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Abstract: In recent years, low-cost single-frequency GNSS receivers have been widely used in many
fields such as mass navigation and deformation monitoring; however, due to the poor signal quality
of low-cost patch antennae, it is difficult for carrier phase real-time kinematic (RTK) technology to fix
the integer ambiguity. Differential GNSS (DGNSS) positioning with pseudorange can effectively meet
the high robustness and reliability requirements for the submeter to the meter level positioning accu-
racy of UVA/vehicle/aerospace users. To improve the DGNSS positioning accuracy and reliability of
low-cost single-frequency GNSS receivers in complex environments, we propose a differential baro-
metric altimetry (DBA)-assisted DGNSS positioning algorithm, which solves the DGNSS observation
equations jointly and rigorously with the Earth ellipsoidal constraint equations constructed by the
DBA altitude. The DBA altitude accuracy at different baseline lengths was evaluated in detail, and the
DGNSS positioning performance of the single-frequency low-cost u-blox receiver NEO-MS8T with a
patch antenna and DGNSS/DBA combined positioning performance with the BMP280 barometer was
analyzed by several sets of static and dynamic experiments under different environments. The results
show that the single-frequency NEO-MST receiver with patch antenna DGNSS positioning accuracy
is submeter level in the static environment and drops to meter level in the dynamic environment.
GPS+BDS dual system has higher positioning accuracy than single GPS or single BDS. DGNSS/DBA
combination has higher positioning accuracy than DGNSS, especially the root mean square error
(RMSE) can be improved by 30% to 80% in the U direction and slightly improved in the N and E
directions. This study can provide an effective solution reference for various applications of low-cost
sensor fusion positioning in the mass consumer market.

Keywords: differential GNSS; DBA; low-cost; combined positioning

1. Introduction

With the continuous development and improvement of the Global Navigation Satellite
System (GNSS), the number of visible satellites has been greatly increased, which effectively
improves the positioning accuracy, reliability, and availability. However, in complex
environments such as under trees, urban canyons, tunnels, deep mine pits, and indoors, etc.,
GNSS signal attenuation is severe, observation quality is poor, or the visible satellites are
insufficient and there is the serious multipath effect. These drawbacks will lead to decreased
positioning accuracy or even unable to locate, which greatly limit the availability and
application of GNSS [1,2]. Combining GNSS with other multi-source sensor technologies
to realize the complementary advantages of each system and improve the location-based
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services (LBS) accuracy of user terminals in harsh scenarios has become a major research
hotspot in the field of navigation.

Single-frequency low-cost GNSS receivers, such as u-blox series, SkyTraq S2525F8,
etc., are widely used in various industries, providing solutions for surveying and mapping
applications [3], landslide deformation monitoring [4,5], pedestrian navigation, vehicle
tracking [6], and small unmanned aerial vehicles (UAV) navigation [7]. Low-cost GNSS
receivers are smaller in size and mass, but their hardware performance is inferior to that of
geodetic GNSS receivers. For example, lower signal-to-noise ratio (SNR), poor observed
values, and more frequent satellite out-of-lock and observation data are missing. The main
reason is that the observation quality of the low-cost patch antenna is poor. Low-cost GNSS
receivers for standard point positioning (SPP) can only obtain meter-level positioning
accuracy, which means positioning accuracy and reliability will significantly reduce with
positioning errors up to tens of meters in complex urban environments [8]. The single-
frequency low-cost u-blox receiver for GNSS RTK positioning has a low fixed rate of carrier
phase ambiguity in practical applications due to the poor observed data quality [9].

Compared with GNSS RTK positioning to achieve centimeter-level positioning accu-
racy, the DGNSS positioning with code pseudorange can only achieve 1-2 m positioning
accuracy [10]. However, DGNSS is simpler to implement and can avoid positioning failure
caused by RTK ambiguity fixed incorrectly. DGNSS can be widely used in many fields, for
example, in the location of mobile devices [11,12], marine navigation, and in coastal naviga-
tion and in dynamic vessel positioning [10,13], in hydrography for positioning of acoustic
systems [14], in autonomous vehicle positioning [15,16], and civil aviation during precision
approach procedures [17]. DGNSS is currently the most widely used augmentation system
around the world.

The idea behind DGNSS operation lies in determination of the error related to pseu-
dorange observations and calculated comparing the actual value received by the GNSS
receiver and the true value calculated using the satellite and the reference station antenna
coordinates. This difference, referred to as a pseudorange correction, is transmitted to users
who use a GNSS receiver and take it into account in the positioning process [18]. They can
be divided into so-called local-area DGNSS (LADGNSS) services for small areas, such as a
relatively small area of several dozen to several hundred square kilometers, and wide-area
DGNSS (WADGNSS) services for larger areas such as an entire continent or even world-
wide. The positioning accuracy achieved by LADGNSS method is 1-3 m and it decreases
with increasing distance between a user and the single reference station [19]. WADGNSS
can extend the service area using a few geosynchronous equatorial orbit (GEO) satellites
and overcome the error due to the spatial decorrelation, as in, for example, the Wide-Area
Augmentation System (WAAS, USA), European Geostationary Navigation Overlay Service
(EGNOS, Europe), and MTSAT Satellite Augmentation System (MSAS, Japan). This system
is used to obtain a meter-level accuracy over a large region while using a fraction of the
number of reference stations [10].

Most studies and analyses of DGNSS positioning with low-cost GNSS receivers have
used geodetic antennas. For example, an Flachen Korrektur parameter (FKP)-DGPS al-
gorithm [19] is studied as a new augmentation method for the low-cost GPS receivers by
integrating the conventional DGPS correction with the modified FKP correction to mitigate
the positioning error due to the spatial decorrelation. Single-frequency DGPS aided low-
cost inertial navigation system (INS) positioning [20] was studied to achieve the real-time
high-frequency state output with decimeter position accuracy and centimeter velocity
accuracy. However, there is still little research on DGNSS for low-cost GNSS receivers with
low-cost patch antenna and fusion positioning with other low-cost sensors.

Height constraint is an effective method to improve the GNSS positioning accuracy,
for example, due to the insufficient number of available satellites, the BDS-1 has used
electronic maps as height constraints to improve the users’ positioning accuracy [21]. This
method is more complicated to implement and it is difficult to promote its application. The
barometric altimetry is low-cost, independent of environmental restrictions, and can be
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used both indoors and outdoors. Low-cost barometer altimetry-assisted GNSS positioning
navigation is also widely used in the field of aviation flights and smartphone navigation,
etc. [22-25]. The basic principle of barometric altimetry is to use the physical phenomenon
that the atmospheric pressure on the Earth’s surface gradually decreases with increasing
height, but, due to the irregular changes of atmospheric pressure, the altitude error directly
calculated by a single barometer is as high as tens or even hundreds of meters, which
cannot be used as a constraint to improve GNSS positioning accuracy. Similar to DGNSS,
the accurate height can be obtained by barometric correction compensation or differential
barometric altitude (DBA). That is, using the property that local atmospheric pressure
changes are similar, a barometer is placed at the reference station and another barometer is
used as a mobile station to determine its high-precision relative altitude by the differential
equation. The altitude accuracy and reliability obtained by DBA mode are high, which can
effectively constrain other technology to improve positioning and navigation accuracy.

The user altitude obtained by the DBA system was applied as a virtual satellite in
the China Area Positioning System (CAPS), and the construction of independent earth
ellipsoidal constraint equations by users” altitude can effectively solve the insufficient
number of CAPS satellites and improve its 3D positioning accuracy and availability [26-28].
The DBA system also be applied to mobile cellular network positioning for accurately
determining the user’s height, and reduced 3D positioning to planar positioning which can
obtain more desirable positioning accuracy [29]. Mobile cellular base stations can be used
as DBA reference stations and transmitted the relevant atmosphere pressure data to the
user side through mobile communication networks, achieving GNSS SPP/DBA combined
3D positioning with the altitude accuracy better than 1 m [30]. Inertial/barometric altitude
can be fused to measure vertical velocity and height with velocity root mean squared
error (RMSE) between 0.04 to 0.24 m/s and RMSE in height between 5 to 68 cm [31]. In
addition, a barometer installed on a wearable device can measure vital signs such as blood
pressure by detecting the position and orientation of the human body, thus providing a
better telemedicine solution for precision medicine [32,33].

At present, to our knowledge, little research has been reported on the DGNSS/DBA
combined positioning with low-cost GNSS receivers and a patch antenna, and there is
also a lack of research and analysis on the theoretical methods and application effects
of DBA, which is worth further study. In this study, we firstly propose a DGNSS/DBA
combined positioning algorithm. Second, the DBA altitude accuracy at different baseline
lengths is evaluated in detail. Then, the DGNSS performance of single-frequency low-cost
NEO-MST receiver and the accuracy and reliability of DGNSS/DBA combined positioning
with low-cost BMP280 barometer are fully evaluated through actual measurement data.

This manuscript is organized as follows: Section 1 is the introduction. Section 2 is the
mathematical model of DGNSS/DBA combined positioning, which contains Section 2.1
about DGNSS positioning observation equations; Section 2.2 about the principle of the DBA
system; and Section 2.3 on the DGNSS/DBA combined positioning algorithm.
Section 3 reports the experiment results, containing Section 3.1 that introduces experi-
mental data; Section 3.2 about DBA altitude accuracy evaluation at different baseline
lengths; Sections 3.3 and 3.4 on the DGNSS/DBA combined static and kinematic vehicle
positioning performance evaluation for the single-frequency low-cost NEO-MS8T receiver
and BMP280 barometer, respectively. Section 4 presents the discussions. Section 5 is
the conclusion.

