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Preface to “Measurement Uncertainty”

This book treats about measurement uncertainty, both from the theoretical point of view and
from the practical point of view. From the theoretical point of view, contributions are present which
propose more general mathematical methods to handle measurement uncertainty. On the other hand,
from the practical point of view, contributions are present which show how measurement uncertainty
is considered in the specific applications. The aim of this book is to provide a wide overview on this

very important topic.

Simona Salicone
Editor
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1. Introduction

Metrology is the science of measurements. In our everyday life, we are constantly
surrounded by measurements: from reading the time to weighing apples, we continuously
measure something. However, measurements are also somehow embedded in objects,
since, for example, the apple we buy has already been measured before its arrival at the
greengrocer, in order to determine its calibre. In these measurements, uncertainty plays
a very important rule. Metrologists know that no measurement makes sense without an
associated uncertainty value. Without it, no decision can be taken; no comparisons can be
made; no conformity can be assessed.

It is hence pivotal to know the meaning of measurement uncertainty, understand
the contributions to measurement uncertainty, know how these contributions affect the
final measurement uncertainty, have a mathematical tool to represent measurement uncer-
tainty and propagate it through the measurement procedure, and consider measurement
uncertainty in any application.

This Topical Collection “Measurement Uncertainty” started as a Special Issue, but
many contributions have been submitted showing how metrology—and, in particular,
measurement uncertainty—is an open, interesting, and important topic.

Therefore, with my great pleasure, the Special Issue has become a Topical Collection.

Tinvite Colleagues working on this issue to continue submitting papers, so that the
Collection can grow and become a good place for a fruitful discussion.

2. Overview of Contributions

Following is a brief overview of the first ten contributions published in the Topical
Collection.

The core of every contribution is represented by the “measurement uncertainty”, a
concept introduced in 1995 by the “Guide to the expression of uncertainty in measurement”,
generally known as GUM. The word “uncertainty” has a lexical meaning and reflects the
lack of exact knowledge or lack of complete knowledge about something. Therefore, the
value associated to a measured value (which should express the lack of exact knowledge
about the value of the measurand) is called the “uncertainty value”. This value can be found,
according to the suggestions of the GUM and following the mathematical probabilistic
approaches therein proposed.

In the last decades, however, other methods have been proposed in the literature,
which try to encompass the definitions of the GUM, while overcoming its limitations.
Some of these methods are based on the possibility theory, such as the RFV (random-fuzzy
variable) method. The authors of [1] briefly recall the RFV method, starting from the very
beginning and the initial motivations and summarizing the most relevant obtained results.

Kalman filters, a concept that has been in existence for decades now, are widely used
in numerous areas. The Kalman filter provides a prediction of the system states as well as
the uncertainty associated to it. In [2], the same authors of [1] propose a new application of
the RFV method on Kalman filters, with the specific aim of reducing the overall uncertainty
associated to the state predictions. In particular, a possibilistic Kalman filter is defined,
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which uses random-fuzzy variables; not only does it consider and propagates both ran-
dom and systematic contributions to uncertainty, but also reduces the overall uncertainty
associated to the state predictions by compensating for the unknown residual systematic
contributions.

In [3], measurement uncertainty is considered to be associated to measuring bridges
for non-conventional instrument transformers with digital output. In this paper, the authors
underline the necessity of synchronization between the analogue output and the digital one.
They hence propose an ad hoc measurement setup that is able to monitor and quantify the
main quantities of interest. The proposed measurement setup is laboratory implemented
and the main sources of uncertainty are discussed and combined through a statistical
analysis.

The authors of [4] yearn for a future scenario in which the digital reporting of measure-
ment results is ubiquitous, and digital calibration certificates (DCCs) contain information
about all the components of uncertainty in a measurement result. To show the benefits of
this possible future scenario, the authors consider and compare the actual “international
measurement comparisons” used by the International Committee for Weights and Mea-
sures (CIPM) and the regional metrology organization (RMO). They propose an uncertain-
number digital reporting format, which caters to all the information required and would
simplify the comparison analysis, reporting, and linking; the format would also enable a
more informative presentation of comparison results.

In [5], the authors deal with measurement uncertainty in Prompt Fission Neutron
Spectra (PFNS) measurements, measurements of fission cross-sections, and measurements
of Maxwellian spectrum-averaged neutron capture cross-sections for astrophysical appli-
cations. In particular, they demonstrate that these measurements are all subject to the
presence of Systematic Distortion Factors (SDF). SDF may exist in any experiment: it leads
to the bias of the measured value from an unknown “true” value. The SDF appears as
a real physical effect if it is not removed with additional measurements or analysis. For
a set of measured data with the best evaluated true value, their differences beyond their
uncertainties can be explained by the presence of Unrecognized Source of Uncertainties
(USU) in these data. The authors link the presence of USU in the data to the presence of
SDF in the results of the measurements.

In [6], the topic of digital calibration certificates (DCC) is considered again. In cali-
bration certificates, information about a quantity is frequently provided in the form of an
estimate of the quantity and an associated standard or expanded uncertainty. Then, if the
quantity must be used in another calculation, it is common—in the absence of any addi-
tional information—to assign a Gaussian probability distribution to the quantity. However,
the true probability distribution of the quantity could be significantly different from the
Gaussian one; therefore, this assignment may lead to unreliable results, when subsequent
calculations are made. Even if the uncertainty evaluation has been made using a Monte
Carlo simulation, only the summary information “estimate of the quantity and associated
uncertainty” are generally reported in the calibration certificate, for the sake of brevity.
Using two examples, the authors show how to present all the information derived from a
Monte Carlo simulation in a fully machine-readable form and insert the whole information
inside digital calibration certificates. In this way, no information is lost.

Technologies that can measure, analyse, and make critical decisions autonomously
are beginning to emerge; hence, there is great interest in the digitalisation of metrology.
In [7], the authors report on a Python package that implements algorithmic data processing
using ‘uncertain numbers’, which satisfy the general requirements of the GUM for the
expression of uncertainty. An uncertain number can represent a physical quantity that
has not been exactly determined. Using uncertain numbers, measurement models can
be expressed clearly and succinctly in terms of the quantities involved. The proposed
algorithms provide an example of how metrological traceability can be supported in digital
systems. In particular, uncertain numbers provide a format to capture and propagate
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detailed information about quantities that influence a measurement along the various
stages of a traceability chain.

One of the main challenges in designing information fusion systems is to decide on
the structure and order in which information is aggregated. The key criteria by which
topologies are constructed include the associativity of fusion rules as well as the consistency
and redundancy of information sources. Fusion topologies regarding these criteria are
flexible in design, produce maximal specific information, and are robust against unreliable
or defective sources. In [8], an automated data-driven design approach for possibilistic
information fusion topologies is detailed that explicitly considers associativity, consistency,
and redundancy. The proposed design is intended to handle epistemic uncertainty and
obtain robust topologies.

In [9], the authors analyse the measurement uncertainty associated to the evaluated
frequencies of the spectral tones of signals created from superimposed sinusoids and white
Gaussian noise, when different methods for the spectral analysis of the signals are applied.
By comparing the obtained results, the authors draw some useful conclusions in order to
guide a designer in choosing a method for the spectral analysis, according to the operating
conditions.

Data-driven manufacturing in Industry 4.0 demands digital metrology to not only
drive the in-process quality assurance of manufactured products, but also to supply reliable
data to constantly adjust the manufacturing process parameters for zero-defect manufac-
turing processes. The better quality, improved productivity, and increased flexibility of
manufacturing processes are obtained by combining intelligent production systems and
advanced information technologies where in-process metrology plays a significant role.
Today, the massive integration of 3D optical sensors occurs within manufacturing processes,
replacing traditional Coordinate Measurement Machines (CMM) within the automotive,
aerospace, and power generation industries. However, while the delivery of millions of
points in a matter of seconds is assumed by 3D optical sensors, the process of automatically
converting dense data into meaningful information and assuring the quality of these data
remains a challenge. In [10], the authors present a practical approach to addressing both
these challenges, based on ISO 15530-3 and ISO 15530-4 technical specifications and the
application of MBD-based post-processing for the automatic processing of point clouds.

3. Conclusions

The above overview of the ten papers in this Topical Collection shows that mea-
surement uncertainty is an important issue in many different fields. It can be stated that
measurement uncertainty should be properly considered everywhere, in any industrial,
economic, social, and legal application. My hope is for contributions from each field to be
present in this Topical Collection.
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Abstract: The concept of measurement uncertainty was introduced in the 1990s by the “Guide to
the expression of uncertainty in measurement”, known as GUM. The word uncertainty has a lexical
meaning and reflects the lack of exact knowledge or lack of complete knowledge about the value of
the measurand. Thanks to the suggestions in the GUM and following the mathematical probabilistic
approaches therein proposed, an uncertainty value can be found and be associated to the measured
value. In the last decades, however, other methods have been proposed in the literature, which try to
encompass the definitions of the GUM, thus overcoming its limitations. Some of these methods are
based on the possibility theory, such as the one known as the RFV method. The aim of this paper is
to briefly recall the RFV method, starting from the very beginning and the initial motivations, and
summarize in a unique paper the most relevant obtained results.

Keywords: measurement uncertainty; random contribution; systematic contribution; probability
density functions; possibility distributions; random-fuzzy variables; t-norms

1. Background: The Concept of Measurement Uncertainty

In the 1990s, the “Guide to the expression of uncertainty in measurements”, known as
GUM, introduced the concept of measurement uncertainty and provided some guidelines
for its representation and propagation through the measurement function. In particular,
the measurement uncertainty is defined as “a parameter, associated with the result of a mea-
surement, that characterizes the dispersion of the values that could reasonably be attributed to the
measurand” [1], as also recalled in [2].

This definition refers to a “dispersion of the values” because, as is widely known, when
a quantity (the measurand) is measured more times, the measurement result generally
varies, due to different contributions affecting the measurement procedure. This means
that, because of the “dispersion of the values”, from a strict metrological point of view, the
“true value” of the measurand cannot be known.

The uncertainty associated with a measured value has, therefore, the aim to provide
information about how large this “dispersion of the values” is [1,2].

Therefore, from a strictly semantic point of view, it can be stated that the uncertainty
value reflects the lack of exact knowledge or lack of complete knowledge about the value
of the measurand. Hence, when one speaks about a measurement result, one always
speaks about an incomplete information; this incomplete information must be somehow
represented to provide validity of the measured value.

How can this representation be done? According to the GUM, the aim of the uncer-
tainty evaluation is “fo provide an interval about the measurement result that may be expected to
encompass a large fraction of the distribution of values that could reasonably be attributed to the
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quantity subject to measurement” [1]. Furthermore, it clearly states that “the ideal method for
evaluating and expressing measurement uncertainty should be capable of readily providing such an
interval, in particular, one with a coverage probability or level of confidence that corresponds in a
realistic way to that required” [1].

As stated above, the “dispersion of the values” is due to different contributions affecting
the measurement procedure. In particular, in the “International vocabulary of metrology”,
known as VIM [3], two contributions are defined: the random and the systematic contribu-
tions to uncertainty. (There is sometimes the mistake that the words random and systematic
are substituted by the words “type A” and “type B”, defined in the GUM, respectively. How-
ever, “type A” and “type B” refer to methods of evaluation of the uncertainty contribution
and not explicitly to the nature of the uncertainty contribution itself.)

The random contribution is defined as the “component of measurement error that in
replicate measurements varies in an unpredictable manner” [3], while the systematic one is
defined as the “Component of measurement error that in replicate measurements remains
constant or varies in a predictable manner” [3]. Therefore, due to the random contributions
to uncertainty, the dispersion of the measured values may define an interval around the
mean (of the measured values), and this interval might be indeed the “interval about the
measurement result that may be expected to encompass a large fraction of the distribution
of values that could reasonably be attributed to the quantity subject to measurement”
required by the GUM [1]. In Figure 1, the blue dot represents the measurand value, while
the pink asterisk is the mean of the measured values, and the purple line represents the
interval that includes all the measured values. It can be easily seen that the purple interval
also encompasses the measurand value, as generally happens if a proper coverage factor is
applied. However, if a systematic contribution also affects the measurement result, then
the interval that includes all the measured values is shifted on the right/left with respect
to the previous interval. The direction of right or left depends on whether the systematic
effect is positive or negative, as shown with the blue and orange intervals in Figure 1.
It can be easily seen that these last intervals no longer represent the “interval about the
measurement result that may be expected to encompass a large fraction of the distribution
of values that could reasonably be attributed to the quantity subject to measurement” since
the measurand value is completely outside these intervals.

Oalained mtarmis

5 7 B ) W " 2 3 " A
Figure 1. The effects of random and systematic contributions to uncertainty. Blue dot: unknown
value of the measurand. Purple line: dispersion of the values and obtained interval when only
random contributions affect the measured values. Blue and orange lines: obtained interval when a
positive or negative systematic error affect the measured values. Red line: obtained interval when
the effects of both random and unknown uncompensated systematic contributions are considered.

In the case that one wants to provide the interval, taking into account both the random
and the systematic contributions to uncertainty, he/she should consider also the possible
variability of the effect of the systematic contributions and, hence, should widen the
uncertainty interval, as shown by the red line in Figure 1. Therefore, the purple interval is
the uncertainty interval when only random contributions affect the measurement result,
while the red interval is the uncertainty interval when systematic contributions also affect
the measurement result.
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The GUM states that “It is assumed that the result of a measurement has been corrected for
all recognized significant systematic effects and that every effort has been made to identify such
effects” [1]; in other words, the GUM requires that all efforts be made to identify, measure
and correct for all the significant systematic effects. Under this assumption, only the
random effects are present, and the uncertainty interval is reduced as shown in Figure 1.

2. The Authors’ Point of View

In the previous section, it is summarized the concept of measurement uncertainty, and it
is recalled that the requirement of the GUM is that all the significant systematic effects are
identified and compensated for. Satisfying this leads to the following important conclusions:

e The reduction in the overall uncertainty and hence, the reduction in the uncertainty
interval.

e  Only random contributions affect the measurement procedure, and therefore, the
uncertainty contributions can be mathematically considered to be random variables
and represented with probability density functions (pdf).

There are also some mathematical ways to also treat the systematic contributions to
uncertainty in the mathematical framework of the probability theory, such as, for instance,
a proper use of the correlation coefficients, but, in any case, the probability theory is born to
handle the random phenomena and can correctly handle only random phenomena because
of the way that pdfs combine with each other.

Furthermore, the GUM requires the compensation of the “significant systematic
effects” [1] where the word “significant” is very important, bringing a crucial question:
when is an effect (on the final measured result) significant?

Obviously, an effect can be significant in one topic and not significant in another.
From the metrological point of view, the “significance” can be exploited by considering the
“target uncertainty”, which is defined by the VIM as the “measurement uncertainty specified as
an upper limit and decided on the basis of the intended use of measurement results” [3]. The target
uncertainty is, therefore, a value that depends on the topic: it is a number that is generally
as small as possible in primary metrology or in the industrial world in the limited case
in which very precious objects are measured (such as diamonds, for instance). However,
in most practical industrial situations, the target uncertainty is a trade-off between the
cost of the uncertainty evaluation and the waste production; therefore, there is no need to
set the target uncertainty to be as small as possible. In these situations, the correction for
the “significant systematic effects” is generally not necessary for not exceeding the target
uncertainty. Therefore, the industrial world is generally not interested in reducing the
overall uncertainty by identifying and compensating for systematic effects.

In any case, compensation or not, to state whether a systematic effect is significant or
not, it must be considered in the uncertainty evaluation. It becomes, therefore, an important
issue to be able to mathematically determine the overall uncertainty in the best possible
way.

