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Abstract: In recent years, low-cost single-frequency GNSS receivers have been widely used in many
fields such as mass navigation and deformation monitoring; however, due to the poor signal quality
of low-cost patch antennae, it is difficult for carrier phase real-time kinematic (RTK) technology to fix
the integer ambiguity. Differential GNSS (DGNSS) positioning with pseudorange can effectively meet
the high robustness and reliability requirements for the submeter to the meter level positioning accu-
racy of UVA/vehicle/aerospace users. To improve the DGNSS positioning accuracy and reliability of
low-cost single-frequency GNSS receivers in complex environments, we propose a differential baro-
metric altimetry (DBA)-assisted DGNSS positioning algorithm, which solves the DGNSS observation
equations jointly and rigorously with the Earth ellipsoidal constraint equations constructed by the
DBA altitude. The DBA altitude accuracy at different baseline lengths was evaluated in detail, and the
DGNSS positioning performance of the single-frequency low-cost u-blox receiver NEO-M8T with a
patch antenna and DGNSS/DBA combined positioning performance with the BMP280 barometer was
analyzed by several sets of static and dynamic experiments under different environments. The results
show that the single-frequency NEO-M8T receiver with patch antenna DGNSS positioning accuracy
is submeter level in the static environment and drops to meter level in the dynamic environment.
GPS+BDS dual system has higher positioning accuracy than single GPS or single BDS. DGNSS/DBA
combination has higher positioning accuracy than DGNSS, especially the root mean square error
(RMSE) can be improved by 30% to 80% in the U direction and slightly improved in the N and E
directions. This study can provide an effective solution reference for various applications of low-cost
sensor fusion positioning in the mass consumer market.

Keywords: differential GNSS; DBA; low-cost; combined positioning

1. Introduction

With the continuous development and improvement of the Global Navigation Satellite
System (GNSS), the number of visible satellites has been greatly increased, which effectively
improves the positioning accuracy, reliability, and availability. However, in complex
environments such as under trees, urban canyons, tunnels, deep mine pits, and indoors, etc.,
GNSS signal attenuation is severe, observation quality is poor, or the visible satellites are
insufficient and there is the serious multipath effect. These drawbacks will lead to decreased
positioning accuracy or even unable to locate, which greatly limit the availability and
application of GNSS [1,2]. Combining GNSS with other multi-source sensor technologies
to realize the complementary advantages of each system and improve the location-based

Remote Sens. 2022, 14, 586. https://doi.org/10.3390/rs14030586 https://www.mdpi.com/journal/remotesensing1
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services (LBS) accuracy of user terminals in harsh scenarios has become a major research
hotspot in the field of navigation.

Single-frequency low-cost GNSS receivers, such as u-blox series, SkyTraq S2525F8,
etc., are widely used in various industries, providing solutions for surveying and mapping
applications [3], landslide deformation monitoring [4,5], pedestrian navigation, vehicle
tracking [6], and small unmanned aerial vehicles (UAV) navigation [7]. Low-cost GNSS
receivers are smaller in size and mass, but their hardware performance is inferior to that of
geodetic GNSS receivers. For example, lower signal-to-noise ratio (SNR), poor observed
values, and more frequent satellite out-of-lock and observation data are missing. The main
reason is that the observation quality of the low-cost patch antenna is poor. Low-cost GNSS
receivers for standard point positioning (SPP) can only obtain meter-level positioning
accuracy, which means positioning accuracy and reliability will significantly reduce with
positioning errors up to tens of meters in complex urban environments [8]. The single-
frequency low-cost u-blox receiver for GNSS RTK positioning has a low fixed rate of carrier
phase ambiguity in practical applications due to the poor observed data quality [9].

Compared with GNSS RTK positioning to achieve centimeter-level positioning accu-
racy, the DGNSS positioning with code pseudorange can only achieve 1–2 m positioning
accuracy [10]. However, DGNSS is simpler to implement and can avoid positioning failure
caused by RTK ambiguity fixed incorrectly. DGNSS can be widely used in many fields, for
example, in the location of mobile devices [11,12], marine navigation, and in coastal naviga-
tion and in dynamic vessel positioning [10,13], in hydrography for positioning of acoustic
systems [14], in autonomous vehicle positioning [15,16], and civil aviation during precision
approach procedures [17]. DGNSS is currently the most widely used augmentation system
around the world.

The idea behind DGNSS operation lies in determination of the error related to pseu-
dorange observations and calculated comparing the actual value received by the GNSS
receiver and the true value calculated using the satellite and the reference station antenna
coordinates. This difference, referred to as a pseudorange correction, is transmitted to users
who use a GNSS receiver and take it into account in the positioning process [18]. They can
be divided into so-called local-area DGNSS (LADGNSS) services for small areas, such as a
relatively small area of several dozen to several hundred square kilometers, and wide-area
DGNSS (WADGNSS) services for larger areas such as an entire continent or even world-
wide. The positioning accuracy achieved by LADGNSS method is 1–3 m and it decreases
with increasing distance between a user and the single reference station [19]. WADGNSS
can extend the service area using a few geosynchronous equatorial orbit (GEO) satellites
and overcome the error due to the spatial decorrelation, as in, for example, the Wide-Area
Augmentation System (WAAS, USA), European Geostationary Navigation Overlay Service
(EGNOS, Europe), and MTSAT Satellite Augmentation System (MSAS, Japan). This system
is used to obtain a meter-level accuracy over a large region while using a fraction of the
number of reference stations [10].

Most studies and analyses of DGNSS positioning with low-cost GNSS receivers have
used geodetic antennas. For example, an Flächen Korrektur parameter (FKP)-DGPS al-
gorithm [19] is studied as a new augmentation method for the low-cost GPS receivers by
integrating the conventional DGPS correction with the modified FKP correction to mitigate
the positioning error due to the spatial decorrelation. Single-frequency DGPS aided low-
cost inertial navigation system (INS) positioning [20] was studied to achieve the real-time
high-frequency state output with decimeter position accuracy and centimeter velocity
accuracy. However, there is still little research on DGNSS for low-cost GNSS receivers with
low-cost patch antenna and fusion positioning with other low-cost sensors.

Height constraint is an effective method to improve the GNSS positioning accuracy,
for example, due to the insufficient number of available satellites, the BDS-1 has used
electronic maps as height constraints to improve the users’ positioning accuracy [21]. This
method is more complicated to implement and it is difficult to promote its application. The
barometric altimetry is low-cost, independent of environmental restrictions, and can be
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used both indoors and outdoors. Low-cost barometer altimetry-assisted GNSS positioning
navigation is also widely used in the field of aviation flights and smartphone navigation,
etc. [22–25]. The basic principle of barometric altimetry is to use the physical phenomenon
that the atmospheric pressure on the Earth’s surface gradually decreases with increasing
height, but, due to the irregular changes of atmospheric pressure, the altitude error directly
calculated by a single barometer is as high as tens or even hundreds of meters, which
cannot be used as a constraint to improve GNSS positioning accuracy. Similar to DGNSS,
the accurate height can be obtained by barometric correction compensation or differential
barometric altitude (DBA). That is, using the property that local atmospheric pressure
changes are similar, a barometer is placed at the reference station and another barometer is
used as a mobile station to determine its high-precision relative altitude by the differential
equation. The altitude accuracy and reliability obtained by DBA mode are high, which can
effectively constrain other technology to improve positioning and navigation accuracy.

The user altitude obtained by the DBA system was applied as a virtual satellite in
the China Area Positioning System (CAPS), and the construction of independent earth
ellipsoidal constraint equations by users’ altitude can effectively solve the insufficient
number of CAPS satellites and improve its 3D positioning accuracy and availability [26–28].
The DBA system also be applied to mobile cellular network positioning for accurately
determining the user’s height, and reduced 3D positioning to planar positioning which can
obtain more desirable positioning accuracy [29]. Mobile cellular base stations can be used
as DBA reference stations and transmitted the relevant atmosphere pressure data to the
user side through mobile communication networks, achieving GNSS SPP/DBA combined
3D positioning with the altitude accuracy better than 1 m [30]. Inertial/barometric altitude
can be fused to measure vertical velocity and height with velocity root mean squared
error (RMSE) between 0.04 to 0.24 m/s and RMSE in height between 5 to 68 cm [31]. In
addition, a barometer installed on a wearable device can measure vital signs such as blood
pressure by detecting the position and orientation of the human body, thus providing a
better telemedicine solution for precision medicine [32,33].

At present, to our knowledge, little research has been reported on the DGNSS/DBA
combined positioning with low-cost GNSS receivers and a patch antenna, and there is
also a lack of research and analysis on the theoretical methods and application effects
of DBA, which is worth further study. In this study, we firstly propose a DGNSS/DBA
combined positioning algorithm. Second, the DBA altitude accuracy at different baseline
lengths is evaluated in detail. Then, the DGNSS performance of single-frequency low-cost
NEO-M8T receiver and the accuracy and reliability of DGNSS/DBA combined positioning
with low-cost BMP280 barometer are fully evaluated through actual measurement data.

This manuscript is organized as follows: Section 1 is the introduction. Section 2 is the
mathematical model of DGNSS/DBA combined positioning, which contains Section 2.1
about DGNSS positioning observation equations; Section 2.2 about the principle of the DBA
system; and Section 2.3 on the DGNSS/DBA combined positioning algorithm.
Section 3 reports the experiment results, containing Section 3.1 that introduces experi-
mental data; Section 3.2 about DBA altitude accuracy evaluation at different baseline
lengths; Sections 3.3 and 3.4 on the DGNSS/DBA combined static and kinematic vehicle
positioning performance evaluation for the single-frequency low-cost NEO-M8T receiver
and BMP280 barometer, respectively. Section 4 presents the discussions. Section 5 is
the conclusion.

2. Mathematical Model of DGNSS/DBA Combined Positioning

2.1. DGNSS Positioning Observation Equation

GNSS receivers can simultaneously receive observation data such as code pseudorange,
carrier phase, Doppler shift, and SNR. The raw observation values contain the receiver
geometric position parameters, clock error as well as hardware delays parameters, and
various error corrections, such as tropospheric errors and ionospheric errors. Therefore,
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the raw code pseudorange observation equation between satellite s and receiver i can be
expressed as:

Ps
i = ρs

i + c(dti − dts) + Is
i + Ts

i + Ms
i + εs

i (1)

where Ps
i denotes the code pseudorange observation between satellite s and receiver i

(Unit: m); ρs
i =

√
(Xs − X)2 + (Ys − Y)2 + (Zs − Z)2 denotes the geometric distance be-

tween satellite s and receiver i at the moment of signal transmission, (Xs, Ys, Zs) and
(X, Y, Z) are the satellite s and unknown receiver i antenna center position. c is the speed
of light in vacuum; dti denotes the receiver clock error; dts denotes the satellite clock error;
Is
i is the ionospheric error; Ts

i is the tropospheric error; Ms
i is the multipath delay error; εs

i
contains the code pseudorange measurement noise and other uncorrected errors.

For the short and medium baselines, the receiver clock error and satellite clock error are
eliminated in the double-difference observation equation, the ionospheric and tropospheric
errors can be neglected, and the DGNSS observation equation can be simplified and
expressed as [34]:

∇ΔPs1sk
i,j = ∇Δρ

s1sk
i,j +∇Δε

s1sk
i,j (2)

where ∇Δ denotes the double-difference operator; i and j denotes the reference station receiver
and mobile receiver; s1 and sk denote the reference and nonreference satellite, respectively.

2.2. Principle of the DBA System

Single-barometer altimetry affected by atmospheric temperature, seasonal changes,
and other factors drifts up to several tens of meters within a day, with poor stability and
reliability [35]. Due to the Earth’s gravitational field, the space atmosphere pressure and
height show a certain regular distribution. Except for the local strong convection zone,
the trend of atmospheric pressure variation in the local range of several tens of kilometers
shows the same physical characteristics, and the atmosphere is basically in hydrostatic
equilibrium in the vertical direction. Usually, the atmospheric pressure is distributed more
evenly in the horizontal direction, and the pressure difference is about 1 hPa at a distance
of 100 km. Thus, the concept of “difference” can be extended to the field of barometric
altimetry with the help of differential GNSS positioning, that is, by setting one (or several)
barometric reference points, the barometric altimetry value of the mobile station can be
corrected by the precise altitude of the reference station to compensate the influence of
atmospheric physical environment changes on the altitude measurement results of the
mobile station, thus improving the accuracy of the user altitude of the mobile station.

When the barometric reference station and the mobile station are within a few tens of
kilometers, their latitude, gravitational acceleration, and water vapor factors have the same
effect on the atmospheric pressure, so the above three errors can be neglected to obtain the
simplified DBA formula [36]:

h = h0 + 18, 410(1 +
tm

273.15
)lg

P0

P
(3)

where h is the altitude of the mobile station to be found, h0 is the known altitude of the
reference station, P0 is the pressure of the reference station, P is the pressure of the mobile
station, and tm is the average Celsius temperature between the reference station and the
mobile station.

2.3. DGNSS/DBA Combined Positioning Algorithm

In this study, we propose a DGNSS/DBA combined positioning algorithm, in which
the user’s altitude obtained by the DBA system in Section 2.2 is used to construct the Earth
ellipsoid constraint equation and solved rigorously as an independent observation jointly
with the DGNSS observation equation, which is equivalent to adding a virtual satellite
located at the center of the Earth [26]. Since the geodetic height is an independent variable
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in GNSS coordinates, an approximate ellipsoid with the altitude h from the reference
ellipsoid (WGS-84) can be constructed using the user geodetic height, as shown in Figure 1.

 
Figure 1. Approximate reference ellipsoidal meridian profile where the ground user’s geodetic height
is located.

At this time, when the ground user’s geodetic height is not very large, the observation
equation after DGNSS/DBA combination can be expressed as:{ ∇ΔPs1sk

i,j = ∇Δρ
s1sk
i,j +∇Δε

s1sk
i,j

X2+Y2

(a+h)2 + Z2

(b+h)2 = 1
(4)

the symbols in the DGNSS observation equation in the first line of Equation (4) are the
same as Equation (2). P(X, Y, Z) is the 3D coordinate of the ground user; a and b are
the long and short semiaxes of the WGS-84 Earth reference ellipsoid, respectively. Since
h is much smaller than the long and short semiaxes of the Earth reference ellipsoid, an
approximate reference ellipsoid with a long semiaxis a + h and short semiaxis b + h is used
instead without causing much bias [37]. To solve the Earth ellipsoid constraint equation in
the second expression of Equation (4) by differential processing, the ellipsoid constraint
equation is expanded in the user’s approximate position (X0, Y0, Z0) according to the
Taylor series, and only the first-order term is retained, where the partial derivative of X is
obtained as:

2X0

(a + h)2 dX − 2X2
0

(a + h)3 dh − 2Y2
0

(a + h)3 dh − 2Z2
0

(b + h)3 dh = 0 (5)

after simplification, we get:

∂h
∂X0

=
X0(a + h)(b + h)3(

X2
0 + Y2

0
)
(b + h)3 + Z2

0(a + h)3 (6)

similarly, taking partial derivatives of Y and Z yields:

∂h
∂Y0

=
Y0(a + h)(b + h)3(

X2
0 + Y2

0
)
(b + h)3 + Z2

0(a + h)3 (7)
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∂h
∂Z0

=
Z0(a + h)3(b + h)(

X2
0 + Y2

0
)
(b + h)3 + Z2

0(a + h)3 (8)

let α = ∂h/∂X0, β = ∂h/∂Y0, γ = ∂h/∂Z0, that is, the Earth ellipsoidal constraint equation
in Equation (4) is linearized at the approximate coordinates (X0, Y0, Z0) to give:

VDBA = αdX + βdY + γdZ − dh (9)

where dh = h − ĥ is the altitude residual, h is the altitude obtained by the DBA system, and
ĥ is the geodetic height obtained by the users’ at the approximate position. dX, dY, dZ are
positional corrections of the receiver antenna center. The detailed conversion process can
be found in the original literature [38].

Similarly, the DGNSS observation equation in the first expression of Equation (4) is ex-
panded by the Taylor series at the approximate position (X0, Y0, Z0), omitting higher-order
terms above the first order, and combined with Equation (9) to obtain the DGNSS/DBA
combined positioning error equation:

V = Hx̂ − l, P (10)

in Equation (10), the parameter estimated as x̂ =
[

dX dY dZ
]T contains three ap-

proximate position correction values; V =
[

V1 · · · Vi VDBA
]T is the residual vector,

H =

⎡⎢⎢⎣
l1 m1 n1

· · · · · · · · ·
li mi ni

α β γ

⎤⎥⎥⎦ is the coefficient matrix, li = (Xs−X0)

ρ
(0)s
j

− (Xk−X0)

ρ
(0)k
j

, mi = (Ys−Y0)

ρ
(0)s
j

−

(Yk−Y0)

ρ
(0)k
j

, ni = (Zs−Z0)

ρ
(0)s
j

− (Zk−Z0)

ρ
(0)k
j

are the pseudorange double-difference directional co-

sine, respectively. l =
[

L1 · · · Li dh
]T are the observation value vectors. P =[

PDGNSS 0
0 PDBA

]
is the DGNSS/DBA combined positioning weight matrix. PDGNSS =

Q−1
DD is the a priori weight matrix of GNSS pseudorange double-difference observation

equation. QDD is the GNSS pseudorange double-difference observation values covari-
ance matrix, the stochastic model of GNSS nondifferential observations adopts the sine
trigonometric function elevation angle fixed-weight model [39]. According to the error
propagation law, the GNSS relative positioning variance-covariance matrix can be ex-
pressed as QDD [34]. The a priori weight PDBA of the DBA can be determined based on
the results of the empirical evaluation in Section 3.2. We can solve Equation (10) using the
single-epoch weighted least squares method, as Equation (11):{

x̂ =
(

HT PH
)−1HT Pl

Qx̂x̂ =
(

HT PH
)−1 (11)

where Qx̂x̂ is the posterior covariance matrix of the parameter x̂. It can be found that the
DBA altitude constraint is equivalent to adding a code pseudorange observation, and the
condition number of the error equation coefficient matrix H becomes significantly better,
the position dilution of precision (PDOP) value can be effectively reduced. However, the
accuracy of the positioning solution is influenced by the accuracy of DBA altitude, i.e.,
if the accuracy of DBA altitude is better than DGNSS altitude, the improvement effect is
obvious, otherwise, the positioning accuracy cannot be improved.

3. Experiment Results

3.1. The Introduction of Experiment Data

In the experiment, the reference station included a high-precision geodetic GNSS
receiver Trimble NET R9, a Trimble Choking 59,800 antenna, and a low-cost BMP280
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barometer. The mobile station consisted of a single-frequency low-cost u-blox receiver NEO-
M8T, a patch antenna, and two BMP280 barometers. The mobile station was also equipped
with a geodetic receiver Trimble NET R9 for data acquisition, and the postprocessed
kinematic (PPK) mode of commercial software Inertial Explorer 8.70 was used to process
data to obtain high-precision 3D coordinate sequences as reference values. The nominal
resolution of the low-cost BMP280 barometer was 0.01 mbar (0.1 m) and the data sampling
rate was set at 1 Hz. As shown in Figure 2, to prevent the effect of crosswind on the
barometric pressure, the barometer was placed inside a transparent plastic box with several
small holes at the top of the box. All experimental data were recorded and postprocessed by
a laptop computer. The height deviation of the BMP280 barometer from the GNSS antenna
phase center was compensated by data preprocessing, and the DGNSS/DBA combined
positioning analysis was performed by the self-written programs.

(a) (b) 

Figure 2. The hardware equipment in the DBA altitude accuracy evaluation and static positioning
experiment: (a) reference station; (b) mobile station.

The whole experiment was divided into three parts. The first experiment was used
to evaluate the DBA altitude accuracy at different baseline lengths and to provide a priori
information for subsequently combined positioning with DGNSS. The second experi-
ment evaluated the positioning performance of low-cost single-frequency DGNSS and
DGNSS/DBA combined positioning through static experiments with 65 m and 6.0 km
baseline lengths. The third experiment evaluated the kinematic vehicle positioning perfor-
mance of low-cost single-frequency DGNSS and DGNSS/DBA combined positioning in
open and complex urban environments, respectively.

3.2. DBA Altitude Accuracy Evaluation at Different Baseline Lengths

The altitude accuracy and practical range obtained by the BMP280 barometer DBA
model were evaluated through different baseline lengths outdoors. The experimental
data were collected on 18 September 2020, and Figure 2 shows the hardware equipment
of the reference station and mobile stations. The reference station was arranged on the
observation pier on the roof of the Innovation Academy for Precision Measurement Science
and Technology, Chinese Academy of Sciences (APM, CAS). Figure 3 shows five different
mobile station locations at baseline lengths of 0 m, 65 m, 2.6 km (shopping mall plaza),
6.0 km (Wufu Plaza on the Yangtze River), and 10.0 km (the roof of the PET center of Tongji
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Medical College), with a data acquisition time of about 30 min for each static point. Figure 4
and Table 1 show the time series and RMSE accuracy statistics of the altitude results of the
DBA system under five groups of different baseline lengths.

 

Figure 3. Five mobile station locations at different baseline lengths for altitude accuracy evaluation
of the outdoor DBA systems.

  
(a) (b) (c) 

  

 

(d) (e)  

Figure 4. Time series of the DBA altitude results for five mobile station locations at different baseline
lengths: (a) 0 m; (b) 65 m; (c) 2.6 km; (d) 6.0 km; (e) 10.0 km.
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Table 1. The DBA altitude statistical results of the five different baseline lengths (Unit: m).

Baseline
Length

Reference
Altitude

DBA_Min DBA_Max Mean Std RMSE

0 m 45.453 44.200 46.436 45.453 0.271 0.270

65 m 41.125 40.814 42.871 41.738 0.350 0.706

2.6 km 8.645 5.626 10.994 7.656 0.649 1.182

6.0 km 8.944 5.047 11.583 8.308 1.101 1.27

10.0 km 16.542 13.91 23.67 17.86 1.16 1.76

In Table 1, DBA_min and DBA_max denote the minimum and maximum altitude
results obtained by the DBA model. Mean and STD denotes the average value of DBA
altitude and standard deviation. As can be seen from Figure 4 and Table 1, the outdoor
DBA altitude RMSE increased gradually with an increase of baseline length, and the DBA
altitude RMSE was submeter level within the 2 km baseline length and did not exceed 2 m
within the 10 km baseline length. This result can provide a priori information to determine
the weight matrix PDBA in Equation (11) for the DGNSS/DBA combined positioning.

3.3. DGNSS/DBA Combined Static Positioning Results

This section mainly evaluates the static positioning performance of the single-frequency
low-cost NEO-M8T receiver and BMP280 barometer DGNSS/DBA combined positioning
algorithm. The experimental data were consistent with Section 3.2, and the 65 m and 6.0 km
baseline length data were selected for processing and analysis. Two data processing modes,
DGNSS and DGNSS/DBA, were set, and each mode was divided into single GPS, single
BDS, and GPS+BDS dual systems by the satellite system.

3.3.1. Baseline Length 65 m

This experiment used 65 m short baseline static data and performed statistical analysis
by setting the elevation mask angle from 10 to 40 degrees, and the prior error of the DBA
system was σDBA = 1.0 m. Table 2 shows the average number of visible satellites at
different elevation mask angles, and Table 3 lists the average PDOP values for DGNSS and
DGNSS/DBA modes at different elevation mask angles.

Table 2. The average number of GNSS visible satellites at different elevation mask angles.

Satellite System

Elevation Mask Angles (Degree)

10 20 30 40

GPS 7.81 7.21 4.25 3.0

BDS 14.19 12.90 10.21 8.99

GPS+BDS 21.97 20.11 14.45 11.99

As can be seen from Table 2, the average number of visible satellites was seven to eight
for GPS and 12 to 14 for BDS at a low elevation mask angle of 10 or 20 degrees. With the
increase of the elevation mask angle, the number of available satellites of both GPS and BDS
systems decreased significantly, the satellite space geometry distribution became worse,
and the PDOP value gradually increased. The number of GPS satellites was only three at
the elevation mask angles of 40 degrees, and the user receiver could not be positioned at
this time, while the number of visible satellites of BDS in the China region was larger with
eight to 10 visible satellites at the elevation mask angles of 30 or 40 degrees. The GPS+BDS
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dual system significantly increased the number of visible satellites compared to the single
system, which significantly improved the satellite geometry and reduced the PDOP value.
As shown in Table 3, increasing a DBA observation was equivalent to adding a virtual
satellite, which improved the satellite geometry distribution and reduced the PDOP value;
and the reduction of PDOP value was more significant in the environment with a higher
elevation mask angle. When the elevation mask angle was 40 degrees, three GPS satellites
could not complete the positioning, and adding a DBA observation ensured the availability
of user receiver positioning. Figures 5–8 show the north (N)/east (E)/up (U) direction
deviation sequence of the two data processing modes at the elevation mask angle 10 to
40 degrees. Each mode included single GPS, single BDS, and a GPS+BDS dual system.
Table 4 shows the RMSE values in the N/E/U directions for the two data processing modes
at different elevation mask angles.

Table 3. The average PDOP values for DGNSS and DGNSS/DBA modes at different elevation
mask angles.

Positioning
Mode

Satellite
System

Elevation Mask Angles (Degree)

10 20 30 40

DGNSS

GPS 1.95 2.11 5.53 -

BDS 1.49 1.81 3.02 4.66

GPS+BDS 1.09 1.25 2.30 3.69

DGNSS/DBA

GPS 1.32 1.37 2.04 2.66

BDS 1.16 1.27 1.53 1.79

GPS+BDS 0.91 0.99 1.32 1.56

(a) (b) 

Figure 5. The deviation sequence diagram in the N/E/U directions at 10−degree elevation mask
angles: (a) DGNSS positioning mode; (b) DGNSS/DBA positioning mode.
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(a) (b) 

Figure 6. The deviation sequence diagram in the N/E/U directions at 20−degree elevation mask
angles: (a) DGNSS positioning mode; (b) DGNSS/DBA positioning modes.

 
(a) (b) 

Figure 7. The deviation sequence diagram in the N/E/U directions at 30−degree elevation mask
angles: (a) DGNSS positioning mode; (b) DGNSS/DBA positioning mode.

(a) (b) 

Figure 8. The deviation sequence diagram in the N/E/U directions at 40−degree elevation mask
angles: (a) DGNSS positioning mode; (b) DGNSS/DBA positioning mode.
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Table 4. The RMSE values of the two data processing modes in the N/E/U directions at different
elevation mask angles.

Elevation Mask
Angles (Degree)

RMSE
Directions

DGNSS DGNSS/DBA

GPS BDS GPS+BDS GPS BDS GPS+BDS

10

N 0.82 0.72 0.58 0.76 0.69 0.57

E 0.53 0.96 0.61 0.52 0.96 0.60

U 1.32 1.08 0.94 0.89 0.63 0.57

20

N 0.70 0.73 0.53 0.70 0.74 0.53

E 0.49 0.92 0.54 0.49 0.87 0.50

U 1.38 1.14 0.85 0.94 0.72 0.62

30

N 1.24 1.33 0.71 1.16 0.94 0.65

E 0.99 0.93 0.56 0.59 0.74 0.42

U 4.81 2.85 1.47 1.09 0.95 0.80

40

N - 2.21 0.89 1.23 1.20 0.59

E - 1.23 0.85 1.08 1.22 0.85

U - 5.81 3.07 1.02 1.45 1.20

Tables 2–4 and Figure 5 show that due to sufficient number of visible satellites and
low PDOP values at the elevation mask angle of 10 degrees, the positioning accuracy of the
DGNSS mode in the N/E/U directions could reach the decimeter to submeter level, and
the RMSE of single GPS and single BDS in the N/E/U directions were 0.82/0.53/1.32 m
and 0.72/0.96/1.08 m, respectively. In DGNSS/DBA mode, the RMSE of GPS/DBA and
BDS/DBA in the N/E/U directions were 0.76/0.52/0.89 m and 0.69/0.96/0.63 m, respec-
tively, which were 30% to 40% better than DGNSS in the U direction and slightly better
in N and E directions. Due to the increase of available observations and better satellite
geometry of the GPS+BDS dual system, the RMSE of DGNSS and DGNSS/DBA mode in
the N/E/U directions were 0.58/0.61/0.94 m and 0.57/0.60/0.57 m, respectively. Both had
some improvements over the single system. The results at the elevation mask angle of
20 degrees were similar to that of 10 degrees.

Tables 2–4 and Figure 7 show that the PDOP value became larger due to the fewer
available observation satellites and worse satellite geometry at the elevation mask angle
of 30 degrees, and the RMSE in the N/E/U directions became significantly larger than
that of 10 and 20 degrees. The RMSE in the N/E/U directions were 1.24/0.99/4.81 m and
1.33/0.93/2.85 m for single GPS and single BDS, and 0.71/0.56/1.47 m for GPS+BDS dual
system in DGNSS mode, respectively. Compared with the DGNSS mode, the accuracy
of the N/E/U directions was significantly improved by the DGNSS/DBA combination,
and the RMSE of GPS/DBA and BDS/DBA in the N/E/U directions were improved by
6.4%/40%/77.3% and 29.3%/20.4%/66.6%, and the RMSE of GPS+BDS/DBA combination
in the N/E/U directions were improved by 8.5%/25%/45.6%.

When the elevation mask angle was 40 degrees, the number of available satellites
for single GPS was three and they could not be located. The RMSE of single BDS was
2.21/1.23/5.81 m in the N/E/U directions, and 0.89/0.85/3.07 m for the GPS+BDS dual
system (Tables 2–4 and Figure 8). In DGNSS/DBA mode, GPS/DBA met the most basic
positioning requirements for four satellites and the RMSE in the N/E/U directions was
1.23/1.08/1.02 m; the RMSE of BDS/DBA in the N/E/U directions was improved by
44.3%/12.2%/82.4%, and the RMSE of the GPS+BDS/DBA combination in the N/E/U
directions was improved by 33.7%/0%/60.9%, respectively.
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3.3.2. Baseline Length 6.0 km

In this experiment, static data with 6.0 km baseline length were processed and ana-
lyzed, the elevation mask angle was 10 degrees, and the priori error of the DBA system was
σDBA = 1.5 m. Figure 9 shows the number of GNSS visible satellites and the PDOP value
sequence for both DGNSS and DGNSS/DBA modes at the baseline length of 6.0 km. The
RMSE accuracy statistics and corresponding deviation sequence in the N/E/U directions
for the DGNSS and DGNSS/DBA mode are shown in Table 5 and Figure 10, respectively.

(a) (b) 

Figure 9. Observation values of static experiment at the baseline length of 6.0 km: (a) the number of
GNSS visible satellites; (b) the sequence of PDOP values.

Table 5. The RMSE of bias in the N/E/U directions for the DGNSS and DGNSS/DBA mode at 6.0
km baseline length.

Positioning Mode Satellite System N/m E/m U/m

DGNSS
GPS 2.23 1.12 4.41
BDS 0.61 2.27 2.64

GPS+BDS 0.60 1.01 2.22

DGNSS/DBA
GPS 2.13 1.11 3.91
BDS 0.55 2.15 2.54

GPS+BDS 0.62 0.98 2.44

Table 5 and Figures 9 and 10 show that the PDOP value of BDS was smaller than GPS
in the China region due to a large number of observable satellites. The RMSE of single BDS
in the N/E/U directions was 0.61/2.27/2.64 m, which was better than that of single GPS in
DGNSS mode (2.23/1.12/4.41 m). The RMSE of the GPS+BDS dual system in the N/E/U
directions was 0.60/1.01/2.22 m with higher positioning accuracy than single system.
Compared to DGNSS mode, the RMSE in the U direction of DGNSS/DBA mode reduced
by 0.5 m and 0.1 m for single GPS and single BDS, and there was also some improvement in
the N and E directions. However, the GPS+BDS dual system did not improve significantly,
due to the higher DGNSS accuracy and the lower DBA height accuracy at 6.0 km baseline
length did not prove to be an obvious constraint.
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(a) (b) 

Figure 10. The deviation sequence diagram in the N/E/U directions at 6.0 km baseline length:
(a) DGNSS positioning mode; (b) DGNSS/DBA positioning mode.

3.4. DGNSS/DBA Combined Kinematic Vehicle Positioning Results

In this section, two kinematic vehicle experiments were designed to evaluate the
dynamic positioning performance of the single-frequency low-cost NEO-M8T receiver and
the BMP280 barometer DGNSS/DBA combined positioning algorithm.

The site photo of the mobile station equipment of the kinematic vehicle experiment
is shown in Figure 11. The platform contained four multisystem dual-frequency geodetic
GNSS antennas which were connected to Trimble Net R9 receivers to obtain the high
precision reference value. The single-frequency, low-cost u-blox NEO-M8T receiver, a patch
antenna and a BMP280 barometer were laid on the roof of the car. Two sets of kinematic
vehicle data were collected, the first set was located in an open urban environment and the
second set was in a complex urban environment.

 

(a) (b) 

Figure 11. The mobile station hardware equipment site for kinematic vehicle experiment, including
four geodetic GNSS receivers and antennas, NovAtel SPAN-FSAS GNSS/INS system, low-cost
NEO-M8T receiver with a patch antenna, and a BMP280 barometer: (a) the experimental vehicle;
(b) equipment setup diagram.

3.4.1. Open Urban Environment

This experiment was collected near the industrial park in Caidian District, Wuhan,
China, on 20 November 2020, with a data duration of about 80 min. The area has an open
urban environment with less shading and good data quality. Figure 12 shows the kinematic
vehicle experiment test scene and test trajectory in the open urban environment. Figure 13
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shows the number of GNSS visible satellites and the sequence of PDOP values during the
kinematic vehicle experiment.

(a) (b) 

Figure 12. Kinematic vehicle experiment in the open urban environment: (a) test scene; (b) test
trajectory.

As can be seen in Figure 13, the number of observable satellites of GPS and BDS
fluctuated greatly for the kinematic vehicle, resulting in a significant increase in PDOP
values compared to a static environment. The addition of DBA observations significantly
improved the satellite geometric spatial distribution and reduced the PDOP values. In the
open urban environment kinematic vehicle experiment, the comparison of the low-cost
BMP280 barometer DBA altitude with the Trimble NET R9 reference altitude is shown in
Figure 14. It can be seen that the BMP280 barometer DBA altitude had a high consistency
with the reference altitude with an RMSE of 2.10 m. This value can be used to set the a
priori weight matrix in the DGNSS/DBA combined positioning process.

(a) (b) 

Figure 13. Observation values of kinematic vehicle experiment in the open urban environment:
(a) the number of GNSS visible satellites; (b) the sequence of PDOP values.
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Figure 14. Comparison of the low-cost BMP280 barometer DBA altitude with the Trimble NET R9
reference altitude during the kinematic vehicle experimental in the open urban environment.

The RMSE statistical results and deviation sequence in the N/E/U directions for both
DGNSS and DGNSS/DBA modes are given in Table 6 and Figure 15, respectively. The
RMSE values of single GPS and single BDS in the N/E/U directions were 1.20/1.32/3.18 m
and 1.58/2.11/5.02 m for DGNSS mode, respectively. The GPS/DBA, BDS/DBA, and
GPS+BDS/DBA modes improved the RMSE by 40% to 60% in the U direction and increased
slightly in the N and E directions, and the DBA altitude showed a good constraint effect.

Table 6. The RMSE of bias in the N/E/U directions for DGNSS and DGNSS/DBA modes during the
kinematic vehicle experiment in the open urban environment.

Positioning Mode Satellite System N/m E/m U/m

DGNSS
GPS 1.20 1.32 3.18
BDS 1.58 2.11 5.02

GPS+BDS 1.00 1.31 2.12

DGNSS/DBA
GPS 1.11 1.33 1.34
BDS 1.54 2.17 2.71

GPS+BDS 1.02 1.31 1.24

 
(a) (b) 

Figure 15. The deviation sequence diagram in the N/E/U directions during the kinematic vehi-
cle experiment in the open urban environment: (a) DGNSS positioning mode; (b) DGNSS/DBA
positioning mode.
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3.4.2. Complex Urban Environment

This experiment was collected in Wuchang District, Wuhan, China, on November 20,
2020, with a valid data duration of about 1 h. The area is a complex urban environment,
and the occlusion is relatively serious. Figure 16 shows kinematic vehicle experiment
test scene and test trajectory in the complex urban environment. Figure 17 shows the
number of visible GNSS satellites and the sequence of PDOP values during the kinematic
vehicle experiment, and it can be seen that compared with the open urban environment,
the number of GNSS visible satellites of the kinematic vehicle in the urban environment
was significantly lower and the PDOP values became larger.

(a) (b) 

Figure 16. Kinematic vehicle experiment in the complex urban environment: (a) indicative test scene;
(b) test route.

Figure 18 shows the DBA altitude results of the low-cost BMP280 barometer during
the kinematic vehicle experiment in the complex urban environment compared to the
Trimble Net R9 reference altitude. It can be seen that the DBA altitude in the complex
urban environment was also very consistent with the reference altitude with an RMSE
of 2.19 m, which is approximately the same as the RMSE results of the DBA altitude in
the open urban environment in Section 3.4.1. It indicates that the DBA altitude accuracy
was reliable and stable in different environments, and could assist GNSS to improve the
positioning accuracy in the complex urban environment.

(a) (b) 

Figure 17. Observation values of kinematic vehicle experiment in the complex urban environment:
(a) number of GNSS visible satellites; (b) sequence of PDOP values.
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Figure 18. Comparison of the low-cost BMP280 barometer DBA altitude with the Trimble NET R9
reference altitude during the kinematic vehicle experiment in the complex urban environment.

The RMSE statistics and deviation sequence of the single-frequency, low-cost u-blox
NEO-M8T and the geodetic Trimble Net R9 receiver for both DGNSS and DGNSS/DBA
modes in the N/E/U directions are given in Table 7 and Figures 19 and 20. The RMSE of
the low-cost u-blox NEO-M8T receiver with single GPS and single BDS in DGNSS mode
were 4.33/4.69/8.35 m and 4.91/6.91/19.48 m in the N/E/U directions, respectively, and
the RMSE of the GPS+BDS dual system was 3.28/5.23/8.91 m. The RMSE statistics of
the geodetic Trimble Net R9 receiver in N/E direction in the complex urban environment
was maintained at submeter level; the U direction was relatively poor, with RMSE not
exceeding 2.7 m. The difference of RMSE between the two GNSS receivers in 3D directions
was determined by their hardware performance. Compared with DGNSS mode, the RMSE
of single GPS, single BDS, and GPS+BDS dual system in DGNSS/DBA mode of low-cost
NEO-M8T receiver slightly worsened in the N and E directions, while the RMSE in U
direction could be improved by 50% to 80%, and this improvement ratio is higher than that
in the open urban environment. Similarly, for the geodetic Trimble Net R9 receiver, the
RMSE of the DGNSS/DBA combination remains the same in the N/E directions compared
to DGNSS mode, and the RMSE in the U direction could be improved by 30% to 60%, which
verifies the advantage of DBA altitude in assisting DGNSS positioning.

Table 7. The RMSE of bias in the N/E/U directions for low-cost u-blox NEO-M8T and geodetic
Trimble Net R9 receivers in the complex urban environment.

Positioning Mode Satellite System
NEO-M8T Receiver Trimble Net R9 Receiver

N/m E/m U/m 3D/m N/m E/m U/m 3D/m

DGNSS

GPS 4.33 4.69 8.35 10.51 1.16 2.03 2.47 3.40

BDS 4.91 6.91 19.48 21.24 1.19 0.80 2.64 3.00

GPS+BDS 3.28 5.23 8.91 10.84 0.96 1.03 1.38 1.97

DGNSS/DBA

GPS 4.69 4.94 2.19 7.15 1.19 1.95 1.17 2.56

BDS 5.13 7.14 4.76 9.99 1.05 0.64 1.24 1.74

GPS+BDS 3.51 5.64 4.28 7.90 0.97 1.05 0.97 1.72
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(a) (b) 

Figure 19. The deviation sequence of low−cost NEO−M8T receiver in the N/E/U directions during
the kinematic vehicle experiment in the complex urban environment: (a) DGNSS positioning mode;
(b) DGNSS/DBA positioning mode.

(a) (b) 

Figure 20. The deviation sequence of geodetic Trimble Net R9 receiver in the N/E/U directions
during the kinematic vehicle experiment in the complex urban environment: (a) DGNSS positioning
mode; (b) DGNSS/DBA positioning mode.

It can also be seen that when comparing Tables 3–5 for the static experiment with
Tables 6 and 7 for the kinematic experiments, a low-cost receiver with only BDS signals
provided lower RMSE values than GPS in static experiments, which was mainly due to
BDS having more observation satellites and the PDOP value being lower than GPS at this
time. In open and complex urban kinematic experiments, as shown in Figures 13 and 17,
BDS had very large fluctuations for the number of observable satellites and a larger average
PDOP value (3.02 and 4.10) than GPS (1.97 and 3.16) for both cases. This is the main reason
that a low-cost receiver with only GPS signals provides lower RMSE values than with BDS
in kinematic experiments.

4. Discussion

As the low-cost single-frequency GNSS receivers dominate most of the GNSS mar-
ket [40], there is a strong interest in enhancing their accuracy. Low-cost DBA altitude plays
a significant constraining role in improving the DGNSS positioning accuracy.

In the DBA altitude accuracy evaluation experiment, BMP280 barometers can achieve
better than 2 m altitude accuracy within 10 km baseline lengths in static environments.

19



Remote Sens. 2022, 14, 586

The DBA altitude consistent with GNSS reference altitude in Figures 14 and 18 implies
that it is also reliable and stable in complex environments. Low-cost single-frequency
GNSS receivers with a patch antenna have become increasingly popular due to their lower
and lower price. The DGNSS positioning accuracy of single-frequency low-cost GNSS
receivers can still meet the submeter positioning accuracy needed by the general public
in GNSS-friendly environments. However, the RMSE in the N/E/U directions are all at
the meter-level in complex urban environments since low-cost GNSS receivers have poor
observation quality, and the positioning accuracy of GPS+BDS dual system is significantly
improved compared to single system. There is only a single-epoch resolution algorithm
rather than a filtering algorithm is used in this study. In the future, with more and more
satellites available for low-cost GNSS receivers and the use of multiple filtering algorithms,
DGNSS positioning accuracy is expected to be further improved.

The DGNSS/DBA combined positioning can effectively improve the DGNSS posi-
tioning accuracy and meet the demand for real-time positioning applications. The Earth
ellipsoid constraint equation constructed by the DBA altitude is equivalent to adding a
virtual satellite located at the center of the Earth, effectively improving the spatial ge-
ometry structure of the observation satellite. The DGNSS/DBA combined positioning
improves the positioning accuracy in the U direction by 30% to 80% compared with the
DGNSS positioning, while the positioning accuracy in N and E directions also has a certain
improvement effect.

Nowadays, most smartphones integrate both an inexpensive GNSS chip and a baro-
metric pressure sensor. WADGNSS services [10] and a large number of meteorological
stations [26] can provide correction information to users. We can achieve higher positioning
accuracy without increasing hardware costs. The applications of low-cost DGNSS/DBA,
such as indoor and outdoor seamless switching positioning, car navigation, emergency
mapping, LBS, and rescue, etc. are likely to increase dramatically. Subsequently, based on
the combined positioning of low-cost DGNSS/DBA, the positioning performance research
by integrating other sensors, such as MEMS IMU and geomagnetic, etc., will be worth
further investigation.

5. Conclusions

In this study, low-cost single-frequency DGNSS/DBA combined positioning research
and performance evaluation was carried out. First, a DGNSS/DBA combined positioning
model is proposed. The Earth ellipsoid constraint equation act as a virtual satellite obser-
vation at the center of the Earth, effectively improving the spatial geometry structure and
PDOP value of the observation satellite. The low-cost BMP280 barometer DBA altitude
accuracy is evaluated by different baseline lengths, which is better than the submeter level
within 2 km and better than 2 m within 10 km baseline length. In both open and complex
urban environment kinematic vehicle experiments, the DBA altitude accuracy is better than
2.20 m, which indicates that the DBA system has highly reliable and stability in different
environments in local area.

The low-cost single-frequency NEO-M8T receiver with a patch antenna can achieve
submeter level positioning accuracy for DGNSS positioning in the N/E directions and better
than 1.5 m in the U direction in a short baseline static environment; as the baseline length
increases, the DGNSS positioning accuracy gradually decreases. The positioning accuracy
in a kinematic vehicle environment is significantly lower than in the static environment,
and the RMSE in the N/E/U directions are all at the meter level in the complex urban
environment, and the positioning accuracy of both GPS+BDS dual system is significantly
improved compared to single system. The DGNSS/DBA combined positioning for low-cost
NEO-M8T receiver and BMP280 barometer improves the positioning accuracy in the U
direction by 30% to 80% compared with the DGNSS positioning, while the positioning
accuracy in the N and E directions also has a certain improvement effect.
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Abstract: This study presents a LiDAR-Visual-Inertial Odometry (LVIO) based on optimized visual
point-line features, which can effectively compensate for the limitations of a single sensor in real-time
localization and mapping. Firstly, an improved line feature extraction in scale space and constraint
matching strategy, using the least square method, is proposed to provide a richer visual feature for
the front-end of LVIO. Secondly, multi-frame LiDAR point clouds were projected into the visual
frame for feature depth correlation. Thirdly, the initial estimation results of Visual-Inertial Odometry
(VIO) were carried out to optimize the scanning matching accuracy of LiDAR. Finally, a factor graph
based on Bayesian network is proposed to build the LVIO fusion system, in which GNSS factor
and loop factor are introduced to constrain LVIO globally. The evaluations on indoor and outdoor
datasets show that the proposed algorithm is superior to other state-of-the-art algorithms in real-time
efficiency, positioning accuracy, and mapping effect. Specifically, the average RMSE of absolute
trajectory in the indoor environment is 0.075 m and that in the outdoor environment is 3.77 m. These
experimental results can prove that the proposed algorithm can effectively solve the problem of line
feature mismatching and the accumulated error of local sensors in mobile carrier positioning.

Keywords: multi-sensor fusion; visual point and line feature; SLAM; LiDAR-visual-inertial odometry

1. Introduction

Multi-sensor fusion localization technology based on Simultaneous Localization and
Mapping (SLAM) is a fundamental technology in the field of high-precision localization
of mobile carriers [1]. The SLAM-based multi-sensor fusion system applied to mobile
carriers can be divided into two core parts: the front-end, and the back-end. The function
of the front-end is used to analyze the environmental fingerprint information collected
by the sensors, in order to estimate the positional information of the mobile carrier in
time. In addition, the change in the surrounding environment with the movement of the
carrier is restored. The function of the back-end is used to obtain the final positioning
results by iteratively optimizing the position estimates obtained from the front-end analysis.
Depending on the sensors used in the front-end, it can be divided into methods mainly
based on LiDAR and vision [2,3]. Engineers and researchers in related fields have conducted
a lot of research in both directions and produced a series of research-worthy results.

The main vision-based SLAM approach, namely visual odometry (VO), has long
dominated the SLAM technology field due to the lower cost of the camera compared with
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LiDAR. However, pure monocular visual SLAM systems cannot recover metric scales.
Thus, there is a growing trend to utilize low-cost inertial measurement units to assist
monocular vision systems, which is called visual-inertial odometry (VIO). Monocular VIO
provides high-quality self-motion simulation by using monocular cameras and inertial
measurement unit (IMU) measurements, which has significant advantages in terms of
size, cost, and power. Based on the method of feature association, visual SLAM can be
classified into feature point method and direct method. The feature point-based method
VIO accomplishes the inter-frame feature constraint by extracting and matching image
feature points [4–6]. Therefore, rich environmental texture is required to ensure that
the threshold of the number of effective feature points required for feature tracking is
reached. Tracking loss of feature points is prone to occur in weak texture environments
such as parking lots and tunnels, which in turn affects localization accuracy and real-time
performance. The theoretical basis of the direct method-based VIO is the assumption of
constant grayscale [7,8]. It only needs to capture environmental features by the changes
in the grayscale image to establish constraints, which has a better real-time performance.
Nevertheless, the tracking accuracy is greatly affected by environmental illumination
changes. Therefore, stable and rich line feature models are required to be introduced into
the front-end to provide stable and accurate feature constraints for visual back-end state
estimation. In 2018, He et al. proposed PL-VIO based on point-line feature fusion, but too
many optimization factors greatly limited the real-time performance in practical tests [9].
In 2020, Wen et al. proposed PLS-VIO to optimize the 6-DOF pose by minimizing the
objective function and improving the line feature matching filtering strategy to reduce
the probability of mismatching [10]. Although the VIO based on point-line features has a
positive effect on the number of features [11,12], it still cannot solve the scale uncertainty
problem of monocular cameras. The development of VIO in practical applications still has
certain limitations.

As another important technical means of SLAM-based localization technology, SLAM
mainly based on LiDAR is also widely used in the industry for its high resolution, high
accuracy, and high utilization of spatial features. In 2016, Google proposed Cartographer,
a 2D LiDAR based on particle filtering and graph optimization. In 2017, Zhang et al.
proposed the LOAM for the first time, which uses the curvature of the LiDAR point
cloud to register the effective point cloud features as planar points and edge points [13].
In 2018, Shan et al. proposed LeGO-LOAM based on LOAM, which uses the ground plane
feature point cloud to further filter outliers from the scanned point cloud and improve the
LOAM frame [2]. In 2020, Shan et al. further introduced the LIO-SAM algorithm based
on the previous work, which uses IMU pre-integrated measurements to provide initial
pose estimation for laser odometry [14]. In addition, a Bayesian network-based factor
graph optimization framework is proposed, in which the global position is constrained by
adding GPS factors, and an incremental smooth global voxel map is established. These
schemes provide technical feasibility for the high-precision positioning by fusing LiDAR
with other sensors.

However, due to the inherent shortcomings of the main sensing sensors, such as the
limited scanning angle of LiDAR and the sensitivity of the mainly vision-based methods
to light variations, these methods can hardly show excellent robustness in real-world
applications. To further improve the localization performance, LiDAR-Visual-Inertial
Odometry, as a multi-sensor fusion localization method, has become a research focus of
SLAM with its advantages of multi-sensor heterogeneity and complementarity.

The existing LVIO multi-sensor fusion strategy can be described from the front-end
and back-end perspectives. First, the front-end fusion strategy of LVIO is introduced.
Generally, LiDAR acts as a feature depth provider for monocular VO as a way to improve
the scale ambiguity of visual features. Meanwhile, VO performs state estimation from the
extracted visual features, which is provided as the initial state for LiDAR scan matching.
Therefore, the quantity and quality of visual features are closely related to the precision
of state estimation of the fusion system. In existing fusion systems, the features extracted
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by camera are mainly point features [15,16]. Xiang et al. proposed a combination of
fisheye camera and LiDAR based on a semantic segmentation model, which improved
the confidence of the depth of visual features in the driving environment of unmanned
vehicles [15]. Chen et al. proposed a method to construct a loopback constraint for LiDAR-
visual odometry by using the Distributed bag of Words (DboWs) model in the visual
subsystem, although, without introducing IMU sensors to assist in the initial positional
estimation [16]. In 2021, Lin et al. proposed R2LIVE to incorporate IMU into the fused
localization system, in which the LiDAR odometry is used to establish depth constraints
for VIO [17]. Although the above-mentioned algorithms exhibit superior performance to
the VIO based on point features, it is still difficult to extract rich and effective features in
weak texture environments, which leads to the failure in LiDAR scan matching. Therefore,
additional feature constraints on the LiDAR need to be added with line features that are
more robust to environmental texture and luminosity variations. Visual SLAM based on
point-line features has been studied but not widely applied to LVIO systems in recent
years [18,19]. In 2020, Huang et al. first proposed a LVIO based on a robust point and
line depth extraction method, which greatly reduces the three-dimensional ambiguity
of features [18]. Zhou et al. introduced line features in the direct method-based VIO
to establish data association [19]. The above-mentioned algorithms provide technical
feasibility for LVIO based on point-line features.

From the perspective of the back-end fusion strategy, LVIO can be classified into two
categories based on different optimization algorithms: filter-based methods and factor
graph methods. Although the filtering method is a traditional technology to realize multi-
sensor fusion, its principle defect of frequent reconstruction of increasing or decreasing
sensors limits its application in LVIO [20]. As an emerging method in recent years, the factor
graph method can effectively improve the robustness of SLAM system when a single sensor
fails because of its plug-and-play characteristics. Therefore, it is widely applied to deal
with such heterogeneous aperiodic data fusion problems [21]. In addition, since LVIO
is in the local frame, there are inherent defects such as accumulated errors. Thus GNSS
measurements need to be introduced for global correction [22–24] to realize local accuracy
and global drift-free position estimation, which makes full use of their complementarity [24].
The research on adding GNSS global constraints into the local sensor fusion framework are
as follows: Lin et al. modified the extended Kalman filter to realize a loose coupling between
GPS measurements and LiDAR state estimation, but there is a large single linearization
error to be solved [17]. In 2019, Qin et al. proposed VINS-Fusion, which uses nonlinear
optimization strategies to support Camera, IMU, and GNSS [25], but it assumes that GNSS
is continuous and globally convergent, which is inconsistent with reality. In any case, these
strategies presented above provide numerous reliable ideas.

Generally speaking, we can conclude that the existing LVIO fusion system has two prob-
lems that deserve further exploration. First, on the premise of ensuring the real-time per-
formance, more abundant feature constraints are needed to improve the pose estimation
accuracy of LVIO. Secondly, global constraints are needed to globally optimize the LVIO
local pose estimation results. To address these issues, this study presents a LiDAR-Visual-
Inertial Odometry based on optimized visual point-line features. First of all, an improved
line feature extraction in scale space and constraint matching strategy based on the square
method are proposed, which provides richer visual feature for the front-end of LVIO. Sec-
ondly, multi-frame LiDAR point clouds were projected into the visual frame for feature
depth correlation, which improves the confidence of monocular visual depth estimation.
At the same time, the initial visual state estimation can be used to optimize the scan match-
ing of LiDAR. Finally, a factor graph based on the Bayesian network was used to build the
LVIO fusion system, in which the GNSS factor and loop factor are introduced to constrain
LVIO globally, to achieve locally accurate and globally drift-free position estimation in the
complex environment.
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2. System Overview

The general framework of the LiDAR-Visual-Inertial Odometry based on optimized
visual point-line features proposed in this study is shown in Figure 1. The system consists
of the front-end of LiDAR-Visual-Inertial Odometry tight combination and the back-end of
factor graph optimization.

Figure 1. Overall algorithm framework, system inputs include IMU, camera, lidar and optional
GNSS. IMU provides initial state correction for VIO subsystem and LiDAR-inertial odometry (LIO)
subsystem, VIO and LIO systems use each other’s information to improve the positioning accuracy,
and GNSS signals are optionally added to the back-end to provide global constraints.

In the front-end of our algorithm, the visual odometry not only extracts point features,
but also further extracts line features in the improved scale space and performs geometric
constraint matching on them, which improves the number of features in the weak texture
environment. Then, the feature depth provided by LiDAR point clouds performed a role
in correlating the depth of monocular visual features. IMU pre-integration provides all
necessary initial values, including attitude, velocity, acceleration bias, gyroscope bias,
and three-dimensional feature position, for completing the initial state estimation after
time alignment with a camera. If VIO initialization fails, the IMU pre-integration value
is used as the initial assumption to improve the robustness of the fusion system in the
texture-free environment.

After the front-end initialization is successfully realized, the back-end optimizes the
factor graph by using the estimated residual of each sensor’s state. IMU pre-integration,
visual residual and lidar residual were added to the factor graph as local state factors
for maximum a posteriori estimation. In order to further correct the cumulative error of
local state estimation, the residual of GNSS single-point positioning measurements was
used as the global positioning factor to add to the factor graph. Besides, when the system
detects the path loop, the loop factor will be added to the factor graph to participate in the
nonlinear optimization and obtain the optimal global pose estimation.

3. Front-End: Feature Extraction and Matching Tracking

3.1. Line Feature Extraction

Commonly used line feature extraction algorithms include Hough [26], LSWMS [27],
EDLine [28], and LSD [29]. Weighing factors such as accuracy, real-time performance,
and the need for parameter adjustment, we chose LSD to extract line features. According
to the bottom parameter optimization strategy, we modified an improved LSD algorithm,
and a minimum geometric constraint method to realize line feature constraint matching.
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Given an N-layer Gaussian pyramid as the scale space of LSD line features, the scale
ratio of images in each layer is defined to reduce or eliminate the sawtooth effect in images.
After scaling the image s times, a downsampling was performed, and then the gradient
was calculated for all pixels in the new image obtained after downsampling. By traversing
the image and getting the gradient values of all pixels, the pixel gradient rectangle can be
merged according to the density of same-sex points to obtain a rectangle-like line segment
l. The density d of homogeneous points in the rectangle can be expressed as:

d =
k

length(l) · width(l)
, d ≤ D (1)

where k is defined as the total number of pixels in the rectangle, and D is the density
threshold of parity points. Different from the hypothesis in [12], a low co-location density
threshold in the outdoor complex texture environment will extract a large number of
invalid line features. Therefore, it is necessary to re-optimize the strategy according to the
underlying parameters and select the following combinations near the original parameters
(s = 0.8, D = 0.7), for real-time and accuracy experiments.

We measured the positioning accuracy by the root mean square error of absolute
trajectory error (APE_RMSE). The accuracy and real-time performance of different values
of s and D on the Hong Kong 0428 dataset are shown in Figure 2. The Monte Carlo method
was used in this experiment. Within the parameter range that ensures the stable operation
of the line feature extraction algorithm, we conducted three experiments. First of all,
as shown in Figure 2a, under the premise that the original scaling times s = 0.8, 100 random
numbers were selected in the range of D ∈ (0.3, 0.9) to carry out the experiment of density
threshold selection. Secondly, as shown in Figure 2b, we kept the original density threshold
D = 0.7, and then selected 100 random numbers in the range of s ∈ (0.4, 0.9), which is
to select the appropriate range of scaling times s. Finally, as shown in Figure 2c, within
the appropriate parameter range obtained in the previous experiments, 100 groups of
parameter combinations were randomly selected for line feature extraction to obtain the
optimal value.

Figure 2. Underlying parameter selection. (a) Density threshold selection, (b) scaling times selection.
(c) Experimental results by selecting the best combination of parameters. Noted that decreasing s and
D will show better real-time performance with negligible loss of accuracy.

According to Figure 2c it can be seen that the operation time is shorter when the value
of (s, D) is around (0.5, 0.6) or around (0.6, 0.6). Furthermore, we compared the accuracy
of the above two groups of parameters. It can be concluded that the accuracy of line feature
extraction of the former group is slightly higher than that of the latter group. Considering
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the accuracy and real-time, we chose s = 0.5, D = 0.6 as the parameter combination
for our system.

3.2. Inter-Frame Feature Constraint Matching

Different from the neighboring line merging of different line features within the
same frame in feature extraction, the least square method-based line feature constraint
matching is for the same line feature pair whose angle and distance change between two
consecutive frames. Considering the angle and translation changes in the same line feature
pair during the carrier movement, a minimized sparse matrix model can be constructed to
ensure the minimum total error in matching the line features extracted between the front
and back frames.

Given a line lW =
[
nWT

, vWT
]T ∈ R6 extracted from the world coordinate sys-

tem, where nW , vW ∈ R3 is the normal vector and direction vector, respectively, of lW ,
let the transformation matrix from the world frame to camera frame be TW

C =
[
RW

C , tW
C
]
,

with RW
C , tW

C denoting the rotation and translation, respectively, then lW can be expressed
in Plücker coordinates within the camera frame as:

lC =

[
nC

vC

]
= TW

C lW =

[
RW

C
[
tW
C
]
×RW

C
0 RW

C

][
nW

vW

]
∈ R6 (2)

It can be seen that the matching of line feature pairs in the camera frame is a 6-DOF
parametric matching problem. In order to improve the accuracy and simplify the line
feature matching problem, it can be simplified as a 4-DOF parameter matching optimization
problem. Let all the line feature pairs obtained by matching between two consecutive frames
in the camera frame be:

Fij =
{(

li, lj
) | j ∈ [1, n]

}
(3)

where li and lj are certain line features extracted in the previous frame and subsequent
frame, respectively, n is the total number of line features in the subsequent frame.

According to the variation in the inter-frame line characteristics shown in Figure 3,
the parameter matrix can be set as eij =

[
θij, μij, ρij, dij

]T , θij and dij are the included angle
and translation distance between two consecutive frames, respectively, μij and ρij are the
projection ratio and length ratio of the front-to-back interframe line features. Construct-
ing the parameter matrix may establish a linear constraint matrix Ai = [ei1, . . . , eij, ein]
of the subsequent keyframe for li. The target vector of the matching judgment of li is
mi =

[
mi1, . . . , mij, . . . , min

]T . The value of each component is determined by the result
of feature matching, where matching is 1 and non-matching is 0. If ∑ min = 1, the linear
constraint Aimi = t will be satisfied. Therefore, the line feature matching problem can be
optimized into a constrained matching equation based on least squares:

minλ
mi

‖mi‖1 +
1
2
‖Aimi − t‖2 (4)

where λ is the weight coefficient and t = [0, 1, 1, 0]T is the constraint target vector.

Figure 3. Deviation of a line feature during the movement of the carrier. (a) Parallel offset (b) angular offset.
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3.3. LiDAR-Aided Depth Correlation of Visual Features

LiDAR-aided depth correlation of visual features can effectively improve the scale
ambiguity of monocular cameras. Since the LiDAR resolution is much lower than that of
the camera, the use of only a single frame of sparse point cloud depth correlation will result
in a large number of visual feature depth deletions [30]. Therefore, this study purposes a
strategy of superimposing multi-frame sparse point cloud to obtain the depth value of the
point cloud, which is used to establish the depth correlation with the visual features.

As shown in Figure 4, f V
1 is a feature point in the visual frame {V}, and

{
dL

1 , . . . , dL
m
}

is a group of depth point clouds in the lidar frame {L}. Projecting dL
n onto a unit spherical

surface
{

Vg
}

with f V
1 as the spherical center to obtain a projection point d

Vg
n :

d
Vg
n = R

Vg
L dL

n + p
Vg
L n ∈ [1, m] (5)

where R
Vg
L and p

Vg
L are the rotation matrix and external parameter matrix of {L} to

{
Vg
}

,
respectively. Taking f V

1 as the root node to establish KD tree to search for the three closest
depth points d1, d2, d3 on the sphere. Then, connecting f V

1 with the camera center O and
intersecting Δd1d2d3 with Od, we can obtain the characteristic depth of f V

1 as f V
1 Od.

Figure 4. Association of visual feature depth.

4. Back-End: LVIO-GNSS Fusion Framework Based on Factor Graph

4.1. Construction of Factor Graph Optimization Framework

The framework of factor graph optimization based on the Bayesian network proposed
in this study is shown in Figure 5. The state vector in that world frame construct according
to the constraint factor shown in the figure is:

X =
[

x1, x2, . . . , xi, λ1, λ2, . . . , λp,1 ,2 , . . . ,l , de
1, de

2, . . . , de
k, dp

1 , dp
2 , . . . , dp

k

]
(6)

where xn =
[
pn, qn, vn, ba, bg

]
represents the IMU state at the nth time, which includes the

carrier position pi, the rotation quaternion qi and the velocity vn obtained by IMU pre-
integration in the world frame, ba and bg stand for the acceleration bias and the gyroscope
bias in IMU body frame, respectively, λp represents the inverse depth of the visual point
feature in the visual frame from its initial observation in the first frame, l represents the
orthogonal frame of the visual line feature, de

k and dp
k stand for the distances between the

LiDAR feature points and its corresponding edge or plane feature point cloud, respectively.
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Figure 5. Factor graph optimization framework of our system. Constraints of factor graph on the
keyframe maintenance include three local constraints and two global constraints.

Therefore, the Gaussian–Newton method can be used to minimize all cost functions to
construct a maximum a posteriori estimation problem, to perform nonlinear optimization
on the state vectors in the sliding window:

min
X

{∥∥rp −JpX
∥∥2

+ ∑
k∈B

∥∥∥rB

(
ẑk

k+1,X
)∥∥∥2

pi
+

∑
(i,j)∈F

ρ

(∥∥∥r f

(
ẑj

i ,X
)∥∥∥2

pc

)
+ ∑

(i,j)∈L
ρ

(∥∥∥rl

(
ẑj

i ,X
)∥∥∥2

pc

)
+ ∑ de

k + ∑ dp
k

} (7)

where
{

rp,Jp
}

contains the prior states after the marginalization in the sliding window,

and Jp is the Jacobian matrix, rB

(
ẑk

k+1,X
)

represents the IMU residuals, and pi is the

IMU covariance matrix; r f

(
ẑj

i ,X
)

and rl

(
ẑj

i ,X
)

represent the re-projection errors of visual
point and line features, pc is the visual covariance matrix, and ρ represents Huber norm,
with specific values as follows:

ρ(e(s)) =

{
1
2 e1(s)

2 e(s) = e1(s), |e1(s)| ≤ δ

δ|e2(s)| − 1
2 δ2 e(s) = e2(s), |e2(s)| > δ

(8)

The specific meaning of each sensor cost function in Formula (6) is as follows.

4.2. IMU Factor

The IMU state of the kth frame and the k + 1th frame in the global coordinate system
can be defined as:

xk =
[

pG
bk

, qG
bk

, vG
bk

bak, bgk

]
xk+1 =

[
pG

bk+1
, qG

bk+1
, vG

bk+1
bak+1, bgk+1

] (9)

Take the IMU state of the kth frame, xk, as an example, which includes position pG
bk

,

rotation qG
bk

, velocity vG
bk

, accelerometer bias bak and gyroscope bias bgk.

30



Remote Sens. 2022, 14, 622

Next, the IMU residual equation can be constructed, which is defined as:

rB

(
ẑk

k+1,X
)
=

⎡⎢⎢⎢⎢⎣
rp
rq
rv
rba
rbg

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

RBk
G

(
pG

bk+1
− pG

bk
+ 1

2 gΔt2
k − vG

bk
Δtk

)
− p̂k

k+1

2
[
qG−1

bk
⊗ qG

bk+1
⊗ q̂k−1

k+1

]
xyz

RBk
G

(
vG

k+1 + gΔtk − vG
k

)
− v̂k

k+1

bak+1 − bak
bgk+1 − bgk

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(10)

where
[
rp, rq, rv, rba, rbg

]T
represents the observation residual of IMU state between two con-

secutive keyframes in the sliding window, including the residual of position, rotation,
velocity, accelerometer bias and gyroscope bias, RBk

G represents the pose conversion ma-
trix of the kth frame from the IMU coordinate system to GNSS global coordinate system,
and

[
p̂k

k+1, q̂k
k+1, v̂k

k+1

]
represents the IMU pre-integration value of two keyframes in the

sliding window within Δtk.

4.3. Visual Feature Factor

The visual feature factor is essentially the re-projection error of the visual feature,
that is, the difference between the theoretical value projected on the image plane and the
actual observation value. In order to unify the coordinate system in Section 3.3, we provide
the definition of re-projection error on the unit sphere instead of the generalized image
plane. Specific schematic diagrams are shown in Figures 6 and 7.

Figure 6. Re-projection error of visual point features.

Figure 7. Re-projection error of visual line features.
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4.3.1. Visual Point Feature Factor

In this study, the visual feature factors are built with reference to VINS-Mono [5].
As shown in Figure 6, the re-projection error of visual point features can be defined as the
difference between the projection point on the unit spherical surface and the observation

value after distortion correction. Given the ith normalized projection point f̂ j
i =

[
ûj

i , v̂j
i , 1

]T

and observation point f j
i =

[
uj

i , vj
i , 1

]T
in the jth frame, we use the first observation value

f j
i =

[
uj

i0, vj
i0, 1

]T
in the jth frame to define the visual point feature factor as:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

r f

(
ẑj

i ,X
)
=

[
ûj

i − uj
i

v̂j
i − vj

i

]
[

uj
i

vj
i

]
= RV

B

(
R

Bj
G

(
RG

B0

(
RB

V
1
κi

[
uj

i0
vj

i0

]
+ pB

V

)
+ pG

b0
− pG

bi

)
− pB

V

) (11)

where RV
B represents the external parameter matrix between camera and IMU, which is ob-

tained by calibration, R
Bj
G represents the pose conversion matrix from the IMU observation

in the jth frame to the global coordinate system, RG
B0

represents the pose conversion matrix
from the global coordinate system to the initial IMU observation, κi stands for the inverse
depth of f i

j , pB
V represents the displacement from the IMU coordinate system to the camera

coordinate system. Finally, pG
b0

and pG
bi

represent the displacement of the first and the ith
IMU observation in the global coordinate system, respectively.

4.3.2. Visual Line Feature Factor

As shown in Figure 7, similar to the visual point feature, the definition of the re-
projection error of the visual line feature is as follows: Given the characteristics of a visual
line in space, the end point of a line segment is the center of the sphere to construct a unit
sphere. Therefore, the reprojection error is the difference between the projection line on the
unit sphere and the observed value. According to Equation (2), given the observed value
of the characteristic factor of the ith line in the jth frame in the camera coordinate system as

lc
j
i =

[
nc

j
i , vc

j
i

]T
, the projection line is obtained by projecting it onto the unit sphere, and can

be expressed as:

l̂ j
ci =

⎡⎣ l̂1
l̂2
l̂3

⎤⎦ = Knj
ci ∈ R6 (12)

where K is the camera internal reference projection matrix. It can be seen from Equation (12)
that the spatial coordinates of the line features projected onto the unit sphere are only related
to nc. The two end points of the observation line are aj

i and bj
i , then the re-projection error

of the line feature can be expressed by the dotted distance from the two end points of the
observation line feature to the projection line feature:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

rl

(
ẑj

i ,X
)
=
[
d
(

aj
i , l̂ j

ci

)
, d
(

bj
i , l̂ j

ci

)]T

d
(

aj
i , l̂ j

ci

)
=

(
aj

i

)T
l̂ j
ci√

l̂2
1+l̂2

2

d
(

bj
i , l̂ j

ci

)
=

(
bj

i

)T
l̂ j
ci√

l̂2
1+l̂2

2

(13)

4.4. LiDAR Factor

As mentioned in Section 3.3, after the LiDAR-assisted monocular visual depth corre-
lation, the VIO will provide the LiDAR with visual initial positional estimates to correct
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the motion distortion of the LiDAR point cloud and improve the scan matching accuracy.
The scanning matching error between adjacent keyframes of LiDAR involved in this study
can be expressed by the distance from the feature point to the matched edge line and feature
plane as: ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

de
k =

∣∣∣(Xe
(k+1,i)−Xe

(k,a)

)
×
(

Xe
(k+1,i)−Xe

(k,b)

)∣∣∣∣∣∣Xe
(k,a)−Xe

(k,b)

∣∣∣

dp
k =

∣∣∣∣∣∣∣∣
(

Xp
(k+1,i) − Xp

(k,b)

)((
Xp
(k,a) − Xp

(k,b)

)
×
(

Xp
(k,a) − Xp

(k,c)

))
∣∣∣∣∣∣∣∣∣∣∣(Xp

(k,a)−Xp
(k,b)

)
×
(

Xp
(k,a)−Xp

(k,c)

)∣∣∣
(14)

where Xe
(k+1,i) represents the edge feature point at the k + 1th time, Xe

(k,a) and Xe
(k,b) are the

endpoint of the edge line matched with the feature point at the kth time, Xp
(k+1,i) represents

the plane feature point at the k + 1th time, and the feature surface matched with it at the
kth time can be represented by three points Xp

(k,a), Xp
(k,b) and Xp

(k,c).

4.5. GNSS Factor and Loop Factor

When the carrier moves to a GNSS signal trusted environment, GNSS factors can be
added to optimize with local sensors. The time interval of two frames of GNSS observations
is Δt, and given the GNSS measurements pGg

k in the global frame and pVg

k representing the
observation of LVIO in the global frame, the GNSS factor can be expressed by the following
observation residuals:

rG

(
ẑk

k+1,X
)
= pVg

k − pGg

k (15)

Different from the assumption in [14] that GNSS factors are added to the system only
when the GNSS measurement covariance is smaller than the LVIO measurement covariance,
we noticed that the accuracy of outdoor GNSS positioning results is much higher than the
LVIO local positioning results. The covariance threshold size for judging whether to add
GNSS factors has little impact on the positioning accuracy. Therefore, we present that once
the GNSS signal is detected by the system, the GNSS factor is added to the factor graph.
In this way, even if the mobile carrier enters the GNSS rejection environment (such as the
indoor parking lot or tunnel), it can also provide a more accurate initial observation value
after GNSS correction. The fusion strategy of GNSS and LVIO is shown in Figure 8.

Further, considering the possible overlap of the mobile carrier travel area, i.e., the mo-
bile carrier travels to the same position again after a period of time, we also added a loop-
back detection link to establish the loopback constraint that exists between non-adjacent
frames. Unlike introducing another sensor (GNSS) for global correction of the local sensor
(LVIO), the loopback factor establishes the correlation between the current observed frames
and the historical data by the local sensor itself to obtain a globally consistent estimate.
The conditions for adding the loopback factor are similar to those of GNSS. Once the carrier
motion trajectory is detected to travel to the environment passed by the history, the loop
factor is added to the factor graph. By registering with the point cloud of the prior map,
the historical trajectory is corrected, and the global pose estimation result with higher
accuracy is obtained.
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Figure 8. Fusion strategy of GNSS and LVIO. The initial rotation RL
G of LVIO in the local frame and

the global frame is set to identity matrix. GNSS provides global constraints to LVIO to correct the
global position of LVIO and update RL

G, and the new RL
G is used for the next frame of LVIO.

5. Experimental Results

5.1. Real-Time Performance
5.1.1. Indoor Environment

For evaluating the real-time performance of our algorithm, we randomly selected
the MH_01_easy dataset for indoor experiments. Since the strategy of adding line feature
constraints to the VIO subsystem of our algorithm is referenced to PL-VIO, the time
consumption of several threads involving line features of PL-VIO and this algorithm is
compared. As shown in Figure 9, the appropriate selection of hidden parameters and
the least-squares-based geometric constraint matching strategy have positive effects on
real-time performance. The time cost of the line feature extraction and matching process
and the line feature tracking process of the proposed algorithm is about one-third that of
similar algorithms.

The time consumption of the line feature matching process is shown in Figure 9a.
In the period of (110 s, 170 s), the carrier passes through the well-lit factory wall duct area.
The number of line features extracted by both algorithms increases, and the corresponding
time cost of line feature matching also increases with the number of line features. However,
unlike PL-VIO which is significantly affected by the increase in the number of line features,
the line feature matching the process time of our algorithm remains relatively stable within
1 ms. The reason is that the number of invalid line features is reduced due to the geometric
constraint-based line feature matching strategy, which improves the accuracy of line feature
matching between the front and current frames of the image. In the time-consuming of line
feature tracking process shown in Figure 9b, it can be seen that in the initial stage (0 s, 5 s)
of the visual subsystem, the line feature tracking process of the two systems takes longer.
The reason is the UAV is at rest during this time and the VIO subsystem does not receive
sufficient motion excitation, which leads to its incomplete initialization. After 5 seconds of
initialization, the PL-VIO line feature tracking time remains stable at about 125 ms, while
the time consumption of our algorithm is about 4/5 less than that of PL-VIO, about 25 ms.
It has a strong positive effect on the real-time performance of the fusion system in the actual
operating environment.

Although as shown in Figure 9c, the time-consuming cost of the line feature residual
optimization process increases by about 10 ms, the time-consuming of the line feature
tracking process is significantly reduced. Thus, the proposed method leads to a decrease in
the total time cost of the three line feature-related processes in the fusion system, which
still has a better real-time performance overall than before the improvement.
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Figure 9. Real-time comparison experiment of MH_01_easy dataset. (a) Line feature extraction and
matching process. (b) Line feature tracking process. (c) Line feature residual optimization process.

5.1.2. Outdoor Environment

Since the distribution characteristics of line features are different in indoor and outdoor
environments, in order to fully evaluate the superior performance of this algorithm in
terms of real-time, we selected the Hong Kong 0428 dataset for outdoor experiments.
The experimental results are shown in Figure 10.

Different from the indoor environment, the outdoor environment has more complex
conditions of light refraction and reflection, and the dynamic interference such as pedes-
trians and vehicles in the driving process of moving vehicles. The time consumption
of the line feature matching process in the outdoor environment is shown in Figure 10a.
It can be seen that the line feature matching time of PL-VIO in the outdoor environment
is about 10 ms on average, and our algorithm still maintains the same good real-time
characteristics as the indoor environment. In the line feature tracking process shown in
Figure 10b, it can be seen that the line feature tracking process in the initialization phase
(0 s, 5 s) of the visual subsystem is abnormally high for both systems. The same reason is
that the VIO system is not provided sufficient motion excitation at the beginning of the
vehicle stationary phase. It can be concluded that it is more difficult to match and track
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visual line features in the outdoor environment, and the time consumed for line feature
tracking rises about 3–4 times compared with the indoor environment. However, the time
consumed by our algorithm is still greatly shortened compared with similar algorithms,
leaving more time for the optimization of a multi-sensor fusion at the back-end.

Figure 10. Real-time comparison experiment of Hong Kong 0428 dataset. (a) Line feature extraction and
matching process. (b) Line feature tracking process. (c) Line feature residual optimization process.

In addition, as shown in Figure 10c, the time-consuming cost of the line feature
residual optimization process is not much different from that of PL-VIO. Combining the
above three time-consuming threads, it can be proved that our algorithm can achieve better
real-time performance in different environments.

5.2. Positioning Accuracy
5.2.1. Indoor Environment

In this study, the EuROC dataset was used to compare and verify the positioning
accuracy of each algorithm in the indoor environment. The experimental environment was
in a factory with complex signal refraction and reflection conditions. LiDAR frequently
fails in the experimental environment, so no comparison was made. The comparison of
the point-line feature results extracted by PL-VIO and our algorithm in the experimental
environment is shown in Figure 11.
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Figure 11. Comparison of point-line feature extraction results in poor lighting conditions and
weak texture environment. (a) Point-line feature extraction results of PL-VIO. (b) Point-line feature
extraction results of our algorithm.

As seen in Figures 12 and 13 and Table 1, the introducing line features in the image
frames to add additional feature constraints can reduce the positioning error of the sys-
tem to some extent, especially in areas with dim light and poor textures. For example,
during the (160 s, 240 s) time, the UAV flight area is nearly full of darkness. Thus it is
difficult for Harris corner point detection method to extract the corner points with large
grayscale difference from the surrounding pixel blocks. The reduction in the number of
effective feature points directly leads to poor feature tracking accuracy. Therefore, the ab-
solute trajectory error of VINS-Mono based on point features is larger in this interval
(as shown in Figure 13a). In contrast, PL-VIO based on point-line features and the present
algorithm are less negatively affected by illumination, and the absolute trajectory error
remains within 0.6 m. In a longitudinal comparison of similar algorithms based on point
and line features, the accuracy of our algorithm is significantly improved over PL-VIO.
These results are attributed to the high quality of matching by the geometric constraint
strategy, which avoids the missegmentation of long-line features and then misclassification
as invalid matches. The experimental results demonstrate the robustness and accuracy of
this algorithm in the case of single system failure, which is important for localization in
complex indoor environments.

Table 1. Motion estimation errors of each algorithm in indoor dataset.

Sequence
Vins_Mono (w/o loop) Vins_Mono (w/ loop) PL-VIO LVI-SAM Purposed

ATE_RMSE(m)/Mean Error(m)

MH_01_easy 0.213/0.189 0.188/0.158 0.093/0.081 0.181/0.147 0.073/0.062
MH_02_easy 0.235/0.193 0.188/0.157 0.072/0.062 0.182/0.167 0.045/0.039

MH_03_medium 0.399/0.321 0.402/0.315 0.260/0.234 0.400/0.308 0.056/0.050
MH_04_difficult 0.476/0.423 0.422/0.348 0.364/0.349 0.398/0.399 0.079/0.075
MH_05_difficult 0.426/0.384 0.370/0.309 0.251/0.238 0.380/0.287 0.139/0.127

V1_01_easy 0.157/0.137 0.145/0.121 0.078/0.067 0.142/0.119 0.040/0.037
V1_03_difficult 0.314/0.275 0.329/0.289 0.205/0.179 0.322/0.283 0.077/0.069

V2_01_easy 0.133/0.115 0.120/0.108 0.086/0.072 0.121/0.110 0.056/0.048
V2_02_medium 0.287/0.244 0.293/0.255 0.150/0.097 0.291/0.250 0.089/0.078
V2_03_difficult 0.343/0.299 0.351/0.315 0.273/0.249 0.351/0.308 0.098/0.092
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Figure 12. Comparison of trajectory fitting curve of each algorithm in the indoor dataset.
(a) Global trajectory fitting curve. (b) Details of local trajectory. (c) Details of local trajectory.

Figure 13. Comparison of positioning results of each algorithm in the indoor dataset. (a) APE_RMSE
error fitting curve. (b) Comparison of index of absolute trajectory error.
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5.2.2. Outdoor Environment

To evaluate the performance of the algorithm we conducted in the outdoor environ-
ment, the Hong Kong dataset was used for performance evaluation and it was compared
with other similar advanced algorithms. The experimental equipment and environment
are shown in Figure 14. The sensor models are as follows: the camera is BFLY-U3-23S6C-C,
the LiDAR is HDL 32E Velodyne, IMU is Xsens Mti 10, and the GNSS receiver is u-blox
M8T. In addition, we utilized the high-grade RTK GNSS/INS integrated navigation system,
NovAtel SPAN-CPT, as the ground truth.

Figure 14. Experimental equipment and environment. (a) The experimental vehicle and sensors setup.
(b) Image of experimental environment.

To verify the superior performance of each aspect of our system, we performed ablation
experiments, constructed without GNSS global correction (*), without visual line features
(#), and our complete system (proposed), respectively. The experimental results are shown
in Figures 15 and 16 and Table 2.

Table 2. Motion estimation errors of each algorithm on outdoor dataset.

Sequence
Hong Kong 0428 Hong Kong 0314

ATE_RMSE(m)/Mean Error(m)

Vins_Mono (w/o loop) 101.735/89.470 40.651/35.035
Vins_Mono (w/ loop) 76.179/67.535 19.191/15.617

LIO-SAM 7.181/6.787 41.933/39.672
LVI-SAM 9.764/9.061 3.065/2.557

Purposed(*) 9.475/8.884 2.842/2.456
Purposed(#) 5.808/5.436 2.595/2.041

Purposed 5.299/4.955 2.249/1.880
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Figure 15. Comparison of trajectory fitting curve of each algorithm in the indoor dataset.
(a) Global trajectory fitting curve. (b) Details of local trajectory. (c) Details of local trajectory.

Figure 16. Comparison of positioning results of each algorithm on outdoor dataset. (a) APE_RMSE
error fitting curve. (b) Comparison of index of absolute trajectory error.
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From Figure 15, it can be seen that VIO and LIO, which are mainly based on a single
sensor, each have different defects. First of all, VIO(VINS-Mono) is introduced. Before
starting the movement, the moving carrier stopped at the roadside parking position for
about 10 seconds. VIO was not given a large motion excitation during this period, which
led to the VIO not being initialized properly. Secondly, the cumulative error caused by
the scale uncertainty of the monocular camera increased significantly over time, and a
large-scale estimation error was already generated at the second lap. Although the scale
drift of LIO (LIO-SAM) is not large, it will immediately fail and keep restarting in the
complex area of signal fold reflection. After LiDAR resumes operation, the translation and
rotation of the current frame will be accumulated based on the positional estimation at
the last frame that did not fail, resulting in the misjudgment of stopping the motion at the
carrier motion to (50 m,150 m). When the carrier moves to the corner, LIO re-estimates the
position and attitude. It was misjudged that the carrier stopped at (50 m,150 m) for a while
and then began to turn, so it lost the estimated position and attitude for a period of time,
which led to a large positioning error.

In a longitudinal comparison with the other LVIO system (LVI-SAM), we can con-
clude that our complete algorithm maintains a lower drift rate and localization integrity,
which benefits from the extra constraint of line features and the global correction of GNSS.
In conclusion, even in complex outdoor environments, our algorithm still outperforms
other advanced algorithms.

5.3. Mapping Performance

As a demonstration of the superiority of our algorithm in building maps, we compared
the building results with other advanced algorithms on different datasets. The visual line
feature extraction and map building results are shown in Figure 17. Compared with
PL-VIO, our algorithm has a great improvement in the number of visual line features
extracted, which is attributed to the improved line feature extraction strategy. In a factory
environment with complex lighting conditions, the line features in the actual environment
will look minutely curved due to the refraction of light. Due to the proper value of the
threshold value D of the density of homogeneous points, the angle tolerance of fitting
pixels to approximate rectangles in this environment can be improved, thus increasing the
number of line feature extraction. Further, the accuracy of the bit pose estimation is also
substantially improved by the combination of the improved line feature extraction and
tracking optimization strategies.

Figure 17. Comparison of visual line feature extraction mapping. (a) show the mapping of each
subsystem before improvement, and (b) show our algorithm mapping.

Further, comparison of the LiDAR point cloud detail views is shown in Figure 18.
The more accurate VIO pose estimation after the line features are added provides a more
accurate initial value for LiDAR scan matching, and reduces a large number of point
cloud mismatching. Comparison of global point cloud trajectories is shown in Figure 19.
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The area marked by circles demonstrates that the data drift caused by cumulative errors is
significantly reduced by adding a GNSS factor and loop factor to our algorithm.

Figure 18. Comparison of LiDAR point cloud map details. (a) show the mapping of each subsystem
before improvement, and (b) show our algorithm mapping.

Figure 19. Comparison of global point cloud trajectory. (a) show the mapping of each subsystem
before improvement, and (b) show our algorithm mapping.

6. Discussion

Multi-sensor fusion positioning technology based on SLAM provides new opportu-
nities for the high-precision positioning of mobile carriers. In this study, two problems
that need to be further explored in the existing LVIO fusion system are proposed. The first
problem is that LVIO system needs enough environmental feature information. According
to the previous studies of Pumarola et al. [11] and Fu et al. [12], theoretically, the accuracy
of the fusion system can be improved by increasing the constraint of visual line features.
Huang et al. also proved that the average positioning error of the fusion system based
on point-line feature can generally be improved, from the traditional 2.16% to 0.93% [18].
In this study, the steps of increasing visual line feature constraints are further optimized.
The Monte Carlo method was used to select the appropriate scaling ratio and the density
threshold of homogeneous points, which improves the angle tolerance of pixel fitting
to line features. To a certain extent, it reduces the probability that short segments are
wrongly judged as invalid features. According to the experiment of parameter selection in
Section 3.1, compared with the indoor environment where the angle and translation of line
features change little, the movement of line features between consecutive frames is more
complicated in the outdoor environment. Therefore, the density threshold of homogeneous
points needs to be lowered to reduce the probability that the valid line feature pairs are
misjudged as invalid matches when turning sections. The results of outdoor real-time
analysis shown in Section 5.1.2. show that the traditional method based on point-line
features is difficult to match and track the visual line features in the outdoor environment,
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which takes a long time. However, the time consumption of this algorithm maintained a
low level, which is beneficial to leave more time for back-end fusion optimization.

To solve the problem of line feature mismatching during the movement of carriers,
Zhou et al. established a constraint equation using the 6-DOF Plücker coordinates of line
features to perform matching optimization [19]. However, this increases the computational
complexity of the fusion system, which is inconsistent with the lightweight requirements of
autonomous driving positioning. In this study, the link of line feature constraint matching
is simplified, and the original 6-DOF parameters are replaced by 4-DOF which represents
the movement of line features for optimization. Thus, it can reduce the computational
complexity of the system and effectively improve the inter-frame matching accuracy of line
features. To explore the superiority of the proposed algorithm in real-time and positioning
accuracy, we compared the precision and the time-consuming of three processes related
to line features of this algorithm with several similar advanced algorithms in different
environments. The experimental results show that our optimization strategy based on
front-end point-line features effectively achieves the positive balance between reducing
time consumption and improving accuracy.

The second problem to be solved is the global optimization of LVIO local pose es-
timation results by introducing global constraints. To further improve the positioning
accuracy of local sensors, Qin et al. proposed a GNSS and local sensor fusion method
to construct GNSS residual factors to correct the cumulative error of VIO [25]. Further,
we propose a factor graph based on Bayesian network, in which GNSS observations are
added as global constraint factors. The accumulated errors of LVIO are corrected by using
GNSS observations within 0.1 s interval from LVIO keyframes as global constraint. In
this study, it is proved that GNSS global constraint factor can effectively correct LVIO
positioning error in the outdoor environment. It should be noted that since the coordinate
of the current frame of LVIO is calculated from the coordinate of the previous frame, long-
term observation or long moving distance will lead to more serious data drift. However,
the GNSS observations are in the global coordinate, so long-term observation is not related
to the data drift. Therefore, we can reasonably speculate that the longer the algorithm runs,
the more obvious the correction effect of GNSS on LVIO will be. More comprehensively,
LVIO will continue local positioning in GNSS rejection environment, so the positioning
continuity of mobile carriers in different environments can be effectively guaranteed.

7. Conclusions

In this study, a LiDAR-Visual-Inertial Odometry based on optimized visual point-line
features is proposed, taking advantage of the heterogeneous complementary characteristics
of multiple sensors. First, a visual line feature extraction and matching optimization method
is proposed. By improving the line feature extraction in the scale space and selecting the
appropriate scaling ratio and same-sex point density threshold, the number of line features
extracted in the light complex environment is largely improved to provide richer feature
information for the front-end. Meanwhile, the original 6-DOF parameter optimization
problem is further improved to a 4-DOF parameter optimization problem by using a least
squares-based line feature constrained matching strategy. The complexity of the fusion
system is reduced, and more accurate visual pose estimation is effectively accomplished.
Second, the LiDAR point cloud is projected into the visual coordinates for depth correlation.
Meanwhile, the initial pose estimation provided by the optimized VIO is used to help
LiDAR scan matching. Finally, a factor graph method based on Bayesian networks is
established. Two global constraint factors are added to the factor graph framework to
constrain LVIO globally, which are the global constraint of GNSS factors from external
sensors and the loop factor constraint of local sensors. The experimental results show that
the algorithm can achieve real-time attitude estimation with good localization and mapping
accuracy in different environments.

In the future, we will further improve and refine our work in the following aspects.
First, the point cloud alignment algorithm of the loop factor in this study utilizes the
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traditional ICP algorithm, which is time-consuming to perform the nearest domain search
using the KD tree. Thus, we will consider the improvement of the point cloud alignment
algorithm next. Second, the inclusion of the GNSS factor in this study only utilizes the GNSS
pseudo range single point positioning result. Although it is relatively simple and feasible
on the vehicle platform with only one GNSS receiver, there is still room for improvement
in the positioning accuracy of GNSS. A more accurate correction of LVIO by using higher
accuracy RTK positioning results will be considered in the next step. Finally, since our
proposed fusion system consists of two subsystems with high runtime computational
resource requirements, we will work on reducing the resource occupation rate of the
algorithm. Further, we will evaluate the positioning accuracy of the algorithm on vehicles
with limited computing resources.
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Abstract: Canopy cover is an important indicator and commonly used in forest management ap-
plications. Unmanned-Aerial-Vehicle (UAV)—Borne Laser Scanning (ULS) has drawn increasing
attention as a new alternative source for forest field inventory due to its spatial resolution compara-
ble to that of Terrestrial Laser Scanning (TLS). In this study, the performance of plot canopy cover
estimations from ULS and TLS is investigated. The experiment was conducted in 16 plots from two
Pinus massoniana forests with different stand conditions in Guangxi, China. Both the Canopy Height
Model (CHM)-based and Individual Tree Delineation (ITD)-based methods were used to estimate the
canopy cover. The influence of CHM pixel sizes on the estimations was also analyzed. Our results
demonstrated that the accuracies of ULS (R2: 0.992–0.996, RMSE: 0.591–0.820%) were better than
those of TLS (R2: 0.541–0.846, RMSE: 3.642–6.297%) when compared against the reference. The
average difference between the ULS and TLS estimations was 6.91%, and the disagreement increased
as the forest complexity increased. The reasonable CHM pixel sizes for the canopy cover estimations
were 0.07–1.2 m for ULS and 0.07–1.5 m for TLS. This study can provide useful information for the
selection of data sources and estimation methods in plot canopy cover mapping.

Keywords: forest point cloud; Unmanned Aerial Vehicle (UAV); Terrestrial Laser Scanning (TLS);
canopy cover

1. Introduction

Forest canopy cover, which is defined as the proportion of the forest floor covered by
the vertical projection of tree crowns [1,2], is directly related to the forest floor microclimate
and light conditions [3–5] and is commonly used for biophysical and natural resource
management applications. The spatially accurate mapping of canopy cover plays a critical
role in forest stand structure classification [6], biomass production [7], wildfire behavior
simulation [8], and wildlife habitat assessment [9,10].

Traditionally, canopy cover has been obtained from field measurements using sighting
tubes [11], line intersect sampling [12], canopy photography [13], and the portable station
field-map [14], which are laborious and time consuming. In addition, the field measure-
ments obtained via these methods may be inaccurate because the crown boundaries can
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be difficult to distinguish in practice, and some subjectivity remains in the field measure-
ment [2]. Compared with field measurements, remote sensing techniques can provide
spatially continuous observations with a higher efficiency and at a lower cost. Light detec-
tion and ranging (LiDAR) is a promising tool for quantifying forest structural parameters
because of its ability to assess 3D information with high precision [15–17]. LiDAR has
the potential to replace field measurements or even be used to assess the quality of field
measurements [5,18,19].

The potential of airborne laser scanning (ALS) from manned aircraft for estimating
canopy cover has been investigated since commercial systems have become available.
The simplest way to estimate canopy cover from ALS is to calculate the proportion of
canopy hits above a specified height threshold [2]. However, this method is slightly biased
because the ALS pulses are characterized by oblique observations and are not precisely
vertical. Moreover, the sides of crowns are also observed at a certain scan angle, and this
bias increases with the scan angle, becoming significant at approximately 40◦ (20◦ from
the zenith) [13]. To eliminate the effect of oblique pulses on canopy cover estimations,
several studies have utilized the rasterized canopy height model (CHM)-based method to
estimate the canopy cover from ALS point clouds [2,20–22]. In these studies, canopy cover
was calculated as the ratio of the number of canopy pixels to the total number of pixels.
Allocating the canopy echoes to a grid based on XY coordinates was assumed to reduce
this effect.

Several studies have also used mathematical models to estimate canopy cover
from ALS. Mathematical models were constructed by investigating the correlations be-
tween airborne laser metrics and field-measured canopy cover [19,23,24]. For example,
Holmgren et al. [23] utilized proportions of laser returns at certain height intervals derived
from ALS data as explanatory variables in simple linear regression models for crown
coverage estimation in southern Sweden. They reported a root-mean-square error (RMSE)
of 4.9% for the tree crown coverage estimation. Melin et al. [24] compared with different
remote sensing materials for predicting boreal forest canopy cover and observed a high
correlation between the field-measured canopy cover and the selected LiDAR predictor.

The potential of terrestrial laser scanning (TLS) for mapping canopy gaps and struc-
tures has also been investigated [25–27]. However, compared with ALS canopy cover
estimation studies, these studies are relatively fewer. The estimation of vertical canopy
cover using TLS has not been studied as intensively. One Study [28] created a raster map of
the canopy from TLS, and canopy cover was estimated as the proportion of canopy pixels
with RMSE of 8.0–17.9% and bias of 6.8–13.1%.

In recent years, improvements in the convenience and miniaturization of unmanned
aerial vehicles (UAVs) have made it a powerful platform for forestry mapping. Combined
with LiDAR, UAV laser scanning (ULS) provides higher data acquisition efficiency and
flexibility at a lower cost than ALS [29,30] and provides detailed data comparable to
that of TLS [31–34]. By providing a distinct combination of high spatial and temporal
resolution, ULS narrows the gap between ALS and TLS systems and provides a new type
of high-quality point cloud for forest investigations [33].

Previous studies have examined ULS as an alternative technology to ALS, which
digitizes forests in a similar manner with higher altitude [30]. Previous ULS studies have
predominantly focused on replicating existing forest attributes from ALS point clouds,
such as forest height [35], tree crown diameter [29], stem volume [36], and aboveground
biomass [30]. More recently, ULS has gained interest for its potential as an alternative
technology to TLS owning to its near-ground perspective and dense point cloud charac-
teristics. The first strict evaluation of ULS on in situ observations was provided by [33]
and compared the DBH, tree height, and tree position results with those from TLS in a
boreal forest. Similarly, [31] compared the ULS and TLS systems for canopy height and
DBH estimation in a forest in the Netherlands, while [32] compared the performance of
ULS and TLS with respect to explicit tree modeling and tree volume estimation in a Dutch
temperate forest.
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There is a growing tendency for foresters to use ULS instead of TLS in forest plot
inventories, and this development will dramatically improve the efficiency and reduce
costs for plot inventories. Accurate forest plot canopy cover estimations are crucial since
mapping the distribution of canopy cover over large areas relies on the plot canopy cover
estimations for model calibration and validation. It is necessary to study the performances
of ULS and TLS in forest plot canopy cover estimations and how different methods may
influence canopy cover estimations.

The main objectives of the present study were, therefore, threefold: (1) to investigate
the performances of the recent rapidly developed ULS and the current widely used TLS
techniques for plot canopy cover estimation under different forest stand conditions with
respect to the manual references; (2) quantify the agreement and disagreement in the
canopy cover estimations from ULS and TLS with respect to the CHM-based method and
individual tree delineation (ITD)-based method; (3) clarify the influence of the pixel size on
canopy cover estimation in the CHM-based method from ULS and TLS. The results from
this study can provide practical guidance for the selection of data sources and estimation
methods in plot canopy cover mapping.

2. Study Area and Materials

2.1. Study Area

The study was conducted in two coniferous forest sites in southern Guangxi Province,
China: Guigang (23◦7′N, 109◦28′E) and Qinzhou (22◦2′N, 108◦34′E), as illustrated in
Figure 1. The two sites are characterized by a subtropical monsoon climate with an annual
rainfall of approximately 1600 mm and an annual average temperature of 21–23 ◦C. The
Guigang site was established in a Pinus massoniana plantation with a very open understory
and few evergreen microphanerophytes (Figure 2a). The Pinus massoniana plantation
consists predominately of mature forest and had a low tree density of 133 trees/ha. The
Qinzhou site was established in a natural forest of Pinus massoniana, which is a young forest
with various understory species (Figure 2b). It comprises Pinus massoniana of mixed ages
and has a tree density of 311 trees/ha, which is relatively higher than the Guigang site. The
Guigang and Qinzhou sites had 11 and 5 plots, respectively, which were scanned by both
the ULS and TLS. A total of sixteen plots were used in this study. The Guigang and Qinzhou
plots are referred to as the GG plots and QZ plots, respectively, in the following sections.

 
 

Figure 1. Map of the two test sites and sixteen sample plots in Guangxi, China: (a) Guigang site
containing eleven plots and (b) Qinzhou site containing five plots analyzed in this study.
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(a) (b) 

Figure 2. Examples plots in Guigang and Qinzhou sites representing different forest structures:
(a) GG plot was in mature forest and had a sparse tree density with less understory vegetation,
and (b) QZ plot was in young forest and had a relatively high tree density representing various
understory species.

2.2. LiDAR Data Collection
2.2.1. UAV Laser Scanning Data

The UAV-LiDAR data of the 16 plots were captured on 4 and 5 June 2020, with a
Genius UAV LiDAR developed by SureStar, Beijing. The UAV LiDAR area coverage and
plot distribution are shown in Figure 2. Each plot at the two sites had a fixed size of
30 m × 30 m. The UAV-LiDAR system consisted of a DJI M200 platform, an R-Fans-16 laser
scanner, and an advanced navigation spatial dual-coupled GNSS and IMU sensor. The
R-Fans-16 scanner features 16 scan layers with a 30◦ vertical field of view (FOV). It operates
at a wavelength of 905 nm and supports 320,000 points per second. The measurement range
of R-Fans-16 is 200 m. The flying height for data acquisition was 40 m above ground level
with a speed of 5 m/s, resulting in an average point density of approximately 430 pts/m2.

2.2.2. Terrestrial Laser Scanning Data

TLS data acquisition was completed on 28 and 29 May 2020, using the RIEGL VZ-400
laser scanner system. The RIEGL VZ-400 laser scanner system has a 360◦ field of view
in the horizontal direction and 100◦ in the vertical direction, a maximum range of 600 m,
and a measurement rate of 120,000 points per second. At the Guigang site, five scans
were performed with an average scanning spacing of 35 m to complete a full coverage of
the plots, since the plots in the Guigang site were characterized by clear visibility, little
understory vegetation, and sparse tree density. Five scans were performed at the Qingzhou
site with an average scanning spacing of 15 m to accommodate the high tree density and
abundant understory vegetation in this region. Additional retro-reflective targets were
set up during the data collection campaign for the co-registration of scans. The average
point density of registered TLS data was 29,471 points per m2, with a point spacing of
approximately 6 mm.
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2.3. Establishment of Reference Data

To evaluate the performance of the canopy cover estimation from TLS and ULS,
the reference data for the 16 plots were generated by manual measurements from the
co-registered TLS and ULS point clouds. The co-registered TLS and ULS point clouds
combined the observations from under and above canopy view perspectives with high
spatial resolution and were assumed to provide a more reliable canopy cover measurement
compared to the use of either TLS or ULS point clouds alone. The ULS point clouds of the
plots were manually co-registered to the multi-scan TLS point clouds by selecting common
points from the crown boundary and stems. Manual fine-tuning was implemented when a
discrepancy between the point clouds remained observable from the top view and two side
views. Then, the digital terrain models (DTMs) were created at a 0.2 m resolution from the
fused TLS and ULS point clouds using the cloth simulation filter (CSF) method [37]. The
fused point cloud height was normalized by subtracting the ground surface height from
the DTMs. Finally, the canopy boundaries in each plot were manually delineated from the
fused and normalized point clouds, and the canopy cover for each plot was calculated as
the ratio of the area of tree crown to the area of the plot. The canopy cover of all 16 plots
ranged from 63.37% to 96.28%. Details of the canopy cover distribution are shown in
Figure 3.

 
Figure 3. Canopy cover reference for the 16 plots analyzed in the study.

3. Methods

3.1. Canopy Cover Estimation Using CHM-Based Method

LiDAR-derived CHMs have been widely used to estimate canopy cover [2,21]. To
guarantee independence of the canopy cover estimates from different data sources, CHM
creations and canopy cover estimations were carried out separately in ULS and TLS point
clouds. First, for each sample plot, the ground points and off-ground points were classified
from the ULS and TLS point clouds separately, and their DTMs were generated using the
CSF method [37] with a 0.2 m × 0.2 m resolution. The TLS and ULS data were normalized
with respect to their corresponding DTMs. Then, the normalized point clouds were gridded,
and the highest point in each grid was selected to construct the CHMs. To simultaneously
describe the tree crown in as much detail as possible and reduce data redundancy, a raw
pixel size that was slightly larger than the mean point spacing of the point cloud was used
for CHM construction, as reported by [38,39]. In this study, 7 cm and 1 cm were used for
the ULS and TLS point clouds, respectively, for CHM construction.

The CHM-based canopy cover was calculated as the percentage of pixels with a CHM
value larger than a specified height threshold (canopy pixels):

CanopyCover = ∑ CHMcanopy/ ∑ CHMtotal (1)
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where CHMcanopy represents the number of canopy pixels (above a specific height thresh-
old) in CHM, and CHMtotal represents the total number of CHM pixels.

Considering the different understory vegetation arrangements in the plots of the two
sites (as illustrated in Figure 2), different height thresholds were used to separate the
crowns from the background for canopy cover estimation. In the GG plots, since these plots
represented clear visibility with sparse understory vegetation, a distance of 2 m was used
to separate the crown pixels. In the QZ plots, a distance of 5 m was used to extract crown
pixels because of the relatively dense and high shrubs. The within-crown gaps would lead
to the underestimation of canopy cover because their CHM values were relatively small
(smaller than the height threshold) and were likely to be classified as non-canopy pixels.
This situation often occurs in the crown where laser pulses penetrate the gap and reach the
ground surface, resulting in a small height value in data collection. Therefore, we utilized
the pit-free CHM method proposed by [38] to fill the within-crown gaps of the CHM before
canopy cover estimation. This method works by simulating cloth sticking to the CHM
surface and filling the within-crown gaps using the hardness of the simulated cloth. The
pit-free CHM-based method was capable of filling within-crown gaps while keeping the
original CHM pixel values unchanged. The CHM-based canopy cover estimation results
from the ULS and TLS data are denoted as ULS_CHM and TLS_CHM, respectively, in the
following sections.

