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Abstract: During the end-of-life (EOL) product recovery process, there are a series of combinatorial
optimization problems (COPs) that should be efficiently solved. These COPs generally result from
reverse logistics (RL) and remanufacturing, such as facility location and vehicle routing in RL,
and scheduling, planning, and line balancing in remanufacturing. Each of the COPs in RL and
remanufacturing has been reviewed; however, no review comprehensively discusses and summarizes
the COPs in both. To fill the gap, a comprehensive review of the COPs in both RL and remanufacturing
is given in this paper, in which typical COPs arising at the end of the product life cycle are discussed
and analyzed for the first time. To better summarize these COPs, 160 papers published since 1992 are
selected and categorized into three modules: facility location and vehicle routing in RL, scheduling
in remanufacturing, and disassembly in remanufacturing. Finally, the existing research gaps are
identified and some possible directions are described.

Keywords: reverse logistics; remanufacturing; EOL product; combinational optimization

MSC: 90-10

1. Introduction

Reverse logistics (RL) and remanufacturing are the two main processes for end-of-life
(EOL) products’ recovery, aiming to maximize resource utilization by means of collecting,
disassembling, refurbishing, and reassembling to grant the EOL products the same quality
and functionality as new products. In order to improve the efficiency of product recovery,
it is vital to solve the combinatorial optimization problems (COPs) involved effectively;
therefore, scholars have conducted much research on them.

The concept of RL was put forward by Stock [1] in 1992, whose essence was to transfer
EOL products from the consumer to the producer for processing. The COPs in RL include
facility location and the vehicle-routing problem (VRP). The facility location is to build
an appropriate network structure to determine the location of various facilities, such
as collection centers, remanufacturing centers, distribution centers, etc. The VRP is to
formulate a specific transportation plan to transport EOL products to the above facilities,
including the driving path, number of vehicles, types of vehicles, etc. There are some
reviews about the facility location and VRP in RL [2–5].

However, only the transportation process of RL cannot truly realize the reuse of
resources; remanufacturing is the key to achieve sustainable development [6]. Remanu-
facturing is a process to recover EOL products to the same state as new products through
inspection, disassembly, cleaning, maintenance, replacement, reassembly, etc. [7]. The
COPs involved include disassembly sequence planning (DSP), disassembly-line-balancing

Mathematics 2023, 11, 298. https://doi.org/10.3390/math11020298 https://www.mdpi.com/journal/mathematics1
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problem (DLBP), disassembly scheduling, production scheduling, reassembly, etc. There
are also some reviews about each of the COPs in remanufacturing [8–11].

Relevant reviews have been provided for each COP involved in RL and remanufac-
turing as shown in Table 1. However, it lacks a literature to review all COPs from the
perspective of the recovery process for EOL products recovery, which is important to draw
a framework of COPs for product recovery. In this paper, the COPs involved in RL and
remanufacturing are divided into three categories, namely, facility location and VRP in
RL, scheduling in remanufacturing, and disassembly in remanufacturing. These COPs
are analyzed from two perspectives: a mathematical model and intelligent optimization
methods, to fill the blanks of current research.

The rest of this article is organized as follows: Sections 2–4 summarize the mathe-
matical model of facility location and VRP in RL, scheduling in remanufacturing, and
disassembly in remanufacturing, respectively. Section 5 analyzes and discusses the litera-
ture from the perspective of optimization methodology and problem uncertainty. Section 6
summarizes the full text and proposes the future research directions.

Table 1. Previous reviews about RL and remanufacturing.

Article Area Perspectives

[2] Facility location in RL A comprehensive review of remanufacturing RL and
closed-loop supply chain network design.

[3] Facility location in RL A review of various quantitative models that have been
proposed to solve RL network design.

[4] VRP in RL
Extensively analyzed the existing literature of the VRP in RL
to identify the current trends, research gaps, and the
limitations in the adaptability to real world.

[5] VRP in RL Reviewed the major contribution about waste collection
in VRP.

[8] DLBP in remanufacturing
Reviewed recent models to summarize the input data,
parameters, decision variables, constraints, and objectives of
the DLBP.

[9] DSP in remanufacturing
Reviewed the existing DSP methods from the perspectives of
disassembly mode, disassembly modelling, and planning
method.

[10] Scheduling in remanufacturing

Classified the scheduling literature in remanufacturing into
single and multiple products, disassembly, and integrated
scheduling, and further subdivided through part capacity,
commonality, and deterministic/stochastic parameters.

2. Facility Location and VRP in RL

Before remanufacturing EOL products, collecting them from users is the first step,
which is essentially a process of RL. To perform this efficiently, it is necessary to properly
plan the location of various facilities and products’ flow routes. Specifically, companies
need to choose how to collect EOL products from users and transport them to collection
centers, where to inspect EOL products, where to remanufacture EOL products to make
them available for resale, and how to sell remanufactured products to potential users [12].
That is to solve the problem of facility location and the VRP in RL.

2.1. Facility Location in RL

Generally, the facility location determines the location of the collection center, remanu-
facturing center, distributing center, and so on to minimize the logistics costs. Scholars have
designed different network structures based on these facilities, which can be summarized
as three types. This section will analyze the three kinds of network structures from the
perspective of mathematical models, including: general network structure, closed-loop
network structure, and hybrid network structure.
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2.1.1. General Network Structure

The general network structure consists of four parts: consumers, collection centers,
remanufacturing centers, and secondary markets, as shown in Figure 1. The collection
center collects EOL products from consumers, inspects and disassembles the products,
and then, according to the value of the components, chooses to discard or remanufacture;
finally, the remanufactured finished products flow back to the market for sale. It is worth
noting that in this network structure, remanufactured products are usually different from
new products and mainly flow to the second-hand market.

Figure 1. General network structure.

It can be seen from Table 2 that most researchers choose the single-objective mixed-
integer linear programming (MILP) model when establishing the mathematical model
of the general network structure. Two papers established the mixed-integer nonlinear
programming model (MILNP) [13,14], and they were single-objective optimization to maxi-
mize the total profit or minimize the total cost [14–20]. However, while minimizing the total
cost, Roghanian and Pazhoheshfar [21] considered the uncertainty of capacity, demand, and
product quantity in RL parameters, so they proposed a probabilistic mixed-integer linear
programming model (P-MILP) and converted it into an equivalent deterministic model
when solving. Tari and Alumur [22] considered the fairness between different companies
and the problem of providing a stable product flow for each company while minimizing the
total cost, thus establishing multi-objective mixed-integer linear programming (M-MILP).

In addition to minimizing the total cost and maximizing the total profit, the main
purpose of establishing the mathematical model is to find out the location, capacity, and
quantity of the core facilities, such as the collection center and the remanufacturing center
that need to be opened in the RL network. Sasikumar et al. [13] provided decisions related
to the number and location of facilities to be opened and the allocation of correspond-
ing product flows through the establishment of MILP. Roghanian and Pazhoheshfar [21]
proposed a multi-product, multi-stage RL network problem. It was not only necessary to
determine the subset of disassembly centers and machining centers to be opened, but also
necessary to determine the transportation strategy to meet the needs of manufacturing
centers and recycling centers, with the minimum fixed opening cost and total transportation
cost. Alshamsi and Diabat [16] also introduced important transportation considerations
by providing options for using internal fleets and outsourcing options. Liao [14] intro-
duced a modular remanufacturing process and emission reduction; two papers [14,16]
also considered the carbon footprint while determining the location of factories (inspec-
tion/remanufacturing), the transportation of cores/remanufactured products between
factories, and the route of vehicles between factories.
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Table 2. Mathematical model of general network structure.

NO Years Type Num. of Objectives Products Solution

[13] 2010 MINLP One (maximize profit) Tire retreading Lingo 8.0

[15] 2012 MILP One (maximize profit) Washing machines
and tumble dryers CPLEX

[21] 2014 P-MILP One (minimize the total cost) Hypothetical problem Genetic algorithm

[22] 2014 M-MILP

Three (minimize total cost,
ensure equity among different
firms, and provide stable product
flow to each company within the
planning scope)

Electrical waste and electronic
equipment CPLEX

[16] 2015 MILP One (maximize profit) Washing machines
and tumble dryers CPLEX

[17] 2016 MILP One (maximize profit) Vehicles CPLEX
[18] 2017 MILP One (maximize profit) Genetic algorithm
[14] 2018 MINLP One (maximize profit) Waste recycling Hybrid genetic algorithm
[19] 2019 MILP One (minimize the total cost) Lithium-ion batteries Three-phase heuristic
[20] 2020 MILP One (maximize profit) Numerical research CPLEX

2.1.2. Closed-Loop Network Structure

To protect the environment, many countries expand producer responsibility through
legislation. Driven by economic benefits, many manufacturers began to integrate RL [23],
thus evolving a closed-loop network structure (CLNS), as shown in Figure 2. The CLNS
integrates forward logistics and reverse logistics, producing huge economic and environ-
mental benefits, and is the most widely studied network structure by scholars. In the CLNS,
manufacturers obtain raw materials from suppliers, and the products manufactured are
sold to customers through distributors. The products used by customers are collected by the
collection center and selectively sent to the remanufacturing center. After remanufacturing,
they return to forward logistics. In the CLNS, the terminals of forward logistics and reverse
logistics are the same customer group.

Figure 2. Closed-loop network structure.

Tables 3 and 4 are, respectively, the previous mathematical model research on CLNS
and the corresponding abbreviations of terms. In paper [24], the environmental problems
are integrated into an integer CLNS model, and a genetic algorithm based on the spanning
tree structure is proposed to solve the NP-hard problem. Pishvaee et al. [25] also established
a multi-objective fuzzy mathematical model to design the environmental protection supply
chain. They used life cycle assessment to quantify the environmental impact of the network.
Zohal and Soleimani [26] also regard the model as a green CLNS according to the CO2
emissions of the gold industry. As shown in Table 3, most scholars are studying how to use
metaheuristics and heuristic algorithms to solve the model. Devika et al. [27] proposed six
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different mixed metaheuristics to solve the sustainable CLNS problem they developed. In
paper [28], a CLNS decision model under uncertainty was proposed, and the imperialist
competitive algorithm, particle swarm optimization, and genetic algorithm were used to
solve the large-scale NP-hard model developed by them. In another study, Fard et al. [29]
considered the three-level decision model to express their forward/reverse supply chain
network design problem, and adopted a variety of metaheuristic algorithms, including
tabu search, variable neighborhood search, particle swarm optimization, water wave
optimization, and Keshtel algorithm. The results show that the metaheuristic algorithm is
an effective method to solve the model in practice.

