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Preface to ”Measurement Uncertainty”

This book treats about measurement uncertainty, both from the theoretical point of view and

from the practical point of view. From the theoretical point of view, contributions are present which

propose more general mathematical methods to handle measurement uncertainty. On the other hand,

from the practical point of view, contributions are present which show how measurement uncertainty

is considered in the specific applications. The aim of this book is to provide a wide overview on this

very important topic.

Simona Salicone

Editor
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Editorial

New Frontiers in Measurement Uncertainty

Simona Salicone

Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano, Building 7, Piazza
Leonardo da Vinci 32, 20133 Milano, Italy; simona.salicone@polimi.it

1. Introduction

Metrology is the science of measurements. In our everyday life, we are constantly
surrounded by measurements: from reading the time to weighing apples, we continuously
measure something. However, measurements are also somehow embedded in objects,
since, for example, the apple we buy has already been measured before its arrival at the
greengrocer, in order to determine its calibre. In these measurements, uncertainty plays
a very important rule. Metrologists know that no measurement makes sense without an
associated uncertainty value. Without it, no decision can be taken; no comparisons can be
made; no conformity can be assessed.

It is hence pivotal to know the meaning of measurement uncertainty, understand
the contributions to measurement uncertainty, know how these contributions affect the
final measurement uncertainty, have a mathematical tool to represent measurement uncer-
tainty and propagate it through the measurement procedure, and consider measurement
uncertainty in any application.

This Topical Collection “Measurement Uncertainty” started as a Special Issue, but
many contributions have been submitted showing how metrology—and, in particular,
measurement uncertainty—is an open, interesting, and important topic.

Therefore, with my great pleasure, the Special Issue has become a Topical Collection.
I invite Colleagues working on this issue to continue submitting papers, so that the

Collection can grow and become a good place for a fruitful discussion.

2. Overview of Contributions

Following is a brief overview of the first ten contributions published in the Topical
Collection.

The core of every contribution is represented by the “measurement uncertainty”, a
concept introduced in 1995 by the “Guide to the expression of uncertainty in measurement”,
generally known as GUM. The word “uncertainty” has a lexical meaning and reflects the
lack of exact knowledge or lack of complete knowledge about something. Therefore, the
value associated to a measured value (which should express the lack of exact knowledge
about the value of the measurand) is called the “uncertainty value”. This value can be found,
according to the suggestions of the GUM and following the mathematical probabilistic
approaches therein proposed.

In the last decades, however, other methods have been proposed in the literature,
which try to encompass the definitions of the GUM, while overcoming its limitations.
Some of these methods are based on the possibility theory, such as the RFV (random-fuzzy
variable) method. The authors of [1] briefly recall the RFV method, starting from the very
beginning and the initial motivations and summarizing the most relevant obtained results.

Kalman filters, a concept that has been in existence for decades now, are widely used
in numerous areas. The Kalman filter provides a prediction of the system states as well as
the uncertainty associated to it. In [2], the same authors of [1] propose a new application of
the RFV method on Kalman filters, with the specific aim of reducing the overall uncertainty
associated to the state predictions. In particular, a possibilistic Kalman filter is defined,

Metrology 2022, 2, 495–498. https://doi.org/10.3390/metrology2040029 https://www.mdpi.com/journal/metrology1
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which uses random-fuzzy variables; not only does it consider and propagates both ran-
dom and systematic contributions to uncertainty, but also reduces the overall uncertainty
associated to the state predictions by compensating for the unknown residual systematic
contributions.

In [3], measurement uncertainty is considered to be associated to measuring bridges
for non-conventional instrument transformers with digital output. In this paper, the authors
underline the necessity of synchronization between the analogue output and the digital one.
They hence propose an ad hoc measurement setup that is able to monitor and quantify the
main quantities of interest. The proposed measurement setup is laboratory implemented
and the main sources of uncertainty are discussed and combined through a statistical
analysis.

The authors of [4] yearn for a future scenario in which the digital reporting of measure-
ment results is ubiquitous, and digital calibration certificates (DCCs) contain information
about all the components of uncertainty in a measurement result. To show the benefits of
this possible future scenario, the authors consider and compare the actual “international
measurement comparisons” used by the International Committee for Weights and Mea-
sures (CIPM) and the regional metrology organization (RMO). They propose an uncertain-
number digital reporting format, which caters to all the information required and would
simplify the comparison analysis, reporting, and linking; the format would also enable a
more informative presentation of comparison results.

In [5], the authors deal with measurement uncertainty in Prompt Fission Neutron
Spectra (PFNS) measurements, measurements of fission cross-sections, and measurements
of Maxwellian spectrum-averaged neutron capture cross-sections for astrophysical appli-
cations. In particular, they demonstrate that these measurements are all subject to the
presence of Systematic Distortion Factors (SDF). SDF may exist in any experiment: it leads
to the bias of the measured value from an unknown “true” value. The SDF appears as
a real physical effect if it is not removed with additional measurements or analysis. For
a set of measured data with the best evaluated true value, their differences beyond their
uncertainties can be explained by the presence of Unrecognized Source of Uncertainties
(USU) in these data. The authors link the presence of USU in the data to the presence of
SDF in the results of the measurements.

In [6], the topic of digital calibration certificates (DCC) is considered again. In cali-
bration certificates, information about a quantity is frequently provided in the form of an
estimate of the quantity and an associated standard or expanded uncertainty. Then, if the
quantity must be used in another calculation, it is common—in the absence of any addi-
tional information—to assign a Gaussian probability distribution to the quantity. However,
the true probability distribution of the quantity could be significantly different from the
Gaussian one; therefore, this assignment may lead to unreliable results, when subsequent
calculations are made. Even if the uncertainty evaluation has been made using a Monte
Carlo simulation, only the summary information “estimate of the quantity and associated
uncertainty” are generally reported in the calibration certificate, for the sake of brevity.
Using two examples, the authors show how to present all the information derived from a
Monte Carlo simulation in a fully machine-readable form and insert the whole information
inside digital calibration certificates. In this way, no information is lost.

Technologies that can measure, analyse, and make critical decisions autonomously
are beginning to emerge; hence, there is great interest in the digitalisation of metrology.
In [7], the authors report on a Python package that implements algorithmic data processing
using ‘uncertain numbers’, which satisfy the general requirements of the GUM for the
expression of uncertainty. An uncertain number can represent a physical quantity that
has not been exactly determined. Using uncertain numbers, measurement models can
be expressed clearly and succinctly in terms of the quantities involved. The proposed
algorithms provide an example of how metrological traceability can be supported in digital
systems. In particular, uncertain numbers provide a format to capture and propagate
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detailed information about quantities that influence a measurement along the various
stages of a traceability chain.

One of the main challenges in designing information fusion systems is to decide on
the structure and order in which information is aggregated. The key criteria by which
topologies are constructed include the associativity of fusion rules as well as the consistency
and redundancy of information sources. Fusion topologies regarding these criteria are
flexible in design, produce maximal specific information, and are robust against unreliable
or defective sources. In [8], an automated data-driven design approach for possibilistic
information fusion topologies is detailed that explicitly considers associativity, consistency,
and redundancy. The proposed design is intended to handle epistemic uncertainty and
obtain robust topologies.

In [9], the authors analyse the measurement uncertainty associated to the evaluated
frequencies of the spectral tones of signals created from superimposed sinusoids and white
Gaussian noise, when different methods for the spectral analysis of the signals are applied.
By comparing the obtained results, the authors draw some useful conclusions in order to
guide a designer in choosing a method for the spectral analysis, according to the operating
conditions.

Data-driven manufacturing in Industry 4.0 demands digital metrology to not only
drive the in-process quality assurance of manufactured products, but also to supply reliable
data to constantly adjust the manufacturing process parameters for zero-defect manufac-
turing processes. The better quality, improved productivity, and increased flexibility of
manufacturing processes are obtained by combining intelligent production systems and
advanced information technologies where in-process metrology plays a significant role.
Today, the massive integration of 3D optical sensors occurs within manufacturing processes,
replacing traditional Coordinate Measurement Machines (CMM) within the automotive,
aerospace, and power generation industries. However, while the delivery of millions of
points in a matter of seconds is assumed by 3D optical sensors, the process of automatically
converting dense data into meaningful information and assuring the quality of these data
remains a challenge. In [10], the authors present a practical approach to addressing both
these challenges, based on ISO 15530-3 and ISO 15530-4 technical specifications and the
application of MBD-based post-processing for the automatic processing of point clouds.

3. Conclusions

The above overview of the ten papers in this Topical Collection shows that mea-
surement uncertainty is an important issue in many different fields. It can be stated that
measurement uncertainty should be properly considered everywhere, in any industrial,
economic, social, and legal application. My hope is for contributions from each field to be
present in this Topical Collection.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.
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Abstract: The concept of measurement uncertainty was introduced in the 1990s by the “Guide to
the expression of uncertainty in measurement”, known as GUM. The word uncertainty has a lexical
meaning and reflects the lack of exact knowledge or lack of complete knowledge about the value of
the measurand. Thanks to the suggestions in the GUM and following the mathematical probabilistic
approaches therein proposed, an uncertainty value can be found and be associated to the measured
value. In the last decades, however, other methods have been proposed in the literature, which try to
encompass the definitions of the GUM, thus overcoming its limitations. Some of these methods are
based on the possibility theory, such as the one known as the RFV method. The aim of this paper is
to briefly recall the RFV method, starting from the very beginning and the initial motivations, and
summarize in a unique paper the most relevant obtained results.

Keywords: measurement uncertainty; random contribution; systematic contribution; probability
density functions; possibility distributions; random-fuzzy variables; t-norms

1. Background: The Concept of Measurement Uncertainty

In the 1990s, the “Guide to the expression of uncertainty in measurements”, known as
GUM, introduced the concept of measurement uncertainty and provided some guidelines
for its representation and propagation through the measurement function. In particular,
the measurement uncertainty is defined as “a parameter, associated with the result of a mea-
surement, that characterizes the dispersion of the values that could reasonably be attributed to the
measurand” [1], as also recalled in [2].

This definition refers to a “dispersion of the values” because, as is widely known, when
a quantity (the measurand) is measured more times, the measurement result generally
varies, due to different contributions affecting the measurement procedure. This means
that, because of the “dispersion of the values”, from a strict metrological point of view, the
“true value” of the measurand cannot be known.

The uncertainty associated with a measured value has, therefore, the aim to provide
information about how large this “dispersion of the values” is [1,2].

Therefore, from a strictly semantic point of view, it can be stated that the uncertainty
value reflects the lack of exact knowledge or lack of complete knowledge about the value
of the measurand. Hence, when one speaks about a measurement result, one always
speaks about an incomplete information; this incomplete information must be somehow
represented to provide validity of the measured value.

How can this representation be done? According to the GUM, the aim of the uncer-
tainty evaluation is “to provide an interval about the measurement result that may be expected to
encompass a large fraction of the distribution of values that could reasonably be attributed to the

Metrology 2021, 1, 76–92. https://doi.org/10.3390/metrology1020006 https://www.mdpi.com/journal/metrology5
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quantity subject to measurement” [1]. Furthermore, it clearly states that “the ideal method for
evaluating and expressing measurement uncertainty should be capable of readily providing such an
interval, in particular, one with a coverage probability or level of confidence that corresponds in a
realistic way to that required” [1].

As stated above, the “dispersion of the values” is due to different contributions affecting
the measurement procedure. In particular, in the “International vocabulary of metrology”,
known as VIM [3], two contributions are defined: the random and the systematic contribu-
tions to uncertainty. (There is sometimes the mistake that the words random and systematic
are substituted by the words “type A” and “type B”, defined in the GUM, respectively. How-
ever, “type A” and “type B” refer to methods of evaluation of the uncertainty contribution
and not explicitly to the nature of the uncertainty contribution itself.)

The random contribution is defined as the “component of measurement error that in
replicate measurements varies in an unpredictable manner” [3], while the systematic one is
defined as the “Component of measurement error that in replicate measurements remains
constant or varies in a predictable manner” [3]. Therefore, due to the random contributions
to uncertainty, the dispersion of the measured values may define an interval around the
mean (of the measured values), and this interval might be indeed the “interval about the
measurement result that may be expected to encompass a large fraction of the distribution
of values that could reasonably be attributed to the quantity subject to measurement”
required by the GUM [1]. In Figure 1, the blue dot represents the measurand value, while
the pink asterisk is the mean of the measured values, and the purple line represents the
interval that includes all the measured values. It can be easily seen that the purple interval
also encompasses the measurand value, as generally happens if a proper coverage factor is
applied. However, if a systematic contribution also affects the measurement result, then
the interval that includes all the measured values is shifted on the right/left with respect
to the previous interval. The direction of right or left depends on whether the systematic
effect is positive or negative, as shown with the blue and orange intervals in Figure 1.
It can be easily seen that these last intervals no longer represent the “interval about the
measurement result that may be expected to encompass a large fraction of the distribution
of values that could reasonably be attributed to the quantity subject to measurement” since
the measurand value is completely outside these intervals.

Figure 1. The effects of random and systematic contributions to uncertainty. Blue dot: unknown
value of the measurand. Purple line: dispersion of the values and obtained interval when only
random contributions affect the measured values. Blue and orange lines: obtained interval when a
positive or negative systematic error affect the measured values. Red line: obtained interval when
the effects of both random and unknown uncompensated systematic contributions are considered.

In the case that one wants to provide the interval, taking into account both the random
and the systematic contributions to uncertainty, he/she should consider also the possible
variability of the effect of the systematic contributions and, hence, should widen the
uncertainty interval, as shown by the red line in Figure 1. Therefore, the purple interval is
the uncertainty interval when only random contributions affect the measurement result,
while the red interval is the uncertainty interval when systematic contributions also affect
the measurement result.
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The GUM states that “It is assumed that the result of a measurement has been corrected for
all recognized significant systematic effects and that every effort has been made to identify such
effects” [1]; in other words, the GUM requires that all efforts be made to identify, measure
and correct for all the significant systematic effects. Under this assumption, only the
random effects are present, and the uncertainty interval is reduced as shown in Figure 1.

2. The Authors’ Point of View

In the previous section, it is summarized the concept of measurement uncertainty, and it
is recalled that the requirement of the GUM is that all the significant systematic effects are
identified and compensated for. Satisfying this leads to the following important conclusions:

• The reduction in the overall uncertainty and hence, the reduction in the uncertainty
interval.

• Only random contributions affect the measurement procedure, and therefore, the
uncertainty contributions can be mathematically considered to be random variables
and represented with probability density functions (pdf).

There are also some mathematical ways to also treat the systematic contributions to
uncertainty in the mathematical framework of the probability theory, such as, for instance,
a proper use of the correlation coefficients, but, in any case, the probability theory is born to
handle the random phenomena and can correctly handle only random phenomena because
of the way that pdfs combine with each other.

Furthermore, the GUM requires the compensation of the “significant systematic
effects” [1] where the word “significant” is very important, bringing a crucial question:
when is an effect (on the final measured result) significant?

Obviously, an effect can be significant in one topic and not significant in another.
From the metrological point of view, the “significance” can be exploited by considering the
“target uncertainty”, which is defined by the VIM as the “measurement uncertainty specified as
an upper limit and decided on the basis of the intended use of measurement results” [3]. The target
uncertainty is, therefore, a value that depends on the topic: it is a number that is generally
as small as possible in primary metrology or in the industrial world in the limited case
in which very precious objects are measured (such as diamonds, for instance). However,
in most practical industrial situations, the target uncertainty is a trade-off between the
cost of the uncertainty evaluation and the waste production; therefore, there is no need to
set the target uncertainty to be as small as possible. In these situations, the correction for
the “significant systematic effects” is generally not necessary for not exceeding the target
uncertainty. Therefore, the industrial world is generally not interested in reducing the
overall uncertainty by identifying and compensating for systematic effects.

In any case, compensation or not, to state whether a systematic effect is significant or
not, it must be considered in the uncertainty evaluation. It becomes, therefore, an important
issue to be able to mathematically determine the overall uncertainty in the best possible
way.

Methods that employ a mathematical theory different from the probabilistic theory
encompassed by the GUM have been proposed in the literature [4–8]. These methods are
based on the possibility theory, as well as the RFV method recalled in this paper, which
tries to encompass the definitions of the GUM, thereby overcoming its limitations.

The RFV method recalled in this paper can handle both random and systematic
contributions to uncertainty in closed form. This is possible because, in this mathematical
framework, many operators between the variables naturally defined in it are available.
Therefore, different operators can be chosen, which can simulate the combination of the
variables in a random or a nonrandom way. To introduce this method, the theory of
evidence is shortly recalled in the next section, with the aim to provide a cornerstone to
the method, rather than giving the mathematical details, for which the readers are referred
to [9–11].
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3. Shafer’s Theory of Evidence

The mathematical theory of evidence was defined by Glen Shafer in the 1970s to
generalize the probability theory [9]. In particular, if probability functions are considered,
they obey the additivity rule, so that the following holds:

Pro(U) + Pro
(
U
)
= 1 (1)

where U and U are complementary sets.
However, in Shafer’s (and also the authors’) opinion, the additivity rule is not able

to handle correctly all possible situations of knowledge/unknowledge. Therefore, he
generalizes this rule, and to do this, he defines the belief functions Bel, for which the
superadditivity rule applies:

Bel(U) + Bel
(
U
) ≤ 1 (2)

Given a certain statement A, the degree of belief Bel(A) is a judgment. This means
that, given A, different individuals with different levels of expertise regarding A might
provide different judgments. In his book, Shafer writes explicitly:

“Whenever I write of the ‘degree of belief’ that an individual accords to the proposition,
I picture in my mind an act of judgment. I do not pretend that there exists an objec-
tive relation between given evidence and a given proposition that determines a precise
numerical degree of support. Rather, I merely suppose that an individual can make a
judgment . . . he can announce a number that represents the degree to which he judges
that evidence supports a given proposition and, hence, the degree of belief he wishes to
accord the proposition” [9]

In his book, Shafer also provides two examples to show that belief functions are more
suitable to handle knowledge/unknowledge with respect to probability functions: the
example of the Ming vase and the example of Sirius star are here briefly recalled.

3.1. The Ming Vase

A person is shown a Chinese vase and is asked whether the vase is a real vase of the
Ming dynasty or a counterfeit. Sets A and B are assigned to the two possibilities, as shown
in Table 1.

Table 1. The Chinese vase and the two considered sets.

Case Event

A The vase is a real Ming vase.

B The vase is a counterfeit.

Of course, looking at the vase, there could be different situations that also depend on
the interviewed person, i.e., whether the person is an expert or not:

1. The evidence suggests the authenticity of the vase.
2. The evidence suggests that the vase is a counterfeit.
3. Some evidence suggests the authenticity, while other evidence, the counterfeit:

a. Substantial evidence on both sides.
b. Little evidence on both sides.

4. The observer is not an expert and has no evidence to say whether the vase is true or
false.

Let us now consider how these different situations can be handled with the probability
and the belief functions.
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In the first two cases, the same numerical values are given to both the probability
and the belief functions (as shown in the first two cases of Table 2) since probably the
interviewed person is an expert, and hence can recognize whether the vase is true or false.

Table 2. Assignments given to probability and belief functions in the considered cases.

Case Pro Bel

1 Pro (A) = 1 Pro (B) = 0 Bel (A) = 1 Bel (B) = 0

2 Pro (A) = 0 Pro (B) = 1 Bel (A) = 0 Bel (B) = 1

3A

Pro (A) = 0.5 Pro (B) =
0.5
or

Pro (A) = 0.6 Pro (B) = 0.4

Bel (A) = 0.5 Bel (B) = 0.5
or

Bel (A) = 0.34 Bel (B) = 0.4

3B

Pro (A) = 0.5 Pro (B) =
0.5
or

Pro (A) = 0.6 Pro (B) = 0.4

Bel (A) = 0.1 Bel (B) = 0.2

4 Pro (A) = 0.5 Pro (B) =
0.5 Bel (A) = 0 Bel (B) = 0

On the other hand, the other two situations are treated in a different way by the
probability and the belief functions since probability functions must obey the additivity
rule, while belief functions need not.

Therefore, when cases 3A and 3B are considered, probability functions can take
the values, for instance, given in Table 2, but no lower values can be assigned, even if
little evidence is present on both A and B. On the other hand, when belief functions are
considered, the person can indicate two numbers, which more precisely represent his/her
idea about A and B.

In case 3A, it may happen that the same numbers are assigned to probability and
belief functions (according to the degree of belief about A and B), but it may also happen
that different numbers are assigned since, for belief functions, it is not necessary to satisfy
the additivity rule (see Table 2). Furthermore, in case 3B, where there is little evidence on
both sides, it is not possible to assign a small number to both A and B with probability
functions, while this can be done with belief functions (see Table 2).

The different behavior of the probability and the belief functions is even more empha-
sized when Case 4 is considered, where the person is not an expert and therefore declares
his/her ignorance about the vase. This is the classical situation, called, by Shafer, total
ignorance, in which a zero value is assigned to all possible sets (and a unitary value is
assigned only to the entire universal set, which include all possibilities). Therefore, as
shown in Table 2, Bel(A) = 0 and Bel(B) = 0 in the case of total ignorance (Case 4). The
probability functions, on the other side, must always obey the additivity rule, and therefore,
even in the case of total ignorance (as in the case of equal evidence on both A and B)
Pro(A) = 0.5 and Pro(B) = 0.5 are assigned, not to give preference to either A or B.

Total ignorance is, therefore, treated in a completely different way by the probability
and the belief functions; an interesting question is determining which method is the better
one. It seems that the belief functions are more suitable to represent total ignorance at least
for two reasons. First, with probability functions, it is not possible to distinguish the two
different cases where there is an equal degree of belief on both cases A and B, and there is
no evidence about either A or B. In fact, in both these cases, Pro(A) = 0.5 and Pro(B) = 0.5
must be assigned. Second, probability functions may lead to incongruent results when
more than two sets are considered, as in the following example of the Sirius star [9].

9
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3.2. The Sirius Star

Are there or are there not living beings on the planet in orbit around star Sirius?
Let us only consider the case where the interviewed person is not an expert at all, so the
case of Shafer’s total ignorance, and let us consider the two different situations given in
Tables 3 and 4. In the first case, total ignorance is admitted on only two sets, while in the
second case, total ignorance is professed on three sets, and the two ways of forming the
sets are independent.

Table 3. The Sirius star and the two considered sets.

Case Event

A There is life.

B There is not life.

Table 4. The Sirius star and the three considered sets.

Case Event

C There is life.

D There are planets but not life.

E There are not even planets.

Table 5 shows the values assigned to the belief function for the sets defined in Table 3
(first column) and for the sets defined in Table 4 (second column). It is, however, possible
to compare the two cases since, by considering the sets defined in Tables 3 and 4, it can be
stated that A = C and B = D ∪ E. The last column is the comparison of the two previous
columns and shows that the assigned values in the two cases are coherent with each other.

Table 5. The Sirius star and total ignorance represented with the belief functions.

Case of Table 3 Case of Table 4 Comparison

A Bel (A) = 0 C Bel (C) = 0 Bel (A) = Bel (C)

B Bel (B) = 0
D Bel (D) = 0

Bel (D ∪ E) = Bel (B)
E Bel (E) = 0

On the other hand, Table 6 shows the results for the probability functions and, when
the two cases of Tables 3 and 4 are compared, it follows that there is no consistency at all.
In fact, set A defined in the case of Table 3 is exactly set C defined in the case of Table 4, but
as shown in Table 6, Pro (A) �= Pro (C). Furthermore, set B defined in the case of Table 3
is exactly set D ∪ E defined in the case of Table 4, but Pro (D ∪ E) �= Pro (B) since the
following holds:

Pro (D ∪ E) = Pro(D) + Pro(E)− Pro(D ∩ E) =
1
3
+

1
3
− 0 =

2
3
�= Pro (B) =

1
2

10
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Table 6. The Sirius star and total ignorance represented with the probability functions.

Case of Table 3 Case of Table 4 Comparison

A Pro (A) = 1
2 C Pro (C) = 1

3 Pro (A) �= Pro (C)

B Pro (B) = 1
2

D Pro (D) = 1
3 Pro (D ∪ E) �= Pro (B)

E Pro (E) = 1
3

Then, it can be concluded that belief functions are more suitable than probability
functions to handle total ignorance, that is, all situations where an individual has no
evidence/no knowledge about the considered topic and about the considered given sets.

This great interest in total ignorance is due to the fact that total ignorance is mostly present
in the field of measurements, as shown in the simple practical example in the next section.

4. Total Ignorance in Measurements

Let us here consider a simple example to show how, in measurement procedures, the
situation called total ignorance by Shafer is very often present.

A calibrator provides a reference voltage of 24 V, and some multimeters of the same
typology (4 1

2 Leader 856) are employed to measure this voltage. The instrument data sheet
provides the measuring accuracy as ± % of reading ± number of digits, and the value of
each digit is given by the resolution in the considered range. According to the data sheet,
Table 7 provides the resolution and the measuring accuracy in the different ranges. For
the measurand Vx = 24 V, which is the reference voltage in the proposed example, the
range is 30 V and therefore, according to the specifications, the measurement accuracy is
±(0.05% Vx + 2 mV) = ±0.014 V.

Table 7. The multimeter data sheet.

Multimeter 4 1
2 LEADER 856

Range Full Scale Resolution Measuring Accuracy

300 mV 29,999 mV 0.01 mV ±(0.03% Vx + 0.02 mV)
3 V 29,999 V 0.1 mV ±(0.05% Vx + 0.2 mV)

30 V 29,999 V 1 mV ±(0.05% Vx + 2 mV)
300 V 29,999 V 10 mV ±(0.05% Vx + 20 mV)

1000 V 10,000 V 0.1 V ±(0.05% Vx + 0.2 V)

Two different measurement procedures are considered:

1. All multimeters are employed to measure the reference voltage.
2. Only one multimeter is employed to measure the reference voltage.

Figure 2 shows, with the orange line the reference voltage and with the pink crosses the
value measured by 10 different multimeters. Since different instruments are employed, it is
likely to happen that the measured values fall around the reference value. In this situation,
it could be possible to apply a probabilistic approach by considering the following: the
mean of the measured values; an uncertainty interval around the evaluated mean, and a
pdf over this interval (but only if a high number of different instruments are employed).
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Figure 2. Up: values measured by different multimeters. Down: values measured by a single multimeter.

This situation represents very well the calibration procedure that is performed by the
instruments’ manufacturer to provide the accuracy interval, which reflects the behavior
of all instruments of the same typology. However, this situation is very seldom met in
practice, because generally only one instrument is available and employed. Under this
more common situation, when only one multimeter is employed, the value measured by
the multimeter will be shifted with respect to the reference value. Moreover, if different
measurements were taken, this would not help to better estimate the reference value since
all measured values would be shifted more or less the same amount with respect to the
reference value, as shown by the green circles in Figure 2. In fact, all measured values
are taken, in this case, by the same instrument and, therefore, are affected by the same
systematic error, even if a small variation can be observed, due to the presence of also
random phenomena.

In this last case, even if the mean of the measured values is taken, no better estimate
of the measurand can be obtained. Additionally, even if an interval is built, according to
the dispersion of the measured values, this interval would not contain the value of the
measurand. Therefore, to provide a good uncertainty interval, it is necessary to refer to
the accuracy interval provided by the data sheet. The data sheet does not provide any pdf
associated with this interval, and therefore, no pdf can be assigned to the obtained interval.

When we have a pdf over a given support, it is possible to assign a confidence interval
(or degree of belief) to any subintervals of the support. However, when no pdf is assigned
and no knowledge is available to assign a specific pdf, it is not possible to associate any
confidence interval (or degree of belief) to any subintervals of the support. We are, therefore,
perfectly in the case of Shafer’s total ignorance, where a degree of belief can be assigned to
the support (or universal set), but no degree of belief can be assigned to the subintervals
(to the subsets of the universal set).

It clearly follows that total ignorance is present in the measurement field. Since belief
functions better represent total ignorance, it is worth exploring these functions and the
theory of evidence to find an alternative, more general way to handle measurement uncer-
tainty and measurement results. It is not the aim of this paper to provide all definitions and
mathematical details, for which the readers are referred to the published literature [10–14].
The next section will, therefore, give only some introduction to come to the possibility
distributions (PD) and the random-fuzzy variables (RFV).

5. The Random-Fuzzy Variables

In the previous sections, belief functions are introduced and it is shown how they
can suitably represent the available knowledge, including total ignorance. It is interesting
to observe that belief functions are a generalization of the probability functions and the
necessity functions. In this respect, it is first necessary to know what a focal element is.

12
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Let us first define the basic probability assignment function:

m : P(X) → [0, 1]
m(∅) = 0

∑
A∈P(X)

m(A) = 1
(3)

where X is the universal set, P(X) is the power set of X and ∅ is the empty set. According
to (3), m(A) represents the degree of belief that an element x belongs to set A (only to set A
and not to its subsets).

Set A for which m(A) > 0 is called the focal elements of X. When the focal elements
are singletons, then it can be proved [9–12] that belief functions are probability functions,
and the theory of evidence enters in the particular case of the probability theory. This
shows that the belief functions are, as wanted by Shafer, a generalization of the probability
functions. However, it is also interesting to consider another particular case of belief
functions, which are called necessity functions and are obtained when the focal elements
are all nested, as shown in Figure 3.

Figure 3. Example of nested focal elements, for sets and for intervals.

The upper plot in Figure 3 clearly shows that, when sets are considered, all sets can
be ordered in such a way that A1 ⊂ A2 ⊂ . . . ⊂ An ≡ X. When, instead of sets, intervals
are considered, the lower plot can be drawn, which still satisfies A1 ⊂ A2 ⊂ . . . ⊂ An ≡ X.
This case is very interesting from the metrological point of view because there could be
an analogy between these nested intervals and the confidence intervals of a given pdf at
different, increasing levels of confidence.

The necessity function is defined as follows:

Nec
(

Aj
)
=

j

∑
k=1

m(Ak)

and represents the degree of belief that an element x belongs to set A and to all its subsets.
When the belief functions are necessity functions, then the theory of evidence enters the
particular case of the possibility theory.

In the same way that probability density functions are defined in probability, possibil-
ity distribution functions (PD) are defined in possibility as follows:

r : X → [0, 1]

13
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where:
max(r(x)) = 1

when x ∈ X.
It can be proved [10,11] that the nested intervals of Figure 3, together with their

corresponding necessity functions Nec
(

Aj
)
, represent confidence intervals at specific levels

of confidence, coverage probability, or degree of belief Nec
(

Aj
)
. Therefore, remembering

the GUM words that “the ideal method for evaluating and expressing measurement uncertainty
should be capable of readily providing such an interval, in particular, one with a coverage probability
or level of confidence that corresponds in a realistic way to that required” [1], it can be stated that
the possibility theory, which provides all confidence intervals at all confidence levels, is
perfectly GUM compliant.

If the intervals of Figure 3 are not overlapped with each other but are positioned at
different vertical levels α, such as αj = 1 − Nec

(
Aj
)
, then a fuzzy variable is obtained, as

in the example in Figure 4.

Figure 4. Example of possibility distributions and confidence intervals.

The fuzzy variable is commonly defined by its membership function which is, from
the strict mathematical point of view, a PD.

Since a fuzzy variable (a PD) represents confidence intervals at all levels of confidence,
a fuzzy variable can be used to represent in a very immediate way the result of a measure-
ment [10–12]. Moreover, since different kinds of uncertainty contributions may affect the
measurement procedure, the best way to represent the result of a measurement is the use
of a fuzzy variable of type 2 and, in particular, a random-fuzzy variable (RFV). An RFV
provides two PDs and can, hence, represent separately the effects on the measurement
result of the different contributions to uncertainty. An example of RFV is given in Figure 5,
with the red and violet lines. In an RFV, the uncompensated systematic contributions are
represented by the internal PD rint(x) (violet line), while the random contributions are
represented by the random PD rran(x) (green line). The external PD rext(x) (red line) is
obtained by the combination of the two PDs rint(x) and rran(x) [10–13].

Figure 5. Example of RFV.
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Extending the considerations made for the fuzzy variables, it can be stated that the
cuts Xα at levels α of the RFV are the confidence intervals associated to the measurement
result at the confidence levels Nec(Xα) = 1 − α (as shown in Figure 6). In particular, the
internal interval of each confidence interval is due to the effect on the measured value of
the systematic contributions to uncertainty, while the external intervals are due to the effect
of the random contributions.

Figure 6. Example of RFV and some of the confidence intervals, which show the systematic effects
and the random effects on the final measured result.

If RFVs can suitably represent measurement results, then it is important to understand
how an RFV can be built and how two RFVs can be combined with each other, as will be
briefly explained below; we refer the readers to the literature for more details [10–14].

5.1. RFV Construction

To build an RFV, it is necessary to define the shape of the PDs rint(x) and rran(x),
whose construction is different [10–14] since they represent different kinds of contributions.

As far as rint(x) is concerned, this PD represents the uncompensated systematic
contributions to uncertainty. As shown in the example of the multimeter in the previous
Section 4, generally, the only available knowledge is, in this case, the accuracy interval
given by the manufacturer of the employed instrument in the data sheet. Therefore, the
available knowledge can be represented by Shafer’s total ignorance. As is also shown in
Section 3, total ignorance is mathematically represented by the belief function [9–11]:

Bel(X) = 1

Bel(A) = 0 ∀A ⊂ X

and by the rectangular PD, such as the one in violet line in Figure 5. It follows that rint(x)
is rectangular in most situations, even if situations may exist that could lead to different
shapes [10–14].

On the other hand, rran(x) must represent the random contributions to uncertainty and
therefore, in most cases, a pdf is known or can be supposed. In this case, the corresponding
PD can be easily obtained by applying the suitable probability–possibility transformation
(different probability–possibility transformations are available in the literature to transform
pdfs into PDs. The suitable transformation when PDs are used to represent measurement
results is the maximally specific probability–possibility transformation, which preserves all
confidence intervals and corresponding confidence levels) [10,15].

As an example, when the pdf is uniform, then the corresponding PD is triangular;
when the pdf is triangular, then the corresponding PD is the orange one in Figure 7; when
the pdf is Gaussian, then the corresponding PD is the blue one in Figure 7.
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Figure 7. Example of PDs coming from given pdfs. Blue line: PD from a Gaussian pdf. Orange line:
PD from a triangular pdf.

5.2. RFV Combination

When the measurement results are represented by RFVs and they must be combined,
it is possible to take into account all the available metrological information about the
nature of the contributions to be combined and the way these contributions combine in
the specific measurement procedure. According to that, since PDs can be combined using
many different mathematical operators, the most proper one can be chosen.

Without entering the details, for which the readers are referred to [10,16,17], it can be
stated that the random contributions to uncertainty always compensate with each other
during the combination, and therefore, an operator that simulates this typical probabilistic
compensation should be chosen. On the other hand, the systematic contributions to
uncertainty could compensate or not with each other during the combination, according to
the specific contributions and the specific measurement procedure. Therefore, there should
be the possibility to choose between a mathematical operator that simulates compensation
and another one which does not compensate.

Let us first consider the evaluation of the joint PD, starting from two PDs. As an
example, Figure 8 shows the results obtained by combining the same two PDs with the
use of two different t-norms (for the definition of the mathematical t-norms, the readers
are addressed to [15]): the min t-norm (on the left) and the Frank t-norm (on the right). In
the upper plots, the two-dimensional joint PDs are shown, while in the lower plots, the
corresponding α-cuts are shown. It can be easily seen how compensation applies when
the Frank t-norm is employed, while no compensation applies when the min t-norm is
employed.

Figure 8. Combination of uncorrelated contributions. The same initial PDs are considered on both the left and right figures.
On the left, the min t-norm is applied; on the right the Frank t-norm is applied. In the upper plots, the joint possibility
distributions are shown. In the lower plots, the corresponding α-cuts are shown.

Figure 8 refers to the combination of uncorrelated contribution. Without entering the
details, the correlation can also be considered, as shown, as an example, in Figures 9 and 10.
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Figure 9. Combination of correlated contributions when the min t-norm is applied. The same initial
PDs as in Figure 8 are considered. Right: joint PD. Left: shape of its α-cuts.

 

Figure 10. Combination of correlated contributions when the Frank t-norm is applied. The same initial PDs as in Figure 8
are considered. Left: joint PD. Right: its α-cuts.

From Figures 9 and 10, it can be easily seen how correlation modifies the joint PDs
and the corresponding α-cuts.

Once the joint PDs rran(x, y) and rint(x, y) are obtained, it is possible to evaluate
the joint PD rext(x, y) and the final RFV (this is obtained by applying the famous Zadeh
extension principle. The readers are referred to [9,10] for the details) [9,10,16,17].

6. Example

To show the potentiality of the RFV approach, a simple example is here reported,
where the RFV approach is compared with the GUM approach [1] and the Monte Carlo
approach, as suggested by [18].

The GUM approach consists of the application of the law of propagation of the
uncertainty [1], while random and systematic contributions to uncertainty are combined
applying the quadratic law. The results given by the GUM approach are provided in terms
of two specific confidence intervals: the ones at coverage probabilities 95.45% and 68.27%.
These intervals are compared with the corresponding α-cuts at the same level of confidence
of the RFVs obtained with the RFV approach.

The Monte Carlo approach consists of taking extractions from the given pdfs (in a way
to agree with the available information) and combining the extractions to obtain a final
histogram. Then, the histogram is converted in a pdf, and the pdf is converted to a PD
(through the probability–possibility transformation mentioned above) for an immediate
comparison with the RFVs given by the RFV approach.

Let us come to the example. A teacher measures the length and width of her desk
with a wooden ruler and evaluates the area of the desk. She/he also asks her/his pupils
to take the same measurements (and the area evaluation) with measuring tapes that they
have built with some white cloth and a pencil to mark the cloth every half centimeter.
The measurements are taken under different assumptions about both the measurement
procedure and the uncertainty contributions, as shown in Table 8.
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Table 8. The considered case studies.

Case Procedure Random Systematic

A Known measuring
tape uniform pdf ±0.25 cm Compensated

B 1 unknown
measuring tape uniform pdf ±0.25 cm uniform pdf ±0.5 cm

C 2 unknown
measuring tapes uniform pdf ±0.25 cm uniform pdf ±0.5 cm

D 1 unknown
measuring tape uniform pdf ±0.25 cm Interval ± 0.5 cm

E 2 unknown
measuring tapes uniform pdf ±0.25 cm Interval ± 0.5 cm

As far as the procedures are concerned, “Known measuring tape” means that the
measuring tapes are somehow characterized, and therefore, the systematic error introduced
by each of them is known; since the pupil uses their own tape, the systematic error is known
and can be compensated. “1 unknown measuring tape” means that both length and width
are measured with the same tape taken randomly among the tapes; the systematic error
introduced by the tape is not known and it cannot be compensated but, since the same tape
is used for the two measurements, the two measurements are correlated with each other.
“2 unknown measuring tapes” means that length and width are measured with two
different tapes taken randomly among the tapes; the systematic errors introduced by the
tapes are not known and they cannot be compensated and since two different tapes are
used for the two measurements, and therefore, the two measurements are uncorrelated
with each other.

As far as the uncertainty contributions are concerned, the random contributions
are supposed to be uniformly distributed; the systematic contributions are compensated
(case A), uniformly distributed (case B and C) or without any other knowledge rather than
the given interval (case D and E), as in Shafer’s total ignorance situation.

The uncertainty contributions reported in Table 8 are related to the pupils’ measuring
tapes, while no uncertainty is assumed to affect the teacher’s measurements, realized with
the wooden ruler, so that the teacher’s measured values are considered to be the reference
values lre f = 90 cm for the length and wre f = 60 cm for the width, while Are f = 5400 cm2

is the reference area.
This means that, when the Monte Carlo approach is followed, extractions from the

given pdfs in Table 8 are considered; when the RFV method is applied, the given pdfs in
Table 8 are transformed into the corresponding PDs by applying the probability–possibility
transformation; when the GUM approach is followed, the standard uncertainties are
derived from the given pdfs in Table 8, that is, since the pdfs are uniform, the stan-
dard uncertainties are equal to the semi-width of the support of the pdfs divided by a
factor

√
3 [1,2].

Without entering the details, for which the readers are referred to [10], the obtained
results are shown in the following Figures 11–13. When only random contributions to un-
certainty are present because the systematic ones are compensated for, the three approaches
provide exactly the same results, showing the validity of the RFV method in simulating the
presence of the random contributions. When both random and systematic contributions
are present and their associated pdfs are known, the GUM approach underestimates the
final measuring uncertainty, while the RFV and the Monte Carlo approaches provide very
similar results. In this case, the RFV approach has the advantages of being faster and
distinguishing, in the final measurement result, the effects due to the two different kinds of
contributions. Finally, in the case of total ignorance, neither the GUM or the Monte Carlo
approach can represent it in a different way with respect to cases B and C; therefore, they
provide incorrect results.
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Figure 11. Obtained results when case study A is considered: GUM approach (red lines), Monte Carlo approach (blue lines),
RFV approach (cyan lines). On the left: the length (upper plot) and the width (lower plot). On the right: the evaluated area
of the desk.

 

Figure 12. Obtained results when case studies B and C are considered: GUM approach (red lines), Monte Carlo approach
(blue lines), RFV approach (cyan lines). On the left: the length (upper plot) and the width (lower plot). On the right: the
evaluated area of the desk in case studies B (upper plot) and C (lower plot).

 

Figure 13. Obtained results when case studies D and E are considered: GUM approach (red lines), Monte Carlo approach
(blue lines), RFV approach (cyan lines). On the left: the length (upper plot) and the width (lower plot). On the right: the
evaluated area of the desk in case studies D (upper plot) and E (lower plot).
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7. Conclusions

This paper represents a review paper of the RFV approach, proposed in the literature
in the last decades.

It has been shown the potentiality of this approach, which is able to represent and
propagate measurement results in closed form, by simulating the way the uncertainty
contributions propagate through the measurement procedure.

Other more specific applications are present in the more recent literature, like for
instance the generalization of Bayes’ theorem in the possibility domain [19,20] or the
realization of a possibilistic Kalman filter [21,22], thus showing the versatility of the RFV
approach.
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Abstract: A Kalman filter is a concept that has been in existence for decades now and it is widely used
in numerous areas. It provides a prediction of the system states as well as the uncertainty associated
to it. The original Kalman filter can not propagate uncertainty in a correct way when the variables
are not distributed normally or when there is a correlation in the measurements or when there is a
systematic error in the measurements. For these reasons, there have been numerous variations of the
original Kalman filter, most of them mathematically based (like the original one) on the theory of
probability. Some of the variations indeed introduce some improvements, but without being com-
pletely successful. To deal with these problems, more recently, Kalman filters have also been defined
using random-fuzzy variables (RFVs). These filters are capable of also propagating distributions that
are not normal and propagating systematic contributions to uncertainty, thus providing the overall
measurement uncertainty associated to the state predictions. In this paper, the authors make another
step forward, by defining a possibilistic Kalman filter using random-fuzzy variables which not only
considers and propagates both random and systematic contributions to uncertainty, but also reduces
the overall uncertainty associated to the state predictions by compensating for the unknown residual
systematic contributions.

Keywords: random-fuzzy variables; Kalman filter; systematic uncertainty contributions; styling

1. Introduction

The Kalman filter (KF) is an algorithm that has long been in existence. It filters the
noise on the measured values of the states and provides an estimation of the system states
based on the state equations. The classical KF algorithm requires that the states are free
from any systematic errors and that the state variables are independent from each other
and can be represented by Gaussian distributions [1]. But in most practical situations,
the systematic error can not be compensated perfectly and there is a residual systematic
error. In this case, the classical formulations of the KF underestimate the uncertainty
associated to the state estimates, because the systematic error is not propagated in a correct
mathematical way. To deal with this, attempts have been made to develop KF algorithms
that are also able to consider systematic contributions to uncertainty [2–5]. For instance,
in [5], the authors try to use a Schmidt KF that considers the systematic error as a separate
state in the state equations and a noise covariance matrix of the possible systematic errors
is built and propagated.

More recently, the theory of possibility has been proposed in the literature to represent
and propagate both systematic and random contributions to uncertainty. The theory
of possibility has been proven by numerous applications in the literature [6–11] to be
an effective alternative to the theory of probability when both random and systematic
contributions to uncertainty are present in the measurement procedure.

Metrology 2021, 1, 39–51. https://doi.org/10.3390/metrology1010003 https://www.mdpi.com/journal/metrology23
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Some attempts to define KFs based on the theory of possibility are already present in
the literature [12,13]. However, in [12,13], as far as understood, they consider uncertainty
in a fuzzy way that is not compatible with the recommended guidelines in metrology,
as specified in [14,15]. In metrology, uncertainty must be considered according to the
definitions given in [15].

Within the framework of the theory of possibility, quantities are represented by possi-
bility distributions [16–21]. In particular, as shown in [16–18], where measurement results
are considered to be affected by both random and systematic contributions to uncertainty,
measured quantities are represented by random-fuzzy variables (RFVs). RFVs consist of an
internal membership function which represents the systematic contribution to uncertainty
in the quantity and an external membership function which represents the overall uncer-
tainty due to both the systematic and random contributions. As shown in [16,18], this way
of representation is perfectly compatible with the metrological definitions given in [14,15].
So, to be able to utilize all the advantages of RFVs, the KF should be able to process them
as well.

Possibilistic KFs based on RFVs are available in the literature [22,23]. In [22], a KF
using RFVs is defined but there is a high noise in the state predictions given by the KF.
In [23], the authors define a possibilistic KF that also uses RFVs and make a comparison
with a few other existing KFs, including the Schmidt KF, clearly showing the advantages of
the defined possibilistic KF.

Starting from the possibilistic KF defined in [23], this paper proposes an alternative
version, which also allows reducing the effects of the systematic contributions to uncertainty,
thereby reducing the overall uncertainty associated to the system state predictions. While
the possibilistic KF defined in [23] is useful when we are only interested in propagating
the residual systematic uncertainty to evaluate the total uncertainty associated to the state
predictions from both the random and systematic contributions, the KF defined in this
paper can be used to reduce the effects of the systematic contributions to uncertainty and
thereby also reduce the overall uncertainty associated to the state predictions.

The rest of the paper has been organized in six sections. Section 2 describes the case
study used for the simulation results for an initial validation of the alternative possibilistic
KF. Section 3 describes the construction of the RFVs and the algorithm of the modified
possibilistic KF described in [23]. Section 4 describes the algorithm for the alternative
possibilistic KF proposed in this paper. Section 5 describes more simulations that have
been performed to further validate the alternative possibilistic KF. Section 6 describes
the experimental case study that has been performed to prove the effectiveness of the
alternative possibilistic KF. Section 7 summarizes the paper and gives a conclusion.

To facilitate an easy comparison between the proposed possibilistic KF and the original
one defined in [23], the same simulated case study as in [23] is considered here, as briefly
described in Section 2.

2. The Case Study

The considered case study is quite simple. A vehicle is moving at a velocity vref(t)
with an acceleration aref(t), as shown in Figure 1.

The state equations of the vehicle can be written as:

vk = vk−1 + τ · ak−1 + wv
k

ak = ak−1 + wa
k

(1)

• vk and ak are velocity and acceleration of the vehicle at time k;
• wv

k and wa
k are the standard deviation of the noise in velocity and acceleration respec-

tively at time k;
• τ is the time period within two successive measurements
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Figure 1. Reference values of velocity (blue line) and acceleration (red line) over time.

It is assumed that the noises are random in nature and belong to Gaussian distributions
that do not vary with time (Gaussian distributions are considered as in [23], for a direct
comparison). So, wv

k = wv and wa
k = wa are the standard deviations of the constant normal

distributions with zero mean.
wv is assumed to be 0.003 m/s. This value has been derived by considering the

accuracy of a GPS which has been reported in the official GPS website [24], which is usually
quite accurate compared to the speedometer of the vehicle. Whereas, wa is assumed to be
0.0005 m/s2 and is supposed to be due to some noise in the circuit or to the driver applying
force on the accelerator.

The measured values of the velocity and the acceleration are supposed to have been
obtained from the on board sensors of the vehicle. The accuracies of the onboard sensors
are in general one or two magnitudes less accurate than a GPS based measurement. So,
the following is considered:

• For the velocity, the random contribution is assumed to be normally distributed with
a standard deviation of σv

m = 0.16 m/s. It has also been assumed that there is a
residual systematic error in the measurement with an estimated value of 0.3 m/s.
However, this is unknown and only an interval of possible values is known: esys =
[−0.32 m/s,+0.32 m/s] has been assumed.

• For the acceleration, it has been assumed that there is no systematic error in the
measurements and the random error is supposed to be normally distributed with a
standard deviation of σa

m = 0.005 m/s2.

3. Construction of the RFVs and the Possibilistic Kalman Filter

Although this has been explained in detail in [23], it has been recalled in this paper as
the construction of the RFVs is the same also for the alternative possibilisitc KF defined in
this paper.

In the possibilistic KF defined in [23], all the states are RFVs and the algorithm is as
shown in Figure 2 [23].

According to Equation (1): Ak = A =

[
1 τ
0 1

]
and Hk = H =

[
1 0
0 1

]
.

Matrix QPOS considers the model uncertainties and is a matrix of RFVs. According to
the assumptions given in Section 2, we define QPOS where:

• The element related to velocity is an RFV obtained by transforming the velocity noise
variable into the possibility domain. Since there is no systematic error in the noise and
the random part is assumed to be Gaussian, there is no internal possibility distribution
(PD) in the RFV and the random PD is obtained by applying the probability-possibility
transformation [16] on the zero mean normal probability density function (pdf) with
standard deviation wv in the possibility domain;

• Similarly, the element related to acceleration is also an RFV in which there is no
internal PD and the random PD is obtained by applying the probability-possibility
transformation [16] on a zero mean normal pdf with standard deviation wa in the
possibility domain;
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Figure 2. The possibilistic Kalman filter algorithm [23].

As for the initial state vector Xa
0, it is assumed that there are no systematic contributions

to uncertainty. So, the RFV is obtained by just the random PD as follows:

• The initial velocity is an RFV consisting of just the random PD which is obtained by
using the probability-possibility transformation [16] on a normal pdf with mean equal
to the first measured value for velocity (vm1) and standard deviation wv;

• Similarly, the initial acceleration is an RFV consisting of just the random PD obtained
by using the probability-possibility transformation [16] on a normal pdf with mean
equal to the first measured value for acceleration (am1) and standard deviation wa.

As for the measured values in each step k, matrix Yk is the matrix of the RFVs of the
velocity and acceleration measurements. The RFV associated with the simulated measured
velocity is centered on the simulated measured velocity at step k (vmk) and

• The internal PD is a rectangular PD with width ±esys around vmk;
• the random PD is obtained by using the probability-possibility transformation [16] on

a zero mean normal pdf, with standard deviation σv
m.

On the other hand, the acceleration has no systematic error. So, the RFV associated to
the simulated measured acceleration is centered on the simulated measured acceleration at
step k (amk) and

• the internal PD is zero;
• the random PD is obtained by using the probability-possibility transformation [16] on

a normal pdf, with mean ak and standard deviation ua
ran.

Matrix C
X

f
k

is the noise covariance matrix of the velocity and acceleration RFVs. However,

as it is shown in the equations in Figure 2 and explained in [23], C
X

f
k
= Cran

X
f
k

. So, the pos-

sibilistic variances and covariances are evaluated from only the random contributions to
uncertainty in both the velocity and acceleration RFVs.

Similarly, CYk = CYran
k

which means that the possibilistic variances and covariances of
the noise covariance matrix associated with the measurements are evaluated from just the
random uncertainty contributions in the velocity and acceleration measurements.

The described KF has been applied to the case study described in Section 2. The results
obtained from the simulations are presented in Figures 3 and 4.

The predicted values of the velocity and acceleration from the KF are obtained by
evaluating the mean values of the a posteriori RFVs in matrix Xa

k. In both Figures 3 and 4,
the blue lines represent the differences in the predicted values given by the KF and the true
values of the velocity and acceleration respectively.
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The uncertainty limits associated to the state predictions (red lines) are the α−cut
at α = 0.01 of the velocity and acceleration RFVs predicted by the KF. The α−cut can be
considered as the confidence interval at the confidence level 1-α [16]. For α = 0.01, these
intervals correspond to the 99% confidence interval in the corresponding pdf.

Figure 3. Difference in the reference and predicted velocity values (blue line) provided by the
possibilistic Kalman filter together with the predicted uncertainty interval (red lines).

Figure 4. Difference in the reference and predicted acceleration values (blue line) provided by the
possibilistic Kalman filter together with the predicted uncertainty interval (red lines).

4. The Alternative Kalman filter Algorithm

In this paper, an alternative version of the KF algorithm described in Section 3 is
presented, which allows for the reduction of the residual systematic error. As can be seen in
the results in Figures 3 and 4, the possibilistic KF algorithm described in Section 3 estimates
the uncertainty intervals associated with the predictions very accurately in the presence of
a systematic error. However, it does not compensate for the systematic error.

The alternative possibilistic KF which is proposed in this paper makes use of the above
uncertainty interval to partially compensate for the systematic error. The new algorithm is
synthetically shown in Figure 5. With respect to the algorithm in Figure 2, it can be seen
that all steps are equal, except the last one, which corresponds to the “correction of the
predicted states”.

In particular, a new RFV Y
comp
k is considered, which tries to compensate for the residual

systematic error. At each step k, Y
comp
k consists of just the internal PD which is centered at

the positive uncertainty limit evaluated by the KF at the previous iteration (step k − 1) and
with the same width and shape as the internal membership function of the RFVs of the
state variables estimated by the KF in the previous iteration (Xint

k−1).

Y
int_modi f ied
k is then obtained by adding or subtracting the RFV Y

comp
k from Yint

k , de-
pending on if the systematic error is positive or negative:

Y
int_modi f ied
k =

{
Yint

k + Y
comp
k if systematic error < 0

Yint
k − Y

comp
k if systematic error > 0

(2)
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Figure 5. The alternative possibilistic Kalman filter algorithm.

It is exactly like a negative feedback loop: the effects of the systematic contrbutions to
uncertainty predicted by the KF is used as a feedback to compensate for a possible system-
atic error and the systematic error is partially compensated for. The intrinsic requirement
for applying this method is that we know the direction of the systematic error i.e., it should
be known if the error is positive or negative.

The obtained results are shown in Figures 6 and 7. Again, the predicted values for
the velocity and acceleration given by the KF are the mean values of the velocity and
acceleration RFVs in matrix Xa

k.

Figure 6. Difference in the reference and predicted velocity values (blue line) provided by the
possibilistic Kalman filter defined in this paper, together with the predicted uncertainty interval
(red lines).

As in Figures 3 and 4, also in Figures 6 and 7 the blue lines represent the differences in
the predicted values given by the KF and the true values of the velocity and acceleration
respectively. The uncertainty limits associated the state predictions (red lines) are the
α − cut at α = 0.01 of the velocity and acceleration RFVs predicted by the KF.
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Figure 7. Difference in the reference and predicted acceleration values (blue line) provided by the
possibilistic Kalman filter defined in this paper, together with the predicted uncertainty interval
(red lines).

In Figure 6, with respect to Figure 3, it can be clearly seen that the uncertainty limits
have been significantly reduced along with the residual systematic error in the velocity esti-
mate. Table 1 gives a comparison with synthetic indexes for the velocity of the possibilistic
KF and the alternative possibilistic KF.

Table 1. Comparison of synthetic indexes for the velocity.

KF Possibilistic Alternative Possibilistic

Convergence(s) 151 138

Steady-state error 0.3024 0.1696

Variation of error 0.0220 0.0257

Uncertainty limits ±0.3589 ±0.2106

Variation of uncertainty limits 0 0

Percentage inside the uncertainty limits 99.00 95.88

5. Further Simulations

Further simulations have been performed in order to verify the effectiveness of the
alternative possibilistic KF in all situations. In particular, we want to verify whether the
algorithm still works in a good way when it is applied, but no residual systematic error
is present.