We also explored the sensitivity of canopy cover estimation to different CHM pixel
sizes for the ULS and TLS point clouds. The original CHMs of ULS and TLS were created
under the raw pixel size, which was assumed to describe the crown structure in the most
detail. Then, the pixel sizes were increased, from 0.07 to 4.8 m for the ULS and from 0.01 to
2.5 m for the TLS for CHM construction. The canopy cover estimations were then calculated
using these CHMs. The canopy cover accuracy was evaluated by comparison with the
reference data.

3.2. Canopy Cover Estimation Using ITD-Based Method

To guarantee the independence of the canopy cover estimates from different data
sources and to minimize the influences of laser scanning data processing methods, individ-
ual tree delineations were manually conducted in the ULS and TLS point clouds separately.
Automatic tree detection and modeling methods were not used in this study. Thus, the
canopy cover evaluation results revealed the capacities of the applied laser scanning data
while excluding the influence of the data processing approach, such as the individual tree
detection. Then, each individual tree crown in a plot was accumulated and subtracted
from the overlap area to calculate the total crown area. The ITD-based canopy cover was
calculated as the percentage of the total crown area to the plot area. The ITD-based canopy
cover estimation results from the ULS and TLS data are denoted as ULS_ITD and TLS_ITD,
respectively, in the following sections.

3.3. Comparison Scheme and Accuracy Assessment

First, the four canopy cover estimates (ULS_CHM, TLS_CHM, ULS_ITD, and TLS_ITD)
were compared with the reference data. Then, the agreement and disagreement in the
canopy cover estimations from ULS and TLS were quantified in detail with respect to the
CHM-based and ITD-based methods. Finally, the influence of the pixel size on canopy
cover estimation in the CHM-based method from ULS and TLS was analyzed.

In this study, the accuracy of the estimated canopy cover was evaluated using the coef-
ficient of determination (R2) and root mean squared error (RMSE), which were calculated
using the following equations:

R2 = 1 − ∑n
i=1(xi − yi)

2

∑n
i=1(xi − x)2 (2)
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RMSE =

√
∑n

i=1(xi − yi)
2

n
(3)

where xi and yi are the values from the ith reference and estimated canopy cover values, x
is the mean of the reference canopy cover, and n is the number of plots.

4. Results

4.1. Comparison of LiDAR Estimations and Reference

A comparison between the canopy cover estimations from the four methods (i.e.,
ULS_CHM, ULS_ITD, TLS_CHM, and TLS_ITD) and the reference data are shown in
Figure 4 (for all the plots) and Figure 5 (for the GG plots alone). As illustrated in Figure 4,
there was an overall moderate to high agreement between the LiDAR-estimated canopy
cover and the reference data for all the plots, with R2 values of 0.541–0.996, and RMSE
values of 0.591–6.297%. Among the four methods, the ULS_CHM method showed the
highest accuracy, with an R2 of 0.996 and an RMSE of 0.591% for canopy cover estimation,
while the ULS_ITD method had the second highest accuracy, with an R2 of 0.992 and an
RMSE of 0.820%, followed by the TLS_ITD method (R2 = 0.846, RMSE = 3.642%) and the
TLS_CHM method (R2 = 0.541, RMSE = 6.297%).

  
(a) (b) 

  
(c) (d) 

Figure 4. Comparison of canopy cover estimations derived from the reference data and LiDAR
estimations for all the plots. Scatter plots with R2, RMSE, and regression equations between refer-
ence data (y) and LiDAR-based estimations (x) are indicated for the (a) ULS_CHM, (b) ULS_ITD,
(c) TLS_CHM, and (d) TLS_ITD estimations.
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(a) (b) 

  

(c) (d) 

Figure 5. Comparison of canopy cover estimations derived from the reference data and LiDAR
estimations for the GG plots alone. Scatter plots with R2, RMSE, and regression equations between
reference data (y) and LiDAR-based estimations (x) are shown for the (a) ULS_CHM, (b) ULS_ITD,
(c) TLS_CHM, and (d) TLS_ITD estimations.

As illustrated in Figure 5, the results from the GG plots alone showed a similar
tendency, with the ULS_CHM method showing the highest accuracy (R2 of 0.996, RMSE of
0.476%), followed by the ULS_ITD method (R2 = 0.992, RMSE = 0.685%) and the TLS_ITD
method (R2 = 0.986, RMSE = 0.915%). The TLS_CHM method had the lowest accuracy
(R2 = 0.737, RMSE = 3.959%). For different forest conditions, the GG plots had a better
performance (R2 = 0.737–0.996, RMSE = 0.476–3.959%) than all other plots (R2 = 0.541–0.996,
RMSE = 0.591–6.297%).

The overestimation and underestimation of the four methods against the reference data
are summarized in Table 1, which shows the difference between the ULS/TLS estimated
canopy cover and the reference data for all the plots, the GG plots only, and the QZ plots
only. Overall, the ULS produced smaller deviations than TLS. The mean deviation for
the ULS was 2.1% for all the plots and 7.46% for TLS. The ULS_CHM had the smallest
deviations, followed by the ULS_ITD, TLS_ITD, and TLS_CHM. In addition, the ULS
canopy cover estimations were more robust across different stand conditions and different
methods than the TLS estimations. The ULS produced similar deviations between the GG
and QZ plots (2.08% vs. 2.13%), whereas significant differences were observed between the
corresponding deviations of TLS (4.93% and 13.03%).
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Table 1. Canopy cover differences (%) calculated as ULS/TLS estimations minus reference data for
all the plots, the GG plots only, and QZ plots only, where |mean| represents the mean of the absolute
values of the difference.

All Plots GG Plots QZ Plots

Min Max |Mean| Min Max |Mean| Min Max |Mean|

ULS
CHM-based 0.07 2.50 0.93 0.07 1.90 0.93 0.33 2.50 0.92
ITD-based −5.47 −1.75 3.26 −4.15 −1.75 3.22 −5.47 −2.13 3.34

Mean 2.10 2.08 2.13

TLS
CHM-based −28.94 −2.03 10.22 −17.58 −2.03 7.27 −28.94 −8.96 16.73
ITD-based −17.75 −1.06 4.69 −5.18 −1.06 2.59 −17.75 −4.70 9.32

Mean 7.46 4.93 13.03

4.2. The Agreement and Disagreement in the Estimations from ULS and TLS

A more detailed comparison was conducted directly between the ULS and TLS esti-
mations with respect to different forest conditions and estimation methods. The R2, RMSE
and differences between the ULS and TLS estimations were summarized. The disagreement
between the ULS and TLS estimations increased with increasing complexity of the forest
stand with respect to these metrics.

A moderate agreement was observed between the ULS and TLS estimations when
the CHM-based method was used. As illustrated in Figure 6a, the R2 and RMSE between
the ULS_CHM and TLS_CHM estimations were 0.554 and 6.288% for all the plots. In the
case of the ITD method, the R2 and RMSE between the ULS_ITD and TLS_ITD estimations
were R2 0.859 and 3.600% for all the plots (Figure 6b). For different forest conditions, the
GG plots had a higher agreement between the ULS and TLS estimations than all the plots.
Figure 6c,d illustrates the comparison on the GG plots, where the ULS and TLS produced
an R2 of 0.745 and an RMSE of 3.913% for the CHM-based method, and R2 of 0.985 and an
RMSE of 0.919% for the ITD method.

Table 2 summarizes the difference between the ULS and TLS estimations for all the
plots, the GG plots only, and the QZ plots only. The number of all plots, GG plots, and
QZ plots were 16, 11 and 5 respectively. The ULS estimations were larger overall than
the TLS estimations for the CHM-based method, with an averaged difference of 11.15%
for all the plots. The overestimations in the GG plots were lower than those in the QZ
plots. The average overestimation was 8.19% for the GG plots and 17.65% for the QZ plots
(Table 2). For the ITD-based method, the TLS estimations tended to be larger in the GG
plots and lower in the QZ plots than the ULS estimations (Figure 6b). Only two plots had
lower TLS_ITD estimations than the ULS_ITD estimations (Figure 6b). In the QZ plots, the
average TLS_ITD estimations were 5.97% lower than ULS_ITD estimations.

Table 2. Canopy cover differences (%) calculated as ULS estimations minus TLS estimations for all
the plots, GG plots only, and QZ plots only, where |mean| represents the mean of the absolute values
of the difference.

All Plots GG Plots QZ Plots

Min Max |Mean| Min Max |Mean| Min Max |Mean|

ULS_CHM-
TLS_CHM 3.45 29.91 11.15 3.45 18.89 8.19 9.36 29.91 17.65

ULS_ITD-TLS_ITD −2.33 14.34 2.67 −2.33 2.07 1.17 2.39 14.34 5.97

mean 6.91 4.68 11.81
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(a) (b) 

  
(c) (d) 

Figure 6. Comparisons of canopy cover estimations derived from ULS and TLS: (a,b) for all the plots,
and (c,d) for only the GG plots.

4.3. Estimation Results of CHM-Based Canopy Cover with Different Pixel Size

Changes in R2 and RMSE between the CHM-based estimations using different pixel
sizes and the reference data are presented in Figure 7. For the ULS_CHM method, the R2

between the ULS_CHM estimations and the reference data decreased with an increase in
the pixel size (Figure 7a). The R2 decreased slowly from 0.996 to 0.959 with an increase
in the pixel size range from 0.07 m (raw pixel size) to 1.2 m. The decrease rate of R2

was significantly larger after the pixel size exceeded 1.2 m. Conversely, the RMSE values
increased as the pixel size increased.

For the TLS_CHM method, R2 initially increased and then decreased with increasing
pixel size (Figure 7b). The R2 between the TLS_CHM estimations and reference data
increased from 0.541 to 0.871 when the pixel size range increased from 0.01 m (raw pixel
size) to 1.0 m. After the pixel size surpassed 1.0 m, R2 rapidly decreased. The RMSE values
first decreased and then increased as the pixel size increased.

56



Remote Sens. 2022, 14, 1188

  

(a) (b) 

Figure 7. Changes in R2 and RMSE between two CHM-based canopy cover estimations using
different pixel sizes and reference data. (a) R2 and RMSE between ULS_CHM estimations and
reference data and (b) R2 and RMSE between TLS_CHM estimations and reference data.

5. Discussion

5.1. Differences between LiDAR-Derived Canopy Cover and Reference Data

In this study, we compared four LiDAR-estimated canopy covers (ULS_CHM, ULS_ITD,
TLS_CHM, and TLS_ITD) with the reference data. The ULS_CHM produced the highest
accuracy, followed by ULS_ITD, TLS_ITD, and TLS_CHM. The results demonstrated that
the canopy covers obtained using the ULS_CHM method were slightly higher than the
reference data, and the canopy covers obtained from the other three methods were lower
than the reference data. The higher canopy cover estimations obtained from the ULS_CHM
method could be partly attributed to the following aspects: (i) some small between-crown
gaps with similar size of within-crown gaps were also filled as canopy pixels, and (ii) the
crown boundaries that adjoined the open ground in the horizontal plane tended to expand
after the interpolation procedure of the pit-free method.

Since the original CHM method would underestimate the canopy cover owing to the
existence of within-crown gaps, we utilized the pit-free method proposed by [38] to fill the
within-crown gaps to mitigate the underestimation. Our results showed that the pit-free
method could effectively remove the within-crown gaps (c1 and c2 in Figure 8a,b). However,
the small between-crown gaps with similar within-crown gap size were also interpolated
as canopy pixels (d1 and d2 in Figure 8a,b), and the crown boundaries adjacent to the open
ground expanded after the pit-free method was applied (e1 and e2 in Figure 8a,b). It was
difficult to distinguish between the within-crown gaps and the between-crown gaps with
similar sizes and fill the within-crown gaps while ensuring that the between-crown gaps
remained unchanged in the CHM smoothing process. The crown boundaries adjacent to
the open ground expanded because there were height jumps between the crown boundaries
and the adjoining ground. The pit-free method interpolated the pixel values of the adjoining
ground and increased their height to reduce the height difference. Thus, several ground
pixels were classified as canopy, and the canopy cover was slightly magnified.

In the TLS_CHM method, the canopy cover estimation was lower than the reference,
which could be attributed to the incomplete tree crown structure generated from the TLS
point clouds. Although the multi-scan mode was used in the TLS data collection, the
crowns further away remained occluded when the laser beam was interrupted by stems or
branches, and the upper crown of the higher trees was incomplete due to the limited field
of view in the vertical direction (−40◦–60◦). These situations produced within-crown gaps,
and these gaps could not be completely removed by the pit-free method, resulting in the
underestimation of the TLS_CHM method.
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(a) (b) 

Figure 8. The pit-free method used in the ULS_CHM canopy cover estimation, where (a,b) represent
the original CHM and the pit-free CHM, respectively, while (c1) (c2), (d1) (d2), and (e1) (e2) represent
the within-crown gaps, between-crown gaps, and crown boundaries adjacent to the open ground in
the original CHM and the pit-free CHM.

Both the ULS_ITD and TLS_ITD canopy cover estimations were smaller than the
reference data, because the reference data were produced from the fused ULS and TLS point
clouds. The TLS_ITD canopy cover estimations were lower when the crown boundaries
were incomplete in the TLS point clouds. The slightly lower ULS_ITD estimations could be
partly attributed to the lower point density of the ULS point clouds when compared with
the fused point clouds.

5.2. Difference between ULS-Derived and TLS-Derived Canopy Cover Estimations

In the CHM method, our results demonstrated that the ULS estimations were larger
than the TLS estimations for all the plots. The differences between the ULS_CHM and
TLS_CHM estimations increased with the increased forest complexity. In the ITD method,
the ULS estimations were smaller than the TLS estimations in the simple plots with little
understory vegetation and low stem density (GG plots), and the ULS estimations were
larger than the TLS estimations in the relatively complex plots with abundant understory
growth and higher stem density (QZ plots).

Overall, the ULS tree crowns were more comprehensive than the TLS tree crowns,
even when the multi-scan mode was used. Similar results were reported by [28], where
ALS produced slight overestimation of canopy cover and TLS underestimated the canopy
cover. TLS was vulnerable to the radial occlusion due to the side view perspective and
produced gaps within the crowns. These gaps were large and difficult to fill by the CHM
smooth method (pit-free), resulting in lower TLS estimations in the CHM-based method.
This underestimation grew with increased forest complexity due to the increased occlusion.
The QZ plots had denser understory vegetation and higher stem density than the GG plots,
resulting in more occlusions in TLS than the GG plots. Therefore, the difference between
the ULS_CHM and TLS_CHM estimations for the GG plots (Figure 9) was smaller than
that of the QZ plots (Figure 10).

58



Remote Sens. 2022, 14, 1188

  
(a) (b) 

  
(c) (d) 

Figure 9. Difference between ULS_CHM and TLS_CHM in GG plot: (a,c) normalized ULS and TLS
point clouds, and (b,d) corresponding pit-free CHMs.

  
(a) (b) 

  
(c) (d) 

Figure 10. Difference between ULS_CHM and TLS_CHM in QZ plot: (a,c) normalized ULS and TLS
point clouds and (b,d) corresponding pit-free CHMs.

In the ITD method, the TLS estimations were larger than the ULS estimations in
simple plots, which can be partly attributed to the denser point density of the TLS point
clouds and the fact that the incomplete tree crowns could be recovered as long as crown
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boundaries existed in the ITD method. The crown boundaries in the simple plots with
little understory vegetation and low stem density were more likely to be collected than
those in the relatively complex plots with abundant understory growth and higher stem
density. Moreover, compared with the ULS crowns, the TLS crowns represented more
details and larger areas (as illustrated in Figure 11e). The TLS crown boundaries were more
compact, and their between-crown gaps were smaller than those of the ULS (Figure 11b,d).
Therefore, the TLS_ITD produced slightly higher estimations than ULS in the simple plots.
However, there were two GG plots that produced lower TLS_ITD estimations because their
tree crown boundaries were incomplete and the ITD method could not recover the correct
crowns areas.

  
(a) (b) 

  
(c) (d) 

 
(e) 

Figure 11. Difference between ULS_ITD and TLS_ITD in GG plot: (a,c) normalized ULS and TLS
point clouds, (b,d) corresponding individual tree crown boundaries, and (e) the local detail for the
overlapped ULS and TLS crown points.
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For the QZ plots, the TLS estimations were lower than the ULS estimations in the ITD
method. As illustrated in Figure 12b,d, the QZ plots had denser understory vegetation and
higher stem density than the GG plots, which led to more severe occlusion and incomplete
tree crowns in the TLS point clouds. The crown boundaries were incomplete and the ITD
method cannot recover the correct crowns areas, resulting in the underestimation.

  
(a) (b) 

  
(c) (d) 

Figure 12. Difference between ULS_ITD and TLS_ITD in QZ plot: (a,c) the normalized ULS and TLS
point clouds and (b,d) corresponding individual tree crown boundaries.

5.3. Effect of Pixel Size on the CHM-Based Canopy Cover Estimation Accuracy

The canopy cover estimation increased as the pixel size increased for both the ULS
and TLS. This aligned with the results of [38]. When a larger pixel size was used, each
within-crown gap was more likely to be assigned to a mixed pixel with crown points, and
the gaps were neglected because only the highest point was selected. In addition, the
crown boundaries expanded as the pixel size increased, which contributed to an increase in
canopy cover values.

For the ULS point clouds, the raw pixel size of the CHM produced slightly over-
estimated estimations. With increasing pixel size, the overestimation increased when
compared with the reference data. Therefore, R2 decreased as the pixel size increased. The
R2 decreased slowly and remained relatively constant (0.959–0.996) when the pixel size
increased from 0.07 m to 1.2 m, and then decreased significantly again when the pixel size
exceeded 1.2 m. The increasing pixel size caused more gaps to be filled as crowns, and
the tree crown edges were gradually expanded, resulting in an increase in canopy cover
estimation. Reasonable and similar canopy cover estimations could be achieved at pixel
sizes ranging from 0.07 m to 1.2 m, which could explain over 95% of the variations in the
reference data.

For the TLS point clouds, the raw pixel size of the CHM was underestimated owing
to the incomplete tree crown structure. The differences between the CHM estimations
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and reference data were gradually narrowed at first and then gradually increased with
increasing pixel size owing to the increase in canopy cover values. The best agreement was
achieved at a pixel size of 1.0 m with an R2 of 0.871 and an RMSE of 3.333%. Reasonable
and similar canopy cover estimations could be achieved at a pixel size range of 0.07 m to
1.5 m, which could explain over 80% of the variations in the reference data.

6. Conclusions

Forest canopy cover plays a fundamental role in forest assessment and management.
The Sample plot inventories are currently experiencing changes driven by the rapid devel-
opment of UAV. This study provided a comprehensive cross-comparison of plot canopy
cover from the recent rapidly developed ULS and current widely used TLS point clouds
over 16 plots in Pinus massoniana forests with different stand conditions in Guangxi, China.
Both the CHM- and ITD-based methods were used to estimate the canopy cover for both
the ULS and TLS point clouds. Our results illustrated that, compared with the reference
data, the ULS_CHM method was the most accurate, with an R2 of 0.996 and RMSE of
0.591%, followed by the ULS_ITD method (R2 = 0.992, RMSE = 0.820%), TLS_ITD method
(R2 = 0.846, RMSE = 3.642%), and TLS_CHM method (R2 = 0.541, RMSE = 6.297%). When
the ULS estimations were directly compared against the TLS estimations, most ULS esti-
mations were larger than the TLS estimations, with an average difference of 6.91%, and
the disagreement increased as the forest complexity increased. The ULS estimations were
lower than the TLS estimations; this occurred when the crown boundaries were complete in
the ITD method in the simple plots due to the more detailed crowns in the intermediate and
suppressed layer than the ULS. In the CHM-based method, the reasonable CHM pixel sizes
for the canopy cover estimations were 0.07–1.2 m for ULS and 0.07–1.5 m for TLS. In these
ranges, the estimations were marginally influenced by the pixel size. Further work should
investigate the estimation performance of canopy cover over large areas from different
sources and extend the forest types.
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Abstract: Achieving efficient and accurate feature tracking on event cameras is a fundamental step
for practical high-level applications, such as simultaneous localization and mapping (SLAM) and
structure from motion (SfM) and visual odometry (VO) in GNSS (Global Navigation Satellite System)-
denied environments. Although many asynchronous tracking methods purely using event flow have
been proposed, they suffer from high computation demand and drift problems. In this paper, event
information is still processed in the form of synthetic event frames to better adapt to the practical
demands. Weighted fusion of multiple hypothesis testing with batch processing (WF-MHT-BP) is
proposed based on loose integration of event, intensity, and inertial information. More specifically,
with inertial information acting as priors, multiple hypothesis testing with batch processing (MHT-
BP) produces coarse feature-tracking solutions on event frames in a batch processing way. With a
time-related stochastic model, a weighted fusion mechanism fuses feature-tracking solutions from
event and intensity frames compared with other state-of-the-art feature-tracking methods on event
cameras. Evaluation on public datasets shows significant improvements on accuracy and efficiency
and comparable performances in terms of feature-tracking length.

Keywords: event camera; feature tracking; intensity/inertial integration

1. Introduction

Event cameras, as a kind of bio-inspired sensor, trigger events on each pixel indepen-
dently and asynchronously according to the changes of scene brightness. Compared with
standard cameras, they output event flow, which is formed by coordinates on the image
plane and the time when an event happens, namely x,y and t (μs or ns level). Another
characteristic of event flow is polarity, which indicates the increase or decrease in bright-
ness. The presence or absence of polarity information depends on manufacturers. For
example, DAVIS 240C from Inivation provides polarity information, while IMX636 from
Sony/Prophesee does not have polarity information.

Event cameras have the characteristics of low latency, high dynamic range, and low
power consumption. Due to their different characteristics compared to traditional cameras,
event cameras open up a new paradigm for a series of tasks such as VO (Visual Odome-
try), SLAM (Simultaneous Localization and Mapping), and SfM (Structure from Motion).
Feature tracking on event cameras is one fundamental step toward the maturity of these
practical applications, which have aroused the interest of a wide range of researchers [1,2].

Although many asynchronous feature-tracking methods have been proposed, template
matching on event frames or event patches is still a major way to process event information,
especially for high-level tasks [3]. By accumulating a certain number of events or calculating
the significance of the incoming event, the contours of objects in the scene are formed in an
image-like frame, which is closely related to the movement of the carrier.
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Practical feature tracking on event frames still faces challenges from efficiency and
accuracy problems. Efficiency is related to high event rates, which depends on carrier
motions, scene (e.g., dynamic objects), texture, etc. Event rates may vary significantly,
and thus, the frequency of event frames may be very high, increasing the computational
difficulty of keeping tracking on a sufficient number of features.

Event flow is sparse, asynchronous, noisy, and only represents brightness changes;
thus, event-to-frame transformation has the problem of low signal-to-noise ratio and
“texture” loss. Therefore, feature tracking purely relying on event flow may have drift
problems, deteriorating the accuracy and robustness of high-level tasks.

Purely relying on event flow information will lead to one problem: when the carrier is
moving slowly, the time interval between event frames may be larger than that between
images. The frequency of positioning or mapping solutions would not meet the require-
ments of users. For example, when a drone is performing autonomous exploration slowly
in an unknown environment, timely positioning results are still needed for motion and
path planning. Therefore, intensity images and inertial information can still provide timely
updates as the basic support for high-level tasks.

From the view of bionics, the research on animal processing mechanisms for external
information shows that different parts of the brain handle different senses with different
attention, which jointly supports the decision of action and judgment. Visual information is
not an exception, which is highly related to events, as events only happen when brightness
changes. Both global views of the scenes and inertial information are still sensed and
processed by the brain latently. Therefore, the fusion of event, intensity, and inertial
information has support from bionic research [4,5].

Now, several event cameras, such as DAVIS 346 and CeleX-4, provide normal intensity
images, angular velocity, and acceleration from embedded IMU (Inertial Measurement
Unit), supporting the feasibility of using complementary information for feature tracking.

The advantages of multiple sensor fusion bring potentials to overcome accuracy and
efficiency problems from purely event-information-based methods. Therefore, a new
feature-tracking method on event frames is proposed in this paper. Its novelty can be
summarized as follows:

1. An event-frame-based feature tracker by using multiple hypothesis testing with batch
processing (MHT-BP) is proposed to provide initial tracking solution. In MHT-BP,
four-parameter affine transformation is proposed to improve motion coverage of
template matching, and batch processing is proposed to improve tracking efficiency.

2. Together with inertial information prediction, a time-related stochastic model and
a constant-velocity model are proposed to loosely integrate the solutions of track-
ing solution from intensity image and initial tracking solutions, which improves
tracking accuracy.

3. A comparison with other state-of-the-art methods is conducted on publicly available
event-camera datasets in terms of tracking efficiency, accuracy, and length. The results
show that the proposed method achieved significantly higher accuracy and efficiency
and comparable feature-tracking lengths.

The rest of paper is constructed as follows: Section 2 reviews feature-detection and
-tracking methods on event camera. Section 3 firstly illustrates the data stream that the
proposed method deals with and gives a brief description of WF-MHT-BP and then presents
inertial based rotation prediction, which acts as the priors for the next feature-tracking steps
in Section 3.1. The method to generate event frame is introduced in Section 3.2. After that,
MHT-BP, which is the tracking method purely relying on event frames, is introduced in
Section 3.3. Section 3.4 presents the weighted integration of feature-tracking solutions from
event frame and intensity frame. In Section 4, WF-MHT-BP is compared with two methods
implemented in MATLAB and EKLT (Event-based Lucas–Kanade Tracker), implemented
in C++ in terms of accuracy and efficiency, and EKLT in terms of feature-tracking length.
Section 5 concludes the paper and gives the direction for future work.
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2. Related Work

Feature tracking is an active research field, where a number of algorithms have been
proposed. Traditional feature tracking on intensity images can be divided into feature-
matching-based methods and template-based tracking methods [6]. Two representative
methods are SIFT (Scale-Invariant Feature Transform) [7] and KLT [8,9] respectively. Re-
cently, many deep-learning-based algorithms have been proposed to improve the available
number and robustness of feature matching, such as SuperPoint [10] and D2Net [11]. How-
ever, the efficiency problem of deep-learning-based methods is an obstacle for practical
applications, especially for mobile devices.

Due to the different characteristics of event cameras, feature tracking on event flow
follows different paradigms. A practical way is to convert event flow to event frames. Usu-
ally, events are collected in a temporal window to form event frames, and then, traditional
feature tracking paradigms can be applied [12,13]. To improve efficiency and accuracy,
different event-to-frame transformations and feature-tracking methods are proposed [14].

Event-to-frame transformation is the first step for event-frame-based feature tracking.
Time-surface (TS) is a kind of global 2D surface using exponential decay kernel [15] to
emphasize events happening recently. Another global method is Event Map, proposed
by Zhu et al. [12], to project the events in a selected spatio-temporal window on frames
directly. Surface of active events (SAE) is a local form of processing 3D spatio-temporal
domain that pays attention to the most recent event at each pixel [16]. Normally, feature
detection on TS or SAE is more accurate than direct methods, as the response of events
happening recently is larger. However, computational complexities of direct methods are
much lower than that of TS or SAE. Besides, TS or SAE needs more memory, as at least
floats are needed in event frames.

A number of event-camera-based feature-detection and tracking algorithms focus-
ing on improving accuracy and efficiency have been proposed. Li et al. [17] proposed
SAE-based FA-Harris corner detection algorithm directly on asynchronous events instead
of event frames. Alzugaray et al. [18] proposed Arc* detector based on modified SAE
filtering and subsequently proposed HASTE (multi-Hypothesis Asynchronous Speeded-up
Tracking of Events), which purely tracked feature on an asynchronous patch using multi-
hypothesis [19]. Tedaldi et al. [13] detected Harris features in intensity images and then
used ICP (Iterative Closest Point) method to establish correspondences. Zhu et al. [12]
proposed an affine transformation based Expectation-Maximization (EM) algorithm to
align two patches in the consequent event frames.

The fusion of event frames and intensity images provides benefits for feature tracking.
Gehrig et al. [20] proposed an event-camera-based tracker, which optimized brightness
increment differences from intensity images and event flows. Dong et al. [21] proposed
a template-based feature-tracking method to improve the robustness. They predicted
feature-tracking solutions with events and used intensity to correct them. The calculation
burdens of these methods cannot be ignored due to their high algorithm complexities. It
is observed that only a few features are set to be tracked in these algorithms to ensure
real-time performances, affecting the applications of high-level tasks.

Some high-level applications potentially achieve feature tracking by reconstructing 3D
geometry. Usually, 3D coordinates of features act as prior information for feature tracking,
as they can be projected to the image plane with predicted poses. Zhou et al. [3,22] tracked
the pose of a stereo event camera and reconstructed 3D environments by minimizing
spatio-temporal energy. Liu et al. [23] proposed spatial-temporal registration algorithm as a
part of event-camera-based pose-estimation method. However, the performance of feature
tracking and quality of high-level tasks (e.g., pose estimation, scene reconstruction) are
closely related. Multiple factors affect feature-tracking accuracy. Moreover, computational
burdens will increase with higher algorithm complexity.

In summary, feature tracking on event frames has efficiency and accuracy problems:
(1) Tracking efficiency is low due to characteristics of event cameras and designed algo-
rithms. The number of trackable feature points is small, which affects the stability of
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high-level tasks. (2) Purely tracking features on events easily cause accuracy problems.
Although multiple sensor-fusion-based feature tracking has been proposed, the efficiency
and accuracy problems still need to be further explored with all available information.

3. Methodology

The incoming data stream for an event-camera-based localization or mapping system
is illustrated in Figure 1 as the basic input assumption of the proposed method. Event
flow, intensity images, and inertial information will be received asynchronously. Note
that polarity information of event flow is not a must for the proposed method. Normally,
intensity images and inertial information have equal time intervals. If no dynamic objects
are in the scene, event flow potentially represents carrier motion, and the “frequency”
of event frames is not even if a constant number of events are collected. Therefore, the
proposed method cannot predict the resource of the next input.

Figure 1. Different frequency of intensity images, event frames, and inertial updates.

Another characteristic of the data stream is that features are only detected on intensity
images. Since each intensity frame will be attached with an event frame (see Section 3.2),
the features to be tracked are directly projected to event frames with the same position.

The implementation of the proposed method can be illustrated in Figure 2. Firstly,
IMU provides angular velocity wt for feature rotation prediction, which acts as priors for
KLT tracking and MHT-BP. Secondly, event flow is accumulated to generate event frame
Ft for practical applications. Feature-detection module provides the positions of features
for initialization, and features will be also re-detected if the number or the distribution
score [24] of features are less than the threshold. Thirdly, with the assistance of rotation
prediction from IMU, the method assigns MHT-BP for event frame Ft and KLT tracking
for intensity image It. The weighted fusion mechanism will fuse their solutions. The
tracking solution is outputted by MHT-BP or weighted fusion module depending on the
applications. After the feature-tracking process is over, the method will automatically
add detected features if the number or the distribution score [24] of features are not large
enough. Shi-Tomasi corner feature point [25] was chosen as the feature to be tracked. Note
that the proposed method is not limited to feature types and can be extended by other
features, such as FAST [26].

Figure 2. Flowchart of data stream and the proposed method WF-MHT-BP.
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3.1. Inertial-Aided Rotation Prediction

According to the work of [27,28], the relationship between tracked features in two
consecutive images can be approximated by Equation (1) considering the small translation
relative to depth.

upred = KRK−1ulast (1)

where K is the intrinsic matrix, and upred and ulast are 2D positions of the tracked feature
and the predicted feature, respectively. The rotation matrix R can be integrated from
angular velocity information wt [27] as shown in Figure 2. upred will acts as the predicted
feature position for the tracking.

3.2. Event-to-Frame Transformation

In this method, the generation of event frames follows that of Event Map instead of
TS or SAE. Since TS- or SAE-based event-frame-generation method involves exponential
computing, it is thus not used to reduce computing complexity.

Event-to-frame transformation follows two modes as shown in Equation (2): One is
collecting a constant number τFixNum events. The events are projected on the image plane
to form a binary image. Absence and presence of events within the temporal window are
expressed by 0 and 1, respectively.

Another way is by the timestamps of intensity images. If one intensity image has been
received, the events between the timestamp of last frame (intensity frame or event frame)
and current timestamp, which is represented by τFixTime, will be collected. That is, each
intensity image has an attached event frame. This will cause one potential problem: If the
number of events is too small, the generated event frame will be too sparse for reliable
feature tracking. However, this situation will be alleviated by the following integration
from intensity image:

Π(x, y) =
{

1
0

i f event(x, y, t) ∈ τFixNum or τFixTime
others

(2)

3.3. Affine Transformation-Based Multiple Hypothesis Testing for Batch Processing (MHT-BP)

The work of [19] proposed five hypotheses purely based on event flow, which are Null,
East, North, West, and South hypotheses. Firstly, a template and a model are generated from
a time window on event flow. Then the alignment score that quantifies their differences is
calculated to guide the selection of the above-mentioned five hypotheses.

Inspired by the work of [19], a batch processing-based multiple hypothesis testing
using four-parameter affine transformation model (MHT-BP) is proposed to improve
feature-tracking efficiency. Compared with the five hypotheses in [19], the four-parameter
affine transformation model explores more hypotheses to improve matching accuracy.
Moreover, batch processing is conducted to improve efficiency.

Since with the above-mentioned data stream, the possible minimal “frequency: of
event frames is equal to that of intensity frame, the difference between consecutive frames
is small enough for patch comparison. The small feature motions bring three benefits to im-
prove efficiency and accuracy: (1) neighboring areas near features can provide supporting
regions to make multiple hypotheses; (2) a set of features are able to share the same affine
transformation, and therefore, batch processing can be conducted to improve efficiency;
and (3) the search range of four parameters in the affine transformation model can be small.

The four-parameter affine transformation model is applied to generate multiple hy-
potheses. α, θ, Δx, and Δy represent the variation on scale, rotation, and translation on
X and Y, respectively. The four parameters between affine transformation are shown in
Equation (3).

TA f f =

⎛⎝ α cos θ −α sin θ Δx
α sin θ α cos θ Δy

0 0 1

⎞⎠ (3)
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The illustrative example of MHT-BP is illustrated in Figure 3 given two event frames
Ft and Ft+1. A patch on Ft containing a set of features are selected with the four-parameter
affine transformation model. The patch is transferred to generate multiple hypotheses;
that is, each hypothesis corresponds to an affine transformation. After Gaussian blur, their
differences are indicated by sum of absolute differences (SAD). The affine transformation
model with minimum distance is chosen to establish correspondences between the two
patches. This process will go on until all the features are involved.

Figure 3. Illustrative example for multiple hypothesis testing with four-parameter affine transforma-
tion model.

3.4. Weighted Fusion Using Event/Intensity Information

MHT-BP is essentially a template-matching method purely using event information,
which suffers from drift problems. Due to the high “frequency” of event frames, the mature
KLT tracking results between intensity frames can guide the correspondence establishment
between event frames. A constant-velocity model is used to re-predict the tracking solutions.
A weighted fusion method is proposed to correct the drift and thus improve the accuracy.
This provides two options for real-time processing and post processing. For real-time
processing, features can be obtained from MHT-BP. For the post-processing tasks, such as
bundle adjustment (BA) and SfM, poses and structure calculated from tracked features of
event frames can still be obtained in a delayed manner.

As illustrated in Figure 4, the first row is one event frame sequence, and the second
one is one intensity image sequence. The black dots and blue dots are detected features
that share the same position. MHT-BP provides tracking solutions on each event frame.
Due to the blurring effects of event frames, tracking solutions from MHT-BP suffer from
drift problems. Drifts represented by uncertainties (shown in Figure 4) increase with
time. However, since KLT tracking on the intensity sequence uses texture information,
the increasing rate of drift is lower than that of MHT-BP through our tests. Therefore, the
weighted fusion mechanism can reduce the drift error.

Firstly, the stochastic model of MHT-BP and KLT is expressed by σF and σI , respec-
tively, as Equations (4) and (5). The uncertainty is related to time and tracking quality.

σ2
F = βΔt (4)

σ2
I = δΔt (5)

where Δt is time period from the timestamp of first intensity image. β and δ are drift in
the unit of pixel per second, which can adjust the weights for fusing the solutions. The
parameters need to be reasonably and empirically defined.

Secondly, the velocity of optical flow from KLT tracking is assumed to be constant
due to the small-motion assumption. If event frames exist between two intensity images,
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feature-tracking solution can be linearly estimated on virtual intensity frame, such as It−Δt1
and It−Δt2 (see the dotted border of the second row in Figure 4) using Equations (6) and (7).

xti
KLT = Δx· ti

Δt
(6)

yti
KLT = Δy· ti

Δt
(7)

where Δx and Δy represent feature displacements between It−1 and It on the x and y axis,
respectively. Δt represents the time period between It−1, and It. ti represents consumed
time period from t − 1.

Thirdly, with above-mentioned stochastic model and constant-velocity model, the
weighted fusion can be conducted by using Equations (8) and (9). As shown in Figure 4,
the red dots on last row show the result of weighted fusion.

xti
Fuse =

σ2
F·xti

Event + σ2
I ·xti

KLT
σ2

I + σ2
F

(8)

yti
Fuse =

σ2
F·yti

Event + σ2
I ·yti

KLT
σ2

I + σ2
F

(9)

The weighted fusion of MHT-BP and KLT solutions is named as WF-MHT-BP. Like
the normal feature-tracking algorithm, it also detects new features after processing one
event frame when the number of tracked feature or the distribution score is less than
the threshold.

Figure 4. Illustration of the weighted fusion method for MHT-BP and KLT.
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The proposed WF-MHT-BP can be summarized as Algorithm 1. Facing the struc-
ture of data stream shown in Figure 1, firstly, the inertial information is used to predict
feature-tracking rotation. Then, if an event frame arrives, MHT-BP will purely use event
information to generate tracking solutions. If an intensity image arrives, the proposed
algorithm (WF-MHT-BP) can provide tracking solutions by fusing tracking solutions of
KLT and MHT-BP. It should be noted that both MHT-BP and the proposed algorithm are
able to output tracking solutions depending on when tracking solutions are needed.

Algorithm 1: Feature-tracking method based on integration of event, intensity and inertial
information (WF-MHT-BP)

Input: Event ={x,y,t}, τFixNum, τFixTime, search range of α, θ, Δx, Δy, β, δ. Intensity image I,
angular velocity w, and threshold for feature detection Θ and Θsco
Output: Tracking solutions on the current intensity or event frame
1 Predict feature rotation using Equation (1) with angular velocity w
2 Generate event frame Ft by using Equation (2) with τFixNum and τFixTime
3 If an event frame Ft is received, then

4 Track features using MHT-BP with search range α, θ, Δx, Δy
5 If tracking solutions are needed, then

6 Ouput tracking solutions on event frame Ft
7 If an intensity frame It is received, then

8 Perform KLT tracking between It and It−1
9 Perform weighted fusion of tracking solution from KLT and MHT-BP
10 If NumOfTrackedFeature ≤ Θ or DistributionScore ≤ Θsco, then

11 Perform Shi-Tomasi detection on It
12 If tracking solution is needed, then

13 Output tracking solutions on intensity frame It

4. Experiments

The experiments chose 16 datasets from an event camera dataset publicly provided by
University of Zurich [29], which uses a DAVIS 240C from Inivation, Zurich, Switzerland. It
provides events flow, intensity images, and IMU measurements. The resolution of intensity
images is 240 × 180. WF-MHT-BP runs on MATLAB platform in a computer with I5-10400F
and 16 GB memory.

The input parameters are summarized in Table 1. τFixNum is set as 3000, which means
when 3000 events arrive, an event frame will be generated. That is, an event frame will be
formed once the number of events reaches 3000. α, θ, Δx, and Δy define the search range
of affine transformation as illustrated in Equation (3). β and δ are drift in the unit of pixel
per second used in Equations (4) and (5). Θ and Θsco are set as 40 and 0.15, respectively,
which means if the number or distribution score of tracked features is less than 40 or 0.15,
Shi-Tomasi detection will be conducted to improve the number of newly detected features.

Table 1. Input parameters for the proposed method.

Input Parameters Value

τFixNum 3000
α (0.95, 1.05)
θ (–5◦, 5◦)

Δx (pixel) (–5, 5)
Δy (pixel) (–5, 5)
β (pixel/s) 5
δ (pixel/s) 2

Θ 40
Θsco 0.15
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The state-of-the-art methods are chosen from open-source event-frame-based feature
tracking methods. One is probabilistic data association-based tracking (PDAT) method
proposed by Zhu et al. [12]. The publicly available implementation is used. Another
is ICP-based feature-tracking algorithm (High Temporal Resolution Tracking algorithm,
HTRT) based on the work of Tedaldi et al. [13]. Since there are no original implementation
provided by the authors, an implementation by a third-party is used (https://github.com/
thomasjlew/davis_tracker, accessed on 29 February 2022). The modifications are made to
provide better performances for the comparison. ICP maximum iterations is changed to 3.
The feature is changed to Shi-Tomasi feature, which is the same with WF-MHT-BP.

Compared with purely using event information in the above-mentioned methods,
EKLT in C++ version, which integrates event and intensity information, is also compared
in accuracy, efficiency, and feature-tracking length. Since the proposed algorithm is imple-
mented in MATLAB version, which is normally slower than C++, the performance of EKLT
is listed as a reference.

Firstly, MHT-BP, which is the internal parts of WF-MHT-BP, is compared with an open-
source template-matching method to show its improved efficiency and comparable accuracy.
Then WF-MHT-BP is compared with PDAT, HTRT, and EKLT in tracking accuracy and
efficiency. Finally, the feature-tracking length is compared between EKLT and WF-MHT-BP.

4.1. Feature Tracking Accuracy and Comparison between MHT-BP and FasT-Match

The goal of feature matching on event frames is to find the affine transformation in
small ranges between consecutive frames. FasT-Match [30] was chosen as the baseline to
compare the efficiency and patch matching error, as it achieves the same goal with MHT-
BP. Moreover, it is a template-patch-matching-based method with similar control flow as
MHT-BP. The difference of MHT-BP and FasT-Match are: (1) MHT-BP uses a simplified
affine transformation model, but Fast-Match uses more complex transformation model
with six parameters. (2) Batch processing is used in MHT-BP, but FasT-Match does not
have the mechanism. (3) FasT-Match has a branch-and-bound search strategy to find
the parameters in the transformation model, but MHT-BP does not use strict termination
conditions to improve efficiency. FasT-Match are implemented in MATLAB, which is the
same with MHT-BP. “shapes_rotation” was chosen for efficiency and template-matching
error comparison.

Small, average normalized patch errors (NPE) mean higher similarities between two
patches. Figure 5 shows the cumulative distribution function(CDF) of NPE and consumed
time. The curve of MHT-BP and FasT-Match is very similar. Average NPEof FasT-Match
and MHT-BP are 0.049 and 0.041, respectively, which means both of their matching errors
are very small, and their differences can be ignored compared with the error ranges (0, 1).
The mean consumed time of MHT-BP and FasT-Match is 3.53 ms and 80.40 ms, respectively.
The consumed time of MHT-BP is much lower than FasT-Match. The reason for the
acceptable error and reduced computational complexity is MHT-BP has the mechanism
of batch processing and four-parameter affine transformation to improve accuracy and
efficiency. It can be concluded that the majority of normalized patch errors by FasT-Match
are slightly lower than that of MHT-BP method. However, the consumed time for MHT-
BP is much lower than that of FasT-Match, which shows around a 10×–20× increase in
speed. Although matching error of MHT-BP increased by around 19% compared with
FasT-Match (0.049 vs. 0.041), the matching error is corrected in a timely manner by KLT
tracking in WF-MHT-BP in the next step. Therefore, MHT-BP is chosen as the internal part
of WF-MHT-BP.
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Figure 5. CDF of normalized patch error and consumed time for MHT-BP and FasT-Match.

4.2. Feature-Tracking Accuracy Comparison

Figure 6 shows feature-tracking solutions from the proposed method. The traces of
tracked features are projected on the first intensity image to show the matching results.
The 16 datasets with different scenarios of lighting, objects, and motion are compared in
feature-tracking accuracy.

Figure 6. Illustration of feature tracking solutions from WF-MHT-BP (Each subgraph show the
trajectories of tracked features projected on the first intensity image).
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Both MHT-BP and WF-MHT-BP will generate tracking solutions. The solutions be-
tween frames are filtered by fundamental matrix based RANSAC (RANdom SAmple
Consensus). For the parameters for RANSAC-based fundamental matrix, Sampson dis-
tance threshold is set as 0.1. The inlier ratio is used as the indicator for tracking accuracy.
PDAT and HTRT follow in the same way. However, EKLT corrects tracking solutions from
event information when an intensity frame arrives, and the inlier ratio between intensity
frame is used.

For each dataset, the average inlier ratio is calculated as shown in Table 2. Note that
the inliers from RANSAC are not used for the next feature-tracking process. For each
method, different scenes with different light, object, and motion settings have different
average inlier ratios. It is interesting to find that inlier ratio of HTRT for all the datasets
is around 50%. The inlier ratio of PDAT ranges from 38.19% in “hdr_poster” scenario to
80.80% in “shapes_transaltion” scenario. In the scenario of “boxes”-, “hdr”-, and “poster”-
related scenarios, inlier ratio of PDAT decreases rapidly, showing the difficulty from
environmental factors.

Table 2. Inlier ratios of PDAT/HTRT/EKLT/WF-MHT-BP methods.

Dataset PDAT HTRT EKLT WF-MHT-BP

shapes_rotation 80.11% 52.94% 85.64% 97.16%
shapes_translation 80.80% 52.38% 89.83% 93.54%

shapes_6dof 80.36% 52.17% 84.74% 94.41%
boxes_rotation 41.97% 51.61% 85.99% 99.97%

boxes_translation 43.94% 51.52% 85.27% 99.98%
boxes_6dof 42.49% 51.85% 84.96% 99.85%

outdoors_running 55.06% 51.72% 98.86% 98.04%
outdoors_walking 77.92% 53.57% 95.54% 99.18%
dynamic_rotation 65.32% 50.84% 87.53% 99.95%
dynamic_translation 63.57% 50.62% 84.14% 99.93%

dynamic_6dof 70.66% 50.42% 84.74% 99.78%
poster_rotation 43.73% 51.22% 91.35% 99.38%

poster_translation 49.34% 50.84% 91.04% 99.96%
poster_6dof 41.65% 50.74% 87.20% 99.87%
hdr_poster 38.19% 50.57% 84.43% 99.94%
hdr_boxes 46.31% 50.70% 90.95% 99.86%
Average 57.59% 51.48% 88.26% 98.80%

The inlier ratio of EKLT is much better than PDAT and HTRT, which reaches 88.26% on
average. WF-MHT-BP achieves the highest inlier ratio for all datasets. The main differences
between EKLT and WF-MHT-BP are: (1) EKLT uses gradients to track features on event
frame without batch processing, but MHT-BP in the proposed method uses four-parameter
affine transformation for feature tracking in the way of batch processing. (2) WF-MHT-BP
uses inertial information to predict the positions of features, while EKLT does not use
inertial information. (3) KLT only correct drifts on arrived intensity images. WF-MHT-BP
uses a simple and efficient fusion mechanism to correct tracking solutions from MHT-BP
and current positions of tracked features. Therefore, the main reason is that WF-MHT-BP
integrated all available factors for feature tracking, making tracking solution more accurate.

4.3. Feature-Tracking Efficiency Comparison

The efficiency of WF-MHT-BP is compared with PDAT, HTRT, and EKLT since they
have different numbers of initialized features, which is meaningful for real applications,
as lower time complexity will lead to more abundant time for frame processing. Since
different methods have a different number of tracked features, the efficiency is quantified
by the consumed time per tracked feature TPerFea, which is calculated as:

TPerFea =
TPerFrm

NNumFea
(10)
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where TPerFrm is the consumed time on each frame, and NNumFea is the number of tracked
features on each frame. Note that all the visualization parts of all algorithms are closed to
ensure accurate consumed-time statistics.

As shown in Table 3, HTRT has the highest computational complexity, which reaches
1062 ms for tracking one feature in “dynamic_rotation” scenario, which is not practical for
real-time high-level tasks. EKLT still needs tens of milliseconds to track one feature between
two intensity images. PDAT consumes less time to track one feature point than EKLT, but
in the scenario of “dynamic_translation” and “outdoors_walking”, it reaches 56 ms and
52 ms, respectively. WF-MHT-BP achieves the best efficiency among the four feature-
tracking methods, which generally improves the efficiency by approximately three orders
of magnitude compared with PDAT and EKLT and four orders compared with HTRT.

Table 3. The consumed time per tracked features of PDAT/HTRT/EKLT/WF-MHT-BP methods
(unit: ms).

Dataset PDAT HTRT EKLT WF-MHT-BP

shapes_rotation 47 469 28 1.00
shapes_translation 48 417 29 1.20

shapes_6dof 56 356 25 0.62
boxes_rotation 14 405 62 0.22

boxes_translation 13 390 68 0.15
boxes_6dof 14 637 66 0.36

outdoors_running 23 473 52 0.45
outdoors_walking 52 151 15 0.47
dynamic_rotation 24 1062 75 0.25
dynamic_translation 56 759 54 0.33

dynamic_6dof 23 566 66 0.19
poster_rotation 16 440 47 0.59

poster_translation 18 290 58 0.28
poster_6dof 12 777 69 0.13
hdr_poster 12 367 85 0.42
hdr_boxes 12 214 62 0.18
Average 27.8 485.8 53.8 0.43

The main reason for high computational complexities of PDAT and HTRT is that the
registration between two patches is done one by one. Besides, EM (Expectation Maximiza-
tion) and ICP algorithms used in these methods are not suitable for real-time processing.
Another reason for the high time consumption of HTRT is that the related event information
to be processed needs to be searched from external memory for every event frame. The time
consumption is at approximately the same level with EKLT at the beginning. As feature
tracking continues processing, the time consumption becomes larger, resulting in the larger
overall time consumption.

For EKLT algorithm, it involves the complex optimization of object function for
tracking error and also does not have a batch-processing mechanism. Therefore, their
consumed time is much larger than WF-MHT-BP. The efficiency problem is optimized in
WF-MHT-BP by the batch-processing mechanism and simple loose integration with KLT
tracking solution, which enables the lowest computational complexity of WF-MHT-BP.

4.4. Feature-Tracking Length Comparison

Feature-tracking length is another important indicator for feature tracking especially
in VO or SLAM since the improved continuity of features can give more constraints for
estimating poses or constructing maps. Without re-detecting features, feature-tracking
length is quantified by the time period between the timestamp of first frame and the time
when the number of tracked features decreases to 10% of the initial one. Due to the high
computational complexity, HTRT is not further compared in its feature-tracking length.
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The result is shown in Table 4: PDAT shows limited feature-tracking ability on tracking
length, which means 90% of initialized feature can only last for 0.35 s. Its main difference
with the other two methods is it purely uses event information for feature tracking, which
can easily lose tracked features.

Table 4. Average duration of one track for PDAT/EKLT/WF-MHT-BP methods (unit: s).

Dataset PDAT EKLT WF-MHT-BP

shapes_rotation 0.69 3.30 1.92
shapes_translation 1.58 6.82 6.93

shapes_6dof 1.21 6.73 5.70
boxes_rotation 0.01 3.02 2.70

boxes_translation 0.22 3.65 3.93
boxes_6dof 0.14 4.05 4.41

outdoors_running 0.16 1.58 4.52
outdoors_walking 0.46 3.45 4.70
dynamic_rotation 0.55 2.39 3.24

dynamic_translation 0.15 2.91 4.48
dynamic_6dof 0.31 2.75 4.96
poster_rotation 0.01 2.76 0.69

poster_translation 0.03 3.38 2.62
poster_6dof 0.03 5.89 3.89
hdr_poster 0.05 4.84 2.57
hdr_boxes 0.05 1.89 3.35
Average 0.35 3.71 3.78

WF-MHT-BP and EKLT show similar feature-tracking length statistics, showing the
superiority in integrating the measurement from two sensors. The commonality between
the two methods is that intensity information is used to correct the feature-tracking drifts
from event information, which is helpful to continue tracking features.

5. Concluding Remarks

This paper proposes a loosely integrated feature tracking method on event frames
using event, intensity, and inertial information to improve the accuracy and efficiency
problem. MHT-BP, which involves four-parameter affine transformation and batch pro-
cessing, is proposed to achieve fast and short-term feature matching. Then, a weighted
fusion algorithm involving the constant velocity model and the stochastic model for drifts
is proposed to reduce drifts. Next, it corrects the drift by weighted fusion in the way of
post-processing, which is still meaningful for event-camera-based applications, such as
SfM and SLAM.

MHT-BP is compared with FasT-Match, showing better efficiency at the expense of
slight accuracy decline. In comparison with three state-of-the-art methods, including both
event-information-based methods (PDAT and HTRT) and one multiple-sensor fusion-based
method (EKLT), WF-MHT-BP shows the significant superiority on accuracy and efficiency
and comparable feature-tracking lengths with EKLT.

In the future, the work can be refined and extended in the following aspects: First,
feature detection is still conducted on intensity frames in the initialization and re-detection
stage. If more features are needed, but intensity images have not arrived, the accuracy of
high-level tasks, such as VO and SLAM, may be affected. Therefore, feature detection on
event frames still needs to be further explored. Second, the final goal of event-frame-based
feature tracking is to improve the robustness in challenging environments or motions.
Thus, future work will focus on the application of WF-MHT-BP on high-level tasks, such as
event-camera-based localization and mapping applications.
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Abstract: Currently, eLoran is the ideal backup and supplement for global navigation satellite
systems. The time synchronization accuracy between stations in the eLoran system has improved,
providing conditions for eLoran pseudorange positioning. The pseudorange positioning of eLoran is
a nonlinear least-squares problem and the location of the eLoran transmitting stations may cause
the above problem to be non-convex. This makes the conventional pseudorange positioning al-
gorithm strongly depend on the initial value when solving the eLoran pseudorange positioning.
We propose a shrink-branch-bound (SBB) algorithm to solve the eLoran pseudorange positioning
initialization problem. The algorithm first uses a shrink method to reduce the search space of the
position estimator. Then, optimization is performed using a branch and bound algorithm within
the shrunk region, where a trust region reflective algorithm is used for the lower bound process.
The algorithm can help the receiver to complete the initial positioning without any initial value
information. Simulation experiments verify that the algorithm has a success rate of more than
99.5% in solving the initialization problem of eLoran pseudorange positioning, and can be used as
an initialization algorithm for pseudorange positioning problems for eLoran or other long-range
terrestrial-based radio navigation system.

Keywords: pseudorange positioning; branch and bound; nonlinear least squares; eLoran; trust region
reflective algorithm; initialization

1. Introduction

Global navigation satellite system (GNSS) provides all-weather, all-day positioning,
navigation, and timing (PNT) services in most outdoor environments. However, in cities
or canyons, GNSS performance can degrade due to multipath or poor visibility [1–3]. In
addition, the high vulnerability of GNSS to interference also seriously affects the security
of PNT services [4–6]. Many algorithms have been developed to mitigate the performance
degradation of GNSS receivers in dynamic multipath environments [7–10]. However,
these algorithms can only improve receiver performance under certain conditions, and
it is still difficult for GNSS receivers to work properly in scenarios with fewer visible
satellites, such as cities or canyons. Geomagnetic, Wifi, Doppler, and pseudolite-based
positioning technologies have been developed for GNSS denial scenarios [11–14], but these
technologies can only provide positioning services in small areas, which cannot meet the
positioning requirements of large cities or canyon scenes. In recent years, the eLoran
system has regained attention due to its unique system performance, which is expected
to solve the existing problems of GNSS [15,16]. The eLoran system is a terrestrial-based
radio navigation system that transmits navigation information through a pulse signal with
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a carrier frequency of 100 kHz. The signal frequency band transmitted by the eLoran
system is low and the transmission power is high. Therefore, the eLoran system has
the advantages of wide coverage and good anti-interference performance, making it a
good backup for GNSS [17–19].The traditional Loran navigation system uses a hyperbolic
positioning method based on the time difference of arrival (TDOA) [20]. The receiver can
only use the stations in a single chain for positioning. Therefore, it has the disadvantage of
poor geometric dilution of precision (GDOP), limiting its positioning accuracy. In addition,
the TDOA observations include delay errors along the two propagation paths, which makes
it difficult to measure and remove abnormal propagation delays. This positioning method
cannot directly solve the clock deviation between the receiver and the transmitting station.
The eLoran positioning method is based on pseudorange measurement and uses a circular
positioning method based on the time of arrival (TOA). This method has the following
advantages. First, the receiver uses the signals of multiple chains and multiple stations for
positioning, which significantly improves the GDOP factor. Second, the receiver can directly
complete the clock error calculation. Third, it can be easily integrated with the wireless
positioning system, which helps build an integrated world-ground PNT system [21,22].
Due to limited conditions, the eLoran positioning failed to attract attention in the past. With
the transformation and upgrading of eLoran stations, the time between stations in different
chains has been synchronized to Universal Time Coordinated (UTC) through technologies
such as optical fiber, and the time synchronization accuracy reaches the nanosecond level,
providing the basis for the use of eLoran positioning technology. In addition, the application
of digital technology in eLoran receivers has improved their sensitivity, which allows them
to receive signals from multiple chains and stations simultaneously. Owing to this technical
background, the Loran positioning method has regained attention in recent years.

Groves briefly introduced the Loran pseudorange positioning method and pointed
out that it was processed by analogy with GNSS-related methods [23]. Yan analyzed the
feasibility of Loran pseudorange positioning and the influence of additional secondary
factor (ASF) errors on various errors in pseudorange positioning [24]. Kim used the eLoran
pseudorange measurements from multiple chains for positioning and performed real-world
testing [25]. Peterson and Fang studied the integrated positioning of eLoran and GNSS and
pointed out that eLoran pseudorange positioning is a necessary condition for integrated
positioning [22,26]. In the above-mentioned literature, eLoran pseudorange positioning
is regarded as a nonlinear least squares problem, and local optimization algorithms such
as Newton-Raphson algorithm (NR) are used to solve it. However, the eLoran system
is not specifically designed for pseudorange positioning, and the location of the eLoran
transmitting station may make the problem non-convex. In addition, the nonlinear term
in the eLoran pseudorange function is a complex nonlinear function with trigonometric
functions, which may cause an ill-condition problem when using the first-order or second-
order derivation information to optimize the objective function. Therefore, for many
existing nonlinear least squares algorithms, when the selected initial values are inaccurate,
convergence problems to local solutions or erroneous convergence results occur. This
initial value dependence affects the ability of the receiver to locate autonomously and
causes the receiver to experience localization errors under cold start. At present, there is
no literature on the problem of eLoran pseudorange positioning under insufficient initial
value information.

This study proposes a shrink-brand-bound (SBB) algorithm to solve the eLoran pseu-
dorange positioning problem. The algorithm first obtains the shrunk region of the esti-
mator through the shrink algorithm. The positioning problem is then solved within this
compressed feasible region using a branch-and-bound algorithm, where a trust region
reflective algorithm is used for each bound process [27,28]. The SBB algorithm has a global
optimization capability and can achieve accurate positioning solutions without initial
value information. The algorithm avoids the problem faced by the traditional nonlinear
least-squares method by relying on the initial value when solving the Loran pseudor-
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ange positioning, which further improves the Loran positioning technology based on
pseudorange measurement.

The rest of the paper is organized as follows. In Section 2, first, we describe the eLoran
pseudorange measurement method and the error in the pseudorange. Then, we build a
mathematical model of the eLoran pseudorange positioning and analyze the shortcomings
of the NR algorithm in solving it. The principle of the SBB algorithm and the details of each
part of the algorithm are introduced. In Section 3, we evaluate the performance of the SBB
algorithm and other nonlinear least squares algorithms in solving the eLoran pseudorange
positioning problem without initial value information through simulation experiments.
Finally, we present the main conclusions of this paper.

2. Materials and Methods

In this section, we first introduce the pseudorange measurement technology and
the error in the pseudorange. Secondly, we construct the mathematical model of eLoran
pseudorange positioning and analyze the advantages and disadvantages of the traditional
NR algorithm. Finally, we give the principle of the SBB algorithm and the details of each
part of the algorithm.

2.1. Principle of eLoran’s Pseudorange Measurement and Error Analysis

The eLoran positioning technology based on pseudo-range measurement includes
two parts: pseudorange measurement technology and positioning algorithm. This section
briefly describes the basic principles of pseudorange measurement technology and the
error analysis in pseudorange measurement.

The basic principle of eLoran pseudorange measurement is shown in Figure 1. The
receiver obtains the signal propagation delay or time of flight (TOF) by measuring the
difference between the signal time of arrival (TOA) and the signal time of transmission
(TOT). Usually, a certain characteristic point on the eLoran signal is selected as the TOT, such
as the initial point or the zero-crossing point in the third circle. The TOA is obtained through
the process of a group repetition period, carrier synchronization, and cycle identification.
More details can be found in the references [24,29,30].

Figure 1. Schematic of eLoran pseudorange measurement principle.

The eLoran signal is mainly propagated by ground waves and its propagation process
is affected by terrain, weather, and other conditions. Interference and noise also affect
the TOA measurement during the receiver measurement process, so the TOF, which
contains various additional time delay items, is not the true distance [31,32], as shown in
Equation (1):

TOF = TOA − TOT = TP + ΔASF(t) + δtb + ta + η(t), (1)
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where δtb is the clock deviation between the receiver and the transmitting station, ta is
the receiver delay, η(t) is the delay deviation caused by interference and noise in the TOF
measurement process, and ΔASF(t) is the time-related delay due to the ground wave
propagation process time-varying factors such as weather. TP is the delay term related to
the propagation path as in Equation (2)

TP = PF + SF + ASF, (2)

where PF is the propagation delay of the signal through the atmosphere and is represented
by Equation (3)

PF =
s · ns

c
, (3)

where c is the speed of light in vacuum, s is the distance between the signal from the
transmitter to the receiver; ns is the refractive index of the atmosphere, which represents
the ratio of the signal propagation speed in the atmosphere lower than the propagation
speed in a vacuum. SF is the propagation delay of the signal through the entire seawater
path, which is mainly related to the conductivity of the propagation path. ASF represents
the propagation delay of eLoran signal caused by passing through a heterogeneous path
of non-full seawater, which is mainly affected by parameters such as distance, surface
impedance of the propagation path, and topography. ASF is an important factor affecting
the positioning accuracy of eLoran, and it is often calibrated by eLoran differential station
or ASF map [33–36].

In Equation (1), η(t) and ΔASF(t) are time-related delay items, which are difficult
to calibrate. Figure 2 shows the statistical graph of the raw TOF value obtained by the
receiver over time. The signal in the picture was transmitted from the Pucheng transmitting
station (109.5438◦E, 34.95043◦N) and received in Lintong (109.2221◦E, 34.3686◦N). The
fluctuation of the blue line in Figure 1 represents the TOF, which is affected by noise
interference and its standard deviation is approximately 9 ns. The red line is the fitted curve
of the data shown in blue, representing the fluctuation value with a standard deviation
of approximately 10 ns. In order to present these time delays more clearly, we use the
Fourier transform to analyze the spectrum of Figure 2a [37], and the obtained spectrum
amplitude is shown in Figure 2b. In Figure 2b, we omit the spectrum after 0.001 Hz because
its amplitude is too small. Among them, the amplitude at the lowest frequency is about
12 ns, which represents the deviation of the fitted curve in Figure 2a, that is, the delay
introduced by ΔASF(t). Other amplitudes due to measurement noise or interference are
around 6 ns. As regards the delay error caused by measurement noise and interference η(t),
it is difficult to correct, so we uniformly regard it as noise. The error caused by ΔASF(t) is
often as high as more than 10 ns, so in high-precision eLoran positioning applications, the
ASF prediction model is often used for calibration.

The propagation delay error calibration technology is essential for achieving high-
precision positioning. There has been considerable research on this aspect [38–40]. Now
consider the situation after the delay value is calibrated:

TOFc = τ + δtb + η(t), (4)

where TOFc is the calibrated TOF, τ is the time delay value of the signal from the trans-
mitting station to the receiver, δtb is the clock deviation between the receiver and the
transmitting station, η(t) is the observation error introduced by the receiver due to time-
varying factors such as interference, noise and ΔASF(t). The ta, SF and ASF in Equation (1)
were calibrated. Multiplying both sides by the speed of light is the following pseudorange
observation equation:

ρ = Rd + ρb + η, (5)

where ρ is the pseudorange observation value of the station received by the receiver, Rd
is the distance between the transmitting station and the receiver, ρb is the distance error
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caused by the clock deviation between the receiver and the transmitting station, and η is
the distance error representing all other errors that are difficult to calibrate.

(a) (b)

Figure 2. The schematic diagram of measured propagation delay. (a) time delay in time domain
(b) the amplitude spectrum of delays in the frequency domain.

It is worth noting that the eLoran signals mainly propagate through ground waves,
and the transmitter and receiver are usually not within the line-of-sight range, so Rd cannot
be calculated directly using the Euclidean distance formula but needs to be calculated using
the great circle distance. The great circle refers to the shortest distance between two points
on the surface of a sphere or ellipsoid. The Andoyer–Lambert formula is commonly used
in the navigation field to calculate the distance between two points on the earth [41,42].
Suppose the position of the i-th station of eLoran is

(
λi, ϕi), and the position of the receiver

is (λ, ϕ). Andoyer–Lambert’s great circle distance formula is:

R(i)
d = aψ(i) + ΔS(i), (6){

cos ψ(i) = sin ϕ(i) sin ϕ + cos ϕ(i) cos ϕ cos(λ − λ(i))

ΔS = a f
4 [

sin ψ(i)−ψ(i)

1+cos ψ(i) (sin ϕ + sin ϕ(i))
2 − sin ψ(i)+ψ(i)

1−cos ψ(i)

(
sin ϕ − sin ϕ(i))2

] , (7)

Among them, λi, ϕi and λ, ϕ are the longitude and latitude of the transmitting station
and the receiver, respectively, and ψi is the geocentric angle between the i-th eLoran station
and the receiver. f and a are the basic geodetic parameters based on WGS-84; the former is
the flattening of the ellipsoid, and the latter is the major axis radius of the reference ellipsoid.

2.2. eLoran Pseudorange Positioning Model and Conventional Positioning Algorithm

The eLoran pseudorange positioning is solving the estimator x =
[

ϕ λ δt
]T .

Since the eLoran positioning is a plane positioning system, we only estimate the longitude λ
and latitude ϕ. The principle of eLoran pseudorange positioning is shown in Figure 3.
Each circle takes the transmitting station as the center and the calibrated pseudorange
observation between point A and each transmitting station as the radius. The circles
represent all possible solutions to the pseudorange observation of Equation (5). Since x

contains three unknowns, the pseudorange observation equations of at least three stations
are required to determine x.
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Figure 3. eLoran pseudorange positioning principle.

When we have no less than three pseudorange observation equations, we obtain x by
solving the following equation set:⎧⎪⎪⎪⎨⎪⎪⎪⎩

ρ(1) − R(1)
d (ϕ, λ)− ρb(δt) = 0

ρ(2) − R(2)
d (ϕ, λ)− ρb(δt) = 0

· · ·
ρ(n) − R(n)

d (ϕ, λ)− ρb(δt) = 0

(8)

The superscript of Equation (7) represents the eLoran station number. Owing to the
existence of noise in the pseudorange observations, Equation (7) is often transformed into
the following least-squares problem:

min{F(x)} = min

{
N

∑
i=1

[
ρ(i) − R(i)

d (ϕ, λ)− ρb(δt)
]2
}

. (9)

Equation (9) is the basic mathematical model of eLoran pseudorange positioning.
The NR algorithm is widely used to solve the above problems. The algorithm linearizes
Equation (9) through Taylor’s formula and transforms it into a linear least-squares problem.
The basic process is as follows:

First, we perform Taylor’s first-order expansion of Equation (9) at xk−1, and obtain:

A · Δx = B, (10)

where

H =

⎡⎢⎢⎢⎢⎢⎢⎣

∂R1
d,k−1
∂ϕ

∂R1
d,k−1
∂λ 1

∂R2
d,k−1
∂ϕ

∂R2
d,k−1
∂λ 1

...
...

...
∂Rn

d,k−1
∂ϕ

∂Rn
d,k−1
∂λ 1

⎤⎥⎥⎥⎥⎥⎥⎦ (11)
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Δx =

⎡⎣ ϕk − ϕk−1
λk − λk−1
δtk − δtk−1

⎤⎦, (12)

B =

⎡⎢⎢⎢⎢⎢⎢⎣
ρ1 −

(
R1

d,k−1 + ρb,k−1

)
ρ2 −

(
R2

d,k−1 + ρb,k−1

)
...
ρn −

(
Rn

d,k−1 + ρb,k−1

)

⎤⎥⎥⎥⎥⎥⎥⎦. (13)

Then, using the linear least-squares algorithm, the result is:

Δx = (HTH)
−1

HT B. (14)

Finally, the state estimator is:

�
x k = xk−1 + Δx. (15)

The advantage of this method is that it is simple, and if a suitable initial value x0 is
selected, the convergence speed is fast and the solution is accurate. However, F(x) is
affected by the geometry of eLoran stations and may have local minima. Consider a special
case, as shown in Figure 4, in which Tr represents the transmitting station, A is the test point,
and the four stations are in linear distribution; a common feature as stations are often built
along the coastline. It can be seen from the contour line of the function F(λ, ϕ) that there is a
local minimum value W in F(x). This means that when using local optimization algorithms
such as the NR algorithm [43] or the Levenberg–Marquardt (LM) algorithm [44] to solve
the above problem, an inappropriate initial point will cause the algorithm to converge to a
local minimum. We will confirm this with a simulation in Section 3. In addition, since the
great-circle distance function contained in the eLoran pseudorange equation is a nonlinear
term with trigonometric functions, which means that the optimization using the first-order
and second-order derivation information of the objective function may face the problem of
ill-condition, thereby converging to an erroraneous result. In view of this, it is necessary
to design a global optimization algorithm to satisfy the positioning solution in the case of
eLoran receiver cold-start.

Figure 4. Contour map of F(ϕ, λ) when the transmitting stations are linearly distributed.
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2.3. The Shrink-Branch-Bound Algorithm

We define the eLoran positioning solution as the following optimization problem:

{x∗|F(x∗) = Fmin(x), x ∈ D}, (16)

where F : D → R is the objective function, and F is defined in Equation (9). D is the feasible
region of x, or search space. λ and ϕ in x have the following constraints

x ∈ D =

{ −π ≤ λ ≤ π,
−π/2 ≤ ϕ ≤ π/2

, (17)

The above boundary constraints represent the range of latitude and longitude coordi-
nates of the earth. Since ρb(δt) and δt have a linear relationship, the selection of the initial
value of δt has no effect on the optimization process, so there is no need to consider the
range of δt. From now on, we will refer D only to the feasible regions of λ and ϕ.

The SBB algorithm is a modification of the BB algorithm for the eLoran positioning
problem. Before introducing the SBB algorithm, the BB algorithm needs to be described
first. To solve the problem P, the BB algorithm first obtains a feasible solution as the
optimal solution

�
x ∈ D through a certain algorithm, and then iteratively divides the search

space D into smaller subsets Ds1, Ds2, . . . , Dsn. In each iteration process, when a solution
x1 with a better objective function value can be found in a subset Dsi, the current solution
is updated to

�
x = x1, and the subset is divided into smaller subsets; the above process is

repeated. If no solution in the subset is better than
�
x , the subset is pruned. When no subset

can be pruned,
�
x is the optimal value of P, and the iteration stops. The pseudocode for the

generic BB algorithm is given in Algorithm 1 [28,45].

Algorithm 1 Generic Branch-and-Bound

1. Set L = {D}, initial x∗ =
�
x

2. While L �= Ø
3. Select a subproblem Ds from L to explore

4. if a solution x1 ∈
{

x ∈ Ds

∣∣∣F(x) < F
(
�
x
)}

can be found, then
�
x = x1

5. if Ds cannot be pruned:
6. Partition Ds into Ds1, Ds2, . . . , Dsn
7. Insert Ds1, Ds2, . . . , Dsn into L
8. Remove Ds from L
9. Return

�
x

The proposed SBB algorithm adds the process of shrinking the feasible region based
on the BB algorithm and designs the corresponding branching strategy, bounding method,
and pruned strategy according to the eLoran positioning problem. The basic flow chart of
the SBB algorithm is shown in Figure 5. We introduce the SBB algorithm from the shrink
method and the BB algorithm.
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Figure 5. A diagram of the shrink-branch-bound algorithm.

2.3.1. The Shrink Method

From the basic principle of the BB algorithm, the search space D affects the amount
of computation of the algorithm. If D can be shrunk, the subsequent BB algorithm can be
significantly simplified. The range of D given by Equation (9) is derived from the range of
latitude and longitude of the earth. Due to the limited coverage of the eLoran station, we
can reduce D according to this feature.

The transmitting power of the eLoran transmitting station is usually fixed, and the
eLoran receiver can receive signals from 800 km to 2500 km away from the transmitting
station owing to the difference in the propagation path. When the receiver receives signals
from multiple stations, it must be within the intersection of the coverage areas of these
transmitters. Setting the range of this intersection as Ds, Figure 6 shows the basic schematic
for determining Ds. The observable stations are TR1, TR2, TR3, and TR4. The prime
vertical arc length between TR2 and TR4 is W, which can be estimated by Equation (18);
the meridian arc length between TR1 and TR3 is L. It is estimated by Equation (19).

L = Re(ϕmax − ϕmin), (18)

W = Re cos(ϕ)(λmax − λmin), (19)
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(a) (b)

Figure 6. Shrinking diagram, (a) When Q > W, Q > L, the range of Ds. (b) When Q < W, Q < L,
the range of Ds.

Assuming that the maximum working distance between the receiver and the transmit-
ting station is Q, the range in the blue box of Figure 6 is Ds. Figure 6a,b show Ds under
different conditions. The value of Ds can be calculated by Equation (20).⎧⎨⎩ λ ∈ [λl , λu] =

[
min(λi)− (Q−W)

Recos(ϕ)
, max(λi)− (W−Q)

Recos(ϕ)

]
ϕ ∈ [ϕl , ϕu] =

[
min(ϕi)− (Q−L)

Re
, max(ϕi)− (L−Q)

Re

] , (20)

where Re is the equivalent radius of the earth under the WGS-84 model. ϕ is the average
latitude of the four stations. In practical applications, the setting of Q does not need to
be precise but can be set as the maximum propagation distance according to the receiver
performance and actual environment. In addition, Equation (20) is a general equation not
limited to the two cases shown in Figure 6a,b. Therefore, once the receiver has identified
the station information, Equation (20) can be used to calculate Ds.

2.3.2. The Branch and Bound Method in SBB Algorithm

The proposed branch-and-bound algorithm is as follows: First, a feasible solution
�
x of

F on Ds is obtained through a shrink algorithm, and
�
x is assumed to be the global optimal

solution. Then, we divide Ds into Ds1and Ds2 and calculate the lower bounds F1(x1) and
F2(x2) of function F on feasible domains Ds1 and Ds1. We compare F1 and F2 and retain the
subset Dsi that has a lower bound Fi, where i = 1,2. Thereafter, we compare the order of
Fs and Fi. If the order of Fi is smaller than Fs, we update the solution

�
x = x1, and divide

Dsi again and repeat the above steps. If Fs and Fi are of the same order, or the order of Fs is
less than Fi, then

�
x is the global optimal solution. The pseudocode of the SBB algorithm is

shown in Algorithm 2.
Line 3 of the pseudocode is the branch strategy and we adopt the binary branch

scheme as shown in Figure 7. The basic division principle is to make a vertical line at the
midpoint of the broadest side of Ds to bisect Ds. Because the number of local minima on
the F function is small, there is no need to divide Ds too much, and this binary branch
strategy can effectively reduce the amount of calculation without losing the accuracy of
the algorithm.
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Algorithm 2 SBB Algorithm

1. Shrinking D to Ds, using Equation (20)
2. Take the initial value x0 ∈ D, use TRR algorithm to calculate Fs(

�
x ) = {min(F)|x ∈ Ds, x0}

3. Branch Ds into Ds1 and Ds2.
4. Calculate F1 = {min(F)|x ∈ Ds1, x0} and F2 = {min(F)|x ∈ Ds2, x0} and their corresponding
solutions x1 and x2.
5. Fk = min{F1, F2} and Fs, where k ∈ {1, 2},
6. If Fs

Fk
< μ,

Then x∗ =
�
x , the iteration ends;

7. If Fs
Fk

> μ,

Then Fs = Fk, Ds = Dsk,
�
x = xk, and repeat steps 3–5.

Figure 7. Diagram of the binary branching strategy.

In lines 2 and 4 of the pseudocode, it is necessary to calculate the lower bound of
the objective function F in the specified feasible region, that is, to solve the following
mathematical equation:

{xs|F(xs) = Fmin, x ∈ Ds} (21)

Ds is determined by Equation (20). Equation (21) is a nonlinear least-squares problem
with box constraints, which can be solved by the trust region reflective (TRR) algorithm.
Based on the trust region algorithm, the trust region reflective method transforms the
boundary-constrained optimization problem into an unconstrained optimization problem
through reflection transformation so that each iteration result satisfies the boundary con-
straints [27]. The TRR algorithm uses the function q(s) to fully approximate the behavior
of the function F(x) in the neighborhood N of xk, and find the tentative step s in this
neighborhood. The pseudocode of the TRR algorithm is shown in Algorithm 3. In lines 3
and 4 of the pseudocode of Algorithm 3, the trust region model to be solved is as follows:

min
{

q(s) = 1
2 sT Hs + sT g, ‖s‖ ≤ N

}
, (22)

where g is the gradient of the current F(xk), H is the Hessian matrix or the approximation of
the Hessian matrix of F(xk), N is the trust region, and ‖ ‖ is the 2-norm. For the solution of
Equation (22), please refer to the literature [46,47]. Details of the reflection transformation
method in line 5 can be found in the literature [27]. The approximation factor ρk of q(sk) to
F(sk) in line 6 can be given by Equation (23):

ρk =
F(xk)− F(xk + sk)

F(xk)− q(sk)
, (23)

When ρk is greater than the set value μ, it means that the current approximation effect
of q(sk) to F(xk) is good and the update step is xk+1 = xk + Nk. Otherwise, the trust region
radius Nk needs to be adjusted, the trust region sub-problem solved again, and the above
process repeated.
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Algorithm 3 TRR Algorithm

1. Initial x0, N0 and μ

2. While g(xk) > μ

3. Build a trust region model q(s)
4. Solve the trust region subproblem, and get sk
5. If sk /∈ Ds
6. Perform a reflection transform on sk
7. Calculate the approximation ρk of q(sk) to F(sk) and update sk or xk

8. Return
�
x

The TRR algorithm can make full use of the feature that the BB algorithm divides the
feasible region. When the feasible region is divided, the box constraints will continue to
shrink, and the probability of the trust region algorithm converging to the global optimal
value will continue to increase. Using the TRR algorithm to obtain the lower bound of F
under different feasible regions, the following inequalities must be satisfied.{

F1 ≤ Fs
F2 ≤ Fs

, (24)

where
Fs = {Fmin|x ∈ Ds, x0}, (25)

F1 = {Fmin|x ∈ Ds1, x0}, (26)

F2 = {Fmin|x ∈ Ds2, x0}, (27)

Lines 5 and 6 of Algorithm 2 are the verification phase. We use μ to verify the
convergence process, and μ can be a constant less than 5. When Fs/Fk < μ, it means that
Fs and Fk are of the same order, and the current iteration value is close to converging to
the global optimal value, and the iteration ends. Otherwise, the above branch and bound
process needs to be repeated.

2.3.3. Complexity Analysis

The main computational complexity of the proposed SBB algorithm is related to the
number of branch iterations N and the convergence accuracy ε. In each iteration, the main
computational complexity is related to the update of the bounding process of F(x). More
specifically, when we set the norm of the gradient of the solution to be ‖∇F‖ ≤ ε, the
upper bounds of the complexity required to solve steps (2) and (4) are O

(
ε−2) and O

(
2ε−2),

respectively [48]. Considering the number of branch iterations N, the upper bound of the
complexity of the SBB algorithm is O

(
(2N + 1)ε−2). The upper bounds of the complexity

of the following algorithms are shown in the Table 1.

Table 1. Algorithms Computational Complexity Comparison.

Algorithms Computional Complexity

NR [49] O
(
kn2m

)
LM [50] O

(
ε−2)

Dogleg/TTR [48] O
(
ε−2)

SBB O
(
(2N + 1)ε−2)

The above table shows the upper bound of the computational complexity of different
algorithms. Among them, the LM algorithm, the Dogleg algorithm, and the TTR algorithm
are all Cauchy-related algorithms or Newton-like algorithms, and the upper bound of their
complexity is O

(
ε−2). The complexity of the NR algorithm is related to the number of

iterations and the matrix calculation, where k is the number of iterations required, and m
and n represent the dimensions of the estimator and the number of equations, respectively.
It can be found that the complexity of the SBB algorithm compared with other algorithms

92



Remote Sens. 2022, 14, 1781

mainly lies in N. Since we have shrunk D to Ds, this makes the number of branches N
usually small, and we will confirm this in simulation experiments.

3. Results

The SBB algorithm is used to solve the initialization problem of eLoran pseudorange
positioning. Therefore, the evaluation of the algorithm is mainly from two aspects. First,
the algorithm should still be able to solve the position correctly when no initial value is
available, which means that given a random initial value, the algorithm should be able
to solve the position accurately. Secondly, the computational complexity of the algorithm
should be at a reasonable level so that it can be implemented in the receiver. Based on the
above evaluation criteria, this section is organized as follows: we first set the simulation
parameters according to the actual station distribution. Then, the performance of various
algorithms in solving the eLoran pseudorange positioning problem is compared. Finally,
the reliability of the SBB algorithm was verified through simulation.

3.1. Simulation Parameter Settings

Assuming that the receiver at point A receives the signals from the four eLoran
transmitting stations shown in Table 2, the calibrated pseudorange observations and
geodesic distance values between point A and eLoran stations are shown in Table 3,
and the atmospheric refractive index ns is 1.000315. Where the calibrated pseudorange
observations ρ are as described by Equation (5), they only include the clock deviation δt
and the observation error η caused by time-varying delay factor. We set the clock error δt
to be 5 μs and η follows a normal distribution, that is, η ∼ N(0, 50).

Table 2. Transmitting station location and coordinates.

Transmitting Station Mark Position Longitude (E) Latitude (N)

M Rongcheng 122.3228 37.0644
T Helong 129.1075 42.7199
Y Xuancheng 118.886 31.0689
Z Raoping 116.8958 23.7239

Table 3. Distance information from point A to each station.

Test Point
(ϕ∗,λ∗) (N,E)

Transmitting
Station

Distance
(Rd/m)

PF
(μs)

Pseudorange
Observations (ρ/m)

A
(27, 124)

M 1,128,758 3766.316 1,130,278
T 1,806,302 6027.074 1,807,799
Y 672,027 2242.348 673,547
Z 801,620 2674.758 803,112

3.2. Analysis and Comparison of Simulation Results

Figure 8 shows the location of the transmitter station and receiver on the map. To
clearly show the influence of (ϕ, λ) on F(x), the contour of F(ϕ, λ) is shown in Figure 9,
where δt is set to a known value. The four black contours in Figure 9 are, respectively,
surrounded by the solution sets of the four observation equations. The contour shape shows
the non-convexity of F(ϕ, λ), which is mainly related to the topology of the transmitting
station. Take A as the test point and select the four positions shown in Table 3 as the initial
value points. Since δt0 has no effect on the optimization process, it will always be set to 0 in
subsequent simulations.
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Figure 8. Stations location distribution.

Figure 9. Contour plot of F(ϕ, λ).

Since the initialization problem of eLoran has not been studied in the literature, there
is a lack of competing algorithms for performance comparison. To this end, we select four
commonly used nonlinear least squares methods, namely, the NR algorithm, the Levenberg–
Marquardt (LM) algorithm, and the trust region Dogleg algorithm to compare with the SBB
algorithm. The NR algorithm is a commonly used algorithm in positioning and is widely
used in various pseudorange positioning scenarios. Its advantage is that the calculation is
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simple, and if the initial is suitable, it will converge quickly. Currently, only this algorithm
is mentioned in the existing papers to solve the eLoran localization problem. The LM
algorithm is an algorithm that combines the steepest descent method and Newton’s method,
and is currently widely used in nonlinear least squares. It is characterized by considering the
stability of the steepest descent method and the fast convergence characteristics of Newton’s
method. This algorithm is a benchmark algorithm for solving nonlinear least squares
problems based on the derivation algorithm, and is widely used in various scenarios.
The LM algorithm can represent a series of scenarios based on the derivation algorithm to
demonstrate the problem of solving the eLoran localization problem based on the first-order
derivation and the second-order derivation algorithm.

The trust region Dogleg algorithm is representative of another large class of algorithms
for solving nonlinear least squares algorithms. It is different from the line search algo-
rithm; the algorithm first sets the step size, and then determines the search direction. The
advantage of this algorithm is that it does not require a line search process when solving
complex nonlinear least squares problems. Furthermore, even if the condition number
of the objective function is poor, it is easy to introduce second-order information of the
function. The above three algorithms represent the three most commonly used ideas for
solving nonlinear least squares problems. The results are shown in Table 4.

Table 4. Convergence results of conventional algorithms under different initial points.

Point Initial Points NR Results LM Results Dogleg Results SBB Results

(ϕ∗, λ∗) (N, E) (ϕ0, λ0) (N, E) (ϕ, λ) (N, E) (ϕ, λ) (N, E) (ϕ, λ) (N, E) (ϕ, λ) (N, E)

A (27, 124)

0, 0 23.7162, 148.7832 31.2167, 103.7164 31.2167, 103.7164 27.0001, 124.0001
28, 125 27.0001, 124.0001 27.0001, 124.0001 27.0001, 124.0001 27.0001, 124.0001

40.1, 97.4 31.7164, 103.2167 31.21671, 03.7164 31.2167, 103.7164 27.0001, 124.0001
32, 148.8 30.2167, 10.7162 27.0001, 124.0001 27.0001, 124.0001 27.0001, 124.0001
28, 100 31.2167, 103.7164 31.2167, 103.7164 31.2167, 103.7164 27.0000, 123.9998
15, 128 31.2195, 16.7159 26.9991, 124.0011 26.9991, 124.0011 26.9991, 124.0011

The data in red are the incorrect results, and the data in black are the correct results.

In Table 4, the data in red are the incorrect results, and the data in black are the correct
results. The results of all algorithms may be incorrect due to the selection of initial values,
except for the SBB algorithm. Among them, both the LM and Dogleg algorithms converge
to (31.2167, 103.7164), which is the local minimum L shown in Figure 9. In addition, when
the initial value point is close to Point A, both the LM and Dogleg algorithms converge
correctly; when the initial value point is close to the local minimum point L, all the results
of the above two are incorrect. The erroneous results of the NR algorithm may go beyond
the feasible region D, mainly because the convergence of the NR algorithm may be out of
control due to the lack of line search. Results from the above table verify that we need a
global optimization algorithm to solve the eLoran pseudorange positioning problem when
the initial value is not available.

We analyze how the SBB algorithm can always converge to the correct result, regardless
of the change in the initial value.

Consider the shrink method of the SBB algorithm. Without loss of generality, we set
Q in Equation (20) to 3000, and the reduced feasible region Ds is shown as the red box in
Figure 10. It can be seen that Ds has been significantly reduced compared to D, which
reduces the subsequent computation of the SBB algorithm.

To observe the global optimization performance of the SBB algorithm more clearly,
Tables 5 and 6 show the iterative process of branch and bound under some initial value points.

95



Remote Sens. 2022, 14, 1781

Figure 10. Contour line of F under feasible region D and feasible region Ds.

Table 5. Iterative process with initial value (0, 0, 0).

Feasible Region Fmin
x∗ (ϕ, λ, δt)

(deg, deg, μs)

D 3.5 × 109 31.2174, 103.7183, −2480
Ds 63.7 27.0001, 124.0001, 5.091
Ds1 3.5 × 109 31.2174, 103.7183, −2480
Ds2 63.7 27.0001, 124.0001, 5.091

Table 6. Iterative process with initial value (97.4, 40.1, 0).

Feasible Region Fmin
x∗ (ϕ, λ, δt)

(deg, deg, μs)

D 3.5 × 109 31.2147, 103.7225, −2480
Ds 3.5 × 109 31.2147, 103.7225, −2480
Ds1 3.5 × 109 31.2147, 103.7225, −2480
Ds2 99.8 26.9998, 124.0009, 4.933
Ds1 99.8 31.2147, 103.7225, −2480
Ds2 1.5 × 109 26.9998, 124.0009, 4.933

It can be seen from Tables 5 and 6 that, as the feasible region is continuously shrunk
and divided, the SBB algorithm gradually converges to close to the global minimum.

To further verify the performance of the SBB algorithm, we designed the following
simulation experiments: we randomly selected 1000 locations within Ds as test points and
used the above mentioned algorithms to solve for these locations. Note that these locations
were chosen to keep the GDOP as consistent as possible to avoid the impact of GDOP on
location accuracy. For each algorithm, the initial value was randomly selected in D and Ds.
When the positioning error was lower than the set threshold, the solution was successful.
The statistical results of the success rate of these algorithms in solving these 1000 positions
are shown in Figure 11.
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(a) (b)

Figure 11. Statistical chart of success rate of different algorithms. (a) x0 ∈ D; (b) x0 ∈ Ds.

As shown in Figure 11, the LM and Dogleg algorithms have a success rate of 55%
in Figure 11b, while in Figure 11a, the success rates of the two are only 25% and 30%,
respectively. This shows that the two algorithms depend strongly on the selection of initial
values. The NL algorithm has the lowest success rate, and its solution probabilities are 5%
and 35%, respectively, under the two initial value selection schemes. The main reason for
the poor performance of the NL algorithm is that it lacks a line search process compared
to the LM and Dogleg. The solution success rates of the SBB algorithm under the two
initial value selection schemes are 99.9% and 99.5%, respectively, showing good global
optimization performance. The possible reason for the failure of the SBB algorithm is that
the algorithm will converge to the local minimum value when x0 is selected very close to
the local minimum value. Thus, when x0 is selected in D, there is a smaller probability of
selecting points close to the local minimum. Therefore, the success rate of the algorithm
will be improved under x0 ∈ D compared to under x0 ∈ Ds. To avoid choosing a point
near the local minimum as the initial value when using the SBB algorithm, we can choose a
point far away from all possible solutions as the initial value point, such as (0, 0).

Computational complexity affects the performance of an algorithm. The previous
analysis of the complexity of the SBB algorithm showed that the number of branches, N,
has an important impact on the complexity of the SBB algorithm. The figure shows the
statistical graph of the number of branch iterations, N, required by the SBB algorithm to
complete the positioning solution each time in 1000 positioning simulation experiments.
Figure 12 shows that the SBB algorithm needs at most two branch iterations to complete
the solution, and even only one branch is required in most cases. Comparing Figure 12a,b,
it can be found that the probability that the latter requires two branches to solve is 46%,
which is much higher than the 24% of the former. This is because when the initial value is
randomly selected in Ds, there will be a higher probability of selecting the point close to the
local minimum, which makes it converge to the global optimal value after two branches.
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(a) (b)

Figure 12. Pie chart of number of branch iterations N. (a) x0 ∈ D; (b) x0 ∈ Ds.

4. Discussion

Using pseudorange measurements for positioning in the eLoran system can make full
use of the available eLoran stations, thereby expanding the coverage of the eLoran system
and improving the positioning accuracy of the system. An important problem with eLoran
pseudorange positioning, however, is that the geometric distribution of available eLoran
transmitting stations may cause the positioning problem to be non-convex. This makes the
existing pseudorange positioning algorithms such as NR algorithms extremely dependent
on the selection of initial value. In practical positioning applications, it is difficult for the
receiver to obtain reliable initial values in many cases. Therefore, conventional positioning
algorithms may converge to wrong solutions due to lack of reliable initial values. At present,
there is no literature to study the eLoran pseudorange localization initialization problem.

We transformed the eLoran pseudorange positioning into a nonlinear least squares
problem with box constraints and proposed the shrink-branch-bound algorithm (SBB), a
global optimization algorithm that can achieve accurate positioning without any initial
value. The SBB algorithm first obtains the shrunk region of the estimator through the
shrink method. The positioning problem is then solved within this shrunk feasible region
using a branch-and-bound algorithm, where a trust region reflective algorithm is used
for each bound process. We verified the performance of this method through simulation
experiments. The results show that the success rate of the SBB algorithm to solve the
position is more than 99.5%, when no initial value is available. However, the success rate
of other conventional nonlinear least squares algorithms (such as LM algorithm, Dogleg
algorithm) in this case is only around 50%. These results confirm that our proposed SBB
algorithm can help the receiver to obtain correct positioning results when no initial value
is available.

For the eLoran receiver, both the accuracy of the positioning algorithm and the com-
putational complexity need to be considered. The computational complexity of the SBB
algorithm is comparable to traditional Newton-based methods or Cauchy-related methods,
which means that it can be implemented in the receiver.

5. Conclusions

eLoran is the ideal backup and supplement to GNSS systems. The improved accuracy
of time synchronization between eLoran stations provides conditions for eLoran pseu-
dorange positioning. We proposed a shrink-branch-bound (SBB) algorithm to solve the
eLoran pseudorange positioning problem when the receiver has no initial value available.
We verified the performance of the SBB algorithm through simulation experiments. The
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results show that the success rate of SBB algorithm in converging to the correct result
without initial value is over 99.5%, which is more than 40% higher than that of conventional
nonlinear least squares algorithms such as LM algorithm and Dogleg algorithm.

The proposed SBB algorithm is expected to make up for the defect that the existing
eLoran pseudorange localization algorithm may converge to wrong results when no initial
value is available, so it can be used as a cold-start algorithm for eLoran receivers. Therefore,
the focus of follow-up research is to combine the SBB algorithm with the existing high-
precision positioning algorithms, which is expected to further improve the positioning
accuracy and reliability of the eLoran system under high dynamic conditions
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Abstract: In order to improve the accuracy of visual SLAM algorithms in a dynamic scene, instance
segmentation is widely used to eliminate dynamic feature points. However, the existing segmentation
technology has low accuracy, especially for the contour of the object, and the amount of calculation of
instance segmentation is large, limiting the speed of visual SLAM based on instance segmentation.
Therefore, this paper proposes a contour optimization hybrid dilated convolutional neural network
(CO-HDC) algorithm, which can perform a lightweight calculation on the basis of improving the
accuracy of contour segmentation. Firstly, a hybrid dilated convolutional neural network (HDC) is
used to increase the receptive field, which is defined as the size of the region in the input that produces
the feature. Secondly, the contour quality evaluation (CQE) algorithm is proposed to enhance the
contour, retaining the highest quality contour and solving the problem of distinguishing dynamic
feature points from static feature points at the contour. Finally, in order to match the mapping speed
of visual SLAM, the Beetle Antennae Search Douglas–Peucker (BAS-DP) algorithm is proposed
to lighten the contour extraction. The experimental results have demonstrated that the proposed
visual SLAM based on the CO-HDC algorithm performs well in the field of pose estimation and map
construction on the TUM dataset. Compared with ORB-SLAM2, the Root Mean Squared Error (Rmse)
of the proposed method in absolute trajectory error is about 30 times smaller and is only 0.02 m.

Keywords: visual SLAM; instance segmentation; neural network; pose estimation

1. Introduction

Simultaneous localization and mapping (SLAM) is when a robot builds a map of the
unknown environment during movement using vision, lidar, odometer and other sensors.
At the same time, it carries out its own positioning [1,2]. SLAM can be used in various
industries, and it will have wider applications in the future. In the driverless field, SLAM
can be used to sense surrounding vehicles and scenes, creating a dynamic 3D map, which
will make autonomous driving safer and more reliable [3,4]. In the 3D printing industry,
by adding a camera to the printer, the SLAM algorithm can be used to determine whether
the walking speed and the running path conform to the system setting [5]. In the medical
field, the use of the SLAM algorithm can accurately perceive the patient’s movement data
during rehabilitation, which will help to assess the patient’s physical condition [6].

SLAM consists of inferring the states of the robot and the environment. On the premise
that the robot state is known, the target environment can be built through tracking algorithms,
and the estimation problem of SLAM is proposed. The estimation problem is usually discussed
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in a Bayesian framework, focusing on reducing the cumulative error. The cumulative error
can be estimated and adjusted through a closed-loop detection, returning to a mapped area [7],
but this requires the system to match feature points or static landmarks accurately.

Different sensors affect the above errors and matching. At present, the main sensors
used in SLAM include cameras, lidars, millimeter wave (mmWave) radar and the fusion
of various sensors [8–10]. Examples of visual SLAM development in recent years include
applying an echo state network (ESN) to a model image sequence [11,12], combining a
neural network with visual SLAM [13], CPL-SLAM [14], using compact second-order
statistics [15], a combination of points and lines to extract features [16], and others. It
should be noted that the main purpose of the above methods is to improve the robustness
and accuracy of feature point matching of visual SLAM. Lidar SLAM has been developing
for a long time and now has widespread application. Paper [17] presents a 2D lidar-
based SLAM algorithm, which is combined with a new structural unit encoding scheme
(SEUS) algorithm, while the 2D lidar graph SLAM proposed in paper [18] is based on
3D “directional endpoint” features, performing better in robot mapping and exploration
tasks. The cooperation of multiple robots can also improve the accuracy and efficiency of
lidar SLAM [19–22]. Due to the advantages of mmWave in the spectrum and propagation
characteristics [23], the application of mmWave in SLAM technology has become a new
trend in recent years [24], and sub-centimeter SLAM can be achieved [25]. For instance,
paper [26] proposed a maximum likelihood (ML) algorithm, which can achieve accurate
SLAM in the challenging case of multiple-input single-output (MISO). Multi-sensor fusion
can make up for the defects of single sensor and have more perfect perception [27]. For
example, in the paper [28–30], the vision sensor and IMU are fused. Paper [28] proposes
hybrid indoor localization systems using an IMU sensor and a smartphone camera, and
adopts a UcoSLAM algorithm [31]. In addition, mainstream sensor fusion also includes
lidar and vision [32,33], lidar and IMU [19,34], etc.

In order to show the advantages and disadvantages of the above different sensors
more clearly, we have summarized them in four aspects: robustness, accuracy, cost and
information provided, as shown in Table 1.

Table 1. The advantages and disadvantages of different sensors.

Sensor Robustness Accuracy Cost Information Provided

visual susceptible to light high cheap rich semantic information
lidar high higher expensive only depth and position

mmWave higher high in long distance,
low in short distance expensive only distance and position

visual + IMU susceptible to light high normal rich semantic information
lidar + IMU high higher expensive only distance and position

visual + lidar high higher more expensive rich semantic information

It can be seen that visual sensors are the cheapest sensors [7] and can provide rich, high-
dimensional semantic information [35], which can complete more intelligent tasks, although
they have low robustness under current technological means. However, the traditional
visual SLAM assumes a static environment. For an environment with dynamic objects, its
accuracy decreases [36–38]. With the development of deep learning in computer vision and the
increasing maturity of instance segmentation technology, the combination of visual SLAM and
deep learning can identify and extract moving objects in the environment [39–41]. Through
instance segmentation, dynamic objects in the environment are removed, and only static
feature points are retained, which can significantly improve the accuracy of visual SLAM,
such as You Only Look At CoefficienTs (YOLACT) [42]. Therefore, visual SLAM is no
longer limited to static scenes. More and more researchers have begun to research the use
of visual SLAM in dynamic scenes [43]. At present, the main SLAM algorithms based
on dynamic feature point segmentation include DS-SLAM [44,45], DynaSLAM [46,47],
LSD-SLAM + Deeplabv2 [48], SOF-SALM [49], ElasticFusion [50], RS-SLAM [51], DOT +
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ORB-SLAM2 [52], etc. We evaluate the existing algorithms from five aspects: frontend,
mapping, whether the segmentation network is independent, the accuracy of contour
segmentation and the efficiency in dynamic environment. Among them, the frontend
influences feature selection, extraction, matching and local map construction. Mapping
affects the details of map construction, but the more details, the more calculation. An
independent segmentation network reduces calculation time. The segmentation accuracy
of contour will affect the elimination of dynamic feature points. We refer to papers [53,54]
for the accuracy of contour segmentation and the efficiency in a dynamic environment. The
details are shown in Table 2.

Table 2. The evaluation of existing visual SLAM based on dynamic feature point segmentation.

Algorithm Frontend Mapping

Whether
Segmentation

Network Is
Independent

Accuracy of
Contour

Segmentation

Efficiency in
Dynamic

Environment

DS-SLAM feature based sparse yes low higher
DynaSLAM feature based sparse no normal high

LSD-SLAM + Deeplab V2 direct semi dense no normal low
SOF-SLAM feature based sparse no low normal

ElasticFusion ICP dense no higher low
RS-SLAM feature based dense no high low

DOT + ORB-SLAM2 feature based sparse no low normal

As can be seen from the table, deep and high-dimension frontend processing can
increase the accuracy of contour segmentation but also reduce the operation efficiency.
Meanwhile, only DS-SLAM splits the segmentation network independently, which is
beneficial to the operation efficiency of visual SLAM. In conclusion, current algorithms
are difficult to achieve accurate contour segmentation and high operation efficiency at the
same time. Once the contour segmentation is not accurate enough, it is easy to eliminate
the static feature points from the contour by mistaking them for dynamic feature points,
and it is also easy to retain the dynamic feature points by mistaking them for static feature
points, which will reduce the accuracy of SLAM mapping in the later stage. At the same
time, huge data adversely affects the real-time performance of visual SLAM. Therefore,
aiming at the above problems, this paper proposes a visual SLAM based on the CO-HDC
algorithm, which is an instance segmentation algorithm of contour optimization, including
the CQE contour enhancement algorithm and Beetle Antennae Search Douglas–Peucker
(BAS-DP) lightweight contour extraction algorithm. The main contributions of this paper
are summarized as follows:

• To solve the problem of the imprecise segmentation of the object’s contour, a hybrid
dilated CNN is used as backbone network to increase the receptive field. In the empty
convolution operation, the expansion rate of each layer can be designed as [1–3],
and the top layer can obtain broader pixel information to improve the information
utilization rate;

• CQE algorithm is proposed, which can enhance the contour of the object. CQE
is composed of 4 convolution layers and 3 full connection layers. It is fused with
hybrid dilated CNN to form an end-to-end contour enhancement network. This can
significantly improve the elimination ability of dynamic feature points, especially the
feature points falling on the contour;

• Although high-precision contour can be obtained through the CQE model, it needs
a large amount of calculation, which adversely affects the real-time performance of
visual SLAM based on instance segmentation. Therefore, the BAS-DP lightweight
contour extraction algorithm is proposed. The BAS-DP algorithm converts the contour
information surrounding the target into the best polygon surrounding the target,
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which can greatly reduce the data file and make the calculation speed faster on the
basis of preserving the contour accuracy.

The rest of the paper is organized as follows: In Section 2, the CO-HDC algorithm
proposed in this paper is analyzed in detail, including hybrid dilated CNN, CQE, BAS-
DP, global optimization module and mapping module. The test and results analysis are
provided in Section 3. In Section 4, we further discuss our method and existing methods.
The conclusions and future work are summarized in Section 5.

2. The Pose Estimation Optimized Visual SLAM Algorithm Based on CO-HDC
Instance Segmentation Network

The instance SLAM is divided into three modules, as represented in Figure 1: tracking,
global optimization and mapping module.

Figure 1. Visual SLAM algorithm with pose estimation optimized by instance segmentation architecture.

We add CO-HDC instance segmentation to the tracking module, which includes the
CQE contour enhancement algorithm and BAS-DP lightweight contour extraction algo-
rithm, and use the hybrid dilated convolutional neural network as the backbone network.
CO-HDC can effectively improve the accuracy of dynamic feature point segmentation, es-
pecially the contour of the target. Tracking Module with instance segmentation minimizes
the impact of dynamic objects. It means that pose estimation is more accurate and keyframe
decisions are better. The global optimization module and mapping module can benefit
from instance segmentation, which provides high-quality feather points. Loop detection
makes the global optimization module able to work well. Therefore, a more accurate map
can be built.