Table 3. Mathematical model of CLNS.

NO Years Type Objectives Network Stages Solution Outputs

[24] 2010 MILP MC, MEI SC, PC, DC, CZ, RYC E FL, PA, I, PT, TM, CR

[30] 2011 MILP MC, MEI,
MS

SC, PC, DC, CZ, CC,
RDC, RCC, RMC, RYC,

DIC
OM SO, FL, A, PA, PT, TA, NP

[31] 2012 SMIP MC
SC, PC, DC, CZ, CC,

RDC, RCC, RMC, RYC,
DIC

OM SO, FL, A, PA, PT, TA, NP

[25] 2012 MILP MC PC, DC, RCC OM FL, FC, A, PA

[27] 2014 FMIP MC, MEI
PC, CZ, CC, RCC

(Steel), RCC(Plastic),
DIC

IFS FL, TA, PA, NP

[32] 2015 SMIP MC CZ, CZ, CC, RDC,
RCC, DIC E FL, TA, QND

[26] 2016 MINLP MC SC, PC, CZ, W, DC,
RMC, RCC E, OM FC, TA, UP, I, NP

[28] 2017 MILP MC SC, PC, DC, CZ, D,
RMC, RDC, DIC GA FL, PA, TA

[29] 2018 MILP MC, MEI CC, DC, CZ, SC, RYC OM FL, A, NP, CS, TA

[33] 2019 MINLP MC, MEI,
MS

SC, PC, DC, CZ, CC,
RDC, RCC, RMC, RYC,

DIC
OM SO, FL, A, PA, PT, TA, NP, DC

Table 4. Abbreviations comparison table.

Item Content Notation

Objectives Min cost/max profit MC
Min environment impacts MEI
Max social benefits MS

Network Stages Supply centers SC
Production centers PC
Distribution centers DC
Warehouses W
Customer zones (retail outlets) CZ
Collection/inspection centers CC
Dismantlers D
Redistribution centers RDC
Recovering centers RCC
Remanufacturing centers RMC
Recycling centers RYC
Disposal/incineration centers DIC

Solution Method Exact E
Genetic-algorithm-based GA
Other metaheuristics OM
Interactive fuzzy solution approach IFS

Outputs Suppliers/orders SO
Facilities location FL
Facility capacity FC
Allocation A
Discount DC
Production amount PA
Utilization of production centers UP
Production technology PT
Transportation amount TA
Transportation mode TM
Number of vehicles NV
Inventory I
Number of used products which are processed NP
Carbon credits sold/purchased CS
Quantity of non-satisfied demand QND

5
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2.1.3. Hybrid Network Structure

Some scholars have put forward the concept of hybrid facilities, that is, the merger
of a manufacturing center and remanufacturing center, and the merger of a distribution
center and collection center, as shown in Figure 3, thus representing integrated forward
and reverse logistics [34]. Due to the existence of mixed facilities, RL can use the nodes
of forward logistics to optimize its design, thereby effectively reducing or eliminating the
cost of building new RL networks. Therefore, in recent years, it has also become a research
hotspot of scholars.

Figure 3. Hybrid network structure.

In this growing research field, the number of literature sources is growing rapidly.
Fleischmann et al.’s pioneering work in hybrid network structure modeling studied the
impact of product recycling on the design of a logistics network [35]. The study argued
that the impact of product recycling depended heavily on the environment. In some cases,
it may be feasible to integrate this activity into the existing logistics structure, while in
other cases, it may be necessary to redesign the logistics network in an overall manner.
Since this study, Salma et al. [36] incorporated capacity constraints, demand uncertainty,
and returns into the multi-product planning based on this model. Later, they integrated
strategic and tactical decisions by considering two inter-related time scales: at the strategic
level, they gave a discretization of the time range, which must meet the needs and reporting
values; at the tactical level, more detailed planning was allowed to achieve this goal [37].
Cardoso et al. [38] analyzed the integration of RL activities under demand uncertainty,
took the maximum expected net present value as the objective function, and made decision
variables for facility size and location, process installation, forward and reverse logistics,
and inventory level. Later, the author expanded this work to solve the uncertainty and
characterize the elastic closed-loop network structure [39].

Subsequently, environmental and social sustainability issues began to be considered.
Paksoy et al. [40] analyzed the supply plan and considered the emission cost (total cost min-
imization) and the profit maximization of the recycled products in the economic objective
function. Mota et al. [41] considered the sustainability of the economy, environment, and
society. They proposed a mathematical model with the minimization of the total cost of
the network structure as the economic objective function; the minimization of the life cycle
assessment index ReCipe as the environmental objective function; and the location of the
network structure activities in underdeveloped areas as the social objective function. Gao
et al. [42], based on the existing forward logistics network, proposed a double-objective
stochastic integer programming model aiming at economic and environmental benefits,
which aimed to support production, remanufacturing, and waste activities by addressing
the uncertainty factors of new product demand and the return volume of old products in
the customer area.
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2.2. VRP in RL

After locating critical facilities, the next question is how to reversely transport EOL
products, that is, the vehicle-routing problem in RL. The VRP in RL refers to how to arrange
vehicle types, quantities, capacities, routes, etc., to collect waste products from customers,
to achieve the goal of the minimum cost or the shortest route. Collection is the starting
point of EOL product recovery, so scholars have carried out much research to improve the
efficiency of this link.

The VRP in RL can be described as: a certain number of customers must use a certain
number of fleets with limited capacity, which are usually assumed to be the same. The
vehicles are stationed in a central parking lot and return after collecting waste products from
customers according to the route requirements. Cao et al. [43] used RL to reuse the Internet
of Things through identifying the resources required for road infrastructure, and modeled
RL to transfer the Internet of Things from a tailings dam to a processing plant, and then to a
road construction site. For minimizing the total cost, Richnák and Gubová [44] established a
heterogeneous-fleet electric-vehicle path-recovery time window model considering vehicle
load constraints. The type of vehicle limited the weight of recyclable waste and the
time limit allowed by the customer. Chen et al. [45] proposed a nonlinear programming
model including the number of second-hand products and reprocessed products. For
both types of requirements, analysis and insight were provided in the form of a complete
strategy consisting of different scenarios that allow optimal decisions to be made under
a variety of conditions. Through sensitivity analysis, numerical examples supplemented
the understanding of the model. Santana et al. [46] considered the risks in the e-waste
recycling process and modeled the reverse logistics process of electrical and electronic
equipment as a MILP with biological objectives under uncertainty. The cooperative alliance
strategy was employed by Mishra et al. [47] to actualize the constrained capabilities of
VRP in RL. The cooperative mechanism made it possible to prevent inefficient resource
distribution, cut back on circular logistics, and minimize long-distance travel. In order
to minimize recovery tasks, Chen et al. [48] used an improved ant colony algorithm to
handle vehicle design and route optimization problems. Foroutan et al. [49] established a
mixed-integer nonlinear programming model for multi-mode green vehicle routing and
scheduling with the objective of minimizing operating costs and environmental costs and
considering return, lead time, and delay costs. A mathematical model for the recovery of
EOL cars was developed by Chaabane et al. [50] by combining the traditional VRP with
the receiving and delivery problem as well as the restrictions of various vehicle kinds and
time periods.

The multi-vehicle routing optimization problem with time limitations has also been the
subject of interest for scholars’ in-depth research. In order to meet the needs of minimizing
transportation and procurement costs, the research in the literature [51] included choosing
suppliers and setting up homogeneous fleets to buy various products from chosen suppliers.
It also defined new branching rules, introduced new inequality families, and established
the competitiveness of the new branching price-reduction method. To optimize the multi-
depot production material-allocation system and research the routing problem of delivery
vehicles, Xu et al. [52] took into account a variety of factors, including multiple warehouses,
multiple vehicle types, multiple commodities, mismatches between customer supply and
demand, and arbitrary segmentation of delivery and delivery demands. Fan et al. [53]
designed a genetic variable neighborhood algorithm for multi-vehicle routing optimization
problem with fuzzy set requirements by improving the adaptive search strategy. A multi-
mode electric vehicle routing optimization model was developed by Guo et al. [54] taking
into account the differentiating service costs under the consideration of vehicle diversity,
charging strategy, person vehicle matching, and service time difference.

With the improvement in logistics network and the development of e-commerce,
in order to improve customer satisfaction, logistics service providers need to handle a
large number of delivery orders and return orders at the same time. In this case, the

7
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joint optimization of simultaneous pickup and delivery VRP (VRPSPD) can significantly
improve the utilization rate of vehicles [55].

Studies have shown that solving the problem of collecting refurbished goods in for-
ward and reverse logistics can improve the utilization rate of refurbished products, shorten
the return time, and improve customer satisfaction [55]. Dethloff [56] studied VRPSPD in
order to avoid redundant handling work, considering that customers have both picking and
delivery needs. They developed an insertion-based heuristics method, which can be used
to construct initial feasible solutions, which can be improved by subsequent application of
the local search process. A specific case of VRPSPD that allows for the decomposition of
the picking and delivery needs was developed by Masson et al. [57]. This method can be
used in real-world transportation systems with many of pickup trucks but few deliveries.
Nagy et al. [58] proposed a VRP with separable delivery and picking, and studied the
cost reduction caused by demand segmentation of simultaneous delivery and pickup. In
order to optimize vehicle scheduling to satisfy freight requests, Ghilas et al. [59] created
a VRPSPD with scheduling lines and took synchronization and time window limitations
into account in the solution algorithm. Gschwind et al. [60] evaluated the performance of
branch cut and price algorithms in VRPSPD to solve the shortest path issue under time
windows and resource limitation. Goeke [61] investigated the VRPSPD of electric cars, in
which the route design of electric vehicles attempted to optimize the pick-up and delivery
services in metropolitan areas with a lower environmental impact. Wolfinger [62] proposed
a mixed-integer programming model to develop a single warehouse VRPPD with split load,
and tested the algorithm performance through extensive computing experiments through
large-scale neighborhood search. Haddad et al. [63] developed a multi-warehouse VRPPD
to design a sustainable picking and distribution route between multiple warehouses. The
efficiency of transportation can be increased at the same time, within the limitations of
vehicle capacity and time window.