Methods that employ a mathematical theory different from the probabilistic theory
encompassed by the GUM have been proposed in the literature [4-8]. These methods are
based on the possibility theory, as well as the RFV method recalled in this paper, which
tries to encompass the definitions of the GUM, thereby overcoming its limitations.

The RFV method recalled in this paper can handle both random and systematic
contributions to uncertainty in closed form. This is possible because, in this mathematical
framework, many operators between the variables naturally defined in it are available.
Therefore, different operators can be chosen, which can simulate the combination of the
variables in a random or a nonrandom way. To introduce this method, the theory of
evidence is shortly recalled in the next section, with the aim to provide a cornerstone to
the method, rather than giving the mathematical details, for which the readers are referred
to [9-11].
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3. Shafer’s Theory of Evidence

The mathematical theory of evidence was defined by Glen Shafer in the 1970s to
generalize the probability theory [9]. In particular, if probability functions are considered,
they obey the additivity rule, so that the following holds:

Pro(U) + Pro(U) =1 (1)

where U and U are complementary sets.

However, in Shafer’s (and also the authors’) opinion, the additivity rule is not able
to handle correctly all possible situations of knowledge/unknowledge. Therefore, he
generalizes this rule, and to do this, he defines the belief functions Bel, for which the
superadditivity rule applies:

Bel(U) + Bel (U) <1 2)

Given a certain statement A, the degree of belief Bel(A) is a judgment. This means
that, given A, different individuals with different levels of expertise regarding A might
provide different judgments. In his book, Shafer writes explicitly:

“Whenever I write of the ‘degree of belief” that an individual accords to the proposition,
I picture in my mind an act of judgment. I do not pretend that there exists an objec-
tive relation between given evidence and a given proposition that determines a precise
numerical degree of support. Rather, I merely suppose that an individual can make a
judgment ... he can announce a number that represents the degree to which he judges
that evidence supports a given proposition and, hence, the degree of belief he wishes to
accord the proposition” [9]

In his book, Shafer also provides two examples to show that belief functions are more
suitable to handle knowledge/unknowledge with respect to probability functions: the
example of the Ming vase and the example of Sirius star are here briefly recalled.

3.1. The Ming Vase

A person is shown a Chinese vase and is asked whether the vase is a real vase of the
Ming dynasty or a counterfeit. Sets A and B are assigned to the two possibilities, as shown
in Table 1.

Table 1. The Chinese vase and the two considered sets.

Case Event
E A The vase is a real Ming vase.
B The vase is a counterfeit.

Of course, looking at the vase, there could be different situations that also depend on
the interviewed person, i.e., whether the person is an expert or not:

1. The evidence suggests the authenticity of the vase.
2. The evidence suggests that the vase is a counterfeit.
3. Some evidence suggests the authenticity, while other evidence, the counterfeit:
a.  Substantial evidence on both sides.
b.  Little evidence on both sides.
4. The observer is not an expert and has no evidence to say whether the vase is true or
false.
Let us now consider how these different situations can be handled with the probability
and the belief functions.
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In the first two cases, the same numerical values are given to both the probability
and the belief functions (as shown in the first two cases of Table 2) since probably the
interviewed person is an expert, and hence can recognize whether the vase is true or false.

Table 2. Assignments given to probability and belief functions in the considered cases.

Case Pro Bel
1 Pro (A) =1 Pro(B)=0 Bel (A)=1 Bel (B) =0
2 Pro (A)=0 Pro(B)=1 Bel (A)=0 Bel (B) =1

P”'(A):O'g5 Pro(B) =" per(A)=05 Bel (B) =05

3A or or
Pro(A) =06 Pro(B)—o04 D¢l(A)=034 Bel(B)=04
Pro (A) =0.5 Pro (B) =
3B 05 Bel (A) =01  Bel (B) = 0.2
Pro(A) =06 Pro(B) =04

Pro (A) =0.5 Pro (B) =
0.5

Bel (A) =0 Bel (B) =0

On the other hand, the other two situations are treated in a different way by the
probability and the belief functions since probability functions must obey the additivity
rule, while belief functions need not.

Therefore, when cases 3A and 3B are considered, probability functions can take
the values, for instance, given in Table 2, but no lower values can be assigned, even if
little evidence is present on both A and B. On the other hand, when belief functions are
considered, the person can indicate two numbers, which more precisely represent his/her
idea about A and B.

In case 3A, it may happen that the same numbers are assigned to probability and
belief functions (according to the degree of belief about A and B), but it may also happen
that different numbers are assigned since, for belief functions, it is not necessary to satisfy
the additivity rule (see Table 2). Furthermore, in case 3B, where there is little evidence on
both sides, it is not possible to assign a small number to both A and B with probability
functions, while this can be done with belief functions (see Table 2).

The different behavior of the probability and the belief functions is even more empha-
sized when Case 4 is considered, where the person is not an expert and therefore declares
his/her ignorance about the vase. This is the classical situation, called, by Shafer, total
ignorance, in which a zero value is assigned to all possible sets (and a unitary value is
assigned only to the entire universal set, which include all possibilities). Therefore, as
shown in Table 2, Bel(A) = 0 and Bel(B) = 0 in the case of total ignorance (Case 4). The
probability functions, on the other side, must always obey the additivity rule, and therefore,
even in the case of total ignorance (as in the case of equal evidence on both A and B)
Pro(A) = 0.5 and Pro(B) = 0.5 are assigned, not to give preference to either A or B.

Total ignorance is, therefore, treated in a completely different way by the probability
and the belief functions; an interesting question is determining which method is the better
one. It seems that the belief functions are more suitable to represent total ignorance at least
for two reasons. First, with probability functions, it is not possible to distinguish the two
different cases where there is an equal degree of belief on both cases A and B, and there is
no evidence about either A or B. In fact, in both these cases, Pro(A) = 0.5 and Pro(B) = 0.5
must be assigned. Second, probability functions may lead to incongruent results when
more than two sets are considered, as in the following example of the Sirius star [9].
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3.2. The Sirius Star

Are there or are there not living beings on the planet in orbit around star Sirius?
Let us only consider the case where the interviewed person is not an expert at all, so the
case of Shafer’s total ignorance, and let us consider the two different situations given in
Tables 3 and 4. In the first case, total ignorance is admitted on only two sets, while in the
second case, total ignorance is professed on three sets, and the two ways of forming the
sets are independent.

Table 3. The Sirius star and the two considered sets.

Case Event
A There is life.
B There is not life.

Table 4. The Sirius star and the three considered sets.

Case Event
C There is life.
D There are planets but not life.
E There are not even planets.

Table 5 shows the values assigned to the belief function for the sets defined in Table 3
(first column) and for the sets defined in Table 4 (second column). It is, however, possible
to compare the two cases since, by considering the sets defined in Tables 3 and 4, it can be
stated that A = C and B = D U E. The last column is the comparison of the two previous
columns and shows that the assigned values in the two cases are coherent with each other.

Table 5. The Sirius star and total ignorance represented with the belief functions.

Case of Table 3 Case of Table 4 Comparison
A Bel (A) =0 c Bel (C) =0 Bel (A) = Bel (C)
Bel (D) =0
B Bel (B) =0 E Bel (E) = 0 Bel (DUE) = Bel (B)

On the other hand, Table 6 shows the results for the probability functions and, when
the two cases of Tables 3 and 4 are compared, it follows that there is no consistency at all.
In fact, set A defined in the case of Table 3 is exactly set C defined in the case of Table 4, but
as shown in Table 6, Pro (A) # Pro (C). Furthermore, set B defined in the case of Table 3
is exactly set D U E defined in the case of Table 4, but Pro (D UE) # Pro (B) since the
following holds:

2

Pro (DUE) = Pro(D) + Pro(E) — Pro(DNE) = 0= 3 # Pro (B) = %

W =
+
W =

10
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Table 6. The Sirius star and total ignorance represented with the probability functions.

Case of Table 3 Case of Table 4 Comparison
A Pro(A) =} C Pro (C) =% Pro (A) # Pro (C)
D Pro (D) = %
B Pro (B) = % - Pro (£) =1 Pro (DUE) # Pro (B)
T0 =3

Then, it can be concluded that belief functions are more suitable than probability
functions to handle total ignorance, that is, all situations where an individual has no
evidence/no knowledge about the considered topic and about the considered given sets.

This great interest in total ignorance is due to the fact that total ignorance is mostly present
in the field of measurements, as shown in the simple practical example in the next section.

4. Total Ignorance in Measurements

Let us here consider a simple example to show how, in measurement procedures, the
situation called total ignorance by Shafer is very often present.

A calibrator provides a reference voltage of 24 V, and some multimeters of the same
typology (4 1 Leader 856) are employed to measure this voltage. The instrument data sheet
provides the measuring accuracy as £ % of reading £ number of digits, and the value of
each digit is given by the resolution in the considered range. According to the data sheet,
Table 7 provides the resolution and the measuring accuracy in the different ranges. For
the measurand V, = 24V, which is the reference voltage in the proposed example, the
range is 30 V and therefore, according to the specifications, the measurement accuracy is
+(0.05% Vx +2mV) = £0.014 V.

Table 7. The multimeter data sheet.

Multimeter 4  LEADER 856

Range Full Scale Resolution Measuring Accuracy
300 mV 29,999 mV 0.01 mV +(0.03% Vx +0.02mV)
3V 29,999 V 0.1mV +(0.05% Vx+0.2mV)
30V 29,999 V 1mV +(0.05% Vx +2mV)
300 V 29,999 V 10 mV +(0.05% Vx 420 mV)

1000 V 10,000 V 01V +(0.05% Vx +0.2V)

Two different measurement procedures are considered:

—_

All multimeters are employed to measure the reference voltage.
2. Only one multimeter is employed to measure the reference voltage.

Figure 2 shows, with the orange line the reference voltage and with the pink crosses the
value measured by 10 different multimeters. Since different instruments are employed, it is
likely to happen that the measured values fall around the reference value. In this situation,
it could be possible to apply a probabilistic approach by considering the following: the
mean of the measured values; an uncertainty interval around the evaluated mean, and a
pdf over this interval (but only if a high number of different instruments are employed).

11
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Figure 2. Up: values measured by different multimeters. Down: values measured by a single multimeter.

This situation represents very well the calibration procedure that is performed by the
instruments” manufacturer to provide the accuracy interval, which reflects the behavior
of all instruments of the same typology. However, this situation is very seldom met in
practice, because generally only one instrument is available and employed. Under this
more common situation, when only one multimeter is employed, the value measured by
the multimeter will be shifted with respect to the reference value. Moreover, if different
measurements were taken, this would not help to better estimate the reference value since
all measured values would be shifted more or less the same amount with respect to the
reference value, as shown by the green circles in Figure 2. In fact, all measured values
are taken, in this case, by the same instrument and, therefore, are affected by the same
systematic error, even if a small variation can be observed, due to the presence of also
random phenomena.

In this last case, even if the mean of the measured values is taken, no better estimate
of the measurand can be obtained. Additionally, even if an interval is built, according to
the dispersion of the measured values, this interval would not contain the value of the
measurand. Therefore, to provide a good uncertainty interval, it is necessary to refer to
the accuracy interval provided by the data sheet. The data sheet does not provide any pdf
associated with this interval, and therefore, no pdf can be assigned to the obtained interval.

When we have a pdf over a given support, it is possible to assign a confidence interval
(or degree of belief) to any subintervals of the support. However, when no pdf is assigned
and no knowledge is available to assign a specific pdf, it is not possible to associate any
confidence interval (or degree of belief) to any subintervals of the support. We are, therefore,
perfectly in the case of Shafer’s total ignorance, where a degree of belief can be assigned to
the support (or universal set), but no degree of belief can be assigned to the subintervals
(to the subsets of the universal set).

It clearly follows that total ignorance is present in the measurement field. Since belief
functions better represent total ignorance, it is worth exploring these functions and the
theory of evidence to find an alternative, more general way to handle measurement uncer-
tainty and measurement results. It is not the aim of this paper to provide all definitions and
mathematical details, for which the readers are referred to the published literature [10-14].
The next section will, therefore, give only some introduction to come to the possibility
distributions (PD) and the random-fuzzy variables (REFV).

5. The Random-Fuzzy Variables

In the previous sections, belief functions are introduced and it is shown how they
can suitably represent the available knowledge, including total ignorance. It is interesting
to observe that belief functions are a generalization of the probability functions and the
necessity functions. In this respect, it is first necessary to know what a focal element is.

12
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Let us first define the basic probability assignment function:

m: P(X) — [0,1]
Y m(A)=1
AeP(X)

where X is the universal set, P(X) is the power set of X and @ is the empty set. According
to (3), m(A) represents the degree of belief that an element x belongs to set A (only to set A
and not to its subsets).

Set A for which m(A) > 0is called the focal elements of X. When the focal elements
are singletons, then it can be proved [9-12] that belief functions are probability functions,
and the theory of evidence enters in the particular case of the probability theory. This
shows that the belief functions are, as wanted by Shafer, a generalization of the probability
functions. However, it is also interesting to consider another particular case of belief
functions, which are called necessity functions and are obtained when the focal elements
are all nested, as shown in Figure 3.

|4 cd,c..c4,=xX|

Figure 3. Example of nested focal elements, for sets and for intervals.

The upper plot in Figure 3 clearly shows that, when sets are considered, all sets can
be ordered in such a way that Ay C A, C ... C A; = X. When, instead of sets, intervals
are considered, the lower plot can be drawn, which still satisfies A; C A C ... C A, = X.
This case is very interesting from the metrological point of view because there could be
an analogy between these nested intervals and the confidence intervals of a given pdf at
different, increasing levels of confidence.

The necessity function is defined as follows:

j
Nec (Aj) = k;m(Ak)

and represents the degree of belief that an element x belongs to set A and to all its subsets.
When the belief functions are necessity functions, then the theory of evidence enters the
particular case of the possibility theory.

In the same way that probability density functions are defined in probability, possibil-
ity distribution functions (PD) are defined in possibility as follows:

r:X —[0,1]

13
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where:
max(r(x)) =1

when x € X.

It can be proved [10,11] that the nested intervals of Figure 3, together with their
corresponding necessity functions Nec(A;), represent confidence intervals at specific levels
of confidence, coverage probability, or degree of belief Nec(A;). Therefore, remembering
the GUM words that “the ideal method for evaluating and expressing measurement uncertainty
should be capable of readily providing such an interval, in particular, one with a coverage probability
or level of confidence that corresponds in a realistic way to that required” [1], it can be stated that
the possibility theory, which provides all confidence intervals at all confidence levels, is
perfectly GUM compliant.

If the intervals of Figure 3 are not overlapped with each other but are positioned at
different vertical levels «, such as aj=1- Nec (A ]-), then a fuzzy variable is obtained, as
in the example in Figure 4.

0.8 :" ":
Z N
S04 e N
0.2 L AN
" 5
03 3:5 4 4.5 [5] 55 ] 6:5 7

Figure 4. Example of possibility distributions and confidence intervals.

The fuzzy variable is commonly defined by its membership function which is, from
the strict mathematical point of view, a PD.

Since a fuzzy variable (a PD) represents confidence intervals at all levels of confidence,
a fuzzy variable can be used to represent in a very immediate way the result of a measure-
ment [10-12]. Moreover, since different kinds of uncertainty contributions may affect the
measurement procedure, the best way to represent the result of a measurement is the use
of a fuzzy variable of type 2 and, in particular, a random-fuzzy variable (RFV). An RFV
provides two PDs and can, hence, represent separately the effects on the measurement
result of the different contributions to uncertainty. An example of RFV is given in Figure 5,
with the red and violet lines. In an RFV, the uncompensated systematic contributions are
represented by the internal PD r;,;(x) (violet line), while the random contributions are
represented by the random PD r,,,(x) (green line). The external PD r.y(x) (red line) is
obtained by the combination of the two PDs r;,(x) and 4, (x) [10-13].

