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Scour Detection with Monitoring Methods and Machine Learning Algorithms—A Critical
Review
Reprinted from: Appl. Sci. 2023, 13, 1661, doi:10.3390/app13031661 . . . . . . . . . . . . . . . . . 139

v





About the Editor

Cecilia Surace

Prof. Dr. Cecilia Surace has been an associate professor of structural mechanics at Politecnico

di Torino, Turin, Italy, since 2014. She is also a member of the committee for doctoral students in

aerospace engineering and head of the laboratory of bio-inspired nanomechanics in the Department

of Structural, Building, and Geotechnical Engineering. Furthermore, she has been active in the

fields of structural dynamics and structural health monitoring since the early 1990s, with more than

100 publications on these topics.

vii





Citation: Surace, C. Editorial for the

Special Issue on Novel Approaches

for Structural Health Monitoring II.

Appl. Sci. 2023, 13, 5027. https://

doi.org/10.3390/app13085027

Received: 1 April 2023

Accepted: 4 April 2023

Published: 17 April 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Editorial

Editorial for the Special Issue on Novel Approaches for
Structural Health Monitoring II

Cecilia Surace

Department of Structural, Geotechnical and Building Engineering, Politecnico di Torino, 10129 Turin, Italy;
cecilia.surace@polito.it

The emphasis of this Special Issue is on showcasing the most recent advancements
in the field of Structural Health Monitoring (SHM), accounting for all its applications in
mechanical systems and civil structures or infrastructures. The eight papers presented here
represent relevant contributions in their specific aspects.

In the work of Concli, Pierri and Sbarufatti [1], transmission maintenance for the
condition monitoring of gearboxes was addressed. Specifically, the researchers considered
a back-to-back test rig consisting of two parallel axes gearboxes connected by means of
two shafts in a closed mechanical loop. They also focused on surface damage (namely,
pitting), numerically simulating several types and severities of damage. The proposed
Machine Learning (ML) approach, based on a multilayer perceptron, is able to perform
damage detection, localization and quantification. The training phase of the Artificial
Neural Network (ANN) was performed resorting to signal examples generated by a hybrid
analytical–numerical model.

Janardhan Padiyar et al. [2] presented a synergistic non-destructive method for the au-
tomated inspections of aircraft composite structures. Specifically, a sensor fusion procedure
was outlined, combining two image-based non-destructive evaluation (NDE) techniques:
phased-array ultrasonic testing and infrared thermography. The approach was experimen-
tally validated on an aircraft-grade painted composite material skin panel with stringers.
Importantly, the miniaturized sensor systems tested and validated here were intended to
be integrated in a vortex-robotic platform inspector, in the framework of the Horizon-2020
‘CompInnova’ project.

The work of Lin and Wu [3] concerned the well-known Stochastic Subspace Identi-
fication (SSI) technique, widely used for the output-only system identification of a target
structure or mechanical system from ambient vibration testing. This falls into the field
of Operational Modal Analysis (OMA). Importantly, two main variants of the SSI algo-
rithm exist: the covariance-driven SSI (SSI-COV) and the data-driven SSI (SSI-DATA). In
brief, the second option (SSI-DATA) operates directly on measured output response data
with no further processing. Conversely, SSI-COV utilizes the covariance functions for the
purpose of modal parameter estimation; these need to be estimated in advance from raw
output time histories. In this context, the authors introduced a procedure to solve the
system matrix in SSI-COV in conjunction with SSI-DATA, allowing modal estimation to
be well implemented.

Civera and Surace [4] discussed an application of Instantaneous Spectral Entropy
(ISE) for the real-time condition monitoring of a faulty three-stage gearbox. In particular,
the case study came from a 2.5 MW Nordex N100 wind turbine located in Northern
Sweden. The proposed algorithm employs the instantaneous formulation of Shannon
Spectral Entropy (SSE), which was proven to be damage-sensitive in previous studies on
masonry buildings and steel pipelines, in combination with Continuous Wavelet Transform
(CWT). The Generalized Morse Wavelet (GMW) was proposed as the best choice for the
CWT mother wavelet. A sensitivity analysis was performed on the two GMW parameters
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(symmetry γ and compactness β), suggesting the use of 3 ≤ γ ≤ 4 and 20 ≤ β ≤ 40 to
increase fault detectability.

The work of Delo et al. [5] explored a remote sensing approach to SHM, based on
interferometric data and focusing on representation techniques that can be adopted to
highlight their advantages for the field. In the paper, the authors analyzed Line-of-Sight
displacement records from the urban area of Rome (Italy). They analyzed an area subject
to the construction of a new subway line. These data were exploited to create a velocity
map to highlight the possible subsidence phenomenon induced by excavations. Then,
entropy–energy representations were applied to single buildings and building complexes.
Finally, the authors concluded that future developments and the continuous increase in
the quality of satellite data may allow for the practical application of such information for
SHM, leading to a low-cost automated process for the study of large urban areas.

Ceravolo et al. [6] proposed a methodology to approach the identification of inter-
connected diaphragmatic structures using a simplified analytical model (i.e., spring–masses
model). The simplified model is exploited to aid the identification of a significant case
study, represented by the Pavilion V, designed by Riccardo Morandi as a hypogeum hall
in the Turin Exhibition Center composed of three interconnected blocks with joints. Not
only does the presence of these joints result in modal complexity but also in very high
sensitivity of the stiffness parameters, especially when the joints are fully effective. This
complexity also affects the design of the experimental setups, which are often unable to
capture the whole-body dynamics. As the main result, light was shed on the contribution
of the stiffness of the joints to the global dynamic behavior of structures composed of
interacting diaphragms and, in particular, on the effectiveness of the joints of Pavilion V.

Tufisi et al. [7] evaluated the damage severity of cantilever beams by means of an
optimization algorithm known as Stochastic Hill Climbing (SHC). This is applied to the
deflections of fixed-free structural elements with both open and closed cracks at different
locations. The algorithm, which was implemented in a Python application named PySHC,
was validated via an experimental test. It was found to be capable of estimating the location
and depth of the crack with minimal error (respectively, 1.1% and 0.3 mm).

Tola et al. [8] presented a critical review of bridge monitoring methods and ML
algorithms for scour detection. This is an extremely relevant topic, as foundation scour is
one of the first causes of total or partial bridge collapse. Furthermore, its effects are mainly
located underwater and are, thus, not detectable from visual inspection only. They also
depend on underground soil conditions that are even more difficult to investigate from
above ground. The authors present and detail the techniques and the main outcomes of
36 studies, divided into two broad categories: conventional-monitoring-based studies and
advanced Machine-Learning-based studies to detect scour.

In conclusion, this Special Issue collected high-quality contributions on various SHM
applications in applied sciences, and it also provided a solid state-of-the-art reference in
this research area.
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publication. The Special Issue benefited from the coordination efforts and support from Marco Civera.
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Abstract: Transmissions are extensively employed in mechanical gearboxes when power conversion
is required. Being able to provide specific maintenance is a crucial factor for both economics and
reliability. However, although periodic transmission maintenance increases the systems’ longevity, it
cannot prevent or predict sporadic major failures. In this context, structural health monitoring (SHM)
represents a possible solution. Identifying variations of a specific measurable signal and correlating
them with the type of damage or its location and severity may help assess the component condition
and establish the need for maintenance operation. However, the collection of sufficient experimental
examples for damage identification may be not convenient for big gearboxes, for which destructive
experiments are too expensive, thus paving the way to model-based approaches, based on a numerical
estimation of damage-related features. In this work, an SHM approach was developed based on
signals from numerical simulations. To validate the approach with experimental measurements, a
back-to-back test rig was used as a reference. Several types and severities of damages were simulated
with an innovative hybrid analytical–numerical approach that allowed a significant reduction of
the computational effort. The vibrational spectra that characterized the different damage conditions
were processed through artificial neural networks (ANN) trained with numerical data and used to
predict the presence, location, and severity of the damage.

Keywords: gears; SHM; FEM; pitting; surface fatigue

1. Introduction

Many industrial components are subjected to cumulative damages associated with
cyclic loadings. In a damage-tolerant scenario, each mechanical component needs to retain
its residual health, safety, and functionality as long as possible to avoid extra maintenance,
which is expensive, difficult to perform, or even impossible, as it often requires exten-
sive knowledge of potential damage evolution. Most mechanical systems are currently
monitored during both scheduled and unscheduled maintenance by means of nondestruc-
tive inspection technologies (NDIs); however, in recent years, the problem of real-time
monitoring of mechanically stressed components has become a critical research topic.

Condition-monitoring techniques are of multiple natures, as described by Salameh
et al. [1] The most intuitive is vibration analysis, which works with machinery vibration,
and in which faulted elements promote different vibration spectra from healthy ones.
Several authors have proposed experimental-based works dealing with vibration mea-
surements. Zhao et al. [2] studied the effects of damages on gears and bearings. Cao
et al. [3] studied the effects of damages with noncontact techniques. Kien et al. [4] studied

Appl. Sci. 2021, 11, 2026. https://doi.org/10.3390/app11052026 https://www.mdpi.com/journal/applsci5
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the effects of the presence of tooth root cracks on plastic gears by means of neural net-
works [4]. Ümütlü et al. studied the surface-fatigue damages on worm gears [5]. Huang
et al. proposed a computational-based approach [6] instead. A similar work based on
cyclostationary analysis was presented by Mauricio et al. [7] and by Sun et al. [8].

Acoustic-emission monitoring is an extension of vibration analysis. Although it suffers
from background noise, which often yields useless results, it is simple and cost-effective.
Lubricant analysis is one of the most challenging methods, as it requires oil sampling and
further chemical analysis. It does not operate in real time; due to this characteristic, it may
detects faults when it is often too late to intervene with maintenance. Sensible sensors are
often added to have this type of condition monitoring done online (in real time), but most
of the time these sensors are expensive and need rigorous inspection. For applications in
which the transmission is attached to an electrical generator, the analysis of the absorbed
power signal’s fluctuations gives information about the presence of a defect, but not about
its location in the transmission. Qu et al. [9] employed piezoelectric sensors and optical
fibers to detect dynamic strain at specific points on gears with various type of defects. In
this study, it was also stated that strain analysis has to be preferred to vibration analysis,
because the latter suffers from errors due to the wave’s propagation paths, hence a more
direct contact between the faulty part and the sensor is preferred. Indeed, while vibration
analyses are often not capable of detecting incipient damages due to noises, they are the
easiest to set up. The advantages of transmission health monitoring shift the ideology
of maintenance from “check at fixed intervals” to “always check and repair at the same
time.” By acting at the right time, major failures, which can cause breakdowns and hence
downtimes, could be avoided, guaranteeing the expected working life. This translates to
minimum and efficient spending for maintenance, which lowers the overall economical
effort of keeping machinery running. This is particularly true for big/complex systems
such as wind-turbine gearboxes, which on one hand are very complex and expensive, while
the other hand are often placed in areas that are difficult to access.

While SHM is useful especially for very complex systems, for such configurations
an experimentally based training of the SHM algorithm allows the inclusion of realistic
sources of uncertainty retrieved in the field, but it is constrained by the huge costs of the
prototypes, especially as the experimental replication of all the potential damages and
faults is inconceivable. Thus, model-based approaches can be exploited, in which data from
analytical and numerical models can be used as preliminary information for SHM system
training and optimization; however, they require that the model be fast enough to allow
for multiple simulations of the system in different conditions of interest, including both
environmental influences and different damage configurations. In this scenario, a recent
method for relatively fast modeling of transmissions [10] and prediction of vibration-based
signal features that relies on a hybrid analytical–numerical approach is used in this study.
It combines a traditional finite element method (FEM) to simulate the system deformations
with an analytical Hertzian solution of the contact between gears or rolling elements. In
this way, it allows the numerical simulation of very complex systems without geometrical
simplifications, with a good accuracy and with a reasonable computational effort. With
this approach, many different vibrational spectra can be generated for a healthy condition
and with the presence of different sources of damage. The same hybrid approach has
been tested on planetary transmissions of wind-turbine gearboxes by the NREL (National
Renewable Energy Laboratory—USA), in which the entire multistage transmission was
modeled and promisingly validated with a test rig owned by the NREL [11].

After generating a database of simulated signals in healthy and faulted conditions,
made realistic by adding noise extracted from real sensor data, damage identification
was performed in this study based on machine-learning algorithms, particularly artificial
neural networks (ANNs). Specific ANNs, in the form of multilayer perceptrons (MLPs)
have been trained to detect, localize, and quantify pitting damage over the transmission’s
gear teeth, verifying the performance of the model-based strategy for the global damage
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identification hierarchical structure defined by Rytter [12], thus paving the way toward
future implementation of prognostic algorithms for predictive maintenance.

The paper is structured as follows: The modelling approach is presented in the next
section, with focus on the application scenario, with details of the hybrid model in both
the healthy and damaged conditions, and examples of validated simulated signals. The
results of damage identification algorithms for detection, localization, and assessment are
provided in a separate section. A conclusion section completes the paper.

2. Modeling Methods

2.1. The Hybrid Modeling Approach

The present modeling strategy used a hybrid numerical–analytical approach. This
was developed to simulate entire geared transmissions with a reduced computational
effort. The mechanical components of the system, such as gears, bearings (including the
rolling elements), shafts, housing, etc., could be modeled without the need of geometrical
simplifications, ensuring a much higher accuracy of the results. The approach exploited
a traditional finite element (FE) solver to model the macroscopic deformations of the
components and the Hertzian theory to predict the pressures in the contacts (i.e., gear teeth,
rolling elements, races in bearings, etc.) for which a traditional FE method requires an
immense mesh refinement.

The points at which the individual contacting surfaces were closest to each other
before the application of the load were computed first [13]. After that, the surface’s normals
were identified, and the size of the contact zone was estimated. A computational grid was
laid out around each principal contact point (Figure 1) and projected on both body surfaces.
The computed contact pressures were not very sensitive to the size of the grid.

Figure 1. The contacting surface and the computational grid.

The displacement u(rij; r) of a field point r due to a load at the surface grid point rij
can be expressed as:

u
(
rij; r
)
=
[
u
(
rij; r
)− u

(
rij; q
)]

+ u
(
rij; q
)

(1)
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where q is a point inside the solid body, sufficiently far from the surface (Figure 2). The
term [u(rij; r) and u(rij; q)] was evaluated using the surface integral approach, and u(rij; q),
was obtained from FE.

 

Figure 2. The matching interface Γ.

The term between square brackets represents the deflection of r with respect to the
point q. This relative component can be better estimated using the Bousinesq half space
solution (Prueter et al. 2011) rather than using the FE results. The deformation of the body
will, in fact, not significantly affect this term. On the other hand, if q is far enough from
the surface, the term u(rij; q) is not significantly affected by local stresses at the surface.
u(rij; q) is better estimated from the FE model of the solid body. The location of q is called
the “matching” point. In order to match the surface integral and FE solution, a set of points
Γ can be used instead of a single point q (Figure 2) [14]. Additional details are given in
(Parker et al. 2000).

2.2. Application Scenario
2.2.1. The Back-to-Back Test Rig

To be able to validate the presented approach, a back-to-back test rig was used as
reference (Figure 3). It consisted of 2 parallel axes gearboxes connected by means of two
shafts in a closed mechanical loop. The slave- (better called service-) and test-gearboxes had
the same gear ratio (17/18) but a different number of teeth (34/36 and 17/18 respectively).
The slave reduction had helical gears, while the gears of the test one were spur. A rotating
hydraulic actuator was used to preload the system. An e-motor connected to the main
shaft supplied the power that was dissipated in terms of losses during operation.

While this approach has already proven to be very computationally efficient, by
substituting the bearings with equivalent springs, the stiffness of which was calculated
with separate simulations, the computational effort could be further reduced, and plenty
of simulations could be performed in a reasonable amount of time. In fact, in the past the
authors have modeled the same configuration by means of traditional FE software. The
time required for the solution of a single time step on 115GFLOPS hardware was about
30 h. With the present approach, the simulation of the same gearbox performed, in the
same amount of time and on the same hardware, about 700 time-steps. The substitution of
the bearings with equivalent springs (Figure 4) further doubled the number of time-steps
that could be computed in the same amount of time.

8
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(a) 

 
(b) 

Figure 3. (a) Layout of the back-to-back system; (b) numerical model.

Figure 4. Simplification of the model.

The stiffness of a bearing is a function of the applied load. Considering an applied
load of 300 Nm on the long shaft, the stiffnesses of the ball bearings of the test gearbox (left
in Figure 4), resulted in 0.77 kN/m (left bearing) and 0.86 kN/m (right bearing). For the
4 supports of the longer shaft of the slave gearbox, the stiffness results, starting from the
right side, were 2.46 kN/m, 0.82 kN/m, 1.71 kN/m, and 0.03 kN/m; while the 4 bearings
of the shortest shaft showed values of 0.01 kN/m, 2.22 kN/m, 1.11 kN/m, and 3.39 kN/m.
The different values of stiffness that similar bearings showed when mounted on different
shafts and/or on different axial positions, was related to how the total load transmitted by
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the mating gears was shared among the supports. This effect was more evident for the slave
gearbox, in which the helical gears also promoted an axial loading with opposite directions
on the two shafts. While one of two adjacent bearings was always higher-loaded and,
consequently, its stiffness was higher, from the extracted values it can be clearly observed
that, while in the longer shaft, the force flowed from the gears mainly to the left end of the
shaft, in the shorter shaft, it was transmitted to the housing mainly by means of the right
bearings. By inverting the rotational speed, for instance, the stiffness values changed.

Considering that the dynamic analysis is aimed at extracting the displacements (and
after a double integration also the vibrations) of the model at a certain regime, the time
discretization (sampling) must be selected accurately. On one hand, the time discretization
should be enough dense to avoid aliasing phenomena, while on the other hand, it should
be kept as large as possible to limit the computational effort.

The factors that affect the time-step to be selected are the rotational speed, the number
of teeth, the number of meshing pairs, the number of harmonics to be considered, and
the desired number of time-steps for each meshing period. The latter strongly defines the
resolution of the analysis. To determine the sampling time, the gear-meshing frequencies
(GMFs) of the two pairs must be calculated:

GMF =
zmin·nmin

2π
(2)

where z is the number of teeth and n is the rotational speed. For the 2 gearboxes of
the back-to-back test rig, the 2 GMFs resulted, for a 3000 rpm rotational speed of the
e-motor, in frequencies of 850 and 1700 Hz. To have a time resolution capable to model
the first 5 harmonics of the highest meshing frequency, a time step of 0.000117 s was
selected. Moreover, in order to simulate the engagement between two gear teeth in at least
9 different positions (the meshing stiffness is a function of the position of the contact along
the tooth’s flank), the final time step for the simulation was chosen to be 0.000013 s. A
total of 3600 time steps were simulated, corresponding to 30 meshing periods. Most of
these were subjected to the transient start-up and were excluded from the analysis, which
focuses on the steady-state condition only.

2.2.2. Experimental Validation

To validate the results of this hybrid approach, some experimental measurements
were performed on the real back-to-back test rig. The two gear-meshing frequencies—
850 Hz (meshing frequency of the test gears) and 1700 Hz (meshing frequency of the slave
gears)—were clearly visible in the measurements (Figure 5). Other peaks corresponding to
2550 Hz, 3400 Hz, 4250 Hz etc. were the harmonics of the GMFs. The agreement between
the predicted and measured frequencies was good; the amplitudes differed, but it must be
considered that the damping factors introduced in the model were not calibrated—the goal
was to predict the frequencies only.

The lowest frequency was an eigenfrequency of the system. The numerical value
results were higher since the inertia of the e-motor was neglected.

2.3. Modeling of Damages—Surface Fatigue (Pitting)

One of the most important damages that occurs in gears and that has a progressive
evolution that can be monitored by means of SHM is surface fatigue; namely, pitting. This
phenomenon is generated in the contact regions where the Hertzian pressure distribution
generates very high shear stresses just under the surface. These local shear-stress peaks can,
especially in presence of microdefects or subsuperficial inclusions, promote the nucleation
of microcracks. These, with repeated loading cycles, propagate up to the surface, causing
the detachment of small portions of material, called pits (Figure 6).
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Figure 5. Comparison between the numerical and experimental data for the back-to-back test rig (housing).

 
Figure 6. Example of pitting.

While the initial stage leads to vibrations and noise only, with the progression of the
damage, more and more pits are generated. The coalescence of multiple pits leads to the
formation of big cavities on the surface. This phenomenon, once initiated, is accelerated
by the presence of the lubricant that, during the contact, is pumped inside the cracks,
promoting their propagation. The presence of cavities on the surfaces is in turn responsible
for a nonhomogeneous distribution of the contact pressures on the surfaces (because, in
correspondence with the pits, the surfaces are not in contact). Consequently, highly loaded
areas generate promotion of an acceleration of the damage evolution. Finally, when the
damage reaches a certain value, a complete failure of the system is also possible.

In the present work, the presence of damage on the surface was modeled by selecting
the position (radial and tangential coordinates S and T) on the teeth flank (Figure 7), the
main diameters of the pits (intended as an ellipse), and their depths.
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(a) (b) 

Figure 7. (a) Representation of a pit on the face of a tooth; (b) position indexes. S is the radial reference axis and T is the
axial one.

Table 1 reports the different conditions that were simulated. In addition to the healthy
condition, 7 damages (PitX) were chosen. Their dimensions varied, as shown in Table 1.
Moreover, these 7 damage severities were modeled in different positions on the flank
(position indexes shown in Table 1). A total of 40 transient simulations were performed.

Table 1. Simulated pit parameters, positions indexes, and simulations performed.

Code
Radial

Dimension
[mm]

Axial
Dimension

[mm]

Depth
[mm]

Position
Index

Radial
Position

[mm]

Axial
Position

[mm]

Healthy 0 0 0 0 24 0
PitA 1 2 0.5 1 24 1
PitB 2 5 1 2 24 −1
PitC 2.5 7 1 3 36 0.5
PitD 3 8 2 4 36 −0.5
PitE 3.5 9 2 5 12 0.5
PitF 5 10 1 6 12 −0.5
PitG 20 14 3

Position Index
(PI)

PitA PitB PitC PitD PitE PitF PitG

0 � � � � � � �

1 x x x x x � �

2 x x x x x � �

3 � � � � � � �

4 � � � � � � �

5 � � � � � � �

6 � � � � � � �

Figure 8 clearly shows the effect of the presence of a pit on the pressure distribution
in the contact. While the stresses were zero due to the missing contact in correspondence
with the damage, in the surrounding region, stress peaks were generated.

While the vibrational spectrum already had a characteristic frequency related to
the GMF (which is also the main source of excitation), the presence of a pit on a single
tooth promoted the excitation of an additional frequency (1/n), where n is the rotational
speed (Figure 9). The vibrational spectra were obtained with a double derivative of the
displacement data obtained from the simulations.
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(a) (b) 

Figure 8. Pressure profile on the meshing gears of the testing gearbox: (a) nonpitted spur gears; (b) pitted (PitF) spur gears.

Figure 9. Comparison of the vibrational spectra on one bearing between the healthy transmission and the damaged one
(time domain).

The abovementioned effect can be better visualized in the frequency domain. There-
fore, the vibrational spectra in terms of accelerations were converted via fast Fourier
transformations (FFTs) (Figure 10).

Figure 10. Comparison of the vibrational spectra on one bearing between the healthy transmission and the damaged one
(frequency domain).

2.4. Spectral Analysis

As Figures 9 and 10 show, the spectra of the damaged conditions differed from the
spectra of the healthy one, mainly in the excitation of new frequencies below the GMF. In
order to better visualize this effect, Figure 11 shows the differential spectra of the damaged
gearbox (damaged minus healthy) for different pitting severities (A to F). The increase
of the vibration amplitude at certain frequencies with the increasing level of damage
was evident.

On the other hand, Figure 12 shows the spectra predicted for damage level D and
different positions on the flank (PI 3, 4, 5, and 6).
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Figure 11. Differential spectra for different damage levels.

 
Figure 12. Spectra for damage level D and different positions on the flank.
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Positions 3 (having coordinates S = 36 and T = 0.5) and 4 (S = 36, T = −0.5) had the
same radial coordinate (S = 36) but different axial coordinates (they lay on opposite sides
of the flank). The two spectra were very similar and overlapped, as shown in Figure 12.
The same could be observed for the spectra of positions 5 (S = 12, T = 0.5) and 6 (S = 12,
T = −0.5). Therefore, it can be concluded that the data were not significantly affected by
the axial position.

On the contrary, positions 4 (S = 36, T = −0.5) and 6 (S = 12, T = −0.5) differed in
the radial coordinate only. The impact of the radial position was visible in the spectra
(Figure 12). The same effect could be observed between position 3 (S = 36, T = 0.5) and 5
(S = 12, T = 0.5).

Moreover, the smaller pit with code A did not produce meaningful differential spectra.
In other words, the impact of such small pits on the vibration could not be captured by the
numerical model.

3. Basics for Implementation of the Machine-Learning Algorithm

A machine-learning (ML) approach based on artificial neural networks (ANNs) was
used in this study for damage identification, and to solve the inverse problem of correlating
some input features extracted from the observed signals with some damage parameters,
including (i) a binary variable for damage detection, (ii) damage coordinates for localization,
and (iii) damage extent for its assessment. In particular, the ANN used here was the
Multilayer perceptron (MLP), consisting of a collection of connected nodes; namely, the
input layer nodes, the hidden layer nodes, and the output nodes. In this work, the
input nodes collected the input vector x, including the frequency pattern of the FFT of
the vibration signal, one hidden layer is used for computation, and the output vector
y included either a binary variable (for damage detection) or continuous variables for
damage localization and quantification.

The general structure for the MLP is schematized in Figure 13. Each node i was
connected to each node j in the preceding and the following layers through a connection of
weights. Signals passed through each node as follows: in layer k (hidden layer), a weighted
sum was performed at each node i of all the signals from the preceding layer, giving the
excitation of the node; this was then passed through a nonlinear activation function f to
emerge as the output node to the next layer; the activation function f in this case was
restricted to f (x) = tanh(x). One node of the network, the bias node b, was special in that
it was connected to all other nodes in the hidden and output layers; the output of the bias
node was held fixed throughout to allow constant offsets in the excitations of each node.
The response of node i is reported in Equation (3):

xk
i = f

(
zk

i

)
= f

(
∑

j
wk

ij ∗ xk−1
j + bk−1

j

)
(3)

Finally, after combination of the outputs from each node in the hidden layer, the output-
unit activation function generated the output values xO

1 . Here, a sigmoidal activation
function was used for damage detection, which was posed as a classification problem, and
a linear activation function was considered for damage localization and quantification,
which were posed as a regression problem in this work.

The first stage of using a network to model an input–output system is to establish the
appropriate values for the connection weights and biases. This is the training (or learning)
phase. The type of training adopted here was a form of supervised learning and made
use of a set of network inputs for which the desired network outputs were known. Note
that in this specific application, the examples used for training were generated based on
the simulation previously described. At each training step, a set of inputs was passed
forward through the network, yielding trial outputs that could be compared with the
desired outputs. If the comparison error was considered small enough, the weights were
not adjusted. If, however, a significant error was obtained, the error was passed backwards
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through the net and a training algorithm used the error to adjust the connection weights.
The networks used for this study were designed and trained using MATLAB code.

 

Figure 13. MLP structure.

However, to guarantee a sufficient capability of the algorithm trained on some exam-
ples to generalize well on new experimental signals was a non-trivial task. A procedure
suitable for the optimization of the ANN structure and the evaluation of its performances
in terms of damage diagnosis was used, including cross-validation techniques with an
early-stopping criterion [15], thus avoiding data overfitting, even in presence of a limited
number of examples. For cross-validation, the available dataset was split into three subsets;
namely, for training, validation, and testing of the ANN structure, with proportions of
70%, 15%, and 15%, respectively, with the latter allowing us to verify the ANN prediction
performance on new data.

3.1. Reduction of Input-Space Dimension

In a model-based scenario, one might want to reduce the number of simulations to a
minimum, especially if multiple damage parameters are considered, as the computational
burden might hamper the feasibility of the SHM system design. However, there would
normally be issues of generalization if a training set that is too small is adopted. For
example, the current wisdom in the ANN field demands that there usually be 10 training
patterns per weight [15], although this requirement can be relaxed if some technique for
ANN regularization is used, as in this study. In a vibration-based SHM, if the entire
frequency pattern in the FFT is passed as input to the ANN, this will sensibly grow the
input space dimension, thus the ANN parameters to be tuned and, as a consequence, the
number of required examples for training. Thus, one might be interested in reducing the
input-space dimension, which can be accomplished through principal component analysis
(PCA), one of the most commonly used feature-extraction techniques. It was chosen
because it is easy and fast to compute, and it retains maximal information among all linear
projections [16]. Due to the widespread knowledge of the method, only its application will
be described hereafter.

The PCA allows for dimensionality reduction by using the covariance matrix of the
dataset to rotate the reference system and to obtain a more efficient data description. An
example is presented in Figure 14, where a rotation of the reference system from (X, Y) to
(X1, Y1) allows describing the dataset by using the new variable X1 only, thus reducing the
dataset dimensionality from 2 to 1.
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Figure 14. Example of PCA in R
2.

In general, after calculating the covariance matrix of the input dataset, its eigenvectors
are the principal components (PC), and their associated eigenvalues λi are an index of the
amount of variance retained by any ith component. It is usual to list the PCs in descending
order of eigenvalues, so that the first PC corresponds to the largest variance of any linear
combination of the original variables. A useful heuristic method to reduce input space
dimension is to plot singular values to see if there is a point at which the values level off, or
to select the first M components so that a fraction of the total variance will be retained [16],
calculated as follows:

∑M
i=1 λi

∑d
i=1 λi

(4)

where d and M are the original and the reduced-input space dimensions, respectively. In
particular, the new input matrix is obtained by multiplication of the original input matrix
by the matrix containing the first M eigenvectors.

3.2. Noise Modeling

A crucial aspect to be considered while training either a machine-learning classifier or
regressor is to guarantee sufficient algorithm generalization, meaning a good performance
on new data never seen during training. In this respect, one drawback of model-based
training is the lack of noise and disturbances typical of real operative scenarios. It can be
shown that an ANN trained with a noise-free signal will perform poorly when requested to
classify a new sample acquired in noisy conditions, especially if no control against overfit-
ting is taken. Thus, in addition to other regularization techniques such as cross-validation
and early stopping, which limit the overfitting, superposition of noise during training is
seen as a further means to improve generalization [15]. For this reason, the training dataset
was modified by adding the effect of noise on the FFT of the vibration signals.

To superpose the effects of noise on the numerical FFT, an acquisition from the pre-
viously presented bench test was used (Figure 15a), specifically extracting the FFT peaks
from 10 kHz to 13 kHz. The probability distribution function (PDF) of the peak amplitudes
in the considered frequency range is presented in Figure 15b, where its approximation
through a log-normal distribution is highlighted, with parameters reported in Table 2. The
training dataset was thus artificially modified by adding a value sampled from the noise
PDF to each FFT feature and for each sample, assuming the noise level was approximated
as constant in the whole frequency range [0–13 kHz]. An example of FFT with added noise
is presented in Figure 16.
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Figure 15. (a) FFT of vibration signal measured on the test bench and (b) PDF of the peaks in the range of 10–13 kHz.

Table 2. Lognormal distribution parameters.

Parameter Name Parameter Value Units

μlog −14.5345
[
log
(

m
s2

)]
σ2

log 0.6171
[
log
(

m
s2

)]2

Figure 16. Example of noise-free signal and noise-added signal.

3.3. Damage-Identification Results

The procedure for ANN design and testing results are presented in this section. As
shown in Figure 17, the damage identification inverse problem was subdivided into a
three-step hierarchical structure, calling three separate ANNs to perform damage detection,
localization, and quantification. The first ANN was used to classify whether damage was
present or not; if damage was detected, two additional ANN regressors assessed the radial
position and extent of the damage.

During training, the ANNs used the FFT of the vibration signal simulated by the
FEM as an input. The training set was composed of signals affected by pit damages that
varied in terms of their radial position and extent, with the latter expressed in terms of a
normalized equivalent pitted area, as reported in Table 3. Specifically, the input was limited
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by the FFT in the frequency range of 235 Hz to 1440 Hz. A PCA routine was implemented
before the classification and regression ANNs to project their input space in order to reduce
the input-space dimensionality and, consequently, the number of ANN parameters to
be optimized.

Figure 17. SHM architecture.

Table 3. Training dataset composition.

Range of
Values

Units of
Measure

Damage radial
position

[12 24 36] mm

Damage entity [0 0.2 0.35 0.48 0.63 1] Equivalent pitted area

3.3.1. Damage Detection

The dataset organized in Table 4 was used for training the detection ANN; it was
composed of 560 observation samples, including 81 features each. The FFT in the dataset
were affected by damages that varied in terms of position and dimension. Note that
280 examples of the same undamaged condition were sampled from the noise PDF in order
to produce a balanced database.

The PCA was applied to reduce the input-space dimensionality, thus allowing a more
efficient ANN training. In Figure 18, the variance associated with each principal component
of the detection dataset is presented, in which it is possible to see, by considering only the
first 10 principal components, that it was possible to consider 99% of the total variance
included in the dataset. As an example, six FFTs observed in presence of different damage
extents were compared with their PCA reconstructions in Figure 19, specifically including
just 10 out of 81 principal components. It is clear that a negligible error was made when
considering the reduced input space when including the first 10 principal components only.
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Table 4. Training-set composition for damage detection.

# Observations
Equivalent
Pitted Area

Classification

280 0 Undamaged

56 0.2 Damaged

56 0.35 Damaged

56 0.48 Damaged

56 0.63 Damaged

56 1 Damaged

 

Figure 18. Variance associated with each feature after PCA on the detection dataset and cumula-
tive sum.

Figure 19. A comparison among the original FFT and the reconstructed FFT with 10 principal components: (a) Undamaged,
(b) damage = 0.2, (c) damage = 0.35, (d) damage = 0.48, (e) damage = 0.63, (f) damage = 1.
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The classification ANN architecture included 10 input nodes, one binary output node,
and 20 hidden nodes, with the latter defined based on trial-and-error procedure; however,
as a compromise was made between training accuracy and generalization performance
on test data never seen during training, to avoid overfitting. The ANN performances
were synthetized with confusion matrices as shown in Figure 20, in which the similar
performances in the training, validation, and test sets suggest the ANN possessed a high
generalization capability, and no overfitting error occurred. Overall, less than 10% of
misclassified examples were obtained.

Figure 20. Detection ANN performances. Results are provided for the training, validation, and test subsets.

Since the detection performance was tested in the presence of damages of increasing
extent, thus with different influences on the simulated signal, it was interesting to verify
the detection performance (in terms of the number of misclassified samples) as a function
of the damage dimension. It is clear from Table 5 that the probability for missed detection
reasonably increased for smaller damages, while the detection performance improved with
increasing damage entity.

Table 5. Detailed detection ANN performance.

Equivalent Pitted Area # Errors Type

0 16/280 False alarm

0.2 20/56 Missed detection

0.35 13/56 Missed detection

0.48 4/56 Missed detection

0.63 0/56 Missed detection

1 0/56 Missed detection

3.3.2. Damage Localization

The dataset in Table 6 was used for localization ANN training; it was composed of
276 observation samples, including 81 features each. Also in this context, the PCA could be
used to reduce the dataset dimensionality. It can be noticed in Figure 21 that more than
95% of the information within the signals was captured by considering the first 20 principal
components of the dataset only.

Table 6. Training-set composition for damage localization.

# Observations Damage Radial Position Units of Measure

92 12 mm

92 24 mm

92 36 mm
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Figure 21. Variance associated with each feature after PCA on the localization dataset.

Thus, the first 20 principal components of the dataset were used to train the regression
ANN for damage localization. The network architecture included 20 input nodes, one
output node describing the radial position of the damage as a continuous variable, and
10 hidden nodes, again defined in a way to avoid overfitting. The ANN performances
are presented in Figure 22, in which the training, validation, and test regression plots are
shown. As the increasing trend was correctly captured by the ANN in all the subsets, it was
possible to conclude that the algorithm could generalize on new data, and no overfitting
occurred. It is worth noticing that the entire dataset was processed by the algorithm in
Figure 22a–c, including small damages with reduced sensitivity.

 

Figure 22. Localization ANN performances for the (a) training, (b) validation, and (c) test subsets (entire database).

3.3.3. Damage Quantification

The same database used for localization was considered for damage quantification,
specifically organized as in Table 7, in view of data regression as a function of the damage
extent. For this reason, the same conclusions could be drawn on the application of PCA,
resulting in a reduction of the input space from R

81 to R
20. The regression ANN architecture

included 21 input nodes, one output node describing the equivalent pitted area as a
continuous variable, and 10 hidden nodes, again defined in a way to avoid overfitting.
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Focusing on the input layer, it included the first 20 PCA of the FFT calculated from the
signal database, and one additional node collecting the damage location estimated by the
previous diagnostic layer.

Table 7. Training-set composition for damage quantification.

# Observations Equivalent Pitted Area

55 0.2

55 0.35

55 0.48

55 0.63

55 1

The ANN performances are presented in Figure 23. Specifically, Figure 23a–c show the
training, validation, and test regression plots, while the correct damage location was passed
as input to the network, verifying the correct data synthesis during algorithm training.
However, while using the algorithm in a realistic scenario, one might argue that an erratic
location can be provided as input to the algorithm, based on the performance of the
localization ANN. For this reason, the quantification ANN was also tested while receiving
as input the position estimation in Figure 22c, affected by errors, and results are shown in
Figure 23d for the test subset only. When comparing Figure 23d with the corresponding
Figure 23c, a reduction in algorithm precision was noticed, although the ANN could
capture the trend with marked accuracy, demonstrating its potential for application in a
realistic scenario.