2. Mathematical Model of DGNSS/DBA Combined Positioning
2.1. DGNSS Positioning Observation Equation

GNSS receivers can simultaneously receive observation data such as code pseudorange,
carrier phase, Doppler shift, and SNR. The raw observation values contain the receiver
geometric position parameters, clock error as well as hardware delays parameters, and
various error corrections, such as tropospheric errors and ionospheric errors. Therefore,
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the raw code pseudorange observation equation between satellite s and receiver i can be
expressed as:
PP =pi +c(dt —dt’)+ [ + T, + M; + ¢ 1)

where P} denotes the code pseudorange observation between satellite s and receiver i

(Unit: m); p7 = \/ (X5 — X)?* + (Y5 = Y)? + (25 — Z)* denotes the geometric distance be-
tween satellite s and receiver i at the moment of signal transmission, (X%, Y*,Z°) and
(X, Y, Z) are the satellite s and unknown receiver i antenna center position. ¢ is the speed
of light in vacuum; dt; denotes the receiver clock error; dt° denotes the satellite clock error;
I} is the ionospheric error; T} is the tropospheric error; M; is the multipath delay error; &
contains the code pseudorange measurement noise and other uncorrected errors.

For the short and medium baselines, the receiver clock error and satellite clock error are
eliminated in the double-difference observation equation, the ionospheric and tropospheric
errors can be neglected, and the DGNSS observation equation can be simplified and
expressed as [34]:

VAP = VApE* + VA @

where VA denotes the double-difference operator; i and j denotes the reference station receiver
and mobile receiver; s; and s; denote the reference and nonreference satellite, respectively.

2.2. Principle of the DBA System

Single-barometer altimetry affected by atmospheric temperature, seasonal changes,
and other factors drifts up to several tens of meters within a day, with poor stability and
reliability [35]. Due to the Earth’s gravitational field, the space atmosphere pressure and
height show a certain regular distribution. Except for the local strong convection zone,
the trend of atmospheric pressure variation in the local range of several tens of kilometers
shows the same physical characteristics, and the atmosphere is basically in hydrostatic
equilibrium in the vertical direction. Usually, the atmospheric pressure is distributed more
evenly in the horizontal direction, and the pressure difference is about 1 hPa at a distance
of 100 km. Thus, the concept of “difference” can be extended to the field of barometric
altimetry with the help of differential GNSS positioning, that is, by setting one (or several)
barometric reference points, the barometric altimetry value of the mobile station can be
corrected by the precise altitude of the reference station to compensate the influence of
atmospheric physical environment changes on the altitude measurement results of the
mobile station, thus improving the accuracy of the user altitude of the mobile station.

When the barometric reference station and the mobile station are within a few tens of
kilometers, their latitude, gravitational acceleration, and water vapor factors have the same
effect on the atmospheric pressure, so the above three errors can be neglected to obtain the
simplified DBA formula [36]:

tm )1 Po

h=ho+18,410(1 + ot 2 )lg

@)

where & is the altitude of the mobile station to be found, /g is the known altitude of the
reference station, Py is the pressure of the reference station, P is the pressure of the mobile
station, and t,, is the average Celsius temperature between the reference station and the
mobile station.

2.3. DGNSS/DBA Combined Positioning Algorithm

In this study, we propose a DGNSS/DBA combined positioning algorithm, in which
the user’s altitude obtained by the DBA system in Section 2.2 is used to construct the Earth
ellipsoid constraint equation and solved rigorously as an independent observation jointly
with the DGNSS observation equation, which is equivalent to adding a virtual satellite
located at the center of the Earth [26]. Since the geodetic height is an independent variable
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in GNSS coordinates, an approximate ellipsoid with the altitude / from the reference
ellipsoid (WGS-84) can be constructed using the user geodetic height, as shown in Figure 1.

1
P(X,Y,Z)
.............................. 3

Meridian surface profile

o

Figure 1. Approximate reference ellipsoidal meridian profile where the ground user’s geodetic height
is located.

At this time, when the ground user’s geodetic height is not very large, the observation
equation after DGNSS/DBA combination can be expressed as:

X242 72 _ “4)

{ VAP = VApE* + VA
(a+h)? " (b+h)?

the symbols in the DGNSS observation equation in the first line of Equation (4) are the
same as Equation (2). P(X,Y,Z) is the 3D coordinate of the ground user; a and b are
the long and short semiaxes of the WGS-84 Earth reference ellipsoid, respectively. Since
h is much smaller than the long and short semiaxes of the Earth reference ellipsoid, an
approximate reference ellipsoid with a long semiaxis a + & and short semiaxis b + h is used
instead without causing much bias [37]. To solve the Earth ellipsoid constraint equation in
the second expression of Equation (4) by differential processing, the ellipsoid constraint
equation is expanded in the user’s approximate position (Xp, Yy, Zy) according to the
Taylor series, and only the first-order term is retained, where the partial derivative of X is
obtained as:

2X2 2Y? 272
2o _gx— 2K _gpo 20 gy 240 gy g ®)
(a+h) (a+h) (a+h) (b+h)
after simplification, we get:
oh Xo(a+h)(b+h)® ©
0Xo  (XZ+Y2)(b+h)>+Z2(a+h)?
similarly, taking partial derivatives of Y and Z yields:
oh Yo(a+h)(b+h)?
B (CEI(ER) o

Yo (X2+Y2)(b+h) + Z2(a+h)’
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oh Zo(a+h)°(b+h)

9Zo (X34 Y2)(b+h)’+Z3(a+h)’
leta = 0h/9Xo, p = 0h/9dYy, v = 0h/9dZy, that is, the Earth ellipsoidal constraint equation
in Equation (4) is linearized at the approximate coordinates (Xo, Yo, Zo) to give:

®)

Vppa = adX + BdY + ydZ — dh )

where dh = h — I is the altitude residual, / is the altitude obtained by the DBA system, and
Ji is the geodetic height obtained by the users’ at the approximate position. dX,dY,dZ are
positional corrections of the receiver antenna center. The detailed conversion process can
be found in the original literature [38].

Similarly, the DGNSS observation equation in the first expression of Equation (4) is ex-
panded by the Taylor series at the approximate position (X, Yo, Zy), omitting higher-order
terms above the first order, and combined with Equation (9) to obtain the DGNSS/DBA
combined positioning error equation:

V=Ht—1P (10)
in Equation (10), the parameter estimated as £ = [ dX dY dZ ]T contains three ap-
proximate position correction values; V = [ vt ooV VbBa }T is the residual vector,

nomt ol
. . e : s k . s
H= ; .7 | is the coefficient matrix, I = & 7)50) - X)) i - X 71:0) -
Iomi u p](v[)) PJ(O)k p]EO)
© B
k . s k
(r (E){O), ni = Z (EEO) -z (B)%w are the pseudorange double-difference directional co-
Pj 0y Py
sine, respectively. | = [ L' ... LI dh ]T are the observation value vectors. P =
Pp %N 58 PDOBA is the DGNSS/DBA combined positioning weight matrix. Ppgnss =

QB}D is the a priori weight matrix of GNSS pseudorange double-difference observation
equation. Qpp is the GNSS pseudorange double-difference observation values covari-
ance matrix, the stochastic model of GNSS nondifferential observations adopts the sine
trigonometric function elevation angle fixed-weight model [39]. According to the error
propagation law, the GNSS relative positioning variance-covariance matrix can be ex-
pressed as Qpp [34]. The a priori weight Ppg4 of the DBA can be determined based on
the results of the empirical evaluation in Section 3.2. We can solve Equation (10) using the
single-epoch weighted least squares method, as Equation (11):
¢ — (4T gt
{ &= (H"PH) 'H'PI an
Qs = (HTPH)

where Qg is the posterior covariance matrix of the parameter £. It can be found that the
DBA altitude constraint is equivalent to adding a code pseudorange observation, and the
condition number of the error equation coefficient matrix H becomes significantly better,
the position dilution of precision (PDOP) value can be effectively reduced. However, the
accuracy of the positioning solution is influenced by the accuracy of DBA altitude, i.e.,
if the accuracy of DBA altitude is better than DGNSS altitude, the improvement effect is
obvious, otherwise, the positioning accuracy cannot be improved.

3. Experiment Results
3.1. The Introduction of Experiment Data

In the experiment, the reference station included a high-precision geodetic GNSS
receiver Trimble NET R9, a Trimble Choking 59,800 antenna, and a low-cost BMP280
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barometer. The mobile station consisted of a single-frequency low-cost u-blox receiver NEO-
MS8T, a patch antenna, and two BMP280 barometers. The mobile station was also equipped
with a geodetic receiver Trimble NET R9 for data acquisition, and the postprocessed
kinematic (PPK) mode of commercial software Inertial Explorer 8.70 was used to process
data to obtain high-precision 3D coordinate sequences as reference values. The nominal
resolution of the low-cost BMP280 barometer was 0.01 mbar (0.1 m) and the data sampling
rate was set at 1 Hz. As shown in Figure 2, to prevent the effect of crosswind on the
barometric pressure, the barometer was placed inside a transparent plastic box with several
small holes at the top of the box. All experimental data were recorded and postprocessed by
a laptop computer. The height deviation of the BMP280 barometer from the GNSS antenna
phase center was compensated by data preprocessing, and the DGNSS/DBA combined
positioning analysis was performed by the self-written programs.

(b)

Figure 2. The hardware equipment in the DBA altitude accuracy evaluation and static positioning
experiment: (a) reference station; (b) mobile station.

The whole experiment was divided into three parts. The first experiment was used
to evaluate the DBA altitude accuracy at different baseline lengths and to provide a priori
information for subsequently combined positioning with DGNSS. The second experi-
ment evaluated the positioning performance of low-cost single-frequency DGNSS and
DGNSS/DBA combined positioning through static experiments with 65 m and 6.0 km
baseline lengths. The third experiment evaluated the kinematic vehicle positioning perfor-
mance of low-cost single-frequency DGNSS and DGNSS/DBA combined positioning in
open and complex urban environments, respectively.

3.2. DBA Altitude Accuracy Evaluation at Different Baseline Lengths

The altitude accuracy and practical range obtained by the BMP280 barometer DBA
model were evaluated through different baseline lengths outdoors. The experimental
data were collected on 18 September 2020, and Figure 2 shows the hardware equipment
of the reference station and mobile stations. The reference station was arranged on the
observation pier on the roof of the Innovation Academy for Precision Measurement Science
and Technology, Chinese Academy of Sciences (APM, CAS). Figure 3 shows five different
mobile station locations at baseline lengths of 0 m, 65 m, 2.6 km (shopping mall plaza),
6.0 km (Wufu Plaza on the Yangtze River), and 10.0 km (the roof of the PET center of Tongji
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Medical College), with a data acquisition time of about 30 min for each static point. Figure 4
and Table 1 show the time series and RMSE accuracy statistics of the altitude results of the
DBA system under five groups of different baseline lengths.