In fact, the result of the introduction of the “feedback” loop is that the residual
systematic error is compensated by the maximum possible value since the uncertainty limit
of the RFVs evaluated in each step (which is the value of the α-cut at α = 0.01 of the RFV)
is considered. This means that it is possible that the residual systematic error could be
overcompensated as the magnitude of this is unknown.

So, it is important that even if the residual systematic error happens to be zero (which
is the limiting case), the overcompensation should not be so high that the predictions of the
state variables obtained from the KF fall out of the evaluated uncertainty limits. To verify
this, the same example described in the Section 2 is considered except that the systematic
error is considered to be zero (instead of 0.3 m/s).

In this case, the results in Figures 8 and 9 are obtained.
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Figure 8. Difference in the reference and predicted velocity values (blue line) provided by the
alternative possibilistic KF, together with the predicted uncertainty interval (red lines) when residual
systematic error is zero.

Figure 9. Difference in the reference and predicted acceleration values (blue line) provided by the
alternative possibilistic KF, together with the predicted uncertainty interval (red lines) when residual
systematic error is zero.

As expected, as can be seen in Figure 8, the systematic error in the velocity has
been overcompensated, but it is still mostly inside the evaluated uncertainty limits. This
demonstrates that the alternative possibilistic KF algorithm successfully decreases the
uncertainty associated to the state predictions provided by the KF in all situations. In fact,
the average uncertainty in Figure 8 is in any case smaller than the one in Figure 3.

6. Experimental Case Study

To validate the simulation results, a parrot AR drone has been used for the experi-
mental case study. The drone has the following technical specifications as given by the
manufacturer:

• 1 GHz 32 bit ARM Cortex processor with 800 MHz video DSP.
• 1 Gbit DDR2 RAM at 200 MHz.
• Wi-Fi b/g/n.
• 3 axis accelerometer +/−50 mg precision.
• 3 axis gyroscope 2000◦ second precision.
• Pressure sensor +/−10 Pa precision.
• 60fps vertical QVGA camera.
• 3 axis magnetometer 6◦ precision
• Ultrasound sensors.

The parrot AR drone has been developed as a low cost drone by parrot company
and is quite customizable. The code is open source and can be modified according to the
necessity. It has a variety of sensors and the data can be obtained from them and processed
as needed. For the present case study, the velocity and acceleration measurements have
been considered. For information about the algorithm used by the drone to calculate its
speed, the readers are suggested to refer to [25].
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The employed drone has been observed to have a negative systematic error in the
velocity measurements obtained from the sensors present in the drone itself. So, the velocity
is being underestimated by the sensors of the drone. It has also been observed that the
systematic error is not constant for all runs. Each individual run had a systematic error
that may be different from the other runs. So, only an interval of values can be estimated
and the error can not just be compensated.

By performing a large number of runs of the drone, the interval for the systematic
error has been estimated and this was used to construct the internal membership function
of the RFV for the measured velocity. The constructed RFV assumed to be centered at zero
velocity can be seen in Figure 10.

Figure 10. RFV of the velocity constructed from the data. The blue line represents the external
membership function and the red line represents the internal membership function.

The measured acceleration, on the other hand, does not have any systematic contri-
butions to uncertainty. Hence, the RFV can be constructed by simply using a probability-
possibility transformation on the probability distribution of the acceleration.

The drone was made to fly for a few seconds to cover a distance of approximately
4 m. The velocity and acceleration data from the sensors is obtained from the drone every
5 ms using a software program that links the computer with the drone using the Wi-Fi
network. The alternative possibilistic KF described in Section 4 was used to provide the
filtered velocity and acceleration predictions with their respective uncertainties as well as
compensate partially for the systematic error in the velocity measurements provided by
the drone.

The velocity estimates provided by the KF were integrated to get the estimated
distance traveled by the drone. Similarly, the velocity measurements directly obtained by
the drone were integrated as well, to get the distance that the drone traveled according to
the sensors present in the drone.

At the end of every run, the actual distance from the starting point was been measured.
Measuring tape was used to do this since the error in the distance calculated using the
velocity data from the sensors is quite high and the precision of the measuring tape is
enough to be deemed negligible. Several runs were made and the distances estimated by
the KF and those estimated according to the sensor data were compared with the actual
distance traveled by the drone. To facilitate a comparison between the alternative KF
defined in this paper and the possibilistic KF defined in [23], the sensor data was processed
using both the KFs seperately.

The results using the possibilistic KF defined in [23] can be seen in Figure 11. The green
line represents the distances estimated according to the velocity measurements obtained
directly from the sensors in the drone. The blue line represents the distance obtained from
the velocity estimates of the defined possibilistic KF. The black line represents the actual
distance traveled by the drone. Finally, the red lines represent the upper and lower bounds
for the uncertainty.

31



Metrology 2021, 1

Figure 11. Distances obtained from the velocity estimates of the possibilistic KF (blue line). The pre-
dicted uncertainty intervals (red lines). Actual distance traveled by the drone (black line) and
distances estimated according to the velocity measurements obtained directly from the sensors in the
drone (green line). Green line and blue line are almost the same.

It can be seen that the distances estimated by the possibilistic KF are quite close to
the distances from the sensors. The blue line and the green line in Figure 11 are almost
the same and that is why only the green dots and the blue line can be seen in the figure.
However, the real measurements lie inside the uncertainty limits of the distances provided
by the KF.

Figure 12. Distances obtained from the velocity estimates of the defined alternative possibilistic KF
(blue line). The predicted uncertainty intervals (red lines). Actual distance traveled by the drone
(black line) and distances estimated according to the velocity measurements obtained directly from
the sensors in the drone (green line).

The results using the alternative KF defined in this paper can be seen in Figure 12.
Again, the green line represents the distances estimated according to the velocity mea-
surements obtained directly from the sensors in the drone. The blue line represents the
distance obtained from the velocity estimates of the defined possibilistic KF. The black line
represents the actual distance traveled by the drone. Finally, the red lines represents the
upper and lower bounds for the uncertainty.

For an easier comparison, Figure 13 shows again the distances obtained using the
modified possibilistic KF (green line) and those obtained using the alternative possibilistic
KF (blue line) along with the actual distance traveled by the drone (red line).

32



Metrology 2021, 1

Figure 13. Distances obtained from the velocity estimates of the defined alternative possibilistic KF
(blue line). The distances obtained from the velocity estimates of the modified alternative possibilistic
KF (green lines). Actual distance traveled by the drone (red line).

A comparison of the results obtained from the two KFs has also been given in Table 2.
From Table 2, it can be clearly seen that the distance obtained using the alternative KF
defined in this paper is much more accurate and closer to the real measurements than the
distances obtained from the sensor measurements or those obtained from the possibilistic
KF defined in [23].

Table 2. Comparison of the distance estimates of the drone obtained from the two KFs.

KF Possibilistic Alternative Possibilistic

Average error between the real distance
and estimated distance 115.3273 12.4821

Mean width of the uncertainty band ±416.30 ±210.63

Additionally, it can be easily seen that the width of the uncertainty limits associated
with the distance (red lines) are also smaller in Figure 12 compared to that in Figure 11.
The same can be verified from Table 2.

This confirms that the systematic error in the velocity is being compensated quite effi-
ciently using the defined alternative possibilistic KF and the overall uncertainty associated
to the predictions is being decreased as well.

7. Conclusions

The modified possibilistic KF defined in [23] is capable of propagating the systematic
contributions to uncertainty effectively. This paper defines an alternative possibilistic KF
which also decreases the effects of the systematic uncertainty contributions on the final
measurement and therefore can be considered an improved version of the KF defined
in [23].

The same simulated case study as in [23] has been considered to facilitate an easy
comparison and the results obtained using the KF defined in this paper have been shown
along with the results obtained by using the KF defined in [23]. The obtained results show
that the proposed KF provides a compensation of the systematic uncertainty and decreases
the overall uncertainty associated to the predictions.

The only requirement to use this method is that the direction of the residual systematic
error should be known. This requirement is not so difficult to be satisfied in the era of
big data. In any case, if not satisfied, the modified possibilistic KF defined in [23] is still
valid and can be successfully applied. A possible area of application of the alternative
possibilistic KF proposed in this paper could be in PTP networks where the network traffic
is being monitored and thereby it can be evaluated if the transmission delay is higher from
master to slave or from slave to master, thus identifying the direction of the systematic error

33



Metrology 2021, 1

in the calculation of the offset. Therefore, this method could be used to further decrease the
uncertainty associated with the time predictions provided by the KF.
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Abstract: In this paper, we consider the calibration of measuring bridges for non-conventional
instrument transformers with digital output. In this context, the main challenge is represented by
the necessity of synchronization between analog and digital outputs. To this end, we propose a
measurement setup that allows for monitoring and quantifying the main quantities of interest. A
possible laboratory implementation is presented and the main sources of uncertainty are discussed.
From a metrological point of view, technical specifications and statistical analysis are employed
to draw up a rigorous uncertainty budget of the calibration setup. An experimental validation is
also provided through the thorough characterization of the measurement accuracy of a commercial
device in use at METAS laboratories. The proposed analysis proves how the calibration of measuring
bridges for non-conventional instrument transformers requires ad hoc measurement setups and
identifies possible space for improvement, particularly in terms of outputs’ synchronization and
flexibility of the generation process.

Keywords: measuring bridge; calibration; non-conventional instrument transformer; sampled values;
digital output; synchronization

1. Introduction

In view of reducing greenhouse gas emissions and carbon dependence, modern
power systems are experiencing an ever-increasing integration of renewable energy sources
and distributed generation [1,2]. Such resources are typically connected via dedicated
inverters whose power electronics-based control can not guarantee any rotational inertia
or regularization of the energy generation profile [3,4]. As a consequence, power systems
are expected to face much faster dynamics, as proven by recent adverse events in South
Australia and California [5,6].

In order to address such challenges, also the measurement infrastructure needs to
undergo a significant renovation, both in terms of instrumentation and control strategies [7].
In particular, the transition from traditional to digital electrical substations paves the way
to more sophisticated and optimized approaches for the collection and aggregation of
the quantities of interest, e.g., voltage and current levels at the transformer secondary
windings [8]. In this context, the recent IEC Std 61869-9:2016 [9] defines the operational and
communication requirements for instrument transformer with digital output. Due to their
capability of converting the output signal directly in a digital form (and thus compatible
with many processing and storage applications), such transformers are typically referred
to as non-conventional instrument transformers, briefly NCIT [10].

In terms of communication protocol, the IEC Std 61850-9-2:2011 [11] introduces the
Sampled Values (SV): a publisher/subscriber protocol for information exchange between
Stand Alone Merging Units (SAMUs) and Intelligent Electronic Devices (IEDs) over the
Ethernet. Originally conceived just as an efficient way to concentrate the outputs of NCITs
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and SAMUs [12–14], the SV is now directly applied to more sophisticated processing
applications, e.g., phasor measurements [15] and protection schemes [16].

The recent EMPIR project FutureGrid II has been investigating the measurement needs
and potential of SVs in modern electrical substations. In particular, dedicated calibration
infrastructures for transmitting and receiving SVs have been developed and thoroughly
characterized [17,18]. However, a rigorous and well-established procedure for the metro-
logical characterization of NCITs is not yet available. The measurement setup typically
includes a transformer measuring bridge capable of processing both analog and digital
inputs [19]. The calibration of such device, though, is not straightforward and requires a
precise assessment of the several uncertainty sources involved in the measurement process.
Indeed, the comparison between purely analog quantities and time-stamped digital values
represents a non-negligible challenge, especially in terms of synchronization and phase
angle uncertainty.

In this paper, we consider the problem of calibrating a measuring bridge for NCITs
from a metrological point of view [20,21]. In particular, we describe a novel measurement
setup and discuss the implementation challenges and requirements as well as the possible
uncertainty contributions. A preliminary calibration campaign confirms the feasibility
and reliability of the proposed approach, and sets a realistic performance target for the
uncertainty budget of the calibration infrastructure.

The paper is organized as follows: in Section 2, we present the measurement prin-
ciple inherent in measuring bridges for traditional and non-conventional transformers.
Section 3 outlines the measurement setup for the bridge calibration and describes the actual
implementation in METAS laboratories. In Section 4, we discuss the main uncertainty
contributions and derive a preliminary uncertainty budget based on technical specifications
and statistical analysis. In Section 5, we provide an experimental validation by presenting
the results of a measurement campaign on a commercial device. Finally, Section 6 provides
some closing remarks and outlines the next steps of the research.

2. Measuring Bridge: Configurations and Measurement Principles

In this section, we briefly describe the measurement principle of measuring bridges for
instrument transformers, focusing on the transition from the traditional analog approach
to the non-conventional approach based on SV communication protocol. In the following,
we refer to the specific case of current transformers but similar considerations apply as
well to voltage transformers.

Traditional measuring bridges for instrument transformers rely on the well-known
difference method [22]. As shown in Figure 1a, the same current source Is is supplied to
two current transformers: a standard reference transformer, typically referred to as normal
(channel N), and the transformer under test (channel X). For the sake of comparability,
the two transformers adopt the same transformation ratio. As a consequence, they should
produce the same current output at the secondary winding.

Figure 1. Typical configuration of a measuring bridge based on: difference method (a), digital signal
processing (b), and IEC 61850-9-2 protocol (c).
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It is worth noticing that, in a calibration context, the current source and the normal
transformers are subject to periodic and thorough metrological characterization campaigns:
systematic errors are suitably compensated, whereas random contribution determine the
source stability and the transformer uncertainty, whose levels are guaranteed to be much
lower than the expected performance of the device under test.

By means of current sensors (typically, a calibrated shunt and a voltmeter or a dig-
itizer), the measuring bridge determines the current flowing at the secondary winding
of the two transformers, IN and IX, respectively, as well as their difference Id = IX − IN .
In a vector space rotating at the nominal system frequency (e.g., 50 Hz), it is possible to
represent these quantities as rotating vectors, whose magnitude and phase depend on the
characteristics of the transformer under test.

Based on these measurements, the measuring bridge calculates the complex trans-
former or excitation error ΔE = Id/IN (The excitation error is not necessarily included
in a calibration report as it depends on the accuracy and stability of the selected current
source and reference standard transformer. In this paper, we report also ΔE as it is one of
the measurement values commonly output by a measurement bridge, and thus it might
be interesting to associate it with a measurement uncertainty), the transformer ratio error
Δε, and the phase displacement Δϕ (In this paper, the test waveforms consist of sine wave-
forms. Therefore, a negative phase displacement corresponds to a current IX that is delayed
with respect to the reference current IN).

In Figure 1b, we present an example of new generation of measuring bridges. With
the emergence of integrated circuits and fixed-point microprocessors, also measuring
bridges have been equipped with Analog-to-Digital Converters (ADCs) and Digital Signal
Processing (DSP) units for a more sophisticated treatment of the digitizer outputs. Instead of
considering their difference in an analog circuit, each channel is processed independently:
by means of a Discrete Fourier Transform (DFT), it is possible to define the complex
coefficient associated with the nominal system rate. The comparison between these complex
quantities allow for quantifying the excitation and ratio errors and the phase displacements.
Moreover, by differentiating the phase information, it is also possible to determine the
signal frequency and detect possible distortion introduced in the transformation.

Finally, Figure 1c represents the configuration of a measuring bridge for NCITs. As the
transformer under test outputs the current at the secondary winding directly in a digital
format, the X channel has to be supplied with an Ethernet board responsible of capturing
the SV data packets and aligning them with the samples provided by the ADC on the
N channel.

First, the captured SV data packets are queued in a First-In-First-Out (FIFO) buffer.
Then, the time-stamp information is extracted and compared with the internal time of
the measuring bridge: in the presence of high discrepancies (e.g., delayed transmission),
the comparison with the reference channel values is unfeasible and the measuring bridge
outputs an error message due to synchronization loss. Otherwise, the analog quantities are
extracted from the SV data packets and transmitted to the DSP for the DFT processing and
the error computation.

In this regard, it is reasonable to assume that the excitation error ΔE is mostly depen-
dent on the accuracy and stability of the current measurement at the N-channel. In the
absence of synchronization or packet loss, the SV data stream is characterized by a constant
amplitude whose accuracy depends only on the quantization error and on possible numer-
ical errors in the bridge DSP. On the contrary, IN is an analog quantity that might vary as
function of time, depending on the stability of the current source and on the characteristic
of the standard transformer CTN .

3. Measurement Setup

In this section, we present the measurement setup for the metrological characterization
of a measuring bridge for non-conventional instrument transformers. Indeed, a detailed
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analysis of the employed instruments and measurement techniques is crucial in view of
the uncertainty analysis in the following section.

As shown in Figure 2, the setup consists of six main components: a time reference,
a calibrator, a transconductance amplifier, a calibrated shunt, a set of synchronized volt-
meters, and the Device Under Test (DUT), i.e., the measuring bridge.

Figure 2. Measurement setup employed for the calibration of measuring bridges for non-conventional
instrument transformers.

The time reference is responsible for providing the calibrator with a refined and
stable time-base. To this end, a 10-MHz signal overrides the internal clock of the cali-
brator. It is worth noticing that, in such application, the traceability to Universal Time
Coordinate (UTC) time is not mandatory. The only constraint is the exact synchronization
between the calibrator analog and digital outputs, as well as between the calibrator and
the measuring bridge.

The calibrator consists of three main units:

• A digital acquisition unit with a Digital-to-Analog Converter (DAC) and an ADC that
operate in simultaneous mode, i.e., share the same time-base and sampling rate. The
DAC is responsible for generating the analog test waveform to be supplied at the
transconductance amplifier and then the DUT, whereas the ADC simultaneously re-
acquires the same waveform to make it available for further processing and defining
the actual reference values. In this context, it should be noticed that both DAC and
ADC are typically equipped with two channels. One pair of channels (ai0 and ao1 in
Figure 2) is dedicated to the test waveform generation and re-acquisition, whereas the
other one (ai1 and ao0) is intended for self-calibration tasks, namely for the definition
of the DAC phase offset [18], as further discussed in the following section;

• A synchronization unit locked to the internal clock, and thus to the external time
reference. The synchronization board is responsible for two main tasks: distributing
the triggers for the other units within the calibrator, and providing the measuring
bridge with a Pulse-Per-Second (PPS) signal that is aligned with the time-stamp of
the SV data packets. As regards the first task, the main difficulty is represented by
the necessity of simultaneously triggering a purely hardware unit, namely the DAQ,
and a purely software process, namely the SV transmission. To this end, software
defined triggers are programmed as future time events, i.e., in correspondence of the
first rising edge of the internal time base after a given time instant. As regards the
second task, instead, the PPS is generated as a Transistor-Transistor Logic (TTL) signal,
disciplined at the same rising edge as the software triggers;

• A controller unit with sufficient memory and processing capabilities, and an Ether-
net board. On one side, the controller supervises the DAQ unit: it defines the test
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waveform to be generated as a sample series at the given sampling rate, stores the
acquired samples, and processes them in order to estimate (in quasi real-time) the
DAC phase offset. On the other side, the controller is responsible for publishing the
SV data packets, from the encapsulation of the SV to the actual transmission through
a dedicated Ethernet board.

The DAC outputs a low-voltage sinusoidal signal, in the range of ±2 V. The amplitude,
frequency and initial phase of the signal can be customized to specific test conditions. The
conversion to the current levels expected by the N channel of the measuring bridge is
carried out by a transconductance amplifier. In this sense, the amplifier ratio represents a
further degree of freedom in view of a finer control of the current level, and thus of the
excitation. The transconductance amplifier is not an ideal current source and introduces
non-negligible uncertainty contributions on both the amplitude and phase of the signal
supplied to the measuring bridge.

The ADC re-acquires the amplifier output by means of a calibrated high-precision
shunt whose input range is suitably adapted to the specific test configuration. Typically,
the shunt output is scaled such that a full input range corresponds to an output range of
0.8 V. Given the calibration context and the high-accuracy of the employed shunts, their
contribution in terms of amplitude and phase uncertainty can be reasonably considered as
negligible, as further discussed in the next section.

The time-series acquired at the two ADC input channels are processed via a DFT-
based routine (further details in [18]) and the phase associated with the fundamental
frequency is retrieved. In particular, channel ai1 is representative of the contribution of
ADC only, whereas channel ai0 is representative of the entire measurement chain. By
properly differentiating these terms, it is possible to define the actual phase of the signal
supplied to the measuring bridge.

In the top-centre part of the scheme, a pair of Digital Voltmeters (DVMs) monitors the
input and output signal of the series of transconductance amplifier and shunt. The DVMs
are employed as high-precision sampling systems that operate in simultaneous mode:
the acquired time series are processed via a sine fitting method that allows for accurately
estimating the amplitude, frequency and initial phase of the signals under analysis. The
DVMs’ trigger is not synchronous with the PPS of the synchronization unit, neither is
it disciplined to the time reference. As a consequence, the phase information cannot be
related to the phase measured on the calibrator. Nevertheless, the difference between the
phase measured on each DVM allows for quantifying the phase offset introduced by the
amplifier only. It is therefore an independent method to validate the results of DFT-based
routine carried out on the re-acquired waveforms.

METAS Implementation

As implemented in the METAS laboratories, the different components of the measure-
ment setup are listed here below.

• Time reference: A Meinberg LANTIME M600Time Server (Meinberg Funkuhren,
Bad Pyrmont, Germany) that includes a GPS-disciplined 10-MHz clock, whose time
accuracy and frequency stability are in the order of 50 ns and 0.5 nHz/Hz over an
averaging time of 1800 s, respectively [17].

• Calibrator: An NI PXIe 1062 chassis (National Instruments, Austin, TX, USA) that
hosts three boards: the NI PXIe 8880 controller, the NI PXI 6683 timing and syn-
chronization module, and the NI PXI 4461 dynamic signal acquisition module. The
NI PXIe 8880 is an Intel Xeon embedded controller (2.3 GHz Eight-Core) with two
10/100/1000BASE-TX (Gigabit) Ethernet ports. The NI PXI 6683 can generate events
and clock signals at specified synchronized future times and timestamp input events
with the synchronized system time. The NI PXI 4461 is a 2-input/2-output DAQ with
a nominal resolution of 24 bits. The sampling rate and the vertical range are set equal
to 192 kHz and ±2 V, respectively, for both DAC and ADC channels.
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• Transconductance amplifier: A Clarke-Hess 8100 (Clarke-Hess, Medford, NY, USA)
characterized by a 50 ppm short-term stability, a maximum compliance voltage of 7 V,
a total harmonic distortion lower than −60 dB up to 10 kHz, and six available output
range from 200 mA to 100 A.

• Shunt: A set of Fluke A40B Precision DC and AC Current Shunts (Fluke, Norwich, UK)
with a worst-case uncertainty of 55 ppm up to 1 kHz signal frequency. In particular,
we adapted the shunt input range to the generated current level: a 500-mA shunt
for 50 ≤ IN < 500 mA, and a 10-A shunt for 1 ≤ IN ≤ 10 A. In this sense, a further
improvement might be represented by the adoption of magnetoresistance sensors.
Nevertheless, it should be noticed that the shunts are periodically calibrated and thus
the non-ideal conversion ratio is suitably compensated, and its effect is negligible if
compared to the calibrator and amplifier ones.

• Digital Voltmeters: A pair of Keysight 3458A Multimeters (Keysight Technologies,
Santa Rosa, CA, USA) with a resolution of 8.5 digits and an accuracy of 100 ppm in
synchronous mode. The DVMs are used as digitizers for a sine fitting technique with a
sampling rate of 2.5 kHz and an aperture time of 920 μs. The two digitizers operate in
a master–slave configuration: the one connected to the calibrator output triggers also
the acquisition of the one connected to the amplifier output. In this way, they mimic
a two-channel ADC operating in synchronous sampling mode, as further discussed
in [23]. It is also worth noticing that the sine fitting procedure returns the value of the
amplitude, frequency and initial phase of the fundamental component. Therefore, by
comparing the phase at the two channels, we can retrieve the phase contribution of
the amplifier only with a standard uncertainty of 0.03 μrad [24].

• Measuring bridge (DUT): A ZERA WM3000I (ZERA, Konigswinter, Germany) with a
current input range from 1 mA to 15 A. In non-conventional mode, the bridge guaran-
tees a ratio and phase uncertainty not larger than 300 ppm and 1.5 min, respectively.

4. Uncertainty Contributions

In this section, we analyse the main uncertainty sources inherent in the proposed
measurement setup and we derive a complete uncertainty budget based on technical
specifications and statistical analysis (In case of statistical analysis, a coverage factor k = 2
(i.e., 95%) has been applied to the standard deviations).

In this context, four main contributions can be identified. Three descend from the
measurement chain for the generation and re-acquisition of the analog test waveform, i.e.,
from the DAQ module, the transconductance amplifier and (marginally) the current shunt.
One contribution, instead, is directly related to the definition of the SV data packets, i.e., to
the vertical resolution loss due to quantization effects.

As regards the DAQ module, two synchronization aspects have to be taken into
account: the sampling rate and the phase offset introduced by an improper triggering
of the DAC and ADC boards. The sampling rate is derived from the internal time base
that is disciplined to the external time reference. In our setup, we are able to retrieve the
coerced sampling rate on both boards and the discrepancy between nominal and actual
sampling rate is equal to 0.3 ppb [18]. Therefore, it is reasonable to say that the sampling
rate has a negligible effect on the amplitude, frequency and phase of the generated and
re-acquired waveform.

By connecting the channels ao1 and ai0, we were able to quantify also the distortion
level introduced by the DAQ module. In the considered configuration, we evaluated a
worst-case Signal-to-Noise Ratio (SNR) and a Total Harmonic Distortion of 92 and −96 dB,
respectively. As a consequence, the effective number of bits is equal to 17 bits. In this respect,
it should be noticed that such levels of accuracy require a precise control of temperature
and power supply stability. In our case, the measurement campaign has been carried out
in METAS laboratories with a controlled temperature of 23 Celsius degrees and adopting
a power supply at 60 Hz for all the instrumentation, i.e., calibrator, amplifier and DUT,
to avoid beating effects or interferences. For this analysis, we considered a dataset of 100
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independent acquisition with a sample length of 4 s. Moreover, we quantified the purity of
the test waveform by means of a nonlinear fit against a single-tone sinusoidal model that
produced a Goodness-of-Fit index not lower than 99.7% [18]. Based on these considerations,
we quantified the DAQ contribution to the estimation of the current amplitude in terms
of the noise variation range. By also taking into account the integral nonlinearity of the
ADC board, as characterized in [25], for a test waveform amplitude of 1 V, the uncertainty
is 25.12 ppm.

A further validation of this result is provided by the RMS measurements carried out
by the first channel of the DVM system. For this analysis, we considered a dataset of
200 measurements and evaluated the mean and standard deviation. As shown in Figure 3,
the distribution is well approximated by a Gaussian distribution and the uncertainty can be
quantified in the worst-case in 23.71 ppm. The peculiar non-monotonic uncertainty trend
depends also on the adoption of two current shunts with different input range (namely,
500 mA and 10 A), as previously introduced.

Figure 3. Uncertainty of the current amplitude at the output of the DAQ module as function of the
selected current level (a). Quantile-quantile plot relative to a current level of 5 A (b).

The second synchronization aspect regards the triggering mechanism of DAC and
ADC boards, with respect to the PPS signal output by the synchronization board (and the
time-stamp of the digital data stream). In this regard, it should be noticed that the DAQ
module relies on a Sigma-Delta technology: the phase offset introduced by the analog
front end of DAC and ADC boards is dependent on the sampling rate. Nevertheless,
in a calibration context, it is possible to characterize such contribution and minimize its
systematic component by properly shifting the initial phase of the generated waveform.
To this end, it is necessary to quantify precisely the phase offset introduced by DAC and
ADC boards separately. In recent years, this problem has been widely investigated by
several metrological institutes [26–28]. In our measurement setup, we adopted a DFT-
based routine for the precise characterization of the phase offset of the signal supplied
to the transconductance amplifier. The algorithmic details are beyond the scope of this
analysis but can be found in [18]. At 50 Hz, the phase offset has been proven to exhibit a
normal distribution with mean and standard deviation equal to 4.186 mrad and 0.004 mrad,
respectively. The first one can be seen as a systematic contribution and thus compensated,
whereas the second one is a random variable and is related to the phase uncertainty
introduced by the DAQ module.

In this context, another aspect that should not be neglected is the proper alignment of
the software triggers with the PPS used to synchronize the measuring bridge. With respect
to the external time-reference, we quantified the delay introduced by the calibrator in the
software triggers and in the PPS output of the synchronization module. As regards the
first ones, the technical specifications guarantee the rising edge to occur within 5 ns of
the selected time-stamp. Moreover, it should be noticed that the synchronization module
guarantees the distribution of software triggers to neighbouring modules (as the DAQ and
the controller) with a maximum delay of 2 ns. As regards the PPS output, we employed a
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high-precision digital oscilloscope with a sampling rate of 2 GHz and we compared the
PPS output against the external time reference. Over an observation interval of nearly
10 min, the PPS showed an average delay of 10 ns with a jitter on the order of few ps. These
contributions sum up to 11.36 ns that corresponds to a phase uncertainty of 3.568 μrad.

Once output by the calibrator, the transconductance amplifier converts the voltage test
waveform in the corresponding current waveform. In order to characterize the amplitude
and phase contributions of this stage, this signal is re-acquired through a high-accuracy
current shunt. It is worth noticing that the shunts (periodically calibrated) contribute
to the overall uncertainty by at most 0.90 ppm for the amplitude, and 1.50 μrad for the
phase [29,30]. On the other hand, the transconductance amplifier has a much more sig-
nificant impact on the overall uncertainty. As per the calibrator output, we analysed
the amplifier output via the DVM. In this case, we were also able to compute the phase
displacement between the two channels, i.e., the phase displacement introduced by the
transconductance amplifier (and the shunt). For each considered current level, we carried
out 200 independent measurements and computed the corresponding statistical distri-
butions: the mean value is taken as a systematic contribution and thus compensated,
the standard deviation is used for the uncertainty computation. Figure 4 presents the
uncertainty associated with amplitude and phase as function of the current level. In the
worst-case, the former is equal to 160.75 ppm, whereas the latter is 200 μrad. In this regard,
it is worth noticing how the uncertainty rapidly increases when the current levels fall below
500 mA. Indeed, the selected amplifier is designed for high current output and exhibits
a poor accuracy at lower current levels. At the nominal value of 5 A, the uncertainty for
amplitude and phase are just 8.36 ppm and 8 μrad, respectively.

Figure 4. Uncertainty of the current amplitude (a) and phase (b) at the output of the transconductance
amplifier as function of the selected current level.

Finally, the contribution of the digital output has been also assessed. The SV communi-
cation protocol provides a resolution of 32 bits for the analog converted quantities. In terms
of quantization error, this corresponds to an amplitude uncertainty of 67 ppm. In terms of
phase uncertainty, it is reasonable to set it equal to zero, as the calibrator outputs simulated
packets, and thus no conversion error is possible (differently from the digital stream output
by a NCIT or a SAMU where measurement errors might occur). On the other hand, it
is difficult to merge such uncertainty contributions with the ones related to the analog
measurement chain without knowing the algorithm employed by the measuring bridge
for the definition of amplitude and phase on the X-channel. If a DFT-based approach is
adopted (as in many other SV-based estimators), the recent literature has proven how the
amplitude and phase uncertainty due to quantization errors decreases significantly as the
resolution of the quantized samples exceed 14 bits [31]. Therefore, for the purpose of this
paper, this contribution can be reasonably considered negligible.

As a summary, in Table 1, we report the overall uncertainty budget for the calibration
infrastructure. By applying a conservative approach, the combined uncertainty has been
computed under the assumption of independent and uncorrelated contributions. Consis-
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tently with the common practice in current transformer calibration, the phase uncertainty
has been expressed in minutes. In total, the amplitude and phase uncertainty are lower
than 200 ppm and 0.7′ for the entire range of considered test conditions.

Table 1. Uncertainty budget for amplitude and phase accuracy (coverage factor k = 2).

Amplitude Uncertainty Phase Uncertainty
UIN (ppm) Uϕ (′)

Synchronization module − 0.012
DAQ module 25.12 0.007

Transconductance amplifier 160.75 0.687

Combined Uncertainty 162.70 0.687

5. Experimental Validation

In this section, we present the results of an experimental validation carried out on
the selected DUT, i.e., the ZERA WM3000I. This is intended as an experimental validation
of the proposed calibration method as well as of its main uncertainty contributions in
controlled laboratory testing conditions, as typical of metrological institute activities. In
the following tables, the reported uncertainty takes into account both the calibration setup
contribution and the statistical dispersion of the measurements of the device under test.
For the sake of readability, a ceiling to the last significant digit has been applied.

For this analysis, we set the nominal frequency, current range and transformer ratio
equal to 50 Hz, 5 A and 1:1. Otherwise differently stated, the signals at N- and X-channel
consist of single-tone sinusoids, whose frequency, amplitude and initial phase are set equal
to 50 Hz, 5 A, and 0 rad, respectively. In the following tests, such parameter values are
suitably modified in order to reproduce different configurations of excitation, ratio and
phase error, and thus span the entire operating range of the measuring bridge.

To this end, a total of 27 different configurations are taken into account. Each test has
a duration of 5 min, including 1 min of settling time to allow for the proper stabilization of
the current output of the transconductance amplifier. For each of the monitored quantities,
11 consecutive measurements are taken and their average and standard deviation values
are employed to determine the corresponding measurement errors and uncertainties
(In the presence of outliers, single measurements could be neglected. In this sense, the
outlier detection criterion is based on the assumption that the measurements are normally
distributed. Given a set of 11 measurements, if a single measurements differs from the
average value by more than three standard deviations, its value is discarded from the
computation of measurement errors and uncertainties). In more detail, the reported
uncertainties for the excitation and ratio error, and for the phase displacement are obtained
by merging the contributions of the calibration setup with the Type A uncertainty of the
measuring bridge results.

For the sake of comparison, Table 2 reports the WM3000I specifications in terms of
accuracy for the current measurement on the N-channel, the ratio error and the phase
displacement. As previously observed, the excitation error in non-conventional mode
descends directly from the accuracy of the measured IN amplitude, as the IX amplitude
depends only on quantization and numerical errors whose impact on the overall uncertainty
can be considered as negligible.
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Table 2. Specifications of the measuring bridge under test.

Measurement Accuracy Current Range

IN , Normal current RMS 100 ppm 0.05 < Is ≤ 15 A
200 ppm 0.05 ≤ Is < 0.005 A

Δε, Ratio error 100 ppm 0.05 < Is ≤ 15 A
200 ppm 0.05 ≤ Is < 0.005 A

Δϕ, Phase displacement 1.1′ 0.05 < Is ≤ 15 A
1.5′ 0.05 ≤ Is < 0.005 A

In this context, Table 3 reports the measurement results in the presence of ratio
and phase errors. For this analysis, the ratio error is varied within ±5% and the phase
displacement is set in such a way to consider small offsets (e.g., ±10′), large offsets (e.g.,
±5400′), and nearly phase opposition conditions (e.g., 10, 794′) (Such variations have
been obtained by modifying the content of the SV data packets, as the digital channel is
characterized by lower uncertainty contributions. Nevertheless, similar results could be
obtained by keeping unaltered the SV data packets and suitably modifying the current
source flowing through the standard transformer).

The two phenomena are investigated both independently and simultaneously. In this
way, it is possible to evaluate whether the measuring bridge is affected by any of the error
source or by their combination.

As the excitation is kept equal to 100%, it is worth noticing as the measuring bridge
exhibits an excitation error perfectly in line with its specifications and the uncertainty does
not exceed 200 ppm. Similar considerations apply for ratio error and phase displacement.
In this case, it is interesting to notice how Δε and Δϕ do not exhibit any dependence on the
test setting.

Table 3. Characterization of the measuring bridge performance in the presence of ratio errors and
phase displacements (coverage factor k = 2).

Settings Measurements Uncertainty
IN IX E ε ϕ ΔE Δε Δϕ UΔE UΔε UΔϕ

(A) (A) (%) (%) (′) (%) (%) (′) (%) (%) (′)
5 5 100 −5.000 0.00 0.00 −0.003 −0.9 0.02 0.012 1.0
5 5 100 −3.000 0.00 0.00 −0.004 −0.9 0.02 0.012 1.0
5 5 100 −0.200 0.00 0.00 −0.004 −0.9 0.02 0.012 1.0
5 5 100 −0.200 −10.00 0.01 −0.006 −0.9 0.02 0.012 1.0
5 5 100 −0.200 10.00 0.01 −0.006 −0.9 0.02 0.012 1.0
5 5 100 0.000 −5400.00 0.01 −0.005 −0.9 0.02 0.012 1.0
5 5 100 0.000 −180.00 0.01 −0.004 −0.9 0.02 0.012 1.0
5 5 100 0.000 −1.00 0.01 −0.005 −0.9 0.02 0.012 1.0
5 5 100 0.000 0.00 0.01 −0.005 −0.9 0.02 0.012 1.0
5 5 100 0.000 1.00 0.01 −0.006 −0.9 0.02 0.012 1.0
5 5 100 0.000 180.00 0.01 −0.005 −0.9 0.02 0.012 1.0
5 5 100 0.000 5400.00 0.01 −0.005 −0.9 0.02 0.012 1.0
5 5 100 0.000 10,794.00 0.01 −0.005 −0.9 0.02 0.012 1.0
5 5 100 0.200 0.00 0.01 −0.005 −0.9 0.02 0.012 1.0
5 5 100 0.200 −10.00 0.01 −0.005 −0.9 0.02 0.012 1.0
5 5 100 0.200 10.00 0.01 −0.006 −0.9 0.02 0.012 1.0
5 5 100 3.000 0.00 0.01 −0.004 −0.9 0.02 0.012 1.0
5 5 100 5.000 0.00 0.01 −0.005 −0.8 0.02 0.012 1.0

In Table 4, we report the measuring bridge errors and uncertainties in the presence
of different excitation levels. For this analysis, we modified the N-channel current in
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such a way that the measuring bridge senses an excitation between 1 and 200%. Once
more, the excitation error and the corresponding uncertainty are in line with the previous
considerations. As regards ratio error and phase displacement, it is worth noticing how
both measurements and uncertainties present a rapid increase as the excitation falls below
5%. Nevertheless, it is reasonable to expect that, in the presence of lower current levels,
the accuracy of the internal sensors as well as the SNR decrease and the corresponding
computations are affected by larger errors and uncertainties. Similar considerations hold
also for the digital counterpart. The SV data format has a fixed range and number of
bits: as a consequence, when transmitting low-amplitude signals, there is an inefficient
exploitation of the 32 bits and the resulting estimates are likely to be affected by higher
relative uncertainty.

Table 4. Characterization of the measuring bridge performance in the presence of different excitation
levels (coverage factor k = 2).

Settings Measurements Uncertainty
IN IX E ε ϕ ΔE Δε Δϕ UΔE UΔε UΔϕ

(A) (A) (%) (%) (′) (%) (%) (′) (%) (%) (′)
5 5 1 0.000 0.00 0.00 −0.017 −1.1 0.02 0.028 2.0
5 5 2 0.000 0.00 0.00 0.013 −1.0 0.02 0.017 1.5
5 5 5 0.000 0.00 0.00 −0.009 −1.0 0.02 0.013 1.0
5 5 10 0.000 0.00 0.00 −0.007 −1.1 0.02 0.012 1.0
5 5 20 0.000 0.00 0.00 −0.009 −1.0 0.02 0.012 1.0
5 5 50 0.000 0.00 0.00 −0.006 −0.9 0.02 0.012 1.0
5 5 100 0.000 0.00 0.01 −0.004 −0.9 0.02 0.012 1.0
5 5 120 0.000 0.00 0.01 −0.004 −0.9 0.02 0.012 1.0
5 5 200 0.000 0.00 0.01 −0.001 −1.0 0.02 0.012 1.0

The specific device under test provides a useful extra feature, i.e., a representation of
the current flowing in the N-and X-channel as rotating vectors characterized in terms of
RMS amplitude, phase, and frequency. The estimation accuracy of the first two parameters
has been already investigated in the previous tables, but the frequency (particularly, the
one of the N-channel) requires a separate investigation. To this end, we characterized the
frequency measurements in the presence of different excitation levels and phase displace-
ments. For the sake of consistency, the variation ranges of E and ϕ correspond to the ones
applied in Tables 3 and 4.

In this context, Table 5 reports the measurement results and the associated uncertainty.
It is worth noticing how the frequency error Δ f is quite stable around −0.54 mHz with
a worst-case uncertainty of 0.06 mHz (when the excitation is set to its minimum value,
i.e., 1%). In this case, the instrument specifications do not provide a performance target.
Nevertheless, the obtained measurement accuracy is sufficient for the typical application
of a measuring bridge for instrument transformers.
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Table 5. Characterization of the measuring bridge frequency estimation accuracy in the presence of
different excitation levels and phase displacements (coverage factor k = 2).

Settings Measurements Uncertainty
IN IX E ε ϕ f Δ f UΔ f
(A) (A) (%) (%) (′) (Hz) (mHz) (mHz)

5 5 1 0.000 0.00 50 −0.511 0.056
5 5 2 0.000 0.00 50 −0.512 0.038
5 5 5 0.000 0.00 50 −0.556 0.028
5 5 10 0.000 0.00 50 −0.519 0.030
5 5 20 0.000 0.00 50 −0.537 0.031
5 5 50 0.000 0.00 50 −0.537 0.032
5 5 100 0.000 0.00 50 −0.509 0.028
5 5 100 0.000 −5400.00 50 −0.529 0.032
5 5 100 0.000 −180.00 50 −0.557 0.028
5 5 100 0.000 −1.00 50 −0.521 0.030
5 5 100 0.000 0.00 50 −0.530 0.032
5 5 100 0.000 1.00 50 −0.530 0.032
5 5 100 0.000 180.00 50 −0.548 0.030
5 5 100 0.000 5400.00 50 −0.548 0.032
5 5 100 0.000 10,794.00 50 −0.548 0.030
5 5 120 0.000 0.00 50 −0.528 0.032
5 5 200 0.000 0.00 50 −0.511 0.028

6. Conclusions

In this paper, we presented the measurement setup for the calibration of measurement
bridges for non-conventional instrument transformers. We have discussed the main im-
plementation challenges and characterized the most significant uncertainty contributions.
Based on technical specifications and statistical analysis, we have performed a compre-
hensive uncertainty budget of the calibration setup that has been further validated by an
experimental measurement campaign carried out at METAS laboratories.

The proposed analysis allows for identifying the main challenges of a calibration
process that requires a synchronous generation of both analog and digital quantities. The
research project will now focus on the minimization of the uncertainty contributions (with
specific attention to the analog measurement chain) and on the extension of the proposed
infrastructure to non-stationary signals, as the ones that a plausible instrument transformer
might deal with in field applications.
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Abstract: This paper considers a future scenario in which digital reporting of measurement results is
ubiquitous and digital calibration certificates (DCCs) contain information about the components of
uncertainty in a measurement result. The task of linking international measurement comparisons is
used as a case study to look at the benefits of digitalization. Comparison linking provides a context
in which correlations are important, so the benefit of passing a digital record of contributions to
uncertainty along a traceability chain can be examined. The International Committee for Weights
and Measures (CIPM) uses a program of international “key comparisons” to establish the extent to
which measurements of a particular quantity may be considered equivalent when made in different
economies. To obtain good international coverage, the results of the comparisons may be linked
together: a number of regional metrology organization (RMO) key comparisons can be linked back
to an initial CIPM key comparison. Specific information about systematic effects in participants’
results must be available during linking to allow correct treatment of the correlations. However,
the conventional calibration certificate formats used today do not provide this: participants must
submit additional data, and the report of an initial comparison must anticipate the requirements
for future linking. Special handling of additional data can be laborious and prone to error. An
uncertain-number digital reporting format was considered in this case study, which caters to all the
information required and would simplify the comparison analysis, reporting, and linking; the format
would also enable a more informative presentation of comparison results. The uncertain-number
format would be useful more generally, in measurement scenarios where correlations arise, so its
incorporation into DCCs should be considered. A full dataset supported by open-source software
is available.

Keywords: digitalization; measurement uncertainty; metrological traceability; key comparison;
digital calibration certificate; uncertain number

1. Introduction

The national and international infrastructures that disseminate critical measurement
information throughout society are due for renovation. Designed to be operated and
supervised by skilled people, there is now a call to digitalize these essentially paper-based
systems. The best way to proceed is by no means clear. However, a coordinated inter-
national effort will be needed to reap real benefits from digitalization. A recent paper
reviewed work performed so far to develop a common digital format for reporting measure-
ment data, which is generically referred to as a “digital calibration certificate” (DCC) [1].
The DCC will be a fundamental component of digital measurement infrastructures, but
many decisions still need to be made about its structure. Among these is how best to
represent measurement uncertainty.

The International Committee for Weights and Measures (CIPM), which directs metro-
logical activities carried out by parties to the Metre Convention [2], recognized the need to
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coordinate digitalization of the international measurement system and has established a
CIPM Task Group on the Digital SI (CIPM-TG-DSI) [3], supported by a team of experts. In
early 2021, this team made a public request for use cases to identify situations where the
digitalization of existing metrological infrastructure might improve outcomes or address
difficulties. This paper presents a preliminary analysis of one of those use cases.

The study relates to the analysis and linking of international measurement compar-
isons. Although comparison analysis is a specialized topic, the limitations of current
reporting in calibration certificates become clear in this context, and so, the benefits of
digitalization are easily recognized. Comparison linking is an interesting case, because
correlations in the data can significantly affect the results. Handling the correlations com-
plicates data analysis, especially the evaluation of uncertainty. Our study shows that
digitalization can help; it can enhance the information available in the final results while
hiding and largely automating the more laborious aspects of processing data. The chal-
lenge posed by correlated data arises in many other measurement scenarios as well, so the
representation of measurement uncertainty described in this work would offer advantages
in other digital systems.

1.1. Measurement Comparisons in the CIPM MRA

The CIPM Mutual Recognition Arrangement (MRA) [4] is a framework used to estab-
lish the equivalence of measurement standards in different economies. Specific calibration
and measurement capability (CMC) claims are approved by expert Consultative Commit-
tees of the CIPM and then published in a database by the International Bureau of Weights
and Measures (BIPM). To maintain or extend CMC entries, national metrology institutes
(NMIs) must provide evidence in support of their claims. This evidence is often obtained
by participating in international measurement comparisons [5].

Our case study involves two kinds of comparison: a CIPM key comparison and a
subsequent RMO key comparison (organized by a regional metrology organization). In a
CIPM comparison, a group of NMIs submit measurements of a particular quantity associ-
ated with an artifact. The data are used to determine a comparison reference value, and
then, for each participant, a degree of equivalence (DoE) is calculated, which characterizes
the difference between the participant’s result and the comparison reference value.

After an initial CIPM comparison has been completed, a number of other RMO
comparisons may be carried out. This provides a way to assess the equivalence of NMIs
that did not participate in the initial comparison. The results of an RMO comparison must
be linked to those of the initial CIPM comparison, which means that several participants
from the initial comparison must participate again in the RMO comparison.

A DoE is considered to reflect the level of consistency of one participant’s measurement
standard with those of other participants. An uncertainty is evaluated for each DoE, which
allows the significance of each result to be assessed: if the magnitude of a DoE is greater
than its expanded uncertainty (typically at a 95% level of confidence), then the evidence for
equivalence is considered weak. DoEs evaluated during an RMO comparison have equal
standing to DoEs obtained from the initial CIPM comparison.

1.2. CCPR Comparison Analysis

Measurement comparisons in the CIPM MRA follow strict rules and are guided by the
policies of the Consultative Committee responsible for a particular technical area [5]. Our
case study deals with the photometric quantity regular spectral transmittance, which falls
under the Consultative Committee for Photometry and Radiometry (CCPR). A detailed
description of the analysis recommended for CCPR comparisons was given in [6], where
expressions for the uncertainty in DoE values were obtained according to the law of the
propagation of uncertainty (LPU) [7]. In practice, these expressions have many terms,
which can make data processing quite daunting.
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1.3. A Case Study of Comparison Linking

The intention of this case study is to look for possible benefits from digitalization
of the reporting and analysis of data. A future scenario is envisaged, where participants
submit results in a digital format that contains more information than today’s calibration
certificates. This allows data processing to be handled more directly and in a straight-
forward and intuitive manner. The scenario offers a glimpse into the future where, once
the digitalization of the international measurement system is complete, digital reporting
(DCCs) will be ubiquitous.

The study applies the methodology prescribed in [6], but a digital format called an
“uncertain number” is used to represent the data [8]. An uncertain number is a data type
that encapsulates information about the measured value of a quantity and the components
of uncertainty in that value. Software supporting uncertain numbers greatly simplifies data
processing, because calculations simultaneously evaluate the value and the components
of uncertainty. Mathematical operations are expressed in terms of a value calculation, but
the results include a complete uncertainty budget. Furthermore, uncertain-number results
are transferable, which is extremely important in this work. (The Guide to the expression
of uncertainty in measurement (GUM) identifies transferability and internal consistency as
the desirable properties of an ideal method of expressing uncertainty ([7], §0.4). Although
we refer here only to transferability for simplicity, uncertain numbers provide both trans-
ferability and internal consistency.) An uncertain number obtained as the result of some
calculation may be used immediately as an argument in further calculations (exactly as
one can do with numerical results). When this happens, the components of uncertainty
are rigorously propagated, from one intermediate result to the next, according to the LPU.
Transferability in this case study allows the CIPM and RMO comparisons, with linking,
to be processed as a single, staged, measurement (the importance of adequately linking
the stages of a metrological traceability chain was discussed in [9,10]). It is this aspect of
digitalization that delivers the benefits we describe below.

A software tool called the GUM Tree Calculator (GTC) that implements the uncertain-
number approach was used. GTC is an open-source Python package [11,12]. A recent
publication described GTC and its design in some detail [13]. A dataset containing the data
and code used in the current study is available [14]. The snippets of code shown below are
extracts from this dataset.

1.4. Digital Records

To create digital records for the participant and pilot measurements in this study, a
small subset of data was taken from a CIPM comparison of transmittance and a subsequent
RMO comparison [15,16]. In Sections 2 and 3, we describe the structure of these compar-
isons. Participants were required to submit an uncertainty budget for each measurement
and to identify the systematic and random influence factors in that budget. The systematic
factors are considered constant. For NMIs that participated in both CIPM and RMO com-
parisons, the systematic factors do not change. They are characterized as components of
uncertainty, because the actual values of residual error are not known. The random factors
are considered to be unpredictable effects that arise independently in each measurement.
The nature of the components of uncertainty—systematic or random—must be known in
order to account for correlations in the data.

We used the uncertainty budgets reported by participants to construct digital records
for this study. In doing so, some assumptions were made about the data and some of
the data were changed to resolve minor inconsistencies, so we do not identify actual
participants with these records. The intention here is to present a future scenario where
DCC formats have been widely adopted. The assumption was made that these formats
are self-contained, with more detailed information than is available in today’s calibration
certificates, so there is no longer a need to request additional data for the comparison
analysis. Were such a future to become reality, the processes leading to the production of
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DCCs would not resemble the steps taken here to artificially create the scenario. Therefore,
the detail of how digital records were assembled for this study is not discussed.

1.5. Mathematical Notation

Mathematical expressions use the notation adopted in [6]. Most details are explained
when the notation first appears in the text. However, the reader should note that we
distinguish between quantities and estimates of quantities with upper and lower case
symbols, respectively. For instance, the uncertainty in a value y, obtained by measuring
a quantity Y, will be expressed as u(y)—the standard uncertainty of y as an estimate of
Y. When GTC code is used to implement mathematical expressions, uncertain-numbers
are associated with quantity terms (upper case terms). The corresponding estimates and
uncertainties are the properties of these uncertain-number objects.

2. A CIPM Key Comparison

In the initial CIPM key comparison, there were eleven participants (identified here by
the letters A, B, . . . , K) and a pilot laboratory (Q). Each participant measured a particular
artifact, while the pilot measured all eleven artifacts. The comparison was carried out
in five stages: first, the pilot measured the artifacts; second, each participant reported a
measurement; third, the pilot measured the artifacts again; fourth, each participant made a
second measurement; and fifth, the pilot made one last measurement of all the artifacts
(Two participants submitted only the second measurement, so these data were processed
with pilot results from only Stages 1 and 3).

Listing 1 displays information about the first measurement by Participant A (Stage 2).
The measured transmittance appears at the top, with the combined standard uncertainty in
parentheses. Two uncertainty budgets follow: first, the individual components of uncer-
tainty; second, the net systematic and random effects components. Component labeling
uses a capital letter to identify the participant (A, B, etc.). If a component of uncertainty
contributed only to a specific stage, then a stage number (1, 2, 3, 4, or 5) is appended in
parentheses. A colon then precedes the participant’s name for the influence quantity, and
finally, the component is classified as random or systematic ((rnd) or (sys)). For example,
there are both random and systematic contributions to uncertainty in the wavelength,
so Listing 1 includes two terms: A:Wavelength (sys) is a systematic component that con-
tributes to uncertainty at every stage, and A(2):Wavelength (ran) is a random component
that contributes at Stage 2 (another independent component A(4):Wavelength (ran) ap-
pears in the budget at Stage 4). It is important to understand that the information shown in
Listing 1 was all obtained from a single entity representing the measurement result—a sin-
gle uncertain number. In the scenario we considered, this was submitted by the participant
in a digital record.

When mathematical operations are applied to uncertain numbers, the components
of uncertainty are handled according to the LPU. To illustrate this, we compared the
results submitted by Participant A at Stages 2 and 4 by subtracting the corresponding
uncertain numbers. With Y_A_2 and Y_A_4 for the results, we display the uncertain-number
difference in Listing 2. Notice that the only non-zero terms in the uncertainty budget
are now associated with random effects at each stage. The systematic terms from the
budget of Listing 1 (the non-linearity, wavelength, stray light, and the beam size and
position) contribute nothing to the combined uncertainty in the difference. This is to be
expected, because each systematic term contributes a fixed (albeit unknown) amount to the
combined measurement error. The influence of these constant terms on the difference is
zero. Uncertain-number calculations arrive at the correct result by strictly implementing
the LPU. In order to do that, information about all uncertainty components must be
encapsulated in the uncertain-number data.
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Listing 1. Data from Participant A for the Stage-2 measurement. The measured value is shown at the
top, with the combined standard uncertainty in parentheses. Two uncertainty budgets follow. The
first shows the individual components of uncertainty reported by the participant. The second shows
total systematic and random components.

A(2):Transmittance = 0.919644(0.000296)

Uncertainty budget:

A:Beam Size & Position (sys): 0.00019516

A(2):Beam Size & Position (ran): 0.00019516

A(2):Type-A (ran): 0.00007800

A(2):Instability (ran): 0.00006800

A:Non-linearity (sys): 0.00003000

A:Wavelength (sys): 0.00000354

A(2):Wavelength (ran): 0.00000354

A:Stray Light (sys): 0.00000300

Systematic and random:

A(2) (ran): 0.00022093

A (sys): 0.00019751

Listing 2. The difference between Participant A’s results at Stage 2 and Stage 4. The difference is
shown at the top, with the combined standard uncertainty in parentheses. The uncertainty budget
follows. Note that all systematic components are now zero.