0 ; = | /\ [—Ts !‘n‘ (-"L' ) 1
08 f \ —Tert () 1

LEf _Trrm{u'l) 1

L] 4
18] 4 1
LE] o 4

0ap B

0zp / 1

Rl o 1

35 aTh 4 425 458 475 5

Figure 5. Example of RFV.
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Extending the considerations made for the fuzzy variables, it can be stated that the
cuts X, at levels « of the RFV are the confidence intervals associated to the measurement
result at the confidence levels Nec(X,) = 1 — a (as shown in Figure 6). In particular, the
internal interval of each confidence interval is due to the effect on the measured value of
the systematic contributions to uncertainty, while the external intervals are due to the effect
of the random contributions.

o-a # t
- i 11
g 0.6 I "1
S04 4 11
i \
o f \
96 98 100 102 104 106 108 110 112 114

v

Figure 6. Example of RFV and some of the confidence intervals, which show the systematic effects
and the random effects on the final measured result.

If RFVs can suitably represent measurement results, then it is important to understand
how an RFV can be built and how two RFVs can be combined with each other, as will be
briefly explained below; we refer the readers to the literature for more details [10-14].

5.1. RFV Construction

To build an RFV, it is necessary to define the shape of the PDs rj,;(x) and ryz,(x),
whose construction is different [10-14] since they represent different kinds of contributions.

As far as 1 (x) is concerned, this PD represents the uncompensated systematic
contributions to uncertainty. As shown in the example of the multimeter in the previous
Section 4, generally, the only available knowledge is, in this case, the accuracy interval
given by the manufacturer of the employed instrument in the data sheet. Therefore, the
available knowledge can be represented by Shafer’s total ignorance. As is also shown in
Section 3, total ignorance is mathematically represented by the belief function [9-11]:

Bel(X) =1

Bel(A) =0 VACX

and by the rectangular PD, such as the one in violet line in Figure 5. It follows that ,;(x)
is rectangular in most situations, even if situations may exist that could lead to different
shapes [10-14].

On the other hand, 4, (x) must represent the random contributions to uncertainty and
therefore, in most cases, a pdf is known or can be supposed. In this case, the corresponding
PD can be easily obtained by applying the suitable probability—possibility transformation
(different probability—possibility transformations are available in the literature to transform
pdfs into PDs. The suitable transformation when PDs are used to represent measurement
results is the maximally specific probability—possibility transformation, which preserves all
confidence intervals and corresponding confidence levels) [10,15].

As an example, when the pdf is uniform, then the corresponding PD is triangular;
when the pdf is triangular, then the corresponding PD is the orange one in Figure 7; when
the pdf is Gaussian, then the corresponding PD is the blue one in Figure 7.
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Figure 7. Example of PDs coming from given pdfs. Blue line: PD from a Gaussian pdf. Orange line:
PD from a triangular pdf.

5.2. RFV Combination

When the measurement results are represented by RFVs and they must be combined,
it is possible to take into account all the available metrological information about the
nature of the contributions to be combined and the way these contributions combine in
the specific measurement procedure. According to that, since PDs can be combined using
many different mathematical operators, the most proper one can be chosen.

Without entering the details, for which the readers are referred to [10,16,17], it can be
stated that the random contributions to uncertainty always compensate with each other
during the combination, and therefore, an operator that simulates this typical probabilistic
compensation should be chosen. On the other hand, the systematic contributions to
uncertainty could compensate or not with each other during the combination, according to
the specific contributions and the specific measurement procedure. Therefore, there should
be the possibility to choose between a mathematical operator that simulates compensation
and another one which does not compensate.

Let us first consider the evaluation of the joint PD, starting from two PDs. As an
example, Figure 8 shows the results obtained by combining the same two PDs with the
use of two different t-norms (for the definition of the mathematical t-norms, the readers
are addressed to [15]): the min t-norm (on the left) and the Frank t-norm (on the right). In
the upper plots, the two-dimensional joint PDs are shown, while in the lower plots, the
corresponding «-cuts are shown. It can be easily seen how compensation applies when
the Frank t-norm is employed, while no compensation applies when the min t-norm is
employed.

-] 0.54 A b
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Figure 8. Combination of uncorrelated contributions. The same initial PDs are considered on both the left and right figures.
On the left, the min t-norm is applied; on the right the Frank t-norm is applied. In the upper plots, the joint possibility
distributions are shown. In the lower plots, the corresponding o-cuts are shown.

Figure 8 refers to the combination of uncorrelated contribution. Without entering the
details, the correlation can also be considered, as shown, as an example, in Figures 9 and 10.
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Figure 9. Combination of correlated contributions when the min t-norm is applied. The same initial
PDs as in Figure 8 are considered. Right: joint PD. Left: shape of its «-cuts.

Figure 10. Combination of correlated contributions when the Frank t-norm is applied. The same initial PDs as in Figure 8
are considered. Left: joint PD. Right: its a-cuts.

From Figures 9 and 10, it can be easily seen how correlation modifies the joint PDs
and the corresponding x-cuts.

Once the joint PDs 7y, (x,y) and r;,;(x,y) are obtained, it is possible to evaluate
the joint PD 7,y (x,y) and the final RFV (this is obtained by applying the famous Zadeh
extension principle. The readers are referred to [9,10] for the details) [9,10,16,17].

6. Example

To show the potentiality of the RFV approach, a simple example is here reported,
where the RFV approach is compared with the GUM approach [1] and the Monte Carlo
approach, as suggested by [18].

The GUM approach consists of the application of the law of propagation of the
uncertainty [1], while random and systematic contributions to uncertainty are combined
applying the quadratic law. The results given by the GUM approach are provided in terms
of two specific confidence intervals: the ones at coverage probabilities 95.45% and 68.27%.
These intervals are compared with the corresponding «-cuts at the same level of confidence
of the RFVs obtained with the RFV approach.

The Monte Carlo approach consists of taking extractions from the given pdfs (in a way
to agree with the available information) and combining the extractions to obtain a final
histogram. Then, the histogram is converted in a pdf, and the pdf is converted to a PD
(through the probability—possibility transformation mentioned above) for an immediate
comparison with the RFVs given by the RFV approach.

Let us come to the example. A teacher measures the length and width of her desk
with a wooden ruler and evaluates the area of the desk. She/he also asks her/his pupils
to take the same measurements (and the area evaluation) with measuring tapes that they
have built with some white cloth and a pencil to mark the cloth every half centimeter.
The measurements are taken under different assumptions about both the measurement
procedure and the uncertainty contributions, as shown in Table 8.
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Table 8. The considered case studies.

Case Procedure Random Systematic

A Knownt::;asurmg uniform pdf +0.25 cm Compensated

B ! unkpown uniform pdf £0.25cm  uniform pdf £0.5 cm
measuring tape

C 2 mnown uniform pdf £0.25cm  uniform pdf £0.5 cm
measuring tapes

D ! unkn own uniform pdf £0.25 cm Interval #+ 0.5 cm
measuring tape

E 2 unknown uniform pdf £0.25 cm Interval + 0.5 cm

measuring tapes

As far as the procedures are concerned, “Known measuring tape” means that the
measuring tapes are somehow characterized, and therefore, the systematic error introduced
by each of them is known; since the pupil uses their own tape, the systematic error is known
and can be compensated. “1 unknown measuring tape” means that both length and width
are measured with the same tape taken randomly among the tapes; the systematic error
introduced by the tape is not known and it cannot be compensated but, since the same tape
is used for the two measurements, the two measurements are correlated with each other.
“2 unknown measuring tapes” means that length and width are measured with two
different tapes taken randomly among the tapes; the systematic errors introduced by the
tapes are not known and they cannot be compensated and since two different tapes are
used for the two measurements, and therefore, the two measurements are uncorrelated
with each other.

As far as the uncertainty contributions are concerned, the random contributions
are supposed to be uniformly distributed; the systematic contributions are compensated
(case A), uniformly distributed (case B and C) or without any other knowledge rather than
the given interval (case D and E), as in Shafer’s total ignorance situation.

The uncertainty contributions reported in Table 8 are related to the pupils’ measuring
tapes, while no uncertainty is assumed to affect the teacher’s measurements, realized with
the wooden ruler, so that the teacher’s measured values are considered to be the reference
values ;¢ = 90 cm for the length and w;,s = 60 cm for the width, while A, = 5400 cm?
is the reference area.

This means that, when the Monte Carlo approach is followed, extractions from the
given pdfs in Table 8 are considered; when the RFV method is applied, the given pdfs in
Table 8 are transformed into the corresponding PDs by applying the probability—possibility
transformation; when the GUM approach is followed, the standard uncertainties are
derived from the given pdfs in Table 8, that is, since the pdfs are uniform, the stan-
dard uncertainties are equal to the semi-width of the support of the pdfs divided by a
factor v/3 [1,2].

Without entering the details, for which the readers are referred to [10], the obtained
results are shown in the following Figures 11-13. When only random contributions to un-
certainty are present because the systematic ones are compensated for, the three approaches
provide exactly the same results, showing the validity of the RFV method in simulating the
presence of the random contributions. When both random and systematic contributions
are present and their associated pdfs are known, the GUM approach underestimates the
final measuring uncertainty, while the RFV and the Monte Carlo approaches provide very
similar results. In this case, the RFV approach has the advantages of being faster and
distinguishing, in the final measurement result, the effects due to the two different kinds of
contributions. Finally, in the case of total ignorance, neither the GUM or the Monte Carlo
approach can represent it in a different way with respect to cases B and C; therefore, they
provide incorrect results.
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Figure 11. Obtained results when case study A is considered: GUM approach (red lines), Monte Carlo approach (blue lines),

RFV approach (cyan lines). On the left: the length (upper plot) and the width (lower plot). On the right: the evaluated area
of the desk.
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Figure 12. Obtained results when case studies B and C are considered: GUM approach (red lines), Monte Carlo approach

(blue lines), RFV approach (cyan lines). On the left: the length (upper plot) and the width (lower plot). On the right: the
evaluated area of the desk in case studies B (upper plot) and C (lower plot).

Figure 13. Obtained results when case studies D and E are considered: GUM approach (red lines), Monte Carlo approach

(blue lines), RFV approach (cyan lines). On the left: the length (upper plot) and the width (lower plot). On the right: the
evaluated area of the desk in case studies D (upper plot) and E (lower plot).
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7. Conclusions

This paper represents a review paper of the RFV approach, proposed in the literature
in the last decades.

It has been shown the potentiality of this approach, which is able to represent and
propagate measurement results in closed form, by simulating the way the uncertainty
contributions propagate through the measurement procedure.

Other more specific applications are present in the more recent literature, like for
instance the generalization of Bayes’ theorem in the possibility domain [19,20] or the
realization of a possibilistic Kalman filter [21,22], thus showing the versatility of the RFV
approach.
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Abstract: A Kalman filter is a concept that has been in existence for decades now and it is widely used
in numerous areas. It provides a prediction of the system states as well as the uncertainty associated
to it. The original Kalman filter can not propagate uncertainty in a correct way when the variables
are not distributed normally or when there is a correlation in the measurements or when there is a
systematic error in the measurements. For these reasons, there have been numerous variations of the
original Kalman filter, most of them mathematically based (like the original one) on the theory of
probability. Some of the variations indeed introduce some improvements, but without being com-
pletely successful. To deal with these problems, more recently, Kalman filters have also been defined
using random-fuzzy variables (RFVs). These filters are capable of also propagating distributions that
are not normal and propagating systematic contributions to uncertainty, thus providing the overall
measurement uncertainty associated to the state predictions. In this paper, the authors make another
step forward, by defining a possibilistic Kalman filter using random-fuzzy variables which not only
considers and propagates both random and systematic contributions to uncertainty, but also reduces
the overall uncertainty associated to the state predictions by compensating for the unknown residual
systematic contributions.

Keywords: random-fuzzy variables; Kalman filter; systematic uncertainty contributions; styling

1. Introduction

The Kalman filter (KF) is an algorithm that has long been in existence. It filters the
noise on the measured values of the states and provides an estimation of the system states
based on the state equations. The classical KF algorithm requires that the states are free
from any systematic errors and that the state variables are independent from each other
and can be represented by Gaussian distributions [1]. But in most practical situations,
the systematic error can not be compensated perfectly and there is a residual systematic
error. In this case, the classical formulations of the KF underestimate the uncertainty
associated to the state estimates, because the systematic error is not propagated in a correct
mathematical way. To deal with this, attempts have been made to develop KF algorithms
that are also able to consider systematic contributions to uncertainty [2-5]. For instance,
in [5], the authors try to use a Schmidt KF that considers the systematic error as a separate
state in the state equations and a noise covariance matrix of the possible systematic errors
is built and propagated.

More recently, the theory of possibility has been proposed in the literature to represent
and propagate both systematic and random contributions to uncertainty. The theory
of possibility has been proven by numerous applications in the literature [6-11] to be
an effective alternative to the theory of probability when both random and systematic
contributions to uncertainty are present in the measurement procedure.
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Some attempts to define KFs based on the theory of possibility are already present in
the literature [12,13]. However, in [12,13], as far as understood, they consider uncertainty
in a fuzzy way that is not compatible with the recommended guidelines in metrology,
as specified in [14,15]. In metrology, uncertainty must be considered according to the
definitions given in [15].

Within the framework of the theory of possibility, quantities are represented by possi-
bility distributions [16-21]. In particular, as shown in [16-18], where measurement results
are considered to be affected by both random and systematic contributions to uncertainty,
measured quantities are represented by random-fuzzy variables (RFVs). RFVs consist of an
internal membership function which represents the systematic contribution to uncertainty
in the quantity and an external membership function which represents the overall uncer-
tainty due to both the systematic and random contributions. As shown in [16,18], this way
of representation is perfectly compatible with the metrological definitions given in [14,15].
So, to be able to utilize all the advantages of RFVs, the KF should be able to process them
as well.

Possibilistic KFs based on RFVs are available in the literature [22,23]. In [22], a KF
using RFVs is defined but there is a high noise in the state predictions given by the KF.
In [23], the authors define a possibilistic KF that also uses RFVs and make a comparison
with a few other existing KFs, including the Schmidt KF, clearly showing the advantages of
the defined possibilistic KF.

Starting from the possibilistic KF defined in [23], this paper proposes an alternative
version, which also allows reducing the effects of the systematic contributions to uncertainty,
thereby reducing the overall uncertainty associated to the system state predictions. While
the possibilistic KF defined in [23] is useful when we are only interested in propagating
the residual systematic uncertainty to evaluate the total uncertainty associated to the state
predictions from both the random and systematic contributions, the KF defined in this
paper can be used to reduce the effects of the systematic contributions to uncertainty and
thereby also reduce the overall uncertainty associated to the state predictions.

The rest of the paper has been organized in six sections. Section 2 describes the case
study used for the simulation results for an initial validation of the alternative possibilistic
KF. Section 3 describes the construction of the RFVs and the algorithm of the modified
possibilistic KF described in [23]. Section 4 describes the algorithm for the alternative
possibilistic KF proposed in this paper. Section 5 describes more simulations that have
been performed to further validate the alternative possibilistic KF. Section 6 describes
the experimental case study that has been performed to prove the effectiveness of the
alternative possibilistic KF. Section 7 summarizes the paper and gives a conclusion.

To facilitate an easy comparison between the proposed possibilistic KF and the original
one defined in [23], the same simulated case study as in [23] is considered here, as briefly
described in Section 2.