3. Scheduling in Remanufacturing

The remanufacturing system is generally composed of three subsystems: disassembly,
reprocessing and reassembly, as shown in Figure 4. Previous research usually took the
scheduling of reprocessing and reassembly as the production scheduling in remanufactur-
ing. Disassembly scheduling can be defined as the problem of determining which products
or subassemblies, how many, and when to disassemble EOL products to satisfy the demand
of their parts or components. This paper reviews scheduling in remanufacturing into
disassembly scheduling, production scheduling, and integrated scheduling

Figure 4. Composition of a typical remanufacturing system.
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3.1. Disassembly Scheduling in Remanufacturing

In the last few years, there has been a growing interest in the disassembly-scheduling
problem. Since Gupta and Taleb [64] described the basic form of the disassembly-scheduling
problem, a number of research articles have been released. We review literature sources on
approaches employed to model capacitated or incapacitated problems.

The majority of the early research took into account the scheduling issue of inca-
pable disassembly. Firstly, Gupta and Taleb [64] proposed a reverse material requirement
planning algorithm (RMRP) without an explicit objective function. Later, Taleb et al. [65]
proposed a different RMRP algorithm to reduce the number of products that needed to
be disassembled by taking into account the commonality of parts in this fundamental
instance. In order to reduce the total cost of setup, disassembly operations, and inven-
tory holding, Kim et al. [66] applied a heuristics algorithm and a linear programming
(LP) relaxation technique to the basic problem put forth by Taleb et al. [65]. In order to
reduce the total cost of product purchase, installation, disassembly operation and inventory
holding, Lee et al. [67] adopted a two-stage heuristic algorithm to solve the problem based
on the research of Gupta and Taleb [64]. Lee and Xirouchakis [68] proposed and solved
three integer programming models for three problem cases, i.e., a single product type
without parts commonality and single and multiple product types with parts commonality,
they used CPLEX to solve the problem. Inderfurth and Langella [69] adopted a heuristic
algorithm to reduce the estimated cost of disassembly operation, purchase and disposal,
taking into account such factors as multiple product types, commonality of components,
two-stage structure and uncertainty of production rate. Later, Kongar and Gupta [70]
further improved their earlier work by incorporating uncertainty into the consideration of
the problem and expressing the uncertainty of the problem through fuzzy goal program-
ming [71]. Barba-Gutierrez and Adenso-Diaz [72] extended their earlier work by integrating
uncertainty requirements. Barba-Gutierrez, Adenso-Diaz et al. [73], proposed an algorithm:
F-RMRP (RMRP based on fuzzy logic) to solve the problem. Kim and Lee [74] considered a
multi-period version problem and proposed a heuristic algorithm using priority rules to
solve it. Recently, Kim et al. [75] proposed a two-stage heuristic algorithm based on their
earlier model of Kim and Lee [74]. Most recent studies considered the capability of the
disassembly-scheduling problem. Lee et al. [76] proposed an integer programming model
whose objective function was to minimize the sum of disassembly operation, product
purchase, and inventory carrying costs. Later, Kim et al. [77] proposed an optimization
algorithm with the minimum number of disassembled products as the objective function.
Later, Kim et al. [78], based on the research of Kim et al. [77], considered the more complex
actual situation, added the minimum installation, disassembly operation and inventory
carrying cost into the objective function, and proposed a Lagrange heuristic algorithm
to solve the problem. In addition, Prakash et al. [79] proposed a disassembly-scheduling
problem model for parts commonality and proposed a constrained simulated annealing
algorithm to solve it. Liu and Zhang [80] built a non-convex mixed-integer model based
on the research of Prakash et al. [79]. Aiming at the optimal collection price, appropriate
disassembly time and quantity of recycled products, Liu and Zhang proposed a particle
swarm optimization algorithm based on dynamic programming to solve the problem.
Ullerich and Buscher [81] established an integer linear programming model considering
complete disassembly scheduling by considering the capacity constraints of each time
period. Later, Ji et al. [82] added the consideration of start-up and setup costs on the basis
of Ullerich and Buscher [81], and proposed a Lagrange relaxation heuristic algorithm to
solve the problem. Godichaud et al. [83] built an MILP model considering the penalty
cost of sales loss and disassembly capacity overload, and proposed a genetic algorithm to
solve it. Hrouga et al. [84] adopted a hybrid genetic algorithm and fix-and-optimization
heuristic algorithm to solve the disassembly batch scale problem of multi-type products
with sales loss and capacity constraints. Based on the original study by Hrouga et al. [85],
the problems of disassembly batch size under sales loss, multiple product types, and
two-tier and capacity constraints were considered by Hrouga et al. [84], and the objective
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function was to minimize the sum of installation, inventory, sales losses and overload costs.
An efficient optimization method based on a genetic algorithm and fix-and-optimization
heuristic was proposed. Kim and Xirouchakis [86] considered the problem of multi-cycle,
multi-product type, two-level product structure and random demand, aiming to minimize
the sum of expectation setting, inventory holding and penalty costs of unmet requests,
and proposed a Lagrange relaxation heuristic algorithm for solving the problem. Inder-
furth and Langella [69] proposed a disassembly-scheduling problem of random output
considering the impact of yield uncertainty on the stochastic scale model and binomial
model, and proposed a two-root three-leaf mathematical model to describe the problem.
Liu and Zhang [80] constructed a mixed-integer nonlinear programming considering the
capable disassembly-scheduling problem of stochastic yield and demand, and proposed an
algorithm based on external approximation to solve it. Tian and Zhang [87] considered the
problems of capable disassembly scheduling and pricing, and established a non-convex
mixed-integer model with the objective of determining the appropriate collection price of
recycled products and the appropriate disassembly time and quantity, which was solved
by the algorithm combining particle swarm optimization and dynamic programming.
Zhou, He et al. [88] considered the capability disassembly-scheduling problem with the
uncertainty of demand and disassembly operation time, constructed a new stochastic
programming model, and proposed a hybrid genetic algorithm to solve it. Yuan, Yang
et al. [89] proposed a capable fuzzy disassembly-scheduling model with cycle time and
environmental cost as parameters, proposed a mixed-integer mathematical programming
model with the goal of minimizing cycle time and environmental cost, and proposed a
metaheuristic algorithm based on the fruit fly optimization algorithm to solve the problem.
Slama, Ben-Ammar et al. [90] constructed a new mixed-integer programming model with
the goal of maximizing disassembly process gain by considering external procurement,
defects and late-order items, setup time, and capable dynamic batch problems. Slama
et al. [91] considered the random multi-period disassembly batch problem and proposed
a special optimization method according to specific different scenarios. (i) A two-stage
mixed-integer linear programming model was proposed to solve all possible scenarios
of small cases. (ii) The sample average approximation method based on Monte Carlo
simulation was proposed for all possible scenarios of medium-scale examples. (iii) For all
possible scenarios of large-scale instances, an optimization algorithm based on Monte Carlo
simulation and genetic algorithm was proposed.

3.2. Production Scheduling in Remanufacturing

Process planning and production scheduling for remanufacturing are more chal-
lenging than traditional manufacturing because there are many uncertain factors in the
remanufacturing system, for example, there are uncertainties in the processing route and
time of processing different kinds of materials in the remanufacturing process. These
uncertainties will lead to the failure of the usual process planning and scheduling methods.
Therefore, many researchers have conducted a great amount of meaningful exploration on
the uncertainty of remanufacturing production.

Wen H et al. [92] took the minimum remanufacturing time as the objective function, es-
tablished a production-scheduling comprehensive optimization model with double random
variable constraints, and proposed a hybrid algorithm of stochastic simulation technology, a
neural network, and a genetic algorithm to solve the problem. He P [93] proposed a quality
evaluation standard for the remanufacturing production-scheduling problem under the
two uncertain conditions of randomness and fuzziness of job scheduling. Then, based on
this, he built a remanufacturing production-scheduling model under uncertain conditions,
and adopted the hybrid algorithm of the BP neural network and genetic algorithm to solve
the problem. Peng S et al. [94] took the high value-added cylinder block of the engine
as the research object, took the minimum manufacturing span as the objective function,
considered the uncertainty of processing time and path, and proposed a new rule-based
dynamic window algorithm to solve the problem. Zhang [95] considered the remanufactur-
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ing production scheduling problem under random and fuzzy conditions, built a quality
evaluation method for remanufacturing recovered resources, and based on this, established
a remanufacturing production scheduling model under uncertain conditions, and proposed
a hybrid algorithm combining a double-fuzzy algorithm, BP neural network, and genetic
algorithm to solve the problem. Shi J et al. [96] proposed a new double-fuzzy remanufac-
turing scheduling model, which considered many double uncertainties in remanufacturing
and used double fuzzy variables to describe these uncertainties. Extended discrete particle
swarm optimization algorithm was used to solve the problem.

3.3. Integrated Scheduling in Remanufacturing

Kim et al. [97] encouraged the integration of all remanufacturing operations (disassem-
bly, remanufacturing/repair, and reassembly) into remanufacturing scheduling decisions.
The past research on the scheduling problem of integrated remanufacturing system can be
divided into flow shop type and job shop type. The flow-shop-type reprocessing shop is
oriented to small-batch, multiple varieties of personalized remanufacturing products; the
job-shop-type reprocessing shop is oriented to small-batch, multiple varieties of a single
type of remanufacturing product type.