Figure 23. Quantification ANN performances: (a) training, (b) validation, (c) test with the correct damage location as input,
and (d) test with the estimated damage location as input.

4. Conclusions

A model-based approach to condition monitoring of gearbox transmissions was pre-
sented in this study, leveraging on a hybrid analytical–numerical model for the generation
of signal examples to be used for algorithm training. The approach was applied to a
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back-to-back test rig, and experimental data in normal conditions were used to validate the
baseline model and to extract realistic noise components to be superposed on numerically
simulated signals. After a feature-extraction module used principal component analy-
sis to project data in a more compact space dimension, these were passed as input to a
hierarchical structure of artificial neural networks. A classification ANN was used for
detection of pitting damage positioned on the teeth flank, intuitively manifesting better
performances when signals in the presence of larger damages were processed. After dam-
age was detected, two regression ANNs were used to correlate the variations of the signal
FFT with the radial position of the damage and its severity. Specifically, it was found that
an improved performance of the damage assessment algorithm was obtained while the
information about damage position, estimated by the localization ANN, was passed to the
network through an additional input node.

The algorithm performances were assessed at each level of the damage-identification
hierarchy, and demonstrated to be extremely satisfactory, given the limited amount of
simulations used to construct the training database, even in the presence of a realistic noise
corrupting the ideal simulated data. Augmented accuracy and precision of the algorithm
output was expected by increasing the density of the damage entity and position grids.
However, considering the aim of this paper was to show the consistency of the approach,
the adopted number of simulations was considered sufficient at this stage. Although the
methodology described herein remains valid for any test configuration, it must be specified
that the results obtained throughout this project were consistent and valid only for this
bench test, since the digital model was coherent only with it, while a new database must be
created for each examined scenario.

A final note must be made regarding the future developments of the project. It could be
expanded by adding different damages to the simulation database; for example, including
fatigue damage at the root of different teeth, or analyzing the effect of multiple simultaneous
damages. However, while the combinations are endless, a perfectly tuned condition-
monitoring system could be built only by investing a great amount of computational effort.
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FFT Fast Fourier Transform
GMF Gear-Meshing Frequency
ML Machine Learning
MLP Multilayer Perceptron
PCA Principal Component Analysis
PDF Probability Distribution Function
SHM Structural Health Monitoring
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Nomenclature

q point inside the solid body
r field point
rij surface grid point
S radial reference axis
T axial reference axis
u(rij; r) displacement of a field point r due to a load at the surface
Γ set of points
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Featured Application: The synergistic non-destructive method has been developed in the frame-

work of automated inspections of aircraft composite structures.

Abstract: This paper presents an advanced methodology for the detection of damage in aircraft
composite materials based on the sensor fusion of two image-based non-destructive evaluation
techniques. Both of the techniques, phased-array ultrasonics and infra-red thermography, are
benchmarked on an aircraft-grade painted composite material skin panel with stringers. The sensors
systems for carrying out the inspections have been developed and miniaturized for being integrated
on a vortex-robotic platform inspector, in the framework of a larger research initiative, the Horizon-
2020 ‘CompInnova’ project.

Keywords: aircraft composites inspection; NDT; phased array ultrasonic testing; automated inspec-
tion; IRT; infrared thermography

1. Introduction

New-generation wide-body civilian aircrafts, such as Dreamliner Boeing 787 and
Airbus A350 series, are manufactured from Carbon Fiber Reinforced Polymers (CFRPs)
composites at a much higher percentage than compared to narrow-body aircrafts; relevant
outer parts include their wing skins and fuselage skins. During aircraft service, thin-walled
fuselage and wing skin surfaces are primarily prone to impact damages throughout their
lifetime [1]. Impact damages can be caused by different threats, like human-induced
defects, such as paint shop-prone tool drop, runway debris, ground hail, in-flight hail,
and bird impacts. Impact damages are classified as Barely Visible Impact Damage (BVID)
and Visible Impact Damage (VID), which may or may not cause full penetrations. Even
though BVID’s cause considerable sub-surface damage, the identification of their location
is particularly challenging under typical lighting conditions while using conventional
manual visual Non-Destructive Testing (NDT) [2]. Nondestructive testing (NDT) methods
are currently the most efficient means of aircraft inspection for identifying superficial, or
otherwise undetectable by conventional visual inspection, damages and flaws [3]. Damage
detection in aircraft is primarily linked to human lives and secondarily to equipment
protection; hence, it must be efficient and reliable to the maximum degree possible in
eliminating fatal consequences on the structure that can cause massive human life loss.
To that end, an extreme effort is continuously invested towards the improvement of
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aircraft inspection worthiness and the development of reliable, automated, and synergistic
techniques for capturing barely visible damage on aircraft. Currently, manual point-to-
point inspection using conventional ultrasonic transducer and line-by-line Phased Array
(PA) wheel probe [4] are used as a fundamental quantitative method, as per schedule-based
maintenance for in-service inspections of composite skin surfaces. Such inspections are
tactical and categorized in A-, C-, and D- checks, depending on the level of detail with
respect to the aircraft age, hours in service, and the number of landing/take-off cycles.
D-checks are the most thorough, involving a series of extremely detailed inspections of
the fuselage skin and wing skin surfaces, requiring a minimum defect detectability of
6 × 6 mm, and carried out approximately every six years. For an aircraft, like an Airbus
A320-200, a D-check can last up to six weeks and cost up to $1.8 million [5]. The automation
of in-service NDT inspections can lead to reduced cost, by an increase in the availability of
aircraft [6]. Consequently, there is both research and industrial interest in reducing the time
and cost of aircraft maintenance, especially during C and D-checks maintenance, which
involves detailed NDT inspection. The automation of slower point-to-point ultrasonic
inspection has received considerable attention in the oil and gas sectors, for tank and
pipe inspection; a substantial number of mature solutions based on magnetic adhesion
mobile robots have been suggested. There are only a few automated solutions for in-
service inspection of aircraft using conventional ultrasonic transducers, like the MAUS-V
system based on Cartesian scanners and flexible tracks with suction pads as adhesion [7–9].
Moreover, the application of these scanners is limited by the length of the scanner arms
and it needs to be moved and fixed sequentially to cover a large area, thus increasing the
time that is required for inspection.

When compared to the point-to-point inspection method, full-field inspection NDT
methods, such as infrared thermography (IRT) and shearography, have the inherent ad-
vantage of being non-contact and can scan large areas for defects in composites without
the need for couplant agents. In recent years, full-field non-contact IRT has proved to
be effective in detecting impact damages in aircraft CFRP composites, while new ther-
mographic methodologies are constantly being improved at both the hardware level and
post-processing stages to offer improved defect characterization [10–15]. IRT is rapid,
contactless, and accurate, and it allows for automation for minimal operator involvement,
hence offering the potential for minimization of human error. It operates on the principle
of the thermo-mechanical coupling under the thermoelastic effect, wherein a change in
the stress field in the material is related to a change in temperature [16]. Hence, collection
and analysis, by passive IRT, of thermal energy dissipated from material under stress,
provides information of its internal mechanical state [17]. For stress-free materials with
pre-existing internal damages, such as the case of fuselage and wing skin of grounded
aircraft undergoing inspection, active thermography is used in order to identify damage by
capturing and analyzing the thermal energy dissipated from the surface while it is being
thermally excited by an external thermal energy source. Independent of the technique
used (active or passive IRT), the severer the damage in the material, the more intense
the thermographic fingerprint of the damaged area, which appears on a thermogram as
warmer or brighter color than pristine/unaffected areas. IRT is particularly applicable
to composite materials, which are currently trending to replace more than 50% of the
metallic aircraft fuselage and wing parts [18,19]. The technique has been highly successful
in assessing the delamination damage typical of impact incidents that are found in aircraft-
grade composites [20,21]. Most importantly, the technique is extremely versatile, as it can
operate as stand-alone or complementary to other inspection methods [22,23]. The impact
damage detectability of IRT depends on the thickness of the material, shape, dimensions,
type of damage, and camera hardware sensitivity [24]. Although few previous studies
have investigated combined the IRT and PA methods to characterize impact damages in
CFRP composites [25–28], measurements in such studies have been performed with heavy
equipment, which is unsuitable for deployment in the field and robotic applications or
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related to different engineering domains [29]. Moreover, automated in-service inspection
of aircraft using combined PA and IRT methods have received little attention.

The limitations in available IRT techniques restricted their ability to perform fast and,
at the same time, reliable quantitative inspections [30]. The recent development of an
advanced variant of IRT, termed Pulsed Phase-informed Lock-in Thermography (PPI-LT),
lifted this limitation [20]. As a two-step approach, PPI-LT relies on the fast initial assessment
of defect presence, by pulsed-phase thermography (PPT) and the subsequent quantitative
investigation of the area by lock-in thermography (LT). However, although PPI-LT can
be particularly rapid and effective in imaging a wide material area (depending on sensor
resolution and the instantaneous field of view-IFOV) from afar in a single acquisition
and detecting the presence of defects therein, it is not equally powerful in the accurate
quantitative assessment of the defects’ full geometrical and dilatational characteristics,
under rapid wide-area mode. In other words, although rapid IRT could be used to scan
a whole aircraft fuselage for damage in a cost-effective manner, the collected data would
not contain sufficient defect sizing and depth profiling information for a reliable repair.
Phased Array, on the other hand, is a slower and extremely accurate technique requiring
contact-full and coupling; it is particularly powerful in achieving high-resolution three-
dimensional (3D) geometrical assessment of superficial and subsurface defects. Although
it would not cost-effectively scan a whole aircraft, it could provide extremely detailed
information on size, shape, and depth profiling of a defect at a known fixed location.

The present paper reports the development of a novel synergistic strategy for the
fast, accurate, and reliable detection, with full geometrical representation of damage in
aircraft composites, by the sequential application of PPI-LT and PA. The strategy is suitable
for automated inspection of impact damage in composite aircrafts and it consists of two
sequential inspection steps: firstly, the entire composite structure of the aircraft is rapidly
inspected with a newly-developed state-of-the-art, compact, and powerful IRT module
operating under PPI-LT mode with custom control and analysis software (presented in [20])
mounted on a Vortex Robotic (VR)) platform to detect, identify, and mark all of the impact
damage locations. In the next step, a newly developed PA module that explained in
subsequent section is mounted on the VR platform and high-resolution scanning pursues
on locations identified by IRT as a suspect of damage presence, for full dilatational and
dimensional characterization of damage. The wheeled robot based on a negative pressure-
based actuation method using EDF motors was developed for climbing and traversing
over the surface of aircraft [31,32] with an NDT module as a payload. The strategy lifts the
current trade-off between speed and reliability of aircraft inspection by utilizing IRT as a
fast initial indicator of damage presence, over which thorough inspection by PA may ensue.
Hence, by taking advantage of the wide non-contact area and reliability of thermal imaging,
it is no more required to scan the complete structure by detailed and time-consuming PA
inspection, but only damage-suspect areas. This maximizes the efficiency of the inspection
while proving to be highly cost-effective. The strategy and individual VRP-mountable
synergistic modules form part of a revolutionary fully automated NDT inspection solution
offering an unprecedented reduction of aircraft inspection time and cost and increase of
defect detection reliability in commercial aircraft, in the context of an ongoing Future and
Emerging Technologies (FET) European Commission Horizon 2020 research project [33,34].

2. Material and Methods

2.1. Description of Materials and Specimens

The benchmarking of the synergistic PLI-LT/PA strategy was performed on aircraft-
grade composite of different scales: initially on composite coupons of material UD pre-preg
IMS-977-2 having layup of [45/−45/90/0/90/0/90/−45/45] and [45/−45/90/0/90/0/90/
−45/45]2s and two flat laminates, and subsequently one curved laminate of same material
as coupons and [45/−45/90/0/90/0/90/−45/45] layup. All of the laminates carried arti-
ficially BVID inflicted using a gas gun; the coupons carried BVID of variable dimensions
due to the varying of the impact energies in an impact drop tower.
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A stringer stiffened composite panel representative of the aircraft structure with
dimensions of 1250 x 865.5 mm2 was prepared by stacking carbon-fiber prepreg DeltaT-
ech T800S-150-DT120-35 with the symmetric [45/−45/90/0/90/0/90/−45/45] sequence;
T-shape stringer stacking followed a [45/−45/90/0/90/−45/45] sequence was also man-
ufactured. The schematic of Figure 1 presents the skin with attached stringer geometry,
dimensions, and layup sequence. A copper-mesh layer was integrated in the stacking
sequence to account for the lighting-strike protection system typical of commercial and mil-
itary aircraft. The mesh, DEXMET 2Cu6-100FA, an expanded film of copper of a thickness
of 0.051 mm and a cavity area of 76%, Long Way Measurement (LWM) of 2.54 mm, was the
second ply in the laminate and it resided just below the top GFRP ply, at an approximate
depth of 0.18 mm. Autoclave co-curing at 120 ◦C and 6 bars of pressure for 90 min., of the
skin with attached stringers pursued, as per prepreg manufacturer specifications. Finally,
the external surface of the panel was finished using the same aircraft-grade paint as the
coupons. Three barely visible impact damages, termed D1, D2, and D3, were inflicted
equally in number locations on the panel while using a gas gun; the schematic of Figure 1b
shows their exact positions. D1 was inflicted on the skin region between stringers, D2 on
a skin region just above a stringer foot bond area, and D3 on a skin region just above a
stringer. Neither damages produced observable surface dents on the skin. Figure 1c shows
a view of the panel’s rear face with stringers. Thermographic and ultrasonic inspection was
performed with the IRT and PA modules that were mounted on prototype VR platforms to
perform automated operation on this panel.

Figure 1. Stiffened composite flat panel (a) finished external surface clamped for infrared thermography/Phased Array
(IRT/PA) inspection and panel rear face (b) schematic of barely visible impact damages (BVID) locations on the panel front
face (c) T-stringer configuration.
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2.2. Experimental Setup Details—IRT

A state-of-the-art IRT module was developed and presented previously to account
for extreme compactness and lightweight required for automated inspection on a VR plat-
form [20]. In brief, the module consisted of two main parts: a microbolometer shutterless
longwave infrared (LWIR) sensor, the spectral response of 7–14 μm, made of resistive amor-
phous silicon in aluminum housing that was equipped with a lens with a ratio of F/1.25, a
focal length of 16.7 mm, wide field of view of 37.5◦, and manual focus end piece, and a
300 W halogen lamp excitation source housed in a bell-shaped reflector with IR-filtering
eyepiece to block IR reflections from hitting back to the sensor. The sensor offered ad-
vanced technical specifications, including thermal sensitivity (noise equivalent temperature
difference, NETD) of less than 50 mK, resolution of 640 × 480 pixel, time-to-image of less
than 1 s, and a frame capture rate adjustable between 9 Hz and 120 Hz.

The module was assembled by mounting the sensor and source on an autoclave-cured
carbon fiber reinforced polymer (CFRP) plate. Figure 2a presents the module face, while
Figure 2b demonstrates it mounted on the VR platform. The lens protruded from the
plate by 20 mm while the lamp position in the reflector was recessed by 30 mm from the
plate. The dimensions of the sensor and the complete module were 30 × 30 × 45 mm3 and
200 × 150 × 100 mm3, respectively. The optimization of the module height (distance of
plate from the surface under examination) was performed under the condition of IFOV
maximization while maintaining full thermographic information from the surface. The
IFOV should be maximum for the corresponding scanned area to be as wide as possible,
which minimizes the acquisition timescale requirement for the whole aircraft structure.
Based on this, a module height of 400 mm from the surface provided a optimal field of
view of 320 × 240 mm2. Indicatively, a much smaller field-of-view of 200 × 150 mm2

was measured at a module eight of 250 mm. Most importantly, the respective weights
of sensor and complete module, 70 g and 407 g, are indicative of the compactness and
maneuverability offered, which makes them ideal for the targeted field application and
mounting method. Prior to the start of IRT inspection, the lens end piece was focused on
the surface under examination and a sensor calibration procedure, where the following
involved exposure of the sensor to uniformly hot and cold surfaces, in sequence. During
the initial phase of PPI-LT, the lock-in frequency was selected after the identification of the
thermogram associated with the maximum contrast among those that were collected at
various frequencies. In the second step, the surface within the field of view was analyzed
in detail by locking thermography at the selected frequency.

Figure 2. IRT module (a) dimensions and arrangement and (b) mounted on the prototype Vortex Robot Platform developed
by Luleå University of Technology [31,32] for automated aircraft skin inspection of BVID by Pulsed Phase-informed Lock-in
Thermography (PPI-LT).
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A dedicated Graphical User Interface (GUI) was developed to allow for sensor control,
thermogram acquisition, analysis, and communication with the VR platforms. The software
offered functions for adjusting capture frame rate, calibrating, commencing, and ending PPI-
LT, displaying live thermographic information, recording, analyzing, and post-processing
thermograms, automatically detecting defects by pattern recognition, performing non-
uniformity corrections of the IR sensor, thermogram analysis and post-processing, and
many others. All of the thermograms were analyzed in the phase domain.

2.3. Experimental Setup and PA Module
2.3.1. PA Module Development

In general, the ultrasonic NDT module for automated scanning of a curved structure
consists of a suitable ultrasonic transducer, with an efficient wedge to transfer ultrasonic
wave from the transducer into the specimen material, a positioning fixture with a different
degree of freedom suitable for either flat and curved surface, an encoder for capturing
position data, highly efficient couplant distribution system and control system for interfac-
ing between the scanner, and the data acquisition hardware for data storage and scanning
control. Because of the technical requirements of the vortex robot design [31,32], the NDT
module payload was limited 1 kg along with a restriction of relying on any free-flowing
water or a local immersion coupling techniques in proximity of the robot to avoid potential
sparking of the EDF motor or electronics damage. These requirements invalidate the use
of different types of local immersion based wedges, including membrane based wedges.
Based on these requirements, and a suitable PA module was designed and developed, as
discussed in the following subsections.

PA Transducer

A linear array 10 MHz 64 element transducer with −6 dB level bandwidth between
7.8 and 11 MHz was used for the inspection. The fusleage skin thickness is between 1 to
3 mm. Inspection with a higher frequency transducer gives a higher axial resolution in the
thickness direction of the material being inspected, but the corresponding signal to noise
ratio is lower, due to higher structural noise and higher sensitivity to the surface when
compared to a lower frequency transducer [21].

Wedge

An ultrasonic inspection typically requires the use of free-flowing water, a film of
water, local immersion, or ultrasonic gel as a coupling medium between the transducer
and surface under inspection. The restriction of existing methods of couplant usage by VR
platform requirements was addressed by developing a new wedge of elastomer material
that is similar to a wheel probe roller material [4], which has low attenuation, low acoustic
impedance, and lower couplant requirements. The wedge thickness was optimized for a
10 MHz PA transducer that is based on ultrasonic beam characteristics, near-field length,
and attenuation in the elastomer material. The elastomer wedge and transducer are
enclosed in a light-weight nylon holder for the PA transducer-wedge assembly, as shown
in Figure 3. A miniature encoder for capturing positional data is also clamped to the
nylon holder.

Mist Couplant Delivery

During automated phased array inspection, the prerequisite requirement for reliable
ultrasonic data collection is to ensure that the wedge is in contact with the surface along
with uniform couplant distribution on the surface. The spray of water is a sufficient form
of couplant for the elastomer wedge on a flat surface. However, the fuselage of the aircraft
is curved, smooth, and painted, which results in any sprayed water droplets to coalesce
and drip down the surface. It was seen experimentally that fine mist of water instead of
spray using a appropriate nozzle ensures uniform distribution of mist on the surface under
any orientation during inspection. A self-priming micro-diaphragm pump was used to
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generate a fine mist of water using a nozzle with an orifice of 0.1 mm instead of spray
during the inspection. The pump outlet was controlled by a flow control valve through
a TEE connector to reduce the flow rate and provide a 50 PSI constant pressure water for
generating a fine mist. The other end of TEE was connected to a hose to recirculate the extra
water back to the water reservoir. It was observed that fine mist adheres to the painted
surface, irrespective of the surface’s orientation. The mist is uniformly distributed with
less than 2 mL of water consumed, for a scan area of the size of a coupon 150 × 100 mm,
thus minimizing the amount of couplant water near the VR.

Figure 3. The PA module components (a) PA transducer and bespoke low attenuation elastomer wedge (b) customized
spring-loaded positioning-fixture carrying the PA transducer and wedge in light weight Nylon enclosure and screw-
clamped encoder.

Positioning Device

For maximum signal amplitude during the reception, the PA transducer-wedge as-
sembly must maintain both normal incidence to the surface and constant contact between
the wedge and inspected surface, throughout the scan in all orientations (vertical, horizon-
tal, and inverted). This requirement is achieved by the customization of a spring-loaded
positioning fixture with three degrees of freedom (one vertical and two rotations) suitable
for flat and curved surfaces. This gimbaled probe holder also ensures adherence in the case
of the inspection of curved surfaces (e.g., aircraft fuselage).

2.3.2. PA Inspection Procedure

The experimental inspection procedure consisted of an initial benchmarking of NDT
characterization of low-velocity impact damages on composite coupons of two different
thicknesses and laminates. The PA hardware consisted of a multi-channel pulse-receiver
Sonatest (16:64) VEO+ series with simultaneous emission and reception along each channel
and 16 active channels. This pulse-receiver is operated under a normal incidence pulse-
echo configuration to excite the 10 MHz 64 element linear array PA transducer with a
square pulse of a maximum permissible voltage of 70 V with eight active apertures. Prior
to PA scanning, the hardware is pre-loaded with a specific PA configuration file, having
information regarding material velocity, time-gain compensation, and scanning parameters.
The receiver gain and range are set, as per the thickness of the component under inspection.
These scans were performed by mounting the PA module on a simple X-Y-Z manipulator.

2.3.3. PA Inspection Data Post-Processing

During measurements, full waveform ultrasonic data were recorded and stored at
125 MHz sampling frequency. The proprietary raw data file format of PA data was con-
verted to neutral Comma Separated Values (CSV) format and an initial auto error-check
was carried out for any missing A-scans in the data, due to an error in the encoder move-
ment during scanning. Impact damage affects both the amplitude of ultrasonic reflections
and their time of arrival from the damaged region. The Time-of-Flight (ToF) C-scan was

33



Appl. Sci. 2021, 11, 2778

generated with an ad hoc software suite in order to show the lateral extent of the impact
damage. Before generating the C-scan image, each A-scans requires signal amplification,
known as time-gain compensation, time-domain alignment of the A-scans, followed by ToF
extraction of the first maximum peak after the front surface echo. Hilbert transform was
used to find the maximum echo after the dead-zone, and maximum echo is time-tracked
for the damage-depth information based on a specified threshold in each A-scan [35].
Furthermore, time-domain alignment of all A-scans is initially essential to account for
delays in the arrival of the ultrasonic reflection from the top surface of the specimen due
to composite surface flatness variations. This correction avoids C-scans images with false
positives depth scale. It was observed that the time-domain alignment of all A-scans during
post-processing is better than the digital floating-gate manually set in the PA hardware to
track the front surface echo during data acquisition. The ImageJ software measures the
damage area from the processed C-scan images.

3. Results and Discussion

3.1. Results of Manual IRT and PA Inspection on Coupons and Laminates

The synergistic PPI-LT/PA strategy minimizes the timescale that is required for reliable
aircraft inspection by the preferential application of PA inspection, for thorough damage
characterization, only to areas previously identified with damage presence by rapid wide-
area IRT. Under this concept, PPI-LT and PA were used in succession to fast scan the
composite and indicate areas that require further PA inspection. Figures 4–6 report pairs of
successive results of IRT-identified and PA-quantified damaged areas on 9- and 18-layer
composite coupons and laminates, respectively, for different levels of impact energy. All of
the thermograms (figures on the left-hand side) are in the phase domain and they include
relevant length and phase scale bars; the bars in the first thermogram of each subset are
common for the rest, in the same subset. The C-scan image’s horizontal scale represents
the scan-axis, along which the C-scans were recorded with a resolution of 1 mm. The
vertical scale represents the index resolution of 0.6 mm, which is also the pitch between
the PA transducer elements. The grayscale color bar that is shown in the C-scan images
represents ToF of the maximum peak echo of the received signal from the material‘s entire
thickness except the dead-zone. The inverse ‘gray’ color-pallet with custom color-bar
facilitates straightforward damage discrimination using an image processing routine in
‘ImageJ’ software. The calculated damage area provides a close estimation of the extent of
the damage. Figure 4 compares the infrared thermograms and PA images from nine-layer
composite coupons impacted with energies of 2.5 J (a), 4 J (b), 8 J (c), and 12 J (d). IRT and by
PA also capture damage in composite coupons of 18-layers in Figure 5, for impact energies
of 8 J (a), 12 J (b), and 20 J (c). In Figure 6, thermographic and subsequent PA investigation
is presented for composite laminates that are impacted with different energies.

By observation of the thermographic results that are presented in Figures 4–6, it is
concluded that damage is captured with exceptional precision by the developed PPI-LT
approach and sensor in all types of specimens. It is interesting to note that the technique
not only assesses the presence of damage, but it can represent its main geometrical features,
such as shape and orientation, as documented by the high contrast area corresponding
to damage in −45◦ laminas in the thermograms. In certain cases, such as Figure 5b,c, the
barely visible dent produced at the site of impaction is also visible (dark circular mark at
the damage center). The increasing extent of damage with increasing impact energy is effi-
ciently assessed by IRT. Hence, it entails that the developed PPI-LT approach and sensor can
not only identify damage presence, but can also provide its basic dilatational characteristics.
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Figure 4. Detection of damage by rapid PPI-LT (thermograms, left column) and subsequent high-resolution characterization
by PA imaging (right column) for nine-layer coupons with different impacted energies: (a) 2.5 J, (b) 4 J, (c) 8 J, and (d) 12 J.
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Figure 5. Detection of damage by rapid PPI-LT (thermograms, left column) and subsequent high-resolution characterization
by PA imaging (right column) for 18-layers coupons with different impact energies: (a) 8 J, (b) 12 J, and (c) 20 J.

Observing PA C-scan images of impact damages that are presented in Figures 4–6,
the following general observations can be derived: the impact damage size increases with
impact energy, and damage tends to propagate along the 45◦ to fiber direction. In all
coupons, the impact damage shows large sub-surface damage, with little or no external
indication of the impact. Hence, it is vital to carry out detailed NDT inspections on the com-
posite aircraft’s external surface during heavy maintenance. In all coupons and laminates,
IRT imaging shows the good detectability of damage, but the damage area is consistently
smaller in size when compared to C-scan. This is because, under the rapid mode require-
ment of the target application, IRT is used as a fast initial indicator of damage presence;
hence, PPI-LT does not offer the resolution that is required for performing full damage
analysis. On the other hand, low-speed selective PA on IRT-identified areas only offers
the added high-resolution feature that is required for this. In higher thickness coupons, IR
thermograms exhibit lower sensitivity on impact damage, even though PA detects large
sub-surface damage. These results indicate the importance of impact damage detection and
the need for 100% inspection. However, adopting the proposed inspection strategy, 100%
detailed inspection of the whole structure using thorough, but also time-consuming, PA can
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be avoided. This is also brought forward by comparison of the timescales that are required
for the full acquisition of a specified surface area, by the two techniques. While PPI-LT is
imaging, the whole 320 × 240 mm2 area under the optimal IFOV is done in approximately
60 s, the corresponding timescale requirement for full PA acquisition of the same surface
must be carried out using the unidirectional raster scan approach of about ten line-scans
taking about 4 min. with added complexity of VR forward and backward locomotion. This
observation highlights the added value of the synergistic approach towards the rapid, but,
at the same time, accurate, damage detection in aircraft composites.

Figure 6. Detection of damage by rapid PPI-LT (thermograms, left column) and subsequent high-resolution characterization
by PA imaging (right column) on flat laminates (9 layers) with estimated impact energies (a) 4.5 J (b) 5.5 J and a curved
laminate with estimated impact (c) 4.5 J.

3.2. Automated IRT and PA Inspection on Stiffened Panel

The stiffened panel was initially scanned by PPI-LT for rapid wide-area identification
of damage location, after which PA inspection was pursued. This primmer task was
undertaken with the IRT module that was integrated on the VRP, as seen in Figure 2b
as a lab-scale demonstration of the envisioned fully automated NDT solution for rapid
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and reliable damage inspection in aircraft. The thermographic assessment of damage
locations is presented in the left-hand side part of Figure 7. Therein, all three impact
damages of the stiffened panel are observed to have been positively identified by the PPI-
LT technique. Moreover, the extent of damage appears to be greater in the skin region D1,
in the absence of back face stiffening, and smaller in the stiffened area, D3. It is interesting
to note that the thermographic signal that was acquired from the stiffened panel did not
appear to be deteriorated, when compared to previous findings, as a consequence of the
presence, 0.2 mm below the surface, of the copper mesh lighting-protection lamina. Such
behavior can be rationalized by the consideration of the small LWM dimension of the
mesh with respect to the scanned area, which may lead to a uniformly higher background
thermographic signal throughout the specimen, practically masked within the phase scale
of thermographs containing high-contrast damage areas. The damaged locations that were
identified by IRT were subsequently processed by PA.

Figure 7. Comparison of IRT and PA imaging for the impact damages (D1, D2, and D3) on the stiffened panel collected using
the IRT and PA module on the robot. (a) Skin region (b) web (T junction) region and (c) boundary of the skin-flange region.
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Hence, in the next step, the PA module was integrated on to the vortex robot for
automated scanning of the stiffened panel. Initially, the PA hardware was pre-loaded
with a configuration file with all of the PA inspection parameters, as mentioned earlier;
subsequently, PA hardware control was handed over to the robot. The robot interfaces with
PA hardware through a custom-developed communication controller to control the PA data
acquisition, storage, and water-pump operation for delivering water mist as couplant at the
foot of the transducer. The robot then moves to the designated target area on the stiffened
panel, around the damages (D1, D2, and D3), and it sequentially performs separate PA line
scans. Each line-scans are of fixed 150 mm length and a width of 34.5 mm. The right-hand
side graphs of Figure 7 represent the results of the assessment of impact damages on the
stiffened panel performed by the PA module mounted on the VRP. The impact damage
‘D1’ on the skin region is well detected, as shown in Figure 5a. However, damage ‘D2’
exactly on the web region is not detected, but the damage ‘D3’ is partially detected. as
shown in Figure 7. The thickness of the skin and flange region in the stiffened panel is
1.6 mm and 2.1 mm Figure 5b, c, respectively. At the T-junction region formed by the
intersection of both the flanges, there is no backwall reflection of the ultrasonic waves due
to the geometric curvature and web width, and, hence, the small damage ‘D2’ imaging
was not successful. Furthermore, it was observed that, on the back-face of the panel, at the
transition region between the skin and flange of the stringer, there is an accumulation of
excess resin and, hence, at this region there is no reflection of the ultrasonic waves for a
short width of 3–5 mm. Because to this reason, the damage ‘D3’ is partially masked, as
shown in Figure 5c.

It is important to highlight that, provided the surface under examination is IRT/PA-
active and of adequate surface smoothness, as in the case of large number of composite
engineering surfaces, no other parameter of the proposed strategy appears to impose
significant limitations on the type and nature of surfaces that can be inspected. This
unfolds an exciting potential for the expansion of this strategy to automated inspection
of other types of surfaces and industrial applications, such as defect detection in wind
turbine blades and composite storage tanks. To that end, the imaging results of the present
study indicate that the synergistic NDT approach and developed modules are suitable for
automated inspection on a VRP. However, further considerations need to be addressed
that require additional experimental investigations in order to prove the suitability of the
modules for inspection on the curved stiffened composite structure that is representative
of the fuselage skin of aircraft and other surfaces.

4. Conclusions

A synergistic strategy that was based on infrared thermography and phased array was
presented for the rapid and, at the same time, accurate and reliable detection of damage in
aircraft composites. Therein, a newly developed powerful IRT variant, termed PPI-LT, was
adopted for the initial rapid, wide-area scanning of the structure for the identification and
localization of damages. A thorough dilatational characterization of damages is pursued
by the preferential application of an advanced PA inspection approach, only to areas
previously identified as damage suspected by IRT. The synergistic strategy minimizes the
timescale that is required for reliable aircraft inspection, as it eliminates the requirements
of scanning the complete structure by detailed and time-consuming PA inspection. This
lifts the current trade-off between speed and reliability of aircraft inspection and unravels
the unprecedented potential for reduction of airplane accidents and inspection timescales,
while, at the same time, maximizing the airworthiness and cost-effectiveness of tactical
inspections, such as C-checks and D-checks. The strategy also offers highly reliable damage
data for improved aircraft performance and effective repair. Most importantly, both of the
inspection techniques were developed for field measurements, with custom state-of-the-
art lightweight modules mountable on vortex robot platforms for fully automated NDT
inspection of aircraft in the context of a Future and Emerging Technologies (FET) Horizon
2020 research project (Compinnova).
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The strategy was successfully benchmarked across full-spec aircraft composite coupons,
on selected case-study laminates with typical damages and repaired sections on a real air-
craft composite panel with artificially induced barely visible impact damages (BVID). The
panel was equipped with standard counter-lighting strike copper-mesh lamina and stiffen-
ing stringers on the back-face. The specimens and panels were finished in aircraft-grade
paint. All of the impact-inflicted damages were successfully captured by IRT and further
characterized by PA ultrasonic. The smallest defect identified by the resolution-limiting
step of the approach, fast initial PPI-LT, was of the order of 35.2 mm2 and met current FFA
specifications for minimum defect detectability in tactical C- and D-checks.

It is important to highlight that, provided a smooth and IRT/PA-active surface, no
other part of the proposed strategy imposes significant limitations on the type and nature
of the inspected surfaces, which unfolds the potential for expansion to other types of
engineering and industrial applications.
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Abstract: The present paper is a study of output-only modal estimation based on the stochastic sub-
space identification technique (SSI) to avoid the restrictions of well-controlled laboratory conditions
when performing experimental modal analysis and aims to develop the appropriate algorithms for
ambient modal estimation. The conventional SSI technique, including two types of covariance-driven
and data-driven algorithms, is employed for parametric identification of a system subjected to sta-
tionary white excitation. By introducing the procedure of solving the system matrix in SSI-COV in
conjunction with SSI-DATA, the SSI technique can be efficiently performed without using the original
large-dimension data matrix, through the singular value decomposition of the improved projection
matrix. In addition, the computational efficiency of the SSI technique is also improved by extracting
two predictive-state matrixes with recursive relationship from the same original predictive-state
matrix, and then omitting the step of reevaluating the predictive-state matrix at the next-time moment.
Numerical simulations and experimental verification illustrate and confirm that the present method
can accurately implement modal estimation from stationary response data only.

Keywords: operational modal analysis; ambient modal analysis; stochastic subspace identification;
singular value decomposition; stationary white noise

1. Introduction

The dynamic characteristics of a structural system, such as natural frequencies, damp-
ing ratios, and mode shapes, can be investigated through numerical and experimental
analysis. The response of a structural system is measured with a known excitation in
modal testing, which is usually performed under well-controlled laboratory conditions.
However, performing experimental modal analysis in real operating conditions may be pos-
sible, even for large and complex mechanical systems with real boundary conditions [1,2].
The modal parameters obtained theoretically under the free boundary condition can be
calculated by mathematical modeling to obtain the characteristics under arbitrary bound-
ary constraints [3]. However, experimental results obtained under specified boundary
conditions cannot be converted to other dynamic characteristics under the constraints
of other boundaries. Therefore, it is difficult to perform modal testing under practical
boundary conditions. The hammer excitation testing method is generally used to measure
the frequency response function of the structural system, and then parametric estimation is
performed to understand the dynamic characteristics of the structural system [4].

The system-identification methods described above are generally used to systemat-
ically determine or improve a mathematical model for a physical system and are imple-
mented by measuring both observed structural excitation and corresponding response
data. However, an obvious difference exists between the operating conditions of realistic
structures in practical work and a controlled-environment laboratory in modal testing [5].
Dynamic characteristics cannot fully represent the system mode under real-world oper-
ating conditions; thus, it is necessary to study how to perform modal identification of
systems in authentic operating environments [6].
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Operational modal analysis [7], which is also called “ambient modal analysis”, or
“output-only modal analysis” [8], is extensively used in modal estimation of large structures
under environmental and operational loads [9], such as vehicle suspension systems [10],
offshore wind power facilities [11], and stadium structures [12]. Many identification
methods have been extensively employed for modal extraction based on ambient response.
In 1993, the so-called natural excitation technique (NExT) was proposed and initially
used for modal estimation of structures in wind engineering, by assuming that ambient
excitation is stationary white noise [13]. It was employed to replace free or impulse
response in conventional modal estimation methods in the time domain. Subsequently, if
ambient excitation can be expressed as a product model of stationary white noise and an
envelope function describing the same variation of time history as excitation amplitude,
the corresponding response of a structural system can be converted approximately into
free response through the correlation technique [14] or random decrement technique [15].
Modal estimation can then be carried out, using the parametric estimation technique in
the time domain. In addition, by introducing the correlation matrix between ambient
response data to the procedure of ERA/DC, the ERA/DC can be effectively applied to
modal identification of structures subjected to stationary white excitation, even to the
practical recorded excitation of an earthquake [16].