2. The Case Study

The considered case study is quite simple. A vehicle is moving at a velocity vy (t)
with an acceleration a,.¢(t), as shown in Figure 1.
The state equations of the vehicle can be written as:

U = Vg1 + T a1+ wfj (1)

a
A = Ag_1 + Wi

® v, and g are velocity and acceleration of the vehicle at time k;

e w} and wf are the standard deviation of the noise in velocity and acceleration respec-
tively at time k;

®  7is the time period within two successive measurements
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Figure 1. Reference values of velocity (blue line) and acceleration (red line) over time.

It is assumed that the noises are random in nature and belong to Gaussian distributions
that do not vary with time (Gaussian distributions are considered as in [23], for a direct
comparison). So, w,’: = w and wz = w" are the standard deviations of the constant normal
distributions with zero mean.

w is assumed to be 0.003 m/s. This value has been derived by considering the
accuracy of a GPS which has been reported in the official GPS website [24], which is usually
quite accurate compared to the speedometer of the vehicle. Whereas, w” is assumed to be
0.0005m/s? and is supposed to be due to some noise in the circuit or to the driver applying
force on the accelerator.

The measured values of the velocity and the acceleration are supposed to have been
obtained from the on board sensors of the vehicle. The accuracies of the onboard sensors
are in general one or two magnitudes less accurate than a GPS based measurement. So,
the following is considered:

*  For the velocity, the random contribution is assumed to be normally distributed with
a standard deviation of ¢, = 0.16 m/s. It has also been assumed that there is a
residual systematic error in the measurement with an estimated value of 0.3 m/s.
However, this is unknown and only an interval of possible values is known: esys =
[-0.32m/s,4+0.32 m/s] has been assumed.

o For the acceleration, it has been assumed that there is no systematic error in the
measurements and the random error is supposed to be normally distributed with a
standard deviation of ¢4, = 0.005m/s.

3. Construction of the RFVs and the Possibilistic Kalman Filter

Although this has been explained in detail in [23], it has been recalled in this paper as
the construction of the RFVs is the same also for the alternative possibilisitc KF defined in
this paper.

In the possibilistic KF defined in [23], all the states are RFVs and the algorithm is as
shown in Figure 2 [23].

According to Equation (1): Ay = A = { (1) I } and Hy = H = { (1) (1) }

Matrix Q"% considers the model uncertainties and is a matrix of REVs. According to
the assumptions given in Section 2, we define Q"°° where:

e The element related to velocity is an RFV obtained by transforming the velocity noise
variable into the possibility domain. Since there is no systematic error in the noise and
the random part is assumed to be Gaussian, there is no internal possibility distribution
(PD) in the RFV and the random PD is obtained by applying the probability-possibility
transformation [16] on the zero mean normal probability density function (pdf) with
standard deviation w? in the possibility domain;

e  Similarly, the element related to acceleration is also an RFV in which there is no
internal PD and the random PD is obtained by applying the probability-possibility
transformation [16] on a zero mean normal pdf with standard deviation w* in the
possibility domain;
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Figure 2. The possibilistic Kalman filter algorithm [23].

As for the initial state vector X, it is assumed that there are no systematic contributions
to uncertainty. So, the RFV is obtained by just the random PD as follows:

¢  Theinitial velocity is an RFV consisting of just the random PD which is obtained by
using the probability-possibility transformation [16] on a normal pdf with mean equal
to the first measured value for velocity (v,,1) and standard deviation w?;

e Similarly, the initial acceleration is an RFV consisting of just the random PD obtained
by using the probability-possibility transformation [16] on a normal pdf with mean
equal to the first measured value for acceleration (a,,1) and standard deviation w”.

As for the measured values in each step k, matrix Yy is the matrix of the RFVs of the
velocity and acceleration measurements. The RFV associated with the simulated measured
velocity is centered on the simulated measured velocity at step k (v,,,x) and

¢ Theinternal PD is a rectangular PD with width d-esys around v,,;
e the random PD is obtained by using the probability-possibility transformation [16] on
a zero mean normal pdf, with standard deviation o7;,.

On the other hand, the acceleration has no systematic error. So, the RFV associated to
the simulated measured acceleration is centered on the simulated measured acceleration at
step k (a,,x) and

. the internal PD is zero;
e the random PD is obtained by using the probability-possibility transformation [16] on
a normal pdf, with mean a; and standard deviation u%,,,.

Matrix fo is the noise covariance matrix of the velocity and acceleration RFVs. However,

%
as it is shown in the equations in Figure 2 and explained in [23], C C!". So, the pos-
X

x| =
sibilistic variances and covariances are evaluated from only the random contributions to
uncertainty in both the velocity and acceleration RFVs.

Similarly, Cy, = Cyyon which means that the possibilistic variances and covariances of
the noise covariance matrix associated with the measurements are evaluated from just the
random uncertainty contributions in the velocity and acceleration measurements.

The described KF has been applied to the case study described in Section 2. The results
obtained from the simulations are presented in Figures 3 and 4.

The predicted values of the velocity and acceleration from the KF are obtained by
evaluating the mean values of the a posteriori RFVs in matrix Xj. In both Figures 3 and 4,
the blue lines represent the differences in the predicted values given by the KF and the true
values of the velocity and acceleration respectively.
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The uncertainty limits associated to the state predictions (red lines) are the ¥ —cut
at a = 0.01 of the velocity and acceleration RFVs predicted by the KF. The a—cut can be
considered as the confidence interval at the confidence level 1-a [16]. For & = 0.01, these
intervals correspond to the 99% confidence interval in the corresponding pdf.
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Figure 3. Difference in the reference and predicted velocity values (blue line) provided by the
possibilistic Kalman filter together with the predicted uncertainty interval (red lines).
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Figure 4. Difference in the reference and predicted acceleration values (blue line) provided by the
possibilistic Kalman filter together with the predicted uncertainty interval (red lines).

4. The Alternative Kalman filter Algorithm

In this paper, an alternative version of the KF algorithm described in Section 3 is
presented, which allows for the reduction of the residual systematic error. As can be seen in
the results in Figures 3 and 4, the possibilistic KF algorithm described in Section 3 estimates
the uncertainty intervals associated with the predictions very accurately in the presence of
a systematic error. However, it does not compensate for the systematic error.

The alternative possibilistic KF which is proposed in this paper makes use of the above
uncertainty interval to partially compensate for the systematic error. The new algorithm is
synthetically shown in Figure 5. With respect to the algorithm in Figure 2, it can be seen
that all steps are equal, except the last one, which corresponds to the “correction of the
predicted states”.

In particular, anew RFV Yiam’y is considered, which tries to compensate for the residual
systematic error. At each step k, Y,iomp consists of just the internal PD which is centered at
the positive uncertainty limit evaluated by the KF at the previous iteration (step k — 1) and
with the same width and shape as the internal membership function of the RFVs of the

state variables estimated by the KF in the previous iteration (X ).
Y;{nt*mndlf “d is then obtained by adding or subtracting the RFV Y;amr) from Y{", de-

pending on if the systematic error is positive or negative:

@

yint-modified _ {Y};"t + Y;Mp if systematic error < 0
i =

Yi" — Y™ if systematic error > 0
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Figure 5. The alternative possibilistic Kalman filter algorithm.

It is exactly like a negative feedback loop: the effects of the systematic contrbutions to
uncertainty predicted by the KF is used as a feedback to compensate for a possible system-
atic error and the systematic error is partially compensated for. The intrinsic requirement
for applying this method is that we know the direction of the systematic error i.e., it should
be known if the error is positive or negative.

The obtained results are shown in Figures 6 and 7. Again, the predicted values for
the velocity and acceleration given by the KF are the mean values of the velocity and
acceleration RFVs in matrix X{.

Diffrence between precicied and reference velocites
— Uncertanty bt the predictons
P R e M e R
a 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Figure 6. Difference in the reference and predicted velocity values (blue line) provided by the
possibilistic Kalman filter defined in this paper, together with the predicted uncertainty interval
(red lines).

As in Figures 3 and 4, also in Figures 6 and 7 the blue lines represent the differences in
the predicted values given by the KF and the true values of the velocity and acceleration
respectively. The uncertainty limits associated the state predictions (red lines) are the
« — cut at &« = 0.01 of the velocity and acceleration RFVs predicted by the KE.
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Figure 7. Difference in the reference and predicted acceleration values (blue line) provided by the
possibilistic Kalman filter defined in this paper, together with the predicted uncertainty interval
(red lines).

In Figure 6, with respect to Figure 3, it can be clearly seen that the uncertainty limits
have been significantly reduced along with the residual systematic error in the velocity esti-
mate. Table 1 gives a comparison with synthetic indexes for the velocity of the possibilistic
KF and the alternative possibilistic KF.

Table 1. Comparison of synthetic indexes for the velocity.

KF Possibilistic Alternative Possibilistic
Convergence(s) 151 138
Steady-state error 0.3024 0.1696
Variation of error 0.0220 0.0257
Uncertainty limits +0.3589 +0.2106
Variation of uncertainty limits 0 0
Percentage inside the uncertainty limits 99.00 95.88

5. Further Simulations

Further simulations have been performed in order to verify the effectiveness of the
alternative possibilistic KF in all situations. In particular, we want to verify whether the
algorithm still works in a good way when it is applied, but no residual systematic error
is present.

In fact, the result of the introduction of the “feedback” loop is that the residual
systematic error is compensated by the maximum possible value since the uncertainty limit
of the RFVs evaluated in each step (which is the value of the a-cut at « = 0.01 of the RFV)
is considered. This means that it is possible that the residual systematic error could be
overcompensated as the magnitude of this is unknown.

So, it is important that even if the residual systematic error happens to be zero (which
is the limiting case), the overcompensation should not be so high that the predictions of the
state variables obtained from the KF fall out of the evaluated uncertainty limits. To verify
this, the same example described in the Section 2 is considered except that the systematic
error is considered to be zero (instead of 0.3 m/s).

In this case, the results in Figures 8 and 9 are obtained.
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Figure 8. Difference in the reference and predicted velocity values (blue line) provided by the
alternative possibilistic KF, together with the predicted uncertainty interval (red lines) when residual
systematic error is zero.
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Figure 9. Difference in the reference and predicted acceleration values (blue line) provided by the
alternative possibilistic KF, together with the predicted uncertainty interval (red lines) when residual
systematic error is zero.

As expected, as can be seen in Figure 8, the systematic error in the velocity has
been overcompensated, but it is still mostly inside the evaluated uncertainty limits. This
demonstrates that the alternative possibilistic KF algorithm successfully decreases the
uncertainty associated to the state predictions provided by the KF in all situations. In fact,
the average uncertainty in Figure 8 is in any case smaller than the one in Figure 3.

6. Experimental Case Study

To validate the simulation results, a parrot AR drone has been used for the experi-
mental case study. The drone has the following technical specifications as given by the
manufacturer:

e 1 GHz 32 bit ARM Cortex processor with 800 MHz video DSP.
e 1Gbit DDR2 RAM at 200 MHz.

e Wi-Fib/g/n.

e 3 axis accelerometer +/—50 mg precision.

e 3 axis gyroscope 2000° second precision.

e Pressure sensor +/—10 Pa precision.

e 60fps vertical QVGA camera.

e 3 axis magnetometer 6° precision

e Ultrasound sensors.

The parrot AR drone has been developed as a low cost drone by parrot company
and is quite customizable. The code is open source and can be modified according to the
necessity. It has a variety of sensors and the data can be obtained from them and processed
as needed. For the present case study, the velocity and acceleration measurements have
been considered. For information about the algorithm used by the drone to calculate its
speed, the readers are suggested to refer to [25].
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The employed drone has been observed to have a negative systematic error in the
velocity measurements obtained from the sensors present in the drone itself. So, the velocity
is being underestimated by the sensors of the drone. It has also been observed that the
systematic error is not constant for all runs. Each individual run had a systematic error
that may be different from the other runs. So, only an interval of values can be estimated
and the error can not just be compensated.

By performing a large number of runs of the drone, the interval for the systematic
error has been estimated and this was used to construct the internal membership function
of the RFV for the measured velocity. The constructed RFV assumed to be centered at zero
velocity can be seen in Figure 10.

Ao 300 0 00 ] 100 200 300 400
oty mmsec)

Figure 10. RFV of the velocity constructed from the data. The blue line represents the external
membership function and the red line represents the internal membership function.

The measured acceleration, on the other hand, does not have any systematic contri-
butions to uncertainty. Hence, the RFV can be constructed by simply using a probability-
possibility transformation on the probability distribution of the acceleration.

The drone was made to fly for a few seconds to cover a distance of approximately
4 m. The velocity and acceleration data from the sensors is obtained from the drone every
5 ms using a software program that links the computer with the drone using the Wi-Fi
network. The alternative possibilistic KF described in Section 4 was used to provide the
filtered velocity and acceleration predictions with their respective uncertainties as well as
compensate partially for the systematic error in the velocity measurements provided by
the drone.

The velocity estimates provided by the KF were integrated to get the estimated
distance traveled by the drone. Similarly, the velocity measurements directly obtained by
the drone were integrated as well, to get the distance that the drone traveled according to
the sensors present in the drone.

At the end of every run, the actual distance from the starting point was been measured.
Measuring tape was used to do this since the error in the distance calculated using the
velocity data from the sensors is quite high and the precision of the measuring tape is
enough to be deemed negligible. Several runs were made and the distances estimated by
the KF and those estimated according to the sensor data were compared with the actual
distance traveled by the drone. To facilitate a comparison between the alternative KF
defined in this paper and the possibilistic KF defined in [23], the sensor data was processed
using both the KFs seperately.

The results using the possibilistic KF defined in [23] can be seen in Figure 11. The green
line represents the distances estimated according to the velocity measurements obtained
directly from the sensors in the drone. The blue line represents the distance obtained from
the velocity estimates of the defined possibilistic KF. The black line represents the actual
distance traveled by the drone. Finally, the red lines represent the upper and lower bounds
for the uncertainty.
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dicted uncertainty intervals (red lines). Actual distance traveled by the drone (black line) and
distances estimated according to the velocity measurements obtained directly from the sensors in the
drone (green line). Green line and blue line are almost the same.

It can be seen that the distances estimated by the possibilistic KF are quite close to
the distances from the sensors. The blue line and the green line in Figure 11 are almost
the same and that is why only the green dots and the blue line can be seen in the figure.
However, the real measurements lie inside the uncertainty limits of the distances provided
by the KE.
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Figure 12. Distances obtained from the velocity estimates of the defined alternative possibilistic KF
(blue line). The predicted uncertainty intervals (red lines). Actual distance traveled by the drone
(black line) and distances estimated according to the velocity measurements obtained directly from
the sensors in the drone (green line).

The results using the alternative KF defined in this paper can be seen in Figure 12.
Again, the green line represents the distances estimated according to the velocity mea-
surements obtained directly from the sensors in the drone. The blue line represents the
distance obtained from the velocity estimates of the defined possibilistic KF. The black line
represents the actual distance traveled by the drone. Finally, the red lines represents the
upper and lower bounds for the uncertainty.

For an easier comparison, Figure 13 shows again the distances obtained using the
modified possibilistic KF (green line) and those obtained using the alternative possibilistic
KF (blue line) along with the actual distance traveled by the drone (red line).
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Figure 13. Distances obtained from the velocity estimates of the defined alternative possibilistic KF
(blue line). The distances obtained from the velocity estimates of the modified alternative possibilistic
KF (green lines). Actual distance traveled by the drone (red line).

A comparison of the results obtained from the two KFs has also been given in Table 2.
From Table 2, it can be clearly seen that the distance obtained using the alternative KF
defined in this paper is much more accurate and closer to the real measurements than the
distances obtained from the sensor measurements or those obtained from the possibilistic
KF defined in [23].

Table 2. Comparison of the distance estimates of the drone obtained from the two KFs.