For the remanufacturing system with a flow-shop-type reprocessing shop, Stanfield,
King et al. [98], aiming to minimize in-process operations and maximizing system utiliza-
tion, proposed a stochastic scheduling heuristic algorithm to solve the problem. In addition,
Kim et al. [99], aiming to minimize the total flow time of a remanufacturing system with
parallel flow-shop reprocessing lines, proposed three heuristic algorithms for solving the
problem, namely, the heuristic algorithm based on priority rules, the heuristic algorithm
based on Nawaz–Enscore–Ham and the iterative greedy algorithm. Later, Kim et al. [75],
based on the research by Kim et al. [99], proposed an algorithm based on priority rules
to minimize the total delay. Qu et al. [100] proposed a new FPA algorithm based on the
hormone regulation mechanism to solve the waiting-free flow-shop scheduling problem,
and introduced hormone-regulatory factors to enhance the global search capability of the
algorithm. Wang et al. [101] studied the scheduling problem of a remanufacturing system
with a parallel disassembly workstation, parallel flow-shop-reprocessing line, and parallel
reassembly workstation, and adopted the improved multi-objective invasive weed opti-
mization algorithm to solve it. Wang, Tian et al. [102] considered the scheduling problem
with parallel disassembly workstations, multiple parallel flow-shop-reprocessing lines, and
parallel reassembly workstations. Aiming to minimize the total energy consumption, they
proposed an improved genetic algorithm to solve the problem.

For the remanufacturing system with a shop–shop reprocessing shop, Guide Jr [103]
proposed a drum-slow Okinawa scheduling method for a military warehouse. Subse-
quently, Daniel and Guide Jr [104] reported the performance of various scheduling rules
and order release strategies based on the drum-cached Okinawa scheduling method. In
addition, Souza et al. [105] proposed a two-stage solution, aiming to meet the profit max-
imization of customer service level, built a queuing network model, and solved using
priority rules. See Guide Jr et al. [106] and Li et al. [107] for other models and solving
algorithms. Kang and Hong [108] studied the disassembly and reassembly optimization
problem; established an integer programming model; and solved the problem with the
minimum disassembly cost, inventory cost, and manufacturing cost of new parts as tar-
gets. Lin D et al. [109] took the optimal factory selection and optimal remanufacturing job
scheduling as objectives under resource constraints, and used linear physical program-
ming and the multi-level-coded genetic algorithm to solve the problem. Giglio et al. [110]
considered an integrated-batch-size and energy-saving job-shop scheduling problem, con-
structed a mixed-integer programming model, and proposed a relaxation-fixed heuristic
algorithm to solve it. Yu and Lee [111] considered the scheduling problem of a remanufac-
turing system with parallel disassembly workstations, shop-like reprocessing workstations,
and parallel reassembly workstations, constructed an integer programming model, and
proposed two solving algorithms: a decomposition algorithm and integration algorithm.
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Li et al. [112] proposed a hybrid metaheuristic algorithm embedded with a colored, timed
Petri net scheduling strategy to solve the problem of the optimal recovery route and re-
covery operation sequence for searching the worn core on the workstation, aiming to
minimize the total production cost. Fu, Zhou et al. [113] adopted a multi-objective discrete
Drosophila optimization algorithm to solve the stochastic multi-objective disassembly
reprocessing–reassembly integrated scheduling problem in order to minimize the expected
production cycle and total delay. Zhang, Zheng et al. [114] considered the integrated
process planning and scheduling problem of a remanufacturing system containing a par-
allel disassembly workstation, a flexible job-shop-type reprocessing shop, and a parallel
reassembly workstation, and proposed an improved artificial swarm algorithm to solve it.

4. Disassembly in Remanufacturing

Disassembly refers to obtaining valuable components from EOL products with various
resource constraints. Disassembly in remanufacturing mainly includes two COPs: disas-
sembly sequence planning (DSP) and disassembly line balancing problem(DLBP). DSP
means obtaining the required components in an optimal sequence. DLBP means assigning
disassembly operations to different workstations on a disassembly line to achieve one or
multi-objectives.

4.1. Disassembly Sequence Planning

The most common objective of DSP is to improve the disassembly efficiency and
reduce the cost. Disassembly sequence planning can be divided into three steps as shown
in Figure 5: First, choosing a suitable disassembly mode which could be complete/partial
disassembly or sequential/parallel disassembly. Second, building a model about the
disassembly relationship of parts or components of EOL products. Third, choosing an
optimization method to solve the DSP problem. There has been a great amount of research
on DSP, and various methods have been developed. The most commonly used methods
are heuristic algorithms. Additionally, the most prominent advantage of the heuristic
algorithms is that they can obtain high-quality solutions in an acceptable time for large-
scale problems [115]. For example, Tseng et al. [116] developed a new block-based genetic
algorithm (GA) with the penalty function matrix in the crossover and mutation mechanism
for disassembly sequence planning. Similarly, ElSayed et al. [117] and Li et al. [118] used
a GA to address DSP on different occasions. It is obvious that a GA is easy to use and
effective. However, more and more studies have investigated other heuristic algorithms.
Zhong et al. [119] solve the DSP including fasteners using Dijkstra’s algorithm and particle
swarm optimization (PSO), which is another metaheuristic algorithm. Guo et al. [120]
proposed a lexicographic multi-objective scatter search method to overcome the complexity
explosion caused by a large-scale DSP considering a multi-objective resource-constrained
operation. Liu et al. [121] built the disassembly model by using the modified feasible-
solution-generation method, and a robotic DSP was solved by using an enhanced discrete
bee colony algorithm. Additionally, Tao et al. [122] proposed an improved Tabu search
heuristic algorithm with an exponentially decreasing diversity management strategy; a
partial and parallel DSP problem was solved to show the proposed algorithm was feasible
and efficient. Guo et al. [123] and Ren et al. [124–127] investigated various types of DSP
problems by using different heuristic algorithms. In summary, a heuristic algorithm is one
of the most effective methods to solve DSP.
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Figure 5. The three steps in DSP.

There are few studies which have investigated the exact mathematical methods. The
exact mathematical methods can quickly obtain high-quality solutions for small-scale
problems without traversing the entire solution space [115]. However, exact mathematical
methods are more restrictive than other techniques. If the problem is large-scale, that is,
with many variables and constraints, it is difficult to obtain a solution in an acceptable
time. However, still some valuable papers are proposed because exact mathematical
methods still have the advantage of quickly producing solutions when solving small-scale
problems. For example, Zhu et al. [128] introduced a disassembly information model
with dynamic capabilities to handle state-dependent information and presented a linear-
programming-based optimization model to obtain the optimal disassembly sequence.
Costa et al. [129] developed a recursive branch-and-bound algorithm to obtain the optimal
disassembly sequence. They also proposed a best-first search algorithm to accelerate
the optimization process. Some literature sources [130–132] also investigated the exact
mathematical methods, but the solutions were not good enough when encountering large-
scale DSP.

4.2. Disassembly-Line-Balancing Problem

The DLBP was first proposed by Güngör and Gupta [133] and more and more studies
have investigated this problem. As Figure 6 shows, the main difference between DSP and
the DLBP is the disassembly operation assigned to the workstation, which makes the DLBP
more complex than DSP. Hence, there are some unique variables in the DLBP, such as
objectives which could minimize the number of workstations or idle time [134].

Figure 6. An example of the DLBP.
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Like DSP, many studies have also applied a metaheuristic algorithm to solve the DLBP.
For example, Yin et al. [135] considered a partial DLBP with multi-robot workstations; they
established an exact mixed-integer programming model and proposed a multi-objective
hybrid driving algorithm to effectively address the above problem. Li et al. [136] introduced
the profit-oriented U-shaped partial DLBP for the first time. They established an integer
linear programming model for solving the small-scale problem. Additionally, a novel
discrete cuckoo search algorithm was implemented and improved to solve the considered
DLBP. Wang et al. [137] proposed a discrete multi-objective artificial bee colony algorithm
to address the partial DLBP considering both economic benefits and environmental impacts.
Ren et al. [138–141] also investigated the problem of disassembly line balancing and applied
different heuristic methods to meet different objectives.

The exact mathematical methods can produce higher-quality solutions when solving
the small-scale DLBP, so there are some papers which have investigated them. Yılmaz
et al. [142] focused on a multi-objective DLBP considering the tactical-level strategies and
operational-level scenarios. They also developed the improved augmented ε-constrained
method to obtain the Pareto solutions for small-scale problems. Edis et al. [143] studied a
DLBP with balancing issues, the hazardousness of parts, and other factors. They developed
a generic MILP model for the above problem and their proposed method proved effective
after a series of tests. There are literature sources [144–146] which have also studied the
exact mathematical methods to solve the DLBP, but still could avoid the problem of not
being able to produce better solutions when encountering large-scale problems.

In conclusion, the DLBP has been well-researched and developed over decades. The
exact mathematical methods and heuristics algorithm have shown their effectiveness at
different scales of problems.

4.3. Integrated Disassembly and Reassembly

Reassembly is the operation following disassembly. Reassembly refers to the assembly
of reused parts, remanufactured parts, and original manufacturing parts through specific
processes to produce reusable products. However, because it is not the same as normal
assembly, reassembly will encounter different problems. For example, uncertainty in
reassembly can lead to a huge increase in the complexity of the problem. The quantity or
quality of the remanufactured parts is uncertain, which leads to a decline in production
efficiency, to unstable product quality, and to many other problems [147].

A few literature sources investigated the optimization of only reassembly but without
considering disassembly. For example, Su et al. [148] proposed an optimal selective-
assembly method for remanufacturing based on an ant colony algorithm in order to gain
optimal reassembly combinations and reduce the influence of the uncertainty factors on
the quality. Additionally, Liu et al. [149] proposed a simulated annealing genetic algorithm
to solve the assembly deviation degree on-line optimization model.

As mentioned above, optimization that only considers reassembly is incomplete.
Therefore, it is necessary to consider the complexities of reassembly when solving any
disassembly problem, that is, the integrated problem of disassembly and reassembly. For
example, Behdad and Thuston [150] proposed graph-based integer linear programming
combined with multi-attribute utility analysis to obtain the optimal sequence of disas-
sembly operations which considers the costs and uncertainties of both disassembly and
reassembly. Su et al. [151] developed a multi-objective optimization method based on
the TS-NSGAII hybrid algorithm which provided a new direction for the optimization of
the remanufacturing system. Li et al. [152] established an optimization decision-making
model for the reassembly process, and proposed a decision-making method based on the
improved T-S FNN which focused on minimizing the remanufacturing time and costs. Oh
and Behad [153] proposed a network flow graph and integer linear programming to pro-
duce solutions of the type and number of parts that should be reassembled and procured.
Some literature sources focused on the whole remanufacturing system; Lahmar et al. [154]
studied the remanufacturing production planning problem to minimize economic costs and
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carbon emissions. They developed a non-dominated sorting genetic algorithm (NSGA-II)-
based approach to overcome the complexity of the whole remanufacturing system. Polotski
et al. [155] investigated a hybrid manufacturing–remanufacturing system considering the
optimization of manufacturing, remanufacturing, and maintenance policies. The stochastic
dynamic programming approach was used to address this problem. In summary, it is a
trend to study the optimization of the whole remanufacturing system in order to fully
optimize all aspects of the system.