2.1. Tracking Module with CO-HDC Instance Segmentation

According to the input RGB image and the depth image, the algorithm front end
performs feature point detection and feature descriptor calculation on the RGB image.
Tracking Module is divided into the following steps:

Firstly, feature matching of two adjacent frames is performed according to the feature
descriptor. A 2D-2D feature matching point set is obtained. Using CO-HDC instance
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segmentation to remove dynamic pixels can help feature point matching greatly. The
working framework of CO-HDC is shown in Figure 2, which takes the vehicle detection
commonly used in the industry as an example. Among them, the backbone network adopts
a hybrid dilated CNN network, which can increase the ability of network feature extraction.
Then, the contour of the detected target is strengthened to improve the accuracy of instance
segmentation further. At the same time, BAS-DP is used to lighten the calculation of
contour, which can speed up the visual SLAM.

 

Figure 2. Framework of CO-HDC instance segmentation.

Secondly, according to the depth information of the image, the spatial three-dimensional
coordinates of the 2D-2D feature matching point pairs are calculated to obtain a 3D-3D
matching point set. The rotation and translation matrix between two adjacent frames of
images can be calculated from the matched 3D-3D points.

Finally, the motion estimation error is optimized to obtain the pose estimation result
with the smallest error. In this way, according to the input video stream, the incremental
change of the camera pose can be continuously obtained. Therefore, the front end of the
algorithm constructs a visual odometer [55].

2.1.1. Complex Feature Extraction Based on Hybrid Dilated CNN

Accurate instance segmentation will be conducive to the accuracy of SLAM composi-
tion and pose estimation. In order to improve the feature extraction ability of the backbone
detector in the instance segmentation model, a dilated convolutional neural network is in-
troduced into the network. With an increase in the number of insertion holes of the dilated
convolutional neural network, the size of the receptive field will increase [56], but it also
leads to the loss of continuous information, which is easy to cause the problem of meshing.
In order to solve the problem of continuous information loss in grid sampling, the hybrid
dilated convolutional neural network can be used to replace the dilated convolutional
neural network.

Suppose an n-layer convolutional neural network, and the size of the convolution
kernel of each layer is K × K. The expansion rate is [r1, · · · ri, · · · rn]. The purpose of
constructing hybrid dilated convolutional neural network is that when a series of operations
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of dilated convolutions are completed, the extracted feature map can cover all pixels. The
maximum distance between two non-zero pixels can be calculated by the following formula:

Mi = max[Mi+1 − 2ri, Mi+1 − 2(Mi+1 − ri), ri] (1)

where ri is the expansion rate of layer i,Mi is the maximum expansion rate of layer i. In
order to make the final receptive field cover the whole region without any holes, an effective
hybrid dilated convolutional neural network must meet M2 ≤ K. As shown in Figure 3,
when the size of the convolution kernel k = 3, the expansion rate of each layer r = [1, 2, 3],
M2 = 2 ≤ 3 of all pixels can be covered.

Figure 3. Diagram of hybrid dilated convolutional neural network with different expansion rates:
(a) the diagram of HDC with expansion rate 1; (b) the diagram of HDC with expansion rate 2; (c) the
diagram of HDC with expansion rate 3.

In order to highlight the improvement of the performance of the instance segmentation
model by the hybrid dilated convolutional neural network, the traditional convolution core
is replaced by the hybrid dilated convolution core. The backbone detector structure based
on the hybrid dilated convolutional neural network is shown in Figure 4.

 

Figure 4. The diagram of backbone detector based on hybrid dilated convolutional neural network.
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2.1.2. Contour Enhancement Based on CQE

However, only the hybrid dilated convolutional neural network in the first part is
not enough. Any data generation network will produce some low-quality data, especially
in the contour part. If the generated data is not judged and processed, a large number of
low-quality data will be mixed, and the accuracy of feature points in the later stage will
be seriously affected. Therefore, CQE, a discriminator, is proposed to judge the quality
of image contour. It can remove the low-quality contour information and retain the high-
quality contour to enhance the contour of the object.

In most instance segmentation networks, mean intersection over union (Miou) is
calculated by the ratio of their cross area to their cumulative area, and the quality of
predicted contour is measured by Miou, but it is necessary to ensure that they have the
same height and width. However, the Miou calculated by this method is not linear with
the quality of the predicted contour, so this method is inaccurate.

Therefore, the CQE algorithm is designed, working as a discriminator to evaluate
the quality of contour. The evaluation mainly includes the accuracy of the surrounding
target contour and target classification accuracy. Then, by setting the quality threshold, the
contour with quality lower than the threshold is discarded, and the contour with quality
higher than the threshold is retained. Finally, the contour above the threshold and the
corresponding image data are combined to form the instance segmentation result.

The first is to evaluate the accuracy of the target contour. Due to the irregular shape
surrounding the target contour, using the regression principle in the convolutional neural
network, a CQE head is designed to regress the accuracy of the target contour in the
generated data, which is supervised in the process of network training, and the irregular
contour is well solved. The convolutional neural network can not only extract the features
in the image but can also be used to regress the similarity between the two images. The
CQE head is used to regress the true contour and the predicted contour. Calculate the
complete intersection over the union (Ciou) value of the difference between the real contour
and the predicted contour of each target, and normalize the Ciou to obtain Siou, which is
the evaluation quality of the contour. Its range is between 0 and 1. By setting different Siou
thresholds, different quality target contours can be obtained. The closer the value of Siou is
to 1, the better the target contour prediction effect is.

The structural design of the CQE head is composed of four convolution layers and
three full connection layers. For four convolution layers, the core size and the number of
filters of all convolution layers are set to 3 and 256, respectively. For three fully connected
layers, set the output of the first two FC layers to 1024 to connect all neurons. The C of the
last FC layer is the number of categories to be classified. Finally, the CQE head outputs the
contour quality Siou of each target.

Truth-contour and Predict-contour work together as the input of the CQE head. The
Truth-contour exists in the characteristic graph, and the Predict-contour is the contour
output by the CQE head. Because the output result of the CQE head is different from the
size of the ROI characteristic diagram, two input structures are designed. Figure 5 shows
two kinds of input structures of the CQE head.
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Figure 5. Two input structures of CQE head.

Among them, the input structure designed in the first figure in Figure 5 is to maximize
the pool of the feature layer output by the CQE head through a convolution kernel with a size
of 2 and a step size of 2 and then multiply it with the ROI feature map with a smaller size. The
input structure designed in the second figure in Figure 5 is the CQE head, which is directly
added to the larger ROI characteristic diagram without maximum pooling. Both structures
can be used as inputs of the CQE head. The set CQE threshold is 0.9. When the CQE of each
contour in the target is higher than 0.9, the generated contour quality is higher. When the
CQE of the tag contour is lower than the threshold, the generated contour quality is low. The
recognition process of contour enhancement using the CQE is shown in Figure 6.

2.1.3. The Lightweight Contour Extraction Algorithm Based on BAS-DP

A large number of high-precision instance segmentation can be obtained through
the contour enhancement network. If all points on the target contour segmented by the
instance are retained, the file will be too large, which will lead to slow SLAM operation
time in the later stage and make it difficult to achieve the real-time effect. Therefore, a
lightweight contour extraction algorithm based on BAS-DP is proposed. The algorithm
converts the contour information surrounding the target into the best polygon surrounding
the target. The number of coordinate points contained in the polygon is small, which can
lighten the segmentation file while ensuring the accuracy of instance segmentation.
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Figure 6. The recognition structure with contour enhancement using CQE.

Using the best polygon surrounding the target to replace the contour curve surround-
ing the target is the most direct and commonly used method. Therefore, it is necessary to
convert the contour of the target into each turning point on the polygon surrounding the
target. So, it is necessary to use a polygon approximation algorithm to convert the contour
curve of the target into a polygon surrounding the target and then record the coordinates
of key points on the polygon in the segmentation file.

Douglas–Peucker algorithm (DP algorithm) is a classical polygon approximation
algorithm that can approximate the closed curve as a polygon and reduce the number of
points as much as possible. It has the advantages of translation and rotation invariance.
However, it needs to solve other points on the curve that do not belong to key points
exhaustively, which requires a lot of calculation time. The Beetle antennae search algorithm
(BA algorithm) is another classic polygon approximation algorithm that realizes efficient
optimization by simulating longicorn beetle foraging. Beetle Antennae Search algorithm
can realize optimization without knowing the specific form of function and gradient
information. However, its accuracy is relatively low.

This paper proposes lightweight contour extraction algorithm based on BAS-DP, combining
the advantages of the above two algorithms. The calculation steps are shown in Figure 7.

In the BAS-DP algorithm, parameter initialization includes the initial trial step atten-
uation factor H, step S, the ratio of step and whisker C, the number of iterations n and
the number of parameters to be optimized k. Among them, the distance optimization
function f (x) is shown in Formula (2). According to this formula, the function values fl
and fr corresponding to the left whisker position xl and the right whisker position xr of the
longicorn beetle can be calculated, and the next position x of the longicorn beetle can be
calculated at the same time. Perform calculating function f (x) n times in total. The optimal
function value corresponding to the last position x of the longicorn beetle is obtained as the
optimal solution.
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Figure 7. The calculation steps of BAS-DP lightweight contour extraction algorithm.

⎧⎪⎪⎨⎪⎪⎩
dir = rand(k, 1); d0 = step/c

xl = x + d0 ∗ dir/2; xr = x − step ∗ dir/2
f1 = f (xl); fr = f (xr)
x = x − step ∗ dir ∗ sign( fl − fr)

(2)

The BAS-DP algorithm can reduce the size of the segmented file while maintaining
the contour accuracy and improving the real-time performance of the later visual SLAM.
Finally, the BAS-DP algorithm is combined with the hybrid dilated convolutional neural
network and the CQE algorithm proposed in the previous two sections, forming the CO-
HDC. Through this algorithm, a large number of high-quality instance segmentation images
can be generated, and the data enhancement network needs only a small amount of data to
record better accuracy, especially to solve the segmentation problem of the object contour.

2.2. Pose Optimization

Through the CO-HDC algorithm, we can accurately separate the object, especially
the contour of the object, removing the feature points on the dynamic object and retaining
the static feature points so as to achieve good feature point matching and complete pose
estimation well. In visual SLAM, posture refers to the robot in spatial position and posture
of the entire environment map. Both spatial position and robot posture position need to be
accurately located in the three-dimensional space.

Figure 8 shows the principle of spatial measurement. It is assumed that in two adjacent
frames, the camera has no distortion, and the two projection planes are parallel and coplanar.
In the figure, P is an object, Z is its depth, f is the focal length of the camera, T is the center
distance of two adjacent frames, Ol and Or are the optical centers of two adjacent frames of
the camera, respectively, and xl and xr are the horizontal axis coordinates of the projection
of object P in two adjacent frames, respectively. The depth calculation formula of object P
can be obtained from the relationship of similar triangles:

T − (xl − xr)

Z − f
=

T
Z

⇒ Z =
f T

xl − xr
(3)
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Figure 8. The principle of spatial measurement.

d = xl − xr is defined as parallax, so that the depth information of the target point can
be obtained through the parallax and f , T of the target. After obtaining the parallax map,
the coordinates of the target point in the world coordinate system can be obtained through
the re-projection matrix. The re-projection matrix is:

Q =

⎡⎢⎢⎢⎣
1 0 0 −cx
0 1 0 −cy
0 0 0 f

0 0 −1
T

(cx−cy)
T

⎤⎥⎥⎥⎦ (4)

In the above formula, cx is the x coordinate value of the main point of the first
frame, and cy is the y coordinate value of the main point of the second frame. Assuming
that the identified coordinate of the target point is (x, y), and the parallax in the two
adjacent frames is D, its coordinate value in the world coordinate system can be recovered
through Formula (5):

Q

⎡⎢⎢⎣
x
y
d
1

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎣
x − cx
y − cy

f
−[d−(cx−cy)]

T

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎣
X
Y
Z
W

⎤⎥⎥⎦ (5)

In proposed SLAM, the robot’s posture is calculated through the translation vector
and rotation quaternion number representation of seven paraments, as shown in the
following type (6):

T = [x, y, z, qx, qy, qz, qw] (6)

The first three are translation vectors. The last quaternion is the quaternion for rotation.
The task of the tracking thread is to calculate the posture of two adjacent frames

according to the image change. This means not only the distance moved in the next frame
should be calculated, but also the angle of rotation should be calculated. The results are
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then handed over to the back end, which accumulates and optimizes the relative positions
between the two frames.

The images obtained by the pre-recognition before and after are I1 and I2. After
feature extraction, the feature point p1 is obtained in I1. The feature point p2 is obtained
in I2. Assuming the result of feature matching is that p1 is obtained and p2 is the closest
point pair, it means that p1 and p2 is the projection of the same 3D point P on two frames
of images.

p1 = KP, p2 = T(KP) (7)

where, T is the camera’s internal parameter matrix. When the camera is in different
positions, point P obtains different pixel coordinates through the transformation of the
internal parameter matrix. They are projection p1 and p2. K is the pose of I1 relative to I2.
Assuming that multiple sets of point pairs can be matched between the two frames, the
equation can be constructed by these point pairs to solve the relative pose. Specifically, it
can be solved by solving the basis matrix and the homology matrix.

However, T must be calculated in the space P, where the whole environment’s station-
ary conditions are valid. If the points in the pose estimation are in the process of moving,
type (4) is set up. The error would arise. The worst-case scenario is to use the camera
to participate in the pose estimation of all pixels for the same shipment. Then the pose
estimation will always be 0.

2.3. Global Optimization Module and Mapping Module

The tracking module estimates the camera poses through keypoint matching and
pose optimization. An instance segmentation function is added to the tracking thread,
and the original image is segmented at the same time as the feature extraction. Then, the
pixel coordinates of the human and the animal are obtained. Finally, some feature points
distributed on the human or animal are removed from the original feature point.

After culling feature points, the feature matching and pose estimation are performed.
After getting rid of the interference of the pixel points, the instance SLAM shows better anti-
interference ability under dynamic scenes. The accuracy is greatly improved. This module
also determines whether to insert a new keyframe. When a frame is considered suitable for a
new keyframe, it is sent to the mapping module and global optimization module.

In the mapping module, to eliminate mismatches or inaccurate matches, a new 3D
point is triangulated by inserting a keyframe, optimizing the projected points and lines
and adding a projection matrix. This process is equivalent to minimizing the photometric
difference between blocks of projected pixels ui and the blocks corresponding to the 3D
point on the current frame ur. The model expression is:

ûi = argmin
ûi

1
2 ∑

i
||Ic(ûi)− Ir[A(ui)]||22 (8)

where, Ic and Ir are the first and second frames, respectively, and A is the projection matrix.
The projection matrix formula is as follows:[

x′
y′

]
= R

[
x
y

]
+

[
tx
ty

]
(9)

where, R is the matrix representing rotation and scaling, x and y are the coordinates before
projection, and Tx and Ty represent translation distance.

In the process of global optimization, it is necessary to eliminate the accumulated
errors caused by the odometer. The matching algorithm we use is a kind of image matching
based on pixel value. Its purpose is to find a strict geometric transformation to make
each pixel in the local map and the global map equal as much as possible. The inverse
compositional algorithm can solve the problem of image matching, which is completed in
three steps. The specific steps are given in the following formulations:
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The first step is to calculate the Hessian matrix H:

H = ∑
x

[
∇IPM(x)

∂W
∂P

]T[
∇IPM(x)

∂W
∂p

]
(10)

where, IPM is the global map image, x is the coordinates of pixels in the image,
P = [(Δx, ·y, θ)]̂T represents translation and rotation vectors, and I (W (x; P)) repre-
sents the Euclidean transformation of vector P on image I(x).

The second step is to calculate the new vector Δ p:

Δp = H−1 ∑
x

[
∇IPM(x)

∂W
∂p

]
[ILM(W(x; p))− IPM(x)]2 (11)

where, ILM is the image of a local subgraph.
Step 3: Update vector p:

p = p + Δp (12)

The final output p of the algorithm represents the translation and rotation between
maps, which can eliminate the accumulated errors in global map construction, and also
solves the problem of trajectory drift that often occurs in visual SLAM.

3. Tests and Results Analysis

In order to demonstrate the advantages of the CO-HDC instance segmentation algo-
rithm proposed in this paper and test the actual effect of visual SLAM based on CO-HDC
instance segmentation, our experiment will be divided into two parts. Firstly, we will ex-
periment with the performance of the CO-HDC instance segmentation algorithm. Secondly,
we will test the performance of the visual SLAM based on the CO-HDC instance segmenta-
tion algorithm proposed in this paper and judge the effect of feature point matching and
real-time modeling.

3.1. Experiment of CO-HDC Instance Segmentation Algorithm

In order to test the accuracy and efficiency of the proposed contour enhancement
instance segmentation algorithm, the following experiments are carried out:

• the selection of network hyperparameters to achieve the precise and fast segmentation;
• comparison of different backbone networks.

3.1.1. The Network Hyperparameters Selection and Controlled Experiment

Instance segmentation can remove the dynamic object, which increases the accuracy
of visual SLAM. In order to integrate with visual SLAM better, the instance segmentation
network model needs to be optimized. Therefore, ten comparative experiments were con-
ducted under hybrid dilated CNN to select appropriate network parameters and observe
the effect of transfer learning on training time, accuracy and training data volume. The
hyperparameters selection and the corresponding results are shown in Table 3. mAP is the
average precision, and mIoU is the average intersection ratio. In this paper, mAP and mIoU
are used to evaluate the quality of network training structure. In order to strictly evaluate the
performance of the method, the thresholds of mAP are set to 0.5 and 0.7, respectively. Those
greater than or equal to the threshold are true positive, while those less than the threshold
are false positive. The mIoU and mAP indicators for each experiment are shown in the last
three rows of the table for detailed analysis of the experiment contents and results.
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Table 3. Hyperparameters selection comparison experiments.

Hyperparameters Test 1 Test 2 Test 3 Test 4 Test 5

Train obj. 2081 2081 2520 3005 3005
Val obj. 537 537 632 826 826

Train imag. 680 680 820 1014 1014
Val imag. 120 120 140 180 180
Epochs 100 200 200 400 400

Mini-mask Shape 56 × 56 56 × 56 56 × 56 56 × 56 56 × 56
Img. size 1024 × 800 1024 × 800 1024 × 800 1024 × 800 1920 × 1080

RPN Anchor Scales (32, 64, 128, 256) (32, 64, 128, 256) (32, 64, 128, 256) (32, 64, 128, 256) (32, 64, 128, 256)
Pre-train Model NO NO NO NO NO

mIoU 0.485 0.492 0.535 0.498 0.294
mAP(IoU > 0.5) 0.569 0.586 0.495 0.565 0.395
mAP(IoU > 0.7) 0.472 0.488 0.406 0.485 0.289

Hyperparameters Test 6 Test 7 Test 8 Test 9 Test 10

Train obj. 3005 3005 3005 1573 1573
Val obj. 826 826 826 537 537

Train imag. 1014 1014 1014 480 480
Val imag. 180 180 180 120 120
Epochs 100 100 100 100 100

Mini-mask Shape 28 × 28 28 × 28 28 × 28 28 × 28 28 × 28
Img. size 1024 × 800 1920 × 1080 1920 × 1080 1920 × 1080 1920 × 1080

RPN Anchor Scales (32, 64, 128, 256) (16, 32, 64, 128) (8, 16, 32, 64) (8, 16, 32,64) (8, 16, 32,64)
Pre-train Model NO NO NO NO Yes

mIoU 0.545 0.565 0.652 0.429 0.684
mAP(IoU > 0.5) 0.558 0.573 0.716 0.345 0.725
mAP(IoU > 0.7) 0.489 0.493 0.575 0.294 0.585

Train obj. and Val obj. correspond to the total number of training objectives and
verification objectives of the training, respectively. Train imag. and Val imag. are the
number of training images and verification images. Epochs is the number of iterations
of all training sets, and the Mini-mask Shape is the minimum mask size. Img. Size is the
size of the input image, and RPN Anchor Scales is the proportion Size of the Anchor. The
Pretrain Model is the 80 classification pre-training model of coco data sets.

Test 1 and Test 2 use the same Non-Maximum Suppression (NMS) threshold, the basic
learning rate, and other hyperparameters but use different amounts of epochs. Feeding all
data into the network for iteration is called an epoch, and the number of epochs is set to
100 and 200, respectively. With the increase of epochs, the value of mAP (IoU > 0. 5) in test 1
increased from 0.569 to 0.586 with a low volatility effect. So, on a low number of iterations,
it was still easy to converge, indicating that the convergence effect of the algorithm in this
paper was great.

In Test 3 and Test 6, we used images of more data for training and testing, and epochs were
the same as before. The results showed a decrease in detection rate, which was later improved
in test 4 by increasing the number of epochs, resulting in an mAP (IoU > 0. 5) of 0. 565.

In Test 5, we evaluate the effects of the image width and height, the size of the
training images from 1024 × 800 to 1920 × 1080, learning rate from the default of 0. 001 to
0. 02, the rest of the parameters like Test 4. We get a poor performance of the algorithm
(mAP (IoU > 0. 5) = 0.395). It indicates that the accuracy of images of high resolution is low
under the current parameters.

In Test 6, we reduced the size of the mini-mask from 56 × 56 to 28 × 28, and compared
with Test 4; we found some improvement in network performance.

Therefore, in Test 7, we reduced the Scales of RPN Anchor and improved the input
image resolution to 1920 × 1080 and the small mask to 28 × 28. It was found that the perfor-
mance of the network was greatly improved, which was close to the network performance
in Test 6.
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In Test 8, we used the same configuration as Test 7 and further reduced the RPN
Anchor Scales. It was found that the performance of the network with reduced RPN
Anchor Scales was greatly improved, and (8, 16, 32, 64) was considered the best RPN
Anchor Scales of the network.

In Test 9, in order to improve the training accuracy, reduce the training time and
prevent network overfitting, we reduced the amount of training data on the basis of Test 8
and found that the network performance decreased significantly.

In Test 10, we substantially recompressed the training data on the basis of Test 9, other
parameters remained unchanged, and we used 80 classification models of the pre-trained
COCO data sets for transfer learning. The results showed that the network performance
was basically the same as that of Test 8, and the network performance reached a higher
level, but the training time was half that of Test 8. Network performance can accurately
detect and segment vehicle images.

Through 10 comparative experiments, it can be seen that the more training data, the
higher the image resolution, the smaller the mask and the smaller the scale of RPN anchor
will lead to better network performance. The results show that 100 epochs are enough
to achieve convergence for target detection. At the same time, an increasing pre-training
model can reduce the training data. In conclusion, Test 10 achieves the most perfect balance
among training data, image resolution, mask size, epochs, scale of the RPN anchor and
other parameters. Appropriate data volume and resolution ensure not only high speed but
also high precision. At the same time, the transfer learning method can reduce the training
data, training time and improve the detection accuracy. Therefore, we set the parameters of
Test 10 as our optimal network parameters and carried out subsequent experiments and
studies with the parameters of Test 10.

3.1.2. Comparison of Different Backbone Networks

Under the network configuration parameters of Test 10, a comparative test was con-
ducted for different backbone networks to demonstrate the advantages of HDC-Net. The
neural networks of HDC-Net, ResNet50, Res-Net101 and MobileNetV1 were all composed
of residual blocks, which simplified their architectures with residual learning, reduced their
computational overhead and well solved the gradient vanishing problem.

Its performance was compared in four aspects. Network training time, image detection
time per second, network model weight and accuracy (S > 90 means that SMask is greater
than 90). Accuracy is the ratio of high-quality labels to all labels. It can be seen from the
Table 4 that when HDC-Net is used as the backbone network, the training time is 13.21 h,
which is quite similar to ResNet50; the speeds of these four networks are 6.65 sheets per
second, 6.25 sheets per second, 4.6 sheets per second and 5.2 sheets per second respectively,
and HDC-Net has the fastest speed for calibrating the image. In the model size comparison
test, when HDC-Net is used as the backbone network, the label model size is the smallest.
When HDC-Net, ResNe50, ResNet101 and MobileNet V1 are used as the backbone network,
the accuracy of the vehicle image label is 95.1%, 93.4%, 93.8% and 84.5%, respectively. It
can be seen that although HDC-Net has a slight increase in training time compared with
ResNet50, it is far ahead of other backbone networks in terms of speed, model weight and
accuracy. Therefore, HDC-Net has the best performance.

Table 4. Performance comparison of four backbone networks.

Backbone Network Train Time/h Speed/FPS Model Weight /MB Accuracy S > 90

HDCNet 13.21 6.65 163.21 95.1%
ResNet50 12.65 6.25 186.75 93.4%

ResNet101 20.73 4.60 268.86 93.8%
MobileNet V1 14. 61 5.27 207.82 84.5%
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3.2. Experiment of Visual SLAM Based on CO-HDC

In this paper, two sets of tests are carried out to evaluate the visual SLAM based on
CO-HDC. The first set of tests is that dynamic feature points for single-frame pictures in
motion and intermediate results are shown. The second set of tests is that the instance
visual SLAM based on CO-HDC proposed in this paper and ORB-SLAM2 algorithms are
run on the TUM RGBD public dataset. Other than this, experimental results are compared
with each other.

The dataset used in this paper are rgbd_dataset_freiburg3_walking_xyz (dataset one),
rgbd_dataset_freiburg3_walking_halfsphere (dataset two) and rgbd_dataset_
freiburg3_walking_static (dataset three) in the TUM dataset Dynamic Objects. This dataset
contains moving people, and the camera is also in motion to evaluate the robustness of the
SLAM system or motion calculations in scenes with fast-moving dynamic objects. In the
dataset, the video frame rate is 30 Hz, and the sequence contains a full sensor resolution is
640 × 480. The ground real trajectory is obtained from a motion capture system of eight
high speed tracking cameras.

3.2.1. Feature Point Extraction and Matching after CO-HDC Instance Segmentation

A comparison between ORB-SLAM2 and the proposed visual SLAM based on CO-
HDC instance segmentation is carried out. ORB-SLAM2 assumes that feature points in
the scenes are static, and feature points matching is performed directly after feature points
extraction. However, this may lead to pose estimation errors and map relative drifts
under dynamic environments. At the same time, the proposed visual SLAM segments
the dynamic objects and retains static feature points. Moreover, it performs feature points
matching using static point only.

Firstly, the feature point extraction and matching in the ORB-SLAM2 algorithm are
performed. The two adjacent frames in the video sequence of the dataset are randomly
selected, as shown in Figure 9a,b. Figure 9c,d show the feature extraction in the ORB-
SLAM2 algorithm, where some feature points fall on the human body. Then, the feature
matching is shown in Figure 9e.

In the BAS-DP algorithm, parameter initialization includes the initial trial step atten-
uation factor H, step S, the ratio of step and whisker C, the number of iterations n and
the number of parameters to be optimized k. Among them, the distance optimization
function f (x) is shown in Formula (2). According to this formula, the function values fl
and fr corresponding to the left whisker position xl and the right whisker position xr of the
longicorn beetle can be calculated, and the next position x of the longicorn beetle can be
calculated at the same time. Perform calculating function f (x) n times in total. The optimal
function value corresponding to the last position x of the longicorn beetle is obtained as the
optimal solution.
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(a) (b) 

  
(c) (d) 

 
(e) 

Figure 9. Results of feature extraction and matching based on ORB-SLAM2: (a) Original Figure 1;
(b) Original Figure 2; (c) Feature points extracted before screening of original Figure 1; (d) Feature points
extracted before screening of original Figure 2; (e) The ORB matching results of original Figures 1 and 2.

3.2.2. Using Datasets to Test the Preference of ORB-SLAM2 and Instance Visual SLAM
Based on CO-HDC Algorithm

The dataset provides an automated assessment tool for visual odometer system drift
and global attitude error for SLAM systems, which is divided into absolute trajectory
errors (ATE) and relative pose errors (RPE). The ATE difference is used to calculate the
difference between the actual values and estimated values of the camera pose of the SLAM
system. The RPE is used to calculate the difference between the pose changes on the same
two timestamps. Firstly, the estimated value is aligned with the real value according to the
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timestamp of the pose. The drift of the system is also evaluated. From Figures 11–13, the
RPE of instance SLAM based on CO-HDC is much smaller than ORB-SLAM2. The amount
of change in pose is calculated at the same time. From Figures 14–16, it can be concluded that
the proposed SLAM performs better than ORB-SLAM2, as the ATE of the proposed SLAM
is also smaller than ORB-SLAM2. In Table 5, compared with ORB-SLAM2, the Rmse of the
proposed method in absolute trajectory error is about 30 times smaller and is only 0.02 m. The
comparison in Tables 6 and 7 also confirms the advantages of the proposed SLAM.

(a) (b) 

   
(c) (d) 

 
(e) 

Figure 10. Results of feature extraction and matching based on proposed SLAM: (a) Figure for
dynamic dot culling of first frame; (b) Figure for dynamic dot culling of second frame; (c) Feature
points extracted after screening of first frame; (d) Feature points extracted after screening of second
frame; (e) The ORB matching results of original Figures 1 and 2 after screening.
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(a) (b) 

Figure 11. Relative pose error of dataset one: (a) The relative pose error of dataset one using ORB-
SLAM2; (b) The relative pose error of dataset one using instance SLAM based on CO-HDC.

 
(a) (b) 

Figure 12. Relative pose error of dataset two: (a) The relative pose error of dataset two using
ORB-SLAM2; (b) The relative pose error of dataset two using instance SLAM based on CO-HDC.

(a) (b) 

Figure 13. Relative pose error of dataset three: (a) The relative pose error of dataset two using
ORB-SLAM2; (b) The relative pose error of dataset two using instance SLAM based on CO-HDC.
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(a) (b) 

Figure 14. Absolute trajectory error of dataset one: (a) The absolute trajectory error of dataset one using
ORB-SLAM2; (b) The absolute trajectory error of dataset one using instance SLAM based on CO-HDC.

 
(a) (b) 

Figure 15. Absolute trajectory error of dataset two: (a) The absolute trajectory error of dataset two using
ORB-SLAM2; (b) The absolute trajectory error of dataset two using instance SLAM based on CO-HDC.

 

(a) (b) 

Figure 16. Absolute trajectory error of dataset three: (a) The absolute trajectory error of dataset two using
ORB-SLAM2; (b) The absolute trajectory error of dataset two using instance SLAM based on CO-HDC.
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Table 5. Pose error representative value of dataset one.

Evaluation Methods Rmse (m) Mean (m) Median (m) Std (m) Min (m) Max (m)

Absolute trajectory
error

ORB-SLAM2 0.760252 0.690474 0.639742 0.318165 0.022187 1.715618
Proposed SLAM 0.027541 0.023047 0.018764 0.015077 0.001505 0.141699

Relative pose error ORB-SLAM2 1.134662 0.922296 0.845839 0.660930 0.000000 3.203089
Proposed SLAM 0.038877 0.033508 0.030002 0.019715 0.000000 0.186828

Table 6. Pose error representative value of dataset two.

Evaluation Methods Rmse (m) Mean (m) Median (m) Std (m) Min (m) Max (m)

Absolute trajectory
error

ORB-SLAM2 0.638354 0.560560 0.635890 0.305399 0.050749 1.246406
Proposed SLAM 0.209539 0.195746 0.203446 0.074766 0.029710 0.364841

Relative pose error ORB-SLAM2 0.957366 0.763961 0.734479 0.526331 0.000000 2.128197
Proposed SLAM 0.326175 0.240677 0.103095 0.220147 0.000000 0.584625

Table 7. Pose error representative value of dataset three.

Evaluation Methods Rmse (m) Mean (m) Median (m) Std (m) Min (m) Max (m)

Absolute trajectory
error

ORB-SLAM2 0.597385 0.503305 0.461168 0.321796 0.033516 1.243515
Proposed SLAM 0.071849 0.195746 0.030831 057592 0.003704 0.428562

Relative pose error ORB-SLAM2 0.927718 0.763961 0.734479 0.526331 0.000000 2.128197
Proposed SLAM 0.117698 0.052240 0.023353 0.105470 0.000000 0.606306

The platform of this experiment is a personal laptop configured as CPU I7 7700HQ,
GPU 1050TI and 16G memory. The evaluation tool is used to compare the errors of the two
systems running the above two datasets.

Through the above experiments, comparing ORB-SLAM2 and instance SLAM based
on CO-HDC, we can see that the performance of instance SLAM based on CO-HDC is
better than traditional SLAM.

4. Discussion

Visual SLAM based on instance segmentation has been widely used due to its high
accuracy in dynamic environments. At present, eliminating dynamic feature points to improve
the accuracy of visual SLAM is a widely recognized method in academic circles [57,58].
Alejo Concha et al. use this technology to prolong the time of world-locked mobile AR
experiences, letting users have a more satisfying experience [59]. Fessl [60] and Sanchez-
Lopez [61] et al. have applied them in the field of aircraft. In addition, it has been widely
used in location-aware communication [62], medical [6], 3D printing [5] and other fields [63].
However, this method has two major problems: the accuracy of dynamic point elimination
is not high, and the elimination speed is slow. To solve these two problems, we propose
a CO-HDC instance segmentation model, which consists of a CQE contour enhancement
algorithm and a BAS-DP lightweight contour extraction algorithm.

Firstly, the main reason for the low accuracy of dynamic feature point elimination is
the low accuracy of object contour segmentation, which makes it difficult to distinguish
whether the feature points at the object contour are dynamic feature points or static feature
points. To solve this problem, we propose a CQE contour enhancement algorithm. By
evaluating the contour of the object, the optimal contour is selected as the output. In order
to solve this problem, Chang et al. introduced the optical flow method to detect moving
objects [64]. The optical flow method obtains the motion information of the object by
calculating the change of pixels between adjacent frames. This method can not only work
when the camera is in motion but also get the three-dimensional structure of the object.
However, the optical flow method is too sensitive to the change of illumination intensity,
and it needs to assume that the brightness of object pixels is constant. This is difficult
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to achieve in most cases. In addition, the optical flow method is difficult to recognize
fast-moving objects. Therefore, in contrast, the method proposed in this paper has stronger
robustness and can better adapt to a complex environment.

Secondly, in order to match the mapping speed of visual SLAM based on instance
segmentation, instance segmentation needs to have a faster segmentation speed. The
BAS-DP lightweight contour extraction algorithm proposed in this paper can effectively
reduce the amount of calculation while ensuring accuracy by using the most similar
polygon contour. In order to solve the same problem, Xiong et al. optimized the backbone
network and accelerated the segmentation speed by designing a semantic segmentation
head based on deformable convolution [65]. However, this method depends on the selection
of keyframes in the video sequence. Therefore, compared with it, the method proposed in
this paper is more practical.

5. Conclusions

This paper has presented a pose estimation optimized visual SLAM algorithm based
on the CO-HDC instance segmentation network for dynamic scenes. CO-HDC instance seg-
mentation includes the CQE contour enhancement algorithm and the BAS-DP lightweight
contour extraction algorithm. The CQE contour enhancement algorithm improves the seg-
mentation accuracy at the contour of dynamic objects. The problem of excessive calculation
of instance segmentation is overcome by the BAS-DP algorithm. As the test results show,
the proposed algorithm can reduce pose estimation errors and map relative drifts under
dynamic environments compared to ORB-SLAM2.

In the future, visual SLAM based on instance segmentation has broad development
space, including the driverless field, 3D printing industry, location-aware communication,
aircraft and other fields. Instance segmentation can not only improve the accuracy of visual
SLAM but also provide rich object information in the scene. In future work, the proposed
algorithm would be further implemented and demonstrated in the embedded system to fit
more robots under complex environments.
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Abstract: Aiming at the insufficient accuracy and accumulated error of the point cloud registration
of LiDAR-inertial odometry (LIO) in an urban environment, we propose a LiDAR-inertial-GNSS
fusion positioning algorithm based on voxelized accurate registration. Firstly, a voxelized point cloud
downsampling method based on curvature segmentation is proposed. Rough classification is carried
out by the curvature threshold, and the voxelized point cloud downsampling is performed using
HashMap instead of a random sample consensus algorithm. Secondly, a point cloud registration
model based on the nearest neighbors of the point and neighborhood point sets is constructed.
Furthermore, an iterative termination threshold is set to reduce the probability of the local optimal
solution. The registration time of a single frame point cloud is increased by an order of magnitude.
Finally, we propose a LIO-GNSS fusion positioning model based on graph optimization that uses
GNSS observations weighted by confidence to globally correct local drift. The experimental results
show that the average root mean square error of the absolute trajectory error of our algorithm is
1.58m on average in a large-scale outdoor environment, which is approximately 83.5% higher than
that of similar algorithms. It is fully proved that our algorithm can realize a more continuous and
accurate position and attitude estimation and map reconstruction in urban environments.

Keywords: LiDAR-inertial odometry; point cloud registration; multi-sensor fusion

1. Introduction

For any autonomous robot system, such as unmanned aerial vehicles and autonomous
vehicles, the accurate and robust localization of a mobile carrier is one of the fundamental
technologies [1]. Traditionally, the integrated navigation and positioning technology based
on the global navigation satellite system (GNSS) and inertial navigation system (INS) is
usually regarded as a reliable method to achieve high-accuracy positioning [2]. However,
in complex urban environments, there are a large number of GNSS multipath or rejection
areas due to the blockage of GNSS signals by urban objects such as tall buildings, tunnels
and street trees. As a result, the integrated positioning method based on GNSS/INS is
not effective in achieving a continuous and robust positioning of targets in large urban
environments. In summary, there is an urgent need to upgrade and expand the traditional
positioning techniques by introducing heterogeneous and complementary measurement
information from other sensors.

In recent years, the multi-sensor fusion positioning technology based on simultaneous
localization and mapping (SLAM) has received extensive attention from related enterprises
and researchers [3]. It can not only make use of the excellent characteristics of cameras,
LiDAR and other sensors, including the independence from environmental occlusion
and signal refraction in complex areas, but can also effectively make up for the signal
lock-out defect of GNSS signals in the parking lot or tunnel area. Moreover, incremental
map reconstruction can be achieved by sensing the external environment. Depending
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on the primary sensor, SLAM-based multi-sensor fusion positioning solutions can be
divided into vision-based SLAM and LiDAR-based SLAM [4]. Due to the superiority of
the sensors, the solution of LiDAR-based SLAM allows for a higher frequency and more
accurate acquisition of spatial fingerprint information, thus achieving a more accurate
positioning than vision-based SLAM [5–7]. Secondly, analyzed at the algorithm level,
LiDAR odometry is more lightweight in processing environmental features than visual
odometry and more suitable for vehicle-mounted platforms with limited computational
resources [8,9]. Therefore, the LiDAR-inertial odometry (LIO)-based SLAM scheme is
widely used to obtain 3D geographic information of a complex environment, as well as
carrier positioning and map reconstruction.

Throughout the development of the LiDAR-based SLAM, it can be seen that the
registration of the point cloud of LiDAR is a key step in the pose estimation of a mobile
carrier. It strictly affects the pose estimation and the map reconstruction results. The
commonly used point cloud registration methods include normal distribution transform
(NDT) [10], iterative closest point (ICP) [11], generalized iterative closest point (GICP) [12]
and other improved algorithms [13–16]. The core of NDT algorithm is used to take the
probability density function of the source point cloud and the target point cloud as the
objective function; then, it uses a nonlinear optimization method to minimize the probability
density between them to obtain the optimal solution. Andreasson et al. [17] avoids an
explicit nearest neighbor search by establishing segmented continuous and differentiable
probability distributions, and the registration speed is effectively improved. Although the
real-time performance is better, the covariance matrix needs to be constructed at multiple
points, which has a low robustness in the sparse area of the point cloud. Caballero et al. [18]
proposed an improved NDT algorithm that was used to model the alignment problem as
a distance field. The optimization equation is constructed by using the distance between
the feature points of the current frame and the prior map, which improves the speed
by an order of magnitude. However, the robustness of the localization algorithm is not
guaranteed for unknown sections where the priori map is missing or unreliable [19].

As another method of point cloud registration, the ICP algorithm has a higher posi-
tioning accuracy than NDT, but it needs to search for the nearest neighbor again and obtain
the transformation matrix in each iteration process, so the calculation efficiency needs to be
improved. Koide et al. [20] proposed a generalized iterative nearest point algorithm that
used a Gaussian probability model to fit the distribution of the point cloud to reduce the
computational complexity. However, its accuracy is still limited by the maximum number
of iterations. In addition, the algorithm is heavily influenced by the observation noise
and the accuracy of the initial positional transformation matrix, and there is a risk of the
algorithm falling into local minima. In order to break out of the logical limitation of being
limited to local optimal solutions, Yang et al. [21] proposed Go-ICP, a branch-and-bound
scheme to impose domain restrictions on the objective function of rigid alignment. This
processing reduced the abnormal influence of the local minimum, and made the registration
result of the point cloud approach to the global optimal solution. In 2021, Pan et al. [22]
proposed MULLS-ICP, which uses an improved ICP algorithm based on double-threshold
filtering and multi-scale linear least squares to realize the registration between the current
frame and local sub-map, but the high computational cost of multiple filtering is difficult
to adapt to the vehicle platform with limited computational resources. To sum up, on the
basis of reducing the calculation cost, a high-precision real-time point cloud registration
algorithm suitable for a vehicle platform still needs to be investigated.

In addition, as a local sensor integrator, the LIO has a cumulative offset between its
local map and the global map when it performs a positional estimation of the current frame,
which largely limits the positioning accuracy of the LIO position building scheme in large
outdoor environments. Fortunately, the global observation information from GNSS can
provide a credible global constraint correction for LIO [23]. Conversely, LIO systems can
also compensate for the limitations of GNSS in terms of continuous precise positioning due
to multipath effects and non-line-of-sight (NLOS) problems. Therefore, LIO-GNSS fusion
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positioning technology provides a feasible technical scheme for realizing globally weak
drift and locally accurate positioning and mapping targets.

The mainstream LIO-GNSS fusion algorithms can be divided into two categories,
filter-based methods and optimization-based methods, based on the method of sensor mea-
surement data fusion. Li et al. [24] used the filter-based method as the integration strategy.
They use the extended Kalman filter to realize LIO-GNSS tight coupling, but did not set
up an anomaly detection mechanism, so it was prone to the dispersion of the positional
estimates in GNSS multipath regions or point cloud degradation regions. To resolve this
issue, Li et al. [25] uses an edge fault-tolerant mechanism to improve the robustness of
the algorithm in case of single-sensor failure. However, it weakens the linearization error
at the cost of increasing the amount of computation, which is contrary to the lightweight
principle of large outdoor scenes. As another fusion method, the optimization-based
method uses multiple iterations to approach the optimal solution, which can effectively
handle such non-linear heterogeneous data fusion problems. Soloviev et al. [26] proposed
an optimization-based LIO-GNSS scheme, but only the horizontal components of GNSS
measurements were used to optimize the LIO pose estimation results, with low utilization
of the measurement information. Shan et al. [27] puts forward an optimization framework
that introduces 3D GNSS measurement factors to assist LIO, but the measurement informa-
tion of a single key frame is redundant, and the reliability of GNSS factors added when
driving to the GNSS multipath area is poor. Sun et al. [28] proposed a GNSS corner factor
to constrain the local pose, but it does not consider the shortage of corners on straight road
sections, so its application in a large-scale complex outdoor environment is limited.

From the above analysis, it can be seen that the research points of the LIO-GNSS fusion
scheme are as follows:

1. Realizing real-time and high-precision point cloud alignment based on compressed
computational costs.

2. On the basis of making full use of GNSS measurement information, global cumulative
error correction of LIO is carried out by GNSS.

To address the above issues, in this contribution, we propose a LiDAR-inertial-GNSS
fusion positioning system based on voxelized accurate registration. Firstly, a voxelized
point cloud downsampling method based on curvature segmentation is proposed. Rough
classification is carried out by a curvature threshold, and the voxelized point cloud down-
sampling is performed using HashMap instead of the random sample consensus algorithm.
Therefore, the spatial distribution attributes of the source point cloud are retained to a
greater extent. Secondly, a point cloud registration model based on the nearest neighbors
of the point and neighborhood point sets is constructed. Thirdly, an optimization-based
method is used to build a higher-order Markov model based on sliding windows, and a
GNSS factor and loop factor are introduced into the factor graph to constrain LIO globally.
Finally, on this basis, a GNSS residual construction method based on the GNSS reliability
weight is proposed to make full use of GNSS measurement information. Therefore, the
goal of positioning and mapping with a light weight, high precision and high applicability
in a complex urban environment can be achieved.

2. System Overview

The proposed algorithm framework is shown in Figure 1. The main functions of each
module are as follows.

The front-end of the system is mainly used to preprocess IMU observations and LiDAR
original point cloud sequences, and to optimize the generation of local maps by inter-frame
matching. The LiDAR raw point cloud sequence is clustered and segmented by a breadth-
first-search combined with the Euclidean angle threshold, and then edge and plane feature
point clouds are extracted. These two types of feature clouds are downsampled for point
cloud alignment, and the local inter-frame matching is optimized using the IMU pre-
integration as the initial pose estimate. Finally, the LIO local pose estimates are used to
pre-process the GNSS global observations, including the temporal interpolation alignment
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of GNSS and LIO local observations and coordinate system alignment, so as to achieve the
space–time synchronization among sensors.

Figure 1. General framework of the algorithm. LIO’s pose estimation results are used as local
optimization factors, and GNSS pseudo-range single point positioning (SPP) results are used as
global optimization factors for global constraint.

The back-end mainly uses the residuals of pose estimates of each sensor to optimize the
map. The residual factors from local sensors include the IMU pre-integration and LiDAR
observation residual, whereas the global residual factors include the GNSS observation
residual and loop residual. It should be noted that the global residual factors are added
only when their existence is detected, and, when there is no global residual factor, the
system only performs local position, such as when the carrier is travelling in a flat and
straight tunnel environment. When global corrections are available, the obtained global
positioning results are used to update the local pose estimates in the sliding window to
obtain the best pose estimates with local accurate registration and global drift-free.

3. Point Cloud Voxelization Downsampling and Alignment

The accuracy of the registration of the environmental point cloud extracted by LiDAR
strictly affects the result of the subsequent local pose estimation. Therefore, the processing
steps of the front-end point cloud of the system need to be described in detail. This paper
mainly involves the improved point cloud downsampling method and registration method.

3.1. Voxelized Downsampling Based on Curvature Segmentation

This paper presents a voxelized downsampling method based on curvature segmenta-
tion. Given a set of raw point cloud sequences collected by LiDAR, all points in the raw
point cloud sequences are traversed and coarse clustering is performed using a breadth-first
algorithm. Furthermore, the geometric angle threshold based on Euclidean distance is used
to finely segment the point cloud clusters with similar depth. Let the scanning center of
LiDAR be O and the two adjacent edge points pa and pb in the point cloud cluster with
depths da and db, respectively (da > db). Let the number of point clouds in the point cloud
cluster where point pi is located be M. Then, the roughness of point cloud pi is:

c =
1

|M| · ‖di‖

∣∣∣∣∣
∣∣∣∣∣∑j �=i

(
di − dj

)∣∣∣∣∣
∣∣∣∣∣, i, j ∈ M (1)
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Set the roughness threshold as c, then traverse M. We classify the points of c < c as
the set of edge feature points, classify the points of c > c as the set of plane feature points
and perform downsampling operations on them, respectively.

This method is mainly used in the feature extraction step of LiDAR odometry [4];
we extend it to the downsampling step. This means that, for any application where
downsampling of point clouds is required, such as artefact inspection, the method can better
restore the spatial distribution properties of point clouds by downsampling in clusters.

Next, this paper proposes a point cloud downsampling strategy based on HashMap,
instead of the random sample consensus (RANSAC), so that the downsampling result of
the point cloud is closer to the approximate center of gravity of voxels. Let the coordinate of
a feature point in a set of point cloud sequences in the voxel space be p(x, y, z). If the voxel
grid size is r, the dimension of the voxel grid in the x direction is Dx = (xmax − xmin)/r,
and the index of p in the x direction within the voxel grid is hx = (x − xmin)/r. The same
applies to the y and z directions.

After obtaining the 3D index of feature points in the voxel space, if the random sorting
strategy of [11] is adopted, the sorting complexity will be O((m + n) ∗ log(m + n)), which
has a negative impact on the down-sampling time. Therefore, this paper uses the hash
function to sort the index of feature points quickly and map them to N containers (N = 80).
The hash function is:

hash(hx, hy, hz) = (hx + hy · Dx + hz · Dx · Dy) %N R
3 → R (2)

To avoid hash conflicts, set the conflict detection conditions as follows:

hash(hx, hy, hz) = hash(h′x, h′y, h′z) (hx �= h′x
∣∣∣hy �= h′y

∣∣∣hz �= h′z) (3)

Once the hash conflict is detected, the index value in the current container is output
and the container is emptied, and the new index value is put into the container.

To sum up, the main improvement of this section lies in extending the curvature
segmentation step originally used for feature extraction to the downsampling step, and
using hash mapping instead of the random sampling method for point cloud sampling. For
the LiDAR odometer, using the clustering line and surface features again after the feature
extraction step can improve the accuracy of downsampling single-frame or discontinuous
point clouds at a weak time cost, thus providing more accurate point cloud distribution re-
sults for the pose estimation step between consecutive frames. In addition, using HashMap
to downsample can further improve the sampling efficiency, and the time consumption of
quadratic curvature segmentation is almost negligible. For other applications that need to
downsample point clouds, the point cloud clustering method based on curvature segmen-
tation can restore the spatial distribution of point clouds more accurately, and the benefits
of this method are extensive and obvious.

The results and time consumption of the improved point cloud downsampling process
are shown in Figure 2 and Table 1. Cloud number M = 112624, the line feature extraction
threshold is 1, the surface feature extraction threshold is 0.1 and r = 0.3. It can be seen
from Figure 2c that the present method has a clearer reduction in the spatial distribution of
diagonal lines within a rectangular point cloud. Therefore, it can be proved that our method
can retain the texture feature information of the source point cloud to a greater extent, and
the accuracy and real-time performance of the downsampling results can be improved.
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(a) (b) (c)

Figure 2. Comparison of point cloud downsampling results. (a) Source point cloud; (b) downsam-
pling results before improvement; (c) downsampling results after improvement.

Table 1. Comparison of the number of point clouds and time consumption after downsampling.

Point Cloud Type Number of Point Clouds Time Consumption

Source point cloud 112,624 -
Before improvement 4100 0.004 s
After improvement 5929 0.002 s

3.2. Voxelized Point Cloud Registration

The purpose of point cloud registration is to update the rigid frame transformation
of a moving carrier by comparing two consecutive frames of point clouds or similar point
clouds detected by a loopback to solve for the carrier’s pose. Traditional LIO usually uses
ICP to realize the precise registration of point clouds. The ICP can be briefly described
as follows: given a set of source point cloud A = {a1, a2, . . . , an} and target point cloud
B = {b1, b2, . . . , bn}, the nearest neighbor search of KDTree is used to obtain the inter-frame
pose transformation relationship bi = Tai, and the optimal solution is achieved through
multiple iterations. However, an unreasonable initial position selection will make ICP
fall into the misunderstanding of the local optimal solution, and the calculation resource
consumption of the single-point nearest neighbor search is large. In view of the defects of
the ICP algorithm, this paper utilizes a method based on the distribution of feature points
in voxels, as shown in Figure 3.

Figure 3. Comparison of point cloud registration strategies. (a) ICP/GICP; (b) NDT; (c) our algorithm.

As shown in Figure 3. the problem of constructing the nearest neighbor model of a
point pair by using a tree diagram is transformed into constructing the nearest neighbor
model of a point and a neighborhood point set. Firstly, the two sets of point cloud sequences
are approximated as Gaussian distributions, i.e., ai ∼ N(âi, ΣA

i ) and bi ∼ N(b̂i, ΣB
i ), where

i ∈ (1, n). ΣA
i and ΣB

i are covariance matrices of two sets of point cloud sequences,
respectively. Let the distance between a pair of corresponding points between the target
point cloud and the source point cloud be:

di = bi − Tai (4)
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Let the neighborhood point set of ai be Bai =
{

bj
∣∣‖ai − bj‖ < λ

}
, where λ is the

neighborhood judgment threshold. Thus, the distance between the extended point and the
neighborhood point set is:

d̂i = ∑j

(
b̂j − Tâi

)
(5)

As a result of ai ∼ N(âi, ΣA
i ) and bi ∼ N(b̂i, ΣB

i ), the rigid body transformation error
ei is calculated as:

ei ∼ (∑j

(
b̂j − Tâi

)
, ∑j

(
ΣB

j − TΣA
i TT

)
) (6)

In this way, the smoothing of all neighboring point clouds in the neighborhood of
ai is achieved. Let μ = N(∑j

(
b̂j − Tâi

)
and Σ = ∑j

(
ΣB

j − TΣA
i TT

)
; because ei is a high-

dimensional Gaussian distribution, its probability density function expansion form is:

P(ei) =
1√

(2π)Ndet(Σ)
exp

{
−1

2
(ei − μ)TΣ−1(ei − μ)

}
(7)

The negative logarithmic form of Equation (7) is:

− ln(P(ei)) =
1
2

ln
[
(2π)Ndet(Σ)

]
+

1
2
(ei − μ)T(Σ)−1(ei − μ) (8)

Solving the inter-frame pose transformation matrix T by maximum likelihood method:

T = argmax
T

Π
i

P(ei) = argmin
T

∑i ei
T(ΣB

j − TΣA
i TT)ei

T (9)

Furthermore, after introducing the number Ni of point clouds in the neighborhood ai,
Equation (9) can be written as:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

T = argmin∑
i
(NiêT

i Σ−1
i êi)

êi =
∑j bj

Ni
− Tai

Σ̂i =
∑j ΣB

j
Ni

+ TΣA
i TT

(10)

In addition to the smoothing of all neighboring point clouds in the neighborhood of ai,
an iteration termination threshold ε was established to avoid falling into a blind region of
local optima after multiple iterations as follows:

|RMSEk+1 − RMSEk| > ε (11)

where RMSEk+1 and RMSEk are the root mean square error of the previous k + 1 iter-
ations and the previous k iterations, respectively. The iteration is completed when the
absolute value of the change in the root mean square error |RMSEk+1 − RMSEk| ≤ ε, or
the maximum number of iterations, is reached.

4. Graph Optimization Framework

4.1. Local Pose Map Structure

Authors should discuss the results and how they can be interpreted from the perspec-
tive of previous studies and of the working hypotheses. The findings and their implications
should be discussed in the broadest context possible. Future research directions may also
be highlighted.
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The local state vectors in the local coordinate system in which the LiDAR and IMU are
located are given as follows:

X L =
[

xb1, xb2, . . . , xbi, de
1, de

2, . . . , de
k, dp

1 , dp
2 , . . . , dp

k

]
xbi =

[
pL

bi, qL
bi, vL

bi, ba, bg
] (12)

where xbi denotes the state quantity after pre-integration of the ith IMU at tk, including
position pL

bi, rotation qL
bi, speed vL

bi and IMU bias ba, bg. de
k is the distance from the LiDAR

feature point at tk−1 to the matching edge feature at tk, and dp
k is the distance from the

feature point at tk−1 to the matching planar feature at tk.
From this, the Gauss–Newton method can be used instead of the fastest gradient

descent method used in [27] to minimize all cost functions so as to reduce the number
of iterations for rapid convergence to a locally optimal estimate. The local optimization
function is constructed as follows:

min
X

{
∑ de

k + ∑ dp
k+∑

k∈B
‖rB

(
ẑk

k+1,X
)
‖2

Σb

}
(13)

where ∑ de
k + ∑ dp

k is used to solve the carrier pose xLiDAR
tk in the local coordinate system

of LiDAR at time tk. rB

(
ẑi−1

i ,X
)

and Σb are IMU measurement residuals and covariance
matrices, respectively. The meanings of the terms are described below.

4.1.1. IMU Pre-integration Factor

Let
[
αi+1

i , θi+1
i , βi+1

i

]T
be the IMU pre-integration calculation value between the ith

and i + 1th LiDAR key frames. Details of the derivation of the IMU pre-integration are
presented in Appendix A. Δti is the time interval between the two LiDAR key frames, and
the spatial transformation matrix from the IMU coordinate system to the LiDAR coordinate
system in ith frame is represented by Rbi

L . The IMU residual can be obtained as follows:
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where the symbol [·]xyz represents extracting the real part of the quaternion used to calculate
the rotation state error, and ⊗ represents the quaternion multiplication.

After the pose estimation of the previous key frame is completed, the IMU acceleration

bias and gyroscope bigotry will be updated, the update amounts are set as δ
�
b

bi

a and δ
�
b

bi

g
and the pre-integration calculation value at this time is updated as follows:
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4.1.2. LiDAR Factor

The feature point cloud extracted by LiDAR can be divided into two types: line
features and surface features. The LiDAR residuals of the two types need to be constructed
separately and then summed to obtain the total LiDAR residuals. Details of the specific
derivation of LiDAR residuals are presented in Appendix B. Figure 4 shows the schematic
diagram of LiDAR residual construction.

Figure 4. Schematic diagram of LiDAR residual construction. (a) Line characteristic residual con-
struction; (b) surface characteristic residual construction.

As shown in Figure 4, let a feature point obtained in the k + 1th scan have the coordi-
nates of XL

(k+1,o) in the LiDAR coordinate system, and the coordinates of two end points of

the line features matched with it in the kth scan are XL
(k,a) and XL

(k,b). The residual error of
the line features can be expressed by the point-to-line distance:

dL
ek =

∣∣∣(XL
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)
×
(

XL
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(k,b)

)∣∣∣∣∣∣XL
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∣∣∣ (16)

Similarly, if the surface features that match it in the kth scan are represented as XL
(k,c),

XL
(k,d) and XL

(k, f ), then the surface feature residual can be represented by the point-to-surface
distance:
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4.2. Spatial Unification of Multi-Sensor Poses

Constructing the time—space correlation of each sensor is a fundamental task in multi-
sensor fusion optimization. For this system, it is necessary to spatially unify the positional
estimation results of LiDAR and IMU in the local map with the GNSS measurements in the
global map. Therefore, the spatial unification strategy of the multi-sensor pose involved in
this paper is shown in Figure 5.

Figure 5. Schematic diagram of the spatial unification of multi-sensor poses. The spatial association
of the poses of LiDAR and IMU in the local coordinate system is on the left, and the spatial association
of the poses of IMU and GNSS receivers in the global coordinate system is on the right.
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As shown in Figure 5, WIMU
GNSS is the external parameter conversion matrix from IMU to

GNSS and WLiDAR
IMU is the external parameter conversion matrix from LiDAR to IMU. Since

the hardware is fixed to the mobile carrier, both are calibrated to a constant value. The left
figure shows the positional conversion between LiDAR and IMU in the local coordinate
system, whereas the right figure shows the multi-sensor positional spatial unification from
the local to the global coordinate system. Here, it is necessary to introduce the spatial
transformation parameters FL

G (including translation pL
G and rotation qL

G) to correlate the
two positional spaces. The spatial unification of the multi-sensor pose at the moment of t
can be expressed as:

min
qG

L ,pG
L

1
2

j

∑
i=1

‖PG
t −

((
qL

G

)T ·
(

qL
t · WIMU

GNSS + pL
t

)
+ pG

L

)
‖

2

2
(18)

where the initial value of FL
G is set as the unit matrix. Every time the GNSS factor is added

to solve the global optimum, the value of FL
G at the next moment will be updated, thus

correcting the cumulative offset between the local and global coordinate systems.

4.3. Global Pose Map Structure

Global pose map construction can be regarded as a nonlinear optimization problem;
that is, the nonlinear optimization of the state vector in the sliding window. Different from
the factor graph method adopted in [27], this paper adopts the graph optimization method
to directly construct the residual block in the original pose graph structure for nonlinear
optimization, and only optimizes the key frames in the sliding window. However, the factor
graph based on GTSAM [29] needs to construct the optimization problem into a new graph
corresponding to the original pose graph, with the optimization variables as the vertices
and error terms as the edges. The complicated constraint relationship among the vertices
is more favorable toward the optimization accuracy. However, once a new key frame is
detected, all of its associated constraint nodes will be updated, which is complicated and
takes too long in the engineering field. Therefore, in order to meet the requirements of the
lightweight and real-time performance of the vehicle platform, we choose not to build a
new constraint-related Bayesian network, but to construct the residual error and nonlinear
optimization in the original pose map structure. The global pose optimization framework
proposed in this paper is shown in Figure 6.

Figure 6. LiDAR-IMU-GNSS fusion framework based on graph optimization.
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The global optimization function is constructed as follows:

X = argmin
X
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∑
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t
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+ rloop

(
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k Pk,Sk

)
(19)

where ρ is the GNSS confidence level expressed by the covariance of the error in the
GNSS observations obtained by the pseudo-range single point positioning (SPP) algorithm
solution. TW

k is the pose transformation matrix between the current global point cloud
Pk and the local point cloud Sk derived from the inter-frame local matching. The specific
meaning of each sensor cost function in the formula are as follows.

4.3.1. LIO Factor

According to Section 4.1, the position pL
t and rotation qL

t of the carrier in the local
coordinate system at the moment t can be obtained. Therefore, the LIO local residual factor
can be constructed as follows:
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where the symbol � represents the quaternion subtraction.

4.3.2. GNSS Factor

Set the time interval between two frames of GNSS observations as Δt and realize the
time alignment with LIO pose estimation by interpolation. Cubic spline interpolation is
used for position interpolation and spherical linear interpolation is used for quaternion
interpolation. Now, given the GNSS measurement pGNSS

t in the ENU coordinate system
and the LIO positional observations pG

t in the global coordinate system, the GNSS residual
factor is expressed as follows:

rG

(
ẑt−1

t ,X
)
= pG

t − pGNSS
t (21)

When the carrier moves to the GNSS signal confidence region, in order to fully and
reliably utilize the GNSS observations, the GNSS factor is added with the GNSS confidence
as the weight. The GNSS confidence is determined by the number of visible and effective
GNSS satellites. After GNSS participates in the global pose estimation, it will update
the pose conversion parameter FL

G between the local coordinate system and the global
coordinate system. This ensures that, even if the mobile carrier enters a GNSS-rejected
environment (e.g., indoor car parks and tunnels), our algorithm can provide a more accurate
initial observation after GNSS correction.

4.3.3. Loop Factor

Considering the possible overlap of the moving vehicle driving areas, it is necessary
to add a loop detection link to establish possible loop constraints between non-adjacent
frames. According to Equation (5), the loop factors can be constructed as follows:

rL

(
TW

k Pk,Sk

)
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k ΣS
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k

(22)

Using the optimized point cloud registration method in Section 3.2, we optimize and
correct the historical trajectory through the registration between the point cloud of the
prior local map and the current global point cloud. This method ensures that the positional
estimates converge to the global optimum result.
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5. Experimental Setup and Results

5.1. Point Cloud Registration Results

To verify the superiority of the point cloud registration algorithm used in this paper, we
compared the registration results of the ICP algorithm used in traditional LiDAR odometry
with our algorithm. The comparison results are shown in Figures 7–9.

  
(a) (b) (c) 

Figure 7. Point cloud registration results. (a) Original source and target point clouds. (b) Alignment
results using ICP algorithm. (c) Alignment results using our algorithm.

  
(a) (b) (c) 

Figure 8. Detail diagram of point registration results of the point cloud registration results.
(a) Original source and target point clouds. (b) Alignment results using ICP algorithm. (c) Alignment
results using our algorithm.

   
(a) (b) (c) 

Figure 9. A circular expansion of the point cloud alignment results. (a) Original source and target
point clouds. (b) Alignment results using ICP algorithm. (c) Alignment results using our algorithm.

Compared with the typical indoor environment, for mobile carriers in complex urban
environments, the angles and translations between the source and target point clouds
during the continuous frame and the loopback detection may be larger. As shown in
Figure 7, when the initial position is unreasonable, the registration results of the ICP
algorithm cannot fully approach the global optimal solution, which is detrimental to both
the local pose estimation and loopback correction of the mobile carrier. However, the
registration accuracy of our algorithm is not affected by the large positional transformation
of the vehicle platform. Compared with the traditional ICP algorithm, the registration
result of our algorithm suited the needs of the vehicle platform better.
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Furthermore, in order to avoid the contingency of the registered objects, we made
a comparative experiment on the source point clouds with different rotation angles and
translation distances, and quantitatively compared the registration accuracy and time
consumption of each algorithm. The test results are shown in Tables 2 and 3.

Table 2. Registration results of different algorithms for point clouds with different angles.

Rotation
Angles

4◦ 15◦ 30◦ 60◦ 90◦

Time Consumption (ms)/Root Mean Square Error (m)

PCL_ICP 212.79/0.00055 244.08/0.00138 314.76/0.15597 393.49/6.01775 350.92/8.04554
PCL_GICP 244.45/0.00055 319.93/0.00056 861.81/0.00057 1763.89/24.3384 1375.59/25.1845
PCL_NDT 267.46/0.00350 563.40/0.01668 332.04/6.11404 202.97/17.9595 346.27/29.0983
Proposed 31.71/0.00023 37.25/0.00037 46.72/0.00050 51.80/1.72794 40.80/2.67116

Table 3. Registration results of different algorithms for point clouds with different translation
distances.

Translation
Distances

0.5 m 1 m 2 m 4 m 5 m

Time Consumption (ms)/Root Mean Square Error (m)

PCL_ICP 213.11/0.02398 221.52/0.02398 254.83/0.02409 312.12/0.04216 303.797/0.86212
PCL_GICP 215.33/0.02415 222.46/0.24152 254.359/0.02415 303.31/0.02415 354.088/0.02415
PCL_NDT 456.43/0.03024 723.031/0.03375 1186.57/0.02511 577.64/2.28457 279.047/2.68836
Proposed 31.9215/0.00106 33.44/0.01716 41.26/0.01265 31.19/0.03011 33.88/0.03047

From the vertical comparison between Tables 2 and 3, it can be seen that the point
cloud registration algorithm is more sensitive to rotation, which means that, if the vehicle
rotates at a large angle in the city, the point cloud registration between consecutive frames
is perhaps less reliable. It may even lead to a failure of the pose estimation, as has been
demonstrated in [5]. However, as the rotation angle increases, it can be seen from Table 2
that the registration accuracy of our algorithm decreases the least, and, at the extreme 90◦
rotation angle, the accuracy is still more than four times better than the other algorithms,
with a root mean square error of approximately 2.67116 m. On the other hand, for large
translations (5 m) between the source and target point clouds, our algorithm also shows an
excellent registration accuracy, with a root mean square error of approximately 0.03047 m.
It is worth noting that, in the aspect of single-point cloud registration, the registration time
of our algorithm is increased by approximately one order of magnitude compared with
others. To sum up, it is sufficient to verify the superiority of the proposed registration
algorithm in terms of compressing time and improving the registration accuracy.

5.2. Positioning Accuracy

In this paper, the absolute trajectory error (ATE) was selected as the evaluation index of
SLAM system positioning accuracy so as to directly reflect the difference between the global
position estimation of the moving carrier and the ground truth. The absolute trajectory
error is calculated as follows.

Ai := g−1
i Spi (23)

where Ai is the absolute trajectory error of the SLAM system in the ith frame, gi and pi are
the ground truth and the estimated pose, respectively, and S is the transformation matrix
between the ground truth and the estimated pose. In this paper, the mean error (ATE_ME)
and root mean square error (ATE_RMSE) of the absolute trajectory error were selected as
evaluation criterion.

5.2.1. Public Dataset

To verify the positioning accuracy of the fusion algorithm in different outdoor environ-
ments, the KITTI_RAW dataset [30], which includes a variety of outdoor scenes, was used
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to evaluate the localization accuracy of the fusion algorithm and to compare it with other
similar advanced algorithms. The experimental data acquisition platform is as follows:
LiDAR point cloud data are acquired by Velodyne HDL~64 line LiDAR, with horizontal
field angle of view of 360◦, vertical field angle range of (−24.8◦,+2◦), horizontal resolution
range of (0.08◦, 0.35◦), vertical angle resolution of 0.4◦ and scanning frequency of 10 Hz,
which can meet the requirements of in-vehicle point cloud data acquisition. The GPS/IMU
integrated system adopts OXTS RT3003, with a GPS output frequency of 1 Hz/s and
an IMU output frequency of 100 Hz. The ground truth is provided by a high-precision
integrated navigation system.

Four different outdoor scenarios were used to validate the performance of the fusion
algorithm, including urban environments, open area, highway and forest road. The voxel
grid size of the fusion algorithm was set to 0.3 × 0.2 × 0.3, the maximum iteration threshold
was set to 30 and the iteration termination tolerance threshold was set to 1 × 10−8, so as
to meet the real-time requirements and ensure the stable number of feature point clouds
participating in the matching in sparse areas of outdoor environments. The comparison of
the experimental results is shown in Figures 10 and 11 and Table 4.

Figure 10. Comparison of the estimated trajectories. (a) Global positioning trajectory. (b) Local details
of the trajectory. (c) Local details of the trajectory.

Table 4. Comparison of ATE_RMSE(m) of each algorithm in KITTI_RAW dataset.

Sequence
Urban Environments Open Area Highway Forest Road

09_30_0018 09_30_0027 09_30_0016 10_03_0042 09_30_0033

A-LOAM 3.545 1.181 0.475 21.058 8.693
LeGO-
LOAM 2.253 2.060 0.515 186.608 4.585

LIO-SAM 1.881 0.905 0.423 19.745 10.109
Proposed 1.056 0.400 0.222 6.239 3.669
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Figure 11. Comparison of the positioning error of each algorithm. (a) APE fitting curve. (b) The box
diagram of APE.

Figure 10 shows the comparison of the positioning results of each algorithm in the
09_30_0018 dataset representing the urban environment. As shown in Figure 11b, both
LiDAR odometry (LO), represented by A-LOAM, and LIO, represented by LeGO-LOAM,
show significant degradation in the position estimation results in the first 50 s and the
last 50 s. The reason is that LO and LIO systems only rely mainly on LiDAR to extract
spatial geometric feature information. Once LiDAR feature constraints are sparse or fail,
the carrier state estimation degradation will occur in this feature direction, and additional
constraints need to be added. The first 50 s and last 50 s are both flat, open roads with sparse
point cloud features, which are susceptible to the degradation of the LiDAR positional
optimization results. However, the number of GNSS visible satellites in the flat and open
road is enough, and using GNSS observations as global constraints can greatly improve the
positioning accuracy and robustness in sparse areas of point clouds. As can be seen from
Figure 11b, the ATE_RMSE of both the LIO-SAM with GNSS global constraints and the
present algorithm is stable between (0 m, 2 m), and the positioning accuracy remains stable
in the sparse region of the point cloud features in the latter 50 s without large data drift.
In addition, from the box diagram shown in Figure 9c, it can be seen that the positional
outliers estimated by LIO-SAM are reduced by approximately 80% compared with the LIO
system. Furthermore, the positional estimation errors of our algorithm are concentrated
between (0.68 m, 1.23 m) with very few outliers, which fully demonstrates the superiority
of the proposed algorithm in its positioning accuracy in urban environments.

5.2.2. Urban Dataset

To further investigate the extent to which improvements in both the front-end and back-
end components of the fusion algorithm improve its positioning accuracy, we conducted
ablation experiments in a complex environment of GNSS signals. We constructed a system
without GNSS global correction (-), a system without smoothed voxelized point cloud
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registration and loopback correction (#) and a complete system (Proposed), respectively. The
experimental environment is the complex reflection area of GNSS in the urban environment.
The experimental platform includes: the ground truth, which is provided by NovAtel
SPAN-CPT positioning results; the LiDAR point cloud, which is acquired by HDL 32E
Velodyne LiDAR, where the horizontal field of view angle is 360◦, the vertical field of
view angle range is (−30◦,+10◦) and the scanning frequency is 10 Hz, which is suitable
for in-vehicle point cloud data acquisition; IMU, which is Xsens Mti 10, and the update
frequency of the pose is 100 Hz; the GNSS receiver, which is u-blox M8T, and the update
frequency is 1 Hz.

Different from the KITTI_RAW dataset, the GNSS confidence parameter in this ex-
periment is not fixed. After solving the raw observation data collected by u-blox with the
SPP algorithm, we obtained the GNSS confidence covariance as the GNSS factor weight
parameter. This is more in line with the real urban environment, where GNSS reflected and
refracted signals interfere with the direct signal superimposed, thus causing the pseudo-
range and carrier phase observations to deviate from the true value of the direct signal. The
experimental results are shown in Figures 12 and 13 and Table 5.

Figure 12. Comparison of the estimated trajectories. (a) Global positioning trajectory. (b) Local details
of the trajectory. (c) Local details of the trajectory.

Table 5. Motion estimation errors of each algorithm on outdoor dataset.

Sequence
Hong Kong 0428 Hong Kong 0314

ATE_RMSE(m)/ATE_ME(m)

A-LOAM 41.933/37.672 23.220/21.143
LeGO-LOAM 43.441/40.515 10.250/9.644

LIO-SAM 19.042/12.464 7.181/6.786
Proposed(-) 16.456/14.119 6.785/6.198
Proposed(#) 4.671/3.847 1.816/1.382

Proposed 2.265/1.901 1.573/1.260
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Figure 13. Comparison of the positioning error of each algorithm. (a) APE fitting curve. (b) The box
diagram of APE.

As can be seen from Figure 13a, firstly, due to the accurate registration of the front-end
point cloud, the absolute trajectory error of Proposed(-) decreases slightly compared to
the pre-improved system. In the initial parking section of the dataset, the traditional ICP
algorithm suffers from the problem of over-iterations, and the result is not the global
optimal solution. However, the data smoothing processing and the setting of the iteration
termination threshold of our algorithm can solve this problem well, providing a better initial
value for the positional matching. The absolute trajectory error within the first 25 s drops
by approximately 8m compared to LIO-SAM. Secondly, compared to LIO-SAM, which uses
GNSS observations directly as global constraints without filtering, we introduced GNSS
confidence into the optimization equation. It allows our algorithm to remain unaffected by
poor-quality GNSS observations and to maintain a better positioning accuracy in the latter
50 s in areas with dense tall buildings and poor-quality point cloud distribution. In contrast,
due to the poor quality of GNSS observations involved in optimization (LIO-SAM) and the
low accuracy of LiDAR loop detection as a global constraint (A-LOAM and LeGO-LOAM),
all other similar algorithms have a cumulative increase in the absolute trajectory error with
steeper slopes. This is extremely detrimental for vehicle-mounted platforms driving in
realistic large outdoor environments. From the experimental results, it can be seen that the
global optimization link in our complete algorithm can well suppress the local cumulative
drift and make the pose estimation result move more towards the global optimal solution.

In summary, driven by a combination of respective front-end and back-end improve-
ments, our complete algorithm achieves a higher positioning accuracy than other compara-
ble algorithms within real urban environments. Furthermore, as a result of the inherent
advantage of local sensors not being subject to signal refraction environmental interference,
it compensates for positioning outliers arising from multipath effects in traditional GNSS
positioning in urban environments. It fully ensures the integrity and reliability of the fusion
system’s positioning.
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5.3. Time-Consuming Performance

In this paper, the KITTI 09_30_0033 sequence is randomly selected to verify the
real-time performance of our algorithm and the similar algorithms. In this paper, the
above-mentioned three similar advanced algorithms are selected as control algorithms to
compare with our algorithm, so as to verify the superior real-time performance of this
algorithm in three stages: downsampling, point cloud registration and optimization. The
experimental results are shown in Figure 14.

(a) 

(b) 

(c) 

Figure 14. Time-consuming comparison of three processes. (a) Point cloud downsampling process.
(b) Point cloud registration process. (c) Position global optimization process.

The time consumption of the point cloud downsampling is shown in Figure 14a. The
downsampling process of the three other algorithms uses RANSAC as the core algorithm,
but its iterative approximation speed is slow, at approximately (0.5 ms, 1 ms), and the
filtering and fitting quality of the depth information is not good. In contrast, our proposed
algorithm uses HashMap instead of random sampling, which improves the speed of
filtering out similar points in voxels to a certain extent and reduces the time consumption
by two to five times compared with the traditional downsampling method. Although the
time-consuming ratio of this process is relatively small in typical indoor environments
or short-term positioning processes, for vehicles driving in large outdoor environments
with complex point cloud environments for long periods of time, the accumulation of
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tiny instances of time consumption will lead to a cumulative increase in positioning time
consumption. Therefore, the time-consuming compression in point cloud downsampling
in this paper is beneficial for ensuring real-time vehicle positioning.

The time consumption of the point cloud registration is shown in Figure 14b, which
shows that the time taken for the LIO-SAM and A-LOAM point cloud registration step is in
the range of (50 ms, 200 ms). By extracting and separating the ground point clouds, LeGO-
LOAM can inhibit the time-consuming increase caused by outlier registration due to the
interference between non-identical cluster point clouds to a certain extent. The point cloud
registration step takes approximately (50 ms, 100 ms). There are two possible factors for the
obvious fluctuation of the above algorithm. The first is the fluctuation in the registration
time due to the changing distribution of the ambient point cloud. The second is that,
according to the experiments in Section 5.1, the rotation angle and displacement between
the source and the target point cloud also have a certain influence on time consumption,
which is obvious in the urban driving environment, where the speed and driving direction
change irregularly. However, the time consumption of our algorithm is stable between
(20 ms, 30 ms). The smoothing of the single-to-many distribution of the point cloud
sequence greatly reduces the effect of the sparsity of the point cloud distribution on
the alignment time, ensuring that the point cloud alignment step is both time-efficient
and stable.

The time consumption for the positional optimization step is shown in Figure 14c.
The time taken to match the local map to the global map for LIO-SAM and LeGO-LOAM
is around (30 ms, 130 ms). Due to the addition of GNSS sensors and the interference of
some GNSS observations with low confidence, the total time consumption of LIO-SAM
is even higher than that of LeGO-LOAM. However, A-LOAM takes (20 ms, 25 ms). The
main reason is that the observation of only one sensor in LiDAR needs to be optimized,
and the residual block is directly constructed in the original pose map structure, which
reduces the computational burden of the multidimensional factor map. In this algorithm,
the optimization method of A-LOAM is used for reference. It can be seen that, although
the GNSS sensor is added, the time consumption is still stable at approximately 30 ms.
The reason is that the global constraint of GNSS provides a more accurate transformation
matrix from the local map to the global map for the fusion system, which makes it easier
for the objective function of map matching to converge to the optimal solution. Secondly,
we use the Gauss–Newton method instead of the steepest gradient descent method used
in [27] to minimize all of the cost functions, so as to reduce the number of iterations to
converge quickly to the locally optimal estimate, which is one of the main reasons for the
decrease in time consumption. The average total time of each algorithm in a single frame is
shown in Table 6.

Table 6. Comparison of average total time consumption of each algorithm in single frame.

A-LOAM LeGO-LOAM LIO-SAM Proposed

Time Consumption/ms 138.07 126.29 223.15 108.76

In summary, thanks to the double improvement of this algorithm in the front-end and
back-end of our system, the time consumption of all three steps involved is compressed.
Although the optimization vector of the GNSS sensor is newly added, it has a better
real-time performance than other similar algorithms.

5.4. Mapping Results in the Real Urban Environment

As shown in Figure 15, this section shows the comparison of mapping results between
our algorithm and similar advanced algorithms. Figure 15a shows the ground truth in the
real outdoor environment, which is obtained by NovAtel SPAN-CPT. The vehicle travels
for one week from the starting point in the lower right corner and then returns, and the
trajectory is almost closed. Figure 15b shows the mapping result of LIO-SAM, and it is
clear that the section near the end of the journey deviates significantly from the actual path
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travelled. The reason can be attributed to the fast displacement of the carrier, which leads
to an increased difference in the point cloud clusters captured between the front and back
frames, including rotation and displacement, resulting in the point cloud registration in the
loopback detection of LIO-SAM being prone to failure and the loopback constraint results
not being ideal. In addition, the GNSS constraint strategy adopted by LIO-SAM has a poor
global correction effect on local sensors. However, compared with LIO-SAM, our algorithm
has an obvious loop detection accuracy and GNSS global constraint effectiveness.

 
(a) (b) (c) 

Figure 15. Comparison of mapping effects of various algorithms. (a) The ground truth. (b) The
mapping results of LIO-SAM. (c) The mapping results of the proposed algorithm.

As shown in Figure 15c, the mapping trajectory of the algorithm proposed in this
paper is basically fitted with the true value of the driving trajectory, and, in the loop road
section in the lower right corner, the trajectories passing through the same landmark twice
are basically coincident. The reasons are as follows: firstly, smoothing the point cloud
clusters can improve the fault tolerance of the point cloud registration between the front
and back frames; secondly, the weighted GNSS global constraint can eliminate the GNSS
measurements with large observation gross errors, thus achieving superior mapping results.

6. Discussion

SLAM-based multi-sensor fusion positioning technology expands the application
field of traditional GNSS-based mapping techniques and makes continuous and reliable
positioning in complex urban environments with good/intermittent/rejection GNSS a
reality. The superior sensing capability of LIO for natural sources has been demonstrated in
the literature [5,6] and others. However, the accuracy limitation of point cloud registration
and the local pose drift of LIO limit the application of LIO in large outdoor environments
to some extent. This paper focuses on the above two technical bottlenecks faced by the
existing LiDAR SLAM and proposes simplified but effective improvement solutions.

First of all, the primary technical bottleneck is how to improve the accuracy of point
cloud registration. Koideet al. [20] demonstrated that smoothing the point cloud cluster
can improve the fault tolerance of point cloud registration and improve the accuracy of
the point cloud from 1.20m to 0.89m. However, from our practical tests, it has been shown
that, in long and large turning or translating sections in real environments, if the number
of iterations is not limited, it may still fall into the local optimum problem. Therefore, on
the basis of constructing a registration equation based on smooth voxelization filtering, we
further use the judgment condition of iteration termination for the secondary constraint,
so as to reduce the over-fitting problem of local point clouds in a typical environment.
According to the registration experiment in Section 5.1 and the positional estimation
accuracy experiment in Section 5.2, it can be seen that our registration method has a higher
accuracy than the conventional methods. According to Figure 11, it can be seen that
accurate point cloud alignment leads to an accurate initial value estimation of the positional
attitude, which has a considerable positive effect on the positional estimation of the vehicle
platform with a complex moving state.
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Secondly, there is the challenge of how to effectively use GNSS measurements and
loopback detection mechanisms to converge the local positioning results of LIO to a globally
optimal solution. Firstly, the main step of loop detection dependency is point cloud
registration. The previous paragraph has specifically analyzed the superiority of our
method. Thanks to the positive point cloud registration results, we can reason that our
global constraint using loopback detection is superior, as demonstrated in Section 5.2.2.
Next, some related research has been carried out on the research of GNSS and LIO fusion
positioning. Optimization-based methods have been applied in [31,32] and so on. However,
taking [27] for example, in the traditional graph optimization model, the covariance effect
of measurements is only used to determine whether to add factors or not, which is crude
for the screening of the measurements, especially for GNSS, a measurement signal that
is greatly influenced by the environmental catadioptric surface, where its observation
information has not been fully applied. Therefore, in this paper, on the basis of the rough
screening of GNSS observations, the covariance of the quantitative measurements is added
as a weight to the graph optimization model. It achieves a more adequate and accurate
global constraint on the LIO local poses using GNSS observations. From the ablation
experiment results in Section 4.3.2, it is evident that the method of the weighted GNSS
residual added in this paper achieves a satisfactory positioning accuracy. According to the
above results, we can draw a reasonable inference: even when entering an indoor parking
lot or tunnel, the accumulated error of LIO in this algorithm will start to accumulate from a
lower initial value of drift. In contrast, for the LIO algorithms without GNSS constraints,
they already have a large deviation between the local map and the global map before
entering the denial environment. Therefore, the cumulative error range of this algorithm
is acceptable. Once the GNSS signal is restored, the local error will be corrected within
the time alignment interval of 0.1s as set in Section 4.3.2. This provides an accurate and
continuous positional estimation for the in-vehicle platform during travel in complex
urban environments.

7. Conclusions

In this paper, a LiDAR-IMU-GNSS fusion positioning algorithm with accurate local
alignment and weak global drift is proposed for the high-precision continuous positioning
of mobile carriers in complex urban environments.

Firstly, a voxelized point cloud downsampling method based on curvature segmen-
tation is proposed. Rough classification is carried out by a curvature threshold, and the
voxelized point cloud downsampling is performed using HashMap instead of RANSAC,
so that the spatial feature distribution attributes of the source point cloud, including texture
feature information, such as surfaces and curves, are retained to a greater extent.

Secondly, a point cloud registration model based on the nearest neighbors of the
point and neighborhood point sets is constructed. Furthermore, an iterative termination
threshold is set to reduce the probability of the local optimal solution. This greatly improves
the real-time performance of the point cloud registration and can also play a large role in
aligning the point cloud between the front and back frames of a fast-moving carrier with
large displacement.

Finally, we propose a LIO-GNSS fusion positioning model based on graph optimiza-
tion that uses GNSS observations weighted by confidence to globally correct local drift. In
addition, the loop detection mechanism using the above-mentioned point cloud registration
algorithm is also added into the fusion system, resulting in further global constraints of the
driving areas with prior maps. Experimental results show that our algorithm can realize a
more continuous and accurate pose estimation and map reconstruction in complex urban
environments than similar state-of-the-art algorithms.

In the future work, there are still several issues in our work that deserve further explo-
ration. Firstly, we plan to build a deeper constraint relationship between LIO and GNSS
and make use of the rich planar features perceived by LiDAR in the urban environments
to compensate for GNSS occlusion or the presence of multipath areas in the direction of
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the constraint. It will reduce the probability of the unreliability of SPP positioning results
in the urban environments. Secondly, considering the environments with multi-sensor
failures, such as tunnels with a high environmental texture similarity, where both GNSS
rejection and point cloud degradation failures exist. We consider a more accurate degra-
dation direction detection using the degeneracy factor (DF) algorithm proposed in [5],
and make a non-linear optimization correction for the positional attitude in that direction.
Finally, the perception ability of 3D environmental features by using only LiDAR, IMU and
GNSS sensors is still relatively limited. We plan to use the observation residuals from other
sensors to add multi-dimensional feature constraints to the fusion positioning algorithm,
such as cameras, wheel odometers and so on, so as to make full use of environmental
features and realize accurate and real-time navigation and positioning targets with high
environmental universality.
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Appendix A

Mathematical Derivation of the Equations (14) and (15).

First, given the original accelerometer and gyroscope measurement values of IMU
as follows:

ât = at + bat + RL
W gw + na

ω̂t = ωt + b�t + n�

(A1)

where na ∼ N
(
0, σ2

a
)

and n� ∼ N
(
0, σ2

�

)
are white Gaussian noise of accelerometer and

gyroscope, respectively. The following mathematical derivations are all completed in the
IMU body coordinate system.

Therefore, the position, rotation and velocity between the ith IMU frame and the
i + 1th IMU frame can be obtained:

pi+1 = pi + viΔti +
�

t∈[ti ,ti+1]

(
Rb

W(ât − bt − na)− gw

)
dt2

qi+1 = qiExp(ω̂t − bt − nω)Δti

vi+1 = vi +
∫

t∈[ti ,ti+1]

(
Rb

W(ât − bt − na)− gw

)
dt

(A2)

To avoid repeated calculation of IMU parameters during pose estimation, pre-integration
is introduced to simplify calculation, namely:

pi+1 = pi + viΔti − 1
2 gwΔt2

i + Rw
b αi

i+1

qi+1 = qi ⊗ θi
i+1

vi+1 = vi − gwΔti + Rw
b βi

i+1

(A3)

where
[
αi+1

i , θi+1
i , βi+1

i

]T
is the IMU pre-integration value. It can be inferred from [28] that

the IMU pre-integration value is only related to the IMU bias at different times. Since the
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IMU bias change is very small, we assume that the pre-integration change is linear with the

IMU bias, and then
[
αi+1

i , θi+1
i , βi+1

i

]T
after each pose estimation can be recorded as:

αi+1
i = α̂i+1

i +
δα̂i+1

i
δba

δ
�
ba +

δα̂i+1
i

δbω
δ
�
bω

θi+1
i = θ̂i+1

i ⊗

⎡⎢⎣ 1

1
2

δθ̂i+1
i

δbω
δ
�
bω

⎤⎥⎦
βi+1

i = β̂i+1
i +

δβ̂i+1
i

δba
δ
�
ba +

δβ̂i+1
i

δbω
δ
�
bω

(A4)

Equation (A4) is the pre-integration form in the continuous time between the two
IMU frames, and the actual IMU pre-integration is the incremental in the discrete time.
Therefore, the mid-point integration is used for discretization, and the matrix form of the
discrete IMU state error transfer equation is obtained:

⎡⎢⎢⎢⎢⎣
δαi+1
δθi+1
δβi+1
δbai+1
δbωi+1

⎤⎥⎥⎥⎥⎦ = Fi

⎡⎢⎢⎢⎢⎣
δαi
δθi
δβi
δbai
δbωi

⎤⎥⎥⎥⎥⎦+ Vi

⎡⎢⎢⎢⎢⎢⎢⎣

nαi

nωi

nαi+1

nωi+1

nba

nbω

⎤⎥⎥⎥⎥⎥⎥⎦ (A5)

where Fi and Vi are matrix abbreviations, with specific values as follows:

Fi

⎡⎢⎢⎢⎢⎣
δαi
δθi
δβi
δbai
δbωi

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
I f01 δt f03 f04
0 f11 0 0 −δt
0 f21 I f23 f24
0 0 0 I 0
0 0 0 0 I

⎤⎥⎥⎥⎥⎦ (A6)

f01 = δt
2 f21 = − 1

4 qk(âi − bi)× δt2 − 1
4 qi+1(âi+1 − bi)×

[
I −

(
ω̂i+ω̂i+1

2 − bi

)
× δt

]
δt2

f03 = − 1
4 (qi + qi+1)δt2

f04 = δt
2 f24 = 1

4 qi+1(âi+1 − bi)× δt3

f11 = I −
(

ω̂i+ω̂i+1
2 − bk

)
× δt

f21 = − 1
2 qi(âi − bi)× δt − 1

2 qi+1(âi+1 − bi)×
[

I −
(

ω̂i+ω̂i+1
2 − bi

)
× δt

]
δt

f23 = − 1
2 (qi + qi+1)δt2

f24 = 1
2 qi+1(âi+1 − bi)× δt2

(A7)

Vi =

⎡⎢⎢⎢⎢⎢⎣
v00 v01 v02 v03 0 0
0 δt

2 0 δt
2 0 0

qiδt
2 v21

qi+1δt
2 v23 0 0

0 0 0 0 δt 0
0 0 0 0 0 δt

⎤⎥⎥⎥⎥⎥⎦ (A8)

v00 = − 1
4 qiδt2

v01 = v03 = δt
2 v21 = 1

4 qi+1(âi+1 − bi)× δt2 δt
2

v02 = − 1
4 qi+1δt2

v21 = v23 = 1
4 qi+1(âi+1 − bi)× δt2

(A9)
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Let z15×1
i = [δαi, δθi, δβi, δbai, δbωi]

T and z15×1
i+1 = [δαi+1, δθi+1, δβi+1, δbai+1, δbωi+1]

T

be the error state vector of the i th frame and the i+1 th frame, respectively, and
n =

[
nαi , nωi , nαi+1 , nωi+1 , nba , nbω

]T is the noise vector; then, Equation (A5) can be written as:

δz15×1
i+1 = F15×15δz15×1

i + V15×18n18×1 (A10)

where the initial Jacobian value is Ji = I and the Jacobian iteration formula in the process
of nonlinear optimization is:

J15×15
i+1 = F15×15 J15×15

i (A11)

The iterative formula of the covariance of pre-integration in the nonlinear optimization
process is:

∑15×15
i+1 = F ∑15×15

i FT + VniVT (A12)

After the pre-integration derivation, Equation (14) is the variable quantity of position,
rotation, velocity and IMU bias between two frames.

Appendix B

Mathematical Derivation of the Equations (16) and (17).

Equation (16) can be explained using the plane vector method. Let∣∣∣(XL
(k+1,o) − XL

(k,a)

)
×
(

XL
(k+1,o) − XL

(k,b)

)∣∣∣ be the area of the parallelogram formed by three

points XL
(k+1,o), XL

(k,a) and XL
(k,b). Let the spatial coordinates of the three points be

XL
(k+1,o)(x0, y0, z0), XL

(k,a)(x1, y1, z1) and XL
(k,b)(x2, y2, z2), from which, the three vectors are

constructed as:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−−−−−−−−→
XL
(k+1,o)X

L
(k,a) = XL

(k+1,o) − XL
(k,a) = (x1 − x0, y1 − y0, z1 − z0)

−−−−−−−−→
XL
(k+1,o)X

L
(k,b) = XL

(k+1,o) − XL
(k,b) = (x2 − x0, y2 − y0, z2 − z0)

−−−−−−−−→
XL
(k,a)X

L
(k,b) = XL

(k,o) − XL
(k,b) = (x2 − x1, y2 − y1, z2 − z1)

(A13)

The molecules of Equation (11) can be obtained as follows:

∣∣∣(XL
(k+1,o) − XL

(k,a)

)
×
(

XL
(k+1,o) − XL

(k,b)

)∣∣∣ =
∣∣∣∣∣∣∣∣

XL
(k+1,o) XL

(k,a) XL
(k,b)

(x1 − x0) (y1 − y0) (z1 − z0)

(x2 − x0) (y2 − y0) (z2 − z0)

∣∣∣∣∣∣∣∣ (A14)

The distance between the point XL
(k+1,o) and the line XL

(k,a)X
L
(k,b) represented by

Equation (11) is:

dL
ek =

∣∣∣(XL
(k+1,o)−XL

(k,a)

)
×
(

XL
(k+1,o)−XL

(k,b)

)∣∣∣∣∣∣XL
(k,a)−XL

(k,b)

∣∣∣
= sqrt{[(y1 − y0) ∗ (z2 − z0)− (y2 − y0) ∗ (z1 − z0)]

∗[(y1 − y0) ∗ (z2 − z0)− (y2 − y0) ∗ (z1 − z0)]

+[(x2 − x0) ∗ (z1 − z0)− (x1 − x0) ∗ (z2 − z0)]

∗[(x2 − x0) ∗ (z1 − z0)− (x1 − x0) ∗ (z2 − z0)]

+[(x1 − x0) ∗ (y2 − y0)− (x2 − x0) ∗ (y1 − y0)]

∗[(x1 − x0) ∗ (y2 − y0)− (x2 − x0) ∗ (y1 − y0)]

}
]

/sqrt[(x2 − x1) ∗ (x2 − x1) + (y2 − y1) ∗ (y2 − y1) + (z2 − z1) ∗ (z2 − z1)]

(A15)
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Similarly, the molecule of Equation (17) can be expressed as the volume of a trian-
gular pyramid composed of four points: XL

(k+1,o), XL
(k,c), XL

(k,d) and XL
(k, f ) in a geometric

sense. It can be known that
∣∣∣(XL

(k,c) − XL
(k,d)

)
×
(

XL
(k,c) − XL

(k, f )

)∣∣∣ is twice the area of the

base. Let the spatial coordinates of the four points be XL
(k+1,ρ)(x3, y3, z3), XL

(k,c)(x4, y4, z4),

XL
(k,d)(x5, y5, z5) and XL

(k, f )(x6, y6, z6), so the three vectors required for constructing are:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−−−−−−−−→
XL
(k+1,ρ)X

L
(k,d) = XL

(k+1,ρ) − XL
(k,d) = (x5 − x3, y5 − y3, z5 − z3)

−−−−−−−→
XL
(k,c)X

L
(k,d) = XL

(k,c) − XL
(k,d) = (x5 − x4, y5 − y4, z5 − z4)

−−−−−−−→
XL
(k,c)X

L
(k, f ) = XL

(k,c) − XL
(k, f ) = (x6 − x4, y6 − y4, z6 − z4)

(A16)

The molecules of Equation (17) can be obtained as follows:

∣∣∣(XL
(k,c) − XL

(k,d)

)
×
(

XL
(k,c) − XL

(k, f )

)∣∣∣ =

∣∣∣∣∣∣∣∣
XL
(k,c) XL

(k,d) XL
(k, f )

(x5 − x4) (y5 − y4) (z5 − z4)

(x6 − x4) (y6 − y4) (z6 − z4)

∣∣∣∣∣∣∣∣
= sqrt(sa ∗ sa, sb ∗ sb, sc ∗ sc)

(A17)

where sa, sb and sc represent the component vectors of x, y and z axes, respectively:⎧⎪⎨⎪⎩
sa = (y5 − y4) ∗ (z6 − z4)− (y6 − y4) ∗ (z5 − z4)

sb = (z5 − z4) ∗ (x6 − x4)− (z6 − z4) ∗ (x5 − x4)

sc = (x5 − x4) ∗ (y6 − y4)− (x6 − x4) ∗ (y5 − y4)

(A18)

Therefore, the point-to-surface distance can be obtained as follows:

dL
pk =

∣∣∣(XL
(k+1,o)−XL

(k,d)

)
·
((

XL
(k,c)−XL

(k,d)

)
×
(

XL
(k,c)−XL

(k, f )

))∣∣∣∣∣∣(XL
(k,c)−XL

(k,d)

)
×
(

XL
(k,c)−XL

(k, f )

)∣∣∣
= (x4−x3)∗sa+(y4−y3)∗sb+(z4−z3)∗sc

=sqrt(sa∗sa ,sb∗sb ,sc∗sc)

(A19)
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Abstract: Integration of the Global Navigation Satellite System (GNSS), with Inertial Measurement
Unit (IMU) sensors to improve navigation performance, is widely used in many land-based applica-
tions. However, further application, especially in urban areas, is limited by the quality (due mainly to
multipath effects) and availability of GNSS measurements, with a significant impact on performance,
especially from low grade integration. To maximize the potential of GNSS measurements, this paper
proposes a dual w-test-based quality control algorithm for integrated IMU/GNSS navigation in urban
areas. Quality control is achieved through fault detection and exclusion (FDE) with the capability
to detect simultaneous multiple faults in measurements from different satellites. The remaining
fault-free GNSS measurements are fused with IMU sensor measurements to obtain the final improved
state solution. The effectiveness of the algorithm is validated in a deep urban field test. Compared to
the cases without fault exclusion, the results show improvements of about 24% and 30% in horizontal
and vertical positioning components, respectively.

Keywords: GNSS; IMU; urban positioning; fault detection and exclusion

1. Introduction

The emerging mission-critical applications in urban areas are placing more stringent
requirements on the underpinning positioning, navigation, and timing (PNT) systems [1].
Due to complementary characteristics, GNSS and Inertial Measurement Unit (IMU) sen-
sors are commonly used in an integrated architecture to support location-based services.
However, in urban areas, GNSS signals are susceptible to attenuation and blockage in
the built environment, resulting in multipath effects and non-line of sight (NLOS) recep-
tion. The satellite faults, defined in this paper, describe corresponding measurements
that have acceptable errors, irrespective of the source and type of failure. These errors in
the measurements will affect the accuracy and reliability of positioning from integrated
IMU/GNSS systems. Therefore, it is particularly important to develop an effective fault
detection scheme that can be applied to GNSS measurements so as to ensure quality control
of integrated IMU/GNSS systems.

Fault Detection and Exclusion (FDE)-based GNSS measurements quality control has
been investigated for many years. The basic FDE methods include: (1) range and position
comparison [2]; (2) minimum least squares residuals [3]; (3) parity space [4]; (4) maximum
slope (MS) [5]. The four methods have been shown to be largely equivalent.

The performance of FDE algorithms is related to GNSS signal quality and the number
of visible satellites. With the increase in constellations beyond GPS, there are more visible
satellites and better signal design, greatly improving positioning quality, and promoting the
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development of FDE algorithms. Some new FDE algorithms have appeared, such as: GPS
Integrity Channel (GIC), which is a hybrid between the GIC approach and the maximum
solution separation RAIM technique [6]; Novel Integrity Optimized RAIM [7]; Optimally
Weighted Average Solution [8]. Given that the probability of multiple faults in a single
constellation is relatively small, the above FDE algorithms assume a single fault at a time.

In medium to high density built environments coupled with the increase in the number
of constellations, the probability of simultaneous multiple faults increases. Therefore,
increasing research effort is dedicated to developing algorithms for simultaneous multiple
FDE. These methods include the use of statistics, calculated based on the w-test, to detect
and identify outlier faults [9]. A theoretical analysis of the principle of double satellites
faults in 2009, as well as their successful elimination through experiments, is presented
in [10]. The Solution Separation (SS) algorithm was also applied to Advanced RAIM
(ARAIM) research [11]. A point to note is that, for 4-D positioning and geometry permitting,
there must be at least five visible satellites for fault detection and at least six visible satellites
for fault exclusion in a single constellation. When the number of satellites is insufficient,
these FDE algorithms are unavailable, thus affecting the quality of GNSS positioning with
potential safety risks.

To address the problem of GNSS measurement quality, additional sensors are also
used to aid GNSS FDE by considering the various error characteristics of each sensor [12].

Comparison of FDE performance, based on loosely-coupled and tightly-coupled
IMU/GPS integration modes, is also analyzed in some literature [13,14]. A multiple fault
detection and elimination algorithm, based on pseudorange comparison, is proposed
and used for vehicle GNSS/IMU integrated navigation and positioning [15], but it needs
initial database generation. In real situations, multipath effects and poor user-satellite
geometry result in excessive positioning errors in urban areas, and the methods above
cannot verify the correctness or reliability of the FDE algorithms. In addition, the a priori
parameters of the measurement covariance matrix cannot be determined in these urban
areas. This increases the probability of incorrect fault detection resulting in excessive final
positioning errors. A series of adaptive Kalman filters (AKF) have been developed to
overcome the limitation of using a priori statistics to model errors that have time-varying
characteristics [16–18]. The adaptive indicators may take on a range of roles, including an
adjustment of the covariance matrix of the state estimation vector, the covariance matrix of
the process vector, and the covariance matrix of measurement vector [19–21]. None of the
adaptive indicators in the above fusion methods, however, have been adjusted specifically
for the errors caused by multipath signals and NLOS that are common in urban areas.

In recent years, with the continuous emergence of multi-sensors, the integrated naviga-
tion system of multi-source fusion has also ushered in a vigorous development. Altimeter,
wheel odometer, magnetometer, etc., improve the accuracy and reliability of navigation
information by providing additional information such as position, speed, and altitude
to the GNSS/IMU integration system. From the perspective of technology integration,
the research on the integration of GNSS, INS, and emerging visual navigation technology
is extremely hot. Li developed a semi-tightly coupled GNSS PPP/S-VINS integration
framework for better navigation performance in urban environments [22]. On this basis, Li
further studied GNSS/LiDAR/INS tightly coupled integrated navigation [23]. However,
the above method is in the theoretical research stage, and the high cost of the sensor is not
conducive to popularization.

Another idea for quality control is to assign appropriate weights to the GNSS mea-
surements to mitigate the effects of multipath/NLOS signals. The commonly used method
is to determine weight based on the quality of GNSS signals. This usually involves the use
of one or more characteristics of GNSS signals (e.g., satellite elevation angle, C/N0, or a
combination of the two) to assign corresponding weights to GNSS measurements. Other
weighting-based quality control methods include Huber [24], Bifactor reduction model [25],
Robust estimation based on M-estimation principle [26], Robust Bayesian estimation [27],
and Danish [28]. However, application of appropriate weighting, in different scenarios
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in urban environments, is difficult. Given the limitations of the state-of-the-art methods
above, this paper proposes a dual w-test-based quality control algorithm for integrated
IMU/GNSS navigation in urban environments. The contributions are summarized below.

(1) A dual w-test is proposed, which achieves multiple fault detection from the obser-
vation domain, thus solving the problem of false alarms in the traditional w-test.

(2) A range detection is proposed to detect the subsets generated after dual w-test,
and a scoring strategy is proposed to select the optimal subset. Starting from the location
domain, the proposed algorithm is able to reduce the miss detection rate and, therefore,
ensure the quality of the output position.

2. Algorithm Design

The proposed tightly-coupled algorithm is illustrated in Figure 1 and comprises two
parts. In the first part, a dual w-test-based FDE model is designed for multiple failure
detection in urban areas. In the second part, a scoring strategy is used to exclude faulty
measurements. The remaining satellites are then fused with IMU sensor measurements to
compute the final state.

σσσ σ σ 

σ σ σ

σ

 
Figure 1. System Framework.
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2.1. Dual w-Test
2.1.1. Traditional w-Test

Due to the non-linear relationship between the GNSS pseudorange observation and
state variables [29], the linearized pseudorange observation equation can be written as (1).

Y = HX + ε (1)

Here, Y is the difference between the observed pseudorange and computed pseudor-
ange from the initial state, H is the measurement matrix, X is the user’s state vector, and ε
is the observation error vector. The weighted least squares solution for the state vector X
is (2).

