique information terms for the additive system (Figures 7b,d and 8b,d), the symmetry in s1 and s2 of
the other terms for the additive transfer function, and the asymmetries for the modulatory transfer
function where the surfaces are relatively constant along the s2 axis. However, there are also some
differences, most noticeably the presence of negative terms.

Figure 7c shows that for the modulatory transfer function, the EID shows negative unique
information about X2.
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(a) Modulatory, UnqX1 (b) Additive, UnqX1

(c) Modulatory, UnqX2 (d) Additive, UnqX2

(e) Modulatory, SharS (f) Additive, SharS

(g) Modulatory, SharM (h) Additive, SharM

(i) Modulatory, Synergy (j) Additive, Synergy

Figure 7. EID surfaces, based on additive and modulatory transfer functions, and a correlation between
inputs of 0.78.
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(a) Modulatory, UnqX1 (b) Additive, UnqX1

(c) Modulatory, UnqX2 (d) Additive, UnqX2

(e) Modulatory, SharS (f) Additive, SharS

(g) Modulatory, SharM (h) Additive, SharM

(i) Modulatory, Synergy (j) Additive, Synergy

Figure 8. EID surfaces, based on additive and modulatory transfer functions, and a zero correlation
between inputs.

This is relatively constant irrespective of the strength of the CF signal, and increases in magnitude
with stronger RF signals. SharS+M is here split into separate source and mechanistic components.
The source shared information for the modulatory transfer function plateaus for s1, s2 > 2 (Figure 7e).
In this case, there is a very strong correlation between the two inputs, which is reflected in the shared
source information. The source shared information is fixed due to the high correlation between the
inputs, however, the univariate information in the CF decreases as a function of s1. Therefore the
unique X2 information is negative. Similarly, as I[Y; X2|X1] is UnqX2 plus synergy in (21), the negative
unique interacts with the plateau of positive synergy to result in the I[Y; X2|X1] surface (Figure 2e).
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In Figure 7g, we note that the mechanistic shared component is negative for small values of s1,
while in Figure 7h it is negative for some small values of s1, s2. In contrast, Figure 8g,h show that the
mechanistic component is non-negative when the correlation between the inputs is zero.

In general, the univariate mutual information I[Y; X2] is a sum of positive and negative terms,
representing shared and synergistic entropy respectively between the two variables in the calculation.
Since mutual information is non-negative, the positive terms always outweigh the negative terms
in the mutual information expectation summation. However, if some of the positive terms in the
calculation of I[Y; X2] are shared, or overlapping, with corresponding positive local information terms
of I[Y; X1], those terms will contribute to the shared information term of the decomposition, and not
be counted in the unique information terms. If enough of the shared entropy between X2 and Y is
overlapping with that shared between X1 and Y, and the negative synergistic entropy terms in I[Y; X2]

are not shared with X1, then the unique synergistic entropy between Y and X2 can be larger than the
unique redundant entropy between Y and X2, resulting in a net negative UnqX2 information term.

To illustrate this consider a specific example, when s1 = s2 = 2, with correlation between
inputs of 0.78. We can consider the local contributions to the univariate mutual information I[Y; X1].
As I[Y; X1] is an expectation computed with a summation we can consider each local term in the
summation which we denote e(y, x1) = p(y, x1)i(y, x1) :

e(−1,−1) = e(1, 1) = 0.46

e(−1, 1) = e(1,−1) = −0.06

and similarly for I(Y; X2), the e(y, x2) are:

e(−1,−1) = e(1, 1) = 0.40

e(−1, 1) = e(1,−1) = −0.11

Note that here the strong similarity in the profile of the local information terms results from the
high correlation between the two inputs. Local co-information values when x1 = x2 = y = −1 and
when x1 = x2 = y = 1 show that the terms are largely, but not completely, overlapping (0.37 bits).
There are no other local contributions to the Iccs shared information measure.

Further consideration of these pointwise terms reveals that there are some positive and some
negative local unique contributions to the univariate information for both predictors. The shared local
information for the state (y, x1, x2) = (−1,−1,−1) is 0.37 bits. The corresponding (y, x1) = (−1,−1)
term in the calculation of I(Y; X1) gives 0.46 bits of information. Since 0.37 bits of that is shared with
X2, 0.46− 0.37 = 0.09 bits are unique to X1 for that local contribution. Similarly there is a contribution
of 0.09 bits of unique X1 information when (y, x1) = (1, 1). Considering the same local terms for X2

there are again 0.37 bits shared with X1 and now 0.40− 0.37 = 0.03 bits of unique X2 information.
So in total, when the output matches the RF X1 input, those states contribute 0.18 bits to the unique X1

information and 0.06 bits to the unique X2 information.
Moving to the cross-terms, since there is no corresponding local shared information these

contributions to the univariate mutual information are entirely unique. So for X1 the unique information
is 2×−0.06 = −0.12 bits, and X2 has 2×−0.11 = −0.22 bits of unique information. So the total net
unique information in X1 is 0.18− 0.12 = 0.06 bits, and for X2 there are 0.06− 0.22 = −0.16 bits of
unique information. This shows that in this system both variables have both positive and negative
contributions to unique information, and that a negative value results when the negative contributions
are larger.

In this case, when the sign of either input matches the sign of the output, they have locally
redundant entropy, some of which is shared with the other input, but a small fraction of which is
unique to that variable (i.e., related to the residual variance over that determined by the correlations
between the variables). Instead, when the sign of the input does not match the sign of the output,
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there is local synergistic entropy between the variables. In other words, that particular local value of
the input variable is misleading about the corresponding local output value, in the following sense.

Imagine a gambler was trying to predict the output of the system, starting with knowledge of
the marginal distribution of the output p(Y). They would determine a gambling strategy to optimise
payout based on that distribution of Y. Observing the value of an input variable, combined with
knowledge of the function of the system, would allow the gambler to form a new distribution of the
output, p(Y|X2 = x2). In this updated conditional distribution some specific values of the output
would have higher probability than under p(Y), and some would have lower probability. In the
alternate sign cross terms in this example, the actual outcome is one of those that had lower probability
under the conditional distribution obtained after observing the input. The particular (local) evidence
provided by the value of the input on that trial moved the conditional distribution in the wrong
direction for that output value—i.e., it was misleading about that particular output value, because it
suggested it was less likely to happen, but then it did happen anyway. The fact that negative local
values correspond to misleading evidence from the perspective of prediction explains why they have
been termed misleading information or “misinformation” [26].

Therefore for both variables there are some unique information contributions that are both positive
and negative (positive when the sign of the input is preserved in the output, and negative when the
sign is changed in the output). Because a change in the sign of the output is rare, as a consequence of
the design of the transfer function, that joint event is less likely to happen than would be predicted
from the independent marginal local probability of the two events. The surprisal of the joint event
is greater than the sum of the surprisal of the individual events. In conditional probability terms,
p(y|x1) < p(y), the likelihood of seeing that value of y is decreased by conditioning on that value of x1.

While in Figure 7c, the unique X2 information is always negative, as shown in the example above
there can be both positive and negative components. It would be possible to further split Iccs to
consider positive and negative terms separately, and so keep these shared vs. synergistic entropy
effects separate throughout the decomposition. However here we focus on the net unique information
effects to present a simpler decomposition and one that can be directly compared with the Ibroja PID.
Note that in Figure 8c the balance is different. Here the two inputs are independent. Without the
strong correlation between the inputs the positive local information terms are smaller, and the balance
between positive and negative contributions to unique information is closer. Therefore, there is a
narrow parameter region, when s1 < 2 in which there is net positive unique information about X2.
In Figure 8, which shows all the surfaces for independent inputs, the surfaces for the modulatory
transfer function do not plateau so much. They remain mostly constant along s2 axis, and along the s1

axis UnqX1 increases while SharM and Synergy decrease (SharS is always zero here due to the fact the
inputs are independent.)

8. Applications of ID Measures to Psychophysical Data

We now turn our attention to demonstrating the practicality of using PID and EID to decompose
spectra from real-world data. We use the example of a behavioural lateral masking paradigm whereby
the driving RF input is a centrally presented gabor patch (a sinusoidal grating combined with a
gaussian function) of varying contrast. CF input takes the form of high-contrast gabor patches
that flank the central target in the upper and lower visual fields; see Figure 9 for example stimuli.
Neurophysiological studies have demonstrated that, in this experimental setup, when flankers are
presented concurrently with targets but placed outside the classical receptive field, the cell’s response
to the target is modulated [32,33]. Furthermore, due to the size of stimuli, orientation, contrast,
and their wavelength, CF input can suppress detection of the centrally presented target gabor [32,33].
This paradigm is a suitable testbed for PID measures since it measures the influence of a modulatory
input (CF), surrounding flanker stimuli, on performance, in this instance a contrast detection task on
a centrally presented gabor (RF). Furthermore, the paradigm can be manipulated to conform to the
predictions outlined in Section 3.
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(a) Over threshold,  
no flankers 

(b) Over threshold, 
with flankers 

(c) No target,  
with flankers 

Figure 9. Examples of gabor patch stimuli used in the psychophysical experiment. In all conditions,
the task was to detect the presence of a centrally presented target gabor.

We tested 21 participants from the University of Stirling’s undergraduate psychology programme
(Mean age = 19.1 years, SD = 1.3), who all had normal or corrected to normal vision. Ethical approval
for the study was obtained from the University of Stirling’s research ethics committee. Participants
first completed a two-alternative forced choice staircase experiment, in which individual contrast
sensitivity thresholds were established. Participants were asked to report whether a Gabor patch
appeared to the left or right of a central fixation cross; the Gabor patch steadily decreased in contrast
over the course of the experiment until a threshold of 60% accuracy was determined. This procedure
was run twice with participants, and the average contrast threshold was used. After thresholds were
established, participants completed the main experiment in which they were tasked with detecting a
central target gabor in three conditions: (1) Over threshold target; (2) At threshold target; (3) No target
present. In all three conditions, flankers were either present or not with equal occurrence; see Figure 9
for example stimuli.

Participants completed 100 trials per condition (except in the “No target” conditions, where they
viewed 25 trials per condition, giving 450 trials in total), and all stimuli were presented for 500 ms,
with a 2000 ms inter-stimulus interval for participants to respond.

Gabor patch stimuli for both the staircase and the main experimental paradigms were viewed on
a gamma corrected CRT monitor (Tatung C7BBR, 60 Hz refresh rate, Taipei, Taiwan) at a distance of
80 cm, had a spatial frequency of 0.5 cycles per degree, and subtended a visual angle of no more than
1.93◦ in horizontal and vertical dimensions. From upper to lower flanker, the whole image subtended
no more than 8.22◦ of vertical visual angle. All stimuli were presented on a medium grey background
(RGB, 128,128,128). Gabors were phase shifted by ±90◦ to present equal weightings of black/white.
Flanker gabors in the main experiment were presented at 0.85 Michelson contrast across all trials,
whereas central target gabor contrast varied by individual (Mean = 0.012, SD = 0.003).

Table 1. Estimated accuracy, with estimated standard error, for each combination of the three conditions
and the absence or presence of flankers.

No Target At Threshold Over Threshold

Without Flankers 0.9096 (0.0273) 0.8797 (0.0289) 0.9824 (0.0037)
With Flankers 0.9629 (0.0150) 0.3766 (0.0532) 0.9849 (0.0039)

Summary statistics for the accuracy data are shown in Table 1. Of particular note is the suppression
of contrast detection accuracy in the “At Threshold” condition when flankers are present. We found,
using a 3 (Threshold: Over, At, No target) by 2 (Flankers: With vs. Without) repeated measures ANOVA
model (Huynh-Feldt corrections reported where appropriate), that accuracy for detection of the central
gabor patch was lower in “at threshold” conditions in comparison to “over threshold” [F(1.147, 22.937)
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= 66.401, p < 0.001, η2 = 0.769]; post hoc comparison, Mean difference = 0.356, p < 0.001]. Furthermore,
the presence of flankers further reduced the contrast detection accuracy [F(1, 20) = 55.508, p < 0.001,
η2 = 0.735], however this was a consequence of flanker stimuli suppressing contrast detection
when target was at threshold, but not when the target was over threshold [F(1.334, 26.678) = 85.042,
p < 0.001, η2 = 0.81]. These results indicate that the CF input in these conditions served to suppress
contrast detection; however the nature of the suppressive effect found could be additive/subtractive
or modulatory.

Group ID spectra for the analysis of this experiment show that in conditions where the central
target gabor was presented over threshold, i.e., in a case of near certainty, the majority of information
transmitted in Y is unique to X1, the driving RF input. The influence of CF flanker stimuli in this
condition makes very little contribution to the output (Figure 10). In contrast, in conditions of
uncertainty, i.e., at threshold, the unique contributions of X1 driving RF input is, by definition, much
reduced, and the effect of the X2 modulatory CF input is much increased via its contribution to the
synergistic component. This latter effect occurs even though the unique contribution of the CF input at
threshold is small. The pattern of decompositions observed when the target driving RF input is weak
is similar to that of the modulatory transfer function examined in Section 5, except for the occurrence
of a small amount of unique information from the X2 modulatory CF input.

Figure 10 shows group decomposition spectra, however the decomposition may vary across
subjects. Fortunately, enough data was collected for analysis of the individual data to be possible.
We show Ibroja spectra for individual subjects of interest also in Figure 10. When the RF input is
over threshold (i.e., strong), information transmitted is again unique to the RF in both subjects 10
and 18. However, at threshold (i.e., weak RF input) interactions that meet the criteria for modulation
do occur for many subjects. Subject 10 is a clear example of a subject for whom the flanking context did
indeed seem to function as a modulator. Information unique to the target stimulus was transmitted,
but information unique to the flanking context, X2, was at or near zero. X2 must have contributed
to output, however, because there is a substantial synergistic component. Such subjects therefore
display a decomposition that is remarkably similar to that for the modulatory function studied in
previous sections.

A few subjects performed very differently at threshold. Subject 18’s responses at threshold
conveyed no unique information about the target; unique information to CF input dominates, but again
with substantial shared information and synergy between RF and CF. Therefore, the target, X1, input
contributed to the synergy, but the subject’s response conveyed unique information only about X2.
Thus, under these conditions for these subjects, the central target, X1, modulated transmission of
information about the flankers, X2, not the other way round. This demonstrates the value of using ID
spectra to analyze such data.

Accuracy data for subject 18 suggests a very strong suppressive effect of CF input on contrast
detection when the central target was presented at threshold (Accuracy in at threshold condition
with flankers is 3%). The presence of some information unique to X2 in the group data is therefore
largely due to a few subjects whose performance at threshold was mainly transmitting information
about the flankers. It may be that there were subjects for whom the threshold was underestimated.
Overall, the decompositions of these psychophysical data confirm the rich expressive power of the
decomposition spectra, and we expect to see far more use of them for such purposes in the near future.

To summarise, the nature of the modulation presented above is uncovered through use of
decomposition measures. The suppression of contrast detection accuracy observed here when the RF
input is weak coincides with less unique information transmitted about the RF in the output, and in
addition, shared information and a synergistic relationship between RF and CF inputs. EID spectra
suggest that the shared information is not mechanistic (see Section 4). Differing PID spectra between
individual participants highlights the efficacy of PID for disambiguating modulatory interactions at
the single subject level. The empirically observed spectra shown in this section may also cast some
light on relations between PID and EID. Overall, these two forms of decomposition are mostly in
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agreement. With respect to the negative EID components they again show that where negative unique
components occur they seem to be compensated for by equivalent positive increases in the synergy.
In addition, these results show that most EID components are positive, with negative components
being the exception rather than the rule.

(a) PID spectra (b) EID spectra

Figure 10. Partial information decomposition (PID) and EID spectra (in bits) calculated for subject 10
(S10), subject 18 (S18) and the whole group of subjects (G) in the contrast detection experiment
calculated at threshold (AT) and over threshold (OT).

9. Conclusions and Discussion

9.1. Implications of These Findings for Conceptions of ‘Modulation’ in the Cognitive and Neurosciences

Intuition suggests that any variable that affects output must transmit information specifically
about itself in that output. That is clearly incorrect because output can be pure synergy. Furthermore,
as shown in Figure 2e, conventional information theoretic analysis weakens that view by showing
that the conditional mutual information transmitted about the modulator is at or near zero unless
the primary drive is present but weak. The PID and EID analyses reported in Sections 5–7 now show
that the conditional mutual information transmitted about the modulator was greater than zero when
the primary input was present but weak because the synergistic component is then greater than zero,
not because the modulator transmits unique information about itself. Thus, the intuitive view that
to have any effect modulators must transmit specific information about themselves is shown to be
seriously misleading.

Signals can have a kind of dual “semantics”, one concerned with the message being transmitted,
and one being concerned with the strength, salience, confidence, or precision with which that message
is conveyed. The notion of contextual modulation requires a distinction between signal strength and
signal semantics because it implies that the signal’s strength can be modulated without changing its
semantic content. A set of criteria to be met by what we call a modulatory transfer function were stated
in Section 3. The surfaces given in Sections 6 and 7 for PID and EID analyses respectively show that
our modulatory transfer functions meet these criteria. Section 5.2 showed a set of four ID spectra that
together would imply that a transfer function is modulatory. ID spectra have substantial expressive
power so it is possible that, when applied to empirical data from the cognitive and neurosciences, they
may reveal that modulatory interactions take various and unexpected forms.

Another perspective from which to view our distinction between drive and modulation is that of
the receiver of the output signal. Such a receiver can confidently infer the sign of the driving input
from the output alone when the driving input is sufficiently strong. This is true whatever the strength
of the modulatory input. Nothing can be confidently inferred from the output alone about the sign
of the modulatory input, however, no matter what the strength of that modulatory input. This again
supports our claim that modulatory inputs do not contribute to the message being conveyed by the
semantics of output.
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9.2. Comparisons between PID and EID

The most important outcome of the findings reported above is that they show that both EID
and PID support all the main conclusions made above with respect to the defining properties and
functions of modulatory interactions. Important strengths of EID shown here are that it distinguishes
between source and mechanistic forms of shared information, and it relates them appropriately to
the correlation between the two inputs. This is also the case with PID when the separation of shared
information from [23] is included in the Ibroja decomposition.

9.3. Using EID and PID to Analyze and Interpret Psychophysical Data

The application of PID spectra to psychophysical data is useful in distinguishing ways in which
two distinct inputs can contribute to a single measure of output. The methods outlined here can
establish the underlying nature of statistical interactions in real world systems that cannot be studied
with traditional multi-variate statistics alone. Future studies will apply these measures to continuous
data streams to elucidate the strength of modulatory effects in complex neuroimaging data for example.

9.4. Using ID Spectra to Analyze and Interpret Empirical Data in General

The spectra and surfaces shown here were computed from a known transfer function, but the
inverse problem may also arise. That is, to what extent can a transfer function, or properties of it,
be inferred from an ID spectra, or set of spectra? For example, ID spectra could be computed from
neurobiological observations, from psychophysical observations, from the activities of local processing
elements in deep learning architectures, or from the input-output activity of a system as a whole.
Work on information decomposition has so far focussed on the forward problem, i.e., on computing the
spectra given a known transfer function. When ID spectra are computed from empirical data, however,
then issues concerning the inverse problem will become more prominent and the application of formal
statistical modelling will be required. Future studies will apply these measures to continuous data
streams to elucidate the strength of modulatory effects in complex neuroimaging data for example.
Iccs and the EID can be easily computed for continuous Gaussian variables, which together with a
semi-parametric Gaussian copula assumption results in a promising approach for robustly estimating
these quantities from experimental data [34]. Further study of the statistical properties of these methods
when applied to experimental data, for example in terms of limited sampling bias [35] and optimal
permutation tests for valid statistical inference [36] are important areas for future work. For some
recent work with fMRI data, see [37].

Empirical studies will rarely provide enough data to compute the equivalent of the surfaces shown
above, so it is spectra that empirical studies will usually provide. The studies above show that the
conditions under which the spectra are measured must be carefully chosen if modulatory and additive
functions are to be distinguishable. We assume that transfer functions cannot be rigorously inferred
from observed spectra, but they can be examined to see whether or not they meet the requirements
for a modulatory interaction as described above. This will not fully constrain the unknown transfer
function producing the observed output because those requirements can be met in many different ways.
If an observed spectrum does meet our criteria for a modulatory interaction, then further experiments
might be designed to distinguish between different ways in which those criteria can be met.

9.5. Modulatory Regulation of Activity as a Crucial and Non-Trivial Aspect of Information Processing

Though the topics dealt with in this Special Issue have implications for many disciplines they
have special implications for the computational, cognitive, and neurosciences. This new perspective
on multivariate information decomposition substantially enhances our notions of what “information
processing” can be, and that is at the heart of all of those disciplines. Information processing is more than
simply transferring information from one time or place to another. As others have argued it also includes
creating new information via synergetic interactions between separate inputs; see [26,38]. Our argument
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here is that in addition to “enhancing computational capabilities via synergy” information processing
also includes distinguishing between currently relevant and currently irrelevant inputs. That is far from
trivial, and though we have not considered the various criteria by which relevance can be assessed,
we have done so elsewhere; see e.g., [19,39]. Here we have shown that it is possible to use any such
assessment to amplify relevant and disamplify irrelevant signals without corrupting their semantic
content. ID spectra can now be used as a way of exploring information processing within biological
systems. It will be of particular interest to see whether interactions similar to those produced by our
modulatory transfer function can be observed at the cellular level. We have shown that it is possible
to use any such assessment to amplify relevant and disamplify irrelevant signals without corrupting
their semantic content. Whether biology uses such modulatory interactions can now be explored by
applying the ID spectra that we have proposed to biological data. The ID spectra could also be used to
enhance our understanding of the information processing performed by local processors within various
machine-learning architectures. It will also be possible to build new architectures designed to exploit
the computational capabilities made possible by modulatory interactions such as those analysed here.
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Appendix A. Preliminary Results

Consider the logistic function L, from R to the open interval (0, 1), which is strictly increasing and
has the following properties

L(x) = 1/(1 + exp (−x)), L(−x) = 1− L(x), 0 < L(x) < 1,

L(x) > 1
2 , L(x) = 1

2 , L(x) < 1
2 ⇐⇒ x > 0, x = 0, x < 0, respectively. (A1)

From (14)–(16), we may use (A1) to write the values of u, v in the form

uM = L[TM(1, 1)], vM = L[TM(1,−1)], uA = L[TA(1, 1)], vA = L[TA(1,−1)]. (A2)

Now, we write from (10) that

TM(−1,−1) = − 1
2 s1(1 + exp (s1s2)) = −TM(1, 1),

TM(−1, 1) = − 1
2 s1(1 + exp (−s1s2)) = −TM(1,−1) (A3)

and so using (A1) it follows that

Pr(Y = 1|X1 = −1, X2 = −1) = L[TM(−1,−1)] = L[−T(1, 1)] = 1− L[TM(1, 1)] = 1− uM

Pr(Y = 1|X1 = −1, X2 = 1) = L[TM(−1, 1)] = L[−T(1,−1)] = 1− L[TM(1,−1)] = 1− vM

A similar argument using the additive transfer function, TA, shows that

Pr(Y = 1|X1 = −1, X2 = −1) = 1− uA, and Pr(Y = 1|X1 = −1, X2 = 1) = 1− vA.
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Therefore, the conditional output probabilities are {1− u, 1− v, v, u} when taken in the order
{−−,−+,+−,++}, where (u, v) are replaced by (uM, vM) when using the transfer function TM,
and by (uA, vA) when using TA. It follows from (1)–(4) that the joint p.m.f. p(y, x1, x2) may be written as

{λu, μv, μ(1− v), λ(1− u), λ(1− u), μ(1− v), μv, λu}, (A4)

where the probabilities are written in the order {p−−−, p−−+, p−+−, p−++, p+−−, p+−+, p++−, p+++},
so, for example, Pr(Y = −1, X1 = +1, X2 = −1) = p−+−. We find the marginal distribution of the
output Y. From (A4), we have that

Pr(Y = −1) = λu + μv + μ(1− v) + λ(1− u) = λ + μ = 1
2 ,

and so Y, as well as X1 and X2 has a uniform binary distribution.
We now calculate the various Shannon entropy terms that will be required in the sequel. Since

each of the three variables has a marginal uniform binary distribution, we can say that

H(Y) = 1, H(X1) = 1, and H(X2) = 1. (A5)

From (2) and (3), and noting that λ+ μ = 1
2 , we can write the Shannon entropy of the marginal (X1, X2)

distribution as

H(X1, X2) = −2λ log λ− 2μ log μ = 1− (2λ) log(2λ)− (1− 2λ) log(1− 2λ) = 1 + h(2λ),

where the function h is defined in (17). From (A4), we may write the marginal p.m.f.s of (Y, X1) and
(Y, X2) in the order {−−,−+,+−,++}.

p(y, x1) : {λu + μv, λ(1− u) + μ(1− v), λ(1− u) + μ(1− v), λu + μv} = { 1
2 z, 1

2 (1− z), 1
2 (1− z), 1

2 z}, (A6)

where, as in (17), z = 2λu + 2μv.

p(y, x2) : {λu + μ(1− v), λ(1− u) + μv, λ(1− u) + μv, λu + μ(1− v)} = { 1
2 w, 1

2 (1− w), 1
2 (1− w), 1

2 w}, (A7)

where, as in (17), w = 2λu + 2μ(1− v).
We now calculate the Shannon entropies of the marginal (Y, X1) and (Y, X2) distributions.

H(Y, X1) = −z log( 1
2 z)− (1− z) log( 1

2 (1− z)) = 1 + h(z). (A8)

H(Y, X2) = −w log( 1
2 w)− (1− w) log( 1

2 (1− w)) = 1 + h(w). (A9)

Finally, from (A4), we find the Shannon entropy of the joint distribution of (Y, X1, X2).

H(Y, X1, X2) = −2λu log(λu)− 2μv log(μv)− 2λ(1− u) log[(λ(1− u)]− 2μ(1− v) log[μ(1− v)],

= −2λ log λ− 2μ log μ− 2λ[−u log u− (1− u) log(1− u)]

− 2μ[−v log v− (1− v) log(1− v)],

= H(X1, X2) + 2λh(u) + 2μh(v). (A10)
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Appendix B. Proof of Theorem 1

(a) From (6), and using (A5), (A6), (A9) and (A10), we have that

I[Y; X1|X2] = H(Y, X2) + H(X1, X2)− H(X2)− H(Y, X1, X2)

= 1 + h(w) + H(X1, X2)− 1− H(X1, X2)− 2λh(u)− 2μh(v)

= h(w)− 2λh(u)− 2μh(v).

(b) From (7), and using (A5), (A6), (A8) and (A10), we have that

I[Y; X2|X1] = H(Y, X1) + H(X1, X2)− H(X1)− H(Y, X1, X2)

= 1 + h(z) + H(X1, X2)− 1− H(X1, X2)− 2λh(u)− 2μh(v)

= h(z)− 2λh(u)− 2μh(v).

(c) From (9), and using (A5) and (A8), we have

I[Y; X1] = H(Y) + H(X1)− H(Y, X1) = 2− 1− h(z) = 1− h(z).

(d) From (9), and using (A5) and (A9), we have

I[Y; X2] = H(Y) + H(X2)− H(Y, X2) = 2− 1− h(w) = 1− h(w).

(e) From (8) and parts (a) and (b), we have that

I[Y; X1; X2) = 1− h(z)− (h(w)− 2λh(u)− 2μh(v)) = 1− h(z)− h(w) + 2λh(u) + 2μh(v).

(f) From (5) and using (A5), (A6) and (A10), we have

I[Y; (X1, X2)] = H(Y) + H(X1, X2)− H(Y, X1, X2) = 1− 2λh(u)− 2μh(v).

Appendix C. Proof of Theorem 2

From Lemma 6 in [9] a necessary and sufficient condition for UnqX2 to vanish is that there exists
a row stochastic matrix S = [σ(x1; x2)] such that

Pr(Y = y, X2 = x2) = ∑
x1∈B

Pr(Y = y, X1 = x1)σ(x1; x2). (A11)

We first find expressions for the joint p.m.f. in this more general case, but the work involved is
very similar to that leading to (A4) above. From (29), (30) and (A1) we note that

g = L[F(s1, s2)], h = L[F(s1,−s2)] and 0 < g, h < 1.

Also, since λ �= 0 and μ �= 0 and λ+ μ = 1
2 , we have that 0 < λ < 1

2 and 0 < μ < 1
2 . From (28), (29)

and (A1) we have that

Pr(Y = 1|X1 = −1, X2 = 1) = L[F(−s1, s2)] = L[−F(s1,−s2)] = 1− L[F(s1,−s2)] = 1− h

Pr(Y = 1|X1 = −1, X2 = −1) = L[F(−s1,−s2)] = L[−F(s1, s2)] = 1− L[F(s1, s2)] = 1− g

It follows that the joint p.m.f. of (Y, X1, X2) is

{λg, μh, μ(1− h), λ(1− g), λ(1− g), μ(1− h), μh, λg}, (A12)
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and that the p.m.f.s for (Y, X1) and (Y, X2), in the order {−−,−+,+−,++}, are

p(y, x1) : {λg + μh, λ(1− g) + μ(1− h), λ(1− g) + μ(1− h), λg + μvh}, (A13)

p(y, x2) : {λg + μ(1− h), λ(1− g) + μh, λ(1− g) + μh, λg + μ(1− h)}. (A14)

Note that, since λ + μ = 1
2 , we can write

λ(1− g) + μ(1− h) = 1
2 − λg− μh, and λ(1− g) + μh = 1

2 − λg− μ(1− h).

From (A11), we now write out the system of equations that we will use to find a stochastic matrix.