5. Analysis and Discussion

This section will discuss and analyze the above-mentioned literature sources from two
aspects: optimization methodology and problem uncertainty.

5.1. Optimization Methodology

The problems described in Section 2 to Section 4 are essentially COPs. For COPs, the
most important step is how to solve them after establishing the relevant mathematical
model, and the solution methods are mainly divided into exact and heuristic or metaheuris-
tic algorithms. The exact algorithm includes the branch and bound method, the dynamic
programming method, the cutting-plane method, etc. However, due to the complexity
of practical problems and the NP-hard attribute of most COPs, it is difficult for the exact
algorithm to obtain a satisfactory solution for large-scale problems in a reasonable time.
Therefore, most of the current research focuses on the development of heuristic or meta-
heuristic algorithms. This section will analyze the solution methods of the COPs mentioned
in the above sections.

Tables 5–7 summarize exact algorithms, heuristic or metaheuristic algorithm, and
some other algorithms, respectively. From the results of horizontal comparison, the number
and types of heuristic or metaheuristic algorithm are far greater than those of the exact
algorithm. This shows that in the field of RL and remanufacturing, using heuristic or
metaheuristic algorithms to solve problems is the mainstream method of current research.
Moreover, some classical algorithms have many applications in different problems, such as
genetic algorithms [156], particle swarm optimization [157], ant colony algorithms [158],
simulated annealing [159], and Tabu search [160].

Table 5. Exact algorithms.

Area Methods Reference

Facility location and VRP in RL Lingo [13,25,31,40]
CPLEX [15–17,20,22,30,37–39,42]
Branch and bound [36,51,57,60,63]

Scheduling in remanufacturing CPLEX [77]
Dynamic programming [87]

Disassembly in remanufacturing CPLEX [143]
Improved augmented Epsilon
constraint [145]

Table 6. Heuristic or metaheuristic algorithms.

Area Methods Reference

Facility location and VRP in RL Genetic algorithm [14,18,21,23,24,43,49]
Three-phase heuristic approach [19]
Three different hybridization methods [27]
Hybrid genetic algorithm and particle swarm
optimization [32]

Ant colony algorithm [26,48]
Imperialist competitive algorithm [28]
Tri-level metaheuristics [29]
Hybrid Keshtel and genetic algorithm [33]
Parallel differential evolutionary algorithm [55]
Simulated annealing [49]
Two-phased heuristic [50]
Insertion-based heuristics [56]
Tabu search [58,61]
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Table 6. Cont.

Area Methods Reference

Neighborhood search [59,62,63]
Scheduling in remanufacturing Genetic algorithm [83,102,109]

Two-phased heuristic [67,75,82,105]
One-to-many heuristic
One-to-one heuristic [69]

Greedy algorithm [74]
Simulated annealing [79,111]
Particle swarm optimization [80,87,96]
Fruit fly optimization [89,113]
Hybrid genetic algorithm [84,85,88,90–93,95]
CDS [98]
Nawaz–Enscore–Ham-based [75,99]
Priority-rule-based heuristic [75]
Integrated gradients [75]
Flower pollination algorithm [100]
Multi-objective invasive weed optimization [101]
Hybrid metaheuristic using simulated annealing
and tabu search [107]

Hybrid metaheuristic using SA and MST rule [112]
Artificial bee colony algorithm [114]

Disassembly in remanufacturing Genetic algorithm [116–118,124,125]
Particle swarm optimization [119]
Scatter search algorithm [120]
Discrete bees algorithm [121,126,127,137]
Tabu search [122,151]
Variable neighborhood search [127,138]
Greedy search algorithm [129]
Two-phase algorithm [131]
Hybrid driving algorithm based on a three-layer
encoding method [135]

Discrete cuckoo search [136]
2-optimal algorithm [139]
Gravitational search algorithm [140]
Fast-ranking heuristic approach [141]
Non-dominated sorting genetic algorithm-II [142,151,154]
Two-stage parameter-adjusting heuristic [144]
Branch and fathoming algorithm [146]
Ant colony algorithm [148]
Simulated annealing genetic algorithm [149]

Table 7. Other algorithms.

Area Methods Reference

Facility location and VRP in RL Integrating the sample average approximation
scheme with an importance sampling strategy [34]

ReCiPe life cycle assessment methodology [41]
Fermatean fuzzy CRITIC-EDAS approach [47]

Scheduling in remanufacturing Reverse material requirement planning algorithm [64,65,72]
Fuzzy goal programming technique [70]
Outer approximation-based solution algorithm [80]
Dynamic window approach [94]
Drum–buffer–rope-based scheduling approach [103,104]

Disassembly in remanufacturing Choquet integral [123]
Immersive computing technology [132]
Multi-attribute utility analysis
Takagi–Sugeno fuzzy neural network

[150]
[152]

Deep reinforcement learning (DRL) solving COPs in the process of EOL product
recovery has attracted extensive attention in recent years. Bengio et al. [161] proposed
three types of paradigms for the application of machine learning to COPs. Lei et al. [162]
proposed an end-to-end DRL framework to solve the TSP and the CVRP. Yang et al. [163]
proposed the framework of robotic disassembly sequence planning using DRL to solve
the robotic disassembly sequence planning problem. In general, compared with heuristic
or metaheuristic algorithms, DRL is seldom used to solve COPs in the process of EOL
product recovery at present. However, DRL has been proved to be superior to metaheuristic
algorithms in solving certain problems. Therefore, future research can focus more on DRL.
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5.2. Problem Uncertainty

Due to the complexity of the reality and the instability of the state of EOL products,
the recovery process will face a series of uncertainties. At present, most of the studies only
have considered the deterministic conditions, but the uncertain studies are more practical.

In the stage of facility location and the VRP in RL, it is easy to face uncertainty of quan-
tity, facility capacity, demand, etc. Therefore, Roghanian and Pazhoheshfar [21] considered
the uncertainty degree of the demands, capacities, and quantity of EOL products, and
proposed a P-MILP model to decide which subsets of processing and disassembly centers
will be opened. Lee et al. [34] established a two-stage stochastic programming model which
assumed the demand of forward items and the supply of returned products on customers to
be stochastic parameters with known distribution. To solve the S3PRLP selection problem
with unknown attributes and decision-maker weights, Arunodaya et al. [47] developed a
hybrid methodology that combined CRITIC and EDAS methods with Fermatean fuzzy sets
(FFSs). In addition, there is also other research on uncertainty in the collection stage of EOL
products [36,38,39].

In the area of scheduling in remanufacturing, it often faces the uncertainty of the
quality of old products, the demand for new products, and the supply of raw materials.
Many scholars have studied the uncertainty in this field [95–97,113]. Kongar et al. [70]
established a multi-criteria optimization model of a disassembly-to-order (DTO) system un-
der uncertainty and adopted the fuzzy goal programming technique to solve the problem.
Because real-world data on the demand for used components is frequently ambiguous,
vague, or imprecise, Barba-Gutiérrez et al. [72] used a fuzzy logic approach to develop
the reverse MRP algorithm, incorporating subjectivity and imprecision into the model
formulation and solution process. Other similar studies such as Liu and Zhang [80] stud-
ied the capacitated disassembly-scheduling problem under stochastic yield and demand.
Wen et al. [92] optimized the integration of remanufacturing production planning and a
scheduling system under uncertainty. He [93] developed a useful optimization method for
the production scheduling in remanufacturing under uncertain conditions. Peng et al. [94]
studied a Petri-net-based scheduling scheme and energy model for the remanufacturing of
a cylinder block under uncertainty.

In the field of disassembly in remanufacturing, there are many failure features, such
as wear, fracture, deformation, and corrosion, which may influence the disassembly time
and cost. Behdad et al. [132] used immersive computing technology as a tool to explore an
alternative disassembly sequence scheme in an intuitive manner, taking into account uncer-
tain conditions such as time, cost, and the probability of causing damage. Liu et al. [144]
researched the DLBP with partial uncertain knowledge, that is, the task-processing time
mean and covariance matrix. A new distributionally robust formulation with a joint chance
constraint was proposed. Behdad and Thurston [150] considered the costs and uncertainties
associated with disassembly and reassembly. To find the best set of tradeoffs, graph-based
integer linear programming was combined with multi-attribute utility analysis.

6. Conclusions

The COPs in RL and remanufacturing have important academic value and practical
value. In this paper, we divided the COPs into three categories, including facility location
and the VRP in RL, scheduling in remanufacturing, and disassembly in remanufacturing;
each of them contained several subcategories. At present, the research on these COPs
mainly focuses on mathematical models and optimization methodology, which are also the
two perspectives of this paper to review the current literature.

At the mathematical model level, through the analysis of this paper, the following
suggestions are proposed for future research. Firstly, concerning the facility location and
VRP in RL, researchers can pay more attention to the hybrid network structure, as described
in Section 2, which can reduce the cost of logistics facilities and improve logistics efficiency.
In addition to the uncertainty of the quantity and quality of EOL products, the demand for
remanufactured products is also uncertain. Therefore, how to study the hybrid network
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structure under uncertain conditions may be the direction that researchers should work
hard towards. Secondly, in the area of scheduling in remanufacturing, scholars can consider
more practical factors, such as multi-objective, limited buffer, uncertainty of task arrival
time, etc. Moreover, the combination of the disassembly process and the scheduling process
is also a direction that can be considered. Thirdly, for disassembly in remanufacturing,
researchers can conduct more study on two-sided or U-shaped disassembly lines. Due to
the danger of disassembly operations, human–robotic cooperation is also a field of concern.
Similarly, due to the poor quality of EOL products, how to carry out disassembly sequence
planning in the case of disassembly failure will be a reality that has to be considered.