XWLS =
(

HTWH
)−1

HTWY (2)

where, W is the weighting matrix. With W = (cov(ε))−1, based on Equation (2), the residual
vector r is derived as:

r = Y − HXWLS =

(
I − H

(
HTWH

)−1
HTW

)
ε = Sε (3)

After obtaining the residual vector r, the sum of the squares of the residual or error
(SSE) vector is used as the statistics for GNSS fault detection, which is defined as (4)

SSE = rTWr (4)

Based on weighted least squares residuals, GNSS pseudorange measurements with
significant errors are detected and eliminated by overall and local inspection methods. The
overall test assumes that when observations do not contain gross errors, the observation
errors follow the Gaussian distribution. Hence, the statistic SSE follows the chi-square
distribution with degrees of freedom (n − m), where n is the total number of satellites
observed, and m is the dimension of the state. When the test statistic exceeds the global
threshold, there is at least one faulty satellite. The global test threshold TG is:

TG = χ2
1−PFA ,(m−n) (5)

where PFA is the probability of false alarm, which is selected according to specific application
scenarios, and χ2 denotes the probability density of the chi-square distribution. When the
statistic exceeds the global threshold, it is necessary to find the failing measurement or
gross error in observations, using the traditional w-test. The test normalizes the residual as
a new statistic. The specific expression is (6):

wi =
eT

i r√
eT

i Sei

, i = 1 : m (6)

where ei is the unit vector whose i-th element is 1. When the i-th observation has no error,
the variance of the corresponding observation noise εi is σ2, with wi following the normal
distribution N(0, σ2). |wi|max is then compared with the w-test threshold TL. If |wi|max
exceeds the threshold, it is considered that the corresponding observation contains gross
error. Then, the traditional w-test eliminates the corresponding satellite. The expression of
the w-test threshold is:

TL = N1−PFA/2

(
0, σ2

)
(7)

The traditional w-test only identifies one faulty satellite at a time, and the |wi|max
corresponding satellite is eliminated. At the same time, in order to confirm whether there
are any faulty satellites in the remaining satellites, all the remaining satellites after w-test
are regarded as a new corpus again, and a new round of fault detection is performed.
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Therefore, the w-test method is suitable for the case of highly redundant observation data,
and it is assumed that only one failure occurs at a time. In urban environments, however,
this condition may not be met. Therefore, this paper adopts 3 − σ and 1−σ w-test double
w-test, as shown in the following subsection.

2.1.2. 3 − σ and 1−σ Dual w-Test

Different from the traditional w-test, this paper firstly adopts 3 − σ w-test. The first
3 − σ w-test is to prevent the observation noise variance from being too small, as well as
too strict, for the corresponding w-test threshold. At the same time, in the 3 − σ w-test, the
method of excluding satellites is not to eliminate the |wi|max corresponding satellite, but it
is to eliminate the corresponding satellite with the largest absolute value of the predicted
pseudorange residual when the |wi|max exceeds the threshold. The predicted pseudorange
residual is calculated as (8):

Δρ = ρIMU − ρGNSS = rIMU + c
(

dtR − dtS
)
+ Iρ + Tρ − ρGNSS (8)

where, ρGNSS is the observed pseudorange, ρIMU is the pseudorange predicted by IMU,
rIMU is the geometric range between the observed satellite and the user position estimated
by IMU. dtR and dtS are the receiver and satellite clock errors, respectively, Iρ and Tρ are
tropospheric and ionospheric corrections, respectively. The rIMU can be calculated as (9):

rIMU =

√(
XG

k − XIMU
k

)2
+
(
YG

k − YIMU
k

)2
+
(
ZG

k − ZIMU
k

)2 (9)(
XG

k , YG
k , ZG

k
)

is the satellite position at epoch k,
(
XIMU

k , YIMU
k , ZIMU

k
)

is user positions
estimated using IMU data at epoch k. However, due to the complexity of urban environ-
ments, it is impossible to ensure correct detection using the 3 − σ w-test. Therefore, the
positions calculated before and after each 3 − σ w-test are saved until either no faulty
satellite measurements are detected or the number of remaining observed satellites is
insufficient. Then, in order to ensure that multiple faults can be detected, this paper takes
each subset obtained after the 3 − σ w-test, removing a satellite each time, and performing
the 1−σ w-test on C1

m each subset. The results can be one of four cases:

1. The universal set and all subsets pass the 1−σ w-test.
2. The universal set and some subsets pass the 1−σ w-test.
3. The universal set does not pass the 1−σ w-test, and only one of the subsets passes the

1−σ w-test.
4. The universal set does not pass the 1−σ w-test, with more than one subset passing

the 1−σ w-test.

The fault conditions at a given epoch can be determined by considering the test results
in these four cases. In case 1, we consider that there is no faulty satellite at this epoch, as
the universal set and all subsets have passed the w-test. In case 2, the high correlation
of each satellite will result in the universal set passing the test, while the low correlation
of the faulty satellite in the subset, after one satellite exclusion, can result in the subset
not passing the test. Therefore, in this case, we consider that there are multiple faults. In
case 3, as a single satellite fault can lead to the universal set not passing the w-test, the
subset can only pass the w-test in the case that the faulty satellite is excluded. Therefore, a
single fault case is considered in this case. In case 4, faulty satellites in the universal set and
subsets can lead to the failure to pass the w-test for a part or all of the subsets. Therefore,
the existence of multiple faults is considered in this case. Satellite selection is then made
according to the fault conditions. In case 1, all of the satellites at this epoch are selected for
a further GNSS/IMU integration. In case 3, the satellites in the subset, which passed the
w-test, are selected for further fusion. Considering cases 2 and 4 with multiple faults, the
C2

m subsets are further generated, which are then subjected to range detection. The range is
calculated by the difference between the predicted position estimated by the IMU data and
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the position calculated by the selected subset in the proposed algorithm. The expression
for range detection is:⎡⎣ e

n
u

⎤⎦ =

⎡⎣ − sin λ0 cos λ0 0
− sin ϕ0 cos λ0 − sin ϕ0 sin λ0 cos ϕ0
cos ϕ0 cos λ0 cos ϕ0sinλ0 sin ϕ0

⎤⎦⎡⎣ xs − x0
ys − y0
zs − z0

⎤⎦ (10)

where λ0 and ϕ0 are, respectively, the latitude and longitude corresponding to the predicted
position. xs, ys, zs and x0, y0, z0, respectively, are the coordinates of the calculated position
and the predicted position in the WGS-84 coordinate system. Then,|e|,|n|, and |u| are
compared with the range threshold. Here, the threshold of the range value is set as 17 m, as
the city speed limit is around 60 km/h (i.e., 17 m/s). Only the subsets that pass the range
detection test are used further for the optimal subset selection.

2.2. Scoring Strategy Based Optimal Subset Selection

After range detection, the subsets that pass the test are selected. The optimal subset
within these selected subsets is chosen, and the corresponding measurements in the optimal
subset are used to integrate with the IMU data to calculate position. The strategy uses a
scoring mechanism to subtract the positions calculated using the selected subsets from the
predicted position at the current epoch. The predicted position can be obtained from that
of the previous epoch combined with inertial navigation information. The difference in
position is then scored according to the following formula, based on a weighting method, in
which the smaller the JointCost the higher the score. Finally, the satellites corresponding to
the position difference with the highest score are selected to be combined with the inertial
navigation. The JointCost is calculated as:

JointCost =
Cost(1)− Cost1min

Cost1max − Cost1min
+

Cost(2)− Cost2min
Cost2max − Cost2min

+
Cost(3)− Cost3min

Cost3max − Cost3min
(11)

Here, Cost1max, Cost2max, Cost3max are the maximum values of longitude, latitude,
and height difference among all the position differences. Cost1min, Cost2min, and Cost3min
are the minimum values of longitude, latitude, and height difference among all the position
differences. Cost(1), Cost(2), Cost(3) are all the longitude, latitude, and height difference
among all the position differences.

2.3. IMU/GNSS Integration

In this section, an Extended Kalman Filter (EKF), based on linearization of nonlinear
models, is used as the data fusion algorithm [30]. The state vector for the EKF is:

X =
[
(δre

INS)
T (δve

INS)
T (φe

INS)
T bg

T ba
T sg

T sa
T tGPS δtGPS tBDS δtBDS

]
(12)

where, δre
INS, δve

INS, and φe
INS are the three-axis error vectors of IMU position, velocity,

altitude in the ECEF framework e; bg, ba, sg, and sa are the three-axis acceleration and
gyroscope bias and scale factor error; tGPS and δtGPS are the receiver clock error and drift
rate of GPS satellite; tBDS and δtBDS are the clock error and drift rate of Beidou satellite.
The system model is then formed as a first-order state equation in (13):

.
X = FX + GW (13)

where
.

X is the first derivative of X. F is the dynamic transition matrix, G is the noise driven
matrix, and W is the system noise. The measurement model is given by:

Z = HX + V (14)

where Z is the measurements vector, H is the measurement mapping matrix, and V rep-
resents the measurement noise. In this paper, if the number of visible satellites is n, the
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pseudorange error and the Doppler measurement error are used to form measurement
vector Z as:

Z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρIMU
1,GPS − ρGPS

1
...

ρIMU
l,GPS − ρGPS

l
ρIMU

1,BDS − ρBDS
1

...
ρIMU

m,BDS − ρBDS
m

f IMU
1,GPS − f GPS

1
...

f IMU
l,GPS − f GPS

l
f IMU
1,BDS − f BDS

1
...

f IMU
m,BDS − f BDS

m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
2n×1

(15)

where ρIMU
GNSS and f IMU

GNSS denote IMU-derived GNSS pseudorange and Doppler measure-
ments respectively. Based on the derivations in [30], ρGNSS and f GNSS refer to pseudorange
and Doppler measurements decoded from GNSS observation data, respectively. l and m
refer to the number of GPS and BDS visible satellites. After discretization of (13) and (14),
the discrete form of the Kalman filtering procedure can be split into two stages, as follows:

Prediction stage:
X̂k,k−1 = Φk,k−1X̂k−1 (16)

Pk,k−1 = Φk,k−1Pk−1ΦT
k,k−1 + Qk−1 (17)

Update stage:

Kk = Pk,k−1Hk
T(HkPk,k−1Hk

T + Rk)
−1

(18)

X̂k = X̂k,k−1 + Kk(Zk − HkX̂k,k−1) (19)

Pk = (I − KkHk)Pk,k−1(I − KkHk)
T + KkRkKk

T (20)

where,X̂k is the system state vector estimates at time epoch k; Φk is the system transition
matrix at time epoch k; Pk is the error covariance matrix at time epoch k; Qk is the system
noise covariance matrix at time epoch k; Rk is the measurement noise covariance matrix at
time epoch k; Hk is the measurement matrix at time epoch k; Kk is the Kalman gain matrix at
time epoch k; Θk,k−1 is the matrix/vector Θ propagation from time epoch k − 1 to k.Table 1
has illustrated the parameters and their value or initial value used for the EKF. The setting
of the system noise covariance matrix Q is based on experience. The diag means that the
matrix is a diagonal matrix and the values in the bracket are the diagonal elements. The
initial value of error covariance matrix of the state vector P, noted as P0, is calculated by
the historical data collected from the IMU and GNSS receiver. The covariance matrix of the
measurement noise R is set based on the statistical data collected from GNSS receiver.

Table 1. The parameters used for the EKF.

Parameter Initial Value

Q diag
(
I3×3 ∗ 0.00042 I3×3 ∗ 0.00052 I3×3 ∗ 0.0000352 I3×3 ∗ 0.000000322 I3×3 ∗ 0.00012 I3×3 ∗ 0.000012 I3×3 ∗ 0.000012 0.0012 0.0022 0.0012 0.0022

)
R In×n ∗ 1.52

P0 diag
(
I3×3 ∗ 0.0252 I3×3 ∗ 0.0752 I3×3 ∗ 0.0000352 I3×3 ∗ 0.00000972 I3×3 ∗ 0.0032 I3×3 ∗ 0.00252 I3×3 ∗ 0.0032 0.022 0.032 0.022 0.032

)

If positions calculated by all subsets do not pass the range detection test or the number
of satellites cannot meet the condition of the w-test, then all the satellite measurements and
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the inertial navigation output information are fused through the robust algorithm. The
robust algorithm introduces a fault detection factor D to scale R. D is given as:

Dii =

⎧⎨⎩1,
∣∣∣�̃k,i

∣∣∣ ≤ Tm
|�̃k,i|

Tm ,
∣∣∣�̃k,i

∣∣∣> Tm
(21)

�̃k,i =
�k,i√
Ck,ii

(22)

�k = Zk − HkX̂k,k−1 is the innovation sequence, which exhibits a white Gaussian
sequence of mean zero and covariance Ck where Ck = HkPk,k−1Hk

T + Rk. Tm is a constant
value, which is valued according to the specific scenario. Then, the elements in R are
given as:

Rk,ii = Dii · Rk,ii (23)

3. Test and Validation

3.1. Simulation

Faults are simulated and added to data from UAV flight tests to test the proposed
quality control algorithm. The UAV flight data were collected in Nantou City, Taiwan,
shown in Figure 2. The UAV used in the test is AXH-E230 from AVIX Technology (Toronto,
ON, Canada), and it was flown semi-automatically with a smart power control module to
perform autonomous intelligent navigation flight mission. The onboard equipment setup
included: (1) a dual-frequency GNSS receiver, Trimble BD 982 (Sunnyvale, CA, USA), with
a sampling rate of 10 Hz for the raw pseudorange measurements collection; (2) a STIM-300
IMU (Sensonor, Horten, Norway), with a sampling rate of 100 Hz for UAV acceleration
and angular rate collection; (3) an on-board VLP-16 Velodyne Lidar (San Jose, CA, USA) to
provide centimeter-level positioning accuracy for the reference trajectory generation in the
experiment. The speed of UAV was less than 10 m/s during the flight, and the height was
about 60 m AGL (with the ground elevation around 120 m). The fault scenarios in Table 2
were specified in order to compare the proposed algorithm with the traditional IMU/GNSS
tightly-coupled (TC) without fault exclusion, the TC with traditional w-test quality control
(FDE TC), and the TC with Robust filter (AKF TC) in [31].

 
Figure 2. Unmanned aerial vehicle (UAV) flight trajectory.
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Table 2. The defined scenarios.

Scenarios Time Interval of Faults (s) Error Sources

1 30 10 m, 30 m step errors added to the
pseudoranges of two satellites

2 30 10 m, 50 m step errors added to the
pseudoranges of two satellites

3 30 30 m, 30 m step errors added to the
pseudoranges of two satellites

4 30 30 m, 50 m step errors added to the
pseudoranges of two satellites

In the different scenarios above, for each selected satellite, an error of 10 m, 30 m, or
50 m was injected into the pseudo-range observation of the satellite during the correspond-
ing fault duration. Based on the derivations in [32], UAV flight in the urban environment is
subjected to multipath interference to produce similar errors, with error magnitudes less
than 10 m having little impact on the satellite navigation and positioning results, and is
hence ignored as constituting failure. At the same time, considering the characteristics of
UAV in urban low-altitude areas, fault duration is selected as 30 s. In order to verify the
validity of the algorithm, in terms of accuracy, this paper uses the Root Mean Square Error
(RMSE) metric to compare the performance of the TC, FDE TC, AKF TC, and the proposed
methods. The errors of the position, calculated from the candidate algorithms, are shown
in Figure 3. The RMSE of the positions for the candidate algorithms are represented in
Table 3.

Figure 3. The positioning error of TC, FDE TC, AKF TC, and the proposed algorithm in the four
fault scenarios.

Table 3. Comparison of algorithm performance between TC, FDE TC, AKF TC, and the proposed
algorithm in the different fault scenarios.

Scenarios

TC FDE TC AKF TC Proposed Algorithm

RMSE
(m)

RMSE
(m)

Improvement
(%)

RMSE
(m)

Improvement
(%)

RMSE
(m)

Improvement
(%)

1 9.62 4.92 48.89 6.26 34.97 2.98 69.07
2 13.04 4.92 62.28 6.27 51.89 2.98 77.17
3 17.36 11.28 35 6.78 60.92 2.98 82.85
4 20.73 2.98 85.64 6.82 67.10 2.98 85.64
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It can be seen, in Figure 3, that TC position error increases rapidly after pseudorange
errors are introduced in the four scenarios. This indicates that, without FDE, the IMU/GNSS
integrated navigation positioning quality is seriously degraded and results in divergence in
the filter estimated results. Therefore, quality control of the GNSS measurement is essential.
Meanwhile, by observing the position errors of the FDE TC in different scenarios, it can
be seen that, in most cases, when two satellites simultaneously fail, the performance of
FDE TC is poor. Only when one satellite has a 30 m step error, and one satellite has a
50 m step error, does FDE TC correctly identify the two faulty satellites in all epochs and
eliminate them.

In the other three scenarios, however, the corresponding faulty satellites could not be
correctly detected and excluded in all epochs by FDE TC, resulting in a large positioning
error. In scenario 3, the maximum positioning error of the FDE TC method even exceeds
that of the traditional TC. This is mainly because, in scenario 3, the two satellites add the
same step error. As a result, the test statistics of other satellites are strongly correlated
with the two faulty satellites, resulting in the maximum test statistics exceeding the tra-
ditional w-test threshold. When the satellite with the maximum test statistics exceeding
the threshold is eliminated based on a traditional w-test, the redundancy of the observa-
tion data is further reduced, so the remaining faulty satellite cannot be detected in the
subsequent traditional w-test. The satellite faults still exist in the GNSS measurements,
so the positioning performance of the FDE TC is comparable to that of the traditional TC
without FDE. It can be seen from Table 3 that the FDE TC, in the above four different
scenarios, has similar accuracy to the traditional TC in some cases. However, in scenarios
1 and 2, the FDE TC can still eliminate all faulty satellites in some epochs, but the faulty
satellites cannot be correctly eliminated all the time by FDE TC. As a result, the positioning
performance of FDE TC is improved by 49% and 62% compared with the traditional TC,
respectively. On the other hand, although AKF TC cannot eliminate faults, it reduces the
weight of fault observations, thus ensuring the navigation performance to a certain extent.
The positioning performance of AKF TC is improved by 35%, 52%, 61%, and 67% compared
with the traditional TC, respectively.

However, compared with the above algorithm, the proposed algorithm significantly
improves positioning accuracy. This also shows that the proposed algorithm can correctly
detect the satellites with the step errors in the above four different cases. The 3D positioning
RMSE of the algorithm proposed in this paper, in four different fault scenarios, is 2.98 m.
Compared with 9.62 m, 13.04 m, 17.36 m, and 20.73 m of the traditional TC, the accuracy
is improved by 69.07%, 77.17%, 82.85%, and 85.64%, respectively. In summary, the above
results show that the algorithm proposed in this paper can correctly detect the faulty
satellites in the real-data field scenarios with the simulated step errors. Compared with the
traditional TC, FDE TC, and AKF TC, it is able to provide a significant improvement in the
position solutions.

3.2. Field Test

In order to further validate the performance of the proposed algorithm in an urban
environment, a field test was carried out in a deep urban environment in Taipei. The
experimental data acquisition equipment contained a low-cost IMU Stim-300 and a GNSS
receiver Trimble BD 982, with a sampling rate of 250 Hz and 1 Hz, respectively. The
reference trajectory was obtained by an integrated high-grade GNSS receiver and iNAV-
RQH IMU with the commercial software NovAtel Inertial Explorer. The experimental test
environment is shown in Figure 4, and the reference trajectory is shown in Figure 5. PDOP
values during the test are always very high, with the highest value above 16, exhibiting the
characteristics of the deep urban environment, as seen in Figure 6. The number of visible
satellites is shown in Figure 7.

In order to evaluate the performance of the proposed algorithm, the results of the
proposed algorithm are compared with those of the traditional TC, FDE TC, and AKF TC.
The errors in position, velocity, and altitude, calculated from the algorithms, are shown
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in Figures 8–10. The accuracies (RMSE) of the position, velocity, and altitude for the
algorithms are given in Tables 3–6.

 

 
Figure 4. Environments of field test.

 
Figure 5. Vehicle trajectory in field test.

From Figure 8 and Table 3, the AKF TC position RMSE is 4.40 m in the horizontal
direction and 8.94 m in the vertical direction (Down), which is an improvement of 11.65%
and 17.15% compared to the 4.98 m and 10.79 m of the TC. The FDE TC vertical position
RMSE is 9.66 m, whose performance is not as good as AKF TC, but the performance is
better in the horizontal direction. However, neither is as much improved as the algorithm
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proposed in this paper. The position RMSE of the algorithm proposed is 3.79 m and 7.51 m
in the horizontal and vertical directions. The results represent improvements of 23.90% and
30.40% compared to TC without FDE, 7.79% and 22.26% over FDE TC, as well as 13.86%
and 15.88% over AKF TC, respectively. As shown in Figure 11, the algorithm proposed in
this paper has a better performance in urban environments in the horizontal directions.
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Figure 8. The position error of TC, FDE TC, AKF TC, and the proposed algorithm in field test.
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Figure 9. The velocity error of TC, FDE TC, AKF TC, and the proposed algorithm in field test.
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Figure 10. The altitude error of TC, FDE TC, AKF TC, and the proposed algorithm in field test.

Table 4. The position RMSE of TC, FDE TC, AKF TC, and the proposed algorithm in field test.

Algorithm
RMSE (m)

North East 2D Down

TC 3.31 3.72 4.98 10.79

FDE TC 2.65 3.15 4.11 9.66
Improvement over TC (%) 19.94 15.32 17.47 10.47

AKF TC 2.94 3.27 4.40 8.94

Improvement over TC (%) 11.18 12.10 11.65 17.15

Proposed algorithm 2.55 2.80 3.79 7.51
Improvement over TC (%) 22.96 24.73 23.90 30.40

Improvement over FDE TC (%) 3.77 11.11 7.79 22.26
Improvement over AKF TC (%) 13.27 14.37 13.86 15.88

Table 5. The velocity RMSE of TC, FDE TC, AKF TC, and the proposed algorithm in field test.

Algorithm
RMSE (m/s)

North East 2D Down

TC 0.68 0.71 0.98 1.07

FDE TC 0.48 0.55 0.73 0.93
Improvement over TC (%) 29.41 22.54 25.51 13.08

AKF TC 0.63 0.63 0.89 1.21

Improvement over TC (%) 7.35 11.27 9.18 −13.08

Proposed algorithm 0.45 0.38 0.59 0.72
Improvement over TC (%) 33.82 46.48 39.80 32.71

Improvement over FDE TC (%) 6.25 30.91 19.18 22.58
Improvement over AKF TC (%) 28.57 39.68 33.71 40.50
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Table 6. The altitude RMSE of TC, FDE TC, AKF TC, and the proposed algorithm in field test.

Algorithm
RMSE (◦)

Pitch Roll Yaw

TC 2.70 1.39 3.43

FDE TC 2.62 1.38 2.28
Improvement over TC (%) 2.96 0.72 33.53

AKF TC 2.33 1.43 3.08

Improvement over TC (%) 13.70 −2.88 10.20

Proposed algorithm 2.58 1.27 2.25
Improvement over TC (%) 4.44 8.63 34.4

Improvement over FDE TC (%) 1.53 7.97 1.32
Improvement over AKF TC (%) −10.73 11.19 27.60

 

Figure 11. Trajectory comparison for TC, FDE LC, AKF TC, and the proposed algorithm in field test.

It can be seen from Figure 9 and Table 5 that the horizontal and vertical velocity
RMSE of the traditional TC scheme without FDE are 0.98 m/s and 1.07 m/s, with the
corresponding values, from the proposed algorithm, of 0.59 m/s and 0.72 m/s. These
correspond to improvements of 40% and 33%, respectively. While the AKF TC gives
an RMSE for horizontal velocity of 0.89 m/s, the performance in the vertical direction
deteriorates by 13.08% due to its inability to be accurately adjusted, specifically, for the
errors caused by multipath signals and NLOS that are common in urban areas. Compared
with the 0.73 m/s and 0.93 m/s of FDE TC, the proposed algorithm in this paper improves
by 19% and 23%. This shows that correct fault detection and elimination is effective for
quality control.

For the performance of altitude determination in Figure 10 and Table 6, pitch, roll,
and yaw RMSE of the traditional TC scheme without FDE are 2.70◦, 1.39◦, and 3.43◦, with
the corresponding values from the FDE TC of 2.62◦, 1.38◦, and 2.28◦. These correspond
to improvements of 2.96%, 0.72%, and 33.53%, respectively. It is worth noting that the
correction of yaw information has always been a difficult problem in the GNSS/IMU
integrated navigation algorithm, and the yaw RMSE of FDE TC has dropped by 27.6%.
This further illustrates the importance of quality control. While the AKF TC gives an
RMSE for pitch angle of 2.33◦, the performance in the roll angle deteriorates by 2.88%, and
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there is less improvement in the yaw angle. The proposed algorithm has improved the
estimation results of pitch angle, roll angle, and yaw angle by 2%, 8%, and 1% compared
with FDE TC, respectively. Although the performance of the proposed algorithm in this
paper is not good in the pitch angle, compared with AKF TC, the overall performance of
the proposed algorithm in this paper is better, which improves by 11.19% and 27.60% in
roll and yaw angles.

4. Conclusions

This paper has developed a dual w-test-based quality control algorithm for IMU/GNSS
integrated navigation in urban areas. Simulation and field test results show that the pro-
posed algorithm is capable of achieving quality control for integrated IMU/GNSS nav-
igation. The experimental results in deep urban environments show that the proposed
integration algorithm can improve positioning accuracy compared to the cases without
fault exclusion by about 24% and 30%, compared to FDE TC by about 8% and 22%, and
compared to AKF TC by about 14% and 16% in the horizontal and vertical directions,
respectively. However, the current work does not suit for the case of insufficient visible
satellites, as the dual w-test cannot be carried out without enough of a degree of freedom
in the statistic SSE. In future work, we will continue to develop more advanced quality
control methods, including seeking a better robust algorithm when the number of satellites
is insufficient and designing a corresponding failure detection algorithm according to the
failure mechanisms of different sensors, such as inertial sensors, vision sensors, and lidar.
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Abstract: Step detection for smartphones plays an important role in the pedestrian dead reckoning
(PDR) for indoor positioning. Aiming at the problem of low step detection accuracy of smartphones
in complex unconstrained states in PDR, smartphone-based unconstrained step detection method
fusing a variable sliding window and an adaptive threshold is proposed. In this method, the dynamic
updating algorithm of a peak threshold is developed, and the minimum peak value filtered after
a sliding window filter is used as the adaptive peak threshold, which solves the problem that the
peak threshold of different motion states is difficult to update adaptively. Then, a variable sliding
window collaborative time threshold method is proposed, which solves the problem that the adjacent
windows cannot be contacted, and the initial peak and the end peak are difficult to accurately identify.
To evaluate the performance of the proposed unconstrained step detection algorithm, 50 experiments
in constrained and unconstrained states are conducted by 25 volunteers holding 21 different types
of smartphones. Experimental results show: The average step counting accuracy of the proposed
unconstrained step detection algorithm is over 98%. Compared with the open source program
Stepcount, the average step counting accuracy of the proposed algorithm is improved by 10.0%. The
smartphone-based unconstrained step detection fusing a variable sliding window and an adaptive
threshold has a strong ability to adapt to complex unconstrained states, and the average step counting
accuracy rate is only 0.6% lower than that of constrained states. This algorithm has a wide audience
and is friendly for different genders and smartphones with different prices.

Keywords: step detection; indoor positioning; unconstrained state; peak detectors; adaptive threshold;
variable sliding window

1. Introduction

The Global Navigation Satellite System (GNSS) is dominant in providing outdoor
positioning service due to its coverage and high accuracy. However, people spend about
80% of their time indoors every day according to incomplete statistics. During the epidemic,
medical staff or volunteers needed to grasp the dynamic position of personnel in isolated
hotels and isolated wards in real time. When an indoor fire occurs, rescuers need to know
the exact location of trapped people in time. In the construction of a smart city [1–3], and
the tracking of pandemics [4], indoor positioning is the basic technology. In short, indoor
positioning has broad application prospects. However, GNSS cannot provide services
indoor. Researchers have proposed to use pedestrian dead reckoning (PDR) or PDR and
wireless sensor fusion to achieve indoor positioning [5]. Smartphone-based step detection
is necessary for PDR to determine pedestrian trajectory information [6,7]. In addition,
smartphones bring many conveniences to people’s lives with their rich functions and
applications. Among these functions, step detection plays a role in health care for obese
patients, has become a physical therapy to control chronic low back pain [8], monitor the
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fall of the elderly [9], and can also be applied to daily fitness training [10]. MI band, Huawei
band and other commercial products record users’ daily steps, and then give health tips.
The commonly used step detection algorithms are zero velocity update (ZUPT) [11,12],
autocorrelation analysis [13], peak detection [14], etc.

ZUPT refers to the lower limb being in a static state at a certain time during the walking
process, and the walking speed is zero at this time, or the output values of acceleration
sensor and angular velocity sensor will be approximately zero when the foot makes contact
with the ground. The ZUPT method generally requires the sensor to be fixed in a specific
position of the lower limbs, such as calves, feet, etc. [11,12]. Obviously, the smartphone
does not have the basic conditions for this method.

When pedestrians walk continuously, there is a high correlation between the front and
back gait cycles. The auto correlation analysis detects the number of steps by judging the
correlation coefficient of the two cycles. Pan [13] uses auto correlation analysis to calculate
steps. The experimental results show that the average step counting accuracy can reach
97.8% when the pedestrians dynamically switch the position carried by the smartphone,
but this experiment failed to consider the important factor of changing the movement state
of pedestrians at any time on the step-counting accuracy. Additionally, the calculation of
correlation coefficient is large, which affects the timeliness of the algorithm.

Peak detection also detected the number of steps according to the periodicity of the
pedestrian’s continuous walking. Unlike the auto correlation analysis method, the peak
detection takes the number of peaks (valleys) generated by the acceleration sensor or
gyroscope sensor as steps. However, the pseudo-peak restricts the accuracy of the detection
steps of the peak detection method. At present, the pseudo-peak is mainly eliminated
by setting the threshold. Xu et al. [7] used a fixed threshold method to remove pseudo-
peak, which has high accuracy when pedestrian motion and smartphone carrying mode
are constrained. Cho et al. [14] used the sign-of-slope method and average threshold
method to realize peak detection; Zhang et al. [15] used the mean value of the acceleration
amplitude of the previous window to dynamically update the acceleration threshold;
Wang [16] adaptively selects the threshold of acceleration according to the average value
of the difference between peaks and valleys in unit time. Ryu et al. [17] proposed an
adaptive threshold method, which uses the average value of the first five consecutive peaks
as the adaptive threshold. However, these algorithms are easy to cause misjudgment in
multiple motion modes. Dirican et al. [18] proposed a threshold-based unconstrained
step counting algorithm. Unlike other ways of thinking about setting update thresholds
based on acceleration data, this method sets the real and imaginary parts of the data
transformed by fast Fourier transform (FFT) to different thresholds and achieves the update
of thresholds by averaging the current and previous thresholds. This method achieves an
adaptive update of acceleration thresholds and can adapt to a variety of unconstrained
states, but the accuracy of the pedometer for running states is only 41.7%.

In addition to the pseudo-peak affecting the accuracy of step counting, selecting the
appropriate sliding window is also helpful to indirectly improve the accuracy of step
counting. Currently, the sliding window size is mainly based on the time required for
a single step, so that the pedestrian can continuously output the step counting results
without delay for each step; however, this requires that the size of the sliding window
should essentially match the time used for a single step. Ning et al. [19] sets the size of three
sliding windows according to the three states of motion of going up and down, walking
and running, but the size of these windows are still fixed, so it is difficult to adjust to
different users. Kang et al. [20] proposes a method of changing the sliding window, which
mainly determines the size of the sliding window adaptively according to the walking
frequency, but the accuracy of the walking frequency will affect the determination of the
sliding window. It can be seen that it is difficult to ascertain the size of the sliding window
when realizing continuous single-step counting. As long as the influence of sliding window
size on real-time performance is within an acceptable range, looking for a sliding window
which is not based on single-step detection, and solving the problem that a large sliding
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window separates the connection between neighboring windows, is also an ideal solution
to the problem.

In summary, in the motion environment and motion state, the random transformation
of smartphone carrying mode and the complex unconstrained state with interference
factors, the step detection algorithm based on peak detection has the problem that the
adaptive threshold is difficult to accurately update dynamically and the sliding window is
difficult to accurately determine, which restricts the accuracy of peak detection. In view of
this, smartphone-based unconstrained step detection fusing a variable sliding windows
and an adaptive threshold is proposed in this paper. The algorithm uses the minimum peak
filtered by the sliding window as the adaptive threshold to solve the problem that the peak
threshold is difficult to update adaptively when the pedestrian state changes. The algorithm
is a step detection algorithm of a variable sliding window. It is not based on the commonly
used single-step detection of a sliding window, but realizes the variable sliding window on
the basis of a fixed sliding window of 1 s, which ensures the close connection between the
windows. At the same time, the cooperative time threshold solves the problem that the
initial peak and the final peak make it difficult to distinguish the authenticity in the fixed
sliding window. Using this algorithm, the accuracy of step counting can be guaranteed
under complex unconstrained conditions. There are three aspects of contributions for the
smartphone-based unconstrained step detection method proposed in this paper. First, it
allows users to carry smartphones at multi points for indoor positioning. Second, users
can freely switch the way of carrying and the state of motion for indoor positioning. Third,
smartphones with different valences have high step detection accuracy.

The Section 1 introduces the research background and existing problems of the step
detection algorithm. The preprocessing process and motion state recognition process of the
step detection algorithm are described in the Section 2. Smartphone-based unconstrained
step detection fusing a variable sliding window and an adaptive threshold is proposed in
the Section 3. The Section 4 evaluates the step counting performance of smartphone-based
unconstrained step detection fusing a variable sliding window and an adaptive threshold
in constrained and unconstrained states through 50 groups of experiments. The Section 5
summarizes the work of this paper.

2. Step Detection Preprocessing and Motion State Recognition

As the sensors in the smartphone can detect the periodic changes of pedestrians,
smartphones can detect the step numbers. Both acceleration sensors and gyroscope sensors
can detect the periodic change when walking. However, the sensitivity of the gyroscope
sensor is depressed, and the acceleration sensor is mostly used for step detection [21].

With each step forward, the pedestrian will produce a vertical motion and forward
motion. The vertical axis of the three-axis accelerometer will produce an approximate
sinusoidal wave, and the number of peaks (valleys) detected can be used as the number of
steps of the pedestrian. However, the location of the smartphone carried by pedestrians is
changeable, and it is difficult to accurately identify which single axis is in the vertical state,
but the influence of sensor attitude can be reduced by calculating the overall acceleration.
Formula (1) is the formula for calculating the overall acceleration.

ac(t) =
√

a2
x + a2

y + a2
z (1)

In the formula, ax, ay, az represent the accelerometer output values of the X-axis, Y-axis
and Z-axis at t time, and ac(t) represents the overall acceleration.

The signal characteristics of triaxial acceleration and overall acceleration were com-
pared by experiment. Figure 1 shows the triaxial acceleration signal and the overall
acceleration signal when walking at will. In the experiment, there are three states: walking
and the smartphone is flat, normal walking and putting the smartphone next to the ear,
running and swing hand. It can be seen from Figure 1 that the most sensitive axis has
undergone three transformations, namely the Z-axis, Y-axis and X-axis, whereas the overall
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acceleration signal shows significant periodical changes. Therefore, the overall acceleration
is adopted in the step detection algorithm in this paper.

Figure 1. Triaxial acceleration and overall acceleration when walking at will.

The accuracy of the acceleration sensor of the smartphone is low, which leads to
too many burr points of the original overall acceleration signal. It needs to be filtered to
reduce the interference of more burrs before step detection. In addition, in the process of
movement, pedestrians will be accompanied by multiple motion states. Different motion
states often have different peak threshold. Therefore, it is necessary to identify motion
state before step detection. The following focuses on the methods of step detection data
preprocessing and motion state recognition.

2.1. Data Preprocessing of Step Detection

In order to remove the white Gaussian noise, Guo et al. [22] uses the weighted moving
average method and the Kalman filter to preprocess the original resultant acceleration data
to remove the influence of the Gaussian white noise, and then uses the Butterworth filter to
refine the denoising. But the excessive and complicated filtering methods increased the
data processing time. Zhang et al. [15] adopted the sliding window filter method to weaken
the multi-peak phenomenon, which is a more common and better smoothing method for
filter data, but the method loses the characteristics values of the data. Alabadleh et al. [23]
used the Kalman filter and high-pass filter to smooth data, which removed gravity and
outliers, but the algorithm had some complexity. Liu et al. [24] adopted a low-pass filter to
eliminate signal noise, and the low-pass filter can keep the characteristics of the data very
well. In this paper, a Finite Impulse Response (FIR) low-pass filter based on a Hamming
window [25] is used to preprocess the ensemble acceleration signal, where the order of the
filter is 10 and the length of the Hamming window is 11. As the actual output frequency
of some smartphones does not match the sampling frequency, the sampling frequency
used in the paper is the actual output frequency and the pass-band frequency is 5 Hz.
Figure 2 shows the original overall acceleration signal, and Figure 3 compares a sliding
window filter (the window size is 15 samples) and a FIR low-pass filter. The FIR low-pass
filter retains the large and small peaks of the original overall acceleration signal (shown
by the black arrows in Figure 3), reflecting the different characteristics of the left and right
footsteps of the human body when walking.
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Figure 2. Raw overall acceleration signal.

Figure 3. FIR low-pass filter and sliding window filter.

2.2. Motion State Recognition

Pedestrians lift one foot off the ground, move to a new position and after that, put it
back on the ground, which is known as a single step [17]. Figure 4 shows the decomposition
diagram of pedestrian single-step action. Since the step detection algorithm in this paper
is mainly applied to PDR, stroll walking, normal walking and running in the previous
progress are considered, which are general division methods.

Figure 4. Single step action decomposition.

When pedestrians are in different states of motion, the time and the peak acceleration
of a single step are different. If a single fixed time threshold and a peak threshold are used
to realize step counting, it is difficult to ensure the accuracy of steps. Identifying different
states of motion and setting or updating different thresholds according to different states of
motion can effectively improve the step counting accuracy. Zhang [26] uses the finite state
machine method to distinguish whether the pedestrian is at rest or in motion, but does
not make a further division of the motion state. In the study of Chen et al. [27], based on
the inherent correlation between the state of motion and the maximum acceleration, the
maximum acceleration threshold is set to identify the state of motion of pedestrians. With
this method, it is easy to misjudge the state of motion under more complex unconstrained
conditions. For example, the acceleration caused by the arm swing of the hand-held
smartphone during stroll walking is similar to that of normal walking and when the
smartphone is flat. Generally speaking, the step frequency of stroll walking, normal
walking and running increases in turn, so the state of motion can be identified based on the
step frequency. Using FFT, the time domain information can be converted into frequency
domain information, and with the exception of the first DC point, the point with the largest
amplitude is taken as the step frequency.
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In this paper, through 50 experimental tests of 25 people, it is found that the walking
frequency of continuous walking should be less than 1.6 Hz, the walking frequency of con-
tinuous normal walking should be less than 2 Hz, and the walking frequency of continuous
running is 2–3.5 Hz. Limited by navigation factors and non-competitive state, the frequency
above 3.5 Hz is mostly caused by interference factors such as body shaking, typing, video
brushing, etc. Therefore, the frequency above 3.5 Hz is regarded as an interference state
in this paper. When the state of motion is stable, the frequency calculated by FFT will be
similar to the real step frequency. To accurately identify the step frequency, FFT requires
at least 256 samples. In this paper, when the number of samples is less than 256, FFT
judgment is not enabled. When the number of samples is more than 256, the window
size of FFT is set to 256 samples, and the sliding time is 1 s (the actual samples in 1 s).
Because the FFT used in this paper requires 256 samples (about 5 s), if there is multiple
switching of state of motion in the window, it will reduce the accuracy of FFT to judge the
step frequency. In order to prevent large step counting errors caused by misjudgment, the
frequency threshold should be as small as possible. Theoretically, the time threshold should
correspond to the step frequency, but it is found that in the walking state (stroll walking,
normal walking), the time required for a single step is similar to that of running. So in order
to avoid misjudging some true peaks because of the time threshold, in this paper, the time
thresholds of all exercise states are set to smaller values. According to many experimental
tests and references, the spectrum, the step frequency threshold, the time threshold and the
peak threshold of walking, normal walking and running are shown in Figure 5 and Table 1.

(a) (b) (c)

Figure 5. Spectrum of pedestrian stroll walking, normal walking and running: (a) Stroll walking
(b) Normal walking (c) Running.

Table 1. Empirical values of step frequency threshold, time threshold and peak threshold.

Motion State Step Frequency Threshold (Hz) Time Threshold (ms) Peak Threshold (m/s2)

stroll walking [0,1.6] >333 >10.6
normal walking [1.6,1.8] >333 >11.0

running [1.8,3.5] >286 >11.6
interference factors >3.5 — —

3. Smartphone-Based Unconstrained Step Detection Fusing Variable Sliding Window
and Adaptive Threshold

In order to address the problem of the low accuracy of step detection algorithms in a
complex unconstrained state, an unconstrained step detection algorithm for smartphones is
proposed in this paper. In this algorithm, the minimum peak filtered by the sliding window
is used as the adaptive threshold. The algorithm is a step detection algorithm of a variable
sliding window, which ensures the close connection between the windows. At the same
time, the cooperative time threshold solves the problem that the initial peak and the final
peak are difficult to distinguish the authenticity in the fixed sliding window. The flow chart
of the algorithm is illustrated in Figure 6, and the steps of the algorithm are as following:
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Figure 6. Flow chart of the unconstrained step detection algorithm.

The first step is data preprocessing. The FIR low-pass filter is used to denoise the
original overall acceleration signal.

The second step is to identify the motion state and gain the fixed threshold for the third
step. The motion state is identified by FFT. The initial peak threshold and time threshold
are matched according to different motion states.

The third step is to dynamically update the peak threshold and eliminate the pseudo-
peak. It is found that the waveform filtered by a sliding window is smaller than that filtered
by a FIR low-pass filter. Based on these characteristics, the minimum peak value detected
by sliding window filtering in the window is used in this paper as an adaptive threshold,
and the adaptive threshold is used to replace the fixed threshold for step detection based
on the waveform after the FIR low-pass filter. This peak threshold dynamic updating
algorithm is proposed in detail in Section 3.1.

The fourth step is the variable sliding window cooperative time threshold to eliminate
the pseudo-peak. Since the fixed sliding window cuts off the connection between the
adjacent windows, the discrimination of the initial peak and the final peak of each window
is easily missed. To solve this problem, the variable sliding window cooperative time
threshold pseudo-peak elimination method is proposed to eliminate the pseudo-peak, and
the structure and process of this method will be introduced in detail in Section 3.2.

The fifth step is to calculate the steps for the current window.
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3.1. Dynamically Update the Peak Threshold

When affected by height, weight, health status, walking habits and other factors, it
is difficult to adapt to different users and different unconstrained states only by a fixed
threshold. It is found that the waveform filtered by a sliding window is smaller than that
filtered by the FIR low-pass filter. To dynamically update the peak threshold, this paper
takes the minimum peak detected after a sliding window filter as the adaptive threshold
based on this feature. If the adaptive threshold is greater than the empirical threshold, the
empirical threshold is used as the adaptive threshold.

Figure 7 is a group of experiments running on flat ground. In the experiment, adaptive
peak threshold and fixed peak threshold (11.6 m/s2) are used to eliminate pseudo-peak and
count steps, respectively. The experimenter ran 29 steps, and the step number results of
adaptive peak threshold and fixed peak threshold were 29 steps and 40 steps, respectively.

Figure 7. Pseudo-peak elimination by adaptive threshold in running state.

In Figure 7, the arrow marks the pseudo-peak, and the blue horizontal line is the fixed
threshold line. The black dots are adaptive thresholds obtained by a sliding window filter.
It can be seen that the fixed threshold is difficult to eliminate pseudo-peaks marked by
arrows, whereas adaptive thresholds can eliminate them.

3.2. Pseudo-Peak Elimination Method with a Variable Sliding Window Cooperative Time Threshold

Because the size of the sliding window determined in this paper is larger than that of
the single-step sliding window, there may be several true and pseudo-peaks in the window.
The positions of true and pseudo-peaks can be divided into three categories: the initial
peak in front of the window, the adjacent peak in the window and the peak at the end of
the window.

As shown in Figure 8, the initial peak of the second window and the peak at the end
of the ninth window are pseudo-peaks in fact. The fixed sliding window separates the
connection between the adjacent windows. If the fixed sliding window of 1 s is adopted,
the two pseudo-peaks pointed by the arrow will be misjudged as true peaks. In order to
solve this problem, this paper proposes a pseudo-peak elimination method with a variable
sliding window cooperative time threshold, which ensures the connection between the
adjacent windows, and can judge the starting peak and the end peak. Figure 9 is a flowchart
of this method.

180



Remote Sens. 2022, 14, 2926

Figure 8. Pseudo-peaks in front of the window and at the end of the window.

Figure 9. Flow chart of pseudo-peak elimination method with variable sliding window cooperative
time threshold.

According to the flow chart, the specific implementation steps of this method are
as follows:
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Step 1: judging adjacent peaks. If there are two or more peaks in the i (i ≥ 1) window,
there are neighboring peaks in the window. The time threshold is used to judge the adjacent
peaks. If the time difference between peak a and peak a-1 is less than the time threshold,
then peak a is a pseudo-peak. Otherwise, peak a is suspected to be a true peak, which
needs to be judged cyclically with the subsequent peak a + n (n = 1,2,3 . . . ). If the time
difference between peak a and peak a + n is less than the time threshold, then peak value
is compared. If peak a is greater than peak a + n, peak a is a suspected true peak, and the
program executes n++ to continue the loop judgment. If peak a is less than peak a + n, peak
a is a pseudo-peak. If the time difference between peak a and peak a + n is greater than the
time threshold, peak a is determined to be the true peak. After achieving the judgment of
peak a, the program ends this cycle and moves to judge the next peak a++.

Step 2: judging the end peak. If the time difference between the end peak and the
previous peak is greater than the time threshold, the end peak is suspected to be the
true peak, which needs to be judged together with the starting peak of the next window.
Otherwise, the end peak is a pseudo-peak.

Step 3: variable sliding window. If the i (i ≥ 1) window contains a peak, the starting
point of the i + 1 window is set to the next data point of the end peak of the i window
(Figure 10a). If the i window does not contain a true peak, the starting point of the i + 1
window is moved forward two data points(Figure 10b).

(a)

(b)

Figure 10. Schematic diagram of the variable sliding window: (a) The i (i ≥ 1) window contains a
peak (b) The i window does not contain a true peak. Note: the green arrows indicate the starting
point of new windows.

Step 4: judging the initial peak. If the previous window does not contain a peak, and
the initial peak is greater than the peak threshold, the initial peak is suspected to be a true
peak, which needs to be judged with the next peak. The judgment method is the same as
that of peak a and the peak a + n in step 1. If the initial peak is less than the peak threshold,
the initial peak is a pseudo-peak. If the previous window contains a peak, the initial peak
is equivalent to the adjacent peak, which can be judged by the method in step 1.

Step 5: circularly executing step 1, step 2, step 3 and step 4 until the window ends.

4. Experiment and Analysis

In order to evaluate the accuracy of smartphone-based unconstrained step detection
fusing a variable sliding window and an adaptive threshold, 25 volunteers (9 females and
16 males) were recruited. The volunteers’ height ranged from 155 cm to 185 cm and the
weight ranged from 41 kg to 93 kg. The experimental smartphones were all volunteers’
own phones, including 21 models of Huawei, Apple, Samsung, Honor, Xiaomi, Oneplus,
Oppo and Vivo. Figure 11 shows 25 smartphone brands and models of the volunteers in
the experiment.
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Figure 11. Brands and models of 25 smartphones.

4.1. Experimental Setup

The experiment was carried out on the campus of Shandong University of Science
and Technology. The four kinds of states of volunteers’ motion state, motion environment,
smartphone carrying mode and interference factors are shown in Table 2. In total, 25 volun-
teers were divided into 5 groups to carry out the step detection experiments in a constrained
state (smartphones keep flat) and an unconstrained state. The experimental process in a con-
strained state is shown in Table 3, and the experimental process in an unconstrained state is
shown in Table 4. Then, 5 volunteers in each group collected data according to the experi-
mental process of Tables 3 and 4, and accurately counted the actual walking steps. Figure 12
is the schematic diagram of data collected by volunteers in a constrained state, and Figure 13
is the schematic diagram of an unconstrained state. The data collected by the volunteers, as
well as attribute information such as height, weight and smartphone models have been up-
loaded to GitHub (https://github.com/jackleenotjackma/StepCountingData.git (accessed
on 25 December 2021).

Table 2. Experimental motion environment, motion state, smartphone carrying mode and interfer-
ence factor.

Test Scenario Motion State Smartphone Carrying Mode Interference Factor

Flat ground(A1) Standing(B1) Trouser pocket(C1) Typing(D1)
Go upstairs(A2) Stroll walking(B2) Hold and swing hand(C2) Brush video(D2)

Go downstairs(A3) Normal walking(B3) Hand-held and flat(C3) —
— Running(B4) Close to the ear and ringer up(C4) —
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Table 3. Experiment process of 5 constrained state groups.

Experimental Group Experimental Process

Constrained: first group A1,B2,C3
Constrained: second group A1,B3,C3
Constrained: third group A1,B4,C3

Constrained: fourth group A2,B3,C3
Constrained: fifth group A3,B3,C3

Table 4. Five groups of unconstrained state experiment process.

Experimental Group Experimental Process

Unconstrained: first group A1,B1,D2–A1,B2,C2–A1,B3,C3–A1,B4,C1
Unconstrained: second group A1,B2,C4–A1,B1,D1–A1,B3,C2–A1,B4,C2
Unconstrained: third group A1,B4,C2–A1,B3,C2–A1,B3,C3–A1,B2,D2–A1,B1,D1

Unconstrained: fourth group A1,B2,C3–A2,B3,C2–A1,B3,C2–A3,B3,C1–A1,B2,D2–A1,B1,D1
Unconstrained: fifth group A1,B2,C3–A2,B3,C1–A1,B3,C2–A3,B3,C4–A1,B2,D2–A1,B1,D1

Figure 12. Constrained experiment process.

(a) (b)

Figure 13. Unconstrained experiment process: (a) Schematic diagram of the second group of experi-
mental process (b) Schematic diagram of the fourth group of experimental process.

4.2. Experimental Results and Analysis

A total of 50 sets of data were obtained in the experiment, and the steps were between
72 steps and 343 steps. Unconstrained step count detection algorithm for smartphones is
compared with the open source program Stepcount [28], which is well-known on GitHub.
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Stepcount is a peak detection algorithm based on an adaptive threshold. The actual step
number was taken as the reference value.

The step counting results of 25 volunteers in a constrained state and an unconstrained
state are shown in Table 5. Figures 14 and 15 show the step counting accuracy of 25 volun-
teers in a constrained state and an unconstrained state, respectively. It can be seen from
Table 5 and Figures 14 and 15 that under constraint conditions, the lowest step counting
accuracy of the proposed smartphone-based unconstrained step detection fusing a variable
sliding window and an adaptive threshold is 96.3%, whereas the lowest correct rate of
step counting by the Stepcount is only 45.4%. In the unconstrained state, the lowest cor-
rect rate of the proposed smartphone-based unconstrained step detection fusing variable
sliding window and adaptive threshold is 95.3%, whereas it is only 57.5% for Stepcount.
Regardless of the constrained state or the unconstrained state, the step counting accuracy
of the proposed smartphone-based unconstrained step detection fusing a variable sliding
window and an adaptive threshold is stable, whereas the step counting accuracy of the
Stepcount fluctuates greatly. In the constraint condition, the average step counting accuracy
of the unconstrained step detection algorithm and the Stepcount are about 99.0% and 90.1%,
respectively. In the unconstrained state, the average step accuracy of the unconstrained
step detection algorithm and Stepcount are about 98.4% and 87.4%, respectively. In the
constrained state and unconstrained state, the step accuracy of the proposed smartphone-
based unconstrained step detection fusing a variable sliding window and an adaptive
threshold is about 8.9% and 11% higher than that of the Stepcount.

Figure 14. Step counting accuracy in constrained state.

Figure 15. Step counting accuracy in unconstrained state.
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Table 5. Constrained state and unconstrained state step counting result.

Experimental
Group

Actual
Steps

Stepcount

Smartphone-Based
Unconstrained Step
Detection Fusing a

Variable Sliding
Window and an

Adaptive Threshold
Actual
Steps

Stepcount

Smartphone-Based
Unconstrained Step
Detection Fusing a

Variable Sliding
Window and an

Adaptive Threshold

Correct Rate
(%)

Correct Rate
(%)

Correct Rate
(%)

Correct Rate
(%)

Constrained State Unconstrained State

Group 1

186 75.8 100.0 241 96.3 100.0
150 92.0 100.0 240 96.3 97.5
170 95.9 98.8 240 83.3 98.8
191 91.1 99.5 184 93.5 99.5
196 45.4 99.5 240 83.3 99.2

Group 2

210 96.2 99.5 160 98.8 98.8
199 85.9 99.0 180 91.1 98.3
150 86.0 100.0 171 93.0 100.0
180 82.2 98.9 195 95.4 98.9
235 94.5 100.0 182 100.0 98.9

Group 3

240 94.2 98.3 260 89.2 98.1
343 95.3 99.1 210 68.1 98.6
230 84.3 99.1 240 57.5 97.9
183 88.5 98.9 240 82.1 98.8
284 87.3 99.3 240 62.5 97.1

Group 4

94 98.9 98.9 194 93.3 97.9
80 95.0 98.8 212 95.8 99.5
107 100.0 97.2 235 92.8 100.0
114 95.6 100.0 260 61.9 96.9
114 97.4 97.4 209 79.4 99.0

Group 5

72 79.2 98.6 161 98.1 98.1
108 97.2 96.3 170 92.4 97.1
96 94.8 100.0 214 98.6 96.7
132 97.7 97.7 192 96.4 95.3
131 94.7 100.0 237 86.1 97.9

In order to explore the adaptability of the proposed smartphone-based unconstrained
step detection fusing a variable sliding window and an adaptive threshold, the perfor-
mance of this algorithm is analyzed from the perspective of smartphone price and gender
of volunteers.

The smartphones of the 25 volunteers were divided into three types according to
prices: mid-low-level (1200–2599 RMB), mid-level (2600–3599 RMB) and high-level (over
3600 RMB). Figure 16 shows the step counting accuracy of the smartphone-based uncon-
strained step detection fusing a variable sliding window and an adaptive threshold with dif-
ferent prices in the unconstrained state. It can be seen from the figure that the smartphone-
based unconstrained step detection fusing a variable sliding window and an adaptive
threshold has the best step counting accuracy for high-level smartphones, and there is no
obvious difference between mid-level smartphones and mid-low-level smartphones. In the
unconstrained state, the average step counting accuracy of the smartphone-based uncon-
strained step detection fusing variable sliding window and adaptive threshold is 99.1%,
98.0% and 98.0% for high-level, mid-level and mid-low-level smartphones respectively.
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Figure 16. Step counting accuracy rate of smartphones with different prices in unconstrained state.

From a gender perspective, in the unconstrained state, the average step counting accu-
racy rate of the smartphone-based unconstrained step detection fusing a variable sliding
window and an adaptive threshold is 98.2% for male and 98.7% for female, respectively.
The difference between them is only 0.5%. It can be seen that the smartphone-based uncon-
strained step detection fusing a variable sliding window and an adaptive threshold has
good adaptability to different genders.

5. Conclusions

Aiming at the problem of low step detection accuracy of PDR in an unconstrained
state, this paper proposes a step detection algorithm for smartphones. In this algorithm,
the pseudo-peaks are eliminated by preprocessing acceleration using a FIR low-pass filter,
FFT recognition gait, dynamic updating peak threshold and a variable sliding window
cooperative time threshold; and, finally, the step counting is realized.

The FIR low-pass filter is used to denoise the overall acceleration signal. FFT is used to
identify stroll walking, normal walking, running and interference state. The minimum peak
value after a sliding window filter is used to dynamically update the peak value threshold,
which solves for the problem that the fixed peak value threshold has low adaptability in an
unconstrained state. A method of a variable sliding window cooperative time threshold is
proposed, which ensures the connection between adjacent windows and makes up for the
problem that the fixed window cannot judge the initial peak and the end peak. In order
to evaluate the step counting performance of the proposed algorithm, 50 experiments in
constrained and unconstrained states are conducted by 25 volunteers holding 21 different
types of smartphones. The experimental results show that, the average step counting
accuracy of the proposed algorithm is 98.4% in an unconstrained state, which is 10.0%
higher than that of the result from the open source program Stepcount. This proposed
algorithm has a strong ability to adapt to complex unconstrained states and it is friendly
for different genders and mobile phones with different prices. In the future, we plan to
carry out indoor positioning research with this step detection method and use it in the
construction of a smart city and the tracking of pandemics.
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Abstract: Accurate positioning is one of the main components and challenges for precision forestry.
This study was established to test the feasibility of a low-cost GNSS receiver, u-blox ZED-F9P, in
movable RTK mode with features that determine its positioning accuracy following logging trails in
the forest environment. The accuracy of the low-cost receiver was controlled via a geodetic-grade
receiver and high-density LiDAR data. The features of nearby logging trails were extracted from
the LiDAR data in three main categories: tree characteristics; ground-surface conditions; and crown-
surface conditions. An object-based TreeNet approach was used to explore the influential features
of the receiver’s positioning accuracy. The results of the TreeNet model indicated that tree height,
ground elevation, aspect, canopy-surface elevation, and tree density were the top influencing features.
The partial dependence plots showed that tree height above 14 m, ground elevation above 134 m,
western direction, canopy-surface elevation above 138 m, and tree density above 30% significantly
increased positioning errors by the low-cost receiver over southern Finland. Overall, the low-cost
receiver showed high performance in acquiring reliable and consistent positions, when integrated
with LiDAR data. The system has a strong potential for navigating machinery in the pathway of
precision harvesting in commercial forests.

Keywords: mobile RTK; low-cost GNSS receiver; positioning accuracy; LiDAR data; tree character-
istics; terrain conditions; precision forestry; TreeNet; geographic object-based approach; commer-
cial forests

1. Introduction

The combination of low-cost global navigation satellite system (GNSS) with real-time
kinematic (RTK) has streamlined determining centimeter-level positioning accuracy of
vehicles feasible for precise practices [1,2]. However, the feasibility of this system is little
known in forestry, where precision forestry is growing due to its advantages in reducing
operational costs and ecological impacts.

Accurate positioning is one of the main components of precision forestry, along with
remote sensing data and geospatial information systems. As forest operations become
more autonomous, the demand for highly accurate positioning increases [3,4]. Machine
navigation and control rely on reliable and accurate positioning to perform forest operations.
On the other hand, any inaccuracy in positioning increases the costs of operations and
our carbon footprint. It also decreases machine operational robustness and safety, with
huge implications on the quality of production and environment [5]. Furthermore, in
commercial forests, harvesters collect a huge amount of data from the processed single
trees over large areas and forest stands. The data are economically valuable and include
the bucking information and positions, which can be used for mapping and predicting
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forest attributes [4,6]. However, any positioning errors of the data significantly degrade the
performance of the models used to estimate the merchantable timber volume collected by
harvesters [7,8].

Various metrics are introduced to measure the performance of GNSS positioning, such
as the availability of sufficient signals, the continuity and integrity of the signals, and most
importantly, the accuracy of positioning [9]. The environmental factors have an undeniable
impact on the quality of signals. For example, signal blockage and multipath errors result
from site-specific conditions or atmospheric factors. The poor visibility of satellites due to
trees’ occlusion or terrain conditions is one of the main sources of single blockage, which
hampers the geometry of the GNSS and increases the optimal time for the initialization of
the system [10].

Earlier studies have focused on the impact of forest type or forest cover density [11–14]
in the positioning accuracy of GNSS receivers in forest environments. For example,
Feng et al. (2021) [14] explored the effect of forest types and crown size on the accuracy
of positioning for individual trees through GNSS receivers. They found that the error of
positioning in broadleaved forests is higher than in coniferous forests, while the size of
crown did show no significant impact on the increasing the error of positioning. Likewise,
Murgaš et al. [13] tested the accuracy of a mapping-grade device for the positioning of
inventory plots under open sky and forest canopy conditions. They reported the increase of
positioning errors under canopy condition, while the coniferous forests and young stands
showed lower impacts on the positioning errors of the GNSS receiver. Moreover, few stud-
ies have considered the influence of GNSS receivers’ factors along with the forest-related
factors. Ordóñez Galán et al. [15] tested the influence of various forest cover features and
GPS-related factors on the positioning accuracy of a DGPS receiver. They reported that the
influence of forest cover features on the positioning accuracy is significant in comparison
with the GPS factors. However, they concluded that there is no priority between different
forest variables on the accuracy of the positions. Piedallu and Gégout [16] evaluated the
accuracy of GPS positioning based on the type of receiver, forest cover type, the components
of GPS survey, and the season. They reported the impacts of all factors on the positioning
accuracy of GPS, except the season of data recording. The influence of high density of forest
cover on the accuracy of positioning is higher than other variables. However, the considera-
tion of other factors, such as terrain variables, which may affect the positioning accuracy of
GNSS receivers in a forest environment, has been somewhat diminished in earlier studies.
Valbuena et al. [17] explored both terrain and forest variables. However, they excluded the
terrain variables in the final modelling and concluded that the leaf area index, the relative
spacing index between trees, and the wood volume can express the positioning accuracy of
a GNSS receiver in a pine forest. Meanwhile, Pini et al. [1] concluded that terrain conditions
are not only significant for the accuracy of positions, but are also effective for the accurate
heading of vehicles. Kabir et al. [18] reported a significant decrease in in the accuracy of
GNSS receivers in the mountainous areas relative to orchards or open fields. Many of
these studies were developed to introduce an appropriate GNSS receiver for measuring
the accurate locations of individual trees or inventory plots under forest canopy. Hence,
the measurements were carried out as static, with several minutes to record an accurate
position. Although positioning accuracy through mapping-grade or geodetic-grade GNSS
receivers is reliable, their high cost, the difficulty in carrying them in forest conditions, and
the complexity of using them have led to a degradation of their efficiency for cost-sensitive
and small size applications, such as operations in precision agriculture or precision forestry.
Therefore, the need for a new generation of cost-effective GNSS receivers with high posi-
tioning accuracy and simplicity of usage under forest conditions, such as u-blox modules,
is inevitable.

In modern forestry, the use of high-density LiDAR data is growing for mapping the
forest environment, such as individual tree characteristics [7,19,20], aboveground biomass
estimation [21,22], forest disturbances [23], and logging trail detection [24,25]. Mapping
forest features depends on reliable and accurate field measurements for both attributes

192



Remote Sens. 2022, 14, 2856

and positions. For this purpose, we need receivers that are able to acquire positions at
centimetre-level accuracy, such as geodetic-grade GNSS receivers, to be compromised with
LiDAR-derived forest metrics. However, there has also been some research that introduced
the relatively expensive approaches by integrating GNSS, IMU, and mobile laser scanning
(MLS) to improve the positioning accuracy for solving the simultaneous localization and
mapping (SLAM) problem under forest canopy [26,27].

Despite the high positioning accuracy, the cost of establishment a traditional RTK-
related receiver, e.g., a geodetic-grade receiver, is approximately 10 times higher than a
low-cost RTK receiver [28], which has made it inappropriate for cost-sensitive and small
size applications, e.g., in forestry or agriculture applications. The reliable accuracy and
continuity of low-cost GNSS receivers are reported for a variety of applications, mostly in
non-forest environments, such as surveying and mapping [29,30], monitoring [28,31], An-
droid smartphone positioning [32], precision agriculture [2], and urban environments [33].
Many of the earlier studies reported reliable positioning of the low-cos receivers, such
as u-blox modules [28–30,34–36] in a desirable environment condition, for example, an
open sky with a wide range in availability of satellites. However, their efficiency might
be degraded in an obstructed environment or in the dynamic mode of positioning RTK.
Jackson et al. [37] evaluated the positioning accuracy of five low-cost GNSS receivers for
RTK positioning under different environments, in both static and dynamic conditions. The
results indicated that the positioning errors of the low-cost receivers, in static tests, was
less than 10 cm in less complex areas, such as rural environments. However, the error
reached over 1 m in complex areas, such as urban and suburban environments. The posi-
tioning accuracy of the receivers was different in dynamic tests, and the optimal accuracy
is reported 1.5 cm to 1.8 m for the suitable receiver. Likewise, Kadeřábek et al. [2] tested
the performance of various types of RTK receivers in horizontal positioning under the
modes of static or dynamic. They concluded that the accuracy of positioning is significantly
lower in a dynamic mode rather than a static mode. They emphasised that accelerating the
speed increases the error of positioning. Janos and Kuras 2021 [35] tested the positioning
accuracy of a low-cost GNSS receiver, u-blox ZED-F9P, in the RTK mode under different
environment conditions. They found that the type of antenna has a significant impact on
the increase of positioning errors in a complex environment, such as urban canyons.

Although a variety of studies have explored the feasibility of traditional GNSS re-
ceivers in the forest environment, our understanding concerning the efficiency of newly
low-cost receivers and the factors that affect their positioning accuracy is limited, par-
ticularly in commercial forests, where the monitoring of machines or recording of the
position of processed single trees by harvesters [27,38,39] has become widespread in forest
operations. Hence, this research was designed to test the feasibility of using low-cost GNSS
receivers and RTK correction signal to determine precise positions in forests under the
rotation forest management (RFM) system in southern Finland. Specifically, we want to
evaluate the positioning accuracy of the u-blox ZED-F9P in combination with high-density
LiDAR data. Moreover, we will explore features that affect the accuracy of a low-cost GNSS
receiver in the forest using the TreeNet algorithm.

2. Materials and Methods

2.1. Description of the Study Area

We selected three forest stands for our experiment from Karpanmaa forests in southern
Finland (Figure 1). One stand is young and had undergone its first commercial thinning.
Two other stands are mature and are waiting for their second/third commercial thinning
operations. The tree species compositions are pine, spruce, and birch, with a predominance
of pine in the three stands. The age of stands is distributed from 34 to 72 years. The height
of trees is between 5 and 29 m. The ground elevation of the forest ranges between 127 and
149 m.
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Figure 1. The study site and field measurements in southern Finland: (a) the locations of base stations
and study area, (b) selected stands in Karpanmaa site, (c) logging trails, measured positions using
the Trimble R2 and u-blox ZED-F9P and (d) the patterns of the recorded positions by u-blox ZED-F9P
on the logging trails within an example of the study stands.

2.2. Data

We used the high-density LiDAR data, under the license of the National Land Survey
of Finland (NLS), recorded in 2020 for the selected stands. The data have a density of
greater than 5 points/m2 along with horizontal and altimetric errors of less than 45 and
10 cm [40], respectively. The features affecting the positioning accuracy of the u-blox
ZED-F9P were mapped from the LiDAR-derived metrics such as the digital terrain model
(DTM), digital surface model (DSM), point density, and signal intensity. Logging trails
were detected from the high-density LiDAR data based on the U-Net convolutional neural
network approach developed by Abdi et al. [25]. In addition, we obtained orthophotos
from the databases of NLS [41]. The attributes of the forest stands were collected from the
databases of Finsilva Oy.
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2.3. GNSS Devices

Three GNSS receivers were used, including an Oregon® 750t (Garmin Ltd., Olathe,
KS, USA), a u-blox ZED-F9P (u-blox, Thalwil, Switzerland), and a Trimble R2 (Trimble Inc.,
Sunnyvale, CA, USA), for specialised applications during our field operations.

The Oregon® 750t receiver was used for navigating the approximate locations of the
selected logging trails.

We used the u-blox ZED-F9P to identify features affecting the positioning accuracy
of the low-cost GNSS receivers in the forest. The u-blox ZED-F9P is a multi-band GNSS
receiver that can measure positions at centimetre-level accuracies in RTK mode. This
receiver obtains signals from multiple bands (L1, L2/E5b/B21) of all four global GNSS
constellations including GPS, Galileo, BeiDou, and GLONASS via a Multi band GNSS
antenna ANN-MB-00 (SMA) (u-blox, Thalwil, Switzerland) [42]. The antenna is designed in
a small, compact size. It can be easily mounted on different machinery due to its magnetic
fixed installation base and a long cable of 5 m [43]. The GNSS and RTK integration has
accelerated its convergence time (down to less than 10 sec) [42]. Moreover, performance
with the application for conducting unmanned autonomous vehicles (UAV), automatic
and semi-automatic machinery, and robotic machines has improved [44]. The u-blox F9P
was equipped with advanced anti-spoofing and anti-jamming algorithms that guarantee
highly accurate positioning and navigation information. The receiver and antenna are both
waterproof and can also operate under extreme temperatures (−40 ◦C to +85 ◦C) [45].

We used the Trimble R2 receiver, paired with Trimble TSC7 (Trimble Inc., Sunnyvale,
CA, USA), for collecting accurate control points during recording data through u-blox F9P.
The Trimble R2 can acquire high positioning accuracy in RTK mode both horizontally (1 cm
to 1 ppm RMS) and vertically (2 cm to 1 ppm RMS).

2.4. Research Sulky

We modified a sulky for transporting the u-blox and its compartment for recording
positioning data in the forest. The sulky includes two bicycle wheels of 28′′ in width. The
length, width, and height of the main body of the sulky are 1.2 m, 65 cm, and 87 cm,
respectively. It was equipped with a veneer plate (103 cm × 53 cm) for holding the devices.
A thin plate (50 cm × 40 cm) was installed on the veneer plate for fixing the magnetic
antenna. The sulky was controlled by a draught pole (adjustable up to 1.3 m), which
includes a trapezoid-shaped handle to make pulling easier for the user (Figure 2).

2.5. Field Measurements

We established the local base stations to send corrected data to the rover receiver in
the vicinity of our study site (Figure 1a). The base and movable stations were developed
using a SparkFun GPS-RTK2 Board (SparkFun Electronics, Boulder, CO, USA) with ublox-
ZED-F9P module and the SMA. The receivers of the base stations were configured based
on an NTRIP-protocol via the internet server (rtk2go.com) to provide RTCM V3.2 standard
correction signals.

We selected a number of logging trails with about 2 km for our experiment (Figure 1c).
The shapefiles of the logging trails were converted into GPS Exchange Format (GPX) and
imported into the Garmin device for spotting out the logging trails in the field.

We started our measurement from 8:32 a.m. and ended at 12:37 p.m. (GMT). The
routes were so designed to pass through different species with diversity in age, height,
density, canopy cover, and topographic conditions. Our speed was close to the normal
speed of harvesters and forwarders (i.e., 44 to 56 m/min) in the forest.

The u-blox ZED-F9P receiver and its compartments, including the SAM, 4G TP-
LINK M7200 modem (TP-Link Technologies Co., Shenzhen, China), and Laptop computer,
were mounted on a research sulky that was designed for this purpose (Figure 2). The
configuration period of the receiver was set to 1 Hz. All four GNSS constellations were
selected to receive adequate and strong signals to acquire positions by the u-blox F9P in
RTK mode. A Raspberry Pi minicomputer with RTK-LIB open-source program was used for
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operating the RTK-station. We used u-center evaluation software program to monitor and
process all aspects of recorded data (e.g., horizontal and vertical positions, accuracies, time,
tracking of GNSS constellations, etc.) during the operation of the u-blox GNSS receiver [46].
All recorded data were captured in ASCII format, imported into ArcGIS (Esri, Redlands,
CA, USA), and integrated with the object features to be used for TreeNet analysis.

 

Figure 2. Compartments for field experiment: (a) research sulky, (b) u-blox ZED-F9P, (c) Multi band
GNSS antenna ANN-MB-00 (SMA), (d) modem, and (e) computer system.

We recorded the positions of 64 control points on the logging trails with an accuracy
of less than 1 cm by the Trimble R2, as references, in RTK mode. The absolute errors were
calculated between the measured positions by the u-blox F9P and the positions of the
control points. The one-sample t-test was used to determine whether the mean of errors
exceeded the optimal directions of an image pixel (i.e., 50 cm) derived from the high-density
LiDAR data at a significance level of 0.05.

2.6. High-Density Laser Scanning Features

We applied the binning interpolation method based on the maximum cell-assignment
method to generate a digital surface model (DSM) from the high-density LiDAR points.
The linear interpolation method was used to fill void areas in the DSM. The digital terrain
model (DTM) was created based on the interpolation from ground points as well [47].
The features representing the surface topography and canopy conditions, such as slope
gradient, aspect, topography/canopy position, plan curvature, profile curvature, and mean
curvature [48,49], were derived from the DTM and DSM (Figure 3).

We subtracted the DTM from the DSM to reach the canopy height model (CHM) [50].
The canopy density was generated based on the ratio of the number of nonground points
to the total number of points in an object [51]. The tree canopy was delineated from the
CHM and used for measuring the canopy cover within an object [52]. The intensity image
was created from the range of pulse-intensity values of the laser points [53]. It was applied
in combination with orthophotos to determine species types within the objects.
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Figure 3. Object features in an example area of the study area. (a) 3D perspectives of high-density Li-
DAR point clouds, its metric derivatives including (b) the digital terrain model (DTM) and (c) digital
surface model (DSM). (d) The ground-surface features were extracted from the DTM and (e) the
canopy characteristics and (f) the canopy-surface features were extracted from the LiDAR points and
the DSM, respectively.

2.7. Object Features

A buffer of 10 m was delineated around the logging trails, and then the area was
segmented into the homogenous units (objects) based on the similarity in the spectral
properties of the adjacent cells in the high-resolution orthophotos. The average size of the
objects was obtained around 18 sq.m. The values of the derived features from the LiDAR
data (Table 1) and the accuracy of positioning by u-blox ZED-F9P were summarized within
the objects. This single database was used for analyzing the relationship between the target
and the features using TreeNet.

2.8. TreeNet Regression

We used the TreeNet regression algorithm to determine influential features on the
positioning accuracy of the u-blox ZED-F9P. Numerous advantages have been reported for
TreeNet, in comparison with other machine learning based approaches. In addition to its
highly accurate predictions, TreeNet is not sensitive to errors in data or missing data. No
data pre-processing (e.g., transformation, normalisation, or reduction) or preselection of
the variables is required. TreeNet is strong against overfitting, and the process of growing
trees is extraordinarily fast [54,55].

TreeNet begins with an initial model, which consists of a very small tree. This simple
model is deliberately weak. The residuals are computed for each data in the first model
and are used to grow the second tree. The residuals of the second tree are then computed
and used to grow the third tree. Likewise, this process repeats to generate a sequence of
hundreds or thousands of trees, in order to achieve an optimal tree. All trees contribute
to the optimal model. The final model prediction is based on the total contribution of the
individual trees, which is known as score. The accuracy of the TreeNet score will improve
steadily by increasing the number of trees until to reach an optimal number of trees [55].

We used a dataset including 2000 sample objects. Twenty percent of the sample objects
were randomly assigned as the testing set and the remaining 80% as the learning set. The
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TreeNet loss function was set on Huber-M. The mean square error (MSE) was chosen as the
criterion for determining the number of optimal trees. We set the initial tree size at 10,000
and generated 12 TreeNet models based on the different learning rates and tree complexity
levels. The optimal model was selected based on the one that recorded the minimum
MSE, and its parameters were tuned for the final TreeNet model. The performance of the
model was tested using the area under the receiver operating characteristic (ROC) curve. A
value greater than 0.9 represents high performance, while values less than 0.7 indicate low
performance [56] of the TreeNet model.

The influence of features on the positioning accuracy of the u-blox ZED-F9P was
determined via relative importance [55]. The importance values of the features are ranged
between 0 and 100. The most influential feature gains a value of 100 and the remaining
features are rescaled to reflect their importance relative to this feature. We produced
partial dependence (PD) plots for individual and pairs of features that contributed to the
predicted positioning accuracy in the model. The PD plots represent the response of the
target variable to individual or pairs of features, as all remaining features are taken into
account [57].

Table 1. Object features affecting on the accuracy of positioning by u-blox ZED-F9P, derived from
different metrics of high-density LiDAR data.

Category Features Description

Ground-surface/canopy-surface
conditions

Elevation The mean of ground/canopy elevation (m) [58] in
an object.

Slope (◦) The average of maximum changes in elevation
value [59] within each object.

Aspect The direction of compass of downhill slope [59] in
each object.

Topographic position index (TPI)

TPI measures the difference between the elevation of
the central point against the average elevation of the

ground surface in an object. The positive values
indicate the higher elevation of the central points

and vice versa [60].

Canopy position index (CPI)

CPI measures the difference between the elevation of
the central point against the average elevation of the

canopy surface in an object. The positive values
indicate the higher elevation of the central points

and vice versa.

Plan curvature

The curvature of the surface (ground or canopy)
perpendicular to the direction of slope. The positive

values indicate the convex surface and negative
values indicate the concave surface [48,49].

Profile curvature

The curvature of the surface (ground or canopy) in
the direction of the maximum slope in each object.

The negative values indicate the convex position and
positive values indicate concave surface [48,49].

Mean curvature The combination of the plan and profile curvatures
within an object [48,49].

Tree characteristics

Canopy height The difference between the elevation of canopy
surface and ground surface in an object [50].

Canopy density The density of nonground returns of LiDAR points
in an object [51].

Canopy cover The percentage of canopy cover within an object,
delineated from the CHM [52].

Species type
The type of species trees extracted from the intensity
image, derived from the high-density LiDAR data

and orthophoto images.
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3. Results

3.1. The Accuracy of Positions

The mean of absolute errors of positions between those measured by u-blox ZED-F9P
and control points was obtained as about 43 cm. The result of the one-sample t-test showed
that the positioning accuracy of u-blox has no significant deviation from the area of logging
trails (test value = 0.5 m, p-value > 0.05). However, the absolute errors are distributed
between 1.5 cm to 1.8 m (Figure 4).

Figure 4. Distribution of absolute errors of positions recorded for u-blox ZED-F9P in control points.

3.2. TreeNet Performance

The optimal TreeNet model was obtained after building 490 trees with a learning rate
of 0.011 and tree complexity of 7 (Figure 5). The ROC values were 0.977 for the training
dataset and 0.745 for the testing dataset. It indicates that TreeNet demonstrated high
performance for expressing the features that are determining the positioning accuracy of
the GNSS receivers in forest.

3.3. Features’ Importance

The results of evaluation the importance values of features indicated that all of the
features have affected the positioning accuracy of u-blox ZED-F9P. The top influential
feature was tree height. Then, the influential features were ranked by their importance
to the tree height feature. The ground elevation and aspect have gained 79% and 62%
importance of the tree height, respectively. The importance of the other features has steadily
decreased from the canopy surface elevation to the surface aspect. Two out of five top
influential features were classified in the category of tree characteristics (Figure 6).

3.4. Marginal Effect of Individual Features

The interpretation of univariate PD plots regarding the tree characteristics shows that
when tree height increases to 14 m, the error in positioning by u-blox ZED-F9P increases
(Figure 7a). By increasing tree density, the positioning error drastically increases, at a
density over 0.25 (Figure 7b). Canopy cover of more than 30% shows a positive response
to error in positions of the GNSS receiver (Figure 7c). The mixed species and pine show a
positive response to the high number of errors among tree species (Figure 7d).
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Figure 5. Comparison between different TreeNet (TN) models regarding (a) the number of trees,
(b) learning rates, and (c) tree complexity for determining optimal TreeNet model based on (d) the
mean square error (MSE).

 

Figure 6. Importance scores of the features affecting the positioning accuracy of u-blox ZED-F9P.
The top influential feature is tree height. Other features are ranked based on their importance to the
tree height.
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Figure 7. Univariate partial dependence plots for features affecting the positioning accuracy of the u-blox
ZED-F9P. (a–d) tree characteristics, (e–k) topography conditions, and (l–r) canopy-surface conditions.

The univariate PD plots of the topographic features show that, when the ground
elevation exceeds 134 m in the study area, the error of positioning by u-blox increases
(Figure 7e). The areas with a slope of less than 10% show a positive response to the
errors (Figure 7f). Increasing complexity in the topographic position increases the errors
(Figure 7g). The western direction shows the greatest errors among the topographic aspects.
The southern, south-western, and south-eastern directions show a positive response to
the errors (Figure 7h). The concave curvatures show a positive response to errors in plan,
profile, and mean curvatures (Figure 7i–k).

The PD plots show that the surface elevation positively responds to the high error in
recorded positions by u-blox ZED-F9P after 137 m (Figure 7l). The areas with a surface
slope of less than 60% show an increase in the errors (Figure 7m). High complexity in the
canopy-surface position coincides with high errors in positioning (Figure 7n). Canopies
with the domination of the north-eastern direction show higher errors (Figure 7o). The
canopies with concave curvatures demonstrate mostly high errors totally, vertically, and
horizontally (Figure 7p–r).

3.5. Marginal Effects of Pairs of Features

Figure 8 shows the interactions of five top pairs of features on the positioning accuracy
of u-blox ZED-F9P. The increasing height of trees (Figure 8a), tree density (Figure 8c),
surface elevation (Figure 8f), and ground elevation (Figure 8j) in the western and southern
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portions increased the probability of errors in the receiver. The interaction of large trees
and high tree-density (Figure 8b), surface elevation (Figure 8d), and ground elevation
(Figure 8g) increased the errors. The interaction of increasing the tree density and surface
elevation (Figure 8e) and ground elevation (Figure 8i) led to errors in positions. Whenever
both ground elevation and surface elevation increased, the errors increased (Figure 8h).

Figure 8. Bivariate partial dependence plots for five top features affecting the positioning accuracy
of the u-blox ZED-F9P. (a) tree height and aspect, (b) tree height and tree density, (c) tree density
and aspect, (d) tree height and surface elevation, (e) tree density and surface elevation, (f) surface
elevation and aspect, (g) tree height and ground elevation, (h) surface elevation and ground elevation,
(i) tree density and ground elevation, and (j) aspect and ground elevation.

4. Discussion

4.1. The Positioning Accuracy of the Low-Cost GNSS Receiver

We reach an absolute error of 0.43 m for positioning accuracy by the low-cost u-blox
ZED-F9P GNSS receiver with its equipped standard patch antenna in movable RTK mode
in forest environment. This level of positioning accuracy is promising for forest operations,
particularly relative to the positioning accuracy of current GNSS receivers used by vehicles
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in forest. Alternatively, the development of LiDAR systems has provided the possibility
of producing high precision maps of the forest environment and tree characteristics at
centimetre-level accuracy, with a significant reduction in costs and improvement in time
of processing. Our findings verify the trust in positioning by the low-cost receiver in RTK
mode for integration with the forest features derived from high-density LiDAR data, such
as logging trails. This may have wide implications for the improvement of the safety of
crews, autonomous navigation, ergonomics, and reduction of environmental impacts and
costs [61] during forest operations down the pathways of precision forestry. Although
the positioning accuracy of the low-cost GNSS receivers in static mode was reported
higher than the RTK mode in complex non-forest environments [2,37], their positioning
accuracy was considerable in this mode [28,30] as well. We should stress that our results
are only based on using the standard patch antenna. Further work is required to test the
performance of the low-cost GNSS receivers when equipped with additional antennas in
the forest environment. Previous experiments acknowledged significant improvement
in the positioning accuracy of the low-cost receivers, for example, when using with a
geodetic-grade antenna [29,34,35].

The u-blox ZED-F9P obtains signals in multiband from four global GNSS. Multi-
GNSS contributes to increasing the continuity and integrity of positioning by the receivers,
particularly in environments with obstacles [62,63]. The effect of receiver types on the
accuracy of positioning was reported in earlier studies. The survey-grade devices recorded
higher accuracy than consumer-grade [16,64], mapping-grade [13,65], or smartphone-
grade [66–68] devices.

4.2. The Performance of TreeNet

This study applied high-density LiDAR data and a novel object-based TreeNet ap-
proach to determine influential features that degrade the positioning accuracy of the
novel developed low-cost GNSS receivers in a forest context. Earlier studies mostly mod-
elled the influential variables of positioning accuracy using traditional regression mod-
els [12,14,17,66], which are limited with few variables and data. Conversely, we adopted
TreeNet, as one of the most powerful machine learning algorithms, with remarkable abili-
ties in handling big data and numerous variables without any preselection, pre-processing,
or reduction in dataset. It reveals that a combination of forest characteristics and terrain
features express the positioning errors of GNSS receivers. However, the importance of
features are different.

4.3. Influential Forest Features

Based on our analyses, LiDAR-derived tree height is the top feature that influence on
the positioning accuracy of the low-cost GNSS receiver in movable RTK mode. Tree density
is among top five influential features (Figure 6). The complexity of the forest structure
causes multipath effects [69], which is one of the main sources of increasing positioning
errors in forest. Tree’s characteristics, such as height, volume, tree density and canopy
may block or weaken the signals [70]. A closed canopy can cause cycle slips [63], which
clogs the signals to reach the receivers. Our analyses demonstrated that the low-cost GNSS
receiver continuously recorded the signals throughout the logging trails, and it was resistant
against cycle slips effects. Conversely, the great majority of work has focused on the canopy
cover [11,13,14,16,71–73] as the main factors that affect the positioning accuracy of the GNSS
receivers. Nevertheless, no priority between the forest cover factors on the positioning
accuracy of GNSS was reported in the research of Ordóñez Galán et al. [15], while our study
shows that there is a distinct difference between the impacts of tree characteristic factors on
the positioning accuracy of the GNSS receiver. Moreover, some earlier studies reported the
higher impact of the broadleaved tree species on increasing the errors of positioning by the
GNSS receiver [13,14]. Our research showed that the importance of the tree species is less
than other tree characteristics. The influence of pine and mixture species is positive against
the spruce and birch.
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Using high-density LiDAR data enabled us to take into account precisely some features
of tree characteristics that were less a focus of earlier studies, such as tree height or tree
density, not in plot scale but over the entire surveyed logging trails. For example, due to
limitations involved in using traditional methods to measure tree height, the preponderance
of the studies focused instead on forest cover or forest type [13–16,64] as potential effective
factors of tree characteristics to determine the positioning accuracy of GNSS receivers.
We considered trees’ characteristics inside an object, which is much more similar to the
natural condition of a forest stand. Furthermore, we carried out the experiments in a season
which the leaf of some tree species such as birch is almost off. Hence, canopy cover or tree
species did show lower importance than tree height or tree density in the current research.
Likewise, topographic conditions affect the signals and cause the multipath effects. Our
study revealed that topography directions and elevation are among top five important
features that determine the positioning accuracy of the low-cost GNSS receiver (Figure 6).
Aspect and slope derived from the DTM showed higher importance than was shown by
the corresponding features derived from the DSM. The high ability of DTM to visualise
the morphology of the bare earth under the forest canopy [74], such as variations in slope
directions and values, might be one reason for this difference. On the other hand, the
high variation in the curvature of the forest canopy may lead to a higher influence of
DSM-derived plan curvature and mean curvature when compared to the corresponding
derivatives from the DTM. Although there is no holistic research about the impact of
topographic conditions in forest environment, some studies verified significant impacts of
terrain in non-forest environments on the positioning accuracy of the GNSS receivers [1,18].
Based on the PD plots, the positioning errors of the low-cost GNSS receiver increase in forest
areas with tree height above 14 m, tree density above 30%, western topographic directions
or high elevation (Figure 6). These thresholds are based on our results in southern Finland,
and similar studies should be repeated to achieve fixed values over the Nordic region. The
performance of the antenna, as a sky view, is presented for a specific measured position
during our experiment in Figure 9. The number of satellites that are used in navigation
with a valid fixed position in the eastern direction is higher than in the western direction.
We can infer that the geometric location of the satellites and their signal qualities may cause
that aspect to be one of the top features determining the accuracy of the positioning by the
low-cost GNSS receiver. Lower fixing rates and position errors of GNSS on west aspects
were reported by D’eon and Delparte [75]. However, they reported that the differences
in these values between different directions were not significant. The effect of aspect and
convex slopes on the odds of missing signals was reported in the forest as well. Zimmerman
and Keefe [76] verified that the alert delay of GNSS in the west directions is higher than in
the east directions, which increases the error of positioning under forest canopies.

In addition, our analyses indicated that the interaction of the conditioning features
intensifies the positioning errors by the receiver (Figure 8). It seems that using extra
antenna or geodetic antenna [29–31,35] may mitigate the impact of the forest structure or
topographic conditions on the positioning errors of this type of low-cost GNSS receivers in
forest environments.

4.4. The Application

The new generation of harvesters is equipped with sensors, computers, and GNSS
receivers that store big data obtained from the processed trees and machine parameters
as a standard format of StanForD (Standard for Forest Data and communication) [3].
Despite the high capacity of these data for modelling forest productivity, the errors in
positions significantly degrade the efficiency of these data [6–8]. This type of low-cost
GNSS receiver can improve the accuracy, integrity, and continuity of positions for the
harvesters, with a significant impact on increasing the efficiency of forest productivity
maps to Improve the sustainability of future rotations and precision forestry. Moreover,
understanding the influential features that affect the positioning accuracy of the low-cost
GNSS devices contributes to developing algorithms for the correction of positioning errors
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or for the selection of appropriate low-cost receivers or antennas to minimize the influence
of environmental features on positioning accuracy during forest operations.

 
Figure 9. Sky view for a specific location for the antenna of u-blox ZED-F9P: (a) the quality of sky
view and (b) the position of satellites that were used in navigation.

5. Conclusions

In this study, we presented a geographic object-based TreeNet approach to determine
influential environmental features that affect the positioning accuracy of a newly developed,
low-cost, high-precision GNSS receiver, u-blox ZED-F9P, in forests. The experiment con-
centrated on some logging trails in commercial forests in Southern Finland. The low-cost
receiver showed reliable positioning accuracy when integrated with high-density LiDAR
data in the forest. The TreeNet model showed a high performance for expressing features
that determine the positioning accuracy of the low-cost receiver in the forest. A combina-
tion of features increased the positioning errors of the low-cost receiver, in which the most
important feature was tree height and then the topographic features, such as elevation and
slope direction over the study stands. In the current research, we merely used the standard
patched antenna packed with the low-cost receiver. However, we suggest testing the effi-
ciency of other types of antennas, e.g., geodetic-grade ones, or a combination of antennas
with the low-cost receiver to improve the positioning accuracy in the forest environment.
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Abstract: The ability of intelligent unmanned platforms to achieve autonomous navigation and
positioning in a large-scale environment has become increasingly demanding, in which LIDAR-based
Simultaneous Localization and Mapping (SLAM) is the mainstream of research schemes. However,
the LIDAR-based SLAM system will degenerate and affect the localization and mapping effects
in extreme environments with high dynamics or sparse features. In recent years, a large number
of LIDAR-based multi-sensor fusion SLAM works have emerged in order to obtain a more stable
and robust system. In this work, the development process of LIDAR-based multi-sensor fusion
SLAM and the latest research work are highlighted. After summarizing the basic idea of SLAM
and the necessity of multi-sensor fusion, this paper introduces the basic principles and recent work
of multi-sensor fusion in detail from four aspects based on the types of fused sensors and data
coupling methods. Meanwhile, we review some SLAM datasets and compare the performance of five
open-source algorithms using the UrbanNav dataset. Finally, the development trend and popular
research directions of SLAM based on 3D LIDAR multi-sensor fusion are discussed and summarized.

Keywords: SLAM; LIDAR; multi-sensor fusion; coupling methods

1. Introduction

A mobile robot is a complex system integrating computer technology, sensor technol-
ogy, information processing, electronic engineering, automation, and artificial intelligence.
With the assistance of artificial intelligence technology, mobile robots with versatile func-
tions are widely used in the fields of emergency rescue, industrial automation, and smart
life. Precise positioning is one of the key technologies for mobile robots to complete tasks au-
tonomously. With the rapid development of robot technology, a single sensor can no longer
meet the increasingly rich functional requirements of robots. Therefore, the technology of
information fusion of multi-source sensing has gradually attracted attention.

Mobile robots are widely used in indoor environments. 2D LIDAR has become the
choice for indoor navigation and positioning due to the advantages of high-precision
ranging and reduced data volume. However, with the increasing demand for outdoor
scenes, robots are gradually moving towards increasingly complex open scenes. Driven
by the DARPA (Defense Advanced Research Projects Agency Ground Challenge) [1,2],
multi-line 3D LIDAR became known and began to be widely used in outdoor scenes. 3D
LIDAR has stronger environmental awareness but at the cost of expensive price, high data
volume, and processing difficulty. In recent years, with the popularization of 3D LIDAR
and the enhancement of the computing power of embedded processors, the positioning
technology based on 3D LIDAR has developed rapidly. 3D LIDAR provides high-density
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point clouds with richer matching methods and better robustness for the matching between
frames. Furthermore, it can be fused with image and odometer information [3] to enhance
the positioning accuracy, which has become the mainstream sensor used in many fields
such as unmanned driving, robot autonomous navigation, and drone flight control.

For a SLAM system, accurate position and orientation estimation are essential. Schol-
ars have conducted a lot of studies, including vision-based methods and LIDAR-based
methods, to realize real-time high-precision 6-DOF state estimation for mobile robots. How-
ever, a single sensor system has limitations. On the one hand, the dependence of vision on
initialization and the sensitivity to the sum of illumination leads to the instability of the
system. On the other hand, the sparse information provided by LIDAR rapidly degenerates
the positioning in unstructured scenes. In addition, the rapid motion mode and long-term
error accumulation further invalidates the odometer. Therefore, many auxiliary sensors
such as IMU, GPS, MEMS, and UWB are added to the positioning system to solve the above
problems. In recent years, there have been many LIDAR SLAM review literatures. Most of
them introduce the development process of the entire 3D LIDAR SLAM in simple terms,
which includes huge but too complicated content.

Tee [4] presents a detailed analysis and comparison of several common open-source so-
lutions for 2D SLAM. The advantages and disadvantages of each method are demonstrated
by simulation and experiment. However, 3D SLAM has not been addressed. Bresson [5]
reviews LIDAR SLAM related to the large-scale problem faced by autonomous driving.
Similarly, reference [6] is an earlier SLAM review, which discusses in detail the basic issues
of SLAM and many works in the development of SLAM, including long-distance SLAM,
theoretical performance analysis, semantic association, and development directions. Both
works summarize the classic theories and work in the field of SLAM, however, the related
content of multi-sensor fusion is not involved.

Debeunne [7] divides SLAM into three parts: image-based, LIDAR-based, and image-
LIDAR fusion. The integration of SLAM work, complicated integration methods, and the
development process of data fusion have not been mentioned. Taheri [8] proposes a SLAM
review showing the development of SLAM by reviewing important works. It summarizes
and looks forward to SLAM work from multiple directions and stages. However, this
work mainly summarizes the visual SLAM, and the reference value of LIDAR SLAM is
limited. Zhou [9] summarizes the SLAM algorithm based on 3D LIDAR from the aspects of
optimization framework, key SLAM modules, and future research hotspots. Subsequently,
this work compares the performance of various SLAM algorithms in detail, which has high
reference value.

It can be seen that most of the relevant reviews of SLAM are based on key modules
such as front-end matching, closed-loop detection, back-end optimization, and mapping,
focusing on the development history and latest works of SLAM. This paper will summarize
the multi-sensor fusion SLAM algorithms based on 3D LIDAR from different perspectives.
The contributions are:

• The multi-sensor fusion SLAM systems in recent years are categorized and summa-
rized according to the types of fused sensors and the means of data coupling.

• This work fully demonstrates the development of multi-sensor fusion positioning
and reviews the works of both loosely coupled and tightly coupled systems, so as to
help readers better understand the development and latest progress of multi-sensor
fusion SLAM.

• This paper reviews some SLAM datasets and compares the performance of five open-
source algorithms using the UrbanNav dataset.

This paper provides a detailed overview of multi-sensor systems through five main
sections. The first section details the necessity of multi-sensor fusion in localization systems.
In Section 2, the basic problems to be solved by SLAM and the classical framework are
presented. In Section 3, the related works of the loosely coupled system are reviewed in
detail in two parts according to the sensor types. Similarly, the related works on tightly
coupled systems are reviewed in Section 4. A comparison table is given at the end of each
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section. Finally, a summary of the full text and an outlook for the follow-up works are
presented. Abbreviations used in this paper are summarized in Table 1.

Table 1. Abbreviations for terms.

Full Name Abbreviation

Simultaneous Localization and Mapping SLAM
Laser Detection and Ranging LIDAR

Degrees of Freedom DOF
Micro Electro-Mechanical System MEMS

Ultra-Wide Band UWB
Inertial Measurement Unit IMU

Iterative Closest Point ICP
Graphic Processing Unit GPU
Robot Operating System ROS

LIDAR Odometry and Mapping LOAM
Lidar Odometry LO
Visual Odometry VO

Visual-Inertial Odometry VIO
LIDAR-Inertial Odometry LIO

LIDAR-Visual-Inertial LVI
Extended Kalman Filter EKF

Multi-State Constrained Kalman Filter MSCKF
Unmanned Aerial Vehicles UAV

2. Simultaneous Localization and Mapping System

Over the past few decades, SLAM techniques have come a long way. SLAM systems
based on various sensors have been developed, such as LIDAR, cameras, millimeter-
wave radar, ultrasonic sensors, etc. As early as in 1990, the feature-based fusion SLAM
framework [10], as shown in Figure 1, was established and it is still in use today. The SLAM
problem has evolved from two independent modules, localization and mapping, into a
complete system that integrates the two. The two modules promote each other. The high-
precision odometer composed of multiple sensors provides real-time pose estimation for
the robot and the basis for the reconstruction and stitching of the 3D scene. Similarly, high-
precision 3D reconstruction provides important data for pose estimation for feature-based
odometry. Even a separate odometer system is also inseparable from the establishment or
storage of temporary local maps to assist pose estimation.

 

Figure 1. Feature-based fusion SLAM framework.

Most modern SLAM systems are divided into two parts: front end and back end (as
shown in Figure 2). The front end is responsible for estimating the current frame pose in
real time and storing the corresponding map information. The back end is responsible for
large-scale pose and scene optimization. Loop closure detection is one of the key issues of
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SLAM, which helps the robot identify visited scenes and trigger global-scale drift correction.
Large-scale global optimization is also the main difference between SLAM and modern
odometry. The two methods have many similarities in pose estimation. Most modern
multi-sensor fusion technologies act in the front end to achieve high-precision and low drift
of the odometer systems by the means of information complementation, local pose fusion,
and multi-data source filtering.

 

Figure 2. The main components of a SLAM system.

The development of single sensor system is relatively mature, among which LIDAR,
camera, and IMU are the most common sensors in SLAM systems. 3D LIDAR can provide
the system with rich structural information of the environment. However, the data are
discrete and numerous. The camera can capture color and texture in the environment
at high speed, but depth cannot be directly perceived by the camera and it tends to be
perturbed by light. The IMU can sensitively perceive weak changes of the system in a very
short period of time, but long-term drift is inevitable. The characteristics of the three are
distinct, and their advantages and disadvantages are obvious. Single-sensor SLAM systems
are fragile and full of uncertainty. They are not capable of dealing with multiple complex
environments such as high-speed scenes, small spaces, and open and large scenes at the
same time.

Therefore, multi-sensor fusion has become a new trend in the development of SLAM
systems. Most of the SLAM and odometry systems for multimodal sensor fusion use a
combination of LIDAR, camera, and IMU, which can be categorized as loosely coupled or
tightly coupled modes. The loosely coupled system processes measurement data of each
sensor separately and fuses them in a filter that marginalizes data of the current frame to
achieve the latest state estimation results. The tightly coupled system jointly optimizes the
measurement data of all sensors and combines the observation characteristics and physical
models of each sensor to obtain a more robust pose estimation. The loosely coupled
system has the advantages of small calculation amount, simple system structure, and easy
implementation. However, its positioning accuracy usually has limitations. In contrast, a
tightly coupled system is computationally intensive so that its implementation is difficult,
but it gains a more accurate state estimation in complex and changeable environments.

Based on these three sensors, a number of multi-sensor fusion simultaneous local-
ization and mapping works have emerged in recent years. In this paper, according to
the coupling method of the system and the types of sensors to be fused, these works are
divided into LIDAR-IMU loosely coupled system, Visual-LIDAR-IMU loosely coupled sys-
tem, LIDAR-IMU tight coupled system, and Visual-LIDAR-IMU tight coupled system. The
development of SLAM is a process of transition from loose coupling to tight coupling. The
classification of some of the SLAM systems mentioned in this paper and the developmental
relationship between them are shown in Figure 3.
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Figure 3. Classification of parts of the work and the relationship between them.

3. Multi-Sensor Loosely Coupled System Based on LIDAR

The emergence of loosely coupled systems has opened up a new stage in the develop-
ment of multi-sensor fusion systems. Until now, its application in low-cost platforms with
limited computation powers is still wide. Loose coupling is mostly applied in three aspects:
multi-sensor-based stage pose estimation, raw data-based information complementarity,
and sensor-assisted pose constraints.

3.1. LIDAR-IMU Loosely Coupled System

Most loosely coupled systems appear in earlier works. The popularity and wide
attention of LIDAR-based 3D SLAM technology can be attributed to Zhang’s original work,
the LOAM algorithm [11]. One of his important contributions was to extract the information
of effective edge and plane feature points from the complex point cloud. Furthermore,
the point-to-line and plane distances are used to construct an error function and solve the
nonlinear optimization problem of the pose, as shown in Figure 4. Even the earliest LIDAR
SLAM systems already had the concept of sensor fusion. This work uses the integration
operation of the gyroscope and accelerometer of the six-axis IMU to obtain the prior pose,
which further improves the accuracy of the LIDAR odometer. However, LOAM does
not have loop closure detection and global pose optimization at the back-end. After that,
many LIDAR-IMU loosely coupled systems were improved and perfected on the basis of
LOAM. The work presented in this section not only focuses on sensor data fusion, but also
improving the point cloud registration of the front end and the overall optimization of the
back end.

Shan [12] proposed the LeGO-LOAM algorithm on the basis of LOAM, which intro-
duced point cloud clustering and ground segmentation into data preprocessing to speed
up point cloud registration [13]. At the same time, a simple acceleration formula is used to
process the IMU data for point cloud distortion correction and provide a priori pose. The
IMU has played the same role in line/plane feature-based LOAM and two-stage LOAM.
The feature extractions have drawn more attention. The normal vector of point is used to
extend the feature types in both methods [14,15]. Different from both of the above methods,
CSS-based LOAM and ALeGO-LOAM enhance the feature quality of LOAM [16,17]. Since
the curvature scale space method and adaptive cloud sampling method are put forward,
more accuracy edge points and plane points are extracted. However, this loose integration
method does not effectively exclude the influence of the measurement bias of the IMU itself.
Moreover, the IMU is merely a supplementary means.
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Figure 4. Inter-frame pose estimation in LOAM systems.

In addition to the improvement in feature extraction, improved ICP and GPU ac-
celeration are also optimized. ICP is widely used in SLAM front end. Many works in
recent years have proposed faster and more robust ICP variants in order to guarantee the
real-time (10 Hz) performance of LIDAR odometry in real-life regularization scenarios. The
latest work [18] introduces symmetric KL divergence in the front end ICP algorithm. Its
optimization object includes not only the distance between points, but also the difference in
distribution shape. In order to ensure the real-time performance and calculation accuracy
of the front end, GPU acceleration is applied to point cloud computing including SuMa [19],
Elastic-LiDAR Fusion [20], and Droeschel [21]. The shape of the distance data is approxi-
mated as a set of disks called Surfel [22], which is convenient for solving point-to-plane
problem in GPU. Due to GPU acceleration, the dense point cloud is exhibited in front of
people. The visual content is more understandable. To some extent, these point clouds have
semantic meaning. Moreover, these methods can be used in virtual reality and augmented
reality. However, portable devices and mobile robots still lack powerful GPUs.

It is essential to adopt overall optimization of the back end for the SLAM system.
In the latest work [23], Yue enriched feature types. He used the Multi-metric Linear
Least Squares Iterative Closest Point (MULLS ICP) algorithm based on categorical feature
points to efficiently estimate self-motion and construct a submap-based PGO (Pose Graph
Optimization) backend optimization. Effective loop closure detection is a significant
procedure of SLAM. In [24,25], the geometric and intensity information of the point cloud
are encoded, and a global point cloud descriptor is set to implement a rotation-invariant
loop-closure matching algorithm, which clarifies the appropriate optimization timing for
the SLAM back-end. In [26], a 2D histogram, converted by all key frames of point clouds,
determines where the loop closure occurs by calculating the similarity between the current
frame and historical key frames. The loop detection is added in LOAM and LeGO-LOAM.