λg + μ(1− h) = (λg + μh)σ−− + ( 1
2 − λg− μh)σ+− (A15)

1
2 − λg− μ(1− h) = (λg + μh)σ−+ + ( 1

2 − λg− μh)σ++ (A16)
1
2 − λg− μ(1− h) = ( 1

2 − λg− μh)σ−− + (λg + μh)σ+− (A17)

λg + μ(1− h) = ( 1
2 − λg− μh)σ−+ + (λg + μh)σ++ (A18)

Using (A15) and (A17), we first solve for σ−− and σ+− and obtain[
λg + μ(1− h)

1
2 − λg− μ(1− h)

]
=

[
λg + μh 1

2 − λg− μh
1
2 − λg− μh λg + μh

] [
σ−−
σ+−

]

Hence, inverting the matrix, we can write[
σ−−
σ+−

]
=

1
Δ

[
λg + μh λg + μh− 1

2
λg + μh− 1

2 λg + μh

] [
λg + μ(1− h)

1
2 − λg− μ(1− h)

]
,

where the determinant Δ = λg + μh− 1
4 . Now, Δ > 0 provided that g ≥ 1

2 , h ≥ 1
2 and g, h are not both

equal to 1
2 . After some manipulation we obtain[

σ−−
σ+−

]
=

1
Δ

[
λg + 1

2 μ− 1
4

μ(h− 1
2 )

]

and so when g ≥ 1
2 and h ≥ 1

2 , but both are not equal to 1
2 then σ−− and σ+− are both non-negative

and they sum to 1.
Very similar calculations for solving (A16) and (A18) give that[

σ−+
σ++

]
=

1
Δ

[
μ(h− 1

2 )

λg + 1
2 μ− 1

4

]

and the same reasoning as above shows that σ−+ and σ++ are both non-negative and they also sum
to 1. Hence we have found a row stochastic matrix

S =

[
σ−− σ+−
σ−+ σ++

]

which satisfies (A11), and we conclude that UnqX2 =0.

Appendix D. Proof of Corollary 1

It follows from (A3) that TM satisfies the properties of F in (28). We now show that uM > 1
2 and

that vM > 1
2 . From (A2) and (11) we have that

uM = L[ 1
2 s1(1 + exp (s1s2))] and vM = L[ 1

2 s1(1 + exp (−s1s2))].
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Since s1 > 0, s2 > 0, we conclude from (A1) that uM and vM are both greater than 1
2 . Hence,

from Theorem 2, UnqX2 = 0.

Appendix E. Proof of Corollary 2

Using (11) we know that

TA(−1,−1) = −s1 − s2 = −(s1 + s2) = −TA(1, 1),

TA(−1, 1) = −s1 + s2 = −(s1 − s2) = −TA(1,−1)

and so TA has the properties of F defined in (28). Also

uA = L[s1 + s2] and vA = L[s1 − s2],

and so from (A1), and the assumption that s1 > 0, s2 > 0, we have that uA > 1
2 and also that vA ≥ 1

2 if
and only if s1 ≥ s2. Hence, from Theorem 2 it follows that UnqX2 = 0.

Appendix F. Proof of Theorem 3

From Lemma 6 in [9], a necessary and sufficient condition for UnqX1 to vanish is that there exists
a row stochastic matrix T = [τ(x2; x1)] such that

Pr(Y = y, X1 = x1) = ∑
x2∈B

Pr(Y = y, X2 = x2)τ(x2; x1). (A19)

Since we are using TA, here g = uA and h = vA. From (A19), we now write out the system of
equations that we will use to find a stochastic matrix.

λg + μh = (λg + μ(1− h))τ−− + ( 1
2 − λg− μ(1− h))τ+−

1
2 − λg− μh = (λg + μ(1− h))τ−+ + ( 1

2 − λg− μ(1− h))τ++

1
2 − λg− μh = ( 1

2 − λg− μ(1− h))τ−− + (λg + μ(1− h))τ+−
λg + μh = ( 1

2 − λg− μ(1− h))τ−+ + (λg + μ(1− h))τ++

We note that the only difference in this system of equations, as compared with (A15)–(A18) is that
h has been replaced by 1− h, and so one would expect that the result will hold when uA > 1

2 and
vA ≤ 1

2 , and this turns out to be the case.
Following the same argument used in the proof of Theorem 2 it turns out that

T =
1

λg + μ(1− h)− 1
4

[
λg + 1

2 μ− 1
4 μ( 1

2 − h)
μ( 1

2 − h) λg + 1
2 μ− 1

4

]
,

and we see that T is a row stochastic matrix provided that g ≥ 1
2 and h ≤ 1

2 and g and h cannot both be
equal to 1

2 . From the proof of Corollary 2, we know that uA > 1
2 and from (A1) we know that vA ≤ 1

2 if
and only if s1 ≤ s2.

For the last part, we know from (A1) that, when s1 = s2,

vA = L[s1 − s2] = L[0] = 1
2 .

From (A14), with g = uA and h = vA = 1
2 , we have that the marginal distributions of (Y, X1) and

(Y, X2) are identical. Hence since both marginals have the same range space, B2, it follows from [9]
(Corollary 8) that UnqX1 = 0 and UnqX2 = 0. This completes the proof.
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Appendix G. Proof of Theorem 4

(a) We saw in Theorem 2, Corollary 1, that UnqX2 = 0. It follows from (21) and Theorem 1(b) that

Syn = I[Y; X2|X1] = h(zM)− 2λh(uM)− 2μh(vM).

From Theorem 1(a) and (20) we have that

UnqX1 = I(Y; X1|X2)− I(Y; X2|X1) = h(wM)− h(zM),

and from (19) we deduce that

SharS+M = I(Y; X2) = 1− h(wM).

(b) In this case, vA = 1
2 , so h(vA) = 1, and zA = wA. From Theorem 3, we know that UnqX1 = 0 and

UnqX2 = 0. From (20), (21) we have

Syn = I[Y; X1|X2] = I[Y; X2|X1] = h(zA)− 2λh(uA)− 2μ.

and from (18) and (19) it follows that

SharS+M = I[Y; X1] = I[Y; X2] = 1− h(zA).

(c) From Theorem 3, UnqX1 = 0, and using (18), (20) and (21) we obtain

Syn = I[Y; X1|X2] = h(wA)− 2λh(uA)− 2μh(vA),

UnqX2 = I[Y; X2|X1]− I[Y; X1|X2] = h(zA)− h(wA),

and
SharS+M = I[Y; X1] = 1− h(zA).

(d) From Theorem 2, Corollary 2, UnqX2 = 0. Using the same deductions as in part (a), we find that

Syn = I[Y; X2|X1] = h(zA)− 2λh(uA)− 2μh(vA),

UnqX1 = I[Y; X1|X2]− I[Y; X2|X1] = h(wA)− h(zA),

SharS+M = I[Y; X2] = 1− h(wA).

Appendix H. Proof of Theorem 5

For part (a), the correlation between inputs is +1, and so we know from (2), (3) and (17) that

λ = 1
2 , μ = 0, z = v, w = v.

Hence, from Theorem 1(a, b)

I[Y : X1|X2] = h(v)− h(v) = 0, and I[Y; X2|X1] = h(u)− h(u) = 0.

From (20) and (21) it follows that UnqX1 = UnqX2 = Syn = 0. Then from Theorem 1 and (18) it follows
that SharS+M = I[Y; X1] = 1− h(u).

In (b), the correlation between inputs is −1, and so we know from (2), (3) and (17) that

λ = 0, μ = 1
2 , z = v, w = 1− v.
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Hence, from Theorem 1(a,b), and noting that h(1− v) = h(v),

I[Y : X1|X2] = h(1− v)− h(v) = 0, and I[Y; X2|X1] = h(v)− h(v) = 0.

From (20) and (21) it follows that UnqX1 = UnqX2 = Syn =0. Then from Theorem 1 and (18) it
follows that SharS+M = I[Y; X1] = 1− h(v).
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Abstract: Information processing performed by any system can be conceptually decomposed into
the transfer, storage and modification of information—an idea dating all the way back to the work
of Alan Turing. However, formal information theoretic definitions until very recently were only
available for information transfer and storage, not for modification. This has changed with the
extension of Shannon information theory via the decomposition of the mutual information between
inputs to and the output of a process into unique, shared and synergistic contributions from the inputs,
called a partial information decomposition (PID). The synergistic contribution in particular has been
identified as the basis for a definition of information modification. We here review the requirements
for a functional definition of information modification in neuroscience, and apply a recently proposed
measure of information modification to investigate the developmental trajectory of information
modification in a culture of neurons vitro, using partial information decomposition. We found that
modification rose with maturation, but ultimately collapsed when redundant information among
neurons took over. This indicates that this particular developing neural system initially developed
intricate processing capabilities, but ultimately displayed information processing that was highly
similar across neurons, possibly due to a lack of external inputs. We close by pointing out the
enormous promise PID and the analysis of information modification hold for the understanding of
neural systems.

Keywords: information theory; partial information decomposition; neural computation; neural
development; self-organisation

1. Introduction

Shannon’s quantitative description of information and its transmission through a communication
channel via the entropy and the channel capacity, respectively, has drawn considerable interest from
the field of neuroscience from the very beginning. This is because information processing in neural
systems is typically performed in a highly distributed way by many communicating processing
elements, the neurons.

However, in contrast to a channel in Shannon’s sense, the purpose of dendritic connections
in a neural system is not to simply relay information for the sake of reliable communication.

Entropy 2017, 19, 494 239 www.mdpi.com/journal/entropy
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Instead, communication between neurons serves the purpose of collecting multiple streams of
information at a neural processing element that modifies this information, i.e., that synthesizes the
incoming streams into output information that is not available from any of these streams in isolation.
This becomes immediately clear when looking at the meshed structure of nervous systems, where
multiple communication streams converge on single neurons, and where neural output signals are
sent in a divergent manner to many different receiving neurons. This structure differs dramatically
from a structure solely focused on the reliable transmission of information where many parallel,
but non-interacting streams would suffice. Thus, the meshed architecture seems to have evolved to
“fuse” information from different input sources (including a neuron’s recent spiking history and its
current state) in a nontrivial way, e.g., other than simply multiplexing it in the output. In other words,
the distributed computation in neural systems may heavily rely on information modification [1].

Attempts at formally defining information modification have presented a considerable challenge,
however, in contrast to the well established measures of information transfer [2–6] and active
information storage [7–9]. This is because identifying the “modified” information in the output of
a processing element amounts to distinguishing it from the information from any input that survives
the passage through the processor in unmodified form. These unmodified parts, in turn, may either come
uniquely from one of the inputs, uniquely from another input (unique mutual information between an
input and the output), or may be provided by multiple inputs simultaneously (shared mutual information
between several inputs and the output). A decomposition of the mutual information between the inputs
and the output of this kind is called a partial information decomposition (PID) [10] (Some authors
prefer the simpler term “information decomposition”, also in this special issue.).

In a PID, the problem of identifying modified information is equivalent to identifying the part of
the (joint) mutual information that is not unique mutual information from one or another input, and
that is also not shared mutual information from multiple inputs. This remaining part has been termed
synergistic mutual information in the work of Williams and Beer [10], and has been identified with
information modification in [11] for the reasons given above.

The recent pioneering work by Williams and Beer [10] revealed that the standard axioms of
information theory do not uniquely define the unique, shared and synergistic contributions to
the mutual information, and that additional axioms must be chosen for its meaningful decomposition.
Among several possible choices of additional axioms or assumptions available at the time of this study
(see Section 4.1) we here adhere to the definition given independently by Bertschinger, Rauh, Olbrich,
Jost, and Ay (“BROJA-measure”, [12]) and Griffith and Koch [13]. Our decision is based on two
properties of the BROJA measure that seem necessary for an application to the problem of information
modification as described above: first, in their definition, the presence of non-zero synergistic mutual
information for the case of two inputs and one output cannot be deduced from the (two) marginal
distributions of one input and one output variable. This property distinguishes the BROJA measure
from the others available at the time; Bertschinger et al. [12] referred to it as Assumption (∗∗),
and showed that the BROJA measure is the only measure that satisfies both Assumption (∗) and
(∗∗), where Assumption (∗) indicates that the existence of unique information only depends on the
pairwise marginal distributions between the individual inputs and the output. The measures from
Williams and Beer [10] and Harder et al. [14] only satisfy Assumption (∗), but not (∗∗)—see [12] for
details. Second, the BROJA measure is placed on a rigorous mathematical footing, being derived
directly from the aforementioned Assumption (∗) rather than postulated ad hoc; furthermore, it has an
operational interpretation in terms of expected utilities from the output based on knowledge of only
each input, and many mathematical properties proven.

In our proof-of-principle study, we apply the BROJA decomposition of mutual information to
the analysis of the emergent information processing in self-organizing neural cultures, and show
that these novel information theoretic concepts indeed provide a meaningful contribution to our
understanding of neural computation in this system.
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2. Methods

In the following, we consider the neural data produced by two neurons as coming from two
stationary random processes X1, X2, composed of random variables X1(i) and X2(i), i = 1 . . . n,
with realizations x1(i), x2(i). The corresponding embedding or state space vectors are given in bold
font, e.g., xl(i) = {x(i), x(i− 1) . . . , x(i− l + 1)}. The state space vector xl(i) is constructed such that it
renders the variable x(i + 1) conditionally independent of all random variables x(j) with j < i− l + 1,
i.e., p(x(i + 1)|xl(i), x(j)) = p(x(i + 1)|xl(i)).

2.1. Definition and Estimation of Unique, Shared and Synergistic Mutual Information

For two input random variables X1, X2 and an output random variable Y (Figure 1),
Bertschinger et al. [12] defined the four unique, shared and synergistic contributions to the joint mutual
information I(Y : X1, X2) as:

Ĩunq(Y : X1 \ X2) := min
Q∈ΔP

IQ(Y : X1|X2) (1)

Ĩunq(Y : X2 \ X1) := min
Q∈ΔP

IQ(Y : X2|X1) (2)

Ĩshd(Y : X1; X2) := max
Q∈ΔP

(I(Y : X1)− I(Y : X1|X2)) (3)

Ĩsyn(Y : X1; X2) := I(Y : (X1, X2))

− min
Q∈ΔP

IQ(Y : (X1, X2)) , (4)

where I is the standard mutual or conditional mutual information [15,16], Ĩunq is the unique, Ĩshd
the shared, and Ĩsyn the synergistic mutual information. In our notation, the comma separates variables
within a set that are considered jointly, the colon separates the (sets of) random variables between
which the mutual information is computed, while the semicolon or backslash separates sets of random
variables that we are decomposing such mutual information across. For the latter, the semicolon is
used for measures where the sets of random variables are considered symmetrically (i.e., shared and
synergistic information), while the backslash is used for asymmetric cases (i.e., unique information
in one but not the other). ΔQ in the above definitions is the space of probability distributions Q that
have the same pairwise marginal distributions between each input and the output as the original joint
distribution P of X1, X2, Y, i.e.:

ΔP = {Q ∈ Δ : Q(X1 = x1, Y = y) = P(X1 = x1, Y = y)

and Q(X2 = x2, Y = y) = P(X2 = x2, Y = y)} .
(5)

I(Y : X1; X2)
I(Y : X2)

I(Y : X1)

Iunq(Y : X2\X1)

Iunq(Y : X1\X2)

Ishd(Y : X1;X2)

I syn
(Y : X1

;X 2
)

Figure 1. Decomposition of the joint mutual information between two input variables X1, X2 and
the output variable Y. Modified from [17], CC-BY license.
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2.2. Mapping of Neural Recordings to Input and Output Variables for PID, and Definition of Information Modification

In our application to developing neural cultures, we always consider two spike trains (A,B) at
a time: the past state of the spike train A, X−A , is one of the input variables and the past state of a spike
train B, X−B , is considered as the other input variable. Empirically, these states are usually constructed
using the aforementioned embedding or state space vectors xl(i) of length l. The output variable X+

A
is simply spike train A’s current spiking behavior (spiking or not).

This output variable is computed from external inputs (X−B ) as well as the output variable’s own
history X−A . When analyzing this computation, one wishes to focus on the operations of information
storage, transfer and modification, in alignment with established views of distributed information
processing in complex systems [18,19]. In this study, specifically, we will focus on information
modification, yet we first need to decompose the output variable in terms of information storage
and information transfer, where the latter will also contain the information modification (see [11]
and Figure 2):

I(X+
A : X−A , X−B ) = I(X+

A : X−A) + I(X+
A : X−B |X−A). (6)

Here, I(X+
A : X−A) is the active information storage [7], the predictive information from the past

state of the variable to its next value. Then, I(X+
A : X−B |X−A) is the transfer entropy [2], the predictive

information from the past of the other source B to the next value of A, in the context of the past of A.
In order to identify information modification, we need to take this decomposition further to reveal

two sub-components of each of these information storage and transfer terms. These sub-components
result from a partial information decomposition of I(X+

A : X−A , X−B ) into four parts (see Figure 2):

1. The unique mutual information of the output spike train’s own past Ĩunq(X+
A : X−A \X−B )—this can

be considered as information uniquely stored in the past output of the spike train that reappears
at the present sample.

2. The unique information from the other spike train Ĩunq(X+
A : X−B \ X−A)—this is the information

that is transferred unmodified from the input to the output of the receiving spike train (also known
as the state independent transfer entropy [20]).

3. The shared mutual information about the output of spike train A that can be obtained both from
the past states of spike train A and of spike train B, Ĩshd(X+

A : X−B ; X−A)—this is information that is
redundantly stored in the past of both spike trains and that reappears at the present sample.

4. The synergistic mutual information Ĩsyn(X+
A : X−B ; X−A), i.e., the information in the output of spike

train A, X+
A , that can only be obtained when having knowledge about both the past state of

the external input, X−B , and the past state of the receiving spike train, X−A . (This is also known as
the state dependent transfer entropy [20]).

B

storage

transfer entropy

A

1             3             2

4

Figure 2. Mapping between the decomposition into storage and transfer (A) and individual or joint
mutual information terms, and PID components (B). Numbers in (B) refer to the enumeration of
components given in Section 2.2. Number “4” is the modified information.
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We see that Components 1 and 3 above form the active information storage in Equation (6),
while Components 2 and 4 form the transfer entropy term. Component 4, as the synergistic mutual
information contributed by the storage and the transfer source, is what we consider to be the modified
information (following [11]). The same underlying definition of information modification from [11]
was used by Timme et al. [21] in an earlier study of dynamics of spiking activity of neural cultures,
yet with another PID measure and considering multiple external inputs to a neuron (see discussion for
further details).

2.3. PID Estimation

PID terms were estimated by minimizing the conditional mutual information as indicated in
the first equation of the system 1. To perform the minimization, we used a stochastic approach
where alternative trial distributions in ΔP are created by swapping probability mass δp between the
symbols of the current distribution such that the constraints defining ΔP are satisfied. If this swap
of probability mass leads to a reduction in the conditional mutual information, the trial distribution
is made the current distribution, and a new trial distribution is created. If the trial distribution
fails to reduce the conditional mutual information, then a new trial distribution is created from
the current distribution. This latter process is repeated for a maximum of n unsuccessful swaps in
a row (here n = 20,000), with a reset of the counter in case of a successful swap. If after these trials
no reduction is reached, then we assume that we have found the optimum possible with the current
increment in probability mass δp and that a finer resolution is needed. Hence, the increment is halved:
δp ← δp/2. This process starts with an initial δp equal to the largest probability mass assigned to
any symbol in the distribution P, and is repeated until the numerical precision of the machine or
programming language is exhausted (here, we performed 63 divisions of the original δp by a factor of 2,
using Numpy 1.11.2 under Python 3.4.3 and 128-bit floating point numbers). The algorithm is available
in the open source toolbox IDTxl [22]. We note that better solutions based on convex optimization exist
(see Makkeh et al. [23] in this special issue) and that these are implemented in newer versions of IDTxl ;
at the time of performing this study, however, these implementations were not available to us yet.

2.4. Statistical Testing

Results obtained for the joint mutual information, and for the four PID measures normalized by
the joint mutual information, were subjected to pairwise statistical tests for differences in the median
between recordings days (see Section 2.5) by means of permutation tests. An uncorrected p-value of
p < 5× 10−4, corresponding to p-value of p < 0.05 with Bonferroni correction for multiple comparisons
across five measures, and 20 pairs of recording days, was considered significant.

We normalized the PID values to remove influences from changes in the overall activity of
the culture (that change the entropy of the inputs) and to abstract from changes in the overall joint
mutual information. Note that we did not test these normalized PID values for significance against
surrogate data, as the focus here was on changes with development of the culture. Moreover, the four
normalized PID terms analyzed here are not independent from each other, but instead sum up to a
value of 1, making the construction of a meaningful statistical test difficult.

2.5. Electrophysiological Data—Acquisition and Preprocessing

The spike recordings were obtained by Wagenaar et al. [24] from a single in vitro culture of
M ≈ 50,000 cortical neurons. The data are available online at [25]; of the data provided in this
repository, we used culture/experiment “2-1”, days 7, 14, 21, 28, and 34. Details on the preparation,
maintenance and recording setting can be found in the original publication. In brief, cultures were
prepared from embryonic E18 rat cortical tissue. Recordings lasted more than 30 min. The recording
system comprised an 8× 8 array of 59 titanium nitride electrodes with 30 μm diameter and 200 μm
inter-electrode spacing, manufactured by Multichannel Systems (Reutlingen, Germany). As described
in the original publication, spikes were detected online using a threshold based detector as upward
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or downward excursions beyond 4.5 times the estimated root mean squared (RMS) noise [26]. Spike
waveforms were stored, and used to remove duplicate detections of multiphasic spikes. Spike sorting
was not employed, and thus spike data represent multi-unit activity. To obtain a tractable amount of
data, we randomly picked spike time series from the dataset, and of these only selected those that
developed at least a moderate level of activity with maturation of the culture (channels 01, 02, 03, 04,
05, 07, 11, 13, 14, 16, 19, 50, 53, 57, 58, 60), to guarantee a certain level of (Shannon) information to be
present. In total, our analyses comprise 16 spike time series, i.e., 240 pairs of spike time series.

From these spike time series, the realizations x+A(i) of the random variable X+
A (i) were constructed

by applying bins of 8 ms length; empty bins were denoted by zeros, whereas bins that contained at
least one spike were denoted with ones. The corresponding approximate past state vectors x− l

A/B(i)

were constructed with finite past length l = 3, and to balance the need for low dimensionality for
an unbiased estimate and a coverage of as much past history as possible, three past bins of size 8 ms,
32 ms and 32 ms were defined, where the shortest bin was the bin closest to i, and where both the 8 ms
and the two 32 ms bins were set to one or zero depending on whether or not a spike occurred anywhere
within these bins. This approach to cover a longer history at a low dimensionality amounts to a
compressing of the information in the history of the process, aiming to retain what we perceive to be
the most relevant information. This approach is similar to the one used by Timme et al. [27], except for
the use of nonuniform binwidths in our case. Alternative approaches to large bin widths exist that are
either based (i) on nonuniform embedding, picking the most informative past samples (or bins with
a small width on the order of the inverse sampling rate) from a collection of candidates (e.g., [28–30]),
and the IDTxl toolbox [22]; or (ii) on varying the lag between an a vector of evenly spaced past bins
and the current sample [4,31,32], but both of these approaches might be less suitable for relatively
sparse binary data, such as spike trains.

3. Results

3.1. PID of Information Processing in Neural Cultures

From the original report by Wagenaar et al. [26], the following aspects of the development of
the “dense” culture analyzed here can be observed: (i) by preparation, neurons were unconnected
and mostly silent at first; then (ii) show spontaneous activity and begin to be connected (compare the
increase of mutual information between inputs and outputs in Figure 3); later, they (iii) become densely
connected and thereby strongly responsive to each other’s spiking activity (Quote from [26]: “We . . .
found that functional projections grew rapidly during the first week in vitro in dense cultures, reaching across
the entire array within 15 days (Figure 9)”); while, in a last stage, (iv) connectivity often leads to activity
pattern where all neurons become simultaneously active in large, culture spanning bursts of activity.
This can, for example, be seen for data used here in the development of large, system spanning neural
avalanches with maturation of the culture (see Figure 4 in [33] and Figure 13 in the corresponding
preprint [34]; for the definition of neural avalanches as used here, see [35]). The number of such system
spanning avalanches was [0, 0, 7, 50, 73] for the five recording weeks. At the same time, the mean
avalanche sizes (defined in [35]) also increased as (1.05, 1.31, 1.81, 4.39, 3.42)—note the jump from
week 2 to 3 in both measures, and compare to the normalized shared information in Figure 4.

From the viewpoint of partial information decomposition, we hypothesized that stages (i) and (ii)
should be characterized by a high fraction of unique information from a neuron’s own history because
neurons that do not yet receive sufficient input to trigger their firing can only have unique mutual
information with their own history.

Unique information from other neuron’s inputs, and also synergy between both neurons’ past
states should be visible in stage (iii) because we assume that neurons, even in vitro are wired to fuse
information from multiple sources with their the information of their own state. Thus, we expected
non-trivial computation in the form of synergy to be visible as long as the input distributions are
sufficiently different from a neuron’s own history.
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Figure 3. Left: development of the joint mutual information with network maturation. Grey symbols and
lines—joint mutual information (MI) from individual pairs of spike time series, red symbols—median
over all pairs. Horizontal black lines connect significantly different pairs of median values (p < 0.05,
permutation test, Bonferroni corrected for multiple comparisons); Right: magnification of the joint
mutual information estimates in the first two recording weeks. Note that the three large outliers from
week 2 have been omitted from the plot. These tiny, but non-zero, values form the basis for the normalized
non-zero PID terms presented in Figure 4—also leading to considerable variance there.
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Figure 4. Development of normalized PID contributions (i.e., PID terms normalized by the joint mutual
information) with network maturation. Grey symbols and lines—PID values from individual pairs
of spike time series, red symbols—median over all pairs. Horizontal black lines connect significantly
different pairs of median values (p < 0.05, permutation test, Bonferroni corrected for multiple
comparisons). On the lower right, note the sudden increase in normalized shared mutual information
from week 2 to 3 that coincides with the onset of system spanning neural avalanches (see text).

In the last stage (iv), partial information decomposition should then be dominated by shared
mutual information because when all input distributions are more or less identical and highly
correlated, then there can only be shared information (at least when using the BROJA measure).

From preliminary investigations [36], we also expected the joint mutual information between
both inputs and the output to rise. Given the caveat that we analyzed multi-unit activity here,
instead of single units (i.e., single neurons) obtained by spike sorting, our results comply with these
hypotheses: the initial two recording weeks were dominated by unique information from a spike time
series’ own history, while, in intermediate recording weeks, synergistic and shared information were
dominant, and shared information finally prevailed in the last two recordings (Figure 3 shows the joint
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mutual information, with the normalized PID contributions to this shown in Figure 4 and raw PID
contributions in Figure 5).
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Figure 5. Development of raw PID contributions with network maturation. Grey symbols and
lines—PID values from individual pairs of spike time series, blue symbols—median over all pairs.
Note that we do not provide statistical tests here as the visible differences are heavily influenced by
the corresponding differences in the joint mutual information (see Figure 3).

4. Discussion

We here applied PID to neural spike recordings with the objective to compute a measure of
information modification, and, for the first time, to assess its face validity given what is already known
about information processing in developing neural cultures. Our analyses of the synergistic part of the
mutual information between information storage and transfer sources, which we see as a promising
candidate measure of information modification, complied with our intuition on how information
modification should rise with development as neurons get connected and their synaptic weights adapt
to the environment of the culture (i.e., with a lack of external input to the culture). The end of this rise
in (relative) information modification and a final drop caused by a jump in the (relative) shared part
in the mutual information was also expected given that a computation must always be understood
as the composition of a mechanism and an input distribution. This input distribution is well known
to get more and more similar over neurons as the culture approaches the typical bursting behavior
that synchronizes all activity. With all input distributions being similar in this way, there is reduced
scope for modifying information—hence the observed drop in the last recording week. In summary,
the partial information decomposition used here and the results for its synergistic part capture well
our intuition of what should happen in this simple neural system. This increases confidence in the
usefulness and interpretability of PID measures in the analysis of neural data from more complex
neural systems.

Two additional aspects seem important here: first, our analyses underline one of the key
theoretical advances of PID, that all four PID terms, and especially shared and synergistic ones,
can coexist simultaneously—a fact overlooked in early attempts to define shared (or ‘redundant’) and
synergistic contributions to the mutual information (see references in [10]); second, no knowledge on
the typical development of neural cultures was necessary to arrive at our PID results; in other words,
the development of computation in the culture could have been derived from our PID analysis alone.
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This makes PID of neural activity a useful first step when investigating the computational architecture
of a neural system.

In the sections below, we discuss some caveats to consider with this relatively young analysis
technique, where several competing definitions of a PID coexist, not all of them equally suitable for
computing information modification [11]. We also expand on the aforementioned relation between
measures of information transfer and modification. Moreover, we would like to highlight and expand
on the fact that a computation is a composition of an input distribution and a mechanism working on
these inputs. Neglecting the importance of the input distribution and understanding a PID as directly
describing a computational mechanism is a frequent misunderstanding that we would like to clarify
here. We close by highlighting potential uses of PID in neuroscience.

4.1. Which Definition of Synergistic Mutual Information to Use?

In contrast to earlier studies of synergy or information modification in neural data [21,37],
we here used the definition of unique, shared and synergistic mutual information as given by
Bertschinger et al. [12] and by Griffith and Koch [13] (BROJA-decomposition). As initially outlined,
in our view, this definition was the only published one at the time of experiment that had
the properties necessary for a mapping between information modification and the synergistic part
of the mutual information, and is sufficiently easy to compute because of the convexity of the
underlying optimization.

However, the BROJA definition has also been criticized because a decomposition is only possible
for the case of two inputs (although these inputs themselves can be arbitrarily large groups of variables).
We consider this an acceptable restriction for some purposes in neuroscience as it seems to map well to
the properties of cortical neurons; for example, the pyramidal neurons of the neocortex keep exactly
two classes of inputs separate via their apical and basal dendrites (see [17,38,39] and references therein).
In addition, as long as one is only interested in the computations performed by a neuron based on its
own history and all its inputs considered together as one (vector-valued) input variable, this framework
is sufficient (see, for example, the treatment of this case in the theoretical study presented in [17]).