Difference:Y_A_4 - Y_A_2 = 0.000449(0.000489)

Uncertainty budget:

A(4):Type-A (ran): 0.00038400

A(2):Beam Size & Position (ran): 0.00019516

A(4):Beam Size & Position (ran): 0.00019516

A(2):Type-A (ran): 0.00007800

A(2):Instability (ran): 0.00006800

A(4):Instability (ran): 0.00006800

A(2):Wavelength (ran): 0.00000354

A(4):Wavelength (ran): 0.00000354

A:Non-linearity (sys): 0.00000000

A:Wavelength (sys): 0.00000000

A:Stray Light (sys): 0.00000000

A:Beam Size & Position (sys): 0.00000000

2.1. Evaluating DoEs

The calculation of DoEs can be expressed succinctly (in the notation adopted in [6]).
For the pilot, identified by the letter “Q” (and with a superscript “∗” to indicate a CIPM
comparison), the DoE, D∗

Q, is a weighted sum over all participants ([6], Equation (18)) (the
weighting factors wj are explained in Appendix A and the notation 〈·〉Aj is the mean of
measurements of the artifact associated with participant j):

D∗
Q = −∑

j
wj
〈

Y∗
j − Y∗

Q

〉
Aj

. (1)

For any other participant i, the DoE is ([6], Equation (19)):

D∗
i =

〈
Y∗

i − Y∗
Q

〉
Ai

+ D∗
Q . (2)

55



Metrology 2021, 1

The bar in these expressions indicates the simple weighted mean of a series of mea-
surements for one artifact (Y∗

j [1], Y∗
j [2], · · · ), obtained at different stages:

Y∗
j =

N

∑
n=1

ηn Y∗
j [n] ,

where:

ηn =

(
u(y∗j [n])

)−2

N

∑
k=1

(
u(y∗j [k])

)−2

and u(y∗j [n]) is the standard uncertainty in the value of the nth result, y∗j [n], from partici-

pant j. There is only one artifact per participant in this scenario, so
〈

Y∗
j − Y∗

Q

〉
Aj

indicates

the difference between the mean of participant j’s measurements and the mean of the
pilot’s measurements of the same artifact.

Equation (1) was implemented in the GTC software, as shown below. This code
obtains an uncertain number representing D∗

Q:

d_Q = -sum(

w[l_j] * ( mean(r_j.lab) - mean(r_j.pilot) )

for l_j,r_j in kc_results.items()

The function mean() evaluates the mean of a sequence of uncertain numbers; r_j.lab and
r_j.pilot contain, respectively, a sequence of results from participant j and the corre-
sponding sequence of pilot measurements for the same artifact; kc_results is a container
of objects as r_j for all participants; w[l_j] represents the weighting factors. Following
Equation (2), a DoE is evaluated for each of the other comparison participants:

d_i = mean(r_i.lab) - mean(r_i.pilot) + d_Q

The results, with associated standard uncertainties, may be displayed as:

DoE[A] : 0.000249 (0.000278)

DoE[B] : 0.000305 (0.001225)

DoE[C] : 0.000008 (0.000097)

DoE[D] : 0.003274 (0.000886)

DoE[E] : 0.000487 (0.000480)

DoE[F] : 0.000012 (0.000266)

DoE[G] : -0.001776 (0.004078)

DoE[H] : -0.000219 (0.000138)

DoE[I] : -0.000011 (0.000110)

DoE[J] : 0.000192 (0.000285)

DoE[K] : -0.000097 (0.000750)

DoE[Q] : -0.000129 (0.000056)

2.2. DoE Uncertainty Budgets

The DoEs are influenced by factors in the participants’ measurements, with each factor
giving rise to one component of uncertainty. Because Equations (1) and (2) combine results
from all participants, there is a large number (278) of components in the budget of each DoE
in this scenario. Listing 3 shows the DoE for Participant A and an abridged uncertainty
budget, in which the more significant components of uncertainty are shown—those with
magnitudes greater than 10 % of the largest component. These factors can be identified as
influences from A’s own measurements and from those of the pilot on the same artifact.
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Listing 3. The DoE for Participant A is shown at the top, with the combined standard uncertainty
in parentheses. An abridged uncertainty budget follows. Only the components with a magnitude
greater than trim times the largest component are shown. The components are listed in decreasing
order of magnitude.

D_kc[A] = 0.000249(0.000278)

Uncertainty budget (trim=0.1):

A:Beam Size & Position (sys): 0.00018602

A(2):Beam Size & Position (ran): 0.00013449

A(4):Type-A (ran): 0.00010139

A(2):Type-A (ran): 0.00005375

A(4):Beam Size & Position (ran): 0.00005153

A(2):Instability (ran): 0.00004686

A:Non-linearity (sys): 0.00002859

Q(A):Non-Parallel Surfaces (sys): 0.00002217

Q_A(1):Drift & Instability (ran): 0.00002101

Q_A(3):Drift & Instability (ran): 0.00002101

Q_A(5):Drift & Instability (ran): 0.00002101

There is quite a diversity of structure in the uncertainty budgets among the different
participants. Listing 4 shows the DoEs obtained for Participants B and C. Participant
B’s result has a much larger combined standard uncertainty than Participant C, and the
uncertainty budget is dominated by factors associated with B’s own measurements. In
contrast, the DoE for Participant C has the lowest uncertainty of all participants, and
the corresponding uncertainty budget has many more significant influence factors. The
largest of these are from C’s own measurements and the corresponding pilot measurements.
However, we also see components associated with measurements by Participants A, E, F,
H, I, J, and K. These participants were weighted more heavily than B, D, and G during the
DoE calculation (see Appendix A).

Listing 4. The DoEs for Participants B and C. See the caption to Listing 3 for further details.

------------------------------------------------------------

D_kc[B] = 0.000305(0.001225)

Uncertainty budget (trim=0.1):

B:Inter-reflection (sys): 0.00109561

B(2):Source Drift & Fluctuation (ran): 0.00036611

B(4):Source Drift & Fluctuation (ran): 0.00031325

B:Beam Size & Position (sys): 0.00018227

B:Bandwidth (sys): 0.00015936

------------------------------------------------------------

D_kc[C] = 0.000008(0.000097)

Uncertainty budget (trim=0.1):

C:Stray light (sys): 0.00004288

C(2):SFK (ran): 0.00002973

C:Non-linearity (sys): 0.00002751

C(4):Type-A (ran): 0.00002727

C:Inter-reflexion (sys): 0.00002185

Q(C):Non-Parallel Surfaces (sys): 0.00002099

Q_C(1):Drift & Instability (ran): 0.00001784

Q_C(3):Drift & Instability (ran): 0.00001784

Q_C(5):Drift & Instability (ran): 0.00001784

H:Stray Light (sys): 0.00001754

H:Inter-reflection (sys): 0.00001754

J:Inter-reflection (sys): 0.00001523

I(2):Type-A (ran): 0.00001441
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I:Inter-reflection (sys): 0.00001426

J:Prismatic effect (sys): 0.00001362

Q_C(1):Type-A (ran): 0.00001133

Q_C(3):Type-A (ran): 0.00001133

Q_C(5):Type-A (ran): 0.00001133

F:Non-linearity (sys): 0.00001065

A:Beam Size & Position (sys): 0.00000914

C(4):SFK (ran): 0.00000863

E:Inter-reflection (sys): 0.00000767

H:Polarization (sys): 0.00000760

E:Detector reproducibility (sys): 0.00000738

C(2):Type-A (ran): 0.00000690

F:Inter-reflection (sys): 0.00000666

F:Polarization (sys): 0.00000666

H(4):Filter instability (ran): 0.00000666

K:Polarization (sys): 0.00000662

A(2):Beam Size & Position (ran): 0.00000661

H(2):Filter instability (ran): 0.00000634

Q_I(1):Drift & Instability (ran): 0.00000631

Q_I(3):Drift & Instability (ran): 0.00000631

F(2):Filter Stability (ran): 0.00000614

K:Beam Size & Position (sys): 0.00000597

H(4):System reproducibility (ran): 0.00000586

F(4):Filter Stability (ran): 0.00000585

D(2):Beam Size & Position (ran): 0.00000568

H(2):System reproducibility (ran): 0.00000559

A(4):Type-A (ran): 0.00000498

F(4):Type-A (ran): 0.00000455

D(2):Type-A (ran): 0.00000443

B:Inter-reflection (sys): 0.00000439

The detail about individual influence factors shown in the listings above is more than
the minimum required to analyze and link comparisons. Only the net systematic and
random components are needed for that purpose. This is what is used at present, and the
reduction in complexity makes the analysis tractable without digitalization. However, the
physical origins of influence factors are obscured. For example, Listing 5 shows the budgets
of Participants B and C in terms of systematic and random components. Compared to the
information shown Listing 4, this offers little insight into the origins beyond participant
and stage.

Listing 5. The DoEs for Participants B and C showing the total systematic and random effects as
components of uncertainty. These budgets are equivalent to those in Listing 4; however, only the net
random and systematic contributions at each stage are shown.

------------------------------------------------------------

D_kc[B] = 0.000305(0.001225)

Uncertainty budget (trim=0.1):

B (sys): 0.00061183

B(2) (ran): 0.00036717

B(4) (ran): 0.00031562

------------------------------------------------------------

D_kc[C] = 0.000008(0.000097)

Uncertainty budget (trim=0.1):

C(2) (ran): 0.00003052

C(4) (ran): 0.00002860

Q_C(1) (ran): 0.00002142

Q_C(3) (ran): 0.00002142
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Q_C(5) (ran): 0.00002142

C (sys): 0.00001907

I (sys): 0.00001461

I(2) (ran): 0.00001441

H (sys): 0.00001344

J (sys): 0.00001043

H(2) (ran): 0.00000914

H(4) (ran): 0.00000890

F(2) (ran): 0.00000816

F(4) (ran): 0.00000812

D(2) (ran): 0.00000790

A(2) (ran): 0.00000748

Q_I(1) (ran): 0.00000748

Q_I(3) (ran): 0.00000748

Q_C (sys): 0.00000700

F (sys): 0.00000696

A(4) (ran): 0.00000566

E (sys): 0.00000540

Q_H(1) (ran): 0.00000499

Q_H(3) (ran): 0.00000499

Q_H(5) (ran): 0.00000499

J(2) (ran): 0.00000483

J(4) (ran): 0.00000460

K (sys): 0.00000448

E(2) (ran): 0.00000384

E(4) (ran): 0.00000384

3. The RMO Key Comparison

Seven NMIs participated in the subsequent RMO key comparison (identified by the
letters T, U, V . . . , Z) and a pilot laboratory (P). The pilot and Participant Z had both
taken part in the initial CIPM comparison, so their results were used to link the two
comparisons. The participants each measured a different artifact, and the pilot measured
all seven artifacts. The comparison was carried out in three stages: first, the pilot measured
the artifacts; second, each participant reported a measurement; third, the pilot measured
all the artifacts again.

3.1. Evaluating DoEs

The possibility of slight shifts in the scales of the linking participants since the initial
CIPM comparison must be accounted for when linking. Therefore, linking participants
provide information on the stability of their scales as part of their report during the RMO
comparison. Formally, in the analysis, a quantity that includes a term ED·l representing
scale movement is used for the DoE of each linking participant:

D′
l = D∗

l + ED·l . (3)

ED·l can be thought of as a residual error in the scale that contributes to uncertainty in
the DoE. To provide a link to the RMO comparison, we then evaluate ([6], Equation (46)):

DP = −∑
l

vl
( 〈Yl − YP〉Al − D′

l
)

= −vZ
( 〈YZ − YP〉AZ − D′

Z
)
+ vPD′

P , (4)

where νl are the weight factors for linking participants (see Appendix B). Finally, the DoEs
of non-linking participants are ([6], Equation (45)):

Di =
〈

Yi − YP
〉

Ai
+ DP . (5)
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Our data processing uses a Python dictionary to hold the uncertain numbers for each
DoE evaluated according to Equation (5):

D_rc = dict()

for l_i in lab_IDs[:-1]:

r_i = rc_results[l_i]

D_rc[l_i] = mean(r_i.lab) - mean(r_i.pilot) + D_P

A link to the initial comparison is obtained, following Equation (4), from:

D_P = -( nu_Z*M_Z + nu_P*M_P )

where nu_Z and nu_P correspond to νZ and νP, respectively, and correspond to
Equations (A3) and (A4),

M_Z = mean(rc_results[’Z’].lab) - mean(rc_results[’Z’].pilot) - rc_link_doe[’Z’]

M_P = -rc_link_doe[’P’]

where rc_results[’Z’].lab is the sequence of measurements submitted by Participant Z and
rc_results[’Z’].pilot are the corresponding pilot measurements. Following Equation (3),
the uncertain numbers rc_doe[’Z’] and rc_doe[’P’] were calculated by adding an uncertain
number for the participant’s scale stability to the participant’s DoE obtained in the CIPM
comparison (see the dataset for further details [14]).

The resulting DoEs, with standard uncertainties in parentheses, are:

DoE[T] = 0.00136 (0.00203)

DoE[U] = -0.00137 (0.00076)

DoE[V] = 0.00182 (0.00094)

DoE[W] = -0.00138 (0.00095)

DoE[X] = 0.00032 (0.00042)

DoE[Y] = 0.00297 (0.00314)

3.2. DoE Uncertainty Budgets

In the linked RMO comparison, the DoEs are each influenced by 302 factors (these
factors were identified by participants when submitting their results and, as explained
above, the influences from all participants to contribute to the uncertainty). Again, there
is diversity in the uncertainty budgets of different participants. For example, the uncer-
tainty budget in Listing 6 shows that the most important components of uncertainty for
Participant Y, the participant with the largest DoE uncertainty, are all related to Y’s own
measurement.

Listing 6. The DoE for participant Y with an abridged uncertainty budget.

D[Y] = 0.002972(0.003139)

Uncertainty budget (trim=0.1):

Y(2):Scale bias (ran): 0.002910

Y:Beam Size & Position (sys): 0.000691

Y:Non-linearity (sys): 0.000600

Y(2):Source Drift & Fluctuation (ran): 0.000536

Y(2):Type-A (ran): 0.000346

In contrast, Listing 7 shows the budget for X, the participant with the least DoE uncertainty,
which is influenced most by measurements performed by others: the pilot’s measurements
of the artifacts used by X and the other linking Participant Z. This budget also includes
important components from some factors in the initial comparison.
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Listing 7. The DoE for Participant X with an abridged uncertainty budget. Note that Participant
Z in the RMO comparison was I in the initial comparison. The component of uncertainty labeled
Z-I:Scale Instability accounts for the stability of Z’s measurement scale.

D[X] = 0.000319(0.000420)

Uncertainty budget (trim=0.1):

P_X(3):Inter-reflection (ran): 0.000155

P_X(1):Inter-reflection (ran): 0.000153

P_Z(3):Inter-reflection (ran): 0.000144

P_Z(1):Inter-reflection (ran): 0.000142

X(2):Type-A (ran): 0.000132

X:Stray Light (sys): 0.000130

Z(2):Type-A (ran): 0.000127

Z-I:Scale Instability (sys): 0.000106

X:Beam Size & Position (sys): 0.000076

P-E:Scale Instability (sys): 0.000074

X(2):Source Drift & Fluctuation (ran): 0.000058

I(2):Type-A (ran): 0.000056

P_X(1):Type-A (ran): 0.000033

P_Z(1):Type-A (ran): 0.000030

X:Non-linearity (sys): 0.000025

Q_I(1):Drift & Instability (ran): 0.000024

Q_I(3):Drift & Instability (ran): 0.000024

X:Obliquity (sys): 0.000023

X(2):Obliquity (ran): 0.000023

H:Stray Light (sys): 0.000018

H:Inter-reflection (sys): 0.000018

Q_I(1):Type-A (ran): 0.000016

Q_I(3):Type-A (ran): 0.000016

4. Discussion

This study looked at the use of uncertain numbers as a digital format for reporting
measurement data. The context of the study is a specialized area, but the underlying
concern is a more general problem: the presence of fixed (systematic) influence factors
at different stages of a traceability chain give rise to correlations in data that affect the
uncertainty at the end of a chain, but are difficult to account for. Uncertain numbers address
this issue and support a simple and intuitive form of data processing. The method is fully
compliant with the recommendations in the GUM [7].

Comparison analysis can be a rather laborious and error-prone task at present, because
there is a large amount of data to be manipulated. The task could be greatly simplified
if something such as the uncertain-number format were adopted. Digital records could
then include information about any common factors that lead to correlations. Algorithms
would use that information to streamline the data processing and produce more informa-
tive results. This is an interesting possibility in the context of the CIPM MRA, because
comparison results are used to support NMI claims of competency (CMCs), which are a
matter of considerable importance. Greater transparency in the composition of uncertainty
budgets for degrees of equivalence would surely be welcome. For example, the largest
components of uncertainty in Listing 7 are associated with influence factors for the pilot
measurements, not those of Participant X. This shows that the weight of evidence provided
by a DoE and its uncertainty to support a CMC claim may be limited by the performance
of the pilot and/or linking participants in the comparisons.

Situations where common factors may give rise to correlations in measurement data
are not infrequent, but conventional calibration certificate formats do not allow an accurate
evaluation of uncertainty in such cases (as is possible in comparison analysis and com-
parison linking) [9,10]. Our study therefore draws attention to some informal decision,
made decades ago, not to report information about influence factors—the uncertainty
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budget. This decision was surely made for pragmatic reasons, because additional effort
would be required to curate uncertainty budget data in paper-based systems. However, the
policy should be reviewed now as part of the digital transformation process. The currently
favored DCC formats only report uncertainty intervals or expanded uncertainties [17]. If
these formats are ultimately adopted, DCCs will not contain enough information about
common influences upstream to handle correlations in downstream data: the scenario
envisaged in this article would not be realized.

4.1. Metrological Traceability

Metrological traceability is realized by forming a chain of calibrations that link primary
realizations of the SI units to an end user of measurement data. At each stage, influence
factors cause the result obtained to differ slightly from the actual quantity of interest. At
present, this is usually accounted for by a single uncertainty statement in the stage report.
However, influence factors at one stage can give rise to correlations at later stages, and
accounting for these effects requires influences to be tracked along the chain [9,10]. That is
why the notion of transferability, referred to in the Introduction and the GUM, is important,
and comparison analysis highlights this by requiring substantial additional information
from all participants, which complements the information in calibration certificates. The
study showed that transferability, and hence better support for traceability, is provided by
the uncertain number format. In more general terms, the approach to digitalization can
keep track of influences and hence identify the provenance of contributions to uncertainty
in a result.

4.2. Measurement Comparisons in Other Fields

This case study considered CCPR comparisons, but in other areas, comparisons may
have different general characteristics. For instance, degrees of freedom are usually high
in CCPR comparisons and can be ignored; however, in some other areas, they need to
be taken into consideration. For instance, in a CIPM key comparison of polychlorinated
biphenyl (PCB) congeners in sediment [18], some participants reported very low degrees of
freedom (as low as two). The uncertain number format used in GTC also handles degrees
of freedom.

The CCPR requires participants in CIPM comparisons to realize their scales indepen-
dently. Therefore, the results of participants in the initial comparison were not correlated.
However, in other areas, the assumption of independence at the CIPM level may not hold.
In comparisons involving mass, for example, the lack of independence among participants’
scales has to be considered [19]. In the future, if digital reporting were to adopt something
equivalent to the uncertain number format, the necessary information about shared in-
fluences would be accessible in DCCs. This would once again simplify data analysis and
deliver more informative results.

4.3. Unique Identifiers and Digital Records

Details about the digital storage format used by GTC are outlined in [13]. The role of
unique identifiers associated with influence quantities is of interest.

Uncertain-number algorithms must keep track of the identity of all the influence
factors, which is analogous to the need for adequate notation in mathematical expressions.
In the GUM, a general measurement function is represented as:

Y = f (X1, X2, . . .) , (6)

where Y is the quantity intended to be measured and X1, X2, . . . are the quantities that
influence the measurement. In the GUM notation for a component of uncertainty, ui(y)
is understood to be the component of uncertainty in y, as an estimate of Y, due to the
uncertainty in an estimate, xi, of the influence quantity Xi. Therefore, the subscript i may
take the value of any of the X’s subscripts in Equation (6). Uncertain-number software and
digital records must somehow keep track of all the i’s as well. This is more complicated
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than it first appears, because measurements are carried out in stages that occur in different
locations and at different times.

GTC uses a standard algorithm to produce universally unique 128 bit integers, which
it uses to form unique digital identifiers [13]. The format is simple, and the identifier reveals
nothing about influence. Would a more sophisticated type of identifier be appropriate [20]?
For the purposes of data processing alone, there is no need to complicate matters: the
only requirement is uniqueness. However, GTC does allow text labels to be associated
with identifiers (used as influence quantity labels in uncertainty budgets), and a planned
enhancement to GTC will allow unique identifiers to index a manifest of information
about each influence quantity. A manifest could accompany the digital record of uncertain-
number data, which would address needs for metadata about influence quantities without
the burden of minting and configuring digital objects that give access to information on
the Internet.

4.4. Comparison Analysis by Generalized Least Squares

The analysis equations used in this work take a fairly straightforward mathematical
form. However, we have alluded to the complexity, due to the large number of terms,
in handling the associated uncertainty calculations, and in [6], we suggested that a more
practical analysis tool is generalized least squares (GLS). GLS is a more opaque “black
box” method, but software packages are available to perform the linear algebra once the
required matrices have been prepared (see [6], §4).

It is interesting to note that, in order to link an RMO comparison, GLS has been used
to simultaneously process CIPM comparison data and RMO comparison data [19]. This
is another example of comparison analysis compensating for the lack of transferability in
standard reporting formats.

A GLS algorithm could also be applied to uncertain-number data, in which case results
such as those described here would be obtained. In the formulation of the GLS calculation
(Equation (69) of [6], §4, repeated here; note that bold Roman type is used to represent
matrices): [

m

d

]
= (xᵀu−1x)−1xᵀu−1

[
y

dl

]
, (7)

the elements of the design matrix, x, are pure numbers, as are the elements of the covariance
matrix, u, so conventional numerical routines can be used to evaluate the matrix:

g = (xᵀu−1x)−1xᵀu−1 . (8)

Then, with uncertain-number elements in the vector of participant results, y, and in
the vector of linking participant DoEs, dl , the final calculation of degrees of equivalence:[

m

d

]
= g

[
y

dl

]
(9)

obtains the vector of linking participant DoEs, d, as a linear combination of uncertain
numbers. The results would, as in this work, reflect the influence of all terms contributing
to participants’ measurements. This would be much more informative than the information
available from the covariance matrix usually obtained as an additional calculation in
GLS analysis.

5. Conclusions

This case study of comparison analysis and linking has identified benefits in a particu-
lar approach to digitalization using a digital format called an uncertain number. Because
comparison participants must provide more information than is available in standard
calibration certificates, the context of the study highlights deficiencies in current reporting
formats. These deficiencies can be summarized as a lack of support for transferability and
internal consistency in the expression of uncertainty. However, if the uncertain-number
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format were widely adopted, as was assumed in this case study, transferability and internal
consistency would be achieved.

The study shows that more rigorous uncertainty calculations are enabled by uncer-
tain numbers. Algorithms for data processing can be expressed in a more intuitive and
streamlined manner, and it is no longer necessary to formulate separate calculations for
measurement uncertainty. Because the approach keeps track of all influences, it can deliver
more accurate uncertainty statements. Uncertain numbers would be advantageous to a
wider range of measurement problems than just international comparisons. Adopting the
format for DCCs could therefore enhance the quality of new digital infrastructures.
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The following abbreviations are used in this manuscript:

BIPM International Bureau of Weights and Measures
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CIPM-TG-DSI CIPM Task Group on the Digital SI
CMC Calibration and measurement capability
DoE Degree of equivalence
LPU Law of the propagation of uncertainty
MRA CIPM Mutual Recognition Arrangement
NMI National Metrology Institute
RMO Regional metrology organization

Appendix A. Weights for Evaluating DoEs in a CIPM Key Comparison

The CCPR uses weights in the determination of DoEs that depend on the uncertainties
reported by the participants ([6], Appendix A). These weights are calculated from the
arithmetic mean of the combined standard uncertainties reported by each participant. For
participant i, with a mean combined standard uncertainty u(y∗i ),

wi =

(
u(y∗i )

)−2

∑
j

(
u(y∗j )

)−2 , (A1)

where the sum is over all participants and u(y∗j ) is the arithmetic mean of the combined
standard uncertainties reported by participant j.

CCPR guidelines recommend a cut-off to limit the influence of any measured values
with very low uncertainty. The minimum uncertainty value is taken to be the mean of
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those u(y∗i ) values that are less than or equal to the median of the uncertainties reported
by all participants:

ucut = mean( u(y∗i ) ) for all u(y∗i ) ≤ median({ u(y∗i ) }) . (A2)

The weighting factor is evaluated by Equation (A1) while taking the greater of u(y∗i )
and ucut as the mean uncertainty for participant i. In this work, ucut = 1.92 × 10−4 and the
weights obtained were:

wA = 0.047, wE = 0.025, wI = 0.191,
wB = 0.004, wF = 0.067, wJ = 0.073,
wC = 0.191, wG = 0.000, wK = 0.012,
wD = 0.009, wH = 0.191, wQ = 0.191.

A cut off was imposed on participants C, H, I and Q. The results from those laboratories
were weighted most heavily, followed by those from participants J and F.

Appendix B. Weights for Linking Participants in an RMO Key Comparison

The contributions from linking participants in an RMO comparison are weighted to
take account of correlations. With two linking participants, we follow ([6], Appendix B)
and evaluate the required weights as a function of the uncertainties of

MZ = 〈YZ − YP〉AZ − DZ , (A3)

MP = −DP , (A4)

where P is the pilot (E in the initial CIPM comparison) and Z (I in the initial comparison)
is the other linking participant. Writing the standard uncertainties in these quantities as
u(mZ) and u(mP), and their covariance as u(mZ, mP), the weights are ([6], Equation (76))

vi =

1
u2(mi)

− u(mZ,mP)
u2(mZ)u2(mP)

1
u2(mZ)

+ 1
u2(mP)

− 2 u(mZ,mP)
u2(mZ)u2(mP)

, (A5)

for i = Z and P. In this work, νZ = 0.931 and νP = 0.069 were obtained.
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Abstract: Each experiment provides new information about the value of some physical quantity.
However, not only measured values but also the uncertainties assigned to them are an important
part of the results. The metrological guides provide recommendations for the presentation of the
uncertainties of the measurement results: statistics and systematic components of the uncertainties
should be explained, estimated, and presented separately as the results of the measurements. The
experimental set-ups, the models of experiments for the derivation of physical values from primary
measured quantities, are the product of human activity, making it a rather subjective field. The
Systematic Distortion Factor (SDF) may exist in any experiment. It leads to the bias of the measured
value from an unknown “true” value. The SDF appears as a real physical effect if it is not removed
with additional measurements or analysis. For a set of measured data with the best evaluated true
value, their differences beyond their uncertainties can be explained by the presence of Unrecognized
Source of Uncertainties (USU) in these data. We can link the presence of USU in the data with the
presence of SDF in the results of measurements. The paper demonstrates the existence of SDF in
Prompt Fission Neutron Spectra (PFNS) measurements, measurements of fission cross sections, and
measurements of Maxwellian spectrum averaged neutron capture cross sections for astrophysical
applications. The paper discusses introducing and accounting for the USU in the data evaluation in
cases when SDF cannot be eliminated. As an example, the model case of 238U(n,f)/235U(n,f) cross
section ratio evaluation is demonstrated.

Keywords: metrology; nuclear data; data evaluation; systematic distortion factor; unrecognized
source of uncertainties

1. Introduction

We examine the nature of the experimental investigations in this paper. Therefore,
we should start with some definitions. Every experiment begins with conceptualization.
The model of the experiment should be prepared. After this stage, we implement this
model in the experimental set-up and in the relations for obtaining physical quantities
from the primarily measured data. The important step is an evaluation of uncertainties
of physical quantities applying the error propagation law to the uncertainties of primary
measured quantities.

Each experiment can contain a Systematic Distortion Factor (SDF). The SDF [1] changes
experimental results and should be treated as a real physical effect. Therefore, it is very
important to analyze and to compare the results of all experiments. If we can understand
the nature of SDF, one can calculate the corrections, and corrected data can be used in the
evaluation. If the data set contains substantial SDF leading to extremely outlaying data and
they cannot be corrected, these data should be removed from the evaluation procedure. In
some cases, the SDF can be estimated from the comparison of experimental results with the
results of a Monte Carlo (MC) simulation of the experiment. MC simulation allows us to
calculate or justify the introduced corrections.
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However, the best approach for SDF identification is the comparison of experimental
results obtained in different measurements. Some examples of the SDF existence in Prompt
Fission Neutron Spectrum (PFNS) measurements, measurements of fission cross sections
used as standards and in Maxwellian Average Cross Section (MACS) measurements for
astrophysical applications are demonstrated in this paper.

The present approach to the nuclear data evaluation for neutron cross section stan-
dards, which a priori can contain the SDF, are the following [2]:

- The use of model-independent fits and fits with highly credible physical models (e.g.,
R-matrix model),

- Combined Generalized Least Square (GLSQ) evaluation of many multivariate experi-
mental data sets for different reactions obtained by different methods of measurements,
with different energy resolution and at different energies,

- The use of experimental and evaluated covariance matrices with one standard devia-
tion for uncertainty presentation,

- The use of systematic uncertainties for fully or partially correlated components of
total uncertainty according to the model of the experiment for measured observables
(sample mass, detector efficiency, room return correction, etc.),

- The determination of outlaying data and work with their uncertainties.

To obtain realistically evaluated uncertainties consistent with a spread of experimental
data relative to the evaluated values, the component of the Unrecognized Source of Uncer-
tainty (USU) could be added to the covariance matrix of evaluated data. We examine the
nature of the experimental investigations in this paper also. The following notations are
used in this text: E0 is the neutron incident energy, and E is the energy of outgoing neutrons.

2. SDF in the 235U(n,f) PFNS Measurements

2.1. Time Resolution and Bin Correction

The PFNS is usually measured with Time of Flight (TOF) in Direct Beam (DB) ex-
periments or in Pulsed Beam (PB) experiments. The DB means that these experiments
were realized with a direct neutron beam, and a “stop” signal was produced from fission
fragments. The PB experiments used a pulsed neutron beam for TOF.

The primary experimental data (counts registered by neutron detector) are collected at
the time interval between the “start” event of a neutron detector and the “stop” event of a
Fission Fragment (FF) detector. The PFNS is obtained after the transformation of a number
of events from the time scale to the energy scale.

Several parameters and the accuracy of their determination are important for this type
of experiment. We should examine additional measurements of the flight path, the time
channel width, the neutron detector efficiency, possible shift of the timing position as a
function of the neutron energy, the efficiency of the FF detector. In the case of the DB or
the spontaneous fission measurements, the measured spectra should be corrected for the
random coincidence of FF and neutron registration events.

We compare two experiments for PFNS measurements at 235U fission by thermal
neutrons performed about 25 years apart. The most important parameters of the old DB
experiment (1983) [3,4] and the new experiment (2008) [5,6] are presented in Table 1. The
252Cf(sf) PFNS was used as the standard for the determination of neutron detector efficiency
in both cases.

The better time resolution for 235U in the experiment [5,6] is explained by a larger
distance between the cathode and anode in the uranium section of the chamber (fission
fragment detector) and, as a result, a higher amplitude of the FF pulse.

The uncertainties for channel width and flight path are similar, about 0.1%. In the
1983 experiment, the time resolution was better by a factor of about 2. Correction at finite
time resolution and channel width (bin) was achieved using the Maxwellian shape of the
spectrum and parameters from Table 1 (1983 data). The influence of these corrections at the
PFNS was simulated with Monte Carlo calculations.
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Table 1. Parameters of the different experiments. Full Width at Half Maximum (FWHM) is the
time resolution.

Parameter 1983 2008

Time bin (channel width), ns 1.414 0.1178

FWHM, ns 4.2 1.7 (235U), 2.1 (252Cf (sf))

Flight path (L), m 6.11 3.00

Time resolution, FWHM/L, ns/m 0.69 0.57 (235U), 0.7 (252Cf (sf))

The PFNS for 252Cf(SCf(E)) and 235U(SU(E)) were measured together in the same
experiment. The influence of these corrections at the measured ratio of PFNS R(E) = SCf(E)/
SU(E) is very small, and we can conclude that we do not have any SDF connected with this
part of data reduction if we measure relative to the 252Cf standard.

The analyses in [7] confirm this conclusion. Average energies of 235U PFNS estimated
for these two experiments are very close <E> = 1.976 ± 0.002 MeV [3,4], <E> = 1.982 ±
0.004 MeV [5,6]. The comparison of spectra shown in Figure 1 is given as ratios to the
spectrum predicted by the Scale Method [7]. The small difference of 0.006 MeV may be
related to the SDF in the neutron angular-energy distribution relative to FF, which will be
discussed in the following sections.

 

Figure 1. Ratio of the 235U PFNS for thermal neutrons [3–5] to the fitted SM function [7].

2.2. Neutron Scattering in Fission Chamber

Three neutron detectors were applied in the experiment [5] (Figure 2). The ionization
chamber used for FF counting is shown in Figure 3. Both fissile materials 252Cf and 235U
were placed in the same chamber.

The MCNP code was used for the simulation of neutron scattering in the environment.
Preliminary data analysis of the experimental results had shown that the experimental
PFNS has very strong angular-energy dependence. At the same time, the MCNP simulation
calculates an isotropic angular distribution. More careful analysis of the model used in the
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calculations had shown that the simplification was achieved in the geometry; namely, 235U
and 252Cf samples were placed in the same position in the center of the fission chamber.

 

Figure 2. Experimental set-up for the IRMM-2008 experiment [5].

Figure 3. Drawing of the fission ionization chamber. Cu, Ccf—cathodes with U and Cf neutron
sources, A1, A2, G1, G2—cathodes and grids for U part of the ionization chamber, Acf—anode for Cf
part [5].

70



Metrology 2022, 2

After the correction of the MCNP input data, the angular effect appeared in the MCNP
results (Figure 4) and disappeared in the corrected PFNS measured by detectors placed
under different angles. The experimental spectra for different angles are in good agreement
(inside experimental uncertainties (Figure 5)). This case demonstrates that the use of a
simplified model of the experimental set-up (construction) may produce SDF. However,
the accurate model of the experiment may remove this SDF.

 

Figure 4. Ratio of multiple scattering corrections for Cf- and U-sources calculated in the
MCNP simulations.

Figure 5. Results of 235U PFNS measurements for three detectors after introducing the multiple
scattering correction. They are shown as the ratios of the Maxwellian spectrum with the average
energy <E> = 1.988 MeV.
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2.3. The Energy-Angular Distribution of Neutrons Relative to FF Flight Direction

Fission neutrons have a very strong energy-angular correlation in the Laboratory Sys-
tem (LS) of coordinate relative to the FF flight direction. This is a well-known experimental
fact, which has a simple theoretical justification: if most neutrons are emitted after full
acceleration of the FF by the Coulomb field, they should have high translational velocity of
FF in the LS. However, evaluated data libraries and all practical applications are based on
the trivial assumption, “during the fission, neutrons with the same spectrum as the angular
integrated spectrum are emitted”. This is an incorrect simplification, which may stimulate
strong SDF during the construction of the experimental set-up. This problem was discussed
in several papers [8–10]. We would like to remind the reader of some results from [8].

The novel measurements of PFNS with registration of the angle between the flight
direction of the fission fragment and neutron were performed at the PINP [11]. The
registration of FF was performed in flat 2π geometry, with the azimuth angle fixed by “the
belt” of FF counters and registration of neutrons by two neutron detectors located at the
same plane.

This flat geometry was included in MC simulations. It was assumed that fission
neutrons are emitted from fixed FF (single fragment) with Center of Mass (CM) energy Ev.
The Maxwellian neutron spectrum for CM was used for calculation. Therefore, if we apply
full integration (total 4π angle range), we should obtain the Watt distribution in the LS. The
ratio of simulated spectra for flat geometry to the Watt distribution is shown in Figure 6.
We see that the SDF for this geometry of measurements can be very strong. It increases the
high energy part of the spectrum and average energy. In this simulation, we did not use
the FF yields with their mass and kinetic energy distributions; therefore, this result cannot
be used as the correction at the SDF. However, it demonstrates clearly that the limitation in
the geometry of the measurements of neutron angular distributions relative to the FF flight
direction may lead to the appearance of the SDF.

Figure 6. Distortion effect in the derived PFNS due to incomplete (angle selection) azimuth integration
in [8].

2.4. SDF and Evaluation Procedure

The SDF can be created by the model used in the evaluation. The only way to find
the SDF caused by the evaluation procedure is a comparison of the evaluations based on
the same experimental data. The understanding of the influence of the selected data set
is also important. The different sets of experimental data for 235U(nth,f) PFNS in fission
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induced by thermal neutrons were evaluated using the GMA (Gauss–Markov–Aitken
approach) code. Because all measurements were undertaken relative to the 252Cf(sf) PFNS
standard, the shape of the ratio 252Cf(sf) to 235U(nth,f) and Mannhart’s standard for absolute
252Cf(sf) spontaneous PFNS with covariances was used in the evaluation. Using the shape-
of-ratio experimental data in the fit excludes large components of uncertainties contributing
to absolute measurements. The normalization constraint was applied in the fit with an
uncertainty close to the uncertainty of the evaluated average number of prompt neutrons
for 235U. The evaluated PFNS properly extrapolated to 0 and to 20 MeV on the energy of
emitted neutrons was used for calculation of average neutron energy <E> of the spectrum.
The data used in GMA evaluation were also used for <E> calculation with the scale
method [7] fitting procedure. The 2% uncertainty at each point from GMA was applied in
the SM analysis. It was applied for scaling of the PFNS shape. The results are presented in
Table 2.

Table 2. The comparison of the <E> calculated with numerical integration of GMA evaluation in the
energy range 0–20 MeV, and SM evaluation for the energy range 0.43–7.3 MeV.

Data Set <E>, MeV (GMA) <E>, MeV (SM) χ2/N (SM)

All data including [11] 1.997 1.992 ± 0.004 0.7

Without [11] 1.984 1.982 ± 0.004 0.4

No [11] but with [12] 1.981 1.978 ± 0.004 0.6

We can reach the same conclusion as before. The inclusion of the experimental data
as they are given in [11] increases the <E> outside the estimated uncertainties. Therefore,
there is no evidence that the procedure of the evaluation itself contains the SDF.

2.5. The Evidence of the SDF in LANL Double TOF Experiment

The final experimental data obtained at LANL are still not available. The values
for analysis in this paper were obtained by digitalizing the data from figures presented
in [13,14]. The uncertainty of this digitalization is small. The data were analyzed with the
SM. The experimental PFNS as a ratio to the SM functions is shown in Figures 7 and 8.
Data were analyzed in the energy range of the emitted neutrons 0.25 < E < 7 MeV. The
parameters of the SM fit were used for PFNS calculation in the energy range of emitted
neutrons above 0.25 MeV. The data below 0.25 MeV were excluded from the analysis due
to possible problems with neutron registration by 6Li-glass detectors near 0.244 MeV 6Li
resonance. One should keep in mind that only three points are available in the range
7–10 MeV for the LANL experiment. The average energy for thermal point and LANL data
are different. After the correction due to different <E> (ratio to SM fit, Figures 7 and 8), the
shape of LANL PFNS is in reasonable agreement (inside uncertainties) with old data.

Parameters of the SM (the normalization and <E>) are given in Table 3. The same
parameters with numerical integration of data are given for comparison.

Table 3. Parameters for the LANL result of PFNS measurements evaluated with SM for different
incident neutron energies (Eo) in comparison with the results of numerical integration.

SM Parameters (0.25 < E < 7 MeV) Numerical (0.1 < E < 10 MeV)

Eo, MeV χ2/N Normalization <E>, MeV Normalization <E>, MeV

1.0–1.5 1.19 1.133 ± 0.006 2.056 ± 0.009 1.136 2.036

1.5–2.0 0.73 1.127 ± 0.007 2.077 ± 0.012 1.130 2.069

2.0–3.0 0.72 1.132 ± 0.007 2.073 ± 0.011 1.134 2.048

3.0–4.0 0.60 1.133 ± 0.007 2.100 ± 0.012 1.127 2.075

4.0–5.0 0.86 1.123 ± 0.007 2.128 ± 0.013 1.126 2.093
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Figure 7. Ratio of experimental data for PFNS to the calculated SM functions. Starostov’s data for
thermal neutrons are shown for comparison.

Figure 8. Ratio of experimental data for PFNS to the calculated SM functions. Starostov’s data for
thermal neutrons are shown for comparison.

The analysis with SM demonstrated very interesting peculiarities:

1. The SM approach describes LANL data within the experimental uncertainties (χ2/N
of order 1). The numerical integration provides the same normalization, but <E> is
lower. It can be related to the LANL spectra behavior below 0.25 MeV. The numerical
integration with Maxwellian spectrum gave ~20 keV difference for <E> calculated in
the 0–10 and 0–20 MeV ranges.

2. Experimental PFNS shown in the figures in [7,8] were not normalized to unity. SM
and numerical integration are in reasonable agreement.
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3. Average energies estimated from LANL data contradict the majority of previous
measurement results (see Table 3 and Figure 9). The energy dependence obtained
from the fit of the results of the old measurements is <E> = 1.978 + 0.020 × E0, MeV [7].
The fit to LANL data (only) gives <E> = 2.032 + 0.020 × E0, MeV. There is a clear shift
in more than 30 keV for <E> between LANL and DB measurements.

4. The LANL results are supported only by the data from [11], which were not included
in the fitting procedure and discussed above in this paper. The conclusion was that
this experiment most probably contains the SDF. It is interesting that if [11] used
multi-detector registration of fission fragments, LANL used multi-detector neutron
registration.

5. The ratio of LANL data at 4.5 MeV to the Maxwellian spectrum with kT = 1.379 MeV
was compared in Figure 10 with the ratio of IPPE data [15] at 5 MeV to the Maxwellian
spectrum with kT = 1.385 MeV. The agreement is good. PFNS spectra demonstrate
a rather broad “bump” in the energy range 2–6 MeV with the average ratios 1.045
(LANL) and 1.015 (IPPE). Uncertainties of the PFNS are large enough to make the
conclusion clear about the SDF presence. However, the difference in the spectrum
average energies of 3% between LANL and other data (Figure 9) evaluated with the
SM with low uncertainties (0.5–1%) shows that LANL result may contain the SDF.

One may assume that the origin of the SDF in double TOF LANL results can be some
unaccounted background neutrons. These neutrons reached the chamber at the same time
interval due to a longer flight path. These background neutrons cause fission at higher
neutron energy, and as a consequence, they contribute to a higher average neutron energy
of PFNS.

SDF connected with the time structure of the proton beam or other causes of SDFs are
also possible.

One may assume that LANL results consistent with the results in [11] are accurate and
that other measurements performed in the years 1983 to 2018 contain the SDF. This seems a
doubtful assumption, at least concerning the results [11]. As discussed in Section 2.3, the
results of the measurements [11] contain rather strong SDF, and this should be accounted
for in the PFNS evaluation procedure.

Figure 9. Comparison of 235U PFNS average neutron energies estimated with the SM for new LANL-
2020 double TOF measurements [13] (closed black circles, Table 3) with the results of DB and PB
measurements. The open red triangles present the results of numerical integration when calculating
the average energy. The thin blue line is a linear fit of LANL-2020 data, and the black line is a linear
fit of the results of DB measurements. The data were taken from [7].
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Figure 10. Ratios of the measured PFNS to the Maxwellian spectra (see details in the text).

3. SDF in Fission cross Section Ratio Measurements

A new experiment using the Time Projection Chamber (TPC) for registration of FF
was implemented in Los Alamos National Laboratory (LANL) by a team from different
universities and laboratories (NIFFTE collaboration). The results of the absolute ratio of
239Pu(n,f) to 235U(n,f) cross section measurements are shown in Figure 11. The data were
taken from [16].

The constant bias at about 2% is clearly visible in the energy range 0.2–15 MeV and
has an even larger spread above 15 MeV. The authors of [16] provided a very detailed and
deep analysis of the modeling of their experiment (experimental details, data reduction
procedure, uncertainties of different parameters and so on) but at present could not explain
the existing bias, which can be treated as SDF. From our point of view, it is premature to
assign the SDF to this measurement, especially taking into account that the reaction rate
ratios measured in clean benchmarks show better consistency with the NIFFTE results.

The authors of [16] came to the conclusion that the difference in 2% absolute normal-
ization with the ENDF/B-VIII.0 [20] evaluation based on its turn on neutron standards
evaluation [2] is too large to be ignored. The large non-uniformity and mass value of
the 239Pu sample, which can degrade with time, are the largest concern. Although the
TPC results with multi-parametric data allow an estimate of many sources of systematic
uncertainties (or potential SDF by other words), the present decision is to repeat the mea-
surements with a newly prepared 239Pu sample. At the same time, we should admit that
the results of the reaction rate measurements obtained as benchmarks with fast neutron
spectrum and Mannhart’s evaluations [21] of 252Cf PFNS-averaged cross sections endorse
the data obtained with the TPC.
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Figure 11. 239Pu(n,f)/235U(n,f) cross section ratio measured with a fission TPC [16] in comparison
with the data [17–19] and the results of the GMA fit (solid line) with fission TPC data added to the
standard (old) database.

4. SDF in Maxwellian Averaged cross Sections (MACS) for Astrophysical Application

MACS for neutron capture are used in astrophysics to model the stellar nucleosynthesis
of elements. The range of needed neutron temperatures (kT) is varied from a few keV to
100 keV. The novel method of direct MACS measurement for kT = 25–30 keV was proposed
by Beer and Kaeppeler [22]. It is based on the kinematics of 7Li(p,n) reaction at a proton
energy of 1912 keV. As it was shown experimentally and through modeling, the neutrons
in this case are emitted in the forward cone with the spectrum integrated on the angles
close to the Maxwellian spectrum with kT between 25 and 30 keV.

Ratinsky and Kaeppeler recorded the accurate activation MACS measurements [23] for
197Au(n,γ) (582 ± 9 mb at kT = 30 keV, stellar definition), which were used as the standard
for measurements of other nuclides by this method. Slightly renormalized results of Mack-
lin’s 197Au(n,γ) microscopic cross section, which provided this MACS value, were used in
calculations for extrapolation of calculated MACS to lower and higher kT. These values
were inconsistent with MACS calculated for the evaluation of 197Au(n,γ) standards [22]
based on a combined fit of 62 measurements of captured cross sections and their ratios to
other standard reactions. MACS calculated for standard cross section evaluation in the
energy range 5 keV–2.8 MeV, supplemented by the ENDF/B-VII.0 evaluation below and
above this energy range, was 614 mb at kT = 30 keV. The ENDF/B-VII.0 evaluation had
missed resonances at the upper end of the resolved resonance range. The correction at the
missed resonances increases the MACS value to 619 mb [24].

This controversy and new results of nTOF [25] and GELINA [26] measurements of
microscopic capture cross sections, consistent with the standards evaluation, led to a new
cycle of measurements and analysis of the MACS. To resolve the discrepancy, PINO [27]
and SimLiT [28] Monte Carlo codes were developed for modeling the neutron source.
GEANT4 code was used for modeling the neutron transport. There have been a number
of publications, but the latest review of the Spectrum Averaged Cross Section (SACS)
measurements and re-evaluation is published in [29]. Two major sources that may cause
bias in the MACS values were discussed [29]: attenuation of the neutron flux at the copper
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backing of the 7Li target, and the difference between the measured neutron spectrum and
“true” neutron spectrum incident at the gold sample following a reduction in the measured
value to the MACS value at kT = 30 keV.

Simulation of the neutron source had shown [29] that backing of the 7Li target with
copper of 1 mm thickness requires the introduction of neutron scattering correction be-
tween 6.4 and 7.1% depending on the nuclear data library used in simulation calculations.
The comparison with experimental data obtained for different thicknesses of backings
and size of deposited 7Li targets shows [29] that the large part of the discrepancy with
MACS obtained with the standards evaluation and calculated with the latest experimental
data [25,26] may be explained by an improper account of backing in the activation mea-
surements. The authors of [29] were unable to introduce corrections in the results [23] at
the base of their simulation because of the inconsistencies between experimental data [23]
after introducing corrections based at the simulation.

The measured neutron spectrum induced by 1912 keV protons and integrated on the
angles is similar to the 25.3 keV Maxwellian neutron spectrum [23] but shows a clear lack
of neutrons above 80 keV. The neutron temperature, which should be best assigned to the
measured MACS values, has rather large uncertainty. The comparison of the measured
spectrum [23] with Maxwellian spectra at kT = 25.3 (best fitted to the experimental sim-
ulated spectrum [23]) and kT = 28.5 keV (obtained from calculated mean energy of the
experimental simulated spectrum [24]) is shown in Figure 12. It was estimated [24] that,
depending on the procedure of the reduction to the true Maxwellian spectrum, the differ-
ence between the measured value [23] at the best assigned temperature and the calculated
value may reach 2.5%. A similar difference (1.7%) is shown in [29] between recommended
values obtained from the latest measurements of SACS and SACS calculated for the true
Maxwellian spectrum at the same temperatures.

Figure 12. Comparison of experimental neutron spectrum with a true Maxwellian neutron spectrum
for two temperatures kT = 25.3 and 28.5 keV. All spectra have free normalization.

A series of new measurements of MACS with a 7Li(p,n) reaction for different thick-
nesses of lithium target and spectrum of protons incident on the target supported by
modeling of the experiment had allowed obtaining the best simulation of the Maxwellian-
like spectra for different temperatures [29]. A new version of the neutron cross section
standards [2] took into account the results of the new measurements [29] of 197Au(n,γ)
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cross sections. MACS at kT = 30 keV calculated for the standard evaluation in the energy
range 3 keV–2.8 MeV embedded in the ENDF/B-VIII.0 evaluation provides the new rec-
ommended value of 611.4 ± 4.2 mb with the uncertainty increasing to 11.2 mb when USU
is accounted for. This value has excellent consistency with the new value 612 ± 6 mb [29]
recommended for use by the astrophysical community.

We may conclude that the modeling of the neutron source, including the energy
angular correlation and attenuation of neutrons in lithium target backing excludes the
bias (~5%) caused by SDF from the results of SACS measurements. The proof of this is
the consistency between results derived from simulated SACS measurements and calcu-
lated from the evaluated cross sections obtained in the independent microscopic cross
section measurements.

5. Unrecognized Sources of Uncertainty (USU) in the Data Evaluation

5.1. Small Uncertainties Problem in Neutron Cross Section Standards Evaluation and USU

In 1991, the Cross Section Evaluation Working Group (CSEWG) concluded that the
uncertainties of the evaluated neutron cross section standards [30] are strongly underes-
timated. The standards were obtained in the combined model-independent statistical fit
of about 400 data sets for 10 reactions and their combinations. The relative uncertainties
obtained from variances of the covariance matrix of the evaluated standards were two to
three times lower than the spread of the experimental data estimated for the same broad
energy groups.

The spread of the experimental data can be best characterized by the variances of the
evaluation obtained with the use of the sample statistics. For this, the model-independent
least square fit of the data in the energy groups can be performed without consideration
of the uncertainties assigned to the data. The uncertainty of integral data calculated with
an account of the evaluated covariance matrices (such as SACS for 197Au(n,γ) reaction
discussed above) was also considered as too small. This can be partly explained by an
incomplete budget of uncertainty sources for some measurements and absence or not a full
account of cross-correlations between the same components of uncertainties in different
measurements, which use the same sample or detector, or even method. This conclusion
remains generally true with the revision of the outlaying experimental data uncertainties.

The difference in the data values obtained in different experiments, which cannot be
explained by uncertainties assigned to them, indicates the presence of the USU [31]. In the
case when better consistency cannot be achieved through the revision or introduction of
the corrections based on the Monte Carlo modeling of the experiments (SDF removing), the
additional uncertainty can be introduced in the evaluated covariance matrix, making the
evaluated uncertainties more realistic.

This approach can be applied to the neutron cross section standards evaluation [2].
The GMA code [32] for model-independent evaluation of the standards uses the GLSQ
method for a simultaneous fit of the cross sections and integral parameters with an iterative
approach. Starting from the second iteration, a posterior evaluation for data values with
an uninformative covariance matrix is used as a new prior. Usually, three iterations are
needed to obtain full convergence when the last posterior data evaluation is practically
indistinguishable from the last prior evaluation. All experimental data are reduced in the
model-independent fit to a common grid of energy nodes.

The covariance matrix for each experimental data set is constructed from statistical,
fully correlated systematical and medium energy range correlated to systematical compo-
nents of uncertainties. The correlations between the same components of the uncertainties
in different measurements can be accounted for.

5.2. Sample Method for Determination of USU Covariance Matrices

A sample method can be adapted for construction of the USU component of the
evaluated covariance matrix using the biases between the evaluated and experimental data
with an account of recognized (known) uncertainties. A sample method for the uncertainty
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evaluation in the measurements is usually formulated for a set of repeated measurements
of multivariate (vector) data [33].

For independent random vectors Xi (i = 1, . . . , I) of dimension n and with a zero mean,
the sample covariance matrix (without discloser of the nodes indices) is:

CovXI =
1
I

I

∑
i=1

Xi ⊗ Xi (1)

The closeness of the sample covariance matrix to the actual covariance matrix de-
pending on vector dimension (n) and number of samples (I) was studied in [34]. Sample
covariances for the USU component can be constructed in the framework of an ad hoc
procedure based on the biases between evaluated and experimental data reduced by known
(and accounted for in the evaluation) systematic uncertainties.

The sample vector δi for the USU component can be written as:

δi = (yi − μ) − ui, if yi > μ and δi > 0;
δi = (yi − μ) + ui, if yi < μ, and δi < 0;

δi = 0 in all other cases,

where yi is a vector of i-the experimental data set, μ is a vector of evaluated data (best
approximation to the true value), (yi − μ) is a vector of biases between experimental and

evaluated data, ui =
√

ε2
i + η2

i is a vector of total uncertainty of experimental data, εi is a
vector of the statistical component of the uncertainty, and ηi is a vector of the systematic
component of the uncertainty, which consists of two components: assigned to the analysis
of experimental uncertainty ηi,exp and assigned to the outlaying data ηi,out:

ηi =
√

η2
i,exp + η2

i,out

There is an established procedure for obtaining the evaluated values with GMA.
It includes:

− Analysis and correction of the experimental data, assigning of all components of
uncertainties given or not given by the authors, introducing of the correlations between
the components of the uncertainties in different experiments;

− Data reduction to the same nodes on neutron energy;
− GLSQ combined fit of all data;
− Adding the component of the uncertainty to the outlaying data making them consistent

with the evaluation;
− New fit to obtain new posterior evaluation, redetermination of the outlaying data and

repeating the fit up to the convergence when no redetermination of the outlaying data
is needed.

This work with outlaying data allows avoiding big local discrepancies and reducing
the general chi-square per degree of freedom for standard evaluation from the initial 3.4 to
a value close to 1 without strong local discrepancies.

The main differences to the classic sampling method are the following:

− Data in some sets can be missed at some nodes and cover different energy ranges;
− The sample vector in the node may have not a random distribution relative evaluated

value;
− The number of data in some nodes can be too small to be statistically significant;
− Some data are non-normalized shape type data, which will require the additional

procedure of their normalization for determination of a sample vector;
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Covariances for the USU component can be written with the discloser of the node
indices m and n for vectors as

Covδmn =
1

Kmn

I

∑
i=1

δm
i δn

i , (2)

In our case, not all data sets contribute at the energy node m or n, and Kmn is a number
of non-zero terms in the sum. The total covariances of evaluated data (Covδmn

tot ) can be
written as a sum of covariances obtained in the GMA fit with the ad hoc increase in the
uncertainties for the outlaying data (Covδmn

GMA) and covariance estimated for the USU
component (Covδmn

USU).
Covδmn

tot = Covδmn
GMA + Covδmn

USU (3)

The covariance matrix for the USU component (2) may turn out to be semi-positive
definite, and because of this, the total covariances (3) may lose its semi-positive definite.
This introduction of USU covariances can be considered as a rather crude approach to the
estimation of the realistic uncertainties of the evaluated data, but it is definitely a better
approach than expert estimation [30]. If we increase the uncertainties of the outlaying data
using stricter ad hoc requirements to the data consistency, we will reduce the USU covari-
ances, or even exclude them. Then we have a strong connection between the treatment of
the outliers and USU uncertainties, with a clear distinction that uncertainties for outliers
are introduced into the experimental data iteratively in the fit, and USU uncertainties as
additional components to the evaluated data.