Figure 3. Five mobile station locations at different baseline lengths for altitude accuracy evaluation

of the outdoor DBA systems.
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Figure 4. Time series of the DBA altitude results for five mobile station locations at different baseline
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Table 1. The DBA altitude statistical results of the five different baseline lengths (Unit: m).

B{‘;fggl‘f I;elfzf:gze DBA_Min DBA_Max Mean Std RMSE
0m 45.453 44.200 46.436 45453 0271 0.270
65m 41.125 40.814 42.871 41738 0.350 0.706
2.6 km 8.645 5.626 10.994 7656  0.649 1182
6.0 km 8.944 5.047 11.583 8308  1.101 127
10.0 km 16.542 13.91 23.67 17.86 1.16 1.76

In Table 1, DBA_min and DBA_max denote the minimum and maximum altitude
results obtained by the DBA model. Mean and STD denotes the average value of DBA
altitude and standard deviation. As can be seen from Figure 4 and Table 1, the outdoor
DBA altitude RMSE increased gradually with an increase of baseline length, and the DBA
altitude RMSE was submeter level within the 2 km baseline length and did not exceed 2 m
within the 10 km baseline length. This result can provide a priori information to determine
the weight matrix Ppp4 in Equation (11) for the DGNSS/DBA combined positioning.

3.3. DGNSS/DBA Combined Static Positioning Results

This section mainly evaluates the static positioning performance of the single-frequency
low-cost NEO-MST receiver and BMP280 barometer DGNSS/DBA combined positioning
algorithm. The experimental data were consistent with Section 3.2, and the 65 m and 6.0 km
baseline length data were selected for processing and analysis. Two data processing modes,
DGNSS and DGNSS/DBA, were set, and each mode was divided into single GPS, single
BDS, and GPS+BDS dual systems by the satellite system.

3.3.1. Baseline Length 65 m

This experiment used 65 m short baseline static data and performed statistical analysis
by setting the elevation mask angle from 10 to 40 degrees, and the prior error of the DBA
system was 0pgs = 1.0 m. Table 2 shows the average number of visible satellites at
different elevation mask angles, and Table 3 lists the average PDOP values for DGNSS and
DGNSS/DBA modes at different elevation mask angles.

Table 2. The average number of GNSS visible satellites at different elevation mask angles.

Elevation Mask Angles (Degree)

Satellite System

10 20 30 40
GPS 7.81 7.21 4.25 3.0
BDS 14.19 12.90 10.21 8.99
GPS+BDS 21.97 20.11 14.45 11.99

As can be seen from Table 2, the average number of visible satellites was seven to eight
for GPS and 12 to 14 for BDS at a low elevation mask angle of 10 or 20 degrees. With the
increase of the elevation mask angle, the number of available satellites of both GPS and BDS
systems decreased significantly, the satellite space geometry distribution became worse,
and the PDOP value gradually increased. The number of GPS satellites was only three at
the elevation mask angles of 40 degrees, and the user receiver could not be positioned at
this time, while the number of visible satellites of BDS in the China region was larger with
eight to 10 visible satellites at the elevation mask angles of 30 or 40 degrees. The GPS+BDS
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dual system significantly increased the number of visible satellites compared to the single
system, which significantly improved the satellite geometry and reduced the PDOP value.
As shown in Table 3, increasing a DBA observation was equivalent to adding a virtual
satellite, which improved the satellite geometry distribution and reduced the PDOP value;
and the reduction of PDOP value was more significant in the environment with a higher
elevation mask angle. When the elevation mask angle was 40 degrees, three GPS satellites
could not complete the positioning, and adding a DBA observation ensured the availability
of user receiver positioning. Figures 5-8 show the north (N)/east (E)/up (U) direction
deviation sequence of the two data processing modes at the elevation mask angle 10 to
40 degrees. Each mode included single GPS, single BDS, and a GPS+BDS dual system.
Table 4 shows the RMSE values in the N/E/U directions for the two data processing modes
at different elevation mask angles.

Table 3. The average PDOP values for DGNSS and DGNSS/DBA modes at different elevation
mask angles.

Elevation Mask Angles (Degree)

Positioning Satellite
Mode System 10 20 30 40
GPS 1.95 2.11 5.53 -
DGNSS BDS 1.49 1.81 3.02 4.66
GPS+BDS 1.09 1.25 2.30 3.69
GPS 1.32 1.37 2.04 2.66
DGNSS/DBA BDS 1.16 1.27 1.53 1.79
GPS+BDS 0.91 0.99 1.32 1.56
DGNSS/DBA
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Figure 5. The deviation sequence diagram in the N/E/U directions at 10—degree elevation mask
angles: (a) DGNSS positioning mode; (b) DGNSS/DBA positioning mode.
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Figure 6. The deviation sequence diagram in the N/E/U directions at 20—degree elevation mask
angles: (a) DGNSS positioning mode; (b) DGNSS/DBA positioning modes.
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Figure 7. The deviation sequence diagram in the N/E/U directions at 30—degree elevation mask
angles: (a) DGNSS positioning mode; (b) DGNSS/DBA positioning mode.
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Figure 8. The deviation sequence diagram in the N/E/U directions at 40—degree elevation mask
angles: (a) DGNSS positioning mode; (b) DGNSS/DBA positioning mode.
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Table 4. The RMSE values of the two data processing modes in the N/E/U directions at different
elevation mask angles.

Elevation Mask RMSE DGNSS DGNSS/DBA
Angles (Degree) Directions GPS BDS GPS+BDS GPS BDS GPS+BDS
N 0.82 0.72 0.58 0.76 0.69 0.57
10 E 0.53 0.96 0.61 0.52 0.96 0.60
U 132 1.08 0.94 0.89 0.63 0.57
N 0.70 073 0.53 0.70 0.74 0.53
20 E 0.49 0.92 0.54 0.49 0.87 0.50
U 1.38 1.14 0.85 0.94 0.72 0.62
N 1.24 1.33 0.71 1.16 0.94 0.65
30 E 0.99 0.93 0.56 0.59 0.74 0.42
U 481 2.85 147 1.09 0.95 0.80
N - 221 0.89 1.23 1.20 0.59
40 E - 1.23 0.85 1.08 1.22 0.85
U - 5.81 3.07 1.02 145 1.20

Tables 2—4 and Figure 5 show that due to sufficient number of visible satellites and
low PDOP values at the elevation mask angle of 10 degrees, the positioning accuracy of the
DGNSS mode in the N/E/U directions could reach the decimeter to submeter level, and
the RMSE of single GPS and single BDS in the N/E/U directions were 0.82/0.53/1.32 m
and 0.72/0.96/1.08 m, respectively. In DGNSS/DBA mode, the RMSE of GPS/DBA and
BDS/DBA in the N/E/U directions were 0.76/0.52/0.89 m and 0.69/0.96/0.63 m, respec-
tively, which were 30% to 40% better than DGNSS in the U direction and slightly better
in N and E directions. Due to the increase of available observations and better satellite
geometry of the GPS+BDS dual system, the RMSE of DGNSS and DGNSS/DBA mode in
the N/E/U directions were 0.58/0.61/0.94 m and 0.57/0.60/0.57 m, respectively. Both had
some improvements over the single system. The results at the elevation mask angle of
20 degrees were similar to that of 10 degrees.

Tables 2—4 and Figure 7 show that the PDOP value became larger due to the fewer
available observation satellites and worse satellite geometry at the elevation mask angle
of 30 degrees, and the RMSE in the N/E/U directions became significantly larger than
that of 10 and 20 degrees. The RMSE in the N/E/U directions were 1.24/0.99/4.81 m and
1.33/0.93/2.85 m for single GPS and single BDS, and 0.71/0.56/1.47 m for GPS+BDS dual
system in DGNSS mode, respectively. Compared with the DGNSS mode, the accuracy
of the N/E/U directions was significantly improved by the DGNSS/DBA combination,
and the RMSE of GPS/DBA and BDS/DBA in the N/E/U directions were improved by
6.4%/40%/77.3% and 29.3%/20.4%/66.6%, and the RMSE of GPS+BDS/DBA combination
in the N/E/U directions were improved by 8.5%/25%/45.6%.

When the elevation mask angle was 40 degrees, the number of available satellites
for single GPS was three and they could not be located. The RMSE of single BDS was
2.21/1.23/5.81 m in the N/E/U directions, and 0.89/0.85/3.07 m for the GPS+BDS dual
system (Tables 2—4 and Figure 8). In DGNSS/DBA mode, GPS/DBA met the most basic
positioning requirements for four satellites and the RMSE in the N/E/U directions was
1.23/1.08/1.02 m; the RMSE of BDS/DBA in the N/E/U directions was improved by
44.3%/12.2%/82.4%, and the RMSE of the GPS+BDS/DBA combination in the N/E/U
directions was improved by 33.7%/0%/60.9%, respectively.

12
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3.3.2. Baseline Length 6.0 km

In this experiment, static data with 6.0 km baseline length were processed and ana-
lyzed, the elevation mask angle was 10 degrees, and the priori error of the DBA system was
oppa = 1.5 m. Figure 9 shows the number of GNSS visible satellites and the PDOP value
sequence for both DGNSS and DGNSS/DBA modes at the baseline length of 6.0 km. The
RMSE accuracy statistics and corresponding deviation sequence in the N/E/U directions
for the DGNSS and DGNSS/DBA mode are shown in Table 5 and Figure 10, respectively.
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Figure 9. Observation values of static experiment at the baseline length of 6.0 km: (a) the number of
GNSS visible satellites; (b) the sequence of PDOP values.

Table 5. The RMSE of bias in the N/E/U directions for the DGNSS and DGNSS/DBA mode at 6.0
km baseline length.