In contrast to the BROJA-decomposition, Williams and Beer suggested in their original work [10]
an alternative definition that allowed the decomposition of the mutual information between multiple
inputs (considered separately, not as a group) and an output into a partial order (a mathematical
“lattice”) of shared information terms. While this decomposition into a lattice of terms clearly is
desirable, the measure of shared information given by Williams and Beer [10] (known as Imin) also has
several properties that have been questioned. First, it does not respect the locality of information, i.e.,
point-wise interpretations of this shared information are not continuous with respect to the underlying
probability distribution functions [11]. Second, it suggests the presence of shared information in
situations where in each realization only a single source ever holds non-zero information about a
target [40]. We note that the latter is an issue for the BROJA-decomposition as well.

Third, several authors have questioned the presence of non-zero shared mutual information under
Imin when there is no pairwise mutual information between the inputs themselves while the output
is a simple collection of these inputs (known as “two bit copy”). A desire for zero shared mutual
information in this case was formalized in a so-called identity axiom by Harder et al. [14]. This axiom
suggests that if two inputs X1, X2 with no mutual information between them (I(X1 : X2) = 0) are
combined into an output that is simply their collection, i.e., Y = {X1, X2} then the shared part of
the joint mutual information I(Y : X1, X2) must be zero. However there are significant arguments against
the inclusion of such an axiom, and in support of the presence of shared information in the two bit copy
problem; see, e.g., Bertschinger et al. [41], and, in this issue, by Ince [42] and Finn et al. [40]. For example,
there can be no measure of redundant information that simultaneously satisfies the original three PID
axioms, has non-negative PI atoms, and possesses the identity property [43].
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Debates continue on this aspect, and, in the future, it will be interesting to check the consistency
of results reported here with respect to alternative decompositions, such as those presented
by Finn et al. [40] or Ince [42] in this issue.

In summary, the BROJA measure used in this study has several appealing properties, yet it lacks
the ability to decompose the information of more than two input variables into a lattice. Several
contributions to this special issue present progress on lattice-compatible distributions [40,42] and also
investigate the consequences of the symmetrical, or asymmetrical treatment of information sources
and targets [44] (also see the work of Olbrich et al. [45] on this topic).

4.2. Previous Studies of Information Modification in Neural Data

Timme et al. [21] studied information modification in the dynamics of spiking activity of neural
cultures with a focus on the relation between information modification at a neuron and its position
in the underling (effective) network structure. They report, for example, that neurons which modify
“large amounts of information tended to receive connections from high out-degree neurons”. Both
their study and ours have in common the same underlying definition of information modification [11].
Their study differs slightly from ours in examining synergy between two external inputs to a neuron,
conditional on that neuron’s past, whereas we examine synergy between one external input and
the receiving neuron’s past. A more important difference between their study and ours, however,
is the choice of PID measure (see above). Specifically, they used the Williams and Beer [10] Imin
measure, in contrast to the BROJA measure used here—see Section 4.1 for details on the consequences
of these choices.

Another important difference is the use of multi unit activity in our study, while Timme et al. [21]
used spike sorted data that represents the activity of single neurons. However, for the data-set we
used, spike extraction was relatively conservative, using a high threshold and removing events with
spurious waveforms [26]. This resulted in a relatively low average multi-unit activity of less than
3.5 Hz. This is comparable to the mean rate of 2.1 Hz reported by Timme et al. [21]. From this, we
estimate that only one or two close by neurons typically contribute to the recorded multi-unit activity.
Thus, this difference may be relatively minor in practice. Conceptually, however, the information
contained in single and multi-unit activity clearly differs in interpretation—see the next section for the
more details.

We also note that there are earlier applications of the concept of synergy (meant as synergistic
mutual information) to neural data (e.g., [46–49]) that relied on the computation of interaction
information. However, when interpreting these studies, it should be kept in mind that these
report the difference between shared information and synergistic information—as detailed by
Williams and Beer [10]. If both are present in the data (a possibility that may simply have been
overlooked by most researchers before Williams and Beer [10]), then this view of a ‘net-synergy’ only
gives a partial view of the coding principles involved.

4.3. Information Represented by Multi and Single Unit Data

As detailed in the methods section, we performed our analyses on multi unit activity, i.e.,
we considered all spiking activity picked up by a recording electrode—potentially coming from
multiple neurons. Thus, the information processing analyzed here is that of a cluster of neurons
close to the recording electrodes, but not that of individual neurons, limiting the direct interpretation
of our results. This problem can be alleviated by using spike sorting algorithms, e.g., based on the
individual waveforms to assign each spike to an individual neuron, and then analyzing only the spikes
of individual neurons. This has indeed been done in the study by Timme et al. [21] and improves
the interpretation of the results in terms of neural coding. Ideally, it should be included in follow-up
studies on information modification via PID as well. However, as the multi-unit activity reported here
most likely contained only one or two single units (see previous section), we expect very similar results
for an analysis of single units.
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4.4. Measured Information Modification versus the Capacity of a Mechanism for Modifying Information

To appreciate the findings of the current study, it is important to realize that any computation
is a composition of (i) a mechanism and (ii) an input distribution. As an extreme example, take an
“exclusive or” (XOR)-gate, which has only one bit of synergy when fed by two uniformly distributed
random bit inputs. However, when we clamp one of these inputs, for example X1, to producing just ’0s,
then all the information (still one bit of joint mutual information) is unique information from the other
input X2. This result must hold for all PID measures by virtue of the equations linking classic mutual
information terms and PID terms (Equations (1)–(3) in [12], also consult Figure 1), and due to the fact
that the mutual information of the clamped input and the output must be equal to or smaller than
the entropy of that input, which is zero. Feeding the XOR gate with an alternative input distribution
pa(x1, x2) of the form pa(0, 1) = 3/8, pa(1, 1) = 3/8, pa(0, 0) = pa(1, 0) = 1/8 yields 0.811 bits of
synergy and 0.188 of unique information from x1, using the BROJA PID.

Another simple example would be a logical conjunction (AND)–gate fed by two different input
distributions: when fed by two independent streams of input bits with uniform probabilities of
zeros and ones, the BROJA PID results in 0.5 bit of synergy and 0.311 bit of shared information [12].
Feeding the same mechanism with an alternative input distribution pb(x1, x2) of the following form:
pb(0, 0) = 3/8, pb(1, 1) = 3/8, pb(0, 1) = pb(1, 0) = 1/8 results in approximately 0.406 bit of synergy
and 0.549 bit of shared information as measured by the BROJA PID.

This dependence of the PID on the input distribution means that describing a computation
in terms of information modification via the synergistic information describes the joint operation
of input distribution and mechanism (with the consequences related to bursting activity in neural
cultures that were noted above). Indeed, this is the correct information theoretic description of how
the system modified information in the specific computation reflected in the data. This description
does not, however, inform us about how much information modification the mechanism performing
the computation is capable of in principle. This is analogous to the situation of a communication
channel in Shannon’s theory where the mutual information IPX (X : Y) between the input X and
the output Y of a channel informs us about how much information is actually communicated across
the channel when it is fed by the input distribution PX . However, IPX (X : Y) will not inform us about
how much information we could in principle communicate across the channel, i.e., the capacity of
the channel defined by:

C = argmax
PX

IPX (X : Y). (7)

Thus, for describing the potential of a mechanism to modify information, we must define
an information modification capacity in analogy to the definition of an information transmission capacity
(Equation (7)) by maximizing the synergistic mutual information over all input distributions as:

Cmod = argmax
PY− ,X−

Ĩsyn(Y+ : Y−; X−), (8)

= argmax
PY− ,X−

[
I(Y+ : (Y−, X−))− min

Q∈ΔPY+ ,Y− ,X−
IQ(Y+ : (Y−, X−))

]
. (9)

How tractable the double optimization process implied in Equation (9) is in practice and whether
analytical simplifications can be derived remains the topic of future work. However, other measures of
PID that do not rely on an optimization over the space of probability distributions (such as the one
by Finn et al. [40] in this special issue) may allow for the computation of a capacity for information
modification—given the mechanism is known.

We would like to emphasize that maximizing synergy, or any other PID term, over possible input
distributions is different from maximizing the same PID term via changes to the mechanism that yields
the output, while keeping the input distributions fixed. This latter approach is considered in detail by
the contribution of Rauh et al. [50] in this special issue.
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4.5. On the Distinction between Information Modification and Noise

We emphasize that the definition of information modification used here (and first put forward
in [11]) will not count information that is created de novo in an information processing element and
then appears in its output. This is because modified information in the output has to be explained
ultimately by the input to a processing element and the state (or history) of that element, taken together.
This clearly does not hold for information just created independently of the processor’s history. In other
words, the information created de novo is counted as output noise instead of as modified information
by our definition of information modification—a property that we consider desirable for any measure
of information modification.

4.6. On the Relation between Transfer Entropy and Information Modification

As introduced in Section 2.2, the transfer entropy between two processesX , Y , where the variables
Yt, Xt carry the current values of the processes and the variables X−, Y− carry the past state information
is defined as [2]:

TE(X → Y) = I(Yt : X−|Y−) . (10)

As first noted by Williams and Beer [20], the (conditional) mutual information on the right-hand
side can be decomposed using a PID as well. As shown in Section 2.2, this conditional mutual
information is composed of both a unique contribution from the source, and a synergistic contribution
where the current value yt is determined jointly—and not explainable in any simpler way—by the
combination of past states x− and y−, i.e., the input from X to Y and Y ’s own history. (Of course,
either component could be zero for a given distribution). Williams and Beer [10] suggested to call
this synergistic part of the transfer entropy the (receiver) state dependent transfer entropy (SDTE) to
highlight the interplay between sender and receiver in modifying the information. Obviously, such
a subdivision of transfer is highly useful where computable. Naturally, the overlaps between the
concepts of information modification and (multivariate) transfer entropy become more involved if Y
receives more than one external input. What we label as information modification in this case would
comprise the SDTE above, but perhaps not all of it, and also have additional contributions (see below
and Figure 6).

This is a special case of the general effect that the synergistic components of a PID may change if
additional inputs are considered, e.g., when the additional input on its own brings in information that
is itself redundant with the information seen as synergistic between the other inputs. See, for example,
the component labeled with {X2}{MX1} in Figure 6, which is synergistic when not considering X2,
but redundantly also provided by X2 alone. In more detail, a PID may decompose the information
provided by a larger set of sources into many different shared (redundant), unique and synergistic
components between subsets of these inputs. These components are placed onto a lattice (a partial
order) by some variants of PID measures (see Section 4.1).
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I(Y;X1)I(Y;X2)

Figure 6. PID diagram for three input variables—two of them external inputs (X1, X2), and one
representing the past state of the receiving system (M = Y−). The parts of the diagram highlighted
in green would be considered information modification. These parts represent the information in the
receiver that can only be explained by two or more input variables considered jointly.

4.7. New Research Perspectives in Neuroscience Based on PID and Information Modification

In closing, we would like to highlight the vast potential that PID and the analysis of information
modification have both in understanding biological neural systems, and in designing artificial ones.

As detailed in [1], the comparison of shared vs. synergistic mutual information in the output of
a neuron or neural network allows us to address directly issues of robust coding vs. maximizing coding
capacity, and thereby helps us to understand fundamental design principles of biological networks.

Conversely, PID can also be used to define information theoretic goal functions and to derive local
learning rules for neurons in artificial neural networks with unprecedented detail and precision as
explicated in [17], extending popular information theoretic goal functions like infomax [51], or coherent
infomax (see [52] and references therein). In particular, the formulation of novel PID estimators that no
longer rely on an optimization step (see the work of Finn et al. [40] in this special issue) has seemingly
removed remaining difficulties with an analytical treatment of this approach.

Moreover, the PID formalism lends itself easily to the analysis of both neural and behavioral
data, enabling a direct comparison of the two. This will take our understanding of the relationship
between neural activity and behavior beyond the level of an analysis of mere representations, i.e.,
beyond decoding representations of objects and intentions, to finding the loci of particular aspects
of neural computation. For example, in a human performing a task requiring an XOR computation,
one may look for hot-spots of synergistic mutual information in the system.

Ultimately, the ability to obtain a complete fingerprint of a neural computation in terms of active
information storage, information transfer and, now, information modification makes it possible to
identify algorithms implemented by a neural system—or at least strongly confines the search space.
This finally allows to fully address the algorithmic level of understanding neural systems as formulated
more than 30 years ago by David Marr ([53], also see [1]).

5. Conclusions

We used a recent extension of information theory here to measure where and when in a neural
network information is not simply communicated through a channel but modified. The definition of
information modification here builds on the concept of synergistic mutual information as introduced
by Williams and Beer [10], and the measure defined by Bertschinger et al. [12]. We show that,
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in the developing neural culture analyzed here, the contribution of synergistic mutual information
rose as the network became more connected with development but ultimately dropped again as
the activity became largely synchronized in bursts across the whole neural culture such that most
mutual information was shared mutual information.
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Abstract: In this work we study the distributed representations learnt by generative neural network
models. In particular, we investigate the properties of redundant and synergistic information that
groups of hidden neurons contain about the target variable. To this end, we use an emerging branch
of information theory called partial information decomposition (PID) and track the informational
properties of the neurons through training. We find two differentiated phases during the training
process: a first short phase in which the neurons learn redundant information about the target,
and a second phase in which neurons start specialising and each of them learns unique information
about the target. We also find that in smaller networks individual neurons learn more specific
information about certain features of the input, suggesting that learning pressure can encourage
disentangled representations.

Keywords: partial information decomposition; neural networks; information theory

1. Introduction

Neural networks are famously known for their excellent performance, yet are infamously known
for their thin theoretical grounding. While common deep learning “tricks” that are empirically proven
successful tend to be later discovered to have a theoretical justification (e.g., the Bayesian interpretation
of dropout [1,2]), deep learning research still operates “in the dark” and is guided almost exclusively
by empirical performance.

One common topic in learning theory is the study of data representations, and in the case
of deep learning it is the hierarchy of such representations that is often hailed as the key to neural
networks’ success [3]. More specifically, disentangled representations have received increased attention
recently [4–6], and are particularly interesting given their reusability and their potential for transfer
learning [7,8]. A representation can be said to be disentangled if it has factorisable or compositional
structure, and has consistent semantics associated to different generating factors of the underlying
data generation process.

In this article we explore the evolution of learnt representations in the hidden layer of a restricted
Boltzmann machine as it is being trained. Are groups of neurons correlated or independent? To what
extent do neurons learn the same information or specialise during training? If they do so, when? To answer
these questions, we need to know how multiple sources of information (the neurons) contribute to the
correct prediction of a target variable—which is known as a multivariate information problem.

To this end, the partial information decomposition (PID) framework by Williams and Beer [9],
which seeks a rigorous mathematical generalisation of mutual information to the multivariate setting,
provides an excellent foundation for this study [9]. In PID, the information that multiple sources
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contain about a target is decomposed into unique non-negative information atoms, the distribution of
which gives insight into the interactions between the sources.

1.1. Why Information Theory?

Information theory was developed to optimise communication through noisy channels, and it
quickly found other areas of application in mathematical and computer sciences. Nevertheless, it is not
commonly linked to machine learning, and it is not part of the standard deep learning engineer’s
toolkit or training. So why, then, is information theory the right tool to study neural networks?

To answer that question, we must first consider some of the outstanding theoretical problems in
deep learning: what kind of stimuli do certain neurons encode; how do different layers compress certain
features of an input image; or how can we transfer learnt information from one dataset to another?

These problems (encodings, compression, transfer) are precisely among the problems information
theory was made to solve. Casting these questions within the established framework of information
theory gives us a solid language to reason about these systems and a comprehensive set of quantitative
methods to study them.

We can also motivate this choice from a different perspective: in the same way as neuroscientists
have been using information theory to study computation in biological brains, here we try to
understand an artificially developed neural code [10]. Although the code used by artificial neural
networks is most likely much simpler than the one used by biological brains, deep learning researchers
can benefit from the neuroscientists’ set of tools.

1.2. Related Work

When it comes to representations, the conventional way of obtaining insights about a network has
typically been through visualisation. Famously, Le et al. [11] trained a neural network on web-scraped
images and reported finding neural receptive fields consisting mostly of human faces, human bodies
and cat faces [11]. Later, Zeiler and Fergus [12] devised a technique to visualise the features learnt by
neurons in hidden layers, and provided good qualitative evidence to support the long-standing claim
that deeper layers learn increasingly abstract features of the input [12].

While visualisation is a great exploration tool, it provides only qualitative insights and is therefore
unable to make strong statements about the learning dynamics. Furthermore, as later work showed,
the specific values of weights are highly sensitive to the details of the optimisation algorithm used,
and therefore cannot be used to make definite judgements about the network’s behaviour [13,14].

More recently, there is a small line of emerging work investigating the behaviour of neural
networks from an information-theoretic perspective [15–20], with some work going as far back
as [21]. The most relevant of these is the work by Schwartz-Ziv and Tishby [16], who show that
feed-forward deep neural networks undergo a dynamic transition between drift- and diffusion-like
regimes during training.

The main contribution of this article is to show how PID can be used for the analysis of learning
algorithms, and its application to neural generative models. The results of our PID analysis show two
distinct learning phases during the optimisation of the network, and a decrease in the specialisation of
single neurons in bigger networks.

2. Methods

2.1. Restricted Boltzmann Machines

We deal with the problem of multiclass classification, in which we have a dataset D of (x, y)
tuples, where y is a discrete label (also called the target variable) and x is a vector of predictor variables.
The goal is to learn an approximation to the joint distribution of the predictors and the labels, p(x, y).
We will use a class of neural generative models known as Boltzmann machines.
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Boltzmann machines (BMs) are energy-based probabilistic graphical models, the origin of which
goes as far back as Paul Smolensky’s Harmonium [22]. Of particular interest are the so-called restricted
Boltzmann machines (RBMs). These are called restricted because all the nodes in the model are separated
in two layers, and intra-layer connections are prohibited. These typically receive the names of visible and
hidden layers.

In this article we follow [23] and perform classification with a discriminative RBM (DRBM).
To do this, we introduce the vector of target classes y as part of the visible layer, such that the DRBM
represents the joint distribution over the hidden, visible, and target class variables. The distribution
parametrized by the DRBM is:

p(y, x, h) =
1
Z

e−E(y,x,h) , (1)

where E(y, x, h) is the DRBM energy function, given by

E(y, x, h) = −hTWx− bTx− cTh− hTU�y− dT�y , (2)

where �y = (1y=i)
C
i=1 for the C different classes. For comparison, the energy function for a standard

RBM is the same but with the last two terms removed. Figure 1 shows a schematic diagram of a DRBM
and the variables involved.

h

xy

U W

Figure 1. Graphical representation of the discriminative restricted Boltzmann machine (DRBM) and its
components. Vectors x and y correspond to the training input and label, respectively, h is the activation
of the hidden neurons, and U and W are the weight matrices to be learned. (Adapted from [23]).

Now that the model is specified, we calculate the predictive posterior density p(y|x, θ) given
DRBM parameters θ = {W, b, c, U, d}. At this point, the restricted connectivity of RBMs comes into
play—this connectivity induces conditional independence between all neurons in one layer given the
other layer. This resulting intra-layer conditional independence allows us to factorise p(yi, xi|θ) and to
write the following conditional distributions [24]:

p(Xi = 1|h) = σ(bi + ∑
j

Wjihj)

p(Hj = 1|y, x) = σ(cj + Ujy + ∑
i

Wjixi)

p(y|h) = edy+∑j Ujyhj

∑y∗ edy∗+∑j Ujy∗ hj
,

(3)

where σ(t) = (1 + e−t)−1 is the standard sigmoid function. With these equations at hand, we can
classify a new input vector x∗ by sampling from the predictive posterior p(y|x∗, θ), or we can sample
from the joint distribution p(y, x|θ) via Gibbs sampling.
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Finally, the network needs to be trained to find the right parameters θ that approximate the
distribution of the data. We use a standard maximum likelihood objective function,

L(θ) = −∑
i

log p(yi, xi|θ) . (4)

Gradients of this objective cannot be obtained in closed form, and we must resort to contrastive
sampling techniques. In particular, we use the constrastive divergence (CD) algorithm [24] to estimate
the gradient, and we apply fixed-step size stochastic gradient updates to all parameters in the network.
The technical details of CD and other contrastive sampling estimators are outside the scope of this
paper, and the interested reader is referred to the original publications for more information [24,25].

2.2. Information Theory

In this section we introduce a few relevant tools from information theory (IT) that we will use to
analyse the networks trained as explained in the previous section. For a broader introduction to IT and
more rigorous mathematical detail, we refer the reader to [26].

We focus on systems of discrete variables with a finite number of states. Throughout the paper
we will deal with the scenario in which we have one target variable and a number of source variables.
We refer to the target variable as Y (matching the nomenclature in Section 2.1), to the source variables
as Zi, and let Z denote generically any nonempty subset of the set of all sources. Summations always
run over all possible states of the variables considered.

Mutual information (MI) is a fundamental quantity in IT that quantifies how much information is
shared between two variables Z and Y, and is given by

I(Y; Z) = ∑
y,z

p(y, z) log
(

p(y, z)
p(y)p(z)

)
. (5)

MI can be thought of as a generalised (non-linear) correlation, which is higher the more a given
value of Z constrains possible values of Y. Note that this is an average measure—it quantifies the
information about Y gained when observing Z on average. In a similar fashion, specific information [27]
quantifies the information contained in Z associated with a particular outcome y of Y, and is given by

I(Y = y; Z) = ∑
z

p(z|y) log
(

p(y|z)
p(y)

)
. (6)

Specific information quantifies to what extent the observation of Z makes outcome y more likely
than otherwise expected based on the prior p(y). Conveniently, MI can easily be written in terms of
specific information as

I(Y; Z) = ∑
y

p(y)I(Y = y; Z) .

2.2.1. Non-Negative Decomposition of Multivariate Information

In this section we discuss the main principles of the PID framework proposed by Williams
and Beer [9]. Technical details will not be covered, and the interested reader is referred to the original
paper [9].

The goal of PID is to decompose the joint mutual information that two or more sources have about
the target, I(Y; {Z1, Z2, . . . , Zn}), into interpretable non-negative terms. For simplicity, we present
the two-variable case here, although the framework applies to an arbitrary number of sources.
In the two-variable PID (or PI-2), there are three types of contributions to the total information
of {Z1, Z2} about Y which form the basic atoms of multivariate information:

• Unique information U one of the sources provides and the other does not.
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• Redundant information R both sources provide.
• Synergistic information S the sources provide jointly, which is not known when either of them is

considered separately.

There is a very intuitive analogy between this decomposition and set theory—in fact,
the decomposition for any number of variables can be shown to have a formal lattice structure
if R is mapped to the set intersection operation. This mapping corresponds to the intuitive notion
that R should quantify the overlapping information of Z1 and Z2. Consequently, these quantities can be
represented in a Venn diagram called the PI diagram, shown in Figure 2.

U1 U2R

S

I(Y; {Z1, Z2})

Figure 2. Partial information (PI) diagram for two source variables and a target. The outer ellipse
corresponds to the mutual information (MI) between both sources and the target, I(Y; {Z1, Z2}), and
both inner circles (highlighted in black) to the MI between each source and the target, I(Y; Zi). Coloured
areas represent the PI terms described in the text.

Mathematically, the relation between MI and S, R, and U (which we refer to jointly as PI terms)
can be written as follows:

I(Y; Z1) = R(Y; {Z1, Z2}) + U(Y; Z1) ,

I(Y; Z2) = R(Y; {Z1, Z2}) + U(Y; Z2) ,

I(Y; {Z1, Z2}) = R(Y; {Z1, Z2}) + U(Y; Z1) + U(Y; Z2) + S(Y; {Z1, Z2}) .

(7)

This is an underdetermined system of three equations with four unknowns, which means the PI
decomposition in itself does not provide a method to calculate the PI terms. To do that, we need to
specify one of the four variables in the system, typically by providing an expression to calculate either
R or S. There are a number of proposals in the literature [28–31], but at the time of writing there is no
consensus on any one candidate.

In this study we follow the original proposal by Williams and Beer [9] and use Imin as a measure
of redundancy, defined as

R(Y; {Z1, Z2}) = Imin(Y; {Z1, Z2}) = ∑
y

p(y)min{I(Y = y; Z1), I(Y = y, Z2)} , (8)

where I(Y = y; Zi) is the specific information in Equation (6). (In fact, in their original article DeWeese
and Meister [27] propose two quantities to measure “the information gained from one symbol”:
specific information and specific surprise. Confusingly, Williams and Beer’s specific information is
actually DeWeese and Meister’s specific surprise.) Despite the known flaws of Imin, we chose it for its
tractability and inclusion-exclusion properties. With this definition of redundancy and the standard
MI expression in Equation (5), we can go back to system (7) and calculate the rest of the terms.

While all the terms in PI-2 can be readily calculated with the procedure above, with more sources,
the number of terms explodes very quickly—to the point that the computation of all PI terms is
intractable even for very small networks. Conveniently, with Imin, we can compute the overall
redundancy, synergy, and unique information terms for arbitrarily many sources—restricted only
by the computational cost and amount of data necessary to construct large joint probability tables.
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We write here the overall redundancy, synergy, and unique information equations for completeness,
but the interested reader is referred to [32] for a full derivation:

R(Y; {Z1, . . . , Zn}) = Imin(Y; {Z1, . . . , Zn})
= ∑

y
p(y)min{I(Y = y; Z1), . . . , I(Y = y; Zn)}

S(Y; {Z1, . . . , Zn}) = I(Y; {Z1, . . . , Zn})− Imax(Y; {A ∈ {Z1, . . . , Zn} : |A| = n− 1})
U(Y; Zi) = I(Y; Zi)− Imin(Y; {Zi, {Z1, . . . , Zn}\Zi}) ,

(9)

where Imax is defined exactly the same as Imin, except substituting max for min [32].

3. Results

Instead of generating a synthetic dataset, we used the MNIST dataset of hand-written digits.
We used a stochastic binarised version of MNIST—every time an image was fed as input to the
network, the value of each pixel was sampled from a binomial distribution with a probability equal to
the normalised intensity of that pixel. Then, we used Equations (3) to sample the state of the network,
and repeated this process to build the probability distributions of interest.

For training, the gradients were estimated with contrastive divergence [24] and the weights were
optimised with vanilla stochastic gradient descent with fixed learning rate (0.01). We did not make
strong efforts to optimise the hyperparameters used during training.

To produce the results below, we trained an ensemble of 100 RBMs and took snapshots of these
networks during training. Each RBM in the ensemble was initialised and trained separately using a
different random number generator seed. All information-theoretic measures are reported in bits and
debiased with random permutation tests. To debias the estimation of any measure on a given set of
data, we generated many surrogate data sets by randomly permuting the original data, calculating the
mean of the measure across all surrogates, and subtracting this from the original estimation on the
unshuffled data [33].

3.1. Classification Error and Mutual Information

First, we trained a small RBM with 20 hidden neurons and inspected its learning curve during
training. In Figure 3, we show the classification error and the mutual information between the predicted
labels Ŷ and the real labels Y during training, averaged for the ensemble of 100 RBMs.

As expected, classification error decreased and MI increased during training, the relationship
between the two being an almost perfect line. This gives us an intuitive correspondence between a
relatively abstract measure like bits and a more easily interpretable measure like error rate. We note that
a perfect classifier with 0 error rate would have I(Ŷ, Y) = H(Y) = log2(10) ≈ 3.32 bit.

0 20,000 40,000 60,000

0.2

0.4

0.6

0.8

Training examples

C
la

ss
ifi

ca
ti

on
er

ro
r

0 20,000 40,000 60,000
0

1

2

Training examples

I(
Ŷ
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Figure 3. Classification error and mutual information between real and predicted labels, I(Ŷ, Y),
calculated through training. Note: X-axis in the rightmost plot is reversed for illustration pusposes,
so that training time goes from left to right.
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As should be apparent to any occasional reader of the machine learning literature, the classification
error presented in Figure 3 is worse than the authors reported originally in [23], and significantly
worse than the state of the art on this dataset. The main reason for this is that we are restricting our
network to a very small size to obtain a better resolution of the phenomena of interest.

3.2. Phases of Learning

In this section we investigate the evolution of the network through training, and show three
complementary pieces of evidence for the existence of two separate learning phases. We describe the
main results illustrated in Figures 4 and 5.
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Figure 4. Single-neuron entropy and mutual information follow non-trivial patterns during training.
(a) Entropy quickly rises up to close to its maximum value of 1 bit. (b) Inter-neuron correlation as
measured by pairwise MI peaks midway through training. (c) Histograms of single-neuron MI (SNMI)
split midway through training, implying that some neurons actually lose information. Average SNMI
is shown in black projected on the frame box.

First, in Figure 4a, we show the evolution of the average entropy of single neurons in the hidden
layer, where the average is taken over all neurons in the same network. Entropy increases rapidly
at the start of training until it settles around the 0.8 to 0.9 bit range, relatively close to its maximum
possible value of 1 bit. This means that throughout most of the training (including the final state),
most of the informational capacity of the neurons was being actively used—if this were not the case,
in a network with low entropy in which most neurons do not change their states much, the encoding
capability of the network would be heavily reduced.

As a measure of inter-neuron correlation, we calculated the average pairwise mutual information
(PWMI) between hidden neurons Hi, defined as

PWMI =
〈

I(Hi; Hj)
〉

ij .

PWMI is shown in Figure 4b, and is the first sign of the transition mentioned above—it increases
rapidly at the start, it reaches a peak at an intermediate point during training, and then decays back to
near zero.

Next, we calculate the average MI between a single hidden neuron and the target, I(Y; Hi),
which we refer to as single-neuron mutual information (SNMI), and show the results in Figure 4c.
As expected, at first neurons barely have any information about the target, and early in training we
see a quick uniform increase in SNMI.
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Remarkably, at the transition point there is a split in the SNMI histogram, with around half of the
neurons reverting back to low values of SNMI and the other half continuing to increase. At the whole
network level, we do not find any sign of this split, as shown by the monotonically decreasing error
rate in Figure 3. This is a seemingly counterintuitive finding—some neurons actually get worse at
predicting the target as the network learns. We currently do not have a solid explanation for this
phenomenon, although we believe it could be due to the effects of local minima or to the neurons
relying more on synergistic interactions at the cost of SNMI, as suggested by the results below.