In recent years, Stochastic Subspace Identification (SSI), applied with NExT, has been
widely employed to modal estimation of structures under ambient vibration [17]. The SSI
method is a time-domain modal-estimation method under the assumption of stationary
white noise for ambient excitation and can be directly applied to modal estimation from
ambient response records only [18]. There is no need for excitation measurement; thus,
it is suitable for the analysis of ambient vibration. In addition, among the algorithms
for structural health monitoring (SHM) to perform modal identification of structural
systems, SSI is a reliable time-domain technique using extended observability matrices [19].
Numerous studies have specifically concentrated on realistic applications of SSI in recent
years. The SSI-COV method uses the calculation of correlation function through the output
data and then constructs a correlation matrix. The observability matrix can be obtained by
using the singular value decomposition (SVD) of the correlation function matrix, and then
the modal parameters can be estimated. In 1993, SSI-DATA was proposed, based on the
concept of Kalman filter and space-vector projection [18]. Through the projected output
matrix obtained by projecting the output vector of the future into the output vector space
of the past, we substitute the projected output matrix into the original correlation function
matrix. The modal parameters can be estimated from the observability matrix obtained by
SVD of the projected matrix [20].

SSI-DATA is relatively complete in the derivation process under the signal length
limitation of general response data, but there are some cases where the calculation efficiency
is poor. In this study, we introduce correlation function calculations in the SSI-COV system
matrix method into the SSI-DATA algorithm. Through the SVD of the improved projection
matrix, low computational efficiency due to the large matrix dimension can be avoided. By
extracting two predictive-state matrixes with recursive relationships from the same original
predictive-state matrix, the efficiency of computation can be improved, and the step of
reevaluating the predictive-state matrix at the next-time moment can then be omitted.

2. Stochastic Subspace Identification Method

The analysis of the stochastic subspace identification (SSI) method is based on the
framework of the state-space model. To treat the measurement data with the SSI method,
this method is derived from the continuous-time domain to discrete time. Because the
SSI method can be used to process the output-only system, which is different from the
deterministic state space, we consider the input to be a stationary random process that can
be expressed as a random, discrete-time, state-space equation.

Since the identification process of the SSI method can be implemented from the
output measurement data only, the ambient excitation is assumed to be white noise input,
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without considering external force input. Therefore, the external force and the noise can
be combined as white noise. To apply the measurement data to the SSI method, we
can construct a Hankel matrix [H] composed of the measurement data, from which the
relationship between the different measurement channels and different sampling times are
as follows:

[H]2li×j =
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=
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[Yp](li)×j
· · · · · · · · · · · ·
[Yf ](li)×j

⎤
⎥⎦ = [α]2li×2n[X̂]2n×j (1)

where the upper half of this matrix is called “the past” and denoted [Yp], and the lower
half of the matrix is called “the future” and is denoted [Yf ] [16].

A conditional mean for Gaussian processes can be completely described by its co-
variance. Since the shifted data matrices are also defined as covariance, the projection
can be calculated directly. Note that the state matrix estimated by Kalman filter, and the
state-space model can be constructed by the measured output vector used to estimate the
predictive-state matrix [X̂i]. The projection matrix [Ω] can be expressed as a product of
the observability matrix [α] and the predictive-state matrix [X̂i] of the Kalman filter in the
following [18]:

[Ω] = E
(
[Yf ][Yp]

T
)(

E
(
[Yp][Yp]

T
))⊕

[Yp]

= [α]li×2n[X̂i]2n×j

(2)

where

[α]li×2n =

⎡
⎢⎢⎣

[C]
[C][A]

. . .
[C][A]i−1

⎤
⎥⎥⎦

li×2n

(3)

[X̂i]2n×j =
[

x̂i x̂i+1 · · · x̂i+j−1

]
2n×j

(4)

[C] is the output/observation matrix; ⊕ is Moore–Penrose pseudoinverse; [A] is the system
matrix; E[·] is the expectation operator. In the first line of Equation (2), the first four
matrices in the product introduce the covariance between channels at different time delays,
and the last matrix in this product defines the conditions. By using the SVD analysis and
choosing the effective singular-value number, [Ω] can be expressed in minimum order
realization as:

[Ω] = [U][Δ][V]T

=
(
[U1] [U2]

)( [Δ1]
0

0
[Δ2] ≈ 0

)(
[V1]

T

[V2]
T

)

≈ [U1]li×2n[Δ1]2n×2n[V1]
T

2n×j

(5)

where [U] and [V] are both unitary matrixes, and [Δ] is a matrix containing singular values.
The dimension of [Δ1] can, in general, be employed to estimate the system order or number
of poles. However, in practical work, the partial diagonal terms of the singular-value
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matrix [Δ] may be nonzero, produced by noise from the procedure of data acquisition and
numerical truncation.

Through the elimination of partial matrix [Δ2], consisting of the smaller singular
values, a minimum realization is obtained that results in a minimum order system rep-
resenting the structural system. In Equation (5), we can, therefore, choose the number
of effective singular values to obtain the minimum order realization through the SVD
analysis of [Ω]. From Equations (2) and (5), with appropriate partitioning of [α] and [X̂i],
the following equations can be written:

[α] = [U1][Δ1]
s

[X̂i] = [Δ1]
t[V1]

T (6)

where s + t = 1. Indeed, one possible choice is [α] = [U1][Δ1]
1/2 and [X̂i] = [Δ1]

1/2[V1]
T ,

which appears to make both [α] and [X̂i] balanced.
However, poor computational efficiency may occur, caused by relatively large di-

mensions of [Ω]. In this paper, we construct the data matrix [Ω][Ω]T composed of [Ω],
and perform the SVD analysis of [Ω][Ω]T to determine the order of a structural system
to be identified. It can be shown that the eigenvalue of [Ω][Ω]T is the square roots of the
eigenvalues of ([Ω][Ω]T)([Ω][Ω]T), and that the corresponding eigenvectors of [Ω][Ω]T

are the same as those of ([Ω][Ω]T)([Ω][Ω]T). The dimension li × j of [Ω] can be reduced
to the dimension li × li of ([Ω][Ω]T)([Ω][Ω]T), where j >> li. Based on the above, the
efficiency of modal estimation can be improved, and system order can be determined
through the SVD analysis of ([Ω][Ω]T)([Ω][Ω]T).

In addition, to further improve the efficiency of the SSI method, we consider extracting
the predictive-state matrixes [X̂extract1] and [X̂extract2] with a recursive relationship directly
from the original predictive-state matrix [X̂i], as described next. From Equation (2), the
predictive-state matrix [X̂i] can be obtained from the observation matrix [α] in the following:

[X̂i] = [α]⊕[Ω]

=
[

x̂i x̂i+1 · · · x̂i+j−3 x̂i+j−2 x̂i+j−1

]
2n×j

(7)

From the measured stationary responses at n stations on a structure under test, we
define a system matrix [A], such that

[A][X̂extract1] = [X̂extract2] (8)

where [X̂extract1] is a predictive-state matrix of measured response from [X̂i], and [X̂extract2]
is a predictive-state matrix of time-delayed response from [X̂i] as follows

[X̂extract1] =
[

x̂i x̂i+1 · · · x̂i+j−3 x̂i+j−2

]
2n×j−1

[X̂extract2] =
[

x̂i+1 · · · x̂i+j−3 x̂i+j−2 x̂i+j−1

]
2n×j−1

(9)

Therefore, following almost the same procedure as used in Equation (7), the sys-
tem matrix [A] can be obtained through the least-squares method. By extracting the
predictive-state matrixes [X̂extract1] and [X̂extract2] with a recursive relationship directly
from the original predictive-state matrix [X̂i], we can then avoid the step of reevaluating
the predictive-state matrix at the next-time moment in the conventional SSI method, which
can further improve the computational efficiency of the SSI method.

We can further solve the eigenproblem of the system matrix [A] to obtain the dynamic
characteristics of the system, and the characteristic equation can be written as:

[A][Ψ] = [Ψ][Λ] (10)
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where [Ψ] consists of eigenvectors, i.e., mode shapes, and [Λ] contains eigenvalues λi. The
relationship between discrete-time matrix [A] and continuous-time matrix [AS] can be
expressed as:

[A] = e [AS ]Δt ∈ R 2n×2n (11)

Denote the eigenvalues of [A] and [AS] as λi and λsi, respectively. The relationship
between λi and λsi can then be expressed as

λi = eλsiΔt (12)

Through the eigenvalue analysis associated with the continuous-time system matrix,
[AS], the eigenvalues λsi can be obtained as:

λsi = −ωiξi ± jωi

√
1 − ξi

2 (13)

Set the eigenvalues λsi of continuous-time system matrix [AS]

λsi = ai + jbi (14)

The natural frequencies ωi and damping ratios ξi of the structural system can be
obtained as:

ωi =
√

ai
2 + bi

2

ξi = − ai√
ai

2+bi
2

(15)

Consequently, the parametric estimation of structures can be implemented through
the eigenvalue analysis associated with the system matrix, [AS], once the system matrix
[AS] is obtained through the least-squares estimate from measured response data.

3. Numerical Simulations and Experimental Verification

3.1. Six DOF Chain Model of a Cantilever Beam

To illustrate and confirm the validity of the proposed method in this paper, we first
consider a numerical example of a chain model with six degrees of freedom (6-DOF) to
simulate a cantilever beam, as shown schematically in Figure 1. The masses m1, m2, m3,
m4, m5, and m6 for the 6-DOF chain model are equal to 2, 2, 2, 2, 3, and 4 kg. The stiffnesses
k1, k2, k3, k4, k5, and k6 are equal to 1, 1, 1, 1, 2, and 3 N/m, respectively. The damping
matrix [C] of the system is in the form of [C] = 0.1[M] + 0.001[K]N·s

m , which indicates that
this structure contains proportional damping because of damping matrix [C], expressed
as the linear combination of the mass matrix [M] and stiffness matrix [K]. The excitation
force is simulated as stationary white noise, which is approximately generated as a zero-
mean band-pass noise [21], whose frequency range is from 0 to 50 Hz, and the standard
deviation, i.e., power spectrum density, is 0.04 N2·s/rad. The sampling interval is chosen
as Δt = 0.01 s, and the sampling period, as shown in Figure 2, is T = Nt·Δt = 1310.72 s,
where Nt was chosen as 217. The cut-off frequency, ωc is 314.15 rad/s, and the resolution in
frequency domain Δω is 4.79 × 10−3 rad/s. The sampling interval is chosen as 0.01 s, and
the sampling period is 150 s. Through Newmark’s method, the displacement responses of
the system are obtained and then employed for modal estimation through the modified SSI
method.
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Figure 1. Schematic plot of a 6-DOF chain model of a cantilever beam.

Figure 2. A sample function of stationary white noise in the time domain.

By introducing the procedure of solving the system matrix in SSI-COV, in conjunction
with SSI-DATA, we can increase the computational efficiency without using the original
large-dimension data matrix, through the singular value decomposition of the improved
projection matrix. To make the number of modes evaluated through the SSI algorithm
equal to or greater than the number of modes to be identified, the dimensions of the Hankel
matrix must be not less than the system order to be identified (li ≥ 2n). Through the
channel expansion technique, we set the number of expansion channels to 20.

In practical engineering analysis, a continuum structure has an infinite number of
degrees of freedom and modes; thus, the dimensions of the Hankel matrix depend on the
number of modes to be identified. The projection matrix, [Ω] is obtained by Hankel matrix
calculation. The SVD analysis of the projection matrix [Ω] can then be performed, and the
number of singular values is employed to determine the order of system to be identified.
In Figures 3 and 4, the distribution of the singular values of [Ω][Ω]T shows a relatively
more obvious drop than those of [Ω] around the singular value number 12 and can be
further employed to estimate the system order and the number of modes to be identified.
In addition, the SVD analysis of [Ω][Ω]T can be employed to reduce a greater number of
calculations, rather than performing the SVD of [Ω] or system matrix [A]. A comparison
of the computational efficiency of SVD between [Ω] and [Ω][Ω]T for different sampling
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points is shown in Table 1, in which we clearly see the computation time of SVD of [Ω] is
much longer than that of [Ω][Ω]T , especially for [Ω] with high dimensions. In addition,
through the stabilization diagram of different polynomial orders constructed by identified
natural frequency, corresponding to eigenvalues from the frequency response function
matrix with different polynomial orders, estimation results can then be sorted as either
structural or fictitious modes. In addition, the number of structural modes can clearly be
seen to be six, as shown in Figure 5.

Table 1. Comparison of computation time of SVD of [Ω] and [Ω][Ω]T for different sampling points
as well as matrix multiplication processing time for [Ω][Ω]T .

Sampling Points
Computation Time (s) of SVD Matrix Multiplication

Processing Time for [Ω][Ω]T[Ω] [Ω][Ω]T

212 0.570 0.000574 0.0003616

213 2.217 0.000760 0.0005376

214 9.074 0.001219 0.0009967

215 37.197 0.003244 0.0029074

216 Out of memory 0.003264 0.0030135

217 Out of memory 0.006189 0.0059404

Central processing unit (CPU) is Intel® Core™ i7-9700K CPU @ 3.60 GHz. Random-access memory (RAM) is
64.0 GB.

Figure 3. Distribution of the singular values of projection matrix [Ω] from the stationary responses of
a 6-DOF chain model of a cantilever beam.
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Figure 4. Distribution of the singular values of the data matrix, [Ω][Ω]T , constructed by projection
matrix, [Ω], from the stationary responses of a 6-DOF chain model of a cantilever beam.

Figure 5. Typical plot of the stabilization diagram of stationary response of first DOF of a 6-DOF chain model of a cantilever
beam.

In the stabilization diagram, a clear “location” of modal frequency obviously exists,
even though no obvious peaks appear among close modes in the frequency response
function because of modal interference. The system matrix, [A], can be obtained from
Equations (9)–(11), and the modal parameters can then be estimated through the eigenvalue
analysis of system matrix, [A], as summarized in Tables 2 and 3, where we clearly see the
well-estimated structural modal parameters through the Modified Stochastic Subspace
Identification (MSSI) method of both [Ω] and [Ω][Ω]T . Note that the MSSI method is a
combination of the conventional SSI method and SVD analysis. A comparison between
the exact and identified mode shapes is shown in Figure 6, and the corresponding Modal
Assurance Criterion (MAC) [22] values evaluated are shown in Figure 7, where good
agreement is observed.
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Table 2. Identification results of 6-DOF chain model through Modified Stochastic Subspace Identifi-
cation (MSSI) method from projection matrix [Ω].

Mode
Natural Frequency (rad/s) Damping Ratio (%)

Exact MSSI Error (%) Exact MSSI Error (%)

1 5.03 5.04 0.09 1.25 1.38 10.39

2 13.45 13.39 0.41 1.04 1.17 11.73

3 19.80 19.71 0.41 1.24 1.23 0.92

4 26.68 26.56 0.44 1.52 1.47 3.59

5 31.65 31.18 1.48 1.74 1.79 2.78

6 33.72 33.46 0.78 1.84 1.89 3.18

Table 3. Identification results of 6-DOF chain model through Modified Stochastic Subspace Identifi-
cation (MSSI) method from the data matrix [Ω][Ω]T constructed by projection matrix.

Mode
Natural Frequency (rad/s) Damping Ratio (%)

Exact MSSI Error (%) Exact MSSI Error (%)

1 5.03 5.04 0.08 1.25 1.38 8.97

2 13.45 13.39 0.42 1.04 1.17 10.11

3 19.80 19.71 0.42 1.24 1.23 2.47

4 26.68 26.56 0.47 1.52 1.47 4.88

5 31.65 31.18 1.50 1.74 1.79 1.15

6 33.72 33.46 0.78 1.84 1.89 1.19

Figure 6. Cont.
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Figure 6. Comparison between the identified mode shapes and the exact mode shapes of a 6-DOF
chain model of a cantilever beam subjected to stationary white noise: (a) 1st bending mode shape;
(b) 2nd bending mode shape; (c) 3rd bending mode shape; (d) 4th bending mode shape; (e) 5th
bending mode shape; (f) 6th bending mode shape.

Figure 7. Typical plot of the Modal Assurance Criterion (MAC) for the identified mode shapes and
exact mode shapes of a 6-DOF chain model of a cantilever beam.

3.2. Six DOF Railway Vehicle Model with Modal Interference

In the previous examples, only a proportionally damped structure is considered.
Actually, the hypothesis of proportional damping, although frequently considered in the
literature, is difficult to be found in practice in real mechanical systems [23,24]. To study the
feasibility and validity of the proposed method for relatively complex structural systems,
we consider a linear 6-DOF railway vehicle model with viscous damping [25], as shown
schematically in Figure 8. The mass matrix M, stiffness matrix K, and the damping matrix
C of the system are given as follows [26]:

M =

⎡
⎢⎢⎢⎢⎢⎢⎣

1200 0 0 0 0 0
0 850 0 0 0 0
0 0 4125 0 0 0
0 0 0 125000 0 0
0 0 0 0 850 0
0 0 0 0 0 1220

⎤
⎥⎥⎥⎥⎥⎥⎦

kg
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K =

⎡
⎢⎢⎢⎢⎢⎢⎣

k1 + k2 −k2 0 0 0 0
−k2 k2 + k3 −k3 −k3L 0 0

0 −k3 k3 + k4 k3L − k4L −k4 0
0 −k3L k3L − k4L k3L2 + k4L2 k4L 0
0 0 −k4 k4L k4 + k5 −k5
0 0 0 0 −k5 k5 + k6

⎤
⎥⎥⎥⎥⎥⎥⎦

N/m

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

c1 + c2 −c2 0 0 0 0
−c2 c2 + c3 −c3 −c3L 0 0

0 −c3 c3 + c4 c3L − c4L −c4 0
0 −c3L c3L − c4L c3L2 + c4L2 c4L 0
0 0 −k4 c4L c4 + c5 −c5
0 0 0 0 −c5 c5 + c6

⎤
⎥⎥⎥⎥⎥⎥⎦

N·s/m

in which K1 = 3 × 107 N/m, K2 = 106 N/m, K3 = 6 × 106 N/m, K4 = 6 × 106 N/m,
K5 = 106 N/m, K6 = 3 × 107 N/m, L = 8.53 m, c1 = 0, c2 = 6 × 103 N·s/m, c3 =
1.8 × 104 N·s/m, c4 = 1.8 × 104 N·s/m, c5 = 6 × 103 N·s/m, and c6 = 0. This railway
structural system has the features of relatively high modal damping levels for third and
fourth modes, and a pair of closely spaced fifth and sixth modes. Note that this railway
structure has non-proportional damping, because damping matrix, C, cannot be expressed
as the linear combination of the mass matrix, M, and stiffness matrix, K. The stationary
white noise in the previous numerical example is still used as the excitation force acting
the 6th mass of the railway vehicle system. The sampling interval is set as 0.01 s, and the
sampling period is 110 s. Then, using Newmark’s method, the displacement responses
obtained are employed for modal estimation using the modified SSI method proposed in
this paper.

Figure 8. Schematic plot of the railway vehicle model.

It should be noted that the number of modes to be identified serves to determine
the dimensions of the Hankel matrix. Using the channel expansion technique, we set
the number of expansion channels at 20. The dimensions of the Hankel matrix are not
less than the order of the system to be identified, thus satisfying the condition that the
number of modes evaluated in the SSI algorithm is not less than the number of modes
to be identified. The SVD analysis of the projection matrix, which is obtained from the
Hankel matrix calculation, can then be implemented, and the number of singular values is
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employed to determine the order of the system to be identified. Around the 12th singular
value, an obvious drop showed in the distribution of singular values associated with the
data matrix [Ω][Ω]T constructed by projection matrix [Ω] from stationary response data,
as shown in Figure 9. It can be estimated that the order of the system, i.e., the number of
modes to be identified, is 12.

Figure 9. Distribution of the singular values associated with a data matrix, [Ω][Ω]T , constructed by projection matrix, [Ω],
from stationary responses of a railway vehicle model..

Compared with the efficiency when performing the SVD of the system matrix [A], com-
putation can be reduced by implementing SVD analysis of data matrix [Ω][Ω]T constructed
from the projection matrix [Ω]. As shown in Figure 10, from the stabilization diagram
corresponding to different modal orders, it can be observed that the number of structural
modes to be identified is six, and serious modal interference can be observed between
the last two close modes. The system matrix, [A], can be found using Equations (9)–(11),
and the modal parameters can then be determined through Equations (12)–(15). Table 4
presents the well-implemented modal estimation through eigenvalue analysis of the system
matrix, [A]. A comparison between the exact and identified mode shapes is shown in
Figure 11, and the corresponding MAC values evaluated are shown in Figure 12, where
good agreement is observed.

Table 4. Identification results of railway vehicle through Modified Stochastic Subspace Identification
(MSSI) method.

Mode
Natural Frequency (Hz) Damping Ratio (%)

Exact MSSI Error (%) Exact MSSI Error (%)

1 2.79 2.79 0.00 4.89 4.89 0.01

2 3.71 3.71 0.00 6.62 6.62 0.01

3 16.55 16.53 0.09 16.65 16.62 0.17

4 19.27 19.25 0.11 18.78 18.74 0.24

5 25.36 25.30 0.21 1.74 1.74 0.42

6 25.57 25.51 0.21 1.75 1.75 0.43
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Figure 10. Typical plot of the stabilization diagram of stationary responses of 1st DOF of a 6-DOF
chain model of a railway vehicle.

 
(a) (b) 

 
(c) (d) 

 
(e) (f) 

Figure 11. Comparison between the identified mode shapes and the exact mode shapes of 6-DOF
chain model of a railway vehicle subjected to stationary white noise: (a) 1st mode shape; (b) 2nd
mode shape; (c) 3rd mode shape; (d) 4th mode shape; (e) 5th mode shape; (f) 6th mode shape.
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Figure 12. Typical plot of the Modal Assurance Criterion (MAC) for the identified mode shapes and
exact mode shapes of 6-DOF chain model of a railway vehicle.

Due to the experimental restrictions of economic cost and structural geometry in the
practical measurement of structural response, the number of sensors sited on the structures
to record response data is not usually sufficient for the overall degrees of freedom of a
structure to be identified. This may cause problems of incomplete measurement of the
degrees of freedom of the identified mode-shape vector. To address this issue, we also
implement modal estimation from the incomplete modal-information data obtained due
to insufficient measurement channels; thus, only response data of the first, third, and
fifth DOF of the railway system subjected to ambient excitation in the previous numerical
example are employed to implement modal estimation. The modal estimation results are
shown in Table 5. The modal parameters estimated by the proposed method and the exact
results are in good agreement, because the errors in both natural frequencies and damping
ratios are less than 1%. Thus, we confirm the effectiveness of the proposed method under
the likely practical conditions of insufficient measurement information.

Table 5. Identification results of railway vehicle through Modified Stochastic Subspace Identification
(MSSI) method from incomplete modal-information measurement data.

Mode
Natural Frequency (rad/s) [Ω] Damping Ratio (%)

Exact MSSI Error (%) Exact MSSI Error (%)

1 2.79 2.79 0.00 4.89 4.89 0.01

2 3.71 3.71 0.00 6.62 6.62 0.01

3 16.55 16.53 0.09 16.65 16.62 0.16

4 19.27 19.25 0.12 18.78 18.73 0.27

5 25.36 25.30 0.21 1.74 1.74 0.42

6 25.57 25.51 0.21 1.75 1.75 0.42

3.3. Experimental Validation of a Cantilever Beam

To further validate the effectiveness of the method proposed in this paper, an actual
beam structure of free boundary is used for the experiment, as shown in Figure 13. Brüel &
Kjær RT Pro Photon 7.41 data acquisition system, PCB 208C02 force sensor (with a sensitiv-
ity of 112,410 mV/kN, a measurement range of 0.4448 kN, a low frequency response (−5%)
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of 0.001 Hz, and an upper frequency limit of 36,000 Hz), and Polytec OFV-5000 Modular
Vibrometer (having a frequency range of DC-24 MHz with velocities up to ±10 m/s and
displacements from the picometer to meter range) are used for measuring response sig-
nal. The simulated nonstationary excitation through Teledyne LeCroy T3AFG40 signal
generator is imported into the Modal Shop K20070E01 vibration exciter, and the vibration
shaker excites the cantilever beam structure. A typical white noise with an approximately
consistent-power spectral density was synchronized with the shaker voltage time history
and recorded, as shown in Figure 14, as provided from the waveform source panel in the
RT Pro Photon 7.41 data acquisition system. Currently, an OMA-based roving different
directions of sensor head of laser doppler vibrometer is performed to measure the actual
modal properties of the beam structure by the data acquisition device, including four
channels, only twenty measurement positions on the actual aluminum alloy beam were
marked, as shown in Figure 15, and the shaker excitation impacts acted as the third location
of the beam.

 

Figure 13. Schematic diagram of the experimental setup.

 

Figure 14. Power spectrum associated with stationary white noise.
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Figure 15. Twenty measurement positions marked on the actual aluminum alloy beam.

The length, width, and height of the beam structure used for this paper are 512.8,
25.5, and 3.0 mm, respectively, the mass is 104.97 g, and the material is 5052-0 aluminum
alloy. In addition, the “exact” modal parameters are obtained from the data of auto power
spectrum of stationary response and cross power spectrum of stationary excitation and
response by using ME’Scope software. Note that “exact” stationary excitation is a built-in
stationary white noise generated from Brüel & Kjær RT Pro Photon 7.41 data acquisition
system is imported into the Modal Shop K20070E01 electrodynamic shaker to excite the
cantilever beam structure. The natural frequencies of the first four modes are about 10.85,
70.32, 176.31, and 290.31 Hz, as listed in Table 6. Finally, the modal parameters obtained
are used to compare the identification results of MSSI, as shown in Table 6 and Figure 16.
It is observed that the frequency errors are less than 15%, Figure 16 shows the identified
mode shapes which are approximately coincident with “exact” mode shapes, and the MAC
values are larger than 0.77. This means that the proposed method is effective on modal
identification in practical application.

Table 6. Identification results of a practical cantilever beam through Modified Stochastic Subspace
Identification (MSSI) method.

Mode
Natural Frequency (rad/s)

MAC
Exact MSSI Error (%)

1 10.85 10.98 1.22 1.00

2 70.32 70.53 0.30 1.00

3 176.31 159.00 9.82 0.95

4 290.31 246.30 15.16 0.77
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(a) (b) 

  
© (d) 

Figure 16. Comparison between the identified mode shapes and the “exact” mode shapes of a practical cantilever beam
subjected to stationary white noise: (a) 1st mode shape; (b) 2nd mode shape; (c) 3rd mode shape; (d) 4th mode shape.

4. Conclusions

The topic of this paper was a study of ambient modal analysis based on the stochas-
tic subspace identification technique (SSI). The paper aimed to develop the appropriate
algorithms for output-only modal analysis to overcome difficulties when performing ex-
perimental modal analysis (EMA). As a modification of SSI, we introduced the procedure
of solving the system matrix in SSI-COV in conjunction with SSI-DATA, allowing modal
estimation to be well implemented. A system matrix can, therefore, be obtained directly
from the observability matrix without evaluating the predictive-state matrix, and this will
improve the efficiency of computation.

In addition, we extracted predictive-state matrixes with recursive relationships directly
from the same original predictive-state matrix, and then omitted the step of reevaluating the
predictive-state matrix at the next-time moment to improve the computational efficiency of
the SSI method. In addition, through the SVD analysis of a data matrix [Ω][Ω]T , evaluated
by the projection matrix, [Ω], the modal estimation can be effectively performed, and the
corresponding computational efficiency can be improved.

By solving the system matrix through the observability matrix and constructing a new
predictive-state matrix composed from the original measured data matrix, the procedure of
modal estimation can be simplified, and the modal parameters can be effectively identified,
even for a structural system having closely spaced modes and relatively high damping. Fur-
thermore, the proposed modified SSI algorithm is applicable to the parametric estimation
of structures with incomplete modal information obtained from insufficient measurement
channels. In addition, the computational efficiency of the SSI method can be improved
due to the non-uniqueness of the observability matrix. However, the need for white noise
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excitation is still a main limitation to be resolved in the proposed method from ambient
response, and many mechanical systems are expected to be excited by significantly different
frequency content, in particular, by specific harmonics [27,28]. The actual limitations and
the applicability of the proposed method to real mechanical systems could be considered
for discussion in future work. Through numerical simulations and experimental verifi-
cation, we illustrated and validated the effectiveness of the proposed method for modal
estimation of structural systems from stationary ambient response data only.
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Abstract: For economic and environmental reasons, the use of renewable energy sources is a key
aspect of the ongoing transition to a sustainable industrialised society. Wind energy represents a
major player among these natural, carbon-neutral sources. Nevertheless, wind turbines are often
subject to mechanical faults, especially due to ageing. To alleviate Operation and Maintenance costs,
Vibration-Based Inspection and Condition Monitoring have been proposed in recent times. This
research proposes Instantaneous Spectral Entropy and Continuous Wavelet Transform for anomaly
detection and fault diagnosis, departing from gearbox vibration time histories. The approach is
validated on experimental data recorded from a turbine suffering bearing failure and total gearbox
replacement. From a computational point of view, the proposed algorithm was found to be efficient
and therefore even potentially applicable for real-time monitoring.

Keywords: structural health monitoring; condition monitoring; fault detection; rotating machinery;
wind turbines; instantaneous entropy; generalised morse wavelet

1. Introduction

According to the 2020 New Energy Outlook (NEO) released by BloombergNEF, wind
and solar energy are expected to grow up to 56% of global electricity demand by 2050,
with wind energy retaking the lead from photovoltaic [1]. By way of example, Denmark
is intended to achieve 100% non-fossil-based power generation by the same year, mostly
thanks to wind power [2].

This represents a unique opportunity for transitioning from classic, polluting fuels
to renewable and sustainable resources. In this regard, wind turbines are, nowadays, a
well-established technology and cost-efficient, especially when grouped in wind farms
(both on- and off-shore). Worldwide, the wind power capacity increased from about 13 Giga
Watts in 1999 to >760 GW in 2020 [3]. Furthermore, if compared to other alternatives such
as large hydropower plants, solar photovoltaic, or nuclear energy, wind power had the
most stable growth in the 2005–2016 period, being less subject to market fluctuations [4].

However, a major issue for the rapidly increasing market of wind power systems
is the relatively high probability of mechanical faults in wind turbines’ gearboxes. In
turn, this generates high Operation and Maintenance (O&M) costs. In detail, it has been
estimated that fixed and variable O&M costs account for between 11% and 30% of the
Levelized Cost Of Energy (LCOE, €/MWh) for onshore wind farms [5–7]. The costs for
offshore installations are much greater, due to the accessibility constraints and the hostile
environment (the topic is analysed in-depth in [8]).

Apart from some notable exceptions, like visual inspection (standard or enhanced; see,
e.g., [9]), oil analysis [10], or Non-Destructive Testing (NDT) approaches such as Ultrasonic
Testing [11], Acoustic Emissions [12], Thermography [13], and X-ray [14], Vibration-Based
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Inspection [15] is nowadays widely accepted as the standard for condition-based mainte-
nance, in particular for gearbox condition monitoring. Several signal processing techniques
and approaches have been proposed throughout the last 30 years for this specific appli-
cation; a recent and well-documented review can be found in [16]. In fact, the Structural
Health Monitoring (SHM) of the wind turbines’ several components has attracted much
interest from the researchers’ community in the last decade (see, e.g., [17–20]).

The procedure discussed here is based on the instantaneous definition of the Shannon
Spectral Entropy (SSE, [21]). That is to say, the Instantaneous Spectral Entropy (ISE)
is applied as a time-dependent, damage-sensitive feature for damage event detection.
Indeed, Spectral Entropy has been suggested for the assessment of rolling-element bearing
performance [22]. In its standard definition, it has been applied to stationary signals for
the Structural Health Monitoring of masonry buildings [23,24] and steel pipelines [25,26].
In previous studies, ISE was validated for an aluminium frame structure undergoing
structural changes under controlled laboratory conditions [27]. However, to the best of the
Authors’ knowledge, it has never been investigated for condition monitoring purposes, let
alone on experimental data originating from wind turbines under operating conditions.

The remaining of this article is organised as follows. In Section 2, the theory of SSE
and ISE is recalled. Section 3 resumes some basic definitions for the Continuous Wavelet
Transform (CWT) and the Generalised Morse Wavelet (GMW), which have been utilised
here to define the time–frequency (TF) representations needed for the ISE analysis. Section 4
describes the experimental case study. Section 5 reports the results and Section 6 briefly
discusses them. The Conclusions end this discussion.

2. The Instantaneous (Shannon) Spectral Entropy

In this research, the Instantaneous Spectral Entropy is proposed as a damage-sensitive
index for condition monitoring. Specifically, the Shannon Spectral Entropy is utilised for
this aim. The rationale for entropy measurements in SHM is quite straightforward. It
derives from the eighth (and last) axiom of Structural Health Monitoring [28], which states
that: “damage increases the complexity of a system” [29] where the definition of ‘complexity’
(intentionally left vague by the original authors) can be intended from both a geometrical
and signal processing standpoint. In the first case, the damage is intended as a localised
inhomogeneity, which can be detected from a certain time instant (the ‘damage event’)
onwards. From the vibrational perspective, this is rather intended as the occurring of
additional signal components, previously inexistent in the undamaged baseline. A classic
example would be the insertion of super- and sub-harmonics due to the presence of a
breathing crack in an otherwise linearly behaving structure [30]. In this sense, the concept
of an entropic framework for signal analysis has been recently further detailed in [31].

Noteworthy, the concept of an ‘increase’ in complexity naturally incorporates the
pre-existing conditions, that is to say, randomly distributed manufacturing defects in the
structure under investigation and measurement noise in the recordings derived from its
analysis [32]. These aspects do not affect the entropy variation when damage is inserted in
the system; therefore, this framework fits well in the general context of SHM as an outlier
(anomaly) detection problem, i.e., as a deviation from a known baseline [33].

As mentioned earlier, this work deals with the instantaneous definition of entropy,
aiming at damage event detection. In this sense, it is necessary to recall that vibration
time series can be analysed with different signal processing approaches, depending on the
intended purposes. These fall into two main categories:

1. real-time analysis, using a small moving window of recent history over the data stream.
2. retrospective analysis, where the time series data are fully available and analysed

a posteriori.

In both cases, instantaneous parameters can be used to perform event detection; this
can be then applied to define the instant of damage occurrence (see, e.g., [34]). For the sake
of this research, the second case (retrospective analysis) will be considered. This is not
uncommon for SHM applications, where signals are sampled periodically (in the case study
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of this research, every hour) and then processed. Under these conditions, the rationale is
that a mechanical fault should be detected shortly after its appearance, in a near-real-time
fashion (i.e., with only some hours or, in the worst case, some days of delay). Truly real-time
SHM is more challenging since it strictly requires an uninterrupted, seamless stream of
data, plus computationally efficient routines capable of processing the raw data in a short
timeframe. This is generally an unnecessary complication, apart from extremely fragile
structures or systems, prone to sudden collapse.

In this regard, a notable example comes from the Aerospace Engineering field. In
the case of rotorcraft’s Health and Usage Monitoring Systems (HUMSs [35]), the real-time
condition monitoring of the rotating components is essential due to the rotorcrafts implicit
inability to sustain non-propelled flight. This sort of application falls beyond the aims of
this study; nevertheless, it will be shown how the proposed approach is suitable for such
tasks, thanks to a relatively short execution time.

Another important caveat should be addressed before moving on to the proper math-
ematical definition of SSE and ISE. That is, it is important to recall that the entropy of
the recorded output does not depend solely on the system behaviour. Indeed, it reflects
the frequency content of the input as well. For this reason, entropy-based approaches are
particularly well-suited for the operational modal analysis of civil structures and infrastruc-
tures since the ambient vibrations can be easily approximated to a pure white Gaussian
noise [23,24]. However, the concept is still suitable for deterministic driving forces. As long
as the input remains constant (or at least similar), any relevant variation in the output en-
tropy can be directly linked to a structural change in the target system. As it will be shown
later for the experimental case study, this condition is satisfied for wind turbines operating
at similar wind speeds. Furthermore, this input dependence can be easily bypassed by
pairing ISE values with wind speed readings and considering only threshold trespassings
at a constant wind speed.

2.1. Shannon Spectral Entropy

The general term spectral entropy (SE) refers to any measure of the uniformity of a
signal spectral power distribution. The definition of Shannon SE originates from the works
of Powell & Percival [21], based on the measure of uncertainty proposed by Shannon in [36].
Specifically, the SSE formula can be considered as the limit form of the generalised Rényi
entropy for α → 1 [37]. Specifically, for a given probability distribution in the frequency
domain P( f ), the SSE can be defined as

SSE = −∑B
f P( f ) log10 P( f ), (1)

where B is the total number of discrete frequencies, i.e., the bins of the distribution. Please
note that here, the base 10 logarithm was applied; however, any other base can be used,
without major conceptual differences. Equation (1) can be normalised by dividing it by
log10 B; nevertheless, for the sake of this research, the standard (non-normalised) definition
of Equation (1) has been preferred.

For a discretised power spectrum |H( f )|2, where H indicates the Discrete Fourier
Transform of a general signal h(t), the probability distribution can be written as

P( f ) =
|H( f )|2

∑B
f |H( f )|2 . (2)

This can be then extended to include the time dependency.
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2.2. Instantaneous Spectral Entropy

Similar to Equation (2), it is possible to define the probability distribution at time t as

P( f , t) =
|H( f , t)|2

∑B
f |H( f , t)|2 , (3)

where H( f , t) can be any form of time–frequency (TF) representation of the signal (this
aspect will be discussed in more detail in the next section). Then, the Instantaneous
(Shannon) Spectral Entropy becomes

SSE(t) = −∑B
f P( f , t) log10 P( f , t). (4)

Generally speaking, several options are available for the TF analysis of a given signal.
For this specific case, the Continuous Wavelet Transform was applied, using a Generalised
Morse Wavelet as the mother wavelet.