KF Possibilistic Alternative Possibilistic
Average error b-etween tl:le real distance 115.3273 12.4801
and estimated distance
Mean width of the uncertainty band +416.30 +210.63

Additionally, it can be easily seen that the width of the uncertainty limits associated
with the distance (red lines) are also smaller in Figure 12 compared to that in Figure 11.
The same can be verified from Table 2.

This confirms that the systematic error in the velocity is being compensated quite effi-
ciently using the defined alternative possibilistic KF and the overall uncertainty associated
to the predictions is being decreased as well.

7. Conclusions

The modified possibilistic KF defined in [23] is capable of propagating the systematic
contributions to uncertainty effectively. This paper defines an alternative possibilistic KF
which also decreases the effects of the systematic uncertainty contributions on the final
measurement and therefore can be considered an improved version of the KF defined
in [23].

The same simulated case study as in [23] has been considered to facilitate an easy
comparison and the results obtained using the KF defined in this paper have been shown
along with the results obtained by using the KF defined in [23]. The obtained results show
that the proposed KF provides a compensation of the systematic uncertainty and decreases
the overall uncertainty associated to the predictions.

The only requirement to use this method is that the direction of the residual systematic
error should be known. This requirement is not so difficult to be satisfied in the era of
big data. In any case, if not satisfied, the modified possibilistic KF defined in [23] is still
valid and can be successfully applied. A possible area of application of the alternative
possibilistic KF proposed in this paper could be in PTP networks where the network traffic
is being monitored and thereby it can be evaluated if the transmission delay is higher from
master to slave or from slave to master, thus identifying the direction of the systematic error
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in the calculation of the offset. Therefore, this method could be used to further decrease the
uncertainty associated with the time predictions provided by the KE.
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Abstract: In this paper, we consider the calibration of measuring bridges for non-conventional
instrument transformers with digital output. In this context, the main challenge is represented by
the necessity of synchronization between analog and digital outputs. To this end, we propose a
measurement setup that allows for monitoring and quantifying the main quantities of interest. A
possible laboratory implementation is presented and the main sources of uncertainty are discussed.
From a metrological point of view, technical specifications and statistical analysis are employed
to draw up a rigorous uncertainty budget of the calibration setup. An experimental validation is
also provided through the thorough characterization of the measurement accuracy of a commercial
device in use at METAS laboratories. The proposed analysis proves how the calibration of measuring
bridges for non-conventional instrument transformers requires ad hoc measurement setups and
identifies possible space for improvement, particularly in terms of outputs” synchronization and
flexibility of the generation process.

Keywords: measuring bridge; calibration; non-conventional instrument transformer; sampled values;
digital output; synchronization

1. Introduction

In view of reducing greenhouse gas emissions and carbon dependence, modern
power systems are experiencing an ever-increasing integration of renewable energy sources
and distributed generation [1,2]. Such resources are typically connected via dedicated
inverters whose power electronics-based control can not guarantee any rotational inertia
or regularization of the energy generation profile [3,4]. As a consequence, power systems
are expected to face much faster dynamics, as proven by recent adverse events in South
Australia and California [5,6].

In order to address such challenges, also the measurement infrastructure needs to
undergo a significant renovation, both in terms of instrumentation and control strategies [7].
In particular, the transition from traditional to digital electrical substations paves the way
to more sophisticated and optimized approaches for the collection and aggregation of
the quantities of interest, e.g., voltage and current levels at the transformer secondary
windings [8]. In this context, the recent IEC Std 61869-9:2016 [9] defines the operational and
communication requirements for instrument transformer with digital output. Due to their
capability of converting the output signal directly in a digital form (and thus compatible
with many processing and storage applications), such transformers are typically referred
to as non-conventional instrument transformers, briefly NCIT [10].

In terms of communication protocol, the IEC Std 61850-9-2:2011 [11] introduces the
Sampled Values (SV): a publisher/subscriber protocol for information exchange between
Stand Alone Merging Units (SAMUs) and Intelligent Electronic Devices (IEDs) over the
Ethernet. Originally conceived just as an efficient way to concentrate the outputs of NCITs
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and SAMUs [12-14], the SV is now directly applied to more sophisticated processing
applications, e.g., phasor measurements [15] and protection schemes [16].

The recent EMPIR project FutureGrid II has been investigating the measurement needs
and potential of SVs in modern electrical substations. In particular, dedicated calibration
infrastructures for transmitting and receiving SVs have been developed and thoroughly
characterized [17,18]. However, a rigorous and well-established procedure for the metro-
logical characterization of NCITs is not yet available. The measurement setup typically
includes a transformer measuring bridge capable of processing both analog and digital
inputs [19]. The calibration of such device, though, is not straightforward and requires a
precise assessment of the several uncertainty sources involved in the measurement process.
Indeed, the comparison between purely analog quantities and time-stamped digital values
represents a non-negligible challenge, especially in terms of synchronization and phase
angle uncertainty.

In this paper, we consider the problem of calibrating a measuring bridge for NCITs
from a metrological point of view [20,21]. In particular, we describe a novel measurement
setup and discuss the implementation challenges and requirements as well as the possible
uncertainty contributions. A preliminary calibration campaign confirms the feasibility
and reliability of the proposed approach, and sets a realistic performance target for the
uncertainty budget of the calibration infrastructure.

The paper is organized as follows: in Section 2, we present the measurement prin-
ciple inherent in measuring bridges for traditional and non-conventional transformers.
Section 3 outlines the measurement setup for the bridge calibration and describes the actual
implementation in METAS laboratories. In Section 4, we discuss the main uncertainty
contributions and derive a preliminary uncertainty budget based on technical specifications
and statistical analysis. In Section 5, we provide an experimental validation by presenting
the results of a measurement campaign on a commercial device. Finally, Section 6 provides
some closing remarks and outlines the next steps of the research.

2. Measuring Bridge: Configurations and Measurement Principles

In this section, we briefly describe the measurement principle of measuring bridges for
instrument transformers, focusing on the transition from the traditional analog approach
to the non-conventional approach based on SV communication protocol. In the following,
we refer to the specific case of current transformers but similar considerations apply as
well to voltage transformers.

Traditional measuring bridges for instrument transformers rely on the well-known
difference method [22]. As shown in Figure 1a, the same current source I is supplied to
two current transformers: a standard reference transformer, typically referred to as normal
(channel N), and the transformer under test (channel X). For the sake of comparability,
the two transformers adopt the same transformation ratio. As a consequence, they should
produce the same current output at the secondary winding.

(c)

----------- ~ | IEC 61850-9-2
sv

Figure 1. Typical configuration of a measuring bridge based on: difference method (a), digital signal
processing (b), and IEC 61850-9-2 protocol (c).
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It is worth noticing that, in a calibration context, the current source and the normal
transformers are subject to periodic and thorough metrological characterization campaigns:
systematic errors are suitably compensated, whereas random contribution determine the
source stability and the transformer uncertainty, whose levels are guaranteed to be much
lower than the expected performance of the device under test.

By means of current sensors (typically, a calibrated shunt and a voltmeter or a dig-
itizer), the measuring bridge determines the current flowing at the secondary winding
of the two transformers, Iy and Ix, respectively, as well as their difference I; = Ix — In.
In a vector space rotating at the nominal system frequency (e.g., 50 Hz), it is possible to
represent these quantities as rotating vectors, whose magnitude and phase depend on the
characteristics of the transformer under test.

Based on these measurements, the measuring bridge calculates the complex trans-
former or excitation error AE = I;/Iy (The excitation error is not necessarily included
in a calibration report as it depends on the accuracy and stability of the selected current
source and reference standard transformer. In this paper, we report also AE as it is one of
the measurement values commonly output by a measurement bridge, and thus it might
be interesting to associate it with a measurement uncertainty), the transformer ratio error
Ag, and the phase displacement A¢ (In this paper, the test waveforms consist of sine wave-
forms. Therefore, a negative phase displacement corresponds to a current Ix that is delayed
with respect to the reference current Iy).

In Figure 1b, we present an example of new generation of measuring bridges. With
the emergence of integrated circuits and fixed-point microprocessors, also measuring
bridges have been equipped with Analog-to-Digital Converters (ADCs) and Digital Signal
Processing (DSP) units for a more sophisticated treatment of the digitizer outputs. Instead of
considering their difference in an analog circuit, each channel is processed independently:
by means of a Discrete Fourier Transform (DFT), it is possible to define the complex
coefficient associated with the nominal system rate. The comparison between these complex
quantities allow for quantifying the excitation and ratio errors and the phase displacements.
Moreover, by differentiating the phase information, it is also possible to determine the
signal frequency and detect possible distortion introduced in the transformation.

Finally, Figure 1c represents the configuration of a measuring bridge for NCITs. As the
transformer under test outputs the current at the secondary winding directly in a digital
format, the X channel has to be supplied with an Ethernet board responsible of capturing
the SV data packets and aligning them with the samples provided by the ADC on the
N channel.

First, the captured SV data packets are queued in a First-In-First-Out (FIFO) buffer.
Then, the time-stamp information is extracted and compared with the internal time of
the measuring bridge: in the presence of high discrepancies (e.g., delayed transmission),
the comparison with the reference channel values is unfeasible and the measuring bridge
outputs an error message due to synchronization loss. Otherwise, the analog quantities are
extracted from the SV data packets and transmitted to the DSP for the DFT processing and
the error computation.

In this regard, it is reasonable to assume that the excitation error AE is mostly depen-
dent on the accuracy and stability of the current measurement at the N-channel. In the
absence of synchronization or packet loss, the SV data stream is characterized by a constant
amplitude whose accuracy depends only on the quantization error and on possible numer-
ical errors in the bridge DSP. On the contrary, Iy is an analog quantity that might vary as
function of time, depending on the stability of the current source and on the characteristic
of the standard transformer CTy.

3. Measurement Setup

In this section, we present the measurement setup for the metrological characterization
of a measuring bridge for non-conventional instrument transformers. Indeed, a detailed
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analysis of the employed instruments and measurement techniques is crucial in view of
the uncertainty analysis in the following section.

As shown in Figure 2, the setup consists of six main components: a time reference,
a calibrator, a transconductance amplifier, a calibrated shunt, a set of synchronized volt-
meters, and the Device Under Test (DUT), i.e., the measuring bridge.

50| DiGITAL
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ai0 SHUNT =—
ADC J
ail o -
B a0 {
TRANSCOND. f
— |
. M AMPLIFIER =l ADG
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¥ !
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Figure 2. Measurement setup employed for the calibration of measuring bridges for non-conventional
instrument transformers.

The time reference is responsible for providing the calibrator with a refined and
stable time-base. To this end, a 10-MHz signal overrides the internal clock of the cali-
brator. It is worth noticing that, in such application, the traceability to Universal Time
Coordinate (UTC) time is not mandatory. The only constraint is the exact synchronization
between the calibrator analog and digital outputs, as well as between the calibrator and
the measuring bridge.

The calibrator consists of three main units:

e A digital acquisition unit with a Digital-to-Analog Converter (DAC) and an ADC that
operate in simultaneous mode, i.e., share the same time-base and sampling rate. The
DAC is responsible for generating the analog test waveform to be supplied at the
transconductance amplifier and then the DUT, whereas the ADC simultaneously re-
acquires the same waveform to make it available for further processing and defining
the actual reference values. In this context, it should be noticed that both DAC and
ADC are typically equipped with two channels. One pair of channels (ai0 and aol in
Figure 2) is dedicated to the test waveform generation and re-acquisition, whereas the
other one (ail and ao0) is intended for self-calibration tasks, namely for the definition
of the DAC phase offset [18], as further discussed in the following section;

* A synchronization unit locked to the internal clock, and thus to the external time
reference. The synchronization board is responsible for two main tasks: distributing
the triggers for the other units within the calibrator, and providing the measuring
bridge with a Pulse-Per-Second (PPS) signal that is aligned with the time-stamp of
the SV data packets. As regards the first task, the main difficulty is represented by
the necessity of simultaneously triggering a purely hardware unit, namely the DAQ,
and a purely software process, namely the SV transmission. To this end, software
defined triggers are programmed as future time events, i.e., in correspondence of the
first rising edge of the internal time base after a given time instant. As regards the
second task, instead, the PPS is generated as a Transistor-Transistor Logic (TTL) signal,
disciplined at the same rising edge as the software triggers;

e A controller unit with sufficient memory and processing capabilities, and an Ether-
net board. On one side, the controller supervises the DAQ unit: it defines the test
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waveform to be generated as a sample series at the given sampling rate, stores the
acquired samples, and processes them in order to estimate (in quasi real-time) the
DAC phase offset. On the other side, the controller is responsible for publishing the
SV data packets, from the encapsulation of the SV to the actual transmission through
a dedicated Ethernet board.

The DAC outputs a low-voltage sinusoidal signal, in the range of £2 V. The amplitude,
frequency and initial phase of the signal can be customized to specific test conditions. The
conversion to the current levels expected by the N channel of the measuring bridge is
carried out by a transconductance amplifier. In this sense, the amplifier ratio represents a
further degree of freedom in view of a finer control of the current level, and thus of the
excitation. The transconductance amplifier is not an ideal current source and introduces
non-negligible uncertainty contributions on both the amplitude and phase of the signal
supplied to the measuring bridge.

The ADC re-acquires the amplifier output by means of a calibrated high-precision
shunt whose input range is suitably adapted to the specific test configuration. Typically,
the shunt output is scaled such that a full input range corresponds to an output range of
0.8 V. Given the calibration context and the high-accuracy of the employed shunts, their
contribution in terms of amplitude and phase uncertainty can be reasonably considered as
negligible, as further discussed in the next section.

The time-series acquired at the two ADC input channels are processed via a DFT-
based routine (further details in [18]) and the phase associated with the fundamental
frequency is retrieved. In particular, channel ail is representative of the contribution of
ADC only, whereas channel ai0 is representative of the entire measurement chain. By
properly differentiating these terms, it is possible to define the actual phase of the signal
supplied to the measuring bridge.

In the top-centre part of the scheme, a pair of Digital Voltmeters (DVMs) monitors the
input and output signal of the series of transconductance amplifier and shunt. The DVMs
are employed as high-precision sampling systems that operate in simultaneous mode:
the acquired time series are processed via a sine fitting method that allows for accurately
estimating the amplitude, frequency and initial phase of the signals under analysis. The
DVMs'’ trigger is not synchronous with the PPS of the synchronization unit, neither is
it disciplined to the time reference. As a consequence, the phase information cannot be
related to the phase measured on the calibrator. Nevertheless, the difference between the
phase measured on each DVM allows for quantifying the phase offset introduced by the
amplifier only. It is therefore an independent method to validate the results of DFT-based
routine carried out on the re-acquired waveforms.