Positioning Mode Satellite System N/m E/m U/m
GPS 223 1.12 4.41

DGNSS BDS 0.61 227 2.64
GPS+BDS 0.60 1.01 2.22

GPS 213 1.11 391

DGNSS/DBA BDS 0.55 2.15 2.54
GPS+BDS 0.62 0.98 2.44

Table 5 and Figures 9 and 10 show that the PDOP value of BDS was smaller than GPS
in the China region due to a large number of observable satellites. The RMSE of single BDS
in the N/E/U directions was 0.61/2.27/2.64 m, which was better than that of single GPS in
DGNSS mode (2.23/1.12/4.41 m). The RMSE of the GPS+BDS dual system in the N/E/U
directions was 0.60/1.01/2.22 m with higher positioning accuracy than single system.
Compared to DGNSS mode, the RMSE in the U direction of DGNSS/DBA mode reduced
by 0.5 m and 0.1 m for single GPS and single BDS, and there was also some improvement in
the N and E directions. However, the GPS+BDS dual system did not improve significantly,
due to the higher DGNSS accuracy and the lower DBA height accuracy at 6.0 km baseline
length did not prove to be an obvious constraint.

13



Remote Sens. 2022, 14, 586

DGNSS/DBA

8 1 8¢
4 1 4 1
0 1 0 1
-4 1 -4 1
-8 1 -8 1
8 1 8 1
49 B 4l 4
0 1 0 |
-4 1 -4 ]
-8 i .8 1
8 1 8 |
4 1 4 1
0R 1 oF J
-4 r 1 -4+ g
-8 | GPS+BDS ‘ | ‘ ‘ . ] -8 GPs+BDS 1

0 300 600 900 1200 1500 1800 0 300 600 900 1200 1500 1800

epoch epoch

(a) (b)

Figure 10. The deviation sequence diagram in the N/E/U directions at 6.0 km baseline length:
(a) DGNSS positioning mode; (b) DGNSS/DBA positioning mode.

3.4. DGNSS/DBA Combined Kinematic Vehicle Positioning Results

In this section, two kinematic vehicle experiments were designed to evaluate the
dynamic positioning performance of the single-frequency low-cost NEO-MST receiver and
the BMP280 barometer DGNSS/DBA combined positioning algorithm.

The site photo of the mobile station equipment of the kinematic vehicle experiment
is shown in Figure 11. The platform contained four multisystem dual-frequency geodetic
GNSS antennas which were connected to Trimble Net R9 receivers to obtain the high
precision reference value. The single-frequency, low-cost u-blox NEO-MS8T receiver, a patch
antenna and a BMP280 barometer were laid on the roof of the car. Two sets of kinematic
vehicle data were collected, the first set was located in an open urban environment and the
second set was in a complex urban environment.

Figure 11. The mobile station hardware equipment site for kinematic vehicle experiment, including
four geodetic GNSS receivers and antennas, NovAtel SPAN-FSAS GNSS/INS system, low-cost
NEO-MST receiver with a patch antenna, and a BMP280 barometer: (a) the experimental vehicle;
(b) equipment setup diagram.

3.4.1. Open Urban Environment

This experiment was collected near the industrial park in Caidian District, Wuhan,
China, on 20 November 2020, with a data duration of about 80 min. The area has an open
urban environment with less shading and good data quality. Figure 12 shows the kinematic
vehicle experiment test scene and test trajectory in the open urban environment. Figure 13

14
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shows the number of GNSS visible satellites and the sequence of PDOP values during the
kinematic vehicle experiment.

@ | (b

Figure 12. Kinematic vehicle experiment in the open urban environment: (a) test scene; (b) test
trajectory.

As can be seen in Figure 13, the number of observable satellites of GPS and BDS
fluctuated greatly for the kinematic vehicle, resulting in a significant increase in PDOP
values compared to a static environment. The addition of DBA observations significantly
improved the satellite geometric spatial distribution and reduced the PDOP values. In the
open urban environment kinematic vehicle experiment, the comparison of the low-cost
BMP280 barometer DBA altitude with the Trimble NET R9 reference altitude is shown in
Figure 14. It can be seen that the BMP280 barometer DBA altitude had a high consistency
with the reference altitude with an RMSE of 2.10 m. This value can be used to set the a
priori weight matrix in the DGNSS/DBA combined positioning process.
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Figure 13. Observation values of kinematic vehicle experiment in the open urban environment:
(a) the number of GNSS visible satellites; (b) the sequence of PDOP values.
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Figure 14. Comparison of the low-cost BMP280 barometer DBA altitude with the Trimble NET R9
reference altitude during the kinematic vehicle experimental in the open urban environment.

The RMSE statistical results and deviation sequence in the N/E/U directions for both
DGNSS and DGNSS/DBA modes are given in Table 6 and Figure 15, respectively. The
RMSE values of single GPS and single BDS in the N/E/U directions were 1.20/1.32/3.18 m
and 1.58/2.11/5.02 m for DGNSS mode, respectively. The GPS/DBA, BDS/DBA, and
GPS+BDS/DBA modes improved the RMSE by 40% to 60% in the U direction and increased
slightly in the N and E directions, and the DBA altitude showed a good constraint effect.

Table 6. The RMSE of bias in the N/E/U directions for DGNSS and DGNSS/DBA modes during the
kinematic vehicle experiment in the open urban environment.

Positioning Mode Satellite System N/m E/m U/m
GPS 1.20 1.32 3.18

DGNSS BDS 1.58 2.11 5.02
GPS+BDS 1.00 1.31 2.12

GPS 1.11 1.33 1.34

DGNSS/DBA BDS 1.54 217 2.71
GPS+BDS 1.02 1.31 1.24
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Figure 15. The deviation sequence diagram in the N/E/U directions during the kinematic vehi-
cle experiment in the open urban environment: (a) DGNSS positioning mode; (b) DGNSS/DBA
positioning mode.
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3.4.2. Complex Urban Environment

This experiment was collected in Wuchang District, Wuhan, China, on November 20,
2020, with a valid data duration of about 1 h. The area is a complex urban environment,
and the occlusion is relatively serious. Figure 16 shows kinematic vehicle experiment
test scene and test trajectory in the complex urban environment. Figure 17 shows the
number of visible GNSS satellites and the sequence of PDOP values during the kinematic
vehicle experiment, and it can be seen that compared with the open urban environment,
the number of GNSS visible satellites of the kinematic vehicle in the urban environment
was significantly lower and the PDOP values became larger.

Figure 16. Kinematic vehicle experiment in the complex urban environment: (a) indicative test scene;
(b) test route.

Figure 18 shows the DBA altitude results of the low-cost BMP280 barometer during
the kinematic vehicle experiment in the complex urban environment compared to the
Trimble Net R9 reference altitude. It can be seen that the DBA altitude in the complex
urban environment was also very consistent with the reference altitude with an RMSE
of 2.19 m, which is approximately the same as the RMSE results of the DBA altitude in
the open urban environment in Section 3.4.1. It indicates that the DBA altitude accuracy
was reliable and stable in different environments, and could assist GNSS to improve the
positioning accuracy in the complex urban environment.
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Figure 17. Observation values of kinematic vehicle experiment in the complex urban environment:
(a) number of GNSS visible satellites; (b) sequence of PDOP values.
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Figure 18. Comparison of the low-cost BMP280 barometer DBA altitude with the Trimble NET R9
reference altitude during the kinematic vehicle experiment in the complex urban environment.

The RMSE statistics and deviation sequence of the single-frequency, low-cost u-blox
NEO-MST and the geodetic Trimble Net R9 receiver for both DGNSS and DGNSS/DBA
modes in the N/E/U directions are given in Table 7 and Figures 19 and 20. The RMSE of
the low-cost u-blox NEO-MS8T receiver with single GPS and single BDS in DGNSS mode
were 4.33/4.69/8.35 m and 4.91/6.91/19.48 m in the N/E/U directions, respectively, and
the RMSE of the GPS+BDS dual system was 3.28/5.23/8.91 m. The RMSE statistics of
the geodetic Trimble Net R9 receiver in N/E direction in the complex urban environment
was maintained at submeter level; the U direction was relatively poor, with RMSE not
exceeding 2.7 m. The difference of RMSE between the two GNSS receivers in 3D directions
was determined by their hardware performance. Compared with DGNSS mode, the RMSE
of single GPS, single BDS, and GPS+BDS dual system in DGNSS/DBA mode of low-cost
NEO-MST receiver slightly worsened in the N and E directions, while the RMSE in U
direction could be improved by 50% to 80%, and this improvement ratio is higher than that
in the open urban environment. Similarly, for the geodetic Trimble Net R9 receiver, the
RMSE of the DGNSS/DBA combination remains the same in the N/E directions compared
to DGNSS mode, and the RMSE in the U direction could be improved by 30% to 60%, which
verifies the advantage of DBA altitude in assisting DGNSS positioning.

Table 7. The RMSE of bias in the N/E/U directions for low-cost u-blox NEO-MS8T and geodetic
Trimble Net R9 receivers in the complex urban environment.

NEO-MST Receiver Trimble Net R9 Receiver
Positioning Mode Satellite System
N/m E/m U/m 3D/m N/m E/m U/m 3D/m
GPS 433 4.69 8.35 10.51 1.16 2.03 2.47 3.40
DGNSS BDS 491 6.91 19.48 21.24 1.19 0.80 2.64 3.00
GPS+BDS 3.28 5.23 8.91 10.84 0.96 1.03 1.38 1.97
GPS 4.69 4.94 2.19 7.15 1.19 1.95 1.17 2.56
DGNSS/DBA BDS 5.13 7.14 4.76 9.99 1.05 0.64 1.24 1.74
GPS+BDS 3.51 5.64 4.28 7.90 0.97 1.05 0.97 1.72
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Figure 19. The deviation sequence of low—cost NEO—MST receiver in the N/E/U directions during
the kinematic vehicle experiment in the complex urban environment: (a) DGNSS positioning mode;
(b) DGNSS/DBA positioning mode.
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Figure 20. The deviation sequence of geodetic Trimble Net R9 receiver in the N/E/U directions
during the kinematic vehicle experiment in the complex urban environment: (a) DGNSS positioning
mode; (b) DGNSS/DBA positioning mode.