The work with the GMA database of experimental data has shown that outliers
are often the “poor” data with large uncertainties. Increasing the uncertainty of these
outliers with the procedure described above reduces the chi-square per degree of freedom,
changes the evaluated (mean) values, and to a lower extent, changes the covariances. The
“smallness” of the evaluated uncertainties is determined mainly by the “good” experimental
data with small uncertainties.

5.3. Numerical Example of USU Covariance Matrix Construction

This approach for determination of USU was applied for testing of 238U(n,f) to the
235U(n,f) cross section ratio evaluated with the GMA for the model case of 11 cross section
ratio measurements taken as absolute in 11 nodes (Figure 13). The outliers were determined,
and their uncertainties were increased.

Figure 13. Experimental data used in the model case of the USU determination for the
238U(n,f)/235U(n,f) cross section ratio are shown by different symbols. GMA evaluation with an
uncertainty band is shown by lines.
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The results shown in Figure 14 demonstrate an increase in total percent uncertainty
of up to 4–5 times in a few nodes where the spread of the data was large. The covariance
matrix for the USU component has rather large positive correlations, which shows that
most experimental data have normalization problems.

Figure 14. Contribution of the USU in the total uncertainty of evaluated data for the model case of
the 238U(n,f)/235U(n,f) cross section ratio.

6. Conclusions

We analyzed several measurements and evaluations for demonstration of the SDF
existence in the experimental data and their determination with the comparison of different
experiments, as well as a simulation of the experimental set-up based on the models of
the experiment. In cases when SDF cannot be removed from the results of measurements
and considering that the spread of the experimental data has some statistical nature, the
USU can be introduced in the evaluation procedure to obtain realistic uncertainties of the
evaluated data. SDF can be removed through the corrections introduced in the experimental
data, which lead to changes in the evaluated values. The account of the USU changes the
uncertainties of the evaluated data but not the evaluated values. The introduction of the
USU will not be needed if, after SDF removal, the experimental data are consistent. In cases
when SDF exists in the experimental data and cannot be removed, these data, in the process
of the evaluation, should be considered as outliers with their uncertainties increased up to
the consistency of other experimental data or even excluded from the evaluation.
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Abstract: Supplement 1 to the ‘Guide to the expression of uncertainty of measurement’ describes a
Monte Carlo method as a general numerical approach to uncertainty evaluation. Application of the
approach typically delivers a large number of values of the output quantity of interest from which
summary information such as an estimate of the quantity, its associated standard uncertainty, and a
coverage interval for the quantity can be obtained and reported. This paper considers the use of a
Monte Carlo method for uncertainty evaluation in calibration, using two examples to demonstrate
how so-called ‘digital calibration certificates’ can allow the complete set of results of a Monte Carlo
calculation to be reported.

Keywords: digital calibration certificate; DCC; machine-readable; data communication; uncertainty;
Monte Carlo method; MCM

1. Introduction

Technological advancements within the last few decades have served to digitalise
many aspects of metrology. For example, instruments can be programmed to undertake
time-consuming measurements with little or no need for human interaction, while the
availability of greater computer processing power allows complex systems to be modelled
increasingly accurately. There is one aspect of metrology, viz. the provision of calibration
services, to which digital transformation has been applied in a much more modest way.
Many calibration service providers continue to disseminate calibration information using
paper-based certificates. Some organisations have moved to providing certificates in
electronic form, for example, in archiveable Portable Document Format (PDF-A) [1]. While
the provision of electronic certificates brings obvious benefits such as decreased use of
paper and the potential for storage within dedicated document management systems,
one undesirable property persists—a lack of machine-readability, i.e., information is not
presented in a form that can be processed by computer. Currently, information on a paper-
based or electronic calibration certificate can only be used if it is transcribed manually. Such
a process is inevitably prone to error.

Recent initiatives have looked at how paper-based or electronic calibration certificates
can be replaced by fully machine-readable certificates. The European Metrology Programme
for Innovation and Research (EMPIR) [2] has funded the Joint Research Project ‘Communi-
cation and validation of smart data in IoT-networks’ (short name ‘SmartCom’) [3,4]. One
objective of the SmartCom project has been to develop a framework for what are referred to
as ‘digital calibration certificates’, abbreviated hereafter in this paper to ‘DCCs’. From the
perspective of the SmartCom project, the critical property of DCCs is that they are fully
machine-readable. It is noted that the term ‘digital calibration certificate’ has been and is
used by other authors to refer to calibration certificates that take the form of electronic files
but are not machine-readable.
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When presenting the outcome of calibration, measurement data must be accompanied
by associated uncertainty information. On a calibration certificate, it is common for a
quantity value to be provided along with an associated expanded uncertainty (defined
in the International Vocabulary of Metrology (VIM) [5], clause 2.35) and coverage factor
(VIM [5], clause 2.38), or a coverage interval (VIM [5], clause 2.36), corresponding to a
specified coverage probability (VIM [5], clause 2.37). A standard uncertainty may also be
provided.

The focus of this paper is on the storage of uncertainty information obtained using
the numerical approach described in the supporting document to the ‘Guide to the ex-
pression of uncertainty in measurement’ (GUM) [6] known as Supplement 1 to the GUM
(GUMS1) [7]. The approach is a Monte Carlo method (MCM) for the propagation of proba-
bility distributions and is based on repeated random sampling. A key aspect underpinning
the approach is the provision of a measurement model that describes mathematically how
a quantity of interest (the measurand or output quantity) depends on other quantities
(input quantities) to which probability distributions can be assigned. The output of an
implementation of MCM (a ‘Monte Carlo calculation’) provides rich information in the
form of (often hundreds of thousands of) sampled values of the measurand. The sampled
values can be used to define an approximation to the probability distribution for the mea-
surand. Summary information can be calculated using those sampled values. For example,
the expectation and the standard deviation provide, respectively, an estimate of the measur-
and and its associated standard uncertainty, while a coverage interval for the measurand
corresponding to a specified coverage probability can also be determined. The provision of
additional summary information has been considered, e.g., in [8].

For calibration services where MCM is used to undertake uncertainty evaluation,
it is common for only summary information to be provided on calibration certificates.
The reasons for not including the sampled values of the measurand on the certificate are un-
derstandable, e.g., the number of pages could increase significantly, and the effort required
to transcribe the sampled values would make it highly unlikely that they would ever be
used in practice. It is possible for the sampled values to be made available in an electronic
file. When doing so, consideration must be given to aspects including the provision of
additional information such as units of measurement and appropriate metadata, while the
electronic file must also be transmitted using a suitably secure means that ensures the file
cannot be corrupted.

Should information about the measurand be required as input to a subsequent cal-
culation, it is common, in the absence of any other information, for a Gaussian (normal)
distribution, with expectation and standard deviation given, respectively, e.g., by the esti-
mate and standard uncertainty quoted on the calibration certificate, to be assigned to the
measurand. Such an assignment is often made even though the true probability distribu-
tion may be significantly different. The quality of the result of the subsequent uncertainty
calculation may be significantly influenced by the assumption of normality. Were the
sampled values generated by MCM available, one could instead implement MCM for the
subsequent calculation by drawing randomly from those values. The SmartCom project
has developed a data model that allows measurement data and associated uncertainty
information to be stored in digital form. The model builds upon the International System
of Units (SI) [9], the globally-agreed system of measurement units that has at its heart the
seven base units of kilogram, metre, second, ampere, kelvin, mole and candela. The data
model, referred to as the ‘Digital SI’ (frequently shortened simply to ‘D-SI’) [10], allows the
representation of quantities that are real or complex, and univariate or multivariate.

This paper focuses on how the D-SI allows uncertainty information, including the
complete set of results of a Monte Carlo calculation, to be provided within a DCC. While
the GUMS1 approach to uncertainty evaluation is well-established, DCCs are a much
more recent development and the potential overlap between GUMS1 and DCCs has not
previously been discussed. Consideration is given to the cases where the measurand is
real and univariate, i.e., a single real quantity, and real and multivariate, i.e., comprises
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more than one real quantity. Section 2 provides a brief summary of uncertainty evaluation
undertaken using MCM for both cases. Section 3 introduces the main components of the
DCC and outlines how measurement data and associated uncertainty information for real
quantities can be encapsulated in the D-SI. Section 4 describes two examples, the first
relating to the measurement of a univariate real quantity and based on an example in
GUMS1, the second relating to the measurement of a multivariate real quantity and based
on an example in Supplement 2 to the GUM (GUMS2) [11]. Concluding remarks are
presented in Section 5.

Note that this paper does not discuss technical and legal aspects associated with the
generation, delivery and use of DCCs. Such aspects are considered in, e.g., [12].

2. The Monte Carlo Method

Uncertainty evaluation is generally considered to comprise two stages, formulation
and calculation. The stages are summarised below for the cases where the measurand is
real and univariate, and real and multivariate.

2.1. Univariate Real Quantity

1. The formulation stage involves the following steps:

• Identification of the measurand Y and the input quantities X = (X1, . . . , XN)
�

on which the measurand depends.
• Assignment of the mathematical relationship between the measurand and the

input quantities, e.g.,
Y = f (X).

• Assignment of probability distributions for the input quantities. The quantities
may all be independent, in which case each quantity is assigned a probability
distribution, or there may be correlation between some of the quantities, meaning
that a joint probability distribution is assigned to those quantities.

2. The calculation stage, when implementing MCM, involves the following steps:

• Assign a number M of trials.
• For k = 1, . . . , M, sample values x1,k, . . . , xN,k from the probability distributions

for the input quantities and evaluate

yk = f (x1,k, . . . , xN,k).

• Calculate the estimate y of the measurand and its associated standard uncertainty
u(y) given, respectively, by the expectation and standard deviation of the values
yk, k = 1, . . . , M.

• Use the approximation to the distribution function for the measurand to deter-
mine a coverage interval corresponding to a specified coverage probability.

Note that, both for simplicity and to reflect the choice of examples in Section 4, this
section considers only the case of a measurement model that can be classified as explicit,
i.e., the measurand can be expressed as an explicit mathematical function of the input
quantities. Variants of MCM are available for the case where the relationship between
the measurand and input quantities cannot be expressed explicitly. The storage within
DCCs of uncertainty information obtained using MCM is equally applicable to explicit and
implicit measurement models. In addition, again for simplicity, this section considers a
particular implementation of MCM where a fixed number M of trials is assigned in the first
step. Alternative applications of MCM can, and possibly should, be implemented, e.g., an
adaptive approach as described in clause 7.9 of GUMS1 [7] where an increasing number of
trials are carried out until results are deemed to have stabilised sufficiently according to
predetermined criteria.
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2.2. Multivariate Real Quantity

1. The formulation stage involves the following steps:

• Identification of the measurand Y = (Y1, . . . , Ym)
� and the input quantities

X = (X1, . . . , XN)
� on which the measurand depends.

• Assignment of the mathematical relationship between the measurand and the
input quantities, e.g.,

Y = f(X1, . . . , XN) ≡ ( f1(X), . . . , fm(X))
�.

• Assignment of probability distributions for the input quantities.

2. The calculation stage, when implementing MCM, involves the following steps:

• Assign a number M of trials.
• For k = 1, . . . , M, sample values x1,k, . . . , xN,k from the probability distributions

for the input quantities and evaluate

yk ≡ (y1,k, . . . , ym,k)
� = f(x1,k, . . . , xN,k).

• From the values yk, k = 1, . . . , M, calculate an estimate y = (y1, . . . , ym)
� of the

measurand and its associated covariance matrix

Vy =

⎡
⎢⎢⎢⎢⎢⎣

u2(y1) u(y1, y2) . . . u(y1, ym−1) u(y1, ym)
u(y2, y1) u2(y2) . . . u(y2, ym−1) u(y2, ym)

...
...

. . .
...

...
u(ym−1, y1) u(ym−1, y2) . . . u2(ym−1) u(ym−1, ym)

u(ym, y1) u(ym, y2) . . . u(ym, ym−1) u2(ym)

⎤
⎥⎥⎥⎥⎥⎦,

where u(yi) is the standard uncertainty associated with yi and
u(yi, yj) ≡ u(yj, yi) is the covariance associated with yi and yj.

• Use the approximation to the distribution function for the measurand to deter-
mine a coverage region corresponding to a specified coverage probability.

3. Digital Calibration Certificates

3.1. Overview

A DCC [13] provides all information relating to a calibration in machine-readable form.
Its structure mirrors the information that is required by ISO/IEC 17025 [14] for reporting
the results of calibration. Consequently, a DCC is divided into four main sections:

• Administrative data (compulsory, regulated)—this section contains information that
is typically displayed on the front page of a paper-based certificate. For example,
identification of the calibration laboratory, the calibration object and the calibration
service customer.

• Measurement results (compulsory, partially regulated)—this section allows measure-
ment results, including uncertainty information, from different metrology domains
and of different types to be presented. Currently, only measurement results that rely
on the International System of Units (SI) can be provided in this section.

• Comments (optional, not regulated)—this section contains non-regulated information
that is specifically intended for humans, e.g., proprietary data such as calibration-
specific data sheets, formatting information, etc., and that cannot be used by computer
without the need for human interpretation. The section may include graphical, video
or audio information.

• Document (optional)—this section allows a human-readable version of the calibration
certificate to be stored and allows users to view an electronic version of the certificate
more akin to the traditional paper-based certificate.
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The focus of this paper is on uncertainty-related aspects of the measurement results
section of a DCC.

3.2. Measurement Results Section

A number of internationally recognised documents provide the foundation for the
representation of measurement data within the D-SI: the BIPM SI brochure [9], the GUM [6],
the VIM [5] and ISO 80000-1 [15]. The D-SI allows several types of measurement data—real,
complex, univariate, multivariate, etc.—to be represented.

3.2.1. Univariate Real Quantity

Table 1 lists the components of the D-SI for a univariate real quantity. The information
marked in bold shows the minimal information required and comprises the numerical
value of the quantity and the unit of measurement. Additional information may optionally
be provided: a label providing descriptive information for the quantity, e.g., to provide
metadata related to the measurement, and the date and time of the measurement.

Table 1. Component structure for a univariate real quantity. Components in bold are mandatory.
The notation ‘>’ indicates that the component on the right is a subcomponent of the component on
the left.

real > value
> unit
> label
> dateTime

In practice, a measurement result is generally considered to be incomplete if it is not
accompanied by information regarding its uncertainty. The D-SI allows for uncertainty
information by extending the basic concept in Table 1 to allow the provision of an expanded
uncertainty or a probabilistically symmetric coverage interval.

Tables 2 and 3 list the components of the D-SI that can be used to represent a univariate
real quantity with uncertainty information provided in the form of an expanded uncertainty
and a coverage interval, respectively. For each case, uncertainty information is provided
using an additional, optional, component which itself comprises a number of mandatory
and optional components. Therefore, for example, uncertainty is a subcomponent of
expandedUnc which is itself a subcomponent of real. Note that the unit of measurement is
not explicitly provided for the uncertainty information but is implicitly inherited from the
unit component.

Table 2. Component structure for a univariate real quantity with expanded uncertainty.

real > value
> unit
> expandedUnc > uncertainty

> coverageFactor
> coverageProbability
> distribution

> label
> dateTime

For expanded uncertainty, in addition to the numerical value and the unit of measure-
ment, the mandatory information comprises the coverage probability and the expanded
uncertainty and coverage factor corresponding to that coverage probability. The expanded
uncertainty and coverage factor allow the standard uncertainty to be determined if required.
Information about the probability distribution, e.g., distribution type, parameter values,
may optionally be provided.

For a coverage interval, the additional mandatory information comprises the standard
uncertainty, the coverage probability and the lower and upper limits of the coverage
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interval corresponding to the coverage probability. Again, information about the probability
distribution may optionally be provided.

Table 3. Component structure for a univariate real quantity with coverage interval.

real > value
> unit
> coverageInterval > standardUnc

> intervalMin
> intervalMax
> coverageProbability
> distribution

> label
> dateTime

3.2.2. Multivariate Real Quantity

Frequently in metrology, it is necessary to consider a multivariate real quantity, i.e., a
vector of real quantities. The D-SI allows multivariate quantities to be treated by employing
a ‘list’ structure. In its most general form, the list structure allows a multivariate real
quantity to be represented as shown in Table 4, where each element is of a type specified
in Tables 1–3.

Table 4. Component structure for a multivariate quantity comprising a series of real quantities.

list > real
> real

...
> real

GUMS2 [11] describes how both hyper-ellipsoidal and hyper-rectangular coverage
regions can be defined for multivariate quantities. Tables 5 and 6 list the components of the
D-SI that can be used to represent a multivariate real quantity with uncertainty information
provided in the form of a hyper-ellipsoidal coverage region and hyper-rectangular coverage
region, respectively. For each case, uncertainty and covariance information is provided in
the form of an additional component which itself comprises a number of components.

Table 5. Component structure for a multivariate real quantity with a hyper-ellipsoidal coverage region.

list > real
> real

...
> real
> ellipsoidalRegion > covarianceMatrix

> coverageFactor
> coverageProbability
> distribution

Table 6. Component structure for a multivariate real quantity with hyper-rectangular coverage region.

list > real
> real

...
> real
> rectangularRegion > covarianceMatrix

> coverageFactor
> coverageProbability
> distribution
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Consider the covariance matrix

Vy =

[
u2(y1) u(y1, y2)

u(y2, y1) u2(y2)

]

of size 2 × 2. Table 7 lists the components of the D-SI that can be used to represent Vy.
Information is provided one column at a time, starting at column one, and within each
column information is presented one row at a time, starting at row one. Therefore, in
Table 7, information is presented in the order u(y1, y1) ≡ u2(y1), u(y2, y1), u(y1, y2) and
u(y2, y2) ≡ u2(y2). The approach generalises straightforwardly for covariance matrices of
larger size.

Table 7. Component structure for a covariance matrix of size 2 × 2.

covarianceMatrix > column > covariance > value
> unit

> covariance > value
> unit

> column > covariance > value
> unit

> covariance > value
> unit

A multivariate quantity may consist of multiple measurements of quantities of the
same type, e.g., measurements of temperature at a particular location taken at regular time
intervals, or quantities of different types, e.g., measurements of different environmental
factors within a laboratory. In the former case, if all quantities have the same unit of
measurement, the list structure as presented leads to unnecessary repetition of information.
The D-SI has been adapted to allow for more efficient representation in such cases. Table 8
shows how the same unit of measurement may be assigned to all individual quantities in a
vector of real quantities. (For ease of reading, the optional label and dateTime components
have been omitted.) When the listUnit component is used, there is no longer the mandatory
requirement to provide a unit of measurement for each quantity (c.f. Table 1).

Table 8. Component structure for a multivariate quantity comprising a series of real quantities with
the same unit of measurement.

list > listUnit
> real > value
> real > value

...
> real > value
> real > value

The D-SI also allows for the same expanded uncertainty or coverage interval to be
associated with all the real quantities of a multivariate quantity but this functionality is
not discussed further in this paper. A complex quantity is treated as a special case of a
multivariate quantity and is considered in [16].

3.2.3. Matrices and Tensors

The D-SI allows data of dimension higher than that of vectors to be treated using a ‘list
of lists’ structure. This structure allows, e.g., a matrix to be represented as shown in Table 9.
Depending on the application and the preference of the user, a matrix may be represented
as a list of rows or a list of columns.
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Table 9. Component structure for a matrix comprising a list of lists.

list > list
> list

...
> list

3.3. Implementation of the Data Model

The D-SI may be implemented in the language of choice of the user. Within the
SmartCom project, Extensible Markup Language (XML) [17] has been used, but the use
of alternative languages such as JavaScript Object Notation (JSON) [18] is equally valid.
The following features have been imposed:

• The expression of numerical values is compatible with decimal floating-point numbers
in the ANSI/IEEE 754 double precision format [19].

• Date and time information is presented relative to Universal Coordinated Time (UTC)
and complies with the format described in ISO 8601 [20] for legal local date and time
with a difference to UTC.

• The bases for the expression of units of measurement are the BIPM SI brochure [9],
the siunitx package for LaTeX [21] and IEC TS 62720 [22].

• Standard Unicode Transfer Format 8-bit (UFT-8) is to be used for all character strings
including those that indicate numerical values.

Within the XML implementation of the D-SI [23], to reflect the dependence on the SI,
all structural elements have the prefix ‘si’, e.g., si:real.

4. Examples

4.1. Univariate Real Quantity

To illustrate the ability of DCCs to capture uncertainty information obtained from
MCM, consider the example of gauge block calibration from clause 9.5 of GUMS1 [7]. In this
example, the length of a gauge block of nominal length 50 mm is determined by comparing
it with a known reference standard that has the same nominal length. The measurand is
the deviation from the nominal length.

The measurand is expressed as an explicit function of nine input quantities. The proba-
bility distributions assigned to the input quantities comprise scaled and shifted
t-distributions, a rectangular distribution, a normal distribution, an arc sine distribution
and rectangular distributions with inexactly prescribed limits.

For this paper, the calculation stage has been implemented using a fixed number
M = 106 of trials (c.f. the implementation in GUMS1 where an adaptive approach was
used). Using the component structure of Table 3, summary information from the calculation
stage can be encapsulated as follows:

<!-- MCM, 1e6 samples - Summary information -->
<si:real>

<si:label>Deviation from nominal length</si:label>
<si:value>838</si:value>
<si:unit>\nano\metre</si:unit>
<si:coverageInterval>

<si:standardUnc>36</si:standardUnc>
<si:intervalMin>745</si:intervalMin>
<si:intervalMax>932</si:intervalMax>
<si:coverageProbability>0.99</si:coverageProbability>

</si:coverageInterval>
</si:real>
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Using the component structure of Table 8, the full set of values yk, k = 1, . . . , M, of the
output quantity returned by the Monte Carlo calculation can be encapsulated as follows,
showing only the first three (k = 1, 2, 3) and final three (k = M − 2, M − 1, M) values:

<!-- MCM, 1e6 samples - Output quantity values -->
<si:list>

<si:listUnit>\nano\metre</si:listUnit>
<si:real>

<si:value>829.5221</si:value>
</si:real>
<si:real>

<si:value>873.3864</si:value>
</si:real>
<si:real>

<si:value>822.9225</si:value>
</si:real>

...
<si:real>

<si:value>825.8857</si:value>
</si:real>
<si:real>

<si:value>862.1964</si:value>
</si:real>
<si:real>

<si:value>798.6789</si:value>
</si:real>

</si:list>

As discussed in Section 1, it would be impractical to generate a paper certificate that
contains such a large number of numerical values. When written to file (without any spaces
or indentation), the full set of values in the format above takes up approximately 48.6 MB
(and requires 3M + 3 lines). For comparison, were the representation that allows the same
unit of measurement to be assigned to all quantities not available, using the component
structure of Table 4 would lead to a file of approximate size 78.2 MB (4M + 2 lines).

4.2. Multivariate Real Quantity

To illustrate the ability of DCCs to present information for a multivariate real quantity,
consider the example of simultaneous measurement of resistance and reactance from clause
9.4 of GUMS2 [11]. In this example, the resistance and reactance of a circuit element are
determined by measuring the amplitude of a sinusoidally-alternating potential difference
across its terminals, the amplitude of the alternating current passing through it, and the
phase angle of the alternating potential difference relative to the alternating current. There
are three output quantities: the resistance, the reactance and the impedance.

For this paper, the calculation stage has been implemented using a fixed number
M = 106 of trials. Using the component structure of Table 8, summary information from
the calculation stage can be encapsulated as follows:

<!-- MCM, 1e6 samples - Summary information -->
<si:list>

<si:listUnit>\ohm</si:listUnit>
<si:real>

<si:value>127.732</si:value>
</si:real>
<si:real>

<si:value>219.847</si:value>
</si:real>
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<si:real>
<si:value>254.260</si:value>

</si:real>
<si:ellipsoidalRegion>

<si:covarianceMatrix>
<si:column>

<si:value>0.003364</si:value>
<si:unit>\ohm\ohm</si:unit>
<si:value>-0.04090216</si:value>
<si:unit>\ohm\ohm</si:unit>
<si:value>-0.02688114</si:value>
<si:unit>\ohm\ohm</si:unit>

</si:column>
<si:column>

<si:value>-0.04090216</si:value>
<si:unit>\ohm\ohm</si:unit>
<si:value>0.058081</si:value>
<si:unit>\ohm\ohm</si:unit>
<si:value>0.2281734312</si:value>
<si:unit>\ohm\ohm</si:unit>

</si:column>
<si:column>

<si:value>-0.02688114</si:value>
<si:unit>\ohm\ohm</si:unit>
<si:value>0.2281734312</si:value>
<si:unit>\ohm\ohm</si:unit>
<si:value>0.037249</si:value>
<si:unit>\ohm\ohm</si:unit>

</si:column>
</si:covarianceMatrix>
<si:coverageFactor>2.80</si:coverageFactor>
<si:coverageProbability>0.95</si:coverageProbability>

</si:ellipsoidalRegion>
</si:list>

Using the component structure of Table 9, the full set of values yk, k = 1, . . . , M, of the
output quantity returned by the Monte Carlo calculation can be encapsulated as follows,
showing only the first (k = 1) and final (k = M) values:

<!-- MCM, 1e6 samples - Output quantity values -->
<si:list>

<si:list>
<si:listUnit>\ohm</si:listUnit>
<si:real>

<si:value>127.763</si:value>
</si:real>
<si:real>

<si:value>219.303</si:value>
</si:real>
<si:real>

<si:value>254.397</si:value>
</si:real>

</si:list>
...

<si:list>
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<si:listUnit>\ohm</si:listUnit>
<si:real>

<si:value>127.838</si:value>
</si:real>
<si:real>

<si:value>220.055</si:value>
</si:real>
<si:real>

<si:value>253.699</si:value>
</si:real>

</si:list>
</si:list>

When written to file (without any spaces or indentation), the full set of values in the
format above takes up approximately 194 MB (and requires 12M + 2 lines).

5. Discussion

The GUM recommends that uncertainty information be presented in such a way that
permits it to be used in a subsequent uncertainty calculation. On a calibration certificate,
information about a quantity is frequently provided in the form of an estimate of the quan-
tity and either an associated standard uncertainty or expanded uncertainty corresponding
to a specified coverage probability. If the quantity is to be used in another calculation, it is
common, in the absence of any additional information, to assign a Gaussian (or normal)
probability distribution to the quantity. This assignment may be made even if the true
probability distribution for the quantity is significantly different. Consequently, the results
of the subsequent calculation may be unreliable.

Even if uncertainty evaluation has been undertaken using a Monte Carlo method, it
is common for only the summary information mentioned above to be presented on the
calibration certificate. The reasons are understandable, e.g., limiting the number of pages
in the certificate to a reasonable value, the difficulty in putting to practical use the full set
of values returned by the Monte Carlo method.

Digital calibration certificates (DCCs) provide two key benefits that immediately aid
the reporting and use of a complete set of Monte Carlo results. First, the presentation
of information in a fully machine-readable form. Second, through the application of the
Digital SI (D-SI) data model, the potential to include much greater volumes of data than is
currently practical in a paper-based or electronic (e.g., PDF-A) certificate.

For a subsequent uncertainty calculation, a second Monte Carlo approach can be
implemented. The sample values for the first quantity can be read from the DCC and
samples from (an approximation to) the probability distribution for the first quantity can be
obtained by randomly sampling from that set of values. The storage and use in calculations
of a large number (e.g., 106) of sample values is facilitated in modern personal computers
and mathematical software packages.

DCCs therefore provide the means to transfer uncertainty information that is encapsu-
lated in a set of Monte Carlo samples. However, one should be aware of the circumstances
under which the use of a Monte Carlo approach does not support transferability of results,
e.g., as discussed in [24].

Although the D-SI was not designed with a Monte Carlo approach to uncertainty
evaluation explicitly in mind, the data components in the D-SI are readily suitable for
reporting the full set of results from a Monte Carlo calculation. As its use becomes more
widespread, it is anticipated that the D-SI will be subject to updates, e.g., to take account
of feedback from users from various metrology domains. One potential update could be
the development of a specific component in the D-SI that allows all information from a
Monte Carlo calculation to be encapsulated. That information could include details of the
approach (standard or adaptive) and the number of Monte Carlo trials implemented. It
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may also be useful to provide all relevant information on the input quantities and their
probability distributions as well as the measurement model (in an appropriate format).
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Article

The GUM Tree Calculator: A Python Package for Measurement
Modelling and Data Processing with Automatic Evaluation
of Uncertainty

Blair D. Hall

Measurement Standards Laboratory of New Zealand, Lower Hutt 5010, New Zealand;
blair.hall@measurement.govt.nz

Abstract: There is currently interest in the digitalisation of metrology because technologies that
can measure, analyse, and make critical decisions autonomously are beginning to emerge. The
notions of metrological traceability and measurement uncertainty should be supported, following
the recommendations in the Guide to the Expression of Uncertainty in Measurement (GUM). However,
GUM offers no specific guidance. Here, we report on a Python package that implements algorithmic
data processing using ‘uncertain numbers’, which satisfy the general criteria in GUM for an ideal
format to express uncertainty. An uncertain number can represent a physical quantity that has not
been determined exactly. Using uncertain numbers, measurement models can be expressed clearly
and succinctly in terms of the quantities involved. The algorithms and simple data structures we
use provide an example of how metrological traceability can be supported in digital systems. In
particular, uncertain numbers provide a format to capture and propagate detailed information about
quantities that influence a measurement along the various stages of a traceability chain. More detailed
information about influence quantities can be exploited to extract more value from results for users at
the end of a traceability chain.

Keywords: measurement uncertainty; guide to the expression of uncertainty in measurement; mea-
surement modelling; uncertainty propagation; metrological traceability; uncertain number

1. Introduction

The worldwide dissemination of Système International (SI) units is a person-oriented
paper-based process that is carefully managed by national bodies and coordinated by
international organisations; however, that is about to change. The emergence of tech-
nologies that can measure and make critical decisions autonomously requires more of
our measurement infrastructure to be implemented by digital systems. A growing num-
ber of initiatives are replacing paper-based, expert-oriented processes with automated
digital ones (e.g., machine-readable formats for calibration reports [1] and a secure cloud-
based platform for the legal metrology infrastructure in Europe [2]). Dissemination of
SI provides what the metrology community calls traceability. Metrological traceability
ensures that measurements are accompanied by information that can be used to determine
the fitness-for-purpose of results in different situations. Traceability may be thought of
as support for interoperability with measurement data but at present the expertise of
skilled individuals is needed to interpret data and supporting information correctly. One
outcome of digitalisation will be an ability to produce traceable measurement results in
machine-actionable formats.

Measurement accuracy is fundamental to traceability. Traceable measurements must
report information about the likely magnitude of the difference (error) between a measured
value and the quantity intended to be measured. Metrologists refer to this as measurement
uncertainty. During the 1980s, considerable effort went into harmonising the manner
that measurement uncertainty is evaluated and communicated and this resulted in the
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publication of the Guide to the Expression of Uncertainty in Measurement (GUM) [3], which
remains today the primary reference for dealing with measurement uncertainty (the GUM
was produced by a group of experts representing eight international scientific and technical
organisations: the BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, and OIML).

Digitalisation of metrological infrastructure will inevitably need algorithmic imple-
mentations for GUM methods. However, the GUM itself offers no specific guidance, as
it was written long before this need could have been anticipated. One approach, called
uncertain numbers, provides an abstract representation for physical quantities that satisfies
general criteria in the GUM for an ideal format to express uncertainty [4]. Quantities in a
problem, such as specific lengths, masses, etc., are always considered to have definite values
that can only be estimated with limited accuracy by measurement. Therefore, an uncertain
number is designed to encapsulate information about the measured value and measurement
accuracy. Using this abstraction allows data processing to be expressed algorithmically
in terms of the quantities involved, leaving the associated uncertainty calculations to be
handled automatically in the background. The uncertain-number approach can capture the
effects of influence quantities at different stages of a traceable measurement and propagate
this information along the chain to an end user. Detailed information about the uncertainty
budget can sometimes be used to enhance the value of results. This report describes a
Python package, called the GUM Tree Calculator (GTC), that uses uncertain numbers [5].
GTC is a very flexible tool that has been used in two quite different applications, which
have been reported on recently [6,7]. We discuss the tool’s design and comment on aspects
that support traceability in digital systems.

The next section provides an overview of GUM uncertainty calculations, metrological
traceability, and GTC software. GTC is tested on a variety of platforms and different versions
of Python 2 and 3 (refer to the github repository [5]). All code snippets use GTC version 1.3.6.
The GUM presents its approach to evaluating measurement uncertainty in mathematical
terms; thus, Section 2.1 summarises the key equations. However, an alternative formulation
of these equations is more practical. This is described in Section 2.2, which motivates the
development of the uncertain-number data type. The notion of metrological traceability
is discussed in Section 2.3, and we explain why the uncertain-number format is useful to
support traceability. Section 2.4 presents an example of GTC data processing applied to
an electrical circuit. Section 3 looks in more detail at aspects of GTC design. The method
used to automate uncertainty calculation is presented in Section 3.1. The data struc-
tures that support uncertainty propagation in uncertain-number objects are described in
Sections 3.2–3.5; then, Section 3.6 describes how uncertain numbers can be saved and
restored. More general considerations are discussed in Section 4. Appendix A briefly
describes support for complex quantities, extensions for handling degrees of freedom, and
some additional implementation details.

Notation

Upper and lower case letters are used to distinguish between quantities, which will
never be determined exactly, and values that will be known (such as a numerical indication
on a measuring instrument), respectively. For example, a measurement result y is written
in lower-case because a result always has a definite numerical value: The value y is
an estimate of Y, which is the quantity intended to be measured. Upper-case is used
for Y to indicate that the quantity cannot be known exactly. It is helpful to make this
distinction because uncertain-number objects are used to represent quantities; the associated
numerical estimates and other known values, such as uncertainty, will appear as attributes
of uncertain numbers.

2. Overview

2.1. GUM Method

Measurements are always influenced by unpredictable factors, so a result can only
ever approximate the quantity of interest. Influence factors can, however, be identified and
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described in probabilistic terms. In this manner, a measurement process can be represented
by a mathematical model. This is the approach taken in the GUM.

The first step is to identify a function called the measurement model that contains every
quantity, including all corrections and correction factors that can contribute a significant component
of uncertainty to the measurement result [3] [Section 4.1.2]. In the GUM, this is expressed as an
explicit function:

Y = f (X1, X2, · · · , Xl) , (1)

where Y is the quantity intended to be measured (the measurand) and the input arguments
X1, X2, · · · , Xl are quantities that influence the measurement outcome. All arguments
of f (· · · ) are treated in the same way when evaluating uncertainty. Some of the input
terms may represent other measured quantities. For example, electrical resistance could be
measured by first measuring potential difference V and current I and then evaluating ratio
R = V/I. Other input terms may represent nuisance factors that perturb the measurement,
such as Johnson noise in a resistor. The measurement model can be thought of as a recipe
for evaluating the measurand: if X1, X2, · · · , Xl were all known exactly, then Y could
be determined. However, with only approximate values available for input quantities,
an approximate value for Y will be obtained.

y = f (x1, x2, · · · , xl) . (2)

GUM uses a specific term, standard uncertainty, in relation to the unpredictability of
measurement outcomes (i.e., the fact that y and Y differ by an unpredictable amount).
A standard uncertainty is an estimate of the standard deviation of a probability distribution
for the difference (error) between y and Y. There is a formula in the GUM to propagate
standard uncertainties through a measurement model and obtain the standard uncertainty
in a result. For a model in the form of Equation (1), the standard uncertainty of y, as an
estimate of Y, is calculated as follows:

u(y) =

[
l

∑
i=1

l

∑
j=1

ui(y) r(xi, xj) uj(y)

]1/2

, (3)

where ui(y) and uj(y) are components of uncertainty that relate small changes in input values
to corresponding changes in y.

ui(y) =
∂Y
∂Xi

∣∣∣∣
Xi=xi

u(xi) and uj(y) =
∂Y
∂Xj

∣∣∣∣∣
Xj=xj

u(xj) . (4)

The terms u(xi) and u(xj) are the standard uncertainties in the input values xi and xj,
respectively. The correlation coefficient attributed to a pair of input estimates is r(xi, xj),
where r(xi, xi) = 1 when i = j.

Standard uncertainties are associated with a number called the degrees of freedom,
usually denoted ν. The interpretation given to x, u(x), and ν in the GUM is analogous to
familiar sample statistics: the sample mean, the standard error in the sample mean, and the
degrees of freedom [8] [Chapter 9]. However, degrees of freedom are interpreted more
broadly in the GUM, because uncertainty evaluation is not always based on a sample of
data. When a standard uncertainty is considered to be known very accurately, the degrees of
freedom is large (up to infinity), but a small number of degrees of freedom (as low as unity)
signifies a very rough estimate of the underlying standard deviation. Again, the GUM
provides an equation for propagating degrees of freedom, called the Welch–Satterthwaite
formula. The number of degrees of freedom associated with a standard uncertainty u(y) is
as follows.

νy =
u4(y)

∑l
i=1

u4
i (y)
νi

. (5)
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However, there is an important restriction on the use of this equation. It is not
valid when input estimates that have finite degrees of freedom are correlated with each
other. This is not a rare occurrence. For example, estimates obtained from linear least-
squares regressions are often correlated and have finite degrees of freedom. Fortunately,
an extended form of (5) can be used in some important special cases (see Appendix A.1) [9].

Equations (1)–(5) describe a methodology for evaluating measurement uncertainty
that any GUM-compliant data processing should adhere to. However, in many situations,
it is inconvenient, if not impossible, to formulate a single, complete, measurement model
such as Equation (1). Usually, a traceable measurement is perceived as a staged process,
and it is difficult to describe when approached at more than one stage at a time. However,
there is a mathematically equivalent formulation of these calculations that allows staged
models to be handled. This formulation leads to a new abstract data type called an uncertain
number, which can represent inexactly known quantities [4]. The uncertain-number format
satisfies the requirements for information exchange identified in the GUM [3] [Section 0.4].

2.2. The Uncertain-Number Methodology

A mathematical expression may often be decomposed into stages and evaluated
algorithmically as a sequence of basic operations. For instance, the following is the case:

V = v(1 − Erel)− Eoff − Ernd

and can be broken into four stages (also shown in Figure 1):

y1 = 1 − Erel

y2 = v × y1

y3 = y2 − Eoff

V = y4 = y3 − Ernd .

Erel

Eoff

×

−

−

1

v

−

Ernd

V

Figure 1. Decomposition of V = v(1 − Erel)− Eoff − Ernd into a sequence of arithmetic operations.

This approach can be applied to measurement models. The evaluation of some
arbitrary function f (x1, · · · xl) can be decomposed into h = 1, · · · , m stages, each producing
an intermediate result:

yh = fh(Λh) , (6)

with the final stage yielding the result y = ym. The set of inputs to the hth stage function,
denoted here as Λh, may include previous stage results y1, · · · , yh−1 and model inputs
x1, · · · xl . Using the chain rule for partial differentiation, the components of uncertainty
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defined in Equation (4) can be evaluated at each stage. The component of uncertainty in yh
due to uncertainty in the jth model input is as follows.

uj(yh) = ∑
zk∈Λh

∂ fh
∂zk

uj(zk) . (7)

Thus, the set of components of uncertainty {u1(yh), u2(yh), · · · , ul(yh)}, correspond-
ing to {x1, x2, · · · , xl}, can be evaluated stage-by-stage to finally obtain the set of compo-
nents of uncertainty in the result, {u1(y), u2(y), · · · , ul(y)} (when j = k, the notation uj(zj)
may be simplified to u(zj), which is the standard uncertainty of model input xj).

In GTC, an uncertain number is used to encapsulate results at each stage (yh, and the
associated components of uncertainty, {u1(yh), u2(yh), · · · }). Uncertain numbers provide a
convenient and succinct representation for quantities. Their algebraic properties essentially
match those of ordinary number types. Thus, data processing algorithms can be expressed
with familiar mathematical operations applied to uncertain-number terms representing
quantities in a model. There is no need to derive the expressions for components of
uncertainty; this is handled algorithmically.

The results of uncertain-number calculations are also transferable: the result of one
calculation may be used as an argument in further calculations (as is performed routinely
in numerical calculation). This is an open-ended process that can, in principle, continue
indefinitely. The transferability of results is needed to support metrological traceability
in staged measurement models. This will be discussed further in the next section and in
Section 3.6. The open-ended nature of uncertain-number computations is also illustrated in
the example shown in Section 2.4.

2.3. Traceability Chains and Uncertainty

Traceability provides accurate and reliable information about physical quantities that
can be used to inform decisions. Because a quantity of interest can never be determined
exactly, a decision based on the information available may not be correct; there will be
some uncertainty—in a colloquial sense—about the correctness of a decision informed
by data subject to measurement error. However, the risks associated with poor decision
outcomes can be managed if the unpredictability of measurement results can be described in
probabilistic terms (i.e., if the accuracy can be quantified). In this sense, the metrologist’s use
of the term measurement uncertainty is associated with a likely magnitude of measurement
error. To address the need for results that can be relied upon, metrological traceability
requires the careful evaluation of measurement uncertainty.

Traceable measurement can be thought of as a collaborative process that is carried out
in stages. Ultimately, a traceable measurement is of benefit to a nominal ‘end user’ at the last
stage of a traceability chain, who needs information about a quantity to inform a decision
(e.g., measuring the weights of shipping containers to inform the loading distribution
of a container ship). The accuracy of a final result depends on all the stages; thus, the
sources of uncertainty must be traced as far back as the units of measurement realised at
the beginning of the process. This ensures that the result is meaningful and comparable
with other traceable measurements of the same quantity.

While the GUM’s expression of a measurement model takes the form of a single
all-encompassing Equation (1), the staged formulation in Section 2.2 handles the fact that
people involved at one stage generally do not have detailed knowledge about processes
carried out at other stages. For example, Figure 2 shows a traceable measurement in four
parts (e.g., stages 1 and 2 correspond to the realisation of reference standards, stage 3 to the
calibration of a measuring instrument using those standards, and stage 4 to an end-user
measurement using the calibrated instrument). The staged model is described as follows;
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Y1 = f1(· · · )
Y2 = f2(· · · )
Y3 = f3(Y1, Y2, · · · )
Y4 = f4(Y3, · · · )

where unspecified arguments ‘· · · ’ represent some subset of the influence quantities
X1, X2, · · · , Xl . The end user can probably only formulate a model for stage 4, f4(Y3, · · · );
thus, information about earlier stages must be summarised and reported down the chain in
a suitable format. If the model was expressed as a single function, the composition of the
stages would provide the following.

f (X1, X2, · · · , Xl) = f4( f3( f1(· · · ), f2(· · · ), · · · ), · · · ) .

Now, the outcome of data processing should not be affected by the expression of the
model as a single function or a series of functions. This has a bearing on how information
should be communicated along a traceability chain [10]. By reporting uncertain numbers
between stages, final results can be obtained that are the same as would be found for
a single model. Uncertain numbers realise the GUM’s ideal method for evaluating and
expressing the uncertainty of a result [3] [Section 0.4].

Y1 = f1(· · ·) Y2 = f2(· · ·)

Y3 = f3(Y1, Y2, · · ·)

Y = f4(Y3, · · ·)

Figure 2. A measurement carried out in four stages. Arrows indicate the transfer of information about
intermediate results. The unspecified function arguments ‘· · · ’ represent external quantities that
influence the procedures. This figure does not represent a particular measurement, but the four stages
may be regarded as follows: realisation of unit reference standards (stages 1 and 2), calibration of an
instrument using the standards (stage 3), and a measurement made with the calibrated instrument
(stage 4).

2.4. A Simple Example

This section presents an example of uncertain-number data processing applied to a
simple electrical network. Figure 3 shows an electrical network with three resistors in series.
A voltmeter can be connected between the lower terminal and any of the three terminals
above, allowing the potential difference between terminals 0 and 1, 0 and 2, or 0 and 3 to be
measured (V10, V20, or V30, respectively).
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3

2

1

V10

V20

V30

I0

Figure 3. Three resistors in an electrical network. A voltage measurement can be performed between
the bottom terminal and any terminal above.

We adopt a simple model for an imperfect voltmeter. The model has three sources of
error (influence quantities) that affect the response of a meter (reading) to an input voltage
V. A random error (noise), represented as Ernd, affects every reading; a systematic error,
Eoff, contributes a fixed offset to every reading; a systematic relative error, Erel, contributes
an error proportional to the reading itself (representing imperfect scaling or non-linearity
of the instrument). The relationship between the input voltage, V, and a voltmeter reading,
v, is expressed by the model (already shown in Section 2.2).

V = v(1 − Erel)− Eoff − Ernd . (8)

The influence quantities Erel, Eoff, and Ernd are unknown, and so their effects cannot be
corrected. However, the displayed value v is used as an approximation for V, because we
assume that the instrument is properly adjusted. This is the same as assuming that the
residual errors are small enough to be considered approximately zero. The uncertainty in
the value of v, due to the estimates erel = eoff = ernd = 0, can be found if the uncertainties
u(erel), u(eoff), and u(ernd) are known.

For uncertain number objects representing inputs to a measurement model, we find
it helpful to adopt the term elementary uncertain number. Elementary uncertain numbers
represent influence quantities. Numeric data must be provided when defining elementary
uncertain numbers during the problem initialisation phase; this includes the following: a
value (the estimate), a standard uncertainty, and a number of degrees of freedom.

We can use GTC to evaluate properties of the circuit, given measured values and some
information about the voltmeter’s characteristics. Objects of the class Voltmeter, shown
below, are used for data processing. During initialisation of a new Voltmeter (execution
of __init__()), elementary uncertain numbers representing the two systematic errors are
created and stored as instance variables (ureal() creates the uncertain numbers).

from GTC import ureal, rp, result

class Voltmeter(object):

def __init__(self,

# Default characteristics for 1 V scale
u_off=5E-3,

u_rel=8E-4,

u_rnd=1E-4

):

self.u_rnd = u_rnd

self.E_off = ureal(0.0,u_off,label="E_off")
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self.E_rel = ureal(0.0,u_rel,label="E_rel")

def applied_voltage(self,v,index):

E_rnd = ureal(0,self.u_rnd,label="E_rnd_{}".format(index))

V = v*(1 - self.E_rel) - self.E_off - E_rnd

return V

The applied_voltage() method implements the model Equation (8). It returns an
uncertain number for the applied voltage corresponding to a displayed value, v (the second
argument, index, is used to create a label for the elementary uncertain number, E_rnd,
which is associated with random noise). In the code below, the uncertain numbers V_10,
V_20 and V_30 are obtained from measurements of V10, V20, and V30.

# Displayed values, in volt
v_10 = 0.125841

v_20 = 0.385569

v_30 = 0.981950

# Voltmeter instance, using default specifications
dvm = Voltmeter()

# Uncertain numbers from displayed values
V_10 = dvm.applied_voltage(v_10,1)

V_20 = dvm.applied_voltage(v_20,2)

V_30 = dvm.applied_voltage(v_30,3)

We can infer circuit properties from these uncertain-number results. For example,
the code below shows how accurately the voltage V10 was measured and the most important
contributions to the uncertainty in that measured value.

# Utility function to display a result
def display(v,label):

print( "{}: {}".format(label,v) )

for l,u in rp.budget(v,trim=0):

print( "{}: {}".format(l,u) )

display(V_10,"V_10")

The function display() prints the measured value and a standard uncertainty in parenthe-
ses, followed by a list of components of uncertainty in order of magnitude. The label for
each component is shown on the left and the magnitude of the component of uncertainty
on the right. The two most significant figures of standard uncertainty are shown. Here, V10
has a measured value of 0.1258 volts and a standard uncertainty of 0.0050 volts.

V_10: 0.1258(50)

E_off: 0.005

E_rel: 0.00010067280000000002

E_rnd_1: 0.0001

Note that the dominant component of uncertainty is associated with the approximation
made for systematic offset error Eoff. Very similar results are obtained for V20 and V30.

Other circuit properties can be calculated too. For example, the potential difference
across resistor 2 can be found by taking the difference between V_20 and V_10. Subtracting
those uncertain numbers in the argument, display(V_20-V_10,"V_20-V_10") yields the
following.

V_20-V_10: 0.25973(25)

E_rel: 0.00020778240000000003

E_rnd_1: 0.0001

E_rnd_2: 0.0001

E_off: 0.0
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This is an interesting result, which illustrates the detailed underlying calculation of un-
certainty that is performed automatically. The standard uncertainty in the difference here
is only 0.000 25 V—significantly less than the standard uncertainty in the individual mea-
surements (both 0.0050 V). The uncertainty in this voltage difference is lower because it is
insensitive to the offset Eoff (the offset is exactly the same in both readings). The display of
components of uncertainty shows that the sensitivity to Eoff has been reduced to zero and
that the influence of Erel is now dominant. We might also expect a smaller contribution to
uncertainty to come from relative systematic error Erel. However, that component varies in
proportion to the applied voltage (it is a systematic relative error), and since v20 is about
three times larger than v10, the contribution to uncertainty from Erel is still about two times
larger than it was in the direct measurement of V10.

3. Aspects of GTC Design

Using the mathematics described in the previous section applied to a given measure-
ment model, GTC is required to evaluate a measured value, a standard uncertainty, and
a number of degrees of freedom. This data processing can involve many computational
stages and hundreds of influence factors. In addition, GTC can report the components
of uncertainty in a result due to the uncertainty of individual influence (input) quantities
and the components of uncertainty due to uncertainty in particular intermediate results,
as required. Furthermore, it can store and retrieve uncertain numbers, allowing stages
along a traceability chain to be appropriately handled.

This section describes how GTC has been designed to meet these challenges. The GTC
package was first released four years ago, but our experience with the uncertain-number
approach reaches back more than twenty years. We have used different programming
languages and changed our thinking about how to implement the technique. For instance,
early versions encountered difficulties when the size and variety of the measurement prob-
lems grew, and when additional software features were requested. Some programming
languages were found to be better suited than others; larger problems exposed scaling weak-
nesses in our designs; and additional features place strain on some of the data structures
and algorithms. GTC implements what we now consider to be our ‘best’ approach.

3.1. Simultaneous Calculation of Value and Uncertainty

Section 2.2 explained that the calculation of components of uncertainty can be handled
using the chain rule for partial differentiation when a measurement model is expressed in
stages. GTC extends this further by decomposing stage model expressions into very basic
operations, such as ×, ÷, sin(), exp(), etc. This is effectively using a computational technique
called automatic differentiation [11]. Arithmetic operator overloading and a library of
mathematical functions for uncertain numbers are used to automate decomposition of
mathematical expressions into simple steps and then to evaluate the value and components
of uncertainty at each step.

All the basic uncertain-number functions and arithmetic operations defined in GTC
are either univariate or bivariate. For a univariate function, fh(z), Equation (7) reduces to
the following:

uj(yh) =
∂ fh
∂z

uj(z) , (9)

and for a bivariate function, fh(z1, z2), Equation (7) becomes the following.

uj(yh) =
∂ fh
∂z1

uj(z1) +
∂ fh
∂z2

uj(z2) . (10)

Thus, for example, the uncertain-number trigonometric sine function can be handled
as follows. If the value of an uncertain-number input is z, then the value of the uncertain-
number result is yh = sin(z). Furthermore, if there are two components of uncertainty
associated with the input, u1(z) and u2(z), then the two corresponding components of
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uncertainty associated with the result are u1(yh) = c u1(z) and u2(yh) = c u2(z), where
c = ∂ fh/∂z = cos(z) is the derivative in (9).

3.2. Unique Identifiers

GTC algorithms track the identity of elementary uncertain numbers representing
influence factors. The subscript i that appears on the terms for components of uncertainty,
ui(y), is the same as the subscript appearing on the influence quantities, Xi, in model
Equation (1).

Y = f (X1, X2, . . .) .

Software and digital records must somehow keep track of these i’s, even when mea-
surements are carried out in stages, at different locations and at different times. GTC uses a
simple tuple of integers as an identifier format. The first integer is kept fixed for a given
session while the second integer takes the value of a counter that is incremented each time
an elementary uncertain number is created. To ensure that these identifiers are unique in
time and space, the first integer is a Universally Unique Identifier (UUID) formatted as a
128-bit integer.

This identifier format reveals nothing about the influence quantity, although identifiers
can be arranged in order, which improves the performance of some algorithms. Would
a more sophisticated type of identifier be useful? For the purposes of data processing,
the only requirement is uniqueness. Nevertheless, GTC already allows text labels to be
associated with nodes (used as labels for influence quantities in uncertainty budgets) and a
planned enhancement to GTC will allow information about influence quantities to be held
in a manifest and indexed by unique identifiers. Such a manifest could accompany a digital
record of uncertain-number data. This could address any need for additional metadata
about influence quantities, without the burden of minting and configuring more specialised
digital objects designed to access information on the internet [12].

3.3. Node Classes

During a GTC calculation, most of the uncertain numbers that are created may be
regarded as temporary objects and can be garbage-collected almost immediately. If this
is not performed in large problems, the demands on memory can seriously limit perfor-
mance. To address this, GTC only holds essential information about influence quantities,
and information about certain intermediate results as required. This essential information
is kept in small node objects, allowing the memory occupied by larger uncertain-number
objects to be reclaimed when not required.

There are two classes of node: A Leaf is associated with elementary uncertain numbers
and a Node is associated with uncertain numbers representing intermediate results; Leaf
is a subclass of Node (Figure 4). A Leaf is created whenever an elementary uncertain
number is declared. The information encapsulated includes the following: a value of
standard uncertainty; a number of degrees of freedom; a Boolean flag, which identifies
objects declared to be independent; a string label, for display purposes; a unique identifier;
and two Python collection objects. One of these is the dictionary correlation, which
holds values of r(xi, xj) for calculations such as Equation (11). The other is the ensemble
set, which is used to identify other nodes associated with an ensemble of closely related
elementary uncertain numbers. Ensembles are used in the calculation of degrees of freedom
described in Section 2.1 (see also Appendix A.1).

While a Leaf is created for every elementary uncertain number, there is no need to
create nodes at every stage of a calculation. When intermediate components of uncertainty
are required (for an intermediate result of particular significance or when an uncertain
number will be stored), the function result() is used to create a new Node (as shown
below in Section 3.5 and later in Appendix A.3).
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Figure 4. A UML diagram for node classes. There are two types of node: Node and Leaf. Leaf nodes
are associated with elementary uncertain real numbers, while objects of the parent class Node may be
associated with intermediate uncertain-number results. The uid attribute can be used to sort nodes.
The first integer in uid is a common UUID value for all the nodes created in a Python session, while
the second integer enumerates the nodes created in that session.

3.4. Propagating Uncertainty

During uncertainty propagation, components of uncertainty must be evaluated at
each step. The cumulative effect of these computations can dominate execution time and
the demands on memory can be high. Moreover, the overhead of looking up correlation
coefficient values for pairs of inputs in Equation (3) during the final calculation of a standard
uncertainty is inefficient.