3. The Continuous Wavelet Transform and Generalised Morse Wavelet

The theory of wavelets and wavelet-based signal processing would be too long to be
recalled here; the interested reader is referred to the classic works of Rioul & Vetterli [38],
and Daubechies [39] for the basics concepts, and the book of Mallat [40] for a complete
discussion. In a few words, the main (but not the only one) feature of any wavelet is its
compact support in time. Differently from harmonic functions, which span indefinitely
from t = −∞ to +∞, these brief oscillations allow capturing time-varying phenomena [41].
For this reason, orthonormal wavelets have been extensively utilised for signal analysis via
Wavelet Transform (WT), especially for SHM applications (see, by way of example, [42];
a review about this topic can be found in [43]). In this regard, several variants of WT
exist, depending on the shifting and scaling of the basis function, known as the mother
wavelet (these points will be further discussed later). The two main forms are Discrete and
Continuous WTs; here in this study, the CWT has been applied.

3.1. Continuous Wavelet Transform

Considering again the signal h(t) defined in the time domain, its CWT can be expressed
(according to its most usual definition) as

CWTh(a, b) =
∫ +∞

−∞
h(t)ψa,b

∗(t)dt, (5)

i.e., a convolution of the given data sequence (here, the time series) with a resized and
time-translated version of the so-called mother wavelet, given as

ψa,b(t) =
1

2
√

a
ψ

(
t − b

a

)
. (6)

Therefore, ψa,b depends on the shift (b) and scale (a) parameters, as well as on the
original shape of this mother wavelet, which in turn is an arbitrarily selected localised
oscillatory function. Converting the wavelet scale to frequency, the final result is a TF
transform of the analysed time series. Please note that the term 1

2√a
in Equation (6) is only

needed to ensure equal energy at all time scales.
Importantly, it must be recalled that there is not a unique definition for the mother

wavelet ψ. Any time-limited oscillatory function with zero means and that satisfies certain
regularity and admissibility conditions [44] can be arbitrarily selected as the mother wavelet.
In this sense, a comparative analysis for SHM purposes can be found in [45]. Here for this
study, the Generalised Morse Wavelet has been tested.
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3.2. Generalised Morse Wavelet

For CWT-based signal processing, analytic wavelets are currently considered the
best option for precise TF analysis. These can be seen as complex-valued time/frequency
localised filters with vanishing support on negative frequencies [46]. In this regard, the
complex (or analytic) Morlet wavelet is arguably the most common option adopted. It
has been widely applied for the extraction of instantaneous parameters, e.g., from seismic
data [47]. Recently, the Morlet wavelet power spectral entropy has been investigated as
well, specifically for bearing fault localisation and severity assessment [48].

However, the complex Morlet wavelet is only approximating analytical for large centre
frequency ( fc) values. For small fc values, it may not meet the admissibility condition and
thus potentially lead to a negative frequency [49]. For this reason, the generalised Morse
wavelet has been preferred for this application, due to its totally analytic definition and
better time resolution.

The GMW was firstly envisioned by Daubechies & Paul [50], and then further de-
tailed and investigated by Lilly & Olhede [46,49]. Its formulation can be expressed in the
frequency domain (considering the natural pulsation ω = 2π f for simplicity) as [46]

Ψβ,γ(ω) = U(ω)αβ,γωβe−γω, (7)

where U(ω) is the Heaviside (or unit) step function, αβ,γ is a normalizing constant, and
β and γ are the two parameters which govern the specific shape taken by the general
formulation of Equation (7). More precisely, these two parameters are known as symmetry
(γ) and compactness (β). Furthermore, a third parameter, the time–bandwidth product, can
be defined as P2 = βγ and is used often (but not here) in lieu of β.

The main feature of the GWT is its adaptability, as it can be dilated or contracted in
the time–frequency domain to better suit the signal processing aims.

In detail, 2√P2 is directly proportional to the wavelet support along the time axis.
Therefore, for constant γ, increasing β implies a longer time–bandwidth. In turn, this
increases the rate of the long-time decay and broadens the central portion of the resulting
mother wavelet. For time–frequency analysis, a longer time duration, T, implies more
refined frequency resolution, Δ f = 1/T, which is generally useful. This point will be better
discussed in the Results (Section 5).

On the other hand, the gamma parameter controls the symmetry of the wavelet in
time through the demodulate skewness [49]. Increasing γ for constant β does not affect the
time–bandwidth, but broadens the GWT envelope, making it more or less directional. For
instance, if γ = 1, the zeroth-order GWT corresponds to the Cauchy wavelet [51], which is
strictly supported in a narrow convex cone in the time–frequency domain.

Different GWT shapes can better serve different purposes. These shapes can be
grouped in a piecewise fashion as follows:

1. For constant γ ≤ 3 (negative skewness), the time decay increases as the time–
bandwidth (P2, thus β) increases.

2. For constant γ ≥ 3 (positive skewness), the mother wavelet becomes more symmetric
as β increases.

Therefore, for γ = 3, both the time decay and the wavelet symmetry increase with β,
and the resulting mother wavelet narrows in frequency and enlarges in time, with more os-
cillations under its envelope. This derives from the demodulate skewness of the GWT being
null for gamma equal to 3; this results in a global maximum of the time/frequency con-
centration [46]—that is to say, it maximises the product of the time-domain and frequency-
domain standard deviations, known as the Heisenberg’s area [40]. Again, all these aspects
will be further investigated in a later Section.

4. The Experimental Case Study

The experimental recordings from a wind turbine have been used for the validation
of the proposed entropy-based Condition Monitoring strategy. The dataset (described

67



Appl. Sci. 2022, 12, 1059

in detail in [52]) originates from an undisclosed onshore wind farm, located in Northern
Sweden and consisting of 18 2.5 MW Nordex N100 wind turbines [53]. The continuous
monitoring was performed over 46 consecutive months, acquiring 1.28 s-long time series
(16,384 data points for a sampling frequency fs = 12, 800) approximately every 12 h.

Specifically, Turbine #5 was considered here, as the only one (out of six installations
included in the dataset) that suffered mechanical faults during the monitored timeframe.

The vibration time series of interest were collected from an accelerometer, located
and oriented as indicated by the black arrow in Figure 1 (which is based on the original
schematics from [52]). This was mounted on the housing of the output shaft bearing of
the turbine. The three-stage gearbox was made up of two sequential planetary gear stages,
followed by a helical gear stage. The position of the bearing failure is highlighted in red in
Figure 1. The damage consisted of an inner raceway failure on one of the four NSK RN2240
cylindrical roller bearings (CRBs) supporting one of the planets in the first planetary gear.
From visual inspection after disassembly (refer to [52,53]), the most probable cause was
identified as rolling fatigue-induced flaking (according to the NSK definition [54]), with a
loss of material and the consequent rough and coarse texture extended over most of the
contact surface. This caused the entire gearbox to be replaced after two years of operation.

Figure 1. Schematics of the three-stage gearbox, with the damaged bearing highlighted in red and
the position and direction of the output channels indicated by the black arrow.

Two signals of interest (portrayed in Figure 2) were defined by concatenating in
chronological order some consecutive time histories (THs), recorded from Turbine #5 as
described in Table 1 (the period column in Table 1 reports the time since the beginning of
the continuous monitoring as year fractions). The concatenating procedure applied here
reflects what was performed by Figueiredo et al. [55], to artificially generate a nonstationary
experimental benchmark from stationary experimental recordings, emulating time-varying
structural conditions with abrupt changes.

For signal #1, three segments were considered. These correspond to one recording
(the first one) shortly before replacement and two acquisitions (the remaining two thirds)
shortly after. These latter two were chosen since they are consecutive recordings with very
similar rotational speeds (i.e., very similar external input; reported as cycles per minute).

Signal #1 was intended to study the effectiveness of the algorithm, presenting a
discussion on parameter setting. For Machine Learning purposes, only the first tract was
used as training data for the statistical modelling of the normal operating conditions (NOCs).
The second and third parts of the signal provided the test points for the damage index.
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Figure 2. The investigated signals: (a) #1, (b) #2. Data standardised as z(t) =

(h(t)− μ(h(t)))/σ(h(t)). In (a), the dot-dashed vertical lines represent the three concatenated seg-
ments. In (b), the thick dot-dashed vertical lines enclose the segments considered for the training
set, the two validation sets, and the two test sets, in this order (see Table 1). The single segments are
separated by thin vertical lines.

For signal #2, a larger set of acquisitions were included. In this latter case, by consider-
ing only the optimised algorithm parameters, the intent was to address the full capabilities
of the proposed approach when trained on more than one tract. Thus, signal #2 was evalu-
ated on data with (almost) comparable rotational speeds before and after bearing damage.
Specifically, the following segments were used:

1. seven consecutive tracts corresponding to 14 months before fault (the first five ele-
ments for training and the last two for validation),

2. the single tract already included in signal #1 plus five other nearby tracts immediately
before fault (all included for further validation),

3. three recordings taken immediately after replacement, including the two already
considered in signal #1 (all considered for testing),

4. other five segments acquired 7 months later (considered again for further testing).

The second part of Table 1 reports more details about these THs.
For both signal #1 and #2, the data, originally reported in terms of [g], were standard-

ised (subtracting the mean and dividing by the standard deviation, for each recording
separately) to remove any potential issue related to the different amplitudes.

Figure 3 reports the Fast Fourier Transforms (FFT) of the five sets included in signal #2.
One can notice that the multiple harmonic components of each acquisition do not allow for a
simple comparison between the frequency content before and after the gearbox replacement.
Thus, the common damage detection strategy based on the analysis of the frequency shift
is hardly feasible in these circumstances. The same can be said for signal #1 as well since
it comprises a subset of the segments of signal #2. Indeed, the limited reliability of FFT-
based signal analysis for these typologies of bearing failure in wind turbine gearboxes was
reported as well in [53].
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Table 1. The concatenated recordings, as reported in the experimental database 1.

Signal #1

ID
number

Period of
recording

[years]

Rotational speed
[cpm]

Structural
conditions Set

1588 1.9972 785.45 Immediately
pre-replacement Training

1593 2.0040 783.61 Immediately
post-replacement Test

1594 2.0054 783.18 Immediately
post-replacement Test

Signal #2

ID
number

Period of
recording

[years]

Rotational speed
[cpm]

Structural
conditions Set

785 0.7936 777.79 More than one year
pre-replacement Training

786 0.7988 714.90 >1 year
pre-replacement Training

787 0.7989 779.824 >1 year
pre-replacement Training

788 0.8080 708.74 >1 year
pre-replacement Training

789 0.8205 711.63 >1 year
pre-replacement Training

790 0.8208 785.33 >1 year
pre-replacement Validation #1

791 0.8217 774.61 >1 year
pre-replacement Validation #1

1485 1.8480 768.34 Immediately
pre-replacement Validation #2

1486 1.8493 733.26 Immediately
pre-replacement Validation #2

1487 1.8507 772.99 Immediately
pre-replacement Validation #2

1488 1.8521 832.43 Immediately
pre-replacement Validation #2

1489 1.8537 706.29 Immediately
pre-replacement Validation #2

1588 2 1.9972 785.45 Immediately
pre-replacement Validation #2

1593 3 2.0040 783.61 Immediately
post-replacement Test #1

1594 3 2.0054 783.18 Immediately
post-replacement Test #1

1595 2.0076 744.07 Immediately
post-replacement Test #1

2021 2.5995 786.29 More than half a year
post-replacement Test #2

2022 2.6009 777.30 >1/2 year
post-replacement Test #2

2023 2.6023 772.13 >1/2 year
post-replacement Test #2

2024 2.6036 757.19 >1/2 year
post-replacement Test #2

2025 2.6050 836.38 >1/2 year
post-replacement Test #2

1 http://ltu.diva-portal.org/smash/record.jsf?pid=diva2%3A1244889&dswid=-2411 (accessed on 24 June 2021).
2 Already included in signal #1 for training. 3 Already included in signal #1 for testing.
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Figure 3. Fast Fourier Transforms (FFTs) of the segments of each set included in signal #2. (a): training
set; (b): validation set #1; (c): validation set #2; (d): test set #1; (e): test set #2.

5. Results

5.1. Signal #1

An example of results is reported in Figure 4. The green line corresponds to the
Instantaneous Spectral Entropy, defined at any timestep. The two horizontal dashed lines
correspond to the upper and lower bounds of the Gaussian distribution fitted over the ISE
values of the training set, that is to say, ISE(t) ≡ μb + 2σb and ISE(t) ≡ μb − 2σb, where μb
and 2σb correspond, in the same order, to the mean and standard deviation of the baseline
tract, which is assumed to be almost stationary.

However, it was verified that these two thresholds were not optimal for anomaly
detection. Indeed, as it can be seen, the ISE(t) value is quite unstable and subject to strong,
rapid fluctuations. For this reason, a moving mean (calculated over a sliding window of
10,000 timesteps, i.e., 0.84 s) was preferred as a more stable indicator. This is indicated by
the thick black line. The area shaded in grey corresponds to its expected values in ‘normal’
conditions, defined (similarly as before) as all points in between μmovmean,b − 2σmovmean,b <
ISE(t) < μmovmean,b + 2σmovmean,b, i.e., with a 95.45% confidence of belonging to the same
population as the training data points. One can see that, for the two test scenarios, the
value of the moving average of ISE(t) generally deviated from the previously stationary
conditions, trespassing the lower threshold. This can be used to perform automated and
instantaneous fault detection.

The results portrayed in Figure 4 focus on a single value of symmetry (γ = 3) and
varying β. The effects of these two parameters have been thoroughly investigated. The
findings will be discussed in the next subsection. However, the two points (1) and (2)
highlighted above were encountered for any combination of γ and β. This proves that the
ISE(t), especially when smoothed via a moving average with a properly sized window
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length, is, overall, effective and efficient as a time-dependent DSF, thus suitable for damage
event detection.

Figure 4. Resulting ISE (signal #1). Values for γ = 3 and β equal to (a) 2, (b) 14, (c) 28, and (d) 40.

5.1.1. Sensitivity Analysis for the GWT Parameters

Since the ISE(t) is a synthetic feature derived from the TF transform of the recorded
signal, better time and frequency resolution will return more reliable results. Thus, it
is essential to optimise the CWT settings. In the case investigated here, as mentioned
in Section 3, the particular shape of the Generalised Morse (mother) Wavelet depends
exclusively on the values considered for the doublet of parameters (β, γ). Therefore, to
improve the capabilities of the proposed DSF, fine-tuning these two parameters becomes
the most critical aspect of the whole procedure. For this reason, a dedicated sensitivity
analysis has been performed.

The following cases were considered:

1. Symmetry equal to γ = 1, 1.5, 2, 2.5, 3, 3.5, or 4.
2. β varying from 2 to 40 in steps of 2.

Hence, a total of 140 combinations were analysed. The range of β was defined to not
exceed the suggested β

γ ≤ 40 ratio [49]. Accordingly, P2 (as the product of the lowest values
of both β and γ) ranges from a minimum of 2 to a maximum of 160.

The aim of this optimisation is dual. For the training dataset, the data should behave
as homogeneously as possible, to clearly define a NOCs model. This implies the signal
stationarity (that is, constant mean μ and standard deviation σ) and low variability (i.e., low
sigma values).

For a constant gamma (in the previous example of Figure 4, γ = 3) increasing β
decreased the absolute value of both μ(ISE) and σ(ISE). This latter point resulted in
a narrower interval of confidence. In turn, this increased the sensitivity to damage as
the threshold was lowered. The same trend was observed for all the other values of γ
investigated here as well.

Regarding the testing part (second and third tracts of the concatenated signal), it is also
noticeable how larger β values increased the detectability of the fault condition, making a
more marked transition from the “pre” to “post” damage insertion conditions. Again, this
finding was verified for all values of γ ∈ [1, 4].
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As anticipated, this derives from the detail of the TF representation. Figure 5 shows
this point for the examples reported in Figure 4. Please note that to avoid any potential
aliasing issue and considering the very high sampling frequency, the TF was truncated
at fs/4 (3200 Hz). The instant corresponding to the damage event is marked by the red
dashed line.

Figure 5. Time–frequency distributions corresponding to the results shown in Figure 4 (γ = 3 and β

equal to (a) 2, (b) 14, (c) 28, and (d) 40).

One can see that the TF representation for β = 2 and γ = 3 is clearly unreliable. The
TF representations become more and more refined over the frequency axis as both (i) the
length of the time support and (ii) the number of oscillations under the GWT envelope
(and therefore the instantaneous frequency resolution) increase with P2 (Figure 6). Since
P2 = βγ, this latter effect can be achieved by independently increasing β or γ.

Figure 6. Mother wavelets (in the time domain) corresponding to the results shown in Figure 4 (γ = 3
and β equal to (a) 2, (b) 14, (c) 28, and (d) 40).
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On the other hand, the effects of varying γ for constant β can be summarised as follows.
For any value of the symmetry value, lower values of β (β = 2 in the example of

Figure 7) have too coarse a frequency resolution and are thus almost unusable for the
intended purposes, as it can be seen from the ISE values barely changing when moving
from pre- to post-damage conditions. The corresponding TF representations are reported
in Figure 8.

Figure 7. Resulting ISE (signal #1). Values for β = 2 and γ equal to (a) 1, (b) 2, (c) 3, and (d) 4.

Figure 8. Time–frequency distributions corresponding to the results shown in Figure 7 (β = 2 and γ

equal to (a) 1, (b) 2, (c) 3, and (d) 4).

On the other hand, β ≥ 4÷ 6 might return acceptable results, depending on the paired
γ values. Generally speaking, γ ≤ 2.0 ÷ 2.5 returned distorted results, at least for the
application investigated here. This is even more noticeable for γ ≤ 1.5, which were found
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to be unreliable for any value of β. The results were instead less influenced by β when
the symmetry parameter was set as equal or larger than 2.0 ÷ 3.0. By way of example, for
β = 20, any gamma larger than 2 returned almost the same ISE(t) time history (see Figure 9;
the corresponding TF transforms are reported in Figure 10).

Figure 9. Resulting ISE (signal #1). Values for. β = 20 and γ equal to (a) 1, (b) 2, (c) 3, and (d) 4.

Figure 10. Time–frequency distributions corresponding to the results shown in Figure 9 (β = 20 and
γ equal to (a) 1, (b) 2, (c) 3, and (d) 4).

In conclusion, the following points can be highlighted from this sensitivity analysis:

1. Values of β ≥ 20 are all deemed suitable. Increasing β reduces the variability of the
results, at least on the specific case study investigated here. Therefore, large values of
β are recommended, independently from the selected γ.
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2. γ ≥ 3 is suggested to avoid potential issues, even if 2.5 ≤ γ ≤ 3 were found to be
suitable as well for the range of β selected above, at least for this case study.

The suggested range is depicted in Figure 11, considering the mean and standard
deviation of the ISE(t) computed over the NOCs. As mentioned previously, it is important
to have stationary and low variance over the training dataset. This condition was confirmed
for β ≥ 20 and γ ≥ 3. This selected area is also intended to avoid the undesired time-
domain sidelobes and frequency-domain asymmetries that arise from very small time–
bandwidth and large symmetry values.

Figure 11. Trends of ISE values for the normal conditions. (a): μ(ISE) for varying β; (b): μ(ISE) for
varying γ; (c): σ(ISE) for varying β; (d): σ(ISE) for varying γ.

5.1.2. Computational Efficiency

The computational effort required by the feature extraction procedure was further
tested. This is essential for online SHM since the whole algorithm (feature extraction
and threshold validation) should be performed in real-time, i.e., during the acquisition of
an uninterrupted data stream. This is generally performed via a small moving window
of recent history. Therefore, the computational time needed should be smaller than the
considered time window.

Of the two main steps—TF transform and ISE(t) computation—the first one is the most
demanding. Indeed, instantaneous SSE was performed (for the signal length considered
here) in less than 0.6 s on average. This test, as well as the following ones, was performed
on a laptop equipped with Windows 10 64-bit, Intel Core i7-7700HQ with CPU 2.80 GHz
and 16.0 GB RAM, and MatLab R2020b.

The CWT was found to be slightly longer to perform. As it can be seen from Figure 12,
the elapsed time is mostly equal for any pair of values in the inspected ranges of the
two GWT parameters. Except for (γ = 2, β = 40) and (γ = 2.5, β = 10), which lasted,
respectively, for 5.8 s and 3.5 s, the CWT ran in less than 2.0 s everywhere else. Considering
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all cases, the overall mean elapsed time is about 1.08 s (1.02 s excluding the two outliers),
with many combinations running in <1 s.

Figure 12. Boxplot of the CWT execution time. (a): as a function of β. (b): as a function of γ.

5.2. Signal #2

Figure 13 reports the results for the second, longer signal. β = 40 and γ = 3 were set
for this further study. One can notice that except for some tracts where the rotational speed
was slightly higher than the average, the normality model—defined over five consecutive
acquisitions—was validated almost everywhere on both the two validation sets (corre-
sponding to, respectively, 14 months and immediately before the gearbox replacement).
This indicates that the process has a certain level of robustness for relatively similar rota-
tional speeds. Nevertheless, in some segments (more markedly in tract #1489, belonging
to the second validation set, and to a lesser extent in #1487 and #1588, from the same set),
three false positives were encountered. This can be explained since in binary classification,
fine-tuning the classification algorithm parameters generally induces an increment in both
the true positive and the false positive rates.

Figure 13. Resulting ISE (signal #2). Values for. β = 40 and γ = 3.

Immediately after the gearbox replacement, for a comparable wind speed, the ISE
showed a noticeable decrease (as already described in the previous subsection). This
behaviour was confirmed in the second test set, i.e., after more than seven months from the
gearbox replacement. One can notice how some elements of the training and validation
datasets have almost the same rotational speed but different ISE—e.g., tract #1588, the last

77



Appl. Sci. 2022, 12, 1059

one of the second validation set, and #2021, the first one of the second test set, correspond,
respectively, to 785.45 and 786.29 cpm. This seems to indicate that the different output is
not linked to any input variation but rather to structural changes.

6. Discussion

The experimental results show that the Instantaneous (Shannon) Spectral Entropy can
be effectively used as a time-dependent damage index for Pattern Recognition-based SHM.
However, one must use care in obtaining a time–frequency distribution which is as refined
as possible, especially along the frequency axis. For this reason, a dedicated study was
carried out.

High γ and β values return the highest possible time duration and number of oscil-
lations under the GWT envelope, which in turn grants the highest frequency resolution
achievable at any instant. This greatly increases the damage detection capabilities of the
proposed entropy-based approach. The performance reaches a plateau at a certain point,
where the instantaneous power spectrum is refined enough, and further increasing Δ f does
not significantly improve the final results. In this application, as mentioned previously, this
was found at β ∼= 20, γ ∼= 3, which therefore constitute the lower boundaries of the range of
suggested settings. If one is interested in further improving the detectability of damage (by
further shrinking the confidence interval around the normality model), according to these
findings, increasing both β and γ might be helpful. The optimal pair of (γ, β) is, therefore,
only limited by possible variations in the computational effort required. However, from the
point of view of the computational effort, it was found that there is no relevant difference
between different parameters.

However, due to the well-known optimal trade-off between time and frequency
resolution (recalled in Section 3.2), it is strongly suggested to test γ = 3 as a first attempt,
independently from the specific dataset, before increasing β. Only if, after reaching β = 40,
the resolution Δ f is still insufficient to obtain reliable ISE(t) estimates, the symmetry
parameter should be further increased.

7. Conclusions

The Instantaneous Spectral Entropy (ISE) has been discussed as a potential time-
dependent damage index. The Shannon Spectral Entropy (SSE) definition was used for this
aim. The goal of this research was to perform damage event detection retrospectively on
acquired vibration time histories, recorded from a wind turbine gearbox. The Continuous
Wavelet Transform (CWT) was applied to define the time–frequency representation needed
to extract the ISE. In this regard, a sensitivity analysis has been carried out on the parameters
of the Generalised Morse Wavelet (GMW), to investigate their effects on the final results.
Some suggestions were made based on the experimental data analysed here. However,
further studies will be needed to assess these findings on different datasets, also considering
different sampling frequencies and varying the duration of the recorded measurement
time series.

The pure ISE was found to be significantly affected by spikes, i.e., very fast, short-
termed transients of the instantaneous entropy. For this reason, its moving mean has been
preferred as a more stable time-dependent index. The procedure successfully detected
the occurrence of bearing faults on experimental data, recorded before and after a bearing
failure and concatenated to emulate a time-varying structural condition. The moving mean
of ISE returned some isolated false alarms as well; however, only an actual alteration of the
machine condition caused a permanent deviation from the baseline.

As an entropy-based approach, the ISE is inherently limited by its dependence on the
input force. That is to say, measurements corresponding to highly different wind speeds
cannot be directly compared for anomaly detection. Future works will also include the
automation of the selection procedure for acquisitions related to similar wind speeds.

Finally, the relatively low computational burden and rapid execution time suggest that
the method can be further extended to real-time, online applications. This can be achieved
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using a small moving window of recent history over the data stream. These potential
applications will be further investigated in future works as well.
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Abstract: In recent years, the use of interferometric satellite data for Structural Health Monitoring
has experienced a strong development. The urban environment confirms its fragility to adverse
natural events, made even more severe by climate change. Hence, the need to carry out continuous
monitoring of structures and artefacts appears increasingly urgent. Furthermore, satellite data could
considerably increase the feasibility of traditional Structural Health Monitoring (SHM) approaches.
This study aims to explore this remote sensing approach, focusing on the representation techniques
that can be adopted to highlight their advantages and provide an interpretation of the results. In
particular, the study analyzes records from the urban area of Rome (Italy), subject to the construction
of a new subway line. These data are exploited to create a velocity map to highlight the possible
subsidence phenomenon induced by excavations. Then, the paper focuses on single buildings or
building complexes through the entropy-energy representation. Beyond the different limitations
caused by the input data, a correlation is identified between the results of the two representation
techniques. Accordingly, the effects of excavation on the urban area are demonstrated, and the
methodologies are validated.

Keywords: Structural Health Monitoring; satellite data; remote sensing; SBAS–DInSAR; subsidence;
subway excavation

1. Introduction

In recent years, the built environment and entire urban areas have been subjected
to many adverse natural phenomena or extreme events, which can often be linked to
advancing climate change. It highlighted how buildings, infrastructures and architectural
heritage structures are highly fragile and vulnerable. Therefore, there is a growing concern
in approaches to examine the built environment and, in particular, the constructions
with strategic or historical/architectural value to ensure higher safety and reliability or
predict the structural behavior in case of unforeseen events. Thus arises the need for novel
Structural Health Monitoring (SHM) techniques and technologies capable of providing
continuous datasets, with high efficiency and reduced costs.

Indeed, traditional SHM applications require the use of a high number of sensors
(e.g., accelerometers for motion measuring, thermocouples, anemometers, etc.) [1], which
can prove costly. Among new SHM technologies, the possibility of using remote sensing
techniques [2], especially data gathered by constellations of artificial satellites, is becoming
a viable option. Satellites allow observing the earth’s surface through the interaction
of electromagnetic waves, with objects placed even at a considerable distance from the
observer [3]. The main advantages are to guarantee a broad coverage both spatially and
temporally, with a low environmental impact.

Appl. Sci. 2022, 12, 1658. https://doi.org/10.3390/app12031658 https://www.mdpi.com/journal/applsci83



Appl. Sci. 2022, 12, 1658

The potentialities of applying satellite remote sensing for urban applications have
been highlighted as long ago as in 1985 by Foster [4]. However, the employment of this
remote sensing approach for civil SHM is recent and has been fostered by the increase in
data quality and the development of new algorithms for data processing.

The satellite sensors use radar waves, characterized by wavelengths in the range
between 1 m and 1 mm. In addition, data can be acquired regardless of the presence of
sunlight and can be used even in sub-optimal weather conditions (e.g., in the presence of
clouds). Satellites commonly roughly follow polar orbits, with a slight inclination angle
to the meridians, and descending and ascending orbits are distinguished depending on
the pole toward which the satellite moves. The direction along which there is the emission
and reception of the signal is called Line of Sight (LOS) and is the direction along which
the sensors gather the images and information about the displacements of points on the
earth’s surface.

The new SHM approaches exploit the radar images gathered from satellite constella-
tions, adopting Synthetic Aperture Radar (SAR). It is a satellite radar acquisition technique
that uses the synthesis of a virtual antenna with a kilometric aperture to improve spatial res-
olution. This virtual antenna is simulated by acquisitions made on the same area, observed
at different times and positions by the same satellite [5].

Among SAR acquisition techniques, the Interferometric SAR (InSAR) is employed to
extract displacement information. It allows describing interferograms by comparing the
SAR data over a baseline time and evaluating the differences between the measures [6]. A
particular kind of InSAR is the Differential Interferometry SAR (DInSAR), in which only
the pure displacement components of the differential satellite target phases are depicted
from the images acquired by the satellite in the same area at different time instants.

Satellite interferometric data have already been exploited in some early SHM applica-
tions for urban areas and to quantify large-scale phenomena, such as land subsidence [7–12].
Recently, the need for efficient real-time monitoring of damage led to the development
of new techniques, such as the multi-temporal InSAR (MT-InSAR) [13]. By combining
different differential interferograms, MT-InSAR approaches more accurately provide the
trends of displacements in the area of interest and their temporal evolution. Therefore, they
have been applied to detect anomalies in a single structure [14] and for the assessment
of tunnel-induced subsidence and related damage [15]. Despite the advantages afforded
by this new approach, there are still many limitations and challenges to overcome [16,17].
They are mainly due to the differences between satellite data and the information required
by traditional SHM techniques and obtained from in situ sensors.

Furthermore, new visualization/representation approaches are necessary to give a rel-
evant interpretation of the measures provided by satellite datasets. This issue is of primary
importance to realize automatic procedures for the assessment of structures’ behavior and
for the diagnosis of anomalies, which may be connected to structural damage. The main
representation techniques refer to the distribution of direct quantities (i.e., displacements
along the LOS, velocities along the LOS). However, it is also possible to create maps or
diagrams of indirect measures to enhance data interpretation. It is the case of spectral
entropy-energy graphs, which can be used to estimate the average information of the signal
and to characterize the behavior of a system.

This study aims to explore and compare the possibilities given by the different method-
ologies of satellite data representation and to highlight the advantages provided by the
evaluation of spectral entropy for the description of whole structural systems. This is
accomplished by analyzing the case study of the area of Rome (Italy) subject to excavations
for the construction of the T3 section of the subway line C. This work is under construction,
which began in 2013, and affects an area rich in architectural heritage.

This paper is organized as follows: Section 2 briefly describes the characteristics of the
satellite data employed and the proposed representation approaches; Section 3 concerns
the results of the case studies; finally, conclusions are presented in Section 4. The case
study initially focuses on representing data at a territorial scale to identify the subsidence
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phenomena induced by the excavation of the two tunnels of the underground railways.
Then, the entropy-energy diagram is adopted to describe single monumental buildings
or building complexes, highlighting the presence of points with outlier signals. However,
the data used for this representation refer to a period that is insufficient to detect an actual
anomaly in the structural behavior due to the poor frequency content. Consequently,
the two types of representation used are compared to verify the results and obtain cross-
validation of the methodology. A further comparison is made between the representations
in the first and second parts of the analyzed period for a small complex of structures, as
well as for the monumental Colosseum structure.

2. Materials and Methods

The analysis conducted employs the ascendant SAR images acquired by the COSMO
SkyMed (CSK) satellite constellation in the period from March 2011 to March 2019, the same
data employed in the DPC-ReLUIS 2019–2021 project [18]. CSK is an earth observation
mission conceived for civil and military purposes, developed by the Italian Space Agency
(ASI) [19] in cooperation with the Ministry of Defense. It is based on a constellation of low
earth orbit satellites equipped with SAR working in X-band. The differential interferometric
SAR information is processed by adopting the Small Baseline Subset algorithm (SBAS–
DinSAR) [20,21]; thus, it is possible to obtain the displacements with the accuracy of
centimeters and millimeters.

2.1. Satellite Data

It is necessary to underline that the satellite data used are subjected to different levels
of preliminary treatments to obtain SAR standard products and higher-level products, such
as the interferometric ones [22,23]. Afterward, these are additionally processed according to
the SBAS–DinSAR algorithm [20,21]. The processing methods could cause new difficulties
in the further treatment of data, e.g., the improper elimination of useful points, or the
preservation of non-structural points, increasing the uncertainty of the results [16]. In
addition, it has to be considered that the LOS data do not refer to the point on the ground,
but to the point measured by the sensor (e.g., the roof of a building). Thus, to exploit
them in the assessment of subsidence, the simplifying assumption of having structures
undergoing a uniform subsidence phenomenon is introduced. Finally, a further limitation
in the use of satellite data is due to the presence of a large dataset, in which points with
incorrect measurements due to preliminary processing or insignificant ones (i.e., those
that do not fall within the built area) are also included. As mentioned in reference [16],
this presence contributes to increasing the analysis’ uncertainty, so these measures should
be removed. However, this study considers an average, approximate behavior of the
urbanized area and not the individual building. Therefore, this issue is neglected. For the
evaluation of the case study, SAR images were extrapolated only for the area related to
the T3 section of the Line C subway in Rome (Figure 1). This route connects the station of
San Giovanni to the Colosseum, with an intermediate station (Amba Aradam/Ipponio).
The area has great importance because it includes many structures of architectural and
monumental value, such as the Colosseum itself, the Basilica of Santo Stefano Rotondo,
the Basilica of Maxentius, the Aurelian Walls, the Colonnades of the Forum of Nerva and
the Church of Santa Maria in Domnica. Although construction operations started in 2013,
the project required various preparatory works and was subjected to delays. Therefore,
tunnel excavation only began in 2018, after the inter-tract shafts realization in 2017 [24]
(see Figure 1 for reference). This information is relevant for the identification of the area
affected by the subsidence phenomenon induced by the excavations.
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Figure 1. Map showing the T3 section of the Line C subway and the numerosity of points obtained
by satellite interferometry over the analyzed urban area of Rome (Italy).

Regarding the soil characteristics, starting from the ground level, the stratigraphic suc-
cession shows the first layer of recent deposits, whose thickness reaches values of 13–16 m.
It follows a layer of recent alluvial deposits lying on Pleistocene deposits, characterized in
the upper portion by clayey silts and silty clays, locally sandy, and in the lower portion by
sands and gravels. The water table level is placed at about 8–10 m from ground level. The
depth of the tunnels is approximately 30 m between the San Giovanni and Amba Aradam
stations, then increasing up to 57 m at shaft 3.2 and subsequently decreasing to 32 m at the
Fori Imperiali station.

For each of the measured points, the employed dataset contains the geographic co-
ordinates, the topographic elevation, the velocity and the LOS displacement at each time
interval with respect to the initial one. The displacement and velocity values are given
along the line of sight of the satellite sensor. Therefore, information on their overall de-
formation process can only be derived by processing the data obtained from both orbits
(ascending and descending). However, a single dataset can still be used to obtain some
preliminary information. In the case of subsidence phenomena, it can be assumed that the
main direction of deformation is vertical. Thus, it is possible to derive the intensity of the
displacement or the velocity along this direction, starting from the projection measured
along the LOS of the satellite [18].

Furthermore, from a qualitative point of view, it is possible to observe only the dis-
placements along the LOS, since, according to the assumption made earlier, a negative
displacement or velocity (i.e., moving away from the satellite) is representative of a subsi-
dence effect. From these presumptions, an interest in the representations/visualizations
of direct quantities along the LOS arises. Furthermore, it is possible to derive valuable
information from indirect measures, such as the spectral entropy of the signal.

2.2. Entropy Measures

According to Shannon’s definition, which is based on the concepts of information
theory (IT), spectral entropy is a measure of uncertainty (or variability) associated with ran-
dom variables [25]. It describes the information carried by a signal and allows quantifying
its complexity. The introduction of this quantity for Structural Health Monitoring purposes
arises from the assumption that the complexity of a structural system increases with the de-
velopment of damage [26]. In the case of perturbations with specific, non-random behavior,
there are low values of spectral entropy. On the contrary, a more complex and stochastic
behavior leads to higher values of spectral entropy.

Shannon Spectral Entropy (SSE) evaluates the spectral power distribution from the
Fourier transform of the signal to represent the dataset behavior in the whole observation
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period. Yet, it could be possible to use a spectrogram to estimate the instantaneous entropy
and obtain its time series vectors. This study adopts the non-instantaneous spectral entropy,
which is evaluated for each point of a system to describe the whole signal. In addition, the
values are normalized with respect to the spectral entropy of the corresponding white noise
to fit the regression inequalities rules. Given the signal x(t), and the probability distribution
Pf in the frequency domain, the normalized Shannon Spectral Entropy is given by

Hn = −
∑N

f=1 Pf log2

[
Pf

]
log2N

(1)

where N is the total number of frequencies, and log2N is the maximal spectral entropy of
white noise. Consequently, this indirect measure can be used to realize maps or diagrams. In
the following section, the spectral entropy is plotted on a dispersion diagram as a function
of the signal energy. A regression model is adopted to highlight the trend and define
the related probability distribution, which is used to impose a threshold for identifying
the outliers.

The entropy-energy dispersion and the LOS information are evaluated together, em-
ploying scatter plots to assess how the points subjected to subsidence are located on the
dispersion. In addition, the representations are evaluated for two subsequent periods,
before and after the excavation, comparing their regression parameters to highlight the
differences in the results.