It can also be seen that when comparing Tables 3-5 for the static experiment with
Tables 6 and 7 for the kinematic experiments, a low-cost receiver with only BDS signals
provided lower RMSE values than GPS in static experiments, which was mainly due to
BDS having more observation satellites and the PDOP value being lower than GPS at this
time. In open and complex urban kinematic experiments, as shown in Figures 13 and 17,
BDS had very large fluctuations for the number of observable satellites and a larger average
PDOP value (3.02 and 4.10) than GPS (1.97 and 3.16) for both cases. This is the main reason
that a low-cost receiver with only GPS signals provides lower RMSE values than with BDS
in kinematic experiments.

4. Discussion

As the low-cost single-frequency GNSS receivers dominate most of the GNSS mar-
ket [40], there is a strong interest in enhancing their accuracy. Low-cost DBA altitude plays
a significant constraining role in improving the DGNSS positioning accuracy.

In the DBA altitude accuracy evaluation experiment, BMP280 barometers can achieve
better than 2 m altitude accuracy within 10 km baseline lengths in static environments.
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The DBA altitude consistent with GNSS reference altitude in Figures 14 and 18 implies
that it is also reliable and stable in complex environments. Low-cost single-frequency
GNSS receivers with a patch antenna have become increasingly popular due to their lower
and lower price. The DGNSS positioning accuracy of single-frequency low-cost GNSS
receivers can still meet the submeter positioning accuracy needed by the general public
in GNSS-friendly environments. However, the RMSE in the N/E/U directions are all at
the meter-level in complex urban environments since low-cost GNSS receivers have poor
observation quality, and the positioning accuracy of GPS+BDS dual system is significantly
improved compared to single system. There is only a single-epoch resolution algorithm
rather than a filtering algorithm is used in this study. In the future, with more and more
satellites available for low-cost GNSS receivers and the use of multiple filtering algorithms,
DGNSS positioning accuracy is expected to be further improved.

The DGNSS/DBA combined positioning can effectively improve the DGNSS posi-
tioning accuracy and meet the demand for real-time positioning applications. The Earth
ellipsoid constraint equation constructed by the DBA altitude is equivalent to adding a
virtual satellite located at the center of the Earth, effectively improving the spatial ge-
ometry structure of the observation satellite. The DGNSS/DBA combined positioning
improves the positioning accuracy in the U direction by 30% to 80% compared with the
DGNSS positioning, while the positioning accuracy in N and E directions also has a certain
improvement effect.

Nowadays, most smartphones integrate both an inexpensive GNSS chip and a baro-
metric pressure sensor. WADGNSS services [10] and a large number of meteorological
stations [26] can provide correction information to users. We can achieve higher positioning
accuracy without increasing hardware costs. The applications of low-cost DGNSS/DBA,
such as indoor and outdoor seamless switching positioning, car navigation, emergency
mapping, LBS, and rescue, etc. are likely to increase dramatically. Subsequently, based on
the combined positioning of low-cost DGNSS/DBA, the positioning performance research
by integrating other sensors, such as MEMS IMU and geomagnetic, etc., will be worth
further investigation.

5. Conclusions

In this study, low-cost single-frequency DGNSS/DBA combined positioning research
and performance evaluation was carried out. First, a DGNSS/DBA combined positioning
model is proposed. The Earth ellipsoid constraint equation act as a virtual satellite obser-
vation at the center of the Earth, effectively improving the spatial geometry structure and
PDOP value of the observation satellite. The low-cost BMP280 barometer DBA altitude
accuracy is evaluated by different baseline lengths, which is better than the submeter level
within 2 km and better than 2 m within 10 km baseline length. In both open and complex
urban environment kinematic vehicle experiments, the DBA altitude accuracy is better than
2.20 m, which indicates that the DBA system has highly reliable and stability in different
environments in local area.

The low-cost single-frequency NEO-MST receiver with a patch antenna can achieve
submeter level positioning accuracy for DGNSS positioning in the N/E directions and better
than 1.5 m in the U direction in a short baseline static environment; as the baseline length
increases, the DGNSS positioning accuracy gradually decreases. The positioning accuracy
in a kinematic vehicle environment is significantly lower than in the static environment,
and the RMSE in the N/E/U directions are all at the meter level in the complex urban
environment, and the positioning accuracy of both GPS+BDS dual system is significantly
improved compared to single system. The DGNSS/DBA combined positioning for low-cost
NEO-MST receiver and BMP280 barometer improves the positioning accuracy in the U
direction by 30% to 80% compared with the DGNSS positioning, while the positioning
accuracy in the N and E directions also has a certain improvement effect.
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Abstract: This study presents a LIDAR-Visual-Inertial Odometry (LVIO) based on optimized visual
point-line features, which can effectively compensate for the limitations of a single sensor in real-time
localization and mapping. Firstly, an improved line feature extraction in scale space and constraint
matching strategy, using the least square method, is proposed to provide a richer visual feature for
the front-end of LVIO. Secondly, multi-frame LiDAR point clouds were projected into the visual
frame for feature depth correlation. Thirdly, the initial estimation results of Visual-Inertial Odometry
(VIO) were carried out to optimize the scanning matching accuracy of LiDAR. Finally, a factor graph
based on Bayesian network is proposed to build the LVIO fusion system, in which GNSS factor
and loop factor are introduced to constrain LVIO globally. The evaluations on indoor and outdoor
datasets show that the proposed algorithm is superior to other state-of-the-art algorithms in real-time
efficiency, positioning accuracy, and mapping effect. Specifically, the average RMSE of absolute
trajectory in the indoor environment is 0.075 m and that in the outdoor environment is 3.77 m. These
experimental results can prove that the proposed algorithm can effectively solve the problem of line
feature mismatching and the accumulated error of local sensors in mobile carrier positioning.

Keywords: multi-sensor fusion; visual point and line feature; SLAM; LiDAR-visual-inertial odometry

1. Introduction

Multi-sensor fusion localization technology based on Simultaneous Localization and
Mapping (SLAM) is a fundamental technology in the field of high-precision localization
of mobile carriers [1]. The SLAM-based multi-sensor fusion system applied to mobile
carriers can be divided into two core parts: the front-end, and the back-end. The function
of the front-end is used to analyze the environmental fingerprint information collected
by the sensors, in order to estimate the positional information of the mobile carrier in
time. In addition, the change in the surrounding environment with the movement of the
carrier is restored. The function of the back-end is used to obtain the final positioning
results by iteratively optimizing the position estimates obtained from the front-end analysis.
Depending on the sensors used in the front-end, it can be divided into methods mainly
based on LiDAR and vision [2,3]. Engineers and researchers in related fields have conducted
a lot of research in both directions and produced a series of research-worthy results.

The main vision-based SLAM approach, namely visual odometry (VO), has long
dominated the SLAM technology field due to the lower cost of the camera compared with
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LiDAR. However, pure monocular visual SLAM systems cannot recover metric scales.
Thus, there is a growing trend to utilize low-cost inertial measurement units to assist
monocular vision systems, which is called visual-inertial odometry (VIO). Monocular VIO
provides high-quality self-motion simulation by using monocular cameras and inertial
measurement unit (IMU) measurements, which has significant advantages in terms of
size, cost, and power. Based on the method of feature association, visual SLAM can be
classified into feature point method and direct method. The feature point-based method
VIO accomplishes the inter-frame feature constraint by extracting and matching image
feature points [4-6]. Therefore, rich environmental texture is required to ensure that
the threshold of the number of effective feature points required for feature tracking is
reached. Tracking loss of feature points is prone to occur in weak texture environments
such as parking lots and tunnels, which in turn affects localization accuracy and real-time
performance. The theoretical basis of the direct method-based VIO is the assumption of
constant grayscale [7,8]. It only needs to capture environmental features by the changes
in the grayscale image to establish constraints, which has a better real-time performance.
Nevertheless, the tracking accuracy is greatly affected by environmental illumination
changes. Therefore, stable and rich line feature models are required to be introduced into
the front-end to provide stable and accurate feature constraints for visual back-end state
estimation. In 2018, He et al. proposed PL-VIO based on point-line feature fusion, but too
many optimization factors greatly limited the real-time performance in practical tests [9].
In 2020, Wen et al. proposed PLS-VIO to optimize the 6-DOF pose by minimizing the
objective function and improving the line feature matching filtering strategy to reduce
the probability of mismatching [10]. Although the VIO based on point-line features has a
positive effect on the number of features [11,12], it still cannot solve the scale uncertainty
problem of monocular cameras. The development of VIO in practical applications still has
certain limitations.

As another important technical means of SLAM-based localization technology, SLAM
mainly based on LiDAR is also widely used in the industry for its high resolution, high
accuracy, and high utilization of spatial features. In 2016, Google proposed Cartographer,
a 2D LiDAR based on particle filtering and graph optimization. In 2017, Zhang et al.
proposed the LOAM for the first time, which uses the curvature of the LiDAR point
cloud to register the effective point cloud features as planar points and edge points [13].
In 2018, Shan et al. proposed LeGO-LOAM based on LOAM, which uses the ground plane
feature point cloud to further filter outliers from the scanned point cloud and improve the
LOAM frame [2]. In 2020, Shan et al. further introduced the LIO-SAM algorithm based
on the previous work, which uses IMU pre-integrated measurements to provide initial
pose estimation for laser odometry [14]. In addition, a Bayesian network-based factor
graph optimization framework is proposed, in which the global position is constrained by
adding GPS factors, and an incremental smooth global voxel map is established. These
schemes provide technical feasibility for the high-precision positioning by fusing LIDAR
with other sensors.

However, due to the inherent shortcomings of the main sensing sensors, such as the
limited scanning angle of LiDAR and the sensitivity of the mainly vision-based methods
to light variations, these methods can hardly show excellent robustness in real-world
applications. To further improve the localization performance, LiDAR-Visual-Inertial
Odometry, as a multi-sensor fusion localization method, has become a research focus of
SLAM with its advantages of multi-sensor heterogeneity and complementarity.