In addition, there is a branch of 3D LIDAR—solid-state LIDAR. It has the advantages
of stable performance and low cost compared to the traditional multi-line LDIAR such as
VLP-16 and VLP-32. However, by using irregular scans, this kind of LIDAR with smaller
field of view tends to result in motion blurring. Solid-state LIDAR-based SLAM is a new
topic. LOAM-Livox [27] is the one of the most representative works. According to the
unique scanning method and sensor characteristics of the Livox radar, the author designed
a SLAM system suitable for Livox with LOAM as a reference. The system removes the
unqualified point cloud and extracts the line and surface features. The pose is iteratively
solved by constructing the residuals of the line and surface distances. However, IMU is not
used in this method.
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The loose coupling of the inertial system processes the IMU data for point cloud
distortion correction and provide a priori pose. In this framework, the effect of sensor
fusion is limited. Thus, most of the existing algorithms improve front end and back end.
The related work on the LIDAR-IMU tightly coupled system is compared in Table 2.

Table 2. LI loosely coupled system.

Year Method Author Strength Problem

2014 LOAM [11] J. Zhang et al. Low-drift.
Low-computational complexity.

Lack of closed loop and
backend optimization.

2018 LeGO-LOAM [12] T. Shan et al. Ground segmentation.
Two-stage optimization.

Closed loop detection accuracy
is low.
Complex terrain failure.

2018 SuMa [19] J. Behley et al.
A surfel-based map can be used
for pose estimation and loop
closure detection.

High complexity.
High computational cost.

2019 Line/plane feature-based
LOAM [14] X. Huo et al. Explicit line/plane features. Limited to an

unstructured environment.

2019 ALeGO-LOAM [17] S. Lee et al. Adaptive cloud sampling method. Limited to an unstructured
environment.

2019 CSS-based LOAM [16] C. Gonzalez et al. Curvature scale space method. High complexity.

2019 A loop closure for
LOAM [26] J. Lin et al. 2D histogram-based closed loop. Ineffective in open large scenes.

2020 Two-stage feature-based
LOAM [15] S. Zhang et al. Two-stage features.

Surface normal vector estimation. High complexity.

2020 Loam-livox [27] J. Lin et al.

Solid State LIDAR.
Intensity values assist in
feature extraction.
Interpolation to resolve
motion distortion.

No backend.
No inertial system

2021 MULLS [23] Y. Pan et al. Optimized point cloud features.
Strong real-time.

Limited to an
unstructured environment.

2021 LiTAMIN2 [18] M. Yokozuka et al.
More accurate
front-end registration.
Faster point cloud registration.

Lack of backend optimization.

It can be seen from the table that most of the LI loosely coupled systems in recent
years focus on the completion and optimization of the system. Finding accurate front
end matching and efficient back end optimization methods are their major innovations.
Although this part of the work did not make outstanding contributions to data fusion,
it provided a stable platform and interface for the subsequent work and accelerated the
development of SLAM technology. A summary of the methods in this section according to
different strategies is shown in Figure 4.

3.2. LIDAR-Visual-IMU Loosely Coupled System

LIDAR odometer degradation occurs in unstructured and repetitive environments.
Even for the positioning with the assistance of IMU, it still cannot work properly for long
periods. In contrast, vision sensors do not require specific structural features such as edges
and planes, which rely on sufficient texture and color information to accomplish local-
ization. However, vision sensors cannot obtain depth information intuitively. Therefore,
combining a camera with LIDAR provides a complementary solution. The LO and VO of
LIDAR-Visual-IMU loosely coupled systems mostly operate independently but they share
positioning information to each other for pose correction and smoother estimation.
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The authors of LOAM extend their algorithms by combining feature tracking of
monocular cameras with IMU in V-LOAM [28]. They correlated feature point depths with
point clouds to produce a visual-inertial odometry for LIDAR scan matching. However, VO
in this work only provides pose before LO and the final error solution is exactly the same as
LOAM, which is without vision coupling. Subsequently, the authors of V-LOAM released
its iterative version [29]. The improved method employs a sequential parallel processing
flow to solve the motion estimation from coarse to fine. The system uses visual-inertial
coupling methods to estimate motion and perform the scan matching to refine motion
estimation and mapping further. The resulting system enables high-frequency, low-latency
motion estimation, as well as dense, accurate 3D map registration.

Tim [30] took a different approach and chose to perform visual localization in a known
point cloud map. The method utilizes the map acquired by the camera to track the pose
of the monocular camera in a given 3D LIDAR map. Its local BA-based visual odometry
system reconstructs sparse 3D points from image features and continuously matches
them with the map to track the pose of the camera in an online manner. However, this
approach requires the map to be obtained prior. This fusion method is obviously contrary
to the original intention of SLAM and is more like an odometer. Zhang [31] combined
LOAM-based LIDAR odometry with optical flow tracking-based visual odometry. On the
premise of culling dynamic objects, the system weights and fuses the pose results of the two
according to the number of valid features. However, this method cannot run in real-time.
Pose optimization is still performed independently and without data association.

With the rapid development of VIO systems [32–34], visual-inertial odometry has
gradually become a research hotspot in SLAM with its high performance to price ratio and
high positioning accuracy. It has a profound impact on multi-sensor fusion in LO systems.
Wang [35] proposed a LIDAR-Visual-Inertial SLAM system based on V-LOAM and VINS-
MONO. He used a V-LOAM-based approach for mileage estimation and back-end global
pose graph optimization by maintaining key frame database. In this approach, the pose
estimation result of LO can correct the VIO system.

Shao [36] uses a binocular camera to form a LIDAR-Visual-Inertial system, which is
divided into two parts: binocular-based VIO and LIDAR-based LO. The binocular VIO
system employs stereo matching and IMU measurements to perform IMU pre-integration
sum and tight coupling of pose graphs to marginalize lag frames, which provides LO
with an accurate and reliable initial pose. Based on LOAM, LO adds vision-based closed-
loop detection and pose graph-based back end optimization, and uses iSAM2 [37,38] to
incrementally optimize the LIDAR odometry factor and closed-loop factor. This work has
approached tightly coupled systems, but the VIO and LO of the system are still relatively
independent. Efficient closed-loop detection and back-end optimization make up for these
shortcomings and lay the foundation for a large number of tightly coupled systems that
appeared later.

Khattak [39] proposed another loosely coupled method similar to V-LOAM, which
uses the inertial prior results of visual and thermal imaging for LIDAR scan matching. To
adapt to a variety of complex environments, the authors employed visual and thermal
imaging inertial odometry to work in long tunnels without illumination. In [40], the authors
combined the VO and LO systems with a leg odometer. In its core, an Extended Kalman
Filter (EKF) fuses IMU and legged odometry measurements for attitude and velocity
estimation. The system also integrates attitude corrections from VO and LO and corrects
attitude drift in a loosely coupled manner. This method has a good localization effect on
the legged robot platform.

Lowe [41] proposed a LIDAR-aided vision SLAM system, which employs a novel fea-
ture depth and depth uncertainty estimation method. The system uniformly parameterizes
three different types of visual features using measurements from LIDAR, camera, and IMU,
simultaneously. The system has good adaptability to handheld devices.

CamVox [42] is the first Livox LIDAR SLAM system for assisted vision. The system is
built on ORB-SLAM2 [43] and uses Livox to provide a more accurate depth estimation for
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the camera. Unlike LOAM-Livox, IMU is used for distortion correction of non-repetitively
scanned point clouds. In addition, the authors utilized the non-repeating scanning feature
of Livox LIDAR to perform automatic calibrations between the camera and LIDAR at
uncontrolled scenes. The system achieved better pose estimation results than VINS-MONO
and ORB-SLAM2. Shin et al. [44] believe that the relatively sparse point cloud is not mean-
ingful for the depth associated with visual features. They applied the direct method [45]
to the combination of low-line LIDAR and camera to implement a loosely coupled SLAM
system, which addresses the sparsity problem in data association.

The latest representative loosely coupled work [46] proposed a system composed of
multiple odometry methods. The system takes point clouds and images as outputs. Pose
estimation algorithms include GICP (Generalized Iterative Closest Point) [47], P2P-ICP
(Point-to-Plane Iterative Closest Point) [48], NDT (Normal Distributions Transform) [49],
ColorICP (Color Iterative Closest Point) [50], and Huang’s method of combining LiDAR
and camera data [51]. The system utilizes multiple odometers to improve integrity and
robustness. Point cloud-based localization evaluation methods and scoring criteria are
defined to generate the optimal pose results. However, the system does not have data
association or sharing. Wang [52] proposed a LIDAR-assisted VIO system, which relies
on the voxel map structure to efficiently assign the depth information of LIDAR to visual
features. Moreover, this work innovatively introduced the vanishing point information in
the image into the visual odometry to reduce the rotation drift further. The localization
accuracy of this method is superior to the state-of-the-art VIO and LIO systems. Table 3
summarizes the related works on the LIDAR-Visual-IMU loosely coupled system.

Table 3. LVI loosely coupled system.

Year Method Author Strength Problem

2015 V-LOAM [28] J. Zhang et al. Visual feature fusion point
cloud depth.

Weak correlation between
vision and LIDAR.

2016 Monocular Camera
Localization [30] T. Caselitz et al. Rely on a priori maps

Local BA. Unknown environment failure.

2018 LVIOM [29] J. Zhang et al.

VIO preprocessing.
Addresses sensor
degradation issues.
Staged pose estimation.

Inertial system state stops
updating when vision fails.

2018 Handheld SLAM [41] T. Lowe et al.

The incorporation of
depth uncertainty.
Unified parameterization of
different features.

System failure when vision
is unavailable.

2018 Direct Visual SLAM for
Camera-LiDAR System [44] Y. Shin et al.

Direct method.
Sliding window-based pose graph
optimization.

Not available in open areas.
Poor closed-loop detection
performance.

2019 VIL SLAM [35] Z. Wang et al.
VIO and LO assist each other.
Addresses sensor
degradation issues.

Closed loop unavailable when
vision fails.

2019 Stereo Visual Inertial
LiDAR SLAM [36] W. Shao et al. Stereo VIO provides initial pose.

Factor graph optimization.

No raw data association
between VIO and LO.
Sngle factors.

2020 Pronto [40] M. Camurri et al.

EKF Fusion Leg Odometer
and IMU.
LO and VO corrected
pose estimation.

Drifts seriously.
Not bound by historical data.
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Table 3. Cont.

Year Method Author Strength Problem

2020 CamVox [42] Y. Zhu et al.
Livox LIDAR aids
depth estimation.
An automatic calibration method.

No inertial system..
No LO.

2021 Redundant Odometry [46] A. Reinke et al. Multiple algorithms in parallel.
Filter the best results.

High computational cost.
No data association.

2021 LiDAR-Visual-Inertial
Estimator [52] P. Wang et al.

LIDAR assists the VIO system
Voxel map structures share depth.
Vanishing Point optimizes
rotation estimation.

System failure when vision
is unavailable.

This part of the work becomes more flexible with the introduction of vision. The
point cloud increases the stability of the depth acquisition of visual features. In addition,
the robustness of system positioning is also stronger. However, loose coupling leads to
the independence between vision and LIDAR. The constraints between the data are not
strong enough.

4. Multi-Sensor Tightly Coupled System Based on LIDAR

Positioning and mapping techniques are applied to more complex and changeable
scenes with the rapid development of robotics. The previous loosely coupled system has
the advantages of real-time and low computational complexity. However, it is still difficult
to guarantee the accuracy in high-speed motion or degradation scenarios. With its high-
frequency motion response characteristics, IMU has always been an indispensable sensor
for mobile robots. For tightly coupled systems, it is a key issue to effectively fuse the IMU
with other odometers.

Tightly coupled systems based on IMU assistance have made a breakthrough in visual
odometry [53,54]. In this work, the IMU pre-integration formula, error transfer model,
and definition of residual are deduced, which have a profound impact on the subsequent
development of LIO and VIO. Moreover, these equations and models become the theoretical
basis for joint optimization of tightly coupled systems. The world coordinate system is
defined as W, the binding of the robot coordinate system and the IMU coordinate system is
defined as B; the state vector x of robot can be defined as:

x =
[
RT, pT, vT, bT

]T
(1)

where R ∈ SO(3) which is the rotation group, p and v are the position and velocity vectors
of the robot, and b is the bias of the IMU. The measurement value of the IMU can be
written as:

ω̂t = ωt + bω
t + nω

t (2)

ât = RBW
t (at − g) + ba

t + na
t (3)

where ω̂ and â represent the angular velocity and angular velocity measurements of the
IMU, b and n represent the bias and noise of the gyroscope and accelerometer, respectively,
ω and a represent the true value, g represents the local gravitational acceleration, RBW

represents the world coordinate system to the rotation matrix of the IMU coordinate system,
and t represents the time. Using the discrete pre-integration method in [53], the relative
motion can be obtained. Δvij, Δpij and ΔRij can be expressed as:

Δvij = RT
i
(
vj − vi − gΔti j

)
(4)

Δpij = RT
i

(
pj − pi − viΔti j − 1

2
gΔt2

i j

)
(5)
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ΔRij = RT
i

Rj (6)

The residuals for the terms are expressed as:

rij =
[
rΔvij , rΔRij , rΔpij

, rbω
ij

, rba
ij

]
(7)

For the specific derivation of residuals, please refer to the literature [53,54]. With
the pre-integration formula and the definition of the error term, the coupling relationship
between the IMU and the world coordinate system can be decoupled in the process of joint
optimization. The system can update the biases of the IMU to ensure that the IMU data
are added and optimized. Hence, a measured value closer to the true one is obtained. The
definition of the residual makes it easier for the IMU to combine the residual terms of other
sensor odometers to create a more complete error function. This is also the rationale of the
tightly coupled optimization. The factor graph representation of the tightly coupled system
is shown in Figure 5.

 

Figure 5. The factor graph for tightly coupled systems.

4.1. LIDAR-IMU Tightly Coupled System

On the theoretical basis of pre-integration, a large amount of LIO-related work has
gradually emerged in recent years. One of the early approaches to tightly couple LIDAR
and IMU was proposed in LIPS [55], which employs a graph-based optimization framework.
In this framework, a planar representation of the closest point is proposed. A set of point
clouds is parameterized as plane features, and then the residuals-function is converted
into the differences between the plane parameters of two frames, which, together with the
residual term of the IMU pre-integration, constitutes the final optimization function. This
tightly coupled approach was deeply influenced by the VINS series and began to emerge
in the field of LIDAR SLAM. This form lays a solid foundation for the subsequent LIO and
LVI tightly coupled systems.

The pre-integration of the IMU was used for removing the distortion of the raw point
cloud in Gentil’s work [56]. It tightly integrates the IMU and LIDAR data into a batch
manifold optimization formulation, which describes the motion in the LIDAR scan based
on the extrinsic parameters of IMU. The system also considers the first-order form of
the pre-integration error to the time difference and solves the problem of hardware time
asynchrony. Ye [57] proposed a tightly coupled LIDAR inertial localization and mapping
framework, LIOM (LIO-mapping), which jointly optimizes measurements from LIDAR and
IMU. A sliding-window model was further used to maintain a certain scale of optimization
data. The accuracy of LIOM is better than that of LOAM. However, real-time cannot be
achieved since LIOM is designed to process the measurements by all sensors.

Inspired by Hess’s work [58], Ding [59] introduced the subgraph representation of 2D
SLAM into the 3D LIDAR odometry and added inertial data to establish motion prediction
and constraints between frames. In this system, the 3D occupancy grid method is utilized
to replace the 2D occupancy grid to realize the pose measurement of all 6 degrees of
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freedom. Finally, the iterative solution is performed in the solver Ceres [60]. The system
innovatively joins the environmental change detection (ECD) module, which can detect
whether the known surrounding environment has changed. However, this feature is not
used to eliminate the influence of unknown dynamic environment on SLAM.

The authors of LeGO-LOAM released LIO’s follow-up work LIO-SAM [61] in combi-
nation with IMU-related theories. The system builds the LIDAR-inertial odometry on a
factor graph, and multiple relative and absolute measurements including closed loops are
incorporated into the system as factors, as shown in Figure 6. The innovation of LIO-SAM
is to marginalize old pose and point cloud data to replace matching scans to global maps.
The system uses local map matching instead of global matching to significantly improve
real-time performance. In addition, the system also adds the GPS absolute positioning
factor [62], which is used to correct the long-term drift of the system. However, since
feature extraction relies on geometric environments, this method still cannot work for a
long time in open scenes.

The latest work of LIRO [63] proposed a sensor fusion scheme combining LIO with
UWB ranging. The solution can be easily deployed with minimal cost and time. The system
tightly couples IMU, LIDAR, and UWB data with timestamp-based robot states in a sliding
window to construct a cost function consisting of UWB, LO, and IMU pre-integrations.
Finally, a factor graph model is used to incrementally marginalize and update the data
within the window. However, the usage scenarios of UWB have great limitations. The
system will no longer have an advantage in a huge range of occlusion scenarios.

The tightly coupled LIO system proposed by Chen [64] further refines the front-end.
He proposed an efficient algorithm to simultaneously extract the explicit mixed features of
the original point cloud, including ground features, edge features, and plane features. The
system also introduced a deep learning-based LPD-Net to generate global descriptors for
point clouds. The loop closures detection can be accomplished in the key frame database.
This method greatly improves the accuracy of closed loop detection. In order to ensure the
real-time performance of the system, Li [65] proposed a quantitative evaluation method
for point cloud feature constraints and a screening algorithm for key features. An effective
compromise is traded off between accuracy and computational cost. Lv [66] proposed
a high-accuracy continuous-time trajectory estimation framework for LIO systems to
efficiently fuse high-frequency asynchronous sensor data. The system uses a non-rigid
body registration method for continuous-time trajectory estimation. Dynamic and static
control points are defined to further optimize trajectory estimation. At the same time, a
two-stage closed-loop correction method is proposed to effectively update the closed-loop
pose and control points, respectively. However, the computational cost of closing the
loop is not reported, nor does it address the uncertainty in motion that might suffer from
motion degradation.

Figure 6. Factor graph structure of LIO-SAM.
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RF-LIO [67] is a dynamic SLAM framework proposed on the basis of LIO-SAM. The
system adaptively adds a multi-resolution range image composed of point clouds and
removes moving objects using tightly coupled LIDAR inertial odometry. The LIDAR scans
are then matched with the subgraphs. Therefore, it can obtain accurate pose estimation
results even in highly dynamic environments. LIO tightly coupled systems based on solid-
state LIDAR have also been gradually attracting attention. However, LIO degradation
still occurs when moving in open scenes for a long time. FAST-LIO [68] proposed an
efficient and robust LIO framework based on tightly coupled iterative Kalman filters for
UAV systems. However, the system discards the impact of historical data on the current
state. Global pose correction cannot be performed.

The tight coupling of the inertial system will undoubtedly increase the computational
burden of the system while improving the accuracy. Most of the existing algorithms
improve computing speed by marginalizing historical data or limiting local map capacity.
The back end optimization generally only builds the pose graph of the LIDAR without
adding the bias and speed measured by the IMU. These methods achieve excellent results
in most scenarios. However, due to the dependence on geometric features, once the inertial
system loses the LO constraint in the open unstructured scene, the SLAM will suffer serious
drift and degradation. The related work on the LIDAR-IMU tightly coupled system is
compared in Table 4.

Table 4. LI tightly coupled system.

Year Method Author Strength Problem

2018 LIPS [55] P. Geneva et al.
The singularity free plane factor.
Preintegration factor.
Graph optimization.

High computational cost.
No backend or local optimization.

2019 IN2LAMA [56] C. Le Gentil et al.
Pre-integration to remove distortion.
Unified representation of inertial
data and point cloud.

The open outdoor scene fails.

2019 LIO-mapping [57] H. Ye et al. Sliding window.
Local optimization.

High computational cost.
Not real time.

2020 LiDAR Inertial
Odometry [58] W. Ding et al.

The occupancy grid based LO.
Map updates in
dynamic environments.

Degradation in unstructured scenes.

2020 LIO-SAM [61] T. Shan et al.

Sliding window.
Add GPS factor.
Marginalize historical frames and
generate local maps.

Poor closed loop detection.
Degradation in open scenes.

2021 LIRO [63] T.-M. Nguyen et al. UWB constraints.
Build fusion error. UWB usage scenarios are limited.

2021 Inertial Aided 3D
LiDAR SLAM [64] W. Chen et al.

Refine point cloud feature
classification.
Closed Loop Detection Based on
LPD-Net.

Degradation in unstructured scenes.

2021 KFS-LIO [65] W. Li et al. Point cloud feature filtering
Efficient Computing. Poor closed loop detection.

2021 CLINS [66] J. Lv et al.

The two-state continuous-time
trajectory correction method.
Optimization based on dynamic and
static control points.

High computational cost.
Affected by sensor degradation.

2021 RF-LIO [67] IEEE Remove dynamic objects.
Match scan to the submap. Low dynamic object removal rate.

2021 FAST-LIO [68] W. Xu et al. Iterated Kalman Filter.
Fast and efficient.

Cumulative error.
No global optimization.
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With the development and improvement of the IMU pre-integration theory, the LO
system can establish a stronger constraint relationship with the IMU. The localization
accuracy of the SLAM system has also been further improved. However, tight coupling
involves a great amount of computation. Finding a balance between the speed and the
precision is the difficulty of this stage of work.

4.2. LIDAR-Visual-IMU Tightly Coupled System

Although the study of visual SLAM started relatively late, it quickly became a research
hotspot of SLAM technology due to its advantages of small size and low cost. Many
VIO works have reported in recent years. Vision forms an excellent complementation
with LIDAR because it is not constrained by the structure of the scene. Therefore, LVI
systems have received increasing attention owing to their stronger robustness in sensor
degradation scenarios.

The strong data association between point clouds and images enables the system to
tightly combine multiple effective features in the preprocessing stage. They will play an
important role in the matching and optimization process. The LVI tightly coupled system is
divided into two coupling methods based on optimization and filtering. The optimization-
based approach tightly integrates the error models of individual sensors and reduces the
sensitivity of time synchronization by using local maps or sliding windows. This method
simultaneously optimizes historical poses and achieves real-time performance with BA. In
addition, this paper classifies the tight association of sensor data level as a special category
of the tightly coupled. Although no joint optimization is performed during the pose solving,
these works strongly correlate the data through preprocessing, and already contain the
necessary key information of the sensor in single objective function. They all have a closed
system, which is less scalable and compatible with other sensors. Filter-based approaches
merely use the sensor data of the current frame and rely on the time synchronization of
each data. Since the influence of historical data on the current pose is not considered, the
amount of computation is relatively small and the scalability is relatively good.

LIMO [69] is one of the multi-sensor fusion positioning systems. The system performs
strong correlation between point clouds and images through a variety of data prepro-
cessing methods to achieve a stable and robust system. The system performs foreground
segmentation, plane fitting, and ground fitting on point clouds for different scenes so as
to obtain the best depth estimation of visual features. The system combines the 3D-2D
PNP (Perspective-n-Point-Problem) [70] pose estimation method and the 2D-2D epipolar
constraint [71] to achieve a good localization effect. Reference [72] is another example
of strong data correlation, where point and line features are extracted in the image, and
the position information of points and lines are obtained by a similar method to LIMO.
Furthermore, a 3D-3D ICP model and reprojection error functions of points and lines are
constructed, which achieves higher accuracy pose estimation. Recent work [73] fuses data
from two sensors in a higher-level space using geometric features co-detected in LIDAR
scan and image data. Correspondences between 3D lines extracted in the LIDAR scan and
2D lines detected in the image were determined. Wang [74] proposed a DSP-SLAM system
by combining object detection with SLAM. This work uses a DeepSDF network to generate
object shape vectors and 7D poses from keyframed point cloud and image data. Sparse
point clouds and image segmentation results are used as observations to minimize surface
loss and depth rendering loss functions. Object reconstruction and pose update are added
to the ORB-SLAM2-based BA factor graph to simultaneously optimize camera pose, map
points, and object pose. These works do a lot of meaningful work on data association,
which makes the whole system more robust. However, these systems obviously lack the
tight coupling of the optimization process. The combination of correlation between raw
data and integration of errors will lead to a stronger system.

On the other hand, the very matured framework of the LIO system paves the way for
the establishment of the LVI tightly coupled system, which has led to the emergence of a
large number of tightly coupled systems based on the optimized LIDAR-Vision-IMU in the
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past two years. GR-Fusion [75] uses camera, IMU, LIDAR, GNSS, and encoder of motion
chassis as main sensors to build a factor graph model in a sliding window. The LIDAR factor,
the visual factor, the IMU factor, and the odometry factor are added as primary constraints
to the factor graph. Meanwhile, local constraints are tightly coupled with GNSS constraints
to optimize the global state of the robot. The system can detect the degradation of the
sensor in real time and flexibly configure multi-working modes, which is suitable for a wide
range of scenarios. LVIO-Fusion [76] adopts a similar system architecture. The difference is
that the binocular camera is used as the visual sensor. This paper innovatively proposed
different optimization strategies for straight and turning. Moreover, reinforcement learning
networks are introduced to adaptively adjust the weights of sensors in different scenarios.
LVI-SAM [77] is the latest work by the authors of LeGO-LOAM and LIO-SAM. The system
consists of VIS (Visual-Inertial System) and LIS (LIDAR-Inertial System). VIS can provide
pose prior for LIS, which can provide pose estimation and accurate feature point depth for
VIS initialization. However, this system does not consider the marginalization of the LIO
system and the problem of timestamp synchronization.

Some recent odometry systems also employ a tightly coupled approach to obtain
low-drift pose estimates. Super Odometry [78] and MetroLoc [79] both use an LVI system
with an IMU as the main sensors. The system consists of three parts: IMU odometer, VIO,
and LIO. The observation data provided by VIO and LIO can constrain the bias of the
IMU. On the other hand, the constrained IMU odometry provides predictions for VIO and
LIO to achieve coarse-to-fine pose estimation, which is shown in Figure 7. The system can
simultaneously extend GPS and wheel odometer with robustness to sensor degradation.
Wisth [80] proposed a tightly coupled system based on LIDAR and a binocular camera.
The factor graph optimization problem is composed of initial prior factor, visual factor, line
factor, plane factor, and IMU pre-integration, and is solved by GTSAM [81]. The system
shares a representation of vision-based point features and point cloud-based line and
area features. The reprojection error function is then defined by parameterizing different
features. In addition, based on the data timestamp of the camera, the system splits and
merges the adjacent scan data of LIDAR to realize the time hard synchronization at the
software level. There is no doubt that these works have good real-time positioning effect.
However, a pure odometer system often discards historical data and only focuses on current
or local observations, which leads to the loss of correlation and optimization of global
data. Therefore, excellent front end odometer and reasonable back end optimization are
necessary for SLAM system.

 

Figure 7. Factor graph structure of Super Odometry.
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Filter-based methods also play an important role in the field of multi-sensor fusion.
For joint state optimization, many methods use the EKF or the MSCKF framework [82].
Yang [83] used MSCKF to tightly couple planar features from RGB-D sensors, IMU mea-
surements, and visual point features within 3.5 m. To limit the scale of the state vector, the
system linearly marginalizes most of the point features and retains a few point features with
plane-enhanced constraints in the state vector as SLAM features. The LIC-Fusion proposed
by Zuo [84] adopts the MSCKF fusion framework, which tightly combines IMU measure-
ments, extracted LIDAR edge features, and sparse visual features. Subsequently, in the
latest follow-up work, LIC-Fusion 2.0 [85], the authors introduced a sliding-window-based
planar feature tracking method to efficiently process 3D LIDAR point clouds in real time.
R2LIVE [86] is a tightly coupled work based on solid-state LIDAR. The system combines
an error-state-based iterative Kalman filtering front end and a new step of factor graph
optimization-based sliding window optimization to refine the visual pose and landmark
estimation. It achieves high accuracy and robustness in harsh scenarios such as indoors,
outdoors, tunnels, and high-speed motion. These methods are fast and computationally
inexpensive, but are sensitive to time synchronization. Measurements during filtering may
degrade or fail. Therefore, a special sorting mechanism is required to guarantee the correct
order of the measurement results of the different sensors.

In this paper, the LVI tightly coupled system is divided into three parts: strong data
correlation, nonlinear optimization tight coupling, and state filter. Among them, the tightly
coupled front end based on optimization is the main implementation. Table 5 compares the
related works of the LIDAR-Vision-IMU tightly coupled system.

Table 5. LVI Tightly coupled system.

Year Method Author Strength Problem

2018 LIMO [69] J. Graeter et al.

Point cloud scene segmentation
to optimize depth estimation.
Epipolar Constraint.
Optimization PnP Solution

Unused LO.
Sparse map.

2019 Tightly-coupled aided
inertial navigation [83] Y. Yang et al. MSCKF.

Point and plane features. LIDAR is unnecessary.

2019 LIC-Fusion [84] X. Zuo et al. MSCKF.
Point and Line Features.

High computational cost.
Time synchronization is
sensitive..
Unresolved sensor degradation.

2020 LIC-Fusion 2.0 [85] X. Zuo et al.
MSCKF.
Sliding window based plane
feature tracking.

Time synchronization is
sensitive..
Unresolved sensor degradation.

2020 LIDAR-Monocular Visual
Odometry [72] S.-S. Huang et al.

Reprojection error combined
with ICP.
Get depth of point and line
features simultaneously.

Poor closed-loop detection
performance.
High computational cost.

2021 LIDAR-Monocular Surface
Reconstruction [73] V. Amblard et al.

Match line features of point
clouds and images.
Calculate reprojection error for
points and lines.

Inertial measurement not used.

2021 GR-Fusion [75] T. Wang et al.
Factor graph optimization.
Address sensor degradation.
GNSS global constraints.

No apparent problem.

2021 Lvio-Fusion [76] Y. Jia et al.

Two-stage pose estimation.
Factor graph optimization.
Reinforcement learning adjusts
factor weights.

High computational cost.
Difficult to deploy.

224



Remote Sens. 2022, 14, 2835

Table 5. Cont.

Year Method Author Strength Problem

2021 LVI-SAM [77] T. Shan et al.

Factor graph optimization.
VIS and LIS complement
each other.
Optimize depth information.

Poor closed loop performance.

2021 Super Odometry [78] S. Zhao et al.

IMU as the core.
LIO and VIO operate
independently.
Jointly optimized pose results.
Address sensor degradation.

High computational cost.

2021 Tightly Coupled LVI
Odometry [80] D. Wisth et al.

Factor graph optimization.
Unified feature representation.
Efficient time synchronization.

Unresolved sensor degradation.

2021 DSP-SLAM [74] J. Wang et al.

Add object reconstruction to
factor graph.
The DeepSDF network
extracts objects.

No coupled inertial system.
Poor closed loop performance.

2021 R2LIVE [86] J. Lin et al.
The error-state iterated Kalman
filter.
Factor graph optimization.

No closed loop detection and
overall backend optimization.

The emergence of a complete system in which LIDAR, vision, and IMU cooperate and
complement each other is a milestone for multi-sensor fusion SLAM. The integration is not
limited to these three sensors. Wheel/leg odometer and GNSS have also been effectively
integrated into the system. Similarly, the increase in computational complexity is one of the
toughest problems. In addition, there are some details that need to be optimized, such as
dynamic environments, unstructured environments, rain and snow weather.

5. Performance Evaluation

5.1. SLAM Datasets

Evaluating the performance of SLAM algorithms is often inseparable from the help of
open-source datasets. The mobile carriers for research and application of 3D LIDAR SLAM
include unmanned vehicles, unmanned ships, and unmanned aerial vehicles. However,
the current LIDAR point cloud datasets are mainly for autonomous driving scenarios. Data
collection in outdoor scenes is complex and cumbersome, involving time synchronization,
coordinate calibration, and calibration among various sensors. Public datasets save the
time for data preparation for algorithmic research. The sequences and benchmarking
frameworks provided also facilitate algorithm development.

The current public LIDAR-based datasets in the field include: KITTI dataset [87], which
is currently the largest international evaluation dataset for autonomous driving scenarios
and is also the most commonly used dataset in academia. The Waymo dataset [88] is a data-
open project of the autonomous driving company Waymo. The PandaSet dataset [89] is used
to develop safe and controllable autonomous driving technology in complex environments
and extreme weathers. Oxford Robotcar dataset [90] is a public dataset proposed by Oxford
University Robotics Laboratory. The UrbanNav dataset [91] provides a challenging data
source to the community to further accelerate the study of accurate and robust positioning
in challenging urban canyons. The UrbanNav dataset includes complex and dynamic
urban road environments and closed tunnel environments. It also provides the real pose of
the GNSS system as a reference. Compared with the commonly used KITTI dataset, the
collection environment of the UrbanNav dataset is closer to the complex environment of
unmanned driving. At the same time, the related team of the UrbanNav dataset provides
an overview [92] of LIDAR Odometry, which uses this dataset to evaluate open-source
algorithms based on point clouds and features, respectively.
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Obviously, the complex scene of the city can magnify the advantages and disadvan-
tages of the SLAM algorithm. Therefore, this paper uses the UrbanNav dataset to evaluate
some open-source algorithms in the following section.

5.2. Performance Comparison

The evaluation of the SLAM algorithm is mainly based on evaluating the positioning
accuracy. The relative pose error (RPE) is used to describe the accuracy of the pose difference
between two frames separated by a certain time difference. The changes of the real pose and
the estimated pose are calculated at the same time interval. Then, the difference between
the two is calculated to obtain the relative pose error. Afterwards, the relative pose error
of each period of time can be counted by the root mean square error (RMSE) to obtain the
overall value. The absolute trajectory error (ATE) describes the direct difference between
the estimated pose and the real pose, which can intuitively reflect the accuracy of the
algorithm and the global consistency of the trajectory. Many SLAM algorithms and review
papers have analyzed the performance of open-source algorithms using datasets in the
experimental part. Jonnavithula [93] provides an overview of existing LO systems for the
application environment of autonomous driving. This paper uses the KITTI dataset to
experimentally verify some of the reviewed algorithms. Huang [92] uses the UrbanNav
dataset for comparison to demonstrate the pros and cons of point cloud-based and feature-
based localization methods. Yokozuka [18] also conducted many comparative experiments
using the KITTI dataset in the experimental part of his algorithm.

This paper selects five open-source 3D LIDAR SLAM algorithms for testing and evalu-
ation. They are A-LOAM [94], LeGO-LOAM [12], SC-LeGO-LOAM [24], LIO-SAM [61],
and F-LOAM [95]. A-LOAM is an open-source version that uses an optimizer for code
simplification based on LOAM. SC-LeGO-LOAM uses scan context to optimize loop clo-
sure detection based on LeGO-LOAM. F-LOAM is an odometer system that only relies
on LIDAR but has good performance. We apply them to ROS running on a laptop with
an Intle i7-10875H CPU to achieve the functionality, and the platform has 2 × 8 GB of
RAM memory and an RTX2060 GPU. All algorithms are evaluated and compared in ex-
periments based on the UrbanNav public dataset benchmark. We collect experimental
results under the same conditions and carry out performance metrics in order to evaluate
the performance of the tested algorithms. This paper focuses on two competitive datasets,
UrbanNav-HK-Medium-Urban-1 (Data1) and UrbanNav-HK-Tunnel-1 (Data2). Data1 are
in an urban center area with heavy traffic and towering buildings. Data2 were collected
while moving fast in a closed tunnel. The pictures corresponding to the two scenarios are
shown in Figure 8.

  
(a) Data1 (b) Data2 

Figure 8. Demonstration of the scenarios in the three urban datasets. (a) Data1: Variety of dynamic
vehicles and numerous high-rising buildings in UrbanNav-HK-Medium-Urban-1. (b) Data2: Closed
tunnel in UrbanNav-HK-Tunnel-1.

First, we focus on the mapping effects of the five algorithms. Mapping is based on
positioning, which can intuitively show the overall operation effect of SLAM. We take
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Data1 as an example to show the official environment map and the different results of each
algorithm (as shown in Figure 9).

The comparison chart intuitively shows the mapping results of the five algorithms.
A-LOAM suffers severe drift in traffic-congested sections, which leads to poor localization
and mapping. The mappings of LeGO-LOAM, SC-LeGO-LOAM, and LIO-SAM are good
and the localizations are effectively constrained by the closed loop. However, it is worth
emphasizing that the search radius of the closed loop detection of LeGO-LOAM and LIO-
SAM is adjusted to 50 m before the closed loop can be accurately identified. F-LOAM still
has high global consistency in the absence of loop closure detection.

Second, trajectories of different algorithms and ground truth are plotted together for
comparison (as shown in Figure 10). In order to facilitate the observation, we take the
trajectory generated by the first lap of data for comparison. The first loop closure occurs at
the zoomed-in position on the left, which is the same as that marked in the point cloud map.

The trajectories generated by the five algorithms are clearly shown in Figure 10. The
trajectory of A-LOAM has poor positioning accuracy when there are many traffic jams
or dynamic vehicles. Therefore, it basically loses the positioning ability in the urban
canyon environment. The other four algorithms have good global consistency. It is worth
emphasizing that F-LOAM only deviates a small distance from the closed loop position
without loop closure detection. The positioning accuracies of the five algorithms are listed
in Table 6. We use the RMSE and mean of relative pose errors to describe the accuracy of
the algorithm. The odometer’s average processing time for per-frame (APTFP) is used to
describe the algorithm efficiency.

Table 6. Performance comparison of five algorithms.

Methods
Relative Translation Error (m) Relative Rotation Error (deg)

Odometry APTPF (s)
RMSE Mean RMSE Mean

A-LOAM 1.532 0.963 1.467 1.054 0.013
LeGO-LOAM 0.475 0.322 1.263 0.674 0.009

SC-LeGO-LOAM 0.482 0.325 1.278 0.671 0.009
LIO-SAM 0.537 0.374 0.836 0.428 0.012
F-LOAM 0.386 0.287 1.125 0.604 0.005

From the data in the table, it can be seen that the overall performances of F-LOAM
and LIO-SAM are better. The relative translation error of F-LOAM is the smallest, while the
relative rotational error of LIO-SAM is the smallest. The addition of IMU pre-integration
can effectively improve the positioning accuracy of rotation. The positioning accuracy and
processing time of A-LOAM are relatively poor. We recommend using LIO-SAM when
there is a closed loop in the environment dealt with. If no closed loop presents, the real-time
performance of F-LOAM is better.

Finally, the operation on Data2 will be summarized and discussed. The tunnel envi-
ronment in Data2 is more challenging than congested urban canyons. There are very few
structural features and the light changes rapidly in the closed tunnel. The tunnel seems to
be a long corridor so that the point cloud data generated by LIDAR is basically the same
no matter where it is located. Unfortunately, none of the five algorithms can effectively
complete the positioning process without using GPS data. However, they show different
behaviors and have different odometer failure locations. The real point cloud map and the
actual performance of the five algorithms are shown in Figure 11.
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(a) Point cloud map (b) A-LOAM 

  
(c) LeGO-LOAM (d) SC-LeGO-LOAM 

  
(e) LIO-SAM (f) F-LOAM 

Figure 9. Point cloud maps generated by different algorithms. (a) The actual point cloud map given
by the dataset. (b) Result of A-LOAM. (c) Result of LeGO-LOAM. (d) Result of SC-LeGO-LOAM.
(e) Result of LIO-SAM. (f) Result of F-LOAM. We zoomed in where the loop was first generated to see
the effect of generating the map. The white dots indicate the starting point and the red dots indicate
the ending point.

228



Remote Sens. 2022, 14, 2835

Figure 10. Trajectories generated by different algorithms. The first occurrence of the closed loop and
the farthest distance from the closed loop are zoomed in for a closer comparison of their differences.

The A-LOAM was disabled before entering the tunnel due to the large number of
dynamic vehicles congested around the LIDAR. The results of LeGO-LOAM and SC-LeGO-
LOAM are similar. They both degenerate when they first enter the tunnel because their
system compositions are basically the same. F-LOAM performs slightly better than the
previous two thanks to the feature weights it assigns. Degradation of F-LOAM occurs after
a certain distance in the tunnel. Finally, LIO-SAM performs the best. The front end of
LIO-SAM is also feature-based. However, the system can still run robustly for some time as
the LO degenerates due to the addition of IMU data constraints. This allows it to travel the
longest distance effectively in the tunnel. Obviously, the tight coupling of the IMU cannot
completely solve the long-distance tunneling problem.

The long corridor problem is a difficult problem often faced in practical applications.
The above experiments show that assigning weights to features and adding IMU pre-
integration can effectively alleviate the phenomenon of odometer degradation. Clearly,
feature-based methods encounter a bottleneck in the tunnel environment. This problem
will be better solved if the precise control model and kinematic model of the robot chassis
are combined with a feature-based odometry system or aided by visual features [96]. At
the same time, UWB is also suitable for such closed scenes within a certain range. This is
also an effective way of carrying out multi-sensor fusion.
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(a) Point cloud map  (b) A-LOAM 

  
(c) LeGO-LOAM  (d) SC-LeGO-LOAM 

  
(e) LIO-SAM  (f) F-LOAM 

Figure 11. The mapping effect of different algorithms in the tunnel and where the degradation
occurs. (a) The actual point cloud map given by the dataset. (b) Result of A-LOAM. (c) Result of
LeGO-LOAM. (d) Result of SC-LeGO-LOAM. (e) Result of LIO-SAM. (f) Result of F-LOAM. The
exact location where the degradation occurs is zoomed in so that the mapping effect and the effective
distance of the odometer can be accurately compared.

6. Conclusions and Future Outlook

The development of SLAM technology based on 3D LIDAR in recent years has been
rapid. Among them, excellent works of multi-sensor fusion have emerged in an endless
stream. Throughout the development history of fusion SLAM, we have seen from filter-
based probabilistic methods to information-based optimization methods; from raw data-
assisted front end fusion to error-coupling-based back end optimization; from single sensor
systems to complex systems with multiple subsystems coupled; from independent error
models to tightly coupled complete graphical models. Various application scenarios and
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demands have promoted the diversity of SLAM technology. Continuous advancements in
sensor technology provide the foundation and impetus for it.

This paper mainly classifies and summarizes the papers and works that have appeared
in recent years based on the data coupling method of the SLAM system. The main innova-
tions of the paper are mentioned together when describing the details of data association.
The strengths and weaknesses of each work are based on the qualitative analysis of the
system composition. However, our work is far from perfect. Obviously, this paper does
not list all related works for readers’ reference. Only a portion of representative works are
shown. There are more works based on deep learning for multi-sensor fusions, mostly
used in environment perception, object detection and semantic segmentation. They may
play auxiliary roles in SLAM systems.

Multi-sensor fusion is a key to building robust systems. Complex systems based on
multi-sensors need to be lightweight, accurate, scalable, and versatile for SLAM. From
the experimental part, we know that dynamic environment, object occlusion, and long
corridor environment are the key challenges for feature-based SLAM methods. Combining
the sensor with the control model of the robot or vehicle can effectively alleviate the
problem of odometer degradation in special cases. With the increase of the number of
sensors, the amount of data, and the continuous expansion of application scenarios, it is
difficult for SLAM systems to further improve the accuracy of positioning and mapping
within a specified computing time. Therefore, SLAM has large development space in the
applications of various scenes. Distributed multi-robot collaboration, land–air collaboration,
and sea–air collaboration systems can effectively solve the problems faced in large scenes.
In addition, hardware acceleration and parallel processing feature extraction and pose
optimization can effectively relieve the computational pressure of the system due to the
multi-sensor data fusion. On the other hand, deep learning is undoubtedly one of the
hottest directions at present. There have been a lot of efforts towards combining deep
learning with SLAM systems. The application of deep learning can be seen in almost
all key steps such as feature extraction, depth estimation, environment perception, pose
estimation, and semantic map. In the current works, deep learning only replaced limited
parts of the SLAM system. For example, optimizing depth estimation of monocular camera
to obtain landmark points, directly estimating pose without feature extraction, perceiving
the environment to distinguish moving objects, and building high-precision semantic maps.
These are research directions with great potential in the future. The application of deep
learning will further improve and expand the performance and functions of SLAM. In
future work, the combination of data fusion of multiple sensors and deep learning to
optimize and improve the SLAM algorithm will receive more attention.
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Abstract: State estimation and mapping based on Light Detection and Ranging (LIDAR) are important
for autonomous systems. Point cloud registration is a crucial module affecting the accuracy and real-
time performance of LIDAR simultaneous localization and mapping (SLAM). In this paper, a novel
point cloud feature selection for LIDAR-inertial tightly coupled systems is proposed. In the front-end,
a point cloud registration is carried out after marking rod-shaped and planar feature information
which is different from the existing LIDAR and inertial measurement unit (IMU) integration scheme.
This preprocessing method subsequently reduces the outliers. IMU pre-integration outputs high-
frequency result and is used to provide the initial value for LIDAR solution. In the scan-to-map
module, a computationally efficient graph optimization framework is applied. Moreover, the LIDAR
odometry further constrains the IMU states. In the back-end, the optimization based on sliding-
window incorporates the LIDAR-inertial measurement and loop closure global constraints to reduce
the cumulative error. Combining the front-end and back-end, we propose the low drift and high
real-time LIDAR-inertial positioning system. Furthermore, we conducted an exhaustive comparison
in open data sequences and real-word experiments. The proposed system outperforms much higher
positioning accuracy than the state-of-the-art methods in various scenarios. Compared with the
LIO-SAM, the absolute trajectory error (ATE) average RMSE (Root Mean Square Error) in this study
increases by 64.45% in M2DGR street dataset (street_01, 04, 07, 10) and 24.85% in our actual scene
datasets. In the most time-consuming mapping module of each system, our system runtime can also
be significantly reduced due to the front-end preprocessing and back-end graph model.

Keywords: tightly-coupled integration; LIDAR-inertial SLAM; rod-shaped and planar feature;
sliding-window; graph optimization framework

1. Introduction

Accurate and reliable state estimation is a fundamental requirement of mobile robot
and automatic driving. In urban environments, indoor environments and other complex
scenes, it is difficult to achieve a high precision of positioning requirements with the
traditional GNSS/INS integrated.

In recent years, visual/LIDAR simultaneous localization and mapping have made
certain developments. On the one hand, visual slam can achieve six degrees-of-freedom
state estimation just by camera, but it is seriously affected by the illumination and low
texture feature [1]. On the other hand, the laser sensor directly obtains depth information
and has high resolution, which can also work at night and achieve accurate pose estimation.
Therefore, this research mainly focuses on LIDAR simultaneous localization and mapping.

LIDAR odometry and mapping (LOAM) [2] is an earlier proposed LIDAR slam al-
gorithm. Iterative ICP algorithm is a common method for point cloud matching, which
is time-consuming for registration, and it is easy to fall into a local minimum [3]. LOAM
replaces ICP with point-to-line and point-to-plane matching. It consists of two subsystems.
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The odometry system performs point to line/plane feature matching to calculate pose
between scans. The features of line and plane are judged according to point curvature. At
the same time, LOAM effectively eliminates the unreliable parallel points and occlusion
points. And it performs the distortion compensation by motion interpolation. The mapping
system performs scan to map matching and runs at lower frequency, which can perform
higher accuracy state estimation. By combining these two systems, LOAM achieves low
drift and low-computational complexity, which has been ranked as the top in the LIDAR
based method on the KITTI odometry benchmark site [4]. However, LOAM still has some
flaws; its point cloud is stored in global voxel. Without key frame selection, it is difficult to
integrate observation information of other sensors and perform global optimization.

F-LOAM adopts a two-stage distortion compensation method to reduce the com-
putational cost and improve the real-time performance [5], but there are still no global
optimization methods such as loop closure, resulting in large cumulative errors over a long
period of time. Liu et al. propose a method based on deep learning for extracting feature
points and obtaining the descriptors in LIDAR odometry. It also adopts the two-step state
estimation for long distance experiment, which has a good performance for LIDAR of vari-
ous resolutions [6]. V-LOAM introduces the visual odometry as the front-end of the laser
odometry, further improving the accuracy of slam [7]. HDL_GRAPH_SLAM [8] is an algo-
rithm that can fuse LIDAR, IMU and GNSS sensors, but the scan registration accuracy is low
which is based on NDT [9]. It is also prone to drift in non-plane because of the flat ground
constraint. LeGo-LOAM implements point cloud segmentation to reduce the number of
features, and two-step registration provides the initial value for LIDAR mapping module.
LeGo-LOAM firstly covers the key frame selection and loop detection [10]. However, there
is obvious drift in the large scene testing experiment and the IMU is only used to remove
distortion. LIO-mapping [11] is a joint state estimation problem based on the ideas of
LOAM and VINS-Mono [12]. The front-end vision part is replaced by the LIDAR front-end
for feature extraction and state estimation. However, the optimization problem is too large
to be real-time, which makes it hard to apply in a mobile device. LINS is a tightly coupled
LIDAR-inertial odometry (LIO) system based on the filter method [13]. The iterative error
state Kalman Filter is used to correct the state estimation of the robot, but there is still a
problem that the robot will drift when it runs for a long time without global constraints.
LiLi-OM puts forward an adaptive keyframe selection for both solid-state and traditional
LIDAR. It also introduces a metric weighting function during sensor fusion [14]. However,
lacking a point cloud processing, the system stability is inadequate. LIO-SAM [15] is also a
tightly-coupled LIO system, which is based on the incremental smoothing and mapping
framework iSAM2 [16]. In addition, the loop closure factor and GPS factor can be added
to the global optimization factor graph. In spite of this, its IMU constraints do not enter
the factor graph optimization system, which may result in loss of constraint information
between IMU and LIDAR measurements. In the actual scene test, LIO-SAM will appear at
unstable states such as point cloud matching errors, especially when the carrier movement
is in a large scene. Zhang et al. proposed the LIDAR-inertial odometry with an adaptive
covariance estimation algorithm which is based on loosely-coupled method. It achieves
better result compared to the tightly-coupled method [17].

In short, the existing LIDAR slam algorithms are mainly for small scenes. But for
the complex scene or the great motion change, they are prone to cumulative errors and
poor robustness.

Meanwhile, the processing of point cloud data affects the accuracy of point cloud
registration for LIDAR slam. Douillard et al. introduced a method which jointly determines
the ground and individual objects on the ground in three-dimensional space, including
overhanging structures, but it requires a large amount of computation time, limiting
online applications [17]. B. Douillard et al. proposed a priori ground extraction way.
Segmentation of dense 3D data is optimized via a simple yet efficient voxel of the space.
This approach provides near-real-time performance, but is not sufficient for real-time
positioning scenarios [18]. M. Himmelsbach et al. proposed that 3D point clouds are
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projected onto 2D grids on the ground plane, and then point clouds were segmented on the
occupied grids [19]. The algorithm has fast speed and is suitable for online segmentation.
However, the method tends to result in weak segmentation. When two objects are relatively
close to each other, it is prone to misrecognition, especially in the z-axis direction. In 2019,
Seungcheol Park et al. proposed Curved-Voxel Clustering. The point cloud coordinates
are converted from cartesian coordinates to spherical coordinates, and each point cloud
is assigned to the voxel in the corresponding spherical coordinate system. Hash tables
establish associations between indexes and points. When clustering, lookup is implemented
using the hash tables [20]. Chen et al. use IMU to assist the point cloud registration and
introduce the inertial error model for mobile laser scanning, which could effectively reduce
the error with low time cost [21].

This paper mainly aims to improve the accuracy of LIDAR point cloud registration
under the condition of real-time positioning, so as to ensure the robustness of the system.
The contributions of this paper are summarized as follows:

1. A quick and effective feature extraction method is proposed. Due to the information of
rod-shaped and planar feature, edge points and surface points are extracted reasonably
to calculate curvature with the low computational cost.

2. IMU pre-integration is used to provide the initial value for LIDAR odometry, and the
LIDAR odometry further constrains the pre-integrated IMU states.

3. A graph optimization model is used to solve the scan-to-map module, which greatly
improves the speed of the traditional algorithm. Another graph optimization model is
used to globally optimize the pre-integrated IMU measurements residuals, inter-frame
matching residuals and loop residuals, which improves the accuracy and stability of
LIO system effectively.

2. System Overview

The overall framework of this system is shown in the Figure 1. LIDAR and IMU
measurements are the inputs for the system.

 

Figure 1. Overall framework of our LIO system.
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The system can be divided into three parts.
First, the preprocessing module, the raw point clouds are de-skewed using gyroscope

data and IMU pre-integration value. Current scan’s point cloud is projected to the 2D
image. The depth characteristic value is used to remove the outlier points. Image is used to
segment the planar feature and cluster the rod-shaped feature information.

Then, the LIO odometry module, IMU pre-integration results are used to estimate motion
pose. The scan-to-map between current frame and local map is performed. In the scan-to-
map module, we introduce the graph optimization model which can enhance the speed
and accuracy of the solution, and a sliding window-based way is applied to update and
maintain the local map.

At last, the global optimization module, if the current frame is judged to be a keyframe,
LIDAR scan-to-scan residuals, pre-integrated IMU residuals and loop residuals are opti-
mized via the slide window optimization. Information of marginalization is used for prior
constraints. Loop closure is detected and performed in an effective way, which is beneficial
to reduce cumulative error.

According to this system, we get the 6-DOF pose estimation and a real-time updated
global map. Exhaustive comparisons have been conducted to prove the superiority of
our system.

We define notations and frame definitions throughout the article. (·)W is considered
as world frame. In the LIO system, the origin of the world coordinate is identified as
the first LIDAR frame (·)B is the body frame and (·)L is the LIDAR frame. Rotation is
represented by rotation matrices R and quaternions q. So RB

W and qB
W is the rotation from

world frame to body frame, and pB
W is the translation. ⊗ is defined as the multiplication

between two quaternions.

3. The Preprocessing Module

In this study, the current LIDAR point cloud is projected onto the current 2D image
grid, which is represented by a matrix. The horizontal index unit of moment frame is the
horizontal resolution of each frame, and the vertical unit is the vertical resolution. For
example, the size of the projected image matrix of 16-line LIDAR is 16 ×1800. The value of
the image grid stores the depth of each point, and the points will be removed if there is an
outlier value. The operating point cloud data on the basis of two-dimensional images can
significantly improve the computing speed.

After this process, reliable estimation of LIDAR´s per scan is a necessary prerequisite.
In this paper, IMU pre-integration is used to obtain the relative translational motion at
the beginning and the end of each scan. Based on this method, point cloud distortion
can be eliminated. In the meantime, the raw point clouds from each scan are rotationally
de-skewed using gyroscope data.

3.1. Label Planar Feature Information

The sensor carrier is moving on the ground and the LIDAR is mounted horizontally.
The ground is observed with the beams below. We can get a rough but fast estimate of
the plane from the number of rows of the image matrix. In the estimation plane, accurate
ground points can be marked by judging the angle of each point to the ground.

a = tan−1 dz√
(dx)2+(dy)2

=
OP2

OP1
(1)

As shown in the Figure 2, P1 and P2 are two laser beams reflection points. The angle
a corresponding to the points of adjacent laser beams should have a small value if there
is no barrier. Points on the ground can be marked according to the size of the included
angle value. Dx, dy and dz represent the differences of the two laser beams in the three
directions, respectively.
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(a) (b) 

P

P

Figure 2. Illustration of the planar feature information (a) The angle between the lines for judging the
surface; (b) Red points are the planar feature in the scan.

3.2. Label Rod-Shape Feature Information

Figure 3 is the top view; OC is the measurement of the first beam and OD is the second.

B = tan−1 r2sinα

r1 − r2cosα
=

MD
OM

(2)

  
(a) (b) 

 
(c) 

β

α

Figure 3. Illustration of the rod-shape feature cluster (a) The fast and accurate method for segmenta-
tion; (b) Green points are the edge feature in the scan; (c) The BFS search method in current scan.
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In this formula, r1 and r2 are the depth values measured by the two beams. A is the
angle between the two laser beams. For example, the angle is 0.2◦ in x direction and 2◦ in y
direction in Velodyne16.

If C and D are on different objects, the angle β between OC and OD will be greater than
a certain threshold. In this work, we set this threshold at 20◦. According to this method, we
can cluster the same cluster objects quickly and accurately.

The point cloud of our two-dimensional image model can be traversed quickly. We
traversed each pixel in the 2D image and calculated the included angle for four points
around each pixel. And each pixel is searched by BFS algorithm [22].

As shown in the Figure 3c, the surrounding points consist of the left, right, lower and
top pixels. If the angle between the surrounding points is smaller than the threshold, we
decided they are the same object. If a point is marked, then it will be skipped. So, the
algorithm complexity is Θ(N), where N is the number of image pixels.

For the subsequent processing of point cloud, the influence of disorderly points and
inaccurate points can be avoided. For example, when the carrier is driving, leaves, small
objects, grass and weeds can be removed. These are difficult to observe through two
consecutive frames of scanning, which are the main factors affecting the pose solution.

3.3. Feature Extraction

Through the segmentation and clustering of planar and rod-shaped information in
the previous steps, the extraction of edge point and planar point are carried out in the
rod-shape and planar feature information. Curvature is defined as follows:

c =
1

|S|• ||Pr L
i ||

|| ∑
j∈S,j �=i

(Pr L
j − PrL

i )|| (3)

In this formula, S is the set of continuous points from the same row of the 2D image. Pr
is the point range. In this work, S is set to 10. And c is the curvature value.

Similar to LOAM, the depth information of each point is used to eliminate parallel
points and occluded points, which have certain influence on the subsequent solution. In the
feature extraction process, each frame is divided into 6 sub-images, which has a resolution
of 16 × 300. Edge points and planar points are extracted from each sub-image, which are
determined according to threshold cth and pth. In this work, cth and pth are chosen to be
1 and 0.1. The edge point set and planar point set extracted from k frame are εk and sk.

After this process, we selectively obtain stable features and reduce the calculation
pressure at the back-end. At the same time, this step improves the reliability of front-end
scan registration.

4. The LIO Odometry Module

4.1. IMU Pre-Integration

LIDAR and IMU work in different frequencies. Usually, the LIDAR is 10 to 30 Hz and
the IMU is 100 to 500 Hz. The pre-integration integrates the IMU measurement values
between each adjacent frame of LIDAR, and adopts a value to express it. Through this step,
we can get the output of the two sensors at the same frequency

The measurements of IMU include angular velocity ω̃B(t) and acceleration ãB(t). The
measured values are all under the B coordinate system. And the measurement equation
can be modeled as:

ω̃B(t)= ωB(t)+bω(t)+ηω(t) (4)

ãB(t)= RB
W(t)(a W(t) − gW) + ba(t)+ηa(t) (5)

The measured values are affected by the slowly varying bias b(t) and white noise η(t).
The acceleration of gravity in the world system. gW= [0, 0, g]T is the gravity vector, which
affects the measurement. So, it should be subtracted.
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In our work, noise is ignored and the biases are considered the constant during the
pre-integration period. The current state value can be obtained based on the derive of
pre-integration. Assuming that j is the current frame and i is the last frame. The attitude
rotation matrix Rj

WB, velocity vj
WB, and position pj

WB can be expressed as:

Rj
WB= Ri

WBΔRijExp(J g
ΔRij

δbi
ω

)
(6)

vj
WB= vi

WB +gWΔtij+Ri
WB

(
Δvij+Jω

Δvij
δbi

ω+Ja
Δvij

δbi
a

)
(7)

pj
WB= pi

WB+vi
WBΔtij +

1
2

gWΔtij
2+Ri

WB

(
Δpij+Jω

Δpij
δbi

ω+Ja
Δpij

δbi
a

)
(8)

J is for Jacobians, and the details can be found in [23]. The Ja
(·)ba and Jω

(·)bω means a
first-order approximation of the effect of changing the biases to avoid repeated integration.
Meanwhile, the terms of pre-integration ΔRij, Δvij and Δpij can be computed between the
frame i and j:

ΔRij =
j−1

∏
k=i

Exp((ω k
B−bi

ω)Δ t) (9)

Δvij =
j−1

∑
k=i

ΔRik(a k
B−bi

a)Δt (10)

Δpij =
j−1

∑
k=i

(ΔvikΔt+
1
2

ΔRik(a k
B−bi

a)Δt2) (11)

4.2. Build Local Map

In point cloud registration, the iterative closest point (ICP) algorithm is the most
commonly scan registration method. However, as the urban scenes consists of lots of
moving targets, ICP registration failure rate is high, which is directly based on raw point
data. And ICP is improper for localization and mapping in real time due to its large amount
of computation. In LOAM, pose estimation depends on scan-to-scan matching for quick
estimation. However, this method is prone to cumulative error. In our work, current
scan and local map are matched according to the predict value of IMU pre-integration.
Meanwhile, the scan-to-map result is used to correct the IMU accumulative errors.

A local map associated with the current LIDAR frame is constructed. A fixed number
of key frame maps within a certain range are constructed by sliding window method.
The local map is converted to the W coordinate system. Edge points and planar points
of a local map form the voxel map. And the points in local map are down-sampled to
eliminate the duplicated features. In order to improve the point cloud matching speed, the
feature information of the local map is stored in the data structure of KD-tree [24] for the
convenience of subsequent search.

Therefore, this paper adopts the registration method based on feature points. After the
feature points with the same type are obtained through preprocess, the graph optimization
model is used to iteratively locate for current scan and local map.

4.3. Pose Estimation

For each edge point pε ∈ εk, we search for the nearest five points on the local map
and calculate the mean and covariance matrices for the five points. When the distribution
of points approximates a straight line, one eigenvalue of the covariance matrix will be
significantly larger than the rest. In this study, the eigenvector corresponding to the
eigenvalue usm

ε is the main direction of the line, and psm
ε is the geometric center of the

five points in the Figure 4. If the line feature satisfies the condition, the distance between
the current edge point and the line can be calculated, and the best pose estimation of the
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current point in the local map can be obtained by minimizing the distance. The distance
calculation formula:

fε(pε)= pn• ((T k pε − psm
ε ) × usm

ε

)
(12)

where symbol • is the dot product and × is the cross product. pn is the unit vector.

pn =
(T k pε−psm

ε ) × usm
ε

||(T k pε−psm
ε ) × usm

ε || (13)

pε

sp ε
ε

sε
εμ

Figure 4. Illustration of the edge point-to-line residual. usm
ε s the main direction of the line, and psm

s
is the geometric center of the five nearest points in the local map.

In the same way, each planar point in the current scan ps ∈ sk, we search for five
points on the local map to form a plane. However, the difference is that the eigenvector
corresponding to the minimum eigenvalue of the five-point covariance matrix is the normal
vector corresponding to this plane. As shown in the Figure 5, usm

s is the main direction of
the normal vector. psm

s is the geometric center of five planar points.

fs(ps) = (Tk ps − psm
s )• usm

s (14)

 

sp

sm
sp

sm
sμ

Figure 5. Illustration of the planar point-to-plane residual. psm
s is the geometric center of five planar

points. usm
s is the main direction of the normal vector.
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Therefore, this optimization problem can be constructed as:

min
{
∑ fε(pε) + ∑ fs(ps)

}
(15)

The graph optimization algorithm is used to solve the nonlinear optimization problem.
Thus, accurate state estimation can be obtained. Jacobian’s derivation can be based on the
mathematical model of left disturbance with δϕεse(3) [25].

Jp = ∂(TP)
∂δϕ

= lim
δϕ→0

(exp(δϕ)(TP) − (TP))
∂ϕ

=

[
I3∗3 − [TP]×
01∗3 01∗3

] (16)

where [TP]× transforms 4D point expression {x, y, z, 1} into 3D point expression {x, y, z}
and calculates its skew symmetric matrix. Jacobian matrix with edge residual can be
derived by:

Jε =
∂ fε(pε)

∂(TP)
∂(TP)
∂δϕ

= pn• (usm
ε × Jp) (17)

In the same way, we also can derive:

Js =
∂ fs(ps)

∂(TP)
∂(TP)
∂δϕ

= usm
ε • Jp (18)

According to above formula, the estimation can be calculated by iterative optimization
until it converges. In the work, the local map size is set to within 50 m radius. We propose
the new optimization model, deduce the corresponding residual and Jacobian, and improve
the solving speed significantly compared to other algorithms (see Section 6).

5. The Global Optimization Module

If the motion change in the current scan is greater than a certain threshold (10◦ in
rotation and 0.5 m in translation) compared with that of the previous scan, the current
frame will be judged as a key frame, and it will enter the global optimization which is
based on sliding window.

In this paper, the state vector in the sliding window is defined as χ = [x0, x1, x2, . . . , xn].
And χi =

[
pW

bi
, qW

bi
, vW

bi
, ba, bg

]
. For the n keyframe window width, these states are obtained

by minimizing

min︸︷︷︸
xn

{
||Rp

(∼
χ
)
||2 +

n

∑
k=1

L
(

ẑbi
bj

, χ
)
+

n

∑
k=1

κ

(
ẑbi

bj
, χ
)
+

n

∑
k=1

F
(

ẑ
bloop
bj

, χ
)}

(19)

In this formula, Rp(x̃) means the prior residual according to the measurements which
are marginalized out because of the sliding window. L(xk), κ(xk) and F(xk) denote the
LIDAR, IMU and loop closure error terms. Figure 6 shows the optimization process.
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Figure 6. The optimization contains prior term, LIDAR term, IMU term and loop term. Prior term is
generated by marginalization. Observations of LIDAR can provide scan-to-scan constraints and IMU
pre-integration forms the constraints between keyframes. Loop closure is used for reduce the drift for
the long-time running.

5.1. Prior Term

The purpose of marginalization is to bound the computational complexity. For the
states out of the sliding window, they cannot be directly throwed away, because it will
destroy the original constraint relationship and lose the constraint information. This work
selectively marginalizes out xi from the sliding window via Schur-complement [26], and
convert measurements corresponding to marginalized states into the prior.

5.2. LIDAR Term

Through the previous scan-to-map calculation of each scan (see Section 4.3), The
LIDAR state variation between two adjacent frames is added into the graph optimization
model as scan-to-scan constraint.

L
(

zbi
bj

, χ
)
= ΔTij = TT

i Tj (20)

This work assumes that j and i are the current and previous frame, respectively. This
term can inhibit the accumulation of cumulative errors over a long time.

5.3. IMU Term

When IMU measurements are available, the residual between two continuous frames
can be calculated, and the residual is defined as:

κ

(
ˆ
Z

bi

bj
, χ

)
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

δα
bi
bj

δβ
bi
bj

δθ
bi
bj

δba

δbω

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Rbi
W

(
pW

bj
− pW

bi
− vW

i Δt + 1
2 gWΔt2

)
− α̂

bi
bj

Rbi
W

(
vW

j − vW
i Δt + gWΔt

)
− β̂

bi
bj

2
[(

q̂bi
bj

)−1 ⊗
(

qω
bi

)−1 ⊗ qω
bj

]
xyz

ba
j − ba

i
bω

j − bω
i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(21)
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where [•]xyz is the imaginary part of a quaternion. α̂
bi
bj′

, β̂
bi
bj

and q̂bi
bj

are the pre-integration

of position, velocity, and rotation between j and i under the assumption that ba and bω

are stable.

5.4. Loop Term

Loop closure is an important step to correct the accumulated error in SLAM system.
In this study, the function is realized by distance detection. In the current frame, we search
for the distance coordinates of nearby key frames. And frames within the geometric radius
15m can be marked as the candidate loop closure frames.

We select the nearest frame from the candidate frame as the previous key frame TW
loop.

Then a certain number of point clouds are found near the previous key frame, which are
used for a small local map. In this module, the number of points in optimization model
is less, so ICP is used to calculate the relative transformation TW

W ′ of similar scenes. The
residual between the previous key frame and current frame can be obtained:

F
(

ẑ
bloop
bj

, χ
)
= ΔTloop,j= (T W

loop

)−1
TW

W ′TW ′
j (22)

In order not to affect the real-time performance, loop closure detection and mapping
for ICP are in another thread.

6. Evaluation

In order to verify our algorithm, we have conducted public dataset experiments and
real-word experiments. The proposed algorithm is operated on a laptop which consists
of an Intel-i7 CPU and 16G of memory. The operating system is Ubuntu18.04 and ROS
Melodic [27]. We use evo [28] to evaluate accuracy. The optimization library we used are
GTSAM [29] and Ceres [30].

6.1. Validation of M2DGR Datasets

M2DGR [31] datasets were recorded using ground robots. As shown in Figure 7, A
HDL 32E Velodyne LiDAR (labeled 3 in the figure) was used to scan the surrounding
environment and obtain the 3D point cloud. The IMU device is Handsfree A9 (labeled 5 in
the figure), which is a 9-axis sensor. In outdoors, the satellite visibility is good so that the
GNSS-RTK suite (labeled 4 in the figure) outputs high-precision ground truth. For indoor
environments, the ground truth trajectories are recorded with a motion-capture system
which consists of twelve highspeed tracking cameras. The spatial relationship among
different sensors have been calibrated.

In order to test the robustness of our algorithm, we adopt tests of different scenarios,
and the data information is shown in the Table 1. Street_01, 04, 07, 10 are collected on the
street. In the street dataset, there are buildings discontinuously. The structured environment
has rich geometric feature information. However, the switching of unstructured scene
has the unpredictable influence on LIDAR odometry. Various weeds, leaves and other
environmental factors affect the positioning accuracy in Street_04 around the lawn. Loop
is set for loop closure detection, which is important for the validation in back-end graph
optimization, and the motion state of zigzag brings challenges for interframe motion
estimation. When the running time is longer than 500 s, we think that it is long-term to test
for stability and robustness. Gate_02 is collected around the large circular gate. It is easy
to satisfy the loopback condition. The ground robot is always rotating in Circle_02 scene,
which is difficult for the feature matching, and Hall_05 is collected for indoor environment.
There is a large amount of overlap and structured feature during the experiment.
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Figure 7. The sensor suite of M2DGR. Sensors are strictly calibrated and using the same time stamps.

Table 1. The dataset contains all kinds of scene.

Street_01 Street_04 Street_07 Street_10 Gate_02 Circle_02 Hall_05

Durations/s 1028 858 929 910 327 244 402

Description
of features

Street and
buildings,

zigzag,
long-term

Around
lawn,

loop back,
long-term

Zigzag,
long-term

Zigzag,
long-term

Loop back,
around gate

Circle,
rotation

Indoor, large
overlap

We contrast our system with ALOAM, LeGo-LOAM and LIO-SAM. ALOAM only
depends on LIDAR; the core of the algorithm is the same as LOAM, but it is achieved
according to Ceres for the code readability. LeGo-LOAM uses IMU data to help remove
motion distortions from point clouds. LIO-SAM is a tightly coupled LIDAR and IMU
approach, but there is no front-end processing of point clouds and the traditional solution
algorithm in scan-to-map is more time consuming.

We choose some typical scenarios such as zigzag, rotation and loop. In these cases,
point cloud mismatching often occurs due to the violent motion of the carrier. The long-term
run is to verify the elimination of the accumulated error of the LIO system.

In Table 2, the bold and italic values indicate the minimum error. Seven groups of
experiments prove that our algorithm improves the accuracy in most scenarios. Especially
in a scene such as a street. In the sequence “Circle_02”, our LIO system has a higher error
than LeGo-LOAM. That is because “Circle_02” is collected in a fixed scene and the ground
robot is always rotating. This motion state has slightly bad effect on IMU pre-integration.
Other than “Circle_02”, our system benefits from the tightly couple of inertial and LIDAR
information. In the sequence “Gate_02” and “Hall_05”, the four algorithms perform equally
well. These two scenes are simple and rich in structural features. However, in the street
sequence, our algorithm can greatly improve the performance.
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Table 2. Absolute trajectory error (ATE) RMSE (m) of the four algorithms in seven datasets.

Street_01 Street_04 Street_07 Street_10 Gate_02 Circle_02 Hall_05

ALOAM 7.661 3.582 27.590 22.075 0.361 1.391 1.029
LeGo-LOAM 3.269 1.193 14.583 31.024 0.485 0.288 1.034

LIO-SAM 6.390 1.133 4.693 2.569 0.326 0.618 1.053
OURS 1.362 0.836 1.579 1.479 0.313 0.409 0.980

6.1.1. Positioning Performance Analysis

Street_01 is chosen for our analysis. Figure 8 shows the trajectories of the four algo-
rithms in street_01 in X-Y plot. The accumulative error of four algorithms can be obtained
from the detail diagram. Our system makes reasonable use of feature information, which
effectively improve the accuracy of point cloud matching. Planar points are extracted from
ground surface feature information, and edge points are extracted from rod feature infor-
mation. We notice that ALOAM, LeGo-LOAM and LIO-SAM will drift and have a large
deviation when it comes to turning. However, in this system, the point cloud registration
has been greatly improved.

Figure 8. The trajectories of the four algorithms on street_01. Our trajectory is closest to the ground
truth. The detail diagram is near the end of this test.

More detailed evaluations have been conducted. Figure 9 shows absolute trajectory
error variation for 4 algorithms in street_01. ALOAM have largest error without IMU
measurements, and its scan-to-scan method has a bad influence, which is easy for providing
inaccurate information in the scan-to-map module. LeGo-LOAM applies a two-step scan-
to-scan method, which is beneficial for improving efficiency, but it still introduces much
error. Moreover, without IMU constraint, loose-coupled LIO system such as LeGo-LOAM
cannot adequately make use of sensor observation information. In LIO-SAM, there is no
point cloud preprocessing section. Lots of unstable observations also have bad effects on
point cloud registration.
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Figure 9. Illustration of the absolute trajectory error variation. Our system has been kept a low level.

This work not only tests RMSE in Table 2. Figure 10 displays each evaluation pa-
rameter. Our system has a good performance in different indicators. Figure 11 is the box
diagram, which is used to display the dispersion of a set of data. The system also has the
lowest deviation.

Figure 10. Illustration of A variety of indicators. The superiority of our algorithm can be concluded
from the statistical graphs.
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Figure 11. Box diagram which is used to reflect the characteristics of distribution of data.

Four algorithms have been compared. We now analyze the difference between our
system and ground truth. Figure 12 is the display diagram of trajectory and truth value in
the X-Y plane.

Figure 12. The detailed trajectories of ground truth and our system in street_01. They are aligned well.

Figure 13 shows error changes in three directions throughout the period. We can see
that the system has an obvious deviation at the start time. That is because the optimization
process takes time to converge and correct. At the same time, local map takes time to build.
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After a long run, the error is remained low in our system. It verifies the robustness and
high precision of the work.

Figure 13. Error changes in three directions. The initial error is a little larger, after that the error
is small.

6.1.2. Runtime Performance Analysis

Meanwhile, our experiments proved that the time consumption of our scan-to-map
module is significantly reduced from Table 3. Four algorithms have this module which is
the most time-consuming. So, we choose the cost time of this module for comparison. The
bold and italic values indicate the minimum time consumption. We can see the obvious
advantage of our algorithm.

Table 3. The time consumption (ms) in seven datasets. All are recorded in the same platform.

Street_01 Street_04 Street_07 Street_10 Gate_02 Circle_02 Hall_05

ALOAM 295.875 250.093 309.164 251.751 230.516 294.688 106.374
LeGo-LOAM 132.986 93.184 149.694 124.700 112.126 122.932 57.938

LIO-SAM 61.900 43.461 83.957 76.541 57.518 90.450 21.308
OURS 37.600 27.427 66.093 50.888 35.215 34.628 14.296

LOAM and LeGo-LOAM use a scan-to-scan match to provide odometry, which means
using the current scan and last scan to do the scan matching, and the result offers an initial
guess for mapping. LIO-SAM and our system use IMU pre-integration, which is of high
frequency, and we use the back-end result to suppress IMU drift. Even more, thanks to the
edge points extracted from the rod-shaped information and the planar points extracted
from the ground surface information, many outliers are not in the operation. Accuracy and
speed are greatly improved.

We still choose street_01 for analysis. Table 4 shows the number of frames four
systems processed.

Table 4. The scan-to-map frames in street_01.

ALOAM LeGo-LOAM LIO-SAM OURS

Scan-to-map frames 2788 2566 5128 5133

252



Remote Sens. 2022, 14, 4031

Figure 14 shows the processing time of each frame. We can clearly see the lowest
cost time of our system. In ALOAM, the mapping module uses the global map and map
maintenance is time-consuming. LeGo-LOAM and LIO-SAM are the same, which apply
Levenberg–Marquardt algorithm [32] of 30 iterations for optimization. Our algorithm uses
faster and more accurate graph optimization model to solve the scan-to-map module (see
Sections 4.2 and 4.3).

Figure 14. Processing time of each scan. The red is obviously lower than other three.

The computationally-efficient system is meaningful for mobile terminal and other
platforms with limited computing resources.

6.2. Validation of Our Datasets

To further test our system, LIDAR has less beams and IMU is of different quality.
We set up a sensor suite composed of a VLP16 Velodyne and an ADIS16488 IMU (see
Figure 15). Sensors have hardware time synchronization because of GPS pulse per second
(PPS). RTK/IMU combined navigation results are used as the truth value, which is after
NovAtel Inertial Explorer software post-processing. Our aim is to prove the versatility of
our algorithm. We pick two typical scenarios. One is in a campus (dataset_01) and the
other is on a city road (datasetet_02).

In dataset_01, (see Figure 16) the speed of our car is about 6 m/s. There is rich
feature, but there is accumulated error in long-term run. Various weeds, leaves and other
environmental factors affect the positioning accuracy.

Dataset_02 was collected in the wide urban road (see Figure 17) and the speed of our
car is about 14 m/s. It contains a large number of buildings. Dynamic objects will affect the
point cloud matching accuracy. The density of point cloud in open space is small and it is
difficult to have a good performance on localization.
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LIDAR

IMU

  

(a) (b) 

Figure 15. Our sensor suite. All have hardware time synchronization (a) IMU is in the LIDAR below.
Integrated navigation device is used to gain ground truth. (b) The device is mounted on top of
the vehicle.

(a) 

Figure 16. Cont.
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(b) (c) 

Figure 16. Trajectory and mapping are generated by our system. (a) Our trajectory and ground truth.
Different colors represent the error values. (b) The mapping result is rendered with LIDAR intensity
value from the top view during the positioning process. (c) The top panel is the specific real-word
environment picked out of the whole trajectory. The bottom panel shows the detail from LIDAR
mapping correspond to the top panel.

(a) 

Figure 17. Cont.
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(b) (c) 

Figure 17. Trajectory and mapping in dataset_02. (a) Our trajectory and ground truth in the urban
road. (b) The mapping result is rendered with LIDAR intensity value from bird-eye view. (c) The
road scene.

In feature-rich areas(dataset_01), we can conclude that LIDAR will have good per-
formance than the wide-open spaces(dataset_02) from the Table 5. The bold and italic
values indicate the minimum error. Compared with the LIO-SAM, the RMSE in the study
increases by 24.2% in dataset_01 and 25.0% in dataset_02.

Table 5. Absolute trajectory error (ATE) RMSE (m) in our real-word experiments.

Durations/s Description of Features A-LOAM LeGo-LOAM LIO-SAM OURS

dataset_01 678 campus 4.040 1.264 1.272 0.964
dataset_02 240 wide rode 6.391 5.933 4.205 3.152

In the Figures 16a and 17a, they show the corresponding trajectories of the two
datasets and different colors represent the error values. In the Figures 16b and 17b, the
global reconstruction of the two scenes is built. Due to the multiple constraints of the
back-end optimization, we obtain a globally consistent point cloud map. According to
Equation (19), the robustness and reliability of the map can be guaranteed. The map shows
the structural details in the bottom panel of Figure 16c. We can clearly see the cars and the
trunk of the tree in the dataset in bird-eye view. In the Figure 17c, the wide roads have great
influence for LIDAR slam (see Table 5). However, our algorithm can also reduce the error.

The time performance is consistent with the M2DGR dataset analysis (see Section 6.1.2).
In dataset_01, due to the features’ richness in campus scenes, the feature information
relationship in scan-to-map needs much time for calculation. However, the average time
consumption is 64.379 ms, which can satisfy the real-time requirement (LIDAR is 10 HZ
sampling frequency), and the average time consumption is 25.874 ms in the road test in the
dataset_02, which is computationally efficient. Our system can achieve a good estimation
result with less time cost.

7. Conclusions and Future Perspectives

According to the datasets and our own data experiments, compared to LIDAR only
positioning (ALOAM), the positioning accuracy and robustness is significantly improved.
Then only IMU data helps the point cloud to remove distortion (LeGo-LOAM), the tightly
coupled LIO has lower drift, and compared to LIO-SAM, segmentation and clustering are
used to mark feature information. The point cloud matching is more accurate and the
runtime of scan-to-map module is much less.
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In this paper, we propose an improved LIO system. Firstly, it makes reasonable use of
the feature information of point cloud and effectively improves the accuracy of point cloud
matching. Point cloud registration is carried out after marking rod-shaped and planar
feature information which is different from the existing LIDAR-inertial integration scheme.
The optimized edge points and planar points extraction modes reduce the computation of
scan-to-map and improve the real-time performance. Secondly, prediction of IMU odometry
and correction of LIDAR odometry improve the accuracy and frequency of the mapping
module, which is inspired by LIO-SAM. Comparing this to the front-end odometry in
traditional scan-to-scan mode, the tightly coupled mode of system greatly improves the
performance of LIO. Thirdly, the scan-to-map based on the graph optimization model is
of great significance to speed up the solution and decrease error. Therefore, the system
does not apply the Levenberg–Marquardt algorithm, which is adopted in Lego-LOAM
and LIO-SAM. Fourthly, the robust back-end optimization system including effective loop
closure suppress the cumulative drift of LIO odometry, and IMU measurements residuals
add more constraints information between IMU and LIDAR measurements compared to
LIO-SAM. The optimization mode based on sliding window ensure full use of sensors
information under real-time conditions. Experiments show that the real-time performance
and accuracy of our algorithm exceed that of most state-of-the-art systems in various
typical environments.

It can be seen from Table 2 that the positioning accuracy (RMSE) can be improved
by 25–78% (the average increment is 64.45%) in the M2DGR street datasets compared to
the current tightly coupled LIDAR SLAM algorithms (LIO-SAM). After optimizing the
extraction mode of edge points and planar points, our system processes more frames and
takes less time on average, effectively improving real-time performance. In our actual scene
datasets, the RMSE in the study increases by 24.4% in dataset_01 and 25.0% in dataset_02.

We draw a conclusion that we propose the low drift and high real-time LIDAR-inertial
positioning and mapping system, which is of great importance in indoor locating and other
GNSS occlusion area. At the same time, it can provide high precision point cloud image for
scene understanding in automatic system. For the back-end optimization framework, we
can easily add other measurements such as GNSS for global restriction.

In the future, we noticed that it is necessary to improve the initialization process to
reduce initial error. It is very important to judge the rod-shaped feature information and the
planar feature information in the research process of this paper. This work gets thresholds
according to experience temporarily. We will focus on online threshold estimation and
adaptive threshold selection. Also, it is worth mentioning that LIO system is prone to Z
direction drift in the large scene. Then more constraints will be introduced to suppress drift
in our next step. Furthermore, according to the recent study [33–36], the positioning and
mapping system based on solid state LIDAR can significantly reduce the hardware cost.
Therefore, the research of solid-state LIDAR- inertial system is worth exploring.
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Abstract: The majority of planning algorithms used are based on the occupancy grid maps, but in
complicated situations, the occupancy grid maps have a significant search overhead. This paper
proposed a path planner based on the visibility graph (v-graph) for the mobile robot that uses sparse
methods to speed up and simplify the construction of the v-graph. Firstly, the complementary grid
framework is designed to reduce graph updating iteration costs during the data collection process in
each data frame. Secondly, a filter approach based on the edge length and the number of vertices
of the obstacle contour is proposed to reduce redundant nodes and edges in the v-graph. Thirdly, a
bidirectional breadth-first search is combined into the path searching process in the proposed fast
path planner algorithm in order to reduce the waste of exploring space. Finally, the simulation results
indicate that the proposed sparse v-graph planner can significantly improve the efficiency of building
the v-graph and reduce the time of path search. In highly convoluted unknown or partially known
environments, our method is 40% faster than the FAR Planner and produces paths 25% shorter than
it. Moreover, the physical experiment shows that the proposed path planner is faster than the FAR
Planner in both the v-graph update process and laser process. The method proposed in this paper
performs faster when seeking paths than the conventional method based on the occupancy grid.

Keywords: visibility graph; computational geometry; path planning; mapping

1. Introduction

With the popularity of the robotics industry, simultaneous localization and mapping
(SLAM) technology has developed rapidly. SLAM technology can be divided into three cat-
egories, i.e., LiDAR-SLAM [1–4], visual-SLAM [5–8] and LiDAR fusion visual SLAM [9–11],
and it is widely used for robot navigation tasks. In the application of robot navigation,
a by-product of SLAM is the map, including metric and topological maps. The metric
map emphasizes accurately representing the positional relationships of objects, while the
topological map emphasizes the relationships between map elements.

In smaller spaces, such as corridors and houses, occupancy grid maps [12] are preferred
over topological maps. The topology maps, on the other hand, are more appropriate for
path planning in large areas where the occupancy grid maps are computationally expensive.
In this paper, the visibility graph [13], a topology-based type of map, will be constructed
for route planning and navigation.

Path planning has been an emerging trend in research nowadays to cater to the needs
of autonomous systems. The visibility graph (v-graph) is an efficient map representation
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for path planning, which allows the robot to move from one node to another, but it has
some drawbacks. Firstly, it is not only hard to map the visibility graph completely in the
3D world [14], but it is also difficult to extract the outlines of obstacles. Secondly, when the
number of nodes in the graph increases, the associated edges will be doubled, which causes
increased computational cost in terrain where complex obstacles exist [15]. In this case, it is
necessary to simplify complex obstacles to reduce vertices and edges for path planning.

Most existing v-graph generation methods [16–21] store the pointcloud explored by
the LiDAR into the local grid and then perform plane mapping to extract the vertices of
the polygon. However, these algorithms, such as [17–20], face the following problems.
Firstly, if the local grid is too sparse, the sampling accuracy will be decreased. On the other
hand, if the local grid is dense, the shape of a polygon will be more accurately determined,
but the amount of calculation will increase dramatically. Secondly, the quantity of vertices
and edges affects how complicated the v-graph-based path search algorithm is. There will
be a lot of redundant vertices and edges in maps with a lot of intricate barriers, which
makes path search a time-consuming task. Finally, the large number of vertices and edges
in the v-graph slows down its traversal speed, which leads to a decrease in the maintenance
speed of the v-graph. Although WonheeLee et al. [21] proposed a v-graph-based obstacle
avoidance strategy, they did not address the issue of dense v-graph in complicated scenes.
A sparse v-graph-based path planner is proposed as a solution to these issues, which
lowers the cost of v-graph maintenance, increases the effectiveness of v-graph building,
and decreases space waste during the path search. Overall, the main contributions of the
paper are summarized as follows:

• Compared to existing methods for storing a laser pointcloud, this paper proposes
a complementary holed structure for iteratively updating the local grid. Basically,
only half of the pointcloud data needs to be processed in each data frame to update
the map. The pointcloud data are subjected to image blurring after planar mapping,
and then key vertices are extracted from the blurred image.

• For obstacles with complex contours, this paper proposes a filtering method based
on the edge length and the number of vertices of the obstacle contour. The method
effectively reduces the number of vertices in the v-graph and the maintenance cost
of the v-graph by performing vertex filtering on large complex obstacles. Since the
v-graph and the path search algorithm are tightly coupled, the efficiency of the path
search algorithm will also be improved.

• A bidirectional breadth-first search algorithm was introduced since exploring un-
charted territory requires a lot of search space. In this paper, the edge between the goal
point and the existing vertices in the v-graph is established by geometric checking.
Therefore, the bidirectional breadth-first search algorithm could reduce the waste of
exploration space in navigation.

2. Related Work

The current mainstream of path planning research is divided into the following
categories: search-based, sampling (probability)-based, genetic algorithm (GA)-based,
and learning-based. According to the planning results, it is further divided into complete
planning algorithms and probabilistic complete planning algorithms.

Search-based planning methods: These methods mainly include Dijkstra [22] and its
variants, such as A* [23], D* [24], etc. The Dijkstra and A* algorithms are often used to
search on discrete grids. Such algorithms are re-initialized for each search cycle, thus taking
a long time to plan routes. An incremental version of the Dijkstra-derived algorithm was
proposed to reduce re-planning time by adjusting the local information to the planning
result in the previous cycle. However, similar to D* Lite [25], when encountering complex
environments, the computational load of the incremental algorithm to re-evaluate the
current environment is even greater than that of A* without increment. Many improved
A* algorithms have been proposed to decrease the memory space and achieve a better
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trajectory [26,27], but they are all based on the occupancy grids and thus cannot avoid the
shortcomings of the occupancy grids.

Random sampling planning methods: These methods mainly include rapidly expand-
ing random tree (RRT)[28] and a series of its variants, such as RRT* [29], informed RRT* [30],
and RRT-Connect [31]. These methods are designed for a known environment. Some al-
gorithms derived from RRT are used for planning in an unknown or partially known
environment. These methods must perform maintenance or regeneration of random trees
frequently to account for newly observed environments.

Genetic algorithm methods (GA): This algorithm performs path planning through
crossover and mutation of chromosomes. Tu et al. [32] proposed a method for generating
collision-free paths based on GA. Chen et al. [33] proposed an improved GA to minimize
the total distance of the UAV. The method in [34] combined deep learning and GA to design
a followable path for multi-robots. Moreover, there are many different improvements to
GA [35–37] to achieve better results. In the genetic algorithm, the choice of parameters such
as crossover rate and mutation rate has a significant impact on the quality of the solution,
but these values are typically chosen based on experience.

Planning by deep learning: These methods [38–40] require a large number of ground-
truth labels for training. For example, the essence of training based on deep learning is
to encode and decode environmental information. During testing, these methods can
handle scenarios similar to the training environment; the essence of training based on
reinforcement learning is to encode and map the information of the state of motion every
time. During testing, the results are output according to the encoded motion state informa-
tion. GuichaoLin et al. [41] proposed a collision-free model based on deep reinforcement
learning to allow robots to avoid obstacles. Tutsoy et al. [42] provided a minimum time
path for a balancing task through reinforcement learning, and [43] considered the energy
consumption to design a general dynamic control model based on deep reinforcement
learning. However, learning-based methods are inherently data-driven, and the magnitude
of the data limits their ability to scale to different environments.

The majority of the aforementioned path planning techniques, including common
search-based algorithms, RRT algorithms, and evolutionary algorithms, are based on
occupancy grids. When the scope of the searched scene is large, the drawbacks of occupancy
grids will constrain the speed of these algorithms, i.e., as shown in Figure 1, in a 10 × 10 grid
map, the algorithm based on the occupancy grid map traversed 20 grids to reach the goal,
while the algorithm based on the v-graph only traversed five vertices of the obstacle. This
paper mainly studies the visibility graph-based and path-planning methods. Although the
literature [13,44–46] studied the use of the visibility graph for robot navigation, and FAR
Planner [19] applied the theoretical part to the exploration and navigation of the actual
3D world, the maintenance of a graph in complex situations is still expensive, and the
way-point generated in unknown environments is easy to detour. In order to address these
issues, a sparse v-graph path planner is proposed. This path planner enhances the efficiency
of v-graph building while decreasing space waste and v-graph maintenance costs.

Figure 1. Comparison of the occupancy grids and the visibility graph.
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Similar to FAR Planner [19], the pointcloud is extracted from obstacles and mapped
into polygons, from which vertices and edges are extracted to construct the v-graph for
navigation. The improvement of our approach is that each data frame of pointcloud in the
local area does not fully participate in the construction of the global layer. The complemen-
tary hole structure for iteratively updating the local grid is used to store the pointcloud
information in the current local area, which means that only half of the points in each data
frame need to be processed each time. The method continuously updates the pointcloud
information on each data frame until a global map is formed. Compared with the original
algorithm of FAR Planner, the proposed algorithm can reach the target point within a
shorter distance and take less time.

In simulation experiments, the feasibility of the method is evaluated through the
simulated physical environment. The environment of the simulation experiment includes
medium-scale, complex-scale, and large-scale environments in the Autonomous Explo-
ration Development Environment provided by CMU [47], and medium-scale indoor envi-
ronments and complex large-scale indoor environments provided by Matterport3D [48].
In the physical experiment, the LiDAR, and an Inertial Measurement Unit (IMU) are
coupled to generate state estimation of the mobile robot [4], and the proposed replacednav-
igationnavgiation algorithm will be tested in a real garage.

3. Sparse Visibility Graph-Based Path Planner

Define Q ⊂ R3 as the robot navigation space, and S ⊂ Q as the sensor data from
obstacles. A down-sample strategy is used to update and maintain the v-graph, denoted
as G, and the grid to store pointcloud is denoted as L. Define the position of robot as
Probot ∈ Q, the goal Pgoal ∈ Q.

The flow chart of the path planner proposed in the paper is shown in Figure 2. And the
process consists of three parts: (1) generating the geometric contours of obstacles by
LiDAR-to-plane mapping; (2) aggregating and simplifying complex obstacle information
to maintain the v-graph at a low cost; and (3) searching for nodes and edges to generate the
path from the start point to the goal through the v-graph.

Figure 2. The main flow chart of the path planner based on the v-graph.

3.1. Pointcloud Extraction Structure

We denote the process of extracting and mapping the pointcloud to geometric contours
as extract

{
Pk

cloud ⊂ Q |k ∈ Z+
}

, and the grid as Grid, respectively. In most laser-based
SLAM, grids are used for accessibility analysis, which means that pointcloud information
needs to be recorded in the global layer Lglobal and local Llocal . Although an incremental
method of updating the pointcloud is proposed, in the case of complex terrain and high-

264



Remote Sens. 2022, 14, 3720

resolution grids, the computational resources used to update the pointcloud are still very
high. Therefore, a general sparsification module denoted as F is used to create the holed-
structure local grid and incrementally update the pointcloud.

The dilated convolutional module [49] is usually used in neural networks to enlarge
the receptive field in the picture, and its whole structure gives another way to deal with
the pointcloud in the local grid: as shown in Figure 3, the pointcloud will be stored in the
complementary hole grid.

Figure 3. A schematic diagram of the holed grid structure used for the local update. The pointcloud
is updated through the complementary holed grids between every two data frames and merged into
the global layer.

The holed-structure local grid is defined as Gridd, and the F contains Sub ⊂ Gridd;
when obstacles are detected by the LiDAR, the sensor data S is transferred to Sub, all Sub
forms the Gridd. We denote the voxel size as VS, and this value will affect the density
of pointcloud. In this paper, the value of VS is set to 0.15 m. When the Gridd is formed,
a PCL filter with a kernel size of (VS, VS, VS) will be applied to reduce the size of the
pointcloud. S′

is the remaining pointcloud in the Gridd. After the local pointcloud is
formed, the S′

are classified as obstacles or free, and we denote the classified S′
as
{

Pk
cloud

}
.

At this step, the fully classified Gridd is denoted as Llocal , then integrates Llocal to Lglobal .
The complementary hole grids will be generated respectively in different data frames, so
that the final Lglobal still contains all the information of the pointcloud. The module F is
shown in Algorithm 1.

Algorithm 1 Module F .
Input: Sensor data S
Output: S′

1: input S
2: for every data f rame do
3: Generate Gridd
4: for each Sub ⊂ Gridd do
5: store pointcloud ∈ S
6: end for
7: end for
8: Apply PCL f ilter to point ∈ Gridd
9: classi f y point ∈ Gridd

10: S′
= remain pointcloud in Gridd

11: Update Gridd to Llocal

As shown in Figure 4, the Sub is a cell in the grid, and it stores a part of the pointcloud
information in the 3D space. The standard practice is to form a grid from all cells, but in
this paper, a grid with holed structure, as shown in Figure 5a,b, is used to let only part of
the cells participate in the calculation. In fact, for a grid of a certain size, the number of
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cells depends on its resolution. As shown in Figure 6, the higher the resolution, the more
cells there are, and the denser the grid, the better its mapping effect. However, the amount
of computation increases dramatically. Therefore, this kind of holed-structure grid can
save the calculation cost very well because it mainly requires half cells to participate in the
calculation in each data frame.

(a) Point cloud (b) Local grid

Figure 4. (a) is the spatial 3D pointcloud; (b) is the mapping of the pointcloud information in the
local grid.

(a) Holed structure-based grid1 (b) Holed structure-based grid2

Figure 5. The complementary grids with holed structure.

(a) Grid with higher resolution (b) Grid with lower resolution

Figure 6. Grid with (a) higher resolution, and (b) lower resolution.
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For the obstacle extraction process and obstacle vertices reconstruction process in the
v-graph, the sensor information S is gridded and stored by the module F to obtain S′

.
After that, the S′

will be converted to a binary image I . To enhance robustness, the image
I will be blurred, then obstacle vertices will be extracted through image processing [50] to
generate polygons

{
Pk

contour ⊂ Q |k ∈ Z+
}

. The polygon extraction algorithm is shown in
Algorithm 2.

To define the kernel size of the box filter in Algorithm 2, the equation is as follows,
where RW and RL are the width and length of the robot, respectively, and VS is the voxel
size. In this paper, VS is set to 0.15 m:

(kernel width, kernal height) = max(�
max(RW , RL)

2 + VS

VS
�, 5) (1)

Figure 7 demonstrates the blurred picture of LiDAR-mapped obstacle geometry and
the time consumption of the laser process. As can be seen from Figure 7a, the hollow
structure (using module F ) does not affect the image after blurring. Compared with the
original (without using a hollow structure), it can be found that our generated contour
approximates the original image. The projected outline of the obstacle is thicker because of
the blurred image, and the details inside the outline are lost.

The time required for the laser process, according to Figure 7b, includes gathering the
raw pointcloud and downsampling. For the same area, the time consumed by using the
holed structure is more gentle, while the processing process without the holed structure is
steeper and its curve fluctuates greatly. The time it takes to process an image is depicted in
Figure 7c. The total time of the image process includes mapping the pointcloud in Llocal
into the image I , blurring the image, and initially extracting the obstacle contour points.
About 20% of the total image processing time is spent on blurring the outline of obstacles.

(a) Blurred image comparison

(b) Laser process consumption (c) Image process

Figure 7. (a) shows blurred images, the vertices of the obstacle will be extracted through the blurred
image. The FAR Planner generates images without holed structure, and ours generates pictures
through the holed structure. (b) shows the consumption of the laser process and (c) shows the
consumption of the image process.
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Algorithm 2 Polygon Extraction.

Input: S′ ∈ Llocal

Output: Polygons :
{

Pk
contour

}
1: input S′

2: Create binary image I f rom points in S′

3: Apply box f ilter with kernal size o f (kernel width, kernal height) to blur image I
4: Extract polygons

{
Pk

contour

}
based on [50]

5: for each Pk
contour do

6: Downsample vertices in Pk
contour based on [51]

7: end for

3.2. Simplified Complex Contours Algorithm

In the previous Section 3.1, the L was constructed to obtain the pointcloud from LiDAR.
In this section, the polygons will be extracted and simplified based on L.

For the graph update method of the two-layer architecture, shown in Figure 8, we
define Glocal and Gglobal . Between them, Glocal is the local layer around the robot, and Gglobal
is the layer set of the entire observation environment. Glocal will be generated by the
sensor information S for each data frame and then merged into Gglobal For each data frame,
the sensor information S will generate Glocal and then be merged with Gglobal , noting that
since the module F is used to store the sensor information S , now S′ ∈ Llocal can be used
to merge Gglobal at a lower cost.

Figure 8. A two-layer update structure, where the blue grid is the global map, and the turquoise grid
is the local map. The local map is located in the red boxed area in the global map.

It is known that the computational complexity involved in constructing a v-graph is
O(n2 log n) [52], where n is the number of vertices in the graph. In normal case, the cost of
building a local graph in the environment is small enough so that computational resources
can be allocated to each data frame in an incremental update manner. However, redundant
nodes will also be generated during each v-graph update if the environment has numerous
complex obstacles, leading to a significant increase in the number of edges connecting
the nodes. To ensure the effectiveness of the v-graph update, a method for further sparse
operation on complex contours is required.

Constructing local layers: The S′ ∈ Llocal will be converted into local polygons{
Pk

contour

}
, and use

{
Pk

contour

}
to construct a local visualization graph Glocal . Note that

for complex polygons, as shown in Figure 9, the polygon contains many vertices composed
of short edges. Adding redundant vertices will construct more useless edges; thus, a lot of
computing resources are wasted on unnecessary vertices and edges in the process of path
search in complex terrain.

268



Remote Sens. 2022, 14, 3720

Figure 9. The red solid lines are redundant edges which connect with the robot, and the purple lines
are the redundant edges from obstacles themselves.

A threshold η is set to control the number of vertices for complex large local polygons.
When the number of vertices of the polygon

{
Pk

contour

}
is greater than η, the vertices will

be reduced, which not only optimizes the geometric outline of large and complex obstacles,
but also retains the geometric characteristics of small obstacles. As shown in Figure 10,
the continuous vertices inside those red circles in Figure 10a should be eliminated, but the
current method does not eliminate them well, resulting in more vertices and edges in the
v-graph. Compared to Figure 10a, the optimized version in Figure 10b has fewer vertices.

(a) Extract vertices (b) Optimization after extracting vertices

Figure 10. (a) shows the obstacle vertices extracted after pointcloud mapping. (b) shows the remaining
obstacle vertices after optimizing the (a).

When the number of vertices of an obstacle is greater than η in the local layer, the al-
gorithm preferentially records the distance between the two longest vertices in the ob-
stacle. For example, the distance between the longest two vertices is distmax. The algo-
rithm traverses the three consecutive vertices vertexi−1, vertexi, vertexi+1 in the obstacle
and calculates the length between the two vertices, respectively. The distance between
them is denoted as dist(i,i−1) and dist(i,i+1). If both dist(i,i−1) and dist(i,i+1) are less than
0.1× distmax, it means that vertexi is an invalid vertex (excess vertex), in which case we
delete vertexi and destroy its connection edges edge(i−1,i) and edge(i,i+1).

269



Remote Sens. 2022, 14, 3720

Since the simplified complex contours algorithm only works on the Glocal , the v-graph
update process will not be slowed down by the accumulation of the number of nodes in
the Gglobal .

Update the global layer: After Glocal is constructed, the Glocal and the Gglobal are fused.
The strategy is: take out the overlapping parts of Glocal in Gglobal , and associate the vertex
position in the Glocal to the Gglobal . The Euclidean distance is used to associate vertices in
two layers, and the associated vertices are recorded. The entire graph updating algorithm is
as follows in Algorithm 3, and the final obstacle contours and edges are shown in Figure 11.

For the given two points a(ax, ay, az) and b(bx, by, bz), the distance(a, b) in Algorithm 3
is defined as followed:

distance(a, b) =
√
(ax − bx)2 + (ay − by)2 + (az − bz)2 (2)

Algorithm 3 Visibility Graph Update.

Input: S′ ∈ Llocal , graph G
Output: Update graph G
1:
{

Pk
contour

}
← Polygon Extraction(S′

); // f rom Algorithm2

2: for each Pk
contour do

3: if the number o f vertices > η then
4: for each vertex in contour do
5: distmax = max(distance(vertexi, vertexi+1))
6: end for
7: while true do
8: for each vertex in vertices do
9: dist(i,i−1) = distance(vertexi−1, vertexi)

10: dist(i,i+1) = distance(vertexi, vertexi+1)
11: if dist(i,i±1) < 0.1 × distmax then
12: Eliminate vertexi
13: Eliminate unnecessary edge(i−1,i) and edge(i,i+1)
14: end if
15: end for
16: if all dist(i,i±1) ≥ 0.1 × distmax then
17: break
18: end if
19: end while
20: else
21: continue
22: end if
23: end for
24: Associate vertices Pk

contour in the Gglobal
25: Upate to visibility graph G
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Figure 11. An illustration of sparse v-graph. The edge (orange) that head into at least one polygon
from the shaded angle are eliminated, and the blue one will be kept. After eliminating those green
vertices, the dot blue edge will be removed from the Glocal .

3.3. Path-Planning Based on Bidirectional Breadth-First Search

In FAR Planner, the goal point Pgoal is used as a vertex, and the Euclidean distance
is used as the score to update the parent node of Pgoal . Although the path can be found
in an unknown environment, its spatial search range is obviously wasted. The strategy
adopted by the robot in many cases is to explore many unnecessary spaces until it finally
reaches the goal. As shown in Figure 12, the robot travels from position 0 (start) to position
1, resulting in unnecessary exploration space.