To address this, information about components of uncertainty is stored in several
sequences in uncertain-number objects (u_components, d_components and i_components
in Figure 5). The elements in these sequences consist of a component of uncertainty
paired with a node that holds information about the corresponding influence quantity (see
Figure 4).

Figure 5. A UML class diagram for an uncertain real number. Vector objects contain sequences of
pairs (the Node and Leaf classes in Figure 4). The Vectors u_components and d_components hold
components of uncertainty for independent and dependent influences, respectively. The Vector
i_components holds components of uncertainty with respect to designated intermediate results.
The private node attribute will refer to a Leaf when an UncertainReal object is elementary, or to a
Node when the object is an intermediate result, but otherwise, the attribute is not assigned.

During calculations, an uncertain number is created at every step. The components of
uncertainty are evaluated by weighting the components of uncertainty for the inputs to the
step and combining these weighted components when common influences are involved.
By keeping the elements in sequences ordered, this process can be handled efficiently by
stepping along the sequences and identifying any common influences. The ordering is
established by the uid attribute of node objects.
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For example, consider the multiplication of a pair of uncertain numbers, fh(Z1, Z2) = Z1 Z2.
Suppose the component-of-uncertainty sequence for the first argument contains the follow-
ing elements, where only the first four digits of the UUID integer are shown:

(7953..., 1) : 3,

(7953..., 2) : −1,

(7953..., 4) : 15,

(7953..., 6) : −5

and the component-of-uncertainty elements for the second argument are as follows.

(7953..., 1) : −1,

(7953..., 3) : 2,

(7953..., 4) : 2,

(7953..., 5) : 12

To obtain the component-of-uncertainty sequence for the product, components in the
first sequence are weighted by the value of the second argument and components in the
second sequence are weighted by the value of the first argument. The weighted components
of common influences are added together (in this case, there is a pair of common influences
identified by (7953 . . . , 1) and (7953 . . . , 4)). Thus, if the value of the first argument is 5 and
the value of the second is 10, the components of uncertainty for the product are as follows.

(7953..., 1) : 25,

(7953..., 2) : −10,

(7953..., 3) : 10,

(7953..., 4) : 160,

(7953..., 5) : 60,

(7953..., 6) : −50

When evaluating Equation (3), the number of terms to be summed grows in proportion
to the square of the number of input arguments. Moreover, a value of r(xi, xj) is needed for
every pair of inputs. However, in practice, there are very few non-trivial correlation coeffi-
cients assigned ( when i = j, r(xi, xj) = 1 and usually r(xi, xj) = 0, when i �= j). Therefore,
not only is the overhead of looking up correlation coefficients unnecessary but many terms
in the double sum are zero. To streamline this calculation, the data for independent and
dependent influences are separated in two different component-of-uncertainty sequences
(u_components and d_components, in Figure 5). When elementary uncertain numbers are
defined, it will be known whether correlation coefficients will be associated with the inputs;
thus, dependent and independent influences can be identified and separated. The eval-
uation of Equation (3) can then be handled more efficiently. For instance, if there are
independent estimates X1, · · · , XK and dependent estimates XK+1, · · · , Xl , the calculation
of Equation (3) can be expressed as follows:

u(y) =

[
K

∑
i=1

u2
i (y) + 2

l

∑
i=K+1

l

∑
j=i+1

ui(y) r(xi, xj) uj(y)

]1/2

, (11)

where the double sum is now only over dependent terms.

3.5. Intermediate Results

In some problems, the interpretation of results is complicated by a large number
of influences and, hence, a large number of components of uncertainty. A succinct and
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often more intuitive presentation can sometimes be obtained, without sacrificing rigour,
by reporting the sensitivity of a final result to uncertainty in intermediate results. This
is implemented in GTC by using another sequence for components of uncertainty with
respect to designated intermediate results ( i_components in Figure 5).

To initialise the process of calculating an intermediate component of uncertainty,
function result() must be applied to an uncertain number. This seeds a new element in
i_components. Thereafter, propagation occurs, as before, by weighting the intermediate
components of stage inputs by the partial derivatives of the stage function. The elements
in the sequence i_components are also node-value pairs, but a Node rather than a Leaf is
used (see Figure 4).

The electrical network example can be used to illustrate the use of intermediate results.
Suppose the current through the series network is measured as 1.0000 mA, with a standard
uncertainty of 0.0010 mA. The resistance of the resistor in the middle of the network, and a
breakdown of the contributions to uncertainty in that value, is obtained simply from the
following.

I = ureal(1E-3,0.001E-3,label="I")

display( (V_20-V_10)/I, "R2" )

The results are as follows.

R2: 259.73(36)

I: 0.2597279999999999

E_rel: 0.20778240000000003

E_rnd_1: 0.1

E_rnd_2: 0.1

E_off: 0.0

However, to see how resistance depends on voltage and current measurements, we declare
the voltage difference to be an intermediate result and report an uncertainty budget in
terms of only the current and voltage.

V_20_V_10 = result(V_20-V_10,label="V_20-V_10")

for l,u in rp.budget(V_20_V_10/I,influences=[I,V_20_V_10]):

print( "{}: {}".format(l,u) )

The results are as follows:

I: 0.2597279999999999

V_20-V_10: 0.2513434418276316

which shows that the contribution to uncertainty from the current measurement is com-
parable to the contribution from the voltage measured across the resistor. This was not so
obvious from the complete list of uncertainty components obtained earlier.

3.6. Storage and Retrieval of Uncertain Numbers

Section 2.3 explained that traceable measurements can be preformed in stages and
that, by reporting uncertain numbers when data are processed at each stage, the final
uncertainty can be evaluated correctly. The results at one stage will be required at a later
time and place. Thus, uncertain numbers must be stored somehow and their identities,
which correspond to physical quantities in the actual measurement, must be retained.
In GTC, an Archive object is used to manage storage and retrieval of uncertain numbers.
The unique identifiers described in Section 3.2 keep track of uncertain-number identities in
different Python sessions.

As an example, the code below saves an uncertain number for the voltage difference
V20 −V10 in a text file using a JSON format. Note that the GTC function result() is applied
to designate V_20 - V_10 as an intermediate result. This is a prerequisite for storage.

from GTC import pr

a = pr.Archive()
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a.add( V_20_V_10 = result(V_20 - V_10) )

with open("file_name.json", "w") as f:

pr.dump_json(f,a,indent=4)

The uncertain number V_20_V_10 for the voltage difference is retrieved by the following:

with open("file_name.json", "r") as f:

a = pr.load_json(f)

display( a["V_20_V_10"] ,"V_20_V_10")

which produces the following output.

V_20_V_10: 0.25973(25)

E_rel: 0.00020778240000000003

E_rnd_1: 0.0001

E_rnd_2: 0.0001

E_off: 0.0

This shows that the necessary information about influence quantities has been retained.
Alternatively, the measurements of V10 and V20 can be saved individually.

a = pr.Archive()

a.add( V_10 = result(V_10) )

a.add( V_20 = result(V_20) )

with open("file_name.json", "w") as f:

pr.dump_json(f,a,indent=4)

Then, in a later session, the difference between the individual results can be evaluated by
the following:

with open("file_name.json", "r") as f:

a = pr.load_json(f)

V_10 = a["V_10"]

V_20 = a["V_20"]

display(V_20 - V_10,"V_20_V_10")

which provides exactly the same results.

V_20_V_10: 0.25973(25)

E_rel: 0.00020778240000000003

E_rnd_1: 0.0001

E_rnd_2: 0.0001

E_off: 0.0

Although the code here suggests that uncertain-number objects are simply being saved
and restored, there is more to it: information about related elementary and intermediate
uncertain numbers is also included in the digital record. When an uncertain number is
‘added’ to an archive, objects that hold information about related influences are identified
from the component-of-uncertainty sequences. For instance, we showed earlier that the
calculation associated with V_10 could be decomposed into stages (Figure 1). Referring
again to that figure and thinking about data processing, the error terms, Erel, Eoff, and
Ernd, correspond to elementary uncertain numbers, and each of the circled mathematical
operations represents an intermediate stage in the calculation. If the intention is to store
the uncertain-number V_10, then information is also required about the voltmeter errors.
Figure 6 shows objects with information that would be saved. Later, when the contents of an
Archive is loaded back into a different session, this contextual information is immediately
restored (nodes are created with the appropriate identifiers). This ensures that when
uncertain numbers are retrieved from an archive, they behave as they would have in
the context of the original session, which maintains the integrity of information in a
traceability chain.
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Figure 6. A UML object diagram showing information that would be collected when the uncertain
number V_10 is stored. The three Leaf objects contain information about the error terms in the
voltmeter measurement model: the fixed offset, the relative error and the random noise. Only one
Leaf for the influence of noise is shown; however, if several readings had been taken there would be
a different node for each reading.

4. Discussion

This paper provides some insight into the usefulness of uncertain numbers, which
have the distinctive feature of providing an abstract representation for measured quantities,
allowing uncertainty calculations to be automated. Recently, uncertain numbers have
been applied to a goniometric measurement system for optical reflectance. The four-
axis goniometric system has many configuration errors that must be considered in the
measurement model to account for final measurement uncertainties [7]. The application
of GTC was carefully compared with alternative computational methods, using Monte
Carlo and direct mathematical analysis. GTC was found to be the preferred choice. Using
the information provided by uncertain numbers, the authors were able to obtain a better
understanding of the measurement system and the inherent correlations between significant
measurement errors. This enabled them to significantly improve the accuracy of certain
measurements.

The inherent support for metrological traceability is perhaps the most important
quality of uncertain numbers. This aspect is implemented in data structures and storage
formats used by GTC, which is a particular choice but other formats would be possible.
One can easily imagine a more heterogeneous situation, where processing at various
stages would be carried out using different software tools. To support this, the format for
exchange of data between stages would need to be standardised. That is, there would need
to be agreed formats for representing uncertain numbers, which would be used in digital
reporting documents such as calibration reports [13].

Digitalisation should offer benefits that are not currently available. The GUM recom-
mends that detailed information about influence quantities be reported at each stage. How-
ever, this rarely happens, because calibration certificates and other measurement reports
are intended to be read by people; thus, handling the additional data would be difficult.
As a consequence, information about common influence factors is rarely shared. A simple
situation where this might arise is the scenario of a batch of sensors that are calibrated
using a more accurate reference device. If the common reference is ignored, the accuracy of
results obtainable from a survey of the sensors’ readings is compromised [14]. However,
uncertain-number calibration factors can track common effects and account for them when
comparing readings from different sensors. This was illustrated in Section 2.4, where
E_off contributed a common offset to single voltage readings but nothing to uncertainty
in the voltage difference. It is also worth noting that a ‘smart’ sensor capable of reporting
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uncertain-number results would not need to process a lot of information. As was the case
of the simple voltmeter, a model of the sensor measurement might only require a few
influence factors and the calculations would be simple.

The various stages of a traceable measurement often occur in different locations
(national metrology institute, second-tier calibration laboratory, etc.) but they may also
happen at different times in the same location. For example, a working standard might
be calibrated in-house against an externally calibrated transfer standard. The working
standard would then be used repeatedly to calibrate different instruments at different
times. Importantly, measurement errors realised when at the time the working standard is
calibrated should be treated as systematic effects in subsequent instrument calibrations.
Performing this would allow any bias, or correlation, in downstream measurement results
using those instruments to be accounted for correctly. This could be easily handled by
digitalisation if uncertain-number storage and retrieval mechanisms are used to save
calibration data for the working standard and later retrieve it for reuse when instruments
are calibrated.

During formal international measurement comparisons, national metrology institutes
(NMIs) go to much greater pains when reporting measurement data than they do for
regular calibration work. These international comparisons assess the competence of NMIs
in performing specific types of measurement. The more detailed reporting requirements
in comparisons align with the GUM’s recommendations in this case. A recent study,
which explored a future scenario where an uncertain-number reporting format was used
by all participants, showed that using uncertain numbers would not only provide the
information required, but they would also simplify comparison analysis and comparison
linking and provide additional insights into the results [6].

Measurement models are needed in order to use uncertain numbers effectively. The
close correspondence between quantity terms in a model and uncertain numbers in data
processing routines makes software development and testing more robust and reliable
and avoids the need to explicitly derive expressions for the components of uncertainty
from a model, which GTC handles automatically. However, although modelling lies at the
heart of the GUM’s approach, skilled metrologists are often confident in their ability to
assess measurement uncertainty heuristically and frequently elide the formal modelling
step. This presents a problem for digitalisation, because digital systems need a rigorous
formal problem definition for autonomous operation. Some tutorial guidance on developing
measurement models has been provided in a recent booklet [15] and is also the subject
of another paper [16]. There is also a new supplement to the GUM, which deals with
modelling [17].

One common conceptual difficulty when modelling is the omission of influence quan-
tities estimated as zero. These terms would not be needed in conventional data processing;
however, they must be modelled, because the actual (unknown) values affect the final
measurement result, and so they contribute to uncertainty. Influence quantities with trivial
estimates are often called residual errors. The electrical network example, in Section 2.4,
included three residual errors that were all estimated as zero. These terms were represented
by uncertain numbers and modelled imperfect voltmeter behaviour.

5. Conclusions

GTC is a software tool for data processing with automatic evaluation of measurement
uncertainty. It follows international best-practice, described in the GUM, and offers useful
extensions to those methods for important special cases. The use of uncertain numbers is
a distinctive feature of GTC. The uncertain-number data-type facilitates data processing,
which can be performed in a piece-wise and open-ended manner. This allows calculations
to be more easily matched to the models of a measurement performed in stages. The
automation of uncertainty calculations allows measurement data processing to be made
more rigorous, which can lead to accuracy enhancement in some cases. The uncertain-
number format significantly exceeds current paper-based practices that support traceability.

114



Metrology 2022, 2

Therefore, GTC and the data structures used to implement uncertain numbers are a useful
example of software that meets the requirements of a fully functional digital infrastructure
for metrological traceability.
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IUPAP International Union of Pure and Applied Physics;
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NIST National Institute of Standards and Technology;
NMI National Metrology Institute;
OIML International Organization of Legal Metrology;
SI International System of Units (Système International);
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Appendix A. Additional Details

This Appendix includes details about a number of other aspects of GTC. Support
for problems involving finite degrees of freedom with correlated inputs is discussed in
Appendix A.1 and support for complex quantities is briefly covered in Appendix A.2.
Appendix A.3 presents an unusual case, where counter-intuitive results are obtained
due to the relationship between Python variables and underlying uncertain-number ob-
jects. This provides further insight into computational mechanisms. Appendix A.4 briefly
describes the validation of GTC and Appendix A.5 compares GTC with some similar
software projects.

Appendix A.1. Ensembles

As noted in Section 2.1, the Welch-Satterthwaite formula cannot be used on correlated
data with finite degrees of freedom. However, there is an extension that can be applied
in situations where data are deemed to come from closely related quantities with fixed
interdependencies [9]. To implement this, GTC algorithms must be able to identify sets
of uncertain numbers declared as representing related quantities. The ensemble attribute
of the Leaf node is used for this purpose (Figure 4). An ensemble is a set of Leaf nodes.
There are some GTC functions that declare ensembles automatically, such as functions for
linear regression; in other cases an ensemble can be explicitly defined by multiple_ureal()
(the GTC online documentation for multiple_ureal() shows a calculation from GUM
Appendix H2 [18]).
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GTC includes regression functions that estimate the parameters of a straight line pass-
ing close to a sample of data. The finite sample size means that uncertainties in estimates
for the slope and intercept have finite degrees of freedom and are usually correlated.

The code below shows a least-squares regression for nine data points. The GTC
function line_fit() returns an object with an attribute that holds a pair of uncertain
numbers for the slope and intercept (a_b).

from GTC import type_a, get_correlation

x = [1,2,3,4,5,6,7,8,9]

y = [15.6,17.5,36.6,43.8,58.2,61.6,64.2,70.4,98.8]

result = type_a.line_fit(x,y)

a,b = result.a_b

print("a =",repr(a))

print("b =",repr(b))

print("r(a,b) =",get_correlation(a,b))

The results are as follows.

a = ureal(4.813888888888881,4.886206312183354,7)

b = ureal(9.408333333333335,0.8683016476563609,7)

r(a,b) = -0.888523316639

The slope and intercept are correlated and there are seven degrees of freedom associated
with the uncertainties. However, these results may still be used to calculate the expected
value y for x = 5.5:

y_p = a + b*5.5

print("y_p =", repr(y_p))

which produces a result with seven degrees of freedom.

y_p = ureal(56.55972222222223,2.2835948151943155,7.0)

Appendix A.2. Complex Quantities

Section 2.2 described data processing for real-valued quantities, but very similar
formulae apply to complex quantities. These are also implemented in GTC. A review of
measurement uncertainty for complex quantities has been given by Hall [19].

GTC can handle mathematical expressions with a mixture of real-valued and complex-
valued quantities and results may be either real or complex uncertain numbers, as is
appropriate. An uncertain complex number is implemented as a pair of uncertain real
numbers; thus, uncertainty is represented by uncertainties in the real and the imaginary
components as well as the correlation coefficient between those components. A convenient
format for specifying uncertainty in a complex value is a 2 × 2 variance-covariance matrix.
The number of degrees of freedom associated with uncertainty in the real and imaginary
components is the same.

Often a complex quantity is evaluated from a small sample of data. In that case,
the real and imaginary component estimates are dependent, being evaluated from the same
sample; they will also have a finite number of degrees of freedom. As already mentioned,
the combination of finite degrees of freedom and correlation creates problems for data
processing. However, when converting from a complex quantity to a real one, the modified
form of the Welch–Satterthwaite formula can be useful [9]. For example, suppose a complex
number z = x + iy has been evaluated from a small sample, x = 0.20 and y = 0.0, the real
and imaginary components each have a variance of 0.1, there is a covariance between the
components of 0.05, and there are 10 degrees of freedom. If the real-valued magnitude fo
the following:

|z| =
√

x2 + y2 .

is of interest, it can be evaluated as follows.
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from GTC import ucomplex, magnitude

z = ucomplex(0.20,[0.1,.05,.05,0.1],10)

print("mag(z) = {!r}".format( magnitude(z) ))

The result

ureal(0.2,0.31622776601683794,10.0)

is an uncertain real number with 10 degrees of freedom.
On the other hand, if the result of a calculation is an uncertain complex number, there

is an alternative to the Welch–Satterthwaite formula that must be used [20]. Here is an
example (from [20]):

from GTC import ucomplex

x1 = ucomplex( 1, (0.96,-0.34,-0.34,0.27), 5 )

x2 = ucomplex( 1, (0.51,0.33,0.33,0.31), 3 )

x3 = ucomplex( 1, (0.45,0.28,0.28,1.65), 6 )

z = x1 + x2 + x3

print("z = {0.x}".format( z ))

print("u(z) = {0.u}".format( z ))

print("r(x,y) = {0.r}".format( z ))

print("df(z) = {0.df}".format( z ))

which displays the complex value, the standard uncertainties, the correlation coefficient,
and the degrees of freedom.

z = (3+0j)

u(z) = StandardUncertainty(real=1.3856406460551018, imag=1.493318452306808)

r(x,y) = 0.13048503857331625

df(z) = 11.340977790491408

Appendix A.3. Uncertain Number Objects and References

The combination of uncertain numbers and Python language features can provide
intuitive and meaningful representations of a problem domain. In particular, the distinction
between random and systematic effects can be elegantly captured in object-oriented designs.
However, on rare occasions, the behaviour of the Python variable names that refer to objects
in memory can result in confusion. It is interesting to see how this can happen, because it
provides insight into the computational processes. Here is a simple example.

Consider the following equations.

u = x ,

v = x + y ,

w = u + v .

What is ∂w/∂u? To find the answer using GTC, we may performing the following (note,
partial derivatives are evaluated when elementary uncertainty numbers are declared with
an uncertainty of unity):

from GTC import ureal, component, result

x = ureal(0,1,label="x")

y = ureal(0,1,label="y")

u = x

v = x + y

w = u + v

print( "partial derivative wrt x =", component(w,x) )

print( "partial derivative wrt u =", component(w,u) )
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which displays the following.

partial derivative wrt x = 2

partial derivative wrt u = 2

If we had in mind that w = u + v, this result may come as a surprise because ∂w/∂u = 1
would be expected. However, it is important to remember that the terms in a calculation
correspond to uncertain-number objects in memory and not the variable names in code.
Both x and u refer here to the same elementary uncertain number. Therefore, equation
w = u + v actually corresponds to w = 2x + y in terms of the underlying objects, and so
∂w/∂x = 2 is correct.

Confusion is created by equating the Python variables u = x if it is (incorrectly)
assumed that u and x are somehow different. If we intend to take the derivative of
w = u + v with respect to u, a distinct uncertain-number object must be created for u (and
designated as an intermediate result to allow an intermediate component of uncertainty to
be calculated).

To implement this calculation, we may use the unary “+” operator to create an addi-
tional uncertain number representing u in memory. This operator copies the numerical
attributes of its argument into a new uncertain number. As far as calculation is concerned,
this object corresponds to a distinct term. The following code clones x and designates it as
an intermediate result to allow the component of uncertainty to be evaluated.

x = ureal(0,1,label="x")

y = ureal(0,1,label="y")

u = result(+x,label="u")

v = x + y

w = u + v

print( "partial derivative wrt x =", component(w,x) )

print( "partial derivative wrt u =", component(w,u) )

This displays the following.

partial derivative wrt x = 2

partial derivative wrt u = 1

This situation is unusual. Normally, result() would be applied to an object produced
as the result of a calculation; thus, there is almost never a need to clone uncertain numbers
as is shown here.

Appendix A.4. Testing and Validation

GTC has a modular structure. It uses Python arithmetic operator overloading and
mathematical function definitions to decompose mathematical expressions into basic
uncertain-number operations. This makes the code amenable to unit testing. The cal-
culation of values uses standard Python mathematical operations and processing of com-
ponents of uncertainty uses of automatic differentiation, which also makes use of built-in
Python arithmetic and mathematical libraries. An extensive suite of test cases has been
built up to verify implementation details [5]. Calculations are also checked against standard
examples from appendices to the GUM and other published sources, including various
forms of regression analyses with uncertainties. Moreover, GTC has been used for more
than a decade at the Measurement Standards Laboratory, where it is closely scrutinised by
different groups. Very few issues have been reported since the project was made publicly
available on github in 2018.

Appendix A.5. Similar Software

Software to evaluate measurement uncertainty is often used alongside other data
processing tools (a notable example is the web-based calculator called The NIST Uncertainty
Machine [21]). However, the separation of data processing into different work streams
is unnecessary with GTC, because uncertainty calculation is an integral part of all data
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processing. GTC may be incorporated in projects to provide data processing and sup-
port for traceability. This is also the case for the C# library called UncLib [22], which
is part of the data acquisition and data processing application called VNA Tools II [23],
now used by many leading microwave metrology laboratories. Similarly to GTC, UncLib
handles measurements of real-valued and complex-valued quantities and provides sup-
port for traceability by identifying input quantities and allowing them to be stored and
retrieved. However, the data structures of UncLib have been designed to support a particu-
lar optimisation strategy, which results in some different behaviours (see Zeier et al. [22]
[Section 3.3]). For instance, the evaluation of the intermediate components of uncertainty
may fail unless certain preconditions are satisfied [22] [Section 3.4] and the extensions to
the Welch–Satterthwaite formula and degrees of freedom support for complex quantities
cannot be implemented.

A well-known Python package that calculates uncertainty is Uncertainties [24]. This
package is intended for engineering error and sensitivity analyses, such as described by
Bevington and Robinson [25]. Similarly to GTC and UncLib, uncertainties use automatic
differentiation to evaluate partial derivatives during data processing. However, it does not
calculate degrees of freedom, nor does it handle complex quantities or provide for storage
and retrieval of results.
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Abstract: One of the main challenges in designing information fusion systems is to decide on
the structure and order in which information is aggregated. The key criteria by which topologies
are constructed include the associativity of fusion rules as well as the consistency and redundancy
of information sources. Fusion topologies regarding these criteria are flexible in design, produce
maximal specific information, and are robust against unreliable or defective sources. In this article,
an automated data-driven design approach for possibilistic information fusion topologies is detailed
that explicitly considers associativity, consistency, and redundancy. The proposed design is intended
to handle epistemic uncertainty—that is, to result in robust topologies even in the case of lacking
training data. The fusion design approach is evaluated on selected publicly available real-world
datasets obtained from technical systems. Epistemic uncertainty is simulated by withholding parts of
the training data. It is shown that, in this context, consistency as the sole design criterion results in
topologies that are not robust. Including a redundancy metric leads to an improved robustness in the
case of epistemic uncertainty.

Keywords: information fusion; possibility theory; information fusion system design

1. Introduction

The discipline of information fusion is concerned with the aggregation of uncertain
information from several sources. Through the process of fusion, uncertainty is to be
reduced, that is, information fusion aims at creating information of higher quality [1].

Uncertainty and ignorance manifest in many forms, such as a lack of confidence,
aleatoric uncertainty, or epistemic uncertainty. A comprehensive taxonomy of ignorance
is provided by Ayyub and Klir [2]. Uncertain information are modelled in various mathe-
matical frameworks, especially probability theory, Dempster–Shafer theory, fuzzy set theory,
and possibility theory [3], and each has strengths and weaknesses with regard to types of
uncertainty. Possibilistic information fusion is focused on handling epistemic uncertainty,
imprecise information, and incomplete information [4,5], which stem from, e.g., scarce data,
repetitive data, or biased data. In possibilistic information fusion, knowledge about the
state of affairs is complemented by excluding alternatives, which single information sources
deem impossible.

In the following, this paper relies on the nomenclature of information items and
information sources adopted from [6].

Definition 1 (Information Item). Consider an unknown entity v and a non-empty set of possible
alternatives XA = {x1, . . . , xn} with n ∈ N>0. An information item models information in the
form of plausibilities or probabilities about v regarding XA. An information item can be, e.g., a set,
an interval, a probability distribution, or a possibility distribution. Consequently, an item may be
expressed with certainty (v = x or, assuming A ⊂ XA, v ∈ A), may be affected by uncertainty (v
is probably x or v is possibly x), or may be expressed imprecisely (x1 < vs. < x2).
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Definition 2 (Information Source). An information source S provides information items. It is
an ordered concatenation of information items S = {I1, I2, . . . , Im} with m ∈ N>0. Each
Ij represents an information item at instance j ∈ {1, . . . , m}. An information source may be,
for example, a technical sensor, a variable, a feature, or a human expert.

Often information fusion benefits from distributing the fusion into a multi-step piece-
wise process [7–10]. This means, for example, that information items are fused sequentially,
in parallel, or hierarchically instead of centralised all at once. The sequence in which items
are fused is often referred to as the topology or architecture. While the term architecture is
often used in a broader sense to refer to complete fusion frameworks (see [11–14]), the term
topology is used in this paper to describe the structure in which the fusion is arranged.
Example fusion topologies are shown in Figure 1.

Designing and optimising a fusion topology is one of the main challenges in imple-
menting an information fusion system [15]. An optimal topology reduces communicational
and computational loads, increases fusion accuracy [16], and helps to detect defective
sources [17]. Fusion topologies are usually designed manually, as e.g., in the dissertation of
Mönks [18] or require meta-knowledge about information sources, such as in the work of
Fritze et al. [19]. Automated learning processes are rare. Such a learning process is made
more difficult by epistemic uncertainty due to, e.g., missing or underrepresented classes
in training data or due to having few training data instances to begin with. This calls for
approaches of learning topologies based on possibility theory.

(a) Centralised (b) Serialised (c) Hierarchical

S2

S3

S4

S5

S1

Fusion
Node

Fusion
Node

S1

S2

S3
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S2
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S1

Fusion
Node

Fusion
Node
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Node

Fusion
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Figure 1. Three example information fusion topologies. (a) Centralised fusion, (b) serial fusion,
and (c) hierarchical fusion.

Key characteristics for designing fusion topologies are the associativity of fusion rules,
consistency of information items, and redundancy of information sources. Associativity
allows the optimisation of a topology towards, e.g., computational load or other criteria
without having to worry about distorting the fusion result. Associativity is especially
crucial if a specific topology is necessitated by an application.

Information may not be available at the same time or information sources may be
spatially distributed so that a centralised fusion is simply not feasible. Structuring fusion
based on consistency or redundancy was proposed quite early [17,20]. The basic idea is to
fuse consistent or redundant information in earlier stages and complementary information
in later stages. Grouping sources in this way provides the benefits that (i) it is reasonable to
conduct fusion conjunctively resulting in maximal certain information [6] and (ii) it is easier to
identify defective or malfunctioning sources increasing the robustness of applications [21–24].

In this article, we contribute an approach towards a data-driven automated learning
of information fusion topologies. The article focuses on information modelled within the
possibility theory. As a foundation, common possibilistic fusion rules are recapitulated and
analysed regarding the associativity property. Based on this analysis, design algorithms
relying on consistency and redundancy are proposed and discussed. The aim of the
design algorithms is to build topologies that result in maximal specific (i.e., minimal
uncertain) fusion outcomes and that facilitate source defect detection. The proposed
learning algorithm approaches are discussed with regard to their robustness and further
improved by exploiting outlier resistant averaging possibilistic fusion rules. As a first
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step in this article, an overview of the state of the art in fusion topology design is given
independent of the mathematical framework.

2. Fusion Topology Design in Related Work

Information fusion systems are composed of various interacting parts and methodolo-
gies, such as information sources, information pre-processing, fusion nodes, mathematical
frameworks, or fusion algorithms. This results in in high-dimensional design spaces, i.e., a
large amount of hyperparameters. Deciding on and designing the topology is an important
subtask in fusion system design as identified by Raz et al. [16]. The authors explored
the design space of a relatively simple fusion task (still > 2 × 105 design combinations)
with the help of machine-learning algorithms. Their goal was to estimate the impact of
design choices on the performance of the fusion system. Among other design parameters,
the topology and allocation of sources to fusion nodes were identified to be crucial to the
performance. This motivated ongoing work on topology design.

A widely used approach towards designing topologies and allocating information
sources is to rely on meta-knowledge about the information sources. Mönks et al. [18,25]
grouped information sources (here: technical sensors) into a two-level fusion topology
based on the sensor’s observed objects, measured physical property, or spatial location.
Semantically close (e.g., observing the same object) or spatially close sensors are assumed
to be at least partly-redundant and are allocated to the same fusion node. This manual
approach has been partly automated by Fritze et al. [19,26,27] who equipped sensors with
a self-description containing information about the sensor’s characteristics, its contextual
environment, and observed objects. A rule-based system then matches and groups sensors
based on their self-description. Other ontology-based approaches have been proposed
by Boury-Brisset [28] and Martí et al. [29]. Both do not focus on topology design specifi-
cally but rather on designing or facilitating a fusion system. Boury-Brisset [28] discussed
ontological methods for the integration in the Joint Directors of Laboratories (JDL) fusion ar-
chitecture [30] including the semantic integration of information. Martí et al. [29] proposed
an ontology-based adaptive sensor fusion architecture, and this architecture organises
sensors and external sources into preprocessing nodes and fusion nodes depending on the
task at hand. A recent application of ontology-based design of information fusion systems
can be found in the field of assisted living [31]. Ontological approaches reduce the manual
effort needed for structuring fusion topologies; however, they still require profound expert
knowledge about the information sources and their context. Building the ontology requires
manual engineering and is time-consuming [28].

Designing information fusion topologies is closely related to the data association step
predominately but not exclusively used in the JDL fusion architecture. Solaiman and
Bossé [32] refer to the task of data association as the identification of any relation between
information elements and monitored objects. Waltz and Llinas [33] defined the data asso-
ciation problem with regard to fusion systems more specifically as the “Cross correlation
of measurements and m-ary decisions to partition all measurements into sets of common
origin. One can distinguish between associating a set of measurements (partitioning) and
associating a measurement (or a set of measurements) to a given object. [. . . ]”.

In this definition, the partitioning of measurements refers to preparing a fusion task in
which each partition represents the input to a fusion node; hence, the relation to designing
fusion topologies. Data-driven approaches for data association are given by Grabisch and
Prade [34] and Ayoun and Smets [35]. Both approaches cluster sensor measurements based
on quantifications of the measurements’ proximities. Grabisch and Prade [34] modelled
information within the possibility theory and computed the proximity based on the degree
of intersection of possibility distributions. Ayoun and Smets [35] used Dempster–Shafer
theory instead and clustered based on the degree of conflict between measurements. A
similar approach was taken by Schubert [36,37]—although not explicitly labelled as data
association—who clustered basic belief functions (evidential masses) based on their conflict
and attraction with each other. All of these works ([34–37]) partition information sources
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based on single instances of measurements (the current measurement) and not on historical
data. More sophisticated interdependencies and interrelations between information sources
can only be detected robustly in historical data. For example, for the identification and
quantification of redundancies between sources, meaningful data are necessary, which
spans over the sources’ frame of discernment as shown by Holst and Lohweg [38,39].

Regarding the problem of data association, it has to be mentioned that more recent
publications focus solely on the specific application task of visual target tracking (see
for example the works of Kamal et al. and Yoon et al. [40,41]). This focus comes with a
shift in interpretation of the data association problem as shown by the definition given by
Khaleghi et al. [42]: “[. . . ] the data association problem, which may come in two forms:
measurement-to-track and track-to-track association. The former refers to the problem of
identifying from which target, if any, each measurement is originated, while the latter deals
with distinguishing and combining tracks, [. . . ]”. Publications with this shifted focus are
less related to the problem of designing fusion topologies.

In summary, in related works, the task of structuring fusion topologies has been
approached based on expert knowledge, ontologies, or based on current measurements.
Approaches that consequently analyse historical data or information in order to derive
a fusion topology are missing. While this section considered topology design indepen-
dently from the mathematical fusion framework, the remainder of this paper focuses on
possibility theory.

3. Fusion within Possibility Theory

To provide a basis for a discussion on fusion topology design, the importance of
associativity, and the role of consistency and redundancy, the core principles of possibility
theory (PosT) are recapitulated. For this, common fusion rules are also reported in detail.

The main motivation behind PosT is that probability theory (ProbT) is not able to
model epistemic uncertainty adequately—such as imprecision or missing information.
Probability theory models random phenomena quantitatively; PosT handles incomplete
information qualitatively [5,43]. Zadeh [44] introduced PosT based on fuzzy sets in the
context of natural language processing. He interpreted fuzzy membership functions as
possibility distributions allowing uncertainties in the sense of imprecisions as well as a lack
of confidence in statements [45].

Consequently, PosT is mathematically close to fuzzy set theory [46]. This proximity
often allows mathematical operations defined in the context of fuzzy sets—such as similarity
measures or t-norms—to be applied to possibility distributions. Since Zadeh’s introduction
of PosT, Dubois and Prade [4,6,47–49] and YAGER [50–53] have mainly contributed to
the advancement of possibility theory. If not explicitly mentioned otherwise, a numerical,
real-valued representation of possibility values is assumed (cf. Dubois et al. [6] for an
overview of qualitative and numerical possibility scales).

A possibility distribution is defined as a mapping of mutually exclusive and exhaustive
alternative events to a numerical representation. Let the set of all alternative events be
described as the frame of discernment X and let v ∈ X be an imprecisely known element
whose true value is unknown. Then, a possibility distribution is defined by

πv : X → [0, 1]. (1)

Alternatives x ∈ X that are assigned higher values are deemed more plausible. Alter-
natives with πv(x) = 0 are considered impossible, and alternatives with πv(x) = 1 are fully
plausible. Possibility theory is strongly guided by the minimum specificity principle, which
states that any alternative x not known to be impossible should not be disregarded [45].
Extreme cases of knowledge about v are total ignorance and complete knowledge. In the first
case, ∀x ∈ X : πv(x) = 1. In the case of complete knowledge, only one alternative is fully
possible, and all others are impossible. A possibility distribution πv(x) is said to be normal
if ∃x ∈ X : πv(x) = 1. The subset A ⊆ X, which ∀x ∈ A : πv(x) = 1 is referred to as
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core of πv(x); if ∀x ∈ A : πv(x) ≥ 1, then A is referred to as support. In the following, the
shortened notation π(x) = πv(x) is used.

Let multiple information sources S = {S1, . . . , Sn} each provide an information item
Ii, i ∈ {1, . . . , n} in the form of a possibility distribution πi regarding the same imprecisely
known element v ∈ X. A possibilistic fusion operator is then defined by fu : [0, 1]n → [0, 1]
and the fused possibility distribution is obtained as π(fu)(x) = fu(π1(x), . . . , πn(x))).
Multiple information sources allow the identification of even more impossible or hardly
possible alternatives for the unknown v resulting in more precise, more specific, and thus
more qualitative information. In this sense, the goal in possibilistic fusion is to reach a
maximal specific outcome (the most certain outcome possible) although possibility theory
follows the minimum specificity principle. It is important that none of the available
information is disregarded or neglected—that is, that any information source is considered
by the fusion process (see also the fairness property postulated for fusion operators [6]). This
fairness constraint represents the minimum specificity principle stating that alternatives
that are not known to be impossible are not to be ruled out [45].

Over time, multiple possibilistic fusion operators haven been proposed, verified,
and brought to applications. We propose to categorise these operators as follows:

• Possibilistic Pooling Fusion has mainly been advanced by Dubois et al. [4,48]. The
aim of possibilistic pooling is to find the possibility degree for each alternative x.
Hence, operators work on the grades of possibilities (by applying fuzzy norms).
Inside this framework, the choice of fusion rules is most often based on the state of
knowledge about the reliability of the information sources involved. Depending on
reliability and available knowledge, fusion operators are distinguished into conjunctive,
disjunctive, and trade-off modes [32].

• Possibilistic Estimation Fusion was mainly devised and advanced by Yager [54].
In contrast to pooling, estimation operators are based on Zadeh’s extension principle [55],
which defines the use of mappings to fuzzy inputs. The goal of estimation concerns
itself with finding the result that is the most compatible with all information items.
Operators apply averaging functions on the frame of discernment X.

• Majority-guided Fusion identifies majority subsets—often based on consistency measures—
and aggregates information from these subsets either exclusively or prioritised—similar to
a voting procedure. Majority-guided fusion deliberately violates the fairness principle. It
finds application in situations in which it is explicitly known that sources produce consistent
readings, e.g., in redundantly engineered technical sensor systems [23]. The operators for
majority-guided fusion are often based upon either pooling or fuzzy estimation as is shown
in detail in the following.

3.1. Possibilistic Pooling Fusion

Conjunctive and disjunctive fusion is most commonly performed using triangular
norms (t-norms) and their counterpart triangular conorms (s-norms)—both stemming from
fuzzy set theory. Triangular norms and conorms are functions t, s : [0, 1]× [0, 1] → [0, 1],
which satisfy the properties of commutativity, associativity, and monotonicity [56]. For
t-norms, 1 is the identity element, i.e., t(π, 1) = π. For s-norms, 0 is the identity element, i.e.,
s(π, 0) = π. Examples of t-norms are the minimum and the product operator. An example
of an s-norm is the maximum operator. Although t-norms and s-norms are defined as
binary functions, they can be directly applied to multiple possibility distributions because
of their commutative and associative property.

In conjunctive mode, it is presumed that sources agree at least partially about the
possibility of alternatives, that is, their information items are at least partially consistent.
Consistency within a group of information items I is defined as [4]

h(I) = h(π1, π2, . . . , πn) = max
x∈X

(
t

i∈{1,...,n}
(πi(x))

)
. (2)
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Partially agreeing sources are characterised by items with h(I) > 0—that is, their
possibility distributions have overlapping support. Fully agreeing sources have items with
h(I) = 1, i.e., their possibility distributions have overlapping cores. Conjunctive fusion of
fully consistent information items is then achieved by directly applying a t-norm [48]:

π(fu)(x) = t
i∈{1,...,n}

(πi(x)). (3)

As t-norms satisfy the strong zero preservation principle, i.e., t(π, 0) = 0, the con-
junctive fusion excludes all alternatives, which at least one information source deems
impossible. Conjunctive fusion results in the most specific outcome by eliminating alterna-
tives. If information items are only partially consistent, then fusion based on t-norms results
in subnormal possibility distributions. Renormalising the resulting possibility distribution
leads to

π(fu)(x) =

t
i∈{1,...,n}

(πi(x))

h
i∈{1,...,n}

(πi)
, (4)

which is only defined if sources are not completely disagreeing and if their information
items not fully inconsistent, i.e., h �= 0 [48].

The disjunctive fusion is appropriate if information items are completely inconsistent,
i.e., sources disagree, at least one of them is wrong in its assessment, and it is not known
which one. The disjunctive fusion is given by applying an s-norm:

π(fu)(x) = s
i∈{1,...,n}

(πi(x)) (5)

keeping all available information. In general, purely disjunctive fusion is not desirable as it
results in minimal specific outcomes but is necessary in disagreeing cases.

Trade-off fusion modes combine conjunctive and disjunctive fusion depending on
what is known (or assumed) about the reliability of sources. Prominent fusion rules can be
found in the paper of Dubois and Prade [4]. For this paper, the most important of these are
fusion based on the most consistent subsets, quantified fusion, and adaptive fusion.

One prominent way to aggregate information in a two-step process is to search for
maximal consistent subsets (MCS) [20,57]. These nonconflicting MCS are fused conjunctively
prior to disjunctive fusion of intermediate results. Dubois et al. [58] proposed an algorithm
that finds MCS with linear complexity. In this algorithm, all subsets of I with a consistency
above or equal to α ∈ [0, 1] are clustered. Let IMCS ⊆ I denote MCS subsets, then MCS
fusion is formalised for a possibilistic setting as [6]:

π(fu)(x) = max
IMCS⊆I

(
t

Ii∈IMCS
(πi(x))

)
. (6)

Later advancements in MCS fusion were proposed in multiple works [59–61].
Quantified fusion [62,63] is a similar two-step fusion process, which assumes that

the number of reliable sources j is known. The quantified rule then takes all subsets of
information items I∗ ⊆ I with cardinality j and fuses these conjunctively in the first step.
All intermediate results are then fused disjunctively:

π(fu)(x) = max
I∗⊆I

|I∗| = j

(
min
Ii∈I∗

(πi(x))
)

. (7)
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Adaptive fusion aims at progressing gradually from conjunctive to disjunctive be-
haviour as conflict increases. A simple adaptive fusion rule is

π(fu)(x) = max

⎛
⎝ min

i∈{1,...,n}
(πi(x))

h
i∈{1,...,n}

(πi)
, min

(
max

i∈{1,...,n}
(πi(x)), 1 − h

i∈{1,...,n}
(πi)

)⎞⎠. (8)

It fuses all sources disjunctively (assuming one source is right) and discounts the result
by (1 − h). In parallel, it fuses all sources conjunctively (assuming all sources are right)
and combines both intermediate results. This process does not consider situations in which
more than one or less than all sources are reliable. If many sources are fused, it is likely
that h → 0, thus, resulting in uninformative results [4]. Dubois’ adaptive fusion rule [4,48]
builds upon the quantified (7) and adaptive fusion rule (8) assuming that a minimum and
maximum number of reliable sources are known. The minimum and maximum number
are derived from the consistency of information items I. The cardinality of the largest
fully consistent subset gives the minimum number j− = max(|I| | h(I) = 1); the largest
partially consistent subset provides the maximum number j+ = max(|I| | h(I) > 0).
The adaptive fusion is then

π(fu)(x) = max

⎛
⎝ π

( f u)
+ (x)
h

i∈{1,...,n}
(πi)

, min
(

π
( f u)
− (x), 1 − h+

)⎞⎠ (9)

in which π
( f u)
+ (x) and π

( f u)
− (x) are obtained by quantified fusion (7) (with j− and j+,

respectively) and h+ = maxI∗⊆I | |I∗| = j+(h(I∗)). In this way, completely disagreeing
sources with fully inconsistent items (h = 0) are disregarded. Furthermore, small changes
in the input possibility distributions may lead to significant changes in the fusion result [64].

Oussalah et al. [64] proposed changes to (9) improving the behaviour in the case of
outliers and with regard to robustness against small changes. For their progressive fusion
rule, they introduced a distance measurement with which the disjunctive fusion (π( f u)

− (x))
part is adapted. Let x0, x1 ∈ X be the smallest and largest element of the consensus set, then

d(x) =

{
max(|x − x0|, |x − x1|) if x < x0 or x > x1,
0 otherwise ,

measures the distance from point x to the consensus set. Let α(x) = min
(

d(x)
d0

, 1
)

be a
weighting factor. The threshold d0 is the maximum distance until outliers are considered.
Then, π

( f u)
− (x) in (9) is replaced by

π
( f u)
− (x) = α(x) · π

( f u)
+ (x) + (1 − α(x)) · max

i∈{1,...,n}
(πi(x)). (10)

Instead of (9), (10) considers the completely disjunctive fusion of all information items.
The degree to which it considers disjunction relies on d(x). The further x is from the
consensus set, the more consideration is given to inconsistent items.

3.2. Possibilistic Estimation Fusion

Whereas pooling fusion aims at discarding alternatives, estimation fusion assumes
that none of the sources are completely wrong and attempts to find a fusion result that is
compatible with all information items [4]. Nonetheless, more specific or precise outcomes
are still preferable. Estimation fusion has received less attention in the scientific community
compared with pooling fusion (The higher number of citations of Dubois’s paper [4]
compared to Yager’s paper [65] reflect the higher attention). Therefore, the following
discussion takes a deeper look into the algebraic properties of estimation fusion.
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Estimation fusion is based on Zadeh’s extension principle, which allows mapping func-
tions to be used on fuzzy sets [66]. Let Y, Z be a frame of discernments and F : Y → Z. Let A
be a fuzzy set defined on Y and B a fuzzy set defined on Z, and then F maps the fuzzy mem-
bership function μA(y) with y ∈ Y to μB(z) with z ∈ Z by μB(z) = μA

(
F−1(z)

)
= μA(y)

with z = F(y). If F results in multiple outputs for the same y, then

μB(z) = max
y∈Y: F(y)=z

μA(y).

In multi-source estimation fusion, the input possibility distributions are first pooled
by a fusion function—here referred to in this context as G. The result is then mapped by the
multi-parameter function F(x1, x2, . . . , xn) with xi ∈ Xi, i ∈ {1, . . . , n} onto a new frame of
discernment X, i.e.,

π(fu)(x) = max
xi∈Xi : F(x1,...,xn) = x

(
G
i
(πi(xi))

)
, (11)

for which the notation

π(fu)(x) =

{
G(π1(x1), π2(x2), . . . , πn(xn))

F(x1, x2, . . . , xn)

}
. (12)

is used in the following. The fusion rule in (11) takes the maximum of Gi(πi(xi)) for every
n-tuple (x1 ∈ X1, . . . , xn ∈ Xn), which satisfies F(x1, . . . , xn) = x.

Yager [65] proposed an estimation fusion rule in which G is the minimum operator
and F is defined to be an averaging operator.

Definition 3 (Averaging Operator). An operator that satisfies the three properties of commuta-
tivity, monotonicity, and idempotency, is referred to as a mean or averaging operator [4]. Such
an averaging operator avg(·) lies between min(·) and max(·), i.e., min(·) ≤ avg(·) ≤ max(·).

Yager’s estimation fusion rule [65] is then:

π(fu)(x) =

⎧⎨
⎩

min
i∈{1,...,n}

(πi(xi))

F(x1, x2, . . . , xn)

⎫⎬
⎭. (13)

The application of the minimum operator results in maximal specific possibility dis-
tributions, which are placed on an averaged frame of discernment. The disadvantages of
estimation fusion are that (i) it requires a frame of discernment for which it is sensible to
apply averaging operators on and that (ii) estimation fusion may lead to fusion results that
have been deemed impossible by all sources, i.e., the results do not satisfy the zero preser-
vation principle [4]. Regarding the first disadvantage, it is often assumed that X ⊆ R [65],
which is also assumed for the remainder of this section.

If G is also an averaging operator, then a noteworthy interaction between estimation fu-
sion and the frame of discernment takes place, which is relevant for practical implementations.

Proposition 1. If G is an averaging operator other than the minimum operator and X ⊆ R, then
fusion with (13) is influenced by the borders of X. More formally, minπ(fu)(x)>0 x is dependent on
minx∈X x and maxπ(fu)(x)>0 x on maxx∈X x.

Proof. Let xa = min
x∈X

x and xb = max
x∈X

x, i.e., X = [xa, xb]. Let x′ = min
i

min
xi∈Xi :πi(xi)>0

xi,

i.e., x′ is the smallest element in X for which at least one πi > 0. Furthermore, let
i′ = arg min

i
min

xi∈Xi :πi(xi)>0
xi. If G �= min, then, for at least one permutation of the n-tuple
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(xa, xa, . . . , x′, . . . , xa, xa): G

⎛
⎝π1(xa), . . . , πi′(x′)︸ ︷︷ ︸

>0

, . . . , πn(xa)

⎞
⎠ > 0. This n-tuple defines the

minimum boundary of π(fu), i.e., min
π(fu)(x)>0

x = F
(
xa, . . . , x′, . . . , xa

)
. The same holds for the

maximum boundary of π(fu) only that x′ = max
i

max
xi∈Xi :πi(xi)>0

xi, i′ = arg max
i

max
xi∈Xi :πi(xi)>0

xi,

and max
π(fu)(x)>0

x = F
(
xb, . . . , x′, . . . , xb

)
.

An example of the effects of Proposition 1 is illustrated in Figure 2.
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Figure 2. An example of the interaction between estimation fusion (12) and X as discussed in Propo-
sition 1. A frame of discernment X = [0, 10] and three possibility distributions are given. Each possi-
bility distribution claims complete knowledge; π1(x = 3) = 1, π2(x = 5) = 1, and π3(x = 7) = 1.
The plots show fusion results (dashed red) in which F is the arithmetic mean and G is (a) the minimum,
(b) the maximum, and (c) the arithmetic mean operator.

Corollary 1. If X is also unbounded and F is an averaging operator other than the minimum or
maximum operator, then (13) results in an unbounded π(fu). If X is half-bounded, then π(fu) is
also half-bounded.

Proof. From Proposition 1 it follows directly that, if F �= max, then lim
xa→−∞

min
π(fu)(x)>0

x

= F(xa, . . . , x′, . . . , xa) = − ∞. If F �= min, then lim
xb→∞

max
π(fu)(x)>0

x = F
(

xb, . . . , x′, . . . , xb
)

= ∞.

Consequently, if G is an averaging operator other than the minimum operator, then it
is reasonable to apply estimation fusion only on bounded X. Otherwise, (12) and (13) lead
to fusion results spanning to infinity—even for very precise input possibility distributions.

3.3. Majority-Guided Fusion

In essence, fusion rules, which focus and prioritise the consensus set—often also
referred to as majority observation—fall under the category of majority-guided fusion.
Majority-guided fusion is particularly sensible in cases in which information sources are
known to produce consistent items. Possibility distributions deviating from the consensus
set are then deduced to be faulty (unreliable) instead of giving useful information about
the unknown value v.

With this in mind, Dubois’ fusion rule (9) already satisfies as a majority-guided fusion
rule because it ignores all inconsistent information items (although this fact is precisely
one of the main points of criticism by Oussalah et al. [64]). In the specific case of assuming
fully reliable sources and expecting consistency between items, it is reasonable to rely
on simpler fusion rules; accordingly, it was proposed to use a purely conjunctive fusion
rule [23]. Similarly simple are counting fusion functions; the result here is the alternative
that most sources consider possible [5].

Estimation fusion rules, such as (13), favour the majority observation because of the av-
eraging characteristic of the estimation operator F. A more complex majority-guided fusion
rule, which is based on Yager’s estimation fusion (13), was proposed by Glock et al. [67],
the majority-opinion-guided possibilistic fusion rule (MOGPFR). The MOGPFR replaces both
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the conjunctive fusion part G and the estimation operator F with the Implicative Impor-
tance Weighted Ordered Weighted Averaging (IIWOWA) operator. The IIWOWA operator,
as proposed by [68], is an extension of the parent class of Ordered Weighted Averaging
(OWA) operators [50]. An OWA operator allows weighting inputs with w = (w1, . . . , wn),
wi ∈ [0, 1], and ∑i wi = 1. Inputs πi are ordered in descending order. This results in
aggregation 1

n ∑ wi · πi and allows the aggregation to be shifted between the minimum
with w = (0, 0, . . . , 1) and maximum w = (1, . . . 0, 0). The MOGPFR is then defined
as follows:

π(fu)(x) = max
i

(reli) · π̂( f u)(x) + 1 − max
i

(reli) , with

π̂( f u)(x) =

⎧⎪⎪⎨
⎪⎪⎩

λIIWOWA
i∈1,...,n

(
v, wp, πi(μ

(i))
)

λIIWOWA
i∈1,...,n

(
v, wm, μ(i)

)
⎫⎪⎪⎬
⎪⎪⎭;

(14)

in which λIIWOWA(◦) denotes the IIWOWA operator, and reli is the reliability for each
source. The MOGPFR specifically allows the control of fusion by (i) a reliability vector
v = {v1, v2, . . . , vn} with vi ∈ [0, 1], which discounts informations items and (ii) two
weighting vectors, wp and wm, which control whether G and F are close to the minimum
or maximum operator, respectively. The IIWOWA operator is defined only for inputs
in [0, 1], which necessitates the fuzzification of X so that the possibility distributions
become πi

(
μ(i)
)

.
The MOGPFR facilitates the prioritisation of information items belonging the majority

observation. The importance values vi are determined by a distance function of πi to the
majority set; the possibility distribution πi is discounted accordingly. The parameters wp
and wm allow adapting fusion towards conjunctive and disjunctive behaviour. The benefit
gained by the MOGPFR lies in its level of control through parametrisation.

4. Approach towards Topology Design

Associative fusion rules allow changing the sequence in which information sources
are fused without altering the fusion result. Therefore, associativity is a beneficial property
with regard to the topology design of distributed information fusion systems. Assuming
associativity, a system designer or a design algorithm can focus on other criteria for de-
signing a fusion system, such as spatial availability of sources or consistency as well as the
redundancy of sources. In this section, we analyse the presented fusion rules regarding
the associativity property and its impact on topology design. Following this, a two-layer
fusion topology based on the MCS fusion rule (6) is presented. Consistency as a design
criterion both increases the specificity of fusion results due to the minimum-operator [6]
and to facilitate source defect detection algorithms [21,22]. This motivates the dive into the
MCS fusion topologies in this article.

Some flaws and shortcomings of this consistency-based approach are discussed, which
leads to several adjustments to overcome those. This includes the introduction of redun-
dancy as a design criterion.

First, both fusion node and fusion topology are defined, and some notations introduced:

Definition 4 (Fusion Node). A fusion node fn is a self-contained module encapsulating a fusion
operator. A node takes information items as input and outputs a single fused information item. As a
node is a self-contained module, a fusion node and its fusion operator have to satisfy the following
additional properties:

• Modularity: A fusion node outputs a fused information item, which qualifies as a possibility
distribution π (see Section 3), i.e., π is normal. This property allows self-contained intermedi-
ate results in a topology and makes fusion nodes modular. This increases the transparency of
the distributed fusion topology.

• Self-Reproducing: Given a single input, a fusion node reproduces this input. It preserves its
identity, i.e., fu(I) = I.
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Idempotency as a property is not required since idempotency restricts the fusion node in the
case where a reinforcement effect is desired (e.g., via the product operator as a t-norm). A fusion
node with an associative fusion operator is beneficial since it allows splitting the fusion node.

A fusion node is a modular part of a fusion topology. In order to facilitate the fusion process
of the grander topology, it may output auxiliaries denoted as [AUX]. Consequently, a node is also
required to be able to process [AUX] as input if necessary.