At the optimization methodology level, DRL can solve the COPs end-to-end, thus
avoiding the complex design of traditional optimization algorithms and its characteristics
of low efficiency and high complexity. Therefore, researchers can consider developing
relevant DRL algorithms.

Author Contributions: Conceptualization, Y.R.; project administration, H.G.; writing—original draft
preparation X.L., Z.X. and H.Z.; writing—review and editing, X.L.; supervision, C.Z. All authors have
read and agreed to the published version of the manuscript.

Funding: The research is financially supported by the National Natural Science Foundation of China
(No. 52205526, No. 52205538), the Basic and Applied Basic Research Project of Guangzhou Basic
Research Program (202201010284), the National Foreign Expert Project of Ministry of Science and
Technology of China (G2021199026L), the Guangdong Province Graduate Education Innovation
Project (82620516), the National Key Research and Development Program of China (2021YFB3301701),
the Guangzhou Leading Innovation Team Program (201909010006), the Guangdong Province “Quality
Engineering” Construction Project (210308), the Research Project of Characteristic Innovation of
University Teachers (2021DZXX01), and Zhuhai Science and Technology Planning Project in the Field
of Social Development (2220004000302).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Stock, J.R. Reverse Logistics: White Paper; Council of Logistics Management: Lombard, IL, USA, 1992.
2. Zhang, X.; Zou, B.; Feng, Z.; Wang, Y.; Yan, W. A Review on Remanufacturing Reverse Logistics Network Design and Model

Optimization. Processes 2021, 10, 84. [CrossRef]
3. Chanintrakul, P.; Coronado Mondragon, A.E.; Lalwani, C.; Wong, C.Y. Reverse logistics network design: A state-of-the-art

literature review. Int. J. Bus. Perform. Supply Chain Model. 2009, 1, 61–81. [CrossRef]
4. Waidyathilaka, E.; Tharaka, V.K.; Wickramarachchi, A.P.R. Trends in Green Vehicle Routing in Reverse Logistics. In Proceedings of the

International Conference on Industrial Engineering and Operations Management (IEOM), Bangkok, Thailand, 5–7 March 2019.
5. Han, H.; Ponce Cueto, E. Waste collection vehicle routing problem: Literature review. PROMET Traffic Transp. 2015, 27, 345–358.

[CrossRef]
6. Majumder, P.; Groenevelt, H. Competition in remanufacturing. Prod. Oper. Manag. 2001, 10, 125–141. [CrossRef]
7. Nasr, N.; Thurston, M. Remanufacturing: A key enabler to sustainable product systems. Rochester Instit. Technol. 2006, 23, 14–17.
8. Laili, Y.; Li, Y.; Fang, Y.; Pham, D.T.; Zhang, L. Model review and algorithm comparison on multi-objective disassembly line

balancing. J. Manuf. Syst. 2020, 56, 484–500. [CrossRef]
9. Zhou, Z.; Liu, J.; Pham, D.T.; Xu, W.; Ramirez, F.J.; Ji, C.; Liu, Q. Disassembly sequence planning: Recent developments and future

trends. Proc. Instit. Mech. Eng. Part B J. Eng. Manuf. 2019, 233, 1450–1471. [CrossRef]
10. Morgan, S.D.; Gagnon, R.J. A systematic literature review of remanufacturing scheduling. Int. J. Prod. Res. 2013, 51, 4853–4879.

[CrossRef]
11. Wang, Y.; Mendis, G.P.; Peng, S.; Sutherland, J.W. Component-oriented reassembly in remanufacturing systems: Managing

uncertainty and satisfying customer needs. J. Manuf. Sci. Eng. 2019, 141, 021005. [CrossRef]
12. Fleischmann, M.; Bloemhof-Ruwaard, J.M.; Beullens, P.; Dekker, R. Reverse logistics network design. In Reverse Logistics; Springer:

Berlin/Heidelberg, Germany, 2004; pp. 65–94.
13. Sasikumar, P.; Kannan, G.; Haq, A.N. A multi-echelon reverse logistics network design for product recovery—A case of truck tire

remanufacturing. Int. J. Adv. Manuf. Technol. 2010, 49, 1223–1234. [CrossRef]
14. Liao, T.Y. Reverse logistics network design for product recovery and remanufacturing. Appl. Math. Model. 2018, 60, 145–163.

[CrossRef]

18



Mathematics 2023, 11, 298

15. Alumur, S.A.; Nickel, S.; Saldanha-da-Gama, F.; Verter, V. Multi-period reverse logistics network design. Eur. J. Oper. Res. 2012,
220, 67–78. [CrossRef]

16. Alshamsi, A.; Diabat, A. A reverse logistics network design. J. Manuf. Syst. 2015, 37, 589–598. [CrossRef]
17. Demirel, E.; Demirel, N.; Gökçen, H. A mixed integer linear programming model to optimize reverse logistics activities of

end-of-life vehicles in Turkey. J. Clean. Prod. 2016, 112, 2101–2113. [CrossRef]
18. Alshamsi, A.; Diabat, A. A Genetic Algorithm for Reverse Logistics network design: A case study from the GCC. J. Clean. Prod.

2017, 151, 652–669. [CrossRef]
19. Reddy, K.N.; Kumar, A.; Ballantyne, E.E.F. A three-phase heuristic approach for reverse logistics network design incorporating

carbon footprint. Int. J. Prod. Res. 2019, 57, 6090–6114. [CrossRef]
20. Reddy, K.N.; Kumar, A.; Sarkis, J.; Tiwari, M.K. Effect of carbon tax on reverse logistics network design. Comput. Ind. Eng. 2020,

139, 106184. [CrossRef]
21. Roghanian, E.; Pazhoheshfar, P. An optimization model for reverse logistics network under stochastic environment by using

genetic algorithm. J. Manuf. Syst. 2014, 33, 348–356. [CrossRef]
22. Tari, I.; Alumur, S.A. Collection center location with equity considerations in reverse logistics networks. INFOR Inf. Syst. Oper.

Res. 2014, 52, 157–173. [CrossRef]
23. Zarei, M.; Mansour, S.; Husseinzadeh Kashan, A.; Karimi, B. Designing a reverse logistics network for end-of-life vehicles

recovery. Math. Probl. Eng. 2010, 2010, 649028. [CrossRef]
24. Wang, H.F.; Hsu, H.W. A closed-loop logistic model with a spanning-tree based genetic algorithm. Comput. Oper. Res. 2010, 37,

376–389. [CrossRef]
25. Pishvaee, M.S.; Torabi, S.A.; Razmi, J. Credibility-based fuzzy mathematical programming model for green logistics design under

uncertainty. Comput. Ind. Eng. 2012, 62, 624–632. [CrossRef]
26. Zohal, M.; Soleimani, H. Developing an ant colony approach for green closed-loop supply chain network design: A case study in

gold industry. J. Clean. Prod. 2016, 133, 314–337. [CrossRef]
27. Devika, K.; Jafarian, A.; Nourbakhsh, V. Designing a sustainable closed-loop supply chain network based on triple bottom line

approach: A comparison of metaheuristics hybridization techniques. Eur. J. Oper. Res. 2014, 235, 594–615. [CrossRef]
28. Fard, A.M.F.; Gholian-Jouybari, F.; Paydar, M.M.; Hajiaghaei-Keshteli, M. A bi-objective stochastic closed-loop supply chain

network design problem considering downside risk. Ind. Eng. Manag. Syst. 2017, 16, 342–362.
29. Fard, A.M.F.; Hajaghaei-Keshteli, M. A tri-level location-allocation model for forward/reverse supply chain. Appl. Soft Comput.

2018, 62, 328–346. [CrossRef]
30. Pishvaee, M.S.; Rabbani, M.; Torabi, S.A. A robust optimization approach to closed-loop supply chain network design under

uncertainty. Appl. Math. Model. 2011, 35, 637–649. [CrossRef]
31. Chaabane, A.; Ramudhin, A.; Paquet, M. Design of sustainable supply chains under the emission trading scheme. Int. J. Prod.

Econ. 2012, 135, 37–49. [CrossRef]
32. Soleimani, H.; Kannan, G. A hybrid particle swarm optimization and genetic algorithm for closed-loop supply chain network

design in large-scale networks. Appl. Math. Model. 2015, 39, 3990–4012. [CrossRef]
33. Hajiaghaei-Keshteli, M.; Fathollahi Fard, A.M. Sustainable closed-loop supply chain network design with discount supposition.

Neural Comput. Appl. 2019, 31, 5343–5377. [CrossRef]
34. Lee, D.H.; Dong, M.; Bian, W. The design of sustainable logistics network under uncertainty. Int. J. Prod. Econ. 2010, 128, 159–166.

[CrossRef]
35. Fleischmann, M.; Beullens, P.; Bloemhof-Ruwaard, J.M.; Van Wassenhove, L.N. The impact of product recovery on logistics

network design. Prod. Oper. Manag. 2001, 10, 156–173. [CrossRef]
36. Salema, M.I.G.; Barbosa-Povoa, A.P.; Novais, A.Q. An optimization model for the design of a capacitated multi-product reverse

logistics network with uncertainty. Eur. J. Oper. Res. 2007, 179, 1063–1077. [CrossRef]
37. Salema, M.I.G.; Barbosa-Povoa, A.P.; Novais, A.Q. Simultaneous design and planning of supply chains with reverse flows: A

generic modelling framework. Eur. J. Oper. Res. 2010, 203, 336–349. [CrossRef]
38. Cardoso, S.R.; Barbosa-Póvoa, A.P.F.D.; Relvas, S. Design and planning of supply chains with integration of reverse logistics

activities under demand uncertainty. Eur. J. Oper. Res. 2013, 226, 436–451. [CrossRef]
39. Cardoso, S.R.; Barbosa-Póvoa, A.P.; Relvas, S.; Novais, A.Q. Resilience metrics in the assessment of complex supply-chains

performance operating under demand uncertainty. Omega 2015, 56, 53–73. [CrossRef]
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Abstract: A great loss of transportation capacity has been caused in auto parts supply logistics due
to the independent transportation from auto parts suppliers (APSs) to the automobile production
line (APL). It is believed that establishing distribution centers (DCs) for centralized collection and
unified distribution is one effective way to address this problem. This paper proposes a unified
framework simultaneously considering the location-inventory-routing problem (LIRP) in auto parts
supply logistics. Integrating the idea of sustainable development, a multi-objective MIP model
is developed to determine the location and inventory capacity of DCs and routing decisions to
minimize the total system cost and carbon emissions while concerning multi-period production
demand. In addition, a robust optimization model is developed further in the context of uncertain
demand. Numerical experiments and sensitivity analyses are conducted to verify the effectiveness
of our proposed deterministic and robust models. The results show that synergistically optimizing
the location and capacity of DCs and routing decisions are beneficial in reducing total system cost
and carbon emissions. The analysis can provide guidelines to decision-makers for the effective
management of auto parts supply logistics.