A bidirectional breadth-first search (bidirectional BFS) structure is combined with
the v-graph to search for a path, selecting a vertex of a connecting edge of the robot in
the forward search while simultaneously beginning a backward search from the Pgoal to
find the path to the robot’s current position. This minimizes the amount of unnecessary
exploration space.

In the planning, assume that there are no obstacles in the unknown area where the
Pgoal is located. The Pgoal uses geometric collision checking to establish edges with existing

vertices
{

Pnode | Pnode ⊂ Gglobal

}
in the v-graph, and then the Pgoal will be connected to the

vertices of the discovered obstacles in the v-graph as shown in Figure 13a. The one-way
BFS usually wastes some search space in unknown or partially known environments. This
is because the one-way BFS starts from the nodes connected to the robot, calculates the
target point according to the cost, and then iterates to the robot position according to the
parent node of the target point.

As shown in Figure 13b,c, the one-way BFS enters a fork in the planning of the global
path from the starting point to the ending point, resulting in an increase in the search space.
The result is shown in Figure 13d, from the red point to the green point, the one-way search
wastes a huge amount of space. Therefore, this paper embeds the goal in the v-graph and
associates it with the existing vertices in the graph, and adopts a bidirectional breadth-first
algorithm for path search.
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Figure 12. The robot travels from position 0 to position 1, and the red dotted box represents the
wasted exploration space during navigation.

The bidirectional BFS structure shows in Algorithm 4, in which the two BFS are divided
into forward and backward according to the direction of the search (forward searches from
the robot position to the Pgoal , and backward searches from the Pgoal to the robot position).

In the Algorithm 4, parentF(·) and parentB(·) are the functions returning the forward
and backward parent of a node. QF and QB are the min-priority queues in forward and
backward ones, respectively, and QF is ordered by gF, QB is ordered by gB. μ is the cost of
the best path found so far (initially, μ is set to ∞). Whenever the robot reaches a node and
expands in the other search, μ will be updated if a better path goes through the node. gF is
the current distance from start and gB is the current distance from Pgoal . topF and topB are
the distances to the top nodes in the forward and backward queues, respectively. The STEP
function in Algorithm 5 is responsible for advancing the search through the v-graph and
updating μ.

One of the benefits of bidirectional search is that it can, to some extent, avoid the
wasted search space caused by entering invalid forks. As shown in Figure 13e, the globally
planned path no longer passes through the fork, thus avoiding excessive searching. As a
result, as shown in Figure 13f, compared to Figure 13d, the distance traveled by the robot is
greatly reduced.

It is not possible to use a vertex that has just been extracted from the v-graph G as a
point of navigation directly; instead, a transform is used to turn the vertex into a way-point.
As Figure 14 shows, in the obstacle where the point is located, the vertices connected to
the point at the polygon will be extracted to calculate the direction vector of the point (in
Algorithm 6, they are

−→
dir f ront and

−→
dirback, respectively, and the direction vector of the point

is the
−−→
sur f dir).

A detailed description is shown in Algorithm 6. In Algorithm 6, the parameter of
searchdist is set to constrain the searching area, and the neardist is a step parameter which
extends the way-point from

−−→
sur f dir direction, and RW and RL are the width and length of

the robot, respectively. When the way-point extends, the maxextend is set to constrain the
length of the extension. The NearOBS(·) function is to obtain a range of obscloud from
Lglobal , with Pway−point as center and searchdist as the radius. Check_Collision is used to
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detect if the expanded Pway−point collides with surrounding obstacles, and the detail of the
Check_Collision function is shown in Algorithm 7.

(a) Embeded goal point (b) One-way BFS

(c) The process of one-way BFS (d) Overall view

(e) bidirectional BFS (f) Overall view

Figure 13. The blue area of the map represents the part that has been explored by LiDAR and is
considered known. (a) shows the connection between the endpoint and the existing node, represented
by a solid yellow line. (b,c) show the path planning using one-way BFS. (d) is the result of one-way
BFS. The red dot is the starting point, and the green dot is the endpoint. (e,f), respectively, show the
path planning and the final result using bidirectional BFS. The globally planned path appears on the
map as a thick blue line.
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Algorithm 4 Bidirectional BFS.
Input: Pstart, Pgoal , Visibility Graph: G
Output: path :

{
Ppath

}
1: QF, QB ← make min − priority queues f or the nodes initially containing only Pstart and

Pgoal
2: expandedF, expandedB ← make f orward and backward lookup tables
3: searchF ← (QF, expandedF, parentF)
4: searchB ← (QB, expandedB, parentB)
5: μ ← ∞
6: initialize G, associate Pgoal in G
7: path ← none
8: while topF + topB < μ do
9: if at least one queue is non − empty then

10: choose the search to advance
11: else
12: return path
13: end if
14: if f orward search was chosen then
15: (path, μ) ← STEP(searchF, searchR, path, μ)
16: else
17: (path, μ) ← STEP(searchR, searchF, path, μ)
18: end if
19: end while
20: return path

Algorithm 5 STEP (search1, search2, solution, μ).

1: // 1 denotes the chosen direction and 2 is other direction
2: // c(·) is the cost function, in this paper, manhattan distance is used
3: // c(u, v) = |ux − vx|+ |uy − vy|+ |uz − vz|
4: μ ← pop the min g1 node f rom Q1
5: for v ∈ parent1(u) do
6: if v /∈ expanded1 ∪ Q1 or g1(u) + c(u, v) < g1(v) then
7: g1(v) ← g1(u) + c(u, v)
8: Add v to Q1
9: if v ∈ expanded2 and g1(v) + g2(v) < μ then

10: path ← reconstruct the path through u and v
11: μ ← g1(v) + g2(v)
12: end if
13: end if
14: return (path, μ)
15: end for

In Algorithm 6, the normalize(Pa, Pb) and normalize(·) are defined as followed:

normalize(Pa, Pb) =
Pb − Pa

||Pb − Pa|| (3)

normalize(
−→
V ) =

−→
V

||−→V ||
(4)
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Figure 14. The schematic diagram of generating a way-point.

Algorithm 6 Way-point generation.
Input: Pstart, Path, Lglobal
Output: Pway−point

1: vertex = Path[0]
2: Path = Path[1 :]
3: searchdist = max(2.5 × max(RL, RW), 5)
4: neardist = min(min(RL, RW), 0.5)
5: Pway−point = vertex
6: maxextend = min(searchdist, distance(Pstart, Pway−point)

7:
−→
dir f ront = normalize(polygonk(i − 1), polygonk(i))

8:
−→
dirback = normalize(polygonk(i + 1), polygonk(i))

9: if Pway−point is a convex point then

10:
−−→
sur f dir = −normalize(

−→
dir f ront +

−→
dirback)

11: else
12:

−−→
sur f dir = normalize(

−→
dir f ront +

−→
dirback)

13: end if
14: obscloud = NearOBS(Lglobal , searchdist, Pway−point)
15: obscloud = setInputCloud(obscloud) //setInputCloud is a pcl library function to build

the KDTree of a set of pointcloud
16: temp = Pway−point +

−−→
sur f dir × neardist

17: is_collide = Check_Collision(temp, obscloud) //from Algorithm 6
18: extenddist = neardist
19: while is_collide is f alse and extenddist < searchdist do

20: temp+ =
−−→
sur f dir × neardist

21: extenddist+ = neardist
22: is_collide = Check_Collision(temp, obscloud)
23: if extenddist < maxextend then
24: Pway−point = temp
25: end if
26: end while
27: if is_collide is true and extenddist > max(RW , RL) then

28: Pway−point =
Pway−point+vertex−−−→

sur f dir×neardist
2

29: return Pway−point
30: else
31: return drop this vertex and re − search path
32: end if
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Algorithm 7 Check_Collision.
Input: point P, obscloud
Output: f alse or true
1: radius = neardist/2 + VS
2: thre = neardist/VS
3: KDTree → radiusSearch(P, radius, indices, dis) // search points with P as center and

radius as the search radius, return the number of points in indices and the distance
between each point and P.

4: if indices > thre then
5: return true
6: else
7: return f alse
8: end if

4. Experiments and Results

The paper uses the same experimental parameters as FAR Planner [19], (uniform sensor
parameters, the robot speed is set to 2 m/s). A highly complex channel network tunnel,
a parking garage with multiple floors, and a forest of trees with many irregularly shaped
trees are all included in the simulated experimental environment. The indoor is moderately
complex but easy to detour. Additionally, Matterport3D [48] provides a simple environment
17DRP5sb8fy (denoted as 17DR), a slightly complex environment PX4nDJXEHrG (denoted
as PX4n), and a large complex environment 2azQ1b91cZZ (denoted as 2azQ).

In the simulation environment, all methods run on a 2.6Ghz i7 laptop, and the v-graph-
based methods use images at 0.2 m/pixel resolution to extract points to form polygons.
The local layer on the v-graph is in a 40 m × 40 m area with the robot in the center.
The threshold of the length of each visibility edge is set to 5 m. Finally, the simulated mobile
robot is 0.6 m long, 0.5 m wide, and 0.6 m high.

In the physical environment, ours runs on an embedded device, and the robot speed
is set to 0.7 m/s. To adapt to the real environment, the local layer of the v-graph is set to
20 m × 20 m. The length, width, and height of the mobile robot are set as 0.32 m, 0.25 m,
and 0.31 m, respectively.

4.1. Simulation Experiment
4.1.1. Laser Process Simulation Experiment

In the laser process simulation experiment, seven different types of environments
are used to compare the holed structure with the original one. The experimental results
are shown in Figure 15. The robot moves according to a fixed route, and the experiment
analyzes the time of the laser processing process. The laser processing process refers to the
whole process of extracting and storing the pointcloud information of the local layer into
the grid and classification (obstacle pointcloud or free pointcloud).

As shown in Figure 15, for example, in the indoor environment, the robot will start
from 0 (start) and pass through the target points 1, 2, 3, 4, 5, and 6 in sequence. The initial
state of the robot is set to be in an unknown environment, and the known information in the
environment is continuously accumulated through exploration. The program records the
time of receiving and processing the pointcloud data from LiDAR during the movement of
the robot.

Figure 16a is a summary of the average time of laser processing in different envi-
ronments. It can be clearly seen from Figure 16a that our method used less time in the
processing of the pointcloud information in every data frame. Figure 16b–h show that using
the grid with the holed-structure leads to the smooth processing of the laser pointcloud.
Compared with the original grid, the use of the holed structure can improve the processing
speed of the pointcloud by 30.5∼44.5%.
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Figure 15. The overall view of seven different environments.

(a) Overall average process consumption (b) Laser process(indoor)

(c) Laser process(garage) (d) Laser process(forest)

Figure 16. Cont.
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(e) Laser process(tunnel) (f) Laser process(PX4nDJXEHrG)

(g) Laser process(17DRP5sb8fy) (h) Laser process(2azQ1b91cZZ)

Figure 16. (a) is the summary of the average time of laser processing in different environments.
(b–h) show the process time of pointcloud in each data frame.

4.1.2. Visibility Graph Update Simulation Experiment

Different values of η, ranging from 5 to 25, are set in representative indoor and
outdoor environments in order to select an appropriate value. The robot in the simulation
experiment travels throughout the entire environment to count all of the vertices in the
v-graph and logs the average update speed. As the Table 1 shows, it can be seen that
the number of vertices in the v-graph and the update speed of the v-graph are positively
correlated with the value of η, but η is not as small as possible.

Table 1. Relevances among η, total vertices besides the speed of v-graph update.

Test Without η η = 25 η = 20 η = 15 η = 10 η = 5

total vertices (Indoor) 904 873 725 714 695 630

v-graph update (Indoor) 21.48 ms 20.64 ms 14.13 ms 13.88 ms 13.82 ms 12.81 ms

total vertices (Forest) 3976 3589 2893 2838 2743 2334

v-graph update (Forest) 71.25 ms 54.23 ms 39.12 ms 38.97 ms 36.82 ms 35.64 ms

Theoretically, a smaller η value should lead to fewer vertices in the v-graph. However,
a value of η that is too small will have some drawbacks. The function of collision detection
may be affected when some minor obstacles are ignored, as shown in Figure 17a, and this
phenomenon also occurs in forest environments. When η is equal to 5, there are two small
trees missing from the v-graph in Figure 17b. When η is greater than or equal to 15 and less
than or equal to 20, with the increase of η, the outline of the obstacle is well guaranteed,
and the update speed of the v-graph is also relatively fast. When η is greater than 25,
the number of vertices in the v-graph gradually increases toward the direction of none η.
After several rounds of testing, a preliminary conclusion can be drawn that when the value
of η is between 15 and 20, the algorithm is most suitable for generating obstacle vertices.
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(a) Indoor environment

(b) Forest environment

Figure 17. Different η in the indoor and forest environment.

In the v-graph update simulation experiment, seven different environments are used
to compare our v-graph update method with FAR Planner’s, and the parameter of η is set
to 20. In different environments, a series of target points are established for the mobile
robot to travel. These points are fixed, and both methods let the mobile robot pass through
them in sequence. For example, in the indoor environment, the robot will pass through
the six target points 1, 2, 3, 4, 5, and 6 in sequence. During the driving process of the
robot, the update speed of the v-graph will be recorded, and similarly, all the vertices in the
v-graph will be recorded. The experimental results are shown in Figure 18.
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(a) Overall view (b) Contours and edges

(c) Visibility graph update (d) Total vertices in graph

Figure 18. (a) shows that the robot runs in different environments and passes through a series of
target points. (b) shows the geometric outline of obstacles and the connection of edges, red points are
valid vertices, and cyan lines represent effective edges. The last one in (b) is the optimized global
map. (c) shows the update speed of our method and the original method in different environments.
(d) shows the number of vertices in the v-graph after running the same trajectory.

In each environment in Figure 18a, the robot passes through a series of target points,
and the known environment information is reset after reaching each target point. Figure 18b
shows the optimized nodes and edges for complex irregular objects. For complex obstacles,
ours simplifies the vertex information of the obstacle. When the redundant vertices are
reduced, the redundant edges will also be correspondingly reduced. As shown in Fig-
ure 18b, the cyan and blue edges and red nodes in the optimized v-graph are significantly
reduced, respectively.

Figure 18c shows the average speed of the v-graph update, and Figure 18d shows
the total number of vertices in the v-graph. For simple terrain and most of the obstacles
with simple shapes and corners, such as the tunnel and 17DRP5sb8fy, our method obtains
similar results to FAR Planner, and the improvement is only 10∼20%; for large-scale maps
containing complex obstacles, such as the forest, 2azQ1b91cZZ, PX4nDJXEHrG, indoor, etc.,
our method significantly improves the efficiency by 40∼60% compared to FAR Planner.

It is evident from Figure 19 that for environments with complex terrain, our method
greatly reduces the number of vertices for obstacles in the v-graph. In Figure 19e,f, the orig-
inal method has a total of 73 vertices while our method has only 49 vertices.
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(a) FAR Planner (b) Ours

(c) FAR Planner (d) Ours

(e) FAR Planner (f) Ours

Figure 19. From (a–f) is the comparison result of the extracted obstacle vertices.

4.1.3. Path Planning Simulation Experiment

For the path exploration in the unknown environment, we compared the slightly
complex indoor environment and the tunnel environment with complex network structures,
respectively. Similar to the graph update simulation experiment, a series of waypoints are
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set up in each environment, allowing the robot to pass one by one. Define the robot to
accumulate environmental information while exploring the unknown environment.

FAR Planner (v-graph-based), A*, and D* Lite (occupancy grid-based) are all added
for comparison with our algorithm. Figure 20 shows the trajectory paths generated by our
algorithm and other algorithms in navigation. In the case of reaching the same navigation
point, our algorithm can avoid unnecessary exploration space to a greater extent than the
FAR Planner and A*, D* Lite, so as to achieve a shorter distance and less time.

(a) Indoor (b) Tunnel

(c) Travel Time (Indoor) (d) Travel Time (Tunnel)

(e) Travel Distance (Indoor) (f) Travel Distance (Tunnel)

(g) Path Search Time (Indoor) (h) Path Search Time (Tunnel)

Figure 20. (a,b) show that the trajectory of the robot using different algorithms to navigate in
indoor and tunnel simulation environments respectively and passes through a series of target
points. (c,d) show the time consumption for each target point. (e,f) show the distance robot takes to
travel to each target point. (g,h) show different path-searching algorithms’ time consumption.

Figure 20c–f show the time and distance it takes for the robot to travel from one
navigation point to another, and the robot accumulates map information during driving.

282



Remote Sens. 2022, 14, 3720

Tables 2 and 3 (FAR Planner denoted as FAR) gives a summary of the overall travel time,
distance, and search time used for each map robot navigation.

As can be seen from Figure 20a for the indoor environment, the search space is wasted
to varying degrees when using FAR Planner, A*, and D* Lite to navigate from point 1 to
point 2. They are more inclined to explore the place where point 3 is located and then turn
back after finding that there is no passage leading to point 2. The possible reason for this
is that most of their cost functions only refer to the cost of the current node itself and the
cost of the Euclidean distance between the endpoint and the current node. This causes the
robot to tend to drive towards the node with the lowest total cost in a single direction, even
though that node may not be able to reach the goal.

For adjacent navigation points with relatively short distances, such as from navigation
point 4 to navigation point 5 in an indoor environment, the time and distance consumed by
all algorithms are not much different.

The A* and D* Lite are known for their search integrity in finding the optimal path.
However, those methods are difficult to scale as the computational cost increases sig-
nificantly when environments are large and complex [19]. For the tunnel environment,
although the environment contains a series of complex #- and T-shaped structures, there
are almost no dead ends, that is, the goal can be reached in any direction, so the robot
hardly needs to be turned back during the running process. For traditional A* and D* Lite,
due to the increase in scene scale, the number of grids that need to be calculated increases
sharply, and the cost of algorithm operation increases significantly in large-scale scenes.
However, for us, the use of bidirectional BFS allows us to avoid some bifurcations and
travel a shorter distance to the destination point.

Table 2. The overall time spent by the robot using different algorithms in [s] in Indoor environment.

Test Overall Time [s] Overall Distance [m] Average Search Time [ms]

FAR(baseline) 455.31 824.1 1.43

A* 486.4 906.3 44.21

Compare to FAR +6.7% +9% +2991%

D* Lite 498.1 896.6 29.6

Compare to FAR +9.4% +8.8% +1967%

OURS 357.2 633.1 0.81

Compare to FAR −21.5% −19.5% −43.3%

Table 3. The overall time spent by the robot using different algorithms in [s] in Tunnel environment.

Test Overall Time [s] Overall Distance [m] Average Search Time [ms]

FAR(baseline) 1038.2 1914.4 2.05

A* 833.6 1543.8 332.95

Compare to FAR −19.7% −19.3% +16,141%

D* Lite 1119.8 2109.8 162.3

Compare to FAR +7.8% +10.2% +7817%

OURS 763.8 1420.4 1.44

Compare to FAR −26.4% −25.8% −29.7%

As shown in Figure 20a,b, our planner is able to search for shorter paths and generate
effective trajectories. Table 2 shows that in the indoor case, our method reduces travel time
by 23% compared to A*, 28% compared to D* Lite, and 21% compared to FAR Planner’s
original algorithm. In terms of increased time, FAR Planner has the most time wasted
due to ineffective exploration, while A* and D* Lite are time-consuming when the robot is

283



Remote Sens. 2022, 14, 3720

constantly swinging back and forth in a certain position, but what all three have in common
is wasted search space between some navigation points. Table 3 shows that in the tunnel
case, our method produces the shortest distance, which is 8% shorter than A*, 32% shorter
than D* Lite, and 25% shorter than FAR Planner.

Tables 2 and 3 show that our planning algorithm can run faster because of the use of a
hole-structured mesh to update the graph and vertex optimization for complex obstacles.
Compared to FAR Planner, our search algorithm update rate is 43% faster.

4.2. Physical Experiment

The physical experiment uses the mobile robot platform in Figure 21 with the speed
set to 0.7 m/s. The mobile robot is equipped with a Velodyne-16 LiDAR and an Inertial
Measurement Unit (IMU) 9250. The entire autonomous system is built on Robot Operating
System [53], and the Raspberry Pi 4B is the master and the laptop is the slave. In the
autonomous system, the master is used to transmit LiDAR data, run the CMU autonomous
exploration interface [47], and drive the stm32. The navigation algorithm runs on the slave.
The camera at 640 × 480 resolution in the mobile robot is only used to obtain pictures of
the environment. The LiDAR and IMU are coupled to generate the state estimation of the
robot through Lego-LOAM [4]. The main system structure of the mobile robot is shown in
Figure 22, the autonomy system incorporates navigation modules from CMU autonomous
development interface, e.g., terrain analysis and way-point following as fundamental
navigation modules.

Figure 21. The mobile robot.

Figure 22. The main structure of autonomous system.
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As shown in Figure 23a,b, obstacles are mapped as polygons in exploration, and solid
edges are formed from each relevant vertex. In Figure 23c, colored pointclouds of obstacles
are displayed to better show the details; orange lines denote the obstacles’ outlines, while
cyan lines denote the relationships between the edges of various obstacles.

In the navigation, as shown on the left side of Figure 23d, the mobile robot started from
point 1 and arrived at points 2, 3, and 4 in sequence and on the right side of the Figure 23d
shows pictures when the mobile robot navigates to the corresponding position.

(a) Path planning and exploration (b) Garage overview

(c) Details of v-graph

(d) Navigate in the garage

Figure 23. (a,b) show the path planning and exploration of the garage. (c) shows the details of
exploration, and (d) shows the entire navigation in the garage.
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As shown in Figure 24, our algorithm is compared with FAR Planner in the physical
experiment. The processing speed of the laser data, the update speed of the v-graph,
and the operation speed of the search algorithm are recorded every 0.5 seconds.

(a) Laser process time in the physical experiment

(b) V-graph update time in the physical experiment

(c) Path search time in the physical experiment

Figure 24. Data recorded when the path planning algorithm runs.
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In Figure 24a, The mean and standard deviation for the laser processing of FAR Planner
are 60.95 ms and 16.59 ms, respectively, while our method’s mean and standard deviation
of the laser processing are 41.59 ms and 9.93 ms, respectively. Not only is ours 31.76%
faster on average than FAR Planner, but the time taken by the algorithm is also more
stable. As shown in Figure 24b, both approaches will take longer to update the v-graph
because of the unexpected rise in obstacles, but ours is on average 37.12% quicker than
FAR Planner. In Figure 24c, ours is on average 18.06% faster than the FAR Planner on the
search algorithm.

5. Discussion

5.1. Grid in Mapping

In the process of robot simultaneous localization and mapping, grids can be used
to store pointcloud data [12,54–58], and can also be used as occupancy grid maps for
robot navigation [56,59–63]. As mentioned in Lau, B et al. [58], the processing speed of
a computer is limited by the resolution of the grid. When the grid resolution is higher,
the information represented by each cell is more accurate, but the calculation time is longer.
In Homm et al. [61], they use a Graphics Processing Unit (GPU) to speed up the formation
of fine grids, and in A. Birk et al. [56], they use multiple robots to jointly maintain grid
maps, an approach that indirectly speeds up the construction of the grid map.

The aim of the work in this paper is to use a discrete hollow grid to convert pointcloud
information into a binary image and extract obstacle vertices. Therefore, the focus of
this paper is on how to quickly extract the grid to generate the vertices of obstacles. For a
30 m × 30 m local grid, the processing speed of a high-resolution grid, such as 0.5 m × 0.5 m
per cell, is much slower than that of a low-resolution grid, such as 1 m × 1 m per cell.
Therefore, a grid with spaced hollow structures is designed to speed up the processing
of high-resolution grids. Since the use of hollow structures will affect subsequent images,
such as the discontinuous edges of obstacles, it is necessary to blur the generated images.
Blurring the image can cover empty spots caused by hollow structures. Additionally,
a complementary hollow-structured grid is also considered, storing a set of complementary
hollow-structured grids under adjacent data frames and integrated into the local map.

It is foreseeable that the grid application with this sparse structure can significantly
reduce the amount of computation and shorten the computation time in three-dimensional
space. In future work, the authors hope to use this sparse structure for 3D grids.

5.2. The Reduced Visibility Graph

The v-graph is a topology map that is widely used for path planning since it is
constructed using the vertices of obstacles. The difficulty of calculating and maintaining
the v-graph mainly depends on the number of vertices in the graph; thus, many researchers
focus on how to simplify the v-graph [19,64–70].

In Nguyet et al. [69], he proposed a method for clustering small obstacles according
to their volume, which can well reduce the number of vertices in the v-graph, thereby
improving the efficiency of the path search algorithm. However, this method needs to
calculate the total area of the global map for each iteration, which wastes a lot of time for
multiple small-volume obstacles. In Yang et al. [19], an angle ζ is set to limit the visibility
of each obstacle vertex, which can well reduce the number of edges of the obstacle vertex.
The method used in this paper combined Yang’s method [19] and proposed a method of
simplifying obstacle vertices that only act on the local map. Compared with [69], the speed
of the algorithm proposed in this paper is not affected by the global map, and it effectively
reduces invalid vertices and redundant edges.

5.3. Uncertainties in the Path Planning

The path planning is based on the produced map (they can be occupancy maps,
topological maps, or semantic maps), and the localization of the robot is very important
for constructing the map. In the simulation experiment, we can easily obtain the relevant
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data of the robot, such as the simulated IMU sensor information and the simulated LiDAR
information, and this information is accurate and unbiased in the simulated environment
to estimate the state of the robot. How well the robot is positioned determines whether the
map used for navigation is available. However, in real life, we cannot obtain such unbiased
data; therefore, we used Lego-LOAM for the state estimation of the robot. If the robot’s
state estimation data has a large error, the v-graph it builds will deviate from the real world.

As shown in Figure 25, in the real world, the mobile robot made an error in the state
estimation, and the white pointcloud newly scanned by the LiDAR was obviously offset
from the colored obstacle pointcloud. This will lead to the establishment of an unreliable
v-graph, thus affecting the effect of path planning.

Figure 25. The unreliable v-graph.

6. Conclusions

This paper proposed a sparse visibility graph-based path planner based on the FAR
Planner framework. Our method is far superior to the FAR Planner in terms of the efficiency
of v-graph maintenance and generation. Our method can be used for navigation in known
environments and exploration in unknown environments. Moreover, a complementary
hollow grid is designed for local layer updates and merges the local layer into the global
layer. For complex obstacles in the environment, a method was proposed to reduce the cost
of maintaining the v-graph by simplifying the vertices and edges of polygons. For small
obstacles, their information is still preserved in the graph. Moreover, the paper proposed
a path planning method based on a bidirectional breadth-first search combined with
the v-graph. By comparing the original algorithm of FAR Planner and the traditional
search algorithms A* and D* Lite, ours achieves the optimal path planning in unknown
environments, and the speed of the path search algorithm is faster than that of FAR Planner.
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Abstract: The performance of Global Navigation Satellite System (GNSS) and Inertial Navigation
System (INS) integrated navigation can be severely degraded in urban canyons due to the non-line-
of-sight (NLOS) signals and multipath effects. Therefore, to achieve a high-precision and robust
integrated system, real-time fault detection and localization algorithms are needed to ensure integrity.
Currently, the residual chi-square test is used for fault detection in the positioning domain, but it has
poor sensitivity when faults disappear. Three-dimensional (3D) light detection and ranging (LiDAR)
has good positioning performance in complex environments. First, a LiDAR aided real-time fault
detection algorithm is proposed. A test statistic is constructed by the mean deviation of the matched
targets, and a dynamic threshold is constructed by a sliding window. Second, to solve the problem
that measurement noise is estimated by prior modeling with a certain error, a LiDAR aided real-time
measurement noise estimation based on adaptive filter localization algorithm is proposed according
to the position deviations of matched targets. Finally, the integrity of the integrated system is assessed.
The error bound of integrated positioning is innovatively verified with real test data. We conduct
two experiments with a vehicle going through a viaduct and a floor hole, which, represent mid and
deep urban canyons, respectively. The experimental results show that in terms of fault detection,
the fault could be detected in mid urban canyons and the response time of fault disappearance is
reduced by 70.24% in deep urban canyons. Thus, the poor sensitivity of the residual chi-square test
for fault disappearance is improved. In terms of localization, the proposed algorithm is compared
with the optimal fading factor adaptive filter (OFFAF) and the extended Kalman filter (EKF). The
proposed algorithm is the most effective, and the Root Mean Square Error (RMSE) in the east and
north is reduced by 12.98% and 35.1% in deep urban canyons. Regarding integrity assessment, the
error bound can overbound the positioning errors in deep urban canyons relative to the EKF and the
mean value of the error bounds is reduced.

Keywords: GNSS/INS; 3D LiDAR; fault detection; localization; integrity assessment

1. Introduction

A reliable positioning system is the basis of autonomous driving [1]. Integrity is an
important indicator for ensuring the driving safety of vehicles. The integration of the
Global Satellite Navigation System (GNSS) and the Inertial Navigation System (INS) could
provide real-time and high-precision positioning and this approach is widely used in
military and civil fields [2,3]. However, positioning and navigation in urban canyons is still
a challenge [4] because multipath GNSS signals are received due to reflection or non-line-of-
sight (NLOS) signals are received due to diffraction; this eventually leads to unacceptable
GNSS measurement errors [5–7]. The comprehensive positioning performance of the
GNSS/INS integrated navigation system is seriously degraded. Therefore, to meet the
positioning performance requirements in urban canyons, such as viaducts, floor holes and
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tunnels, the real-time detection of GNSS/INS integrated system positioning performance
is essential. However, in urban canyons, there are a lot of satellites affected by NLOS and
multipath. With all four core GNSS constellations of the world in operation, the number of
affected satellites is ten or more. It is difficult to detect all the affected satellites and exclude
them from the localization solution by traditional algorithm such as Multiple Solution
Separation (MSS). Therefore, we detect faults in the positioning domain. After faults are
detected, a GNSS/INS integration algorithm can be designed based on the detection results
to improve the positioning accuracy and ensure the integrity of the system.

GNSS fault detection methods are mainly divided based on whether to detect specific
faulty satellites [8]. Blanch et al. only used GNSS measurement information to propose
a method combining a greedy search and L1 norm minimization to detect satellites with
pseudo range errors greater than 20 m that were affected by multipath and NLOS sig-
nals [9]. However, in urban canyons, rapid changes in observation satellites reduced the
performance of the method. Sun et al. proposed a dynamic detection and multiple fault
elimination algorithm based on pseudo range comparison [10]. Using inertial measurement
unit (IMU) and GNSS pseudo range data, a parallel fault detection and exclusion scheme
consisting of a sliding window and a detector was designed, which can detect multiple
faulty satellites in real-time. This scheme is suitable for the tightly and loosely coupled
architecture. Groves et al. proposed a likelihood-based 3D-mapping-aided (3DMA) GNSS
ranging algorithm and signals, which are predicted to be non-line-of-sight (NLOS) to
contribute to the position solution without explicitly computing the additional path delay
due to NLOS reception, which is computationally expensive [11]. Sun et al. proposed a
new measurement noise covariance update scheme, with the adaptive indicator generated
from pseudo range error prediction results, for a tightly coupled GNSS/IMU navigation
system in urban areas [12]. Shytermeja and Attia et al. proposed the method of using a fish-
eye camera to suppress NLOS signals and eliminate influenced satellites [13,14]. Fisheye
images are divided into sky and non-sky regions. The GNSS fault detection can be realized
by identifying GNSS satellites in the non-sky region received by the receiver. However,
satellites affected by multipath signals cannot be excluded by this method. Moreover, the
processing technique used for camera data is complex. Wen et al. proposed a similar
approach using a real-time 3D point cloud or a sliding window map for identifying edges
on the top of the given building [15,16]. Based on the relationship between the edges
on the top of the building or double-decker bus and all observed satellites, the satellites
influenced by the NLOS signals are detected and pseudo ranges are corrected. However,
only the satellites affected by NLOS signals are detected, and the environmental conditions
are highly demanding. All four of the above methods need to detect specific affected
satellites and exclude them from the positioning solution. However, in urban canyons, lots
of satellites are affected by NLOS and multipath signals, so it is difficult to exclude them
individually. The residual chi-square test is widely used for fault detection; it constructs
a fault detector via the innovation of the Kalman filter (KF) [17]. The test is performed at
the positioning domain to detect whether a positioning fault is present. The algorithm is
efficient and works in real-time, but the sensitivity of the residual chi-square test is poor
when faults disappear. As mentioned above, although the effectiveness of the existing
fault detection algorithms for detecting satellites affected by multipath and NLOS signals
in complex environments has been proven, challenges remain concerning the real-time
performance of dynamic applications [18,19]. Therefore, it is necessary to propose a new
real-time fault detection algorithm to improve the sensitivity of the residual chi-square test
to fault disappearances, and the integrity of this approach should be assessed in terms of
its false alarm rate and missed detection rate. LiDAR is an important sensor in autonomous
driving localization, which has good performance in ranging and perception [20]. As
the cost of solid-state LiDAR decreases, LiDAR has a wider range of applications [21].
LiDAR has robust performance in building high-precision map and object detection for
autonomous driving [22,23]. In this paper, we carry out fault detection algorithm aided
by LiDAR.
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The KF is a famous recursive algorithm for discrete linear systems and has been
widely used in many fields [24]. When the given system is linear and the observed noise
follows a Gaussian distribution, the KF can be proven to be optimal. However, Chang et al.
pointed out that the noise probability does not obey a Gaussian distribution in practice,
and it is difficult to determine the dynamic model and statistical information of the noise
distribution [25]. Many scholars have studied a series of filters for non-Gaussian-distributed
noise. Gordon et al. developed a particle filter (PF) to address the problem of non-Gaussian
Bayesian estimation [26]. However, high-dimensional state estimation may result in a heavy
computational burden. The H∞ filter was proposed for the uncertainty of measurement
noise, but Rigatos pointed out that it could not solve the problem that GNSS-measured
values were outliers [27]. The fading filter and adaptive filter are two widely used filters
that have been proposed to solve the uncertainty of the noise distribution characteristics
of dynamic systems. Chen et al. analyzed the difference between the adaptive filter and
fading filter in detail. The fading filter mainly sets the weight of the state covariance
matrix, while the adaptive filter mainly sets the weight of the measured noise [28]. Fagin
and Sorenson proposed the fading filter algorithm in the 1960s [29]. Lee and Sun et al.
proposed utilizing the fading filter method in the field of integrated navigation [30,31].
Although these methods improve the performance of the KF and the resultant positioning
accuracy, many matrix multiplication and inversion operations are involved, resulting in
poor practicability. Li et al. proposed a dynamic fading filter algorithm to solve problems
with difficult matrix multiplication operations, greatly improving the performance of the
algorithm [2]. Li et al. proposed a fading filter to defend against outliers. When a GNSS
fault occurred, the innovation of the last n epochs was used to estimate the innovation of
the current epoch, but the weights of the last n epochs were not considered [32]. Wang
et al. developed the Sage–Husa adaptive filter, designed a sliding window and determined
the covariance matrix of the current epoch based on an iterative method, but it was quite
difficult to choose the window length [33]. Zhou et al. proposed a new adaptive unscented
KF (N-AUKF) algorithm [34]. A covariance matching criterion was designed to judge
the filtering divergence, and an adaptive weighted coefficient was applied to restrain the
divergence. However, this approach requires adequate measurements. Li et al. extended
this definition to Kalman filtering to detect gross errors, explained its nature and its relation
with the currently adopted Chi-square variables of Kalman filtering in model and data
spaces and compared them with the predictive residual statistics, starting by defining an
incremental chi-square method of recursive least squares [35]. All of the above algorithms
are effective in complex environments. However, the measurement noise is estimated by
prior modeling with a certain error. Therefore, it is necessary to estimate the measurement
noise with multi-sensor redundant measurement information.

Integrity is an important indicator of GNSS positioning in the aviation field [36].
Integrity evaluation from the GNSS to the GNSS/INS integrated positioning. Protection
level is an important index of integrity monitoring, which represents the upper limit of
positioning error [37]. However, in the existing research, the protection level in GNSS/INS
integrated positioning is mainly based on simulation experiments [38], so it is necessary to
carry out the verification protection level using the real test data. The protection level can
meet the application requirement of autonomous driving.

The main contributions of this paper are as follows. (1) Regarding the problem that
the residual chi-square test has low sensitivity when faults disappear, a LiDAR aided
real-time GNSS/INS integrated fault detection algorithm based on the characteristics of
high-precision 3D LiDAR is proposed. The test statistic is constructed based on the mean
position deviation of the matched targets, and the dynamic threshold is constructed by a
sliding window based on the power series. (2) To solve the problem that the measurement
noise is estimated by prior modeling with a certain error, a LiDAR aided measurement
noise estimation and filtering algorithm is proposed. The mean position deviations of the
matched targets for the last n epochs are normalized, and an adaptive weight sequence
is built. The adaptive measurement noise factor is joined with the Extended Kalman
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Filter (EKF) innovation covariance. (3) For the problem that the integrated navigation
error bounds are calculated by simulations in the existing research, we innovatively verify
the error bounds of the integrated navigation system on real test data and optimize the
algorithm of error bounds by using the filter in (2).

The subsequent sections of this paper are organized as follows. An overview of
the proposed algorithm is given in Section 2. The proposed LiDAR aided real-time fault
detection algorithm is presented in Section 3. In Section 4, the LiDAR aided measurement
noise estimation adaptive filter algorithm is provided. Two experiments are performed to
verify the effectiveness of the proposed algorithm, and its integrity is assessed in Section 5.
Finally, Section 6 presents the conclusions and directions for future studies.

2. Overview of the Proposed Algorithm

An overview of the algorithm proposed in this paper is shown in Figure 1. First, based
on LiDAR’s high-precision ranging and its perception of the surrounding environment,
a LiDAR aided real-time GNSS/INS integrated positioning fault detection algorithm is
proposed. A 3D LiDAR global point cloud map based on the LiDAR odometry and
mapping (LOAM) [39] algorithm is established in this paper, and the map is processed in
Cloud Compare software to mark the detected targets and achieve target detection. The
targets in this study are mainly rods, including tree trunks and lampposts. Onboard the
LiDAR, real-time scanning of the surrounding environment is carried out to detect the
targets of interest based on the single frame point cloud. The targets detected based on
this single frame point cloud are matched with the targets marked on the global point
cloud map. A test statistic is constructed based on the mean position deviation of the
matched targets, and a dynamic threshold is constructed by a sliding window based on
the power series. A detector is used for the detection of GNSS/INS integrated positioning
faults affected by NLOS and multipath signals. The specific implementation and detailed
description of the fault detection algorithm is in Section 3.

 

Figure 1. System framework of the proposed algorithm.

296



Remote Sens. 2022, 14, 4641

Second, a LiDAR aided real-time measurement noise estimation adaptive filter po-
sitioning algorithm is proposed. Based on the proposed fault detection algorithm, the
proposed positioning algorithm is used to improve the performance of GNSS/INS in-
tegrated positioning. The adaptive measurement noise factor is joined with the EKF
innovation covariance. The mean position deviations of the matched targets for the last
n epochs are normalized, and an adaptive weight sequence is built. Then, the innovation
of the current epoch is calculated. Thus, the adaptive measurement noise factor for the
current epoch is determined to achieve the proposed filtering and localization algorithm.
The specific implementation and detailed description of the localization algorithm are in
Section 4.

Finally, the integrity of the proposed algorithm is assessed based on real test data; the
evaluation metrics include the missed detection and false alarm rates for fault detection
and the error bounds of the localization algorithm. The integrity assessment is realized for
the proposed LiDAR aided fault detection and localization algorithm under the influence
of NLOS and multipath signals.

3. LiDAR Aided Real-Time Fault Detection Algorithm

3.1. KF Architecture and the Residual Chi-Square Test
3.1.1. KF Architecture

The KF is composed of state prediction and measurement update equations, as shown
in Equations (1) and (2), respectively [35]. In these equations, Xk represents the state
vector of the system at the kth epoch, Φk/k−1 denotes the state transition matrix of the
system from the (k − 1)th epoch to the kth epoch, Wk represents the system noise, Zk is the
measurement vector of the system at the kth epoch, Hk represents the system measurement
matrix at the kth epoch, Vk is the measurement noise vector and Γk is the system noise
distribution matrix.

Xk = Φk/k−1Xk−1 + ΓkWk (1)

Zk = HkXk + Vk (2)

In our research, the KF is used for integrating the GNSS and the INS and the loosely
coupled architecture is used. According to [40], we estimate a 15-dimensional state vector X,
which includes the position error δp, velocity error δvn, attitude error φn, static accelerome-
ter bias δba and static gyroscope bias δbg, each of which possesses a 3D vector. The state
vector X is given by

X =
[
δp δvnφnδbaδbg

]T (3)

The measurement vector Z is 3-dimensional, which includes the deviation between
the position of GNSS and INS. pGNSS and pINS are the GNSS position and INS position,
respectively. The pGNSS is the GNSS position of the output of Newton-M2 receiver with
onboard RTK.

Z = [pGNSS − pINS] =

⎡⎣ pX
GNSS − pX

INS
pY

GNSS − pY
INS

pZ
GNSS − pZ

INS

⎤⎦ (4)

The system noise vector W is 6-dimensional, which includes the gyroscope and ac-
celerometer noise. The matrix Q is the covariance of W.

Q = diag
[
σ2

gR σ2
gF σ2

gU σ2
aR σ2

aF σ2
aU

]
(5)

The measurement noise vector V is 3-dimensional, which includes the GNSS uncer-
tainty. The matrix R is the covariance of V.

R = diag
[
σ2

X σ2
Y σ2

Z
]

(6)

In the GNSS/INS integrated positioning, the Q is set by IMU sensor information and
the R is set by the GNSS uncertainty of the output of Newton-M2 receiver, which changes
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with time. When the GNSS positioning quality is degraded, the uncertainty becomes
significantly larger. The uncertainty of the output is in the Earth-North-Up (ENU) frame
and it is transformed to Earth-Centered and Earth-Fixed (ECEF) frame.

When the initial state information, the state vector X0 and the initial value of the one-
step prediction covariance matrix P0 is given, the optimal estimation of the state parameters
can be achieved according to the time prediction and measurement update processes by
using the state prediction and measurement update equations of the system in [31].

3.1.2. The Residual Chi-Square Test

According to [17], the test statistic of the residual chi-square test qk at the kth epoch is
constructed as

qk =
k

∑
i=1

γT
i S−1

i γi (7)

γk is the innovation of KF and Si is the covariance matrix of γk at the ith epoch.
In the residual chi-square test, the mean value of innovation is 0 under the no-fault

hypothesis H0. The test statistic follows the central chi-square distribution. In contrast,
under the fault hypothesis H1, the mean KF innovation value is not 0 and the test statistic
obeys the non-central chi-square distribution.{

H0: E(γk) = 0, qk ∼ χ2(n)
H1: E(γk) �= 0, qk ∼ χ2(n, λ)

(8)

For a determined false alarm probability PFA, the residual chi-square test threshold TD
is determined by the inverse of the chi-square cumulative distribution function (CDF) [3],
which is given by

P(qk ≤ TD/H0) =
∫ T

0
fχ2(n+1)(x)dx = 1 − PFA (9)

The residual chi-square test algorithm is used to detect faults in this study. The
performance of this algorithm is compared with that of the proposed algorithm.

3.2. LiDAR Aided Real-Time Fault Detection
3.2.1. The Theory of the Fault Detection Algorithm

The fault detection algorithm is realized by calculating the mean position deviation of
all matched targets. The positions of the detected targets can be determined by establishing
a global point cloud map. When no fault occurs, the vehicle can be located by GNSS/INS
integrated positioning. The observed position of each target can be obtained by jointly
exploiting the single frame point cloud target detection process of LiDAR. The position
deviation of the matched targets between the real-time observed positions and the detected
targets based on the 3D LiDAR map is very small. When the GNSS signals are affected by
NLOS and multipath signals, the GNSS/INS integrated positioning results are biased; thus,
large position deviations occur among the matched targets. A schematic diagram of the
fault detection procedure aided by LiDAR is shown in Figure 2.

3.2.2. Three-Dimensional LiDAR Mapping and Target Detection Based on a Map

An a priori 3D LiDAR global point cloud map is established based on IMU and LiDAR
data produced by LOAM [39]. First, the feature points are extracted, including the corner
points and flat points. Thus, the odometry is obtained by interframe matching. Then,
the map is obtained by matching the current frame with the built 10 Hz odometry to
obtain more accurate mileage information and update the 3D LiDAR map. Rods, including
lampposts and tree trunks, are extracted from the 3D LiDAR map using Cloud Compare
software [41]. They are used as the targets to be detected based on the 3D LiDAR map.
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Figure 2. Schematic diagram of the fault detection process aided by LiDAR.

3.2.3. Single Frame Point Cloud Target Detection

Real-time single frame point cloud target detection is mainly achieved based on a
point cloud library (PCL) [42]. First, the detection area of the single frame point cloud is set,
and then, a voxel grid filter is used to filter the single frame point cloud. Second, the point
cloud is segmented based on the road plane and obstacles by random sample consensus
(RANSAC). Third, the obstacles on the road are clustered by Euclidean clustering, and a
K-dimensional (KD) tree is used to conduct a nearest-neighbor search. Finally, the bounding
boxes are associated with the detected targets based on the single frame point cloud [43].

3.2.4. The Construction of the Test Statistic

The targets detected by the single frame point cloud are matched with the targets
detected by the global map, and the test statistic is constructed based on the mean position
deviation of the matched targets, where the number of matched targets is f.

The real position of the jth matched target Xj can be obtained from the 3D LiDAR
map at the kth epoch without faults. The observed position Xj

k can be obtained through
the vehicle position Pk

car, which is estimated by GNSS/INS integrated positioning, and the
relative positioning Lk

target, which is estimated by single frame point cloud target detection.

The real position Xj and the observed position Xj
k are approximately equal, as shown below:

Xj ≈ Xj
k = Pk

car + Lk
target (10)

The observed position Xj
i of the jth matched target at the ith epoch with GNSS faults

can also be obtained, and a large error is present between the 3D LiDAR map position Xj

and the matched position Xj
i .

Xj �= Xj
i = Pi

car + Li
target (11)

The test statistic is then constructed by calculating the mean horizontal difference ΔXi

between the real target position Xj and the observed target position Xj
i at each epoch for all

f matched targets, i.e.,

ΔXi =
1
f

f

∑
j=1

(
Xj − Xj

i

)
horizontal

(12)
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With the equations described in this section, the test statistic is constructed. In the next
section, a threshold calculation approach is provided.

3.2.5. The Threshold Constructed by an Adaptive Sliding Window

An adaptive sliding window approach is proposed to construct a dynamic threshold
for fault detection. An adaptive weight sequence is set up to determine the weight of each
value in the sliding window.

The threshold of the ith epoch is constructed by selecting the mean position de-
viation ΔX over the previous m epochs to construct a sliding window, which is de-
fined as {ΔXi−m · · ·ΔXi−2, ΔXi−1}. The adaptive weight sequence is selected as {αn} =

{α1, α2, · · · αm}, which satisfies the condition
m
∑

i=1
αn = 1. Each value in the adaptive weight

sequence {αn} is determined by a geometric sequence:

b1 + b2 + b3 · · ·+ bm =
(

1 − bm+1
)

/(1 − b) (13)

As 0 < b < 1, Equation (13) can be transformed into(
b1 + b2 + b3 · · ·+ bm

)
(1 − b)/

(
1 − bm+1

)
= 1 (14)

Assuming that (1 − b)/
(
1 − bm+1) = δ, Equation (14) is redefined as(

b1 + b2 + b3 · · ·+ bm
)

δ = δb + δb2 · · ·+ δbm = 1 (15)

Thus, the weight sequence can be determined by

{αn} = {α1, α2 · · · , αm} =
{

δb, δb2 · · · , δbm
}

(16)

The threshold can be constructed as

TD =
m

∑
n=1

αnΔXi−n (17)

To avoid false alarms when the threshold is too small while considering the measure-
ment errors of LiDAR and the lateral and longitudinal positioning accuracy standards
stated in [44], we set a threshold of 0.5 m when there are no NLOS and multipath effects.

Therefore, the final threshold is given by

TD = max

{
0.5,

m

∑
n=1

αnΔXi−n

}
(18)

Finally, with the test statistic and threshold, the hypothesis test is constructed as{
H0 : no f ault, ΔXi ≤ TD

H1 : f ault, ΔXi > TD
(19)

With the hypothesis test given by Equation (19), GNSS positioning faults are detected
in this study.

4. LiDAR Aided Measurement Noise Estimation Adaptive Filter Algorithm

4.1. Existing Adaptive Filter Algorithms
4.1.1. Single Fading Factor Adaptive Filter

Li et al. proposed an adaptive filter against outliers in [32] and designed a sliding
window with length n to save the innovation of the filter γk. If the GNSS fault is detected
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at the kth epoch, the innovation γk is replaced by the average value of the last n innovation
sequences and calculated as follows:

γk = (γk−1 + γk−2 · · ·+ γk−n)/n (20)

γk is brought into the KF calculation, and the modified innovation of the filter is saved
in the sliding data window.

4.1.2. Optimal Fading Factor Adaptive Filter

When the GNSS of an integrated navigation system has abnormal errors, the observa-
tion noise increases, which leads to an increase in the state covariance matrix P. Therefore,
Geng et al. proposed an optimal fading adaptive filter algorithm, adding a fading factor Sk
to the state prediction step of the state covariance matrix P [45]:

Pk/k−1 = SkΦk/k−1Pk−1ΦT
k/k−1

+ Qk−1 (21)

The convergence criterion of the KF is:

γT
k γk ≤ κtr

(
E
(
γkγ

T
k

))
(22)

where γk is the KF innovation, κ is the regulating coefficient and κ ≥ 1. The strictest
convergence condition is κ = 1, and γT

k γk takes the minimum value satisfying Equation (22).
To realize the optimal fading factor, it must meet the strictest convergence condition:

κ = 1, γT
k γk = tr

(
E
(
γkγ

T
k

))
(23)

This factor can be obtained from the properties of the innovation sequence:

E
(
γkγ

T
k

)
= HkPk/k−1HT

k + Rk (24)

We substitute Equation (21) into Equations (23) and (24) to obtain:

γT
k γk = SkHkΦk/k−1Pk−1ΦT

k/k−1
HT

k + HkQk−1HT
k + Rk (25)

Equation (25) is traced and simplified, and the formula of Sk is obtained:

Sk =
γT

k γk − tr
(
HkQk−1HT

k + Rk
)

tr
(

HkΦk/k−1Pk−1ΦT
k/k−1

HT
k

) (26)

It can be seen from Equation (26) that when the observed data are abnormal, the
sum squares of the innovation γT

k γk increase. Since the other parameters of the system
remain unchanged in Equation (26), the current Sk is increased correspondingly, which is
equivalent to increasing the state error covariance matrix P in Equation (21).

4.2. LiDAR Aided Real-Time Measurement Noise Estimation of Adaptive Filter

Single fading factor adaptive filter and optimal fading factor adaptive filter algorithms
are used to solve the uncertainty of measurement noise when GNSS is affected by multipath
and NLOS. The above algorithms can realize the optimal estimate in theory, but are based
on prior modeling. The real measurement noise is not considered.

Taking advantage of the above two algorithms and considering the specific problem,
we propose a LiDAR aided real-time measurement noise estimation adaptive filter algo-
rithm. In the proposed algorithm, a sliding window with a length of n is constructed. The
data in the sliding window are determined by the normalization of the mean position
deviation of the matched targets. The innovation of the filter at the fault epoch is estimated
in real-time. The value of the adaptive measurement noise factor is determined based on
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the strict theoretical derivation of the filter with the optimal fading factor. Real-time mea-
surement noise estimation is realized. Finally, the accuracy and robustness of GNSS/INS
integrated positioning are improved.

When faults are detected by the LiDAR aided real-time fault detection algorithm,
the LiDAR aided real-time measurement noise estimation adaptive filter is applied for
GNSS/INS integration. When faults are not detected, the EKF is applied. The algorithm
flow chart is shown in Figure 3.

 
Figure 3. Schematic diagram of the LiDAR aided measurement noise estimation adaptive filter.

The specific implementation of the LiDAR aided real-time measurement noise estima-
tion adaptive filter algorithm is shown in the following steps.

(1) An adaptive measurement noise factor λk is added to the innovation covariance Ak to
produce Equation (27):

Ak = E
(
γkγ

T
k

)
= HkPk/k−1HT

k + λkRk (27)

(2) According to the filter convergence conditions for Equations (23) and (24), the adaptive
measurement noise factor λk can be calculated [43].

λk =
γT

k γk − tr
(
HkPk/k−1HT

k
)

tr(Rk)
(28)

(3) The filter innovation in a fault epoch is calculated based on the sliding window.
λk is only related to γk from Equation (28), and γk in the kth epoch is constructed
by selecting the γ obtained with the previous n epochs to construct a sliding win-
dow, which is defined as {γk−1,γk−2 · · · ,γk−n}. The adaptive weight sequence is

selected as {βi} = {β1, β2, · · · βn}. The mean value Δ
¯
X of the corresponding epochs{

ΔXk−1
target, ΔXk−2

target · · · , ΔXk−n
target

}
is normalized, and the adaptive weight sequence

is determined.

βi =
ΔXi

target − ΔX

max
{

ΔXi
target

}
− ΔX

(29)

γk = β1γk−1 + β2γk−2 · · ·+ βnγk−n (30)

(4) Intelligent switching between the LiDAR aided real-time measurement noise estima-
tion adaptive filter algorithm and the EKF algorithm is realized to adapt to real-time
environmental changes.

(5) Finally, the proposed algorithm is compared with the optimal fading factor adaptive
filter (OFFAF) and the EKF.
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5. Experimental Results and Discussion

5.1. Introduction to the Experiment
5.1.1. Sensor Setups

In both experiments, Newton-M2, a low-accuracy GNSS/INS integrated navigation
system, was used to collect real-time kinematic (RTK) GNSS data at a frequency of 1 Hz
and INS data at a frequency of 100 Hz. A 3D LiDAR sensor (Velodyne 16) was to collect
raw 3D point clouds at a frequency of 10 Hz. In addition, the NovAtel SPAN-CPT7, a
high-accuracy GNSS (GPS, Global Navigation Satellite System (GLONASS), and Beidou)
RTK/INS integrated navigation system, was used to provide the ground truth positioning
data. The RTK is onboard and runs in real-time. The NovAtel SPAN-CPT7 is also affected
by multipath and NLOS, but the accuracy is higher and our research focuses on low-
precision and cheap integrated navigation devices. Therefore, the SPAN-CPT7 was used for
providing the ground truth. The coordinate systems between all the sensors were calibrated
before conducting the experiments. The experimental equipment is shown in Figure 4.

 
(a) (b) 

Figure 4. The experimental equipment for data collection. (a) The vehicle used for data collection
and the installation positions of the sensors. (b) Local magnification of the Newton-M2 and NovAtel
Span CPT7.

The Apollo 5.5 was used to collect GNSS and INS data from Newton-M2 and LiDAR
data from Velodyne 16. The data format is Protobuf. The Novatel SPAN-CPT7 saves the
data through the serial port. The data format is OEM7. The Newton-M2 and the Novatel
SPAN-CPT7 are synchronized to the GNSS and INS through GPS timing, and the LiDAR is
synchronized by the pulse per second (PPS) of the GPS timing.

5.1.2. Experimental Scenes

Since the residual chi-square test is widely used to detect faults in the positioning do-
main and the traditional EKF is the most commonly used GNSS/INS integrated navigation
algorithm, the proposed algorithm was compared with the EKF to verify its performance.
Two experiments were carried out in typical urban canyons in Beijing. The scenarios are
shown in Figure 5a,b, representing mid and deep urban canyons, respectively. We first
tested the situation in which the vehicle went through the narrow viaduct and the GNSS
signals were slightly affected for a short time, as shown in Figure 5a. Then, we carried out
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another experiment in which the vehicle went through a wide floor hole, and the GNSS
signals were seriously affected for a long time, as shown in Figure 5b.

  
(a) (b) 

Figure 5. The experimental scenes of cases 1 and 2. (a) Case 1: The GNSS was slightly affected when
the vehicle passed the narrow viaduct. (b) Case 2: The GNSS was seriously affected when the vehicle
passed the wide floor hole.

5.2. Case One: The Narrow Viaduct

In case one, the GNSS signal was slightly affected by multipath and NLOS signals
when the vehicle went through the narrow viaduct. The trajectory of the vehicle is shown
in Figure 6a. In our analysis, the positioning error is higher in the period from 149th s to
164th s. It happens to be similar that according to the onboard RTK data, the solution type
of GNSS positioning in the period from 149th s to 164th s was not “NARROW INT” (the
“NARROW INT” indicates that the multi-frequency RTK is a fixed solution in the NovAtel
receiver). Therefore, we needed to perform fault detection in this period. The positioning
errors in the east and north are shown in Figure 6b. The maximum errors in the east and
north were 1.1156 m and −0.84 m, respectively.

 
(a) (b) 

East(m)

Ground Truth
GNSS/INS EKF

Time(s)

Figure 6. Trajectory and positioning errors in the east and north. (a) The trajectory of the vehicle in
case 1. (b) The positioning errors in the east and north.
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The top view of the 3D LiDAR global point cloud map built by the LOAM algorithm is
shown in Figure 7. Figure 8 shows 31 tree trunks and lampposts marked in the 3D LiDAR
global point cloud map as detection targets. These targets are marked with colored points
in Figure 8 and numbered 0–30 from left to right in the east view.

 

Figure 7. Three-Dimensional LiDAR global point cloud map in case one.

Figure 8. Target detection in map numbered 0–30, including tree trunks and lampposts, derived from
the east view.

Two frame point clouds are randomly selected to present the point cloud target
detection results, as shown in Figure 9. Figure 9a shows the 645th frame, and a total of
10 targets were detected, including targets No. 8–10 marked in Figure 8. Figure 9b shows
the 1023rd frame, and a total of four targets were detected, including targets No. 17–18
marked in Figure 8.

  
(a) (b) 

Figure 9. Single frame point cloud target detection. (a) The 645th frame and No. 8–10 targets in
Figure 8. (b) The 1023rd frame and No. 17–18 targets in Figure 8.

Figure 10a shows the matched targets between the single frame target detection
outputs and the global map-based target detection results. Figure 10b shows the number of
detected targets and matched targets in each frame. It can be seen that at least one matched
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target is present in each frame. This meets the time continuity requirement of matched
targets and can support subsequent fault detection processes. Table 1 summarizes the
number of detected targets and matched targets obtained with single frame detection.

 

(a) (b) 

Time(s)
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Time(s)

Detected Targets
Matched Targets

Figure 10. Matched targets between the single frame and map-based target detection results. (a) The
No. 0–30 of matched targets for target detection in global map. (b) The number of detected and
matched targets in each frame.

Table 1. The number of detected and matched targets for single frame target detection.

Mean Max Min

The number of detected targets 9.297 20 2
The number of matched targets 2.092 5 1

The position deviations of all matched targets in each frame in the east and north
directions are shown in Figure 11a,b, respectively. Figure 12 shows the mean position
deviation of the matched targets in each frame, which is used as the test statistic for the
proposed fault detection algorithm.

(a) (b) 

Figure 11. The position deviations of the matched targets in the east and north. (a) The position
deviation of the matched targets in the east. (b) The position deviation of the matched targets in
the north.
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Time(s)

Time(s)

Figure 12. The mean position deviations of the matched targets in the east and north in case one.

Sensitivity is an important fault detection performance evaluation index, and the
missed detection rate and false alarm rate are important integrity assessment indices.
Figure 13a shows the fault detection result produced by the residual chi-square test, and
Figure 13b is the result of the proposed LiDAR aided real-time fault detection algorithm.
The fault detection performance of the two algorithms is compared in Table 2. The fault
could not be detected by the residual chi-square test, while the proposed algorithm could
detect the fault from 160.02th to 164.75th s. Therefore, it can be proven that the proposed
algorithm has higher sensitivity. The percentages of false alarms and missed detections were
reduced by 42.67% and 31.2%, respectively, relative to those of the residual chi-square test.

 
(a) (b) 

 
(c) 

Time(s)

Nominal
Fault
Threshold

Figure 13. Fault detection results of the residual chi-square test and the proposed algorithm. (a) The
fault detection result of the residual chi-square test. (b) The LiDAR aided real-time fault detection
result. (c) Local magnification for fault detection of proposed algorithm.
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Table 2. The fault detection performance of the chi-square test and the proposed algorithm.

The Residual Chi-Square Test Proposed Algorithm

The period of the fault From 149th to 164th s

Time of the first detected fault - 160.02nd s

Time of the last detected fault - 164.75nd s

Missed detection epochs 1600 1102

False alarm epochs 132 75

Response time of fault occurrence - 11.02 s

Response time of fault disappearance - 0.75 s

Percentage of false alarm 0.75% 0.43%

Percentage of missed detection 100% 68.88%

The proposed algorithm can mainly be used to solve the existing problems faced by the
EKF algorithm during the fault period. The positioning errors of the EKF, OFFAF and the
proposed algorithm in the east and north are shown in Figure 14. The results are analyzed
in Table 3. Compared with the EKF, the mean, maximum and root mean square error
(RMSE) positioning errors of the proposed algorithm were reduced by 67.66%, 51.9% and
71.58% in the east and 12.93%, 27.02% and 33.6% in the north, respectively. Compared with
the OFFAF, the mean, maximum and root mean square error (RMSE) positioning errors
of the proposed algorithm were reduced by 51%, 39.1% and 60.3% in the east and −5.2%,
21.1% and 19.2% in the north, respectively. The proposed algorithm is more effective than
the OFFAF.

Figure 14. Positioning errors in the east and north for the EKF, OFFAF and the proposed algorithm.
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Table 3. The GNSS/INS integrated positioning performance of the EKF and the proposed algorithm.

East North

Mean (m) Max (m) RMSE (m) Mean (m) Max (m) RMSE (m)

GNSS/INS EKF 0.303 1.156 0.387 0.232 0.84 0.247
OFFAF 0.2 0.9132 0.2768 0.192 0.777 0.203

Proposed
Algorithm 0.098 0.556 0.11 0.202 0.613 0.164

The error bound, which is the upper limit of positioning error, is an important integrity
assessment index. When the positioning error exceeds the error bounds, an alarm is trig-
gered. The existing research on integrated navigation error bounds were mainly performed
by simulation experiments in [38]. In this study, the error bound of integrated navigation is
innovatively verified with real test data. The error bounds and horizontal positioning error
for the EKF and the proposed algorithm are shown in Figure 15a,b, respectively. In the two
algorithms, the error bounds could overbound the horizontal error. From Table 4, the mean
value and maximum value of the error bounds of the proposed algorithm were reduced by
53.03% and 57.88%, respectively, relative to the EKF during the fault period.

 
(a) (b) 

Time(s)

Horizontal Error
Error Bounding

Time(s)

Horizontal Error
Error Bounding

Figure 15. The error bounds and horizontal error of the EKF and the proposed algorithm in case one.
(a) The error bounds and horizontal error of the EKF. (b) The error bounds and horizontal error of the
proposed algorithm.

Table 4. The error bounds of the EKF and proposed algorithm during the fault period.

Error Bounds GNSS/INS EKF Proposed Algorithm

Fail to overbound epochs 0 0
Mean (m) 10.1346 4.76
Max (m) 14.6365 6.165

5.3. Case Two: The Wide Floor Hole

In case two, the GNSS signal was seriously affected by multipath and NLOS signals
when the vehicle went through the wide floor hole. The trajectory of the vehicle during
data collection is shown in Figure 16a. The vehicle circled twice around the red trajectory
in Figure 5b. In our analysis, the positioning error is higher in the period from the 179th
to 198th s and from the 377th to 401st s. It happens to be similar according to the onboard
RTK data, the solution types of the GNSS positioning results in this period were not
“NARROW INT”. It is believed that the GNSS was affected by multipath and NLOS
signals. The positioning errors induced in the east and north during data collection are
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shown in Figure 16b. The maximum errors in the east and north were −4.2601 m and
−19.5848 m, respectively.

 
(a) (b) 

East(m)

Ground Truth
GNSS/INS EKF

Time(s)

Figure 16. Trajectory and positioning errors in the east and north. (a) The trajectory of the vehicle in
case 2. (b) The positioning errors in the east and north.

Figure 17 shows the top view of the 3D LiDAR global point cloud map built by the
LOAM algorithm. Figure 18 shows 26 tree trunks and lampposts marked as detection
targets in the 3D LiDAR global point cloud map. They are marked with colored points in
Figure 18 and numbered from 0–25.

 
Figure 17. Three-Dimensional LiDAR global point cloud map in case two.
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Figure 18. Detection targets in the map numbered 0–25, including tree trunks and lampposts.

Figure 19 shows the results of single frame target detection. We took two frames as the
vehicle went through the floor hole. Figure 19a shows the 1742nd frame, and a total of nine
targets were detected, including targets numbered twenty-three to twenty-four marked in
Figure 18. Figure 19b shows the 1856th frame, and a total of twelve targets were detected,
including targets numbered twenty-three to twenty-five marked in Figure 18.

 
(a) (b) 

Figure 19. Single frame point cloud target detection results. (a) The 1742nd frame and No. 23–24
targets in Figure 18. (b) The 1856th frame and No. 23–25 targets in Figure 18.

Figure 20a shows the matched targets between the single frame target detection
outputs and the global map-based target detection results. Figure 20b shows the number
of detected targets and matched targets in each frame. It can be seen that at least one
matched target was observed in any epoch. This outcome meets the time continuity
requirement of matched targets and can support subsequent fault detection processes.
Table 5 summarizes the number of detected targets and matched targets obtained with
single frame target detection.
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Time(s)
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Figure 20. Matched targets between the single frame and map-based target detection results. (a) The
No. 0–25 of matched targets for target detection in the global map. (b) The number of detected and
matched targets in each frame.

Table 5. The number of detected targets and matched targets.

Mean Max Min

The number of detected targets 8.40 27 2
The number of matched targets 2.19 6 1

The position deviations of all matched targets in each frame in the east and north
directions are shown in Figure 21a,b, respectively. Figure 22 shows the mean position
deviation of the matched targets in each frame, which is used as the test statistic for the
proposed fault detection algorithm.

(a) (b) 

Figure 21. The position deviations of the single frame matched targets in the east and north. (a) The
position error of the matched targets in the east. (b) The position error of the matched targets in
the north.
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Time(s)

Time(s)

Figure 22. The mean position deviations of the matched targets in the east and north in case two.

Similar with Figure 13, Figure 23a shows the fault detection results produced by
the residual chi-square test. The results of the two fault detection algorithms are locally
magnified in Figure 24a,b. Figure 23b is the result of the proposed LiDAR aided real-time
fault detection algorithm. The results of the two fault detection approaches are locally
magnified in Figure 24c,d. The fault detection performances of the two algorithms are
compared in Table 6. The response time of fault disappearance was 8.94 s and 6.62 s for the
residual chi-square test, but they were reduced by 5.465 s on average with the proposed
algorithm. Therefore, the low-sensitivity problem of the residual chi-square test for the fault
disappearance case is effectively ameliorated. Furthermore, the percentages of false alarm
and missed detection were 6.26% and 0.69% for the proposed LiDAR aided real-time fault
detection algorithm, which are reductions of 76.49% and 79.03% relative to the residual
chi-square test results, respectively.

 
(a) (b) 

Time(s)

Nominal
Fault
Threshold

Time(s)

Nominal
Fault
Threshold

Figure 23. Fault detection results of the residual chi-square test and the proposed algorithm. (a) The fault
detection results of the residual chi-square test. (b) The LiDAR aided real-time fault detection results.
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(a) (b) 

 

(c) (d) 

Figure 24. Local magnifications of Figure 23 for the fault detection algorithm. (a) The first fault
detected by the residual chi-square test. (b) The second fault detected by the residual chi-square
test. (c) The first fault detected by the LiDAR aided fault detection algorithm. (d) The second fault
detected by the LiDAR aided fault detection algorithm.

Table 6. The fault detection performance of the residual chi-square test and the proposed algorithm.

The Residual Chi-Square Test Proposed Algorithm

The fault period From 179th to 198th s From 377th to 401th s From 179th to 198th s From 377th to 401th s

Time of the first
detected fault 179.71th s 379.34th s 179.34th s 377.51th s

Time of the last
detected fault 206.94th s 407.62th s 200.91th s 402.72th s

Missed
detection epochs 1145 269

False alarm epochs 1287 271

Response time of
fault occurrence 0.71 s 2.34 s 0.34 s 0.51 s

Response time of
fault disappearance 8.94 s 6.62 s 2.91 s 1.72 s

Percentage of
false alarm 26.63% 6.26%

Percentage of
missed detection 3.29% 0.69%
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Similar with Figure 14, the positioning errors of the EKF, OFFAF and the proposed
algorithm in the east and north for case two are shown in Figure 25. The results are analyzed
in Table 7. Compared with the EKF, the mean, maximum and RMSE positioning errors of
the proposed algorithm were reduced by 7.4%, 20.49% and 12.81% in the east and 79.12%,
68.22% and 73.31% in the north, respectively, during the fault period. Compared with
the OFFAF, the mean, maximum and RMSE positioning errors of the proposed algorithm
were reduced by 26.2%, 3.7% and 12.98% in the east and 51.7%, 18.8% and 35.1% in the
north, respectively, during the fault period. The proposed algorithm is more effective than
the OFFAF.

EKF OFFAF Proposed Algorithm

Time(s)

Figure 25. Positioning errors of the proposed algorithm in the east and north in case two.

Table 7. The GNSS/INS integrated positioning performance of the EKF, OFFAF and the proposed algorithm.

East North

Mean (m) Max (m) RMSE (m) Mean (m) Max (m) RMSE (m)

GNSS/INS EKF 1.094 4.26 1.007 8.876 19.5848 6.137
OFFAF 1.372 3.517 1.009 3.84 7.669 2.524

Proposed
Algorithm 1.013 3.387 0.878 1.853 6.224 1.638

Similar with Figure 15, the error bounds and positioning errors induced by the EKF and
the proposed algorithm in the horizontal direction in case two are shown in Figure 26a,b,
respectively. The error bounds of the EKF could not overbound the horizontal errors in
some epochs. However, the error bound of the proposed algorithm could overbound
the horizontal error in all epochs. From Table 8, the error bounds failed to overbound
the horizontal error in 1490 epochs. The mean value and maximum value of the error
bounds yielded by the proposed algorithm were reduced by 56.35% and 73.2%, respectively,
relative to the EKF during the fault period. Therefore, the integrity of the system could be
guaranteed by the proposed algorithm.
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(a) (b) 

Figure 26. The error bounds and horizontal error of the EKF and the proposed algorithm in case 2.
(a) The error bounds and horizontal error of the EKF. (b) The error bounds and horizontal error of the
proposed algorithm.

Table 8. The error bounds of the EKF and the proposed algorithm during the fault period.

Error Bounds GNSS/INS EKF Proposed Algorithm

Fail to overbound epochs 1490 0
Mean (m) 11.771 5.137
Max (m) 28.546 7.649

5.4. Discussion

In our research, the LiDAR aided GNSS/INS integration fault detection and local-
ization algorithm is proposed. The proposed fault detection algorithm could effectively
improve the sensitivity of residual chi-square test when the fault disappears. The response
time for fault disappearance is an important indicator. The localization algorithm could
reduce the positioning error compared to EKF. Finally, the integrity of the proposed al-
gorithm is evaluated including false alarm rate, missed detection rate and error bounds.
The algorithms proposed in this paper are oriented to the autonomous driving for level
four (L4) or level five (L5). However, due to the limitation of experimental conditions, some
problems should be considered.

Firstly, in terms of prior point cloud map, the map constructed by LOAM has errors.
However, in our experiments, the map is built on a small scene and the error of the map
established by LOAM is less than 0.3 m, which is very small compared with the error
caused by multipath and NLOS. Therefore, the error of LOAM is acceptable and it has
little effect on the performance of the algorithm. The cost of construction of a prior global
point cloud map is high only for the proposed algorithm. However, a high-precision point
cloud map is an indispensable part of autonomous localization in the existing research.
In the future, the HD map can be produced in the industry which is cheaper and more
accurate. The proposed algorithm can be applied with the help of HD map and produce
more effect. The map is established offline and will not affect the real-time performance
of our algorithm. Storing maps takes up a lot of memory, but is not a major direction in
our research. We believe this problem of memory will be solved with the autonomous
driving implementation.

Secondly, in terms of point cloud processing being involved in target detection, in
this paper, the target detection of a single frame point cloud is carried out by clustering.
Object detection of single frame is required in the perception module of autonomous
driving. Our algorithm can reuse relevant results in the application process. Therefore,
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we believe that real-time performance could be guaranteed when the autonomous driving
is implemented. In the meanwhile, time delay is also our main research direction in the
future, and proposed algorithms need more lightweight processing. The research on the
time delay model in [46–48] provides us with a good reference.

Thirdly, in terms of target matching, in this paper, target matching is used instead
of scan matching. On the one hand, the target is generally marked in the high-precision
semantic map of autonomous driving. We hope that the proposed algorithm can make
better use of high-precision semantic map information in future autonomous driving
applications. On the other hand, the real-time performance of the proposed algorithm is
considered. There are many feature points to be matched on scan matching, reducing the
efficiency of the algorithm. Therefore, we apply target matching.

Fourthly, in terms of GNSS/INS integration device and ground truth. In our research,
we focus on solving the error problem of the low-cost GNSS/INS integration device so that
the low-cost device has a better application value in autonomous driving. The NovAtel
SPAN-CPT7 is also affected by multipath and NLOS, but it is more expensive and the
positioning accuracy is higher compared to the Newton-M2. Therefore, the SPAN CPT7 is
used for providing the ground truth. We are also looking forward to better ground truth
solutions in dynamic scenarios for urban canyons positioning.

Finally, in terms of data collection. Due to the limitation of experimental conditions,
we conducted tests in two scenarios in this paper with small data samples. In the future,
we will collect a large amount of data in urban canyons to verify the performance of our
algorithm and make further improvements.

6. Conclusions

GNSS/INS integrated positioning is widely used in intelligent transportation systems
(ITS). However, in urban canyons, due to the reception of NLOS and multipath, GNSS
positioning performance is significantly affected, which in turn seriously affects the perfor-
mance of GNSS/INS integrated positioning systems. First, a 3D LiDAR aided real-time
fault detection algorithm was proposed. Then, a LiDAR aided real-time measurement noise
estimation algorithm with an adaptive filter was proposed. Finally, the integrity of the
proposed algorithms was assessed. To verify the performance of the proposed algorithm,
experiments were carried out to compare it with the current method; the test scenario
involved a vehicle going through a narrow viaduct and a wide floor hole in case one and
case two, respectively. The experimental results were as follows.

(1) In terms of the fault detection performance evaluation, the response time for fault
disappearance is an important indicator. A slight fault could be detected by the
proposed algorithm, but not by the residual chi-square test in case one. Therefore, the
slight fault could be detected by our proposed algorithm. The response time of fault
disappearance was reduced by 5.465 s on average in case two. Therefore, the low-
sensitivity problem of the residual chi-square test with respect to fault disappearance
was effectively ameliorated.

(2) In terms of localization, the horizontal positioning error is an important indicator.
Compared with the EKF, the RMSEs in the east and north were reduced by 71.58%
and 33.6% in case one and 12.98% and 35.1% in case two, respectively, by the proposed
positioning algorithm. Compared with the OFFAF, the RMSEs in the east and north
were reduced by 60.3% and 19.2% in case one and 12.81% and 73.31% in case two,
respectively, by the proposed positioning algorithm.

(3) In terms of the integrity assessment, the false alarm rate, missed detection rate and
the error bounds are the three important indicators. The percentage of false alarm
and missed detection were reduced by 42.67% and 31.2% in case one and 76.49% and
79.03% in case two, respectively. The performance of the proposed fault detection
algorithm was better in more complex environments. The error bounds of the EKF
and the proposed algorithm could effectively overbound the positioning errors in case
one. However, the error bound of the proposed algorithm could tightly overbound
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the positioning errors, and the mean value of the error bounds was reduced by 53.03%.
In case two, the error bound of the EKF could not overbound the positioning errors in
1490 epochs. However, the error bounds of the proposed algorithm could overbound
the positioning errors in all epochs, and the mean value of the error bounds was
reduced by 56.35%.

In general, the proposed algorithm can achieve significantly improved positioning
performance in terms of accuracy and integrity. It is necessary to verify the performance of
the proposed algorithms in different scenarios to satisfy industrial requirements, and this
will be the focus of future work.

Author Contributions: Conceptualization, B.L. and K.F.; methodology, B.L. and Z.D.; validation, B.L.;
formal analysis, B.L.; writing—original draft preparation, B.L.; writing—review and editing, H.W.
and Z.W.; visualization, B.L.; supervision, Z.W.; project administration, Z.W.; funding acquisition,
Z.W. All authors have read and agreed to the published version of the manuscript.

Funding: The work was carried out with financial support from the National Key Research and De-
velopment Program of China (grant No. 2020YFB0505602), the National Natural Science Foundation
of China (grant Nos. 61871012 and 62022012), the Civil Aviation Security Capacity Building Fund
Project (grant Nos. CAAC Contract 2021(77) and CAAC Contract 2020(123)) and the Beijing Nova
Program of Science and Technology (grant No. Z191100001119134).

Data Availability Statement: The raw/processed data required to reproduce these findings cannot
be shared at this time, as the data also form part of an ongoing study.

Acknowledgments: The authors would like to thank the researchers at the National Key Laboratory
of CNS/ATM for their advice and interests.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Sun, R.; Zhang, W.; Zheng, J.; Ochieng, W.Y. GNSS/INS Integration with Integrity Monitoring for UAV No-fly Zone Management.
Remote Sens. 2020, 12, 524. [CrossRef]

2. Wang, Z.; Li, X.; Zhu, Y.; Li, Q.; Fang, K. Integrity monitoring of Global Navigation Satellite System/Inertial Navigation System
integrated navigation system based on dynamic fading filter optimization. IET Radar Sonar Navig. 2022, 16, 515–530. [CrossRef]

3. Ma, C.; Zhang, Q.; Meng, X.; Zheng, N.; Pan, S. A Novel Ambiguity Parameter Estimation and Elimination Strategy for GNSS/INS
Tightly Coupled Integration. Remote Sens. 2020, 12, 3514. [CrossRef]

4. Schütz, A.; Sánchez-Morales, D.E.; Pany, T. Precise Positioning Through a Loosely-coupled Sensor Fusion of GNSS-RTK, INS and
LiDAR for Autonomous Driving. In Proceedings of the 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS),
Portland, OR, USA, 20–23 April 2020; pp. 219–225.

5. Zhou, T.; Hasheminasab, S.M.; Ravi, R.; Habib, A. LiDAR Aided Interior Orientation Parameters Refinement Strategy for
Consumer-Grade Cameras Onboard UAV Remote Sensing Systems. Remote Sens. 2020, 12, 2268. [CrossRef]

6. Masiero, A.; Toth, C.; Gabela, J.; Retscher, G.; Kealy, A.; Perakis, H.; Gikas, V.; Grejner-Brzezinska, D. Experimental Assessment of
UWB and Vision-Based Car Cooperative Positioning System. Remote Sens. 2021, 13, 4858. [CrossRef]

7. Sun, R.; Qiu, M.; Liu, F.; Wang, Z.; Ochieng, W.Y. A Dual w-Test Based Quality Control Algorithm for Integrated IMU/GNSS
Navigation in Urban Areas. Remote Sens. 2022, 14, 2132. [CrossRef]

8. Li, B.; Dan, Z.; Fang, K.; Guo, K.; Wang, Z.; Zhu, Y. A LiDAR Aided Real-time GNSS Fault Detection Algorithm in Urban
Environments. In Proceedings of the 2022 International Technical Meeting of The Institute of Navigation, Long Beach, CA, USA,
25–27 January 2022; pp. 1273–1287.

9. Blanch, J.; Walter, T.; Enge, P. Fast multiple fault exclusion with a large number of measurements. In Proceedings of the 2020
International Technical Meeting of The Institute of Navigation, Dana Point, CA, USA, 26–28 January 2015; pp. 696–701.

10. Sun, R.; Wang, J.; Cheng, Q. A new IMU-aided multiple GNSS fault detection and exclusion algorithm for integrated navigation
in urban environments. GPS Solut. 2021, 25, 147. [CrossRef]

11. Groves, P.; Adjrad, M. Likelihood-based GNSS positioning using LOS/NLOS predictions from 3D mapping and pseudoranges.
GPS Solut. 2017, 21, 1805–1816. [CrossRef]

12. Sun, R.; Zhang, Z.; Cheng, Q.; Ochieng, W.Y. Pseudorange error prediction for adaptive tightly coupled GNSS/IMU navigation in
urban areas. GPS Solut. 2022, 26, 1–13. [CrossRef]

13. Shytermeja, E.; Garcia-Pena, A.; Julien, O. Proposed architecture for integrity monitoring of a GNSS/MEMS system with a
Fisheye camera in urban environment. In Proceedings of the International Conference on Localization and GNSS 2014 (ICL-GNSS
2014), Helsinki, Finland, 24–26 June 2014; pp. 1–6.

318



Remote Sens. 2022, 14, 4641

14. Attia, D.; Meurie, C.; Ruichek, Y.; Marais, J.; Flancquart, A. Image analysis based real time detection of satellites reception state.
In Proceedings of the 13th International IEEE Annual Conference on Intelligent Transportation Systems, Funchal, Portugal, 19–22
September 2010; pp. 1651–1656.

15. Wen, W.; Zhang, G.; Hsu, L.-T. Correcting NLOS by 3D LiDAR and building height to improve GNSS single point positioning.
Navigation 2019, 66, 705–718. [CrossRef]

16. Wen, W.; Hsu, L.-T. 3D LiDAR Aided GNSS NLOS Mitigation in Urban Canyons. In Proceedings of the IEEE Transactions on
Intelligent Transportation Systems, Macau, China, 8–12 October 2022; pp. 1–13.

17. Liu, B.; Gao, Y.; Gao, Y.; Wang, S. HPL calculation improvement for Chi-squared residual-based ARAIM. GPS Solut. 2022, 26, 45.
[CrossRef]

18. Qian, C.; Liu, H.; Tang, J.; Chen, Y.; Kaartinen, H.; Kukko, A.; Zhu, L.; Liang, X.; Chen, L.; Hyyppä, J. An Integrated
GNSS/INS/LiDARSLAM Positioning Method for Highly Accurate Forest Stem Mapping. Remote Sens. 2017, 9, 3. [CrossRef]

19. Feng, S.; Ochieng, W.Y. A difference test method for early detection of slowly growing errors in GNSS positioning. J. Navig. 2007,
60, 427. [CrossRef]

20. Aldibaja, M.; Suganuma, N.; Yoneda, K.; Yanase, R. Challenging Environments for Precise Mapping Using GNSS/INS-RTK
Systems: Reasons and Analysis. Remote Sens. 2022, 14, 4058. [CrossRef]

21. Wang, Y.; Lou, Y.; Zhang, Y.; Song, W.; Huang, F.; Tu, Z. A Robust Framework for Simultaneous Localization and Mapping with
Multiple Non-Repetitive Scanning Lidars. Remote Sens. 2021, 13, 2015. [CrossRef]

22. Wang, W.; Liu, J.; Wang, C.; Luo, B.; Zhang, C. DV-LOAM: Direct Visual LiDAR Odometry and Mapping. Remote Sens. 2021,
13, 3340. [CrossRef]

23. Fiorucci, M.; Verschoof-van der Vaart, W.B.; Soleni, P.; Le Saux, B.; Traviglia, A. Deep Learning for Archaeological Object Detection
on LiDAR: New Evaluation Measures and Insights. Remote Sens. 2022, 14, 1694. [CrossRef]

24. Jiang, H.; Li, T.; Song, D.; Shi, C. An Effective Integrity Monitoring Scheme for GNSS/INS/Vision Integration Based on Error
State EKF Model. IEEE Sens. J. 2022, 22, 7063–7073. [CrossRef]

25. Chang, G. Robust Kalman filtering based on Mahalanobis distance as outlier judging criterion. J. Geodesy. 2014, 88, 391–401.
[CrossRef]

26. Gordon, N.J.; Salmond, D.J.; Smith, A.F.M. Novel approach to non-linear/non-Gaussian Bayesian state estimation. IEE Proc.
F-Radar Signal Process 1993, 140, 107–113. [CrossRef]

27. Rigatos, G.; Siano, P.; Wira, P.; Busawon, K.; Binns, R. A nonlinear H-infinity control approach for autonomous truck and trailer
systems. Unmanned Syst. 2020, 8, 49–69. [CrossRef]

28. Jiang, C.; Zhang, S.; Li, H. Performance evaluation of the filters with adaptive factor and fading factor for GNSS/INS integrated
systems. GPS Solut. 2021, 25, 130. [CrossRef]

29. Fagin, S.L. Recursive linear regression theory, optimal filter theory and error analysis of optimal systems. IEEE Int. 1964, 12,
216–240.

30. Lee, T. Theory and application of adaptive fading memory Kalman filters. IEEE Trans. Circuits Syst. 1988, 35, 474–477. [CrossRef]
31. Sun, J.; Ye, Q.; Lei, Y. In-Motion Alignment Method of SINS Based on Improved Kalman Filter under Geographic Latitude

Uncertainty. Remote Sens. 2022, 14, 2581. [CrossRef]
32. Li, W. Research on Adaptive Kalman Filter and Fault-Tolerant Algorithm Used in in-Vehicle Integrated Navigation System.

Master’s Thesis, National University of Defense Technology, Changsha, China, 2008.
33. Wang, Y.; Liu, J.; Wang, J.; Zeng, Q.; Shen, X.; Zhang, Y. Micro Aerial Vehicle Navigation with Visual-Inertial Integration Aided by

Structured Light. J. Navig. 2020, 73, 16–36. [CrossRef]
34. Zhou, H.; Huang, H.; Zhao, H.; Zhao, X.; Yin, X. Adaptive Unscented Kalman Filter for Target Tracking in the Presence of

Nonlinear Systems Involving Model Mismatches. Remote Sens. 2017, 9, 657. [CrossRef]
35. Li, B.; Chen, W.; Peng, Y.; Dong, D.; Wang, Z.; Xiao, T.; Yu, C.; Liu, M. Robust Kalman Filtering Based on Chi-square Increment

and Its Application. Remote Sens. 2020, 12, 732. [CrossRef]
36. Gao, Z.; Fang, K.; Wang, Z.; Guo, K.; Liu, Y. An Error Overbounding Method Based on a Gaussian Mixture Model with Uncertainty

Estimation for a Dual-Frequency Ground-Based Augmentation System. Remote Sens. 2022, 14, 1111. [CrossRef]
37. Fang, X.; Song, D.; Shi, C.; Fan, L.; Hu, Z. Multipath Error Modeling Methodology for GNSS Integrity Monitoring Using a Global

Optimization Strategy. Remote Sens. 2022, 14, 2130. [CrossRef]
38. Lee, J.; Kim, M.; Lee, J.; Pullen, S. Integrity assurance of Kalman-filter based GNSS/IMU integrated systems against IMU faults

for UAV applications. In Proceedings of the 31st International Technical Meeting of the Satellite Division of The Institute of
Navigation (ION GNSS+ 2018), Miami, FL, USA, 24–28 September 2018; pp. 2484–2500.

39. Zhang, J.; Singh, S. Low-drift and real-time lidar odometry and mapping. Auton. Robots 2017, 41, 401–416. [CrossRef]
40. Wan, G.; Yang, X.; Cai, R.; Li, H.; Zhou, Y.; Wang, H.; Song, S. Robust and Precise Vehicle Localization Based on Multi-Sensor

Fusion in Diverse City Scenes. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA),
Brisbane, QLD, Australia, 21–25 May 2018; pp. 4670–4677.

41. CloudCompare. Available online: https://www.cloudcompare.org/doc/qCC (accessed on 22 August 2022).
42. Rusu, R.; Cousins, S. 3D is here: Point Cloud Library (PCL). In Proceedings of the 2011 IEEE International Conference on Robotics

and Automation (ICRA), Shanghai, China, 9–13 May 2011; pp. 1–4.

319



Remote Sens. 2022, 14, 4641

43. Teng, D. Resaeach on Dynamic Path Planning for Driverless Vehicles Based on LiDAR and Camera. Master’s Thesis, Nanjing
University of Aeronautics and Astronautics, Nanjing, China, 2020.

44. Groves, P.D. Principles of GNSS, Inertial, and Multi Sensor Integrated Navigation Systems; Artech House: London, UK, 2013.
45. Geng, Y.; Wang, J. Adaptive estimation of multiple fading factors in Kalman filter for navigation applications. GPS Solut. 2008, 12,

273–279. [CrossRef]
46. Zhou, Z.; Mertikopoulos, P.; Bambos, N.; Glynn, P.; Ye, Y. Distributed Stochastic Optimization with Large Delays. Math. Oper. Res.

2021. ahead of print. [CrossRef]
47. Zhou, Z.; Mertikopoulos, P.; Bambos, N.; Glynn, P.; Ye, Y.; Li, L.; Li, F. Distributed Asynchronous Optimization with Unbounded

Delays: How Slow Can You Go? In Proceedings of the 35th International Conference on Machine Learning Conference (ICML
2018), Stockholm, Sweden, 10–15 July 2018; pp. 597–5979.

48. Wright, J.; Ma, Y. High-Dimensional Data Analysis with Low-Dimensional Models: Principles, Computation, and Applications, 1st ed.;
Cambridge University Press: Cambridge, UK, 2020; pp. 54–80.

320



Citation: Liu, J.; Liu, T.; Ji, Y.; Sun, M.;

Lyu, M.; Xu, B.; Lu, Z.; Xu, G. A

Robust Nonlinear Filter Strategy

Based on Maximum Correntropy

Criterion for Multi-GNSS and

Dual-Frequency RTK. Remote Sens.

2022, 14, 4578. https://doi.org/

10.3390/rs14184578

Academic Editor: Giuseppe Casula

Received: 30 July 2022

Accepted: 9 September 2022

Published: 13 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing 

Article

A Robust Nonlinear Filter Strategy Based on Maximum
Correntropy Criterion for Multi-GNSS and
Dual-Frequency RTK

Jian Liu 1, Tong Liu 1, Yuanfa Ji 2, Mengfei Sun 1, Mingyang Lyu 3, Bing Xu 3, Zhiping Lu 1 and Guochang Xu 1,*

1 Institute of Space Science and Applied Technology, Harbin Institute of Technology (Shenzhen),
Shenzhen 518055, China

2 Guangxi Key Laboratory of Wireless Broadband Communication and Signal Processing, Guilin 541004, China
3 Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University,

Hong Kong SAR, China
* Correspondence: xuguochang@hit.edu.cn

Abstract: The multi-constellation, multi-frequency Global Navigation Satellite System (GNSS) has the
potential to empower precise real-time kinematics (RTK) with higher accuracy, availability, continuity,
and integrity. However, to enhance the robustness of the nonlinear filter, both the measurement
quality and efficiency of parameter estimation need consideration, especially for GNSS challenging or
denied environments where outliers and non-Gaussian noise exist. This study proposes a nonlinear
Kalman filter with adaptive kernel bandwidth (KBW) based on the maximum correntropy criterion
(AMC-KF). The proposed method excavates data features of higher order moments to enhance the
robustness against noise. With the wide-lane and ionosphere-free combination, a dual frequency (DF)
data-aided ambiguity resolution (AR) method is also derived to improve the measurement quality.
The filtering strategy based on the DF data-aided AR method and AMC-KF is applied for multi-GNSS
and DF RTK. To evaluate the proposed method, the short baseline test, long baseline test, and triangle
network closure test are conducted with DF data from GPS and Galileo. For the short baseline test,
the proposed filter strategy could improve the positioning accuracy by more than 30% on E and
N components, and 60% on U. The superiority of the proposed adaptive KBW is validated both in
efficiency and accuracy. The triangle network closure test shows that the proposed DF data-aided AR
method could achieve a success rate of more than 93%. For the long baseline test, the integration of
the above methods gains more than 40% positioning accuracy improvement on ENU components.
This study shows that the proposed nonlinear strategy could enhance both robustness and accuracy
without the assistance of external sensors and is applicable for multi-GNSS and dual-frequency RTK.

Keywords: multi-GNSS; real-time kinematic; maximum correntropy criterion; Kalman filter; wide-
lane; ionosphere-free

1. Introduction

The current operating Global Navigation Satellite System (GNSS) includes the Global
Positioning System (GPS), Globalnaya Navigazionnaya Sputnikovaya Sistema (GLONASS),
BeiDou (BDS), and Galileo. The precise position, velocity, and time (PVT) generated from
real-time kinematics (RTK) are crucial for engineering surveys, fleet monitoring, intelligent
transportation systems, geographical information systems, guidance and control, etc. [1,2].
By 2024, more than 110 satellites with different frequencies are expected to be accessible for
multi-GNSS. Compared with a single constellation, multiple constellations and frequencies
could improve the accuracy, continuity, availability, and integrity significantly [3], while
enhancing the robustness against noise and outliers [4].

Multi-GNSS applications usually apply loosely and tightly coupled models for data
curation [5,6]. Both of them could achieve similar performance [7] in precise point posi-
tioning [8] and multi-sensor fusion such as integrating GNSS with the Inertial Navigation
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System, Simultaneous Location and Mapping, Lidar, and 5G [9–15]. Although the tightly
coupled model shares one common pivot satellite for each constellation, it is challenging
to improve the model strength due to the presence of double difference inter-system bias
(DISB) originating from receivers [16]. In this study, the loosely coupled model is used due
to its usability [17].

Even if dual-frequency (DF) data is available [18–20], the ambiguity resolution is still
impacted in urban environments due to signal blockage and interference [18–21]. The
traditional extended Kalman filter is sensitive to outliers and noise [22], as it is based on
the second-order statistics (e.g., variance, correlation, etc.) that exist in the Gaussian noise
assumption and minimum mean square error (MSE) criterion [23]. Thus, the following
limitations still need to be addressed: (1) The unmodeled non-Gaussian noise and heavy-
tail noise originated not only from the outliers and gross errors but also the missed data
due to signal blockage and deformation [24]. (2) The lack of complete prior knowledge
of system dynamics and observations may eventually cause divergence [25]. Extensive
attempts have been made to address these problems. One solution is the particle filter
(PF), which is capable of estimating the posterior probability density function (PDF) by
massive particles [26]. Multi-model filters such as the Gaussian sum filter (GSF) are another
solution, which parallelly implement and interactively combine several filters to estimate
the system states. A computationally economical filter was studied by integrating the
robust M estimation into the GSF framework [27]. Heavy-tailed distribution-based filters
and the H∞ filter have also been studied in [28]. However, attention still needs to be paid,
as most of them are deficient in universality and efficiency [29].

Recently, correntropy has received growing attention in signal processing, posture
estimation, and machine learning [30–33]. It is a measurable metric of local similarity and
is established on Gaussian kernel functions. Specifically, higher dimensional data matching
and error detection can be realized, as Gaussian kernel functions enrich data features by
transforming the observation into the Hibert space with higher dimensions. Thus, the
maximum correntropy between the input and output is robust against various types of
noise and even arbitrarily large outliers, and can be achieved according to the maximum
correntropy criterion (MCC). Although the kernel bandwidth (KBW) is the key parameter
for implementing the MCC, existing studies mostly treat it as an exogenous parameter
from empirical experiments, rather than an endogenous variable of the system [33–36]. In
this paper, a nonlinear adaptive Kalman filter (KF) based on MCC with adaptive KBW is
proposed. The Gaussian hypothesis and MSE criterion are further relaxed, which aims
to improve the adaptability and robustness [37]. The main contributions of the proposed
method are: (1) The AMC-KF is proposed as a new robust nonlinear filter to improve the
precision and robustness of multi-GNSS DF RTK [38]. (2) The DF data-aided AR method
is proposed to fix ambiguities with the wide-lane and ionosphere-free combinations. The
wide-lane pseudo-range is introduced for medium and long baseline RTK. (3) A nonlinear
filter strategy is designed by integrating the DF data-aided AR method into the proposed
AMC-KF. The test results show the significant superiority of the proposed strategy with
various baselines.

The remainder of this paper is organized as follows: In Section 2, the double difference
(DD) RTK model is introduced, followed by the derivation of the proposed DF data-aided
AR method. The loosely coupled model for multi-GNSS is also presented. In Section 3,
correntropy is introduced and the AMC-KF is elaborated in detail. Moreover, the derivation
of the adaptive KBW is outlined. In Section 4, the performance of the proposed filter
strategy is demonstrated. Datasets collected from the continuously operating reference
stations (CORS) network of Australia are used for the short baseline test, adaptive strategy
test, and the long baseline test. Finally, some conclusions are given in Section 5.
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2. RTK Mathematic Model

2.1. Constrained Loosely Coupled Model

The DD carrier phase measurement ϕ (in cycles) with wavelength λ and code mea-
surement P (in meters) is defined as follows [1]:{

λ∇Δϕ = ∇Δρ − λ∇ΔN +∇ΔT −∇ΔI +∇Δε
∇ΔP = ∇Δρ +∇ΔT +∇ΔI +∇Δξ

(1)

where ∇Δ is the DD operator; ρ, T, I, and N are the receiver-satellite geometric range,
tropospheric delay, ionospheric delay, and carrier phase ambiguity, respectively; and ξ and
ε are the unmodeled errors including multipath noise, system noise, etc. The covariance
matrix of the system state, system noise, measurement noise, and design matrices can be
defined as P, Q, R, and H. The filter-state vector consists of positioning information and
the DD ambiguities can be expressed as [7]:

x =
[
xG

n xG
u xG

e xG
e xG

n xG
u ∇ΔNG ∇ΔNE]T

where the superscripts ‘G’ and ‘E’ represent GPS and Galileo, and the subscripts e, n, and u
represent different directions. The diag(·) is a diagonal matrix. The KF recursive process is
defined as [1]:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x̂k|k−1 = Fk,k−1x̂k−1
Pk|k−1 = Fk,k−1Pk−1FT

k,k−1 + Γk−1Qk−1ΓT
k−1

}
prediction

Pk = (I − KkHk)Pk|k−1

Kk = Pk|k−1HT
k (HkPk|k−1HT

k + Rk)
−1

x̂k = x̂k|k−1 + Kk(zk − Hkx̂k|k−1)

⎫⎪⎬⎪⎭update
(2)

where K, F are the gain and state transform matrix; and zk and xk are the measurements
and state that needs to be estimated at the kth epoch. As xG = xE once successfully located,
the following constraint can be attached [39]:

[
I3×3 −I3×3

]︸ ︷︷ ︸
D

[
xG
xE

]
︸ ︷︷ ︸

X

= [03×3]︸ ︷︷ ︸
M

(3)

where I represents the unit matrix, and D and M are the constraint matrices. The prediction
step in (2) can be developed to constrain KF as follows:⎧⎨⎩ xk|k−1 = xk|k−1 − DT

k
(
DkDT

k
)−1(DkDT

k
)−1

(
Dkxk|k−1 − Mk

)
Pk|k−1 =

(
I − DT

k
(
DkDT

k
)−1Dk

)T
Pk|k−1

(
I − DT

k
(
DkDT

k
)−1Dk

) (4)

2.2. DF Data-Aided AR

Defining N1 and N2 as the carrier ambiguities on frequencies f 1 and f 2, respectively,
the ρ on different frequencies can be formed by ∇Δϕ as follows:⎧⎨⎩ ∇Δρ1 = (∇Δϕ1 +∇ΔN1)λ1 − A

f 2
1

∇Δρ2 = (∇Δϕ2 +∇ΔN2)λ2 − A
f 2
2

(5)

where Ne is the number of electrons in unit area A = 40.3
∫

S Neds. The wide-lane ambiguity
∇ΔNw with wavelength λw can be expressed as:

∇ΔNw = ∇Δϕ1 −∇Δϕ2 − 1
λw

(
∇Δρ −∇ΔT − f1

f2
∇ΔI −∇Δε

)
(6)
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For the atmosphere errors in the above equation, ∇ΔI cannot be ignored for long
baselines due to the spatial difference. ∇ΔT varies from 2 to 20 m depending on the satellite
elevation, but a higher cutoff angle reduces data utilization [40]. Thus, the timeliness of the
fixed solution could not be guaranteed, which is crucial for dynamic RTK once the satellites
are available [41–44]. The proposed DF data-aided AR method is summarized as follows:⎧⎪⎨⎪⎩

∇ΔNw = (∇Δϕ1 −∇Δϕ2)− ( f1∇ΔP1+ f2∇ΔP2)
λw( f1+ f2)

+∇Δε

∇ΔN1 = 1
mλ1−nλ2

[∇ΔϕIF − m∇Δϕ1 + n∇Δϕ2 − nλ2∇ΔNw]

∇ΔN2 = ∇ΔN1 −∇ΔNw

(7)

where ∇ΔϕIF is the ionosphere-free combination for carrier observations, m =
f 2
1

f 2
1 − f 2

2
and

n =
f 2
2

f 2
1 − f 2

2
, and ∇Δε represents the noise. The above method introduces the code wide-lane

combination to invert ∇ΔN1 and the derivation can be found in Appendices A and B.
The proposed method shows the following merits: (1) The positioning accuracy and AR
success rate are improved as the influence of ∇ΔI error is eliminated. (2) The method
is applicable for medium and long baselines as the limitation of geometry distance ρ is
eliminated. (3) The ∇ΔN on each frequency can be inverted directly from the high precise
ionosphere-free and wide-lane measurements. Moreover, the following moving average
with n epochs is also adopted to reduce the effect result from noise in ∇ΔP [45]:

∇ΔN̂w(n) =

k+n
∑

i=k
Zi∇ΔNi

w

k+n
∑

i=k
Zi

(8)

where k is the start epoch of the observation arc without cycle slip. Zi is the weight of
ith epoch. The ∇ΔN̂w(n) could be fixed to round

(∇ΔN̂w(n)
)

by the integer rounding
method [46] if the differential residual of ∇ΔN̂w between adjacent epochs meets the follow-
ing constraint: ∣∣∇ΔN̂w(n)−∇ΔN̂w(n − 1)

∣∣ < 0.1 cycles

Then, the corresponding ∇ΔN1, ∇ΔN2 and precise carrier measurements could be
formed by Equation (7). In the following test, the moving average window width n is set to
be five epochs.

3. AMC-KF

The obtained ∇ΔN1 and ∇ΔN2 could be applied to form precise ∇Δϕ in Equation (1),
and used for state estimating in the nonlinear filter.

3.1. KF Based on MCC Derivation

Assuming the joint PDF of random variables X and Y as FXY(x,y), the correntropy is
defined as follows [47]:

V(X, Y) = E[Gσ(X − Y)]
=
∫

Gσ(x − y)dFXY(x, y)

=
∫

exp
(
− (X−Y)2

2σ2

)
dFXY(x, y)

(9)

where σ is the KBW, E is the expectation operator, and Gσ is the non-negative Gaussian
kernel function. Furthermore, the Taylor expansion of the above equation is:

V(X, Y) =
1√
2πσ

∞

∑
n=0

(−1)n

2nn!
E

[
(X − Y)2n

σ2n

]
(10)
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Here, V is essentially a correlation function in the local kernel space controlled by
σ, as it is the weighted sum of all even order moments of (X-Y). This localization proves
meaningful in measuring the similarity between X and Y [48,49]. Then, the KF based on
MCC (MCC-KF) can be established by optimizing the following loss function [50–52]:

JC = Gσ(‖zk − Hx̂k‖) + Gσ(‖x̂k − Φx̂k−1‖) (11)

where ‖ ‖ denotes the Euclidean norm. Jc is only a function of σ [25]. Let ∂JC
∂x̂k

= 0; the
estimated state can be obtained as follows [53]:

x̂k = Φx̂k−1 +
Gσ(‖zk − Hx̂k‖)

Gσ(‖x̂k − Fx̂k−1‖)HT(zk − Hx̂k) (12)

It tells that the MCC will be achieved if X = Y, as Gσ reaches the upper bound and the
PDF of the predicted value and the measured value matched to the maximum extent [54].
The further results can be obtained while xk ≈ Fx̂k−1:

x̂k = x̂−k + Gσ(‖zk − Hx̂k‖)HT(zk − Hx̂k) (13)

3.2. AMC-KF Derivation

The KBW of the originally proposed MCC shown in Equation (13) is usually prede-
fined empirically, which results in the compromise between fast learning initially and fast
learning near the optimum point. To derive an adaptive KBW, the loss function is further
enhanced as follows:

JC = Gσ

(
‖zk − Hx̂k‖R−1

k

)
+ Gσ

(
‖x̂k − Φx̂k−1‖P−1

k|k−1

)
≤ Gσ

(
‖zk − Hx̂k‖R−1

k

)
+ Λ

= 1
N
√

2πσ

n
∑

i=n−N+1
exp

(
−‖zk−Hx̂k‖2

R
2σ2

)
+ Λ

(14)

where Λ is a constant overbounded by lim
‖x̂k−Φx̂k−1‖P−1

k|k−1
→0

Gσ

(
‖x̂k − Φx̂k−1‖P−1

k|k−1

)
[47,55].