3. Results

The present section describes the application of the interferometric satellite data to
identify subsidence effects due to the excavation of the T3 section of Line C subway
in Rome’s urban center. Firstly, the assessment is performed on a territorial scale of
observation. Secondly, the entropy-energy representation is adopted to focus on the effects
on a single structural system and to detect points with anomalous signals. In the third part,
a comparison is discussed and, finally, the approach is applied to the Colosseum case study.

3.1. Territorial Scale Analysis

The subsidence effects induced by the excavation of the two subway tunnels can be
observed in the years since 2017. In this period, the construction of the first section began
with excavation performed using two TMB excavators. However, the entire route of the T3
section cannot be studied because it had not been finished by March 2019, which is the last
time for which data are available. In detail, within this period, the excavations concerned
the route from the station of San Giovanni to shaft 3.2, located in an intermediate position
between the Amba Aradam/Ipponio station and the Colosseum, as shown in Figure 2. As
a result, the area in which the displacements can be analyzed is further reduced.

The dataset contains the displacements along the LOS, which are used to evaluate the
average annual velocity along the LOS. Figure 3 reports the velocity (cm/yr) on the map in
the period from 2017 to 2019, while Figure 4 refers to the period from 2014 to 2016 and is
used for comparison. It is worth observing that, in the period of the excavation (Figure 3),
the velocity distribution presents a higher number of points with negative measures when
compared to the previous years (Figure 4). These points are shown in yellow or red, and
the negative value indicates that they are moving away from the satellite orbit, so they
are qualitatively correlated to the subsidence phenomenon. As shown by the presence of
negative values in Figure 4, it is not possible to exclude the possibility that subsidence
also occurred before the construction of the metro line, for reasons uncorrelated with the
excavations. However, it can be noticed how the points with negative velocity values
strongly cluster along the subway route in Figure 3. Moreover, the underground work
proceeded from the east of the reported area, moving westward; this may explain the larger
concentration of these points on the rightmost portion of the figure.
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Figure 2. Map showing the T3 section of the Line C subway, the stations, the inter-tract shafts
and the interaction with the other subway lines, Rome (Italy), edited from (https://goo.gl/maps/
zPUUjveLSWBzj7nC9, accessed on 28 January 2022), [27].

Figure 3. Map showing the dispersion of the average annual velocity along the LOS in the period
from 2017 to 2019. The route in black refers to the part already under construction; the route in grey
refers to parts not yet built.
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Figure 4. Map showing the dispersion of the average annual velocity along the LOS in the period
from 2014 to 2016.

To quantitatively study the subsidence phenomenon in the period from 2017 to 2019,
the probability distribution of velocity values is estimated. Assuming a Gaussian distribu-
tion, the values have a mean equal to μ = 0.0440 cm/yr and a standard deviation equal
to σ = 0.4132 cm/yr. This distribution allows identifying the negative outliers, points
that deviate most from the general behavior of the distribution on the negative branch, in
which the velocity is lower than μ − 3σ, that is to say, all the points with less than 0.14%
probability of belonging to the same statistical distribution. From a physical point of view,
these outliers can be interpreted as locations where subsidence is particularly prominent.

As seen in Figure 5, although the points outside this lower threshold are not exclusively
distributed along the track, approximately 52% of them are concentrated in the route
proximity (route ± 150 m). These points fall mainly on the route between San Giovanni
station and the intermediate station of Amba Aradam/Ipponio, where the depth of the
tunnels is about 30 m. On the other hand, in the latter part, the depth increases up to 57 m
at shaft 3.2. Moreover, this portion of the track has been subjected to excavations near
the end of the period for which data are available, so it was expected to find fewer points
outside the threshold. The presence of excavation-induced subsidence was also confirmed
in other studies [28,29].

3.2. Entropy-Energy Representation

The representations of mean velocity and entropy-energy data are basically comple-
mentary, that is, they provide different information, which are correlated. The entropy of
a signal coming from a structural system defines its propensity to follow a deterministic
behavior. That is to say, a lower entropy corresponds to a higher deterministic behavior.
An output signal can change its characteristics due to: (i) system properties changes, and
(ii) variation of input source. The interest here is only to input independent features; thus,
what matters is how the entropy changes in relation to its energy value. This allows for
discarding input-related variations, which are not of interest for SHM. When the entropy
changes its value (in relation to its energy level) this means that the system changes its
internal correlation (since entropy is used to estimate system complexity). Importantly,
this can also happen if the mean velocities of the points remain constant; however, the
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opposite is not true, since an increase in the mean velocity would lead to higher energy
and thus lower entropy. Thus, the mean velocity cannot change if the entropy-energy level
remains constant.

Figure 5. Map showing the points with velocity outside the imposed lower threshold, with respect to
the subway route and the proximity boundaries.

Therefore, the energy-entropy representation implicitly carries more information than
the mean velocity. The mean velocity is only representative of the displacement trend
over time. Instead, any variation in the trend, frequency content, amplitude and phase is
reflected in the entropy-energy representation.

An example is when a signal with zero mean increases its amplitude (e.g., due to a
loss of stiffness). In this case, the mean velocity, being unchanged, would not allow for any
novelty (thus, damage) detection. On the contrary, an increase in amplitude with constant
mean velocity would lead to a change in entropy-energy values, and thus to a potential
change of the complexity of the system. The mean velocity, however, is still an important
datum to monitor because its straightforward physical meaning is connected to the rate of
displacement in time (e.g., subsidence or swelling of the soil).

While it is true that entropy-energy representations cannot be adopted for the de-
scription of a whole urban area if the systems falling in the area are too different from a
structural point of view, in the paper, the entropy-energy representation is used to study
individual buildings. From the point scatter regression and probability distribution, it was
possible to derive the limit curves (threshold 0.3% and 99.7%, according to the 3-sigma
rule) and use them for the identification of outliers, i.e., points at which the signal deviates
from the global analytical model and therefore requires further investigation. In order to
quantify this deviation, the use of the Mahalanobis distance has been adopted. The points
at which the entropy displays a low distance from the mean model can be interpreted as
less stochastic (more deterministic). Conversely, if the entropy has a higher distance from
the model, it indicates a less deterministic point.

The following results refer to the building complex at the intersection of Via Emanuele
Filiberto and Via Castrense (Figure 6), adjacent to San Giovanni’s station, in the period
from 2017 to 2019. It has been analyzed as, according to the velocity, this area presents a
concentration of points that are outside the subsidence threshold shown in Figure 5.
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Figure 6. View of the analyzed building on the map, at the intersection of Via Emanuele Filiberto and
Via Castrense (https://www.google.it/maps/place/41%C2%B053\T1\textquoteright09.2%22N+
12%C2%B030\T1\textquoteright36.6%22E/@41.8835837,12.5093078,320a,35y,39.39t/data=!3m1!1
e3!4m5!3m4!1s0x0:0xfe6a6f12a7bebc20!8m2!3d41.885885!4d12.510169, accessed on 25 January 2022).

Figure 7 shows the dispersion of points and the mean model, which has a quadratic
trend on a logarithmic scale. It also shows the analytical model’s probability distribution
function (PDF) and allows the evaluation of the outliers.

Figure 7. Entropy-energy dispersion and probability distribution function of the analytical model for
a building complex near San Giovanni station.
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3.3. Comparison of the Two Representations

The two approaches for representing the data shown above allow the localization of
points of significant interest for monitoring structures and the subsidence phenomenon.
These outcomes cannot be directly interpreted to perform novelty detection due to the
limitations of the input data. However, it is possible to compare the results obtained
through the two approaches to verify them. In detail, it is investigated how the points with
a high-intensity negative velocity are distributed with respect to the values of entropy and
energy of the signal. Figure 8a shows that points with higher absolute velocity have lower
entropy values, concentrated in the range 0.8–0.82.

 
(a) (b) 

Figure 8. Correlation between LOS velocity and entropy-energy dispersion in the period from
2017 to 2019 for a building complex near San Giovanni station: (a) Entropy-velocity dispersion;
(b) Energy-velocity dispersion.

In contrast, points with velocities close to zero exhibit greater entropy. As the velocity
increases beyond 0.5 cm/y, a further decrease in entropy is shown. Figure 8b shows how
the energy remains low for velocity values close to zero and increases significantly for lower
velocity values. These points correspond to locations subject to accentuated subsidence
(beyond the μ − 3σ limit). Hence, in the entropy-energy dispersion, they constitute the
decreasing branch on the right (Figure 9).

Figure 9. Entropy-energy dispersion for a building complex near San Giovanni station in the period
from 2017 to 2019.
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It can be observed that the experimental data subject to subsidence (low entropy and
high energy) show lower variance with respect to the mean model, hence, lower uncertainty,
and could be interpreted as signals related to perturbations that are actually moving those
points. These points are represented in blue in Figure 10. The figure also shows in red the
points that are defined as outliers of the entropy-energy dispersion, which are above the
analytical threshold. Their signals show higher entropy than predicted by the mean model;
thus, they are subjected to higher complexity and require further investigation, especially
those that coincide with subsidence points.

Figure 10. Map showing the experimental data for a building complex near San Giovanni station.
The locations where subsidence is most emphasized and the entropy-energy outliers are highlighted.

For greater accuracy of the results, it would be necessary to identify and exclude any
spurious points not related to the area of the buildings. In addition, structural type and
features, such as the number of stories, should be investigated to reveal any variations
due to dissimilarities between the adjacent structures. However, this can be left out as a
consequence of the simplifying assumptions adopted in Section 2.

The entropy-energy dispersion can be further discussed by comparing two different
periods to study the results before and after tunnel excavation. Given the complete dataset
from 2011 to 2019, the following section distinguishes two periods of the same duration:
2011–2015 and 2015–2019. Figure 11 shows the correlation between the entropy-energy
dispersion and the LOS velocity in the period from 2011 to 2015. Meanwhile, Figure 12
refers to the period from 2015 to 2019.

 
(a) (b) 

Figure 11. Correlation between LOS velocity and entropy-energy dispersion in the period from
2011 to 2015 for a building complex near San Giovanni station: (a) Entropy-velocity dispersion;
(b) Energy-velocity dispersion.
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(a) (b) 

Figure 12. Correlation between LOS velocity and entropy-energy dispersion in the period from
2015 to 2019 for a building complex near San Giovanni station: (a) Entropy-velocity dispersion;
(b) Energy-velocity dispersion.

Figure 11a displays a higher level of scattering than Figure 12a. In addition, velocity
values in the period 2011–2015 are more evenly dispersed when compared to the following
period, and their intensity in the negative portion is lower, therefore significant subsidence
is not observed. Consequently, the entropy-energy dispersion in the first period (Figure 13a)
has fewer points on the low entropy–high energy branch with respect to Figure 13b, none
of which reaches the limit of subsidence previously evaluated.

 
(a) (b) 

Figure 13. Entropy-energy dispersion, mean model and thresholds for a building complex near San
Giovanni station: (a) period from 2011 to 2015; (b) period from 2015 to 2019.

The comparison between the two periods is subsequently carried out by observing
the variation in the parameters governing the fitting curves. A rational function of the
second degree (Equation (2)) is used to fit the entropy-velocity dispersion (S-v) shown in
Figures 11a and 12a, and a nonlinear regression model is used, starting from null initial
parameters. Thus, the mean model of the dispersion of the points is obtained. Subsequently,
the regression model of the deviations from the mean model is studied, using the same
type of equation:

S = p1
p2v2 + 1
p3v2 + 1

(2)

It can be observed that Equation (2) is symmetrical with respect to the axis (v = 0).
This condition derives from the intention to study the structural response in the range of
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small displacements, for which the structure is deemed to exhibit linear elastic behavior. In
addition, it is assumed that the effect of settlements is also linear.

The first parameter of the mean model, which represents the value of the curve for
null velocity, is subjected to a slight reduction, which is related to a global decrease in the
system entropy in the second period. Instead, the ratio between p2 and p3 represents the
limit value assumed by the function for high speed (in absolute value), normalized with
respect to the p1 value. In addition, an increase in the values of p2 and p3, while maintaining
the same ratio, corresponds to a reduction in the amplitude of the curve with respect to the
vertical axis, as the inflection points tend to be closer to the axis (v = 0). It occurs for the
entropy in the second period, as shown by Figure 14a, where the two parameters increase,
making the curve narrower with respect to the origin, so it tends toward the horizontal
asymptotes more rapidly.

Figure 14. Fitting parameters of the entropy-velocity dispersions in the two periods for a building
complex near San Giovanni station: (a) parameters of the mean model; (b) parameters of the standard
deviation model.

For the system’s variance (Figure 14b), the three parameters decrease from the first
period to the second, reducing variance, especially for high velocity modules. It is worth
noting that the parameters fitting guarantees positive variance.

Figure 15 shows the parameters derived from a nonlinear regression model to construct
the mean and standard deviation fittings of the energy-velocity (E-v) dispersion. A second-
order polynomial model is used for the evaluation of the mean curve and the standard
deviation, as a parabolic shape can easily be identified in the dispersion, especially in
Figure 12b. As previously stated, the curves follow the hypothesis of linear elastic behavior;
therefore, the vertices of the parabolic curves are fixed on the axis (v = 0).

The two average curves are similar, but higher energy values are reached in the second
period at the same velocities. This effect is represented by the increase in the second
parameter of the mean curve in Figure 15a.

As shown by the second parameter in Figure 15b, there is a significant reduction in
the standard deviation between the first and second periods for higher velocity values
in modulus.
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Figure 15. Fitting parameters of the energy-velocity dispersions in the two periods for a building
complex near San Giovanni station: (a) parameters of the mean model; (b) parameters of the standard
deviation model.

Figure 16 represents the parameters used to construct the mean and standard deviation
model of the entropy-energy (S-E) dispersion. These parameters are evaluated using a
nonlinear constrained minimization, where p1 must be positive. A second-order polynomial
model is used for the mean curve on a logarithmic scale, as given by

S = exp
(

p1 ln E2 + p2 ln E + p3

)
(3)

Figure 16. Fitting parameters of the entropy-energy dispersions in the two periods for a building
complex near San Giovanni station: (a) parameters of the mean model; (b) parameters of the standard
deviation model.
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The value of p3 represents the limit of the entropy, on the logarithmic scale, for an
energy value that tends toward zero, so S tends toward exp(p3). The sign of p1 expresses
the concavity of the quadratic curve, while the ratio −p2/2p1 expresses its minimum.
As mentioned above, a positive value of p1 is enforced, in accordance with the physical
meaning of the interpolated data. The decrease in the third parameter leads to a downward
curve shift toward lower entropy values from the first period to the second. The module
of the second parameter also decreases, leading to an increase in the curve slope on the
logarithmic scale. Instead, the increase in the first parameter reduces the model’s curvature;
therefore, the entropy decreases faster with the energy increase.

The curve tends to lower and shift toward higher energy values. The effect given by
the first and third parameters is to obtain an approximately constant stretch at low entropy.
A first-order polynomial curve models the standard deviation adopting the least-squares
method. The parameters are shown in Figure 16b. The first parameter increases in modulus,
representing a more rapid reduction in variance with increasing energy. In addition, the
effect of the second parameter is added, causing an upward shift. Thus, for low energy
values, a similar standard deviation is obtained in the two periods, whereas for lower
entropy values, a lower deviation is obtained. The points result closer to the mean model.

Hence, in the second period (the one affected by excavations) there is an evident
variation of the dispersions, underlined through the analysis of the fitting parameters.
Moreover, the three dispersions analyzed display a reduction of the signal deviation from
the mean model, which can be interpreted as lower uncertainty in the measures.

3.4. The Colosseum Case Study

The velocity-entropy-energy approach is also adopted to analyze another case study,
i.e., the Colosseum, chosen for its importance in the area, considering its artistic, historical
and cultural significance.

The period for which the data are available (2011–2019) does not include the exca-
vation operations on the tunnel in the proximity of this structure, which are more recent.
Nevertheless, it is possible to evaluate the application of the entropy-energy approach to a
monumental structure with distinctive features to identify the outliers. In addition, since
the area has not yet been subjected to excavation, it is possible to compare the dispersions
in the two periods identified above to verify that no significant variations have occurred.
It allows validating the correlation between the parameters’ variation and the effects of
excavation on the building studied in previous sections.

The first analysis concerns the entropy-energy distribution for the available period,
shown in Figure 17. Defining the average model and the thresholds related to the standard
deviation makes it possible to identify the outliers. It is observed that these points fall
mainly on the high values of entropy and low energy. The localization of these points on the
Colosseum, reported in Figure 18, highlights that they are distributed mainly on the base
and in a cluster on the west end of the structure. Therefore, although further investigation
is required, the presence of these outliers could be due to a differential behavior of the west
end with respect to the whole system.

Analogously to the previous case study, the velocity, entropy and energy dispersions
in the first and second half of the reference period are studied to highlight possible changes
(Figures 19–21). In addition, the parameters for the mean trends and standard deviation
curves, respectively, are reported (Figures 22–24).

The entropy-velocity (S-v) scatter in Figures 19a and 20a shows a slight decrease in
entropy for velocities with high modulus, represented by the change in the first parameter
of the mean curve (Figure 22a). The energy-velocity (E-v) dispersion in Figures 19b and 20b
shows minimal changes in the average behavior, as shown by the parameters in Figure 23,
though, in the second period, there are points showing higher velocity modules in the
negative, as well as the positive section.
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Figure 17. Entropy-energy dispersion and mean model for the Colosseum, from 2011 to 2019.

Figure 18. Map showing the outliers evaluated from the entropy-energy PDF for the Colosseum.
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(a) (b) 

Figure 19. Correlation between LOS velocity and entropy-energy dispersion for the Colosseum in
the period from 2011 to 2015: (a) Entropy-velocity dispersion; (b) Energy-velocity dispersion.

(a) (b) 

Figure 20. Correlation between LOS velocity and entropy-energy dispersion for the Colosseum in
the period from 2015 to 2019: (a) Entropy-velocity dispersion; (b) Energy-velocity dispersion.

 
(a) (b) 

Figure 21. Entropy-energy dispersion, mean model and thresholds for the Colosseum: (a) period
from 2011 to 2015; (b) period from 2015 to 2019.
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Figure 22. Fitting parameters of the entropy-velocity dispersions in the two periods for the Colosseum:
(a) parameters of the mean model; (b) parameters of the standard deviation model.

Figure 23. Fitting parameters of the energy-velocity dispersions in the two periods for the Colosseum:
(a) parameters of the mean model; (b) parameters of the standard deviation model.
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Figure 24. Fitting parameters of the entropy-energy dispersions in the two periods for the Colosseum:
(a) parameters of the mean model; (b) parameters of the standard deviation model.

Finally, the entropy-energy (S-E) dispersions in Figure 21 exhibit similar character-
istics, highlighted by the parameters in Figure 24. It can be observed that there is no
significant change in the standard deviation of the points from the mean models. More-
over, as expected, the overall variation in the mean models is lower than in the previous
case study. It should be noted that the Colosseum is only analyzed on an anthropogenic
basis. Therefore, it would be appropriate to extend the analysis to also consider other
aspects because of its complex hydrogeological configuration, which could lead to further
data perturbations.

4. Conclusions

Recent developments in the acquisition of satellite interferometric data allow their
integration to more traditional methods for Structural Health Monitoring purposes, pro-
viding additional insights that are often not available from in situ sensors and ensuring
high spatial and temporal coverage. However, there are still some challenges related to
their application because of the differences in the data gathered compared to the traditional
on-site data.

The new kind of data requires the development of optimal representation techniques
that may be used to identify anomalous behavior necessary to provide an interpretation
and carry out damage identification. Therefore, this paper explores different approaches;
the first one is the representation of direct quantities, such as the velocity along the LOS of
the satellite, which allows the identification of slow territorial-scale phenomena, such as
subsidence. A second representation concerns the indirect quantities of entropy and energy,
which allows modeling the behavior of a system (e.g., single building, building complex,
monumental structure).

These approaches are used to identify the effects of subsidence induced by the exca-
vation of a new subway line in the urban area of Rome. In detail, the first representation
highlights the presence of subsidence in the track’s proximity. The second one studies
the effects on a smaller observation scale and identifies the outliers. The entropy-energy
representation is compared to the LOS velocity to validate the results. It is observed that the
points subjected to subsidence are distributed on a low-entropy and high-energy branch
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and are mainly characterized by low uncertainty, which can be interpreted as the signal of
an actual movement.

In addition, the paper compares results obtained from two periods, before and after the
start of excavation, studying parameter changes in the curve-fitting process. It highlights an
evident variation in the signal response, especially in the variance parameters, indicating
the presence of effects induced by tunnel construction.

The same procedure, applied to the Colosseum case study, does not show significant
changes in the behavior of this monument, which was an expected result, given that its
area had not been subjected to tunnel excavation during the analysis period. Furthermore,
the ability of the entropy-energy representation to be applied to monumental structures is
demonstrated, identifying the presence of outliers, i.e., points that should be further inves-
tigated, as they could also be related to anomalous structural and non-structural processes.
Further studies are required to provide an objective interpretation of the outliers from the
structural point of view. Nevertheless, future developments and the continuous increase
in the quality of satellite data may allow the practical application of such information for
SHM, leading to a low-cost, automated process for the study of large urban areas.
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Abstract: System identification proves in general to be very efficient in the extraction of modal
parameters of a structure under ambient vibrations. However, great difficulties can arise in the
case of structures composed of many connected bodies, whose mutual interaction may lead to a
multitude of coupled modes. In the present work, a methodology to approach the identification
of interconnected diaphragmatic structures, exploiting a simplified analytical model, is proposed.
Specifically, a parametric analysis has been carried out on a numerical basis on the simplified model,
i.e., a multiple spring–mass model. The results were then exploited to aid the identification of a
significant case study, represented by the Pavilion V, designed by Riccardo Morandi as a hypogeum
hall of the Turin Exhibition Center. The structure is indeed composed of three blocks separated
by expansion joints, whose characteristics are unknown. As the main result, light was shed on the
contribution of the stiffness of the joints to the global dynamic behavior of structures composed of
interacting diaphragms, and, in particular, on the effectiveness of the joints of Pavilion V.

Keywords: system identification; simplified analytical models; interacting diaphragms; expansion
joints; structural health monitoring; operational modal analysis; Riccardo Morandi; Pavilion V

1. Introduction

The study of the dynamic response of structures under ambient vibrations is fun-
damental in many engineering fields, including, but not limited to, Structural Health
Monitoring (SHM). Even in the range of small linear deformations, such as are observed
under ambient excitation, understanding the dynamic behavior of a system might be
challenging, especially when testing rigid and massive structures. To make things more
difficult, there are then the interactions with the surrounding environment, the uncertainty
in geometry, materials characteristics, details, and above all the difficulty in defining the
constraints, which often call for simplified models to drive the modal identification process.

In its broadest sense, system identification can be defined as the field of study where
models are fitted into measured data [1]. In civil engineering, output-only modal identifica-
tion techniques allow to significantly extend the range of structures where modal analysis
can be applied [2], overcoming the difficulty deriving from producing and measuring
proper excitations in large-sized structures. Practically, ambient vibration testing is used in
all contexts in which only the dynamic response can be measured, while excitation (e.g.,
wind, traffic, environmental noise, etc.) is known only in a probabilistic sense or is even
unknown [3,4]. Like in any other kind of experimental modal analysis, the measured data
come from the record of the sensors at different locations of the structure [3]. A compre-
hensive amount of literature on the comparison of output-only modal techniques can be
found in [4–8].

Throughout the years, output-only dynamic identification relied primarily on the time-
domain approach, which declines in many robust and accurate algorithms [7]. Since the
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theoretical part overcomes the goal of this paper, references can be found in [9–13]. Time-
domain techniques, in particular, are demonstrated to be very effective in the detection of
closely spaced modes, easy to optimize, and automate [13]. It should be also pointed out
that, in the presence of strong non-stationary components, a possible option is recurring in
time–frequency representations and algorithms [14].

The main results deriving from linear identification techniques are the modal parame-
ters of the structure, as they result from diagrams of stabilization to the varying of the order
of the system used in the identification. The discrimination of authentic modal components
from spurious ones is achieved with the use of modal assurance criteria, and sometimes
exploiting clustering techniques, which consist in dividing different data from a data set
into property-based groups. However, the detection and classification of the authentic
modal parameters from the numerical solutions to the inverse problem are not exempt
from criticalities.

The main critical aspect certainly lies in the well-known limitations of experimental
modal analysis procedures in massive or otherwise rigid structures. Indeed, identifica-
tion algorithms have been successfully applied to structures presenting a diaphragmatic
behavior, for instance on multi-span concrete bridges, e.g., see [10,13,15,16]. However,
the sensitivity of the identification process to the external or mutual constraints of these
diaphragms has never been investigated.

The second criticality concerns the choice of the model used in the identification
process. In structures with complex, sometimes non-linear, interactions, a choice could
be to adopt black-box models [17,18]. In spite of many successful applications of such
an approach, the solution of the inverse problem strongly depends on the choice of the
parameters of the black-box model [19]. Thus, an alternative approach consists of the
improvement of analytical models using test data [20], possibly recurring to surrogate
models to increase the computational efficiency of the whole process [21]. In fact, this
tool not only allows to overcome the problem of the high number of modes resulting
from the identification but also to identify and differentiate local modes from global ones,
especially regarding tight couplings between vertical and horizontal modes. In the case of
bridges [22], the local damage can be detected often at very high modes, better identified
by a surrogate model. Similar results can be obtained on specific schemes by using model
reduction techniques, as far as applicable.

The main purpose of the present work is to propose a methodology to approach inter-
connected diaphragmatic structures (interacting at their joints, at the external constraints,
and the surrounding environment, e.g., embankment), and the identification of their modal
parameters, aided by parametric analyses on simplified/reduced analytical models.

To accomplish the scope stated above, the case study of the Pavilion V of Turin
Exhibition Center is analyzed. This hypogeum pavilion, designed in 1959 by Riccardo
Morandi, represents a fascinating case study of a structure composed of three macro blocks
separated by two joints. The fundamental static scheme of the structure is a version
of Morandi’s balanced beam. The diaphragmatic and massive behavior of the roofing
system, with post-tensioned concrete ribs, the uncertainties related to the soil-structure
interaction, and the effectiveness of the joints are just a few elements that contribute to the
high complexity of the building’s dynamics.

The paper is organized as follows. In Section 2, the dynamic equation for rigid
diaphragms interacting at linear elastic joints is developed. The methodology is then
applied in Section 3 on a numerical benchmark to demonstrate the effective contribution of
the joints to the dynamic behavior of the structure. As a result, the effects of the variation
of the stiffness of the springs governing the interaction are investigated, and, consequently,
a discrimination between the global and the local modes is provided. In Section 4, the
case study of Pavilion V is first introduced and then the description of the experimental
setups of a test campaign carried out in 2019 is reported. The modal identification of the
structure is then finally carried out by exploiting a simplified analytical model and the

106



Appl. Sci. 2022, 12, 4030

modal parameters are extracted in Section 5. The outcomes of an analysis to investigate the
effectiveness of the joints are reported in Section 6. Conclusions are drawn in Section 7.

2. Dynamic Equilibrium Equation for Structures with Interacting Diaphragms

For simplicity, diaphragms are assumed to have only three degrees of freedom, namely
two in-plane translations, along x- and y-directions, and the rotation around the z-direction.

Referring to the i-th diaphragm, one can define mi as the mass, J0,i as the polar moment
of inertia and mxγ

i and myγ
i as static moments, k

x
i and k

y
i as, respectively, the translational

stiffnesses in the x-direction and in the y-direction, k
γ
i as the torsional stiffness, k

xγ
i and k

yγ
i

mixed stiffness terms that regulate the coupling between the translational and rotational
degree of freedom, and ui, vi and γi as the displacements in the x-direction, in the y-
direction, and the rotation, respectively.

In free undamped vibration conditions, the dynamic equilibrium of the i-th diaphragm,
if connected only to the ground, writes:

⎡
⎣ mi 0 mxγ

i
0 mi myγ

i
mxγ

i myγ
i J0,i

⎤
⎦
⎧⎨
⎩

..
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⎫⎬
⎭+

⎡
⎢⎣ k

x
i 0 k

xγ
i

0 k
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i k

yγ
i
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xγ
i k

yγ
i k

γ
i

⎤
⎥⎦
⎧⎨
⎩

ui
vi
γi

⎫⎬
⎭ =

⎧⎨
⎩

0
0
0

⎫⎬
⎭ (1)

Now assume that the generic i-th diaphragm is part of a system of n interacting
diaphragms. The interaction is assumed to be chain-like, i.e., only between adjacent
diaphragms, and it is described by means of linear springs.

In analogy with Equation (1), it is possible to define the mass matrices of the system
Mxx and Myy, the matrix of polar moments of inertia Mγγ and the matrices of the static
moments Mxγ and Myγ, as well as the stiffness matrices along the three directions Kxx,
Kyy and Kγγ, and the mixed terms stiffness matrices Kxγ and Kyγ, so that the equilibrium
equation in compact form writes in terms of 3n × 3n matrices:

⎡
⎣ Mxx 0 Mxγ

0 Myy Myγ

Mxγ Myγ Mγγ

⎤
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⎧⎨
⎩

..
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..
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..
γ
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⎭+

⎡
⎣ Kxx 0 Kxγ

0 Kyy Kyγ

Kxγ Kyγ Kγγ
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⎧⎨
⎩
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γ

⎫⎬
⎭ =

⎧⎨
⎩

0
0
0

⎫⎬
⎭ (2)

Defining then the translational stiffness of the springs connecting the i-th diaphragm
with two adjacent diaphragms in the x-direction as kx

i and kx
i+1, the stiffness matrix along

the x-direction Kxx writes:

Kxx =

⎡
⎢⎢⎢⎢⎢⎣

kx
1 + kx

2 + k
x
1 −kx

2 . . . . . . 0
. . . . . . . . . . . . . . .
. . . −kx

i kx
i + kx

i+1 + k
x
i −kx

i+1 . . .
. . . . . . . . . . . . . . .
0 . . . . . . −kx

n kx
n + k

x
n

⎤
⎥⎥⎥⎥⎥⎦ (3)

Similarly to Equation (3), also the stiffness matrix along the y-direction, Kyy, and
rotation γ, Kγγ, can be formulated.

The interaction between the i-th diaphragm and the adjacent ones by means of linear
springs is described in Figure 1.
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Figure 1. Lumped mass model of the interacting i-th diaphragm.

3. Numerical Benchmark: System with Three Interacting Diaphragms

The lumped mass model of three adjacent interacting diaphragms represented in
Figure 2 is now considered. The system, presenting a diaphragmatic behavior with a
chain-like interaction, is composed of three masses m1, m2 and m3, and their respective
polar moments of inertia J0,1, J0,2 and J0,3.

Figure 2. Lumped mass model of three adjacent interactive diaphragms.

The values of the translational stiffnesses along the x-direction, k
x
1, k

x
2 and k

x
3, the

translational stiffnesses along the y-direction, k
y
1, k

y
2 and k

y
3, the torsional stiffnesses k

γ
1 , k

γ
2

and k
γ
3 around γ, were chosen to represent typical values of square concrete diaphragms of

50 m on each side. The mixed terms of stiffnesses k
xγ
1 , k

xγ
2 , k

xγ
3 and k

yγ
1 , k

yγ
2 , k

yγ
3 , and the

static moments Sx
1 , Sx

2 , Sx
3 and Sy

1, Sy
2, Sy

3 have been calculated accordingly. The numerical
values of masses, polar moments of inertia, static moments, and stiffnesses are reported in
Table 1.
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Table 1. Numerical values of parameters.

Parameter Numerical Value Unit

m1 = m2 = m3 4.2 × 106 kg

J0,1 1.0 × 1010 N·m2

J0,2 3.2 × 1010 N·m2

J0,3 7.5 × 1010 N·m2

myγ
1 1.1 × 108 kg·m

myγ
2 3.2 × 108 kg·m

myγ
3 5.4 × 108 kg·m

mxγ
1 = mxγ

2 = mxγ
3 −1.5 × 108 kg·m

k
x
1 = k

x
2 = k

x
3 8.7 × 108 N/m

k
y
1 = k

y
2 = k

y
3 3.4 × 108 N/m

k
γ
1 2.2 × 1012 N/m

k
γ
2 3.9 × 1012 N/m

k
γ
3 7.4 × 1012 N/m

k
xγ
1 = k

xγ
2 = k

xγ
3 −3.0 × 1010 N·m/m

k
yγ
1 8.6 × 109 N·m/m

k
yγ
2 2.6 × 1010 N·m/m

k
yγ
3 4.3 × 1010 N·m/m

kx
2 = kx

3 8.7 × 108 N/m

ky
2 = ky

3 3.4 × 108 N/m

kγ
2 = kγ

3 2.2 × 1012 N/m

The stiffnesses describing the interaction kx
2, ky

2, kγ
2 , and kx

3, ky
3, kγ

3 are set as a fraction
(factor varying between 0 and 2), defined as kvar, of the values reported in Table 1, which cor-
responds to the continuity of the spring. The eigenvalue problem of the above-mentioned
system has been then solved to extract the modal parameters, i.e., natural frequencies and
mode shapes of the system.

Parametric simulations were conducted to study the relative variation of the modal
frequencies of the system with respect to kvar. A simultaneous uniform variation of kx

2,
ky

2, kγ
2 , and kx

3, ky
3, kγ

3 has been considered. To this aim, the modal frequencies of the
system, generally called fr (with r varying from 1 to 9), were normalized with respect to
the fundamental frequency.

Figures 3–5 represent the variation of the 9 modes and of the 9 natural frequencies of
the system with respect to kvar. To have a better visualization, the representation is divided
into groups of 3 modes each: Figure 3 represents the modes from 1 to 3, Figure 4 from 4 to 6,
and Figure 5 from 7 to 9. It is worth noting that the y-axis scales of Figures 3–5 are different.

Considerations can be made concerning the modal parameters of the system. In
general, an increasing linear trend can be observed in the case of the natural frequencies.
Figure 3 shows that the curve corresponding to the first natural frequency f1 is almost flat,
while a clear variation of fr can be observed for the curves corresponding to the second and
the third ones ( f2 and f3). A similar trend is observed for the other two groups reported in
Figures 4 and 5. Therefore, it can be said that increasing values of the stiffness characterizing
the interaction clearly affect the higher modal frequencies of each group more. Comparing
the three figures, it is noticeable that in the case of the groups of frequencies f1, f2, f3 and
f4, f5, f6, for values of kvar equal to 0, the numerical value of the frequencies is almost the
same. The same behavior is not found for the group of frequencies f7, f8 and f9, where the
numerical value of f9 is almost double the numerical values of f7 and f8.
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Figure 3. Variation of the modes and of the natural frequencies of the system from 1 to 3 as a function
of kvar.

Figure 4. Variation of the modes and of the natural frequencies of the system from 4 to 6 as a function
of kvar.
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Figure 5. Variation of the modes and of the natural frequencies of the system from 7 to 9 as a function
of kvar.

Concerning the mode shapes, when kvar is equal to 0 the diaphragms are uncoupled
and show the same three modes. The first mode corresponds to a translational mode along
the transversal direction (y-direction) of the system, while the second mode corresponds to
a rotational one. While the first mode does not change as a function of kvar, in the case of
the second mode, the stiffening effect of the springs characterizing the interaction can be
clearly observed: indeed, if the presence of the interaction is clearly visible for values of
kvar equal to 0.8, in the case of higher values of kvar the three masses tend to rotate as one
single mass, showing therefore a monolithic behavior (see Figure 3).

If the frequency curves present a crossing, the modes undergo the so-called re-ordering
phenomenon, consisting of a change of order of the modes of the system. In the case of this
numerical benchmark, a re-ordering can be observed in two cases, as reported in Figure 6.

 
(a) (b) 

Figure 6. Re-ordering of modes: (a) modes 3 and 4; (b) modes 6 and 7.
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A first re-ordering of modes can be observed in correspondence with the third and
fourth natural frequencies f3 and f4 of the system for increasing values of kvar (Figure 6a):
indeed, in the case of the third one, a translational mode along the longitudinal direction
(x-direction) is observed for high values of kvar, instead of a mixed torsional-bending one,
observed at low values of kvar (the mode shapes can be found in Figures 3 and 4). A similar
situation (Figure 6b) can be observed for the sixth and seventh mode (the mode shapes can
be found in Figures 4 and 5).

Consequently, it can be said that for very high values of kvar, i.e., when the three
masses behave as one single mass, the first three modes result to be the global modes of the
system, corresponding to the translations in the directions x and y and to the rotation. On
the other hand, the modes from 4 to 9 can be defined as local modes of the system.

The application of the reported dynamic equation on a numerical benchmark high-
lights the influence of the interaction between adjacent diaphragms on the dynamic behav-
ior of the system.

4. The Case Study of Morandi’s Hypogeum Pavilion in Turin

Having numerically analyzed the interaction between adjacent diaphragms, which
plays a key role in the comprehension of the dynamic behavior of a system, the dynamic
model developed in Section 2 can be now exploited in the identification of the modal
parameters of a significant case study, represented by Morandi’s Pavilion V of the Turin
Exhibition Center. First, a description of the pavilion including some historical background
is provided. Then, the experimental setups of a vast dynamic test campaign carried out in
2019 are introduced and described.

4.1. Description of the Pavilion

The Pavilion V, also known as the hypogeum pavilion, was built by Riccardo Morandi
in the years 1958–1959 as part of the Turin Exhibition Center. The project was commissioned
by Società Torino Esposizioni, almost entirely owned by FIAT motor company, and it was
conceived as an extension of the existing Nervi’s halls, mainly aimed at hosting the annual
Automobile Show, also considering the upcoming celebrations for the 100th anniversary of
Italy’s unification [23].