Keywords: auto parts supply chain; sustainable logistics; robust optimization; location-inventory-
routing optimization; multi-period demand

MSC: 90B05; 90B06; 90B10

1. Introduction

With the increase and diversification of end-customer demands in the commercial
vehicle market, the automobile logistics service size and system complexity will unavoid-
ably continue growing. As a core concept of the automobile supply chain, auto parts
supply logistics has caught the abundant attention of academic and auto manufacturers [1].
The existing literature has indicated that if the auto parts are delivered separately by the
auto part suppliers (APSs), several problems will be caused such as the great loss of trans-
portation capacity and higher transport cost [2]. Hence, to address the practical issues of
the auto parts supply logistics, our research aims to establish distribution centers (DCs)
integrated with the routing problem [3] for centralized pickup and unified delivery. In
order to better respond to the idea of emission reduction [4], it is critical to determine the
location-inventory-routing problem from a sustainable perspective while reducing the total
transport cost.

Our problem is a typical location-inventory-routing problem (LIRP) involving strategic,
tactical, and operational decisions. Specifically, the strategic decisions are to determine
the number and location of DCs, which undertake the tasks of the centralized pick-up of
auto parts from APSs, storage, and their unified delivery to the automobile production line
(APL). Unreasonable locations of the DCs are likely to fail in meeting production demands
and reduce the operating efficiency of the auto parts supply logistics. The tactical decisions
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are to determine the inventory capacity of the opened DCs. Subject to the construction
budget, it is not ideal to establish DCs with a large inventory capacity. On the other
hand, when the inventory capacity is insufficient, there is a risk of a shortage of auto
parts in DCs. In that case, the required auto parts of the APL cannot be satisfied by DCs,
requiring APSs to deliver auto parts directly to the APL, which will significantly increase
the transport cost. Moreover, operational decisions refer to the assignment between DCs
and APSs [5] routing decisions for centralized pickup and unified delivery. The location
selection of DCs, inventory capacity, and routing decisions are interrelated. With respect
to the periodicity and time-sensitive characteristics of auto parts, this paper considers
multi-period production demand to describe the LIRP of auto parts supply logistics.

Another essential factor that has to be considered is the uncertain demand. In auto-
mobile production activities, the production demand in the APL depends on the market
orders, which are impacted deeply by indeterministic factors. In order to make up for the
production uncertainty, it is essential to expand the inventory capacity of DCs or to order
more auto parts in advance. However, these solutions have the potential to increase the
delivery cost significantly. At the same time, it is difficult to obtain an exact probability
distribution of uncertain demand. Therefore, a robust optimization method is needed to
deal with the uncertainty of production demand.

Overall, this paper proposes a unified framework to describe the multi-objective LIRP
while considering the multi-period uncertain demand of auto parts supply logistics. The
main contributions of this paper are as follows:

(1) Concerning the multi-period deterministic demand, this paper first proposes a multi-
objective mixed-integer programming model (MIP) to investigate the LIRP in auto
parts supply logistics from a sustainable perspective. Specifically, this model deter-
mines the location and capacity of DCs and routing decisions to minimize the total
system cost and carbon emissions.

(2) Further, a robust optimization model is developed to capture the multi-period uncer-
tain production demand in the APL. To the authors’ knowledge, this is the first time
the LIRP in auto parts supply logistics is simultaneously optimized while considering
multi-period uncertain demand.

(3) Numerical experiments are conducted to demonstrate the usefulness of the proposed
models. The sensitivity analysis results show that the location, inventory capacity,
and delivery routing decisions are highly affected by various cost parameters.

The remainder of this paper is structured as follows. Section 2 briefly reviews the
relevant literature, and the LIRP and the MIP model are formulated in Section 3. Numerical
experiments, results analysis, and managerial insights are presented in Section 4. Finally,
Section 5 summarizes the conclusions and future direction of this research.

2. Literature Review

As a typical topic, numerous studies focus on the LIRP in various fields. To compre-
hensively review the problem in auto parts supply logistics, we summarize the literature
review from three aspects: the LIRP in the auto parts supply network, the environmentally
sustainable LIRP, and the LIRP with uncertain factors.

2.1. LIRP in Auto Parts Supply Logistics

The complexities of the LIRP in auto parts supply logistics are closely related to
location, inventory, and routing decisions. The location models have been widely investi-
gated to determine the site of DCs. Ref. [6] developed a location model for an auto parts
warehouse to minimize construction and transport costs. An improved particle swarm
optimization algorithm was proposed and benchmark experiments were conducted to
prove the effectiveness of the location model. In addition, the inventory capacity is another
essential component in the LIRP, which is tightly associated with supply efficiency and
inventory cost. In addition, route planning at the regional level has significant implications
for regional transportation planning [7]. Compared to the zero inventory strategy that
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several automobile companies adopt, Ref. [8] proposed a new logistics strategy integrating
progress-lane and vehicle routing problems. A mixed-integer model was established to
minimize the total cost of inbound logistics, which is demonstrated to be more effective
and economical than the zero inventory strategy. Further, Ref. [9] developed an adaptive
Visual Basic Application (VBA) program to largely enhance the utilization rate of DCs and
reduce the inventory cost. A multi-level location-inventory model was proposed by [10]
and solved with the Lagrangian relaxation method. Concerning the auto parts demand,
Ref. [11] provided the second weighted moving average method to forecast the future
demand in advance, which is beneficial in reducing the inventory cost.

As auto parts transportation is the main component of the total system cost and the
primary source of carbon emission [12,13], it is of great significance to optimize the routing
problem in the auto parts supply logistics. Previous research has mainly concentrated
on the location-inventory and routing problems separately. Therefore, it is essential to
investigate the LIRP in auto parts supply logistics comprehensively.

2.2. Environmentally Sustainable LIRP

Traditional supply chain optimization problems mainly focus on minimizing the
economic costs, which ignores the goal of reducing carbon emissions. With the popularity
of the low-carbon concept, recent literature [14] has paid more attention to the LIRP from
a sustainable view in various fields. For instance, to address the fresh food delivery
problem, Ref. [15] proposed a model to discuss the vehicle routing problem with time
windows (VRPTW) while decreasing carbon emissions. To deal with urban waste, Ref. [16]
developed a multi-warehouse location-routing model and proposed a hybrid genetic
algorithm and a simulated annealing algorithm. Numerical experiments demonstrated
that the method and algorithm are effective in determining the location of parking lots and
the vehicles routing to collect garbage. A two-layer planning model based on a carbon
emission trading policy was developed in [17] to optimize the location problem of cold
chain logistics. Similarly, Ref. [18] proposed an LIRP model that considers the carbon
trading mechanism in the cold chain logistics network. Through simulation results, it
was demonstrated that the improved NSGA-II can effectively reduce the carbon emissions
of enterprises. Combining pollution-related routing, Ref. [19] developed a mathematical
model to discuss the inventory-routing problem and proposed a hybrid adaptive particle
swarm optimization algorithm. Considering the green location inventory problem, Ref. [20]
developed a two-stage stochastic mathematical model and proposed a hierarchical heuristic
algorithm. This study further proved the impact of the carbon trading scheme on strategic
decision-making. To achieve a sustainable supply chain, Ref. [21] proposed a two-stage
approach and built a multi-objective mixed-integer model. Based on the environmental
consideration, the location-path-inventory system in a three-level supply chain network
was studied, and Ref. [22] formulated a bi-objective mixed-integer programming model for
the above system and developed a multi-objective particle swarm optimization algorithm.

Only a few studies discussed energy saving and emission reduction in auto parts
supply logistics. To minimize the transport cost and carbon emissions, Ref. [23] established
a routing planning model and verified the effectiveness through a real case. Based on
emission reduction and resource sharing, a decision-making optimization model of the
auto parts supply chain was established by [24] to minimize the total system cost and
carbon emission. Variational inequality was utilized to analyze the optimal conditions.

In order to simultaneously minimize economic cost and carbon emissions, this study
described a multi-objective model for the LIRP in the auto parts supply network.

2.3. LIRP with Uncertain Factors

Another key challenge for the LIRP is the demand uncertainty [25]. Reviewing the
literature in the LIRP, researchers have made various assumptions when describing the
demand. For instance, assuming that the demand is satisfied by a normal distribution,
Ref. [26] formulated a dual-objective stochastic model to minimize the total cost and
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maximize the service time while considering various multi-period products, and a heuristic
algorithm was adopted to obtain the Pareto set. Concerning the uncertain topology of the
hub location, Ref. [27] proposed an interactive method to delineate the design problem of
the dangerous goods transportation network. Two heuristics based on the lower bound
and rolling horizon were proposed to solve the model in a large-scale case.

In the presence of demand uncertainty, robust optimization and stochastic optimiza-
tion are two main streams. Ref. [28] formulated a stochastic programming mixed-integer
model to determine the location and inventory strategy at the same time. Considering
carbon emissions and energy consumption, Ref. [29] applied stochastic programming to the
LIRP and proposed a sustainable closed-loop model to achieve economic, environmental,
and social trade-offs. Robust optimization concentrates on min-max risk control. With
respect to the uncertain demand in the medical supplier network, a robust LIRP model
was proposed by [30] to reduce the total system cost effectively. Integrating with big data
technology, Ref. [31] developed a multi-center location-routing optimization model of
medical logistics considering several uncertain factors.