After exploring the behaviour of individual neurons, we now turn to PID and study the
interactions between them when predicting the target. Since a full PID analysis of the whole network is
intractable, we follow a procedure inspired by [34] to estimate the PI terms of the learnt representation:
we sample pairs of neurons, calculate the PI terms for each of them, apply random permutation
correction to each pair separately, and finally compute averages over all pairs. We present results
obtained with Imin following Section 2.2.1, but qualitatively identical results are obtained if the more
modern measures in [28,35] are used.

We calculate synergy S, redundancy R, and total unique information U = U(Y; Z1) + U(Y; Z2),
as well as their normalised versions calculated by dividing S, R, or U by the joint mutual information
I(Y; {H1, H2}). Results are depicted in Figure 5, and error intervals shown correspond to two standard
deviations across pairs.
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Figure 5. PI terms (a) and PI terms normalised by joint mutual information (b). Mutual information (MI)
in black, redundancy (R) in blue, synergy (S) in green, and unique information (U) in red. MI increases
consistently during training, but the PI terms reveal a transition between a redundancy-dominated
phase and a unique-information-dominated phase.

Here we see again a transition between two phases of learning. Although synergy and joint
MI increase steadily at all times, there is a clear distinction between a first phase dominated by
redundancy and a second one dominated by unique information. It is at this point that neurons
specialise, suggesting that this is when disentangled representations emerge.

These three phenomena (peak in PWMI, split SNMI histogram, and redundant-unique information
transition) do not happen at the same time. In the figures shown, the peak in PWMI marks the onset
of the decline of redundancy, and the split in SNMI happens between then and the point when
redundancy is overtaken by unique information. However, this is a consistent pattern we have
observed in networks of multiple sizes, and in bigger networks these three events tend to come closer
in time (results not shown).

We note that there is a relation between PWMI and R and between SNMI and U. As indicated
in Equation (7), SNMI is an upper bound on that neuron’s unique information; and usually, higher
PWMI comes with higher redundancy between the neurons. However, although they follow similar
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shapes, these magnitudes do not quantify the same thing. Take the OR logical gate as an example—if
we feed it a uniform distribution of all possible inputs (00, 01, 10, 11), both input bits will be perfectly
uncorrelated, yet their redundancy (according to Imin) will be nonzero.

These findings are in line with those of Schwartz-Ziv and Tishby [16], who observe a similar
transition in a feed-forward neural network classifier. One of the pieces of evidence for Schwartz-Ziv
and Tishby’s [16] claim is in the change of gradient signal dynamics from a drift to a diffusion regime.
We did not analyse gradient dynamics as part of this study, but investigating the relationship between
informational and dynamical accounts of learning is certainly a promising topic.

3.3. Neural Interactions

In this last set of experiments, we examine the representations learnt jointly by larger groups
of neurons. Due to computational constraints, we run the analyses only on fully trained networks
instead of at multiple points during training. We train networks of different sizes, ranging from
20 to 500 hidden neurons (using the same algorithm, but allowing each network to train for more
epochs until convergence), and consider larger groups of neurons for the PID analysis. We use a
procedure similar to the one used in the previous section, but this time sampling tuples of K neurons,
and calculating their overall synergy following Equation (9). We refer to this as the PI-K synergy.
Results are shown in Figure 6.
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Figure 6. Partial information decomposition (PID) analysis of larger groups of neurons in networks
of different sizes. (a) Single-neuron MI is consistently smaller in bigger networks, indicating that,
although the network as a whole is a better classifier, each individual neuron has a less-efficient
encoding; (b) Normalised PI-K synergy, with network size increasing from left to right and K from
top to bottom. Network with maximum synergy for each PI-K highlighted with a vertical dashed line.
The PI group size with the highest synergy becomes larger in larger networks, indicating that in bigger
networks one needs to consider larger groups to capture strong cooperative interactions.

The first result in Figure 6a is that SNMI decreases consistently with network size. This represents
reduced efficiency in the neurons’ compression—despite the overall accuracy of the network being
significantly higher for bigger networks (∼20% error rate for a network with 20 hidden neurons
vs. ∼5% for a network with 500), each individual neuron contains less information about the target.
This suggests that the representation is more distributed in bigger networks, as emphasised below.

What is somewhat counterintuitive is that normalised unique information actually grows in bigger
networks, which is apparently in contradiction with more distributed representations. However, these
two are perfectly compatible—bigger networks have more and less correlated neurons, and despite
U growing relative to S and R, it still decreases significantly in absolute terms. Note that the U term
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plotted in Figure 6 is the sum of the unique information of both neurons in the pair; naturally, for one
neuron U(Y; Hi) ≤ I(Y; Hi), Equation (7).

Interestingly, Figure 6b shows that the network size that achieves maximum normalised synergy
shifts to the right as we inspect larger groups of neurons. For bigger networks, bigger groups carry
more synergistic information, meaning that representations also become more distributed. There is a
consistent pattern that in bigger networks we need to explore increasingly high neural groups to see
any meaningful PI values, which means that perhaps part of the success of bigger networks is that they
make better use of higher-order correlations between hidden neurons. This can be seen as a signature
of bigger networks achieving richer and more complex representations [36].

3.4. Limitations

The main limitation of the vanilla PID formulation is that the number of PI terms scales very
rapidly with bigger group sizes—the number of terms in the PI decomposition of a system with n
sources is the (n− 1)-st Dedekind number, which is 7579 terms for a five-variable system and has not
been computed yet for systems of more than eight variables. For this reason, we have restricted our
analyses mostly to pairs of neurons, although in practice we expect larger groups of neurons to have
strong effects on the prediction. Potentially some approximation to the whole PID or a reasonable
grouping of PI terms could help scale this type of analysis to larger systems.

On a separate topic, some of the phenomena of interest we have described in this article
(two phases of learning, peak in correlation between the neurons) happen very early on during
training, in practice. In a real-world ML setting, most of the time is spent in the last phase where error
decreases very slowly; and so far, we have not seen any unusual behaviour in that region. Future work
should focus on this second phase and try to characterise it in more detail, with the aim of improving
performance or speeding convergence.

4. Conclusions

In this article we have used information theory—in particular the partial information decomposition
framework—to explore the latent representations learned by a restricted Boltzmann machine. We have
found that the learning process of neural generative models has two distinct phases: a first phase
dominated by redundant information about the target, and another phase in which neurons specialise
and each of them learns unique information about the target and synergy. This is in line with the
findings of Schwartz-Ziv and Tishby [16] in feed-forward networks, and we believe further research
should explore the differences between generative and discriminative models in this regard.

Additionally, we found that representations learned by bigger networks are more distributed,
yet significantly less efficient at the single-neuron level. This suggests that the learning pressure
of having fewer neurons encourages those neurons to specialise more, and therefore yields more
disentangled representations. The interesting challenge is to find a principled way of encouraging
networks towards disentangled representations while preserving performance.

An interesting piece of follow-up work would be to investigate whether these findings generalise
to other deep generative models—most notably, variational autoencoders [37]. We believe that further
theoretical study of these learning systems is necessary to help us understand, interpret, and improve them.
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Abstract: There are numerous examples that show how the exploitation of the body’s physical
properties can lift the burden of the brain. Examples include grasping, swimming, locomotion,
and motion detection. The term Morphological Computation was originally coined to describe
processes in the body that would otherwise have to be conducted by the brain. In this paper, we argue
for a synergistic perspective, and by that we mean that Morphological Computation is a process
which requires a close interaction of body and brain. Based on a model of the sensorimotor loop,
we study a new measure of synergistic information and show that it is more reliable in cases in
which there is no synergistic information, compared to previous results. Furthermore, we discuss an
algorithm that allows the calculation of the measure in non-trivial (non-binary) systems.
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1. Introduction

There are numerous examples that show how the exploitation of the body’s physical properties can
lift the burden of the brain. Examples range from grasping [1–3], swimming [4–6], locomotion [7–10],
to motion detection [11]. Probably the most prominent example in this field is the Passive Dynamic
Walker [9], which is a purely mechanical system that mimics human walking. It has carefully chosen
length and weight proportions of the leg segments, as well as carefully designed feet. If placed on a
slope, it will show a natural, appealing walking behaviour, which is a strong indication that human
walking does not have to be fully controlled, but that part of it can result from physical interactions
of the legs (weight, friction, etc.) with their environment (slope, gravity, etc.). Another impressive
example is human grasping which exploits at least two different physical interactions. First, as a result
of the skin’s softness and friction, even fragile objects can be hold securely with some variation of grip
posture and grip pressure. This means that the brain does not have to carefully control the position
of the fingers, the tightness of the grasp, and, in particular, does not have to precisely estimate the
shape of the object. This leads to a significant reduction of the computational burden for the brain in
grasping. The second effect that is used is the friction in the hand’s tendon network, which has been
shown to perform logic computation and affect torque production capabilities [2].

The term Morphological Computation [12] was originally coined to describe processes in the body
that would otherwise have to be conducted by the brain [13]. One of the main questions that arises,
and is so far unsolved, regards the distinction between the Passive Dynamic Walker and a ball
rolling downhill. Both cases are purely mechanical systems, but one would assign morphological
computation to the Passive Walker, whereas one would generally have difficulties in stating that
the ball is performing computation or reducing the computational complexity for a brain. There are
three possible solutions to this problem. Their relation to synergy will be addressed below. First,
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as argued in [14,15], the Passive Walker itself is not performing computation, but it shows that
morphological computation can be present in human walking. Second, the definition of physical
computation [16] offers a possibility to distinguish between pure physics and physical computation.
Physical computation requires four ingredients. First, a function that encodes the data of the user
into an initial state of the system, second, a physical process that transforms the initial state into some
target state, third, a decoding function that transforms the target state back into something that the
user can process, and, finally, a theory about how the system works. The implications of this theory of
physical computation, in particular with respect to morphological computation, are discussed in [17].
With respect to the ball and the Passive Walker, the theory of [16] would lead to the conclusion that
both are computing if there is a user that translates their states, e.g., to measure the slope. This is
in accordance with the initial definition given by [12] and is also used as a basis for [18,19], which
are discussed below. The third possibility can be summarised in the following way (cited from [20]):
“nonneural body parts could be described as parts of a computational system, but they do not realise
computation autonomously, only in connection with some kind of [. . . ] central control system.” If we
now compare the three different approaches, they don’t seem to be entirely different. All three cases
argue that morphological computation requires the interaction of a brain with the body. In the context
of this work, this is understood as a synergistic perspective on morphological computation. This
will be explained in more detail, after related work on formalising morphological computation is
presented next.

Pfeifer and Iida [21] state that “One problem with the concept of morphological computation
is that while intuitively plausible, it has defied serious quantification efforts.” Since then, there are
basically two different streams of formalising morphological computation, which can be divided
into a dynamical systems approach and an information theoretic approach. The two approaches
do not stand in opposition but should rather be seen as complimentary [22]. The first approach [18,19]
models processes in the body in the context of reservoir computing [23,24]. This means that the
body is understood as a type of physical reservoir computer and the controller or brain harnesses
the body dynamics to produce a behaviour. Examples are the spine-driven robot [7], which uses
the spine dynamics as part of its controller and the dynamics of an octopus arm that can be used
for computation [25]. Within this first approach, there are also several works that discuss the
importance of a tight body–brain–environment coupling, of which the following are just a few
examples [13,26–31]. Although very intuitive and compelling, this approach does not allow to
quantify how the body reduces the computational burden of the brain. This is the motivation for
the second, information theoretic approach [15]. The guiding idea is to model the sensorimotor
loop as a causal graph [32] (details will follow below) and, based on that, ask how much internal
processes (with respect to the agent’s perspective) contributed to an observed behaviour, as opposed
to body–environment interactions. The information theoretic measures have been successfully
applied to quantify morphological computation in muscle models [14] and soft robotics [1] and
relations have been drawn to unique and synergistic information [33] based on the work by [34].
Unfortunately, at that time, the synergistic information could only be calculated for simple binary
models of the sensorimotor loop, which prohibited a further investigation in non-trivial systems or
even real data. This is where this work is targeted at. Based on the complexity measure by Ay [35]
and Perrone and Ay [36], we investigate synergistic information in binary and non-binary models of
the sensorimotor loop and compare the results to our previous work in [33].

This work is organised in the following way. Section two discusses in detail the relation between
synergistic information and morphological computation, based on previous work and the causal
model of the sensorimotor loop. The third section presents the parametrised model of the sensorimotor
loop, which is used to analyse and compare the new measure with previous work. The fourth section
presents numerical results which are discussed in the final section.
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2. A Synergistic Perspective on Morphological Computation

The introduction gave a motivation to understand morphological computation as a process that
occurs as the result of some type of control that exploits physical properties of the body. This is one way
to distinguish morphological computation from purely physical processes and can be understood as a
synergistic coupling of brain and body that is required for morphological computation. This section
will give a formal motivation to quantifying morphological computation as synergistic information,
which is based on our previous work [15,33]. For a derivation of an information theoretic quantification,
it is helpful to have a causal model of the sensorimotor loop [32], which is presented first.

2.1. Causal Model of the Sensorimotor Loop

We assume that there is a canonical way to separate a cognitive system into four parts, namely
brain, sensors, actuators, and body. We are fully aware that the system–environment separation
is a very difficult and yet unsolved question for biological systems (see e.g., [37] for a discussion).
This holds even more in the case of the distinction between the body and brain. Yet, in order to derive
a quantification, we have to assume that there is such a distinction.

In our conceptual model of the sensorimotor loop, which is derived from [22], the brain or
controller sends signals to the actuators that influence the environment (see Figure 1). We prefer the
notion of the system’s Umwelt [31,38,39], which is the part of the system’s environment that can be
affected by the system and itself affects the system. The state of the actuators and the Umwelt are
not directly accessible to the cognitive system, but the loop is closed as information about both the
Umwelt and the actuators are provided to the controller by the system’s sensors. In addition to this
general concept, which is widely used in the embodied artificial intelligence community (see e.g., [22]),
we introduce the notion of world to the sensorimotor loop, that is, the system’s morphology and the
system’s Umwelt. This differentiation between body and world is analogous to the agent–environment
distinction made in the context of reinforcement learning [40], where the environment is defined as
everything that cannot be changed arbitrarily by the agent.

 Cognitive System
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Sensory
feedback 

 World

Internal stimulation

Movement
and feedback 

External
stimulation

Sensors  Actuators

Controller

Environment

W

S A

W'
α

π

β

Figure 1. Sensorimotor Loop. Left-hand side: schematics of the sensorimotor loop (redrawn from [22]),
Right-hand side: causal diagram of a reactive system.

Revisiting the list of examples given in the introduction (e.g., locomotion, grasping), it is seen that
most behaviours that are interesting in the context of morphological computation can be modelled
sufficiently as reactive behaviours. Hence, for the remainder of this work, we will omit the controller
and assume that the sensors are directly connected to the actuators. For a discussion of the causal
diagram for non-reactive systems, the reader is referred to [32]. Quantifications of morphological
computation for non-reactive systems are discussed in [15].

The causal diagram of the sensorimotor loop is shown on the right-hand side of Figure 1. The random
variables A, S, W, and W′ refer to actuator signals, sensor signals, and the current and next world state.
Directed edges reflect causal dependencies between the random variables. The random variables
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S and A are not to be mistaken with the sensors and actuators. The variable S is the output of the
sensors, which is available to the controller or brain, and the action A is the input that the actuators
take. Consider an artificial robotic system as an example. Then the sensor state S could be the pixel
matrix delivered by a camera sensor and the action A could be a numerical value that is taken by a
motor controller and converted in currents to drive a motor.

Throughout this work, we use capital letters (X, Y, . . . ) to denote random variables, non-capital
letters (x, y, . . . ) to denote a specific value that a random variable can take, and calligraphic
letters (X , Y , . . . ) to denote the alphabet for the random variables. This means that xt is the specific
value that the random variable X can take a time t ∈ N, and it is from the set xt ∈ X . Greek letters
refer to generative kernels, i.e., kernels that describe an actual underlying mechanism or a causal
relation between two random variables. In the causal graphs throughout this paper, these kernels are
represented by direct connections between corresponding nodes. This notation is used to distinguish
generative kernels from others, such as the conditional probability of a given that w was previously
seen, denoted by p(a|w), which can be calculated or sampled but that does not reflect a direct causal
relation between the two random variables A and W (see Figure 1).

We abbreviate the random variables for better comprehension in the remainder of this work, as all
measures consider random variables of consecutive time indices. Therefore, we use the following
notation. Random variables without any time index refer to time index t and hyphened variables to
time index t + 1. The two variables W and W ′ refer to Wt and Wt+1, respectively.

2.2. Quantifying Morphological Computation as Synergistic Information

We can now restate the two original concepts of quantifying morphological computation [15]
(see Figure 2) and also discuss their relationship to synergistic information [33] as defined by [34].
This will build the foundation for the comparison with quantifying synergistic information based on
the measure proposed by [35].

α̂
W

S A

W' W

S A

W' W

S A

W'
α̃α

Figure 2. Visualisation of the two concepts MCA and MCW. Left-hand side: causal diagram for a
reactive system. Centre: causal diagram assuming no effect of the action A on the next world state W ′.
Right-hand side: causal diagram assuming no effect of the previous world state W on the next world
state W ′.

The basis for both original concepts MCA and MCW is the world dynamics kernel α(w′|w, a),
which describes how the next world states W ′ depends on the current world state W and the current
action A (see Figure 1, right-hand side, and Figure 2, left-hand side, respectively). For the first
concept MCA, let us assume that there is no dependence of the next world state W ′ on the current
action A. In this case, the world dynamics kernel α(w′|w, a) reduces to α̂(w′|w) (which is given
by α̂(w′|w) = ∑a p(w′ ,w,a)/p(w), see also Figure 2, centre). As a result, we would state that we have
maximal morphological computation, as the system’s behaviour is not controlled by the brain at all.
An example of such a system is the Passive Dynamic Walker that was discussed in the introduction of
this work. We can measure how much the observed behaviour differs from this assumption with the
Kullback-Leibler divergence. This leads to the following formalisation:

MCA := ∑
w′ ,w,a

p(w′, w, a) log2
α(w′|w, a)
α̂(w′|w)

(1)

= I(W ′; A|W) (2)
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Unfortunately, Equation (1) is zero for maximal morphological computation, which is why we
initially chose to normalise and invert it, leading to the following definition:

MCA := 1− 1
log2 |W|

∑
w′ ,w,a

p(w′, w, a) log2
α(w′|w, a)
α̂(w′|w)

(3)

The second concept, MCW starts with the opposite assumption, namely, that the current world state
W does not have any influence on the next world state W′ (see Figure 2, right-hand side). In this case,
the world dynamics kernel α(w′|w, a) reduces to α̃(w′|a) (which is given by α̃(w′|a) = ∑w p(w′ ,w,a)/p(a),
see also Figure 2) and analogously to the following definition for MCW:

MCW := ∑
w′ ,w,a

p(w′, w, a) log2
α(w′|w, a)

α̃(w′|a) (4)

= I(W ′; W|A) (5)

The relation of the measures to transfer entropy [41,42] and the information bottleneck [43] are
discussed in [15]. In the context of this work, we focus on their relation to synergistic information as
defined by [34] and [35,36].

Next, we briefly restate the information decomposition by [34,44] that was used in the context of
morphological computation in [33].

2.3. Synergistic Information Based on the Decomposition of the Multivariate Mutual Information

Consider three random variables X, Y, and Z. Suppose that a system wants to predict the value
of the random variable X, but it can only access the information in Y or Z. The question is, how
is the information that Y and Z carry about X distributed over Y and Z? In general, there may be
redundant or shared information (information contained in both Y and Z), but there may also be unique
information (information contained in either Y or Z). Finally, there is also the possibility of synergistic
or complementary information, i.e., information that is only available when Y and Z are taken together.
The classical example for synergy is the XOR function: if Y and Z are binary random variables and if
X = Y XOR Z, then neither Y nor Z contain any information about X (in fact, X is independent of Y
and X is independent of Z), but when Y and Z are taken together, they completely determine X.

The total information that (Y, Z) contains about X can be quantified by the mutual information
I(X; Y, Z). However, there is no canonical way to separate these four kinds of informations. Different
variations have been proposed (see e.g., [34,36,44–47]), but a final definition has yet to be found.

Mathematically, one would like to have four functions, namely shared information (SI(X : Y; Z)),
unique information of Y (UI(X : Y \ Z)), unique information of Z (UI(X : Z \ Y)), and finally
synergistic information (also named complementary information in [34], CI(X : Y; Z)) that satisfy

I(X : (Y, Z)) = SI(X : Y; Z) + UI(X : Y \ Z) (6)

+ UI(X : Z \Y) + CI(X : Y; Z). (7)

It follows from the defining equations [34] and the chain rule of mutual information that an
information decomposition always satisfies

I(X : Y|Z) = UI(X : Y \ Z) + CI(X : Y; Z). (8)

Several candidates have been proposed for SI, UI, and CI so far (see e.g., [45,46]). A new
candidate will be presented below (see Section 4.2). In this section, we will describe the decomposition
of [34] that is defined in the following way.

Let Σ be the set of all possible joint distributions of X, Y, and Z. Fix an element P ∈ Σ (the “true”
joint distribution of X, Y, and Z).
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Define

ΛP =
{

Q ∈ Σ : Q(X = x, Y = y) = P(X = x, Y = y)

and Q(X = x, Z = z) = P(X = x, Z = z)

for all x ∈ X , y ∈ Y , z ∈ Z
}

(9)

as the set of all joint distributions that have the same marginal distributions on the pairs (X, Y) and
(X, Z). Then

UI(X : Y \ Z) = min
Q∈ΛP

IQ(X : Y|Z), (10)

SI(X : Y; Z) = max
Q∈ΛP

CoIQ(X; Y; Z), (11)

CI(X : Y; Z) = I(X : (Y, Z))− min
Q∈ΛP

IQ(X : (Y, Z)), (12)

where CoI denotes the co-information as defined in [48]. Here, a subscript Q in an information quantity
means that the quantity is computed with respect to Q as the joint distribution.

In [34], the formulas for UI, CI, and SI are derived from considerations about decision problems
in which the objective is to predict the outcome of X. In the context of morphological computation,
we want to apply the information decomposition in the following way. We will set X = W ′, Y = W,
and Z = A. In the context of the sensorimotor loop, W and A not only have information about W ′

but they actually control W ′. However, from an abstract point of view, the situation is similar: in the
sensorimotor loop, we also expect to find aspects of redundant, unique, and complementary influence
of W and A on W ′. Formally, since everything is defined probabilistically, we can still use the same
functions UI, CI, and SI. We believe that the arguments behind the definition of UI, CI, and SI remain
valid in the setting of the sensorimotor loop where we need it.

The reason for investigating the unique and synergistic information is indicated in Equation (8),
which we will rewrite here in terms of the sensorimotor loop in the following way:

MCW = I(W ′; W|A) (13)

= UI(W ′ : W\A) + CI(W ′ : W; A) (14)

Equation (14) shows that MCW can be decomposed into unique and synergistic information.
This also shows the advantage of the information decomposition approach as defined by [34].
Synergistic and unique information can be computed from the other, if the conditional mutual
information I(W ′; W|A) is known. The conditional mutual information can be easily derived from
observation, given that there are enough samples with respect to the dimensionality of W ′, W, and A.
We are not only interested in mathematically rigorous definitions but also in applicability to real
data. This is where the decomposition by [34] currently has a disadvantage. There is no algorithm
known to us to compute synergistic and unique information for non-trivial systems, i.e., non-binary
systems. For the binary model of the sensorimotor loop (see below), we used an approximation in our
previous work [33] that was already described in the original paper [34]. We will compare our previous
results with a new measure that can be computed also for non-trivial systems as below. However,
there is a more important problem with the definitions given by [34]. They do not incorporate the
probability distributions over the inputs, in this case, the random variables W and A, which means
that the synergistic measure CI(W ′ : W; A) can falsely detect correlations in the input as synergistic
information (this will be shown in the results section and discussed at the end of this work).

Applicability to non-trivial systems and potential false positives are the two reasons why we
introduce a measure for synergistic information based on [35,36] in the remainder of this section.

272



Entropy 2017, 19, 456

2.4. Synergistic Information as the Difference between the Whole and the Sum of Its Parts

The basic idea of the complexity measure defined by [35] is summarised in the paper in the
following way: “The whole is more than the sum of its elementary parts.” The underlying information
theoretic idea is best explained along the schematics shown in Figure 3.

Ffull

x1

x2 y2

y1x1

x2 y2

y1

F 1
split

F 2
split

F 3
split

Figure 3. Quantifying complexity. Left-hand side: full model of two input and two output variables.
Right-hand side: split model, as proposed by [35].

The left-hand side of Figure 3 shows the “whole”, while the right-hand side shows “the elementary
parts” of a stochastic system with two input variables, X1 and X2, and two output variables, Y1 and Y2.
We refer to the graphical model on the left-hand side of Figure 3 as the full model, whereas the model
on the right-hand side will be referred to as the split model. The full model assumes that every output
node is connected to every input node. The split model assumes every input node only affects one
output node. The undirected connection between the input nodes indicates that the input distribution
is taken into account in both models. Both models are defined by their feature sets F. In the example
given above, the feature set for the full model is given by Ffull = {{X1, Y1, X2, Y2}} and the feature
set for the split model is given by Fsplit = {{X1, Y1}, {X2, Y2}, {X1, X2}}. Note that we have explicitly
included the feature corresponding to the input distribution {X1, X2}. The divergence between the
full and split models is defined as a measure for complexity in [35]. Variations of this measure have
been proposed in [49,50] and compared in [51].

As discussed earlier in this work, we are primarily interested in the relation of the three
random variables W, A, and W ′, which represent the current world state, the current action, and the
next world state, respectively. Hence, we translate the quantification for complexity [35] that was
originally formulated for four random variables (see Figure 3) to three random variables (see Figure 4).
The resulting quantification is also known as synergistic information and was first discussed in [36].

Given three random variables X, Y, and Z (see Figure 4), the synergistic information is defined as
the averaged Kullback-Leibler divergence

∑
y,z

p(y, z)D(pfull(x|y, z)||psplit(x|y, z)), (15)

where the full and split models are defined by the feature sets depicted in Figure 4.
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Figure 4. Quantifying synergy. Left-hand side: full model of two input and two output variables.
Right-hand side: split model, as proposed by [36].

In their work, the authors showed that the main difference between the synergistic measure
defined by [34] and the synergistic measure defined by [36] is that the former does not take the input
distribution into account. This is shown by the following Equation (cited from [36]):

CI(X : Y; Z) = I(X, Y : Z)− min
q∈ΔP

Iq(X, Y : Z) (16)

ΔP =
{

Q ∈ Σ : Q(X = x, Y = y) = P(X = x, Y = y)

and Q(X = x, Z = z) = P(X = x, Z = z)

and Q(Y = y, Z = z) = P(Y = y, Z = z)

for all x ∈ X , y ∈ Y , z ∈ Z
}

(17)

The difference between the measure proposed by [34,36] is seen in line 3 of Equation (17) (compare
with Equation (9)). Another difference is that the measure by [34] can so far not be calculated for
non-trivial systems, e.g., with the iterative scaling algorithm discussed in the next section.

Applying the measure by [36] to the sensorimotor loop and in the context of morphological
computation, we are asking how much the observation of our embodied agent’s behaviour differs
from the assumption that there is no synergistic term. In other words, we are measuring the averaged
Kullback-Leibler divergence

MCSY = ∑
w,a

p(w, a)D(pfull(w′|w, a)||psplit(w′|w, a)) (18)

where the feature set of the full model is defined as Ffull = {{W ′, W, A}} and the feature set of the
split model is defined as Fsplit = {{W ′, W}, {W ′, A}, {W, A}} (see Figure 4, where X = W ′, Y = W,
and Z = A).

2.5. Maximum Entropy Estimation with the Iterative Scaling Algorithm

There is a standard method to calculate the maximum entropy estimation of a probability
distribution based on features, known as iterative scaling, which is well-established in this field and
goes back to the work of Darroch and Ratcliff [52] and Csiszár [53]. The algorithm can be summarised
in the following form (for joint distributions). Let p̂ be the target distribution (in our case p̂(w′, w, a) =
∑s p(w)β(s|w)π(a|s)α(w′|w, a), see Section 3.1), V be the set of random variables (in the context of this
work V = {W ′, W, A}), and F be the feature set (e.g., Fsplit = {{W ′, W}, {W ′, A}, {W, A}}). For the
sake of simplicity in presentation, we use the following abbreviations: p(V) = p(w′, w, a), p(Fi) is either
p(w, a), p(w′, a), or p(w′, w) (depending on the index i) and p(V\Fi|Fi) is either p(w′|w, a), p(w|w′, a),
or p(a|w′, w) depending on the selected feature. The target distribution (that is approximated with the
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maximum entropy method) is denoted by p̂(V). As an example, the target distribution for the first
feature is given by p̂(F1) = ∑a p̂(w′, w, a). Iterative scaling is then defined in the following way:

p(0)(V) =
1
|V| (19)

p(n+1)(V) = p̂(Fn mod |F|) · p(n)(V\Fn mod |F||Fn mod |F|). (20)

In words, we initialise the joint distribution p(0) to be the uniform distribution. In each iteration,
we pick one feature from the set of features. We then multiply the marginal distribution of this feature
in the target distribution (p̂(Fn mod |F|)) with the conditional distribution of the remaining variables
conditioned on the chosen feature (p(n)(V\Fn mod |F||Fn mod |F|)). In the notion above, Fn mod |F| refers
to the iterative selection of features based on the current iteration step n, modulo the number |F| of
defined features. This algorithm is proved to converge [52,53] and is used in the numerical simulations
below (source code is available at [54]). Next, we discuss the parametrised model of the sensorimotor
loop which is used in this work to evaluate and compare the different measures.