The existing LVIO multi-sensor fusion strategy can be described from the front-end
and back-end perspectives. First, the front-end fusion strategy of LVIO is introduced.
Generally, LiDAR acts as a feature depth provider for monocular VO as a way to improve
the scale ambiguity of visual features. Meanwhile, VO performs state estimation from the
extracted visual features, which is provided as the initial state for LIDAR scan matching.
Therefore, the quantity and quality of visual features are closely related to the precision
of state estimation of the fusion system. In existing fusion systems, the features extracted
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by camera are mainly point features [15,16]. Xiang et al. proposed a combination of
fisheye camera and LiDAR based on a semantic segmentation model, which improved
the confidence of the depth of visual features in the driving environment of unmanned
vehicles [15]. Chen et al. proposed a method to construct a loopback constraint for LIDAR-
visual odometry by using the Distributed bag of Words (DboWs) model in the visual
subsystem, although, without introducing IMU sensors to assist in the initial positional
estimation [16]. In 2021, Lin et al. proposed R2LIVE to incorporate IMU into the fused
localization system, in which the LiDAR odometry is used to establish depth constraints
for VIO [17]. Although the above-mentioned algorithms exhibit superior performance to
the VIO based on point features, it is still difficult to extract rich and effective features in
weak texture environments, which leads to the failure in LIDAR scan matching. Therefore,
additional feature constraints on the LIDAR need to be added with line features that are
more robust to environmental texture and luminosity variations. Visual SLAM based on
point-line features has been studied but not widely applied to LVIO systems in recent
years [18,19]. In 2020, Huang et al. first proposed a LVIO based on a robust point and
line depth extraction method, which greatly reduces the three-dimensional ambiguity
of features [18]. Zhou et al. introduced line features in the direct method-based VIO
to establish data association [19]. The above-mentioned algorithms provide technical
feasibility for LVIO based on point-line features.

From the perspective of the back-end fusion strategy, LVIO can be classified into two
categories based on different optimization algorithms: filter-based methods and factor
graph methods. Although the filtering method is a traditional technology to realize multi-
sensor fusion, its principle defect of frequent reconstruction of increasing or decreasing
sensors limits its application in LVIO [20]. As an emerging method in recent years, the factor
graph method can effectively improve the robustness of SLAM system when a single sensor
fails because of its plug-and-play characteristics. Therefore, it is widely applied to deal
with such heterogeneous aperiodic data fusion problems [21]. In addition, since LVIO
is in the local frame, there are inherent defects such as accumulated errors. Thus GNSS
measurements need to be introduced for global correction [22-24] to realize local accuracy
and global drift-free position estimation, which makes full use of their complementarity [24].
The research on adding GNSS global constraints into the local sensor fusion framework are
as follows: Lin et al. modified the extended Kalman filter to realize a loose coupling between
GPS measurements and LiDAR state estimation, but there is a large single linearization
error to be solved [17]. In 2019, Qin et al. proposed VINS-Fusion, which uses nonlinear
optimization strategies to support Camera, IMU, and GNSS [25], but it assumes that GNSS
is continuous and globally convergent, which is inconsistent with reality. In any case, these
strategies presented above provide numerous reliable ideas.

Generally speaking, we can conclude that the existing LVIO fusion system has two prob-
lems that deserve further exploration. First, on the premise of ensuring the real-time per-
formance, more abundant feature constraints are needed to improve the pose estimation
accuracy of LVIO. Secondly, global constraints are needed to globally optimize the LVIO
local pose estimation results. To address these issues, this study presents a LIDAR-Visual-
Inertial Odometry based on optimized visual point-line features. First of all, an improved
line feature extraction in scale space and constraint matching strategy based on the square
method are proposed, which provides richer visual feature for the front-end of LVIO. Sec-
ondly, multi-frame LiDAR point clouds were projected into the visual frame for feature
depth correlation, which improves the confidence of monocular visual depth estimation.
At the same time, the initial visual state estimation can be used to optimize the scan match-
ing of LIDAR. Finally, a factor graph based on the Bayesian network was used to build the
LVIO fusion system, in which the GNSS factor and loop factor are introduced to constrain
LVIO globally, to achieve locally accurate and globally drift-free position estimation in the
complex environment.
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2. System Overview

The general framework of the LIDAR-Visual-Inertial Odometry based on optimized
visual point-line features proposed in this study is shown in Figure 1. The system consists
of the front-end of LiDAR-Visual-Inertial Odometry tight combination and the back-end of
factor graph optimization.

Vision-LiDAR-Inertial Tightly-coupled Factor Graph Optimization

GNSS Positioning

Algorithm

IMU Pre-integration

Loop Decected

|
oo
| Visual v

Feature Extraction
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Figure 1. Overall algorithm framework, system inputs include IMU, camera, lidar and optional
GNSS. IMU provides initial state correction for VIO subsystem and LiDAR-inertial odometry (LIO)
subsystem, VIO and LIO systems use each other’s information to improve the positioning accuracy,
and GNSS signals are optionally added to the back-end to provide global constraints.

In the front-end of our algorithm, the visual odometry not only extracts point features,
but also further extracts line features in the improved scale space and performs geometric
constraint matching on them, which improves the number of features in the weak texture
environment. Then, the feature depth provided by LiDAR point clouds performed a role
in correlating the depth of monocular visual features. IMU pre-integration provides all
necessary initial values, including attitude, velocity, acceleration bias, gyroscope bias,
and three-dimensional feature position, for completing the initial state estimation after
time alignment with a camera. If VIO initialization fails, the IMU pre-integration value
is used as the initial assumption to improve the robustness of the fusion system in the
texture-free environment.

After the front-end initialization is successfully realized, the back-end optimizes the
factor graph by using the estimated residual of each sensor’s state. IMU pre-integration,
visual residual and lidar residual were added to the factor graph as local state factors
for maximum a posteriori estimation. In order to further correct the cumulative error of
local state estimation, the residual of GNSS single-point positioning measurements was
used as the global positioning factor to add to the factor graph. Besides, when the system
detects the path loop, the loop factor will be added to the factor graph to participate in the
nonlinear optimization and obtain the optimal global pose estimation.

3. Front-End: Feature Extraction and Matching Tracking
3.1. Line Feature Extraction

Commonly used line feature extraction algorithms include Hough [26], LSWMS [27],
EDLine [28], and LSD [29]. Weighing factors such as accuracy, real-time performance,
and the need for parameter adjustment, we chose LSD to extract line features. According
to the bottom parameter optimization strategy, we modified an improved LSD algorithm,
and a minimum geometric constraint method to realize line feature constraint matching.
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Given an N-layer Gaussian pyramid as the scale space of LSD line features, the scale
ratio of images in each layer is defined to reduce or eliminate the sawtooth effect in images.
After scaling the image s times, a downsampling was performed, and then the gradient
was calculated for all pixels in the new image obtained after downsampling. By traversing
the image and getting the gradient values of all pixels, the pixel gradient rectangle can be
merged according to the density of same-sex points to obtain a rectangle-like line segment
1. The density d of homogeneous points in the rectangle can be expressed as:

k

= __d<
d length(l) ~width(l)'d =b @

where k is defined as the total number of pixels in the rectangle, and D is the density
threshold of parity points. Different from the hypothesis in [12], a low co-location density
threshold in the outdoor complex texture environment will extract a large number of
invalid line features. Therefore, it is necessary to re-optimize the strategy according to the
underlying parameters and select the following combinations near the original parameters
(s = 0.8, D = 0.7), for real-time and accuracy experiments.

We measured the positioning accuracy by the root mean square error of absolute
trajectory error (APE_RMSE). The accuracy and real-time performance of different values
of s and D on the Hong Kong 0428 dataset are shown in Figure 2. The Monte Carlo method
was used in this experiment. Within the parameter range that ensures the stable operation
of the line feature extraction algorithm, we conducted three experiments. First of all,
as shown in Figure 2a, under the premise that the original scaling times s = 0.8, 100 random
numbers were selected in the range of D € (0.3,0.9) to carry out the experiment of density
threshold selection. Secondly, as shown in Figure 2b, we kept the original density threshold
D = 0.7, and then selected 100 random numbers in the range of s € (0.4,0.9), which is
to select the appropriate range of scaling times s. Finally, as shown in Figure 2c, within
the appropriate parameter range obtained in the previous experiments, 100 groups of
parameter combinations were randomly selected for line feature extraction to obtain the
optimal value.
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Figure 2. Underlying parameter selection. (a) Density threshold selection, (b) scaling times selection.
(c) Experimental results by selecting the best combination of parameters. Noted that decreasing s and
D will show better real-time performance with negligible loss of accuracy.

According to Figure 2c it can be seen that the operation time is shorter when the value
of (s, D) is around (0.5,0.6) or around (0.6, 0.6). Furthermore, we compared the accuracy
of the above two groups of parameters. It can be concluded that the accuracy of line feature
extraction of the former group is slightly higher than that of the latter group. Considering
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the accuracy and real-time, we chose s = 0.5, D = 0.6 as the parameter combination
for our system.

3.2. Inter-Frame Feature Constraint Matching

Different from the neighboring line merging of different line features within the
same frame in feature extraction, the least square method-based line feature constraint
matching is for the same line feature pair whose angle and distance change between two
consecutive frames. Considering the angle and translation changes in the same line feature
pair during the carrier movement, a minimized sparse matrix model can be constructed to
ensure the minimum total error in matching the line features extracted between the front
and back frames.

T
Given a line IV = [nWT,UWT} € RO extracted from the world coordinate sys-

tem, where n"V,v" € R3 is the normal vector and direction vector, respectively, of [ W
let the transformation matrix from the world frame to camera frame be T(‘:N = [RE‘/, tE"] ,
with RY, t#¥ denoting the rotation and translation, respectively, then 1" can be expressed
in Pliicker coordinates within the camera frame as:

n€ RW [tW] RW nW
R LS FIE

It can be seen that the matching of line feature pairs in the camera frame is a 6-DOF
parametric matching problem. In order to improve the accuracy and simplify the line
feature matching problem, it can be simplified as a 4-DOF parameter matching optimization
problem. Let all the line feature pairs obtained by matching between two consecutive frames
in the camera frame be:

Fj=A{(]) 1€ nl} ®)
where [; and /; are certain line features extracted in the previous frame and subsequent
frame, respectively, 1 is the total number of line features in the subsequent frame.