METAS Implementation

As implemented in the METAS laboratories, the different components of the measure-
ment setup are listed here below.

e Time reference: A Meinberg LANTIME M600Time Server (Meinberg Funkuhren,
Bad Pyrmont, Germany) that includes a GPS-disciplined 10-MHz clock, whose time
accuracy and frequency stability are in the order of 50 ns and 0.5 nHz/Hz over an
averaging time of 1800 s, respectively [17].

e  (Calibrator: An NI PXIe 1062 chassis (National Instruments, Austin, TX, USA) that
hosts three boards: the NI PXIe 8880 controller, the NI PXI 6683 timing and syn-
chronization module, and the NI PXI 4461 dynamic signal acquisition module. The
NI PXIe 8880 is an Intel Xeon embedded controller (2.3 GHz Eight-Core) with two
10/100/1000BASE-TX (Gigabit) Ethernet ports. The NI PXI 6683 can generate events
and clock signals at specified synchronized future times and timestamp input events
with the synchronized system time. The NI PXI 4461 is a 2-input/2-output DAQ with
a nominal resolution of 24 bits. The sampling rate and the vertical range are set equal
to 192 kHz and £2 V, respectively, for both DAC and ADC channels.
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e  Transconductance amplifier: A Clarke-Hess 8100 (Clarke-Hess, Medford, NY, USA)
characterized by a 50 ppm short-term stability, a maximum compliance voltage of 7V,
a total harmonic distortion lower than —60 dB up to 10 kHz, and six available output
range from 200 mA to 100 A.

e  Shunt: A set of Fluke A40B Precision DC and AC Current Shunts (Fluke, Norwich, UK)
with a worst-case uncertainty of 55 ppm up to 1 kHz signal frequency. In particular,
we adapted the shunt input range to the generated current level: a 500-mA shunt
for 50 < Iy < 500 mA, and a 10-A shunt for 1 < Iy < 10 A. In this sense, a further
improvement might be represented by the adoption of magnetoresistance sensors.
Nevertheless, it should be noticed that the shunts are periodically calibrated and thus
the non-ideal conversion ratio is suitably compensated, and its effect is negligible if
compared to the calibrator and amplifier ones.

e  Digital Voltmeters: A pair of Keysight 3458 A Multimeters (Keysight Technologies,
Santa Rosa, CA, USA) with a resolution of 8.5 digits and an accuracy of 100 ppm in
synchronous mode. The DVMs are used as digitizers for a sine fitting technique with a
sampling rate of 2.5 kHz and an aperture time of 920 us. The two digitizers operate in
a master—slave configuration: the one connected to the calibrator output triggers also
the acquisition of the one connected to the amplifier output. In this way, they mimic
a two-channel ADC operating in synchronous sampling mode, as further discussed
in [23]. Tt is also worth noticing that the sine fitting procedure returns the value of the
amplitude, frequency and initial phase of the fundamental component. Therefore, by
comparing the phase at the two channels, we can retrieve the phase contribution of
the amplifier only with a standard uncertainty of 0.03 urad [24].

®  Measuring bridge (DUT): A ZERA WM3000I (ZERA, Konigswinter, Germany) with a
current input range from 1 mA to 15 A. In non-conventional mode, the bridge guaran-
tees a ratio and phase uncertainty not larger than 300 ppm and 1.5 min, respectively.

4. Uncertainty Contributions

In this section, we analyse the main uncertainty sources inherent in the proposed
measurement setup and we derive a complete uncertainty budget based on technical
specifications and statistical analysis (In case of statistical analysis, a coverage factor k = 2
(i-e., 95%) has been applied to the standard deviations).

In this context, four main contributions can be identified. Three descend from the
measurement chain for the generation and re-acquisition of the analog test waveform, i.e.,
from the DAQ module, the transconductance amplifier and (marginally) the current shunt.
One contribution, instead, is directly related to the definition of the SV data packets, i.e., to
the vertical resolution loss due to quantization effects.

As regards the DAQ module, two synchronization aspects have to be taken into
account: the sampling rate and the phase offset introduced by an improper triggering
of the DAC and ADC boards. The sampling rate is derived from the internal time base
that is disciplined to the external time reference. In our setup, we are able to retrieve the
coerced sampling rate on both boards and the discrepancy between nominal and actual
sampling rate is equal to 0.3 ppb [18]. Therefore, it is reasonable to say that the sampling
rate has a negligible effect on the amplitude, frequency and phase of the generated and
re-acquired waveform.

By connecting the channels aol and ai0, we were able to quantify also the distortion
level introduced by the DAQ module. In the considered configuration, we evaluated a
worst-case Signal-to-Noise Ratio (SNR) and a Total Harmonic Distortion of 92 and —96 dB,
respectively. As a consequence, the effective number of bits is equal to 17 bits. In this respect,
it should be noticed that such levels of accuracy require a precise control of temperature
and power supply stability. In our case, the measurement campaign has been carried out
in METAS laboratories with a controlled temperature of 23 Celsius degrees and adopting
a power supply at 60 Hz for all the instrumentation, i.e., calibrator, amplifier and DUT,
to avoid beating effects or interferences. For this analysis, we considered a dataset of 100
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independent acquisition with a sample length of 4 s. Moreover, we quantified the purity of
the test waveform by means of a nonlinear fit against a single-tone sinusoidal model that
produced a Goodness-of-Fit index not lower than 99.7% [18]. Based on these considerations,
we quantified the DAQ contribution to the estimation of the current amplitude in terms
of the noise variation range. By also taking into account the integral nonlinearity of the
ADC board, as characterized in [25], for a test waveform amplitude of 1V, the uncertainty
is 25.12 ppm.

A further validation of this result is provided by the RMS measurements carried out
by the first channel of the DVM system. For this analysis, we considered a dataset of
200 measurements and evaluated the mean and standard deviation. As shown in Figure 3,
the distribution is well approximated by a Gaussian distribution and the uncertainty can be
quantified in the worst-case in 23.71 ppm. The peculiar non-monotonic uncertainty trend
depends also on the adoption of two current shunts with different input range (namely,
500 mA and 10 A), as previously introduced.
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Figure 3. Uncertainty of the current amplitude at the output of the DAQ module as function of the
selected current level (a). Quantile-quantile plot relative to a current level of 5 A (b).

The second synchronization aspect regards the triggering mechanism of DAC and
ADC boards, with respect to the PPS signal output by the synchronization board (and the
time-stamp of the digital data stream). In this regard, it should be noticed that the DAQ
module relies on a Sigma-Delta technology: the phase offset introduced by the analog
front end of DAC and ADC boards is dependent on the sampling rate. Nevertheless,
in a calibration context, it is possible to characterize such contribution and minimize its
systematic component by properly shifting the initial phase of the generated waveform.
To this end, it is necessary to quantify precisely the phase offset introduced by DAC and
ADC boards separately. In recent years, this problem has been widely investigated by
several metrological institutes [26-28]. In our measurement setup, we adopted a DFT-
based routine for the precise characterization of the phase offset of the signal supplied
to the transconductance amplifier. The algorithmic details are beyond the scope of this
analysis but can be found in [18]. At 50 Hz, the phase offset has been proven to exhibit a
normal distribution with mean and standard deviation equal to 4.186 mrad and 0.004 mrad,
respectively. The first one can be seen as a systematic contribution and thus compensated,
whereas the second one is a random variable and is related to the phase uncertainty
introduced by the DAQ module.

In this context, another aspect that should not be neglected is the proper alignment of
the software triggers with the PPS used to synchronize the measuring bridge. With respect
to the external time-reference, we quantified the delay introduced by the calibrator in the
software triggers and in the PPS output of the synchronization module. As regards the
first ones, the technical specifications guarantee the rising edge to occur within 5 ns of
the selected time-stamp. Moreover, it should be noticed that the synchronization module
guarantees the distribution of software triggers to neighbouring modules (as the DAQ and
the controller) with a maximum delay of 2 ns. As regards the PPS output, we employed a
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high-precision digital oscilloscope with a sampling rate of 2 GHz and we compared the
PPS output against the external time reference. Over an observation interval of nearly
10 min, the PPS showed an average delay of 10 ns with a jitter on the order of few ps. These
contributions sum up to 11.36 ns that corresponds to a phase uncertainty of 3.568 prad.

Once output by the calibrator, the transconductance amplifier converts the voltage test
waveform in the corresponding current waveform. In order to characterize the amplitude
and phase contributions of this stage, this signal is re-acquired through a high-accuracy
current shunt. It is worth noticing that the shunts (periodically calibrated) contribute
to the overall uncertainty by at most 0.90 ppm for the amplitude, and 1.50 urad for the
phase [29,30]. On the other hand, the transconductance amplifier has a much more sig-
nificant impact on the overall uncertainty. As per the calibrator output, we analysed
the amplifier output via the DVM. In this case, we were also able to compute the phase
displacement between the two channels, i.e., the phase displacement introduced by the
transconductance amplifier (and the shunt). For each considered current level, we carried
out 200 independent measurements and computed the corresponding statistical distri-
butions: the mean value is taken as a systematic contribution and thus compensated,
the standard deviation is used for the uncertainty computation. Figure 4 presents the
uncertainty associated with amplitude and phase as function of the current level. In the
worst-case, the former is equal to 160.75 ppm, whereas the latter is 200 prad. In this regard,
it is worth noticing how the uncertainty rapidly increases when the current levels fall below
500 mA. Indeed, the selected amplifier is designed for high current output and exhibits
a poor accuracy at lower current levels. At the nominal value of 5 A, the uncertainty for
amplitude and phase are just 8.36 ppm and 8 urad, respectively.
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Figure 4. Uncertainty of the current amplitude (a) and phase (b) at the output of the transconductance
amplifier as function of the selected current level.

Finally, the contribution of the digital output has been also assessed. The SV communi-
cation protocol provides a resolution of 32 bits for the analog converted quantities. In terms
of quantization error, this corresponds to an amplitude uncertainty of 67 ppm. In terms of
phase uncertainty, it is reasonable to set it equal to zero, as the calibrator outputs simulated
packets, and thus no conversion error is possible (differently from the digital stream output
by a NCIT or a SAMU where measurement errors might occur). On the other hand, it
is difficult to merge such uncertainty contributions with the ones related to the analog
measurement chain without knowing the algorithm employed by the measuring bridge
for the definition of amplitude and phase on the X-channel. If a DFT-based approach is
adopted (as in many other SV-based estimators), the recent literature has proven how the
amplitude and phase uncertainty due to quantization errors decreases significantly as the
resolution of the quantized samples exceed 14 bits [31]. Therefore, for the purpose of this
paper, this contribution can be reasonably considered negligible.

As a summary, in Table 1, we report the overall uncertainty budget for the calibration
infrastructure. By applying a conservative approach, the combined uncertainty has been
computed under the assumption of independent and uncorrelated contributions. Consis-
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tently with the common practice in current transformer calibration, the phase uncertainty
has been expressed in minutes. In total, the amplitude and phase uncertainty are lower
than 200 ppm and 0.7’ for the entire range of considered test conditions.

Table 1. Uncertainty budget for amplitude and phase accuracy (coverage factor k = 2).

Amplitude Uncertainty Phase Uncertainty
Up, (ppm) u, ()
Synchronization module - 0.012
DAQ module 25.12 0.007
Transconductance amplifier 160.75 0.687
Combined Uncertainty 162.70 0.687

5. Experimental Validation

In this section, we present the results of an experimental validation carried out on
the selected DUT, i.e., the ZERA WM3000L. This is intended as an experimental validation
of the proposed calibration method as well as of its main uncertainty contributions in
controlled laboratory testing conditions, as typical of metrological institute activities. In
the following tables, the reported uncertainty takes into account both the calibration setup
contribution and the statistical dispersion of the measurements of the device under test.
For the sake of readability, a ceiling to the last significant digit has been applied.

For this analysis, we set the nominal frequency, current range and transformer ratio
equal to 50 Hz, 5 A and 1:1. Otherwise differently stated, the signals at N- and X-channel
consist of single-tone sinusoids, whose frequency, amplitude and initial phase are set equal
to 50 Hz, 5 A, and 0 rad, respectively. In the following tests, such parameter values are
suitably modified in order to reproduce different configurations of excitation, ratio and
phase error, and thus span the entire operating range of the measuring bridge.

To this end, a total of 27 different configurations are taken into account. Each test has
a duration of 5 min, including 1 min of settling time to allow for the proper stabilization of
the current output of the transconductance amplifier. For each of the monitored quantities,
11 consecutive measurements are taken and their average and standard deviation values
are employed to determine the corresponding measurement errors and uncertainties
(In the presence of outliers, single measurements could be neglected. In this sense, the
outlier detection criterion is based on the assumption that the measurements are normally
distributed. Given a set of 11 measurements, if a single measurements differs from the
average value by more than three standard deviations, its value is discarded from the
computation of measurement errors and uncertainties). In more detail, the reported
uncertainties for the excitation and ratio error, and for the phase displacement are obtained
by merging the contributions of the calibration setup with the Type A uncertainty of the
measuring bridge results.

For the sake of comparison, Table 2 reports the WM3000I specifications in terms of
accuracy for the current measurement on the N-channel, the ratio error and the phase
displacement. As previously observed, the excitation error in non-conventional mode
descends directly from the accuracy of the measured Iy amplitude, as the Ix amplitude
depends only on quantization and numerical errors whose impact on the overall uncertainty
can be considered as negligible.
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Table 2. Specifications of the measuring bridge under test.

Measurement Accuracy Current Range
In, Normal current RMS ;88 gg$ 0(())_"'()) 5§<ISIS<§0%)E(’)? A

A2, Rato ertor 200 ppm 005 < 1 <0005 A
A, Phase displacement }éi O%g 5§<ISIS<§0%)%5A A

In this context, Table 3 reports the measurement results in the presence of ratio
and phase errors. For this analysis, the ratio error is varied within £5% and the phase
displacement is set in such a way to consider small offsets (e.g., +10), large offsets (e.g.,
+5400’), and nearly phase opposition conditions (e.g., 10,794) (Such variations have
been obtained by modifying the content of the SV data packets, as the digital channel is
characterized by lower uncertainty contributions. Nevertheless, similar results could be
obtained by keeping unaltered the SV data packets and suitably modifying the current
source flowing through the standard transformer).

The two phenomena are investigated both independently and simultaneously. In this
way, it is possible to evaluate whether the measuring bridge is affected by any of the error
source or by their combination.

As the excitation is kept equal to 100%, it is worth noticing as the measuring bridge
exhibits an excitation error perfectly in line with its specifications and the uncertainty does
not exceed 200 ppm. Similar considerations apply for ratio error and phase displacement.
In this case, it is interesting to notice how Ae and A¢ do not exhibit any dependence on the
test setting.

Table 3. Characterization of the measuring bridge performance in the presence of ratio errors and
phase displacements (coverage factor k = 2).

Settings Measurements Uncertainty
IN IX E & QP AE Ae A(p UAE uAs uA‘P
A A ) (% () (%) (%) O ) W O

a1
a1

100  —5.000 0.00 0.00 -0.003 —-09 0.02 0.012 1.0
100 —3.000 0.00 0.00 -0.004 -09 0.02 0.012 1.0
100 —0.200 0.00 0.00 -0.004 -09 0.02 0.012 1.0
100  —0.200 -10.00 0.01 -0.006 —0.9 0.02 0012 1.0
100  —0.200 10.00 0.01 —-0.006 —-09 0.02 0.012 1.0
100 0.000  —5400.00 0.01 -0.005 -09 0.02 0.012 1.0

100 0.000 —180.00 0.01 —-0.004 —-09 0.02 0.012 1.0
100 0.000 —1.00 0.01 -0.005 -09 0.02 0.012 1.0
100 0.000 0.00 001 -0.006 -09 0.02 0.012 1.0
100 0.000 1.00 0.01 -0.006 —-09 0.02 0.012 1.0

100 0.000 180.00 0.01 -0.005 —-09 0.02 0.012 1.0
100 0.000 5400.00 0.01 -—-0.005 -09 0.02 0012 1.0
100 0.000  10,794.00 0.01 —-0.005 —-09 0.02 0.012 1.0

Q1 U1 G1 U1 1 O1 G U1 Q1 G U1 Q1 G U1 a1 O Ut
U1 U1 G1 U1 U1 G111 O G U1 O G U1 O a1 Q1

100 0.200 0.00 0.01 -0.005 —-09 0.02 0.012 1.0
100 0.200 -10.00 0.01 -0.005 —-09 0.02 0012 1.0
100 0.200 10.00 0.01 -0.006 —-09 0.02 0.012 1.0
100 3.000 0.00 0.01 -0.004 -09 0.02 0.012 1.0
100 5.000 0.00 0.01 -0.005 -—-08 0.02 0.012 1.0

In Table 4, we report the measuring bridge errors and uncertainties in the presence
of different excitation levels. For this analysis, we modified the N-channel current in
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such a way that the measuring bridge senses an excitation between 1 and 200%. Once
more, the excitation error and the corresponding uncertainty are in line with the previous
considerations. As regards ratio error and phase displacement, it is worth noticing how
both measurements and uncertainties present a rapid increase as the excitation falls below
5%. Nevertheless, it is reasonable to expect that, in the presence of lower current levels,
the accuracy of the internal sensors as well as the SNR decrease and the corresponding
computations are affected by larger errors and uncertainties. Similar considerations hold
also for the digital counterpart. The SV data format has a fixed range and number of
bits: as a consequence, when transmitting low-amplitude signals, there is an inefficient
exploitation of the 32 bits and the resulting estimates are likely to be affected by higher
relative uncertainty.