3. Parametrised Model of the Sensorimotor Loop

The previous section discussed five different measures, namely MCW, MCA, UI(W ′ : W\A)

CI(W ′ : W; A), and MCSY. The first four were evaluated in previous publications [14,15] based on a
binary model of the sensorimotor loop. MCW was also evaluated on data from hopping models [14]
and in the context of soft robotics [1]. This is why we concentrate on CI(W ′ : W; A) and MCSY in the
context of this work. A new proposal for the unique information will follow below (see Section 4.2).

In our previous work [33], we used an approximation to calculate the synergistic information and
were only able to apply it to binary systems. As stated earlier, we are interested in applying synergistic
information to real-world applications, hence, this section has two goals. The first goal is to compare
how the previous results to the new measure. The second goal is to investigate how the new measure
perform on non-binary systems in a fully controlled setting, i.e., model setting. This is a necessary step,
before applying the measures to real data, as we need to understand if the results comply with the
intuitive understanding of morphological computation.

The next section introduces the binary and non-binary model of the sensorimotor loop. The binary
model is used to compare the results of our new measure MCSY with our previous results on
CI(X : Y; Z) [33].

3.1. Binary Model of the Sensorimotor Loop

The causal diagram of the sensorimotor loop (see Figure 1) implies that we need to define four
different maps, namely the world dynamics kernel α(w′|w, a), the policy π(a|s), the sensor map
β(s|w), and finally, the input distribution p(w). Note that in this section we operate on binary random
variables, i.e., w′, w, s, a ∈ Ω = {−1, 1}. The binary model of the sensorimotor loop is then defined by
the following set of equations (see also [1,15]):

αφ,ψ,χ(w′|w, a) =
eφw′w+ψw′a+χw′wa

∑w′′∈Ω eφw′′w+ψw′′a+χw′′wa (21)

βζ(s|w) =
eζsw

∑s′′∈Ω eζs′′w (22)

πμ(a|s) = eμas

∑a′∈Ω eμa′s (23)

pτ(w) =
eτw

∑w′′∈Ω eτw′′ (24)
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In the context of this work, we will only vary the parameters φ, ψ, and χ, which means that we
will change the causal dependence of W → W ′ (parameter φ), the causal dependence of A → W ′

(parameter ψ), and finally, the causal dependence of (W, A)→ W ′ (parameter χ). The other parameters
are set such that they result in a uniform distribution of the corresponding kernels, i.e., τ, μ, ζ = 0.

Next, we will first present the modification that allows us to model the non-binary sensorimotor
loop, before the results are discussed in the next section (see Section 4).

3.1.1. Non-Binary Model of the Sensorimotor Loop

A generalisation from the binary model to a non-binary model requires to modify the function
that operates on the state values. In case of a binary alphabet Ω = {−1, 1}, the function was simply
given by the product. We explain the approach to generalise this function used in this work based on
the policy π(a|s). For the non-binary model, the policy is now given by:

πμ(a|s) = eμ f (a,s)

∑a′∈Ω eμ f (a′s)
. (25)

There are various ways in which the function f (a, s) can be chosen. Our choice of the function
f (a, s) is derived from the requirement to have a single parameter μ that allows us to smoothly
transition from an independence to a strong dependence (we will briefly discuss a different method
at the end of this paragraph). Therefore, we chose to normalise the values a ∈ A = {1, 2, . . . , N}
and s ∈ S = {1, 2, . . . , N} such that they are mapped onto the interval [−1, 1]. This allows us to use
define f (a, s) similar to the binary case (see Equation (23)) as the product of both mapped random
variables, i.e.,

f (a, s) =
(

2
a− 1
N − 1

− 1
)(

2
s− 1
N − 1

− 1
)

. (26)

As this example indicates, we chose the same number of bins for all random variables w′, w, s, a ∈
Ω = {1, 2, . . . , N}.

It must be noted here that this choice of f (a, s) is a projection of the full space of couplings to a
subspace. In particular, there will be cases in which the effects of ψ, φ, and χ cannot be fully separated.
One such example is the case in which ψ, φ, and χ are large and w′, w, and a are all equal to N.
The reason is that the bases spanning the space given by our choice of f (a, s) are not orthogonal (as in
the case of Equation (21) to Equation (24)). Walsh bases are one possible way to define the function(s)
f such that they are orthogonal with respect to the L2 inner product given by the uniform distribution.

This concludes the description of the parametrised binary and non-binary model of the
sensorimotor loop. The next section presents the numerical results obtained with these two models.

4. Numerical Simulations

In this section, we plot the numerical results for two measures, CI(W ′ : W; A) and MCSY.
CI(W ′ : W; A) is plotted to compare our previous results [33] with the results obtained from MCSY
with the iterative scaling algorithm. The entire source code used in this work is available at [54].

4.1. Results for the Binary Sensorimotor Loop

This section begins with revisiting the point made earlier about the difference between CI(W′ : W; A)

and MCSY with respect to including the input distribution as part of the feature set. Figure 5 shows
two experiments with the binary model of the sensorimotor loop. Both plots show the results for
χ = 0.0 and ψ, φ ∈ [0, 5.0], i.e., without the synergistic term χw′wa (see Equation (21)). The first plot
(left-hand side), shows the result for CI(W ′ : W; A). Along the diagonal φ ≈ ψ, we see a region in
which the synergistic information is non-zero. This is counter-intuitive as the higher-order interaction
term is set to zero (χ = 0, see Equation (21)) and the bases in the binary model of the sensorimotor
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loop are orthogonal. Hence, high values of φ and ψ should not result in non-zero values for the
synergistic information in these cases. The second plot shows the results for MCSY with the feature
set F = {{W, A}, {W, W ′}, {A, W ′}}. The plot shows that this measure results in zero synergistic
information for χ = 0.0 and any choice of φ, ψ ∈ [0, 5], which is what we expect.

Figure 5. CI(W ′ : W; A) (left-hand side) and MCSY (right-hand side) without synergistic information
present in the model, i.e., χ = 0. The comparison of the plots reveal that CI(W ′ : W; A) has regions
with non-zero values, although no synergistic information is present. By that we mean that the higher
order interaction term χw′wa is set to zero (see Equation (21)). No false positives are found for MCSY

in this case.

The difference between these two approaches becomes more evident if we increase the synergistic
coupling factor χ. Figure 6 shows the two measures for varying values of χ ∈ {0, 1.25, 2.5, 3.75, 5.0}.
We see that for increasing values of χ, the amount of detected synergistic information increases for both
measures, however in different ways. CI(W ′ : W; A) shows increasing regions with high values along
the diagonal, whereas MCSY shows areas in which the synergistic information is close to zero for values
of χ �= 0. The latter is surprising because, in the binary case, the three basis are orthogonal and hence
the synergistic information should be distinguishable from the pair-wise interactions, also for high
values of ψ and φ. This issue will be addressed again in the discussion. The plots for the non-binary
case, in particular for 4 and 8 bins, are shown below (see Figure 7). Note, that CI(W ′ : W; A) was
omitted for those cases, as it was not computable for non-trivial systems at this time.

Figure 6. CI(W ′ : W; A) (top) and MCSY (bottom) for with w′, w, s, a ∈ Ω = {−1, 1}.
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Figure 7. MCSY with w′, w, s, a ∈ Ω = {1, 2, . . . , 4} (top) and w′, w, s, a ∈ Ω = {1, 2, . . . , 8} (bottom).

4.2. New Measure for Unique Information

Equation (14) shows that the conditional mutual information I(X; Y|Z) is given by the sum of the
unique information UI(X : Y\Z) and the synergistic information CI(X : Y; Z). Given that MCSY is
a new measure for synergy (first introduced in [36]), we can now also give a new definition for the
unique information UI(X : Y\Z) in terms of MCW and MCSY, denoted by MCP, because it captures
the part of MCW that results from uncontrolled physical interactions:

MCP = MCW −MCSY. (27)

Note, that MCP is not equivalent to the definition of UI(X : Y\Z) given above, because
CI(W ′ : W, A) �= MCSY. Figure 8 shows MCW, MCP, and MCSY for 2, 4, and 8 bins and varying
values of the synergistic parameter χ.

Figure 8. From left to right χ ∈ {0, 1.25, 2.5, 3.75, 5.0}. From top to bottom: MCW, MCSY, MCP,
for binary system, i.e., w′, w, s, a ∈ Ω = {−1, 1}. Note that each plot in the upper row (MCW) is the
sum the corresponding plot in the second row (MCSY) and the final row (MCp).
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5. Discussion

This work is a continuation of our previous work on the quantification of morphological
computation. Initially, we proposed two measures MCW and MCA that are based on calculating
the conditional mutual information in the sensorimotor loop [15]. In a later work, we investigated the
relation of the conditional mutual information to unique UI(W ′ : W\A) and synergistic information
CI(W ′ : W; A) [54], while primarily focussing on unique information at that time. In this work,
we investigated synergistic information and compared a measure based on [35] with the synergistic
information that was independently discovered in [34,44]. The main difference between the two
measures is that the previously utilised measure does not take the input distribution p(w, a) into
account. We have shown in this work that omitting the input distribution can lead to positive
synergistic information in cases in which it should be zero. Furthermore, we showed that the new
measure MCSY can be calculated for non-trivial systems with the iterative scaling method.

Although the new measure MCSY has significantly better properties (no false positives), it does
show false negative results. This means that the measure MCSY is close to zero for high values of χ,
i.e., for a high synergistic term in our parametrised model, if two other couplings W → W ′ (parameter
φ) and A → W ′ (parameter ψ) are large. It seems that in the case in which φ or ψ are large, it is
increasingly difficult to detect synergistic information. At this point it is not quite clear if this is a
general problem or something that is specific to the measure MCSY. This is the work of currently
ongoing investigations.
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Abstract: Biochemical networks having similar functional pathways are often correlated due to
cross-talk among the homologous proteins in the different networks. Using a stochastic framework,
we address the functional significance of the cross-talk between two pathways. A theoretical analysis
on generic MAPK pathways reveals cross-talk is responsible for developing coordinated fluctuations
between the pathways. The extent of correlation evaluated in terms of the information theoretic
measure provides directionality to net information propagation. Stochastic time series suggest that the
cross-talk generates synchronisation in a cell. In addition, the cross-interaction develops correlation
between two different phosphorylated kinases expressed in each of the cells in a population of
genetically identical cells. Depending on the number of inputs and outputs, we identify signal
integration and signal bifurcation motif that arise due to inter-pathway connectivity in the composite
network. Analysis using partial information decomposition, an extended formalism of multivariate
information calculation, also quantifies the net synergy in the information propagation through the
branched pathways. Under this formalism, signature of synergy or redundancy is observed due to
the architectural difference in the branched pathways.

Keywords: mutual information; partial information decomposition; net synergy; Langevin equation

1. Introduction

The decision making processes at the cellular level are initiated by some specialised signalling
networks [1,2]. These networks play a pivotal role in making robust and precise cellular response
towards endogenic and exogenic perturbations. In addition, the process of decision making resolves
cellular fate as well as survival strategies in diverse peripheral conditions. Although both prokaryotic
and eukaryotic cells are comprised of several common signalling networks, few signalling networks
are incorporated mostly in the eukaryotes [3].

As an evolutionary outcome, cells have developed an optimal protein-protein (cognate and
noncognate) interaction within the signalling pathway to transduce extra-cellular information
efficiently [4]. One such signalling network is the mitogen-activated protein kinase (MAPK) pathway
that plays the central role to attune with extra-cellular signal in eukaryotic cells [5–9]. Although
different MAPK pathways with diverse inputs and outputs belong to a higher living species, they
are sometimes interconnected through overlapping sets of signalling components. Depending on
the interconnections, MAPK pathways can be classified into different groups that use one or more
than one common signalling components. Moreover, as a result of cross-interaction, a single regulon
regulates multiple targets in addition to its cognate target. Such type of signal association is defined
as cross-talk. Cross-coupling in the signalling network can modify the functionality of a network
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topology and can subsume errors compared to the uncoupled one. Cross-interactions have been
identified not only in eukaryotes but also in prokaryotes, as observed in the bacterial two-component
system [10–14]. In the eukaryotic system, cross-talk has been identified in numerous situations [15–17].
Furthermore, cross-talk and several of its variants have also been identified at different stages of gene
regulation [18–22].

Since cross-talk is observed in a broad range of biological processes, one may interrogate the
functional utility of such network coordination. The cross-coupling mechanism is conveyed through
generations and observed in a significant number of evolutionary descent. This signature remains
prominent in the course of evolution in spite of other modifications that are taking place at the
cellular level. Such character indicates that cross-talk might have a definite functional role to build up
synchronised cellular regulations by spending the stored energy. If this is true, how does a cell balance
the trade-off between network association and potential cost? Few comprehensive experiments on
the network connectivity suggest that networks of a well-delineated cluster are correlated with each
other but are uncorrelated to the rest of the network [8]. Synchronisation is necessary to attain natural
activity but needs to maintain a threshold value. Otherwise, too much synchronisation may lead
to a physiological disorder like epilepsy [23]. Inter-pathway cross-talk becomes prominent due to
the limitation of common resources, defined as the overloaded condition. However, cross-talk effect
becomes faint in the underloaded condition, where the level of available resources are present in
sufficient amount [19,20,22,24,25]. A key source of survival strategy under diverse environmental
conditions is the generation of fluctuations which induces non-genetic variability in a cellular
population. In such a situation, cells readjust to cope with the limited resources by introducing
cross-correlation among a set of genes and thus implementing a successful bet-hedging program [22].
Cross-talk also facilitates synchronisation in different organs such as cardio-respiratory interaction,
brain and tissues [23].

To address the functionality of cross-talk, we undertake a representative network comprised
of well-characterized features of signal transduction. To be specific, we focus on MAPK pathway,
a well-studied eukaryotic signalling machinery, conserved with three kinase cascades. In S. cerevisiae,
five MAPK signalling pathways are present, out of which only three (pheromone response, filamentous
growth response and osmostress adaptation) use a common kinase protein Ste11 [5,8]. In fact,
pheromone response and filamentous growth pathways also use the same kinase Ste7. Pheromone
MAPK cascade (Ste11 → Ste7 → Fus3) is activated by mating pheromone. Under low nutrient
condition, filamentous growth MAPK cascade (Ste11 → Ste7 → Kss1) becomes active whereas
high external osmolarity activates the osmoadaption cascade (Ste11 → Pbs2 → Hog1) [5,8]. Due to
inter-cascade correlation among the three signalling pathways, one pathway can be activated by the
signal of another pathway in the absence of its own signal. Several experimental results suggest that
such cross-talk is filtered out by cross-pathway inhibition, kinetic insulation and formation of scaffold
protein [5,8,26–29]. Although activation through inter-pathway cross-talk and cross-pathway inhibition
compensates each other, information is exchanged among the pathways during these interactions. This
leads to distinct queries (i) is it possible for an individual signalling pathway to convey its input signal
reliably downstream without experiencing any influence from the other channels of signal? (ii) Since
the inter-pathway connectivity is known not to allow the uniqueness of transduced signals - what are
the physiological advantages of cross-talk? (iii) Is there any participation of pathway output in the
cooperative regulation of a downstream target in a synchronised manner? (iv) How is it possible for
correlated pathways to keep up static as well as dynamic synchronisation in a single cell environment
that is prevalently stochastic in nature? (v) Do correlated fluctuations have any capability to control
the variability in the correlation between two different proteins?

In the present manuscript, we study generic S. cerevisiae MAPK pathways to address the potential
functionality of inter-pathway cross-talk within a stochastic framework. We consider two equivalent
interacting MAPK pathways, each one consisting of a linear chain of three MAPK cascade proteins [5,8].
Both pathways get activated by their corresponding external signals propagating downstream through
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phosphorylation (activation) and dephosphorylation (deactivation) of the cascade proteins. In addition,
due to cross-talk, phosphorylation of the intermediate components of the two pathways is influenced
by the activated kinase of the other pathway along with the cognate one. As the population of each
cascade protein is not sufficiently high within a single cell and experiences a fluctuating environment,
we express all associated chemical reactions in terms of the stochastic differential equation. We solve
the coupled set of nonlinear Langevin equations using linear noise approximation (LNA) [30,31] and
calculate the variance of each kinase and covariance between two different kinases (see Sec. II and
Appendix). Recent theoretical development [32] shows that LNA is not only limited to high copy
number but also exact up to second moments of any chemical species involved in a second-order
reaction. The fluctuations associated with at least one of the species participating in each of the
second-order reaction are Poissonian and uncorrelated with the fluctuations of other species. Also,
LNA remains valid for faster activation and deactivation (or synthesis and degradation) rates of the
corresponding components compared to the coarse-grained (steady state) time scale [30–40].

To classify the signal transduction efficacy through two pathways in the presence of
cross-association, we quantify two as well as multivariate mutual information. Distributions of all
kinase proteins are approximately considered Gaussian, allowing us to adopt a reduced expression of
mutual information [41,42]. The reduced equation mainly depends on the variance and the covariance
of the corresponding kinase. We validate our analytical calculation by exact stochastic simulation [43].
In the first subsection, we quantify two variable mutual information under the influence of cross-talk
parameter. We also investigate the mutual information between two non-cognate kinases and find
causality of this coordination. Since causality leads to synchronisation [23,44], it is important to
measure causality relation between the pathways, i.e., who regulates whom and to which extent. If
both pathways interact with each other and transduce information of the corresponding input signal
with different degrees, then it is challenging to characterize the magnitude and direction of signal
propagation. To overcome such difficulty, we define a new measure, net information transduction,
using the expressions of two cross mutual information, which satisfactorily quantifies the amount of
net signal propagation. In the connection of measuring directionality, it is important to mention the
concept of transfer entropy [45] which has been applied in several systems [46–49]. Transfer entropy
quantifies the directed information transfer within a system. In the calculation of transfer entropy,
one considers the time series of the random variable and makes use of the time lagged data. In our
study, however, we make use of mutual information evaluated at steady state to define a relative
dimensionless measure, net information transduction D (see Equation (1)). D is a normalized quantity
and is bounded within a range ±1. It helps to diagnose the direction of net information flow between
the two parallel cross interacting signalling pathways. We also verify inter-pathway synchronisation
with the help of coordinated fluctuations of stochastic trajectories of two parallel kinases. This result
implies how two kinases are synchronised within a cell. To understand this phenomenon further,
we investigate how much correlation develops between the steady state levels of two different kinases
in a hypothetical population of genetically identical cells.

In the second subsection, we quantify three variable mutual information (i.e., two sources to
one target, or one source to two targets) when both the channels of information flow work separately.
We make use of three variable mutual information along with two variable mutual information to
define the measure of net synergy [50]. In the present work, we quantify net synergy using the
theory of partial information decomposition (PID) [51] as the formalism deals with the calculation
of multivariate mutual information. Furthermore, it defines unique, synergistic and redundant
information among the variables of interest. Following the initial development by Williams and
Beer [51], several modifications of the formalism have been proposed till date [52–54]. In the context
of dynamical systems obeying Gaussian noise processes the formalism has been further extended by
Barrett [55]. We note here that the measure of interaction information is the negative of the measure
of net synergy [56]. Considering the interactions between two parallel MAPK pathway, we identify
signal integration and signal bifurcation motif. In signal integration motif, two MAPKKK proteins
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transmit signal into a single MAPKK protein which amounts to a sub-motif with two inputs and one
output. On the other hand, in signal bifurcation motif, a single MAPKKK protein transmits signal to
two MAPKK protein thus leading into a sub-motif with one input and two outputs. Quantification
of information transmission in these two sub-motifs requires calculation of both two variable and
multivariate mutual information which in turn provides the metric of net synergy. We observe the sign
of net synergy value changes depending on the signal integration as well as signal bifurcation and is
mainly controlled by pathway architecture.

2. Results and Discussion

2.1. Two Variable Mutual Information

The parameters ε2 and ε1 control the signalling channel X and Y, respectively. In Figure 1, we show
the mutual information profile as a function of ε2 for two different sets of parameters (see Tables 1
and 2) while keeping ε1 constant. Figure 1A shows that mutual information between xp1 and xp2

kinases decays with the increment of ε2. Augmentation of ε2 includes a competition between xp1 and
yp1 to phosphorylate the x2 kinase. During phosphorylation, mutual association is originated, and
signal transduction is ensued. Thus, for the low value of ε2, maximum level of mutual information is
attained due to minimal phosphorylation competition. On the other hand, minimum level of mutual
information is propagated at high ε2 value due to maximum phosphorylation contribution of yp1.
In Figure 1B, mutual information between xp1 and yp2 is plotted, which shows a constant value as a
function of ε2. This happens as ε2 has no influence in the alteration of mutual information. The same
logic is applicable to the mutual information between yp1 and yp2 shown in Figure 1C. In Figure 1D,
mutual information between yp1 and xp2 increases as a function of ε2, as ε2 is only responsible for
establishing the cross-talk between yp1 and xp2. This result implies that with the enhancement of
cross-talk the process of signal integration through yp1 increases. The same profiles can be generated as
a function of ε1, while keeping ε2 fixed. These results together indicate that I(xp1; xp2) and I(yp1; xp2)

depend on ε2, whereas I(xp1; yp2) and I(yp1; yp2) depend on ε1. In Figure 1A–D, the green lines drawn
for slower relaxation rate (see Table 2) always maintains a lower mutual information value compared
to the red lines drawn for faster relaxation rate (see Table 1). Relaxation rates of the corresponding
kinases i.e., xp1, xp2, xp3, yp1, yp2 and yp3 are −Jx1x1 = (α1 + kxsx), −Jx2x2 = (α2 + k12x〈xp1〉+ ε2〈yp1〉),
−Jx3x3 = (α3 + k23x〈xp2〉), −Jy1y1 = (β1 + kysy), −Jy2y2 = (β2 + k12y〈yp1〉+ ε1〈xp1〉) and −Jy3y3 =

(β3 + k23y〈yp2〉), respectively, where the angular bracket 〈· · · 〉 indicates the deterministic copy number
at long time limit (see Appendix). An input signal can reliably flow downstream if relaxation rate (or
degradation rate) of a cascade protein is higher than that of its upstream cascade proteins [35]. For red
line, we consider higher degradation rate for xp2 and xp3 (yp2 and yp3) compared to xp1 (yp1). Thus,
faster relaxation rates are attained under this condition with high information propagation capacity.
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Figure 1. (color online) Two variable mutual information and net information transduction as a function
of cross-talk parameter. (A–F) Two variable mutual information profiles I(xp1; xp2), I(xp1; yp2),
I(yp1; yp2), I(yp1; xp2), I(xp2; yp2) and I(xp3; yp3) as a function of cross-interaction parameter ε2

for a fixed value of ε1 = 0.5 × 10−4. In all figures, red (with open circle) and green (with open
diamond) lines are generated using faster (Table 1) and slower (Table 2) relaxation rate parameters,
respectively. The symbols are generated using stochastic simulation algorithm [43] and the lines are
due to theoretical calculation; (G,H) Bar diagram of two variable mutual information of three parallel
cascade kinases under an equivalent cross-talk condition (ε1 = ε2 = 0.5 × 10−4) for faster (Table 1)
and slower (Table 2) relaxation rate parameters, respectively; (I) Net information transduction D as a
function of cross-interaction parameter ε2 for a fixed value of ε1 = 0.5× 10−4. The red (with open circle)
and the green (with open diamond) lines are due to faster (Table 1) and slower (Table 2) relaxation
rate parameters, respectively. The figure indicates data collapse for two relaxation rate parameters.
The symbols are generated using stochastic simulation algorithm [43] and the lines are obtained from
theoretical calculation. All the simulation data (open circles and open diamonds) are ensemble average
of 107 independent trajectories; (J) 2d-surface plot of net information transduction D as a function of
two cross-talk parameters ε1 and ε2 for faster (Table 1) relaxation rate parameters.
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Table 1. Reactions and corresponding parameter values for the MAPK network motif of
S. cerevisiae [6,9,66], related to faster relaxation rate. Other Parameters are sx = sy = 10 molecules/cell,
xT1 = x1 + xp1 = 250 molecules/cell, xT2 = x2 + xp2 = 1700 molecules/cell, xT3 = x3 + xp3 =

5000 molecules/cell, yT1 = y1 + yp1 = 250 molecules/cell, yT2 = y2 + yp2 = 1700 molecules/cell and
yT3 = y3 + yp3 = 5000 molecules/cell. The kinetic schemes adopted in the present work follows the
model of Heinrich et al. [63].

Description Reaction Propensity Function Rate Constant

Activation of x1 x1 + sx
kx−→ xp1 + sx kxsxx1 kx = 10−4 molecules−1 s−1

Deactivation of xp1 xp1
α1−→ x1 α1xp1 α1 = 0.01 s−1

Activation of y1 y1 + sy
ky−→ yp1 + sy kysyy1 ky = 10−4 molecules−1 s−1

Deactivation of yp1 yp1
β1−→ y1 β1yp1 β1 = 0.01 s−1

Activation of x2 x2 + xp1
k12x−→ xp2 + xp1 k12xxp1x2 k12x = 10−4 molecules−1 s−1

Activation of x2 x2 + yp1
ε2−→ xp2 + yp1 ε2yp1x2 ε2 = (0 − 1)× 10−4 molecules−1 s−1

Deactivation of xp2 xp2
α2−→ x2 α2xp2 α2 = 0.05 s−1

Activation of y2 y2 + yp1
k12y−→ yp2 + yp1 k12yyp1y2 k12y = 10−4 molecules−1 s−1

Activation of y2 y2 + xp1
ε1−→ yp2 + xp1 ε1xp1y2 ε1 = (0 − 1)× 10−4 molecules−1 s−1

Deactivation of yp2 yp2
β2−→ y2 β2yp2 β2 = 0.05 s−1

Activation of x3 x3 + xp2
k23x−→ xp3 + xp2 k23xxp2x3 k23x = 5 × 10−5 molecules−1 s−1

Deactivation of xp3 xp3
α3−→ x3 α3xp3 α3 = 0.05 s−1

Activation of y3 y3 + yp2
k23y−→ yp3 + yp2 k23yyp2y3 k23y = 5 × 10−5 molecules−1 s−1

Deactivation of yp3 yp3
β3−→ y3 β3yp3 β3 = 0.05 s−1

Table 2. Reactions and corresponding parameter values for the MAPK network motif of
S. cerevisiae [6,9,66], related to slower relaxation rate. Other Parameters are sx = sy = 10 molecules/cell,
xT1 = x1 + xp1 = 250 molecules/cell, xT2 = x2 + xp2 = 1700 molecules/cell, xT3 = x3 + xp3 =

5000 molecules/cell, yT1 = y1 + yp1 = 250 molecules/cell, yT2 = y2 + yp2 = 1700 molecules/cell and
yT3 = y3 + yp3 = 5000 molecules/cell. The kinetic schemes adopted in the present work follows the
model of Heinrich et al. [63].

Description Reaction Propensity Function Rate Constant

Activation of x1 x1 + sx
kx−→ xp1 + sx kxsxx1 kx = 10−4 molecules−1 s−1

Deactivation of xp1 xp1
α1−→ x1 α1xp1 α1 = 0.01 s−1

Activation of y1 y1 + sy
ky−→ yp1 + sy kysyy1 ky = 10−4 molecules−1 s−1

Deactivation of yp1 yp1
β1−→ y1 β1yp1 β1 = 0.01 s−1

Activation of x2 x2 + xp1
k12x−→ xp2 + xp1 k12xxp1x2 k12x = 10−4 molecules−1 s−1

Activation of x2 x2 + yp1
ε2−→ xp2 + yp1 ε2yp1x2 ε2 = (0 − 1)× 10−4 molecules−1 s−1

Deactivation of xp2 xp2
α2−→ x2 α2xp2 α2 = 0.01 s−1

Activation of y2 y2 + yp1
k12y−→ yp2 + yp1 k12yyp1y2 k12y = 10−4 molecules−1 s−1

Activation of y2 y2 + xp1
ε1−→ yp2 + xp1 ε1xp1y2 ε1 = (0 − 1)× 10−4 molecules−1 s−1

Deactivation of yp2 yp2
β2−→ y2 β2yp2 β2 = 0.01 s−1

Activation of x3 x3 + xp2
k23x−→ xp3 + xp2 k23xxp2x3 k23x = 10−5 molecules−1 s−1

Deactivation of xp3 xp3
α3−→ x3 α3xp3 α3 = 0.01 s−1

Activation of y3 y3 + yp2
k23y−→ yp3 + yp2 k23yyp2y3 k23y = 10−5 molecules−1 s−1

Deactivation of yp3 yp3
β3−→ y3 β3yp3 β3 = 0.01 s−1

Next, we quantify mutual information between two parallel kinases (xpi and ypj, with i = j) of
the two equivalent interacting MAPK pathways. The inter pathway coupling is unidirectional when
either ε1 or ε2 is zero but is bidirectional when both are non-zero. In this situation, both variables
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(xpi and ypj) do not interact with each other but are regulated by a common kinase regulon
incorporating coordinated fluctuations into these variables. In other words, quantification of mutual
information actually evaluates the extent of cross-correlation between these two variables. We observe
zero mutual information value between xp1 and yp1, as these are uncorrelated. In Figure 1E, we show
mutual information between xp2 and yp2 as a function of ε2 keeping ε1 fixed. The profile shows an
increasing trend as cross-talk parameter ε2 increases. Similarly, in Figure 1F, mutual information
between xp3 and yp3 is shown with a similar trend as in Figure 1E. Interestingly, for faster relaxation
time scale, mutual information between similar cascade kinases increases while moving from second
(xp2 and yp2) to third (xp3 and yp3) cascade. On the other hand, an opposite trend is observed for slower
relaxation time scale. This characteristic trend is further shown in Figure 1G,H using bar diagram.
These results together suggest that fluctuations due to faster relaxation rate transduce correlated
fluctuations in a better way compared to the slower one. In Figure 1E, mutual information is high for
slower relaxation rate than the faster one, as slower rate parameters yield high level of xp2 and yp2

which in turn incorporate extra fluctuations that help to increase mutual association. A similar result is
also observed in Figure 1F. Identical mutual information profiles of I(xp2; yp2) and I(xp3; yp3) can be
generated as function of ε1 keeping ε2 fixed. These results suggest that both the cross-talk parameters
ε1 and ε2 contribute equally to the development of an association between two parallel pathways.