According to the variation in the inter-frame line characteristics shown in Figure 3,
the parameter matrix can be set as ¢;; = [9,-]-, Hijs pi/-,d,-j] T, 0 and d;; are the included angle
and translation distance between two consecutive frames, respectively, y;; and p;; are the
projection ratio and length ratio of the front-to-back interframe line features. Construct-
ing the parameter matrix may establish a linear constraint matrix A; = [ej, ..., eij, ein)
of the subsequent keyframe for /;. The target vector of the matching judgment of /; is
m; = [mil, e My, min] T The value of each component is determined by the result
of feature matching, where matching is 1 and non-matching is 0. If }_m;,, = 1, the linear
constraint A;m; = t will be satisfied. Therefore, the line feature matching problem can be
optimized into a constrained matching equation based on least squares:

. 1
minAl|mfly + 5| Aimi — i )

where A is the weight coefficient and t = (0,1, 1,0] T is the constraint target vector.

) . _ b;
(a) BY v 3 \ ki \
o'\ \ ] ) 1 /{lv \ by
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Figure 3. Deviation of a line feature during the movement of the carrier. (a) Parallel offset (b) angular offset.
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3.3. LiDAR-Aided Depth Correlation of Visual Features

LiDAR-aided depth correlation of visual features can effectively improve the scale
ambiguity of monocular cameras. Since the LiDAR resolution is much lower than that of
the camera, the use of only a single frame of sparse point cloud depth correlation will result
in a large number of visual feature depth deletions [30]. Therefore, this study purposes a
strategy of superimposing multi-frame sparse point cloud to obtain the depth value of the
point cloud, which is used to establish the depth correlation with the visual features.

As shown in Figure 4, f) is a feature point in the visual frame {V'}, and {dL, R dﬁl}
is a group of depth point clouds in the lidar frame {L}. Projecting d% onto a unit spherical

surface {V, } with f{” as the spherical center to obtain a projection point d:g :
v, v, v,
dy® =R 5dh 4+ p* n € [1,m] (5)

where R‘L/“Z and pZZ are the rotation matrix and external parameter matrix of {L} to {V,},
respectively. Taking f{ as the root node to establish KD tree to search for the three closest
depth points dy, dy, d3 on the sphere. Then, connecting f} with the camera center O and
intersecting Adyd,ds with O, we can obtain the characteristic depth of flv as flv (OFR

Figure 4. Association of visual feature depth.

4. Back-End: LVIO-GNSS Fusion Framework Based on Factor Graph
4.1. Construction of Factor Graph Optimization Framework

The framework of factor graph optimization based on the Bayesian network proposed
in this study is shown in Figure 5. The state vector in that world frame construct according
to the constraint factor shown in the figure is:

X = [0, X A Ay Mg S, YD ©)

where x,, = [pn, Gn, On, ba, bg] represents the IMU state at the nth time, which includes the
carrier position p;, the rotation quaternion g; and the velocity v, obtained by IMU pre-
integration in the world frame, b, and by stand for the acceleration bias and the gyroscope
bias in IMU body frame, respectively, A, represents the inverse depth of the visual point
feature in the visual frame from its initial observation in the first frame, ; represents the
orthogonal frame of the visual line feature, dy and d;: stand for the distances between the
LiDAR feature points and its corresponding edge or plane feature point cloud, respectively.
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Figure 5. Factor graph optimization framework of our system. Constraints of factor graph on the
keyframe maintenance include three local constraints and two global constraints.

Therefore, the Gaussian—-Newton method can be used to minimize all cost functions to
construct a maximum a posteriori estimation problem, to perform nonlinear optimization
on the state vectors in the sliding window:

n}\fm{ [[rp = JPXHZ + kgB H”B (2]1§+1,X> H;+
(i’]'§€Fp<“rf <2{'X> ic) + (i%qp(”rl (ZA{:rX)

where {rp, T p} contains the prior states after the marginalization in the sliding window,

@)

2
p>+2#+2ﬂ}

and ]p is the Jacobian matrix, rp (2112 Y X ) represents the IMU residuals, and p; is the

IMU covariance matrix; r¢ (2{, X ) and 7 <2{, X ) represent the re-projection errors of visual
point and line features, p. is the visual covariance matrix, and p represents Huber norm,
with specific values as follows:

Nj=

[ ta@ e =a@)laE)] <o
plete)) = { Bles(s)| — 462 e(5) = a9 ea(5)| > & ®

The specific meaning of each sensor cost function in Formula (6) is as follows.

4.2. IMU Factor

The IMU state of the kth frame and the k 4- 1th frame in the global coordinate system

can be defined as:
_ G ,G .,G
Xk = [pbqubk/vbkbakr bgk}
_ G G G
Xk+1 = [pbkﬂ' qka/ Ubk+1bﬂk+1’ bgk+1]

)

Take the IMU state of the kth frame, xy, as an example, which includes position pfk,
rotation qlfk, velocity vfk, accelerometer bias b, and gyroscope bias bgy.
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Next, the IMU residual equation can be constructed, which is defined as:

Be(. G G L 1oA82 _ G sk
RGk (pbkﬂ — Py, + 58At — vbkAtk> = Pra

G! G Ak
. g 209, ©q  © qu] e
B (2k 1/X) =| T Bi( G G\ _ (10)
* oo R& (vk+1 + 8Bk — v ) ~ Ok
rbg bak+1 - bak
bgk+1 - bgk

where {rp, g, 70, Tpas rbg} ! represents the observation residual of IMU state between two con-
secutive keyframes in the sliding window, including the residual of position, rotation,
velocity, accelerometer bias and gyroscope bias, ng represents the pose conversion ma-
trix of the kth frame from the IMU coordinate system to GNSS global coordinate system,

and [ﬁi 1 q§ Iy ﬁ,’i +1} represents the IMU pre-integration value of two keyframes in the
sliding window within Aty.

4.3. Visual Feature Factor

The visual feature factor is essentially the re-projection error of the visual feature,
that is, the difference between the theoretical value projected on the image plane and the
actual observation value. In order to unify the coordinate system in Section 3.3, we provide
the definition of re-projection error on the unit sphere instead of the generalized image
plane. Specific schematic diagrams are shown in Figures 6 and 7.

Tangent Plane

Figure 6. Re-projection error of visual point features.

Tangent Plane

Figure 7. Re-projection error of visual line features.
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4.3.1. Visual Point Feature Factor

In this study, the visual feature factors are built with reference to VINS-Mono [5].
As shown in Figure 6, the re-projection error of visual point features can be defined as the
difference between the projection point on the unit spherical surface and the observation

" P T
value after distortion correction. Given the ith normalized projection point fi] = {ﬁ?, 275, 1]

. P T
and observation point ff = [u?, ZJ;, 1] in the jth frame, we use the first observation value

. ; T
flj = [“50' vfo, 1] in the jth frame to define the visual point feature factor as:

. Al
N _ u. —u.
) - [ 5
i ~ Ui
Mj B Mj (11)
i | — rv ([ RBipc [ RBL| Hi B G _ G B
[ v} =Rg <RG] (RBO (RVK,- U}O tprv |t Py~ Pb,) - Pv>
i i0

where RY represents the external parameter matrix between camera and IMU, which is ob-

tained by calibration, R? represents the pose conversion matrix from the IMU observation
in the jth frame to the global coordinate system, R§ represents the pose conversion matrix
from the global coordinate system to the initial IMU observation, x; stands for the inverse
depth of £/, pﬁ represents the displacement from the IMU coordinate system to the camera

coordinate system. Finally, prO and pg represent the displacement of the first and the ith
IMU observation in the global coordinate system, respectively.

4.3.2. Visual Line Feature Factor

As shown in Figure 7, similar to the visual point feature, the definition of the re-
projection error of the visual line feature is as follows: Given the characteristics of a visual
line in space, the end point of a line segment is the center of the sphere to construct a unit
sphere. Therefore, the reprojection error is the difference between the projection line on the
unit sphere and the observed value. According to Equation (2), given the observed value
of the characteristic factor of the ith line in the jth frame in the camera coordinate system as

. . AT
le; = {ncg , ch , the projection line is obtained by projecting it onto the unit sphere, and can
be expressed as:
- [h .
I,=| 5L |=Kn,eR 12)
I3

where K is the camera internal reference projection matrix. It can be seen from Equation (12)
that the spatial coordinates of the line features projected onto the unit sphere are only related
to nc. The two end points of the observation line are aﬁ and b{ , then the re-projection error
of the line feature can be expressed by the dotted distance from the two end points of the
observation line feature to the projection line feature:

() = o) a1
NT

i 7 ”5 [Zi

d(al 1) = ( ,;g (13)
N (bj)Tijl

d(b{,lil)_ o

4.4. LiDAR Factor

As mentioned in Section 3.3, after the LiDAR-assisted monocular visual depth corre-
lation, the VIO will provide the LIDAR with visual initial positional estimates to correct
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the motion distortion of the LIDAR point cloud and improve the scan matching accuracy.
The scanning matching error between adjacent keyframes of LiDAR involved in this study
can be expressed by the distance from the feature point to the matched edge line and feature
plane as:
i = | (K20~ Xb0) < (Xl =Xion)|
BT
4 4
Xier1i) ~ i) (14)
P _xP P _xP
ar - (%) = Xin) * (Xow = X))
(X=Xl ) (Ko~ Xbi0))|

represents the edge feature point at the k + 1th time, Xf k) and ka,b) are the

where kaﬂ,i)

endpoint of the edge line matched with the feature point at the kth time, Xf f41,i)
the plane feature point at the k + 1th time, and the feature surface matched with it at the

kth time can be represented by three points ka,a), ka,b) and Xl(gk,c)'

represents

4.5. GNSS Factor and Loop Factor

When the carrier moves to a GNSS signal trusted environment, GNSS factors can be
added to optimize with local sensors. The time interval of two frames of GNSS observations
is At, and given the GNSS measurements p,?g in the global frame and plyg representing the
observation of LVIO in the global frame, the GNSS factor can be expressed by the following
observation residuals:

ro (20 x) = Pl - pf* (15)

Different from the assumption in [14] that GNSS factors are added to the system only
when the GNSS measurement covariance is smaller than the LVIO measurement covariance,
we noticed that the accuracy of outdoor GNSS positioning results is much higher than the
LVIO local positioning results. The covariance threshold size for judging whether to add
GNSS factors has little impact on the positioning accuracy. Therefore, we present that once
the GNSS signal is detected by the system, the GNSS factor is added to the factor graph.
In this way, even if the mobile carrier enters the GNSS rejection environment (such as the
indoor parking lot or tunnel), it can also provide a more accurate initial observation value
after GNSS correction. The fusion strategy of GNSS and LVIO is shown in Figure 8.