To search for the proper σ, the gradient ascent approach is applied by taking a small step μ
along the positive gradient, then the nth iteration can be expressed as σn+1 = σn + μ∇Jc [47].
The Jc can be minimized as follows:

∇JC = ∂JC
∂σ = − 1

N
√

2πσ2

n
∑

i=n−N+1
exp

(
−‖zk−Hx̂k‖R−1

2σ2

)
+ 1

N
√

2πσ

n
∑

i=n−N+1

( ‖zk−Hx̂k‖R−1

σ3

)
exp

(
−‖zk−Hx̂k‖R−1

2σ2

)
= − 1√

2πσ2 exp
(
−‖zk−Hx̂k‖R−1

2σ2

)
+

‖zk−Hx̂k‖R−1√
2πσ4 exp

(
−‖zk−Hx̂k‖R−1

2σ2

)
= 0

Then, the closed-formed KBW, which can adaptively adjust according to R, is ex-
pressed as follows:

σ =

√
‖zk − Hx̂k‖R−1

2
+ σ′ (15)

Through Equations (4), (12), (13) and (15), the proposed AMC-KF is finally obtained.
It should be noted that the exponential part of AMC-KF reduces to constant and is no
longer correntropy-based if Equation (15) is applied without the small penalty term σ’. The
penalty term is artificially added and can be determined according to [56].

3.3. Filter Implementation

The procedure of the proposed nonlinear strategy is summarized as follows: (1) Re-
moving the ambiguities ∇ΔN on each frequency by the DF data-aided AR method. A
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threshold and moving average operation are applied to ensure stability and reduce noise.
(2) The precise ∇Δϕ without ambiguities is fed into the AMC-KF for multi-GNSS float
solution. The adaptive KBW is used for the prediction and update step during the filtering.
Both of them help improve the robustness and accuracy of the float solution. (3) To keep
consistency with other RTK structures, the least square ambiguity decorrelation adjustment
(LAMBDA) is adopted to transfer the float solution to the fixed solution.

To initialize the proposed filter, the variance-covariance matrix is deduced by the least
square method (LS) at the initial epoch. The F and Q can be defined as an identity matrix
and a zero matrix without cycle slips. The noise level for non-difference code and carrier
measurements are set to 3 m and 3 cm, respectively [1]. The framework of the proposed
nonlinear strategy is depicted in Figure 1. As shown in Equation (8), the window width
of the moving average and the threshold in the ‘DF Data-aid AR Stage’ is usually set to
5 epochs and 0.1 cycles, which implies the influence on the first time to fix ambiguity is
tiny and controllable.

 
Figure 1. The procedure of the filter implementation.

4. Test and Result

To validate the proposed filter strategy, short and long baseline tests are conducted and
the traditional DD KF (DD-KF) model mentioned in [1] is also used for comparison. The
DD-KF is established in Equations (1)–(4) without the ‘DF Data-aid AR Stage’. As the noise
of original observations is significantly less than those of wide-lane and ionosphere-free
combined measurements, thus, the DF Data-aid AR method is not enabled for the short
baseline test. The improvements illustrated in the short baseline test are only beneficial
from the AMC-KF method. For the long baseline, the DF Data-aid AR stage is enabled to
eliminate atmosphere errors; thus, the improvements in the long baseline test are beneficial
both from the AMC-KF and the DF Data-aid AR method. All results obtained are based
on post-processing performed on an Intel Core i7 2.30 GHz notebook with 16 GB RAM
running on Windows 10.

As Figure 2 shows, the dataset is collected from seven Australia CORS stations (BONE,
QCLF, ANGS, STNY, NEWH, GSBN, WBEE) on January 1, 2021, and all formed baselines
are elaborated in Table 1. The first six baselines range from 19–60 km and are used for
the short baseline test. The last two baselines are formed by (BONE, GSBN, WBEE) and
used for long baselines. The sample interval and cut-off elevation for all tests are 30 s and
10◦, respectively.
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Figure 2. Distribution of CORS station BONE, QCLF, ANGS, STNY, NEWH, GSBN, WBEE. (https:
//gnss.ga.gov.au/network (accessed on 1 January 2021)).

Table 1. Information for different baselines.

No. Baseline
Distance

(km)
Sample
Interval

Cut-Off
Elevation

Processing
Model

1 STNY-NEWH 19.562 30 s 10◦ AMC-KF, DD-KF
2 BONE-QCLF 26.363 30 s 10◦ AMC-KF, DD-KF
3 BONE-STNY 29.231 30 s 10◦ AMC-KF, DD-KF
4 QCLF-ANGS 41.335 30 s 10◦ AMC-KF, DD-KF
5 NEWH-BONE 42.606 30 s 10◦ AMC-KF, DD-KF
6 ANGS-BONE 60.213 30 s 10◦ AMC-KF, DD-KF
7 BONE-WBEE 58.942 30 s 10◦ AMC-KF, DD-KF
8 BONE-GSBN 106.877 30 s 10◦ AMC-KF, DD-KF

4.1. Position Accuracy Test

Figure 3 depicts the available satellites and the relative dilution of the precision
(RDOP) on BONE. The other stations will obtain similar indicators for the short baseline.
The average available satellites for filtering in the whole day are 6 for GPS, 6 for Galileo,
and 10 for GPS+Galileo. The RDOP for GPS+Galileo is 0.7228 and indicates an ideal
environment for relative positioning [1]. If the available satellite number of Gallileo is less
than four, the position result is obtained only by GPS.

The root mean square (RMS) and standard deviation (STD) of positioning errors on
the East (E), North (N), and Up (U) components are shown in Table 2, where the positive
and negative values represent improvement and degradation.

For AMC-KF, the RMS on BONE-QCLF, QCLF-ANGS and ANGS-BONE is (0.13417 m,
0.20254 m, 0.30294 m), (0.09421 m, 0.17402 m, 0.27439 m), (0.16395 m, 0.18714 m, 0.26284 m),
respectively. While the RMS for DD-KF is (0.28258 m, 0.43671 m, 0.80099 m), (0.23641 m,
0.23035 m, 0.96756 m), (0.53574 m, 0.15190 m, 0.65454 m). The accuracy improvement by
(+52.52%, +53.62%, +62.18%), (+60.15%, +24.45%, +71.64%), (+69.40%, −23.20%, +59.84%)
is achieved for AMC-KF. Similarly, the STD on each baseline for AMC-KF is (0.10886 m,
0.18606 m, 0.30278 m), (0.08226 m, 0.16659 m, 0.26107 m) and (0.16027 m, 0.16694 m,
0.24867 m) while for DD-KF is (0.10066 m, 0.33062 m, 0.40077 m), (0.11478 m, 0.17340 m,
0.52163 m), (0.23124 m, 0.10958 m, 0.53847 m). AMC-KF ameliorates the performance by
(−8.15%, +43.72%, +24.45%), (+28.33%, +3.93%, +49.95%), (+30.69%, −52.35%, +53.82%).
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Figure 3. RODP and available satellites of BONE.

For BONE-STNY, STNY-NEWH, NEWH-BONE, the AMC-KF possesses an RMS
improvement by (+55.90%, +64.82%, +85.24%), (−22.94%, +60.42%, +83.79%), (+53.43%,
+82.67%, +67.43%), and an STD improvement by (+31.55%, +46.827%, +78.57%), (−11.22%,
+35.33%, +53.71%) and (+47.26%, +73.50%, +66.16%), respectively.

Compared to DD-KF in each direction, the proposed AMC-KF obtains an improvement
by (32.24%, 34.48%, 63.07%) on average, despite negative values existing. Thus, AMC-KF
is a beneficial scheme for short baseline RTK as it retains a low-level positioning error.
Particularly, the positioning errors on U are reduced by more than 60%. One possible
reason for the negative values is that AMC-KF also redistributes the positioning residual
since errors in different directions are coupled [57].

Table 2. RMS and STD improvement on ENU for BONE-QCLF-ANGS-BONE.

Baseline
E N U

Improvement on ENU
AMC-KF DD-KF AMC-KF DD-KF AMC-KF DD-KF

RMSE
(m)

BONE-QCLF 0.13417 0.28258 0.20254 0.43671 0.30294 0.80099 +52.52%, +53.62%, +62.18%

QCLF-ANGS 0.09421 0.23641 0.17402 0.23035 0.27439 0.96756 +60.15%, +24.45%, +71.64%

ANGS-BONE 0.16395 0.53574 0.18714 0.15190 0.26284 0.65454 +69.40%, −23.20%, +59.84%

STD
(m)

BONE-QCLF 0.10886 0.10066 0.18606 0.33062 0.30278 0.40077 −8.15%, +43.72%, +24.45%

QCLF-ANGS 0.08226 0.11478 0.16659 0.17340 0.26107 0.52163 +28.33%, +3.93%, +49.95%

ANGS-BONE 0.16027 0.23124 0.16694 0.10958 0.24867 0.53847 +30.69%, −52.35%, +53.82%

RMSE
(m)

BONE-STNY 0.15830 0.35895 0.15017 0.42681 0.19493 1.32102 +55.90%, +64.82%, +85.24%

STNY-NEWH 0.13166 0.10709 0.13620 0.34410 0.19730 1.21688 −22.94%, +60.42%, +83.79%

NEWH-BONE 0.17273 0.37092 0.13468 0.77698 0.19800 0.60796 +53.43%, +82.67%, +67.43%

STD
(m)

BONE-STNY 0.13460 0.19663 0.14762 0.27757 0.18249 0.85175 +31.55%, +46.827%, +78.57%

STNY-NEWH 0.11695 0.10515 0.13590 0.21013 0.19655 0.42460 −11.22%, +35.33%, +53.71%

NEWH-BONE 0.10496 0.19900 0.13333 0.50321 0.19746 0.58359 +47.26%, +73.50%, +66.16%

4.2. Adaptive Strategy Test

The variation and statistics of KBW are shown in Figure 4. The AMC-KF is proved
to be effective as the KBW increases rapidly after initialization to respond to the input
GNSS measurements and varies epoch by epoch. In Figure 4b, the mean and standard
deviation found for (STNY-NEWH, QCLF-ANGS, NEWH-BONE, BONE-STNY, BONE-
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QCLF) are (16.1284, 14.9827, 20.6101, 19.1174, 13.1624, 17.0062) and (4.7120, 5.1061, 6.1030,
5.4980, 3.9002, 5.38731), respectively. Although the KBW is different from each other as all
baselines are spatially separated, the similar variation trend verified that the adaptive KBW
is sensitive to the environment.

  
(a) (b) 

Figure 4. KBW time series and statistics for each baseline. (a) Time series for each baseline; (b) the
statistics of KBW time series.

The filter time consumption with the proposed adaptive KBW and the original fixed
KBW in MCC is illustrated in Figures 5 and 6. The fixed KBW used here is set to be 1, 5, 25,
and 30, as all KBW has shown in Figure 4b fall in [0, 30].

It could be found that the adaptive KBW owns smoother and more stable processing
results. It means that the embedded devices and on-chip modules may benefit from
power conservation [1]. For adaptive KBW, the average time consumption at each epoch
is (0.0683 s, 0.0535 s, 0.0520 s, 0.0674 s, 0.0641 s, 0.0495 s) on ANGS-BONE, BONE-QCLF,
BONE- STNY, NEWH-BONE, QCLF-ANGS, STNY-NEWH. While for fixed KBW (1, 5, 25,
30) are (0.0619 s, 0.0599 s, 0.0717 s, 0.0659 s), (0.0528 s, 0.0549 s, 0.0517 s, 0.0544 s), (0.0515 s,
0.0543 s, 0.0581 s, 0.0582 s), (0.0542 s, 0.0681 s, 0.0680 s, 0.0543 s), (0.0658 s, 0.0594 s, 0.0679 s,
0.0662 s) and (0.0581 s, 0.0560 s, 0.0574 s, 0.0499 s), respectively.

 

Figure 5. Time consumption with different KBW strategies on ANGS-BONE, BONE-QCLF,
BONE-STNY.
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Figure 6. Time consumption with different KBW strategies on NEWH-BONE, QCLF-ANGS,
STNY-NEWH.

Treating adaptive KBW as the benchmark, the efficiency improvement is demonstrated
in Figure 7. For all 24 cases, negative values (shown in nine cases) indicate a longer time
consumption than the benchmark, and the positive values (shown in 15 cases) indicate the
opposite results. In general, degradation exists in most cases; the calculation load increased
by 6.54% in the other 15 cases, and 5 of them take 10% more time. Only three cases achieved
more than a 10% improvement, and the remaining six cases averagely improved by 5.41%.
The superiority of the adaptive KBW strategy is the most obvious in STNY-NEWH and
BONE-STNY. Thus, the proposed AMC-KF and adaptive KBW strategy can generally
improve filtering efficiency.

 

Figure 7. Time efficiency improvement for different KBW strategies.

The RMS improvement of the proposed AMC-KF compared to the original fixed KBW
is shown in Figure 8. Here, the negative values mean a positioning-accuracy degradation
compared to the adaptive KBW strategy.
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Figure 8. RMS improvement on each baseline.

The RMS increases significantly at least on one direction component while KBW = 1
and 5. Especially, the RMS on U deteriorated by almost six times (−584.261%) compared
to the adaptive KBW. However, no significant performance fluctuation appears when the
fixed KBW = 25 and 30, except for the −43.13% degradation on U (KBW = 25) and the 23.3%
improvement on E (KBW = 30), which both occur on QCLF-ANGS.

Although the large KBW seems better, the improvement is hardly permitted as the
increase in KBW amplifies the time consumption and positioning errors. In conclusion, the
proposed AMC-KF method takes both efficiency and accuracy into account and is more
progressive than the traditional methods with KBW fixed.

4.3. Ambiguity Resolution Analysis

In the triangle network formed by BONE-STNY-NEWH, all baselines shared the common
pivot satellite, and the closure residual of DD ambiguities should meet the following constraint:
∇ΔNclosure = ∇ΔNBONE-STNY + ∇ΔNSTNY-NEWH + ∇ΔNNEWH-BONE = 0. Thus, ∇ΔNclosure
could be used to verify the proposed DF data-aided AR method. It should be noted that only
DF data from GPS is used for a long baseline test since only GPS signal is stably received.

To illustrate the reasonability for setting the window width of the moving average to
be five epochs, Figure 9 gives the differential residuals of adjacent ∇ΔNw on each baseline.
The statics of results are shown in Table 3 and the results within ±1 cycle are shown for easy
observation. The threshold of ±0.1 cycles, ±0.15 cycles, and ±0.5 cycles are also illustrated
as limitations bounds.

Table 3. ∇ΔNw statistics of the triangle closure network.

Baseline (−0.1, 0.1) (−0.15, 0.15) (0.5, 0.5) Others

BONE_STNY 98.6679% 98.7700% 99.0339% 0.9661%
NEWH_BONE 98.3097% 98.5279% 98.9901% 1.0099%
STNY_NEWH 98.8000% 98.8726% 99.1373% 0.8627%
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(a) 

(b) 

 
(c) 

Figure 9. The ∇ΔNw for each baseline of the triangle closure network. (a) BONE-STNY; (b) NEWH-
BONE; (c) STNY-NEWH.

In Table 3, the proportion of residuals suppressed within ±0.1 cycles is 98.6679% for
BONE-STNY, 98.3097% for NEWH-BONE, and 98.8000% for STNY-NEWH, respectively.
Meanwhile, the results increase slightly when the threshold bounds increase. Thus, set-
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ting the threshold to 0.1 cycles is reasonable and conservative, as most validated epochs
are included.

The ∇ΔNclosure of all available satellites is shown in Figure 10. It could be found that,
for most satellites, the ∇ΔNclosure converges to 0 once they are used and ∇ΔNclosure = 0 ac-
counts for the majority. This means that ∇ΔNBONE-STNY, ∇ΔNSTNY-NEWH, ∇ΔNNEWH-BONE
are fixed correctly without initialization. The outliers usually appeared at discrete epochs
contaminated by cycle slip and could be further eliminated by refined data synchronization
and cycle-slip detection.

  
(a) (b) 

Figure 10. ∇ΔNclosure in the network. (a) ∇ΔNclosure for SV1-SV16; (b) ∇ΔNclosure for SV17-SV32.

Figure 11 shows the detailed results of ∇ΔNclosure with a total of 23377 effective
epochs used. The minimum and maximum outliers accompanied by the cycle slip are
(−283.56 cycles, 365.86 cycles). According to Table 4, the ∇ΔNclosure < 0.5 cycles in most
epochs, meaning that the ∇ΔNw can be correctly fixed by integer rounding with a success
rate of not less than 93%. The 1.7154% epochs fall into 0.5–1 cycles and 2.7848% fall into
1–5 cycles are treated as small residuals and could be improved by synchronization and
cycle-slip repair. However, at least one of the three baselines fails to fix its ambiguity for the
remaining 1.6041% of epochs that include residuals larger than 10 cycles. Once the ∇ΔNw
is fixed, the corrected ∇Δϕ is used for the float solution, which is expected to be with a
small variance.

 

Figure 11. Ambiguity closure residual in the network.
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Table 4. The statistics of ∇ΔNclosure.

∇ΔNclosure

Residual Range (Cycle)

[0, 0.5) [0.5, 1) [1, 5) [5, 10) [10, +∞)

Proportion 93.1043% 1.7154% 2.7848% 0.7914% 1.6041%

The BONE-GSBN and BONE-GSBN with the distance of 106.877 km and 58.942 km,
respectively, are used for the long baseline test. The improvements are both benefiting from
the ‘DF Data-aid AR stage’ and the ‘filter stage’. Figure 12 and Table 5 show the positioning
error on ENU components. The AMC-KF maintains the positioning error around 0 and no
obvious difference occurs in all directions.

It can be inferred the proposed filter strategy suppresses the noise in DD measurements
on the whole, as the correntropy can measure the similarity between the random variables
through PDF.

For AMC-KF, the RMS is improved by (+78.60%, +88.85%, +77.74%) at BONE-WBEE
and (+57.49%, +69.52%, +42.31%) at BONE-GSBN than DD-KF. The STD is improved
by (+64.97%, +66.26%, +60.81%) at BONE-WBEE and (+51.10%, +46.89%, +40.34%) at
BONE-GSBN, respectively. The proposed filter strategy can reduce the positioning error
significantly for the long baseline.

 
(a) 

 
(b) 

Figure 12. Positioning error on ENU. (a) Positioning error of BONE-WBEE; (b) positioning error of
BONE-GSBN.
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Table 5. The RMS and STD of position error on the ENU component.

Baseline Model
RMS (m) STD (m)

E N U E N U

BONE-WBEE
DD-KF 0.87648 1.17600 1.38090 0.37734 0.37925 0.76978

AMC-KF 0.18754 0.13117 0.30743 0.13217 0.12794 0.30166

BONE-GSBN
DD-KF 0.34605 0.58798 0.62407 0.29501 0.33371 0.50501

AMC-KF 0.14710 0.17921 0.36000 0.14426 0.17722 0.30130

5. Conclusions

In terms of the timeliness and accuracy of RTK in harsh environments, both the
measurement quality and the filter robustness need to improve, especially with the presence
of non-Gaussian noise. This paper focus on multi-GNSS DF applications and a new
nonlinear filter strategy is proposed. It consists of the DF data-aided AR method and
the AMC-KF based on MCC and adaptive KBW. The superiorities are verified through
tests with various baselines. First of all, ionosphere-free and wide-lane measurements are
used for the DF data-aided AR method. The ambiguities on each frequency are directly
converted without searching. Then, the corrected carrier measurements are used for the
float solution by the proposed AMC-KF. The AMC-KF is robust to non-Gaussian noise and
sparking noise as it employs MCC and adaptive KBW to measure the similarity between the
input and output. Compared to the conventional DD-KF, the proposed strategy achieves
higher accuracy and efficiency. The following conclusions are obtained:

(1) For the positioning accuracy of short baselines, the RMS and STD of positioning
error improved by more than 30%, 30%, and 60% on the E, N, and U components,
respectively. The applicability and flexibility of the proposed AMC-KF are vali-
dated significantly.

(2) For the proposed adaptive KBW, the efficiency and accuracy are compared and
validated with fixed KBW (1, 5, 25, 30). The results show that large KBWs increase
the computational load, while the small KBWs gain a worse positioning accuracy.
The proposed optimization strategy can change the KBW adaptively according to
the measurements and is validated to be effective as it considers both efficiency
and accuracy.

(3) A total of 29 satellites were involved in the ambiguity resolution test with long
baselines. It validates that the proposed DF data-aided AR method achieves a success
rate of more than 93%. The results are expected to be further improved with stringent
data synchronization and cycle-slip detection.

(4) For the long baseline test, the proposed filter strategy obtains an improvement of
more than 40% in all directions as the noise is effectively suppressed. For the longer
baseline BONE-WBEE, the RMS of positioning error is reduced by more than 75%
on E, N, and U, which shows that the proposed method plays a better role in long
baseline RTK when the multi-GNSS multi-frequency data is stably available.

Our future work focuses on deriving the sequential form of the proposed nonlinear fil-
ter strategy and applying it to smartphone RTK applications. To improve the precision and
reliability of dynamic navigation in urban environments, the integration of the proposed
method with vector-tracking GNSS receivers will also be explored.
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Appendix A

Defining the common geometry distance ρ + c(δtu − δts) + T without considering
ionosphere delay as Θ. The carrier phase measurement ϕ (in cycles) with wavelength λ
and code measurements P (in meters) are defined as follows:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ϕ1 = f1
c Θ − A

c f1
+ N1 + ξϕ1

ϕ2 = f2
c Θ − A

c f2
+ N2 + ξϕ2

P1 = Θ + A
f 2
1
+ εP1

P2 = Θ + A
f 2
2
+ εP2

(A1)

where f 1 and f 2 represent different frequencies, tu and ts are the clock errors from the user
receiver and satellite and ξ and ε are the unmodelled noise on ϕ and P. The c denotes the
speed of light. The Θ and A can be expressed by P1 and P2 as follows:

A =
f 2
1 f 2

2
[
(P1 − P2)−

(
εP1 − εP2

)]
f 2
2 − f 2

1
=

f 2
1 f 2

2 (P1 − P2)

f 2
2 − f 2

1
+ εA (A2)

Θ =

(
f 2
1 P1 − f 2

2 P2
)− (

f 2
1 εP1 − f 2

2 εP2

)
f 2
1 − f 2

2
=

f 2
1 P1 − f 2

2 P2

f 2
1 − f 2

2
+ εΘ (A3)

where, εA =
f 2
1 f 2

2 (εP1−εP2)
f 2
2 − f 2

1
and εΘ =

( f 2
2 εP2− f 2

1 εP1)
f 2
1 − f 2

2
are the noise on A and Θ, respectively.

The wide-lane combination of ϕ is expressed as:

ϕWL = ϕ1 − ϕ2 =

(
f1

c
− f2

c

)
Θ −

(
f2 − f1

c f1 f2

)
A + Nw + ξw (A4)

where Nw is the wide-lane ambiguity, ξw = (ξ1 − ξ2). Then, the following expression can
be obtained:

ϕWL = f1− f2
c · f 2

1 P1− f 2
2 P2

f 2
1 − f 2

2
−
(

f2− f1
c f1 f2

)
· f 2

1 f 2
2 (P1−P2)

f 2
2 − f 2

1
+ Nw + ε

=
f 2
1 P1− f 2

2 P2

λw( f 2
1 − f 2

2 )
+
(

f1− f2
c f1 f2

)
· f 2

1 f 2
2 (P1−P2)

f 2
2 − f 2

1
+ Nw + ε

=
f 2
1 P1− f 2

2 P2

λw( f 2
1 − f 2

2 )
+ f1 f2(P1−P2)

λw( f 2
2 − f 2

1 )
+ Nw + ε

=
( f 2

1 P1− f 2
2 P2)− f1 f2(P1−P2)

λw( f 2
1 − f 2

2 )
+ Nw + ε

= ( f1P1+ f2P2)
λw( f1+ f2)

+ Nw + ε

where ε is the combination of the noise terms which can be expressed as ε = ξw +(
f1
c − f2

c

)
εθ − f2− f1

c f1 f2
εA. Finally, the Nw can be obtained as follows:

NWL = (ϕ1 − ϕ2)− ( f1P1 + f2P2)

λw( f1 + f2)
+ ε (A5)
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In addition, the corresponding DD wide-lane ambiguity can be obtained by:

∇ΔNw = (∇Δϕ1 −∇Δϕ2)− ( f1∇ΔP1 + f2∇ΔP2)

λw( f1 + f2)
+∇Δε (A6)

Appendix B

According to Equation (5), the ionosphere-free measurement is defined as ∇ΔϕIF

= m∇Δρ1 − n∇Δρ2. Where m =
f 2
1

f 2
1 − f 2

2
and n =

f 2
2

f 2
1 − f 2

2
, the definition of symbols and

variables stay the same as those above. Thus, we have the following expansion:

∇ΔϕIF = m
[
∇Δϕ1 +∇ΔN1λ1 − A

f 2
1

]
− n

[
∇Δϕ2 +∇ΔN2λ2 − A

f 2
2

]
= m∇Δϕ1 + m∇ΔN1λ1 − n∇Δϕ2 − n∇ΔN2λ2
= m∇Δϕ1 − n∇Δϕ2 + mλ1∇ΔN1 − nλ2(∇ΔN1 −∇ΔNw)
= m∇Δϕ1 − n∇Δϕ2 + mλ1∇ΔN1 − nλ2∇ΔN1 + nλ2∇ΔNw
= m∇Δϕ1 − n∇Δϕ2 + (mλ1 − nλ2)∇ΔN1 + nλ2∇ΔNw

In addition, then, we have

(mλ1 − nλ2)∇ΔN1 = ∇ΔϕIF − m∇Δϕ1 + n∇Δϕ2 − nλ2∇ΔNw
∇ΔN1 = 1

mλ1−nλ2
[∇ΔϕIF − m∇Δϕ1 + n∇Δϕ2 − nλ2∇ΔNw]
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Abstract: In the fields of positioning and navigation, the integrated inertial navigation system
(INS)/global navigation satellite systems (GNSS) are frequently employed. Currently, high-precision
INS typically utilizes fiber optic gyroscopes (FOGs) and quartz flexural accelerometers (QFAs) rather
than MEMS sensors. But when GNSS signals are not available, the errors of high-precision INS also
disperse rapidly, similar to MEMS-INS when GNSS signals would be unavailable for a long time,
leading to a serious degradation of the navigation accuracy. This paper presents a new AI-assisted
method for the integrated high-precision INS/GNSS navigation system. The position increments
during GNSS outage are predicted by the convolutional neural network-gated recurrent unit (CNN-
GRU). In the process, the CNN is utilized to quickly extract the multi-dimensional sequence features,
and GRU is used to model the time series. In addition, a new real-time training strategy is proposed
for practical application scenarios, where the duration of the GNSS outage time and the motion
state information of the vehicle are taken into account in the training strategy. The real road test
results verify that the proposed algorithm has the advantages of high prediction accuracy and high
training efficiency.

Keywords: INS/GNSS integrated navigation; CNN-GRU; CKF; GNSS outage

1. Introduction

Global Navigation Satellite systems (GNSS) can provide accurate position and velocity
information in outdoor environments, and its errors do not accumulate over time [1]. The
disadvantages are that it can only provide less accuracy attitude information, the output
frequency is low (1–20 Hz), and it is vulnerable to environmental interference. In contrast,
the Inertial Navigation System (INS) is less dependent on the environment, and relies
entirely on the angular velocity and acceleration information that is measured by the Inertial
Measurement Unit (IMU), which can provide high-frequency navigation information [2,3].
But the position error will disperse over time due to the integral acquisition of positional
information, resulting large errors in navigation results. Therefore, combining the respective
advantages of GNSS and INS to obtain the navigation results with high accuracy, high
interference immunity, and high frequency is a hot topic of research in the field of navigation
at present [4,5].

The Kalman filter (KF) and its upgrade variants are the most widely utilized algo-
rithms for INS and GNSS information fusion [6,7]. The traditional Kalman filter algorithm
can only be applied to linear systems, but most of the information in real navigation
systems are nonlinear. Bucy et al. [8] proposed the extended Kalman filter (EKF), which
linearizes the nonlinear function around the current estimate, and truncates the first-order
linearization of the Taylor expansion of the nonlinear function. The remaining higher-order
terms are ignored, and their performance depends on the degree of local nonlinearity.
The unscented Kalman filter (UKF) was proposed to further improve the performance
under nonlinear systems by making the nonlinear system equations applicable to linear
assumptions through lossless transformations [9,10]. By approximating the posterior prob-
ability density of the state with a series of deterministic samples, the problem of the EKF
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accuracy dispersion under a highly nonlinear system is avoided. But the UKF has low
accuracy in the high-dimensional case, the cubature Kalman filter (CKF) that is based
on the spherical radial volume criterion is applied to data fusion, which can effectively
approximate the Gaussian density function with higher accuracy, convenient parameter
selection, and good convergence effect [11–13]. In order to improve the fusion accuracy in
complex measurement environments, robust Kalman algorithms have also started to attract
the attention of researchers [14,15]. To solve the problem of error model that is caused by
measurement anomalies, Chen et al. [16] proposed a new cardinal maximum correlation
entropy Kalman filter, which uses the robust maximum correlation entropy criterion (MCC)
as the optimality criterion to solve the state estimation problem under outlier interference
by maximizing the correlation entropy between states and measurements. Yun et al. [17]
proposed a variational Bayesian-based state estimation algorithm to improve the CKF
accuracy under dynamic model mismatch and outlier disturbance.

When the GNSS signals are unavailable, KF operates in predictive mode and corrects
INS measurements according to the system error model. At this time, the accuracy of data
fusion that relies only on the KF is not effective and navigation performance deteriorates
rapidly. To improve the integrated navigation accuracy during GNSS outage, machine
learning has started to be applied to integrated navigation systems. Ning et al. [18] pro-
posed an optimal radial basis function (RBF)-based neural network that can improve the
overall positioning accuracy during short-term GNSS signal outages. Hang et al. [19]
proposed a new hybrid intelligence algorithm combining a discrete gray predictor (DGP)
and a multilayer perceptron (MLP) neural network that provides pseudo-GPS positions
during GNSS failures and uses GNSS position information from the last few moments to
predict positions for future moments. Compared with traditional artificial neural networks,
recurrent neural networks are more advantageous in combined navigation systems and
can make full use of historical information [20–22]. Liu et al. [23] proposed a multi-channel
long-short term memory (LSTM) network to predict the increments of vehicle position,
which reduces the navigation error in case of GNSS outages by an order of magnitude. In
practical applications, a large amount of historical data before the GNSS outage needs to be
trained when the GNSS outage occurs, so the training efficiency of neural networks also
has high requirements. Tang et al. [24] proposed a hybrid algorithm that was based on
the gated recurrent unit (GRU) and adaptive Kalman filter (AKF), and the experimental
results showed that GRU outperformed LSTM in terms of prediction accuracy and training
efficiency. Zhi et al. [25] proposed a convolutional neural network-long short-term memory
(CNN-LSTM) model, which uses convolutional neural network (CNN) to quickly extract
the features of the input and LSTM network to output the pseudo-GPS signal, further
improving the training efficiency. However, most of the current articles use the offline
simulation, assuming that the GNSS failure time is known and do not consider the time
that is required to train the model online. Al Bitar et al. [26] proposed a novel real-time
training strategy for regular training on the past one minute data, with the disadvantage
that only short historical data are used and the accuracy is poor when the time of GNSS
outage is long.

To overcome the shortcomings of the traditional methods, our paper proposes a new
AI-assisted method for the integrated high-precision INS/GNSS navigation system. The
method consists of two parts: first, CKF is used to provide more accurate neural network
training samples. Then, by building a CNN-GRU network to predict the position increments
during GNSS outage, the CNN is utilized to quickly extract the multi-dimensional sequence
features, and GRU is used to model the time series. In addition, a new real-time training
strategy is proposed for practical application scenarios, where the duration of the GNSS
outage time and the motion state information of the vehicle are taken into account in the
training strategy. The experiments verify that the proposed algorithm has the advantages
of high prediction accuracy and high training efficiency.

The rest of the paper is organized as follows: Section 2 introduces the INS error
propagation model and the integrated navigation model that is based on CKF, Section 3
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introduces the proposed CNN-GRU network, Section 4 performs the road test and result
analysis, and the conclusion is presented in Section 5.

2. Mathematical Integrated System Model

The INS and GNSS are loosely coupled as shown in Figure 1. The INS and GNSS can
complete position and velocity independently. Then, the position and velocity errors of INS
are estimated using CKF, and these errors are used to correct the navigation output of INS
and achieve the correction of gyro and accelerometer drift, thus reducing the impact of INS
errors. In this section, we derive the error propagation model of INS, and then introduce
the integrated navigation model that is based on CKF.

Figure 1. Flowchart of the loosely coupled integrated system.

2.1. The Error Propagation Model

By integrating the angular velocity that is measured by gyro, the attitude direction
of the inertial component can be obtained. By using the directional cosine matrix of the
attitude direction, the specific force components of the accelerometer observations along
each axis of the carrier system can be converted to the navigation coordinate system, the
velocity and position can be calculated.

In the process of attitude calculation, the navigation coordinate system that is obtained
is regarded as the real navigation coordinate system. In practice, due to the interference of
various factors, the calculated navigation coordinate system will have deviations compared
to the real navigation coordinate system, and the attitude error equation can be expressed as:

.
φ = φ × ωn

in + δωn
in − δωn

ib, (1)

where δωn
in = δωn

ie + δωn
en is the angular velocity error in the navigation coordinate system,

δωn
ie is the angular velocity error of the Earth’s rotation, δωn

en is the rotation error of the

navigation system, δωn
ib = Cn

b δωb
ib = Cn

b

[
(δKG + δG)ωb

ib + εb
]

is the gyro measurement

error, εb is the gyro drift error, and δKG and δG are the gyro scale factor error and non-
orthogonal installation error, which can be expressed as:

δKG = diag
([

δKGx δKGy δKGz
])

δG =

⎡⎣ 0 δGz −δGy
−δGz 0 δGx
δGy −δGx 0

⎤⎦ (2)

Both calibration residuals and installation errors can be considered as constants, while
random drift can be expressed as a cumulative model of random constants and a first-order
Markov model. In the presence of attitude error and specific force measurement error, the
velocity differential error can be expressed as:

δ
.
vn

= f n
s f × φ + (2δωn

ie + δωn
en)× vn − (2ωn

ie + ωn
en)× δvn + δ f n

s f + δgn (3)
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where δ f n
s f is the accelerometer measurement error, which can be expressed as the cumula-

tive model of accelerometer zero deviation and white noise.

δgn =

⎡⎣ 0
−β3(sin 2L·δh + 2h cos 2L·δL)

−[ge sin 2L(β − 4β1 cos 2L)δL − β2δh]

⎤⎦ (4)

where β is the gravity flattening, β1 = 2.32718 × 10−5s−2, β2 = 3.08 × 10−6s−2,
β3 = 8.08 × 10−9s−2.

The position error is [27]:⎧⎪⎪⎨⎪⎪⎩
δ

.
L = 1

RM+h δvN − vN
(RM+h)2 δh

δ
.
λ = sec L

RN+h δvE + vE sec L tan L
RN+h δL − vE sec L

(RN+h)2 δh

δ
.
h = δvU

, (5)

2.2. The Integrated Navigation Model Based on CKF

In the integrated navigation system, the CKF estimation is adopted to estimate the
system state vector which is a 15 array vector:

X = [ϕe ϕn ϕu δVe δVn δVu δL δλ δh ∇x ∇y ∇z εx εy εz
]T (6)

where ϕe, ϕn, and ϕu denote the attitude error angles of the INS in the east, north, and
zenith directions. δVe, δVn, and δVu denote the velocity error of INS in the three directions.
δL, δλ, and δh denote the latitude error, longitude error, and altitude error. ∇x, ∇y, and
∇z are the accelerometer bias vectors, and εx, εy, and εz are the gyro bias vectors.

The equation of state and measurement equation of the system can be expressed as:{ .
X = FX + GW
Z = HX + V

(7)

where F is the system state transfer matrix, which consists of the INS system error. G is the
system noise matrix. Z is the measurement vector, which is set to the position error vector
and velocity error vector of INS and GNSS. H is the observation matrix. W is the process
noise vector. V denotes the measured noise vector.

The CKF is based on the 3rd order volume rule and is suitable for high-dimensional fil-
tering problems. The computation consists of two steps: the time update and measurement
update phase, as shown in Algorithm 1.
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Algorithm 1: Cubature Kalman Filter.

Require: x̂k−1|k−1, Pk−1|k−1, Qk−1, Rk
for i = 1, . . . , N do

xi
k−1 = Sk−1|k−1ξi + x̂k−1|k−1

wi
k−1 = 1/N

end for

Prediction phase:
^
xk|k−1 =

N
∑

i=1
wi

k−1f
(

xi
k−1

)
Pk|k−1 =

N
∑

i=1
wi

k−1

(
f
(

xi
k−1

)
− ^

xk|k−1

)(
f
(

xi
k−1

)
− ^

xk|k−1

)T
+ Qk−1

for i = 1, . . . , N do

xi
k|k−1 = Sk|k−1ξi + x̂k|k−1

wi
k|k−1 = 1/N

end for

Update phase:

ẑk|k−1 =
N
∑

i=1
wi

k|k−1 h
(

xi
k|k−1

)
Pzz

k|k−1 =
N
∑

i=1
wi

k|k−1

(
h
(

xi
k|k−1

)
− ẑk|k−1

)(
h
(

xi
k|k−1

)
− ẑk|k−1

)T
+ Rk

Pxz
k|k−1 =

N
∑

i=1
wi

k|k−1

(
xi

k|k−1 −
^
xk|k−1

)(
h
(

xi
k|k−1

)
− ẑk|k−1

)T

3. CNN-GRU

The overall architecture of our method is shown in Figure 2. In this paper, we use a
loosely coupled integrated navigation scheme that is based on the combination of CKF
and CNN-GRU. The CKF module provides highly accurate position, velocity, attitude, and
IMU error information. The inputs and outputs of the network are shown in Figure 2,
where WI and FI are the angular velocity and specific force that are provided by the IMU,
AINS and VINS are the attitude and velocity information that is calculated by the INS. The
outputs of the network are the position increments δP output by the CKF module, which
are integrated as the pseudo-GNSS position information. When the GNSS signals are avail-
able, the CNN-GRU module operates in learning mode. When the GNSS signals become
unavailable, the CNN-GRU module operates in prediction mode, and the pseudo-GNSS po-
sition increments are predicted to ensure navigation accuracy. Specifically, three operating
modes are included: learning mode when the GNSS signals are available, prediction mode
and learning mode during GNSS short-term outage, and prediction mode during GNSS
long-term outage. When the GNSS signals are available, the length of each learning sample
is 2 min and the learning interval is controlled in 1 min. The reason for choosing – min is
that most GNSS interruption scenarios last less than 2 min, and the purpose of the learning
interval is to reset the CKF filter. When the GNSS signals are unavailable, the model that
was trained in the previous phase is used for prediction, while the previous historical data
are used for training the new fine model, and the model is switched to the new fine model
to improve the prediction accuracy when the GNSS signals that are interrupted exceed
2 min. In order to ensure that the training of historical data can be completed within 2 min,
we consider the differences of the model under different motion states of the vehicle and
reduce the length of the training data. The decision is done using the vehicle motion state
according to the output data of INS, which are zero speed, zero angular speed, zero lateral
speed, and zero vertical speed, and stop saving data when a period of continuous motion
state exceeds five minutes, thus improving the training efficiency.
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Figure 2. The overall architecture of the proposed method (a) GNSS is available; (b) GNSS ioutage
(less than 2 min); (c) GNSS outage (more than 2 min).

The CNN-GRU networks consist of a one-dimensional version of CNN, GRU, and a
fully connected layer. Since the inputs involve multiple sensors and the coupling of multi-
dimensional motion information, the intake features need to be extracted more accurately,
so the CNN is used to quickly extract features from the sensor sequences. Since the vehicle
motion and IMU sensor errors are time-dependent, the GRU is adopted to extract deeper
hidden information from the sensor history data. Finally, a fully connected layer is used to
obtain the final navigation information.

The structure of CNN is shown in Figure 3. CNN is one of the common network
models in the field of deep learning, which is a multi-layer feedforward neural network
with high generalization ability and robustness by local connectivity, weight sharing, and
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pooling operation [28]. The pooling layer is used to compress the high-dimensional features
of the input after processing in the convolutional layer to reduce the parameter matrix
dimension, which reduces the computational workload by reducing the parameters of the
network. The fully connected layer can combine all of the local features into global features.

Figure 3. The structure of CNN.

The GRU neural network is an improvement on the LSTM neural network. The LSTM
neural network provides a new solution to the short-term memory problem and solves
the problem of gradient disappearance and gradient explosion when the RNN exists to
handle longer sequences. The GRU is simplified for the same estimation accuracy and
higher training efficiency compared to the LSTM. The GRU model consists of two gates:
the update gate and the reset gate. The update gate determines how much information
from the previous state is brought into the current state. The larger the update gate is, the
more the previous state is brought into the current state. The reset gate determines how
the new input information is combined with the previous memory. The smaller the reset
gate is, the more information about the previous state is ignored. The schematic diagram of
GRU is shown in Figure 4.

Figure 4. The structure of GRU.

GRU undertakes the most important task of sequence analysis, and the time-dependent
nature of GRU makes training more difficult. Therefore, the core parameters are the size
and structure of the GRU network. The hyperparameters that have the greatest impact
on the performance include the number of GRU layers, the number of neurons, and the
step size. Too many neurons lead to an overfitting phenomenon and degradation of the
generalization performance, while insufficient number of neurons cannot fully extract
the relationship between the input and output sequences, and too many GRU layers also
lead to instability of the model. Considering the prediction accuracy and computation
time, the number of GRU layers, the number of neurons, and the step size are set to 2,
48, and 2, respectively. The training time of the network increases with the above three
hyperparameters. Two layers of GRU are sufficient to extract the hidden information, and
too many layers can lead to overfitting.
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4. Experiment Results

The road experiments were carried out on a vehicle platform using an INS/GNSS
system, as shown in Figure 5. The INS system uses high-precision fiber optic gyroscope
and quartz flexible accelerometer that was developed by our group. The GNSS receiver is
Ublox NEO-M8T. The sampling frequency of the INS is set to 400 Hz, and the sampling
frequency of the GNSS is 10 Hz. RTK GNSS provides the ground truth values. The specific
parameters are shown in Table 1. Two typical road experiments were carried out. After the
initial alignment, the INS/GNSS was started in a loosely coupled integrated navigation
mode. The experimental locations were in Zhejiang Province, China:

(1) Experiment 1: Urban roads as shown in Figure 6: the duration of the experiment is
1 h, and the road conditions include straight lines, turns, and lane changes. There
were three segments of simulated GNSS signals interruptions that were introduced,
and the signal interruption durations were 60 s, 180 s, and 300 s, respectively.

(2) Experiment 2: Expressway including tunnels as shown in Figure 7: the duration of the
experiment is 1 h, the road conditions are mainly long straight lines, and the driving
trajectory contains multiple tunnels of different lengths to verify the performance of
the proposed method in the case of real GNSS signals outage scenarios.

Figure 5. Data acquisition vehicle platform.

Table 1. The parameters of the sensors.

Fiber optic gyroscope
Bias

Scale factor
Angular Random walk

0.02◦/h
10 ppm

0.002◦/
√

h

Quartz Flexible Accelerometer Bias
Scale factor

10 ug
20 ppm

GNSS(Ublox NEO-M8T) Position accuracy
Velocity accuracy

2.5 m
0.05 m/s

RTK GNSS
(NovAtel ProPak6) Position accuracy 3 cm
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Figure 6. The vehicle trajectory in Experiment 1.

 

Figure 7. The vehicle trajectory in Experiment 2.

In order to verify the performance of the CNN-GRU-CKF that is proposed in our
paper, we selected two typical road experiments, Experiment 1 focuses on urban roads,
simulating GNSS interruptions by artificially turning off GNSS, while RTK is still working
normally and can provide the ground truth of the position for verifying the algorithm
accuracy. The GNSS signals interruption duration is 1 min, 3 min, and 5 min, respectively.
In order to better reflect the effectivity of the algorithm, the trajectory containing the turn is
deliberately chosen. When the GNSS signals are unavailable, the position information that
is obtained by CNN-GRU prediction is used instead of the true GNSS information, and the
measurement update process of CKF is carried out. Meanwhile, the performance of pure
INS, MLP, and GRU is compared.

Due to the short GNSS outage time in the first period, the INS that is based on high
precision fiber optic gyro shows high accuracy, as shown in Figures 8 and 9, the position
errors in the east and north direction during the 60 s GNSS outage are within 2 m. The
horizontal direction error of 60 s outage is shown in Figure 10. It can be seen that when
the horizontal error is at its maximum, its east and north errors are not necessarily the
maximum. Due to the high accuracy of INS, the overall horizontal error is within 2 m, and
the difference between the accuracy of different algorithms is not significant, and the turning
point of error dispersion mainly occurs at the vehicle corners. The trajectories during this
period are shown in the Figure 11, and it can be seen that the position errors are mainly
generated at the corners. The maximum position errors are shown in Table 2. The proposed
method in our paper reduces the maximum position error in the east direction by 58.61%,
67.05%, and 63.35% compared to pure INS, MLP, and GRU, respectively. The maximum
position error in the north direction is similar, increasing by 4.44% and 12.74% compared
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to pure INS and GRU, reducing by 46.34% compared to MLP, and the maximum position
in the horizontal direction error is reduced by 16.86%, 45.29%, and 35.34% compared to
pure INS, MLP, and GRU, respectively. It can be seen that the accuracy of the RNN is
significantly better than that of the MLP.

Figure 8. The east position error result of 60 s outage of Experiment 1.

Figure 9. The north position error result of 60 s outage of Experiment 1.

Figure 10. The horizontal position error result of 60 s outage of Experiment 1.
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Figure 11. The trajectories of 60 s outage of Experiment 1.

Table 2. Maximum position error of 60 s outage of Experiment 1.

East Error
(m)

North Error
(m)

Horizontal Error
(m)

Pure INS 1.38 0.96 1.38

MLP 1.74 1.86 2.10

GRU 1.56 0.89 1.78

Our method 0.57 1.00 1.15

Figures 12 and 13 show the position errors of the different algorithms in the east and
north directions during the 120 s GNSS outage. It can be seen that the north position error
of the pure INS has started to decrease. The horizontal direction error of 180 s outage is
shown in Figure 14, and it can be seen that as the GNSS outage time increases to 3 min,
the accuracy of the pure INS starts to dissipate, and the MLP method does not perform
well, starting to dissipate from around 100 s. The trajectories during this period are shown
in Figure 15. The maximum position errors are shown in Table 3. Compared to the pure
INS, MLP, and GRU, the proposed method in this paper reduces the maximum position
errors in the east direction by 92.00%, 89.95%, and 81.10%, in the north direction by 37.39%,
80.45%, and 56.96%, and in the horizontal direction by 86.66%, 86.08%, and 72.18%.

Figure 12. The east position error result of 180 s outage of Experiment 1.
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Figure 13. The north position error result of 180 s outage of Experiment 1.

 

Figure 14. The horizontal position error result of 180 s outage of Experiment 1.

 

Figure 15. The trajectories of 180 s outage of Experiment 1.
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Table 3. Maximum position error of 180 s outage of Experiment 1.

East Error
(m)

North Error
(m)

Horizontal Error
(m)

Pure INS 49.42 8.58 50.03

MLP 39.35 27.49 47.93

GRU 20.92 12.49 23.98

Our method 3.95 5.37 6.67

Since the GNSS outage time reached 300 s, the model was switched to the fine model
when the GNSS outage time increase to more than two minutes. Figures 16 and 17 show
the position errors of the different algorithms in the east and north directions during the
300 s GNSS outage. It can be seen that the prediction performance of MLP for the north
position error was unsatisfactory, while the effect of the direction that was proposed in our
paper is obvious. Horizontal direction error of 300 s outage is shown in Figure 18. It can be
seen that as the GNSS outage time increases to 5 min, the accuracy of both the pure INS
and the MLP method begin to diverge, while the GRU and CNN-GRU accuracy is better
maintained. The trajectories during this period are shown in the Figure 19. The trajectory
that is predicted by the method that is proposed in our paper is close to the real trajectory.
The maximum position errors are shown in Table 4. Compared to the pure INS, MLP, and
GRU, the proposed method in our paper reduces the maximum position errors in the east
direction by 93.96%, 77.60%, and 61.27%, in the north direction by 86.34%, 82.87%, and
57.67%, and in the horizontal direction by 93.36%, 84.58%, and 66.81%.

Figure 16. The east position error result of 300 s outage of Experiment 1.

Figure 17. The north position error result of 300 s outage of Experiment 1.
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Figure 18. The horizontal position error result of 300 s outage of Experiment 1.

 

Figure 19. The trajectories of 300 s outage of Experiment 1.

Table 4. Maximum position error of 300 s outage of Experiment 1.

East Error
(m)

North Error
(m)

Horizontal Error
(m)

Pure INS 111.48 55.81 124.67

MLP 30.08 44.51 53.72

GRU 17.40 18.01 24.96

Our method 6.74 7.62 8.28

As shown in Figure 20, Experiment 2 contains five tunnels, with lengths of 1.3 km,
1.7 km, 3.2 km, 5.2 km, and 1.7 km, respectively. The first three sections of the tunnel
are closely spaced which is specifically designed to more accurately show the algorithms’
effectiveness. As shown in Figure 21, the compensation effect of different algorithms for the
first three tunnel sections can be seen. Since RTK cannot obtain position information in the
tunnel, we choose the horizontal position error at the end of the tunnel as the evaluation
index, and the results are shown in Table 5. Compared with pure INS, MLP, and GRU, the
method that was proposed in this paper reduces the average horizontal position error at
the end of the tunnel by 66.07%, 59.85%, and 36.50%.
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Figure 20. The trajectories of Experiment 2.

Figure 21. The trajectories of periods #1-3 of Experiment 2.

Table 5. Horizontal position error at the end of the different tunnels.

#1
(m)

#2
(m)

#3
(m)

#4
(m)

#5
(m)

Pure INS 2.56 5.27 6.82 18.91 6.57

MLP 7.46 6.94 5.77 9.62 4.12

GRU 3.96 5.82 3.49 5.52 2.65

Our method 1.90 3.02 2.52 4.36 1.81

5. Conclusions

In order to improve the positioning accuracy of integrated INS/GNSS navigation
during GNSS outage, our paper proposes a new AI-assisted method. The method consists
of two parts: first, CKF is used to provide more accurate positioning results. Then, by
building a CNN-GRU network we can predict the position increments during GNSS outage.
In the process, the CNN is utilized to quickly extract the multi-dimensional sequence
features, and GRU is used to model the time series. In addition, a new real-time training
strategy is proposed for practical application scenarios, where the duration of the GNSS
outage time and the motion state information of the vehicle are taken into account in the
training strategy. The experimental results show that compared with pure INS, MLP, and
GRU, the proposed method reduces the maximum position error in the horizontal direction
by 93.36%, 84.58%, and 66.81% in the 5 min simulated GNSS disruption experiments
compared to the pure INS, MLP, and GRU, respectively. In the real GNSS failure scenario,
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the average horizontal position error at the end of the tunnel using our method is reduced by
66.07%, 59.85%, and 36.50%. The algorithm can provide real-time high-precision navigation
results with high efficiency and has a good reduction effect on the error dispersion that is
caused by prolonged GNSS failure.
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Abstract: In order to realize the cooperative localization of multi-unmanned platforms in the GNSS-
denied environment, this paper proposes a collaborative SLAM (simultaneous localization and
mapping, SLAM) framework based on image feature point matching. Without GNSS, a single
unmanned platform UGV and UAV (unmanned ground vehicle, UGV; unmanned aerial vehicle, UAV)
equipped with vision and IMU (inertial measurement unit, IMU) sensors can exchange information
through data communication to jointly build a three-dimensional visual point map, and determine the
relative position of each other through visual-based position re- identification and PnP (Perspective-
n-Points, PnP) methods. When any agent can receive reliable GNSS signals, GNSS positioning
information will greatly improve the positioning accuracy without changing the positioning algorithm
framework. In order to achieve this function, we designed a set of two-stage position estimation
algorithms. In the first stage, we used the modified ORB-SLAM3 algorithm for position estimation
by fusing visual and IMU information. In the second stage, we integrated GNSS positioning and
cooperative positioning information using the factor graph optimization (FGO) algorithm. Our
framework consists of an UGV as the central server node and three UAVs carried by the UGV,
that will collaborate on space exploration missions. Finally, we simulated the influence of different
visibility and lighting conditions on the framework function on the virtual simulation experiment
platform built based on ROS (robot operating system, ROS) and Unity3D. The accuracy of the
cooperative localization algorithm and the single platform localization algorithm was evaluated. In
the two cases of GNSS-denied and GNSS-challenged, the error of co-location reduced by 15.5% and
19.7%, respectively, compared with single-platform independent positioning.

Keywords: differential GNSS; SLAM; cooperation SLAM; multi robot system; UAV; UGV

1. Introduction

The aerial and ground collaborative unmanned systems are a heterogeneous cross-
domain collaborative unmanned system composed of unmanned aerial vehicles (UAVs)
and unmanned ground vehicles (UGVs), with complex functions such as perception,
positioning, control and navigation. It can not only perform tasks independently, but
also interacting with multiple aircraft across domains. A heterogeneous team of UAVs
and UGVs can compensate for the lack of mobility, payload, and observation conditions
between different platforms. UAVs can quickly cover large areas and have a good point of
view for situational assessment. Ground vehicles have longer battery life, can carry large
payloads, and actively interact with the environment.

In recent years, single-platform SLAM technology has been developed significantly.
Early SLAM framework of sensor fusion mostly adopted the extended Kalman filter (EKF).
For example, MSCKF [1] proposed a multi-sensor location information fusion method
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loosely coupled with visual-inertial odometry (VIO). ORB-SLAM3 [2] proposed by Campos
e.g., revealed its potential in the aspects of high precision and high robustness. In the
aspect of map fusion, the ORBSLAM-Atlas [3] module used camera pose error covariance
to estimate the observability of the camera pose to determine whether to retain the camera
pose or create a new map. In the field of multi-sensor fusion SLAM, VINS-FUSION [4]
proposed a method that fused loosely-coupled global positioning information and VO/VIO
positioning result. Some excellent collaborative SLAM frameworks also emerged from
this foundation. When lacking external measurements, the relative position measurement
between unmanned platforms mainly relies on visual position re-identification. A common
way to obtain loop closures is to use visual place recognition methods, based on image or
keypoint descriptors and a bag of words model, such as [4,5]. Some recent works have
also studied closed-loop detection between distributed robots [6,7]. This method finds
closed-loops through local communication between robots [8], collects observation data in a
central server, and obtains a motion trajectory estimation of each robot through pose graph
optimization (PGO). Different from the above, Yun Chang et al. proposed a collaborative
SLAM method based on deep learning semantic description features [9].

There are two communication modes of multi-robot collaborative SLAM: distributed
and centralized. [9–11] are representative works of a distributed framework. In related
research of a centralized framework, Zou et al. introduced CoSLAM [12] in the early years,
which demonstrated considerable potential of the centralized collaborative SLAM, CCM-
SLAM [13] that deploys resource-consuming computations on servers, while still ensuring
each agent’s autonomy at low computational resource requirements by running a visual
odometry system onboard. CVISLAM [14] was the first collaborative SLAM framework for
bidirectional communication and extended visual-inertial odometry to the collaborative
SLAM domain. It achieved higher accuracy and metric scale estimation. However, this
study did not integrate GPS positioning information and thus lacks flexibility. Jialing Liu
et al. proposed a collaborative monocular inertial SLAM system for smart phones. This was
the first multi-agent collaborative SLAM system to run on a mobile phone [15], supporting
cross-device collaboration. Similar work has reported CoVins [16] which can perform
collaborative SLAM tasks on a larger scale. This study showed advantages in removing
redundant information and reducing the coordination overhead.

All the above research only provides some thought to solving the ground-air collab-
orative navigation problems. They did not evaluate the specific application of various
methods in aerial and ground collaborative navigation problems under GNSS-challenged
environments. Even so, many challenges of this application still exist. For example, how to
overcome the place recognition of crossing platforms under the aerial-ground difference of
visual angles, or how to correct drift errors of GNSS positioning information for different
platforms. The previous research mostly considered that a single platform did not need to
run a complete SLAM optimization process during collaborative SLAM and only needed to
execute visual odometry or visual-inertia odometry. However, with the rapid development
of the terminal equipment computing power, we considered that a deploy communication
interface, loosely-coupled with two-stage optimization and a complete single-platform
SLAM process on a terminal device at the same time will not only improve the positioning
accuracy of the single-platform but also improve the robustness of the single-platform
positioning algorithm of the whole system in the case of communication disorder. The
key to collaborative positioning in GNSS-challenging environments is to ensure system
initialization and positioning without GNSS signals, and to improve overall positioning
accuracy with GNSS positioning when GNSS positioning information is available.

In order to solve ground-air collaborative positioning problems, Moafipoor et al. pro-
posed a method that used UGV and UAV collaboration to navigate [17]. When GPS is
not available, the constraints of the external measurements provided by the extended
Kalman filter and tracking filter are used to ensure the normal operation of the navigation
function under adverse GPS conditions. In this paper, graph optimization was adopted
to solve similar problems, assuming that GPS signals of each agent may be interfered
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with at any time. Peter Fankhauser et al. proposed a completely integrated method of
relative observation between robots, independent of external positioning, and without
initial guesstimates about the robot’s posture [18]. This method was applied to the mutual
positioning between a hexacopter and a quadrupedal robot. J Park et al. studied the map
point registration between UAV and UGV through feature points and realized the work of
spatial data collection by multiple agents in a decentralized environment [19]. Hailong Qin
proposed a two layer shared novel optimized exploration path planning and navigation
framework, which provided optimal exploration paths and integrated the collaborative
exploration and mapping efforts through an OctoMap-based volumetric motion planning
interface [20]. They only considered GNSS-denied environments, not GNSS-challenged
environments. In practical applications, on the one hand, we hope to use GNSS positioning
information when receiving GNSS signals, and on the other hand, we hope to maintain a
certain navigation function in the absence of GPS.

In this paper, we proposed an algorithm framework based on feature point matching
and graph optimization for ground-air collaborative positioning in GNSS-challenged envi-
ronments and verify its function in the virtual simulation system. Compared with previous
related work, the main contributions of this paper are summarized as follows:

1. GNSS information is used to eliminate drift errors of the SLAM process in a loosely-
coupled way. This method can work normally even if the GNSS signal is disturbed
or missing;

2. The cooperative location process is divided into several stages, and we try our best
to balance the server computing power, communication bandwidth and algorithm
performance. This allows the system to perform a complete global map initialization
in the environment without GNSS signals;

3. The function of the proposed method is verified by using a virtual simulation system,
and the positioning accuracy of the algorithm is analyzed.

2. Materials and Methods

2.1. System Overview

The architecture of the framework is depicted in Figure 1. At the early stages of system
startup, all the UAV take off from a platform on the top of a UGV. After the unmanned
platform completes IMU initialization and performs the first global bundle adjustment
(BA), map fusion and relative pose solutions are completed between unmanned platforms
through the local map. A flowchart of the co-location program executed on the server is
shown below:

Figure 1. Overall algorithm framework. “MPs/KFs” is short for map points and keyframes. In the
figure, the oval block represents all kinds of data, and the square block represents the processing
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of data. Input for each platform includes images, IMU, and GNSS location information. Each
data handler thread is responsible for handling a corresponding agent. Pose estimation and global
optimization on a single platform and server are realized by factor graph optimization. Finally, the
final state after global optimization is output to the subsequent program for path planning, task
allocation or map construction.

For convenience of explanation, the first stage of the position estimation coordinate
system for a single platform is called the VIO frame. The coordinate system where each
agent’s local map is located after a single platform has completed the second stage of
position estimation is called the local frame. The coordinate system where the global map
is located after map fusion is completed on the server is called the global frame. The co-
location program on the server is shown in Figure 2. When there is no GNSS positioning or
collaborative positioning information, the VIO frame will overlap with the local frame. The
global frame overlaps with the local frame of the UGV before initialization, and the process
of global map initialization is to obtain the relative positioning relation between each UAV
and UGV through PnP solutions and convert the local map of each agent to a global map
based on UGV’s local map. After initialization, the local frame of each agent will overlap
with the global frame. As the unmanned platform continues to move, each agent generates
a new keyframe during the local SLAM process and sends these new keyframes and map
points to the server through wireless data communication. The server stack will cache map
information from each agent. These keyframes and map points will be added to the global
map through the initialized relative position changes between platforms. After the program
discovers place recognition among platforms through detecting feature points, loop-closure
and map fusion of the global map will be executed, as well as optimization. The optimized
position and pose will be used to estimate that in the second stage, together with the
GNSS positioning from each platform. Finally, the new pose of the new keyframes after
collaborative positioning in the closed-loop position will be sent back to the corresponding
agent. And the agent that accepts the collaborative positioning information will adjust their
pose during the second stage of local optimization.

Figure 2. The running process of the co-location module in Figure 1 is explained in detail. The function
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of this module is to restore the received MPs/KFs data from each agent to a local map. The local map
is further stitched into a global map through visual position re-identification, or a new closed-loop
is added to the global map that has been initialized. Finally, the GNSS positioning information is
integrated to perform global optimization and output the result of co-location.

2.2. Keyframe-Based SLAM Algorithm Fusing GNSS Positioning Information and
Co-Location Information

We deployed a SLAM framework modified and based on ORB-SLAM3 on each agent
to run independently, to ensure each agent can complete independent navigation tasks
in the situation where communication links are lost. The algorithm’s flow is shown in
Figure 3. ORB-SLAM3 was modified as follows:

Figure 3. The tracking thread processes sensor information in real time and initially estimates the
pose of the current frame. In the process of tracking the local map, the track thread determines
whether the current frame is used as a keyframe. Different from ORBSLAM3′s keyframe addition
strategy, when valid GNSS positioning information completes timestamp alignment, frames aligned
with GNSS information are also inserted as keyframes.

• A communication module to the server was added to exchange keyframe and map
point information with the server instantly. The details about this part will be intro-
duced in Section 2.3.1;

• The position estimation of the second stage was added, and both GNSS positioning
information and collaborative positioning information were fused.

Each node represents a keyframe position and pose in the world frame. In Figure 4,
the line between two nodes is called an “edge”, which represents the constraint of the
amount to be optimized in the optimization of the factor graph. The edge between two
consecutive nodes is a local constraint, which comes from ORB-SLAM3′s pose estimation.
The other edge is the constraint from the co-location results of the server and GNSS satellite
positioning information. We used the VIO factor as the local constraints, and GNSS location
information and co-location information as global constraints. An illustration of the second-
stage global pose graph structure is shown in Figure 4.
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Figure 4. Schematic diagram of the pose graph structure to be optimized in the second stage. The
circle is the state quantity, and the yellow square is the constraint of local observation, that is, the
relative pose transformation of VIO from ORBSLAM3. The other colored squares are constrained by
global observations.

Construction of residuals with local constraints refer to ORBSLAM3 [1], supposing that
there are two continuous keyframes KFti and KFtj , we define qv

t as the attitude quaternion
KFt under the VIO coordinate system, and pv

t as the three-dimensional coordinate under
the VIO coordinate system of KFt. Similarly, ql

t and pl
t are the quaternion and coordinates

under the global coordinate system. The VIO local factor is derived as:
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where z is the measured value, provided by the results of the one-stage position estimation;
χ is the state prediction; and s is the observation equation. χ is calculated from the pose
transformation between the two moments. The specific method used in this paper uses the
relative pose of the current moment and the previous moment obtained from the position
estimation in the first stage to add to the position coordinate xtj at the previous moment to
obtain the position coordinate xti at the current moment. � is the minus operation on the
error state of quaternion. We take the pose covariance matrix generated during SLAM as
the covariance of local measurements. The essence of the local factor is the relative change
in the pose in two keyframes.

Consider the following two situations where GNSS does not work: the GNSS signal
is poor or has interference, resulting in a large error in the GNSS positioning information,
resulting in a large drift in an agent’s navigation trajectory; the GNSS signal is completely
disabled, and there is no GNSS positioning information. Upon receipt of a valid GNSS
location, the longitudinal dimension heights of the original measurements will be trans-
formed into x, y, z coordinates in the local Cartesian coordinates system (ENU) during
GNSS data preprocessing. PG

t = [xw
t , yw

t , zw
t ]

T is the coordinate of the GNSS information
in the transformed ENU coordinate system. PG

t is the measured value of GNSS at that
moment, t. The uncertainty of measurement is assumed to be a Gaussian distribution with
mean and covariance. Pt

w is the assumed GNSS estimate. The GNSS factor is derived as:

zG
t − sG

t (χ) = zG
t − sG

t (xt) = PG
t − Pw

t (2)

When each agent receives a new pose about a keyframe’s collaborative positioning
from the server, we introduce the result of collaborative positioning as a new measured
value into the process of secondary optimization. We assume that the result obtained by KFt
in the first-stage pose estimation at that moment in the VIO coordinate system is {qv, pv}.
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The pose obtained by KFt after the co-location is transformed into {qc, pc} on the local
framework of the agent. The co-location factor is derived as:

zC
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t (χ) = zC
t − sC

t (xt) =

[
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v
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c

]
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Lastly, in order to prevent VIO from drifting too much, the transformation of the
VIO coordinate system to the global coordinate system should be updated after each
optimization. The operation must make the position after fusion overlap with the results
of GNSS positioning and cooperative positioning as much as possible, and the difference
between the two frames should be as equal as possible with VIO. The data from VIO does
not impose constraints on the absolute position after fusion, and only requires that the
incremental error of the position after fusion and the incremental error of VIO should be as
small as possible.

2.3. Communication

The communication modules on the agents and server was based on The ROS commu-
nication infrastructure [21]. It was used for message passing over a wireless network. The
communication interface supports two-way communication between the agents and the
server, we applied it to update the keyframe pose at a given moment for single-platform
SLAM. The server uses it to receive map information from each agent. With this module,
the objects waiting to be sent were first serialized/deserialized. Since ROS is not a real-time
communication system, time stamps needed to be attached to packets.

2.3.1. Agent-to-Server Communication

In order to realize map data sharing from agent to server and save data bandwidth
as much as possible, we added several state variables into the ORB-SLAM3 program to
monitor the running status of SLAM on a single platform, including: IMU initialization
process, whether visual-inertial bundle adjustment (VIBA) is completed, and tracking the
running status of threads. After the IMU completes initialization and VIBA, all the previous
keyframes and map point information is serialized and sent. The keyframe information
includes the unique ID of this keyframe on the agent, its pose and time stamp, the information
of feature points it contains, and the numbers of all map points observed by this keyframe. The
map point information contains the ID of this map point on the agent, its three-dimensional
coordinates, its descriptors, and the ID of all keyframes that have observed this map point
so far. Unique IDs ensure that these messages are not sent repeatedly to reduce the required
network bandwidth. The communication module distinguishes between dynamic information
(such as the pose of a keyframe that may be adjusted according to the running state of SLAM)
and static information (descriptors of feature points). In the process of communicating with
the server, each agent will send the smallest packet at the highest frequency (including at least
one newly added keyframe information).

2.3.2. Server-to-Agent Communication

Each agent handler thread is responsible for processing keyframes and map points
from the corresponding agent on the server. Each keyframe is not processed until all of
its observed map points have been deserialized by an agent handler and inserted into
the map stack. The server map stack contains separate maps that contain data from each
agent. When the server maps complete location identification and merge, the two maps are
removed from the map stack and replaced with their merged map until there is only one
global map in the entire server map stack. When the server detects the new closed-loop
and completes the global pose optimization, it sends the ID and pose of the keyframe back
to the corresponding agent to be updated.
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2.4. Global Map Initialization and Intra-Agent Measurements

In order to enable the system to complete the positioning of each agent without GNSS
at the initial stage of operation, we let the UAVs and UGVs start from the same position with
the same angle of view. In this paper, UAVs are set to take off from the top platform of the
UGV. After the IMU initialization is completed (which commonly needs 15–35 keyframes
and takes 5–10 s), the agents perform a visual-inertial bundle adjustment. The aim of this
action is to improve the precision of the initial map. Then, each agent sends its initial
optimized local map to the server. For a certain terminal Agentc, the server will start the
alignment from the keyframe KFc at the most recent moment sent in the Mapc. First, a
subset of maps Mapm from the server map stack and brute-force descriptors are chosen that
match all keyframes contained within that map with KFc

t through DBoW2, and obtained

the most likely matched candidate
{

KFm
t1

, KFm
t2

. . . KFm
ti

}
(We set i to four times that of the

number of agents). For each keyframe, among all the feature points contained in it and its
five best common-view keyframes, the 2D-2D feature point matching provided by DBoW2
is used to obtain the 3D-3D matching between their corresponding map points. The map
points of candidacy KFm

tn
will be converted to KFc

t through Tn
cm. If the reprojection error is

less than the threshold, a vote is cast for the corresponding KFm
tn

, and the frame with the
most votes is selected as the matching frame. For further improvement of the closed-loop’s
robustness, the matching frame and its common-view frame together need to achieve
three successful matches to be considered as the complete place recognition. If, at this
moment, Agentc is a UAV, Agentm is a UGV, then the UAV’s local map will be fused into
the UGV’s through TUAVc_UGVm

= Tcm. If both Agentc and Agentm are UAVs, the relative
pose transformation will be saved until one of them is fused with the UGV’s map, and
another will complete fusion through TUAVc_UAVm

× TUAVm_UGV . After the above pairwise
pairing of the unmanned platforms, the local map of each UAV is finally converted into the
coordinate system of the local map of the unmanned vehicle. New incremental keyframes
and map points received by the server during subsequent operations will be transferred to
the global map with the corresponding poses until a new loop closure or GNSS location
provides a new location constraint.

2.5. Loop Closure and Global Optimization

The place recognition of loop closure is similar to the global map initialization, which
depends on the feature point matching provided by DBoW2, and the initial matching
through RANSAC and the PnP algorithm. Different from the global map initialization,
considering the long-term drift of single-platform SLAM, a finer relative position transition
is required. As above, we suppose that KFc of Agentc and KFm of KFm have complete

initial matching and Tcm =

(
R t
0 1

)
∈ SE(3). All converted map points contained within

the common-view frame of KFm, and those found matching to the key points in KFc. After
the above intra-agent measurements have been completed, we need to adjust the map
information according to the new closed-loop and fuse all the positioning information from
each agent to perform global optimization. The details are as follows.

2.5.1. Refinement of Transformation Matrix

Tcm is used to convert all map points contained within the common-view keyframe
of KFm, and matching map points are located in the feature points of KFc. To obtain as
many matches as possible, the map points are found that matches KFc in KFm and all of

its keyframes at the same time. The nonlinear optimization of T∗
cm =

(
sR t
0 1

)
∈ sim(3) is

carried out by using all the map point matching relationships found (the initial value of s
is 1), and the goal function is the bidirectional reprojection error
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2.5.2. Pose Graph Optimization

After obtaining the optimized transformation matrix T∗
cm, the redundant map points

need to be eliminated in the above matching process for each pair of matching map
points describing the same feature point. Then propagation of the corrections must be
disseminated to the rest of the map through pose graph optimization. To eliminate duplicate
points, for each pair of matches the points from Agentc are removed, and the points from
Agentm inherit all the observations of the removed points. By adding edges to the co-
visibility and essential graphs, the observability is propagating between the common-view
frames of KFm and KFm.

As it has sufficient computing power on the server and is not sensitive to the time cost,
global BA optimization can be directly carried out on the adjusted visibility and essential graphs.

2.5.3. Global the Second-Stage Pose Estimation

The factor graph structure of the global two-stage optimization is similar to that of
the single platform, the difference is that in the global optimization process only the GNSS
positioning information (if any) is needed to be taken into consideration. This is due to
the GNSS positioning information from different agents will also generate new position
constraints on the global map making the track change significantly and intersect, even if
there is no visual re-location at that position. In this case, we would lower the threshold in
line with the RANSAC algorithm. If it can pass the detection after reducing the number
of inner points, a new closed-loop will be established here. The subsequent processing is
consistent with the closed-loop process described above.

3. Simulation and Experimental Result

3.1. Virtual Simulation Experiment Platform

The overall architecture of the multi-unmanned platform simulation system based
on Unity3D and ROS architecture is shown in Figure 5. The UAV flight control and visual
simulation is based on Flightmare [22]. The ROS Gazebo [23] simulation environment was
run on Computer A to constrain the movements of UAVs and UGVs through dynamic
models, and to generate the true values of the position and motion velocity. Position and
velocity errors were superimposed to generate virtual IMU and GNSS data. Among them,
GPS positioning information in GPGGA format was chosen as GNSS satellite positioning.
The location and timestamp of an agent sent to the visual simulation module was passed
through ROS-Unity3D interface. The visual simulation module moves the agent’s model
to the corresponding coordinates, renders the photo, and finally sends the most up-to-
date image and timestamp to the algorithm verification program on Computer B. The
configuration of the two computers in the figure is shown in the Table 1.

3.1.1. Engine Dynamics Modeling and Simulation for a Type of UAV and UGV

The rigid body appearance, physical properties, joint types and other aspects of the
unmanned platform are described through URDF files. The motion of the unmanned
platform model in the ROS environment can be viewed through Gazebo. Its position
in Gazebo is taken as the true value of the pose of the unmanned platform. hybrid A*
algorithm to UGV is applied to realize the path planning, and TEB algorithm to realize
trajectory tracking. The UAV adopts a four-rotor model, using the quadrotor dynamics to
design the control algorithm, and the Euler method and fourth-order Runge-Kutta method
to integrate the UAV dynamics equation.

3.1.2. Visual Simulation Based on Unity3D

The visual simulation module includes scene resources and unmanned platform
models. The scene resource module is responsible for the construction and optimization
of 3D scenes in the visual simulation software, and makes the scenes restore the real
environment as much as possible to run smoothly through the 3D model import and level
of detail (LOD) optimization. Multiple unmanned platforms can be loaded in the simulation
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scene according to the demand, and the objects can be driven to move according to the
immediate feedback of the data in ROS. Particle effect components are used to simulate
weather, such as rain and fog. The light was set in the Unity scene to simulate a sunny day,
dusk and night. Various meteorological and light environments were combined to simulate
different visibilities in the real world. Lastly, the virtual RGB images were obtained through
the Unity camera module.

Figure 5. The virtual data generation program is deployed on Computer A, and the agent handler and
cooperative location program is deployed on Computer B. They are connected using a gigabit network.

Table 1. The hardware configuration of the computers running the virtual simulation platform and
the positioning algorithm.

Platform Type Characteristic

Computer A Desktop computer Intel9-11700k + 32 Gb + 2080Ti
Computer B Desktop computer AMD3990x + 64 Gb + 2080Ti

3.1.3. Virtual Sensor Data Generation

Based on the modeling of the unmanned platform in Section 3.1.2, two sensor compo-
nents were added: an inertial measurement unit module and a GPS module. IMU and GPS
data were obtained by adding noise to the true value of the sensor model in the Gazebo
coordinate system. The IMU-related parameters are shown in Table 2:

Table 2. IMU data production module parameter configuration table.

Parameter Value

Gyroscope noise density 0.0003394 [Hz]
Gyro deviation random walk 0.000038785 [Hz]

Gyro deviation related time constant 1000.0 [s]
Gyroscope opening deviation standard deviation 0.0087 [rad/s]

Accelerometer noise density 0.004 [Hz]
Accelerometer deviation random walk 0.006 [Hz]

Accelerometer deviation related time constant 300.0 [s]
Update frequency 100 [Hz]

The parameters related to GPS are shown in Table 3.
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Table 3. GPS data production module parameter configuration table.

Parameter Value

Standard deviation of Gaussian noise at horizontal position 0.05 [m]
Standard deviation of Gaussian noise in vertical position 0.15 [m]
Standard deviation of horizontal velocity Gaussian noise 0.05 [m/s]

Standard deviation of vertical velocity Gaussian noise 0.05 [m/s]
Update frequency 5 [Hz]

3.2. Experimental Results

This section introduces the simulation and experimental results of the autonomous
positioning in an unknown environment by using the heterogeneous UAV and UGV system
proposed. In the following experiment, we generated specified waypoints for the three
UAVs and a UGV through the virtual simulation and saved the resulting sensor data and
time stamps in the ROS bag for subsequent repeating tests. We examined the robustness of
the method we proposed in an actual engineering scenario by modifying the ambient light,
weather in the scene, and the down view angle of the UAV camera. Then we analyzed
and compared the influence of the collaborative positioning framework on the positioning
accuracy of each platform with single-platform positioning. The detailed settings for each
dataset are shown in the Table 4.

Table 4. Parameter Settings for each dataset.

Dataset Lighting Conditions Meteorology Agent Camera Angle Path Length

Factory 01 bright High visibility

UAV1 45◦ 162.47 m
UAV2 45◦ 161.29 m
UAV3 45◦ 168.96 m
UGV 0◦ 106.43 m

Factory 02 bright thick-foggy

UAV1 45◦ 162.47 m
UAV2 45◦ 161.29 m
UAV3 45◦ 168.96 m
UGV 0◦ 106.43 m

Factory 03 somber High visibility

UAV1 45◦ 162.47 m
UAV2 45◦ 161.29 m
UAV3 45◦ 168.96 m
UGV 0◦ 106.43 m

Factory 04 somber thick-foggy

UAV1 45◦ 162.47 m
UAV2 45◦ 161.29 m
UAV3 45◦ 168.96 m
UGV 0◦ 106.43 m

Factory 05 bright mist

UAV1 45◦ 162.47 m
UAV2 45◦ 161.29 m
UAV3 45◦ 168.96 m
UGV 0◦ 106.43 m

Factory 06 somber mist

UAV1 45◦ 162.47 m
UAV2 45◦ 161.29 m
UAV3 45◦ 168.96 m
UGV 0◦ 106.43 m

Factory 07 bright High visibility

UAV1 25◦ 162.47 m
UAV2 25◦ 161.29 m
UAV3 25◦ 168.96 m
UGV 0◦ 106.43 m

Factory 08 bright High visibility

UAV1 25◦ 162.47 m
UAV2 45◦ 161.29 m
UAV3 75◦ 168.96 m
UGV 0◦ 106.43 m
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3.2.1. The Influence of External Factors on the Function of Algorithm Framework

Our algorithm depends on visual graph feature points to complete place recognition,
which is the foundation of subsequent map fusion and loop closure. Considering that
visual angle difference and observation conditions are the main factors affecting feature
point matching, we set three meteorological environments in the virtual simulation system:
no occlusion, mist and fog, and two lighting environments: normal light and high light
ratio under sunset. There was no cover, mist and fog representing the visibility of infinity,
150 m and 50 m, respectively. A schematic of the scenario is shown in Figure 6.

Figure 6. Schematic diagram of the virtual simulation scene (a) bright scene with high visibility; (b) a
dimly lit but fog-free scene; (c) foggy and dim scene. Different observation conditions will affect the
extraction and matching of feature points.

The first thing worth paying attention to is the network bandwidth occupied by each
agent and server for exchanging data in the virtual communication network environment.
In Table 5, we list the average bandwidth and instantaneous traffic peaks of upload and
downlink data between each agent and server. The peak of uploaded data occurs during
map initialization, and the bandwidth usage is relatively smooth thereafter. There is a
positive correlation between bandwidth usage and keyframe generation speed.

Table 5. This table shows the network bandwidth usage after all simulation datasets were run. The
results are obtained from seven experiments.

Agent
Upload Downlink

Average Maximum Average Maximum

UAV1 0.35 MB/s 1.1 MB/s 0.4 KB/s 0.8 KB/s

UAV2 0.34 MB/s 1.1 MB/s 0.6 KB/s 0.9 KB/s

UAV3 0.40 MB/s 1.3 MB/s 0.4 KB/s 0.7 KB/s

UGV 0.31 MB/s 0.9 MB/s 0.2 KB/s 0.4 KB/s

Here, we compared the number of closed-loops generated with that of the feature
points matched on the closed-loop frame during the operation process of the collaborative
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positioning algorithm on different datasets. From the results in Table 6, we found that
the feature point matching had similar performance under two similar viewing angles
when the viewing angle of UAV was the same. As many feature point pairs as possible are
beneficial not only to achieve robust place recognition, but also to improve the positioning
accuracy of SLAM. However, the number of feature point matching between UAV and
UGV will decrease with an increase in the angle of view difference, which is more obvious
when a UAV flies at low altitude. We believe that setting the camera angle of the UAV to
45◦ in the downward view can balance the need for visual repositioning among UAVs and
between UAVs and UGVs better.

Table 6. The number of feature points matching and successful location re-identification under
different angles of view and illuminations.

Camera Angle Lighting Conditions Number of Successful Relocations Average Number of Matching Point Pairs

25–25◦
bright 28 123.83

somber 27.3 110

45–45◦
bright 27 139

somber 27 113

75–75◦
bright 28 128.33

somber 27 129.5

25–75◦
bright 5 36

somber 4 35

25–45◦
bright 11 47

somber 10 44.83

45–75◦
bright 14 55.5

somber 11 49

0–25◦
bright 12 47

somber 10 42

0–45◦
bright 17 51.5

somber 17 38.83

0–75◦
bright 4 23.33

somber FAIL 18

As can be seen from the data in Table 7, the change of light affected the detection of
feature points, but the number of feature points in the picture was still enough to produce
the correct closed-loop. In the mist mode, 59% of feature point pairs were lost, and the
number of correct closed-loops produced also dropped dramatically. Moreover, dense
fog interfered the feature point detection and place recognition thoroughly. In the dense
fog mode, except when the map initialization was completed when all the UAVs and
UGVs started from the same position at the first stage of the operation, all the position
re-identifications failed at the position where the closed-loop should be generated due to
insufficient matching feature points in subsequent operations.

Table 7. The number of feature points matching and successful location reidentification under
different angles of view and illuminations.

Lighting Conditions Meteorology Average Number of Successful Relocations Average Number of Matching Point Pairs

bright
high visibility 27 125.83

mist 11 58
thick-foggy FAIL 17.5

somber
high visibility 27 112

mist 7 39.83
thick-foggy FAIL 15.33
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3.2.2. Collaborative SLAM Estimation Accuracy

To estimate the positioning accuracy of the system, in this section the influence of
external observation conditions on the experiment results were ignored and the camera
view that generated the largest average number of matching point pairs (45◦) was adopted.
The experiment for this section was run on Factory 01, 03, 05, 06 on the datasets described
in Table 8.

Table 8. The accuracy of each agent running in different modes.

Agent Mode ATE_RMSE (m)/Mean Error (m)

UAV1

GPS-challenged Co-location 1 0.262/0.170
GPS-challenged Co-location 2 0.311/0.197

GPS-Denied Co-location 0.930/0.842
ORB-SLAM3 1.110/0.911

ORB-SLAM3 fusion GPS 0.371/0.223

UAV2

GPS-challenged Co-location 1 0.416/0.293
GPS-challenged Co-location 2 0.472/0.401

GPS-Denied Co-location 1.298/1.025
ORB-SLAM3 1.523/1.465

ORB-SLAM3 fusion GPS 0.488/0.317

UAV3

GPS-challenged Co-location 1 0.368/0.273
GPS-challenged Co-location 2 0.397/0.285

GPS-Denied Co-location 0.782/0.502
ORB-SLAM3 0.979/0.735

ORBSLAM3 fusion GPS 0.396/0.299

UGV

GPS-challenged Co-location 1 0.172/0.134
GPS-challenged Co-location 2 0.173/0.137

GPS-Denied Co-location 0.219/0.171
ORB-SLAM3 0.405/0.297

ORB-SLAM3 fusion GPS 0.186/0.175

We estimated the absolute trajectory error (ATE) of each agent. We tested the positioning
performance in GPS-denied and GPS-challenged modes separately. In the GPS-challenged 1
mode, all agents obtained valid GPS location information every 20 s. In the GPS-challenged 2
mode, the UAV could only randomly obtain four valid GPS positions during the operation,
and the UGV masked all GPS location information. In the GPS-denied mode, all agents would
not use the GPS location data in the dataset. The effect trajectory of the three UAVs and the
unmanned vehicle in the collaborative positioning is shown in Figure 7a.

Figure 7. Cont.
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Figure 7. (a) The rendering of the co-location of three UAVs and a UGV; (b–e) trajectories and ground
truth for a single-platform operation of each agent.

4. Discussion

From the experiments described in Section 3 we draw the following three conclusions.

1. Experiments in the virtual simulation platform demonstrated that the co-location
framework we designed can maintain usable positioning accuracy over hundreds of
meters of trajectory when the GNSS signal is rejected. At the same time, the co-location
framework outperforms the single platform in terms of accuracy. This is essentially
attributed to the new position constraints arising from place recognition between the
different platforms.

2. The SLAM front-ends we currently employ were not sufficiently stable under poor
observation conditions. For example, poor visibility environments or poor near-
orthogonal viewing angles affected the proper function and positioning accuracy of
the air-ground co-location system. The main reason is that the ORB feature-based
SLAM front-end we adopted often cannot provide a sufficient number of feature
points for matching to achieve robust location re-identification. Other common front-
end methods, such as optical flow method, have more stringent requirements on
observation conditions and viewing angles. In the SLAM front-end process, if the
threshold of hamming distance for ORB detection is lowered in order to increase the
number of matched pairs, it will lead to excessive false matches affecting the accuracy
of VIO. Therefore, place recognition that relies on ORB features can only be adapted to
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the images generated under more optimum observation conditions. The visual front-
end used in this manuscript fulfills the basic requirements for cooperative air-ground
localization but is not yet sufficiently robust for weak observation conditions.

3. The method described in this manuscript allows the location information of each
agent in the entire unmanned cluster to be propagated to the other agents in the
cluster. This process improves the positioning accuracy while also allowing the server
and the individual unmanned platforms to acquire relative positions to each other.
We designed a comparison of four cases. They were GPS-challenged co-location,
GPS-denied co-location, single-platform independent operation of ORBSLAM3, and
single-platform independent operation of ORBSLAM3 fusion GPS. In GPS-denied
mode, the simulation was performed on a solar body with no GNSS fix except of Earth,
or on Earth but the GNSS signal had interference. In this case, the positioning of each
agent completely depended on the camera and IMU. It can be seen from Table 8 that
the accuracy of co-location was significantly improved compared with the positioning
accuracy of ORBSLAM3 running on a single platform. Assuming that some agents in
the system obtained satellite positioning information, the positioning accuracy of all
agents was improved. It is worth noting that even if we assume in the experiment
that the UGV cannot obtain satellite positioning signals at all, its positioning accuracy
still benefits from the co-location algorithm. This is due to the fact that the new
constraints brought by the satellite positioning information are propagated to the
local maps of all agents through the global map. Through the comparison of the two
GPS-challenged modes, we found that only a few GPS points were enough to greatly
improve the positioning accuracy. The GPS-challenged 1 mode used several times
more GPS positioning points than the GPS-challenged 2 mode, but the positioning
accuracy was not significantly improved compared with the latter.

In the experiments designed in this manuscript, we set the UAV to use high-precision
GNSS positioning information, while the UGV could not obtain GNSS signals. There were
two main reasons for this assumption. The first point was that, in practice, UAVs located
in the sky can often obtain GNSS positions with good accuracy through RTK or relative
positioning measurements. Whereas vehicles located on the ground may temporarily lose
their GNSS position due to obstruction by reinforced concrete buildings, or by entering
tunnels and interiors. The second point was that ORBSLAM3 itself is an excellent single-
platform SLAM algorithm, which can have a trajectory drift error of less than 1% with
a closed-loop bottleneck. This makes it difficult for the meter-level errors inherent in
GNSS to contribute to the improvement in positioning accuracy if differential-free GNSS
positioning is used in a virtual scene of limited size. If the scale of the motion trajectory
reaches several kilometers, however, even differential-free GNSS positioning information
can greatly optimize the positioning accuracy.

In our paper, we focused on collaborative localization. However, in engineering
applications, the movement of each agent in the system was not infinite due to the limitation
of communication bandwidth and communication distance. Due to the lack of prior
information of the global map, the pose information of each agent and the local map
information received by the server had time delays, and the global positioning pose
updated through the visual closed-loop had no gradient information. In this case, if a
motion strategy for convex online learning to train unmanned clusters is required, delayed
mirror descent (DMD) [24] would be a good choice. We will use this approach in the
subsequent work. In the aspect of multi-agent motion control, our method only used the
most basic D* Lite algorithm. Only the trajectory of a single agent was considered to fit the
route generated in advance. However, in practical applications, there may be obstacles in
the waypoints planned in advance, and the route itself is unreachable. Cooperation among
multiple agents can be difficult to achieve. Collaborative algorithms such as [25] realize the
decentralized and real-time cooperative pursuit of a single evader in the planar domain.
By improving the method proposed in this paper, the control of the prior map obtained by
the UAV would be improved.
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Finally, it is worth mentioning that in the statistics of network bandwidth usage, we
found that the peak bandwidth usage occurs in the map initialization phase, which is about
three times the average value. In the case of long distance or interference, this will put
higher requirements on the performance of wireless communication devices. When there
is a prior map, it will greatly relieve the bandwidth pressure during system initialization.
During system initialization, at least four high-quality GNSS positioning points are needed
to convert the VIO coordinate system to the northeast sky coordinate system. Meanwhile,
ORBSLAM3′s IMU initialization requires initial zero-bias estimation and gravity direction
estimation to obtain scale information, which makes the initialization of the global map
take too long. How to complete global map initialization more efficiently and quickly or to
make better use of prior map information is the next urgent problem to be solved.

5. Conclusions

This manuscript uses ORB-based feature point re-identification to improve the posi-
tioning accuracy of all unmanned platforms in a cluster by fusing the local maps of each
unmanned platform with new position constraints and global GNSS positioning informa-
tion. Through a centralized collaborative positioning service, this can provide low latency
positioning information for subsequent collaborative path planning and task allocation
algorithms. The co-location algorithm proposed in this manuscript has better accuracy
in both GNSS-challenged and GNSS-denied modes than the ORB-SLAM3 algorithm run-
ning on a single platform. The two-stage position estimation method used can also be
combined with other positioning sensors such as UWBs and barometers in addition to the
GNSS global positioning information applied in the manuscript. Current techniques for
the localization of air-ground unmanned clusters in complex environments present new
demands in the direction of visual front-ends, optimization methods and multi-sensor
fusion. The approach proposed in this manuscript can be extended to other unmanned
clusters in areas such as UAVs, logistics, agriculture and military. In the future, based on
the current results, our subsequent work will further investigate the impact of different
vision front-end techniques on location re-identification, a key aspect that critically affects
map fusion and closed-loop detection. We will consider the use of feature detection and
matching techniques based on deep learning or point and line features to improve the
robustness of the algorithmic framework and to improve the localization accuracy based
on this. Finally, our proposed approach in this manuscript has high computational resource
requirements for map fusion and global optimization, and we will aim to mitigate the
computational power and communication bandwidth required for global map maintenance
on a server.
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Abstract: At present, the traditional indoor pedestrian navigation methods mainly include pedestrian
dead reckoning (PDR) and zero velocity update (ZUPT), but these methods have the problem of
error divergence during long time navigation. To solve this problem, under the condition of not
relying on the active sensing information, combined with the characteristics of particles “not going
through the wall” in the indoor map building structure, an improved adaptive particle filter (PF)
based on the particle “not going through the wall” method is proposed for pedestrian navigation in
this paper. This method can restrain the error divergence of the navigation system for a long time.
Compared to the traditional pedestrian navigation method, based on the combination of indoor map
assistance (MA) and particle filter, a global search method based on indoor MA is used to solve the
indoor positioning problem under the condition of the unknown initial position and heading. In
order to solve the problem of low operation efficiency caused by the large number of particles in
PF, a calculation method of adaptively adjusting the number of particles in the process of particle
resampling is proposed. The results of the simulation data and actual test data show that the proposed
indoor integrated positioning method can effectively suppress the error divergence problem of the
navigation system. Under the condition that the total distance is more than 415.44 m in the indoor
environment of about 2600 m2, the average error and the maximum error of the position are less than
two meters relative to the reference point.

Keywords: map assistance; particle filter; global search algorithm; pedestrian navigation

1. Introduction

With the progress of urbanization, the indoor environment has become an important
place for human production and life. Indoor pedestrian navigation technology has been
widely considered and studied by scholars in disaster relief and rescue, medical search and
rescue, public security, anti-terrorism and other fields. Providing accurate navigation and
positioning capabilities for pedestrians in indoor working environments is the basis for
achieving indoor rescue work. In indoor working environments, the signals of global posi-
tioning system (GPS) [1], Beidou and other global navigation satellite systems (GNSS) [2]
are seriously blocked, which makes it difficult to play the role of normal navigation and
positioning and the incapacity to provide accurate navigation and positioning function for
pedestrians. Therefore, it is necessary to carry out research on the pedestrian navigation
method in the indoor satellite failure environment.

The current indoor pedestrian navigation technology mainly includes active naviga-
tion and passive navigation. Active navigation means that navigation and positioning
must be carried out with the help of sensors other than itself, including ultra wide band
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(UWB) [3], wireless fidelity (Wi-Fi) [4], bluetooth (BT) [5], ZigBee [6], radio frequency
identification (RFID) [7], near field communication (NFC) [8] and other methods. While
the positioning error of the active navigation algorithm does not accumulate over time, it is
greatly affected by the indoor environment, obstacles, multipath propagation [9,10] and
other environmental factors. It is necessary to arrange the source base station in advance
and build a fingerprint database. The cost of construction and maintenance is high. In
addition, the indoor rescue site is often accompanied by problems such as the unavailability
of beacons caused by power system interruption. The relevant navigation and positioning
technology is difficult to meet the availability requirements of indoor rescue positioning.
Passive navigation refers to a navigation and positioning method that only relies on its
own sensors, without relying on external sensor information sources. It mainly includes
the methods of simultaneous localization and mapping (SLAM) based on the laser radar
sensor [11] and visual sensor [12] (monocular camera, binocular camera, depth camera),
and the methods based on inertial measurement unit (IMU). For the indoor rescue navi-
gation and positioning system with high real-time requirements, there are shortcomings,
such as the laser radar remaining unchanged, and the visual sensor may be affected by the
indoor environment. As it is inconvenient for pedestrians to carry lidars, and visual sensors
may be affected by indoor environment, these sensors cannot meet the needs of pedestrian
navigation and positioning system for indoor rescue in actual use. With the development
of technology, the micro electro–mechanical system (MEMS) [13] has been continuously
improved and developed. As a kind of autonomous navigation and positioning equipment,
a wearable inertial sensor based on MEMS technology has been widely studied in indoor
pedestrian navigation. It only needs to fix the IMU on the human body and calculate
pedestrian navigation parameters by collecting IMU data to realize autonomous navigation
and positioning.

The pedestrian navigation algorithms based on IMU are mainly divided into two
categories: The PDR algorithm and ZUPT algorithm. The pedestrian navigation method
based on PDR estimates the step length, step number, heading and other parameters of
the pedestrian in the walking process by collecting the acceleration, angular velocity and
other data of the pedestrian, and calculates the pedestrian motion trace. In 2017, Dina [14]
proposed a method to estimate the step length through the information of leg and foot
inertial sensors of two navigation systems. In 2018, Xu [15] studied the PDR navigation
algorithm based on handheld mobile phones. In order to improve the step length estimation
accuracy of the algorithm for different users, she proposed a step length detection method
based on state transition and a step length estimation method based on neural networks.
In 2020, Ding [16] proposed a PDR navigation algorithm based on the relationship between
waist inertial data and step length. Based on the ZUPT algorithm, the inertial sensor is
installed on the foot. According to the algorithm, the velocity of the foot is zero in theory
during the period of time when the foot contacts the ground during periodic movement,
and the velocity during this period is used as the observation quantity to periodically
correct the position and velocity of the human. In 2016, Ruppelt [17] proposed a navigation
and positioning technology about ZUPT detection based on the finite state machine. It was
used to analyze the gait cycle of human foot mounted IMU, which could detect the zero
velocity interval more accurately. In 2017, Hsu [18] proposed a sensor fusion technology
based on a two-stage quaternion extended Kalman filter for the inertial sensor cumulative
error, and the error between the starting point and the end point was 2.01%. In 2018,
Suresh [19] proposed the method of combining the ZUPT and the high pass filter. He
applied the high pass filter to the complementary filtering, reducing the error drift of the
angular velocity. In 2021, Abdallah [20] proposed a foot-mounted and synthetic aperture
indoor navigation method based on inertial/ZUPT/depth neural network, which reduced
the accumulated error of inertial navigation system through the integrated navigation
algorithm based on ZUPT. From the working principle, the pedestrian navigation system
(PNS), based only on inertial sensors, will diverge after a long time of operation.

378



Remote Sens. 2022, 14, 6282

The error of PNS relying only on inertial sensors will diverge over time. To solve this
problem, scholars have studied a variety of methods to correct the navigation error. In
2016, Ilyas [21] studied the indoor geomagnetic assisted pedestrian navigation. A large
amount of information interferes with the magnetometer, resulting in magnetic information
distortion. In this regard, a magnetic anomaly detection method is proposed to compensate
the abnormal data. In 2018, Song [22] proposed a two-stage Kalman filter, in which a
magnetic sensor is installed at the waist and an inertial sensor is installed at the foot.
Compared to the traditional pedestrian navigation method based on ZUPT, the error is
reduced by 30%. In 2016, Diez [23] proposed an improved heuristic drift elimination
algorithm (iHDE) to install the inertial sensor on the wrist. Compared to the algorithm,
iHDE reduces the error by 95%. In 2018, Muhammad [24] used the indoor corridor for
heading correction and proposed an HDE algorithm based on waist heading. The author
divided the 360-degree heading into 16 equal sectors. When pedestrians moved along the
orthogonal corridor direction or the main heading, the algorithm corrected the heading. If
the motion trace is a curve or not moving along the main heading, no course correction
will be made. In 2021, Kim [25] proposed a topological map construction method based on
tge architectural plan and sensors to solve the problem that it took a lot of time to create
indoor maps in real time. This method can provide a safe path, and the indoor plan can be
updated more easily in the future, even if the internal structure of the building changes.
Since 2009, the German Aerospace Center has studied the navigation method based on
Foot SLAM [26,27], which is only based on inertial sensors and can maintain the navigation
accuracy for a long time. References [28,29] combined indoor map and PF to modify the
pedestrian navigation results obtained by the inertial sensor solution. This method greatly
improves the navigation accuracy, but the computational efficiency is low. As the indoor
geomagnetic interference is large, and the auxiliary navigation effect is not good, the HDE
method needs to obtain indoor environmental constraint features in advance. The Foot
SLAM method needs to form a closed loop of motion trajectory, which has great limitations
in practical applications. For the MA method, the indoor architectural plan is relatively
easy to obtain, and navigation and positioning are realized by combining the indoor map
with PF.

For the PNS relying only on inertial sensors, in order to effectively solve the needs of
pedestrian autonomous navigation under special tasks such as indoor rescue, this paper
proposes an improved pedestrian navigation positioning method based on the combination
of indoor MA and adaptive PF (IMAPF). In order to solve the problem of high precision
localization when pedestrians enter an unfamiliar environment with unknown initial
position and heading, a global search method based on MA is proposed. Aiming at the
problem that a large number of particle operations are required under the unknown initial
position and heading, which leads to low computational efficiency, an adaptive particle
number calculation method is proposed. It solves the problem of high-precision navigation
and positioning of indoor pedestrians for a long time and the positioning problem under
the unknown initial position and heading, and improves the computational efficiency,
accuracy and reliability of the indoor pedestrian navigation system.

The structure of this paper is as follows: Section 2 describes the algorithm in detail. In
Section 3, the proposed algorithm is verified by the simulation and experiment. Section 4
discusses the results of the experimental activities proposed. Finally, Section 5 concludes
the paper.

2. Materials and Methods

2.1. Proposed System Scheme

In order to solve the error divergence problem of pedestrian navigation and positioning
system for a long time, on the premise of no other external sensors, a pedestrian navigation
and positioning method based on the combination of indoor IMAPF is proposed to constrain
and correct the position and heading change information calculated by the navigation
system through the constraint relationship between the indoor map information and the
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position and heading calculated by the inertial navigation. The frame of the designed
integrated navigation and positioning method is shown in Figure 1.

Figure 1. General scheme of the indoor pedestrian navigation and location method based on the
IMAPF method.

The algorithm proposed in this paper is as follows: Firstly, through the dead reckoning
module [30], a PNS based on foot-mounted ZUPT is established, and the navigation system
is corrected by taking the difference between the heading change of foot and heading change
of waist in one step as the observation, taking the physical distance between two adjacent
zero velocity intervals as the step length, and then the heading change is obtained by
integrating the waist angular velocity with time. Then, through the indoor map processing
module, the indoor architectural plan is binarized, and then the image is simplified to
obtain the available map. Establish a PF model, input the step length, heading change and
indoor map obtained from the above two modules into the PF. First, initialize the position
and heading of the particle set respectively according to the known or unknown initial
position and heading of pedestrian navigation, detect whether particles “going through
the wall”, delete “illegal particles” or retain “legal particles”, and calculate the particle
normalization weight according to the sequential importance sampling. Secondly, the
effective value of the particles is calculated to determine whether resampling is required.
When resampling is required, the adaptive particle number is calculated to update the
current state estimation value. Then the pedestrian position at the current time is solved,
and the motion trace obtained from the solution is projected into the indoor map.

2.2. Pedestrian Navigation Method Based on Indoor MA and PF
2.2.1. Theoretical Model of Algorithm

(1) Pedestrian navigation model based on dead reckoning

Figure 2 is the schematic diagram of the pedestrian motion trace update.
The state transition equation of particle filter of PDR can be obtained as⎧⎨⎩

ψi
k = ψi

k−1 + Δψi
k

ui
k = ui

k−1 + li
k sin ψi

k
vi

k = vi
k−1 + li

k cos ψi
k

(1)

In Equation (1), the system state quantity is the pedestrian position coordinate
(
ui

k, vi
k
)

in the two-dimensional plane. The control quantity of the system is Δψi
k and li

k, where
Δψi

k is the heading change, and li
k is the step length. Subscript k is step k-th step, and

superscript i is the i-th particle. The particle contains the possible two-dimensional position
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and heading at the current time. The position of the particle is corrected by constantly
adjusting the particle weight and the two-dimensional position.

Figure 2. Schematic diagram of the pedestrian motion trace update.

The control quantity equation of the particle filter based on PDR is:{
l̂k = lk + γlk

Δψ̂k = Δψk + γψk
(2)

In Equation (2), γlk and γψk represent step noise and heading change noise, respec-
tively, which all obey the Gaussian distribution.

In this paper, the step length and heading change are calculated with the method
of multiple constraints for indoor navigation (MCIN) [30] based on multiple constraints,
as the input of the IMAPF method proposed in this paper. This method consists of the
following two parts: (a) A pedestrian navigation model based on ZUPT is constructed;
(b) based on the feature that the difference between heading change of foot and heading
change of waist is small in one step motion, a navigation correction model based on the
consistency constraint of heading change of waist during human motion is constructed
as a virtual observation. This method corrects the pedestrian navigation error in a period
of time, but the error will increase when moving for a long time. As the motion state
of adjacent steps does not change much in the motion process, the distance between the
adjacent zero velocity intervals can be used as the step length control value through the
MCIN method. In addition, since the waist IMU motion is relatively stable, the heading
change obtained from the waist angular velocity integral is taken as the control value.

The step length is calculated as follows:

l =
√
(gk − gk−1)

2 + (hk − hk−1)
2 (3)

In Equation (3), (gk, hk) and (gk−1, hk−1) are the position coordinates of the current
step and the previous step calculated by the MCIN method, respectively.

(2) Observation model based on particle “not going through the wall” method

In the navigation and positioning method based on the IMAPF, the “not going through
the wall” method is to judge whether the current particle position is valid according to the
position of the particle at the previous time after one step of movement.