Definition 5 (Fusion Topology). Interconnected fusion nodes build up a fusion topology. Fusion
nodes may be interconnected parallelly, serially, hierarchically, cascadingly, or in more complex
structures. A fusion topology organises a feed forward flow of information. Recursive interconnec-
tions are excluded. A fusion topology is constructed in layers l ∈ N>0. In each layer, fusion nodes
are indexed consecutively with k ∈ N>0. The k-th fusion node in layer l is denoted by fn(k,l), its
output information item by I(k,l), and its auxiliary output by [AUX](k,l).

Given the above definitions, Figure 3 shows a three-layer example topology to help
visualise the introduced notations.
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fn(1,2)
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Ifu

layer l ∈ N>0
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· · ·

fn(3,2)

fn(2,2)
I(4,1)

I(5,1)

I(1,2)

fn(k,l)

I(2,2)

I(3,2)

[AUX](1,2)

[AUX](2,2)

[AUX](3,2)

[AUX](1,1)

[AUX](3,1)

[AUX](4,1)

[AUX](5,1)

I1

I2

I3

I4

I5

I6

I7

I8
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Figure 3. An example for a three-layer fusion topology. Fusion nodes are denoted with fn(k,l) and
their output information items with I(k,l) together with auxiliary information [AUX](k,l). The index l
denotes the layer. Within a layer l, the nodes are numbered consecutively by k.

The MCS-based design presented in this article focuses on a two-layer topology by
grouping consistent or redundant information sources into fusion nodes. For an easier
reading of the article, fusion nodes are also denoted as fn(k) in a two-layer topology. Since
this approach considers associative fusion rules, the basic two-layer design can be easily
extended into a multi-layer version.

4.1. Associativity

In possibilistic information fusion, the fusion process is rarely considered to be dis-
tributed. As a consequence, possibilistic fusion rules are often not associative, which
heavily alters the fusion results in differently structured topologies. However, in works
regarding possibilistic fusion, associativity has been considered with low priority at best
and neglected at worst. For instance, associativity is described as a useful property by
Dubois et al. [6]; however, its absence is not considered to be a fatal flaw.

As a first step in discussing associativity, the fusion rules presented in the previous
section are summarised in Table 1.
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Table 1. Common fusion rules and the property of (quasi-)associativity.

Fusion
Rule

Equation(s) Associative Proof of Associativity
Quasi-

Associative
Proof of Quasi-Associativity

Conjunctive (3) yes Inherited from t-norm yes See Proposition 2

Renormalised
Conjunc-

tive
(4) Dependent on

t-norm

Proof for nonassociativity in
the case of minimum-norm
and associativity in the case
of product-norm given by
Dubois and Prade [47]

yes
f(k)
(

I(k)

)
= t
(

I(k)

)
and

g = 1
h( f(k)(I(k)))

Disjunctive (5) yes Inherited from s-norm yes See Proposition 2
MCS fusion (6) no [61] no [61]
Quantified (7) no Proof given in Appendix B no Similar to MCS fusion
Adaptive (8), (9) no [69] no [69]

Progressive (9), (10) no Inherited from adaptive
fusion no Inherited from adaptive

fusion

Estimation (13) yes (with
restrictions) See Proposition 3 yes (with

restrictions) See Propositions 2 and 3

MOGPFR (14) no Proof given in Appendix B no OWA operator prevents
quasi-associativity

The table also shows whether the rules satisfy the following two properties:

Definition 6 (Associativity). A fusion operator fu is associative if the fusion outcome is indepen-
dent of the sequence in which information items are fused, i.e., fu(I1, I2, I3) = fu(fu(I1, I2), I3)
= fu(I1, fu(I2, I3)).

Definition 7 (Quasi-associativity). A fusion operator fu is quasi-associative if it can be expressed
as a sequence of associative steps and a final operation acting on the results of the previous associative
steps [47]. Let f be an associative function and g be a function not restricted to the associativity
property, then fu is quasi-associative if fu(I1, I2, I3) = g( f ( f (I1, I2), I3)) = g( f (I1, f (I2, I3))).

Proposition 2. If a fusion operator is associative, then it is also quasi-associative.

Proof. Let I be a set of information items, let f = fu and g be an identity function: g(I) = I.
Then, g( f (I)) = fu(I)—that is, by making use of an identity function, an associative fusion
operator becomes quasi-associative.

From this, it follows that, if a fusion rule is not quasi-associative, then it is also not associative.
Associative rules allow unrestricted topology design in the sense that sources can

be freely assigned to fusion nodes without changing the overall fusion result. Quasi-
associative rules require a final centralised fusion step in which the nonassociative part is
computed. The associative part can be distributed to fusion nodes.

4.1.1. Pooling Fusion

As can be seen in Table 1, the simple conjunctive and disjunctive fusion rules satisfy
associativity. However, depending on the applied t-norm—the renormalisation step already
causes nonassociative behaviour. For the product norm (t(π1(x), π2(x)) = π1(x) · π2(x)),
fusion stays associative; however, generally, renormalisation prevents associativity [47].

MCS fusion (6) is based on the idea that consistent information items are to be fused
conjunctively first before the results are fused disjunctively. MCS fusion thus specifies a
sequence in which information is to be fused. Consequently, MCS fusion is not associative.
It is quite easy to see that different sequences result in different outcomes (see Appendix B
for an example). Quantified fusion (7) has a similar approach, meaning that it fuses
conjunctively and disjunctively in two steps. Quantified fusion is—for the same reasons as
MCS fusion—not associative and not quasi-associative.
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More sophisticated fusion rules—such as adaptive (8), (9) and progressive (10) rules—
attempt to make the most of all available information. These fusion rules rely on specific
metrics, such as global consistency, consistency between specific subsets, or distances
between information items. Many of these metrics are only computable if all information
items are available centrally. Since all three rules (8), (9), and (10) are based on the quantified
fusion rule, they inherit quantified fusion’s nonassociativity.

4.1.2. Estimation and Majority-Guided Fusion

Estimation fusion (11)–(13) as well as the majority-guided MOGPFR (14) relies on
Zadeh’s extension principle.

Proposition 3. With regard to Zadeh’s extension principle, a fusion operator fu(π1, π2, π3) ={
G(π1(x1),π2(x2),π3(x3))

F(x1,x2,x3)

}
satisfies associativity if G and F are associative functions and G is mono-

tonic increasing in all its arguments.

Proof. The operator fu is associative if fu(π1, π2, π3) = fu(π1, fu(π2, π3)). With (11),
this becomes

max
xi∈Xi : F(x1,x2,x3)=x

G(π1(x1), π2(x2), π3(x3)) =

max
x1∈X1, x′∈X′ :

F(x1,x′)=x

G

⎛
⎜⎝π1(x1), max

x2∈X2, x3∈X3:
F(x2,x3)=x′

G(π2(x2), π3(x2))

⎞
⎟⎠.

The frame of discernment X′ contains every unique element given by F(x2, x3) for
every 2-tuple (x2, x3) with x2 ∈ X2 and x3 ∈ X3. In the following, the notation max

x2∈X2, x3∈X3:
F(x2,x3)=x′

is shortened to max
F(x2,x3)=x′

—this also applies to similar notations.

Assume G to be monotonic increasing in all its arguments, i.e., for any ai, bi ∈ [0, 1]
with i ∈ {1, 2, . . . , n} and ∀i : ai ≤ bi: G(a1, a2, . . . , an) ≤ G(b1, b2, . . . , bn). If π1(x1) ≥
G(π2(x2), π3(x2)), then G(π2(x2), π3(x2)) has no influence on the term
max(G(π1(x1), G(π2(x2), π3(x2)))). If, on the other hand, π1(x1) < G(π2(x2), π3(x2)),
then G(π1(x1), G(π2(x2), π3(x2))) becomes maximal if G(π2(x2), π3(x3)) is maximal.
Consequently,

fu(π1, fu(π2, π3)) = max
F(x1,x′)=x

G

(
π1(x1), max

F(x2,x3)=x′
G(π2(x2), π3(x2))

)

= max
F(x1,x′)=x

max
F(x2,x3)=x′

G(π1(x1), G(π2(x2), π3(x2))).

If G is also associative, then

fu(π1, fu(π2, π3)) = max
F(x1,x′)=x

max
F(x2,x3)=x′

G(π1(x1), π2(x2), π3(x2)).

If F is associative, then

fu(π1, fu(π2, π3)) = max
F(x1,x2,x3)=x

G(π1(x1), π2(x2), π3(x2)).

In contrast to the estimation fusion rules, the MOGPFR (14) uses the IIWOWA operator
for the functions F and G and is, therefore, not associative. The IIWOWA operator is an
extension of the OWA operator. The OWA operator sorts the inputs (π1(x1), . . . , πn(xn)) in
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descending order. It then weights the inputs with a predefined weighting vector (w1, . . . wn)
with wi ∈ [0, 1]. For (1, 0, . . . , 0) the OWA operator becomes the maximum operator, and
for (0, . . . , 0, 1), the minimum operator. In these cases, the OWA operator is associative.
In all other cases, sorting the input values prevents associativity and quasi-associativity.
Consequently, the IIWOWA operator and the MOGPFR are nonassociative as well.

4.2. MCS-Based Topology Design

In addition to relying on associative and quasi-associative rules, there is the third
option to design a fusion topology and its fusion process based on the characteristics of
the information items themselves. In this case, the possibility distributions of sources are
analysed, which guides the design towards desired effects. In a sense, the information
provided by the multi-source system dictates the topology.

One approach to do so is to build upon the MCS fusion rule (6). It itself is not quasi-
associative, and thus information items cannot be freely assigned to fusion nodes. However,
by carefully searching for all the most consistent subsets, fusion can be distributed in a way
that each fusion node produces the most specific intermediate result from agreeing sources,
thus, emphasizing the consensus of this agreeing subset. In such a two-layer topology,
all I ∈ IMCS-α

(k) are fused in separate fusion nodes fn(k) using, at the first level, a mix of
renormalised conjunctive minimum fusion and maximum fusion:

π(k)(μ) =

{mini πi(μ)
hi(πi(μ))

if hi(πi(μ)) > 0

maxi πi(μ) if hi(πi(μ)) = 0
(15)

with i indexing Ii ∈ IMCS−α
(k) . At the second level, all intermediate results are fused disjunc-

tively using the maximum operator. An exemplary fusion topology based on the MCS
fusion rule is shown in Figure 4.

Second Layer Fusion
Disjunctive

fn(1)

fn(1,2)

First Layer Fusion
Renorm. Conjunctive

Information
Sources

fn(2)

fn(3)

SMCS−0
(4)

fn(4)

SMCS−0
(3)

SMCS−0
(1)

SMCS−0
(2)

π(1)

π(2)

π(3)

π(4)

πfu

0 1
0

1

x

π

SMCS−0
(1) SMCS−0

(2) SMCS−0
(3) SMCS−0

(4)

(a) (b)

Figure 4. An example of a MCS-based fusion topology. Depicted are seven information sources fused
in a two-layer topology. On the left side (a), the topology itself is shown with minimum fusion on
the first layer and maximum fusion on the second layer. The right side (b) illustrates the associated
possibility distributions from which the topology is constructed.

As MCS fusion analyses the consistency of information items, the inferred topology
needs to be adapted for each new set of items. This is, particularly in a technical system,
often not practical or feasible. Think, for example, of a technical multi-sensor system
in which sensors give updated measurements in periodic time increments. In this case,
the advantages of distributed fusion—such as the distribution of computing load into
local nodes or lower communication loads by condensing information—are negated by the
reorganisation with each measurement. Finding the MCS requires having all information
items at hand in one central node rendering the distribution of the fusion process pointless.
Therefore, topology design based on MCS fusion is only beneficial, if knowledge about
the sources’ expected behaviour regarding consistency exists a priori. In other words, if it
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is known that sources produce consistent items continually, then they are assigned to a
fusion node without the need for an update with each new instance or measurement. This
knowledge can be derived or learned from representative training data. Conclusions about
the sources’ consistency in the training data are used to build up the MCS fusion topology.

Let SMCS−α
(k) be a set of information sources that are assigned to fusion node fn(k).

Furthermore, let j = {1, . . . , m} be indices of training data, I(k),j be an information item
produced by source S(k) at instance j, and I(k),j be all information items of SMCS−α

(k) at
instance j, then

S(k) ∈ SMCS−α
(k) if

⎧⎨
⎩∀j = {1, . . . , m} : h

(
I(k),j, I(k),j

)
≥ α and if α ∈ (0, 1],

∀j = {1, . . . , m} : h
(

I(k),j, I(k),j

)
> 0 and if α = 0,

(16)

i.e., a source S(k) belongs to SMCS−α
(k) if all its information items are consistent with the items

of SMCS−α
(k) at least to a degree of α.
MCS-based fusion nodes are then created by Algorithm 1, which is based on the

algorithm provided for finding MCS [58,61]. Algorithm 1 starts with S and searches all
MCS for the first data instance (j = 1). The found MCS are stored and themselves searched
for new MCS for the next data instance and so forth.

Algorithm 1: Fast algorithm for finding subsets of information sources, which
are consistent at least to degree α on every instance of training data. Each subset
SMCS−α
(k) is assigned to fusion node fn(k). The algorithm relies on finding MCS of

information items as defined by Dubois et al. [58,61].
Input: A set of information sources S, alpha-cut-level α

Output: Set of sets Sh with fusion node set SMCS−α
(k) ∈ Sh

m ← number of training data instances;
if j = 1 then

Sh ← {S};
end
for j ← 1 to m do

S ← {};
foreach S′ ∈ Sh do

S′ = findMCS(Ij, α);
; /* findMCS() as defined by Dubois et al. [58,61] */
; /* Ij provided by S′ */
S = {S ∪ S′};

end
Sh ← S ;

end

For the following computations, the minimum consistency in each group is stored as a
reference value:

αr
(k) = min

j
h
(

I(k),j

)
. (17)

In an MCS fusion topology, which is learned from training data rather than updated
each j, it is not guaranteed that, for new data instances, intermediate results Ifu

(k,1) are disjoint.
As of this, the maximum fusion rule of the final layer as described previously is replaced
with (15). This means that, in the case that the topology is learned using Algorithm 1, all
fusion nodes use the same fusion rule.

Regarding parameter α, the following observation leads to maximal specific fusion
results at the first layer. If ∀j cores of the possibility distributions are disjoint, then fusion
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with MCS-1 is equal to maximum fusion [6]. Therefore, MCS-1 fusion demands continuous
mutual consistency. In contrast, MCS-0 results in minimum fusion if ∀j the supports overlap
and is less restrictive.

Proposition 4. MCS fusion as outlined in (15) results in the maximal specific information items if
Algorithm 1 is executed with α = 0.

Proof. With decreasing α, the condition for grouping items into fusion nodes becomes less
strict—as can be seen in (16). Thus, fusion node sizes increase with decreasing α. It follows
that the maximum node sizes are achieved if α = 0. The more information items belong to
a node, the more alternatives for the unknown true value are eliminated by the minimum
operator in (6). Consequently, the integral

∫ xb
xa

π(x)dx inside the specificity measure (A2)
becomes minimal if α = 0, and therefore specificity (A2) itself becomes maximal.

Consequently, we propose the design of MCS fusion by using α = 0 to achieve maximal
node sizes and maximal specific fusion results.

The approach presented in (16) and Alg. 1 allows the transfer of the MCS-fusion
rule (6) to distributed fusion topologies. This is an alternative to designing topologies based
on (quasi-)associative fusion rules, which are rare in a possibilistic setting. An MCS-based
topology is aimed at producing maximal specific and precise fusion subresults. However,
distributed MCS-fusion lacks robustness in the case of nonrepresentative training data or
defective sources, which is detailed in the next section.

4.3. Robustness

The MCS fusion topology based on consistencies in the historic training data is prone
to unexpected inconsistencies in information items. Due to the minimum operator used in
the first level fusion nodes (see (15) and Figure 4), intermediate fusion results are altered
significantly if items are less consistent then they are expected to be, that is h ≤ αr. Even in
large groups of sources, a single information source producing an unexpectedly inconsistent
item may change the outcome significantly. An example of such an occurrence inside a
fusion node using αr = 1 is given in Figure 5.

0 1
0

αr

x

π

(a)
0 1

0

αr

x

π

(b)

Figure 5. Information items of a fusion node with consistency level αr = 1. Left plot (a) shows
possibility distributions with expected consistent behaviour. In the right side plot (b), a single
defective information item with unexpected behaviour (marked in red) causes h(I) < αr. Fusion
with (15) results in dissimilar possibility distributions.

Unexpected inconsistent behaviour of reliable sources occurs in two situations.

• First, incomplete information and epistemic uncertainty in the training data may lead
to assessing a group of sources as consistent prematurely. Information sources may
produce different (in)consistent behaviours depending on the training data’s true
value and its position on the frame of discernment. Take, for example, a condition-
monitoring scenario of a technical system in which sensors state the condition on
a discrete frame of discernment X = {error1, error2, normal}. Two sensors may both
detect two of the conditions (e.g., error1, normal); however, only one is able to detect the
third condition (error2). If training data does not include data regarding error2, then
with Algorithm 1, both sensors are falsely identified as consistent and grouped into a
fusion node. If error2 occurs later, then the sensors behave unexpectedly inconsistently.
This problem relates to spurious correlations in probability theory [70], which describes

136



Metrology 2022, 2

that, in large datasets, it is particularly likely that correlations are found between
variables incorrectly.

• Second, defective sources are a cause of unexpected inconsistent behaviour. Defec-
tive sources are sources that are trustworthy and therefore have a high reliability
but nonetheless start to supply incorrect information [71]. Source defects appear in
different forms: Information can change suddenly, drift continuously or incrementally,
or can be characterised by an increasing number of outliers [72,73]. Countermea-
sures are majority-guided fusion rules as applied by Ehlenbröker et al. and Holst and
Lohweg [21,23]. This requires redundant and reliable sources in a fusion node.

In the following, we propose three adaptations to the distributed MCS-based fusion
topology. These adaptations aim to increase the robustness of the topology in the case of
incomplete training data and defective sources.

• Redundancy-Driven Topology Design: To counteract non-representative training
data, it must be ensured that information sources are not prematurely deemed to be
consistent. For this, it must be analysed whether the consistent behaviour between
sources extends over the entire frame of discernment. Therefore, instead of the
consistency metric used in (16), the redundancy metric originally proposed in previous
works [38,39] is adopted, which ensures that the complete frame of discernment is
considered.

• Discounting Defective Sources: Grouping the information sources by consistency
(or redundancy) eases the detection of defects [23,24]. Items detected as defective
are discounted in the fusion node so that they have less influence on the output of
the node. This requires an adjustment of the fusion rule (previously minimum or
maximum operator) in the nodes. This defect detection step explicitly exploits the
distributed topology to its advantage. This deliberately dismisses the associativity of
the overall fusion.

• Estimation-fusion-based Nodes: Averaging information is a natural way to favour
opinions of the majority. Adopting estimation fusion in nodes results in more robust
behaviour against defects—such as outliers—compared to purely conjunctive fusion
as applied in (6).

4.3.1. Redundancy-Driven Topology Design

In previous work [39], a redundancy metric was proposed that introduces the notion
of range of a set of possibility distributions.

Definition 8 (Range [39]). Given a frame of discernment X = [xa, xb], the range of a set of
possibility distributions p quantifies how far p stretches over X. Let P(p) bet the power set of all
possible p, then the range is described by a monotonic increasing function rge : P(p) → [0, 1] with
the following properties:

• Upper bound: If rge(p) = 1, then ∃π ∈ p : π(xa) = 1 and ∃π ∈ p : π(xb) = 1.
• Lower bound: rge(p) = 0 if ∀π, π′ ∈ p : π = π′, i.e., all possibility distributions π ∈ p

are identical.

The range determines whether a set of possibility distributions covers X. Together
with the consistency measurement applied in (16), rge is adopted into the topology design
approach. Consistency and range are balanced against each other, which results in a dual
redundancy metric:

Definition 9 (Possibilistic Redundancy Metric [39]). Let S = {S1, S2, . . . , Sn}, i.e., a set
of information sources, and P(S) be all possible combinations of sources, then a possibilistic
redundancy metric ρ is a function that maps P(S) to the unit interval: ρ : P(S) → [0, 1].
Information sources are only redundant if their information items both (i) are redundant themselves
and (ii) cover the frame of discernment, i.e., have a high range (Definition 8). In accordance

137



Metrology 2022, 2

with [39], the redundancy of information items is determined via possibilistic similarity measures.
Consistency (2) satisfies the requirements to serve as a similarity measure [32].

In this context and to qualify as an intuitively meaningful metric, the following requirements
have to be met:

• Boundaries: A redundancy metric should be able to model complete redundancy and complete
non-redundancy. It follows that ρ is minimally and maximally bounded. It is proposed that
ρ ∈ [0, 1].

• Identity relation: An information source is fully redundant with identical copies of itself:
ρ(S, S, . . . , S) = 1. Note that sources can be redundant without necessarily being identical.

• Symmetry: The metric ρ is a symmetric function in all its arguments, i.e.,

ρ(S1, S2, . . . , Sn) = ρ(Sp(1), Sp(2), . . . , Sp(n))

for any permutation p on N>0.

The following relations between redundancy of information items and sources hold.

• If information sources are redundant, then they provide redundant information items. Conse-
quently, ρ(S) increases as the redundancy of information items increase.

• Redundant information items do no necessitate that their information sources are also redun-
dant. Due to cases of incomplete information, redundant information items may be a case of
spurious redundancy (similar to spurious correlation).

To capture the idea of a dual metric, ρ is designed to be a function of two pieces of
evidence. The evidence against redundancy ec : P(S) → [0, 1]. As long as information
items are redundant, ec(S) = 0. Determining the redundancy of information items
is both based on the similarity of possibility distributions and related to the notion of
possibilistic dependency. An overview of possibilistic redundancy measures for information
items is provided by Holst and Lohweg [39]. Dependency measures are reviewed by
Dubois et al. [74].

Evidence in favour of redundancy ep : P(S) → [0, 1] quantifies the amount of epis-
temic uncertainty in training data. It incorporates the range of information. It indicates
to what degree information is available from the complete frame of discernment. A set of
information sources is only redundant if ep(S) > 0 and ec(S) < 1. The smaller value of ep
and (1 − ec) dominates the redundancy metric. In previous work [39], the geometric mean
is proposed as an averaging function for ep and ec as follows:

ρ(S) = ρ
(
ec(S), ep(S)

)
=
√

ep(S) · (1 − ec(S)). (18)

Let the consistency measure h (2) determine the redundancy between information
items and let Ij be the set of information items available at instance j, then

ec(S) = 1 − avg
j = {1,...,m}

(
h(Ij)

)
, (19)

i.e., ec averages consistencies available from training data with an averaging operator
(see Definition 3). Designing MCS-based topologies (16) is based on the notion that the
consistency is above a certain α for all instances. To keep this notion for the redundancy-
based design, the minimum operator is used as averaging operator in (19).

The evidence ep is computed based on the range as follows:

ep(S) =
rge(S)− xa

xb − xa
. (20)
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The range itself is dependent on the position of possibility distributions on the frame
of discernment, which is determined by their center of gravity [2]

pos(π) =

⎧⎨
⎩

x if π(x) = 1 and ∀x′ ∈ {X \ x} : π(x′) = 0,∫ xb
xa

x·π(x)dx∫ xb
xa

π(x)dx
otherwise.

(21)

The position of a set of possibility distributions p is obtained by prior disjunctive
fusion (5), i.e.,

pos(p) = pos(fu(p)).

Given a set of information sources S = {S1, S2, . . . , Sn} providing information items
Ij = pj = {π1,j, π2,j, . . . , πn,j}, then

rge(S) = max
j,j′∈{1,...,m}

(
|pos
(
pj
)− pos(pj′)|

)
= max

j∈{1,...,m}
(
pos
(
pj
))− min

j∈{1,...,m}
(
pos
(
pj
))

. (22)

At least one pair pj, pj′ of information item sets needs to range over the frame of
discernment X in order to provide evidence for a redundant behaviour, i.e., ep(S) > 0 if
∃j : rge

(
pj
)
> 0.

The redundancy metric ρ (18) is used as a decision criterion to find suitable sets of
information sources S

ρ

(k) to be fused in fusion nodes fn(k). Algorithm 2 describes a simple
approach that searches all subsets of consistency-based fusion nodes in Sh (found by
Algorithm 1). A set of sources is only assigned to a fusion node if ρ ≥ η.

Algorithm 2: Algorithm that searches for redundancy-based fusion nodes based
on Sh found by Algorithm 1. The algorithm iterates over Sh and searches all
S′ ⊆ S, S ∈ Sh for sets meeting the redundancy criterion η.

Input: Consistency-based fusion topology found by Algorithm 1, i.e.,
Sh = {SMCS−α

(k) }; threshold parameter η

Output: Redundancy-based fusion toplogy Sρ

Sρ ← {};
S′ ← Sh;
idx ← 1;
while idx ≤ |S′| do

S ← S′[idx];
if ρ(S) ≥ η or |S| = 1 then

/* S is added to fusion topology */
if S � Sρ then

Sρ.append(S);
end

else

/* create subsets of S to be checked for redundancy */
foreach S ∈ S do

S′ ← S \ S;
if S′ /∈ S′ then

S′.append(S′)
end

end

end

idx ← idx + 1;
end
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As motivated previously, the redundancy-based approach of Algorithm 2 results in a
more robust MCS-based topology design than Algorithm 1. As (18) includes the range of
information items, the effects of incomplete information and epistemic uncertainty in the
training data are reduced. This leads to less detections of spurious relations.

4.3.2. Discounting Defective Sources

Information items that deviate from the expected level of consistency αr (17) are seen
as unreliable and, consequently, are discounted in each fusion node. Therefore, the degree
of reliability rel ∈ [0, 1] is determined with regard to αr. Let I be information items fused in
a node and I∗ be the largest subset in I, which has (i) h(I∗) ≥ αr and (ii) |I∗| > 1; then,

rel(I) =

{
1 if h(I, I∗) > αr,
h(I,I∗)

αr if h(I, I∗) ≤ αr.
(23)

In the case that there is no unique I∗ with h(I∗) ≥ αr and at least two elements, then
all items are seen as fully reliable, and fusion needs to switch to disjunctive fusion.

Information items’ possibility distributions are modified prior to fusion so that they
have a lesser effect on the fusion results [4,75]. A modification function for discounting
information items has to satisfy the following requirements (extended from previous
work [39]).

Definition 10 (Requirements for Information Item Modification). As modification aims at
changing fusion outputs, the requirements interact with fusion rules to be applied on π:

• Information preservation: If rel(I) = 1, then the information must not be changed but instead
preserved. Let π′ be a modified possibility distribution based on π. If rel(I) = 1, then
π′ = π.

• Neutral element: If rel(I) = 0, then I needs to have no effect on the fusion. The item I needs
to act as a neutral element on fusion operator fu, i.e., fu(I, I) = fu(I).

• Monotonicity: For increasing rel(I), I needs to have a monotonic increasing effect on fu.

Modification functions were proposed by Yager and Kelman [75]

π′(x) = rel · π(x) + 1 − rel,

and Dubois and Prade [4]

π′(x) = max
x∈X

(π(x), 1 − rel).

Both satisfy the requirements for modification only for conjunctive fusion. A general
modification function for the use with OWA operators was proposed by Larsen [68]. It is
defined based on the andness degree and ∈ [0, 1] of OWA fusion:

π′(x) = and + rel · (π(x)− and). (24)

The OWA operator results in the minimum fusion for and = 1 and in maximum
fusion for and = 0. The OWA modification (24) introduces a global possibility level of
and to the distribution π′. As of this, the modification satisfies the requirement of neutral
element only if and = 1 or and = 0 but not for 0 < and < 1.

All three modification functions raise the overall possibility level globally. As argued in
previous work [39], this kind of approach towards modification functions is counterintuitive
if it is considered that defective or unreliable sources may err in their estimation of the
unknown value v. An unreliable source may be slightly incorrect. Raising the possibility
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level globally cannot model such a situation. A modification function that widens or
shrinks the possibility distribution is proposed as (adapted from previous work [39]):

π′(x) =

⎧⎨
⎩

max
x′∈C

(
π
(

x′
))

if minimum fusion,

min
x′∈C

(
π
(
x′
))

if maximum fusion,

C =
[

x − (1 − rel)β · (xb − xa), x + (1 − rel)β · (xb − xa)
]
, and

X = [xa, xb].

(25)

This modification considers both minimum and maximum fusion as they occur in the
MCS-based fusion topology but does not approach a global modification. The reliability rel
and the control parameter β ∈ R≥1 define a vicinity around x. The new possibility π′(x)
is taken from this vicinity. This creates a widening or shrinking effect, respectively. The
parameter β allows to control the size of the vicinity and, thus, the extent to which rel alters
π(x). The larger β is, the less effect rel has on π(x). If rel > 0 and β → ∞, then (25) has no
widening or shrinking effect.

4.3.3. Estimation-Based Fusion Nodes

The third adaptation to increase the robustness of the proposed MCS-based fusion
topology is to replace fusion in the first layer (15) with estimation fusion (13). In this way,
defective sources have a lesser impact on the fusion result of a node.

Associativity needs to hold for first layer fusion nodes (see Figure 4) if multi-level
fusion is to be achieved (splitting fusion nodes into smaller ones). Estimation fusion is only
associative if G is associative and monotonic increasing and F is associative. In the proposed
estimation-based fusion nodes, G is the minimum operator that satisfies associativity and
monotonicity. The function F is defined to be an averaging operator, which is rarely
associative, e.g., the arithmetic mean. Multi-level distributed fusion can still be achieved by
using a fusion node’s ability to output auxiliary information (see Definition 4).

If a node outputs the number of information items that contributed to its fusion result
as a weight w, then a weighted arithmetic mean operator of the form

FWAM(x1, . . . , xn) =
∑n

i=1 wi · xi

∑n
i=1 wi

results in associative fusion. In the following, we refer back to the notation of fusion nodes
as defined in Definition 4, i.e., Ik,l denotes the set of information items that serve as input
to fusion node fn(k,l). To achieve associativity, a weight w(k,l) is assigned to the output of
fn(k,l), which is defined as

w(k,l) = ∑
I(o,p)∈I(k,l)

w(o,p) with

w(k,1) = |I(k,1)|.

The distributed weighted average function

FWAM
(k,l) (x1, . . . , xn) = ∑

I(o,p)∈I(k,l)

1
w(o,p)

∑
I(o,p)∈I(k,l)

w(o,p) · FWAM
(o,p) (x1, . . . , xn)

with FWAM
(k,1) (x1, . . . , xn) =

1
w(k,1)

|I(k,1) |
∑
i=1

xi

(26)

allows splitting nodes without changing the fusion result. An overview of a distributed
fusion topology based on estimation fusion rules is given in Figure 6.
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Figure 6. Example of an MCS-based fusion topology adapted with weighted estimation fusion.
Previously conjunctive fusion nodes (first level fusion; see also Figure 4) are replaced with the
estimation fusion rule described by (13). To preserve the associativity of the first level fusion nodes,
the weighted averaging operator FWAM described by (26) is applied as function F. If the estimation-
based nodes are split into a multi-level topology, then FWAM requires fusion nodes to communicate
the number of input information items.

To keep the option of discounting defective sources, weights w(k,l) are modified in the
case a defect is detected via (23) as follows:

w′
k,l = wk,l · rel

(
I(k),l

)
. (27)

If rel
(

I(k),l
)

= 1, then information is preserved. Otherwise, if rel
(

I(k),l
)

= 0 the
information item is completely discounted.

4.4. Remark on Multi-Level Fusion by Splitting Nodes

The MCS-based design approach describes a two-layer fusion topology by first fusing
consistent or redundant information items conjunctively and then fusing the intermediate
results disjunctively. In this context, multi-layer fusion can be achieved by splitting a single
fusion node into multiple smaller ones. This may be beneficial if, e.g., communication or
computational loads per node need to be optimised. While this approach of splitting is
feasible due to the associativity of applied fusion rules, the ability of the fusion topology to
detect and discount defective sources is reduced by doing so.

Discounting information items requires finding the unique largest subset of items
whose consistency is greater than αr. If multiple sources are defective simultaneously,
then—depending on the fusion node size—the largest subset may be made up by defective
sources. In the worst case, the maximum number of defective sources a fusion node
can handle is � n−1

2 � [24], with n being the number of sources contributing to a fusion
node. As the proposed discounting approach is node-specific, the ability of a node to
discount defective sources is hindered by splitting nodes. The smaller n is, the smaller
is the maximum number of detectable defective sources. This hast to be kept in mind in
designing an MCS-based fusion topology.

5. Evaluation

The evaluation is structured into three parts in which the computational complexity,
topology design approaches, and the robustness of distributed MCS fusion are focused.
Distributing information fusion is motivated—as outlined in Section 1—by the assumption
that computational load per distributed node is less than the load for a single centralised
node. First, this assumption is examined for MCS and estimation fusion.

Subsequently, the computational complexity of design Algorithms 1 and 2 are dis-
cussed. Their performance and the effectiveness of the MCS-fusion adaptations (see
Section 4.3) are then evaluated on selected real-world datasets.
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5.1. Computational Complexity

The following evaluation of computational time complexity relies on the Bachmann–Landau
notation f (n) = O(g(n)), which states that a function f (n) does not grow faster for n → ∞
than g(n). f (n) is therefore asymptotically upper bounded by g(n). O(g(n)) denotes the set
of all f (n) such that there exist positive constants c and n0: f (n) ≤ c · g(n), ∀n ≥ n0 [76].

5.1.1. Fusion Rules

In the following, we evaluate whether the computational load of MCS and estimation
fusion are decreased by distributing, i.e., whether each fusion node in a distributed topology
has a lower load compared to a single centralised node. For MCS fusion, it is assumed that
the MCS have already been found, i.e., only (6) is considered.

As (6) consists exclusively of minimum and maximum operations, centralised MCS
fusion is O(n) with n being the number of input information sources. In a distributed two-
layer fusion topology, each fusion node has nf ≤ n input sources. First layer nodes operate
using renormalised minimum fusion; the final layer node applies maximum fusion. Fusion
in each node is therefore O(nf). This simple observation shows that computational load of
distributed nodes is less than in centralised fusion—for reasonable MCS fusion topologies.

For estimation fusion, the situation is not as simple. Estimation fusion, as defined
in (11), (12), and (13), iterates over every n-tuple (x1, . . . , xn). Thus, the computational load
increases exponentially with its number of inputs n.

Proposition 5. Let X∗ be the frame of discernment with the highest cardinality in {X1, . . . , Xn},
then the complexity of estimation fusion rule (11) is O(|X∗|n · F+|X∗|n · G+|X∗|n). If G is the
minimum operator and F is the arithmetic mean operator, then the complexity is O(|X∗|n).

Proof. Equation (11) is a combination of F, G, and the maximum operator. F and G need
to be computed for each n-tuple (x1, . . . , xn) for every xi ∈ Xi, i.e., F and G are computed
∏n

i=1 |Xi| times. The maximum operator is computed for each x ∈ X. Its number of inputs
is at worst ∏n

i=1 |Xi|. In total, the complexity of (11) is

O
(

n

∏
i=1

|Xi| · F+
n

∏
i=1

|Xi| · G+ ∑
x∈X

·max)

)

=O
(

n

∏
i=1

|Xi| · F+
n

∏
i=1

|Xi| · G+ ∑
x∈X

n

∏
i=1

|Xi|
)

=O
(

n

∏
i=1

|Xi| · F+
n

∏
i=1

|Xi| · G+
n

∏
i=1

|Xi|
)

Let X = {X1, . . . , Xn} and X∗ = arg maxX′∈X |X′|, then

=O(|X∗|n · F+|X∗|n · G+|X∗|n).

With G being the minimum operator and F being the arithmetic mean, this becomes

O(|X∗|n · n + |X∗|n · n + |X∗|n)
=O(|X∗|n · n)
=O(|X∗|n).

Therefore, the complexity of (12) relies on the complexities of G and F; however, it is
safe to say that the growth |X∗|n leads to issues in practical implementations. Unfortunately,
in this case, the lack of scalability cannot be solved by distributing the estimation fusion
over several nodes.
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Proposition 6. Let G be the minimum operator and F be an averaging operator as defined in (13).
Assume a topology of fusion nodes using estimation fusion (13) exclusively, then fusion at the final fusion
node in the last layer still grows exponentially, that is, has O(∏n

i=1 |Xi|) or O(|X∗|n), respectively.

Proof. Looking at a single fusion node with nk inputs, F maps in worst case each tuple
(x1, . . . , xnk ) to a unique point x. Then, the size of the output’s frame of discernment is
∏nk

i=1 |Xi|. Let fn(k,l) be fusion nodes arranged in a topology so that the fusion topology
outputs a single information item, i.e., there is a final fusion node fn(1,L), L ∈ N+. Assume
all n available information items are input into a fusion node exactly once. Then, the final
node has to process 2 ≤ nfinal ≤ n input information items. The number of tuples to
iterate is then ∏nfinal

k=1 |Xk,L−1|. In a two-layer topology, ∏nfinal
k=1 |Xk,L−1| = ∏nfinal

k=1 ∏nk
i=1 |Xk|.

As nfinal = ∑
max(k)
k=1 nk, this is ∏n

i=1 |Xi| ≤ |X∗|n. Thus, fusion at the final node has
O(|X∗|n).

For estimation fusion, the number of elements in the frame of discernment grows with
each fusion node. The final fusion node has to process in worst case |X∗|n tuples, which is
the same for centralised fusion.

Yager demonstrated [65] that, if all πi are convex and if X contains only real-valued
ordered elements, then (13) (that is G = min and F is an averaging operator) can also be
computed via the crisp-set α-cuts

Aα
i = {x ∈ Xi : πi(x) ≥ α} with α ∈ (0, 1]. (28)

Definition 11. A possibility distribution π is said to be convex iff (1) each of its α-cuts Aα are a
single closed interval, i.e., Aα = [a, b] and (2) all Aα are nested, i.e., ∀α1 > α2 : Aα1 ⊆ Aα2 .

For each α-level the crisp sets Aα
i are fused using the averaging operator F, which

results in

Afu−α = F(Aα
1, . . . , Aα

n)

=

[
F

(
min
x∈Aα

1

x, . . . , min
x∈Aα

n
x

)
, F

(
max
x∈Aα

1

x, . . . , max
x∈Aα

n
x

)]
.

(29)

The fused possibility distribution is then obtained by taking the maximum α-level
as follows:

π(fu)(x) = max
α

{
α if x ∈ Afu−α,
0 if x /∈ Afu−α.

(30)

Proposition 7. The computational load of (28)–(30) grows linearly in number of input possibility
distributions n, number of elements in X∗, and number of α-levels nα, i.e., (28)–(30) have in total
O(n · |X∗| · nα).

Proof. Equation (28) grows linearly in |Xi|. It has to be for each α-level and each input
possibility distribution, i.e., (28) is O(n · |X∗| · nα).

For (29), both minimum and maximum have to be computed n times, F has to be
computed two times. This has to be performed for each α-level. This results in

O(nα · 2 · (F + n · min+n · max))

=O(nα · (n + n · |X ∗ |+ n · |X∗|))
=O(nα · n · |X∗|).

Equation (28) is a single maximum with nα inputs, i.e., it is O(nα).
In total, (28)–(30) is O(nα · n · |X∗|).
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In contrast to (13), the computational load is distributed over fusion nodes if (28)–(30)
are distributed. Using α-cuts, neither |X| nor nα grow with each fusion node. Rather, they
stay constant. Consequently, increasing the number of fusion nodes in a topology—which
decreases the number of inputs per fusion node—reduces the computational load per
node. In conclusion, both estimation fusion as well as MCS fusion profit from reduced
computational load per node if fusion is distributed.

5.1.2. Fusion Topology Algorithms

Using (16) naively to search all possible subsets of a set of information sources S for
fusion nodes is computationally demanding. Such an approach grows exponentially in
number of sources n. The proposed Algorithm 1 presents a computational faster approach.

Proposition 8. The Algorithm 1 for finding consistency-based fusion nodes has complexity
O(m · n2) with n = |S| and m being the number of training data instances.

Proof. Algorithm 1 iterates over all training data instances j. For j = 1, it searches S for all
MCS. As the algorithm of [58,61] grows linearly in n, this step is O(n). For each subsequent
iteration with j > 1, it searches all previously MCS found at j − 1 again for MCS. The
maximum number of found MCS is n. The maximum number of sources belonging to an
MCS is also n, i.e., each iteration at j > 1 grows with n2. Consequently, Algorithm 1 is
O(m · n2).

The redundancy-based Algorithm 2 takes the fusion nodes found by Algorithm 1 as
input. If an MCS does not meet the redundancy criterion, then Algorithm 2 searches within
each MCS for largest subsets with ρ ≥ η.

Proposition 9. The Algorithm 2 for finding redundancy-based fusion nodes has complexity O(2n)
with n = |S|.

Proof. Algorithm 2 searches the power set of each MCS SMCS−α
(k) . As the maximum number

of sources in SMCS−α
(k) is n, Algorithm 2 is O(2n).

In contrast to the consistency-based algorithm, the redundancy-based version scales in
its current implementation poorly with number of sources. For reasons of practical imple-
mentation, this needs to be addressed in future works. In this regard, plausibility checks are
promising as to whether subsets of SMCS−α

(k) can actually exhibit the required range. In such
cases, it would not make sense to search these subsets at all, saving computational time.

5.2. Robustness

Fusion using the default MCS-based topology is prone to unexpected behaviour of
information sources regarding their consistency (see Section 4.2). In the following, the MCS
fusion design approach and topology are evaluated on selected real-world datasets regard-
ing their robustness. First, consistency-based design is compared to the redundancy-based
design approach. Following this, the adaptations of discounting and estimation fusion are
evaluated. Implementation and data preprocessing are detailed to increase reproducibility.

5.2.1. Data Preprocessing

Several data preprocessing steps are performed before the implementation. These
are necessary (i) to homogenise a heterogeneous frame of discernments, (ii) to reduce the
effects of noise (aleatoric uncertainty) on the fusion results and topology design, and (iii) if
data are not available as possibility distributions but rather as singular values or probability
distributions. Preprocessing comprises the three following steps.

• If data are singular values or probability distributions, they are transferred into possi-
bility distributions first. For this step, singular values x are interpreted as probability
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distributions with p(x) = 1 and x′ ∈ X \ {x} : p(x′) = 0. Transformation is con-
ducted by the truncated triangular probability-possibility transformation [49,77,78]
resulting in π(x).

• Second, sources providing noisy data are regarded as partially unreliable. Their
possibility distribution are modified using (25) accordingly. Unreliability values for
information sources are determined heuristically.

• Third, modified possibility distributions π(x) are mapped to a common, shared frame
of discernment. This X is based on fuzzy memberships μ, i.e., X = [μa, μb]. This
requires a fuzzy class to be defined to which μ(x) indicates the degree of membership
of x. The class membership function μ(x) can either be provided by an expert or
trained automatically [18,38,39]. Here, μ(x) is trained by a parametric unimodal
potential function proposed proposed by Lohweg et al. [79]:

μ(x) =

{
2−d(x,pl) if x ≤ x ,
2−d(x,pr) if x > x ,

(31)

with d(x, pl) =

( |x − x|
Cl

)Dl

,

d(x, pr) =

( |x − x|
Cr

)Dr

, and

with x being the arithmetic mean of given training data x. The parameters are deter-
mined as follows: Cl = x −minj∈{1,2,...,m}

(
xj
)
, Cr = maxj∈{1,2,...,m}

(
xj
)− x, and Dl,

Dr ∈ N>1. Dl and Dr are often determined empirically [21,80]. A training routine for
Dl and Dr based on density estimations is given by Mönks et al. [81].
The possibility distribution π(x) is then mapped to π(μ) via the extension principle
as follows:

π(μ) = max
x∈X:μ(x) = μ

π(x).

A detailed description and visualisations of these preprocessing steps are given pre-
vious work [39]. Together, the preprocessing steps allow to apply the proposed design
algorithms even on heterogeneous, noisy, and nonpossibilistic data. Robustness against
noise can additionally be increased by data filtering. However, since parameters of (31)
rely on minimum and maximum values of training data, applying filter directly on train-
ing data x would distort the borders of the unimodal potential function. For this reason,
memberships μ(x)—instead of data—are filtered in the preprocessing.

5.2.2. Nonrepresentative Training Data

The effects of nonrepresentative training data on consistency-based MCS topology
design and on redundancy-based design are evaluated. Consistency-based topology is
obtained by Algorithm 1 with parameter α = 0 as argued in Proposition 4. Its redundancy-
based counterpart is obtained by Algorithm 2. To ensure highly redundant information
sources in fusion nodes, parameter η is set to 0.6, i.e., sources are added to a fusion node if
their redundancy is greater than or equal to η.

Both design approaches are applied to the Sensorless Drive Diagnosis (SDD)
dataset [82,83]—a multi-class classification dataset (The SDD dataset is available for down-
load at the University of California Machine Learning Repository [84]). Nonrepresentative
training data are simulated by withholding data of certain classes from the design algo-
rithms creating a situation of epistemic uncertainty.

For the creation of the Sensorless Drive Diagnostics data set, an electromechanical
drive was monitored to detect faulty system behaviour. Data comprise features obtained
from phase-related motor currents and voltages. Each feature serves as an information
source in this evaluation. The dataset is particularly interesting because (i) it contains highly
noisy data and (ii) data are often linearly or non-linearly correlated and thus potentially
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redundant. The SDD dataset contains 11 classes in total, of which class 1 represents
healthy system behaviour (henceforth referred to as the normal condition). All other classes
represent various fault states, such as gear or bearing damage.

The design algorithms are executed on two subsets of the dataset. First, only data
belonging to the normal condition build a reduced training dataset. This reduced set mani-
fests epistemic uncertainty. It is nonrepresentative with regard to the complete behaviour
of information sources. For comparison, the second subset is constructed to include all
data, i.e., the complete dataset serves as training data.

Regarding the preprocessing steps, the unimodal potential function (31) is trained
on the normal condition with parameters Dl = 2 and Dr = 2. To regard the noise
in the dataset, possibility distributions are modified with reliability parameters ∀S ∈ S :
rel(S) = 0.9 and β = 1. Additionally, memberships are smoothed with a moving average
filter using a window size of 5. As the SDD dataset provides data as singular values,
the preprocessing steps result in rectangular possibility distributions.

The following behaviour is expected from the topology design approaches, which
helps in verifying their output:

• For the consistency-based approach, fusion nodes trained on complete data are ex-
pected to be smaller or of equal size compared with nodes trained on reduced data.
More specifically, ∀k, ∃k′ : SMCS−α

(k),reduced ⊆ SMCS−α
(k′),complete because (16) requires consisten-

cies of all data instances to be above the threshold α.
• Sources grouped by the redundancy-based approach S

ρ

(k) are expected to always be

a subset of at least one consistency-based found group SMCS−α
(k) , i.e., ∀k, ∃k′ : S

ρ

(k) ⊆
SMCS−α
(k′) because the redundancy metric (18) is more restrictive than pure consis-

tency. The additional range information (22) prevents sources being added to a fusion
node when it is not known that they behave consistently over the complete frame
of discernment.

The results of Algorithms 1 and 2 are shown in Tables 2 and 3, respectively. Both tables
show found fusion nodes for the first layer of the two-layer fusion topology. Fusion nodes
are shown both for reduced and complete training data along with redundancy ρ (18),
range evidence ep (20), and inconsistency evidence ec (19).

The results of Table 2 show that the MCS-based topology meets the expectation
regarding fusion node sizes. Furthermore, each set SMCS−α

(k),complete is a subset of at least

one SMCS−α
(k),reduced, e.g., SMCS−α

(1),complete ⊂ SMCS−α
(7),reduced. It is also notable that—especially but not

exclusively on reduced data—some sources occur in many fusion nodes.
This relates, for example, to sources 25 and 37. Sources with little informative value

are likely to be consistent with other sources because such sources provide possibility
distributions, which are likely wide or even close to total ignorance. For sources 25 and 37,
it is the case that both provide large possibility distributions covering a significant part of
the frame of discernment. Lastly, no fusion node based on complete data is exactly similar to
fusion nodes based on reduced data (which is different in the following redundancy-based
approach). Fusion nodes differ significantly. This means that nonrepresentative data limits
the performance of the consistent-based approach substantially, i.e., because epistemic
uncertainty is not considered by Algorithm 1 fusion nodes are inflated with spuriously
consistent information sources.

The results of the redundancy-based approach (Table 3) also meet the expectations
formulated beforehand, i.e., ∀k, ∃k′ : S

ρ

(k) ⊆ SMCS−α
(k′) . In contrast to the consistency-based

approach, sources with little informative value are not part of fusion nodes (e.g., sources 25
and 37). The computation of the range (22) penalises wide possibility distributions. This is
because of the disjunctive fusion prior to computing the position of a set of distributions (21).
Sets including information items close to total ignorance are given a position close to 0.5
resulting in low range values and hence low redundancies.
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Similar to the consistency approach, the amount of fusion nodes decreases from
reduced to complete training data. This shows that the redundancy-based approach is not
able to rule out all sets showing spurious redundancy. However, the majority of nodes
learned on complete data are exactly similar to nodes on reduced data. This is true for sets
{10, 11, 12}, {19, 20, 21, 22, 23, 24}, {31, 32, 33}, {34, 35, 36}, and {46, 47, 48} with {7, 8, 9}
coming close. This shows that the redundancy-based approach finds significant sets despite
nonrepresentative training data.

Table 2. Fusion nodes and their contributing information sources as designed by Algorithm 1 with
parameter α = 0. Grouped information sources are consistent for all instances of training data
(see metric ec (19)). The left side shows fusion nodes found on reduced, highly epistemic uncertain
training data, i.e., only data of the class stating normal condition were available. The right side shows
nodes found on complete data. Fusion node sets on reduced training data do not meet the required
redundancy threshold (i.e., ρ � η), which is due to the low range-based evidence ep (20). Information
sources are numbered as provided by the SDD dataset [82,83]. Fusion nodes with less than two
information sources are omitted. In total, 24 fusion nodes were found on reduced data and 28 on
complete data.

Node Reduced Training Data Complete Training Data

fn(k) S(k), reducedMCS−α, α = 0 ρ ep ec
SMCS−α
(k),complete

,
α = 0

ρ ep ec

fn(1) {1, 3, 25, 37} 0.3647 0.1330 0 {7, 8, 9} 0.9919 0.9840 0
fn(2) {1, 5, 25, 37} 0.4646 0.2159 0 {10, 11, 12} 0.9923 0.9847 0
fn(3) {1, 6, 25, 37} 0.3460 0.1197 0 {13, 37} 0.4462 0.1991 0
fn(4) {1, 15, 25, 28, 37, 39, 40} 0.5329 0.2839 0 {16, 28, 37, 40} 0.4043 0.1634 0
fn(5) {1, 25, 28, 37, 39, 40, 42} 0.5382 0.2897 0 {18, 41} 0.9513 0.9049 0
fn(6) {4, 28, 40} 0.3698 0.1368 0 {19, 20, 21, 22, 23, 24} 0.7830 0.6131 0
fn(7) {7, 8, 9, 28, 40, 41} 0.3882 0.1507 0 {25, 28, 37, 40, 41} 0.4013 0.1610 0
fn(8) {10, 11, 12, 25, 28, 37, 40} 0.4415 0.1950 0 {25, 28, 37, 40, 42} 0.4043 0.1634 0
fn(9) {13, 16, 25, 28, 37, 40} 0.3863 0.1492 0 {31, 32, 33} 0.8896 0.7914 0
fn(10) {14, 38, 39} 0.5450 0.2970 0 {34, 35, 36} 0.9513 0.9049 0
fn(11) {15, 25, 28, 37, 38, 39, 40} 0.5314 0.2824 0 {43, 44} 0.8386 0.7033 0
fn(12) {17, 25, 37} 0.3657 0.1337 0 {46, 47, 48} 0.7982 0.6371 0
fn(13) {18, 25, 28, 37, 38, 39, 40, 41} 0.3751 0.1407 0 - - - -
fn(14) {19, 20, 21, 22, 23, 24, 25, 28, 37, 40} 0.3555 0.1264 0 - - - -
fn(15) {25, 27, 37, 39} 0.3508 0.1231 0 - - - -
fn(16) {25, 28, 34, 35, 36, 37, 40} 0.3747 0.1404 0 - - - -
fn(17) {25, 28, 37, 38, 39, 40, 41, 42} 0.3234 0.1046 0 - - - -
fn(18) {25, 28, 37, 39, 40, 41, 42, 43, 44, 45} 0.3545 0.1257 0 - - - -
fn(19) {25, 31, 32, 33, 37} 0.3285 0.1079 0 - - - -
fn(20) {25, 37, 46, 47, 48} 0.2907 0.0845 0 - - - -

Therefore, it copes better than the consistency approach in situations with high epis-
temic uncertainty because the evidence ep (20) quantifies epistemic uncertainty. Nonethe-
less, it is advisable to update and adapt fusion nodes and topology with newly available
data. This reduces risk of nodes with spurious redundancy.

Figure 7 depicts scatter plots of selected information sources to visualise the shortcom-
ings of the consistency-based approach and to show the effects of epistemic uncertainty.
Information items may be close to each other—and therefore be consistent—for parts of
the training data (see plots (a), (b), and (c)). This is indicated by the fact that the positions
of items are clustered in the upper right corners for reduced training data. This does not
mean that consistent behaviour carries over to complete data (which is only true for (c)).
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Table 3. Fusion nodes and their contributing information sources as designed by Algorithm 2 with
parameters α = 0 and η = 0.6. Grouped information sources are consistent for all instances of
training data and range over a significant part of the frame of discernment. The left side shows
fusion nodes found on reduced, highly epistemic uncertain training data. The right side shows
nodes found on complete data. Information sources (features) are numbered as provided by the SDD
dataset [82,83]. Fusion nodes with less than two information sources are omitted. In total, 29 fusion
nodes were found on reduced data and 31 on complete data.

Node Reduced Training Data Complete Training Data

fn(k) S(k), reducedMCS−α, α = 0 ρ ep ec
SMCS−α
(k),complete

,
α = 0

ρ ep ec

fn(1) {1, 15} 0.6239 0.3893 0 {7, 8, 9} 0.9919 0.9840 0
fn(2) {1, 39, 42} 0.6228 0.3879 0 {10, 11, 12} 0.8896 0.7914 0
fn(3) {7, 8, 9, 41} 0.6721 0.4517 0 {18, 41} 0.9513 0.9049 0
fn(4) {10, 11, 12} 0.6302 0.3971 0 {19, 20, 21, 22, 23, 24} 0.7830 0.6131 0
fn(5) {13, 16} 0.6429 0.4133 0 {31, 32, 33} 0.8896 0.7914 0
fn(6) {14, 38, 39} 0.6148 0.3780 0 {34, 35, 36} 0.9513 0.9049 0
fn(7) {19, 20, 21, 22, 23, 24} 0.6916 0.4783 0 {43, 44} 0.8386 0.7033 0
fn(8) {27, 39} 0.6415 0.4115 0 {46, 47, 48} 0.7981 0.6371 0
fn(9) {31, 32, 33} 0.6367 0.4054 0 - - - -
fn(10) {34, 35, 36} 0.6777 0.4593 0 - - - -
fn(11) {38, 42} 0.6077 0.3693 0 - - - -
fn(12) {39, 41, 43, 44, 45} 0.6134 0.3763 0 - - - -
fn(13) {39, 42, 43, 44, 45} 0.6228 0.3879 0 - - - -
fn(14) {41, 42, 43, 44, 45} 0.6100 0.3722 0 - - - -
fn(15) {46, 47, 48} 0.6068 0.3682 0 - - - -
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Figure 7. Information items of selected information sources belonging to reduced training data (green)
and complete training data (blue). Data belongs to the Sensorless Drive Diagnosis dataset [82,83].
Subplot (a) shows information sources (features) {1, 5}, (b) {25, 10}, and (c) {43, 45}. Each point in
the scatter plots represents the position or centre of gravity of a possibility distribution obtained
by (21). Possibility distributions of a single pair are plotted below each scatter plot to give an intuition
about the size of the distributions. In the case of reduced training data, information sources (a) {1, 5}
and (b) {25, 10} belong to fusion nodes in the consistency-based approach (see Table 2) but not in the
redundancy-based approach (see Table 3). Without the additional information provided by the range
metric (22), the consistency-based approach considers sources, which result in being inconsistent on
complete training data. Sources (c) {43, 45} are given as an example in which information items are
consistent over the complete training data. Both the consistency-based as well as the redundancy-
based approach consider {43, 45} in fusion nodes. Note that the scatter plot in (a) is zoomed in for
better visibility.