Further, considering the possible overlap of the mobile carrier travel area, i.e., the mo-
bile carrier travels to the same position again after a period of time, we also added a loop-
back detection link to establish the loopback constraint that exists between non-adjacent
frames. Unlike introducing another sensor (GNSS) for global correction of the local sensor
(LVIO), the loopback factor establishes the correlation between the current observed frames
and the historical data by the local sensor itself to obtain a globally consistent estimate.
The conditions for adding the loopback factor are similar to those of GNSS. Once the carrier
motion trajectory is detected to travel to the environment passed by the history, the loop
factor is added to the factor graph. By registering with the point cloud of the prior map,
the historical trajectory is corrected, and the global pose estimation result with higher
accuracy is obtained.
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Figure 8. Fusion strategy of GNSS and LVIO. The initial rotation Ré of LVIO in the local frame and
the global frame is set to identity matrix. GNSS provides global constraints to LVIO to correct the
global position of LVIO and update Ré, and the new R’é is used for the next frame of LVIO.

5. Experimental Results
5.1. Real-Time Performance
5.1.1. Indoor Environment

For evaluating the real-time performance of our algorithm, we randomly selected
the MH_01_easy dataset for indoor experiments. Since the strategy of adding line feature
constraints to the VIO subsystem of our algorithm is referenced to PL-VIO, the time
consumption of several threads involving line features of PL-VIO and this algorithm is
compared. As shown in Figure 9, the appropriate selection of hidden parameters and
the least-squares-based geometric constraint matching strategy have positive effects on
real-time performance. The time cost of the line feature extraction and matching process
and the line feature tracking process of the proposed algorithm is about one-third that of
similar algorithms.

The time consumption of the line feature matching process is shown in Figure 9a.
In the period of (110's, 170 s), the carrier passes through the well-lit factory wall duct area.
The number of line features extracted by both algorithms increases, and the corresponding
time cost of line feature matching also increases with the number of line features. However,
unlike PL-VIO which is significantly affected by the increase in the number of line features,
the line feature matching the process time of our algorithm remains relatively stable within
1 ms. The reason is that the number of invalid line features is reduced due to the geometric
constraint-based line feature matching strategy, which improves the accuracy of line feature
matching between the front and current frames of the image. In the time-consuming of line
feature tracking process shown in Figure 9b, it can be seen that in the initial stage (0's, 5 s)
of the visual subsystem, the line feature tracking process of the two systems takes longer.
The reason is the UAV is at rest during this time and the VIO subsystem does not receive
sufficient motion excitation, which leads to its incomplete initialization. After 5 seconds of
initialization, the PL-VIO line feature tracking time remains stable at about 125 ms, while
the time consumption of our algorithm is about 4/5 less than that of PL-VIO, about 25 ms.
It has a strong positive effect on the real-time performance of the fusion system in the actual
operating environment.

Although as shown in Figure 9c, the time-consuming cost of the line feature residual
optimization process increases by about 10 ms, the time-consuming of the line feature
tracking process is significantly reduced. Thus, the proposed method leads to a decrease in
the total time cost of the three line feature-related processes in the fusion system, which
still has a better real-time performance overall than before the improvement.
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Figure 9. Real-time comparison experiment of MH_01_easy dataset. (a) Line feature extraction and
matching process. (b) Line feature tracking process. (c) Line feature residual optimization process.

5.1.2. Outdoor Environment

Since the distribution characteristics of line features are different in indoor and outdoor
environments, in order to fully evaluate the superior performance of this algorithm in
terms of real-time, we selected the Hong Kong 0428 dataset for outdoor experiments.
The experimental results are shown in Figure 10.

Different from the indoor environment, the outdoor environment has more complex
conditions of light refraction and reflection, and the dynamic interference such as pedes-
trians and vehicles in the driving process of moving vehicles. The time consumption
of the line feature matching process in the outdoor environment is shown in Figure 10a.
It can be seen that the line feature matching time of PL-VIO in the outdoor environment
is about 10 ms on average, and our algorithm still maintains the same good real-time
characteristics as the indoor environment. In the line feature tracking process shown in
Figure 10b, it can be seen that the line feature tracking process in the initialization phase
(0's, 5 s) of the visual subsystem is abnormally high for both systems. The same reason is
that the VIO system is not provided sufficient motion excitation at the beginning of the
vehicle stationary phase. It can be concluded that it is more difficult to match and track
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visual line features in the outdoor environment, and the time consumed for line feature
tracking rises about 3—4 times compared with the indoor environment. However, the time
consumed by our algorithm is still greatly shortened compared with similar algorithms,
leaving more time for the optimization of a multi-sensor fusion at the back-end.
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Figure 10. Real-time comparison experiment of Hong Kong 0428 dataset. (a) Line feature extraction and
matching process. (b) Line feature tracking process. (c) Line feature residual optimization process.

In addition, as shown in Figure 10c, the time-consuming cost of the line feature
residual optimization process is not much different from that of PL-VIO. Combining the
above three time-consuming threads, it can be proved that our algorithm can achieve better
real-time performance in different environments.

5.2. Positioning Accuracy
5.2.1. Indoor Environment

In this study, the EuROC dataset was used to compare and verify the positioning
accuracy of each algorithm in the indoor environment. The experimental environment was
in a factory with complex signal refraction and reflection conditions. LiDAR frequently
fails in the experimental environment, so no comparison was made. The comparison of
the point-line feature results extracted by PL-VIO and our algorithm in the experimental
environment is shown in Figure 11.
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Figure 11. Comparison of point-line feature extraction results in poor lighting conditions and
weak texture environment. (a) Point-line feature extraction results of PL-VIO. (b) Point-line feature
extraction results of our algorithm.

As seen in Figures 12 and 13 and Table 1, the introducing line features in the image
frames to add additional feature constraints can reduce the positioning error of the sys-
tem to some extent, especially in areas with dim light and poor textures. For example,
during the (160 s, 240 s) time, the UAV flight area is nearly full of darkness. Thus it is
difficult for Harris corner point detection method to extract the corner points with large
grayscale difference from the surrounding pixel blocks. The reduction in the number of
effective feature points directly leads to poor feature tracking accuracy. Therefore, the ab-
solute trajectory error of VINS-Mono based on point features is larger in this interval
(as shown in Figure 13a). In contrast, PL-VIO based on point-line features and the present
algorithm are less negatively affected by illumination, and the absolute trajectory error
remains within 0.6 m. In a longitudinal comparison of similar algorithms based on point
and line features, the accuracy of our algorithm is significantly improved over PL-VIO.
These results are attributed to the high quality of matching by the geometric constraint
strategy, which avoids the missegmentation of long-line features and then misclassification
as invalid matches. The experimental results demonstrate the robustness and accuracy of
this algorithm in the case of single system failure, which is important for localization in
complex indoor environments.

Table 1. Motion estimation errors of each algorithm in indoor dataset.

s Vins_Mono (w/o loop) Vins_Mono (w/ loop) PL-VIO LVI-SAM Purposed
equence ATE_RMSE(m)/Mean Error(m)
MH_01_easy 0.213/0.189 0.188/0.158 0.093/0.081 0.181/0.147 0.073/0.062
MH_02_easy 0.235/0.193 0.188/0.157 0.072/0.062 0.182/0.167 0.045/0.039
MH_03_medium 0.399/0.321 0.402/0.315 0.260/0.234 0.400/0.308 0.056/0.050
MH_04_difficult 0.476/0.423 0.422/0.348 0.364/0.349 0.398/0.399 0.079/0.075
MH_05_difficult 0.426/0.384 0.370/0.309 0.251/0.238 0.380/0.287 0.139/0.127
V1_01_easy 0.157/0.137 0.145/0.121 0.078/0.067 0.142/0.119 0.040/0.037
V1_03_difficult 0.314/0.275 0.329/0.289 0.205/0.179 0.322/0.283 0.077/0.069
V2_01_easy 0.133/0.115 0.120/0.108 0.086/0.072 0.121/0.110 0.056/0.048
V2_02_medium 0.287/0.244 0.293/0.255 0.150/0.097 0.291/0.250 0.089/0.078
V2_03_difficult 0.343/0.299 0.351/0.315 0.273/0.249 0.351/0.308 0.098/0.092
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Figure 12. Comparison of trajectory fitting curve of each algorithm in the indoor dataset.
(a) Global trajectory fitting curve. (b) Details of local trajectory. (c) Details of local trajectory.
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Figure 13. Comparison of positioning results of each algorithm in the indoor dataset. (a) APE_RMSE
error fitting curve. (b) Comparison of index of absolute trajectory error.
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5.2.2. Outdoor Environment

To evaluate the performance of the algorithm we conducted in the outdoor environ-
ment, the Hong Kong dataset was used for performance evaluation and it was compared
with other similar advanced algorithms. The experimental equipment and environment
are shown in Figure 14. The sensor models are as follows: the camera is BFLY-U3-2356C-C,
the LiDAR is HDL 32E V<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>