The pavilion was not only an occasion for Morandi to show his structural art but
also an opportunity to exploit the long years of experimentation on prestressed reinforced
concrete. The scheme adopted by Morandi for Pavilion V is the so-called balanced beam
scheme, widely used by the designer between the 1950s and 1960s, for example in the
construction of bridges and overpasses [24]. In particular, Morandi used a version of the
balanced beam with subtended tie rods as the main resistant element.

The pavilion is composed of a single large hall with a width of 69 m and a length of
151 m positioned 8 m below the middle level of the surrounding streets. A general view of
the pavilion is reported in Figure 7.

 

Figure 7. Interior view of Morandi’s Pavilion V.
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The structure is composed of three blocks linked by two expansion joints, crossing the
roof and the external walls. The division of the underground structure into three blocks is
clearly observable in Figure 8.

Figure 8. Scheme of the plan of Morandi’s Pavilion V showing the division into three blocks linked
by joints.

A system of intertwining thin beams in prestressed reinforced concrete composes
the roof slab, defining the pavilion’s space. The roof is composed of hollow core concrete
and supported by 3.2 m spaced main ribs in prestressed concrete, resting on the pairs of
inclined intermediate struts and anchored to the perimeter walls by small strut beams 1 m
tall, 50 cm wide, and of variable section. Inside the small rods, the vertical prestressing
cables are placed, with the aim to reduce the moment stress arising in the span of the ribs.
The bending stresses in the roof and in the crossed ribs are reduced by the inclination of the
struts. The balance constraint is produced by the perimeter walls that contain the ground,
as well as support the roofing system. The thin ribs would be singularly unstable, but their
intertwining makes the structure mostly rigid and robust. One of the intersections is in
correspondence with the inclined struts, creating a dovetail geometry [25], as shown in
Figure 9.

  
(a) (b) 

Figure 9. Intersection of the thin ribs creating a dovetail geometry: (a) general section; (b) detail of
the restraints of the shorter strut beams.

4.2. Dynamic Test Campaign

A vast test campaign was conducted in February 2019, as reported in [25]. Indeed,
non-invasive tests represent an efficient tool to investigate dynamic properties not only for
modern civil structures [26] but also for heritage buildings [27]. Among other tests, dy-
namic acquisitions were carried out employing 20 monoaxial piezoelectric accelerometers,
positioned on the ribs and struts. In greater detail, the acquisition system was composed
of 20 PCB piezoelectric monoaxial capacitive accelerometers with a sensitivity of 1 V/g,
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a measurement range between 0 and 3 g, and a resolution of 30μg, whose mass is 17.5 g.
The accelerometers were connected via coaxial cables to an acquirer that amplifies the
signals, then the signals are sent to a laptop on which the acquisition software was installed.
With the intention of favoring modal decoupling, the design of two setups was carried out,
based on a preliminary FE model. The first setup allowed to acquire information mainly on
the horizontal direction. In fact, the structure exhibits horizontal components of the three
diaphragmatic blocks, possibly interacting at their joints, and fixed at the vertical members
(longer and shorter strut beams), that define the translational and rotational stiffnesses. The
boundary conditions are very clear, in which they reflect the balanced beam conceived by
Morandi (see the restraints in Figure 9). A second setup focused instead on the vertical
dynamic behavior, which is not accounted for by the model described in Section 2.

Among the 20 accelerometers used, 8 were positioned in the x-direction, 10 in the y-
direction, and 2 in the vertical direction. Only the sensors measuring horizontal components
are reported in Figure 10 with red arrows.

 

Figure 10. Sensors on the x-y plane in Setup 1. The numbers 1–10 in figure refer to identifiers of
different sensors position.

The positioning of sensors was designed to study both the global and the local behavior
of the structure. In particular, accelerometers 1 and 2 were positioned on the main ribs
composing the roof, while accelerometers 4 and 5 were positioned on the large struts.
Accelerometers 3 and 6 were positioned on the small struts.

Accelerometers with positions 7, 8, 9, and 10 were placed in correspondence with the
joints linking the blocks, to investigate how the interaction affects the dynamic horizontal
behavior of the three distinct bodies.

Only ambient excitation signals were used, with acquisitions length between 18 and
98 min and two different sampling frequencies (128 Hz and 256 Hz).

5. Dynamic Identification

5.1. System Identification Procedure

In the case of Pavilion V, the system identification was carried out with algorithm 3
of [28], belonging to the Stochastic Subspace Identification (SSI) family. The aim of this
procedure was to understand the horizontal dynamic behavior of the structures, potentially
ascribed to dynamic interactions at the joints.

The identification process resulted in the typical stabilization and clustering dia-
grams [29]. The assumed weighting scheme was that of the classical Canonical Variate
Analysis (CVA, SSI-CVA). For the clustering analysis, the Agglomerative Hierarchical
cluster method described in [29] has been adopted. The average criterion was then used to
identify the cluster reference points, focusing on a bandwidth of the spectrum limited in
the 0.5–25 Hz range, in accordance with the preliminary data cleansing.
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The data were sampled at 256 Hz, in accordance with typical values used for civil
structures. The retained signals (horizontal) were detrended and filtered with a band-pass
Butterworth filter between 0.5 and 25 Hz with order 5. The signal length is about 64 min;
thus, identification sessions were performed on both the entire signal and 8 sessions of
8 min each.

The measured acceleration responses and their Power Spectral Density (PSD) estimate
are reported in Figure 11.

(a) (b) 

Figure 11. Measured acceleration responses: (a) time−domain; (b) frequency−domain.

5.2. Identified Modes

The most recurrent experimental mode was seen to be the one at 2.57 Hz. By way of
example, the stabilization and clustering diagrams of the identification of a sub-signal are
reported in Figure 12.

(a) (b) 

Figure 12. Stabilization (a) and clustering (b) diagram of the identification performed on the sixth
sub−signal of setup 1 of the entire Pavilion V, with evidence of the mode at 2.57 Hz.

The main identified modes are reported in Table 2 in terms of natural frequency and
damping ratio. From Figure 12, it can be observed that several clusters are likely to indicate
authentic modes. For instance, additional modes are detectable at 3.24 Hz and 5.67 Hz.
However, it is worth pointing out that the results presented in this work descend from the
assumption that the three blocks belong to the same dynamic system, and a safe attribution,
in the presence of a limited number of sensors, will require an accurate mechanical FE
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model to be calibrated. Due to the redundancy of the measured degrees of freedom with
respect to the ones of the diaphragmatic model, the representation of the modal shapes
would require an optimization problem to be solved, as reported in Section 6 for the first
horizontal mode.

Table 2. Identified modes of the entire pavilion.

Description Mode Id.
Natural

Frequency (Hz)
Damping
Ratio (%)

Horizontal (with roof bending) mode 1 2.57 2.11
Mainly vertical mode 2 2.73 0.91

6. Interpretation of the Results and Discussion

For a hypogeum pavilion, vertical modes are relatively more amplified than horizontal
ones, especially in the presence of important slab spans. Consequently, the identification
of horizontal modes can be affected by unfavorable levels of signal-to-noise ratio (SNR),
with respect to the vertical ones. This resulted from a comparison between the normalized
spectral entropy of vertical and horizontal channels data, which indicates how close is a
spectrum to the Gaussian noise condition. For further details about the relation between
entropy and SNR, one can refer to [30,31]. Furthermore, in Morandi’s pavilion, the roofing
system is connected at the extrados by non-structural materials, including waterproofing
layers. In particular, while the expansion joints between the blocks measure about 0.04 m,
the blocks are connected by a thin concrete screed (approximately 0.05 m tick) to create
continuity on the walking surface. It was precisely the uncertainty described above that
prompted the authors to aid the identifications with the analytical model reported in
Section 2.

As said before, since the model admits only diaphragmatic degrees of freedom, to
compare the experimental results with the model prediction, the horizontal components
of the first horizontal mode (identified at 2.57 Hz) have been estimated with the least
squares method, also to reduce spillover effects. If Θid denotes the identified eigenvector
matrix, the equivalent diaphragmatic body mode components of the eigenvectors can be
estimated with a linear transformation matrix D as ΘD,id = D Θid, where ΘD,id contains
the diaphragmatic components, i.e., the two horizontal translations and the rotation about
the vertical axis of each block, and D is the linear transformation matrix. In accordance
with the theoretical model of Section 2, Figure 13 limits the representation to the horizontal
components of the examined mode (undeformed configuration in dashed lines, with
sensor positions).

Figure 13. Identified mode shape #1 at 2.57 Hz (horizontal components).
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From a preliminary analysis of the first mode, the blocks are not appreciably affected
by mutual interaction, this being indicative of the full effectiveness of the joints. In other
words, the three blocks are likely to behave as fairly separated dynamic systems. This
observation can be extended also to joints with relatively low nominal stiffnesses (see
Figures 3–5). On the other hand, this uncoupled behavior is reflected in Figure 13.

To shed light on the effectiveness of the joints, a numerical analysis was carried out
on the nominal values of the model stiffnesses of the joints. The multiplier of the three
stiffness components of each joint was varied between 0 and 1. In particular, with refer-
ence to Figure 10, two multipliers have been defined as kvar,le f t and kvar,right, respectively.
The Modal Assurance Criterion (MAC) [32] between the identified mode shape and the
predicted ones was then calculated for each combination of the two multipliers. Defin-
ing m as the double of the number of modes, the objective function J

(
kvar,le f t, kvar,right

)
writes [33,34]:

J
(

kvar,le f t, kvar,right

)
=

m/2

∑
j=1

αw

∣∣∣∣∣
f id
j − f j

f id
j

∣∣∣∣∣+ βw

∣∣∣∣∣∣
1 −
√

MACj

1

∣∣∣∣∣∣ (4)

where, for each j-th combination of the two multipliers, αw and βw are the weights of
the residuals in frequency and mode shapes, respectively, f id

j is the j-th identified natural
frequency, f j is the j-th predicted natural frequency, and MACj is the j-th MAC between
the identified mode shape and the j-th predicted mode shape.

Figure 14 reports the resulting plot of the objective function, with the assumption to
consider only the first vibration mode.

Figure 14. Objective function for a variation of kvar,le f t and kvar,right in the range between 0 and 1.

It can be observed from Figure 14 that the objective function tends to decrease dramat-
ically for very low values of kvar,le f t and kvar,right, corresponding to full effectiveness of all
the joints. A local minimum is also visible, which is associated with the frequency residual
only. Therefore, a further investigation has been conducted for the values of kvar,le f t and
kvar,right varying between 0 and 1 × 10−3. The results obtained for very low values of the
joint stiffnesses are reported in Figure 15, showing that the absolute minimum happens
when the joints are fully effective.
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Figure 15. Objective function for a variation of kvar,le f t and kvar,right in the range between 0 and
1 × 10−3.

The above-described analyses also highlighted a high sensitivity of the joint stiffnesses
for values of kvar,le f t and kvar,right close to zero.

7. Conclusions

The dynamics of many civil engineering structures, e.g., multi-span bridges and
buildings with interacting bodies, are influenced by the presence of joints, this introducing
complexity in the modal response. In particular, uncertainties related to the possible
degradation of materials as well as in boundary conditions make it difficult to infer the
modal parameters. Consequently, modal identification, even if conducted in the linear field,
can become a difficult task, calling for simplified models to unravel different components
and aid the mode attribution process.

Morandi’s Pavilion V of the Turin Exhibition Center is an example of a building with
interacting bodies, thus reflecting all the previously stated criticalities. A further problem
of this structure is related to its underground configuration, which results in low SNR
unfavorably affecting the operational modal analysis.

From the results of this work, the following general conclusions can be drawn:

• Not only the presence of joints does result in modal complexity, but also in very high
sensitivity of the stiffness parameters, especially when the joints are fully effective.

• This complexity also affects the design of the experimental setups, which often are not
able to capture the whole-body dynamics.

Possible development of the analysis will contemplate the identification of the three
blocks as independent bodies with the consequent updating of a high-fidelity numerical
model. It is worth noting that the results reported in this paper are valid in operational
conditions. This means that, in the presence of a strong excitation (e.g., an earthquake), the
stiffness of the joints could be activated in the non-linear field, giving rise to even more
complex behavior.
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Abstract: Evaluating the integrity of structures is an important issue in engineering applications. The
use of vibration-based techniques has become a common approach to assessing cracks, which are the
most frequently occurring damage in structures. When involving an inverse method, it is necessary
to know the influence of the position and the geometry of the crack on the modal parameter changes.
The geometry of the crack, both in size and shape, defines the damage severity (DS). In this study,
we present a method (DS-SHC) used for estimating the DS for closed and open transverse cracks in
beam-like structures using the intact and damaged beam deflections under its weight and a Stochastic
Hill Climbing (SHC) algorithm. After describing the procedure of applying DS-SHC, we calculate
for a prismatic cantilever beam the severities for different crack types and depths. The results are
tested by comparing the DS obtained with DS-SHC with those acquired from dynamic tests made
using professional simulation software. We obtained a good fit between the severities determined in
these two ways. Subsequently, we performed laboratory experiments and found that the severities
obtained with the DS-SHC method can accurately predict the frequency changes due to the crack.
Hence, these severities are a valuable tool for damage detection.

Keywords: crack severity; strain energy loss; beam deflection; frequency shift; hill-climbing method

1. Introduction

Numerous damage detection methods have been developed in recent decades. These
are usually applied to check sensitive structures or structures involving high risk in oper-
ation. Depending on the principle of the non-destructive testing method applied, there
are two main categories: local methods and global methods [1]. Local methods require
approximate knowledge of the position of the damage and can only be applied to accessible
areas. The advantage of these methods is the high accuracy in characterizing the type
and size of the defect. However, in most cases the position of the structural damage is
unknown before the control is performed. For this reason, global control is essential to
observe the occurrence or propagation of damage and thus to characterize the state of
integrity of structures, especially complex or large ones. Global damage detection methods
use information regarding the vibration of the structure [2,3]. The essence of damage
detection based on changes in the dynamic behavior of the structure is the deterministic
relationship between physical and modal parameters [4]. More specifically, the presence
of defects causes changes in the modal parameters of the structure, and these changes are
used to diagnose, locate, and estimate the severity of the damage [5].
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The simplest case of structural damage is the transverse crack in an isotropic and
homogeneous structure. For this type of damage, non-destructive testing aims to identify
its position and estimate its depth. The position of the crack can be unequivocally related
to the change of a modal parameter, namely the modal curvature [6]. The case of the crack
depth is different, as it cannot be directly related to a modal parameter. However, there is
an indirect link between the depth of the crack and the natural frequency of the structure,
and both parameters mentioned above are related to the damage severity.

Deterministic damage detection methods fall into two categories: the finite element
approach and the continuous approach. In most damage detection cases that use the
finite element method, the structure is divided into identical elements that extend over
the entire cross-section of the structure. All elements have the mechanical and physical
characteristics of the intact structure, except one or a few elements where there is a defect.
The defective element, simulating the crack, commonly has a reduced Young’s modulus.
In most of the studies, the number of finite elements in the model is taken between 4
and 30, and the reduction of the elastic modulus of an element is in the range of 20% to
50%, see, for example, [7–11]. This approach requires centering the crack on an element
and, therefore, the precision of assessing damage is determined by the distribution of the
elements along the beam [10]. However, the biggest problem with using this method is the
lack of a definite relationship between the severity of the damage and the depth of the crack,
because the relationship depends on the size of the elements used for discretization [12].
When examining the methods proposed in the literature, we observed that the dependency
between the reduction in the size of the crack and the stiffness is rarely considered. In
general, the authors limit the study to finding the element in the beam with the lower Young
modulus value [13]. When damage detection is applied to trusses, finding the member
with the lower Young modulus is usually the target.

Another approach to modeling damage is to divide the structure into two segments
that are linked by a rotational massless spring. This equivalent spring introduces four more
unknowns in the system, which are determined from the continuity conditions [14]. The
correlation between the crack depth determining the local compliance and the equivalent
spring stiffness is found using fracture mechanics results [15]. There are many mathematical
relations to express the compliance functions relative to the crack depth available in the
literature, see for instance [16–19]. Involving this approach, damage detection consists of
fitting the position and the stiffness for one finite element to obtain by calculus similar
natural frequencies to those obtained for the damaged beam by experiments [20]. Analyzing
a multitude of compliance functions, we found significant differences between the results
achieved for certain crack depths, resulting in a negative influence on the accuracy of the
damage assessment methods based on this approach.

Recent research focuses on detecting damage by involving artificial intelligence (AI).
Examples of current methods aiming to detect damage in beams can be found in [21–23],
while in [24–26] are exemplified methods applicable to complex structures. These ap-
proaches are based on the analysis of the vibration signal parameters in the time domain
(acceleration, damping), or in the frequency domain (mode shapes and curvatures, frequen-
cies). The training data are obtained from simulation or measurements, thus initially it
involves a limited number of damage cases. If for a given structure it is possible to deter-
mine the relationship between the damage parameters and the vibration signal parameters,
it is possible to generate a multitude of damage cases [27] including the case of imperfect
clamping. In this way, the training process can be improved, and the AI algorithms provide
more accurate prediction results.

In prior research, we determined a mathematical relation to finding the severity of
closed or open cracks [28]. The data used to calculate the severity are the deflections at the
free end of a cantilever beam for the healthy and damaged case, respectively. Because the
severity is an intrinsic parameter of the damage, it is the same for beams with any boundary
conditions. Thus, it is sufficient to determine the severity just for the cantilever beam. For
the reasons presented in the next section, determining the deflection of the damaged beam
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implies regression analysis followed by extrapolation. Thus, the results are influenced by
the nature of the regression curve used and may vary accordingly.

In this paper, we propose a mathematical relation to calculate the effect of a crack
located anywhere on the beam on its deflection. This relation is used to find the damage
severity from static tests made with cracks having a random position on the beam. Instead
of regression analysis, we use Stochastic Hill Climbing (SHC) as an optimization method.
To the best of our knowledge, there is no research to determine the severity of the defect
using AI. Using this procedure to find the damage severity we avoid obtaining results that
depend on the analysis strategy, thus these are very accurate.

The paper is structured as follows: the expression of the cracked beam deflection is
deduced in Section 2, then we present the procedure to determine the damage severity
(Section 3) and the achieved results for several beams and crack dimensions (Section 4),
while in Section 5 we test the capacity of estimating frequency changes due to damage
by involving the achieved damage severities. Finally, we present the conclusions of the
research in Section 6.

2. The Expression of the Cracked Beam Deflection

This section presents a method for determining the deflection at the free end of a
cantilever beam with a crack. The challenge faced when attempting to evaluate damages is
that the effect of the crack, both on the deflection as well as on the natural frequencies, is
different when it is placed in different positions along the beam. However, the crack has
the biggest effect when it is in the beam slice in which the mechanical stresses are highest,
i.e., where the bending moment reaches its maximum value. In the case of the cantilever
beam, this location is the fixed end. In prior research [29], we have determined a method
for assessing the severity of transverse cracks, considering the deflection of a cantilever
beam in the intact state and when it is altered by a breathing crack of known depth a that is
located at the fixed end. This mathematical relation is:

γ(a) =
√

δ(a, 0)−√
δu√

δ(a, 0)
(1)

In Equation (1) we denoted: γ(a) the severity of a crack with depth a located at the
fixed end; δ(a, 0) the deflection at the free end of the cantilever beam having a crack with
depth a at the fixed end (index 0 stays for location x = 0 mm); δu the deflection of the intact
beam at the free end.

It is easy to determine the deflection at the free end for the beam with a constant
cross-section subjected to dead mass, as:

δu =
ρAgL4

8EI
(2)

Here, ρ is the volumetric mass density, A is the cross-sectional area, g is the gravity,
E is Young’s modulus and I is the second moment of inertia. This deflection is also easy to
be obtained from a finite element analysis (FEA).

Regarding the deflection of a beam affected by cracks, there are no analytical relations
for calculating the deflection. Thus, it becomes difficult to determine the severity of cracks.
Problems also occur when involving FEA. For a crack positioned at the fixed end, the
stresses and deformations of the beam can manifest only on one side of the crack, unlike
the case where the crack is located elsewhere along the beam. Thus, the rotation in the
cracked region is smaller than that achieved for a crack located in the neighborhood. This
has as a consequence a smaller deflection than expected at the free end. The phenomenon
is explained in detail in [30]. A suggestive representation of transverse displacements for a
cantilever beam’s extreme segment fixed at the left end, for two crack positions, is given
in Figure 1.
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Figure 1. Comparison of the transverse deflections for the cantilever beam segment clamped at the
left end for two damage locations.

From the color scheme, one can observe in the above figure that, when the crack is
positioned exactly at the fixed end (upper image), the deflection in the transverse direction
is bigger at the slice located at 6 mm than the deflection of the beam with a crack located on
that slice (bottom image). Subsequently, going toward the free end, the deflections increase
faster for the beam with the crack located at 6 mm. Without a doubt, at the free end, this
latter beam will achieve a bigger deflection.

A supplementary proof can be made with the results presented in Table 1. Here, we
present the deflection under dead mass for a steel cantilever beam of length L = 1 m and
cross-section A = 0.02 × 0.005 m2. The simulations were performed using ANSYS, for the
crack positions and depths presented in Table 1. The chosen material is Structural Steel and
the mesh is made using hexahedral elements of a maximum 1 mm edge size, thus obtaining
a mesh of ~30,000 elements.

Table 1. Deflection at the free end for a cantilever beam affected by a transverse crack located at a
distance x from the fixed end.

Crack Position [m]
δx (a) [mm]

for a = 0.4 mm
δx (a) [mm]

for a = 1 mm
δx (a) [mm]

for a = 2 mm

x = 800 23.046 23.047 23.052
x = 600 23.048 23.057 23.097
x = 400 23.052 23.083 23.219
x = 200 23.059 23.134 23.455
x = 20 23.072 23.207 23.798
x = 0 23.061 23.124 23.401

From Table 1, it is easy to observe that the deflection caused by a crack located at the
fixed end is smaller than that when the crack is located at x = 20 mm and even x = 200 mm
for all analyzed crack depths.

Taking into account the above, we can conclude that the severity to be considered
when calculating the natural frequencies of the defective beams is the one estimated to be
obtained at x = 0 on the curve constructed using the deflections determined for different
positions of the defect. This theoretical deflection corresponds to that resulting from the
deformation on both sides of the crack, which is impossible to obtain directly from FEA.
Note that this severity does not apply when the crack is very close to the fixed end; here it
indicates a bigger damage severity than it is in the real case.
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Let us now introduce the pseudo-severity γi(a, x), which reflects the effect of the
severity weighted with the effect of the crack position. In fact, it reflects a decrease in the
beam’s ability to store energy due to damage. This decrease, associated with the fact that
energy distribution is in concordance with the modal curvature, permitted us to derive a
function to calculate the natural frequency of a beam with a crack fi−D(a, x). The obtained
mathematical relation is [31]

fi−D(a, x) = fi−U

{
1 − γ(a)

[
φi

′′ (x)
]2} (3)

which makes use of the natural frequency of the intact beam fi−U , the damage severity
γ(a), and the normalized mode shape curvature φi

′′ (x). This relationship was successfully
used to assess cracks [32], which proves its reliability.

From the right term in the parentheses of Equation (3), we can deduce the pseudo-
severity as being

γi(a, x) =
√

δi(a, x)−√
δu√

δi(a, x)
=

√
δ(a, 0)−√

δu√
δ(a, 0)

[
φi

′′ (x)
]2

= γ(a)
[
φi

′′ (x)
]2 (4)

In Equation (4) we denoted the deflection of the beam with a crack of depth a that is
located at the distance x from the fixed end as δi(a, x). One can observe that, dissimilar to
the severity, the pseudo-severity severity depends on the vibration mode number i.

From Equation (4), we can deduce the mathematical relation for the deflection δ1(a, x)
of the cantilever beam under dead mass, when it has a crack located at the distance x from
the free end, by performing the following steps:

√
δ1(a, x)

√
δ(a, 0)−

√
δu

√
δ(a, 0) =

√
δ1(a, x)

(√
δ0 −

√
δu

)[
φ1

′′ (x)
]2 (5)

√
δ1(a, x)

(√
δ(a, 0)−

(√
δ(a, 0)−

√
δu

)[
φ1

′′ (x)
]2)

=
√

δu

√
δ(a, 0) (6)

√
δ1(a, x) =

√
δu
√

δ(a, 0)√
δ(a, 0)−

(√
δ(a, 0)−√

δu

)[
φ1

′′ (x)
]2 (7)

δ1(a, x) =
δuδ(a, 0)(√

δ(a, 0)−
(√

δ(a, 0)−√
δu

)[
φ1

′′ (x)
]2)2 (8)

If the crack is located at the fixed end, thus φ1
′′ (0) = 1, the deflection of the free beam

end is δ1(a, 0). On the other hand, if the crack is located at the free end, thus φ1
′′ (L) = 0, the

deflection of the free beam end is δu. This mathematical relation can be used to calculate the
deflection at the free end of a cantilever beam with a crack. In this paper, we use the function
given in Equation (8) to find the theoretical deflection δ1(a, 0) by an optimization algorithm.

3. Using the SHC to Estimate the Deflection When the Crack Is Located at the
Fixed End

Stochastic Hill Climbing (SHC) is an optimization algorithm, which starts from a
solution and expands it through incremental searches within a local area of the search
space, using an objective function, until an optimum is found. This essentially makes it
an ideal candidate in unimodal optimization problems, or after the application of a global
optimization algorithm. Other similar types of algorithms, which aim to approximate a
‘good-enough’ solution instead of searching for a global best, exist. These include genetic
algorithms, simulated annealing, random recursive search, and Tabu search. Most of these
are applicable for a broad range of problems because they: (i) generally require little or no a
priori knowledge, and (ii) can easily find an optimum solution by following local gradients
using the objective function.
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The SHC algorithm as used in this study considers as input three points Pk(a, xk) with
k = 1 . . . 3. These points are the deflections of the beam at the free end when the crack is
located at distances x1, x2 and x3, found involving the FEA. In addition, we indicate the
deflection of the intact beam derived by the means of FEA, which is Pu. The output consists
of one point, which is the deflection of the beam at the free end δ(a, 0) achieved when the
crack is located at the fixed end. The steps performed when running the algorithm are:

1. Generate an initial point.
2. Evaluate the initial point.
3. Take a step s.
4. Evaluate candidate point.
5. Check if we should keep the new point.

The objective function used to evaluate a candidate solution is given by

c(s) =

√
n

∑
i=1

(δ∗1 (a, xk)− Pk(a, xk))
2 (9)

In Equation (9), the points Pk are the deflections found from the finite element anal-
ysis and δ1(a, xk) are the deflections calculated, for the locations x1, x2 and x3, with the
mathematical relation

δ∗1 (a, xk) =

�
δ (a, 0)δu(√

�
δ (a, 0)−

(√
�
δ (a, 0)−√

δu

)[
φ1

′′ (xk)
]2)2 (10)

Here,
�
δ (a, 0) = s · δu. The search process starts with considering s = 1, and its value is

subsequently increased until c(s) achieves the lowest value possible. We exemplify here
the case of a crack with a depth of 1 mm. Figure 2 shows the objective function evaluation
for each improvement during the hill-climbing search. During the optimization process,
we initially get big changes, and toward the end of the search, these changes become very
small. After about 50 iterations the algorithm manages to converge on the optima.

 
Figure 2. Objective function evaluation for each improvement during the Hill Climbing Search.

We have implemented our SHC algorithm in Python and created a basic user interface
that allows us to easily estimate the deflections. Figure 3 shows the main window of the
PySHC application.
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Figure 3. The main window of the PySHC application.

In the developed Python application, it is necessary to input the damage depth a,
the coordinates xk/L, and the associated deflections Pk(a, xk) for the damaged beam Pu.
After the input values are introduced, the algorithm determines the theoretical deflection
obtained for the free end, when the crack is located at the fixed end. It is recommended
that the chosen points are not too close.

If the crack is an open one, as shown in Figure 4, in addition to the crack depth it is
necessary to indicate the crack width w. This value is set to 0 by default in the application,
indicating a closed crack. The input value for w should not exceed 5 mm, otherwise another
damaged beam model is applicable [33,34].

 
Figure 4. The geometry of the open crack.

4. Severity Curves Derived from the Calculated Damage Deflections

To determine the deflection caused by a crack that is located at the fixed end, using the
described SHC algorithm, we have conducted FEM static simulations considering multiple
damage scenarios. The beam considered in this study is like that presented in Section 2,
thus it has the following dimensions: the length L = 1000 mm, the width B = 20 mm, and
the thickness H = 5 mm. We also used the same material (Structural steel) and applied an
identical simulation strategy.

The simulated transverse cracks are located at distances x1 = 100 mm, x2 = 200 mm,
and x3 = 300 mm from the fixed end. The crack depth starts from a = 0.2 mm and increases
iteratively with a step Δa = 0.2 mm until the depth of 2 mm is achieved. The applied load
was the dead weight, which produces a deflection in the transverse (vertical) direction. For
each crack depth, we obtain from the FEM simulations three deflections for the beam’s
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free end, which are P1(a, 100), P2(a, 200) and P3(a, 300). Using PySHC, we determine the
theoretical deflection at the free end. The input data for the considered damage scenarios
and the obtained deflection values are presented in Table 2 for the closed crack and in
Tables 3–5 for open cracks with different widths.

Table 2. Deflection at the free end for a cantilever beam with a crack that has the width w = 0 mm.

Damage
Scenario

a
[mm]

P1(a,100)
[mm]

P1(a,200)
[mm]

P1(a,300)
[mm]

δ(a,0)
[mm]

1 0.2 23.05051 23.04915 23.04807 23.05203
2 0.4 23.06576 23.05987 23.05525 23.07250
3 0.6 23.09069 23.07740 23.06701 23.10592
4 0.8 23.12546 23.10178 23.08331 23.15287
5 1 23.17079 23.13365 23.10461 23.21369
6 1.2 23.22881 23.17437 23.13201 23.29203
7 1.4 23.30028 23.22457 23.16553 23.38859
8 1.6 23.38823 23.28624 23.20691 23.50768
9 1.8 23.49632 23.36178 23.25774 23.65446
10 2 23.62840 23.45544 23.32010 23.83521

Table 3. Deflection at the free end for a cantilever beam with a crack that has the width w = 0.5 mm.

Damage
Scenario

a
[mm]

P1(a,100)
[mm]

P1(a,200)
[mm]

P1(a,300)
[mm]

δ(a,0)
[mm]

11 0.2 23.05194 23.04741 23.04642 23.05161
12 0.4 23.07330 23.06490 23.05782 23.08210
13 0.6 23.10278 23.08532 23.07122 23.12135
14 0.8 23.14164 23.11220 23.08964 23.17352
15 1 23.19285 23.14674 23.11277 23.24136
16 1.2 23.25361 23.19128 23.14087 23.32423
17 1.4 23.32764 23.24303 23.17532 23.42406
18 1.6 23.42321 23.30889 23.22357 23.55420
19 1.8 23.54339 23.39505 23.27568 23.71710
20 2 23.68598 23.494056 23.34586 23.91250

Table 4. Deflection at the free end for a cantilever beam with a crack that has the width w = 1 mm.

Damage
Scenario

a
[mm]

P1(a,100)
[mm]

P1(a,200)
[mm]

P1(a,300)
[mm]

δ(a,0)
[mm]

21 0.2 23.05194 23.04966 23.04784 23.05331
22 0.4 23.08282 23.07153 23.06199 23.09481
23 0.6 23.11673 23.09484 23.07764 23.13992
24 0.8 23.16138 23.12612 23.09826 23.19984
25 1 23.21792 23.16637 23.12452 23.27626
26 1.2 23.28805 23.21417 23.15746 23.37020
27 1.4 23.37186 23.27379 23.19689 23.48408
28 1.6 23.47622 23.34780 23.24623 23.62638
29 1.8 23.60532 23.44105 23.30606 23.80360
30 2 23.77482 23.55553 23.38395 24.03240
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Table 5. Deflection at the free end for a cantilever beam with a crack that has the width w = 2 mm.

Damage
Scenario

a
[mm]

P1(a,100)
[mm]

P1(a,200)
[mm]

P1(a,300)
[mm]

δ(a,0)
[mm]

31 0.2 23.05984 23.05340 23.05021 23.06241
32 0.4 23.10104 23.08376 23.06999 23.11881
33 0.6 23.14577 23.11485 23.09062 23.17848
34 0.8 23.20197 23.15414 23.05194 23.25396
35 1 23.27400 23.20445 23.14956 23.35081
36 1.2 23.36256 23.26645 23.19063 23.47044
37 1.4 23.47207 23.34311 23.24154 23.61869
38 1.6 23.60779 23.43813 23.30477 23.80337
39 1.8 23.77636 23.55631 23.38347 24.03397
40 2 23.98833 23.70488 23.48253 24.32582

The main purpose of determining the theoretical deflections is to calculate the damage
severities, which have a direct application in Structural Health Monitoring (SHM). We
calculate the crack severities with Equation (1), the data utilized being δ(a, 0) for the
damaged beam and δu = 23.046 mm for the intact beam. The results obtained for the closed
cracks are represented graphically in Figure 5.

Figure 5. Severity evolution versus crack depth for the closed crack scenario.

Furthermore, we determine the severity values for open cracks, considering the results
presented in Tables 3–5. The severities calculated accordingly are depicted in Figure 6,
along with the severities for the closed cracks for comparison. One can observe that an
increase in the damage width has as a result an increase in the severity. However, the
curves have the same shape.

129



Appl. Sci. 2022, 12, 7231

Figure 6. Severity evolution with the crack depth for closed and open cracks.

5. Testing the Capacity of the Derived Severities to Accurately Predict Frequency
Changes Due to Damage

In this section, we test the accuracy of the developed SHC algorithm and implicitly the
analytical relation to calculate the deflection of beams with cracks. To this aim, we perform
FEM simulation and laboratory experiments. Because the frequency changes are small, and
even big errors can be overseen, we also compare the relative frequency shifts (RFS). The
RFSs are frequency changes normalized by the natural frequencies of the intact beam and
are calculated using the following mathematical relation [35]:

Δ f i−D(a, x) =
fi−U − fi−D(a, x)

fi−U
= γ(a)

[
φi

′′ (x)
]2 (11)

By normalization, the changes become more easily comparable, and a better assess-
ment of the method’s reliability is possible. Moreover, these RFSs are used in damage
detection, so it is important to evaluate if analytically deduced RFSs can be used to construct
reliable databases that contain the structural response for a multitude of damage scenarios.

We can extract the severity from Equation (11), resulting in

γ(a) =
1[

φi
′′ (x)
]2 fi−U − fi−D(a, x)

fi−U
(12)

Testing is made by comparing the severity obtained from static tests with the RFS
obtained from dynamic tests made in the laboratory. From the static tests, made through
FEM simulations, we obtain the deflections and calculate the severity with Equation (1).
From the dynamic tests, made involving the FEM or laboratory experiments, we obtain the
frequencies of the beam in the intact and damaged state. In addition, we can calculate the
normalized modal curvature φi

′′ (x), and eventually the right term in Equation (12), which
has also the meaning of the severity. Now, by comparing the two results, we can conclude if
these fit and if the prediction of frequency changes can be reliably made with Equation (3).
In this mathematical relation, we consider the measured frequency of the intact real beam
and the severity deduced from the deflections of the beam under its own weight.

5.1. Tests Performed with FEA

Damage detection using modal parameters requires accurate algorithms to detect the
slightest frequency changes in structures. For determining the accuracy of the described
method used for detecting transverse cracks, we have performed FEM modal simulations
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using the ANSYS software for the same cantilever beam described in Section 2. The beam
is successively affected by closed and open transverse cracks with different depths and
located in different slices of the beam.

As a first example, we present in Figure 7 the natural frequencies obtained from simu-
lation and with Equation (3) for the beam with a transverse crack that has the parameters:
x = 604 mm, a = 1 mm, and w = 0 mm. When using the analytical approach, we calculate
the frequencies with Equation (3) in which we consider the measured frequency of the
intact beam and the severity deduced from the deflections achieved by static analysis.

Figure 7. Comparison of the natural frequencies obtained for the cantilever beam with a transverse
closed crack that has the parameters x = 604 mm and a = 1 mm.

At a first look, the frequencies in Figure 7 fit, but it is difficult to evaluate the accuracy of
the method. However, one can observe that the differences between the natural frequencies
obtained involving the analytical method and the FEM results are small.

To trace a relevant conclusion, we represent in Figure 8 the difference between the
predicted frequencies and those obtained from simulation. Before being represented, the
differences are normalized, according to the mathematical relation

ε =
fi−D(FEM)− fi−D(a, x)

fi−U
(13)

Figure 8. The normalized differences between the natural frequencies determined analytically and
using FEM for the cantilever beam with a transverse closed crack that has the parameters x = 604 mm
and a = 1 mm.

One can observe that absolute normalized differences are extremely small, between
−0.000019 and +0.000125. Because the frequency differences are normalized, the error does
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not increase with the mode number. By calculating the normalized differences for more
damage scenarios, we found out that the errors are comparable or smaller. This proves that
the results obtained with the DS-SHC method are reliable.

A second example considers also closed cracks, thus w = 0 mm. The damage scenarios
are defined in ANSYS, for three crack depths a = 0.2, 1, and 1.6 mm. For each crack depth,
the position of the crack is x = 125 mm and x = 489 mm, respectively. After we defined
the damage scenarios, we determined the severity γ(a)FEM using relation 12 for the first
six weak-axis vibration modes. Relative to the crack’s main dimensions, a, x, and w, the
damage scenarios are noted as C(a,x,w). The severity values γ(a)FEM are compared, in
Figure 9, with the calculated ones γ(a).