Both the mutual information between xp2 and yp2, xp3 and yp3 are capable of providing a
satisfactory explanation of enhancement of cross-talk with the increment of inter pathway interaction
parameters (ε1 and ε2). Under equivalent interactions condition (ε1 = ε2), each pathway shares its
information with other to an equal extent and is quantified not only by I(xp2; yp2) and I(xp3; yp3)

but also by I(xp1; yp2) and I(yp1; xp2). However, characterization of the direction of information
transduction is difficult under unequal condition (ε1 �= ε2). Except the equivalent condition (ε1 = ε2)
where the net information ( I(yp1; xp2) − I(xp1; yp2) ) flow is zero, it has a definite value with
directionality (positive or negative value) at all other conditions. Since the definition of mutual
information is symmetric in nature and usage of the same is difficult to provide directionality of
information propagation, we define a dimensionless quantity, net information transduction (D) using
I(xp1; yp2) and I(yp1; xp2) as

D =
I(yp1; xp2)− I(xp1; yp2)

I(yp1; xp2) + I(xp1; yp2)
. (1)

The above expression implies that it is maximal (D = 1) when I(xp1; yp2) is zero, i.e., no information
propagation from xp1 to yp2 (ε1 = 0). It is minimal (D = −1) when I(yp1; xp2) is zero, which specifies
zero information propagation from yp1 to xp2 (ε2 = 0). In Figure 1I, we show the profile of D as a
function of ε2 while keeping ε1 fixed, where the value of D changes from negative to positive as ε2

increases. It suggests that at low ε2, information flowing from X to Y pathway dominates over the flow
from Y to X. In other words, in this regime, the net information flow is accounted for by X → Y, leading
to a negative value of D. On the other hand, at high ε2, the direction of net information propagation
is from Y to X due to reverse situation and generates a positive D value. The opposite scenario can
be observed if one generates the profile of D as a function of ε1 for fixed ε2 In this connection, it is
important to mention that both the relaxation time scale limits generate a similar profile of D. As
a result, both the profiles of D exhibit data collapse when depicted as a function of ε2 for fixed ε1

(Figure 1I) or vice versa. This observation indicates that normalised profiles of D are independent of
relaxation time scales. In Figure 1J, we also show a 2d-surface plot of D as a function of both ε1 and
ε2 for faster relaxation time scale (Table 1). The surface plot indicates zero (or near to zero) value of
D along the diagonal region (ε1 ≈ ε2). However, the off diagonal region is positive for ε1 < ε2 and
negative for ε1 > ε2.

In Figure 2A,B, we show two 2d-surface plots of mutual information between xp2 and yp2, xp3

and yp3 kinases, respectively, as a function of two cross-interaction parameters ε1 and ε2 under faster
relaxation time scale (Table 1). Both figures show maximum mutual information at high values of the
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two parameters. Since, ε1 and ε2 are equally responsible for developing the cross-correlation between
two pathways, one can check the effect of maximisation of mutual information by increasing any
one of these two parameters. Although we can quantify the influence of cross-talk with the help of
two variable mutual information, I(xp2; yp2) and I(xp3; yp3), it is difficult to get an insight how the
static and dynamic populations of the phosphorylated kinases are correlated. To this end, we have
checked such correlation as shown in Figure 2C. Dynamic correlation can be measured using stochastic
trajectories of the two variables in a single cell. If sufficient association between two trajectories exist,
then correlated fluctuations are observed i.e., one trajectory closely follows the other. Otherwise,
uncorrelated fluctuations (trajectories do not follow each other) are seen in the absence of cross-talk. In
Figure 2C, we show stochastic time series of different phosphorylated kinases under varied conditions.
Here, four different sets of ε1 and ε2 parameters have been used - mentioned as I, II, III and IV in
Figure 2A,B. The stochastic time series exhibit correlated fluctuations at high ε1 and ε2. However,
uncorrelated time series are seen at low ε1 and ε2. Each of these time series are generated from a single
run of stochastic simulation and represents the dynamics in a single cell.

Figure 2. (color online) 2d-surface plots of two variable mutual information, stochastic time trajectories
and scatter plots. (A,B) 2d-surface plot of two variable mutual information I(xp2; yp2) and I(xp3; yp3)

as a function of two cross-talk parameters ε1 and ε2 for faster relaxation rate parameters (Table 1).
In both figures, I, II, III and IV correspond to four different values of ε1 and ε2; (C) Stochastic time
trajectories and steady state population of two parallel kinases for four different sets of ε1 and ε2.
For CI, CII, CIII and CIV we have used ε1 = ε2 = 0.1 × 10−4, ε1 = 0.1 × 10−4 and ε2 = 0.9 × 10−4,
ε1 = ε2 = 0.9 × 10−4 and ε1 = 0.9 × 10−4 and ε2 = 0.1 × 10−4, respectively. In each scatter plot,
ρij(i = j) represents analytical value of Pearson’s correlation coefficient. The stochastic trajectories and
the scatter plots are generated using stochastic simulation algorithm [43] and the surface plots are due
to theoretical calculation.
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Next, we have executed 1000 independent stochastic simulations and measured the steady state
phosphorylated kinase levels from each run to draw a scatter plot. Here, the collection of symbols
mimics the behaviour of a hypothetical population of 1000 genetically identical cells. Each symbol in
the scatter plots is due to a single stochastic run and represents copies of phosphorylated kinases (xpi
and ypj, i, j = 1, 2, 3) in a single cell expressed at steady state. In other words, each symbol signifies
the steady state phosphorylated protein levels in an individual cell within a hypothetical population.
Using this concept, we measure static correlation among the pairs of phosphorylated kinases ((xp1, yp1),
etc.) produced in different cells within the population. The motivation behind creating a scatter plot is
to measure the static correlation between two phosphorylated protein levels expressed in different
cells [57–59]. In Figure 2C, we show static correlation between different phosphorylated kinases
expressed in different cells. For plots with high ε1 and ε2 values, most of the symbols are aligned
diagonally in a narrow strip but for low ε1 and ε2, symbols are distributed in a much larger space.

Correlated variation of these kinases in the population is observed along the diagonal direction.
However, an uncorrelated variation along the off-diagonal direction reflects an increase in variability
between two phosphorylated kinases with respect to each other in a population. Therefore,
enhancement of cross-talk decreases variability between two kinases in a population. These results
imply that cross-talk develops correlated fluctuations between kinases in a population, thereby assisting
in the successful development of a robust adaptation machinery as observed in the bet-hedging
program under diverse environmental conditions [22]. Here, an increase in the correlation between
two different protein pool (with high Pearson’s correlation coefficient) is observed for maximal
cross-talk. On the other hand, a decrease in correlation is seen for minimal cross-interaction. Similar
behaviour can be seen under slower relaxation time scale (Table 2) as shown in Figure 3. The primary
difference between the nature of correlation between (xp2, yp2) and (xp3, yp3) are visible from Figure 2
and Figure 3. In Figure 2, the correlation between (xp3, yp3) is always higher than (xp2, yp2) for all
four conditions. On the other hand, in Figure 3, it shows an opposite trend. We note that coordinated
fluctuations of different MAPK proteins are generated due to cross-talk between two parallel pathways
that ultimately lead to similar cellular function with high reliability. Fluctuations in the transcription
factor are much faster than the transcript dynamics. On the other hand, fluctuations in the transcription
factor (known as extrinsic fluctuations) are comparable with the gene switching (on-off) time scale.
Such time scale agreement gets reflected in the dynamics of the transcript [36].
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Figure 3. (color online) 2d-surface plots of two variable mutual information, stochastic time trajectories
and scatter plots. (A,B) 2d-surface plot of two variable mutual information I(xp2; yp2) and I(xp3; yp3)

as a function of two cross-talk parameters ε1 and ε2 for slower relaxation rate parameters (Table 2).
In both figures, I, II, III and IV correspond to four different values of ε1 and ε2; (C) Stochastic time
trajectories and steady state population of two parallel kinases for four different sets of ε1 and ε2.
For CI, CII, CIII and CIV we have used ε1 = ε2 = 0.1 × 10−4, ε1 = 0.1 × 10−4 and ε2 = 0.9 × 10−4,
ε1 = ε2 = 0.9 × 10−4 and ε1 = 0.9 × 10−4 and ε2 = 0.1 × 10−4, respectively. In each scatter plot,
ρij(i = j) represents analytical value of Pearson’s correlation coefficient. The stochastic trajectories and
the scatter plots are generated using stochastic simulation algorithm [43] and the surface plots are due
to theoretical calculation.

2.2. Three Variable Mutual Information

In the foregoing discussion, we have shown the effect of cross-talk in terms of conventional
two variable mutual information. However, as cross-interaction between two pathways develops a
complex network, a comprehensive study of three variable mutual information provides an extra
insight. In the present study, three variable mutual information is defined as I(xp1, yp1; xp2) and
I(xp1; yp2, xp2) for two types of branched pathways (see Section 3.2). One of the branched pathways
is two inputs (xp1 and yp1) and one output (xp2 or yp2) motif where two input signals are integrated
into a single output. The other is one input (xp1 or yp1) and two outputs (xp2 and yp2) motif where the
input signal is bifurcated into two outputs. In this subsection, we investigate the efficacy of such signal
integration as well as signal bifurcation. Since marginal and joint distributions of all cascade proteins
are considered approximately Gaussian, we adopt multivariate mutual information theory [49–51] to
analytically estimate three variable mutual information [55]. Each branched motif consists of two signal
propagating channels that work together. It is thus interesting to investigate whether these signalling
channels perform separately and what significant change arises in the estimation of three variable
mutual information. The change in the magnitude of mutual information is defined by net synergy [50]
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and is evaluated using the theory of partial information decomposition [49,51,55] in terms of the
difference between three variable mutual information and two corresponding two variable mutual
information. The value of net synergy is either positive or negative; a positive value indicates synergy
(extra information) whereas negative value measures redundancy (deficit of information) [50,55].

In Figure 4A, we show mutual information, I(xp1, yp1; xp2) of two inputs and one output model
as a function of ε2 for a fixed value of ε1. The profile shows a bifunctional behaviour with the increment
of ε2; initially it decreases up to a certain value of ε2, and then it increases. At low ε2, a minimal amount
of signal is propagated from yp1 to xp2. Consequently, the motif reduces to a single input-output
motif and the motif regains its native form due to the significant contribution of ε2. In Figure 1A, we
show that two variable mutual information between xp1 and xp2 decreases with the increment of ε2.
Similar situation arises in Figure 4A for low value of ε2. On the contrary, I(yp1; xp2) increases with the
increment of ε2 (Figure 1D). Thus, two opposing effects work together to generate the convex profile.
In Figure 4B, we plot net synergy of the motif as a function of ε2 for a fixed value of ε1 and it is seen to
increase monotonically. It is pertinent to mention here that for this motif, one always gets a positive net
synergy value as a function of ε2. This result implies that an integrating signalling motif transduces
more information compared to the summation of two isolated channels. The extra information, i.e.,
synergy facilitates fidelity of the output kinase. Intuitively, the sum of the reduction in the uncertainty
(cross-correlation) of the output kinase contributed by each input signal is lower than the reduction
in the uncertainty of the output provided by both signals together. This phenomenon implicates the
aspect of integration of multiple signals in cellular signalling network motif as observed in V. harveyi
quorum-sensing circuit [60,61].

Figure 4. (color online) Three variable mutual information as a function of cross-talk parameter. (A,B)
Three variable mutual information I(xp1, yp1; xp2) (A) and net synergy ΔI(xp1, yp1; xp2) ((B) for signal
integration motif. Schematic diagram of signal integration motif in composite MAPK network (see inset
in (A). (C,D) - Three variable mutual information I(xp1; xp2, yp2) (C) and net synergy ΔI(xp1; xp2, yp2)

(D) for signal bifurcation motif. Schematic diagram of signal bifurcation motif in composite MAPK
network (see inset in (C). All the figures are drawn as a function of cross-interaction parameter ε2 for a
fixed value of ε1 = 0.5 × 10−4. Here red (with open circle) and green (with open diamond) lines are
drawn for faster (Table 1) and slower (Table 2) relaxation rate parameters, respectively. The symbols
are generated using stochastic simulation algorithm [43] and the lines are obtained from theoretical
calculation. All the simulation data (open circles and open diamonds) are ensemble average of 107

independent trajectories.

In Figure 4C, we show mutual information I(xp1; xp2, yp2) of one input and two outputs motif
with the increment of ε2 for a fixed value of ε1. The mutual information value decreases with ε2 since
propagation of information from xp1 to xp2 is only inhibited by the cross-interaction. However, ε2 does
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not have any influence in information propagation from xp1 to yp2 and remains unaltered. Thus, three
variable mutual information profile follows a decreasing trend. Figure 4D shows decreasing trend
of net synergy profile as a function of ε2 for a fixed value of ε1. Importantly, for this motif negative
values of net synergy are observed irrespective of the value of ε2. This indicates redundancy in the
information transmission in this composite motif compared to the sum of the individual one. Naturally,
predictability about the output kinases decreases when two isolated signal propagation channels work
together to form a bifurcated signal transduction motif. This result implies that although bifurcated
signalling model reduces mutual information, it has a biological significance of the activation of
multiple signalling channels in the presence of a single input as identified in the chemotaxis system of
E. coli [62]. In all figures (Figure 4A–D), the red lines are plotted for faster relaxation rate constants
(Table 1) of xp2, xp3, yp2 and yp3 and the green lines are for slower relaxation rate constants (Table 2).

3. Materials and Methods

In Figure 5, we show a schematic diagram of two interacting parallel MAPK pathways (named
as X and Y). Each MAPK pathway consists of three kinase components, i.e., x1, x2, x3 (X pathway)
and y1, y2, y3 (Y pathway) [7,28,63–65]. xi and xpi represent dephosphorylated and phosphorylated
form of a kinase proteins, respectively, and the same applies to yj and ypj (here i, j = 1, 2, 3). The
first cascade protein of a MAPK pathway gets phosphorylated with an exposure to the external
stimulus. While phosphorylated, it positively regulates the phosphorylation of its own downstream
kinase along with the kinase of the other pathway. The phosphorylated intermediate kinase regulates
phosphorylation of the last kinase. To maintain the pool of phosphorylated kinase within a cell, a
dephosphorylation process is in action with the help of phosphatase molecules. The cross-pathway
interactions between two parallel MAPK pathways are denoted by the dashed lines in Figure 5 along
with the cross-interaction rate parameters ε1 and ε2. Sx and Sy are the two extra-cellular signals acting
on the X and Y pathway, respectively.

Figure 5. (color online) Schematic diagram of two parallel MAPK (equivalent and identical) signalling
pathways (X and Y). Each pathway consists of three successively connected cascade kinases, MAPKKK
(red), MAPKK (green) and MAPK (blue). The first activated kinase facilitates the activation of the
second one and then the second kinase regulates the activation of the last one. Both signalling
pathways are exposed to two different signals (Sx and Sy). Cross-talk is developed due to inter-pathway
interactions. ε1 and ε2 are the cross-interaction parameters and the directionality of these interactions
are xp1 → yp2 and yp1 → xp2, respectively.
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Both pathways get causally correlated through cross-interactions, and a cross-talk develops as a
consequence. Causal relationships are frequently examined in various circumstances that are subjected
to stochastic fluctuations [23,44,50,55]. In the present manuscript, we quantify the causal relationship
in terms of mutual information. Here, the two cross-interaction parameters ε1 and ε2 play a significant
role in establishing different levels of cross-talk. The parameter ε1 controls information flow from X to
Y pathway (xp1 → yp2), but the parameter ε2 is responsible for Y to X pathway (yp1 → xp2) information
flow. In this connection, it is important to mention that during mating process, both pheromone and
filamentous growth pathways are activated to a roughly equal extent, whereas during invasive growth
process, only filamentous growth pathway is activated [26]. These observations corroborate with our
model development. In our calculation, we only consider the post-translationally modified forms
of all MAPK proteins. Thus, in the model, the total population of a MAPK protein is the sum of
the phosphorylated and the unphosphorylated form of the protein and is considered to be constant
((xi + xpi) = xTi = (yj + ypj) = yTj = constant, here i = j). In addition, we consider a physiologically
relevant parameter set for our calculation [6,9,66].

3.1. Two Variable Mutual Information

Adopting Shannon’s information theory [41,42], we have calculated two variable mutual
information between two phosphorylated kinases,

I(xpi; ypj) = ∑
xpi

∑
ypj

p(xpi, ypj) log2

[
p(xpi, ypj)

p(xpi)p(ypj)

]
. (2)

A generalised index xpi and ypj have been considered to represent the copy number of two
different phosphorylated kinases. Similarly, p(xpi) and p(ypj) are the marginal and p(xpi, ypj) is the
joint probability distributions associated with the corresponding kinases. For the calculation of mutual
information between two kinases of X signalling pathway, we have replaced ypj by xpi (where i �= j)
and the reverse replacement has been followed for Y signalling pathway. For the estimation of mutual
information between two equivalent kinases (xpi and ypj) of the respective pathways, we have used
the same formula for i = j condition. Mutual information can also be written in the form of the entropy
function. Hence, Equation (2) can be redefined as

I(xpi; ypj) = H(xpi) + H(ypj)− H(xpi, ypj). (3)

Here, H(xpi) and H(ypj) are individual and H(xpi, ypj) is total entropy of the respective kinases.
In the present study, both probability distribution functions (marginal and joint) are approximately
considered to be Gaussian as experimental studies on MAPK pathway show Gaussian dynamics [67].
Thus, using Gaussian channel approximation [41,42,55], Equation (3) takes the reduced form

I(xpi; ypj) =
1
2

log2

[
σ2

xpi
σ2

ypi

σ2
xpi

σ2
ypi

− σ4
xpiypi

]
, (4)

where σ2
xpi

and σ2
ypj

are variances and σ2
xpiypj

is covariance of the corresponding kinases (for detailed
calculation see Appendix). At this point it is important to mention that no prior knowledge is
required about the nature of probability distribution function for evaluating mutual information
using Equation (2). For exact or approximate Gaussian distribution, one can reduce Equation (2) to
Equation (4) applying Gaussian channel approximation. However, for systems with non-Gaussian
distribution, one can still use Equation (2) with proper analytical expressions of probability distribution
functions that may contribute expressions of higher moments in Equation (4).

In the present work, all expressions of two variable mutual information are calculated using
Equation (4). The analytical results are then validated by evaluating probability distribution functions
(Equation (2)) using exact numerical simulation [43]. The two variable mutual information value is
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bounded within a scale 0 ≤ I(xpi; ypj) ≤ min(H(xpi), H(ypj)). To quantify the association between
two equivalent kinases, we have used Pearson’s correlation coefficient (ρij, i = j) [68]

ρij =
σ2

xpiypj

σxpi σypj

. (5)

3.2. Three Variable Mutual Information

The three variable mutual information are calculated for both signal integration and signal
bifurcation motif. In the first motif, two phosphorylated input kinases interact with one output kinase.
Hence the complete description of mutual information is given by

I(xp1, yp1; xp2) = ∑
xp1,yp1

∑
xp2

p(xp1, yp1, xp2) log2

[
p(xp1, yp1, xp2)

p(xp1, yp1)p(xp2)

]
, (6)

where p(xp1, yp1, xp2) and p(xp1, yp1) are the joint distribution functions of the corresponding
components. On the other hand, p(xp2) is the marginal distribution of phosphorylated x2 kinase. One
can also write Equation (6) in terms of the respective entropy

I(xp1, yp1; xp2) = H(xp1, yp1) + H(xp2)− H(xp1, yp1, xp2). (7)

Similarly, using Gaussian approximation [41,42,55], one can reduce Equation (7) into the following
form

I(xp1, yp1; xp2) =
1
2

log2

[
σ2

xp2
(σ2

xp1
σ2

yp1
− σ4

xp1yp1
)

|Δ1|

]
, (8)

with

|Δ1| =

⎛⎜⎝ σ2
xp1

σ2
xp1yp1

σ2
xp1xp2

σ2
yp1xp1

σ2
yp1

σ2
yp1xp2

σ2
xp2xp1

σ2
xp2yp1

σ2
xp2

⎞⎟⎠ .

Here, the magnitude of three variable mutual information is bounded within a scale 0 ≤
I(xp1, yp1; xp2) ≤ min(H(xp1, yp1), H(xp2)). Using PID formalism, the three variable mutual
information can be decomposed into two parts [50,55]. As a result, the net synergy expression
becomes

ΔI(xp1, yp1; xp2) = I(xp1, yp1; xp2)− I(xp1; xp2)− I(yp1; xp2)

=
1
2

log2

[
(σ2

xp1
σ2

yp1
− σ4

xp1yp1
)(σ2

xp1
σ2

xp2
− σ4

xp1xp2
)(σ2

yp1
σ2

xp2
− σ4

yp1xp2
)

|Δ1|σ2
xp1

σ2
yp1

σ2
xp2

]
. (9)

Furthermore, one can calculate mutual information for the signal bifurcating motif with the help of
associated distribution functions

I(xp1; xp2, yp2) = ∑
xp1

∑
xp2,yp2

p(xp1, xp2, yp2) log2

[
p(xp1, xp2, yp2)

p(xp1)p(xp2, yp2)

]
. (10)

and the entropy representation of Equation (10) is
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I(xp1; xp2, yp2) = H(xp1) + H(xp2, yp2)− H(xp1, xp2, yp2). (11)

Using Gaussian approximation [41,42,55] Equation (11) becomes

I(xp1; xp2, yp2) =
1
2

log2

[
σ2

xp1
(σ2

xp2
σ2

yp2
− σ4

xp2yp2
)

|Δ2|

]
, (12)

with

|Δ2| =

⎛⎜⎝ σ2
xp1

σ2
xp1xp2

σ2
xp1yp2

σ2
xp2xp1

σ2
xp2

σ2
xp2yp2

σ2
yp2xp1

σ2
yp2xp2

σ2
yp2

⎞⎟⎠ .

In addition, the three variable mutual information value is bounded within a range 0 ≤
I(xp1; xp2, yp2) ≤ min(H(xp1), H(xp2, yp2)). In this case, one can also use the theory of PID to
decompose the three variable mutual information into two parts and calculate the net synergy [50]

ΔI(xp1; xp2, yp2) = I(xp1; xp2, yp2)− I(xp1; xp2)− I(xp1; xp2)

=
1
2

log2

[
(σ2

xp2
σ2

yp2
− σ4

xp2yp2
)(σ2

xp1
σ2

xp2
− σ4

xp1xp2
)(σ2

xp1
σ2

yp2
− σ4

xp1yp2
)

|Δ2|σ2
xp1

σ2
xp2

σ2
yp2

]
. (13)

For analytical calculation, we have adopted Equations (4), (5), (8), (9), (12) and (13) which contain only
variance and covariance expressions, whereas we adopt numerical simulation for evaluation of the
expressions given in Equations (2), (6) and (10).

At this point it is important to mention that we validate our analytical calculation by exact
stochastic simulation, commonly known as stochastic simulation algorithm or Gillespie algorithm [43].
The validation signifies how much closer the system dynamics with the Gaussian statistics.
Corroboration of analytical and simulation results indicate a valid consideration of linear noise
approximation. In our numerical simulation, we have used 107 trajectories. We note that the
dynamics of different MAPK pathways exhibit different temporal evolution [8]. However, the average
physiological time scale for the activation of MAPK pathways is ∼ 1 h [15]. Keeping this information in
mind, each stochastic simulation was executed for 5000 s (∼ 1.38 h) to ensure that the system dynamics
reaches steady state. Using the final value of the variables of each run we carry out the calculation of
different variances and covariances to evaluate different expressions of mutual information.

4. Conclusions

To summarize, we have investigated evolutionarily conserved yeast MAPK signalling pathway. In
our phenomenological model, we study two parallel MAPK signalling pathways where one signalling
pathway in addition to its cognate pathway activates the non-cognate pathway through cross-talk
with an emphasis to understand the change in the dynamical behaviour of the system in the presence
of cross-talk at the single cell level. The model nonlinear Langevin equations have been solved
under the purview of LNA to quantify the variance and the covariance associated with the different
phosphorylated kinase. These quantities assist in the evaluation of mutual information (two variable
and multivariate) under Gaussian channel approximation. Quantification of mutual information has
been carried out with the variation of two cross-talk parameters ε1 and ε2. The two variable mutual
information shows that cross-talk establishes correlation in the signal propagation among the two
pathways. To represent a better insight into the directionality of the net information flow, we have
defined a new dimensionless parameter (net information transduction D), which varies on a scale of
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−1 to +1. Depending on the sign of D, we have deciphered the fidelity of one pathway compared to
the other.

We show that cross-talk generates correlated fluctuations at the population level. A minimum and
a maximum degree of coordination are observed at the low and high level of cross-talk, respectively.
Our analysis thus suggests that coordinated fluctuations are the causal effect of cross-talk in MAPK
signalling pathways. Furthermore, we demonstrate the impact of correlated fluctuations in the
reduction of variability between two different kinases using scatter plots. At the high degree of
cross-talk, scatter plots show high correlation coefficient compared to the lower level of cross talk.
These results together imply that cross-talk not only develops synchronisation in a cell but also reduces
variability due to the development of correlation between two different phosphorylated kinase levels
in a population. Depending on the number of inputs and outputs, we have identified two types of
signalling motifs from the composite network. Also, quantification of multivariate mutual information
allows us to calculate the net synergy associated with these two different motifs. The signal integration
motif (two inputs and one output) reveals high fidelity, whereas the signal bifurcation motif (one input
and two outputs) shows redundancy in information propagation.

Based on the aforesaid theoretical discussion, we suggest a satisfactory explanation about the
synchronisation in the outputs - a causal effect of cross-talk in parallel MAPK signalling pathways.
Nevertheless, one question apparently arises - what is the importance of such synchronisation in
cellular physiology? Such functional correlation is possibly required for both the outputs to perform
in a combined way to regulate several essential downstream genes. Several experimental results on
MAPK cross-talk in S. cerevisiae provide interesting evidence that corroborates with our theoretical
analysis. Phosphorylated Fus3 and Kss1 are both responsible for the activation of transcription factor
Ste12 that regulates different downstream genes [64]. Additionally, both activated Fus3 and Hog1
assist in arresting the cell cycle in G1 phase temporarily [5,8]. Cross-talk is also highly significant
for the eukaryotic cells where the promoter of TATA binding proteins is solely controlled by MAPK
signalling pathways [15,69], whereas these binding proteins are essential for the expression of most
nuclear genes. Also, they act as a potential vehicle for developing coordination among the multiple
disparate classes of genes. Thus, coordinated signalling of MAPK pathways paves the way for TATA
binding proteins to establish the association among large-scale nuclear genes. Gene regulation in S.
cerevisiae is known to be controlled by more than one transcription factors that bind cooperatively at
many promoter sites. This phenomenon suggests that coordinated fluctuations between the outputs of
MAPK signalling pathways are necessary to express the gene product in a controlled way. It is also
noticed that coordinated fluctuations among gene products are developed through transcriptional as
well as translational cross-talk [25,57,58,70]. We propose that it could be more convenient for a cell to
establish a functional connection among all intracellular processes if the correlation is initiated in the
signalling pathway, not solely in the gene regulation stage. In fact, one interesting signature which
was observed in different experiments is that cross-talk is prominent at the low concentration level
that is manifested in diverse environmental cues [22,24]. Thus, in these situations, fluctuations in the
cellular components are very high, and it is improbable for cells to adopt a constructive decision for
survival [71]. Our results indicate that such decision making program becomes easy when correlated
fluctuations among the essential proteins are successfully implemented through the bet-hedging
program [22].