149



Metrology 2022, 2

5.2.3. Defective Sources

Regarding defective sources, two adaptations to the MCS topology were proposed in
this paper. Both adaptations—(i) discounting defective sources and (ii) estimation-fusion-
based nodes—were evaluated on data with purposely engineered source defects.

The Typical Sensor Defects (TSD) dataset [21] provides such defective sources (The
TSD dataset is available for download at https://zenodo.org/record/56358 (accessed on
9 March 2022)). The TSD dataset contains data of a storage container for hazardous and
flammable materials measured, e.g., by temperature, smoke, and gas sensors. The dataset
comprises several files, which each include a specific simulated source defect, such as
incremental drift or outlier readings. For this evaluation, the files “data_standard.csv” and
“data_drift_0_001.csv” are used.

The first provides unaltered data without defects. The second one contains the same
data with the exception that a temperature sensor (feature 15) drifts with 1‰ h−1 of its base
value. Regarding preprocessing, the parameters for the unimodal potential function (31)
are provided as metadata in the dataset. As data are hardly affected by noise, sources are
fully reliable, and no averaging filter is applied. Data are provided with an error margin
of ±2% of the sensor’s measurement range [21] creating a uniform probability density
function. Thus, preprocessing results in triangular possibility distributions.

The fusion topology is learned on unaltered data using the consistency-based approach
of Algorithm 1—again with α = 0. This creates three fusion nodes on the first layer:

• fn(1) with SMCS−0
(1) = {17, 14, 21, 16, 18, 22, 12, 19, 13, 11},

• fn(2) with SMCS−0
(2) = {12, 15, 19, 13, 11, 20}, and

• fn(3) with SMCS−0
(3) = {10, 9, 8, 1, 2, 3, 4, 5, 6, 7}.

Their fusion results are fused at the final node fn(1,2) using MCS fusion (6). For the
first layer nodes, the following fusion rules are used and evaluated:

• renormalised conjunctive fusion based on (15),
• discounted renormalised conjunctive fusion extending (15) with (23), (25),
• estimation fusion (13), and
• weighted estimation fusion (27).

Intermediate and final fusion outputs are computed for each of these fusion rules.
The results of the same fusion rule on unaltered (standard) and drifted data are compared
regarding their similarity. As similarity measure the possibilistic Jaccard index [32,85]

sim(p) =

∫ 1
0 min

(
πfu
(k),standard(μ), πfu

(k),drift(μ)
)

dx∫ 1
0 max

(
πfu
(k),standard(μ), πfu

(k),drift(μ)
)

dx
. (32)

is applied. Similarities sim ∈ [0, 1] with sim = 1 indicating full similarity. Table 4 lists the
minimum, arithmetic mean, and maximum values of the computed similarity values for
fn(2) and fn(1,2). High similarities show robust behaviour against the defective source. As
fn(1) and fn(3) contain no defective sources, they are omitted from the table.

It can be seen from the results that renormalised conjunctive fusion, which is the
default rule in MCS fusion, was affected the most by the drifting source. Measures against
defective sources are therefore reasonable.

The approach of detecting and discounting by widening inconsistent possibility dis-
tributions improved the robustness slightly but not substantially. The ineffectiveness is
due to two reasons. First, widening with (25) does shift the fusion result toward reliable
sources but does not guarantee that the original fusion result is restored. It is reasonable to
assume that parameter β has a substantial impact, which needs to be investigated in further
works. Second, a drifting possibility distribution may actually drift into other possibility
distributions creating a false most consistent subset in the process.

This may lead to situations in which the wrong source is discounted. It is assumed
that the risk of this happening decreases with the number of sources in a fusion node.
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Estimation fusion nodes showed, on the other hand, a significant increase in robustness
evidenced by the higher min- and mean-values. Weighted estimation fusion demonstrated
the best performance. Due to its averaging nature, estimation fusion reduces the effects of
defective sources the better the higher the number of sources.

Table 4. Similarity between fusion node outputs on unaltered (standard) dataset and drift affected
dataset. The table shows the minimum, arithmetic mean, and maximum of similarities computed
on each data instance. The drift affected source belongs to fn(2). Therefore, fn(1) and fn(3) are not
explicitly listed. Similarity is increased by proposed countermeasures to defective sources.

Fusion
Approach

fn(2) Similarity (32) fn(1,2) Similarity (32)

min mean max min mean max

Renormalised
Conjunctive

(15)
0.0007 0.3166 1 0.0162 0.5335 1

Discounted
Renormalised
Conjunctive

(15), (23), (25)

0 0.5064 1 0.0162 0.6205 1

Estimation (13) 0.2686 0.6824 1 0.1336 0.9023 1
Weighted

Estimation (27) 0.3240 0.8051 1 0.6288 0.9742 1

6. Conclusions

Choosing a topology is one of the main challenges in information fusion system design.
Associativity, consistency, and redundancy play key roles in the performance of a topology.
In this article, we detailed and discussed a data-driven design approach resulting in a
two-layer topology inspired by MCS fusion. Due to the associativity of fusion rules in the
first layer nodes, the topology can be extended to multiple layers without affecting the
fusion results.

The basic design approach relies on the consistency of information items to find MCS
nodes. The resulting consistency-based topology was susceptible to unexpected behaviour
from information sources caused by unrepresentative training data or defective sources.
We proposed adaptations to the basic design comprising the inclusion of a redundancy
metric, the automated discounting of defective sources, and the application of outlier robust
estimation fusion.

In the evaluation, we demonstrated that the redundancy-enhanced design resulted
in more robust topologies in the case of epistemic uncertainty. Furthermore, evaluation
showed that discounting defective sources and estimation fusion reduced the effects of
defective sources. Estimation fusion outperformed the discounting approach in this regard
mainly because, in certain situations, the discounting approach incorrectly identified
sources as defective. Further work is required to improve this.

While the consistency-based approach found MCS in linear time regarding the number
of sources and number of data instances, the redundancy-enhanced version searched the
power set of all MCS. Although ∀k : |SMCS−α

(k) | ≤ |S| and although, in practical applications,

it is reasonable to assume ∀k : |SMCS−α
(k) | � |S|, the scalability of the redundancy-based

approach needs to be improved in further works. Another topic that should be addressed
in further works is to adapt the design approaches so that they are able to update a
topology on streamed data. With new dates becoming available, the epistemic uncertainty
is reduced. Updating a topology has the potential to improve the fusion results continuously
in small steps.
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Appendix A. Specificity as a Measure of Information Content

This Appendix section recaps specificity as a measure of the information content of
a possibility distribution. Specificity has been mathematically defined by ZADEH [44],
DUBOIS et al. [49], and MAURIS et al. [78] as a relative quantity between two information
items (π1 is more specific than π2 if ∀x ∈ X : π1(x) < π2(x)). Absolute measures for
specificity have been formalised by YAGER [51–53] as well as HIGASHI and KLIR [86,87].

A specificity measure spec(π) ∈ [0, 1] has to satisfy four conditions:

1. spec(π) = 0 in the case of total ignorance, i.e., ∀x ∈ X : π(x) = 1.
2. spec(π) = 1 in the case of complete knowledge, i.e., only one unique event is totally

possible and all other events are impossible.
3. A specificity measure de- and increases with the maximum value of π(x), i.e., let πk

be the k-th largest possibility degree in π(x), then dspec(π)
dπ1

> 0.

4. ∀k > 2 : dspec(π)
dπk

≤ 0, i.e., the specificity decreases as the possibilities of other values
approach the maximum value of π(x).

The measure of possibilistic specificity is a counterpart of Shannon’s probabilistic
entropy [45,86].

A measure of specificity for a real-valued, continuous frame of discernments is given
by Yager [51–53]:

spec(π) = αmax − 1
(xb − xa)

·
∫ αmax

0

(
max
x∈Aα

x − min
x∈Aα

x
)

dα, (A1)

with xa and xb being the borders of X (X = [xa, xb]). For (A1), it is proven by Yager [51–53]
that the measure satisfies the four requirements for specificity measures. The integral
in (A2) is equivalent to the area under A [50]. Therefore, (A1) is equal to

spec(π) = αmax − 1
(xb − xa)

·
∫ xb

xa
π(x)dx

= max
x∈X

π(x)− 1
(xb − xa)

·
∫ xb

xa
π(x)dx.

(A2)

Appendix B. Proofs of (Non-)Associativity of Fusion Rules

Proposition A1. The quantified fusion rule as formalised in (7) is not associative, i.e., fu(I1, I2, I3)
�= fu(fu(I1, I2), I3) with Ii = πi.

Proof by Counterexample. Assume three possibility distributions defined by key points
(x, π(x)) as follows: π1 = ((0.1, 0), (0.2, 1), (0.6, 1), (0.75, 0)), π2 = ((0.2, 0), (0.3, 1),
(0.5, 1), (0.55, 0)), and π3 = ((0.35, 0), (0.7, 1), (0.8, 1), (0.9, 0)). With j = 2, fusion results
using (7) π

( f u)
1 = fu(I1, I2, I3) and π

( f u)
2 = fu(fu(I1, I2), I3) are clearly different as shown

in Figure A1. This example proves that (7) is not associative.
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Figure A1. Three possibility distributions fused by the quantified fusion rule (7). Plot (a) shows

π
( f u)
1 = fu(I1, I2, I3). Plot (b) shows π

( f u)
2 = fu(fu(I1, I2), I3).

Proposition A2. The majority-opinion-guided possibilistic fusion rule (14) is not associative, i.e.,
fu(I1, I2, I3) �= fu(fu(I1, I2), I3) with Ii = πi.

Proof by Counterexample. Assume three possibility distributions defined by key points (x, π(x))
as follows: π1 = ((0.1, 0), (0.2, 1), (0.6, 1), (0.75, 0)), π2 = ((0.2, 0), (0.3, 1), (0.5, 1),
(0.55, 0)), and π3 = ((0.35, 0), (0.7, 1), (0.8, 1), (0.9, 0)). With rel = (1, 1, 1), v = (1, 1, 1),
wp = (0, 0, 1), and wm = ( 1

3 , 1
3 , 1

3 ), fusion results using (14) π
( f u)
1 = fu(I1, I2, I3) and

π
( f u)
2 = fu(fu(I1, I2), I3) are clearly different as shown in Figure A2. This example proves

that (14) is not associative.
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Figure A2. Three possibility distributions fused by the majority-opinion-guided possibilistic fusion

rule (14). Plot (a) shows π
( f u)
1 = fu(I1, I2, I3). Plot (b) shows π

( f u)
2 = fu(fu(I1, I2), I3).
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Kaynak, O., Zadeh, L.A., Türkşen, B., Rudas, I.J., Eds.; Springer: Berlin/Heidelberg, Germany, 1998; pp. 94–113.
53. Yager, R.R. Measures of specificity over continuous spaces under similarity relations. Fuzzy Sets Syst. 2008, 159, 2193–2210.

[CrossRef]
54. Yager, R.R. Aggregation operators and fuzzy systems modeling. Fuzzy Sets Syst. 1994, 67, 129–145. [CrossRef]
55. Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning—II. Inf. Sci. 1975, 8, 301–357.

[CrossRef]
56. Klement, E.P. Triangular Norms; Springer eBook Collection Mathematics and Statistics; Springer: Dordrecht, Germany, 2000;

Volume 8. [CrossRef]
57. Benferhat, S.; Dubois, D.; Prade, H. Reasoning in inconsistent stratified knowledge bases. In Proceedings of the 26th IEEE

International Symposium on Multiple-Valued Logic (ISMVL’96), Compostela, Spain, 29–31 May 1996; pp. 184–189. [CrossRef]
58. Dubois, D.; Fargier, H.; Prade, H. Multi-source information fusion: A way to cope with incoherences. In Proceedings of the

French Days on Fuzzy Logic and Applications (LFA), Paris, France, 21 October 2000; pp. 123–130.
59. Liu, W.; Qi, G.; Bell, D.A. Adaptive merging of prioritized knowledge bases. Fundam. Inform. 2006, 73, 389–407.
60. Hunter, A.; Liu, W. A context-dependent algorithm for merging uncertain information in possibility theory. IEEE Trans. Syst.

Man Cybern. Part A Syst. Hum. 2008, 38, 1385–1397. [CrossRef]
61. Destercke, S.; Dubois, D.; Chojnacki, E. Possibilistic information fusion using maximal coherent subsets. IEEE Trans. Fuzzy Syst.

2009, 17, 79–92. [CrossRef]
62. Yager, R.R. Aggregating evidence using quantified statements. Inf. Sci. 1985, 36, 179–206. [CrossRef]
63. Dubois, D.; Prade, H.; Testemale, C. Weighted fuzzy pattern matching. Fuzzy Sets Syst. 1988, 28, 313–331. [CrossRef]
64. Oussalah, M.; Maaref, H.; Barret, C. From adaptive to progressive combination of possibility distributions. Fuzzy Sets Syst. 2003,

139, 559–582. [CrossRef]
65. Yager, R.R. A general approach to the fusion of imprecise information. Int. J. Intell. Syst. 1997, 12, 1–29. [CrossRef]
66. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [CrossRef]
67. Glock, S.; Voth, K.; Schaede, J.; Lohweg, V. A framework for possibilistic multi-source data fusion with monitoring of sensor

reliability. In Proceedings of the World Conference on Soft Computing, San Francisco, CA, USA, 23–26 May 2011.
68. Larsen, H.L. Efficient importance weighted aggregation between min and max. In Proceedings of the ninth Conference

on Information Processing and Management of Uncertainty in Knowledge-based Systems, Annecy, France, 1–5 July 2002;
pp. 1203–1208.

69. Oussalah, M. Study of some algebraical properties of adaptive combination rules. Fuzzy Sets Syst. 2000, 114, 391–409. [CrossRef]
70. Calude, C.; Longo, G. The deluge of spurious correlations in big data. Found. Sci. 2017, 22, 595–612. [CrossRef]
71. Delmotte, F.; Borne, P. Modeling of reliability with possibility theory. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 1998,

28, 78–88. [CrossRef]
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Abstract: Spectral analysis is successfully adopted in several fields. However, the requirements
and the constraints of the different cases may be so varied that not only the tuning of the analysis
parameters but also the choice of the most suitable technique can be a difficult task. For this reason,
it is important that a designer of a measurement system for spectral analysis has knowledge about
the behaviour of the different techniques with respect to the operating conditions. The case that
will be considered is the realization of a numerical instrument for the real-time measurement of the
spectral characteristics of a multi-tone signal (amplitude, frequency, and phase). For this purpose,
different signal processing techniques can be used, that can be classified as parametric or non-
parametric methods. The first class includes those methods that exploit the a priori knowledge
about signal parameters, such as the spectral shape of the signal to be processed. Thus, a self-
configuring procedure based on a parametric algorithm should include a preliminary evaluation of
the number of components. The choice of the right method among several proposals in the literature
is fundamental for any designer and, in particular, for the developers of spectral analysis software,
for real-time applications and embedded devices where time and reliability constrains are arduous to
fulfil. Different aspects should be considered: the desired level of accuracy, the available elaboration
resources (memory depth and processing speed), and the signal parameters. The present paper
details a comparison of some of the most effective methods available in the literature for the spectral
analysis of signals (IFFT-2p, IFFT-3p, and IFFTc, all based on the use of an FFT algorithm, while
improving the spectral resolution of the DFT with interpolation techniques and three parametric
algorithms—MUSIC, ESPRIT, and IWPA). The methods considered for the comparison will be briefly
described, and references to literature will be given for each one of them. Then, their behaviour will
be analysed in terms of systematic contribution and uncertainty on the evaluated frequencies of the
spectral tones of signals created from superimposed sinusoids and white Gaussian noise.

Keywords: digital signal processing; spectral resolution; frequency domain analysis; frequency–
domain interpolation; frequency uncertainty

1. Introduction

The spectral analysis of signals is successfully adopted in several fields—from elec-
trical [1,2] to typical industrial fields—for speed and fault detection on motors and bear-
ings [3–5] in military applications [6], submarine applications [7], and medical applica-
tions [8]. Despite the adaptability of frequency analysis for varied applications [9], similar
cases might require different approaches, requirements, and constraints; for this reason,
they differ in the tuning of the analysis parameters, and the choice of the most suitable
technique can be a difficult task to accomplish. For this reason, the designer of a mea-
surement system for spectral analysis must have knowledge about the behaviour of the
different techniques concerning the operating conditions. The case that will be considered
is the realisation of a numerical instrument for the real-time measurement of the spectral
components of a signal: amplitude, frequency, and phase.
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For this purpose, different signal processing techniques can be used that can be
generally classified in parametric and non-parametric methods. The first class includes
those methods that exploit the a priori knowledge about the signal parameters, such as
the number of signal spectral components. Thus, a self-configuring procedure based on a
parametric algorithm should include a preliminary evaluation of the number of components.
The choice of the proper method among the several available approaches is fundamental
for designing a procedure based on signal spectral analysis. Different aspects should be
considered: the desired level of accuracy, the available elaboration resources (memory
depth and processing speed), and the signal nature.

This paper will compare the most effective methods available in the literature for the
spectral analysis of signals [10–25]. The considered methods for the comparison will be
briefly described, and references from the literature will be given for each one of them.
Their behaviour will be analysed in terms of obtainable uncertainty on the frequency
evaluation. Residual errors and repeatability of the measured frequency directly influence
the uncertainty of other tone properties, such as phase and amplitude.

The procedure and the criteria adopted for the comparison are described and, eventu-
ally, the results are reported and commented upon. Numerical simulations have been run
in conditions similar to the real-world operation of a measurement system by studying the
effects of added Gaussian noise or quantisation noise to the signal, and their results are
shown in this article.

2. Considered Methods

In this section, the algorithms considered for the comparison will be briefly described.
At first, some non-parametric algorithms will be presented (IFFT-2p, IFFT-3p, IFFTc), they
are all based on the use of a fast Fourier transform (FFT) algorithm, but they improve the
spectral resolution of the discrete Fourier transform (DFT) algorithm, with interpolation
techniques. Then three parametric algorithms will be introduced (MUSIC, ESPRIT, and
IWPA), based on approaches different from the DFT evaluation. Since almost any signal
can be represented as a multi-tone signal (1), composed of the sum of Ns sinusoids with
amplitude, Ai, and phase, φi; all the algorithms will be compared with respect to this
signal family.

x(t) =
Ns

∑
i=1

Aisin(2π fit + φi). (1)

2.1. Non-Parametric Methods

Considering the multi-tone signal in (1), sampled with a Ts sampling period, the ob-
tained signal is described by:

x(n) =
Ns

∑
i=1

Aisin(2π finTs + φi) n = 1. . .N. (2)

Non-parametric methods are based on the DFT algorithm, where the spectrum samples
are evaluated as follows:

X(k) =
1
G

N−1

∑
n=0

w(n)x(n)e−
2jπ
N kn k = 0. . .N − 1, (3)

where x(n) is the sampled signal (2) and w(n) are the window samples with gain G, and k
is the spectral bin index, also known as the bin number. If the sampled signal is coherent
with the module of the sampled sequence DFT (3), then M(k) = |X(k)| presents Ns peaks,
corresponding to the Ns tone frequencies; the i-th peak is located exactly at index ki.

When coherent sampling conditions are not assured, a quantization error arises in
the frequency estimation [26]; the tone module is underestimated because of the spectral
leakage. Moreover, harmonic interference is present, causing an error in parameters
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estimation when the sampled signal presents two tones with a small frequency difference
compared with the frequency resolution, or when it has only one tone but the frequency is
less than two times the frequency resolution Δ f .

To correct errors on frequency estimation, phase, and amplitude estimation, several
non parametric methods have been exploited in the literature [10]. In the following sections,
some non parametric methods will be briefly treated, in particular the interpolated FFT
(IFFT) on two points and three points, and the corrected IFFT.

2.1.1. IFFT-2p

Interpolated FFT algorithms [10,11] have been known in the literature for several years,
and those based on a two-point interpolation are the most common. The frequency, fi, of the
i-th tone can be evaluated as: fi = (ki + δi)Δ f , where Δ f is the DFT frequency resolution
(Δ f = fs/N), k is the integer part of the bin ( f /Δ f ), and δi ∈ [−1/2,+1/2] is the fractional
bin deviation. The fractional bin deviation, δi, is evaluated from the ratio between the two
largest samples closest to the peak: αi =

|X(ki+εi)|
|X(ki)| , where: εi = sign(|X(ki + 1)| − |X(ki − 1)|).

Considering the sampled spectrum of the window function, W(k), the following is ob-
tained [9]:

αi =
|W(εi − δi)|
|W(−δi)| =

|W(ki − δi)|
|W(ki)| (4)

The value of δi can be evaluated from the latter relationship, given the window function
and its analytical expression.

2.1.2. IFFT-3p

The interpolated three-point DFT algorithm [12–15] is based on an interpolation of the
DFT results of the signal, windowed by cosine windows, and using three points for each
tone peak. Considering the multi-tone signal, with Ns spectral components of (1), like the
IFFT-2p, the frequency fi of the i-th tone is evaluated as fi = (ki + δ3i)Δ f ; in this case, δ3i is
evaluated considering the three largest samples of the peak:

α3i =
|X(ki − 1)|+ |X(ki + 1)|

|X(ki − 1)|+ 2|X(ki)|+ |X(ki + 1)| , (5)

δ3i = K ∗ α3i, (6)

where K is a proportional factor that depends on the used windowing function; in the case
of an Hanning window, this is K = 2.

2.1.3. IFFTc

The corrected interpolated FFT algorithm, presented in [16–18], is based on an IFFT-
2p, but includes further processing to correct the effects of the harmonic interference
between spectral components. Concerning the multi-tone signal of (1), it has been shown
that the DFT value closest to the peak of the i-th spectral component can be written as:
X(ki) =

Vi
S W(−δi) + Fi, where Vi =

Ai
2j ejφi , S = ∑N−1

i=0 w(n), and the contribution of the
harmonic interference of other components on the i-th one can be taken into account by
the term Fi. Similar considerations can be made for the second strongest bin: X(ki + εi) =
Vi
S W(εi − δi) + Bi.

The αi becomes: α′i = |W(εi−δi)|
|W(−δi)| = |X(ki+εi)−Bi |

|X(ki)−Fi | . The correction factors, Fi and Bi,
depend on the frequency, amplitude, and phase of the signal tones. The proposed solution
consists of using the values of frequency, amplitude, and phase measured with a preliminary
two-point IFFT to evaluate the correction factors (IFFTc). In the presence of a low-frequency
tone, the frequency image contribution can be corrected with the same relationships [20].
This step could be iterated further, but without any significant improvement in terms of
estimation error reduction.
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2.2. Parametric Methods

Numerous parametric methods exist in the literature; however, in this article, only the
three algorithms presenting the best compromise in terms of computational requirements
and estimation performance have been considered—MUSIC, ESPRIT, and IWPA.

2.2.1. MUSIC

This parametric algorithm (multiple signal classification) [19–21] determines the fre-
quencies of the tones in a signal by performing a decomposition of the covariance matrix of
the sequence of signal samples, x(n). We modelled the input data as a Ns-tone signal and a
superimposed noise, as follows:

x(n) =
Ns

∑
i=i

Aisin(2π finTs + φi) + z(n), (7)

where z(n) is the noise signal. The covariance of the signal is Rx = E{xxH}, and can be
numerically computed using signal samples, x[n]. If the noise is considered to be white
Gaussian noise, then the signal can be decomposed in order to separate the signal from
the noise orthogonal subspaces. The frequencies of the signal tones can be estimated from
this decomposition [19]. To compute the MUSIC algorithm, the number of signal tones, Ns,
must be known in advance; the same applies to the number of signals eigenvectors to be
found with the decomposition.

2.2.2. ESPRIT

This parametric algorithm (estimation of signal parameter via rotational invariance
technique), introduced in [22–24], exploits the rotational invariance property, which is valid
for the signal eigenvectors (x) of the sample sequence covariance matrix. Similar to the
MUSIC algorithm, ESPRIT needs an estimation of the signal covariance matrix. Thanks
to the knowledge of the number of components, the eigenvectors corresponding to signal
components can be separated from the noise eigenvectors. Each signal eigenvector can be
written as:

xk = [x(0), x(1), . . ., x(N − 2), x(N − 1)]

= Ak × [1, ejωk , ej2ωk , . . ., ej(N−1)ωk ]

= [s1, x(N − 1)] = [x(0), s2],

(8)

where Ak is the coefficients vector. The s2 = s1ejω1 rotational invariance property is valid,
so all the signal eigenvectors and the signal components can be collected into the matrix, U,
as well as into the signal components in the following matrices:

Γ1 = [IM−1|0M−1](M1)×M (9a)

Γ2 = [0M−1|IM−1](M1)×M (9b)

Considering the rotational invariance property for each signal eigenvector, the selec-
tion matrices, Γ1 (9a) and Γ2 (9b), can be used to obtain the following system:

[Γ1U]Φ = Γ2U, (10)

where Φ = diag{ejω1 , ejω2 , . . ., ejωNs }. It is possible to obtain the frequencies of the compo-
nents belonging to the signal solving this system with a least square technique.

2.2.3. IWPA

This method, proposed in [25], is based on the iteration of the weighted phase average
algorithm (WPA). Considering the case of a signal with only one spectral component,
x(t) = A0cos(2π f0t + φ0), a coarse estimation, f̂0, of the frequency, f0, can be obtained
in the first place, as the maximum of the amplitude of the DFT sequence, X(k). The
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signal is then divided into M non-overlapping segments of length P: xs(n) = x(n + s · P),
0 ≤ n ≤ P − 1.

In the simple but effective case of two segments and P = N/2, the spectra of the two
segments, x1 and x2, are evaluated at frequency f̂0, and it can be shown that the fractional
bin deviation, δ, can be estimated as:

δ =
N

2π · P

(
X1( f̂0)− X2( f̂0)

)
. (11)

The IWPA algorithm, at each iteration, applies the WPA to obtain the frequency
estimation of the strongest component, while amplitude and phase of this component are
obtained through a least square technique. In the next step, the estimated component is
subtracted from the samples of the previous iteration in the time domain. The number
of iterations has to be equal to the number of components, so that a new component
can be estimated at each iteration. The IWPA algorithm can be easily converted into a
non-parametric algorithm by iterating its processing steps until the level of the residual
decreases below a threshold.

3. Residual Errors

Due to approximations, the considered methods may exhibit a bias between the
estimated and actual values of the signal tones, even when noise is not superimposed to the
signal, and their expected values are not equal to their actual values. Such behaviour can
be associated with interharmonic interference; as for IFFTc and IWPA, the behaviour can be
associated with inadequate knowledge of the values required by parametric methods or
the finite word length of the data processing.

To evaluate the proposed methods and produce a clear comparison of their perfor-
mance, the multi-frequency signals described by (1) were considered; the tests are made for
different values of the number of tones (Ns), the number of samples (N), the frequency ( fi),
the amplitude (Ai), and the phase (φi). All the simulations have been made supposing an
observation window longer than two periods of the signal. The major effects analysed are
the frequency resolution, the signal dynamic range, and the harmonic interference [10].

fi = (ki + δi)Δ f (12a)

Ai = βi · A0 (12b)

dij =
f j − fi

Δ f
(12c)

Given Equations (12a)–(12c), where ki is the frequency bin index corresponding to
fi and δi is the fractional bin deviation, the simulations are made at changing values
of δi, dij, βi, φi, and N in order to analyse the dependence of the harmonic interference
effects on the signal characteristics and the measurement system settings. In order to
evaluate the interference effects on the different methods, tests with only two tones with the
same amplitude (A1 = A2), corresponding to more substantial interference on both tones,
refs. [3–5] are carried out at changing distances between tones, d12; with d1 always greater
than 20.

The logarithms of the absolute errors on the fractional bin deviations are calculated as
the difference between the measured (δ̂i) and the real value (δi), as follows:

Eδi = |δ̂i − δi| (13)

In Figure 1 the estimation error (13) for the first tone versus the distance between tones
(d12) is reported for the considered methods; similar results are obtained with the second
tone. Interpolated FFT algorithms use the Hanning window, while for MUSIC and ESPRIT,
M = N/4 was posed, and the matrix covariance was calculated using the samples with no
noise added.
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IFFT2p
IFFTc
IFFT3p
IWPA
ESPRIT
MUSIC

Figure 1. Absolute errors on δ obtained for a two-tone signal versus the distance, d12, between tones.

Some considerations can be outlined, as follows:

• For each distance, the best performance is obtained by the ESPRIT method, that
exhibits the lowest error at any distance between the tones since the error due to the
frequency quantization is negligible.

• When the distance between tones is small (d12 < 2bins), the non-parametric ap-
proaches detect only one tone and the errors on the detected tone are significant
(comparable with δ). Even if the IWPA method is able to estimate both tones and its
errors are lower than those of the parametric approach, the error is still high.

• The tone distance slightly influences the algorithms based on the autocorrelation
(MUSIC and ESPRIT): only for d12 lower than one bin is the MUSIC algorithm affected
by a highest residual error.

• The performance of IWPA and IFFT are comparable, but for small tone distances,
the IWPA gives better estimations—vice versa occurs for larger distances d12.

• The IFFTc algorithm for tone distance greater than 8 bin gives results comparable with
MUSIC: errors of the order of 10-6 are measured for both tones.

Since parametric algorithms require the knowledge of the number of spectral compo-
nents, but the information can not be obtained in some applications, a characterization of
all the algorithms will be reported for the case in which a different and generally wrong
number of spectral components (Ns0 ) is specified. For instance, Figure 2 shows the errors
on δ versus the specified number of tones, Ns0 , in the case of a five-tone signal (Ns = 5)
for the considered algorithms. The results refer to a signal with all the tones at the same
amplitude (Ai = 1) and uniformly spaced with di,i−1 = 3. For the cases where Ns0 < 5,
the error on δ for a non-detected tone is evaluated with respect to the closest detected tone.

As expected, the algorithms based on IFFT, being non-parametric algorithms, are
not influenced by Ns0 , and the residual errors are quite similar for each tone. Parametric
methods MUSIC and ESPRIT manifest a different behaviour: errors are very high for each
tone as long as Ns0 is lower than the actual number of tones. In other words, if Ns0 is
lower than Ns, then the estimated frequencies are significantly different (at least Δ f /2)
from the actual frequencies of each of the five tones. When Ns0 ≥ Ns, the ESPRIT method
gives the best performance: it does not show residual errors, and small differences (less
than 10−15) are only caused by the finite word length of the precessing unit (CPU); MU-
SIC shows greater errors (about 10−7), but these are negligible with respect to the other
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methods. IWPA is less sensitive to an underestimated number of tones (Ns0 ≥ Ns): in these
cases, the frequency estimations are better than the other parametric methods, while for a
Ns0 ≥ Ns, its estimation deteriorates, since noise components are considered erroneously
as signal tones until Ns0 components are detected. In the results of Figure 2, when Ns0 is
less than Ns = 5, the errors for the undetected components are evaluated as the absolute
difference between the actual value for that component and the estimated value for the
closest component.

IFFT2p
IFFTc
IFFT3p
IWPA
ESPRIT
MUSIC

IFFT2p
IFFTc
IFFT3p
IWPA
ESPRIT
MUSIC

IFFT2p
IFFTc
IFFT3p
IWPA
ESPRIT
MUSIC

IFFT2p
IFFTc
IFFT3p
IWPA
ESPRIT
MUSIC

IFFT2p
IFFTc
IFFT3p
IWPA
ESPRIT
MUSIC

Figure 2. Errors on δ or a 5-tone signal (Ns = 5), versus the specified number of tones, Ns0 . Each
figure refers to a single tone starting from tone 1 (on the left) to tone 5 (on the right).

Further tests were carried out to highlight the sensitivity of the different methods to
the number of processed samples; in particular, the trends (not reported here for the sake
of brevity) of the errors on δi, versus the bin distance, and versus the tone amplitudes,
do not change when the number of acquired samples changes from 128 to 2048. This is
expected for the error on δi, which is a kind of relative error and is different from the error
on the frequency. Once the sampling frequency has been set, the greater the number of
samples, the lower the spectral resolution, and, consequentially, the lower the error on
frequency will be. However, a small reduction in the residual errors is measured only for
the IWPA and IFFT methods when N increases (from about Eδ = 3 × 10−3 with N = 128 to
Eδ = 2 × 10−4 for N = 4096).

4. Repeatability under Noisy Conditions

Some amount of noise always corrupts real-life signals, so the considered methods
have to be evaluated when applied with noisy signals, since their performance may worsen
significantly. The tests are carried out by changing the signal characteristics to estimate
each method’s sensitivity to the tone composition; only two-tone signals are considered.
Once the signal and the measurement parameters have been fixed, a Gaussian noise is
added, noisy signal samples are generated, and the algorithms process these points in
order to estimate the signal characteristics. For each signal, configuration, and noise level,
the tests are repeated 1000 times; the mean and the standard deviation of the results of
the algorithms are calculated. For the three algorithms, based on the FFT interpolation,
a Hanning window is used.

4.1. Sensitivity to the First Tone Distance

Figure 3 reports the behaviour of the algorithms respect to a signal composed of two
tones very close in frequency (d12 = 3 bins) and with the same null phase. The measured
mean square error (MSE) versus the signal-to-noise ratio (SNR) for the different methods
are reported, where the Cramér–Rao bound (CRB) [14] is also reported, since it gives
information about the best theoretical performance (minimum variance of the quantity of
interest) achievable with an ideal estimator, versus the level of superimposed noise. It has
to be highlighted that the MSE considers both the random variability and the systematic
effects [13]. The adopted CRB values are obtained with relationships valid in the specific
case of a single-tone signal. However, the CRB estimation can be considered a kind of lower
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limit, and the goodness of the estimation of a proposed method can be evaluated through
the closeness of the resulting MSE to the CRB.

IFFT2p
IFFTc
IFFT3p
IWPA
ESPRIT
MUSIC
CRB

Figure 3. Mean square errors (MSE) versus the SNR for a two-tone signal with A1 = A2 = 1, N = 256,
f1/Δ f = 40.2 bins, d12 = 3 bins, and zero phase difference.

Analysing these results, it is possible to state that IFFT and IFFTc algorithms are less
sensitive to a high noise level than the other algorithms. In particular, IFFTc shows an
MSE on δ less than 0 dB for SNR less than zero, while the errors can reach 20 dB for the
other algorithms. For higher SNR, MUSIC, and ESPRIT show the best performance, but the
results of IFFTc and IWPA are comparable with those of the other two methods when the
phases are equal to zero. In presence of phase difference, not reported here for simplicity,
the performance of ESPRIT and MUSIC does not change while IFFT deteriorates slightly
(about 2 dB) for SNR values between 0 dB and 20 dB; the MSE on δ of the IFFTc algorithm
declines of about 3 dB for high SNR (greater than 40 dB) when residual systematic effects
on the phase estimation become predominant, and IWPA remarkably loses its estimation
capability at the point that it can hardly be adopted.

Figure 4 reports the MSE on δ versus the relative distance between the two tones of
a signal. The improvement of interpolation of the IFFTc over IFFTs is evident since IFFTc
keeps good performance from d12 equal to 3 onwards. However, the lowest values of MSEδ

are reached by ESPRIT and MUSIC.
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IFFT2p
IFFTc
IFFT3p
IWPA
ESPRIT
MUSIC

Figure 4. MSE of δ for the first tone versus the normalized tone distance d12, with A1 = A2 = 1,
N = 256, f1/Δ f = 40.2, random phases, and SNR = 40 dB.

4.2. Sensitivity to the Tone–Amplitude Ratio

In Figure 5 the trends of the MSE in the estimation of the bin deviations for a two-tone
signal with very close frequencies (d12 = 3) and with random phases are reported, versus
the amplitude of the second tone (β2 changes in the range [0.1, 2], while β1 = 1) for two
different SNRs (5 dB and 40 dB). The figures show only the performance of the parametric
method ESPRIT and the non-parametric algorithm based on IFFT, since the results of
MUSIC are very similar to those of ESPRIT, while IWPA introduces very high errors in
presence of phase variations.

IFFT2p
IFFTc
IFFT3p
IWPA
ESPRIT
MUSIC

IFFT2p
IFFTc
IFFT3p
IWPA
ESPRIT
MUSIC

Figure 5. MSE of δ versus the amplitude of the second tone with β1 = 1 fixed at two different SNR
values 5 dB (on the left) and 40 dB (on the right). N = 256, f1/Δ f = 40.2, d12 = 3, and random phases.
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ESPRIT algorithm exhibits worse performance in the estimation of the the second
tone frequency when β2 is low, due to the low values of SNR at the second tone especially
in the case of the lowest of the two SNR values (5 dB), while the MES value decreases
for increasing amplitudes of the second tone. The estimation of the highest tone is not
influenced by the amplitude of the lowest one. On the other hand, the IFFTc method is
slightly influenced by the change in amplitude. Moreover, the variability obtained with
all the methods on δi is comparable (IFFTc is characterized by a standard deviation σδi
a bit greater than the others) and the same behaviour is observed when the second tone
amplitude becomes significantly greater than the noise (β2 > 0.5).

4.3. Sensitivity to the Number of Samples

In Figure 6 the standard deviations of the errors versus N are reported, for a given
signal with two tones of the same amplitude and for two different noise levels. As expected,
the standard deviations decrease when the number of processed samples increases. For
both noise levels, the effect of the tone distance is less significant for high N. In the case
of the lowest SNR value (5 dB), the trend is quite the same for all the methods, since the
variability due to noise is comparable to the systematic effect of IFFT; meanwhile, for the
highest SNR value (40 dB), the parametric algorithms and IFFTc show better performances.

IFFT2p
IFFTc
IFFT3p
ESPRIT

IFFT2p
IFFTc
IFFT3p
ESPRIT

Figure 6. MSE of δ versus the number of processed samples for a two-tone signal with A1 = A2 = 1,
d12 = 3, N = 256, f1/Δ f = 40.2, random phases, SNR 10 dB (on the left), and 50 dB (on the right).

5. Uncertainty Evaluation

As evidenced in Section 3, all the analysed methods present a residual error, that can
be negligible or not function depending on the signal characteristics and the processing
parameters. The residual contribution cannot be corrected since it strictly depends on the
signal characteristics and the uncertainty evaluation has to be taken into account. To this
aim, it is possible to write the following:

δ = δm + Cδ, (14)

where δ is the corrected bin value, δm is the evaluated bin value, and Cδ is the correction that
can be modelled as random variable with mean value equal to zero and standard deviation,
σC, different from zero. Applying the ISO GUM [27] the measurement uncertainty is
equal to:

uδ =
√

σ2
δ + σ2

C. (15)
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As for the standard deviation of the correction value, the measurement uncertainty
can be estimated considering group of signals with similar characteristics. In Table 1 the
measurement uncertainty uδ on the tone frequencies evaluated for a two-tone signal with
tones at varying distance (used as the index of the table) and for different values of β12 is
reported. The uncertainty is evaluated considering for each configuration 1000 simulations
with random phase and varying d12 between the 2 tones, and the FFT is made on 256 sam-
ples. The measurement uncertainty is reported for the six considered methods. By looking
at these data, it is possible to have an idea of the order of magnitude of the uncertainty,
given the signal characteristics d1, d2, β12 for a given algorithm; the uncertainty of the
second tone for d12 between 3 and 4 when β12 is equal to 0.01 are not reported because it is
not ever correctly detected with the algorithms based on FFT.

Table 1. Measurement uncertainty, uδ, evaluated for two-tone signals with tones at varying distance
for different values of β12, changing d12 from d1 to d2. The simulations were repeated 1000 times,
randomizing the tone phases with a 256-sample signal.

β12 = 0.01

Tone 1 Tone 2
d1 d2 IFFT2p IFFTc IFFT3p IWPA ESPRIT MUSIC IFFT2p IFFTc IFFT3p IWPA ESPRIT MUSIC

3 4 6.7 × 10−5 1.5 × 10−4 2.4 × 10−5 1.1 × 10−3 1.1 × 10−14 1.6 × 10−7 - - - 1.1 × 10−1 9.6 × 10−13 1.6 × 10−7

4 5 3.0 × 10−5 6.0 × 10−5 9.1 × 10−6 1.1 × 10−3 1.1 × 10−14 1.8 × 10−7 6.6 × 10−1 5.8 × 10−1 6.7 × 10 −1 1.0 × 10−1 9.3 × 10−13 1.8 × 10−7

5 6 1.6 × 10−5 1.0 × 10−5 4.3 × 10−6 1.1 × 10−3 1.1 × 10−14 1.9 × 10−7 1.2 × 10−1 3.6 × 10−5 5.5 × 10 −2 1.0 × 10−1 9.9 × 10−13 1.9 × 10−7

6 7 9.5 × 10−6 3.4 × 10−6 2.3 × 10−6 1.1 × 10−3 1.0 × 10−14 1.6 × 10−7 7.7 × 10−2 3.2 × 10−5 2.6 × 10 −2 1.0 × 10−1 9.9 × 10−13 1.7 × 10−7

7 12 3.5 × 10−6 5.6 × 10−7 6.7 × 10−7 1.1 × 10−3 1.0 × 10−14 1.7 × 10−7 2.9 × 10−2 2.8 × 10−5 7.4 × 10 −3 1.0 × 10−1 9.4 × 10−13 1.7 × 10−7

12 20 7.8 × 10−7 1.8 × 10−7 9.4 × 10−8 1.1 × 10−3 1.0 × 10−14 1.7 × 10−7 6.5 × 10−3 2.2 × 10−5 9.8 × 10 −4 9.7 × 10−2 9.3 × 10−13 1.7 × 10−7

β12 = 0.1

Tone 1 Tone 2
d1 d2 IFFT2p IFFTc IFFT3p IWPA ESPRIT MUSIC IFFT2p IFFTc IFFT3p IWPA ESPRIT MUSIC

3 4 6.8 × 10−4 2.3 × 10−4 2.4 × 10−4 1.3 × 10−3 1.1 × 10−14 1.6 × 10−7 5.3 × 10−2 2.3 × 10−4 3.5 × 10−2 1.0 × 10−1 1.2 × 10−14 1.6 × 10−7

4 5 3.0 × 10−4 3.8 × 10−5 9.1 × 10−5 1.2 × 10−3 1.1 × 10−14 1.8 × 10−7 2.4 × 10−2 4.1 × 10−5 1.2 × 10−2 1.0 × 10−1 1.2 × 10−14 1.8 × 10−7

5 6 1.6 × 10−4 9.9 × 10−6 4.3 × 10−5 1.2 × 10−3 1.1 × 10−14 1.9 × 10−7 1.3 × 10−2 1.2 × 10−5 5.2 × 10−3 1.0 × 10−1 1.2 × 10−14 1.9 × 10−7

6 7 9.5 × 10−5 3.4 × 10−6 2.3 × 10−5 1.2 × 10−3 1.1 × 10−14 1.6 × 10−7 7.8 × 10−3 5.3 × 10−6 2.6 × 10−3 1.0 × 10−1 1.3 × 10−14 1.7 × 10−7

7 12 3.6 × 10−5 6.0 × 10−7 7.0 × 10−6 1.1 × 10−3 1.1 × 10−14 1.7 × 10−7 3.1 × 10−3 3.0 × 10−6 7.9 × 10−4 9.3 × 10−2 1.2 × 10−14 1.7 × 10−7

12 20 1.9 × 10−6 1.9 × 10−7 1.5 × 10−7 1.1 × 10−3 1.1 × 10−14 1.6 × 10−7 1.6 × 10−4 1.4 × 10−6 1.5 × 10−5 9.7 × 10−2 1.3 × 10−14 1.6 × 10−7

β12 = 1.0

Tone 1 Tone 2
d1 d2 IFFT2p IFFTc IFFT3p IWPA ESPRIT MUSIC IFFT2p IFFTc IFFT3p IWPA ESPRIT MUSIC

3 4 6.8 × 10−3 2.3 × 10−4 2.4 × 10−3 4.0 × 10−3 1.1 × 10−14 1.6 × 10−7 5.4 × 10−3 2.3 × 10−4 3.5 × 10−3 1.0 × 10−1 1.1 × 10−14 1.6 × 10−7

4 5 3.0 × 10−3 3.8 × 10−5 9.1 × 10−4 4.2 × 10−3 1.0 × 10−14 1.8 × 10−7 2.4 × 10−3 4.1 × 10−5 1.2 × 10−3 1.0 × 10−1 1.1 × 10−14 1.8 × 10−7

5 6 1.6 × 10−3 9.9 × 10−6 4.3 × 10−4 2.9 × 10−3 1.1 × 10−14 1.9 × 10−7 1.3 × 10−3 1.1 × 10−5 5.2 × 10−4 1.0 × 10−1 1.1 × 10−14 1.9 × 10−7

6 7 9.5 × 10−4 3.4 × 10−6 2.3 × 10−4 3.0 × 10−3 1.1 × 10−14 1.7 × 10−7 7.8 × 10−4 4.0 × 10−6 2.6 × 10−4 1.0 × 10−1 1.1 × 10−14 1.7 × 10−7

7 12 3.6 × 10−4 7.3 × 10−7 7.0 × 10−5 2.2 × 10−3 1.1 × 10−14 1.7 × 10−7 3.1 × 10−4 8.5 × 10−7 7.9 × 10−5 9.3 × 10−2 1.0 × 10−14 1.7 × 10−7

12 20 7.4 × 10−5 3.0 × 10−7 9.4 × 10−6 1.6 × 10−3 1.1 × 10−14 1.7 × 10−7 6.5 × 10−5 2.4 × 10−7 9.7 × 10−6 9.6 × 10−2 1.0 × 10−14 1.7 × 10−7

In order to verify the proposed approach, Table 1 is used to evaluate the expected
uncertainty for three different signals that is compared with the measured one, evaluated
with a type B approach. The analysed signals refer to different conditions: close-frequency
tones (d12), one of these with significantly lower amplitude (β12); low-noise (Case 1 and
Case 2); tones of the same amplitude with high noise (Case 3); tones with a high enough
SNR (Case 4). In the first case, a two-tone signal with β12 = 0.1, d12 = 3.6, and SNR = 40 dB
has been used; Case 2 reports the same kind of signal with β12 = 0.1, d12 = 4.5, and
SNR = 80 dB; for Case 3, β12 = 1, d12 = 5.2, and SNR = 10 dB; meanwhile, in the last case,
the signal uses the parameters β12 = 1, d12 = 7.9, and SNR = 60 dB.

In Table 2 the uncertainty of both tones is synthesized for the three algorithms—IFFTc,
IFFT3p, and ESPRIT. Generally, one or two digits are enough to express the uncertainty
value; however, in Table 2, more digits are used to clearly highlight the differences between
the reported methods. It can be seen that there is, for all the signals, high similarity
between the measured and the expected uncertainties. Even under different conditions,
where the uncertainty components—due to the residual error and the noise—have different
contributions, in all cases, the estimation of the uncertainty is accurate and can be an a
priori alternative to the measured value. A little overestimation for the IFFT3p algorithm is
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observed for Case 2, when the contribution—due to the residual error—is prevalent; this is
due to the high dependence of the residual error on the tone frequency value, but in our
estimation, a medium value is considered.

Table 2. Comparison of the expected uncertainty and the measured uncertainty for three different
cases of a two-tone signal with changing parameters: β12, d12, and SNR.

Case 1 Case 2 Case 3 Case 4

β12 = 0.1, d12 = 3.6, β12 = 0.1, d12 = 4.5, β12 = 1.0, d12 = 5.2, β12 = 1.0, d12 = 7.9,

SNR = 40 dB SNR = 80 dB SNR = 10 dB SNR = 60 dB

IFFT3p ESPRIT IFFTc IFFT3p ESPRIT IFFTc IFFT3p ESPRIT IFFTc IFFT3p ESPRIT

uδ1

meas. 1.03 × 10−2 1.72 × 10−2 6.29 × 10−3 6.99 × 10−3 8.88 × 10−3 4.25 × 10−3 8.98 × 10−3 1.03 × 10−2 5.43 × 10−3 2.84 × 10−2 3.16 × 10−2 1.70 × 10−2

exp. 1.03 × 10−2 1.72 × 10−2 6.28 × 10−3 6.99 × 10−3 7.52 × 10−3 4.24 × 10−3 8.97 × 10−3 1.03 × 10−2 5.43 × 10−3 2.84 × 10−2 3.16 × 10−2 1.70 × 10−2

uδ2

meas. 2.96 × 10−3 3.52 × 10−2 1.74 × 10−3 1.58 × 10−3 2.05 × 10−3 1.01 × 10−3 1.28 × 10−3 1.44 × 10−3 6.92 × 10−4 5.26 × 10−3 6.52 × 10−3 3.37 × 10−3

exp. 2.98 × 10−3 3.27 × 10−3 1.74 × 10−3 1.58 × 10−3 1.22 × 10−2 1.01 × 10−3 1.28 × 10−3 1.20 × 10−3 6.93 × 10−4 5.26 × 10−3 6.50 × 10−3 3.37 × 10−3

It is almost possible to observe an invariability of the uncertainty on both the first
and second tone frequencies at the various conditions for the IWPA, ESPRIT, and MUSIC
algorithms, with the same order of magnitude for both the tones for a given algorithm. The
ESPRIT algorithm shows again the lowest uncertainty compared with the other parametric
algorithms; the IWPA shows the worst performance in all cases. The IWPA shows better
performance compared with non-parametric algorithms in almost no cases. For higher
ratio of d12 the performance in terms of measurement uncertainty on the second tone of
the non-parametric algorithms starts to be two orders of magnitude better than the IWPA
algorithm. Only in the case of a low ration β12 and low d12 IWPA could be considered a
good choice with respect to a non-parametric algorithm. Comparing the algorithms based
on FFT, the IFFTc is able to correct the effect of the interfering tone almost in all cases (see
tone 2 uncertainty with β12 less than 1).

6. Concluding Remarks

By comparing the obtained results, some useful conclusions can be drawn in order to
guide a designer in choosing a method for the spectral analysis. Methods belonging to the
class of parametric algorithms require a priori knowledge and allow the accurate estimation
of the frequency only, but on the other hand, their performance is remarkable, with respect
to the non-parametric algorithms. Specifically, ESPRIT shows very high performance even
with a relatively small number of samples, so if there is any constraint on the number of
samples, then the ESPRIT algorithm can be suggested as an optimal choice. If the number
of tones (Ns) is precisely known, ESPRIT is not affected by systematic errors and is slightly
affected by harmonic interference. It has excellent performance in the cases of high SNR
values. On the other hand, the execution times are acceptable only when the autocorrelation
matrix has a reduced size.

With the use of the proposal in Table 1, it is possible to estimate uncertainty a priori for
numerous real-world conditions, without the need of extensive simulation, field acquisition,
or data elaboration that needs expensive equipment or requires long time to be executed.
Compared with the use of parametric approaches—where the need of a priori knowledge
is indispensable in obtaining the optimal performance—this approach gives an indication
of how good the result will be under certain circumstances.

As far as the other parametric approaches are considered, the performance of the MU-
SIC algorithm can be compared with that of the ESPRIT method, but its systematic effects
are worse than those of ESPRIT when the noise level is low. Due to its zero searching strat-
egy, the IWPA method achieves the worst performance in the estimation of frequencies in
the presence of phases difference between the tones. Among the considered non-parametric
algorithms, IFFTc shows the best behaviour because it achieves a decent trade-off between
metrological performance and elaboration times; the IFFT algorithm is the fastest one, but
in the presence of harmonic interference, the residual error is significant.
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In conclusion, IFFTc is the best choice for real-time applications whenever the elabo-
ration time is a strong requirement, but if there are constraints on the number of samples,
then ESPRIT should be chosen. Furthermore, hybrid solutions—based on a pre-processing
algorithm for a preliminary estimation of the signal tones and the superimposed noise,
followed by a decision algorithm to select the signal processing algorithm—could be taken
into account to allow the minimum uncertainty on the frequency evaluation, and to ob-
tain the best trade-off for different configurations of tone number, SNR ratio, required
spectral resolution, and real-time needs; the latter are strictly associated with the analysed
bandwidth.
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Abstract: Data-driven manufacturing in Industry 4.0 demands digital metrology not only to drive
the in-process quality assurance of manufactured products but also to supply reliable data to con-
stantly adjust the manufacturing process parameters for zero-defect manufacturing processes. Better
quality, improved productivity, and increased flexibility of manufacturing processes are obtained by
combining intelligent production systems and advanced information technologies where in-process
metrology plays a significant role. While traditional coordinate measurement machines offer strengths
in performance, accuracy, and precision, they are not the most appropriate in-process measurement
solutions when fast, non-contact and fully automated metrology is needed. In this way, non-contact
optical 3D metrology tackles these limitations and offers some additional key advantages to deploying
fully integrated 3D metrology capability to collect reliable data for their use in intelligent decision-
making. However, the full adoption of 3D optical metrology in the manufacturing process depends
on the establishment of metrological traceability. Thus, this article presents a practical approach to
the task-specific uncertainty assessment realisation of a dense point cloud data type of measurement.
Finally, it introduces an experimental exercise in which data-driven 3D point cloud automatic data
acquisition and evaluation are performed through a model-based definition measurement strategy.

Keywords: uncertainty assessment; three-dimensional point clouds; ISO 15530; data-driven metrology;
model-based definition; virtual twin

1. Introduction

Metrology is considered a fundamental tool in the context of Industry 4.0, where
reliable data are needed to realise data-driven manufacturing strategies [1–3]. As far as
metrology is moving from the lab to the shop floor where the manufacturing of goods
takes place, it is breaking the stigma of non-productive activity and gaining a position
as an enabling technology that adds value to every step of the production process [4].
This perception is becoming more evident in Industry 4.0, where measurement data from
several sensors are required, including dimensional data, for the monitoring of complete
manufacturing processes and real-time adjustment of process parameters, including the
creation and use of metrological digital twins [2,5–9].

Massive integration of 3D optical sensors within manufacturing processes is occurring
nowadays, replacing traditional Coordinate Measurement Machines (CMM) within the
automotive, aerospace and power generation industries, among the leading industries in
the adoption of MBD [10]. However, while the delivery of millions of points in a matter
of seconds is assumed by 3D optical sensors, the process of automatically converting
dense data into meaningful information and assuring the quality of these data remains a
challenge [11].

This research article presents a practical approach to addressing both challenges.
While the process of converting dense data into meaningful information is solved through
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a Quality Information Framework (QIF)–Model-based Definition (MBD) based measure-
ment post-processing strategy, the assurance of the quality of the data that relies on the
establishment of metrological traceability is assessed by the combination of the ISO 15530-3
and ISO 15530-4 technical specifications through which the establishment of metrological
traceability, which requires (a) evaluation of the measurement uncertainty and (b) the
realisation of an unbroken chain of calibrations to relate a measurement result to a reference
value [12], is realised. Thus, the article introduces a task-specific uncertainty assessment of
a dense point cloud type of data acquisition in the absence of reliable numerical simulation
models for optical systems.