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 9. The normalized differences obtained between the natural frequencies determined an-
alytically and by means of FEM for the cantilever beam with a transverse crack: (a) Damage
scenario C(0.2, 125, 0); (b) Damage scenario C(0.2, 489, 0); (c) Damage scenario C(1, 125, 0); (d) Dam-
age scenario C(1, 489, 0); (e) Damage scenario C(1.6, 125, 0); (f) Damage scenario C(1.6, 489, 0).
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A third example considers open cracks. We performed FEM simulations for defined
damage scenarios that involve cracks with widths w of 0.5, 1, and 2 mm. The results for all
damage scenarios are presented in [36].

For a part of the open damage scenarios, noted as C(a,x,w), the normalized differences
calculated between the natural frequencies determined analytically and employing FEM
are presented in Figure 10.

 
(a) (b) 

 
(c) (d) 

  
(e) (f) 

Figure 10. The normalized differences obtained between the natural frequencies determined analyt-
ically and using FEM for the cantilever beam with an open transverse crack: (a) Damage scenario
C(0.2, 125, 0.5); (b) Damage scenario C(1, 125, 0.5); (c) Damage scenario C(0.2, 125, 1); (d) Damage
scenario C(1, 125, 1); (e) Damage scenario C(0.2, 125, 2); (f) Damage scenario C(1, 125, 2).
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5.2. Tests Performed Involving Laboratory Experiments

To prove the accuracy of the developed algorithm, we also conducted laboratory
studies on steel cantilever beams affected by transverse cracks of known location, depth,
and width. The tests consist of measuring the natural frequencies in the intact and damaged
state. Because the accuracy of RFS calculated with Equation (11) is relevant for damage
detection, in this section we compare these RFS with those obtained from measurements.
The laboratory setup consists of a rigid structure including a vise in which the beam is
fastened, an excitation device, and the data acquisition system. The experimental setup is
presented in Figure 11 and described in detail in [27].

 

Figure 11. Experimental setup.

The excitation system involves a speaker and amplifier which are controlled using
AudioDope software. The beam is excited at specific frequencies, and the vibration response
is acquired. To acquire the signals, we use a data acquisition system consisting of a Kistler
8772 accelerometer which transmits the signal through the analog-to-digital conversion
module NI9234 to the compact chassis NIcDAQ-9175. This module is connected to a second
laptop, on which the LabVIEW software is installed. The acceleration signal is acquired
and is subsequently processed to extract the natural frequencies with high accuracy using
the procedure described in [37,38]. The Python code implementing the procedure is
available in [39].

The experimental study was carried out on four S355 JR steel cantilever beams of
dimensions 1 × 0.05 × 0.005 m, at first in an intact state and later in a damaged state, by
generating transverse cracks of width w = 2 mm by saw cutting. One end of the beams is
fixed in a vise (see Figure 12).

 

Figure 12. Test specimen with generated transverse crack mounted on the experimental stand.

At least five natural frequency readings were made for each test and the arithmetic
mean was considered. For each reading, the first six natural frequencies of the beam were
extracted, and the obtained values are listed and compared with the natural frequencies
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obtained from FEM in Table 6. From the compared values the small differences can be
observed.

Table 6. Obtained natural frequencies for the undamaged test beams.

Beam nr.
Measured Natural Frequencies [Hz]

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

Beam 1 4.060 25.439 71.426 139.902 231.038 344.750
Beam 2 4.052 25.448 71.213 139.342 230.295 343.254
Beam 3 4.011 25.237 71.102 138.575 229.421 342.904
Beam 4 4.044 25.482 71.287 139.420 228.528 344.177

A transverse open crack was generated on each beam analyzed above, thus result-
ing, for a single beam, six natural frequency values corresponding to the six transverse
vibration modes.

We present in Table 7 the crack dimensions for each damage scenario and the measured
natural frequencies. In this table, we also included the severities for the four cracks, derived
using the method described in the current research.

Table 7. Obtained natural frequencies for the damaged beams.

Damage
Scenario

a
[mm]

x
[mm]

w
[mm]

γ(a)
[-]

Measured Natural Frequencies [Hz]

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

Beam 1 0.8 310 2 0.004503233 4.054 25.425 71.286 139.832 230.933 343.984
Beam 2 1.2 587 2 0.009104778 4.051 25.356 71.071 139.131 229.403 343.204
Beam 3 1.2 395 2 0.009104778 4.003 25.166 71.002 138.496 228.555 342.860
Beam 4 2 795 2 0.026682373 4.044 25.431 70.553 137.544 226.899 343.963

We calculate now the RFSs with the frequencies taken from Tables 6 and 7, which are
found from experiments. To this aim we use Equation (11). We also calculate the RFSs
analytically (see Section 2). In this case, the input data consists of the deflections obtained
from FE simulations; these permit calculation of the severity with Equation (1). With the
calculated severity we find the frequency drop with Equation (3) and, finally, the RFSs with
Equation (11). The comparison between the RFSs obtained with experimental results and
those calculated is presented in Figure 13.

From the diagrams represented in this figure, it can be observed that there is a good fit
between the compared values. Note that once the severity curves are known and plotted
as in Figure 6, the severity can be easily determined for any damage depth. Thus, the FE
simulations are no longer required when the procedure is applied.

By using the method described in the current paper, by employing Equation (11), we
have generated training data for developing a damage detection neural network similar to
the one presented in [13]. The training data consist of the RFS values for the six transverse
vibration modes. After the network was trained, we successfully determined the position
and depth of the cracks for the four experimental cases by considering the RFS values. The
errors obtained are presented in Table 8.
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(a) (b) 

  
(c) (d) 

Figure 13. Compared RFS values between the experimental measurements and analytical determined
ones. (a) Damage scenario C(0.8, 310, 2); (b) Damage scenario C(1.2, 587, 2); (c) Damage scenario
C(1.2, 395, 2); (d) Damage scenario C(2, 795, 2).

Table 8. Predicted locations and depths of the damage.

Damage
Scenario

x
[mm]

a
[mm]

w
[mm]

ANN Predicted Values

x [mm] εx [%] a [mm] εa [mm]

Beam 1 310 0.8 2 321.07 1.107 1.06 0.26
Beam 2 587 1.2 2 598.01 1.101 1.49 0.29
Beam 3 395 1.2 2 394.41 −0.059 1.38 0.18
Beam 4 795 2 2 791.09 −0.391 1.94 −0.06

The results prove the accuracy of the applied method for determining the position and
severity of transverse cracks.

6. Conclusions

The paper presents the DS-SHC method, which can determine the severity of a crack
involving just four static tests, one for the intact beam and three for the beam affected by a
defect for which the positions are changed successively. From the tests performed for the
defective beam, deflection is determined at the free end of a cantilever. Subsequently, using
the SHC algorithm, the theoretical deflection that occurs when the crack is at the fixed end is
determined. The matching of the three points is carried out on the function proposed in this
paper, which expresses the deflection with the crack position. This theoretical deflection
is different from the deflection achieved when the crack is at the fixed end because of
constructive reasons. Finally, the severity is calculated from the capability of the beam with
a crack to store energy, which is reflected by the increase of deflection at the free end.

To prove the reliability of the DS-SHC method, we compared the frequencies of the
damaged beam calculated with the severity derived by employing the theoretical deflection
with the frequencies obtained for the damaged beam using the FEM. The normalized
differences between these frequencies are extremely low, less than ±0.001, which proves the
reliability of the DS-SHC method. Moreover, we demonstrated here that the theoretical de-
flection for the damaged beam has to be considered when calculating the damage severity.
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An additional check was made to find out whether the prediction of the frequency
changes made with the severity calculated based on the theoretical deflection permits
assessing the damage. In the laboratory experiments we conducted, we were able to
localize the damage with high accuracy, the errors being less than 1.1%. The damage depth
was also found with high accuracy; the difference between the depth of the generated
damage and the prediction is smaller than 0.3 mm.

In the next studies, we will focus on finding whether the severity derived for the
cantilever beam can be used for beams with other boundary conditions, and how accurate
the severities for structures with other shapes of the cross-section can be determined.
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Abstract: Foundation scour is a widespread reason for the collapse of bridges worldwide. How-
ever, assessing bridges is a complex task, which requires a comprehensive understanding of the
phenomenon. This literature review first presents recent scour detection techniques and approaches.
Direct and indirect monitoring and machine learning algorithm-based studies are investigated in
detail in the following sections. The approaches, models, characteristics of data, and other input
properties are outlined. The outcomes are given with their advantages and limitations. Finally,
assessments are provided at the synthesis of the research.

Keywords: bridge scour; scour detection; scour monitoring; machine learning algorithms

1. Introduction and Background—Scour Identification Approaches

Scour is one of the most common causes of bridge collapse. Bridge collapses cause
large numbers of fatalities and financial losses. Therefore, the vulnerability of bridges to
scour should be assessed and adequate actions should be taken. Piers, abutments, founda-
tions, and piles at risk of scour could be protected from scour by taking countermeasures
(with backfills, sheet piles, sacrificial piles, etc.) and repairing damaged elements (using
ripraps, splitter plates, etc.) before global damage occurs. However, even after the bridges
are properly protected against scour, it is important to continue monitoring the scouring
condition. For several reasons, scour detection is a complex task; diving inspections to
identify scouring are relatively dangerous. Underwater conditions complicate the imple-
mentation and maintenance of scour depth measurement devices. Moreover, hydraulic
scour models are dependent on various parameters and there are still unsolved modeling
issues caused by scaling and sediment gradation [1]. Traditional empirical scour formulas
do not result in very accurate predictions of scour depths. To overcome this complex task to
detect and locate scour, various methods have been developed. This review paper mainly
focuses on a detailed assessment of scour monitoring and machine learning (ML)-based
scour identification methods with relevant recent studies. However, an introduction with
brief explanations of other scour detection approaches is provided as well. This section
includes underwater inspections, empirical formulas, hydraulic and representative scour
modeling, experimental studies, and probabilistic scour detection methods.

To begin with, empirical studies are one of the former scour detection and scour depth
estimation methods [2–5]. These former studies were based on extracting scour length
formulas using laboratory experimental results or field measurements. The relationship
between flow velocity and duration, depth of charge, bed material properties, sediment
movement, and substructure geometric properties on maximum local scour depth of piers
and abutments or stresses in the riverbed were aimed to be quantified. Some of the scour
formulas used are 65-1, 65-2 (Chinese), Melville-Sheppard, MBW, Hydraulic Engineering
Circular No. 18 (HEC-18), Dey and Barbhuiya [6], and Muzammil [7].

Underwater inspections could be classified as eye inspections and equipment-based
ones. In the eye inspection, the divers go through a difficult and dangerous search and a
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detailed examination report is prepared. During underwater inspections, the human eye
might fail to detect scour. Ground-penetrating radars, water-penetrating radars, SONAR,
and some specific laser systems are examples of equipment-based underwater examina-
tions. Penetrating radars in boats of floating units emit electromagnetic waves and receive
echoes from the soil. In one of the latest studies in this field, the researchers mapped the
bathymetric profile (water depths and sediment thicknesses) of a river bed in North Ire-
land and managed to detect scour holes around upstream piers using a water-penetrating
radar [8]. On the other hand, another study aimed to quantify scour depths in a river in
Switzerland with a gravel bed and find the relationship between the subsurface and the
structure of the riverbed using a ground-penetrating radar [9]. The researchers detected
a four-meter-deep scour hole that could not be detected by bathymetric (water-based)
surveys. Moreover, SONAR is another technology for collecting underwater images and
therefore can help detect scour holes. A recent and successful study managed to locate and
measure scour depths by combining SONAR data and a deep convolutional network [10].
Furthermore, it was revealed that although it performs worse in high turbidity, green laser
technology was able to detect scour around bridge piers in an economic and safe way [11].

The scour development process and how it is affected by the flow, bed material char-
acteristics, and geometry of the scoured elements have been investigated by hydraulic
model-based studies. [2] is a sample study examining the non-cohesive sediment’s move-
ment in sloping and [12] is another study where the fundamentals of the scour development
process and mathematical modeling of flows around bridge piers/piles, below pipelines,
and other structures such as groins, breakwaters, and seawalls were examined. According
to a former study [13] the basic idea behind scour development was believed to be the
horseshoe vortex system [14]. Later, the whole turbulence scheme was shown to be the
most important eroding flow process; horseshoe vortex is only an element of this scheme
and the whole pattern also consists of downflow and acceleration of the discharge around
the sides of the pier [10]. Experimental studies have been used to test the effects of different
layouts, shapes of piers, and flow parameters on scour [3,4,15,16]. Scour in clear water
and accumulations around hexagonal arrays of emergent circular cylinders for various
solid portions and an orientation of cylinders that resulted in less scour than an individual
large pile was proposed [15]. Another study measured the complex turbulent discharge for
different fluid velocities, Reynold shear stresses, and the density of the horseshoe vortex [4].
There were also studies on perpendicular wall abutments [5] investigating how channel
width, shape, sediment dimensions, flow depths, and abutment lengths affect pier and
abutment scour.

Furthermore, there have been studies that simulate scour instead of building a hy-
draulic model that directly represents it. To identify scour, mode shape ratio, apparent
profile, Eigen frequencies, and decentralized modal analysis methods were adopted by
various studies, namely [17], [18], and [19]. These studies did not aim to obtain scour
depth but rather to detect its presence by identifying changes in the dynamic properties
of the structure as an index that reveals the existence of scour. Alternatively, to evaluate
the performance of scour-critical bridges, a soil–pile–structure interaction analysis was per-
formed [20]. Some researchers have validated their approaches with experiments, [21–23]
and therefore gathered more trusted results. Many studies with scour indexes were ex-
plained in detail in Section 2.1.1 with their approaches, model features, and outcomes.

Finally, there are probabilistic approaches that overcome the uncertainties of deter-
ministic approaches summarized above. Uncertainties of scour identification problems
include insufficiencies of visual inspections, assumptions, and estimations of parameters
(geometric properties, hydraulic parameters, etc.). Since the accuracy of the deterministic
models is highly dependent on the input, these might lead to over or underestimation of
scour. Probabilistic scour models investigate the probability of structural failure under
scour [24–28]. The limit state function is defined as the residual resistance of the structure
after load effects are compensated; where load, resistance, and therefore limit state function
are dependent on random variables [28]. To solve the probabilistic failure problem, there
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are different types of reliability methods, for example risk-based, numerical, approximation,
and semi-probabilistic designs [28]. Changing environmental conditions such as climate
change effects might invalidate initial assumptions and cause unexpected rainfall regimes,
floods, and therefore scour issues. The effects of such uncertainty, i.e., gradual change
of flow properties was investigated by [24] and probabilistic scour failure analysis was
performed. The researchers statistically analyzed the maximum annual flow of a UK river
and aimed to predict local pier scour with Monte Carlo simulation. Simultaneous gradual
increments of flow variability and the mean of the flow resulted in the greatest scour depth
predictions. Another study investigated scour around a complex bridge pier and adopted
a reliability analysis with an optimization method with a semi-probabilistic design [25].
Using this method, these researchers developed a safety factor to reach the desired safety
level of the foundation design. Additionally, their sensitivity analysis revealed that pier
width and correction factor were the most effective variables on the reliability of bridge
pier against scour. A very remarkable uncertainty is caused by the memory effects, i.e.,
the accumulated scouring effects throughout the long service life of bridges [26]. Using a
Markovian approach, scour depth changes aimed to be observed and scour depth domain
was decomposed into multiple discrete states for various flood events. The research showed
that after the first years of prediction, in time, the probabilistic scour depth distribution
evolved and reached a stationary value [26]. The probabilistic local scour analysis of a
bridge pier in a clay and sand mixture sediment was performed in five different reliability
methods [27]. These simulation-based methods were line sampling, subset simulation, im-
portance sampling, Monte Carlo simulation, and directional simulation. The most accurate
results were obtained through subset simulation.

2. Conventional Monitoring-Based and Machine Learning-Based Methods to
Identify Scour

Both machine learning and conventional monitoring approaches are based on mea-
sured or simulated data. However, the way of processing the input data creates the main
difference between these two approaches. Conventional methods require the creation of
models, whereas machine learning methods eliminate the need of knowing the relationship
between input and output [29]. Even though it is possible to generate simulated signals,
field (full-scale) measurements provide more realistic information. Hence, many different
types of sensors have been developed to collect signals. Sensors used for signal monitoring
were classified under three main categories: kinematic, ambient, and mechanical prop-
erty collectors [30]. Kinematic properties are accelerations, velocities, and displacements;
ambient properties include features such as temperature, wind, and soil permeability;
while mechanical properties are strain, stress, and shear/bending/torsional deformations.
Accelerometers, strain gauges, and displacement gauges are the most widely-used mon-
itoring sensors. Narrowing down to sensors to monitor scour was explained under the
two following main clusters [31]: the ones using devices that measure the depth and those
utilizing changes in the dynamic properties of the structure. They listed depth monitoring
devices as follows:

1. Single-use devices;
2. Pulse or radar devices;
3. Fiber Bragg grating sensors;
4. Buried or data-driven equipment;
5. Sound wave appliances;
6. Electrical conductivity devices.

They noted that accelerometers and tiltmeters were some of the sensors that use
changes in the dynamic properties of the bridge. Bridge scour monitoring devices were
visualized in Figure 1 [32]. With developing technology, monitoring devices have improved
and alternative systems have been generated. A Scour Monitoring Decision Framework
was developed, which was based on software [33]. This framework assisted the Minnesota
Department of Transportation engineers to determine the most adequate fixed scour mon-
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itoring equipment for the specific bridge they were working on. It decreased potential
issues related to the sensor chosen by the user and supplied warnings on the occasion of
abnormal scour activity in the field. One of the recent experimental monitoring studies
investigated the consequences of scour for bridge frequencies [34]. The outcomes of the
theoretical model corresponded with the laboratory outcomes. The numerical background
of another study was used to decide the location of the sensors and the limitations of the
railway bridge monitoring [35].

Figure 1. Scour monitoring devices - copied from [32].

Data collection systems include several other elements rather than sensor technology.
The main elements when instrumenting a data acquisition scheme were listed as [36]:

1. Sensors;
2. Sensor data collection topologies;
3. Wireless connection;
4. Power supply;
5. Synchronizing the data obtained from a set of sensors;
6. Environmental effects and data;
7. Collection and processing systems.

The data collection system has to be adequately implemented according to the struc-
ture and service conditions. For large-scale bridges, locating, implementing, and maintain-
ing sensors should be well planned since some parts of the structure could be inaccessible,
such as the deck bottom of the suspension bridges. Although indirect monitoring tech-
niques do not interrupt service conditions, for direct monitoring systems, service conditions
are important factors to be considered. There can be time restrictions during the day or
parts of the structure that cannot be closed to service for data acquisition. After obtaining
data through sensors, wireless connections are used to transfer signals. Wireless sensing
units were leveled up when combined with low-cost mobile devices and these units are
still being developed for better software and hardware [37].
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The following sections explain the methods, properties, and main outcomes of conven-
tional monitoring-based and machine learning-based studies. For conventional monitoring-
based studies, the databases searched were Google Scholar and Scopus and a total of
168 studies were screened. After applying the exclusion criteria, 22 studies remained. For
machine learning-based studies, the databases searched were Web of Science and Scopus.
A total of 38 elements were screened. Applying the exclusion criteria, this resulted in
14 studies.

The eligibility criteria applied were:

• Academic papers published in the recent years;
• Written in English;
• Aiming to detect bridge scour, not other types of damage;
• Scour detection methods were monitoring or ML-based.

2.1. Methods, Properties, and Main Outcomes of Studies
2.1.1. Cluster 1—Conventional Monitoring-Based Approaches to Detect Scour

Table 1 provides the type of monitoring, numerical approach, and dynamic structural
property addressed, and the presence of experimental/field data in the studies. Descrip-
tions of direct and direct monitoring systems, technical information about the sensors, and
analysis methods used in the studies in Table 1 are explained in this section.

Scour monitoring could be classified under direct and indirect methods [38]. In direct
monitoring, structural parts of the bridge are equipped with sensors. The sensors are fixed
while in indirect monitoring, the vehicle passing over the structure is instrumented with
measurement devices, i.e., sensors are moving. Indirect or so-called drive-by monitoring
utilizes the responses of the sensors on the vehicles to extrapolate the condition of the
bridge [38]. These responses (measurements) could be accelerations, displacements, or
speed. There are some challenges of direct monitoring as well as its major advantages of
ensuring improvement in public safety early risk detection and minimizing downtime [39].
There are some disadvantages. Direct monitoring is not suitable for all applications, the
whole scheme is costly, and there are some undesired implications such as high maintenance
costs. This was where indirect monitoring became more advantageous since it was found to
be more economical, independent from the features of the structural system to be assessed,
and provided maintenance-friendly measurements. The indirect monitoring technique is
also known as drive-by monitoring and enables scour identification without any traffic
interruptions to the railway or highway operations on the bridge. In direct monitoring,
signals are obtained from structure form input data, while signals of single run or multiple
vehicle batches are products of indirect monitoring. To extract the dynamic properties of the
bridge, data were processed with numerical approaches. Utilizing displacements of a beam
which were found from a vehicle–bridge interaction finite element model was aimed to
calculate the distribution of the flexural rigidities throughout the length retrospectively [40].
They also sought to estimate the damage level of the bridge. For detecting damage, it is also
possible to eliminate the dependence on reference signals from a healthy bridge. Another
study focused on monitoring analyzed the difference between right and left accelerations
of the train (i.e., roll component) which occurred in the presence of deformation, to prove
the imbalance in the bridge behavior [41].
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Table 1. List of monitoring-based scour detection studies.

Monitoring Type Study Reference Numerical Method and Sensor Technology
Presence of Experimental

Cases /Field Tests

Direct

[42] Mode Shape Ratio None

[43] Vibration energy harvesting device Yes

[44] Hilbert Huang Transform Yes

[45] Fiber Optic Sensors Yes

[46] Eigen frequency None

[47] Frequency Domain Decomposition None[17]

[23] Decentralized modal analysis Yes

[48]
Frequency analysis of piezoelectric rod sensors[49] Yes

[50]

[51] Unmanned Aerial Vehicle using smart rocks Yes

[31] Smart probes
instrumented with electromagnetic sensors[52] Yes

[53] Micro energy harvesters None

[54] Horizontally-displaced mode shapes and changes
in dynamic flexibility Yes

[55] Unmanned Aerial Vehicle-based smart rock Yes

Indirect

[56]
Wavelet transformation None[37]

[57]

[18] Eigen frequency None

[19] Closed-form mode shape derivation Yes

The studies listed in Table 1 use numerous sensors. Accelerometers were located
at the mid-spans and piers of the bridges. Signals from the superstructure of the bridge
were collected using velocity sensors to reveal the dynamic features of scour [55]. Their
experimental setup consisted of inclinometers, a camera, a level transmitter, and a wireless
transmitter as well. As the flow continued, the velocity sensors sensed vibrations and the
inclinometer showed the angle of tilt during scour. Besides accelerometers and velocity
sensors, piezoelectric rods, electromagnetic sensors, micro-electro-mechanical systems
(MEMS), vibrational power generators, optic sensors (image tracking), and permittivity
change of the soil were utilized for the detection of scour. When the water flowed, the
buried piezoelectric rods were subjected to hydrodynamic effects resulting in vibrations
that created voltage in the rods [48]. A frequency domain analysis of the voltage–time
history of the rod will result in the length. As sediment moves away, the length of the rod
increases and this is felt through the change in the frequency. The difference between the
initial and instantaneous length will give scour depth. Moreover, unconstrained distributed
fiber optic sensors are one of the recent technologies used for investigating scour. In the
research of [45], fibers deform freely under water flow. Deformation changes are detected
by ultra-weak fiber Bragg grating which is written in the optical fiber. Since temperature
changes at pier at an elevation of around 10 meters below water are slow and small, the
central wavelength of the fiber is only affected by the altered strains, i.e., deformations of
the fiber. Differences in central wavelength changes give scour length. Some innovative
researchers used innovative technology, i.e., smart rocks for scour monitoring. [51,55].
Based on the theory of the magnetic field, developed algorithms were able to find the
locations of the rocks, which were rolled down into scour holes. The proposed system for
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scour monitoring of other studies [31,52] had a probe with an integrated electromagnetic
sensor that identifies different dielectric permittivity values of the soil that surround the
foundation of the bridge. Using the frequency of the oscillators implemented in the sensors,
measuring the capacitance which only changes with the dialectic property of the soil around
them was proven possible [33]. The monitoring system of [53] on the other hand, consisted
of MEMS harvesters to detect pier scour, which gathered energy from environmental energy
sources to produce electricity. Further expiation of the authors about these micro energy
harvesters revealed that depending on the frequency change induced by the oscillation of
the electrode, having the rent as output was possible and the frequency was detected via a
small wireless apparatus.

There are many various transformation methods to decompose signals gathered
from different sensors. Fourier transform is one of the most common signals processing
methods in a frequency domain analysis. Fourier integrals containing the Fourier transform
represent non-periodic (arbitrarily changing) excitations [58]. Direct Fourier transform
equals the o multiplication of the Fourier transform and complex frequency response
function. To obtain a response in the time domain, inverse Fourier transform is applied.
Fourier transform is best applied to stationary and transient signals since it results in
average frequency [59]. Hilbert spectrum is also an amplitude in the frequency–time
domain; however, it is used for processing non-stationary signals as well. [50]. [60] indicates
one of the most significant features of the Hilbert transform—it could detect frequency
response nonlinear effects. Since applying the Hilbert transform to the frequency response
of a linear structure regenerates the original frequency response, any distortion could
be an indicator of non-linearity. The Frequency Domain Decomposition method [61]
identifies very close and repeated modes. [47] stated that the approach also makes the
extrapolation of dynamic parameters possible with no information about excitation in
the beginning. After calculating the continuous wavelet transform matrix from raw data,
singular values and singular vectors are the products of the singular value decomposition
used to find damping ratios, frequencies, and mode shapes [62]. Wavelet transformations
were defined as visual tools to assess signals more easily and the computation of these
transformations is a prerequisite when a signal will be modified selectively or its pattern
will be sought [63]. A wavelet function has zero mean, changes with a dimensionless
time parameter, and is located in both time and frequency domains, while the convolution
of discrete sequence with the translated and scaled status of the wavelet transformation
was defined as continuous wavelet transformation [64]. The selection of the wavelet
transformation is important. A decentralized modal analysis is engaging the sectors of
mode shapes which are computed at distinct sensor locations [65–67]. The sensors were
accelerometers in the research of [23] and mode shape amplitudes were computed using
Frequency Domain Decomposition explained above. Eigenvalue analysis is performed to
obtain mode shapes, amplitudes, and frequencies of the system. [58] noted that since this
method includes a large computational volume in a large number of degrees of freedom
systems, efficient algorithms were generated in time. Solutions for the eigenvalue problem
were categorized under vector iteration, transformation, and polynomial iteration methods.

All the studies listed in Table 1 have numerical models except for [49]. There were a
lot of studies focused on using accelerations of the bridge to identify scour. They adopted
different frequency analysis methods to interpret acceleration signals to obtain mode
shapes or frequencies and finally set a scour index to identify scoured cases. In [42], the
Mode Shape Ratio was applied to acceleration signals and utilized as an indicator of scour.
Acceleration signals of two points on the bridge were used to gather amplitudes of mode
shapes. Mode shape ratio was the ratio of these amplitudes. Energy harvesting devices
were used in [43], which produce electricity from piezoelectric material’s strain changes.
These were used to identify scour-based frequency shifts of the bridge. [46] and [18]
investigated the influence of scour at different points on eigen frequencies. To obtain mode
shapes from acceleration signals of the structure, [47] and [17] used the Frequency Domain
Decomposition method. Without information on the input motion, it was possible to
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evaluate the dynamic parameters in this method. Decentralized modal analysis enabled [23]
to derive the modal amplitudes of sensors at different locations. To detect bridge pile
scour, [54] utilized the change of the shape of horizontally-displaced modes and flexibility
deformations of a frame-type bridge. Continuous wavelet transformation of a signal was
utilized to process acceleration signals in the research of [56], [57], and [37]. By comparing
responses to the features of a base wavelet, this method could detect transient changes in
frequency signals [68]. To process acceleration signals, [19] proposed a closed-form model
derivation. Based on instantaneous amplitudes calculated for a target bridge frequency,
mode-shape squares were obtained and a damage index was computed.

Direct Monitoring-Based Studies

This section includes main properties and outcomes only direct monitoring-based
studies listed in Table 1. In Table 2, devices, sensing mechanisms, the methods of sensor
signal processing, and the target property of the direct monitoring studies. Additionally,
scour validation tests, and experiments on real bridges are tabulated here. The assess-
ments, outcomes of the studies, performance, and efficiencies are provided at the end of
this section.

Table 2. Properties of devices used in direct monitoring studies.

Study Ref. Device Type
Sensing

Mechanism

Signal
Processing

Method

The Target
Property of

Signal
Processing

Scour Validation
Tests

Laboratory or
Field Tests

Target Property

[45]
Unconstrained

distributed fiber
optic sensors

Ultra-weak fiber
Bragg grating

Empirical
formula

Central
wavelengths

Detecting
different signals
of set of fibers
embedded in

sand and other
fibers freely

in water

Standard
deviation value
higher than zero

for several
minutes

Scour depth
and location

[44]

Velocity sensors,
inclinometer,

wireless
transmitter,
and camera

2 Velocity
sensors

Hilbert
transform and

empirical mode
decomp.

Individual
instant

frequencies

Single-pier
laboratory
scour test

Caisson-type
and pile-group

foundation
scour tests

Rigid body
motion

[48]

Rod sensor

Piezoelectric
Polymer Film

Wavelet packet
transform and

Hilbert
transform

Instant the
natural

frequency of
the rod

Flume test
Test with

different pier
cross-sections

Scour depth

[49] Piezoelectric
Polymer Film

Fast fourier
transform

Instant natural
frequency of

the rod

Clamped to a
laboratory bench NonePlanted in sand
Implemented in

the sand
[50] Flume test Tested on 1 pier

[51]

1 Direction-
Unknown and 1

Direction-
Known

smart rocks

Ambient
magnetic field

Theory of
magnetic field

Distribution of
the magnetic

field induced by
smart rocks

Field validation
tests

Tests on the
upstream side of

a pier

Localize the
position or track
the move of the

smart rock

[52] E.magnetic
sensors

Changes in the
dielectric

permittivity of
the soil

The reflection
feature of

e.magnetic
waves

The porosity of
the soil

‘Static’ scour
simulations

Not provided Scour depth
variation

Real-time open
channel

flume tests

[55]

Unmanned
Aerial Vehicle
-based smart

rock positioning
system

3-axis
magnetometer

and global
positioning
system on

Unmanned
Aerial Vehicle

Algorithm to
locate smart
rocks using
measured
magnetic
intensities

Magnetometer
measuring

magnetic fields
before and after
the smart rock

has been
deployed

Not provided
I-44W

Roubidoux
Creek Bridge

Pier

Depth of
scour, i.e.,

vertical move of
the rock

The research listed in Table 2 mainly focused on the monitoring device they used. [49], [50], [48],
[44], and [45] aimed to measure scour depth with the sensors they used. [52] monitored
sediment deposition processes. On the other hand, [44] searched for the rigid body motions
of the piles and piers, using velocity sensors. [51] and [55] tried to locate and track the
movement of smart rocks they deployed along the scour hole. Vertical displacement of
the rock into the hole revealed the depth of scour. Direction known and unknown smart
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rocks induced the distribution of the electromagnetic field and their locations were detected
through an unmanned aerial vehicle, equipped with a locating algorithm. [45] preferred a
spiral shape since this geometry brings the sensing points of the fiber optic sensor closer
and to obtain a higher spatial resolution. Adjusting the number of rings around the piers
changes the scour monitoring range along the length. Fibers are supported by the pier only
in two points so that they can freely deform and so central wavelength differences can be
obtained clearly.

Studies that are not tabulated in Table 2 are those having a finite element model to
represent the bridge and piers. [43], [47], [17] [46], [31], [53], and [54] represented the bridge
superstructure (deck and beams) with Euler-Bernoulli beams. Springs were assumed for
the piers and the foundations beneath them. Different spring stiffnesses corresponded to
different stages of scour. In their studies, [23] and [42] also included vehicles in their finite
element models, i.e., vehicle–bridge interaction models. Vehicles were modeled as rigid
masses and were connected with springs and dampers. [31], [43], [54], and [23] also verified
their numerical approaches with experiments.

The scour indicators in the research of [43], [42] and [14], and [53] were the frequency
shifts of the bridge. While [63] used differences in the first mode shape amplitudes at pier
locations, [17] and [54] chose mode shape changes. [54] specifically focused on horizontally-
displaced mode shapes of a frame-type bridge. [23] set fitting curves to the mode shapes
and used root mean square (RMS) differences between healthy and damaged mode shapes
to indicate scour. [48], [49], and [50] detected scour through changes in the fundamental
frequencies of the polymer rods. [52] used the increasing permittivity of the soil to identify
scour; as scour developed, the sensors’ permittivity suddenly increased. Higher apparent
permittivity was related to the reduced soil density of the re-deposited sediment around
the sensor.

The outcomes of the direct monitoring studies were summarized here. [43] numerically
proved that the frequencies decreased due to a reduction in foundation stiffness in two
piers (mimicking 24.5% and 44.9% scour cases). In their experimental setup, cantilever-
based piezoelectric energy harvesting devices were used and three scour scenarios were
adopted. One device attached to the pier was successfully the detecting frequency shift
in that pier. When the device was attached to a healthy pier, it could detect the scour of
another damaged pier. For a better performance of the method, they suggested performing
an initial modal analysis of the bridge with accelerometers since this way it would be
possible to monitor obtained modal frequencies in the frequency domain of the device’s
voltage. In the research of [17], the normalized mode shape of a two-span integral-type
concrete bridge changed by around 50%, with a 20% frequency difference for scour depth
of 5 m. They noted that their approach might alleviate the known frequency-associated
problems because the method is based on using the same sensors as the ones used for
gathering the frequency. According to [46], abutments and piers had local vibration modes
and the corresponding frequencies were only sensitive to scour related with the adjacent
element. In their experiment, sensors were represented by virtual node points and located
on two abutments and one pier. The method successfully identified the local frequencies
and the location of the scour. However, they indicated that experimental validation through
a field study was needed. [42] generated research for a two-span integral-type bridge. For
5 m of scour depth, due to central pier scour, the mode shape ratios of two points on the
pier and deck changed by around 50% over the center of the foundation. The loading
sensitivity to vehicle bridge interaction responses, random errors of ambient loading were
main limitations of the study. Moreover, applying the developed approach to abutment by
using the first mode was not possible. The approach was extended to a three-span bridge
but a steady trend could not be obtained. In another study of the author, [46] noted that
as the scour got more severe, the mean-normalized mode shape values at piers decrease.
For example, pier 1 changed from 0.62 to 0.35 when 30% scour was simulated at pier 3.
The experimental setup of the study had accelerometers located at two of the piers and
the midspan of the bridge model, and 24.5% and 44.9% scour were observed. Compared
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with the healthy case, mean-normalized mode shape increased at the scoured pier while
it decreased in the other piers. Their work eliminated the need for knowledge of vehicle
excitation forces, material, and geometrical information of the bridge. However, when
multiple piers had scour at the same time, the approach was not successful. Another
numerical study by [31] showed that the permittivity and porosity of the soil increased
when scour was present. The sensors were installed along four-meter-long scour probes in
the experimental setup. One probe was for measuring the total scour at one pier while the
other one was measuring constriction scour at the middle of the channel. A length of 30 cm
scour was measured by the probe in the middle of the channel after a peak flood. When the
empirical scour formulas and the experimental scour depth were compared, overestimation
of formulas was revealed. Additionally, if the scour hole was not uniform or located at
a very specific point, they suggested that sensor response and the effects of suspended
sediments on the values of dielectric permittivity should be examined in a laboratory. In
the research of [53], a 30% reduction in the values of the first three natural frequencies was
observed compared to the scoured case. The renewable energy sources of the monitoring
devices (wind, heat, electromagnetic field, and light) were a virtue of this study. However,
the approach was only validated for particular structural types.

Furthermore, [54] showed that vertical mode shapes were not sensitive to scour, and
increasing pile heights resulted in a decrease in flexural stiffness and horizontally-displaced
mode frequencies for four scour cases relative to the healthy case. The experimental
model had 11 uniformly distributed unidirectional Integrated Electronics Piezoelectric
accelerometers. The authors concluded that in theory, the modal curvature changes and
bending deflections could be used to detect scour because of their low sensitivity to the
irregularity of the obtained mode shapes. However, the method was not reliable enough to
locate the scour in practice. [23] found that 25% and 45% of scour decreased the stiffness
of the foundation at the central and the right-side piers and reduced mode amplitudes
locally and globally. Additionally, the average change in the central pier was 7.2% and
16.8%, respectively. They used seven re-deployable accelerometers: four at the midspan
and three at the piers in their laboratory test setup. They found reductions in the mode
amplitudes at pier locations and an increase in the amplitudes of non-scoured piers. As
foundation stiffness decreased, the difference in the root means square between healthy
and scoured modes increased linearly. Their study did not require previous information
about the structural behavior and used only two sensors that were sequentially moved
along a bridge to detect mode shapes. However, the study was limited to one-dimensional
models and simplified experiments. [45] managed to locate and measure scour by adopting
the UWFBG technique that was able to sense changes in the wavelength of 0.05–0.06 nm.
This change is related to strain changes of the fibers using an empirical formula. The effects
of water buoyancy and loosening sand on signals were easily excluded. A value of 0.002
for the standard deviation indicated scour and the accuracy was ± 2.5 cm. Instability index
developed by [44] was able to rapidly evaluate bridge safety conditions. A caisson-type
experiment with 10 sensors was performed. These sensors were located at the center of
every deck panel and the cap beam of a pier, as well as 14 velocity sensors for the pile
group. Pier 1 was always in a state of instability. Before the pile started to incline too much,
the instability index changed significantly relative to its original state. Their study could
be used as an early warning system but was limited to the specific types of foundations
tested, i.e., caissons.