Overall, we suggest that synchronisation between MAPK signalling pathways is a result of
cross-talk. Our analytical calculation supplemented by exact numerical simulation is a general
approach and can be applied to other cross-talk pathways to quantify the strength of cross-interactions.
In future, we plan to address the influence and physiological relevance of cross-talk in other
network motifs. Our theoretical observations in the present work could be verified upon the
quantification of phosphorylated kinase protein in a single cell using flow cytometry and time lapse
microscopy [72–74]. These experimental approaches can be implemented to measure the amount of
intra-cellular phosphorylated kinases by treating cells with external stimuli, fixing and permeabilizing
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cells with appropriate chemicals, and then staining with phospho-specific antibodies for different
kinases. After that, one can quantify the intensity of phosphorylated kinases in individual cells of a
colony. Using these data, distribution profiles of the concentration of phosphorylated kinases could be
developed. These quantifiable distribution profiles could be used to quantify the mutual information.
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Appendix A. Calculation of variance and covariance

The MAPK network motif shown in Figure 5 is explicated through stochastic Langevin equations.
Each pathway (X or Y) is activated by the initiation of an extra cellular signal (Sx or Sy). When the
first cascade kinase is activated, it regulates the activation of downstream kinases of the same as well
as the parallel pathway through cross-interaction. Once activated, the second kinase regulates the
activation of the last kinase. The active and inactive states can be identified in terms of phosphorylated
(xpi and ypj) and dephosphorylated (xi and yj) forms of each kinase (i, j = 1, 2, 3), respectively.
To construct the theoretical model of the composite MAPK network motif, we have considered
the total population (phosphorylated and dephosphorylated form) of all kinases to be a constant
((xi + xpi) = xTi = (yj + ypj) = yTj = constant; i = j). Thus, for X pathway the stochastic differential
equations for xp1, xp2 and xp3 are [63]

dxp1

dt
= kxsx(xT1 − xp1)− α1xp1 + ξ1(t), (A1a)

dxp2

dt
= k12xxp1(xT2 − xp2) + ε2yp1(xT2 − xp2)

−α2xp2 + ξ2(t), (A1b)
dxp3

dt
= k23xxp2(xT3 − xp3)− α3xp3 + ξ3(t). (A1c)

The first and the second terms on the right hand side of Equation (A.1) denote phosphorylation and
dephosphorylation rate of the corresponding kinase. Here, kx, k12x and k23x are activation and α1,
α2 and α3 are deactivation rate constants of xp1, xp2 and xp3, respectively. ε2 is the cross-interaction
parameter that controls signal propagation from Y to X pathway (yp1 → xp2). The ξi-s (i = 1, 2, 3) are
Gaussian white noise terms with zero mean and finite noise strength. While writing Equation (A.1)
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we have used the conservation relation xi = xTi − xpi. Similarly, the stochastic Langevin equations
associated with the components of the Y pathway can be written as [63]

dyp1

dt
= kysy(yT1 − yp1)− β1yp1 + η1(t), (A2a)

dyp2

dt
= k12yyp1(yT2 − yp2) + ε1xp1(yT2 − yp2)

−β2yp2 + η2(t), (A2b)
dyp3

dt
= k23yyp2(yT3 − yp3)− β3yp3 + η3(t). (A2c)

In Equation (A.2), the first and the second terms stand for phosphorylation and dephosphorylation
rate. Here, ky, k12y and k23y are activation and β1, β2 and β3 are deactivation rate constants of yp1, yp2

and yp3, respectively. The cross-interaction parameter is ε1 that controls signal transduction from X to
Y pathway (xp1 → yp2). The noise terms ηi-s (i = 1, 2, 3) are considered to be Gaussian white noise
with zero mean and finite noise strength. For Y pathway, constant constraint yi = yTi − ypi is also
valid. The statistical properties of ξi-s and ηj-s (i, j = 1, 2, 3) are

〈ξ1〉 = 〈ξ2〉 = 〈ξ3〉 = 〈η1〉 = 〈η2〉 = 〈η3〉 = 0,

〈ξi(t)ξ j(t′)〉 = 〈|ξi|2〉δijδ(t − t′),

〈ηi(t)ηj(t′)〉 = 〈|ηi|2〉δijδ(t − t′),

〈ξi(t)ηj(t′)〉 = 〈|ξiηj|〉δijδ(t − t′),

〈|ξ1|2〉 = kxsx(xT1 − 〈xp1〉) + α1〈xp1〉 = 2α1〈xp1〉,
〈|ξ2|2〉 = (k12x〈xp1〉(xT2 − 〈xp2〉)

+ε2〈yp1〉(xT2 − 〈xp2〉) + α2〈xp2〉
= 2α2〈xp2〉,

〈|ξ3|2〉 = k23x〈xp2〉(xT3 − 〈xp3〉) + α3〈xp3〉
= 2α3〈xp3〉,

〈|η1|2〉 = kysy(yT1 − 〈yp1〉) + β1〈yp1〉
= 2β1〈yp1〉,

〈|η2|2〉 = k12y〈yp1〉(yT2 − 〈yp2〉)
+ε1〈xp1〉(yT2 − 〈yp2〉) + β2〈yp2〉

= 2β2〈yp2〉,
〈|η3|2〉 = k23y〈yp2〉(yT3 − 〈yp3〉) + β3〈yp3〉

= 2β3〈yp3〉,
〈|ξ1η1|〉 = 〈|ξ1η2|〉 = 〈|ξ1η3|〉 = 〈|ξ2η1|〉 = 〈|ξ2η2|〉

= 〈|ξ2η3|〉 = 〈|ξ3η1|〉 = 〈|ξ3η1|〉 = 〈|ξ3η3|〉
= 0.

To solve the nonlinear Equations (A.1–A.2), we adopt LNA [30–34,36–40,75–77]. Linearizing
Equations (A.1–A.2) around steady state δz(t) = z(t)− 〈z〉, where 〈z〉 is the average population of z at
long time limit, one arrives at
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d
dt

⎛⎜⎜⎜⎜⎜⎜⎜⎝

δxp1

δxp2

δxp3

δyp1

δyp2

δyp3

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

Jx1x1 Jx1x2 Jx1x3 Jx1y1 Jx1y2 Jx1y3

Jx2x1 Jx2x2 Jx2x3 Jx2y1 Jx2y2 Jx2y3

Jx3x1 Jx3x2 Jx3x3 Jx3y1 Jx3y2 Jx3y3

Jy1x1 Jy1x2 Jy1x3 Jy1y1 Jy1y2 Jy1y3

Jy2x1 Jy2x2 Jy2x3 Jy2y1 Jy2y2 Jy2y3

Jy3x1 Jy3x2 Jy3x3 Jy3y1 Jy3y2 Jy3y3

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

δxp1

δxp2

δxp3

δyp1

δyp2

δyp3

⎞⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎜⎝

ξ1

ξ2

ξ3

η1

η2

η3

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (A3)

Here

Jx1x1 = −(kxsx + α1),

Jx1x2 = Jx1x3 = Jx1y1 = Jx1y2 = Jx1y3 = 0,

Jx2x1 = k12x(xT2 − 〈xp2〉),
Jx2x2 = −(k12x〈xp1〉+ ε2〈yp1〉+ α2),

Jx2y1 = ε2(xT2 − 〈xp2〉),
Jx2x3 = Jx2y2 = Jx2y3 = 0,

Jx3x1 = Jx3y1 = Jx3y2 = Jx3y3 = 0,

Jx3x2 = k23x(xT3 − 〈xp3〉),
Jx3x3 = −(k23x〈xp2〉+ α3),

Jy1y1 = −(kysy + β1),

Jy1x1 = Jy1x2 = Jy1x3 = Jy1y2 = Jy1y3 = 0,

Jy2y1 = k12y(yT2 − 〈yp2〉),
Jy2y2 = −(k12y〈yp1〉+ ε1〈xp1〉+ β2),

Jy2x1 = ε1(yT2 − 〈yp2〉),
Jy2y3 = Jy2x2 = Jy2x3 = 0,

Jy3y1 = Jy3x1 = Jy3x2 = Jy3x3 = 0,

Jy3y2 = k23y(yT3 − 〈yp3〉),
Jy3y3 = −(k23y〈yp2〉+ β3).

The generalised matrix form of Equation (A.3) is

dδA

dt
= JA=〈A〉δA(t) + Θ(t), (A4)

where J is the Jacobian matrix evaluated at steady state. The diagonal elements of J matrix define the
relaxation rate of each kinase and the off-diagonal elements represent the interaction rate between two
different kinases [75–77]. Moreover, δA and Θ are the fluctuations matrix and the noise matrix of the
kinases, respectively. To calculate the different variances and covariances in the stationary state we
make use of the Lyapunov matrix equation [33,36,37]

Jσ + σJT + D = 0, (A5)
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where σ is the covariance matrix and D = 〈ΘΘT〉 is the diffusion matrix that depends on different
noise strengths. Here, 〈· · · 〉 represents ensemble average and T stands for transpose of a matrix.
Solution of Equation (A.5) provides the expressions of variance and covariance of the kinases

σ2
xp1

=
α1〈xp1〉

Jx1x1
. (A6a)

σ2
xp2

=
α2〈xp2〉

Jx2x2
+

α1〈xp1〉J2
x2x1

Jx1x1 Jx2x2(Jx1x1 + Jx2x2)
+

β1〈yp1〉J2
x2y1

Jy1y1 Jx2x2(Jy1y1 + Jx2x2)
. (A6b)

σ2
yp1

=
β1〈yp1〉

Jy1y1
. (A6c)

σ2
yp2

=
β2〈yp2〉

Jy2y2
+

β1〈yp1〉J2
y2y1

Jy1y1 Jy2y2(Jy1y1 + Jy2y2)
+

α1〈xp1〉J2
y2x1

Jx1x1 Jy2y2(Jx1x1 + Jy2y2)
. (A6d)

σ2
xp1xp2

= σ2
xp2xp1

=
α1〈xp1〉Jx2x1 Jx2x2

Jx1x1 Jx2x2(Jx1x1 + Jx2x2)
. (A6e)

σ2
xp1yp2

= σ2
yp2xp1

=
α1〈xp1〉Jy2x1 Jy2y2

Jx1x1 Jy2y2(Jx1x1 + Jy2y2)
. (A6f)

σ2
yp1yp2

= σ2
yp2yp1

=
β1〈yp1〉Jy2y1 Jy2y2

Jy1y1 Jy2y2(Jy1y1 + Jy2y2)
. (A6g)

σ2
yp1xp2

= σ2
xp2yp1

=
β1〈yp1〉Jx2y1 Jx2x2

Jy1y1 Jx2x2(Jy1y1 + Jx2x2)
. (A6h)

σ2
xp1yp1

= σ2
yp1xp1

= 0. (A6i)

σ2
xp3

=
α3〈xp3〉

Jx3x3
+

α2〈xp2〉J2
x3x2

Jx2x2 Jx3x3(Jx2x2 + Jx3x3)
+

α1〈xp1〉J2
x2x1 J2

x3x2(Jx1x1 + Jx2x2 + Jx3x3)

Jx1x1 Jx2x2 Jx3x3(Jx1x1 + Jx2x2)(Jx1x1 + Jx3x3)(Jx2x2 + Jx3x3)

+
β1〈yp1〉J2

x2y1 J2
x3x2(Jy1y1 + Jx2x2 + Jx3x3)

Jy1y1 Jx2x2 Jx3x3(Jy1y1 + Jx2x2)(Jy1y1 + Jx3x3)(Jx2x2 + Jx3x3)
. (A6j)

σ2
yp3

=
β3〈yp3〉

Jy3y3
+

β2〈yp2〉J2
y3y2

Jy2y2 Jy3y3(Jy2y2 + Jy3y3)
+

β1〈yp1〉J2
y2y1 J2

y3y2(Jy1y1 + Jy2y2 + Jy3y3)

Jy1y1 Jy2y2 Jy3y3(Jy1y1 + Jy2y2)(Jy1y1 + Jy3y3)(Jy2y2 + Jy3y3)

+
α1〈xp1〉J2

y2x1 J2
y3y2(Jx1x1 + Jy2y2 + Jy3y3)

Jx1x1 Jy2y2 Jy3y3(Jx1x1 + Jy2y2)(Jx1x1 + Jy3y3)(Jy2y2 + Jy3y3)
. (A6k)

σ2
xp2yp2

= σ2
yp2xp2

=
α1〈xp1〉Jx2x1 Jy2x1(Jx2x2 + Jy2y2 + 2Jx1x1)

Jx1x1(Jx2x2 + Jy2y2)(Jx2x2 + Jx1x1)(Jy2y2 + Jx1x1)
+

β1〈yp1〉Jx2y1 Jy2y1(Jx2x2 + Jy2y2 + 2Jy1y1)

Jy1y1(Jx2x2 + Jy2y2)(Jx2x2 + Jy1y1)(Jy2y2 + Jy1y1)
. (A6l)

σ2
xp3yp3

= σ2
yp3xp3

=
α1〈xp1〉Jx3x2 Jy3y2 Jx2x1 Jy2x1C1

Jx1x1(Jx2x2 + Jy2y2)(Jx2x2 + Jy3y3)(Jx3x3 + Jy2y2)(Jx3x3 + Jy3y3)

×(Jx2x2 + Jx1x1)(Jx3x3 + Jx1x1)(Jy2y2 + Jx1x1)(Jy3y3 + Jx1x1)

+
β1〈yp1〉Jx3x2 Jy3y2 Jx2y1 Jy2y1C2

Jy1y1(Jx2x2 + Jy2y2)(Jx2x2 + Jy3y3)(Jx3x3 + Jy2y2)(Jx3x3 + Jy3y3)

×(Jx2x2 + Jy1y1)(Jx3x3 + Jy1y1)(Jy2y2 + Jy1y1)(Jy3y3 + Jy1y1)

. (A6m)

Here,

C1 = (Jx2x2 + Jy2y2)(Jx2x2 + Jy3y3)(Jx3x3 + Jy2y2)(Jx3x3 + Jy3y3) + 2Jx1x1((Jx3x3 + Jy2y2)

(Jx3x3 + Jy3y3)(Jy2y2 + Jy3y3) + J2
x2x2(Jx3x3 + Jy2y2 + Jy3y3) + Jx2x2(Jx3x3 + Jy2y2 + Jy3y3)

2)

+2J2
x1x1(Jx2x2 + Jx3x3 + Jy2y2 + Jy3y3)

2 + 2J3
x1x1(Jx2x2 + Jx3x3 + Jy2y2 + Jy3y3),

C2 = (Jx2x2 + Jy2y2)(Jx2x2 + Jy3y3)(Jx3x3 + Jy2y2)(Jx3x3 + Jy3y3) + 2Jy1y1((Jx3x3 + Jy2y2)

(Jx3x3 + Jy3y3)(Jy2y2 + Jy3y3) + J2
x2x2(Jx3x3 + Jy2y2 + Jy3y3) + Jx2x2(Jx3x3 + Jy2y2 + Jy3y3)

2)

+2J2
y1y1(Jx2x2 + Jx3x3 + Jy2y2 + Jy3y3)

2 + 2J3
y1y1(Jx2x2 + Jx3x3 + Jy2y2 + Jy3y3).

In our calculation, we use the analytical expressions of variance and covariance for evaluating the
value of mutual information and correlation coefficient.
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Abstract: Information theory is often utilized to capture both linear as well as nonlinear relationships
between any two parts of a dynamical complex system. Recently, an extension to classical information
theory called partial information decomposition has been developed, which allows one to partition
the information that two subsystems have about a third one into unique, redundant and synergistic
contributions. Here, we apply a recent estimator of partial information decomposition to characterize
the dynamics of two different complex systems. First, we analyze the distribution of information
in triplets of spins in the 2D Ising model as a function of temperature. We find that while
redundant information obtains a maximum at the critical point, synergistic information peaks in
the disorder phase. Secondly, we characterize 1D elementary cellular automata rules based on
the information distribution between neighboring cells. We describe several clusters of rules with
similar partial information decomposition. These examples illustrate how the partial information
decomposition provides a characterization of the emergent dynamics of complex systems in terms of
the information distributed across their interacting units.

Keywords: information theory; partial information decomposition; Ising model; cellular automata

1. Introduction

The universe is full of systems that comprise a large number of interacting elements. Even if the
immediate local interactions of these elements are rather simple, the global observable behaviour that
they give rise to is often complex. Such systems, intuitively understood to be physical manifestations
of the expression “the whole is more than the sum of its parts”, are aptly called complex systems.
Canonical examples of complex systems include the human brain, ant colonies and financial markets.
Indeed, most of these systems have many relatively simple parts (e.g., neurons) interacting nonlinearly,
whose collective behavior engenders complex phenomena (e.g., consciousness).

In addition to physical systems, many mathematical models have been developed that capture the
essence of different complex systems. These theoretical models are particularly interesting because one
has complete knowledge of how their various parts are connected together and which rules they obey
while interacting with each other. Nevertheless, the emergent global structures are often so complex
that their exact evolution is difficult to predict from the initial conditions and the interaction rules
without actually simulating the system. Cellular automata and the Ising model are quintessential
examples of such models.

One way to analyze these complex models is to treat them as information processing systems and
measure the amount of information that their elements have about each other. Often, such analysis
is done by using a well-known quantity from classical information theory, mutual information, and
its various derivations, which measure statistical dependencies between a pair of random variables.
These measures are particularly useful because of their sensitivity to both linear as well as nonlinear
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interactions between random variables. Among other things, they allow one to quantify the amount of
information that is stored [1], transferred [2–5] and modified [6] in different parts of the system.

However, only measuring the information that is processed between two sub-components is rather
restrictive. Indeed, even the simplest of logic gates has more elements, being composed of a pair of
inputs and an output, which statistical dependencies we are interested to characterize. While one could
consider the inputs as a single sub-component, this would not capture the intricate interactions among
the inputs themselves. In particular, components in the input ensemble can provide information
uniquely, redundantly, or synergistically about the output [7].

To capture this distribution of information between two inputs and a single output, an extension
to classical information theory is needed [7]. Recently, several axiomatic frameworks have been
developed to account for such extension and they are often referred to as partial information
decomposition (PID) [7–11]. For a review of the uses of partial information decomposition in
Neuroscience, see [12,13]. In this article, we capitalize on a recently developed numerical estimator for
PID [14] for a particular version of PID [8], and use it to characterize the emergent dynamics of several
complex systems (2D Ising model and 1D cellular automata) in terms of the information distribution
across their interacting sub-units.

The remaining of this article is organized as follows. In the Background sections, we give a brief
overview of partial information decomposition including its numerical estimation, as well as the basics
of Ising and elementary cellular automata models. The Methods section details both the numerical
simulation and PID analyses for both systems. The Results section describes the results of applying
the PID estimator to the dynamics of neighboring cells in the Ising model and elementary cellular
automata. We conclude by discussing the implications of the obtained results and related work, as well
as the limitations of applying the current approach to other systems such as artificial neural networks,
and provide suggestions for future work.

2. Background

2.1. Partial Information Decomposition

Mutual information measures the amount of information two random variables, or more generally,
two random vectors have about each other. However, it is often worthwhile to ask how much
information an ensemble of input (source) random variables carries about some output (target) variable.
A trivial solution would be to measure the mutual information between the whole input ensemble
considered as a single random vector and the output. However, this would not capture the interactions
between the input variables themselves. Moreover, by considering the input ensemble as a single unit,
knowledge about how the interactions between specific individual units and the output differ is lost.

This section briefly reviews the partial information decomposition proposed by [8]—a specific
mathematical framework for decomposing mutual information between a group of input variables
and single source variable.

2.1.1. Formulation

The simplest non-trivial system to analyze that has an ensemble of inputs and a single output is a
system with two inputs. Given this setup, one can ask how much information one input variable has
about the output that the other does not, how much information they share about the output, and how
much information they jointly have about the output such that both inputs must be present for this
information to exist.

More formally, let Y and Z be two random variables that are considered as sources to a third
random variable X. The mutual information between the pair (Y, Z) and X is defined in terms of
entropies as

MI(X; Y, Z) = H(X)− H(X|Y, Z).
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The partial information decomposition framework aims to decompose this mutual information
into unique, redundant and complementary information terms.

Unique information quantifies the amount of information that only one of the input variables
has about the output variable. The unique information that Y has about the output X is denoted as
UI(X : Y \ Z). Similarly, UI(X : Z \Y) denotes the unique information that Z has about the target X.

Shared information quantifies the amount of information both inputs share about the output
variable. It is also sometimes called redundant information because, if both inputs contain the
same information about the output, it would suffice to observe only one of the input variables.
The shared information is denoted as SI(X : Y; Z). (To be consistent with “Elements of Information
Theory”, the notation used in this article for PID terms deviates a little from the one introduced by
Bertschinger et al. [8]. Specifically, a colon (:) is used to partition the set of random variables to a single
output (on the left-hand side) and a set of inputs (on the right-hand side). As before, a semicolon
(;) is used to separate the input variables on the right-hand side, signifying that these variables are
considered to be separate entities, not part of a single random vector.)

Complementary or synergistic information quantifies the amount of information that is only
present when both inputs are considered jointly. The complementary information is denoted as
CI(X : Y; Z).

It is generally agreed [7–10] that mutual information can be decomposed into the four terms just
described as follows:

MI(X; Y, Z) = SI(X : Y; Z) + UI(X : Y \ Z) + UI(X : Z \Y) + CI(X : Y; Z). (1)

The same sources also agree on the decomposition of information that a single variable, either
Y or Z, has about the output X:

MI(X; Y) = UI(X : Y \ Z) + SI(X : Y; Z),
MI(X; Z) = UI(X : Z \Y) + SI(X : Y; Z).

(2)

It is important to note that thus far in this section, no formulas for actually calculating the PID
terms have been given, and only several relationships that such a decomposition should satisfy have
been stated. The only computable quantities so far are the mutual information terms on the left-hand
side of Equations (1) and (2). The discussion of computing the specific PID terms is developed in the
next section, which is heavily inspired by an intuitive overview of the paper “Quantifying Unique
Information” by Bertschinger et al. [8], provided by Wibral et al. [13].

2.1.2. Calculating PID Terms

It turns out that the current tools from classical information theory—entropy and various forms of
mutual information—are not enough to calculate any of the terms of the PID [7]. Indeed, there are only
three Equations (1) and (2) relating to the four variables of interest, making the system undetermined.
In order to make the problem tractable, a definition of at least one of the PID terms must be given [8].

Taking inspiration from decision theory, Bertschinger et al. [8] were able to provide such a
definition for unique information. Their insight was that, if a variable contains unique information,
there must be a way to exploit it. In other words, there must exist a situation such that an agent
having access to unique information has an advantage over another agent who does not possess this
knowledge. Given such a situation, the agent in possession of unique information can prove it to
others by designing a bet on the output variable, such that, on average, the bet is won by the designer.

In particular, suppose there are two agents, Alice and Bob, Alice having access to the random
variable Y and Bob having access to the random variable Z from Equation (1). Neither of them
have access to the other player’s random variable, and both of them can observe, but not directly
modify, the output variable X. Alice can prove to Bob that she has unique information about X via Y
by constructing a bet on the outcomes of X. Since Alice can only directly modify Y and observe the
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outcome X, her reward will depend only on the distribution p(X, Y). Similarly, Bob’s reward will
depend only on the distribution p(X, Z). From this, it follows that the results of the bet are not
dependent on the full distribution p(X, Y, Z), but rather only on its marginals p(X, Y) and p(X, Z).

Let p ≡ p(X, Y, Z) be the original joint probability distribution that we are interested in computing
the PID of, and let Δ be the set of all joint probability distributions of X, Y and Z. Under the assumption
that the unique information depends only on the two marginal distributions of p, a set of probability
distributions Δp can be defined such that the unique information stays constant for any element in
this set. Such a set consist only of the probability distributions that have the same marginal distributions
of the pairs (X, Y) and (X, Z) as p. It is defined as follows:

Δp = {q ∈ Δ : q(X = x, Y = y) = p(X = x, Y = y)

and q(X = x, Z = z) = p(X = x, Z = z) for all x ∈ X, y ∈ Y, z ∈ Z}

Putting the observation that unique information is constant on Δp and Equation (2) together,
it becomes apparent that shared information will also be constant on Δp. Thus, only complementary
information varies when considering arbitrary distribution q from Δp. The last observation makes
sense intuitively and is to be expected, since “complementary information should capture precisely
the information that is carried by the joint dependencies between X, Y and Z” [8].

Using the chain rule for information as well as decompositions (1) and (2), the following identities
can be derived:

MI(X; Y|Z) = UI(X : Y \ Z) + CI(X : Y; Z),

MI(X; Z|Y) = UI(X : Z \Y) + CI(X : Y; Z).
(3)

Now, if a distribution q0 ∈ Δp could be found that yields vanishing synergy, the unique
information could be calculated using quantities from classical information theory. Indeed, from
Equation (3), it can be seen that when synergy is 0, the mutual information and unique information
terms coincide. Bertschinger et al. [8] prove that a distribution q0 ∈ Δp with this property only exists
for specific measures of unique, shared and complementary information. They define the suitable
measure for unique information as follows:

ŨI(X : Y \ Z) = min
q∈Δp

MIq(X; Y|Z), (4)

ŨI(X : Z \Y) = min
q∈Δp

MIq(X; Z|Y), (5)

where the subscript q under the mutual information symbol means that the quantity is calculated over
the distribution q.

Replacing these measures with the corresponding quantities in Equations (1) and (2), measures
for shared and complementary information can be defined as follows:

S̃I(X : Y; Z) = max
q∈Δp

MIq(X; Y)−MIq(X; Y|Z), (6)

C̃I(X : Y; Z) = MI(X; Y, Z)−min
q∈Δp

MIq(X; Y, Z). (7)

These four constrained optimization problems (Equations (4)–(7)) are all equivalent in the sense
that it would suffice to solve only one of these problems and the obtained optimal joint distribution q
would produce the optimal value for all the remaining three measures as well.

2.1.3. Numerical Estimator

Bertschinger et al. showed that “the optimization problems involved in the definitions of ŨI,
S̃I and C̃I . . . are convex optimization problems on convex sets” [8]. A notable property of convex
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functions is that their local and global minimums coincide, making the optimization problems that
involve such functions relatively easy to solve. Indeed, many effective algorithms have been developed
that solve even large convex problems both efficiently and reliably [15].

However, in this particular case, the convex optimization problem is not trivial because “the
optimization problems . . . can be very ill-conditioned, in the sense that there are directions in which
the function varies fast, and other directions in which the function varies slowly [8].” This means
that there exists extremely small eigenvalues in the positive definite matrix that needs to be inverted
as part of the convex optimization procedure, making the method numerically unstable. To tackle
this problem in [14], the optimization problem is analyzed in detail and found that the problematic
issues occur mostly at the boundary of the feasible region. Hence, the authors proposed and compared
several versions of interior point methods to provide a fast estimator of PID terms together with a
certificate of its approximation quality.

The analyzed numerical estimator takes the approach of solving the optimization problem given
in Equation (7) and then using the resulting distribution q to find the other quantities of interest.
The user interface of the estimator is rather simple, abstracting away all the technical details of its inner
workings: it takes as input a probability distribution p(X, Y, Z) and outputs the scalars MI(X; Y, Z),
UI(X : Y \ Z), UI(X : Z \ Y), SI(X : Y; Z) and CI(X : Y; Z). For all of the analyses conducted, the
convex program is solved in CVXOPT [16] ,using an interior point method. When the interior point
method failed to converge, we refined the solution by solving iteratively the Karush–Kuhn–Tucker
equations of the program until a desired level of tolerance was reached. See [14] for a detailed study of
the performance of different algorithms to solve the optimization problem in Equation (7).

2.2. Ising Model

The Ising model, first conceived by Wilhelm Lenz in 1920 [17], is a mathematical model of
ferromagnetism. The model abstracts away the rather complex details of atomic structures of magnets,
consisting simply of a discrete lattice of cells or sites, denoted as si, each of which has an associated
binary value of either −1 or +1 [18]. Conceptually, the lattice can be thought of as a physical material,
where the sites roughly represent the unpaired electrons of its atoms. The binary value of each site
intuitively corresponds to the direction of the electron’s spin. A value of −1 means that the spin is
considered to point down, otherwise it is said to be pointing up. A given set of spins, denoted as s
(without the subscript), is called the configuration of the lattice [18].

The probability of a configuration s at thermal equilibrium is given by the Boltzmann distribution:

Pβ(s) =
e−βE(s)

∑s e−βE(s)
, (8)

where the sum in the denominator is over all possible spin configurations, E(s) denotes the energy
associated with the configuration s, and β = 1

kBT , where T is the temperature and kB is the Boltzmann
constant. Thus, β is proportional to the inverse temperature of the system.

The probability of a configuration s depends on two quantities: the internal energy of the
configuration under discussion, and the temperature. Two observations that stem from Equation (8)
are of importance. First, the lower the energy E(s) of a configuration s, the higher its probability.
Second, the higher the temperature T (or equivalently, the lower the parameter β), the more diffuse
the distribution becomes. The latter mathematical property models the physical fact that, at high
temperatures, the thermal “oscillation” of the atoms break the alignment of the spins, demagnetizing
the material.

Assuming that the external magnetic field interacting with the lattice is omitted, and the
interaction strength between pairs of nearest neighbors is fixed to be equal to the Boltzmann constant kB,
the energy of a spin configuration s simplifies to
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H(s) = −∑
〈ij〉

sisj, (9)

where the sum is over all different nearest neighboring pairs of spins (each pair counted only once).
The minus sign in front of the sum accounts for a lower energy state (and, thus, with a higher
probability) is achieved when neighboring spins take on the same value, as this yields a positive
product. It can be intuitively thought as if the spins are intrinsically trying to align with their neighbors,
while the temperature of the system quantifies the amount of prohibition that prevents them from
doing so.

The Ising model in two or more dimensions exhibits a second order phase transition with a critical
temperature Tc such that, for temperatures T < Tc, the expected magnetization (net alignment of
spins) quickly rises to be different from zero. The Ising model is thus a prototypical example of many
complex systems exhibiting collective order even under the constant presence of a source of disorder.

2.3. Elementary Cellular Automata

Elementary cellular automata (ECA) are discrete dynamical complex systems that consist of a
one-dimensional array of cells, each of which has an associated binary value. Every automaton is
uniquely defined by its rule table—a function that maps the value of a cell to a new value based on the
cell’s current value and the values of its two immediate neighbors. Since each rule table corresponds
to a unique 8-bit binary number, there are only 28 = 256 elementary cellular automata in total, each of
which is associated with a unique decimal number from 0 to 255.

Elementary cellular automata can be simulated in time by simultaneously applying the update
rule to each cell in the one-dimensional array, producing a two-dimensional plot where the vertical
axis represents time. The result of evolving the rule 30, given an initial lattice configuration of all white
cells except the center, can be seen in Figure 1. Notably, the figure shows that the evolution of the
dynamics can be rather non-trivial. Indeed, cellular automata are interesting precisely because, despite
their simplicity, the patterns that emerge as a function of the rule table and the initial configuration
can be quite complex. For example, elementary cellular automata have been shown to be capable of
generating random numbers [19], modelling city traffic [20] and simulating any Turing machine [21].
On the other hand, many rules quickly converge into an uninteresting homogeneous or repetitive state.

Figure 1. A space-time diagram of the evolution of rule 30 [22].

Because the set of all elementary cellular automata is rather diverse, consisting of both
computationally interesting as well as uninteresting rules, it would make sense to try to group
them based on the apparent complexity of their behaviour. In his seminal paper “Universality and
Complexity in Cellular Automata” [23], Stephen Wolfram did just that.
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After qualitatively analyzing the global structures that the different rules give rise to, given
random initial states, Wolfram proposed a classification scheme that partitions all elementary cellular
automata into four classes. The proposed classes are as follows:

• Class 1: Cellular automata that converge to a homogeneous state. For example, rule 0, which
takes any state into a 0 state, belongs to this class.

• Class 2: Ceullar automata that converge to a repetitive or periodic state. For example, rule 184,
which has been used to model traffic, belongs to this class.

• Class 3: Cellular automata that evolve chaotically. For example, rule 30, which Mathematica uses
as a random number generator [24], belongs to this class.

• Class 4: Cellular automata in which persistent propagating structures are formed. For example,
rule 110, which is capable of universal computation, belongs to this class. It is conjectured that
other rules in this class are also universal.