Considering the evaluation of the measurement uncertainty, the Guide to the Expression
of Uncertainty in Measurement (GUM) JCGM 100:2008 [13] establishes general rules for
evaluating and expressing uncertainty in measurements that are intended to be applied to
a broad spectrum of measurements. The GUM-proposed general measurement procedure
seems to be clear and easy to adopt but it can be extremely difficult to implement when a
complex measurement system is evaluated. As stated by Dury et al., in the broad study
about 3D optical systems characterisation performed in the National Physical Laboratory
(NPL) “National FreeFrom centre” [11,14–16], there are many potential uncertainty error
sources such as the light condition, measurand surface properties, system orientation
and resolution, ambient temperature, measurement volume, chromatic effects, etc. that
complicate to a high extent the reliable characterisation of those systems.

Compared with traditional CMMs, 3D optical systems are a relatively new technol-
ogy, and their measurement error sources are still being researched. Even though the
German guideline for optical 3D measuring systems, the VDI/VDE 2634 series (parts 2
and 3) [17,18], attempts to provide a procedure for comparing the performance of different
systems for the acceptance and re-verification of these systems, it does not consider all
the potential uncertainty sources while operating in unfavourable environments. There-
fore, the lack of measurement procedures to fully understand how 3D optical systems
behave under different measurement scenarios limits to a high extent the development of
mathematical modelling for those systems [11], and therefore, the development of a digital
metrology twin.

The challenge of converting dense data into meaningful information in a matter of
seconds involves providing real-time automatic decision-making capability and therefore
constantly adjusting process parameters for a zero-defect manufacturing scenario. How-
ever, when a 3D optical system is integrated into a manufacturing process and captures
millions of points in seconds, “faster data processing” remains a challenge. Thus, the recent
publication of the ISO Standard 23952:2020 “Automation systems and integration—Quality
Information Framework (QIF)—An integrated model for manufacturing quality informa-
tion” [19] opens the door to real-time automatic in-line quality control. This Standard
suggests a new XML Schema Definition Language that defines, organises and associates
the quality and metrology information needed in manufacturing systems and therefore,
it allows the effective exchange of metrology data throughout the entire manufacturing
quality measurement process—from product design to inspection planning to execution
to analysis and reporting. For product definition, QIF includes the ISO QIF part 3: QIF
Model-based Definition (MBD) [20–22], which defines a digital data format to convey
part geometry (typically called the “CAD” model) and information to be consumed by
downstream manufacturing quality processes, such as Product Manufacturing Information
(PMI) [21–23]. This means that MBD allows the attachment of Geometric Dimensioning
and Tolerancing (GD&T) information to a CAD model, typically with full “smart” associa-
tivity, to create a semantic model. This semantic CAD model allows metrology software to
automatically create either an inspection plan or decision-making results (angles, distances,
GD&T tolerances, etc.) from available 3D point data. Thus, the QIF MBD information
model allows converting the captured dense data into meaningful information using au-
tomatic data processing methodologies [1,8,21,24,25]. Therefore, in general terms, MBD
is a digital-product model that defines the requirements and specifications of the product
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and is the cornerstone for Model-Based Enterprise (MBE) since MBE uses MBD to define
the product requirements and specifications instead of paper-based documents as the
data source for all engineering activities, including the metrology activities during the
manufacturing of the product, throughout the product lifecycle [20–23,26–28].

The state-of-the-art of uncertainty assessment to point cloud measurement shows
that task-specific uncertainty assessment has not been frequently applied to dense point
cloud measurements. Different approaches were suggested for the uncertainty assessment
of point clouds, such as the approach introduced by Ding et al., based on spatial feature
registration analysis [29]. Senin et al. suggested a method based on fitting Gaussian
random fields to high-density point clouds produced by measurement repeats where
the fitted field delivers a depiction of the spatial distribution of random measurement
error over a part geometry [30]. Yang et al. investigated the point cloud registration step
as a major uncertainty source in the laser scanning-aided aircraft assembly process [31].
Zhang et al. also appointed the reconstruction of every point cloud acquisition process
as a critical uncertainty source [32]. Forbes et al. presented an uncertainty assessment
method associated with the position, size and shape of point cloud data [33]. Another
important approach for the uncertainty assessment of point clouds is the mathematical
modelling of the measurement instruments, mainly optical systems, employed in the
data acquisition process. Mohammadikaji et al. suggested an approach to categorise and
model the dominant sources of uncertainty and study the probabilistic propagation of
the uncertainties in a 3D inspection using laser line scanners [34]. Zhao et al. suggested
the use of a structured light system including the instrument itself, data acquisition, data
processing, and other factors as a black model for the uncertainty assessment of 3D point
clouds [35]. Some researchers also presented experimental methods to model the systematic
errors pertinent to laser scanners [36,37]. Xi et al. suggested various scanner-to-surface
distances and inclination angles raise systematic uncertainties for optical sensors [38,39].
Finally, the use of physical artifacts combined with a Design of Experiment (DOE) method
was also suggested for the uncertainty assessment of optical systems [40–45].

2. Methods

2.1. Practical Approaches to the Uncertainty Assessment within Production Metrology

In cases where potential uncertainty sources for a measurement process can be as-
certained, it is relatively easy to follow the prescription of the GUM JCGM 100:2008 [13]
uncertainty framework. However, this is not the case for CMMs or 3D optical systems,
in which it is extremely difficult to understand how every potential uncertainty source
affects the final result. In these cases, different approaches were applied to estimate the
uncertainty of the coordinate measurement. In the case of CMMs, the prevailing guidance
for users is given in the ISO 15530 technical specifications. While part 1 is very informative
and tutorial but not intended to provide operative evaluation tools, parts 3 and 4 are the
procedures followed by the manufacturing industry for the uncertainty assessment of
coordinate measurement [46,47]. While Section 3 defines an experimental comparison
method using a calibrated workpiece, Section 4 suggests a computer simulation approach
to provide task-specific uncertainty assessment. The project “Evaluating the Uncertainty in
Coordinate Measurement” (EUCOM–under grant agreement nº 17NRM03) project within
the European Metrology Programme for Innovation and Research (EMPIR) program has
performed the research to develop the two missing parts of the ISO 15530 series: part 2 on
a repetition and reversal method and part 5 on a method based on prior information and
expert judgement.

In the case of 3D optical systems, system manufacturers employ VDI 2634 parts 2
and 3 [17,18] to characterise and run the product acceptance test before product delivery,
but this does not mean that complete system characterisation is performed for a robust
measurement uncertainty assessment.
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2.1.1. ISO 15530-3 Technical Specification

The ISO 15530-3 [46] technical specification is a substitution method that simplifies the
uncertainty evaluation exercise through the similarity between the dimensions and shapes
of the workpiece and one calibrated reference part. It is based on a statistical evaluation
of the measurement errors observed concerning the calibrated value of the reference part.
The user must perform a relevant number (>20) of measurements under various conditions
that they might expect while measuring real workpieces. This approach appears to be
straightforward from the viewpoint of the user and attempts to cover intrinsic and extrinsic
uncertainty contributors. However, in practice, it is fraught with difficulties. Any diver-
gence between the master and measured parts can lead to uncertainties. Because of the
similarity requirement between the produced workpiece and the calibrated standard, this
approach is very arduous and expensive for large-scale metrology, where the storage, main-
tenance and calibration of large components is a major expense. However, it is a reliable
approach for serial production, usually for small- and medium-sized components because
it is affordable to manufacture and calibrate a reference part for uncertainty assessment
purposes. It is usually employed for medium-size component uncertainty assessments in
CMMs or Machine Tools (MT). This approach determines four input quantities as explained
below [46]:

ub: standard uncertainty associated with the systematic error of the measurement
process;

up: standard uncertainty associated with the measurement procedure;
ucal: standard uncertainty associated with the uncertainty of the workpiece calibration;
uw: standard uncertainty associated with material and manufacturing variations.

U = k ∗
√

u2
p + u2

cal + u2
w + u2

b (1)

Finally, the law of uncertainty propagation is applied to obtain the combined standard
uncertainty according to GUM JCGM 100:2008 [13] and the result is multiplied by an
appropriate coverage factor to yield an expanded uncertainty, according to Equation (1).
Figure 1 shows the practical approach to this method.

Figure 1. A practical approach to the ISO 15530-3 [5].

According to the ISO 15530-3 technical specification, the standard uncertainty (up) is
determined using Equation (2). The standard uncertainty associated with the systematic
error is given by Equation (3). Moreover, if the measurement result is not corrected by the
systematic error, the error fully contributes to the uncertainty budget; thus, (ub) = b. Thus,

y =
1
n

n

∑
i=1

yi up =

√
1

n − 1

n

∑
i=1

(yi − y)2 (2)

b = y − xcal (3)
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wherein:
y: mean value of the measurement results;
Y: measured value;
n: number of measurement results;
xcal: calibrated value of the calibrated workpiece.

2.1.2. ISO 15530-4 Technical Specifications

The ISO 15530-4 [47] technical specification introduces a “task-specific uncertainty”
assessment method based on computer simulation. Measuring instruments such as CMMs
and 3D optical systems are multi-purpose instruments which means that potential mea-
surement uncertainties vary with the task being performed, environment, operator, or
chosen measurement methodologies. The “task-specific uncertainty” in coordinate mea-
surement is the measurement uncertainty that results when a specific feature is measured
using a specific inspection plan. The approach is similar to GUM but instead of using
an analytical approach based on a complete closed-form mathematical model, it uses a
simulation method (for example, the Monte Carlo method) run on a computer to estimate
the uncertainty statement for a particular measurement task. This is even more complex
than the GUM approach because an initial model of the measurement instrument and
process is required to run the simulation. The simulation model or virtual instrument
model generates a perturbed point that represents an estimate of what a particular mea-
surement instrument would have reported when measuring that commanded point. This
process is performed several times, running as many measurements as the simulation
iterations (hundreds or thousands), which enables the creation of simulation results of the
measurement uncertainty.

The current state-of-the-art shows that the ISO 15530-4 approach is already being
applied to measuring instruments such as CMMs or laser trackers, while modelling of
optical sensors is still being developed by the research community and therefore VCMM
for optical sensors is not still commercially available. The popular name for the method
applied to CMMs is the so-called Virtual Coordinate Measuring Machine (VCMM) [48],
which performs a point-by-point simulation of measurements, emulating the measure-
ment strategy, measuring conditions, and physical behaviour of the CMM with dominant
uncertainty contributions disturbing the measurement [48–50]. For spherical measuring
instruments such as laser trackers or laser scanners, a basic spherical error model is consid-
ered in combination with a Gaussian Probability Density Function (PDF) to apply the law
of uncertainty propagation. Figure 2 shows the VCMM approach, where the thick black
lines show the data flow for a normal CMM measurement, while the thick grey lines show
the additional data flow that is employed to achieve a VCMM estimate. Wilhelm et al. [50]
presented a description of the complete VCMM workflow, as shown in Figure 2.

Figure 2. The VCMM approach for coordinate measuring machines [50].
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The so-called Digital Metrology/Measurement Twin (D-MT) is the virtual representa-
tion of either a measurement instrument or the complete measurement procedure [51–53]
and it is frequent to use a similar mathematical model to that developed within the
ISO 15530-4 approach to run the simulation. Here, Artificial Intelligence (AI) algorithms
such as machine learning, deep learning or neural networks are being researched for the
development of those D-MT and uncertainty assessment tasks [54–56].

2.2. MBD-Based Metrology

The MBD approach will allow meeting the challenge of converting dense data into
meaningful information in a matter of seconds within the production line which will allow
a quick decision-making process within the production environment. However, the current
state of MBD industrial implementation shows that manufacturers have applied MBD to
product definition for some time, whereas aerospace and defence customers have played
the role of leaders with a slower adoption in other industries [22].

From the CAD suppliers’ point of view, MBD is seen as the cornerstone of creating a
functioning digital thread. While the goal is to have a single source of truth for downstream
operations in making a part, most CAD suppliers provide MBD in a proprietary format
which means that interoperability between systems remains a challenge. Previously, a
universal CAD format already exists, the ISO 10303 STEP format [57] with its accompanying
AP 242 extension which includes 3D model data representation, geometric tolerance and
PMI to enable global design and manufacturing collaboration [23]. However, several
questions remain regarding the full definition of MBD. Standards such as ASME Y14.41 [58]
and ISO 16792 [59] still exist to document how a model should be defined with annotations.
These standards also help in understanding how to interpret the data within the model but
the standards do not document the required amount of information that the model must
contain [60].

From an MBD-based metrology point of view, MBD is allowing an automatic quality
assurance workflow, allowing the automation of either the measurement program creation
or the data evaluation process stages [24]. While the former is already available within
the main CMM commercial software, the latter can be applied for any point cloud if the
measurand MBD model and the MBD software are available. Model-based inspection has
not been paid much attention to within the metrology community since the 1990s [61–64].

The MBD-based metrology process starts by creating a 3D CAD model with semantic
PMI information that should be both human and machine-readable [65]. The 3D model
with PMI shall contain all GD&T geometric information related to the component under
measurement as well as the information related to the Bill of materials (BOM), Surface
finish, weld symbols, manufacturing or measurement process plan data, metadata and
notes, history of an engineering change order, legal/proprietary/export control notices
and other definitive digital data [65].

The associativity between the CAD model and MBD is required to have a fully se-
mantic smart model that allows automatic part programming and post-processing. The
ability of downstream programs to read MBD models and create measurement programs is
as important as creating CAD models with an attached semantic MBD. Thus, the CMM
is virtually configured, and once the MBD file is imported and a set of rules is applied
and matched to the configured CMM, a part program is automatically generated aided by
these a priori digital approaches [24,66,67]. Typically, a second optimisation is performed
to reduce the number of probe changes and minimise the CMM path length.

In the post-processing stage, the MBD concept allows fast point cloud analysis and
evaluation of the measurement data. During the automatic evaluation process, the acquired
point cloud is aligned to the CAD model, and an automatic segmentation process is
performed using the available MBD data. At this stage, each measured point is associated
with its corresponding geometric features. Then, the geometric features were adjusted using
linear regression methods, rejecting possible outliers. Finally, the real relationships among
the adjusted features were estimated (dimension, form error, relative positioning, etc.)
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through the fully automatic interpretation and evaluation of previously defined GD&Ts.
Thus, the process of converting dense data into meaningful metrology-rich information is
executed automatically in seconds.

2.3. The Methodology and Its Experimental Implementation

The following lines describe the experimental exercise performed on the dummy part
to realise the practical implementation of the previously mentioned technological concepts
(see Figure 3). In general terms, the suggested workflow is based on three main steps:
(1) measurement of the dummy part, including the data acquisition process (×10 repetitions)
and automatic data process strategy (MBD) (box 1); (2) reference measurement of the
dummy part on a CMM according to the ISO 15530-4 technical specification (box 2), and
(3) the task-specific (GD&T) uncertainty assessment process according to the ISO 15530-3
technical specification (box 3).

Figure 3. The point cloud measurement uncertainty assessment workflow.

The three main steps of the methodology are explained next and linked to the uncer-
tainty contributors that comprise the uncertainty budget presented in the third step.

1. Measured GD&T evaluation: Automatic 3D point cloud measurement, evaluation, and
statistical analysis of multiple GD&T results based on the MBD-based approach are
performed. From these data, the standard uncertainty associated with the measure-
ment process variability (up) is obtained.

2. Reference GD&T values: The dummy part is calibrated in an MMC according to the
ISO 15530-4 technical specification [47]. The ZEISS VCMM™ tool is used to assess
the task-specific uncertainty value for every calibrated feature. From these data, the
standard uncertainty associated with the uncertainty of the MMC calibration (ucal) is
obtained.

3. ISO 15530-3 method: The task-specific uncertainty assessment of every GD&T value
obtained from the 3D point cloud measurement is performed according to the ISO
15530-3 technical specification [46]. From these data, the standard uncertainty associ-
ated with the systematic error of the measurement process is obtained (ub).

The experimental implementation of the suggested methodology is explained next
point by point:

2.3.1. Measured GD&T Evaluation

A dense 3D point cloud data acquisition process is performed using a GOM ATOS
III Triple Scan™ 3D optical system on a medium-sized geometric-type dummy part. The
data acquisition process is fully automatic by combining an automatic rotary table with the
manual triggering of the measuring instrument. Thus, any potential error source derived
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from external sources, such as the alignment process between partial scanning or operator
influence, is avoided.

The experimental exercise is performed in a metrology laboratory at a temperature of
20 ± 1 ◦C. In this way, thermal stability during the data acquisition process is guaranteed;
and therefore, the geometric variation of the dummy part caused by thermal drift is avoided.
Figure 4 shows the dummy part employed during the experimental exercise.

(a) (b)

Figure 4. The medium-size dummy part from Metrologic™ is shown: (a) the CAD model and (b) the
physical part placed on the rotary table.

The measurement instrument configuration is set at a working volume of 320 × 240 ×
240 mm3 so that the measurement resolution was optimised for the specific dummy part
under measurement. The automatic data acquisition process is realised by eight angular
rotary table equidistant positions, where partial scans are performed and stitched together
automatically to reconstruct the overall 3D point cloud. Thus, the entire measurement
process is executed within 45 s, and a point cloud comprised of 1 million points is obtained.

The fiducial targets are attached to the rotary table and unequivocally identified in
each partial scan. In this manner, the automatic partial point cloud registration problem
is solved, and an automatic data merging process between partial scans is performed.
Once the reconstructed 3D point cloud is obtained, it is converted into a mesh using the
Delaunay triangulation method. In addition to the XYZ information of every point within
the point cloud, this mesh also contains information related to the surface normal value for
every point which makes the final MBD-based automatic point cloud segmentation process
smarter and more robust.

Figure 5 depicts the measurement scenario, comprising a GOM ATOS III Triple Scan™
3D optical system in combination with the automatic rotary table and the dummy part on it.

Figure 5. Automatic measurement data acquisition process set-up.
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The batch of experiments comprises ten 3D point cloud measurement repetitions on
the dummy part. Once they are completed, an automatic data-processing approach based
on the MBD strategy is applied. Thus, the dense point cloud is automatically processed
and converted into meaningful GD&T information.

The software employed at this point is GOM Inspect™ metrology software. It allows
MBD-type post-processing of data which means that it can digitally establish a relationship
between nominal GD&T information and geometric elements within the captured data. This
workflow is aligned with the PMI concept and interpreted using the ISO 1101 standard [68].
A different option to run MBD-type post-processing is to define the MBD data within
the CAD model by adding the GD&T information to the available CAD file (for example,
a catpart file in SolidWorks). Once this nominal MBD data-based file is prepared, the
automatic evaluation of every GD&T can be performed. The workflow is as follows.

• Step 1: Point cloud-to-mesh data conversion: The measured point cloud is converted
into a mesh format to make the following data management and processing steps
more robust and precise. The mesh format estimates and adds the surface normal
values to the point cloud format, enabling it to achieve higher accuracy results through
posterior segmentation operations (step 3 below).

• Step 2: The 3D mesh is aligned with the available CAD model, which is crucial to
ensure the accuracy and robustness of the MBD-based data evaluation method because
it determines the correct parameterisation within the point cloud segmentation method.
Thus, accurate alignment is required to achieve reliable results. In this study, the best-
fit alignment method is used as an accurate method (acceptance criteria below a
few microns).

• Step 3: Automatic geometric feature segmentation is performed, and the mesh is split
into multiple point clouds corresponding to each geometric feature with the aid of
CAD nominal feature information. In this step, the point coordinates, surface normal
data (real and nominal values), and surface curvature parameters are employed to
support the point cloud segmentation algorithms and reinforce their robustness.

• Step 4: Real geometric feature adjustment process: At this point, the previously ob-
tained geometric-specific point cloud segmentation data are fitted to the corresponding
geometric features by linear regression methods, rejecting possible outliers. The elimi-
nation of noisy points is established using suitable filters that estimated the 3D distance
of each point concerning the fitted geometric feature. If the point-to-element distance
parameter is higher than the standard deviation value (2σ) of the input points during
the geometric feature adjustment process, this input point is detected as a non-suitable
point and consequently removed from the process.

• Step 5: GD&T evaluation: Once the previous step is successfully performed, an
automatic evaluation of every GD&T for the fitted features (measured values) is
performed with the help of nominally defined annotations and relationships (ISO 1101
standard [68]). Because the software already knows the theoretical relationships among
the geometric features and datum objects by the previously recognised annotations, it
can estimate the real GD&T values.

Following this process, the standard uncertainty associated with the measurement
process variability (up) is obtained for each feature. The ten available 3D point cloud
measurement repetitions are statistically processed, and the uncertainty (up) is given by
the standard deviation parameter according to the ISO 15530-3 technical specification. In
addition, the average value is reported at this step for the evaluation of the systematic error
(ub) value within the next step.

Figure 6 shows the experimental results for the dummy part of the GOM Inspect™
metrology software.
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Figure 6. GD&T evaluation (real and nominal values) and representation on the CAD model.

2.3.2. Reference GD&T Values

The aim is to calibrate the measured dummy part and obtain the reference values
for each evaluated feature to realise the uncertainty budget according to the ISO 15530-3
technical specification [46]. Thus, the dummy part is measured in a ZEISS UPMC 850
CARAT CMM, in which the ZEISS VCMM™ tool is available for task-specific uncertainty
assessment according to the ISO 15530-4 technical specification [47]. The ZEISS VCMM™
tool considers the mathematical model of the UPMC 850 CARAT CMM to perform the
task-specific uncertainty assessment process through multiple iterations (×1000 repetitions).
To feed the mathematical model running within the ZEISS VCMM™ tool, the error and
influence factors, as well as their variability affecting the measurement accuracy, were
previously characterised and introduced into the model. Figure 7 shows the dummy
calibration process.

Figure 7. Dummy part calibration on the ZEISS UPMC 850 CARAT CMM.

180



Metrology 2022, 2

In this manner, a selection of the GD&T features to be considered within the experi-
mental implementation is performed. The types of geometric elements and tolerances that
were considered are explained next, according to the type of tolerance and the number of
features measured.

• Size: Cylinder diameter (20× divided into groups by diameter);
• Form: Flatness–planes (3×) and complex surfaces (2×);
• Location and orientation: Positioning and composed positioning of cylinders (divided

into three groups).

The positioning tolerances are evaluated considering the coordinate system created by
the three planes which define the ABC datums. In total, the task-specific uncertainty of the
52 GD&T features is evaluated. Figure 8 shows the task-specific uncertainty assessment
exercise based on the ZEISS UPMC CARAT 850 CMM measurements.

Figure 8. Task-specific uncertainty assessment based on the ZEISS CMM measurement and the ZEISS
VCMM™ simulation. Example of measurement report including the VCMM outputs.

From these data, the standard uncertainty associated with the uncertainty of the MMC
calibration of the dummy part (ucal) is obtained.

2.3.3. Implementation of ISO 15530-3 Technical Specification

As previously stated, the uncertainty assessment method suggested in this article is
based on the ISO 15530-3 technical specification application backed by the ISO 15530-4
technical specification, through which the task-specific uncertainty assessment for the
calibrated values (ucal) is realised.

According to the ISO 15530-3 technical specification, the uncertainty of the systematic
error b (ub) is assessed by the difference between the average value obtained during the
measurement process variability (up) parameter assessment and the indicated value of the
CMM. However, according to the GUM recommendation, the measurement results should
be corrected by the amount of systematic effect. Thus, if the measurement result is not
corrected by the systematic error, the error fully contributes to the uncertainty budget; thus,
(ub) = b.

The uncertainty budget presented here comprises the uncertainty contributors ub, up
and ucal, whereas uw is negligible because of the lack of variation between the calibrated
and measured dummy. The same physical dummy part is used during the calibration and
measurement processes.
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Other potential uncertainty sources, such as the measuring system resolution or any
divergence between the master and measured dummy parts, were discarded because of
their negligible effect on the uncertainty budget.

Equation (4) shows the combined standard uncertainty, u, which is given by the
quadrature sum of each uncertainty contributor. Equation (1) shows the expanded measure-
ment uncertainty U determined with a coverage factor k = 2 for an approximated coverage
probability of 95%.

u =
√

u2
p + u2

cal + u2
w + u2

b (4)

wherein:
uw: standard uncertainty associated with material and manufacturing variations. This

was negligible in this case.
ucal: standard uncertainty associated with the uncertainty of the MMC calibration

(task-specific uncertainty value of each GD&T estimated by ZEISS VCMM™)
ub: standard uncertainty associated with systematic errors in the measurement pro-

cess. It was assessed by the difference between the average value obtained during the
measurement process variability (up) parameter assessment and the indicated value of
the CMM.

up: to the standard uncertainty associated with the measurement process variability.
The standard deviation of the ten-3D point cloud measurement repetitions was considered
for each GD&T.

k: confidence interval: defines an interval with a level of confidence of approximately
95% (k = 2) with a normal distribution

U: expanded uncertainty for each GD&T comprising all the uncertainty error sources
and their propagation with a confidence interval of 95% (k = 2).

Other uncertainty sources, such as thermal effects, measuring process drift, or the
interaction between the light and the part surface, have not been considered separately
within the uncertainty budget, as it is assumed that they contribute to (up) the standard
uncertainty associated with the measurement process variability.

3. Results

This section describes the results obtained during the experimental implementation
of the proposed uncertainty assessment method. For the sake of understanding, the
experimental results are presented in such a way that every uncertainty contributor can be
explained in detail. First, the standard uncertainty results associated with the measurement
process variability (up) are presented. Then, the standard uncertainty results associated with
the uncertainty of the MMC calibration (ucal) are presented, along with the values indicated
by the ZEISS CMM for each evaluated GD&T. Subsequently, the standard uncertainty
results associated with the systematic error of the measurement process (ub) are presented.
Finally, the uncertainty budget for the 3D point cloud task-specific measurement uncertainty
assessment is presented, where the expanded measurement uncertainty U is obtained for
each GD&T element.

3.1. Measurement Process Variability, up

Table 1 lists the results obtained for the (up) uncertainty contribution. The result com-
prises every uncertainty component that falls within the measurement process variability,
such as the instrument repeatability itself, MBD data processing strategy, or any potential
thermal drift, among other minor contributors. Table 1 also considers the obtained mean
value for every measured GD&T for further (ub) uncertainty contributor assessment.
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Table 1. (up) uncertainty contributor assessment according to ISO 15530-3 technical specification.

Element ID
Quantity of Evaluated

Features
Evaluated Propertie

ATOS Triple Scan
(Mean Values in mm)

up_ Standard
Deviation (mm)

Plane (ref. A) 1 Flatness 0.085 0.0090

Cylinder (E min) 1 Diameter 12.664 0.0090

Cylinder (E max) 1 Diameter 12.752 0.0090

Plane (ref. B) 1 Flatness 0.100 0.0080

Plane (ref. C) 1 Flatness 0.216 0.0080

Cylinder1 1 Positioning 0.044 0.0030

Cylinder group 1. Min 1 Diameter 50.792 0.0070

Cylinder group 1. Max 1 Diameter 50.854 0.0070

Cylinder group 2. Min 15 Diameter 6.350 0.0100

Cylinder group 2. Max 15 Diameter 6.575 0.0100

Cylinder group 3. Min 3 Diameter 12.684 0.0050

Cylinder group 4. Min 3 Diameter 12.756 0.0050

Cylinder (ref. D) 1 Diameter 38.109 0.0020

Cylinder (ref. D) 1 Positioning 0.048 0.0080

Surface “LARGE” 1 Profile error 0.055 0.0020

Surface “SHORT” 1 Profile error 0.119 0.0170

Group 1 of cylinders 1 Composed positioning 0.069 0.0090

Group 2 of cylinders 15 Composed positioning 0.045 0.0070

Group 3 of cylinders 3 Composed positioning 0.101 0.0070

For every GD&T element, the highest measurement process variability (up) results
were below 20 μm whereas the average standard deviation was less than 10 μm. These
results demonstrate that the measurement process, from the data acquisition process and
3D point cloud reconstruction to the MBD-based data processing procedure, is within the
micrometre accuracy.

3.2. Uncertainty of the MMC Calibration, ucal

Table 2 shows the results indicated by the CMM for every GD&T under study. Thus,
it shows the reference result reported by the ZEISS UPMC CARAT CMM in addition to
the task-specific uncertainty value (ucal) estimated using the ZEISS VCMM™ tool. In this
way, the CMM measurement uncertainty for every measured GD&T is assessed, and thus,
a task-specific uncertainty budget can be finally accomplished.

For every GD&T element, the highest CMM calibration uncertainty (ucal) values are
up to 7 μm, whereas the average value is within 1 μm. These results demonstrate that (ucal)
uncertainty values estimated by the ZEISS VCMM™ tool are consistent with the ZEISS
UPMC CARAT CMM Maximum Permissible Error (MPE) specification (0.6 ± L/1000
in μm) although some specific and complex GD&T results are much worse due to the
complexity of the evaluation. At this point, the authors made a special effort to understand
these results. Thus, a second batch of calibration measurements is performed on the CMM,
but the results did not vary significantly, indicating that the obtained results are properly
evaluated by the VCMM tool. At this point, the author hypothesises that the source of these
results possibly arises from the acquired raw data and employed measuring strategies.
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Table 2. (ucal) uncertainty contributor according to ISO 15530-4 technical specification.

Element ID
Quantity of Evaluated

Features
Evaluated Properties

ZEISS
(Ref. Values in mm)

ucal_From VCMM
(in mm)

Plane (ref. A) 1 Flatness 0.0404 0.0004

Cylinder (E min) 1 Diameter 12.697 0.0005

Cylinder (E max) 1 Diameter 12.7236 0.0005

Plane (ref. B) 1 Flatness 0.1679 0.0058

Plane (ref. C) 1 Flatness 0.0398 0.0011

Cylinder1 1 Positioning 0.0014 0.0032

Cylinder group 1. Min 1 Diameter 50.8373 0.0008

Cylinder group 1. Max 1 Diameter 50.8502 0.0006

Cylinder group 2. Min 15 Diameter 6.5203 0.0004

Cylinder group 2. Max 15 Diameter 6.5339 0.0023

Cylinder group 3. Min 3 Diameter 12.7307 0.0006

Cylinder group 4. Min 3 Diameter 12.7506 0.0005

Cylinder (ref. D) 1 Diameter 38.1195 0.0005

Cylinder (ref. D) 1 Positioning 0.0306 0.0045

Surface “LARGE” 1 Profile error 0.1815 0.0055

Surface “SHORT” 1 Profile error 0.1631 0.0066

Group 1 of cylinders 1 Composed positioning 0.0279 0.0017

Group 2 of cylinders 15 Composed positioning 0.0448 0.0042

Group 3 of cylinders 3 Composed positioning 0.1045 0.0043

3.3. Uncertainty of the Systematic Error, ub

Table 3 lists the standard uncertainty associated with the systematic error of the
measurement process (ub). It is assessed by the difference between the average value
obtained during the measurement process variability (up) parameter assessment and the
indicated value of the CMM during the dummy calibration process.

The systematic error (ub) results show a wide range of values. While some results are
within a few microns, others are between 0.1 ÷ 0.2 mm (absolute values). The average value
for all the GD/Ts is within 50 μm. At this point, it is not easy to understand and justify
the wide range of values obtained for the (ub) uncertainty contributor, but it is possibly
explained by the higher point quantity and more homogeneous point distribution of the
measurements obtained by the 3D optical system compared to the CMM measurements.

At this point, it makes sense to highlight, as in the introduction, that 3D optical
systems are a relatively new technology, and their measurement error sources are still being
researched. They are affected by many potential uncertainty error sources, such as the
light condition, measurement and material properties, system orientation and resolution,
ambient temperature, measurement volume, and chromatic effects, which complicate the
measurement uncertainty assessment process to a large extent. Nonetheless, as stated
previously within the introduction, this study aims to present a point cloud measurement
task-specific uncertainty assessment method and its experimental implementation. The
obtained expanded measurement uncertainty results are not as important as those of the
method presented by the authors.
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Table 3. (ub) uncertainty contributor according to ISO 15530-3 technical specification.

Element ID
Quantity of
Evaluated
Features

Evaluated Properties
ATOS Triple Scan

(Mean Values
in mm)

ZEISS
(Ref. Values

in mm)

ub_Systematic
Error (mm)

Plane (ref. A) 1 Flatness 0.085 0.0404 −0.0446

Cylinder (E min) 1 Diameter 12.664 12.697 0.033

Cylinder (E max) 1 Diameter 12.752 12.7236 −0.0284

Plane (ref. B) 1 Flatness 0.1 0.1679 0.0679

Plane (ref. C) 1 Flatness 0.216 0.0398 −0.1762

Cylinder1 1 Positioning 0.044 0.0014 −0.0426

Cylinder group 1. Min 1 Diameter 50.792 50.8373 0.0453

Cylinder group 1. Max 1 Diameter 50.854 50.8502 −0.0035

Cylinder group 2. Min 15 Diameter 6.35 6.5203 0.1703

Cylinder group 2. Max 15 Diameter 6.575 6.5339 −0.0407

Cylinder group 3. Min 3 Diameter 12.684 12.7307 0.0467

Cylinder group 4. Min 3 Diameter 12.756 12.7506 −0.0056

Cylinder (ref. D) 1 Diameter 38.109 38.1195 0.0105

Cylinder (ref. D) 1 Positioning 0.048 0.0306 −0.0174

Surface “LARGE” 1 Profile error 0.055 0.1815 0.1265

Surface “SHORT” 1 Profile error 0.119 0.1631 0.0441

Group 1 of cylinders 1 Composed positioning 0.069 0.0279 −0.0411

Group 2 of cylinders 15 Composed positioning 0.045 0.0448 −0.0002

Group 3 of cylinders 3 Composed positioning 0.101 0.1045 0.0035

3.4. Expanded Measurement Uncertainty, U

Table 4 summarises the uncertainty budget for the experimental implementation of
the proposed method. It shows the three major uncertainty contributors and the expanded
measurement uncertainty result U obtained from Equation (2). It should be noted that the
measurement results are not corrected by the amount of systematic effects; therefore, the
(ub) contributor is considered within the final uncertainty budget.

The uncertainty budget shows that the systematic error contributor (ub) is the main
contributor to the final result. While the CMM calibration uncertainty (ucal) contributor
average value falls within 1 μm and the measurement process variability (up) average
value is less than 10 μm, the systematic error (ub) average value falls within 50 μm. Thus,
the CMM calibration uncertainty (ucal) becomes negligible, which means that the main
contributors to the task-specific uncertainty budget are the measurement process variability
(up) and systematic error contributor (ub). As stated before, the measurement result is not
corrected by the number of systematic effects which, in this case, are the main uncertainty
sources for the measurement with 3D optical systems.
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Table 4. (U) Expanded measurement uncertainty assessment results. Uncertainty budget.

Element ID
Quantity of
Evaluated
Features

Evaluated
Properties

ATOS Triple
Scan (Mean

Values in mm)

ZEISS (Ref.
Values in mm)

ub_Systematic
Error (mm)

U_Expanded
Uncertainty

(k = 2 in mm)

Plane (ref. A) 1 Flatness 0.085 0.0404 −0.0446 0.091

Cylinder (E min) 1 Diameter 12.664 12.697 0.033 0.0684

Cylinder (E max) 1 Diameter 12.752 12.7236 −0.0284 0.0596

Plane (ref. B) 1 Flatness 0.1 0.1679 0.0679 0.1372

Plane (ref. C) 1 Flatness 0.216 0.0398 −0.1762 0.3528

Cylinder1 1 Positioning 0.044 0.0014 −0.0426 0.0856

Cylinder group 1. Min 1 Diameter 50.792 50.8373 0.0453 0.0916

Cylinder group 1. Max 1 Diameter 50.854 50.8502 −0.0035 0.0156

Cylinder group 2. Min 15 Diameter 6.35 6.5203 0.1703 0.3412

Cylinder group 2. Max 15 Diameter 6.575 6.5339 −0.0407 0.084

Cylinder group 3. Min 3 Diameter 12.684 12.7307 0.0467 0.094

Cylinder group 4. Min 3 Diameter 12.756 12.7506 −0.0056 0.015

Cylinder (ref. D) 1 Diameter 38.109 38.1195 0.0105 0.0214

Cylinder (ref. D) 1 Positioning 0.048 0.0306 −0.0174 0.0394

Surface “LARGE” 1 Profile error 0.055 0.1815 0.1265 0.2532

Surface “SHORT” 1 Profile error 0.119 0.1631 0.0441 0.0954

Group 1 of cylinders 1 Composed
positioning 0.069 0.0279 −0.0411 0.0842

Group 2 of cylinders 15 Composed
positioning 0.045 0.0448 −0.0002 0.0164

Group 3 of cylinders 3 Composed
positioning 0.101 0.1045 0.0035 0.0178

4. Discussion

This article presents a methodology for task-specific uncertainty assessment of 3D point
clouds based on ISO 15530-3 and ISO 15530-4 technical specifications and the application
of MBD-based post-processing for the automatic processing of point clouds.

It presents an uncertainty budget comprising three main uncertainty contributors
according to ISO 15530-3 technical specifications. The three major uncertainty contributors
are (a) measurement process variability (up), (b) uncertainty of the CMM calibration (ucal),
and (c) uncertainty of the systematic error (ub). The uncertainty associated with the material
and manufacturing variations, uw, is considered negligible.

The methodology presented here suggests an automatic 3D point cloud measurement
and evaluation process, where the statistical analysis of multiple GD&T results is based
on an MBD-based approach. From these data, the standard uncertainty associated with
the measurement process variability (up) is automatically obtained. The standard uncer-
tainty associated with the uncertainty of the MMC calibration (ucal) is obtained using the
ZEISS VCMM™ tool, which assesses a task-specific uncertainty value for every calibrated
feature according to ISO 15530-4 technical specifications. Finally, the standard uncertainty
associated with the systematic error of the measurement process (ub) is obtained from the
difference between the average value obtained during the measurement process variability
and the indicated value of the CMM during the dummy part calibration process.

The experimental results show that the systematic error contribution (ub) is the main
contributor to the uncertainty budget. While the CMM calibration uncertainty (ucal) contrib-
utor average value falls within 1 μm and the measurement process variability (up) average
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value is less than 10 μm, the systematic error (ub) average value falls within 50 μm. Thus,
the CMM calibration uncertainty (ucal) becomes negligible, which means that the main
contributors to the task-specific uncertainty budget are the measurement process variability
(up) and systematic error contributor (ub).

In summary, a reliable task-specific uncertainty method is developed and successfully
implemented. In the absence of numerical simulation models for optical systems, which
are not currently available, this methodology allows for the establishment of an uncertainty
budget to understand the order of magnitude of the measurement uncertainty of 3D
optical systems.

One of the limitations of the presented methodology is scalability to large components,
where CMM reference values are hardly achievable by calibrating the existing dummy part.
Hence, this methodology could be applied to the scanning of geometric parts approximately
up to 1.5 ÷ 2 m and manufactured in serial production, since this is the most common
working range for many applications such as automotive or the manufacturing of metallic
components.

Finally, concerning the MBD-based metrology data processing strategy, the experimen-
tal approach presented in this article demonstrates that the nominal PMI-based method is
appropriate for converting dense point cloud data into desired dimensional metrology re-
sults (GD&Ts). It enables an effective data processing approach in terms of accuracy, speed,
and robustness which in turn allows a fully automatic geometric point cloud evaluation
process to avoid errors during the result interpretation and procurement processes.

Further work will focus on analysing the deviations between the results of the 3D
optical system and the reference values obtained with CMM. Because these measuring
technologies differ considerably in terms of accuracy, number, and point distribution, devi-
ations will remain, but they would help to understand the complex intrinsic performance
of 3D scanning systems. These preliminary results and accuracy assessment methods
could support the development of AI-based numerical methods that describe the optical
performance of 3D scanners.

Regarding the VCMM approach, this study demonstrates that simulation-based metrol-
ogy should be applied for task-specific assessment of reference values. This shows the
applicability of digital twins within the metrology field in terms of a priori uncertainty
estimation and a posteriori uncertainty assessment. Thus, the measurement procedure can
be optimised based on those digital twin simulation results. Another interesting future
research line within the VCMM field is to employ the simulation-based metrology concept
to create nominal dense reference point clouds with known uncertainty values. Therefore,
fast uncertainty assessment procedures should be developed for dense point cloud data.
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10. Kuş, A. Implementation of 3D optical scanning technology for automotive applications. Sensors 2009, 9, 1967–1979. [CrossRef]
11. Dury, M.R.; Woodward, S.D.; Brown, S.B.; McCarthy, M.B. Characterising 3D optical scanner measurement performance for

precision engineering. In Proceedings of the ASPE 2016 Annual Meeting, Portland, OR, USA, 23–28 October 2016; pp. 167–172.
12. Joint Committee for Guides in Metrology (JCGM). International Vocabulary of Metrology, 4th ed. Committee Draft. 11 January 2021.
13. Joint Committee for Guides in Metrology (JCGM). JCGM 100:2008 GUM 1995 with Minor Corrections—Evaluation of Measure-

ment Data—Guide to the Expression of Uncertainty in Measurement. September 2008. Available online: https://www.iso.org/
sites/JCGM/GUM/JCGM100/C045315e-html/C045315e.html?csnumber=50461 (accessed on 21 July 2022).

14. Dury, M.R.; Brown, S.B.; McCarthy, M.B.; Woodward, S.D. 3D optical scanner dimensional verification facility at the NPL’s
“national FreeForm centre”. In Proceedings of the Laser Metrology and Machine Performance 11th International Conference and
Exhibition on Laser Metrology, Machine Tool, C Robot Performance, LAMDAMAP 2015, Huddersfield, UK, 17–18 March 2015;
pp. 187–197.

15. Dury, M.; Brown, S.; McCarthy, M.; Woodward, S. Blowing hot and cold: Temperature sensitivities of 3D optical scanners.
In Proceedings of the 15th International Conference of the European Society for Precision Engineering and Nanotechnology,
EUSPEN 2015, Leuven, Belgium, 1–5 June 2015; pp. 161–162.

16. Dury, M.; Woodward, S.; Brown, S.; Mccarthy, M. Assessing fringe projector volumetric error sources using the NPL tetra-
hedral artefact. In Proceedings of the 16th International Conference of the European Society for Precision Engineering and
Nanotechnology, EUSPEN 2016, Nottingham, UK, 30 May–3 June 2016; pp. 1–3.

17. Verein Deutscher Ingenieure (VDI). VDI/VDE 2634 Part 2: Optical 3-D measuring systems-Optical systems based on area
scanning. Engl. VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik. 2012, Düsseldorf. Available online: https:
//standards.globalspec.com/std/9914533/vdi-vde-2634-blatt-2 (accessed on 21 July 2022).

18. Verein Deutscher Ingenieure (VDI). VDI 2634 Part 3: Optical 3D-measuring systems (Multiple view systems based on area
scanning). Engl. VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik 2008, Düsseldorf. Available online: https://
standards.globalspec.com/std/9914423/vdi-vde-2634-blatt-3 (accessed on 21 July 2022).

19. Digital Metrology Standards Consortium (ANSI). Quality Information Framework (QIF)—An Integrated Model for Manufacturing
Quality Information. Engl. VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik 2020, Düsseldorf. Available online:
https://qifstandards.org/ (accessed on 21 July 2022).

20. Goher, K.; Shehab, E.; Al-Ashaab, A. Model-Based Definition and Enterprise: State-of-the-art and future trends. Proc. Inst. Mech.
Eng. Part B J. Eng. Manuf. 2020, 235, 2288–2299. [CrossRef]

21. Ram, P.S.; Lawrence, K.D. Implementation of Quality Information Framework (QIF): Towards Automatic Generation of Inspection Plan
from Model-Based Definition (MBD) of Parts; 29 October 2020; Springer: Singapore, 2020. [CrossRef]

22. Ruemler, S.P.; Zimmerman, K.E.; Hartman, N.W.; Hedberg, T.; Feeney, A.B. Promoting model-based definition to establish
a complete product definition. In Proceedings of the ASME 2016 11th International Manufacturing Science and Engineering
Conference, MSEC 2016, Blacksburg, VA, USA, 27 June–1 July 2016; p. 2. [CrossRef]

23. Lu, Y.; Xu, X.; Wang, L. Smart manufacturing process and system automation—A critical review of the standards and envisioned
scenarios. J. Manuf. Syst. 2020, 56, 312–325. [CrossRef]

24. Bruce, M. Reduce Cost, Increase Speed with Model-Based Definition. SME Media 2020. 2020. Available online:
https://www.sme.org/technologies/articles/2020/december/reduce-cost-increase-speed-with-model-based-definition/
?ite=2522&ito=2433&itq=e7e28286-9020-4706-8ec4-21d7883bf037&itx%5Bidio%5D=1144843 (accessed on 21 July 2022).

25. Heysiattalab, S.; Morse, E.P. From STEP to QIF: Product and Manufacturing Information. In Proceedings of the 31st ASPE
Annunal Meeting, 2016, Portland, OR, USA, 23–28 October 2016. [CrossRef]

26. Corallo, A.; Del Vecchio, V.; Lezzi, M.; Luperto, A. Model-Based Enterprise Approach in the Product Lifecycle Management:
State-of-the-Art and Future Research Directions. Sustainability 2022, 14, 1370. [CrossRef]

27. Shehab, E.; Schuler, M.; Bamforth, P.; Goher, K. Model-Based Enterprise Framework for Aerospace Manufacturing Engineering.
Adv. Transdiscipl. Eng. 2019, 9, 207–212. [CrossRef]

188



Metrology 2022, 2

28. Frechette, S.P. Model Based Enterprise for Manufacturing. In Proceedings of the 44th CIRP International Conference on
Manufacturing Systems, Madison WI, USA, 1–3 June 2011.

29. Ding, L.; Dai, S.; Mu, P. Point cloud measurements-uncertainty calculation on spatial-feature based registration. Sens. Rev. 2019,
39, 129–136. [CrossRef]

30. Senin, N.; Catalucci, S.; Moretti, M.; Leach, R.K. Statistical point cloud model to investigate measurement uncertainty in coordinate
metrology. Precis. Eng. 2021, 70, 44–62. [CrossRef]

31. Yang, Y.; Jin, Y.J.; Price, M.P.; Abdelal, G.; Colm, H.; Maropoulos, P. Investigation of point cloud registration uncertainty for gap
measurement of aircraft wing assembly. In Proceedings of the 2021 IEEE 8th International Workshop on Metrology for AeroSpace
(MetroAeroSpace), Virtual Conference, Italy, 23–25 June 2021.

32. Zhang, K.; Bi, W.; Fu, X. A New Method of Point-Clouds Accurate Measurement and Reconstruction. Int. J. Database Theory Appl.
2014, 7, 81–94. [CrossRef]

33. Forbes, A. Uncertainties associated with position, size and shape for point cloud data. J. Phys. Conf. Ser. 2018, 1065, 142023.
[CrossRef]

34. Mohammadikaji, M.; Bergmann, S.; Irgenfried, S.; Beyerer, J.; Dachsbacher, C.; Worn, H. A framework for uncertainty propagation
in 3D shape measurement using laser triangulation. In Proceedings of the 2016 IEEE International Instrumentation and
Measurement Technology Conference Proceedings, Taipei, China, 23–26 May 2016. [CrossRef]

35. Zhao, Y.; Cheng, Y.; Xu, Q. Uncertainty Modeling and Evaluation of Contour Measurement by Structured Light Scanner. Meas.
Sci. Technol. 2022, 33, 095018. [CrossRef]

36. Mahmud, M.; Joannic, D.; Roy, M.; Isheil, A.; Fontaine, J.-F. 3D part inspection path planning of a laser scanner with control on
the uncertainty. Comput. Aided Des. 2011, 43, 345–355. [CrossRef]

37. Feng, H.-Y.; Liu, Y.; Xi, F. Analysis of digitizing errors of a laser scanning system. Precis. Eng. 2001, 25, 185–191. [CrossRef]
38. Xi, F.; Liu, Y.; Feng, H.-Y. Error compensation for three-dimensional line laser scanning data. Int. J. Adv. Manuf. Technol. 2001, 18,

211–216. [CrossRef]
39. Dupuis, J.; Kuhlmann, H. High-precision surface inspection: Uncertainty evaluation within an accuracy range of 15μm with

triangulation-based laser line scanners. J. Appl. Geod. 2014, 8, 109–118. [CrossRef]
40. Mendricky, R. Determination of measurement accuracy of optical 3D scanners. MM Sci. J. 2016, 2016, 1565–1572. [CrossRef]
41. Mendricky, R. Analysis of measurement accuracy of contactless 3D optical scanners. MM Sci. J. 2015, 2015, 711–716. [CrossRef]
42. Mendricky, R. Aspects affecting accuracy of optical 3d digitization. MM Sci. J. 2018, 2018, 2267–2275. [CrossRef]
43. Acko, B.; Klobucar, R. Metrological Approach for Testing Performance of Optical 3D Measurements Systems; Springer International

Publishing: Berlin/Heidelberg, Germany, 2019. [CrossRef]
44. Guidi, G.; Russo, M.; Magrassi, G.; Bordegoni, M. Performance evaluation of triangulation based range sensors. Sensors 2010, 10,

7192–7215. [CrossRef]
45. Van Gestel, N.; Cuypers, S.; Bleys, P.; Kruth, J.-P. A performance evaluation test for laser line scanners on CMMs. Opt. Lasers Eng.

2009, 47, 336–342. [CrossRef]
46. ISO/TS 15530-3:2004; Geometrical Product Specifications (GPS)—Coordinate Measuring Machines (CMM): Technique for Deter-

mining the Uncertainty of Measurement—Part 3: Use of Calibrated Workpieces or Standards. ISO: Geneva, Switzerland, 2004.
Available online: https://www.iso.org/standard/38695.html (accessed on 21 July 2022).

47. ISO/TS 15530-4:2008; Geometrical Product Specifications (GPS)—Coordinate Measuring Machines (CMM): Technique for Deter-
mining the Uncertainty of Measurement—Part 4: Evaluating Task-Specific Measurement Uncertainty Using Simulation. ISO:
Geneva, Switzerland, 2008. Available online: https://www.iso.org/standard/38696.html (accessed on 21 July 2022).

48. Heiβelmann, D.; Franke, M.; Rost, K.; Wendt, K.; Kistner, T.; Schwehn, C. Determination of measurement uncertainty by Monte
Carlo simulation. In Advanced Mathematical and Computational Tools in Metrology and Testing XI; Series on Advances in Mathematics
for Applied Sciences; World Scientific Publishing: Singapore, 2018; Volume 89, pp. 192–202. [CrossRef]

49. Trenk, M.; Franke, M.; Schwenke, H.; KG, F. The “Virtual CMM” a software tool for uncertainty evaluation–practical application
in an accredited calibration lab. Proc. ASPE Uncertain. Anal. Meas. Des. 2004, 6, 68–75.

50. Wilhelm, R.; Hocken, R.; Schwenke, H. Task specific uncertainty in coordinate measurement. CIRP Ann.-Manuf. Technol. 2001, 50,
553–563. [CrossRef]

51. Vlaeyen, M.; Haitjema, H.; Dewulf, W. Digital twin of an optical measurement system. Sensors 2021, 21, 6638. [CrossRef]
52. Stojadinovic, S.M.; Zivanovic, S.; Slavkovic, N.; Durakbasa, N.M. Digital measurement twin for CMM inspection based on

step-NC. Int. J. Comput. Integr. Manuf. 2021, 34, 1327–1347. [CrossRef]
53. Ríos, J.; Staudter, G.; Weber, M.; Anderl, R. Enabling the digital twin: A review of the modelling of measurement uncertainty on

data transfer standards and its relationship with data from tests. Int. J. Prod. Lifecycle Manag. 2020, 12, 226–249. [CrossRef]
54. Zuo, C.; Qian, J.; Feng, S.; Yin, W.; Li, Y.; Fan, P.; Han, J.; Qian, K.; Chen, Q. Deep learning in optical metrology: A review. Light

Sci. Appl. 2022, 11, 39. [CrossRef]
55. Vallejo, M.; de la Espriella, C.; Gómez-Santamaría, J.A.; Ramírez-Barrera, A.F.; Delgado-Trejos, E. Soft metrology based on

machine learning: A review. Meas. Sci. Technol. 2019, 31, 032001. [CrossRef]
56. Choi, J.E.; Hong, S.J. Machine learning-based virtual metrology on film thickness in amorphous carbon layer deposition process.

Meas. Sens. 2021, 16, 100046. [CrossRef]

189



Metrology 2022, 2

57. ISO 10303-242; Industrial Automation Systems and Integration-Product Data Representation and Exchange-Part 242: Application
Protocol: Managed Model-Based 3D Engineering. ISO: Geneva, Switzerland, 2014. Available online: https://www.iso.org/
standard/57620.html (accessed on 21 July 2022).

58. ASME Y14.41-2012; Digital Product Definition Data Practices. 2012. An American National Standard. The American Society of
Mechanical Engineers: Fairfield, NJ, USA, 2012. Available online: http://www.asme.org (accessed on 21 July 2022).

59. ISO 16792; Technical Product Documentation–Digital Product Definition Data Practices. ISO: Geneva, Switzerland, 2006. Available
online: https://www.iso.org/standard/31065.html (accessed on 21 July 2022).

60. Camba, J.D.; Contero, M. Assessing the impact of geometric design intent annotations on parametric model alteration activities.
Comput. Ind. 2015, 71, 35–45. [CrossRef]

61. Nyffenegger, F.; Ríos, J.; Rivest, L.; Bouras, A. (Eds.) Proceedings of the 17th IFIP WG 5.1 International Conference, PLM 2020,
Rapperswil, Switzerland, 5–8 July 2020; Springer: Berlin/Heidelberg, Germany, 2020; p. 594. [CrossRef]

62. Liu, R.; Duan, G.-J.; Liu, J. A framework for model-based integrated inspection. Int. J. Adv. Manuf. Technol. 2019, 103, 3643–3665.
[CrossRef]

63. Albuquerque, V.A.; Liou, F.W.; Mitchell, O.R. Inspection point placement and path planning algorithms for automatic CMM
inspection. Int. J. Comput. Integr. Manuf. 2000, 13, 107–120. [CrossRef]

64. Ainsworth, I.; Ristic, M.; Brujic, D. CAD-based measurement path planning for free-form shapes using contact probes. Int. J. Adv.
Manuf. Technol. 2000, 16, 23–31. [CrossRef]

65. Nguyen, J. MBD (Model-Based Definition). 8 February 2021. Available online: https://www.capvidia.com/blog/mbd-model-
based-definition-in-the-21st-century (accessed on 21 July 2022).

66. Jamshidi, J.; Maropoulos, P.G. Design of an Information System for Metrology Contents. In Proceedings of the 6th CIRP-Sponsored
International Conference on Digital Enterprise Technology, HongKong, China, 14–16 December 2009; Volume 18, pp. 1701–1719.
[CrossRef]

67. Steck, R. Model-Based Product Definition Links Design and Metrology. Metrology News, 14 February 2022. Available online:
https://metrology.news/model-based-product-definition-links-design-and-metrology/(accessed on 21 July 2022).

68. ISO 1101:2017; Geometrical Product Specifications (GPS)—Geometrical Tolerancing—Tolerances of Form, Orientation, Location
and Run-Out. ISO: Geneva, Switzerland, 2017. Available online: https://www.iso.org/standard/66777.html (accessed on
21 July 2022).

190



MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Metrology Editorial Office
E-mail: metrology@mdpi.com

www.mdpi.com/journal/metrology





MDPI  

St. Alban-Anlage 66 

4052 Basel 

Switzerland

Tel: +41 61 683 77 34

www.mdpi.com ISBN 978-3-0365-6609-2 


	A9R1p44i7o_1s5i15y_950.pdf
	Measurement Uncertainty.pdf
	A9R1p44i7o_1s5i15y_950