Moreover, [48] and [49] calculated scour height, i.e., the exposed length of the rod
calculated via a time history analysis in the frequency domain voltage induced by the
hydrodynamic effect. Sensors were tested in the sand surrounding each pier, in a laboratory.
They observed that as exposed length increased, natural frequencies diminished. The
measurements could last throughout the scour duration, and the sensors had a low cost.
To improve the accuracy, [48] emphasized the need for full-scale tests and [49] pointed
out the requirements for more realistic simulations in a flume. Later research by [50]
compared measured and observed scour depths and showed that the sensor results were
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accurate. At the same time, they revealed difficulties in the implementation of sensors in
real-life applications, and the debris effect could be a challenge for the proposed system.
Magnetic field-based algorithms were developed for locating and tracking smart rocks
moving around scour holes by [51] and [55]. [51] conducted two smart rocks—one direction-
unknown and one direction-known at a bridge pier (upstream). Tracing the vertical
displacements of the smart rock and monitoring the process of the peak scour depth
was possible. Compared to former studies, higher accuracy, validation that considered a
geomagnetic field, and calibration tests were supplied. Nevertheless, the measurement
error was enhanced because of the instability of the direction-known rock during the field
test. The reason was due to the effects of changing ambient magnetic field, caused by
environmental factors. Picking the measurement points and stations (to locate the smart
rock) close to the pier was suggested to diminish errors because the location had an intense
magnetic field due to steel reinforcement. In the study of [55], real-time monitoring was
performed for more accurate results. Before implementing the smart rock, magnetic field
and coordinates were measured by an Unmanned Aerial Vehicle. The Unmanned Aerial
Vehicle could detect the location with an error of less than 36 cm (verified by total station
measurements). In the study of [52], different permittivity values corresponded to pre- and
post-scour conditions. To test the application, six instrumented probes were installed in
the bed segment and fixed on the flume floor. As scour developed, sensors’ permittivity
increased. The higher apparent permittivity is believed to be related to the reduced soil
density of the re-deposited sediment around the sensor. It was an economical, realistic, and
real-time monitoring method, but was not efficient in saline water.

Overall, a lot of direct monitoring-based scour detection studies were focused on
developing monitoring systems such as smart rocks, piezoelectric rod sensors, image-
recognizing micro cameras, or smart probes instrumented with electromagnetic sensors.
Sensor-based studies were advantageous since they provide direct information on scour
depth. Some researchers compared their results with empirical scour formulas and showed
that the formulas overestimated scour, which made the proposed sensors more economical
solutions. Despite being more economical alternatives to traditional monitoring devices, a
couple of issues narrowed down the application fields of newly developed sensors. The
implementation of the developed sensors was problematic; some devices could not be
used after a major flood or regular maintenance was required. This might prevent the
device from being an economical solution in the long-term. Durability problems might
be overcome by improving the mechanical properties of the materials used to build the
sensor. Another issue was that some devices were proven not to be effective in taking
accurate measurements. The studies using the latest technology like unmanned aerial
vehicles equipped with three-axis high-resolution GPS units were promising. However,
the location errors need to be reduced. Developed sensors should be tested in the field to
provide more robust information about their outcomes.

Indirect Monitoring-Based Studies

This section includes only indirect-monitoring-based studies listed in Table 1. Vehi-
cle/bridge dynamic interaction models were used to test the drive-by or indirect monitoring
concept. Vehicles were generally modeled as half or quarter cars, representing one or two
axles of a vehicle. The quarter car was particularly unrealistic but its simplicity had value
in that it kept the focus on the bridge structure and did not require assumptions on axle
spacing and other vehicle properties. It should be noted that the half-car was also simplistic
but did serve to introduce some inter-axle effects that have a significant influence.

The studies addressed in the scope of this section processed the acceleration signals
due to multiple train passes. [56] used a dynamic model that considered vehicle bridge
interactions; a quarter car model of the train and two simple supported bridges with a
shared pier. Zero mean base wavelet was chosen as “Mexican Hat” and a set of wavelets
were derived from this base by modifying it with position and scale parameters. Coefficients
are results of continuous wavelet transformation and these relate the analyzing wavelet
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with the specific region in the signal—they give signs of specific frequencies that are valid in
the signal for a given time point. The existence of scour was proven by finding the difference
in wavelet coefficients between healthy and scoured cases. The dynamic model of [19]
consisted of a simple vehicle and a simple supported Euler-Bernoulli beam representing
the bridge. Acceleration of the vehicle was obtained using equations of motion and Hilbert
transform was applied to accelerations to find bridge mode shapes that were already known
to be sensitive to the damping of the structure. [19] investigated the effect of damping
on the mode shape and degree and rearranged the formula that calculates mode shape
squares using the amplitude of the Hilbert transform. The difference between scoured and
healthy cases’ mode shapes was the scour indicator. The researchers also verified their
algorithm numerically with two laboratory experiments. [37] and [57] also used wavelet
coefficients. The dynamic model of [37] first analyzed the vehicle and then computed
beam local and global mass and stiffness matrices using finite element method. The forces
were distributed to the degree of freedoms using shape functions which considered the
location of the vehicle that changed every time step. The chosen base was Morlet wavelet.
Scoured case was simulated in the model by reducing the stiffness of the bridge pier. For
each of the 10, 20, and 30% of scour cases, 200 vehicle runs were generated in the dynamic
model. Continuous wavelet transformation was applied to accelerations of both healthy
and scoured cases and the differences of the coefficients indicated scour. [18] generated a
vehicle–bridge–soil interaction model. The horizontal accelerations due to passing vehicle
were recorded from the top of the pier. They extracted mode shapes out of acceleration
measurements through an Eigen value analysis of a highway bridge. Three different levels
of soil stiffness were considered to represent dense, medium-dense, and loose sand. For all
types of soil, lateral frequencies were calculated for zero and 10-m scour.

The results of the study by [63] showed that bogie accelerations decreased due to a
30% scour case. Identifying a scoured pier was possible by using the difference between
the wavelet coefficients of the scoured case and the healthy case. Vehicle properties such
as mass and speed were considered stable. [37] detected and located scour by showing
the difference between the wavelet coefficients of the scoured case and the healthy case.
Vehicle signals were generated by an external numerical party. Batches of 20, 50, 100, and
200 vehicle crossings were tested for comprehending the reaction of the method. However,
in a low number of batches, false-positive scour indications were seen to increase. [57]
measured instant accelerations at every support and the mean value was obtained and
converted into the frequency–spatial domain using 1000 vehicle passages, and operating
deflection shapes were evaluated for 25 and 45% scour cases. [19] extracted mode shapes
from drive-by data, using the Hilbert transform. In their experimental setup, one of eight
accelerometers was located on the vehicle and seven were fixed to the bridge to gather
modal parameters. Foundation scour was able to be identified only for the fifth bridge
mode shape. They noted that high vehicle speed decreased the accuracy of the mode shape.
Near the damage location, the damage index reached a maximum value. Nevertheless,
an edge effect limited the ability to find the exact location with this approach. The effects
of operational and environmental parameters were not in their scope. Finally, taking the
arithmetical average of multiple runs was suggested. [18] investigated the response of
lateral acceleration at the top level of a pier and a 40% frequency change was obtained due
to scour. The results were only validated for the two-axle truck case.

Overall, all the studies successfully detected scour by processing acceleration signals
from batches of vehicle passes. Since the results of continuous wavelet transformation
were in both spatial and frequency domains, locating scour and having detailed structural
modal information was possible. Both wavelet transformation and operating deflection
shapes methods were proven to be more reliable in locating the scour than modal analyses.
It should be highlighted that when working with the continuous wavelet transformation, a
low number of vehicles per batch leads to an increase in the false-positive scour indications.
Generally, these types of research required fewer sensors, had a lower power requirement
compared to direct monitoring, and did not require underwater inspections. These features
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make this type of monitoring more economical than the direct type. The possibility of
monitoring the bridge under regular service conditions without special monitoring devices
and causing no service interruptions were additional advantages. All these properties
suggest that indirect monitoring is a highly promising approach for scour investigations of
bridges. Having more field tests will help verify studies with real-life applications. Studies
can be expanded by considering variable vehicle properties such as speed and mass,
different types of vehicles, and sensitivities to environmental conditions, and performing
more detailed numerical analyses.

2.1.2. Cluster 2—Machine Learning-Based Research

This section briefly introduces commonly used machine learning algorithms. The
introduction is followed by detailed information about the research noted in Table 3; char-
acteristics of the input data used for training or validating, main and assisting algorithms
used, and the scour property sought. Studies were mainly focused on estimation of the
scour depth around the piers using machine learning algorithms. The characteristics of
black-box models and their prediction capabilities enabled machine learning algorithms
very handy tools for scour –damage formed by various parameters which require detailed
investigations. Introducing the basics of some of the commonly-used machine learning
algorithms and the optimization algorithms for hyperparameter selection might ease un-
derstanding the studies given in this section.

Before training the main algorithm, the majority of the machine learning algorithms
specify a group of hyperparameters, whose determination could remarkably affect the
efficiency of the resultant model [69]. Optimization algorithms are also used for assisting the
search for the value of a parameter that is involved in two different predictions/calculations
for the same structure or for searching the optimal hidden neuron number. Gradient-
based and heuristic methods are two main structural optimization techniques [70]; in
gradient-based ones, the direction of the search, i.e., the gradient, has to be described before
seeking the best solution. However, gradient-based approaches might get stuck the in local
optimum before they access the global optimum, execute insufficient in coping with the
structures with nonlinear, hidden, and impermanent constraints, and a few of them include
detailed optimization constraints [71,72]. Therefore, for overcoming such limitations in
complex problems, heuristic methods were introduced. By solving actual problems of life
simply, quickly, and in an applicable and efficient way, the utilization, requirement, and
prestige of heuristic techniques have quickly boosted [70]. Some of the well-known heuristic
optimization methods applied to civil engineering problems are the genetic algorithm,
ant colony algorithm, particle swarm optimization, and simulated annealing [73]. First,
because of being simple and easy to work with and having minimum requirements, genetic
algorithms have been preferred extensively to solve numerous problems by imitating
basic rules of evolution and natural genetic science [74]. These algorithms can solve the
problem quickly and are handy for extensive problems, nevertheless there is no guarantee
for the best solution in the end of the analysis [75]. Secondly, art colony algorithms are
the most frequently utilized to solve NP-hard problems: for these kinds of problems,
well-known algorithms assuring to detect an optimal result contain worst case scenario
case convolution [76]. Art colony algorithms are used to optimize construction time and
cost [77], task scheduling [78], and design problems [79]. Furthermore, in particle swarm
optimization, the current location of every particle is updated by a vector of velocity,
according to the social attitudes of individuals; when the swarm readjusts itself to the
ambient by reappearing in the advantageous areas that were explored before [80].

An artificial neural network includes a couple of units of neurons (or layers, joints),
one to three inexplicit (hidden) neuron layers, and a last unit of resultant neurons [81].
These algorithms do not need to go through lots of statistical training; however, they have
some limitations such as a high volume of network training calculation, and the necessity
of a preprocess for independent variables or predictor [82]. Still, they can help reduce
the uncertainties of the problem. They eliminate the need for a clear description of the
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physical links between bridge scour and numerous affects and they provide better results
than empirical formulations owing to small errors and correlation coefficients [22]. Back
propagation neural network is defined as a method that regularly modifies the weights of
the connections of the network to make the difference between the absolute output vector
and requested output vector minimum [83]. It is a monitor-learning technique which uses
gradient descent and multivariate linear regression for recognition of change with the
weight of connection in the network [84]. In many studies that adopted back propagation
neural network, the accuracy levels of empirical scour formulas were increased [85]. Multi-
variate linear regression seeks for the relationship between the variable to be analyzed and
its independent variables, and applied for prediction purposes [86]. Trial-error method [87]
and beetle antennae search [87,88] are generally preferred when the hyperparameters of
back propagation neural network models are tuned. Support Vector Machines by Vladimir
Vapnik navigate input vectors from primary feature space to a feature space which is
multi-dimensional via a Kernel function [89]. Support Vector Machines were derived from
statistical learning theory and are considerably new and encourage learning to sort func-
tions to recognize the pattern or to operate an evaluation for a function within a regression
problem [90]. Variations of cross-validation such as Leave One Out and k-Fold, Xi-Alpha
bound, generalized comparative Generalized Kullback–Liebler Distance, approximate span
bound, and Radius-margin bounds are some of the successful performance measures to
pick hyperparameters of a Support Vector Machine model; except for Vapnik Chervonenkis
(VC) bound, which failed to provide and efficiently estimate the parameters [91]. Support
Vector Machines can deal with various feature spaces and can categorize the data with no
structure or semi-structure (i.e., image and texts) very well; nevertheless, they require high
computation of complicated data, are bad at processing noisy input, and comprehending
the resulting model, the effect, and weights of the variables is not easy [82]. Compared
with the conventional algorithms based on gradient, extreme learning machines learn
more quickly and eliminate some challenges of stating a criterion to stop, rate of learning,
duration of learning, and local minima [88]. Their fundamental benefit is reducing the
volume of calculation, which is particularly related to working with the templates within
a high dimensional space [89]. Differential evolution algorithms [92], statistical learning
theory [93], and particle swarm optimization [94] are proven to be effective in optimizing
hyperparameters of the extreme learning machines. Gradient tree boosting aims to find a
link which is capable of navigating the input to output to minimize the difference between
the loss function for the pre-defined and anticipated value [95]. Although the process is
time-consuming, Bayesian hyperparameter optimization is a method to set the parameters
of a gradient tree boosting model and grid search; while GPU acceleration provided more
speed in the selection process [96]. Another algorithm providing successful applications for
scour estimation [97,98] is group method of data handling, a procedure which organizes
itself through models created step-by-step, based on their performance assessment on
a group of multi-input–single-output data couples [99]. Grid search is one of the most
common methods to set parameters of group method of data handling models. [100–102].
Finally, ANFIS is a composite neuro-fuzzy system [103] and is the combination of neural
networks and fuzzy logic methods; internal parameters are learnt off-line, such as neural
network does and acts fuzzy logic system when it is operated [104]. Grasshopper opti-
mization algorithm [105] and cultural algorithm [106] are utilized to set parameters of
ANFIS models.
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Table 3. Properties of Machine Learning studies—Cluster 2.

Study
Reference

Quantity of
Data

Training/Validation
Percentages

Base Algorithm
Assisting Ap-

proach/Algorithm

Compared Algo-
rithms/Existing

Formulas

Most Significant
Parameters
Considered

Target

[107] Not provided

Not provided

Convolutional
Neural Network Not provided

Empirical
Formulas:

- 65-1, 65-2 of
China

- Melville-
Sheppard

-MBW
- HEC-18

Velocity of flow
Depth of water
Diameter of the

sediment
Pier width

Local scour
depths around

piers[108]

11 sets of
field and

laboratory data
(scour depth

measurement-
bathymetric data
measured with

point laser
sensors)

Multiple linear
regression

method

The cost
function for

determination of
the accuracy of

the model

[109]

99 examples of
relative scour

depths of a 0.7 m
deep flume

70% Training
30% Validation

Kstar model
with five hybrid

algorithms:
- Weighted

Instance Handler
Wrapper-Kstar

Pearson
correlation
coefficient

(to pick the most
relevant input
parameters)

Empirical
equations of Dey
and Barbhuiya,

[6] and
Muzammil [7].

Relative Flow Depth
Excess Abutment
Froude number

Relative Sediment
Size

Relative
Submergence

Relative scour
depth around

abutments

[110]

122 laboratory
datasets of scour

depths. An
experiment in a
sand bed flume
and measured
with a vertical
point gauge.

Reduced Error
Pruning Tree
base classifier

- Mean Absolute
Error

- Root Mean
Squared Error

- R (Correlation
Coefficient)

- Taylor diagram
(For fitting and

performance
optimization)

- Artificial
Neural

Networks
- Support Vector

Machine
- M5P

- Reduced Error
Pruning Tree

algorithms and
2 empirical

formulas of the
Florida

Department of
Transportation
and Hydraulic

Engineering
Circular No. 18

(HEC-18).

Pile cap width
Thickness

Column width

Local scour
depth at

complex piers

[111]

476 field pier
scour depth

measurements
for 4 different

geometric shapes
of piers.

80% Training
20% Testing

- The Extreme
Learning
Machines
regression

method
- The

self-adaptive
version of

Differential
Evolution

- Root Mean
Squared Error

- Mean Absolute
Relative Error

- Support Vector
Machine

- Artificial
Neural

Networks

Not provided
Pier dimensions
Sediment mean

diameter

Scour depth
around piers

[112]

321 experimental
datasets of

flumes, scour
depths measured

with a
point gauge

75% Training
25% Testing

Extreme
Learning
Machines

Different sets
of input

combinations
were used to find

the most
effective

variables.

- Support Vector
Machine

- Artificial
Neural

Networks

Critical and avarage
flow velocity

Flow depth Median
diameter of particles

Pile diameter
Number of piles

normal to the flow
Distance between

adjacent piles in line
with the flow

Scour depth
around piers

[113]
476 field pier
scour depth

measurements

80% Training
20% Testing

Extreme
Learning
Machines

Dimensional
analysis to detect

effective
dimensionless

parameters

Existing
regression based

models
Richardson &

Davis [114]
Johnson [115]

Shen [116]
Laursen and

Toch [13]

Ratio of pier width to
flow depth

Ratio of pier length to
flow depth

[117]

104 sets of
experiments to
measure scour
depths with an
electronic total
station device

Not provided

- Gradient Tree
Boosting

- Group Method
of Data

Handling
technique.

Coefficient of
Determination as

to the
performance

index

Support Vector
Machine
ANFIS

Particle Swarm
Optimization-
Based Support

Vector Machine.

For clear water scour:
Sediment size and

quantity
Velocity

Flow time

The scour
depth of
circular,

rectangular
round-nosed,

and
sharp-nosed

piers
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Table 3. Cont.

Study
Reference

Quantity of
Data

Training/Validation
Percentages

Base Algorithm
Assisting Ap-

proach/Algorithm

Compared Algo-
rithms/Existing

Formulas

Most Significant
Parameters
Considered

Target

[118]

237 pier
scour depth

measurement
datasets taken

with echo
sounder

Not provided

Evolutionary
Radial Basis

Function Neural
Network
model =

Radial Basis
Function Neural

Network
and

Artificial Bee
Colony

Not provided

Genetic
Programming

Back-
propagation

neural network
Regression Tree
Support Vector

Machine
- HEC18

-Mississippi’s
method

Van Wilson [119]
Laursen and

Toch [13]
Froehlich [120]

Pier shape factor
Pier width

Skew of the pier to
approach the flow

Velocity of the flow
Depth of flow

Grain Size of The Bed
Material (d50)

Gradation of bed
material

Scour depth

[121]
170 data samples

of clear-water
scour depths

Not provided

Support Vector
Regression-

based
model

Filter and
wrapper feature

selection
strategies (for
performance

improvement)

HEC18
Richardson &

Davis [114]
Melville &

Coleman [122]
Ataie-Ashtiani

[123]

Under three groups:
Pier geometry
Flow property

Material
characteristic

of the riverbed

Local scour
around

complex piers

[124]

403 sets of
upstream and 61

sets of field
downstream
scour depth

measurements

80% Training
20% Validation

Nondominated
Sorting Genetic

Algorithm

Support Vector
Machine for

increasing the
pool of field data

HEC18
Froehlich [120]

Gene expression
programming

model

Pier width
Approaching flow

depth
Median grain size,

Sediment gradation
coefficient

Gradation of bed
material

Critical scour
depth

[85] 232 field data 66% Training
34% Testing

Deep Neural
Network

Back-
Propagation

Neural Network

Froehlich
Equation [120]

Froehlich Design
HEC-18

HEC-18/Mueller
Equation (1996)

Back-
Propagation

Neural Network

- Not provided
Local scour

around bridge
piers

[125]
175 experimental

datasets for
scour depth

Not provided

Sequential
quadratic

programming
optimization
Least Square

Support Vector
Machine

Sequential
quadratic

programming to
seek the optimal

coefficients

- HEC18
- Melville and
Coleman [122]

- Ataie-Ashtiani
[123]

Flow direction
Pile-cap width

Covering soil height
Pier length

Critical velocity of
sediment movement

Flow velocity
Median grain size

Flow depth
River bed material
Standard deviation

Scour depth of
a Bridge with

a complex pier

One of the most important features of the studies is the characteristics of the data
such as the quality, source, and properties. Details of the input data of the studies in
Table 3 were noted here. [107] only noted that the training data source was both field
and laboratory measurements without providing further details. They also indicated that
the verification data belonged to Hangzhou Bay Bridge in China. The input data for the
model training and validation of [108] was scour depth measurements of bridge piers.
Data were gathered from the two following sources: the field data were collected from
three bridges in China—Mingchu, Silo, and Houfeng bridges; while the second source
was laboratory experiments—two sets of laboratory tests were obtained from J. Sterling
Jones Water Conservancy Laboratory of Turner-Fairbank Highway Research Center and the
Colorado State University. Additional laboratory tests were also used from related studies.
In the end, they obtained a total of 12 sets of measurements. Four sets of parameters
were used for training the model. These parameters (data labels) included flow velocity,
water depth, sediment size, and pier width. Relative scour depth data that [109] used
was obtained from flume experiments. At the technology institute of India, 295 runs were
performed in the hydraulic laboratory for three different abutment shapes. The dimensions
of the flume were 20m (longitudinal), 0.7m (depth), and 0.9m (width). [110] obtained
experimental local scour depth measurements of complex piers from National Hydraulic
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Research Institute of Malaysia and Sharif University of Technology in Iran. The laboratory
models scaled existing bridges of Malesia. The tests were performed under clean water
conditions on various complex piers with different geometric parameters such as plan
dimensions of the pier and the piles, water depth, distance of the pile to the edge of the pile
cap, flow direction, the distance between piles, and pile cap elevation [126]. Experimental
setups were such adjusted that the effects of flow depth, sediment size, and contraction on
piers were eliminated. Data sources of [111] were from field measurements of 14 distinct
bridges in Canada, Pakistan, and India. Four different data labels were available—sharp,
round, cylindrical, and square-shaped bridge piers’ scour depth measurements. There
were also sub-labels of this scour depth data—narrow, wide, and intermediate-sized piers’
measurements. Finally, the sub-labels were grouped under five dimensionless categories
of scour depth to flow depth ratio, Froude number, median diameter to flow depth ratio,
pier length to flow depth ratio, standard deviation of bed size grain diameter, and pier
diameter to flow depth ratio. Later in another study, [112] collected the input data from
three different studies. Two of the studies performed the experiments in a four-meter-long
flume and controlled the mean sediment size (0.98 mm) and pipe diameters (0.016m). The
measurements were taken for various pile plan layouts (1:2, 4:1 etc.). The third study
of data resource used a smaller sediment size (0.80 mm) and pipe diameters (0.06m and
0.041m) but a longer flume (46m). In another study, [109] used the same data as they used
in 2017 [113].

Moreover, the data set of [117] included both scour conditions of clear-water and
live-bed. The effect of the independent parameters flow depth, velocity of approach,
duration of flow, median sediment size was investigated on predicting scour. There were
also four different data labels of sharp-nosed, round-nosed, rectangular, and circular piers’
scour depth measurements. [118] adopted field scour depth measurements gathered from
79 sites in 17 states of USA for prediction of equilibrium scour depth. They excluded
scour in group-type bridges and cohesive bed material, moderate, and substantial debris
effects. The parameters considered were the width and the shape factor of the pier, skew
of the pier to approach flow, size of the grain in the bed, gradation of bed material, and
depth and velocity of the flow. [121] used laboratory data which includes four datasets
from the Hydrotech Research Institute of National Taiwan University. Complex pier
foundation scour measurements were taken in a sand bed. Parameters considered were
soil-covering height, median grain size, standard deviation of river bed material, radio of
the mean velocity of the sediment to the critical velocity, flow depth, pier width which
is perpendicular to the flow direction, the width of the pile cap, and pile cap-pier face to
face distance. [124] combined two sets of field data—from bridge scour data management
system (BSDMS) and FHWA documentation by USGS. Departing from the information
of different direction of vortices (and therefore scour developments) in upstream and
downstream, their first data label was location. Velocity and flow depth of approach,
median grain size, gradation of sediment, and scour depth were other data labels. To
improve the overall quality of the input, data with missing location or other properties
listed above were excluded. [85] picked 232 upstream scour length measurements from
another study [127] that collected scour observations in 79 different rivers several states of
USA. Data included skew of the pier to approach flow, pier shape factor, pier dimensions,
flow velocity and depth, grain size, and gradation of bed material. Only raw data were
used to obtain a better performance. In testing the dataset, root mean square values of both
neural networks in the scope of the research were compared to obtain the ideal values for
various parameters defined by user.

In terms of the accuracy level of predictions made, [107] and [108] stated that their
predictions are in good agreement with the measurements, with only one dataset outside the
50% error line. They stated that their approach was more effective in terms of accuracy when
compared to empirical formulas such as M/S, MBW, HEC-18, 65-1, and 65-2. According
to their sensitivity analysis, [108] stated that the most effective parameter in predicting
scour was pier width. They also suggested an increase in the quantity of training data
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to predict scour depths more accurately. [109] investigated scour occurrence for different
shapes of the abutment. They noted that, for all shapes of the abutment, the most effective
parameter was the Excess Abutment Froude number (Fe). Moreover, for vertical-wall-
shaped abutments, the most effective parameter combination contained Excess Abutment
Froude number, relative sediment size (d50/l, where “d50” is the sediment size and “l”
is the dimension of the abutment which is perpendicular to the flow), and relative flow
depth (h/l). Finally, for semicircular and 45◦ wing shape abutments, the combination
of Excess Abutment Froude number and relative sediment size was the most effective
parameter combination in scour prediction. The weighted instance handler wrapper-
Kstar for vertical-wall abutments, random committee-Kstar for semicircular walls, and
45◦ wing wall were the best algorithms among five novel hybrid algorithms studied.
Their algorithms outperformed the empirical formulas of Dey and Barbhuiya [6] and
Muzzammil [7]. The hybrid approach of [107], based on a random subspace meta classifier,
resulted in the pile cap level being the most sensitive factor in the prediction of complex
piers’ local scour depths. The reduced error pruning tree base classifier resulted in similar
root mean square errors to artificial neural networks, support vector machines, and M5P.
The predictions obtained through reduced error pruning tree and other machine learning
algorithms were significantly better than the scour depths computed with the empirical
models of FDOT and HEC-18. Both [109] and [110] were able to increase the prediction
power of standalone algorithms with the hybrid algorithms they proposed. [111] proposed
a self-adaptive evolutionary extreme learning machine to predict scour around bridge piers.
They indicated that the ratio of the median diameter of particle size to flow depth, the
ratio of pier length to flow depth, and the ratio of pier width to flow depth were the most
effective parameters. Self-adaptive evolutionary extreme learning machines outperformed
artificial neural networks and support vector machines. In 2018, [112] proposed 25 models
to predict scour around coastal and hydraulic pile groups. The extreme learning machine
model generated had the most optimal input parameter combination and provided better
results than the artificial neural networks and support vector machines considered. They
also identified that pier diameter affected the predictions the most. Later in 2019, it was
shown that extreme learning machines were one of the most effective heuristic optimization
algorithms for non-linear systems [113]. The sensitivity analysis included 31 models with
different input combinations [113]. Their approach outperformed the empirical equations
of Richardson and Davis [114], Johnson [115], Shen [116], and Laursen and Toch [13]. They
recommended that the proposed methodology be improved by utilizing other artificial
intelligence methods such as gene expression programming, and the group method of
data handling.

Furthermore, [117] generated a model based on gradient tree boosting to predict
scour depth around piers with different geometries: rectangular, circular, sharp-nosed, and
round-nosed. In conclusion, gradient tree boosting was more accurate and effective than
the group method of data handling for all shapes. It was noted that the model worked
best with the rectangular form. [118] proposed a model using an evolutionary radial basis
function neural network and it outperformed not only empirical HEC-18, Mississippi’s,
Laursen and Toch’s (1956), and Froehlich’s methods, but also other algorithms being com-
pared (back-propagation neural network, genetic programming, M5 regression tree, and
support vector machine). They suggested future studies consider the efficiency, duration
required for computation, stability of artificial intelligence methods, and techniques in
between complements. In their research based on support vector regression, [121] obtained
better predictions when support vector regressions are used together with algorithms for
selecting features. The variable neighborhood search algorithm had the best performance
when compared with sequential forward selection and sequential backward selection for
parameter selection. The proposed method also made more accurate scour depth predic-
tions compared to HEC18, Melville and Coleman [122], and Ataie-Ashtiani [123]. They
recommended a future study of the support vector regression and other Kernel Functions
together. Nondominated sorting genetic algorithm-based method of [124] outperformed
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both hydraulic engineering circular no. 18 and Froehlich equations and gene expression
programming. The authors highlighted that their approach was as simple as empirical
formulas. They noted that the failure rates should be decreased. They also suggested
modifying the function and picking field data and other independent parameter combi-
nations more explicitly. [85] found out that ignoring randomly selected neurons (dropout
layers) on deep neural networks could not level up accuracy level significantly. When the
prediction values were compared with the measurements, it was seen that both deep neural
networks and back-propagation neural networks performed equally well in predicting
the scour depth. Additionally, predictions of deep neural networks outperformed four
empirical formulas listed in Table 3; root mean square errors were 2-4 times better. [125]
proposed an algorithm of sequential quadratic programming optimization and managed to
increase the accuracy of the existing formulas of HEC18, Melville and Coleman [122], and
Ataie-Ashtiani [123] up to 2–4 times.

Overall, the majority of the data used in the studies reviewed under the machine
learning-based cluster were used for training (to feed machine learning algorithms) and the
rest was kept for validation. Selecting the training data correctly by pre-processing before
applying the algorithm-based models helped the models approach accurate predictions
more quickly. The studies provided root mean squared error, mean square error, coefficient
of determination (R2), or cumulative sums of orthogonal distance indexes to compare their
approaches with frequently used machine learning algorithms and/or empirical scour
formulas. The main objective was to generate a new model which provides more robust
scour depths than empirical scour formulas and/or some frequently used machine learning
algorithms. These models adopt one or more (hybrid) algorithms and heuristic parameter
selection algorithms for better predictions and computation time. [74] stated that the usage,
demand, and reliability of heuristic techniques have quickly boosted their use because
these solve actual problems of life simply, quickly, efficiently, and in an applicable way.
Of the studies summarized here in this review, it can be seen that those with sensitivity
analysis, i.e., following an optimization method for hyperparameter selection, resulted
in faster and more accurate predictions of scour depth. Particle swarm optimization and
artificial bee colony were two of the methods used in the studies presented here. With such
optimization methods, it was easier to identify the most effective parameter or combination
of parameters influencing the prediction. One should highlight that this parameter was
not fixed: studies resulted in different conclusions about “the most effective parameter”
because their training data, i.e., input was different from each other. Since all the studies
claimed to make better predictions than empirical formulas, a comparison in terms of
outperforming frequently used, (i.e., reference) algorithms can be meaningful. Specifically,
the researchers adopting extreme learning machines, gradient tree boosting, radial basis
function neural networks, and reduced error pruning tree algorithms, were successful in
performing better than reference algorithms such as artificial neural networks and support
vector machines.

2.2. Synthesis of the Results

This review consists of the detail investigation of 36 studies, represented in two
clusters (one cluster contains both direct and indirect conventional monitoring-based
studies) which were effective in detecting scour damage either by processing vehicle
signals, signals directly gathered from the bridge, or estimating scour depth using machine
learning algorithms. The synthesis of their results was provided below.

2.2.1. Cluster 1—Synthesis of Conventional Monitoring-Based Studies to Detect Scour

First, sensors used for direct monitoring have been improved with developing tech-
nology. The device types were not only limited to inclinometers and velocity sensors, but
also micro cameras, wireless transmitters, fiber-optic sensors, and even Unmanned Aerial
Vehicle-deployed smart rocks. Studies with alternative sensing mechanism sensors in
this review processed the signals gathered via bed-level image recognition, instantaneous

157



Appl. Sci. 2023, 13, 1661

frequencies, distribution of magnetic field, and porosity of the soil. Although these types of
devices provided direct information, and real-time monitoring of scour and eliminated the
need for underwater inspections, monitoring also involved some challenges. These were
implementation difficulties and maintenance requirements that might be overcome through
the better design of the devices. Additionally, debris and saline water were challenges
in some cases. Direct monitoring-based studies which use traditional sensors such as
accelerometers and global positioning system devices were able to detect the presence of
scour through changes in frequency and mode shape. These occurred due to the decrement
in the foundation stiffness, as a consequence of scour. Direct monitoring-based studies
were advantageous since they did not require knowledge of vehicle forces, or detailed
geometrical and mechanical information about the bridge. Alternatively, energy harvesting
devices are being increasingly utilized as monitoring sensors. They can detect frequency
changes and produce energy out of this vibration at the same time. They have clear ad-
vantages over regular accelerometers in terms of the source of the energy. However, there
were limitations of loading sensitivities and possible errors in the presence of multiple
scoured piers.

Second, it was possible to identify and locate different percentages of scour by process-
ing the vehicle signals. In these studies, (i.e., indirect monitoring-based research) signals
due to multiple vehicle passages were processed to obtain mode shapes or frequencies, or
scour was indicated by the differences between operating deflection shapes or continuous
wavelet transform coefficients between healthy and scoured cases. Mode shape ratio meth-
ods were used in many studies and were able to detect scour successfully. Very significant
changes in the mode shape ratios were observed for the scoured stages. Yet, the sensitivities
due to vehicle load and random errors due to the variability of the ambient loading are
issues that needed to be resolved. Specifically, the mean normalized mode shape method
of [63] was successful in detecting scour at a single pier. However, it was not an efficient
solution when multiple piers were scoured at the same time. Investigating multiple scours
of bridge piers through numerical methods could be a future study. Furthermore, frequency
domain decomposition was a frequently applied method to process acceleration signals
and can be applied to gather modal properties and frequencies of the bridge. Hilbert Huang
transform was another signal analysis method proven to be efficient in decomposing ac-
celeration signals to mode functions. However, due to the very short duration of the data
segment, there is insufficient data. Scour detection based on mode shape methods appeared
to be more robust. Some of the leading advantages of these indirect monitoring are the
need for fewer sensors, eliminating the need for special monitoring devices, underwater
examinations, and the occasional challenges of placing sensors. Furthermore, the service
conditions of the infrastructure were not interrupted and the instrumenting vehicle was
a more economical option than direct monitoring. On the other hand, the most common
limitations were changing vehicle parameters (such as mass and speed) and the need for
large numbers of vehicle runs.

It was highly recommended for all studies with numerical models and algorithms
developed needed to be applied in full-scale bridge tests to be deemed fully effective.
Another improvement for the studies could be upgrading the mathematical models to two-
or three-dimensional ones. Both applying more field tests and replicating mathematical
models could address the limitations of the studies to specific types of structures. The
future studies then can be better and more clearly defined.

2.2.2. Cluster 2—Synthesis of Machine Learning-Based Studies

Machine Learning-based studies reviewed in the scope of this study aimed to find local
or total scour around bridge piers or abutments. The models of the studies were trained
with laboratory or field data. The newly proposed algorithms include convolutional neural
network, multiple linear regression method, K-Star model, reduced error pruning tree
base classifier, extreme learning machines, gradient tree boosting, group method of data
handling, ERBNN model, support vector regression-based model, non-dominated sorting
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genetic algorithm, Gaussian processes regression, relevance vector machines, deep neural
network, and LS-support vector machine. The studies either compared their approach with
other algorithms or with existing empirical formulas. The most frequently used reference
algorithms for comparison with the newly proposed algorithms were artificial neural
networks, support vector machine, gradient tree boosting, group method of data handling,
and extreme learning machines. Most of the time, the proposed algorithms outperformed
these well-known ones, which is the main target of designing new models. The reference
empirical formulas were 65-1, 65-2, Melville-Sheppard, MBW, HEC-18, Laursen & Toch [13],
and Froehlich [120], Mississippi’s method Van Wilson [119], and Ataie-Ashtiani [123]. All
the proposed algorithms performed better in predicting scour than the traditional equations
mentioned above. The proposed models either improved the empirical formulas’ accuracy
levels (one study) or developed a model adapting one algorithm (four studies) or hybrid
models (nine studies) for a more successful prediction of scour depth around the piers.

Some of the challenges faced were the need to decrease the duration of computation,
picking the field data, and the combination of independent parameters more explicitly. It
was usually stated in the discussions that more training data would improve the accuracy
levels of the studies in future work. Another work to improve the accuracy level could be
the contributions of different algorithms to the hybrid models. Improving the accuracy of the
scour height estimations will result in more economical solutions by preventing overdesigns.
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