Table 4. Characterization of the measuring bridge performance in the presence of different excitation
levels (coverage factor k = 2).

Settings Measurements Uncertainty
IN IX E & [ AE Ae A(p UAE UAS uA(P
A A W (%) (@] (%) (%) (@] (%) (%) (@]
5 5 1 0.000 000 000 —0.017 —-11 0.02 0028 20
2 0.000  0.00 0.00 0.013 -1.0 002 0017 15

5 0.000 0.00 0.00 -0.009 -1.0 0.02 0.013 1.0
10 0.000 0.00 0.00 -0.007 -11 0.02 0.012 1.0
20 0.000 000 0.00 —-0.009 —-1.0 0.02 0.012 1.0
50 0.000 000 0.00 —0.006 —09 0.02 0.012 1.0
100 0.000 000 0.01 -—-0004 —-09 0.02 0.012 1.0
120  0.000 000 0.01 —-0.004 —-09 0.02 0.012 1.0
200 0000 0.00 001 —-0.000 -1.0 0.02 0.012 1.0

U1 U1 O1 U1 U1 01 G U1
Qg1 Q1 1 U1 U1 01 G U1

The specific device under test provides a useful extra feature, i.e., a representation of
the current flowing in the N-and X-channel as rotating vectors characterized in terms of
RMS amplitude, phase, and frequency. The estimation accuracy of the first two parameters
has been already investigated in the previous tables, but the frequency (particularly, the
one of the N-channel) requires a separate investigation. To this end, we characterized the
frequency measurements in the presence of different excitation levels and phase displace-
ments. For the sake of consistency, the variation ranges of E and ¢ correspond to the ones
applied in Tables 3 and 4.

In this context, Table 5 reports the measurement results and the associated uncertainty.
It is worth noticing how the frequency error Af is quite stable around —0.54 mHz with
a worst-case uncertainty of 0.06 mHz (when the excitation is set to its minimum value,
i.e., 1%). In this case, the instrument specifications do not provide a performance target.
Nevertheless, the obtained measurement accuracy is sufficient for the typical application
of a measuring bridge for instrument transformers.
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Table 5. Characterization of the measuring bridge frequency estimation accuracy in the presence of
different excitation levels and phase displacements (coverage factor k = 2).

Settings Measurements  Uncertainty
In Ix E £ @ f Af LIAf
A A (%) (%) (@] (Hz) (mHz) (mHz)
5 5 1 0.000 0.00 50 —0.511 0.056
5 5 2 0.000 0.00 50 —0.512 0.038
5 5 5 0.000 0.00 50 —0.556 0.028
5 5 10 0.000 0.00 50 —0.519 0.030
5 5 20 0.000 0.00 50 —0.537 0.031
5 5 50 0.000 0.00 50 —0.537 0.032
5 5 100 0.000 0.00 50 —0.509 0.028
5 5 100 0.000  —5400.00 50 —0.529 0.032
5 5 100 0.000 —180.00 50 —0.557 0.028
5 5 100 0.000 —1.00 50 —0.521 0.030
5 5 100 0.000 0.00 50 —0.530 0.032
5 5 100 0.000 1.00 50 —0.530 0.032
5 5 100 0.000 180.00 50 —0.548 0.030
5 5 100 0.000 5400.00 50 —0.548 0.032
5 5 100 0.000  10,794.00 50 —0.548 0.030
5 5 120 0.000 0.00 50 —0.528 0.032
5 5 200  0.000 0.00 50 —0.511 0.028

6. Conclusions

In this paper, we presented the measurement setup for the calibration of measurement
bridges for non-conventional instrument transformers. We have discussed the main im-
plementation challenges and characterized the most significant uncertainty contributions.
Based on technical specifications and statistical analysis, we have performed a compre-
hensive uncertainty budget of the calibration setup that has been further validated by an
experimental measurement campaign carried out at METAS laboratories.

The proposed analysis allows for identifying the main challenges of a calibration
process that requires a synchronous generation of both analog and digital quantities. The
research project will now focus on the minimization of the uncertainty contributions (with
specific attention to the analog measurement chain) and on the extension of the proposed
infrastructure to non-stationary signals, as the ones that a plausible instrument transformer
might deal with in field applications.
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Abstract: This paper considers a future scenario in which digital reporting of measurement results is
ubiquitous and digital calibration certificates (DCCs) contain information about the components of
uncertainty in a measurement result. The task of linking international measurement comparisons is
used as a case study to look at the benefits of digitalization. Comparison linking provides a context
in which correlations are important, so the benefit of passing a digital record of contributions to
uncertainty along a traceability chain can be examined. The International Committee for Weights
and Measures (CIPM) uses a program of international “key comparisons” to establish the extent to
which measurements of a particular quantity may be considered equivalent when made in different
economies. To obtain good international coverage, the results of the comparisons may be linked
together: a number of regional metrology organization (RMO) key comparisons can be linked back
to an initial CIPM key comparison. Specific information about systematic effects in participants’
results must be available during linking to allow correct treatment of the correlations. However,
the conventional calibration certificate formats used today do not provide this: participants must
submit additional data, and the report of an initial comparison must anticipate the requirements
for future linking. Special handling of additional data can be laborious and prone to error. An
uncertain-number digital reporting format was considered in this case study, which caters to all the
information required and would simplify the comparison analysis, reporting, and linking; the format
would also enable a more informative presentation of comparison results. The uncertain-number
format would be useful more generally, in measurement scenarios where correlations arise, so its
incorporation into DCCs should be considered. A full dataset supported by open-source software
is available.

Keywords: digitalization; measurement uncertainty; metrological traceability; key comparison;
digital calibration certificate; uncertain number

1. Introduction

The national and international infrastructures that disseminate critical measurement
information throughout society are due for renovation. Designed to be operated and
supervised by skilled people, there is now a call to digitalize these essentially paper-based
systems. The best way to proceed is by no means clear. However, a coordinated inter-
national effort will be needed to reap real benefits from digitalization. A recent paper
reviewed work performed so far to develop a common digital format for reporting measure-
ment data, which is generically referred to as a “digital calibration certificate” (DCC) [1].
The DCC will be a fundamental component of digital measurement infrastructures, but
many decisions still need to be made about its structure. Among these is how best to
represent measurement uncertainty.

The International Committee for Weights and Measures (CIPM), which directs metro-
logical activities carried out by parties to the Metre Convention [2], recognized the need to
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coordinate digitalization of the international measurement system and has established a
CIPM Task Group on the Digital SI (CIPM-TG-DSI) [3], supported by a team of experts. In
early 2021, this team made a public request for use cases to identify situations where the
digitalization of existing metrological infrastructure might improve outcomes or address
difficulties. This paper presents a preliminary analysis of one of those use cases.

The study relates to the analysis and linking of international measurement compar-
isons. Although comparison analysis is a specialized topic, the limitations of current
reporting in calibration certificates become clear in this context, and so, the benefits of
digitalization are easily recognized. Comparison linking is an interesting case, because
correlations in the data can significantly affect the results. Handling the correlations com-
plicates data analysis, especially the evaluation of uncertainty. Our study shows that
digitalization can help; it can enhance the information available in the final results while
hiding and largely automating the more laborious aspects of processing data. The chal-
lenge posed by correlated data arises in many other measurement scenarios as well, so the
representation of measurement uncertainty described in this work would offer advantages
in other digital systems.

1.1. Measurement Comparisons in the CIPM MRA

The CIPM Mutual Recognition Arrangement (MRA) [4] is a framework used to estab-
lish the equivalence of measurement standards in different economies. Specific calibration
and measurement capability (CMC) claims are approved by expert Consultative Commit-
tees of the CIPM and then published in a database by the International Bureau of Weights
and Measures (BIPM). To maintain or extend CMC entries, national metrology institutes
(NMls) must provide evidence in support of their claims. This evidence is often obtained
by participating in international measurement comparisons [5].

Our case study involves two kinds of comparison: a CIPM key comparison and a
subsequent RMO key comparison (organized by a regional metrology organization). In a
CIPM comparison, a group of NMIs submit measurements of a particular quantity associ-
ated with an artifact. The data are used to determine a comparison reference value, and
then, for each participant, a degree of equivalence (DoE) is calculated, which characterizes
the difference between the participant’s result and the comparison reference value.

After an initial CIPM comparison has been completed, a number of other RMO
comparisons may be carried out. This provides a way to assess the equivalence of NMlIs
that did not participate in the initial comparison. The results of an RMO comparison must
be linked to those of the initial CIPM comparison, which means that several participants
from the initial comparison must participate again in the RMO comparison.

A DoE is considered to reflect the level of consistency of one participant’s measurement
standard with those of other participants. An uncertainty is evaluated for each DoE, which
allows the significance of each result to be assessed: if the magnitude of a DoE is greater
than its expanded uncertainty (typically at a 95% level of confidence), then the evidence for
equivalence is considered weak. DoEs evaluated during an RMO comparison have equal
standing to DoEs obtained from the initial CIPM comparison.

1.2. CCPR Comparison Analysis

Measurement comparisons in the CIPM MRA follow strict rules and are guided by the
policies of the Consultative Committee responsible for a particular technical area [5]. Our
case study deals with the photometric quantity regular spectral transmittance, which falls
under the Consultative Committee for Photometry and Radiometry (CCPR). A detailed
description of the analysis recommended for CCPR comparisons was given in [6], where
expressions for the uncertainty in DoE values were obtained according to the law of the
propagation of uncertainty (LPU) [7]. In practice, these expressions have many terms,
which can make data processing quite daunting.
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1.3. A Case Study of Comparison Linking

The intention of this case study is to look for possible benefits from digitalization
of the reporting and analysis of data. A future scenario is envisaged, where participants
submit results in a digital format that contains more information than today’s calibration
certificates. This allows data processing to be handled more directly and in a straight-
forward and intuitive manner. The scenario offers a glimpse into the future where, once
the digitalization of the international measurement system is complete, digital reporting
(DCCs) will be ubiquitous.

The study applies the methodology prescribed in [6], but a digital format called an
“uncertain number” is used to represent the data [8]. An uncertain number is a data type
that encapsulates information about the measured value of a quantity and the components
of uncertainty in that value. Software supporting uncertain numbers greatly simplifies data
processing, because calculations simultaneously evaluate the value and the components
of uncertainty. Mathematical operations are expressed in terms of a value calculation, but
the results include a complete uncertainty budget. Furthermore, uncertain-number results
are transferable, which is extremely important in this work. (The Guide to the expression
of uncertainty in measurement (GUM) identifies transferability and internal consistency as
the desirable properties of an ideal method of expressing uncertainty ([7], §0.4). Although
we refer here only to transferability for simplicity, uncertain numbers provide both trans-
ferability and internal consistency.) An uncertain number obtained as the result of some
calculation may be used immediately as an argument in further calculations (exactly as
one can do with numerical results). When this happens, the components of uncertainty
are rigorously propagated, from one intermediate result to the next, according to the LPU.
Transferability in this case study allows the CIPM and RMO comparisons, with linking,
to be processed as a single, staged, measurement (the importance of adequately linking
the stages of a metrological traceability chain was discussed in [9,10]). It is this aspect of
digitalization that delivers the benefits we describe below.

A software tool called the GUM Tree Calculator (GTC) that implements the uncertain-
number approach was used. GTC is an open-source Python package [11,12]. A recent
publication described GTC and its design in some detail [13]. A dataset containing the data
and code used in the current study is available [14]. The snippets of code shown below are
extracts from this dataset.

1.4. Digital Records

To create digital records for the participant and pilot measurements in this study, a
small subset of data was taken from a CIPM comparison of transmittance and a subsequent
RMO comparison [15,16]. In Sections 2 and 3, we describe the structure of these compar-
isons. Participants were required to submit an uncertainty budget for each measurement
and to identify the systematic and random influence factors in that budget. The systematic
factors are considered constant. For NMlIs that participated in both CIPM and RMO com-
parisons, the systematic factors do not change. They are characterized as components of
uncertainty, because the actual values of residual error are not known. The random factors
are considered to be unpredictable effects that arise independently in each measurement.
The nature of the components of uncertainty—systematic or random—must be known in
order to account for correlations in the data.

We used the uncertainty budgets reported by participants to construct digital records
for this study. In doing so, some assumptions were made about the data and some of
the data were changed to resolve minor inconsistencies, so we do not identify actual
participants with these records. The intention here is to present a future scenario where
DCC formats have been widely adopted. The assumption was made that these formats
are self-contained, with more detailed information than is available in today’s calibration
certificates, so there is no longer a need to request additional data for the comparison
analysis. Were such a future to become reality, the processes leading to the production of
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DCCs would not resemble the steps taken here to artificially create the scenario. Therefore,
the detail of how digital records were assembled for this study is not discussed.

1.5. Mathematical Notation

Mathematical expressions use the notation adopted in [6]. Most details are explained
when the notation first appears in the text. However, the reader should note that we
distinguish between quantities and estimates of quantities with upper and lower case
symbols, respectively. For instance, the uncertainty in a value y, obtained by measuring
a quantity Y, will be expressed as u(y)—the standard uncertainty of y as an estimate of
Y. When GTC code is used to implement mathematical expressions, uncertain-numbers
are associated with quantity terms (upper case terms). The corresponding estimates and
uncertainties are the properties of these uncertain-number objects.

2. A CIPM Key Comparison

In the initial CIPM key comparison, there were eleven participants (identified here by
the letters A, B, ..., K) and a pilot laboratory (Q). Each participant measured a particular
artifact, while the pilot measured all eleven artifacts. The comparison was carried out
in five stages: first, the pilot measured the artifacts; second, each participant reported a
measurement; third, the pilot measured the artifacts again; fourth, each participant made a
second measurement; and fifth, the pilot made one last measurement of all the artifacts
(Two participants submitted only the second measurement, so these data were processed
with pilot results from only Stages 1 and 3).

Listing 1 displays information about the first measurement by Participant A (Stage 2).
The measured transmittance appears at the top, with the combined standard uncertainty in
parentheses. Two uncertainty budgets follow: first, the individual components of uncer-
tainty; second, the net systematic and random effects components. Component labeling
uses a capital letter to identify the participant (A, B, etc.). If a component of uncertainty
contributed only to a specific stage, then a stage number (1, 2, 3, 4, or 5) is appended in
parentheses. A colon then precedes the participant’s name for the influence quantity, and
finally, the component is classified as random or systematic ((xrnd) or (sys)). For example,
there are both random and systematic contributions to uncertainty in the wavelength,
so Listing 1 includes two terms: A:Wavelength (sys) is a systematic component that con-
tributes to uncertainty at every stage, and A(2) :Wavelength (ran) is a random component
that contributes at Stage 2 (another independent component A(4) :Wavelength (ran) ap-
pears in the budget at Stage 4). It is important to understand that the information shown in
Listing 1 was all obtained from a single entity representing the measurement result—a sin-
gle uncertain number. In the scenario we considered, this was submitted by the participant
in a digital record.