3. Methods

3.1. Methodology for Analyzing the Ising Model

To estimate the PID terms in the Ising model, a two-dimensional model with Glauber
dynamics [25], periodic boundary conditions and a square lattice of size 128 × 128 was simulated.
A single simulation consisted of a burn-in period of 104 updates, followed by 105 updates from which
the samples were gathered. As in the paper by Barnett et al. [26], “each update comprised L (potential)
spin-flips according to Glauber transition probabilities”, where L is the size of the lattice. Hence, the
probability to accept a transition is given by

P(s → sn) =
1

1 + e
ΔE(s→sn)

T

, (10)

where s and sn denote the old and new lattice configurations, respectively, T stands for temperature and
ΔE(s → sn) = E(s)− E(sn) is the difference between the energies of the two successive configurations.

In other words, using Algorithm 1 as a subprocedure, the model was simulated according
to Algorithm 2 with B = 104, N = 105 and L = 128 × 128. This procedure was performed
at 102 temperature points spaced evenly over the interval [2.0, 2.8], which encloses the theoretical
phase transition at Tc ≈ 2.269.

Algorithm 1: A single Glauber dynamics update, which consists of L spin-flip attempts

1 Input: A lattice configuration s, temperature T and lag L
2 for i = 1...L do

3 Choose a random site from the lattice;
4 Flip the spin associated with the chosen site to obtain a configuration sn;
5 Calculate P(s → sn);
6 Generate a random number x uniformly at random within the range [0, 1];
7 if x ≤ P(s → sn) then

8 s = sn; � accept the new configuration

9 return s;
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Algorithm 2: The full Glauber dynamics algorithm

1 Input: Temperature T, burn-in period B, lag L, and the number of samples to draw N
2 Initialize a random lattice configuration s;
3 for i = 1...B do

4 s = Run Algorithm 1 on inputs s, T and L;

5 set samples to empty list � List to save the sampled configurations to
6 for i = 1...N do

7 s = Run Algorithm 1 on input s, T and L;
8 save configuration s to samples;

9 return samples

The obtained 105 lattice configurations at each temperature point were subsequently used to
construct the probability distributions that the PID estimator takes as input. One-hundred sites were
chosen uniformly at random at the beginning of the simulation, and they stayed the same for all
temperature points. Figure 2 illustrates the 100 randomly chosen sites of the 128× 128 lattice. For each
site, the relative frequency of the spin configurations of its local neighborhood (the site itself along
with four of its neighbors) was measured, yielding a total of 100 joint probability distributions of
five random variables per temperature point. An example of one such distribution at temperature
T ≈ 2.119 is given by Table 1, where the first random variable C represents the center site, and the
following four random variables represent its immediate neighbors. For example, the last row of the
table illustrates that the configuration where all the spins point upwards at a specific location on the
lattice has a probability of 0.776, meaning that it appears approximately 0.776× 105 = 77,600 times out
of a total of 105 configurations sampled. The high probability of “all aligned” spins is to be expected,
since the samples are taken while the Ising model is in the ordered, low temperature regime.

Figure 2. One-hundred randomly chosen sites (blue dots) of a 128× 128 square lattice.

Having created 100 probability distributions for each of the 102 temperature points, it remains
to feed the distributions into the PID estimator for analysis. However, this can not be done naively
with the current setup, as the estimator works with probability distributions of 3 random vectors only,
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where one of them is thought of as an output and the remaining as inputs. Thus, the distributions of the
same form as the one in Table 1 must be reconfigured such that they are understood by the estimator,
i.e., it must be decided how neighboring sites are partitioned into 2 sets of inputs and an output.
Two different setups were considered. First, the center site was taken to be the output, and only 2
neighbors were chosen without repetitions uniformly at random (out of the possible set of 4 neighbors)
as inputs. Second, the center was again considered as an output, but, in this experiment, all 4 neighbors
were taken into consideration as inputs: the full set of neighbors was randomly partitioned into 2
disjoint pairs, such that each pair was a two-dimensional random vector. After estimating the PID
terms, an arithmetic mean across the sites was taken at each temperature point, yielding 102 average
PID vectors, one for each temperature point.

Table 1. Joint probability distribution of a random site and its four neighbors at temperature T ≈ 2.119.
The column labels represent the location of the sites with respect to the neighboring center (C) site:
upper (U), right (R), down (D), left (L).

C U R D L Pr

−1 −1 −1 −1 −1 0.004
−1 −1 −1 −1 1 0.002
−1 −1 −1 1 −1 0.003
−1 −1 −1 1 1 0.003
.. .. .. .. .. ..
1 1 1 −1 1 0.035
1 1 1 1 −1 0.033
1 1 1 1 1 0.776

Due to the randomness present in the Glauber dynamics and in choosing the 100 sites from
the lattice for analysis, the results may vary across different runs. To gain more confidence in the
results, the whole experiment described above (simulating the Ising model, choosing 100 random
sites for analysis, estimating the PID of the local neighborhood of the sites) was repeated 8 times and
the results averaged. In the very first run, each initial spin configuration was initialized randomly
at each temperature point as in line 2 of Algorithm 2, and the configuration that was arrived at
after the burn in period of 104 updates was saved. For the subsequent 7 runs, the very first lattice
configuration for temperature point Ti was chosen to be equivalent to the saved lattice configuration
from the very first run at temperature point Ti. After doing the first run separately to obtain the initial
configurations, the 7 remaining simulations to gather the relevant lattice configurations were run for
8 days on 41 computing nodes in parallel in a computer cluster.

3.2. Methodology for Analyzing the Elementary Cellular Automata

The average information distribution was estimated in all 88 inequivalent elementary cellular
automata. (While there are 256 different rules in total, some of them are computationally equivalent.
In particular, exchanging the roles of black and white in the rule table and reflecting the rule through a
vertical axis does not change the computational capabilities of the automaton. Not considering rules
that are equivalent under these transformations yields 88 rules that are of interest). To gather the
probability distributions for the PID estimator, 88 automata with 104 cells were simulated for 103 time
steps using periodic boundary conditions. For each automaton, a random initial configuration was
generated, such that each cell at time step t = 0 was associated with a value taken uniformly at random
from the set {0, 1}.

The input pair for the PID was taken to be the cell’s 2 neighbors (considered as a single random
vector) and the cell itself at time step t, while the output was the cell’s value at the next time step t + 1.
This is indeed a logical setup to use, as it ensures that the input set contains all the variables that the
output is a function of. Using these random variables, a single global distribution was generated for
each rule. Note that this differs from the methodology that was used in the case of the Ising model,
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where a subset of the sites was chosen for analysis, yielding 100 different local distributions and PID
values, the latter of which were subsequently averaged to obtain estimates of the global measures.

Because the emergent dynamics of a cellular automaton depend on the initial configuration of the
lattice, the above experiment (generating initial configurations for each of the 88 automata, simulating
the dynamics and generating the distribution that is fed into the estimator) was repeated 5 times, after
which the resulting 5 PIDs of each rule were averaged.

4. Results

Next, we provide the results of applying a PID estimator to the dynamics of neighboring units in
two different complex systems. The focus of the first section is on the Ising model, while the second
concentrates on elementary cellular automata.

4.1. Ising Model: Partial Information Decomposition as a Function of Temperature

First, we consider the case in which the partial information decomposition is evaluated for triplets
of neighboring spins in the lattice. In Figure 3, the average mutual information and PID terms are
given as a function of the temperature.

Figure 3. Average mutual information and PID terms (with two random neighbors of every “center”
spin considered as inputs) of a 128× 128 lattice Ising model evaluated at 102 temperature points spaced
evenly over the interval [2.0, 2.8]. All information functionals are given in nats. Error bars represent
the standard deviation over eight runs.

As seen from the figure, mutual information peaks around the phase transition (more precisely, at
T ≈ 2.293)—a phenomenon that agrees with previous theoretical and numerical work [26]. In addition,
since, in the experiment under discussion, the mutual information was measured between a site
and two of its neighbors, as opposed to measuring it between two neighboring sites only, it would
be reasonable to expect the resulting mutual information to be higher in the current experiment.
Indeed, two neighbors should have more information about their center site than a single neighbor has.
Barnett et al. [26] observed that the mutual information between two neighboring sites (the quantity
Ipw in the paper) achieves a maximum value of less than 0.3. In agreement with intuition, the blue
graph representing mutual information in Figure 3 achieves a peak value of just under 0.5.
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Observing the partial information decomposition terms of the Ising model in Figure 3, one can see
that the non-zero terms seem to peak around the phase transition, just as mutual information itself does.
Shared information is the most dominant of the partial information decomposition near the phase
transition (before and after) and it reaches its maximum at the critical point. Indeed, shared information
follows a curve similar to the mutual information, with the exception of being shifted downwards
about 0.15 nats for temperatures near the phase transition. The synergistic information as a function of
temperature follows a different graph with noteworthy differences. First, numerically, it peaks slightly
before mutual information does at T ≈ 2.333. In addition, its overall behaviour also deviates from that
of mutual information, with the graph being quite a bit flatter, not exhibiting a sharp peak.

The unique information terms are always near 0, no matter which neighbor is considered. First,
it is reasonable that both of the unique information terms are identical, as the neighbors are chosen
randomly. Second, the fact that there is no unique information in the system is also intuitively plausible,
as each neighbor interacts with the center site in an identical fashion. Indeed, from corollary 8 in [8],
a symmetry in the probability distributions p(X, Y) = p(X, Z) between the two inputs Y and Z
ensures that both unique information terms should be identically zero. This symmetry between two
random neighbors in a 2D Ising model is expected to be maintained across all temperatures unless
the neighboring sites would belong to different frozen clusters, which is a negligible event. Moreover,
all computations of PID are averaged over many different sites.

In Figure 4, the results of measuring information-theoretic functionals between the center sites
and all of their neighbors are illustrated. As expected, the mutual information term increases in value
(about 0.1 nat at the critical point) compared to Figure 3 because, considering all four of the sites that
interact with the center site, as opposed to just two, should reduce the amount of uncertainty one has
about the center. Further inspection reveals that the PID term most responsible for the increased mutual
information is shared information. The complementary and unique information terms have roughly
the same values in both experiments. Specifically, at all temperature points, unique information terms
are 0 and synergistic information varies around 0.1 nats in the disorder regime.

Figure 4. Average mutual information and PID terms (with all random neighbors considered as inputs)
of a 128 × 128 lattice Ising model evaluated at 102 temperature points spaced evenly over the interval
[2.0, 2.8]. Error bars represent the standard deviation over eight runs.
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An unanticipated difference between the first (two neighbors) and second (four neighbors)
experiment is that, when all neighbors are considered, the synergistic information term is flatter
than before and peaks even deeper in the disorder phase, at temperature T ≈ 2.554, while shared
information does not change its maximum point across the two experiments.

As for the behaviour of synergistic information, we do not have an analytical explanation for the
observed phenomenon. That said, it is possible that it is related to the peak of global transfer entropy
(a form of conditional mutual information) in the disorder phase of the Ising model, as demonstrated
by Barnett et al. [26]. According to Equation (3), when unique information vanishes, synergy becomes
equal to conditional mutual information as well. However, the exact relationship between the synergy
and transfer entropy in the Ising model remains unclear, as the random variables considered as
arguments to the conditional mutual information functional in this paper do not correspond to the
ones used by Barnett et al.

To confirm that the observed phenomena are not specific to a lattice of size 128 × 128, but are
general characteristics of the computational properties of the Ising model, the simulations were
repeated with a smaller, 64 × 64 lattice. The experimental setup was analogous to the one used in the
previous experiments, with the exception that the measurements were averaged over six different runs
(instead of eight) and, for each run, 50 different random sites were chosen for PID analysis (instead of
100). The simulations were run on 102 temperature points spaced evenly over the interval [2.0, 2.8].

Figure 5 depicts the results when only two random immediate neighbors are considered as input
to the center site in the PID framework. Although the mutual, shared and synergistic information
graphs are more shaky at the phase transition due to random fluctuations, in general, the graphs
are almost identical to the corresponding graphs in Figure 3. The mutual and shared information
quantities peak at T ≈ 2.277, while synergistic information peaks at T ≈ 2.327.

The results of measuring PID terms when all neighboring sites are considered as inputs to the
center site are illustrated in Figure 6. Both mutual and shared information again peak at T ≈ 2.277.
Complementary information peaks at T ≈ 2.515, a little closer to the phase transition than was the case
when the lattice size was twice the size (Figure 4). This observation validates that the peak in synergy
does not gradually move closer to the phase transition with increasing lattice sizes, suggesting that it
could be a general property of the model.

Figure 5. Average mutual information and PID terms (with two random neighbors considered as
inputs) of a 64 × 64 lattice Ising model evaluated at 102 temperature points spaced evenly over the
interval [2.0, 3.0]. Error bars represent the standard deviation over eight runs.
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Figure 6. Average mutual information and PID terms (with all random neighbors considered as inputs)
of a 64 × 64 lattice Ising model evaluated at 102 temperature points spaced evenly over the interval
[2.0, 3.0]. Error bars represent the standard deviation over eight runs.

4.2. PID of Elementary Cellular Automata

In Figure 7, all 88 inequivalent elementary cellular automata have been depicted based on their
PID terms. Each point represents a single rule, and the points are colored according to their Wolfram’s
class. Because there are four terms in PID, principal component analysis was used to project the
four-dimensional PID vectors into three-dimensional space. It is important to explicitly mention
that some “points” in the plot are actually clusters of several rules, but, due to their almost identical
PID terms, they overlap with each other, yielding a single visual mark on the plot. For example,
the cluster numbered as 1 appears to be a single point, but there are actually five different rules present
at this location.

From the figure, it can be seen that the rules corresponding to Wolfram’s class I are all clustered
together in a single location separate from the rest of the automata. This is natural, as these class I
rules quickly converge to a homogeneous all-white state, such that there is no uncertainty left in the
system. In an all-white state, the entropy of the system is 0 implying that mutual information, and,
accordingly, all of the PID terms to be 0 as well. While various other clusters appear, they do not
correspond well to Wolfram’s three other classes, meaning that there is no straightforward relationship
between Wolfram’s classification and the information distribution in elementary cellular automata.

To further investigate this claim, we show the distribution of PID values across Wolfram’s classes
in Figure 8. From Figure 8a, it can be seen that, in general, the synergy goes up when the complexity of
the automata in terms of Wolfram’s classification increases. However, there are many outliers in the
second class and the variance of the third class is extremely high, making it hard to further draw any
specific conclusions. On average, shared information seems to be higher in class 2 automata, while it
is almost 0 for the majority of class 3 and 4 automata. Focusing on the last two panels (Figure 8c,d),
it shows that, for these rules, two neighbors at the previous time step have usually more information
about a cell’s value at current time step than its own previous value does.
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Figure 7. All 88 inequivalent cellular automata positioned on a three-dimensional space according to
their information distribution. The automata are coloured based on their Wolfram’s class. Some of the
clusters of rules are highlighted and numbered, so that they can be referred to in the text.

(a) Complementary information (b) Shared information

(c) Unique information of the cell itself (d) Unique information of the neighbors

Figure 8. Boxplots representing the distributions of specific PID terms of cellular automata belonging
to Wolfram’s classes II, III and IV.

In Figure 9, the top panels show the space-time diagrams of two different rules, where the dynamics
were generated using random initial states. The two considered automata belong to Wolfram’s second
class because they quickly converge into a repetitive state. The diagrams look very alike visually as
well, containing densely populated diagonal lines. It would not be unreasonable to expect these rules to
be clustered together in Figure 7. Interestingly, however, these rules are partitioned into two different
clusters that are spaced far apart from each other. In particular, rule 6 (and similarly rules 38 and
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134) appears in cluster 2, while the automaton 130 (and similarly rules 24 and 152) belong to cluster 3.
At first glance, this partitioning might be rather confusing, but the solution to the conundrum becomes
apparent when one zooms in on the space-time diagrams. As can be seen from the bottom panels in
Figure 9, the intricate structure of the diagonal lines is different between rules 6 and 130. It turns out
that rules such as 6, 38 and 134 all have diagonal lines that are composed of small “inverted L” type
blocks, while the diagonals of rules 130, 24, and 152 are much simpler, having a thickness of just a single
cell. More generally, the PID terms seem to depend heavily on the specific local details of the emergent
repeating, ubiquituous patterns in the space-time diagrams of cellular automata.

(a) Rule 6 (b) Rule 130

(c) Zoom-in Rule 6 (d) Zoom-in Rule 130

Figure 9. Top panels: space-time diagrams of elementary cellular automata belonging to Wolfram’s class
II. Rule 6 automaton belongs to cluster 2 in Figure 7, while Rule 130 belongs to cluster 3. Bottom panels:
zoomed space-time diagrams for rules 6 and 130.

To better understand why the specific details of the diagonals yield a radical change in the PID
terms, a closer quantitative look at the PID of the rules under discussion is in order. The mutual
information of all of the six rules is almost exclusively divided between synergy and the unique
information provided by the neighbors, leaving the remaining PID terms close to 0. The first three
rules each have roughly about 0.55 nats of synergy and 0.25 nats of unique information. In contrast,
the last three rules have no complementary information, but their neighbors have about twice as much
unique information about the cell’s next state, approximately 0.62 nats each. Thus, almost all of the
information in the systems with simpler diagonals is provided uniquely by the neighbors of a site.

The former numeric observations are not surprising because, looking at the dynamics of rule 130
from Figure 9d, the new states are almost always uniquely determined by the neighbors alone. Indeed,
the ubiquitous white background arises mainly because, if the right neighbor of a cell is white, this cell’s
next value will also be white. If, however, the left neighbor is white and the right is black, the cell’s next
state will be black. The latter relationship produces the diagonals. In the case of rule 6, there is a lot
more synergy in the system because neither the cell’s previous state or the neighbors are able to produce
the complex “reversed L” shaped diagonals alone. The rather high unique information comes from the
fact that the left neighbor being black completely determines that the cell’s value will be white in the
next step.
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Some other clusters are not as straightforward to analyze, but, nevertheless, in many cases, it is
still possible to give some intuitive justifications of the characterization that the PID has produced.
For example, Figure 10 depicts the rules in cluster 4, which all have exactly 0.5 nats of synergy and
0.5 nats of unique information from the neighbors. While the automata look rather different from the
distance, zooming into the lattices again reveals the similarities. Looking at the zoomed space-time
diagrams in Figure 11, it can be seen that what the automata under observation have in common is that
they all contain rather complex stairway-like structures traveling from the upper right to the lower left.

(a) Rule 154 (Wolfram’s class 2) (b) Rule 30 (Wolfram’s class 3)

(c) Rule 45 (Wolfram’s class 3) (d) Rule 106 (Wolfram’s class 4)

Figure 10. Space-time diagrams of elementary cellular automata belonging to cluster 4 in Figure 7.

(a) Rule 154 (b) Rule 30

(c) Rule 45 (d) Rule 106

Figure 11. Zoomed space-time diagrams of the automata plotted in Figure 10.
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Another noteworthy collection of rules is cluster 5, which consists of three automata that Wolfram
has classified as chaotic. All the automata belonging to this cluster have 1 nat of mutual information,
which is all exclusively provided by complementary information. The cluster is interesting because it
shows that, at least for some subset of automata, their qualitative characterization coincides with the
quantitative one provided by the PID.

5. Discussion

This section starts by putting the results obtained in the two complex systems into a larger context
and by discussing their implications. The possibility of analyzing other dynamical complex systems
with the information-theoretic tools used in this article is critically examined in the second section.
Finally, we will conclude with several suggestions for further work.

5.1. Implications of the Results

In the paper “Information flow in a kinetic Ising model peaks in the disordered phase” [26], it is
shown that global transfer entropy peaks in the disorder phase in the Ising model, just before the phase
transition. This result might suggest the possibility that global transfer entropy might be used as an
indicator of an impending phase transition before it actually takes place. In a subsequent commentary
discussing this work [27], Lionel Barnett, one of the authors of the paper, argues that this result
might also generalize to other real-world dynamical complex systems that undergo phase transitions.
The practical importance of this could be high as a predictor of imminent phase transitions, but it
needs to be tested in practice with real data.

In this article, it was found that one of the PID terms, complementary information or synergy also
obtains a maximum in the disorder regime in the Ising system. Taking the commentary by Barnett into
account, it would be worthwhile to study various real-world systems near phase transitions in terms
of partial information decomposition. In particular, it would be interesting to measure the synergy
between various components with the hope of predicting the arising phase transition in advance.

As for elementary cellular automata, the obtained characterization of the rules based on the
PID can be a complementary perspective to Wolfram’s classification. Wolfram’s classification relies
largely on human intuition and was developed by qualitatively analysing the space-time diagrams
of all elementary cellular automata. In contrast, the characterization based on partial information
decomposition is automatic and more grounded theoretically, not relying on qualitative observations.
While Wolfram’s classification is able to differentiate between different automata based on the global
behaviour of the emergent structures, it is agnostic to the subtle details in the structures themselves.
As for the characterization based on the PID terms, the opposite seems to be true.

5.2. Related Work

There is a large body of previous work in applying information theory to analyze dynamical
complex systems that undergo phase transitions. Specifically, it has been shown that mutual
information and other related information-theoretic measures peak at the critical point where the
systems undergo an order–disorder transition. Such is the case for several mathematical models like
random Boolean networks [28] and Vicsek’s self-propelled particle model [29].

As for real-world systems, Harre and Bossomaier [30] measured mutual information between
pairs of selected stocks and found that the peaks in information take place around known market
crashes. In another paper [31], to better understand phase transitions in cognitive behaviours, the
same authors analyzed mutual information between successive moves in the game of Go as a function
of players’ skill level. They found that information peaks around the transition from amateur to
professional, “agreeing with other evidence that a radical shift in strategic thinking occurs at this
juncture” [32].

Particularly relevant to the work at hand is the above-mentioned information-theoretic analysis
of the Ising model. It has been analytically shown that, in a two-dimensional Ising model, the
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mutual information between joint states of two spin systems peaks at the critical temperature [33].
Barnett et al. [26] show empirically that mutual information measured between pairs of neighboring
spins peaks at the phase transition. In the current paper, this result is replicated and extended by
also measuring the decomposition terms of this mutual information. They further discovered that
another related quantity called global transfer entropy peaks strictly in the disorder phase before the
phase transition.

Not directly related to this article, but contextually rather relevant, are various works that have
made use of information theory to quantitatively validate long-held hypotheses about information
storage and transfer in elementary cellular automata. In the article “Local measures of information
storage in complex distributed computation” [1], Lizier et al. found quantitative evidence that specific
structures in elementary cellular automata called blinkers and background domains are “dominant
information storage processes in these systems.” In another closely related paper [34], the same
authors conclude that “local transfer entropy provides the first quantitative evidence for the long-held
conjecture that the emergent traveling coherent structures known as particles . . . are the dominant
information transfer agents in cellular automata.”

Of particular interest to this paper is the work done by Chliamovitch et al. [35], in which
the behaviour of multi-information, a generalization of mutual information to multiple variables,
in elementary cellular automata was studied. It was found that, while it could be possible to establish
a classification of cellular automata rules based on this measure, it would not correspond with
Wolfram’s four classes. This is because multi-information failed to discriminate between all pairs of
Wolfram’s classes except between classes I and IV.

5.3. Limitations

The two complex systems analyzed in this paper have an important property in common that
makes their investigation with PID estimators very convenient, not to say possible. First, they are both
binary, meaning that the individual elements of the systems can only be in two different states. Second,
in both systems, each local part of the model is directly influenced by only a handful of other agents.
Indeed, in the Ising model, the energy of a single site depends only on the spins of its four immediate
neighbors, while the next value of a cell in elementary cellular automata is determined by the three
cells in its local neighborhood. What follows is a discussion of why both of these characteristics are
paramount to successful analysis of information distribution in complex systems.

First, the systems being binary, or more generally, discrete with relatively few possible states,
ensures that the number of rows in the probability distribution that the PID numerical estimator
takes as input is relatively small. The number of rows of the distribution increases polynomially
in the number of states of the random variables that it contains. For example, a distribution with
three random variables with 20 possible states would have 8000 rows. Such a large distribution is
challenging for the numerical estimators we used, and the version at the moment we conducted this
research was able to handle distributions with roughly 2500 rows. This challenge also can arise when
the analyzed system has continuous elements, since a naive discretization strategy, or, in other words,
dividing the continuous signal into a finite number of different states, will result in a large number of
number of states. To analyze the performance of the estimator on discretized versions of continuous
signals, a multivariate Gaussian probability distribution was generated, discretized, and fed into the
estimator. The convergence of this discretization approach together with the study of the optimization
challenges in the numerical estimators of PID are presented in [14].

Second, the systems having few directly interdependent components again ensures that the
number of rows in the distributions is relatively small, the latter increasing polynomially in the
number of random variables that the three random vectors contain. There is, however, an even more
fundamental problem that has nothing to do with the numerical estimator, but rather with the fact
that the PID mathematical framework has currently been developed for two logical input sets only.
In particular, if the number of inputs in the system grows, and they are not naturally divisible into
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two distinct sets, it becomes increasingly hard to reasonably choose the two subsets of input channels.
Even if the input space is composed of two logical sets, taking only a small subset of components
from each might not yield desirable results. This is because there is exponentially many ways to
choose the subsets with respect to each other, and there is often no straightforward way to know which
configuration is the “right” one.

To better understand the argument put forth in the last paragraph, it is instructive to look at the
results of another preliminary experiment that was carried out as part of this research. In particular, the
average information distribution between the nodes in a feed-forward neural network was analyzed
while it was trained on a classification task. The model consisted of two hidden layers, each containing
300 neurons. While such models usually have continuous activation functions, it is not feasible to
discretize these continuous signals with fine enough granularity without making their analysis with
the estimator unfeasible. Thus, binary activations were used in the hidden layers of the network,
as introduced by Courbariaux et al. [36]. The output layer of the network consisted of softmax units.
The network was trained on the MNIST handwritten digit database [37] for 150 epochs. The training
and validation learning curves of this classifier exhibited smooth decaying graphs saturating at certain
base levels.

To estimate the information distribution in the system, 200 triplets were taken for analysis.
For each triplet, the two inputs were taken to be two random nodes from the last hidden layer of the
network, and the output was taken to be the true target decimal value. The 200 probability distributions
were subsequently fed into the PID numerical estimator and the results averaged. This procedure was
repeated for each epoch, but the 200 triplets remained the same throughout the experiment.

We observed that the mutual information behaves similarly to the reflection of the training loss
over the horizontal axis. This agrees with the observation made in Bard Sorngard’s master’s thesis
“Information Theory for Analyzing Neural Networks” [38], in which the mutual information between
the neurons in a toy neural network was measured during training. We also observed that the unique
information terms follow the mutual information curve almost exactly, and that complementary and
redundant information terms are both essentially 0. It is the authors’ belief that the PID terms are
rather uninteresting largely because the inputs do not come from two logically distinct subsystems
(especially given the limitation that we used a PID framework so far restricted to characterize the
information relations between one output and two input variables). Every neuron in the last layer has
299 neighbors, and there is no fundamental reason to prefer one neighbor over the other. This illustrates
some challenges in finding a natural partition of a complex system in meaningful triplets of random
variables to which one could apply most of the current versions of partial information decomposition.

5.4. Future Work

There are various promising research directions in the domain of partial information
decomposition itself. First, the mathematical framework of partial information decomposition
used here has so far been developed for the bivariate input case. The general decomposition of
multi-variate information remains to be further developed, and it is expected to open the door to a
refined characterization of information distribution in many classes of complex systems not considered
in this article.

In the case of the Ising model, it might be of interest to study more theoretically how information
is distributed between the different parts of the model. This would provide some further insight as to
why the PID functionals behave as they do in this specific model. In addition, the results obtained in
the Ising system should inspire further research into real-world complex systems in which it would be
of importance to predict the occurrence of a phase transition in advance.

A system of major importance in which Ising models have been shown to be a good fit is the
dynamics of ganglion cells in the vertebrate retina [39]. This system has been extensively researched as
an excellent model to study neuronal population codes. In particular, a pressing question is to what
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degree these neurons code visual information in a redundant or independent manner, a question that
can be directly addressed by the framework analyzed here.

In this paper, elementary cellular automata were studied, in which, by definition, each cell is
directly influenced by only three cells in its local neighborhood. However, these relatively simple
systems are just a special case of a larger class of models, called one-dimensional cellular automata,
where cells can depend on an arbitrary fixed number of nearby cells. It is up to further work to
study the information distribution in cellular automata that are not elementary. Das et al. [40] used
genetic algorithms to discover different rules that are able to perform specific computational tasks,
like classifying whether the majority of cells in the initial configuration have a value of 1. It could be
worthwhile to study the information distribution in different automata that solve common tasks.

Finally, there is more work to be done in analyzing the information distribution in artificial
neural networks. The PID measurements obtained from analyzing feed-forward neural networks in
this work were uninteresting largely because there was no natural partitioning of nodes belonging to
the same layer in this model. However, such a partitioning does exist in recurrent neural networks,
where each neuron has both bottom-up inputs from the previous layer and lateral contextual inputs
from the same layer at the previous time step. Applying the current numerical estimator to recurrent
networks can prove to be difficult, however, as for the authors’ knowledge, there is no existing work
validating that binarizing the activations of a recurrent network yields a reasonable model.

More generally, we consider that, provided a meaningful partition of nodes in the network
and armed with multivariate approaches [41,42], the concepts and tools from information theory
can play an important role in characterizing and bringing a novel perspective on the training of
neural networks.

6. Conclusions

Most of this paper is devoted to applying PID to empirically analyze the distribution of
information in two well-known dynamical complex systems.

First, it was observed that complementary or synergistic information peaks in the disorder
regime of the Ising model. If such phenomenon is to be generalizable to other phase transitions,
this result could be of practical value. Second, a novel quantitative characterization of elementary
cellular automata based on information distribution was obtained. The proposed characterization
is complementary, and orthogonal, to the popular qualitative classification proposed by S. Wolfram.
Third, feedforward neural networks were found to be difficult to characterize in information
distribution terms within the current bivariate PID framework. Some more promising research
directions in the study of neural networks and information dynamics include recurrent neural networks
and multivariate formulations of PID.
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