To determine whether a particle is a “valid particle”, it is based on inaccessible areas
in the map (such as patios, elevators, walls, etc.) or impossible paths in reality (such as
going from one room to another without going through a door). Figure 3 is a schematic
diagram of particle motion. The particles representing the human at the last moment is
marked as a white circle, and he is currently walking in the corridor.

381



Remote Sens. 2022, 14, 6282

Figure 3. Schematic diagram of the update of the particle position.

According to the state equation, the particle coordinates at the current time can be
obtained, including the following possible positions: Corridor, inside the wall, going
through the wall into another room, etc. It is compared with the indoor accessible area (the
accessible area is obtained through the architectural plan). If a particle position coordinate
Pi

k belongs to the accessible region Pe of the blue circle, it is regarded as “legal particle”,
and the particle weight wi

k will not be changed. When a particle turns into an orange circle
through state transition and enters the inaccessible area Pm1 such as the wall, it can be
judged that this type of particle is an “illegal particle”, and then the weight value of this
type of particle is set to 0. If a particle turns into a red circle and directly enters another
room after the state transfer, there is no connectivity between the new particle and the
particle at the previous moment, which belongs to an inaccessible area Pm2. The particle
weight value is set to 0, and the “illegal particle” is deleted. The equation is as follows:

wi
k =

⎧⎪⎨⎪⎩
1 Pi

k ⊂ Pe

0 Pi
k ⊂ Pm1

0 Pi
k ⊂ Pm2

(4)

The thickness of the wall is determined by the pixel length of the wall after the
architectural plan is converted to the binary map. Generally, the physical length represented
by one pixel is less than the thickness of the wall, that is, the wall is represented by at least
several consecutive pixels. Even when the wall has only one pixel, it is possible to calculate
that the particle is inside or through the wall, and then proceed to the next steps. Therefore,
the accuracy of the method is independent of the thickness of the wall.

2.2.2. Algorithm Process Design

(1) Optimization of initial position and heading of particle set

The core idea of PF is that it is composed of a finite number of random samples (parti-
cles) with weight. Each particle represents the estimation of the current state. The integral
operation of the posterior probability density distribution p(xk|y1:k−1) is approximately ex-
pressed as the sum operation of the finite samples. The posterior probability distribution of
the system is expressed by the density of the particle distribution. The value of the particle
weight w represents the possibility of the state, which is used to represent the probability
distribution of the state variable to approximate the true probability distribution of the
system. Select n particles

{
xi

k, wi
k
}
(i = 1, 2, . . . , n), with

p(x0:k|y1:k) ≈
N

∑
i=0

w̃i
kδ
(

x0:k − xi
0:k

)
(5)
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N

∑
i=0

w̃i
k = 1 (6)

In Equations (5) and (6), N represents the number of particles, i represents the number
of each particle, δ represents the Dirac function, x0:k represents the historical system state in
time interval 0 ∼ k, the observation quantity of the system is marked as y, representing the
probability distribution, y1:k represents the historical observation in time interval 1 ∼ k,
and w̃i

k represents the normalized importance weight of the ith particle at moment k.
At the initial moment, set k = 0, and randomly generate N sample particle groups{

xi
0, i = 1, 2, . . . , N

}
according to a priori probability p(x0). The weights of all particles are

wi
0 = 1/N, and each particle sampled is recorded as

{
xi

k, 1/N
}

.
The current research mainly focuses on the of navigation and positioning methods for

indoor pedestrians when the initial positions and heading are known in a special working
environment. The initial particles are added with Gaussian white noise, as shown in
Equation (2), and the initial particles obey

p(x0) ∼ N(μ, σ) (7)

In Equation (7), p(x0) is the prior distribution of the initial position, N(μ, σ) is the
Gaussian distribution, μ is the expectation, and σ is the mean square error.

However, in the actual environment, due to the special emergency of the work site and
the inability to provide the absolute position information in a short time, when pedestrians
must enter the work environment, this paper proposes a method based on global search to
solve the pedestrian’s position and heading information. The initial particles are distributed
in the entire indoor map in a uniform way, and the following equation holds:

p(x0) ∼ U(a, b) (8)

In Equation (8), p(x0) is the prior distribution of the initial position, U(a, b) is the
uniform distribution, and a and b are the minimum and maximum values of the pixel
coordinates in the picture, respectively.

(2) One-step prediction of particle states

According to the state equation, state xk at the current moment is estimated by the
prior probability density of state xk−1 at the previous moment. The prior distribution p(x0)
of the initial state is known.

p(xk|y1:k−1) =
∫

p(xk, xk−1|y1:k−1)dxk−1

=
∫

p(xk|xk−1, y1:k−1)p(xk−1|y1:k−1)dxk−1

=
∫

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1

(9)

(3) Particle weight updating based on prior map information

Using the observation yk at the current moment, modify p(xk|y1:k−1) to obtain a
posterior probability density p(xk|y1:k).

p(xk|y1:k) =
p(yk|xk ,y1:k−1)p(xk |y1:k−1)

p(yk |y1:k−1)

=
p(yk|xk)p(xk |y1:k−1)

p(yk |y1:k−1)

=
p(yk |xk)p(xk |y1:k−1)∫

p(yk |xk)p(xk |y1:k−1)dxk

(10)

At moment k + 1, yk+1 is updated, and the importance weight value of the whole state
sequence needs to be recalculated, so the amount of calculation increases greatly over time.
This problem is solved through Sequential Importance Sampling (SIS). A group of known
random samples with weights is used to represent the posterior probability density, and
the state estimation value is calculated based on the known random samples and weights.
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The prior probability is selected as the importance density function, as follows

q(xi
k

∣∣∣xi
k−1, yk) = p(xi

k

∣∣∣xi
k−1) (11)

The particles sampled according to this function are as follows:

xi
k = q(xk|xk−1, y1:k) (12)

The normalized importance weight is

wi
k = wi

k−1

p
(
yk
∣∣xi

k
)

p
(

xi
k

∣∣∣xi
k−1

)
q
(

xi
k

∣∣∣xi
k−1, yk

) (13)

Substituting Equation (11) into Equation (13) has

wi
k = wi

k−1 p
(

yk

∣∣∣xi
k

)
(14)

In Equation (14), p
(
yk
∣∣xi

k
)

represents the detection result of the particle “not going
through the wall” method.

The normalized weight calculation equation is

w̃i
k =

wi
k−1

∑N
j=1 wi

k

(15)

(4) Particle resampling based on adaptive particle number

In order to reduce the amount of calculation and avoid unnecessary resampling,
judge whether resampling is required according to the effective particle number Ne f f . The
equation for calculating the effective value of particles is

Ne f f = 1/
N

∑
i=1

(
wi

k

)2
(16)

The smaller the number of effective particles is, the more serious the particle weight
degradation is, and the there is more need to resample. Set the resampling threshold Nth,
when Ne f f ≤ Nth, particle set

{
xi

k, wi
k
}

needs resampling.
Theoretically, the larger the number of particles, the more accurate the results of PF.

However, as the number of particles increases, the calculation time increases exponentially,
and the improvement of navigation and positioning accuracy is not obvious, especially for
the navigation and positioning results under the condition of the known initial position
and heading. For position under the condition of unknown initial position and heading, a
large number of particles are required at the beginning. Using a large number of particles
after finding the location of a pedestrian in the map will lead to computational inefficiency.
Therefore, this paper proposes a method to adaptively adjust the particle number during
resampling, which can greatly improve the computational efficiency of PF and ensure the
high-precision navigation and positioning results of pedestrian navigation system. The
calculation equation of the adaptive particle number is

pNum = f loor(e · c1) + c2 (17)

In Equation (17), f loor is the integral function, and e is the sum of the main diagonal
elements of the covariance matrix of the position coordinates of all particles at the current
moment. c1 and c2 are empirical constants. c1 is the proportional coefficient, and the value
of c2 ensures that the particle filter function can be achieved when pNum is at the minimum
value. In this paper, c1 and c2 are 1000 and 2000, respectively.
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The updated particle set is recorded as
{

xi
k, 1/pNum

}
.

2.2.3. Algorithm Flow

To sum up, the flow chart of pedestrian navigation and positioning method of IMAPF
is shown in Figure 4.

Figure 4. Flow chart of the improved pedestrian navigation and positioning method based on IMAPF.

The algorithm flow is as follows:
Step 1: Initialization of position and heading of particle set: For the known initial

position and heading, the initialization adopts Equation (7) to satisfy the Gaussian distri-
bution. In the case of the unknown initial position and heading, the initialization adopts
Equation (8) to meet the uniform distribution.

Step 2: Sequential importance sampling based on particle “not going through the wall”
method: Update the particle weight according to the particle “not going through the wall”
method, and then calculate the normalized weight value through the Equations (11)–(15).

Step 3: Particle resampling based on adaptive particle number: The particle number is
adaptively calculated by Equations (16) and (17) and resample.
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Step 4: State estimation and location update: The state x̂k at the current moment is
estimated by the updated adaptive number of particle sets and weights as

x̂k =
N

∑
i=1

w̃i
kxi

k (18)

The position Pk at the current moment is

Pk =
N

∑
i=1

w̃i
k

(
xi

k − x̂k

)(
xi

k − x̂k

)T
(19)

At moment k, when a particle is in an inaccessible area, the particle is resampled.
Copy the navigation parameters (step length and heading at all times of 0~k) of the valid
particle to the particle. The weighted average method is used to calculate the position of
the pedestrian at the moment k, k − 1, . . . . . . , 0 in turn.

Project the updated position onto the indoor map.
Step 5: k = k + 1, go to Step 2.

3. Results

3.1. Verification of Simulation
3.1.1. Conditions of Simulation

In order to verify the effectiveness of the improved pedestrian navigation and location
method based on the indoor map assistance and particle filter, a series of simulation
experiments were carried out. The simulation data is processed on the desktop computer,
and the computer platform parameters are shown in Table 1.

Table 1. Computer platform parameters.

Characteristic Parameter

Computer operating system Windows10
CPU Intel(R) Core(TM) i7-8700, Dominant frequency 3.20 GHz

Memory 32 GB
Software Matlab2020

The simulation environment is based on the architectural plan of the fifth floor of
no. 1 Building and no. 2 Building of the College of Automation Engineering, as shown
in Figure 5. In Figure 5a, the red line indicates the corridor path. The four black dots
( 1© 2© 3© 4©) represent the reference point of the relative position.

The simulation movement trace is shown in Figure 6a. The blue point at the lower left
corner is the starting point/end point. A complete closed loop path 1©→ 2©→ 3©→ 4©→ 1©
has a distance of 207.72 m. The simulation moves two circles in a counterclockwise direction.
The parameters are set as follows: The mean square error of the step noise is 0.1 m, and
the mean square error of heading change noise is 1◦. The simulation data of pedestrian
position and course change obtained are also saved. The four reference coordinates in the
trace are shown in Figure 6b. Due to the process of entering the room, the total distance
cannot be measured accurately, and the total distance exceeds 415.44 m.

Define the positioning error as

Err =
√

Δx2 + Δy2 (20)

In Equation (20), Err is the Euclidean Distance between the reference point and
the measuring point. Δx is the difference between the abscissa calculated by the pro-
posed method and the abscissa calculated by the standard path; Δy is the difference
between the ordinate calculated by the proposed method and the ordinate calculated by the
standard path.
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(a) (b) 

Figure 5. Digital map on the fifth floor. (a) Architectural plan. (b) Available binary maps.

(a) (b) 

Figure 6. Simulation trace and coordinates of reference point. (a) Simulation trace. (b) Schematic
diagram of the coordinates of the reference point.

3.1.2. Analysis of Simulation Results

This section first analyzes the error comparison results between the IMAPF method
and the PDR algorithm when the initial position and heading are known, then analyzes the
positioning effect of the proposed method and PDR algorithm when the initial position and
heading are unknown, and finally analyzes the navigation error and calculation efficiency
when the initial position and heading are unknown and the adaptive particle number and
fixed particle number.

(1) The initial position and heading of pedestrian are known

The distribution of the sampled particles is shown in Figure 7. The noise of step length
and heading change of particles conform to Gaussian distribution. At the beginning, the
particles are distributed within a certain range, with red representing “illegal particles” and
blue representing passable “legal particles”.

Figure 8 shows the navigation trace comparison and its positioning error CDF curve
with an known initial position and heading. In Figure 8a, the red line represents the ideal
trace without noise, the green line represents the trace with noise calculated by PDR, and
the blue line represents the trace diagram of the IMAPF method proposed in this paper.
It can be seen that the method proposed in this paper can well correct the position of
the navigation system. Figure 8b shows the CDF curve, which shows that the algorithm
proposed in this paper is better than the PDR method in error correction. Figure 8c shows
the error of each step.
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(a) (b) 

Figure 7. Sampling particle distribution and motion trace with known position and heading. (a)
Particle distribution at initial moment. (b) Particle distribution in motion.

(a) (b) 

 
(c) 

Figure 8. Navigation trace comparison and positioning error CDF curve with known initial position
and heading. (a) Comparison diagram of positioning trace. (b) CDF curve of positioning error.
(c) Absolute position error of each step.

Table 2 shows the error comparison under the condition that the initial position
and heading are known. It can be seen from the data in the table that the error of PDR
algorithm increases with the increase in motion time. The method proposed in this paper
can effectively restrain error divergence.
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Table 2. Error comparison under the condition that the initial position and heading are known.

Navigation Method Mean Error (m) Maximum Error (m)

PDR 4.78 11.81
IMAPF 0.44 1.18

(2) The initial position and heading of pedestrian are unknown (adaptive particle number)

The distribution of sampling particles is shown in Figure 9. Using the global search
method, the particles are evenly distributed in the whole map at the beginning, with red
indicating “illegal particles” and blue indicating passable “legal particles”. With continuous
movement, the approximate position of pedestrians can be found at the 74th step, and then
the positioning coordinates will be modified for pedestrians, finally providing navigation
and positioning functions for pedestrians. Due to the structural features, such as rooms and
corridors, the path complexity can be increased by increasing the number of room entry
and exit to achieve global search as soon as possible.

(a) (b) 

 
(c) (d) 

Figure 9. Sampling particle distribution and motion trace with unknown initial position and heading.
(a) Particle distribution at initial moment; (b) particle distribution and motion trace of the 44th step
in the motion process; (c) particle distribution and motion trace of the 74th step in the motion process;
and (d) particle distribution and motion trace of the 162th step in the motion process.

Figure 10 shows the navigation trace comparison and its positioning error CDF curve
under the condition of unknown initial position and heading, while the PDR algorithm
is not applicable to this condition. In Figure 10a, the red line represents the real motion
trace without noise, and the blue line represents the trace diagram of the IMAPF method
proposed in this paper. It can be seen that the method proposed in this paper can provide
accurate positioning function for pedestrians when the initial position and heading are
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unknown. Figure 10b shows the CDF curve, which clearly shows that the algorithm
proposed in this paper can provide accurate positioning function for pedestrians under the
condition of unknown initial positon and heading. Figure 10c shows the error of each step.
The average error of IMAPF algorithm is 0.36 m, and the maximum error is 0.84 m.

(a) (b) 

 
(c) 

Figure 10. Navigation trace comparison and positioning error CDF curve with unknown initial
position and heading. (a) Comparison diagram of positioning trace; (b) CDF curve of positioning
error; and (c) absolute position error of each step.

It can be seen that the IMAPF algorithm studied in this paper performs better than
the PDR algorithm for pedestrian navigation, whether the initial position and heading are
known or not.

(3) The initial position and heading of pedestrian are unknown (fixed particle number)

In order to compare the calculation efficiency and error value between the fixed particle
number and the adaptive particle number, under the condition of unknown initial position
and heading of pedestrians, the fixed particle number of 2000, 10,000, 50,000 and 100,000
are compared, respectively. Table 3 shows statistics of positioning errors with different
particle numbers.

Figure 11 shows the pedestrian motion trajectory obtained by solving with different
particle numbers and compares the navigation results of four different particle numbers.
The navigation and positioning error value of the adaptive particle number method pro-
posed in this paper is smaller than that of the fixed particle number of 100,000. However,
the calculation time of the adaptive particle number method is reduced by about 20 times
lower compared to the calculation time of 100,000 fixed particles.
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Table 3. Statistics of positioning errors with different particle numbers under simulation conditions.

Particle Number Mean Error (m) Maximum Error (m) Calculation Time (s)

2 thousand fixed particles 10.34 15.99 16.64
10 thousand fixed particles 7.74 12.07 103.05
50 thousand fixed particles 0.75 3.01 909.04
100 thousand fixed particles 0.50 1.91 2624.36
adaptive particle numbers 0.36 0.84 116.14

Figure 11. Pedestrian motion trace calculated with different particle numbers under simulation
conditions.

3.2. Experiment and Verification
3.2.1. Experimental Conditions

In order to further verify the practicability and effectiveness of the proposed method,
this paper verifies its effect through experiments. In the experiment, five IMUs are used to
collect pedestrian movement data, of which four IMUs use FSS-IMU6132 independently
designed by Forsense Technology Company to collect accelerometer and gyroscope data
with a sampling frequency of 100 Hz; One MTI-G-710 inertial device of XSENS Company
is used to collect air pressure data with a sampling frequency of 50 hz. The above five
sensors are all connected to Raspberry Pie 4B through data lines, and the mobile phone
app controls Raspberry Pie to collect data through Bluetooth communication. The sensor
installation method is shown in Figure 12.

The performance parameters of FSS-IMU6132 are shown in Table 4.

Table 4. Performance parameters of FSS-IMU6132.

/ Sensor Range Bias Stability

Accelerometer ±6 g 10 μg
Gyroscope ±500 deg/s 1.0 deg/h

The performance parameters of MTI-G-710 are shown in Table 5 below.

Table 5. Performance parameter of XSENS MTI-G-710.

/ Sensor Range Total Root Mean Square Noise

Barometer 300–1100 mBar 3.6 Pa

The computer performance parameters are shown in Table 1.
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(a) (b) 

Figure 12. Schematic diagram of sensor installation. (a) Installation diagram of sensors on waist.
(b) Installation diagram of sensors on leg and foot.

3.2.2. Experimental Verification Analysis

(1) MCIN method

The experimental site is the fifth floor of No.1 Building and No.2 Building of the
College of Automation Engineering. The experimental trace and indoor experimental
scene are shown in Figure 13. The experimenter started from position 1© (0, 0) and walked
counterclockwise to collect two rounds of data. The experimenter experiences the reference
point in the order of 1© 2© 3© 4© 5© 6© 7© 8© 1© 3© 4© 5© 9© 7© 8© 1©. Additionally, the trace included
multiple “entering the house” behaviors. The actual movement time in the experiment is
451.74 s.

(a) (b) 

Figure 13. Indoor experiment scene and experiment trace. (a) Indoor experiment scene. (b) Reference
points.

The trace solved by the MCIN method and the positioning error of the reference point
experienced 15 times are shown in Figure 14. The mean error of the reference point position
is 1.98 m, and the maximum error is 4.16 m. For Figure 14b, if the MCIN method based on
inertial navigation only is adopted, the navigation error will gradually diverge. Due to the
uncertainty of course error divergence, the navigation solution results of some paths in a
closed path will show smaller errors.
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(a) (b) 

Figure 14. Two dimensional trace and absolute value of positioning error based on MCIN method.
(a) Two dimensional trace. (b) Absolute value of positioning error.

(2) The initial position and heading of pedestrian are known

The distribution of sampled particle is shown in Figure 15. The step length and
heading change of the particles obey the Gaussian distribution. Initially, the particles are
distributed in the range near the starting point, where red represents “illegal particles” and
blue represents passable “legal particles”.

(a) (b) 

Figure 15. Sampling particle distribution and motion trace under the condition of known initial
position and heading. (a) Particle distribution at the initial moment. (b) Particle distribution and
trace during motion.

Figure 16 shows the motion trace and positioning error under the condition that the
initial position and heading are known. In Figure 16a, the red line represents the motion
trace solved by the MCIN method, and the blue line represents the trace with IMAPF
method. It can be seen that the IMAPF can well correct the position of the navigation
system over time. Figure 16b is the absolute value curve of the positioning error under
the condition of known initial position and heading, which clearly shows the effective-
ness of the algorithm in correcting the error. The MCIN method can effectively restrain
error divergence.

Table 6 shows the error comparison under the condition that the initial position and
heading are known. It can be seen from the data in the table that the method proposed in
this paper can effectively restrain error divergence compared to the MCIN method.
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(a) (b) 

Figure 16. Navigation trace comparison and curve of absolute value of positioning error with
known initial position and heading. (a) Positioning trace comparison diagram. (b) Absolute value of
positioning error.

Table 6. Error comparison under the condition that the initial position and heading are unknown.

Navigation Method Mean Error (m) Maximum Error (m)

MCIN 1.98 4.16
IMAPF 0.54 0.98

(3) The initial position and heading of pedestrian are unknown (adaptive particle number)

The distribution of sampled particles is shown in Figure 17. Initially, particles are
uniformly distributed throughout the map, with red representing “illegal particles” and
blue representing passable “legal particles”. Starting from the 114th step, the general
location of the pedestrian is searched. With the continuous movement of the pedestrian,
the navigation and positioning function is finally provided for the pedestrian. There is a
possibility of symmetry in the indoor structure, and pedestrians may not know in advance.
According to the structural characteristics of indoor rooms, corridors, etc., the global search
can be realized as soon as possible by increasing the path complexity.

Figure 18 is the comparison diagram of positioning trace under the condition of
unknown initial position and heading. In Figure 18a, the red line represents the trace of the
MCIN method, and the blue line represents the trace of IMAPF method. It can be seen that
with the increase of time, IMAPF method can well correct the position of the navigation
system. Figure 18b shows the absolute value curve of the positioning error under the
condition that the initial position and heading are unknown. As the pedestrian keeps
moving, navigation and positioning functions are gradually provided with map constraints.
After 114 steps, functions of navigation and positioning can be provided for pedestrians in
the map. Figure 18b shows the absolute value of the positioning error calculated according
to the final navigation and positioning results, so the errors of the first two reference points
are not considered. It can be seen that the algorithm is effective in correcting errors, which
can be limited in a certain range and do not diverge over time. The mean error of IMAPF
method is 1.06 m, and the maximum error is 1.33 m.

Figures 16b and 18b show the absolute value of navigation error using the IMAPF
method in this paper. In general, the navigation error of IMAPF method is constrained in a
small range, which is better than MCIN.

It can be seen that the IMAPF method studied in this paper performs better than the
MCIN method for pedestrian navigation, whether the initial position and heading are
known or not.
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(a) (b) 

 
(c) (d) 

Figure 17. Distribution of sampled particles and motion trace with unknown initial position and
heading. (a) Particle distribution at initial moment. (b) Particle distribution and motion track of the
58th step in the motion process. (c) Particle distribution and motion track of the 114th step in the
motion process. (d) Particle distribution and motion track of the 190th step in the motion process.

 
(a) (b) 

Figure 18. Navigation trace comparison and curve of absolute value of positioning error with
unknown initial position and heading. (a) Positioning trace comparison diagram. (b) Absolute value
of the positioning error.

(4) The initial position and heading of pedestrian are unknown (fixed particle number)

In order to compare the computational efficiency and error value between the fixed
particle number and the adaptive particle number, under the condition of unknown pedes-
trian initial position and heading, the fixed number of particles is 2000, 10,000, 50,000 and
100,000, respectively. Table 7 is the error statistics table of different particle numbers.
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Table 7. Statistics of positioning errors with different particle numbers under experimental conditions.

Particle number Mean Error (m) Maximum Error (m) Calculation Time (s)

2 thousand fixed particles 3.89 7.03 16.37
10 thousand fixed particles 2.74 9.21 93.02
50 thousand fixed particles 1.13 1.40 755.33
100 thousand fixed particles 1.04 1.11 2229.13

adaptive particle number 1.06 1.33 131.59

Figure 19 shows the pedestrian motion trace obtained by different particle numbers.
Comparing the navigation results of five different particle numbers, the adaptive particle
number method proposed in this paper is close to the navigation positioning error value
when the fixed number of particles is 50,000. The error is small when the number of fixed
particles is smaller, but the calculation time of the adaptive particle number method is
reduced about 4.7 times lower compared to the calculation time of 50,000 fixed particles.

Figure 19. Pedestrian motion trace calculated with different particle numbers under experimen-
tal conditions.

4. Discussion

The purpose of this paper is to study an improved pedestrian navigation and location
method based on the combination of indoor map assistance and adaptive particle filter.
For the multi constraint integrated navigation method that only relies on the wearable
inertial sensor node network for indoor pedestrians, there is an unavoidable problem of
the accumulation and divergence of navigation errors. It is urgent to further improve the
accuracy of the navigation system based on the available indoor auxiliary information.
Considering that the indoor architectural plan is the most basic and accessible information
source in the indoor rescue process, a navigation and positioning method based on the
combination of indoor map assistance and particle filter is proposed. This method makes
full use of the existing indoor map constraint information to assist in improving the
performance of the pedestrian navigation and positioning system based on inertial sensor
network. In this paper, the algorithm framework of indoor pedestrian navigation based
on map assistance is designed. Combined with the characteristics that pedestrians cannot
actually go through the walls and other obstacles when moving in buildings. By establishing
the filtering algorithm under the property of particle “not going through the wall”, the
effective constraints on navigation error are realized; In view of the pedestrian’s initial entry
into an unfamiliar indoor environment, a map aided localization algorithm based on global
search is proposed under the condition of unknown initial position and heading; In order
to solve the problem that a large number of particles are required to complete the global
search, which leads to low computational efficiency, a particle resampling method based
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on adaptive particle number is proposed. While maintaining the accuracy of navigation
and positioning, it also improves the computing efficiency and achieves accurate indoor
positioning in unfamiliar environments. On this basis, based on indoor map constraints,
the problem of inertial accumulation error divergence is well suppressed, which provides
a strong support for pedestrian indoor navigation and positioning with high precision
and reliability.

Through the verification and analysis of simulation data and measured data, the
pedestrian navigation and positioning method based on the combination of improved
indoor map assistance and adaptive particle filter proposed in this paper is suitable for the
conditions of known and unknown initial position and heading. In the indoor environment
of about 2600 m2, when the total distance exceeds 415.44 m, the mean error and the
maximum error of the position relative to the reference point are both less than 2 m. It
effectively suppresses the pedestrian navigation error based on inertial devices, and greatly
improves the calculation efficiency, which can meet the needs of indoor pedestrians for a
long time.

In fact, in the process of motion, both lateral and longitudinal errors are derived from
step length error and heading errors. In a one-step correction process, if it is calculated
that the coordinates of a particle in the lateral or longitudinal direction are in the inac-
cessible area, the particle is in the inaccessible area and needs to be resampled and given
new navigation parameters. The pedestrian position is then calculated by the weighted
average method.

The method proposed in this paper also has some limitations. It is based on the indoor
building plan, and combines the characteristics of particles “not going through the wall” to
constrain and modify the pedestrian trace. When the indoor structure is simple and the
environment is open, then the distance between the walls on both sides of the walkway is
very far, it is difficult to correct the pedestrian trace through this method.

5. Conclusions

In this paper, an improved pedestrian navigation method based on indoor map assis-
tance and particle filter is proposed. Based on the fact that particles cannot “going through
the wall”, this method limits the pedestrian navigation positioning error to a low range
for a long time. In addition, a global search algorithm is proposed to solve the problem of
high-precision localization of pedestrians in unfamiliar environments with unknown initial
position and heading; An adaptive particle number calculation method in the process of
particle resampling is also proposed, which can improve the calculation efficiency and
achieve long-term high-precision navigation and positioning for indoor pedestrians.

The method proposed in this paper can be used in indoor environments such as
disaster relief and rescue, medical search and rescue. With the building plan and inertial
sensors, navigation and positioning accuracy can be maintained for a long time. This
method is of great significance to the practical application of pedestrian inertial navigation.

In the future, we will further study the method of multi person cooperative navigation
in a complex environment according to the method in this paper to obtain higher navigation
and positioning accuracy in a longer period.
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Abstract: The Simultaneous Localization and Mapping (SLAM) technique has achieved astonishing
progress over the last few decades and has generated considerable interest in the autonomous
driving community. With its conceptual roots in navigation and mapping, SLAM outperforms some
traditional positioning and localization techniques since it can support more reliable and robust
localization, planning, and controlling to meet some key criteria for autonomous driving. In this
study the authors first give an overview of the different SLAM implementation approaches and
then discuss the applications of SLAM for autonomous driving with respect to different driving
scenarios, vehicle system components and the characteristics of the SLAM approaches. The authors
then discuss some challenging issues and current solutions when applying SLAM for autonomous
driving. Some quantitative quality analysis means to evaluate the characteristics and performance
of SLAM systems and to monitor the risk in SLAM estimation are reviewed. In addition, this study
describes a real-world road test to demonstrate a multi-sensor-based modernized SLAM procedure
for autonomous driving. The numerical results show that a high-precision 3D point cloud map can
be generated by the SLAM procedure with the integration of Lidar and GNSS/INS. Online four–five
cm accuracy localization solution can be achieved based on this pre-generated map and online Lidar
scan matching with a tightly fused inertial system.

Keywords: Simultaneous Localization and Mapping; autonomous driving; localization; high
definition map

1. Introduction

Autonomous (also called self-driving, driverless, or robotic) vehicle operation is a
significant academic as well as an industrial research topic. It is predicted that fully
autonomous vehicles will become an important part of total vehicle sales in the next decades.
The promotion of autonomous vehicles draws attention to the many advantages, such as
service for disabled or elderly persons, reduction in driver stress and costs, reduction in
road accidents, elimination of the need for conventional public transit services, etc. [1,2].

A typical autonomous vehicle system contains four key parts: localization, perception,
planning, and controlling (Figure 1). Positioning is the process of obtaining a (moving
or static) object’s coordinates with respect to a given coordinate system. The coordinate
system may be a local coordinate system or a geodetic datum such as WGS84. Localization
is a process of estimating the carrier’s pose (position and attitude) in relation to a reference
frame or a map. The perception system monitors the road environment around the host
vehicle and identifies interested objects such as pedestrians, other vehicles, traffic lights,
signage, etc.

By determining the coordinates of objects in the surrounding environment a map can
be generated. This process is known as Mapping.

Path planning is the step that utilizes localization, mapping, and perception informa-
tion to determine the optimal path in subsequent driving epochs, guiding the automated
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vehicle from one location to another location. This plan is then converted into action using
the controlling system components, e.g., brake control before the detected traffic lights, etc.

Figure 1. Functional components of an autonomous driving system.

All these parts are closely related. The location information for both vehicle and road
entities can be obtained by combining the position, perception, and map information. In
contrast, localization and mapping can be used to support better perception. Accurate
localization and perception information is essential for correct planning and controlling.

To achieve fully automated driving, there are some key requirements that need to be
considered for the localization and perception steps. The first is accuracy. For autonomous
driving, the information about where the road is and where the vehicle is within the lane
supports the planning and controlling steps. To realize these, and to ensure vehicle safety,
there is a stringent requirement for position estimation at the lane level, or even the “where-
in-lane” level (i.e., the sub-lane level). Recognition range is important because the planning
and controlling steps need enough processing time for the vehicle to react [3]. Robustness
means the localization and perception should be robust to any changes while driving, such
as driving scenarios (urban, highway, tunnel, rural, etc.), lighting conditions, weather, etc.

Traditional vehicle localization and perception techniques cannot meet all of the
aforementioned requirements. For instance, GNSS error occurs as the signals may be
distorted, or even blocked, by trees, urban canyons, tunnels, etc. Often an inertial navigation
system (INS) is used to support navigation during GNSS signal outages, to continue
providing position, velocity, and altitude information. However, inertial measurement bias
needs frequently estimated corrections or calibration, which is best achieved using GNSS
measurements. Nevertheless, an integrated GNSS/INS system is still not sufficient since
highly automated driving requires not only positioning information of the host vehicle,
but also the spatial characteristics of the objects in the surrounding environment. Hence
perceptive sensors, such as Lidar and Cameras, are often used for both localization and
perception. Lidar can acquire a 3D point cloud directly and map the environment, with
the aid of GNSS and INS, to an accuracy that can reach the centimeter level in urban road
driving conditions [4]. However, the high cost has limited the commercial adoption of
Lidar systems in vehicles. Furthermore, its accuracy is influenced by weather (such as rain)
and lighting conditions. Compared to Lidar, Camera systems have lower accuracy but are
also affected by numerous error sources [5,6]. Nevertheless, they are much cheaper, smaller
in size, require less maintenance, and use less energy. Vision-based systems can provide
abundant environment information, similar to what human eyes can perceive, and the data
can be fused with other sensors to determine the location of detected features.

A map with rich road environment information is essential for the aforementioned
sensors to achieve accurate and robust localization and perception. Pre-stored road informa-
tion makes autonomous driving robust to the changing environment and road dynamics.
The recognition range requirement can be satisfied since an onboard map can provide
timely information on the road network. Map-based localization and navigation have been
studied using different types of map information. Google Map is one example as it provides
worldwide map information including images, topographic details, and satellite images [7],
and it is available via mobile phone and vehicle apps. However, the use of maps will be
limited by the accuracy of the maps, and in some selected areas the map’s resolution may be
inadequate. In [8], the authors considered low-accuracy maps for navigation by combining
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data from other sensors. They detected moving objects using Lidar data and utilized a
GNSS/INS system with a coarse open-source GIS map. Their results show their fusion
technique can successfully detect and track moving objects. A precise curb-map-based
localization method that uses a 3D-Lidar sensor and a high-precision map is proposed
in [9]. However, this method will fail when curb information is lacking, or obstructed.

Recently, so-called “high-definition” (HD) maps have received considerable interest in
the context of autonomous driving since they contain very accurate, and large volumes of,
road network information [10]. According to some major players in the commercial HD
map market, 10–20 cm accuracy has been achieved [11,12], and it is predicted that in the
next generation of HD maps, a few centimeters of accuracy will be reached. Such maps
contain considerable information on road features, not only the static road entities and
road geometry (curvature, grades, etc.), but also traffic management information such as
traffic signs, traffic lights, speed limits, road markings, and so on. The autonomous car can
use the HD map to precisely locate the host-car within the road lane and to estimate the
relative location of the car with respect to road objects by matching the landmarks which
are recognized by onboard sensors with pre-stored information within the HD map.

Therefore, maps, especially HD maps, play several roles in support of autonomous
driving and may be able to meet the stringent requirements of accuracy, precision, recogni-
tion ranging, robustness, and information richness. However, the application of the “map”
for autonomous driving is also facilitated by techniques such as Simultaneous Localization
and Mapping (SLAM). SLAM is a process by which a moving platform builds a map of
the environment and uses that map to deduce its location at the same time. SLAM, which
is widely used in the robotic field, has been demonstrated [13,14] as being applicable for
autonomous vehicle operations as it can support not only accurate map generation but also
online localization within a previously generated map.

With appropriate sensor information (perception data, absolute and dead reckoning
position information), a high-density and accurate map can be generated offline by SLAM.
When driving, the self-driving car can locate itself within the pre-stored map by matching
the sensor data to the map. SLAM can also be used to address the problem of DATMO
(detection and tracking of moving objects) [15] which is important for detecting pedestrians
or other moving objects. As the static parts of the environment are localized and mapped by
SLAM, the dynamic components can concurrently be detected and tracked relative to the
static objects or features. However, SLAM also has some challenging issues when applied
to autonomous driving applications. For instance, “loop closure” can be used to reduce
the accumulated bias within SLAM estimation in indoor or urban scenarios, but it is not
normally applicable to highway scenarios.

This paper will review some key techniques for SLAM, the application of SLAM for
autonomous driving, and suitable SLAM techniques related to the applications. Section 2
gives a brief introduction to the principles and characteristics of some key SLAM techniques.
Section 3 describes some potential applications of SLAM for autonomous driving. Some
challenging issues in applying the SLAM technique for autonomous driving are discussed
in Section 4. A real-world road test to show the performance of a multi-sensor-based SLAM
procedure for autonomous driving is described in Section 5. The conclusions are given in
Section 6.

2. Key SLAM Techniques

Since its initial introduction in 1986 [16], a variety of SLAM techniques have been
developed. SLAM has its conceptual roots in geodesy and geospatial mapping [17].

In general, there are two types of approaches to SLAM estimation: filter-based and
optimization-based. Both approaches estimate the vehicle pose states and map states at
the same time. The vehicle pose includes 3D or 2D vehicle position, but sometimes also
velocity, orientation or attitude, depending on the sensor(s) used and on the application(s).
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2.1. Online and Offline SLAM

Figures 2 and 3 illustrate two general SLAM implementations: online SLAM and
offline SLAM (sometimes referred to as full SLAM). According to [18], full SLAM seeks
to calculate variables over the entire path along with the map, instead of just the current
pose, while the online SLAM problem is solved by removing past poses from the full SLAM
problem.

Figure 2. Description of online SLAM.

Figure 3. Description of offline SLAM.

Here, xk represents the vehicle pose (position, attitude, velocity, etc.) at time k. m
is the map that consists of stored landmarks (f 1–f 4) with their position states. uk is the
control inputs that represent the vehicle motion information between time epochs k − 1
and k, such as acceleration, turn angle, etc., which can be acquired from vehicle motion
sensors such as wheel encoders or an inertial sensor. At some epoch k, the onboard sensors
(such as Camera, Lidar, and Radar) will perceive the environment and detect one or more
landmarks. The relative observations between the vehicle and all the observed landmarks
are denoted as zk. With this information, the variables (including the vehicle pose and the
map states) can be estimated.

The rectangle with blue background in Figures 2 and 3 represents the state variables
that are estimated in these two implementations. In most cases, for online SLAM, only
the current vehicle pose xk+2 is estimated while the map is generated and updated with
the most recent measurements (uk+2 and zk+2), whereas in the case of the offline SLAM
implementation, the whole trajectory of the vehicle is updated together with the whole
map. All the available control and observation measurements will be utilized together for
the offline SLAM implementation.
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However, with the development of SLAM algorithms and increased computational
capabilities, the full SLAM solution may be obtained in real-time with an efficient SLAM
algorithm, which can also be treated as an online problem. Therefore, implementing a
SLAM method online or offline may be dependent on whether the measurement inputs
(control and observation) it requires are from current/history or from future epochs, and
on its processing time (real-time or not).

2.2. Filter-Based SLAM

Filter-based SLAM recursively solves the SLAM problem in two steps. Firstly, the
vehicle and map states are predicted with processing models and control inputs. In the next
step, a correction of the predicted state is carried out using the current sensor observations.
Therefore, the filter-based SLAM is suitable for online SLAM.

Extended Kalman Filter-based SLAM (EKF-SLAM) represents a standard solution
for the SLAM problem. It is derived from Bayesian filtering in which all variables are
treated as Gaussian random variables. It consists of two steps: time update (prediction) and
measurement update (filtering). At each time epoch the measurement and motion models
are linearized (using the current state with the first-order Taylor expansion). However,
since the linearization is not made around the true value of the state vector, but around the
estimated value [19], the linearization error will accumulate and could cause a divergence
of the estimation. Therefore, inconsistencies can occur.

Another issue related to EKF-SLAM is the continuous expansion of map size which
makes the quadratic calculation process of large-scale SLAM impractical. For autonomous
driving, the complex road environment and long driving period will introduce a large number
of features, which makes real-time computation not feasible. A large number of algorithms
have been developed in order to improve computational efficiency. For example, the Com-
pressed Extended Kalman Filter (CEKF) [20] algorithm can significantly reduce computations
by focusing on local areas and then extending the filtered information to the global map.
Algorithms with sub-maps have also been used to address the computation issues [21–24]. A
new blank map is used to replace the old map when the old one reaches a predefined map
size. A higher-level map is maintained to track the link between each sub-map.

There are some other filter-based SLAM approaches, such as some variants of the
Kalman Filter. One of them, the Information Filter (IF), is propagated with the inverse
form of the state error covariance matrix, which makes this method more stable [25]. This
method is more popular in multi-vehicle SLAM than in single-vehicle systems.

Another class of filter-based SLAM techniques is the Particle Filter (PF) which has
become popular in recent years. PF executes Sequential Monte-Carlo (SMC) estimation
by a set of random point clusters (or particles) representing the Bayesian aposteriori. The
Rao–Blackwellized Particle Filter was proposed in [26]. Fast-SLAM is a popular implemen-
tation that treats the robot position distribution as a set of Rao–Blackwellized particles,
and uses an EKF to maintain local maps. In this way, the computational complexity of
SLAM is greatly reduced. Real-time application is possible with Fast-SLAM [27], making
online SLAM possible for autonomous driving. Another advantage over EKF is that the
particle filters can cope with non-linear motion models [28]. However, according to [29,30],
Fast-SLAM suffers from degeneration since it cannot forget the past. If marginalizing the
map and when resampling is performed, statistical accuracy is lost.

2.3. Optimization-Based SLAM

Full SLAM estimates all the vehicle pose and map states using the entire sensor data,
and it is mostly optimization based. Similar to filter-based SLAM, the optimization-based
SLAM system consists of two main parts: the frontend and the backend. In the frontend
step, the SLAM system extracts the constraints of the problem with the sensor data, for
example, by performing feature detection and matching, motion estimation, loop closure
detection, etc. Nonlinear optimization is then applied to acquire the maximum likelihood
estimation at the backend.
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Graph SLAM is one of the main classes of full SLAM which uses a graphical structure
to represent the Bayesian SLAM. All the platform poses along the whole trajectory and all
the detected features are treated as nodes. Spatial constraints between poses are encoded
in the edges between the nodes. These constraints result from observations, odometry
measurements, and from loop closure constraints. After the graph construction, graph opti-
mization is applied in order to optimize the graph model of the whole trajectory and map.
To solve the full optimization and to calculate the Gaussian approximation of the aposteriori,
a number of methods can be used, such as Gauss–Newton or Levenberg–Marquardt [31].

For graph-based SLAM, the size of its covariance matrix and update time are constant
after generating the graph, therefore graph SLAM has become popular for building large-
scale maps. Reducing the computational complexity of the optimization step has become
one of the main research topics for practical implementations of the high-dimensional
SLAM problem. The key to solving the optimization step efficiently is the sparsity of the
normal matrix. The fact that each measurement is only associated with a very limited
number of variables makes the matrix very sparse. With Cholesky factorization and QR
factorization methods, the information matrix and measurement Jacobian matrix can be
factorized efficiently, and hence the computational cost can be significantly reduced. Several
algorithms have been proposed, such as TORO and g2o. The sub-map method is also a
popular strategy for solving large-scale problems [32–36]. The sub-maps can be optimized
independently and are related to a local coordinate frame. The sub-map coordinates can be
treated as pose nodes, linked with motion constraints or loop closure constraints. Thus, a
global pose graph is generated. In this way the computational complexity and update time
will be improved.

Smoothing and Mapping (SAM), another optimization-based SLAM algorithm, is
a type of nonlinear least squares problem. Such a least squares problem can be solved
incrementally by Incremental Smoothing and Mapping (iSAM) [37] and iSAM2 [38]. Online
SLAM can be obtained with incremental SAMs as they avoid unnecessary calculations
with the entire covariance matrix. iSAM2 is more efficient as it uses a Bayes tree to obtain
incremental variable re-ordering and fluid re-linearization.

SLAM++ is another incremental solution for nonlinear least squares optimization-
based SLAM which is very efficient. Moreover, for online SLAM implementations, fast
state covariance recovery is very important for data association, obtaining reduced state
representations, active decision-making, and next best-view [39,40]. SLAM++ has an
advantage as it allows for incremental covariance calculation which is faster than other
implementations [40].

Table 1 is a summary of the characteristics of some typical SLAM techniques. Note that
Graph SLAM utilizes all available observations and control information and can achieve
very accurate and robust estimation results. It is suitable for offline applications and its
performance relies on a good initial state guess. Filter-based SLAM is more suitable for
small-scale environments when used for online estimation, but for the complex environ-
ment, a real-time computation may be difficult with the traditional EKF-SLAM. Other
variants or fastSLAM should be considered. The incremental optimization method can do
incremental updating, so as to provide an optimal estimation of a large-scale map with
very high efficiency and in real-time.

Table 1. Characteristics of some typical SLAM techniques.

SLAM Type Advantages Disadvantages Typical Studies

EKF SLAM Bayesian filter
• Mature method, widely studied;
• Uncertainty is estimated.

• Suffers from linearization
errors;

• No re-linearization step;
• Needs huge memory and

computational resources for
large maps.

[29,41,42]
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Table 1. Cont.

SLAM Type Advantages Disadvantages Typical Studies

IF SLAM Bayesian filter

• Already inversed covariance
matrix;

• Faster and more stable than EKF;
• Suitable for multi-vehicle

systems.

• Suffers from linearization
errors;

• No re-linearization step.
[25,43]

CEKF
SLAM Bayesian filter

• Cost-effective;
• Outliers/errors only affect local

maps;
• Auxiliary coefficient matrix is

used for inactive parts.

• Needs correct link between
local and global maps. [20,44]

Fast SLAM Particle filter

• Capable of updating with
unknown data association;

• Less computation and memory
cost than EKF;

• Suitable for nonlinear cases;
• Robust in cases where motion

noise is high relative to
measurement noise.

• Loses accuracy when
marginalizing the map and
resampling is performed.

[26,28,30,45]

Graph
SLAM

Batch Least
Squares

optimization

• Suitable for nonlinear cases;
• More accurate;
• Can handle a large number of

features.

• Not suitable for online
applications;

• Relies on good initial value.
[46–51]

iSAM2 Incremental
optimization

• Very fast;
• Suitable for nonlinear cases;
• Allows re-linearization and data

association correction.

• Complexity grows when graph
become dense. [37,38]

SLAM++ Incremental
optimization

• Suitable for nonlinear cases;
• Very fast estimation (faster than

iSAM2);
• Efficient uncertainty estimation;
• Suitable for large-scale mapping.

• Complexity grows with
increasing number of
observations.

[39,40]

2.4. Sensors and Fusion Method for SLAM

New SLAM methods have appeared thanks to advances in sensor and computing
technology. These methods are also optimization-based or filtered-based at the backend
estimation step while the frontend step is highly dependent on the application of differ-
ent sensor modalities. Two of the major sensors used for SLAM are Lidar and Camera.
The Lidar method has become popular due to its simplicity and accuracy compared to
other sensors [52]. The core of Lidar-based localization and mapping is scan-matching,
which recovers the relative position and orientation of two scans or point clouds. Popular
approaches for scan matching include the Iterative Closet Point (ICP) algorithm and its
variants [53–55], and the normal distribution transform (NDT) [56]. These methods are
highly dependent on good initial guess, and are impacted by local minimums [57,58]. Some
other matching methods include probabilistic methods such as correlative scan matching
(CSM) [59], feature-based methods [57,60], and others. Many of the scan-matching methods
focus on initial free of or robust to, initialization error, but they still face the computation
efficiency challenge.

Some range sensors that can be used for SLAM estimation are Radar and Sonar/ultrasonic
sensors. Radar works in a similar manner to Lidar, but the system emits radio waves in-
stead of light to measure the distance to objects. Furthermore, since Radar can observe the
relative velocity between the sensor and the object using the measured Doppler shift [61],
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it is suitable for distinguishing between stationary and moving objects, and can be used
to discard moving objects during the map-building process [62]. Some research on using
Radar for SLAM can be found in [42,62–66]. When compared to Lidar, lower price, lower
power consumption, and less sensitivity to atmospheric conditions make it well suited
for outdoor applications. However, Radar has lower measurement resolution, and its
detections are more sparse than Lidar. Thus, it is harder to match Radar data and deal with
the data association problem, which results in its 3D mapping being less accurate.

Sonar/ultrasonic sensors also measure the time-of-flight (TOF) to determine the dis-
tance to objects, by sending and receiving sound waves. Sonar-based SLAM was initially
used for underwater [67,68], and indoor [69] applications. It has become popular due
to its low cost and low power consumption. It is not affected by visibility restrictions
and can be used with multiple surface types [70]. However, similar to Radar, it obtains
sparse information and suffers from inaccurate feature extraction and long processing time.
Thus, it is of limited use for high-speed vehicle applications. Moreover, Sonar/ ultrasonic
sensors have limited sensing range and may be affected by environmental noise and other
platforms using ultrasound with the same frequency [71].

Camera is another popular sensor for SLAM. Different techniques have been devel-
oped, such as monocular [72,73], stereo [74–77], and multi-camera [78–81]. These tech-
niques can be used in a wide range of environments, both indoor and outdoor. The
single-camera system is easy to deploy, however, it suffers from scale uncertainty [82].
Stereo-camera systems can overcome the scale factor problem and can retrieve 3D struc-
tural information by comparing the same scene from two different perspectives [61]. Multi-
camera systems have gained increasing interest, particularly as they achieve a large field
of view [78] or are even capable of panoramic vision [81]. This system is more robust in
complicated environments, while single sensor system may be very vulnerable to environ-
mental interference [81]. However, the integration of Cameras requires additional software
and hardware, and requires more calibration and synchronization effort [71,83]. Another
special Camera, the RGB-D Camera, has been studied by the SLAM and computer vision
communities [84–91] since it can directly obtain depth information. However, this system
is mainly applicable in indoor environments because it uses infrared spectrum light and is
therefore sensitive to external illumination [70].

The Visual SLAM can also be classified as feature-based or direct SLAM depending on
how the measurements are used. The feature-based SLAM repeatedly detects features in
images and utilizes descriptive features for tracking and depth estimation [92]. Some funda-
mental frameworks for this feature-based system include MonoSLAM [72,93], PTAM [94],
ORB-SLAM [95], and ORB-SLAM2 [96]. Instead of using any feature detectors and descrip-
tors, the direct SLAM method uses the whole image. Examples of direct SLAM include
DTAM [97], LSD-SLAM [73], and SVO [98]. A dense or semi-dense environment model
can be acquired by these methods, which makes them more computationally demanding
than feature-based methods. Engel et al. [74] extended the LSD-SLAM from a monocular
to a stereo model while Caruso et al. [99] extended the LSD-SLAM to an omnidirectional
model. A detailed review of Visual SLAM can be found in [5] and [70,92,100,101].

Each of these perceptive sensors has its advantages and limitations. Lidar approaches
can provide precise and long-range observations, but with limitations such as being sensi-
tive to atmospheric conditions, being expensive, and currently rather bulky. Radar systems
are relatively low cost, but are more suitable for object detection than for 3D map building.
Sonar/ultrasonic sensors are not suitable for high-speed platform applications. Cameras
are low-cost, even when multiple Cameras are used. Cameras can also provide rich visual
information. However, they are sensitive to environment texture and light, and in general,
have high computational demands. Therefore, a popular strategy is to combine a variety of
sensors, making the SLAM system more robust.

There are several strategies to integrate data from different sensors for SLAM. One is
fusing independently processed sensor results to then obtain the final solution. In [102], a
mapping method that merged two grid maps, which were generated individually from
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laser and stereo camera measurements, into a single grid map was proposed. In this
method, the measurements of the different sensors need to be mapped to a joint reference
system. In [103], a multi-sensor SLAM system that combined the 3-DoF pose estimation
from laser readings, the 6-DoF pose estimation from a monocular visual system, and the
inertial-based navigation estimation results to generate the final 6-DoF position using an
EKF processing scheme was proposed. For this type of strategy, the sensors can provide
redundancy and the system will be robust to possible single-sensor failure. A decision-
making step may be needed to identify whether the data from each sensor is reliable,
and to decide whether to adopt the estimation from that sensor modality or to ignore it.
Another fusion strategy is using an assistant sensor to improve the performance of other
sensor-based SLAM algorithms. The main sensor could be Lidar or Camera, while the
assistant sensor could be any other type of sensor. In this strategy, the assistant sensor is
used to overcome the limitations of the main sensor. The work in [104] incorporated visual
information to provide a good initial guess on the rigid body transformation, and then
used this initial transformation to seed the ICP framework. Huang et al. [105] extracted the
depth of point-based and line-based landmarks from the Lidar data. The proposed system
used this depth information to guide camera tracking and also to support the subsequent
point-line bundle adjustment to further improve the estimation accuracy.

The above two strategies can be combined. In the work of [106], the fusing consists
of two models, one deals with feature fusion that utilizes line feature information from
an image to remove any “pseudo-segments”, which result from dynamic objects, in the
laser segments. Another is a modified EKF SLAM framework that incorporates the state
estimates obtained from the individual monocular and laser SLAM in order to reduce
the pose estimation covariance and improve localization accuracy. This modified SLAM
framework can run even when one sensor fails since the sensor SLAM processes are parallel
to each other.

Some examples of more tight fusion can also be found in the literature. The work
of [107] combined both the laser point cloud data and image feature point data as constraints
and conducted a graph optimization with both of these constraints using a specific cost
function. Furthermore, an image feature-based loop closure was added to this system to
remove accumulation errors.

Inertial SLAM incorporates an inertial measurement unit (IMU) as an assistant sensor.
The IMU can be fused with the Camera or Lidar to support pose (position, velocity, attitude)
estimation. With an IMU, the attitudes, especially the heading, are observable [108]. The
integration of IMU measurements can also improve the motion tracking performance
during the gaps of observations. For instance, for a Visual SLAM, illumination change,
texture-less area, or motion blur will cause losses of visual tracks [108]. For a Lidar system,
the raw Lidar scan data may suffer from skewing caused by high-acceleration motion, such
as moving fast or shaking suddenly, resulting in sensing error that is difficult to account
for [109]. The work of [110] used an IMU sensor to deal with fast velocity changes and
to initialize motion estimates for scan-matching Lidar odometry to support their LOAM
system. The high-frequency IMU data between two Lidar scans can be used to de-skew
Lidar point clouds and improve their accuracy [109].

The fusion of inertial sensors can be as a simple assistant [111,112] or more tightly
coupled [108,113–115]. For the simple assistant case, the IMU is mainly used to provide
orientation information, such as to support the system initialization. The IMU is used
as prior for the whole system, and the IMU measurements are not used for further opti-
mization. For the tightly coupled case, IMU data is fused with Camera/Lidar states to
build up measurement models, and then perform state estimation and feedback to the
inertial navigation system to improve navigation performance [116]. Therefore the former
method is more efficient than the latter, however, it is less accurate [117]. For the tightly
coupled case, a Kalman filter could be used to correct the IMU states, even during GNSS
outages [118].
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2.5. Deep Learning-Based SLAM

Most of the aforementioned SLAM methods are geometric model-based, which build
up models of platform motion and the environment based on geometry. These methods
have achieved great success in the past decade. However, they still face many challenging
issues. For instance, Visual SLAM (VSLAM) is limited under extreme lighting conditions.
For large-scale applications, the model-based methods need to deal with large amounts of
information, such as features and dynamic obstacles. Recently, deep learning techniques,
such as data-driven approaches developed in the computer vision field, have attracted
more attention. Many researchers have attempted to apply deep learning methods to SLAM
problems.

Most of the current research activities focus on utilizing learning-based methods for
VSLAM problems since deep learning techniques have made breakthroughs in the areas
of image classification, recognition, object detection, and image segmentation [119]. For
instance, deep learning has been successfully applied to the visual odometry (VO) problem,
which is an important element of VSLAM. Optical flow estimation is utilized in some
learned VO models as inputs [120–124]. The application of learning approaches can be
applied in an end-to-end manner without adopting any module in the conventional VO
pipeline [125,126]. Wang et al. [125] introduced an end-to-end VO algorithm with deep
Recurrent Convolutional Neural Networks (RCNNs) by combining CNNs with the RNNs.
With this algorithm, the pose of the camera is directly estimated from raw RGB images,
and neither prior knowledge nor parameters are needed to recover the absolute scale [125].
Li et al. [127] proposed an Unsupervised Deep Learning based VO system (UnDeepVO)
which is trained with stereo image pairs and then performs both pose estimation and dense
depth map estimation with monocular images. Unlike the one proposed by Wang et al. [125],
ground truth is not needed for UnDeepVO since it operates in an unsupervised manner.

The learning-based methods can be combined with the VSLAM system to replace
or add on an individual or some modules of traditional SLAM, such as image depth
estimation [128–130], pose estimation [131–133], and loop closure [134–137], etc., to improve
the traditional method. Li et al. [138] proposed a fully unsupervised deep learning-based
VSLAM that contains several components, including Mapping-net, Tracking-net, Loop-
net, and a graph optimization unit. This DeepSLAM method can achieve accurate pose
estimation and is robust in some challenging scenarios, combining the important geometric
models and constraints into the network architecture and the loss function.

Sematic perception of the environment and semantic segmentation are current research
topics in the computer vision field. They can provide a high-level understanding of
the environment and are extremely important for autonomous applications. The rapid
development of deep learning can assist in the introduction of semantic information into
VSLAM [139] for semantic segmentation [140–142], localization and mapping [143–147],
and dynamic object removal [148–151]. Some detailed reviews of deep learning-based
VSLAM can be found in [92,139,152–154].

Fusion with an inertial sensor can also benefit from deep learning techniques, espe-
cially the RNN, which has an advantage in integrating temporal information and helping
to establish consistency between nearby frames [139]. The integration of visual and inertial
data with RNN or Long Short-Term Memory (LSTM), a variant of RNN that allows RNN
to learn long-term trends [155], has been proven to be more effective and convenient than
traditional fusion [156–158]. According to Clark et al. [157], the data-driven approach
eliminates the need for manual synchronization of the camera and IMU, and the need for
manual calibration between the camera and IMU. It outperforms the traditional fusion
method since it is robust to calibration errors and can mitigate sensor drifts. However,
to deal with the drift problem, a further extension of the learning-based visual-inertial
odometry system to a larger SLAM-like system with loop-closure detection and global
relocalization still needs to be investigated.

Compared to the visual-based SLAM, the applications of deep learning techniques for
laser scanners or Lidar-based SLAM are still in the early stages and can be considered a
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new challenge [159]. Velas et al. [160] used CNN for Lidar odometry estimation by using
the IMU sensor to support rotation parameter estimation. The results are competitive
with state-of-the-art methods such as LOAM. Li et al. [161] introduced an end-to-end
Lidar odometry, LO-Net, which has high efficiency, and high accuracy, and can handle
dynamic objects. However, this method is trained with ground truth data, which limits
its application to large-scale outdoor scenarios. Li et al. [162] designed a visual-Lidar
odometry framework, which is self-supervised, without using any ground truth labels.
The results indicate that this VLO method outperforms other current self-supervised
visual or Lidar odometry methods, and performs better than fully supervised VOs. Data-
driven approaches also make semantic segmentation of Lidar data more accurate and
faster, making it suitable for supporting autonomous vehicles [163–165]. Moving objects
can be distinguished from static objects by LMNet [166] based on CNNs of 3D Lidar
scans. One limitation of some cost-effective 3D Lidar applications for autonomous driving
in challenging dynamic environments is its relatively sparse point clouds. In order to
overcome this drawback, high-resolution camera images were utilized by Yue et al. [167] to
enrich the raw 3D point cloud. ERFNet is employed to segment the image with the aid of
sparse Lidar data. Meanwhile, the sparsity invariant CNN (SCNN) is employed to predict
the dense point cloud. Then the enriched point clouds can be refined by combining these
two outputs using a multi-layer convolutional neural network (MCNN). Finally, Lidar
SLAM can be performed with this enriched point cloud. Better target segmentation can be
achieved with this Lidar data enrichment neural network method. However, due to the
small training dataset, this method did not show improvement in SLAM accuracy with
the enriched point cloud when compared to the original sparse point cloud. More training
and further investigation of dynamic objects may be needed to satisfy autonomous driving
application requirements [167].

The generation of complex deep learning architectures has contributed to achieving
more accurate, robust, adaptive, and efficient computer vision solutions, confirming the
great potential for their application to SLAM problems. The availability of large-scale
datasets is still the key to boosting these applications. Moreover, with no need for ground
truth, unsupervised learning is more promising for SLAM applications in autonomous
driving. Compared to the traditional SLAM algorithms, data-driven SLAM is still in the
development stage, especially for Lidar SLAM. In addition, combining multiple sensing
modalities may overcome the shortcomings of individual sensors, for which the learning
methods-based integration system still needs further investigation.

3. Application of SLAM in Autonomous Driving

Depending on the different characteristics of SLAM techniques, there could be different
applications for autonomous driving. One classification of the applications is whether
they are offline or online. A map satisfying a high-performance requirement is typically
generated offline, such as the High Definition (HD) map [10]. For this kind of 3D point
cloud map, an offline map generation process ensures the accuracy and reliability of the
map. Such maps can be pre-generated to support the real-time operations of autonomous
vehicles.

3.1. High Definition Map Generation and Updating

As stated earlier, SLAM can be used to generate digital maps used for autonomous
driving, such as the HD map [10]. Due to the stringent requirements, high quality sensors
are used. Lidar is one of the core sensors for automated cars as it can generate high-density
3D point clouds. High-end GNSS and INS technology are also used to provide accurate
position information. Cameras can provide information that is similar to the information
detected by human eyes. The fusion of sensor data and analysis of road information to
generate HD maps needs considerable computational power, which is not feasible in current
onboard vehicle systems. Therefore the HD map is built-up offline, using techniques such
as optimization-based SLAM. The offline map creation can be performed by driving the
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road network several times to collect information, and then all the collected perceptive
sensor information and position information is processed together to improve the accuracy
of the final map. An example of a HD map is shown in Figure 4 [11].

 

Figure 4. An image from a high definition map (https://here.com/) [11].

The road environment and road rules may change, for instance, the speed limit
may be reduced due to road work, road infrastructure may be changed due to building
development, and so on. Therefore the HD map needs frequent updates. Such updates
can utilize the online data collected from any autonomous car. For example, the data is
transmitted to central (cloud) computers where the update computations are performed.
Other cars can receive such cloud-based updates and make a timely adjustment to driving
plans. Jo et al. [168] proposed a SLAM change update (SLAMCU) algorithm, utilizing a
Rao–Blackwellized PF approach for online vehicle position and (new) map state estimation.
In the work of [169], a new feature layer of HD maps can be generated using Graph SLAM
when a vehicle is temporarily stopped or in a parking lot. The new feature layer from one
vehicle can then be uploaded to the map cloud and integrated with that from other vehicles
into a new feature layer in the map cloud, thus enabling more precise and robust vehicle
localization. In the work of Zhang et al. [170], real-time semantic segmentation and Visual
SLAM were combined to generate semantic point cloud data of the road environment,
which was then matched with a pre-constructed HD map to confirm map elements that have
not changed, and generate new elements when appearing, thus facilitating crowdsource
updates of HD maps.

3.2. Small Local Map Generation

SLAM can also be used for small local areas. One example is within parking areas. The
driving speed in a parking lot is low, therefore the vision technique will be more robust than
in other high-speed driving scenarios. The parking area could be unknown (public parking
lot or garage), or known (home zone)–both cases can benefit from SLAM. Since SLAM can
be used without GNSS signals, it is suitable for vehicles in indoor or underground parking
areas, using just the perceptive sensor and odometry measurements (velocity, turn angle)
or IMU measurements. For unknown public parking areas, the position of the car and the
obstacles, such as pillars, sidewalls, etc., can be estimated at the same time, guiding the
parking system. For home zone parking, the pre-generated map and a frequent parking
trajectory can be stored within the automated vehicle system. Each time the car returns
home, re-localization using the stored map can be carried out by matching detected features
with the map. The frequent trajectory could be used for the planning and controlling steps.

An approach that utilizes multi-level surface (MLS) maps to locate the vehicle, and
to calculate and plan the vehicle path within indoor parking areas was proposed in [171].
In this study, graph-based SLAM was used for mapping, and the MLS map is then used
to plan a global path from the start to the destination, and to robustly localize the vehicle
with laser range measurements. In the work of [172], a grid map and an EKF SLAM
algorithm were used with W-band radar for autonomous back-in parking. In this work,
an efficient EKF SLAM algorithm was proposed to enable real-time processing. In [173],
the authors proposed an around-view monitor (AVM)/ Lidar sensor fusion method to
recognize the parking lane and to provide rapid loop closing performance. The above
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studies have demonstrated that both filter-based SLAM and optimization-based SLAM can
be used to support efficient and accurate vehicle parking assistance (local area mapping and
localization), even without GNSS. In the work of Qin et al. [174], pose graph optimization
is performed so as to achieve an optimized trajectory and a global map of a parking lot,
with semantic features such as guide signs, parking lines, and speed bumps. These kinds
of features are more (long-term) stable and robust than traditional geometrical features,
especially in underground parking environments. An EKF was then used to complete the
localization system for autonomous driving.

3.3. Localization within the Existing Map

In map-based localization, a matching method is used to match “live” data with map
information, using methods such as Iterative Closest Point (ICP), Normal Distribution
Transform (NDT), and others [10,175]. These algorithms can be linked to the SLAM problem
since SLAM executes loop closing and re-localization using similar methods. For a SLAM
problem, the ability to recognize a previously mapped object or feature and to relocate
the vehicle within the environment is essential for correcting the maps [13]. Therefore, the
reuse of a pre-generated map to localize the vehicle can be considered an extension of a
SLAM algorithm. In other words, the pre-generated and stored map can be treated as a
type of “sensor” to support localization.

However, matching live data with a large-scale pre-prepared map requires substantial
computational resources. Hence, some methods have been proposed to increase compu-
tational efficiency. One method is to first narrow down the possible matching area from
the map with position estimated from GNSS or GNSS/INS, and then carry out detailed
matching of the detected features with the map [176].

Due to the current limited installation of Lidar systems in commercial vehicles (high
price of sensor and high power consumption), localization of a vehicle with a low-cost
sensor (e.g., vision sensor) in a pre-generated HD map is of considerable practical interest.
For instance, the work in [177] located a vehicle within a dense Lidar-generated map
using vision data and demonstrated that a similar order of magnitude error rate can be
achieved to traditional Lidar localization but with several orders of magnitude cheaper
sensor technology. Schreiber et al. [178] proposed to first generate a highly accurate map
with road markings and curb information using a high-precision GNSS unit, Velodyne
laser scanner, and cameras. Then during the localization process, a stereo camera system
was used to detect road information and match it with the pre-generated map to achieve
lane-level real-time localization. Jeong et al. [179] utilized road markings obtained from
camera images for global localization. A sub-map that contained road information, such
as 3D road marking points, was generated and utilized to recognize a revisited place and
to support accurate loop detection. The pose graph-based approach was then used to
eliminate the drift. Qin et al. [146] proposed a semantic localization system to provide a
light-weight localization solution for low-cost cars. In this work, a local semantic map was
generated by combining the CNN-based semantic segmentation results and the optimized
trajectory after pose graph optimization. A compacted global map was then generated (or
updated) in the cloud server for further end-user localization based on the ICP method
and within an EKF framework. The average size of the semantic map was 36 kb/km. This
proposed camera-based localization framework is reliable and practical for autonomous
driving.

In addition to the aforementioned applications, moving objects within the road envi-
ronment will cause a drift of perception, localization, and mapping for autonomous driving.
SLAM can be used to address the problem of DATMO (detection and tracking of moving
objects) [15] because one of the assumptions of SLAM is that the detected features are
stationary. As the static parts of the environment are localized and mapped by SLAM, the
dynamic parts can be concurrently detected and tracked. Some approaches have dealt with
dynamic obstacles [180–182].
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4. Challenges of Applying SLAM for Autonomous Driving and Suggested Solutions

4.1. Ensuring High Accuracy and High Efficiency

Localization and mapping for automated vehicles need to be accurate and robust to
any changes in the environment and executed with high efficiency. With rapidly developing
sensor technology, the combination of different sensors can compensate for the limitations
of a particular sensor. Examples include GNSS/INS + Lidar/Camera SLAM, Radar SLAM,
and some others. There is considerable research and development associated with low-cost
and/or miniaturized Lidar sensors. New Lidar sensor concepts promise a significant
reduction in the cost of Lidar systems, with the potential for real-time implementation
in future autonomous vehicles. For instance, RoboSense has unveiled a new $200 Lidar
sensor combining MEMS sensors and an AI-based deep-learning algorithm to support
high-performance autonomous driving applications [183].

Choosing a SLAM approach should take into consideration different application
scenarios with different level of requirements. Optimization-based SLAM can provide
more accurate and robust estimation, however, it is more suitable for offline estimation.
EKF SLAM suffers from the quadratic increase in the number of state variables, which
restricts its online application in large-scale environments. Although high-resolution map
generation can be offline, real-time, or near-real-time, solutions are essential for map
updating and map-based localization applications.

Any change in the road environment should be quickly updated on the map and trans-
mitted to other road users. Emerging 5G wireless technology can make the communication
between vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), and vehicle-to-cloud more
reliable and with higher throughput [14].

4.2. Representing the Environment

There are different types of maps that can be used to represent the road environment.
Three major types of maps in the robotic field for SLAM applications are occupancy grid
maps, feature-based maps, and topological maps [184]. They are also applicable to road
environments. Each of them has its own advantages and limitations for autonomous
driving applications. The grid map divides the environments into many fixed-size cells,
and each cell contains its own unique property, such as whether the grid is occupied, free or
unknown [185,186]. The obstacle occupancy information can be directly fed to the planning
algorithms. This kind of map can be merged easily and has flexibility in incorporating
data from numerous types of sensors [184]. Mentasti and Matteucci [185] proposed an
occupancy grid creation method that utilized data from all the available sensors on an
autonomous vehicle, including Lidar, Camera, Laser, and Radar. The grid map also
shows the potential for detecting moving objects [187]. Mutz et al. [188] compare the
performance of mapping and localization with different grid maps, including occupancy,
reflectivity, color, and semantic grid maps, for self-driving car applications in diverse
driving environments, including under challenging conditions. GraphSLAM was used for
mapping, while localization was based on particle filter solutions. According to their results,
the occupancy showed more accurate localization results, followed by the reflectivity grid
map. Semantic grid maps kept the position tracking without losses in most scenarios,
however with bigger errors than the first two map approaches. Colorized grid maps
were most inconsistent and inaccurate for use in localization, which may be due to the
influence of illumination conditions. One shortcoming that limits the occupancy grip map
for large-scale autonomous driving is its dense representation, which needs big storage
space and high computation power [189]. Thus Li [186] suggested applying this technique
for real-time local mapping with a controlled size instead of for global mapping.

The feature-based map is a popular map type for autonomous driving. It represents
the map with a group of features extracted from sensor data. For outdoor road environ-
ments, the typical features are traffic lanes, kerbs, road markings and signs, buildings,
trees, etc. For indoor areas, especially in parking areas, the features are mainly the parking
lane, sidewalls, etc. These features can be represented by points, lines, and planes, tagged
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with coordinate information. The point feature represents the environment as dense point
clouds. The high-density point cloud maps generated using Lidar and/or vision sensors
can provide abundant features and 3D structure information of the area surrounding the
vehicle. However, the transmission, updating, and processing of this volume of data is
burdensome for complex road environments. The sparser line and plane features are suit-
able for structured environments, such as indoor environments, urban areas, or highways,
with clear markings. These features are more sophisticated than the point features, with
lower memory requirements [186], and are less susceptible to noise [189]. Im et al. [173]
proposed a parking line-based SLAM approach which extracted and analyzed parking
line features to achieve rapid loop closure and accurate localization in a parking area.
Javanmardi et al. [190] generated a city road map with 2D lines and 3D planes to represent
the buildings and the ground along the road. However, for autonomous driving, the appli-
cation environment is variable. A specific landmark-based algorithm may not be suitable
for other driving scenarios. Furthermore, in some rural areas, the road may be unpaved
and there is no road lane marking. Thus the related feature-based map approaches may
not be feasible due to the lack of road markings and irregular road curve geometry [191].

The topological map represents the environment with a series of nodes and edges.
The nodes indicate the important objects, such as corners, intersections, and feature points;
while the edges denote the topological relationships between them [192,193]. One typical
topological map is OpenStreetMAP (OSM) [194] which contains the coordinates of features
as well as road properties such as road direction, lane numbers, etc. This kind of map
significantly reduces the storage and computational requirements. However, it loses some
useful information about the nature and structure of the actual environment [184]. Thus,
some approaches combine topological maps with other types of maps. Bernuy and Ruiz-del-
Solar [195] proposed the use of a topological map based on semantic information to provide
robust and efficient mapping and localization solutions for large-scale outdoor scenes for
autonomous vehicles and ADAS systems. According to Bernuy and Ruiz-del-Solar [195],
the graph-based topological semantic mapping method was suitable for large-scale driving
tasks on highways, rural roads, and city areas, with less computational expense than metrics
maps. Bender et al. [196] introduced a highly detailed map, Lanelets, which combines both
geometrical and topological representations, and includes information on traffic regulations
and speed limits.

The semantic map is becoming increasingly important in autonomous fields as it
contains semantic information that allows the robot or vehicle to better understand the envi-
ronment, and to complete higher-lever tasks, such as human-robot interaction. For outdoor
applications, the labeled objects could be statistic background (e.g., ‘building’, ’tree’, ’traffic
sign’) or dynamic entities (e.g., ‘vehicle’, ’pedestrian’). Therefore, this kind of map can facil-
itate complex tasks for autonomous vehicles, such as planning and navigation [195,197].
Associating semantic concepts with geometric entities has become a popular research
topic and semantic SLAM approaches have been investigated that combine geometric
and semantic information [139,143,149]. The semantic SLAM approaches can contribute
to making localization and mapping more robust [174], to supporting re-localization at
revisited areas [143], and very importantly, to tracking moving objects detected in dynamic
environments [149,151,198]. One critical problem faced by semantic map generation and
utilization is that some modules within them, such as semantic segmentation, are very
computationally demanding, which makes them unsuitable for real-time applications [199],
especially for large-scale outdoor scenarios. Thus, some investigations seek to solve this
problem. Ros et al. [199] proposed an offline-online strategy that generates a dense 3D
semantic map offline without sacrificing accuracy. Afterward, real-time self-localization
can be performed by matching the current view to the 3D map, and the related geometry
and semantics can be retrieved accordingly. Meanwhile, the new dynamic objects can
be detected online to support instantaneous motion planning. With the advent of deep
learning, the efficiency and reliability of semantic segmentation and semantic SLAM have
been vastly improved [147,200–203]. However, as previously mentioned, when applying
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deep learning-based semantic SLAM to autonomous driving, there are still some challenges,
such as the need for large amounts of training data, or the lack of ground truth that makes
unsupervised learning methods necessary.

The different map representations are essential to support a highly automated vehicle
operating in a challenging and complex road environment. Therefore, a detailed digital
map, such as the HD map, which contains different layers of data, has been increasingly
adopted. In addition to the most basic 3D point cloud map layer, the HD map may also
contain layers with information on road topology, geometry, occupancy, lane features, road
furniture, road regulation, real-time knowledge, and more. The storing, updating, and
utilizing of such dense data without losing accuracy is a challenge. Some researchers have
proposed the concept of “Road DNA” to represent the road environment and to deal with
the Big Data problem [12,204]. Road DNA converts a 3D point cloud road pattern into
a compressed, 2D view of the roadway without losing details [12], with the objective to
reduce processing requirements.

4.3. Issue of Estimation Drifts

SLAM estimation drifts may be caused by accumulated linearization error, the presence
of dynamic obstacles, noisy sensor data, wrong data association, etc.

In most SLAM algorithms, nonlinear models are used to represent the vehicle motion
pattern and the environment. EKF SLAM suffers from a divergence problem due to the ac-
cumulation of linearization errors. Biases may occur when linearization is performed using
values of state variables that are far from their true values. For optimization-based SLAM, a
poor initial guess of variables will lead to poor convergence performance. Rotation may be
the cause of nonlinearity and has a strong impact on the divergence of estimation [205,206],
thus the accumulated vehicle orientation error will cause the inconsistency of the SLAM
problem. One solution to the linearization challenge is the Linear SLAM algorithm pro-
posed in [205], which modifies the relative state vector and carries out “map joining”.
Sub-map joining, which involves solving a linear least squares problem and performing
nonlinear coordinate transformations, does not require an initial guess or iteration. In
the work of [207], a robocentric local map sequencing approach was presented which can
bound location uncertainty within each local map and improve the linearization accuracy
with sensor uncertainty level constraints. Many variants of the classical EKF-SLAM have
been proposed to overcome the divergence of the filter. The study of [208] demonstrated
that the Unscented SLAM can improve the online consistency for large-scale outdoor ap-
plications. Huang et al. [209] proposed two alternatives for EKF-SLAM, Observability
Constrained EKF, and First-Estimates Jacobian EKF, both of which significantly outperform
the EKF in terms of accuracy and consistency. A linear time varying (LTV) Kalman filtering
was introduced in [210] which avoids linearization error by creating virtual measurements.
Some nonparametric approaches which are mainly based on the PF, such as fastSLAM [28],
Unscented fastSLAM [211–214], show better performance than the EKF-SLAM.

For the nonlinear optimization-based SLAM approach, computing a good initial guess
(solving the initialization problem), will lead to faster convergence and reduce the risk
of convergence to local minima. Olson et al. [215] presented a fast iterative algorithm for
optimizing pose graphs using a variant of Stochastic Gradient Descent (SGD), which is
robust against local minima and converges quickly even with a bad initial guess. Then in
the work of [50], an extension of Olson’s algorithm was proposed which uses a tree-based
parameterization for the nodes in the graph. This algorithm was demonstrated to be more
efficient than Olson’s and robust to the initial configuration. An approximation solution
for 2D pose-graphs, called Linear Approximation for a pose Graph Optimization (LAGO),
can be used as an exact solution or for bootstrapping nonlinear techniques [216,217].
This method first solves a linear estimation problem to obtain the suboptimal orientation
estimate, and then uses it to estimate the relative position measurements in the global
reference frame. Finally, the position and orientation solution is obtained by solving
another linear estimation problem. This solution can then be treated as an initial guess
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for a Gauss-Newton iteration. This method can provide a good initial guess, however, it
is limited to 2D pose-graph, and is sensitive to noisy measurements. An algorithm with
more complex initialization was proposed in [218] that uses the M-estimator, in particular
the Cauchy function, as a bootstrapping technique. Similar to approaches that use the
M-estimator to make estimation robust to outliers, the M-estimator proved to also be
robust to a bad initial guess. In contrast to LAGO and TORO, this method can be applied
to different variants of SLAM (pose-graphs and feature-based) in both 2D and 3D [218].
Carlone et al. [219] surveyed different 3D rotation estimation techniques and demonstrated
the importance of good rotation estimate to bootstrap iteration pose graph solvers. More
recent research presented a heuristic method called Multi-Ancestor Spatial Approximation
Tree (MASAT), which has low complexity and is computationally efficient without needing
a preliminary optimization step [220]. This method is still for the pose graph. Other
studies seek to obtain a good initial guess by introducing inertial measurements to support
initialization [221,222] or conducting parameter calibration [223–225].

Dynamic objects such as pedestrians, bicycles, other vehicles, etc., may cause estima-
tion drifts since the system may wrongly identify them as static road entities. There are
some methods to avoid this. Probabilistic Maps that use probabilistic infrared intensity
values have been proposed in [226]. In this study, GNSS/INS and a 64-beam Lidar sensor
were combined to achieve robust position RMS errors of 9 cm in dynamic environments.
However, this system suffers from high costs and a high computational burden. The 3D
Object Tracker [227] can be used to track moving objects in Visual SLAM methods. Another
algorithm proposed in [228] uses Canny’s edge detector to find dominant edges in the
vertical direction of a tree trunk and to select these tree trunks as typical salient features.
Deep learning methods are increasingly investigated to deal with the dynamic environment
as aforementioned [148–151,166,198].

Another source of drifts is the outlier within the sensor observations. Each sensor has
its own error sources. For example, in the case of a camera, the fuzzy image due to high
speed and poor light conditions may cause incorrect identification of landmarks. Lidar
sensors are sensitive to weather conditions (such as rainfall), and large changes in the road
environment. GNSS may suffer from signal blockage. FDI (Fault Detection and Isolation
system) techniques can be used to detect measurement outliers and reject the influence of
these outliers on positioning and localization [229].

The aforementioned SLAM error sources may also result in incorrect data association,
which is an important process to associate measurement(s) to a specific landmark. Wrong
data association may happen due to not only the noisy sensor data, inconsistency, wrong
detection of dynamic objects, etc., but also to some specific road environments. For instance,
the highway environment is sometimes visually repetitive and contains many similar
features, which makes it difficult to recognize a previously explored area.

Some researchers avoid the challenge of wrong data association directly at the frontend
step of SLAM by using RANSAC [230], which is commonly used in Visual SLAM to reject
outliers. In [231], the authors proposed a middle layer, referred to as Graph-Tinker (GTK),
that can detect and remove false-positive loop closures. Artificial loop closures are then
injected into the pose graph when using an Extended Rauch–Tung–Striebel smoother
framework.

The data association challenge can also be addressed at the backend step since there is
still a chance that outliers are not totally eliminated. The concept of Switchable Constraints
(SC) was introduced in [232], such that a switchable variable is introduced into each loop
closure constraint. Once a constraint is considered as an outlier, it can be turned off during
optimization. In [233], the authors introduced an algorithm known as Realizing, Reversing,
and Recovering (RRR), which is a consistency-based loop closure verification method.
More recently, Carlone et al. [234] used �1_relaxation to select “reliable” measurements,
and Carlone and Calafiore [235] use convex relaxations to solve the nonconvex problem
without the need for an initial guess of unknown poses. The potential causes of SLAM
drifts and the corresponding suggested solutions are summarized in Table 2.
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Table 2. Potential causes of SLAM drifts and solutions.

SLAM Drift Possible Solutions

Linearization
error

• Variants of EKF-SLAM [208–210];
• Nonparametric approaches [28,211–214];
• Local map joining [205,207];
• Gradient Descent based optimization scheme [50,215];
• Improved initialization method [216–218,220];
• Aiding with inertial measurements [221–225].

Sensor outliers • Fault Detection and Isolation [229];
• Sensor fusion to compensate for different sensor errors [236,237].

Dynamic objects

• Probabilistic maps [226];
• 3D Object Tracker [227];
• Salient feature detection [228];
• Deep learning-based methods [148–151,166,198].

Wrong data association

• RANSAC [230];
• Graph-Tinker [231];
• Switchable Constraints [232];
• RRR [233];
• �1_relaxation [234], convex relaxations [235].

4.4. Lack of Quality Control

The quantitative evaluation of the SLAM algorithms is another important challenge.
There are some criteria to evaluate SLAM algorithms, such as their accuracy, scalability,
availability, recovery (which is the ability to localize the vehicle inside a large-scale map),
and updatability. Quantitative analysis of the performance of SLAM algorithms is essential
since they can provide numerical evaluation and a basis for comparison of different SLAM
algorithms.

Estimation accuracy is a widely used quality analysis metric, but it can be difficult
in practice for autonomous driving. Most approaches evaluate the performance of SLAM
algorithms by comparing the results to ground truth using, for example, an accurate map.
However, a suitable ground truth map is seldom available. Sometimes the estimated map
is evaluated by overlaying it onto the floor plan and searching for differences [238], which
is harder for outdoor applications and needs human operator intervention [239]. Two
popular accuracy metrics, relative pose error (RPE) and absolute trajectory error (ATE),
were proposed by Sturm et al. [240] which evaluate a Visual SLAM system by comparing
the estimated camera motion against the true trajectory, instead of doing complex map
comparison. The RPE measures the local accuracy of trajectory over a fixed time interval,
while ATE compares the absolute distances between the estimated and the ground truth
trajectory and thus estimates the global consistency. These two trajectories should first be
aligned using the Horn method [240]. According to [240], the RPE considers both trans-
lational and rotational errors, while the ATE only considers the translational error. These
metrics have been widely used by the SLAM community for evaluating and comparing
different SLAM approaches. However, similar to maps, the precise location of the vehicle
trajectory on the actual road surface may not always be available. In [239], the authors
proposed a framework for analyzing the accuracy of SLAM by measuring the error of the
corrected trajectory. Root Mean Square Error (RMSE) of vehicle poses is normally used to
indicate the accuracy of the SLAM trajectory estimation result. Another widely used quality
analysis method is the Chi-squared (χ2) test. According to [241], the χ2 test is a statistic test
to quantify the quality of the provided covariance matrices for landmark measurements
and odometry error. When the minimum χ2 error is nearly equal to the difference of the
dimension of the measurement vector and the size of the state vector, the measure would
be considered as being of good quality [241].
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Some researchers [242–244] have considered the consistency of their SLAM algorithms.
According to [242], the major reason for SLAM inconsistency is the accumulated error
caused by the incorrect odometry model and inaccurate linearization of the SLAM nonlinear
functions. When the estimation error is beyond the uncertainty, it can be assumed that the
estimation results are inconsistent. EKF-SLAM suffers from such an inconsistency problem
unless the Jacobians of observation/odometry functions are evaluated around the true
system state. In [30] and [245], the consistency of fastSLAM and EKF-SLAM algorithms
was quantitatively determined using the measure indicator normalized estimation error
squared (NEES). In [246], observability properties of the filter’s error state model were
analyzed to investigate the fundamental causes of the inconsistency of EKF-SLAM. In the
work of [247], the consistency of an incremental graph SLAM was checked by applying
a χ2 test to the weighted sum of measurement residuals. Whether inconsistency can be
tolerated ultimately depends on the application of the SLAM results [19].

The reliability of the output of the localization, mapping, and navigation system should
also be checked. However, few studies have been made on the quantitative analysis of the
reliability of SLAM. Some reliability studies for other localization systems (such as GNSS,
GNSS/INS) can be used as a reference to guide the SLAM community. System reliability
can be considered as having two components: internal reliability and external reliability.
The former identifies the ability of the system to detect faults, which is quantified by the
Minimal Detectable Bias (MDB), and is indicated by the lower bound for detectable faults.
The latter estimates the influence of undetected faults on the final solution [175,248–251].
When the MDB value is low, the system is more reliable. Similarly, the reliability of the
SLAM system feature observation model and vehicle motion model can also be evaluated
with these approaches.

Integrity is very important, as it is an indicator of the “trustworthiness” of the infor-
mation supplied by the localization system, and can provide timely warning of the risks
caused by inaccuracy [252]. Integrity measures are used to quantify the requirements for
localization safety. The concept was first established in aviation and is also applicable
to land vehicle localization [253]. Due to the strict safety requirement of autonomous
driving, there is increasing attention to integrity by autonomous driving researchers. The
localization and navigation of a self-driving car are based on the use of multiple sensors,
therefore the traditional integrity analysis methods for GNSS should be extended. Fault
detection and isolation (FDI) is one of the most popular alert generation approaches for
GNSS-based localization [229,254–256].

5. Lidar/GNSS/INS Based Mapping and Localization: A Case Study

The Lidar-based Simultaneous Localization and Mapping (SLAM) technology ap-
proach is widely studied and used in the robotics field because Lidar can generate a very
dense 3D point cloud with a fast sensing rate and high accuracy. Normally the SLAM
system experiences estimation error which increases with the travel distance, thus it needs
“loop closure” to correct the errors. However, the closed loop is hard to achieve in some
large-scale outdoor applications of autonomous driving, such as driving on a highway, or a
complex trajectory in urban areas. Furthermore, the Lidar-only SLAM will only provide
the relative localization information. Therefore, the combination of GNSS/INS with Li-
dar SLAM will effectively reduce the dependence on loop closures and provide absolute
positioning information.

Furthermore, a Lidar system can also support localization using existed HD maps
when GNSS signals are not available. A modernized SLAM procedure that combines Lidar,
GNSS, and INS is tested here. This procedure contains two parts: Lidar/GNSS/INS-based
offline mapping part, and Lidar/HD map-based online localization and mapping part.

5.1. Experiment Setup

Land vehicle tests were conducted in some urban areas of Sydney, Australia, to test the
proposed Lidar/GNSS/INS multi-sensor system. The vehicle was equipped with a VLP-16
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LiDAR sensor, a tactical-grade IMU sensor, and two GNSS antennas from PolyExplore, Inc.,
San Jose, CA, USA (Figure 5). The second antenna can be used to provide a dual-antenna-
aided heading update for the online localization system. The sampling rate of the Lidar
was 10-Hz, the sample rate of GNSS was 1-Hz, and for the IMU it was 100-Hz.

  
(a) (b) 

Figure 5. Experimental platform: (a) The multi-sensor system, (b) side view of the system installed
within a vehicle.

The trajectory of the road test is shown in Figure 6a. The vehicle was driven from
the campus of the University of New South Wales (UNSW) in Kensington to La Perouse
(Section A), and then back to UNSW (Section B). In this study, the forward journey (from
UNSW to La Perouse) was used to a produce high precision 3D point cloud map of the road,
and the backward journey (from La Perouse to UNSW) was used to test the performance of
the Lidar/3D point cloud map-based localization method.

 
(a) (b) 

Figure 6. (a) The road test trajectory (in blue) on Google Maps; (b) GNSS/INS localization of the
whole trajectory with RTK positioning status in a local coordinate system.
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In order to conduct a quantitative analysis of the localization performance, three
sections of the trajectory were selected (Figure 6b). For each of the selected sections on the
driving trajectory, the GNSS-RTK status for the forward journey and backward journey was
“integer-ambiguity fixed”. Hence, the offline mapping results are expected to be accurate at
about the 5 cm level. For the backward journey (from La Perouse to UNSW), the selected
sections will have accurate GNSS/INS positioning results as a reference to evaluate the
performance of the Lidar/3D point cloud map-based localization method.

5.2. Lidar/GNSS/INS Mapping

The acquired dataset of the forward journey (from UNSW to La Perouse) was used
to generate a georeferenced point cloud map of the road environment. The georeferenced
map was generated using Lidar odometry frame-to-frame matching and GNSS/INS posi-
tioning/attitude. Figure 7 shows an overview of the offline mapping system architecture.

Figure 7. Overview of the Lidar/GNSS/INS mapping system architecture.

The GNSS/INS system can provide the geodetic positioning and attitude information.
Since this map generation was performed offline, an optimal GNSS/INS trajectory can
be obtained. The GNSS/INS-derived position and attitude results were used as initial
values for the frame-by-frame matching to transfer the newly merged point cloud to
the referenced frame. In this way, the point cloud can be georeferenced. When GNSS
results are unavailable the inertial navigation 6-DOF pose results can be used to generate
the initial transformation before the GNSS signals are reacquired. When conducting
Lidar odometry, each current frame was matched to the previous frame with Normal
Distributions Transform (NDT) scan matching algorithm, with the initial transformation
information provided by GNSS/INS. The point clouds were firstly pre-processed to remove
the ground plane point (Figure 8), before matching by NDT to improve the accuracy of
registration.

Figure 9 shows two scan views before being matched. It appears that these two scan
views have slight differences in features. The matched point cloud from the two scan views
can be generated (Figure 10).

By conducting Lidar odometry sequentially with all the available Lidar scans, the
newly matched point cloud can be merged with the previously generated point cloud maps,
and the accumulated map of the whole trajectory can be obtained and georeferenced, as
shown in Figure 11.

By enlarging Figure 11, details of the road map can be seen, and its corresponding
real-world road view can be compared with Google Earth images (since this map is georef-
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erenced). Figure 12 shows a comparison of one zoomed-in section of this generated map
and the corresponding view in Google Earth.

  
(a) (b) 

Figure 8. Scan view of a Lidar scan frame (a) the original scan view; (b) the view after pre-processing.

  
(a) (b) 

Figure 9. Scan views of two sequenced Lidar scan frames ((a) previous scan frame; (b) current scan
frame) for scan matching.

Figure 10. Generated map point cloud after matching two sequenced Lidar scan frames.
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Figure 11. Global georeferenced road map from UNSW to La Perouse (frame: ECEF, unit: meter)
from the 3D point cloud-based map.

  

(a) (b) 

Figure 12. A section of (a) generated map, and (b) the Google Earth view for the same location.

This generated map shows a good structure of the road environment, including the
road edge, buildings, trees, and parked vehicles along the road.

Three control points with known coordinates are placed around the UNSW Scientia
Lawn. These control points can be used to evaluate the accuracy of the generated point
cloud. By comparing the coordinates of the identified control points within the map to the
real known position, it is found the difference at each axis X, Y, and Z is around 2–8 cm.
Therefore, the offline-generated map accuracy is considered to be 5 cm.
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5.3. Localization with Lidar Scans and the GeoReferenced 3D Point Cloud Map Matching

The georeferenced 3D point cloud map produced from the data of Section A (the
forward journey from UNSW to La Perouse) can then be used to support the Lidar-based
localization for Section B (the backward journey from La Perouse to UNSW) by matching
the Lidar scans to the map. The procedure of the online Lidar/3D map matching-based
localization method is shown in Figure 13. An INS is used to support the Lidar/3D map-
based online localization. In order to show the performance of different fusion levels, two
fusion methods were investigated. The first method simply utilizes the IMU as an assistant
sensor that directly uses the INS solution as initial information for scan/map matching.
The second fusion method is a tightly coupled one that not only uses the INS solution to
support matching, but also contains an EKF-based error state update step that enhances
the inertial navigation performance.

 
(a) 

(b) 

Figure 13. Overview of the proposed Lidar/3D map matching based localization system architecture.
(a) Method 1: fusing IMU as an assistant sensor; (b) Method 2: fusing IMU using the EKF-based
tightly coupled method.

Method 2 consists of two parts: scan matching and EKF fusing. Firstly, if the inertial
navigation information is not available, the frame-to-frame Lidar odometry can be used
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to support localization. After initializing the error-state EKF, the estimated pose from the
inertial navigation will provide a rough pose for the current Lidar scan frame, and the
Lidar odometry can be shut down to lower the computation load. With the rough position
provided by the INS, a local map is searched and selected from the pre-generated global
map to improve the matching efficiency. NDT-based scan matching between the current
Lidar frame and the local map is undertaken with the inertial-based initial Transformation
Matrix. The Lidar-estimated vehicle pose can be obtained. A new real-time road map can
also be generated if needed.

After obtaining the Lidar pose, the difference between the Lidar pose and the inertial
propagation pose can be obtained, and the error within the inertial navigation information
is estimated by the error-state EKF and then fed back to the inertial system to improve the
pose results and bias estimation. When GNSS information is available, such as the RTK
position results, these can also be used to correct the inertial navigation information to
improve the accuracy and reliability of the localization system.

For data fusion of Lidar, INS, and GNSS, some current work has proposed using
the graph optimization-based method to generate optimal localization and mapping so-
lutions [179,257–259]. However, some of them are post-processed or highly dependent
on GNSS data to mitigate the navigation drift, or even ignore the IMU bias. Since for
our online Lidar/map matching based localization method, a reliable inertial navigation
solution is essential to provide a good initialization for the scan/map matching process,
and to increase the efficiency and accuracy of local map searching and selection, in-time
IMU bias correction is critical and is more easily achieved using an EKF. As our test is
undertaken within an urban area where GNSS signals are frequently lost, the feedback
to the IMU states should also depend on the Lidar data, especially during GNSS outages.
Moreover, the estimation uncertainty, which is an important parameter for the analyzing
system solution, is seldom estimated in graph-based methods but can be directly estimated
through the EKF method. Therefore in our current Method 2, the EKF method is used to
fuse the Lidar/map localization, GNSS, and inertial navigation results. A comparison of
Method 1 and Method 2 also highlights the difference between using an IMU sensor as a
separate aiding sensor and as a tightly-coupled aiding sensor.

5.3.1. Estimation Results of Lidar/3D Map-Based Localization System

Since there is no ground truth information for this urban road test, the Lidar/map
matching-based solutions are compared with the GNSS/INS solution within the three selected
trajectory sections (Figure 14), during which the RTK status is “ambiguity-fixed” (Figure 6b).

Table 3 shows the comparison between the Lidar/map matching-based localization
and the reference GNSS/INS localization results. For Method 1, the result differences
fluctuate around zero, and their mean values are at the centimeter to decimeter level.
The standard deviation for all three sections is around 0.1–0.2 m, therefore we treat the
difference of the coordinates larger than 0.6 m as indicating possible outliers. The epochs
that have outliers are about 1.7% of the total test data, which means the presence of outliers
is rare. The possible reason for the outlier will be discussed in the next Section. For Method
2, the result has better accuracy. The standard deviation is around 0.05 m, much lower than
that of Method 1. It can be seen from Figure 14, that Method 2 has a lower difference to
the reference during the periods that Method 1 shows possible outliers, indicating that the
tightly coupled method is more robust to outliers than simply using the INS solution for
initialization.

5.3.2. Quality Analysis of the Numerical Results

The details of measurements during the epochs with big jumps (such as during the
“red and green boxes” in Figure 14) are checked to investigate possible causes of the
detected outliers. For Trajectory Section 1 in Figure 14 (red box), it is found that when
driving around a roundabout, there were some big outliers by Method 1. The trajectory
of the Lidar/map system and the GNSS/INS solution around this roundabout and their
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views in Google Maps are shown in Figure 15. It can be seen that the GNSS/INS solutions
(Figure 15 yellow line) are smoother in this area since the GNSS integer ambiguities are
“fixed”, while the Lidar/map solution has some differences to the reference trajectory if
only using the IMU as a simple assistant (Method 1, Figure 15 blue line).

 
Trajectory Section 1 

 
Trajectory Section 2 

 
Trajectory Section 3 

(a) Method 1 (b) Method 2 

Figure 14. Coordinate difference between the proposed Lidar/map matching-based localization
method and the reference GNSS/INS localization method at three trajectory sections. (a) Method 1:
fusing IMU as an assistant sensor; (b) Method 2: fusing IMU using the EKF-based tightly coupled
method. The red and green boxes indicate epochs with big coordinate difference with different
timestamps.
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Table 3. Mean and standard deviation for the difference between Lidar/map matching-based
localization and the reference GNSS/INS localization results, for Trajectory Sections 1, 2 and 3 in
Figure 14. (a) Method 1: fusing IMU as an assistant sensor; (b) Method 2: fusing IMUs using the
EKF-based tightly coupled method.

Trajectory
Section 1

Trajectory
Section 2

Trajectory
Section 3

Mean
(m)

Method 1

East 0.020 −0.036 0.051

North −0.035 0.0031 −0.048

Up −0.084 0.140 −0.189

Method 2

East −0.0026 0.0358 0.0571

North −0.0052 −0.0221 −0.0371

Up 0.0041 −0.0250 −0.0228

Stdev
(m)

Method 1

East 0.142 0.099 0.128

North 0.162 0137 0.188

Up 0.182 0.151 0.123

Method 2

East 0.0556 0.0466 0.0503

North 0.0605 0.0530 0.0574

Up 0.0481 0.0410 0.0486

 

(a) (b) 

Figure 15. Trajectory of Lidar/map matching-based localization Method 1 (blue), Method 2 (Red)
and GNSS/INS localization (Yellow): (a) view in Google Map; (b) view in local coordinate system
around the roundabout.

Figure 16 shows the map view at this roundabout. It can be seen that the structure
of the pre-generated map on the driving side of the road is not very clear since it lacks
features around the trajectory. The roundabout is located at a parking area of a tourist
attraction. There is no building and very few trees around this area. Since the testing
was undertaken in the evening, there were not many parked vehicles that could be used
as features. Therefore the quality of the matching step may be poorer, which results in
degraded localization accuracy.

Figure 17 shows the Lidar scan view at this point with a range threshold of 20 m, and
it can be seen that this Lidar scan does not have many usable features, especially after
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pre-processing. Similar road environments with fewer features can be found when another
cluster of outliers appeared in Trajectory Section 1 (green box), shown in Figure 14. In
this situation, extending the range threshold may enhance the accuracy by including more
features, however, it will increase the computational burden and be impacted by more
outlier sources. Incorporating the inertial motion model by fusing the IMU more tightly
may make the localization system more robust to this featureless condition (Figure 15 red
line).

  
(a) (b) 

Figure 16. A section of (a) the generated map, and (b) the Google Earth view for the same location
around the roundabout.

 
 

(a) (b) 

Figure 17. Scan frame at epoch 40,647 s with big outlier in Trajectory Section 1 around the roundabout
((a) the original scan view; (b) the view after pre-processing).

Another major source of outliers is the other moving entities around the host vehicle.
Figures 18–20 show the Lidar views when there are big outliers in the localization stage.

No matter whether the other moving vehicle is on the same side of the road or the
other side of the road, such a moving vehicle will influence the quality of the Lidar/map
matching-based localization. When the moving vehicle is on the same side of the road as
the host vehicle, it will result in bad estimation when it is initially detected or has a different
speed from the host vehicle, or when it turns and drives onto another road. This will make
this vehicle no longer detectable (red box in Figure 14 Trajectory Section 2 and Figure 18).
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(a) (b) 

Figure 18. Scan frame at epoch 40,854 s with big outlier in Trajectory Section 2: a following vehicle is
driving to another road, (a) Lidar scan; (b) Google Earth view.

  
(a) (b) 

Figure 19. Scan frame at epoch 40,888 s with big outlier in Trajectory Section 2, an opposite driving
vehicle detected, (a) Lidar scan; (b) Google Earth view.

  
(a) (b) 

Figure 20. Scan frame at epoch 41,103 s with big outlier in Trajectory Section 3, with one tall bus
driving past (a) Lidar scan; (b) Google Earth view.
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Once the host vehicle detected an opposite driving vehicle, the localization estimation
errors could reach 1–1.5 m (green box in Figure 14 Trajectory Section 2 and Figure 19).

The type of moving elements will also impact the presence of outliers. Most of the
time, the vertical position estimation is less influenced by the moving elements. However,
when checking the red box in Trajectory Section 3 (Figure 14), it can be found that the
differences in the vertical direction are much higher than in other sections. By looking at
the details of the Lidar view it is found that, at that section, a tall bus was driving past the
host vehicle (Figure 20), which means vertical differences between the current Lidar scan
and the pre-generated map might have caused some systematic vertical biases.

The moving objects within the road environment will be a major source of measure-
ment outliers because the system treated the pre-generated map as a fixed reference map.
Therefore, if there are any moving objects that cause the structures of the pre-generated
map and the current scan frame to be different, outliers will occur. The moving objects,
such as other vehicles, may exist in both the previous road mapping stage and in the
current road scans for use in localization. For the step of offline HD map generation, such
moving objects should be carefully identified and removed from the static 3D point cloud
maps. For the online step, the moving objects could be identified and removed based on
the cleaned pre-generated map, or directly achieved semantic segmentation with sensor
data. Some researchers have developed some moving object segmentation methods, such
as LMNet [166] which can distinguish moving and static objects based on CNN. Therefore,
the possible detected moving objects could be removed, or the possible road environment
change could be updated to the global map to enhance the accuracy of future driving
around the same road path. These methods may be undertaken during the perception
step. The aid of some numerical quality control methods may also contribute to this task
at the localization and mapping steps, such as the FDI method, or outlier detection and
identification methods, which can directly estimate and mitigate the influence of outliers
from all kinds of resources, not only the moving outlier, and also other sensor or model
faults.

Some FDI methods or integrity monitoring methods [255,256] have already been
successfully applied to the GNSS/INS integration system under an EKF framework. Since
in this case study the EKF method is used to fuse Lidar/map localization results and INS
pose to generate high-frequency precise pose solutions, these quality control methods also
indicate the potential for this proposed localization system. This will be a future research
topic.

6. Conclusions

This paper gives a brief review of different SLAM approaches and their characteristics.
SLAM has become a key approach for localization, mapping, planning, and controlling in
automated driving. It shows promising progress in generating high-resolution maps for
autonomous driving and for vehicle localization in road environments. The advantages and
disadvantages of different SLAM techniques have been identified and their applications
for autonomous driving have been discussed.

The trustworthiness of localization and navigation algorithms is an important issue
for autonomous driving. There are many challenges that limit the performance of the
SLAM techniques, which affect the safety of the localization and navigation results. These
challenging issues, and possible solutions, are mentioned in this review. Furthermore, in
order to ensure safety, the performance of the algorithms should be quantitatively evaluated
with respect to such measures as accuracy, consistency, precision, reliability, and integrity.
The methods to evaluate these qualities are briefly discussed.

A real-world road test was conducted to demonstrate the application of SLAM for
autonomous driving with multi-sensor integration. The numerical results show that a
GNSS/INS-aided-Lidar system can generate a georeferenced high-density point cloud
map. This pre-generated map can then be used to support online localization, which has
achieved about centimeter-level accuracy. This Lidar/map matching-based localization
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method may also be useful to support an autonomous driving system during periods when
GNSS signals are unavailable, which makes it suitable for urban area driving. A more
tightly coupled fusion of IMU measurements will make the Lidar/map-based localization
more accurate and robust to outliers than simply utilizing the inertial solution as assistant
information.

Future studies should be focused on how to detect moving entities and mitigate their
impact in the 3D point cloud mapping and localization process. In addition, integrity
monitoring procedures for such Lidar/GNSS/INS-based vehicle localization and mapping
system should be investigated.
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