When mathematical operations are applied to uncertain numbers, the components
of uncertainty are handled according to the LPU. To illustrate this, we compared the
results submitted by Participant A at Stages 2 and 4 by subtracting the corresponding
uncertain numbers. With Y_A_2 and Y_a_4 for the results, we display the uncertain-number
difference in Listing 2. Notice that the only non-zero terms in the uncertainty budget
are now associated with random effects at each stage. The systematic terms from the
budget of Listing 1 (the non-linearity, wavelength, stray light, and the beam size and
position) contribute nothing to the combined uncertainty in the difference. This is to be
expected, because each systematic term contributes a fixed (albeit unknown) amount to the
combined measurement error. The influence of these constant terms on the difference is
zero. Uncertain-number calculations arrive at the correct result by strictly implementing
the LPU. In order to do that, information about all uncertainty components must be
encapsulated in the uncertain-number data.
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Listing 1. Data from Participant A for the Stage-2 measurement. The measured value is shown at the
top, with the combined standard uncertainty in parentheses. Two uncertainty budgets follow. The
first shows the individual components of uncertainty reported by the participant. The second shows
total systematic and random components.

A(2) :Transmittance = 0.919644(0.000296)

Uncertainty budget:

A:Beam Size & Position (sys): 0.00019516
A(2) :Beam Size & Position (ran): 0.00019516
A(2):Type-A (ran): 0.00007800
A(2):Instability (ran): 0.00006800
A:Non-linearity (sys): 0.00003000
A:Wavelength (sys): 0.00000354
A(2) :Wavelength (ran): 0.00000354
A:Stray Light (sys): 0.00000300

Systematic and random:
A(2) (ran): 0.00022093

A (sys): 0.00019751

Listing 2. The difference between Participant A’s results at Stage 2 and Stage 4. The difference is
shown at the top, with the combined standard uncertainty in parentheses. The uncertainty budget
follows. Note that all systematic components are now zero.

Difference:Y_A_4 - Y_A_2 = 0.000449(0.000489)

Uncertainty budget:

A(4) :Type-A (ran): 0.00038400

A(2) :Beam Size & Position (ran): 0.00019516
A(4) :Beam Size & Position (ran): 0.00019516
A(2) :Type-A (ran): 0.00007800

A(2) :Instability (ran): 0.00006800

A(4) :Instability (ran): 0.00006800
A(2):Wavelength (ran): 0.00000354

A(4) :Wavelength (ran): 0.00000354
A:Non-linearity (sys): 0.00000000
A:Wavelength (sys): 0.00000000

A:Stray Light (sys): 0.00000000

A:Beam Size & Position (sys): 0.00000000

2.1. Evaluating DoEs

The calculation of DoEs can be expressed succinctly (in the notation adopted in [6]).
For the pilot, identified by the letter “Q” (and with a superscript “+” to indicate a CIPM
comparison), the DoE, D(*), is a weighted sum over all participants ([6], Equation (18)) (the
weighting factors w; are explained in Appendix A and the notation (-) 4, is the mean of
measurements of the artifact associated with participant j):

Dé:—ij<T;—Té>A}. (1)
]
For any other participant i, the DoE is ([6], Equation (19)):

Df = (Y] =Y§ )4, +Dg- @
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The bar in these expressions indicates the simple weighted mean of a series of mea-
surements for one artifact (Y} 1], Y7 [2],- - ), obtained at different stages:

N
Y= 217771 Yi[n],
=

where:

()
3> (uty; )

k=1

Mn =

and u(yj [n]) is the standard uncertainty in the value of the nth result, y[n], from partici-
pant j. There is only one artifact per participant in this scenario, so ( Y7* - Té ) 4, indicates
the difference between the mean of participant j's measurements and the mean of the
pilot’s measurements of the same artifact.

Equation (1) was implemented in the GTC software, as shown below. This code
obtains an uncertain number representing D

d_Q = -sum(
wll_j1 * ( mean(r_j.lab) - mean(r_j.pilot) )
for 1_j,r_j in kc_results.items()

The function mean() evaluates the mean of a sequence of uncertain numbers; r_j.1lab and
r_j.pilot contain, respectively, a sequence of results from participant j and the corre-
sponding sequence of pilot measurements for the same artifact; kc_results is a container
of objects as r_j for all participants; w[1_j] represents the weighting factors. Following
Equation (2), a DoE is evaluated for each of the other comparison participants:

d_i = mean(r_i.lab) - mean(r_i.pilot) + d_Q

The results, with associated standard uncertainties, may be displayed as:

DoE[A] 0.000249 (0.000278)
DoE[B] : 0.000305 (0.001225)
DoE[C] : 0.000008 (0.000097)
DoE[D] 0.003274 (0.000886)
DoE [E] 0.000487 (0.000480)
DoE[F] : 0.000012 (0.000266)
DoE[G] : -0.001776 (0.004078)
DoE[H] : -0.000219 (0.000138)
DoE[I] : -0.000011 (0.000110)
DoE[J] : 0.000192 (0.000285)
DoE[K] : -0.000097 (0.000750)
DoE[Q] : -0.000129 (0.000056)

2.2. DoE Uncertainty Budgets

The DoEs are influenced by factors in the participants’ measurements, with each factor
giving rise to one component of uncertainty. Because Equations (1) and (2) combine results
from all participants, there is a large number (278) of components in the budget of each DoE
in this scenario. Listing 3 shows the DoE for Participant A and an abridged uncertainty
budget, in which the more significant components of uncertainty are shown—those with
magnitudes greater than 10 % of the largest component. These factors can be identified as
influences from A’s own measurements and from those of the pilot on the same artifact.
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Listing 3. The DoE for Participant A is shown at the top, with the combined standard uncertainty
in parentheses. An abridged uncertainty budget follows. Only the components with a magnitude
greater than trim times the largest component are shown. The components are listed in decreasing
order of magnitude.

D_kc[A] = 0.000249(0.000278)

Uncertainty budget (trim=0.1):
A:Beam Size & Position (sys):
A(2) :Beam Size & Position (ran):
A(4) :Type-A (ran):
A(2) :Type-A (ran): .00005375
A(4) :Beam Size & Position (ran): .00005153

0.00018602
0
0
0
0
A(2) :Instability (ran): 0.00004686
0
0
0
0
0

.00013449
.00010139

.00002859
.00002217
.00002101
.00002101
.00002101

A:Non-linearity (sys):
Q(A) :Non-Parallel Surfaces (sys):
Q_A(1) :Drift & Instability (ran):
Q_A(3) :Drift & Instability (ran):
Q_A(5) :Drift & Instability (ran):

There is quite a diversity of structure in the uncertainty budgets among the different
participants. Listing 4 shows the DoEs obtained for Participants B and C. Participant
B’s result has a much larger combined standard uncertainty than Participant C, and the
uncertainty budget is dominated by factors associated with B’s own measurements. In
contrast, the DoE for Participant C has the lowest uncertainty of all participants, and
the corresponding uncertainty budget has many more significant influence factors. The
largest of these are from C’s own measurements and the corresponding pilot measurements.
However, we also see components associated with measurements by Participants A, E, F,
H, I, ], and K. These participants were weighted more heavily than B, D, and G during the
DoE calculation (see Appendix A).

Listing 4. The DoEs for Participants B and C. See the caption to Listing 3 for further details.

D_kc[B] = 0.000305(0.001225)

Uncertainty budget (trim=0.1):
B:Inter-reflection (sys): 0.00109561
B(2) :Source Drift & Fluctuation (ran): 0.00036611
B(4) :Source Drift & Fluctuation (ran): 0.00031325
B:Beam Size & Position (sys): 0.00018227
B:Bandwidth (sys): 0.00015936

D_kc[C] = 0.000008(0.000097)

Uncertainty budget (trim=0.1):

C:Stray light (sys): 0.00004288

C(2):SFK (ran): 0.00002973

C:Non-linearity (sys): 0.00002751

C(4) :Type-A (ran): 0.00002727
C:Inter-reflexion (sys): 0.00002185

Q(C) :Non-Parallel Surfaces (sys): 0.00002099
Q_C(1):Drift & Instability (ran): 0.00001784
Q_C(3):Drift & Instability (ran): 0.00001784
Q_C(5) :Drift & Instability (ran): 0.00001784
H:Stray Light (sys): 0.00001754
H:Inter-reflection (sys): 0.00001754
J:Inter-reflection (sys): 0.00001523
I(2):Type-A (ran): 0.00001441
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I:Inter-reflection (sys): 0.00001426
J:Prismatic effect (sys): 0.00001362

Q_C(1) :Type-A (ran): 0.00001133

Q_C(3) :Type-A (ran): 0.00001133

Q_C(5) :Type-A (ran): 0.00001133
F:Non-linearity (sys): 0.00001065

A:Beam Size & Position (sys): 0.00000914
C(4):SFK (ran): 0.00000863
E:Inter-reflection (sys): 0.00000767
H:Polarization (sys): 0.00000760

E:Detector reproducibility (sys): 0.00000738
C(2) :Type-A (ran): 0.00000690
F:Inter-reflection (sys): 0.00000666
F:Polarization (sys): 0.00000666

H(4) :Filter instability (ramn): 0.00000666
K:Polarization (sys): 0.00000662

A(2) :Beam Size & Position (ran): 0.00000661
H(2) :Filter instability (ramn): 0.00000634
Q_I(1):Drift & Instability (ran): 0.00000631
Q_I(3):Drift & Instability (ran): 0.00000631
F(2):Filter Stability (ran): 0.00000614
K:Beam Size & Position (sys): 0.00000597
H(4) :System reproducibility (ran): 0.00000586
F(4):Filter Stability (ran): 0.00000585

D(2) :Beam Size & Position (ran): 0.00000568
H(2) :System reproducibility (ran): 0.00000559
A(4) :Type-A (ran): 0.00000498

F(4) :Type-A (ran): 0.00000455

D(2):Type-A (ran): 0.00000443
B:Inter-reflection (sys): 0.00000439

The detail about individual influence factors shown in the listings above is more than
the minimum required to analyze and link comparisons. Only the net systematic and
random components are needed for that purpose. This is what is used at present, and the
reduction in complexity makes the analysis tractable without digitalization. However, the
physical origins of influence factors are obscured. For example, Listing 5 shows the budgets
of Participants B and C in terms of systematic and random components. Compared to the
information shown Listing 4, this offers little insight into the origins beyond participant
and stage.

Listing 5. The DoEs for Participants B and C showing the total systematic and random effects as
components of uncertainty. These budgets are equivalent to those in Listing 4; however, only the net
random and systematic contributions at each stage are shown.

D_kc[B] = 0.000305(0.001225)

Uncertainty budget (trim=0.1):
B (sys): 0.00061183

B(2) (ran): 0.00036717

B(4) (ran): 0.00031562

D_kc[C] = 0.000008(0.000097)

Uncertainty budget (trim=0.1):
C(2) (ran): 0.00003052

C(4) (ran): 0.00002860
Q_C(1) (ran): 0.00002142
Q_C(3) (ran): 0.00002142
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Q_C(5) (ran): 0.00002142
C (sys): 0.00001907

I (sys): 0.00001461

I(2) (ran): 0.00001441

H (sys): 0.00001344

J (sys): 0.00001043

H(2) (ran): 0.00000914
H(4) (ran): 0.00000890
F(2) (ran): 0.00000816
F(4) (ran): 0.00000812
D(2) (ran): 0.00000790
A(2) (ran): 0.00000748
Q_I(1) (ran): 0.00000748
Q_I(3) (ran): 0.00000748
Q_C (sys): 0.00000700

F (sys): 0.00000696

A(4) (ran): 0.00000566

E (sys): 0.00000540
Q_H(1) (ran): 0.00000499
Q_H(3) (ran): 0.00000499
Q_H(5) (ran): 0.00000499
J(2) (ran): 0.00000483
J(4) (ran): 0.00000460

K (sys): 0.00000448

E(2) (ran): 0.00000384
E(4) (ran): 0.00000384

3. The RMO Key Comparison

Seven NMIs participated in the subsequent RMO key comparison (identified by the
letters T, U, V ..., Z) and a pilot laboratory (P). The pilot and Participant Z had both
taken part in the initial CIPM comparison, so their results were used to link the two
comparisons. The participants each measured a different artifact, and the pilot measured
all seven artifacts. The comparison was carried out in three stages: first, the pilot measured
the artifacts; second, each participant reported a measurement; third, the pilot measured
all the artifacts again.

3.1. Evaluating DoEs

The possibility of slight shifts in the scales of the linking participants since the initial
CIPM comparison must be accounted for when linking. Therefore, linking participants
provide information on the stability of their scales as part of their report during the RMO
comparison. Formally, in the analysis, a quantity that includes a term Ep.| representing
scale movement is used for the DoE of each linking participant:

D;=Dj +Ep;. 3)

Ep.; can be thought of as a residual error in the scale that contributes to uncertainty in
the DoE. To provide a link to the RMO comparison, we then evaluate ([6], Equation (46)):

Dp=—Y v/((Y,—Yp)a,—Dj)
]
= —0z((Yz—=Yp)a, — Dy ) +opDp, 4)

where v; are the weight factors for linking participants (see Appendix B). Finally, the DoEs
of non-linking participants are ([6], Equation (45)):

Di:<Yi*Y7P>Ai+DP- (%)
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Our data processing uses a Python dictionary to hold the uncertain numbers for each
DoE evaluated according to Equation (5):

D_rc = dict()
for 1_i in lab_IDs[:-1]:
r_i = rc_results[1_i]
D_rc[1_i] = mean(r_i.lab) - mean(r_i.pilot) + D_P

A link to the initial comparison is obtained, following Equation (4), from:
D_P = -( nu_Z*M_Z + nu_P*M_P )

where nu_z and nu_P correspond to vz and vp, respectively, and correspond to
Equations (A3) and (A4),

M_Z = mean(rc_results[’Z’].lab) - mean(rc_results[’Z’].pilot) - rc_link_doe[’Z’]
M_P = -rc_link_doe[’P’]

where rc_results [’Z’].1ab is the sequence of measurements submitted by Participant Z and
rc_results [’Z’] .pilot are the corresponding pilot measurements. Following Equation (3),
the uncertain numbers rc_doe[’Z’] and rc_doe [*P’] were calculated by adding an uncertain
number for the participant’s scale stability to the participant’s DoE obtained in the CIPM
comparison (see the dataset for further details [14]).

The resulting DoEs, with standard uncertainties in parentheses, are:

DoE[T] = 0.00136 (0.00203)
DoE[U] = -0.00137 (0.00076)
DoE[V] = 0.00182 (0.00094)
DoE[W] = -0.00138 (0.00095)
DoE[X] = 0.00032 (0.00042)
DoE[Y] = 0.00297 (0.00314)

3.2. DoE Uncertainty Budgets

In the linked RMO comparison, the DoEs are each influenced by 302 factors (these
factors were identified by participants when submitting their results and, as explained
above, the influences from all participants to contribute to the uncertainty). Again, there
is diversity in the uncertainty budgets of different participants. For example, the uncer-
tainty budget in Listing 6 shows that the most important components of uncertainty for
Participant Y, the participant with the largest DoE uncertainty, are all related to Y’s own
measurement.

Listing 6. The DoE for participant Y with an abridged uncertainty budget.

D[Y] = 0.002972(0.003139)

Uncertainty budget (trim=0.1):
Y(2) :Scale bias (ran): 0.002910
Y:Beam Size & Position (sys): 0.000691
Y:Non-linearity (sys): 0.000600
Y(2) :Source Drift & Fluctuation (ran): 0.000536
Y(