To give a clear representation of the innovation of this paper, we summarize the related
literature review in Table 1. Up until now, there has been a lack of studies on a robust LIRP
in auto parts supply logistics from a sustainable perspective while considering the multi-
type, multi-period characteristic. To address the existing issues, this paper investigates
the deterministic LIRP first and proposes a robust model combined with the multi-period
uncertain demand to optimize the total transport cost and carbon emissions.

Table 1. List of referenced articles.

Article Problem
Multi-

Objective
Sustainable Uncertainty

Optimization
Method

Multi-Period

Ghasemi et al., 2022 [32] LIRP � Two-stage
Yang et al., 2021 [33] LIRP � Integrated
Biuki et al., 2020 [21] LIRP � � � Two-stage �
Chao et al., 2019 [34] LIRP Two-stage �

Li et al., 2022 [18] LIRP � � Integrated
Ji et al., 2022 [22] LIRP � � Integrated

Shang et al., 2022 [30] LIRP � Integrated �
Aydemir-Karadag, 2022 [35] LIRP � � Two-stage �

Liu et al., 2021 [36] LIRP � � Integrated
Yavari et al., 2020 [37] LIRP � Integrated �

Song Wu, 2022 [38] LIRP � Integrated �
This Paper LIRP � � � Integrated �

3. Problem Description and Model Formulation

Motivated by a real-world problem, we aim to present a novel multi-objective opti-
mization model for the LIRP in the auto parts supply network. First, problem formulation
and modeling assumptions are described. Then, we develop an integrated deterministic
MIP model. Finally, integrating multi-period uncertain demand, a robust optimization
model is further developed, and the complex modeling process in this paper is delineated
in Figure 1.
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Figure 1. The research framework for auto parts supply logistics.

3.1. Problem Description

This paper considers an auto parts supply network, as shown in Figure 1. The
strategical decisions in this paper are to determine the location and inventory capacity of
DCs. Let J =

{
1, 2, . . . J } represent the alternative points set of DCs, which is indexed by

j. Denote yj as a binary variable to describe if the alternative point j is selected as DCs.
That is, if yj = 1, the DC is opened. In addition, it is essential to determine a reasonable
inventory level for the opened DCs. Let L =

{
1, 2, . . . L } represent the inventory levels set.

Denote yjl = 1 to describe the opened DC, where j is equipped with the inventory level
l. In addition, we have to decide the assignment between DCs and APSs, and we assume
each APS has to be assigned with one DC. Suppose the set for APSs is I =

{
1, 2, . . . I },

which is indexed by i. If the APS i is assigned to DC j,we define xij = 1, otherwise xij = 0.
To investigate the multi-periods production demand of the APL, the time is discretized into
several equal periods T = {1, 2, . . . , T}, which is indexed by t. Once the APS i is assigned
to DC j initially, the assignment will not change. As a side note, the auto parts demand in
the APL is satisfied by DCs and APSs. We assume the auto parts demand of APS i is Dt

i .
One part of the demand of the APS i is accommodated by the responding DC j, and another
part of the demand is provided by APS i directly. Afterward, there is a need to pick-up auto
parts centrally to the DCs so that the demand in the last period can be satisfied. Namely,
the DCs will dispatch vehicles to the corresponding assigned APS i to pick-up auto parts
according to the order quantity.

This will involve a vehicle routing problem to seek the shortest path. Three kinds of
routes are included in Figure 2. The red lines are the direct delivery routing from APSs
to the APL, and the black lines are the unified delivery routing from APSs to the APL. In
addition, the blue lines are the centralized pickup routing from DCs to APSs and end at the
same DCs. Specifically, in order to reduce the system operating cost and carbon emissions,
this paper solves a joint decision-making LIRP in auto parts supply logistics.
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Figure 2. LIRP in the auto parts supply network.

3.2. Problem Assumption and Notations

To formulate the complex auto part supply network into a mathematical model, the
following assumptions are proposed in this paper.

(1) We assume the APSs have the ability to provide sufficient auto parts and the shortage
is out of our investigation scope.

(2) The production demand for the APL can be obtained from historical data and must
be satisfied.

(3) It is essential to translate the auto parts into the standard unit so that the various auto
parts can be classified as a unified specification.

(4) We suppose that each APSs only provide one kind of auto part.
(5) The carbon emission factor considered in this paper is the carbon emission from

vehicles during transportation, and the calculation method refers to the literature [39].
(6) We assume sufficient vehicles to serve the pickup and delivery, and there is no

difference in vehicle performance.

Specifications on variables and parameters used in the LIRP are shown in Table 2.

Table 2. Variables and parameters used in the LIRP.

Notations Detailed Definition

Set

I The set for APSs, indexed by i
T The set for time periods, indexed by t
J The candidate point set for DCs, indexed by j
L The set for capacity level, indexed by l
K The set for APL, indexed by k
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Table 2. Cont.

Notations Detailed Definition

Parameters Detailed definition

Dt
i The auto parts demand from APS i during period t

UH Unit inventory holding cost for auto parts
FWl Fixed cost for establishing one DC with inventory level l
FN Unit transport cost from DCs to the APL
FZ Unit transport cost from APSs to the APL directly
FG Unit transport cost for picking up auto parts from DCs to corresponding APSs

WCl The inventory capacity corresponding to the inventory level l of the DC
VC Vehicle capacity for picking up auto parts
M0 A large positive number
CE The factor for carbon emission
dik Distance between APS and the APL
djk Distance between DC and the APL
dii′ Distance between two APSs
dji Distance between DC and the APS

Auxiliary
variables

SYt
ji The remaining quantity of auto part from APS i at DC j during period t

LCt
ji

The quantity loaded in the vehicle that picks up auto parts from DC j after it
finishes loading at APS i during the period t

ort
ji A positive integer, the quantity ordered from APS i for DC j during period t

qt
ji A binary, if there is a need for DC j to order auto parts from APS i during period t

Decision
variables

xij A binary, equal to 1 if the APS i is assigned to DC j, 0 otherwise
yj A binary, equal to 1 if the candidate point j is selected as the DC, 0 otherwise
yjl A binary, equal to 1 if the capacity of DC j is level l, 0 otherwise

det
ji

A positive integer, the number of auto parts delivered from APS i to APL during
period t when APS i is assigned to DC j

gyt
ji

A positive integer, the number of auto parts of APS i delivered from DC j to APL
during period t

rot
ii′ A binary, equal to 1 if the pickup routs from i to i’ during period t, 0 otherwise

rot
ji

A binary, equal to 1 if the pickup routs from DC j to APS i during period t, 0
otherwise

rot
ij

A binary, equal to 1 if the pickup routs from APS i to DC j during period t, 0
otherwise

3.3. Deterministic Model

Here, we first formulate a deterministic model to describe the LIRP integrating with
the prior known multi-period demand of the APL. Our objective is to find the most efficient
xij, yj, and yjl and other routing decision variables under proper constraints. As a result,
the proposed sustainable LIRP in auto parts supply logistics is formulated as follows:

Objective function:

∑
j∈J

∑
l∈L

FWl ·yjl + ∑
j∈J

∑
i∈I

∑
t∈T

UH· T
∑

t=1
SYt

ji + ∑
j∈J

∑
i∈I

∑
t∈T

FZ(det
ji/VC)·dik

+ ∑
j∈J

∑
t∈T

FN
(

∑
i∈I

gyt
ji/VC

)
·djk + ∑

t∈T
∑
j∈J

∑
i∈I

FG·rot
ii′ ·dii′

+ ∑
t∈T

∑
j∈J

∑
i∈I

FG·rot
ji·dji + ∑

t∈T
∑
j∈J

∑
i∈I

FG·rot
ij·dij

(1)
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∑
j∈J

∑
i∈I

∑
t∈T

CE
(

det
ji/VC

)
·dik + ∑

j∈J
∑

t∈T
CE

(
∑
i∈I

gyt
ji/VC

)
·djk

+ ∑
t∈T

∑
j∈J

∑
i∈I

CE·rot
ii′ ·dii′ + ∑

t∈T
∑
j∈J

∑
i∈I

CE·rot
ji·dji

+ ∑
t∈T

∑
j∈J

∑
i∈I

CE·rot
ij·dij

(2)

Objective function (1) minimizes the total system cost, where the first term is the
construction cost for DCs, the second term is the inventory holding cost, the third term is
the total transport cost from APSs to the APL, the fourth term is the total transport cost
from DCs to the APL, and the last term is the total transport cost for centralized pickup
from DCs to APSs.

In additn, objective function (2) is the definition of carbon emissions released by
transport vehicles, including the carbon emission released by transport vehicles that route
from APSs to the APL, from DCs to the APL, and from DCs to APSs.

Constraints:
∑
j∈J

xij = 1∀i ∈ I (3)

Constraint (3) limits that each APS can only be assigned to one DC.

xij ≤ yj∀i ∈ I, ∀j ∈ J (4)

Constraint (4) ensures that the APSs can only be assigned to the opened DC.

∑
l∈L

yjl = yj, ∀j ∈ J (5)

Constraint (5) determines the capacity level of the opened DC.

∑
j∈J

gyt
ji + ∑

j∈J
det

ji = Dt × CPi, ∀i ∈ I, ∀t ∈ T (6)

Constraint (6) represents that all the demands of the APL are satisfied by APS and
corresponding DC. We denote gyt

ji to indicate the number of auto parts of APS i delivered
from DC j to the APL during period t, and det

ji is the quantity of auto parts delivered from
APS i to the APL during period t when APS i is assigned to DC j.

gyt
ji ≤ M0·xij, ∀j ∈ J, t ∈ T, i ∈ I (7)

det
ji ≤ M0·xij, ∀j ∈ J, t ∈ T, i ∈ I (8)

Constraints (7) and (8) ensure that auto parts supplies from DCs and APSs need to
satisfy the assignment relationship between DCs and APSs.

SYt
ji = SYt−1

ji + ort−1
ji − gyt−1

ji , ∀i ∈ I, ∀j ∈ J, ∀t ∈ T (9)

Constraint (9) indicates the inventory quantity conservation of auto parts from APS i
stored in the corresponding assigned DC j. That is, the inventory quantity of auto parts
from APS i during period t at DC j equals the inventory quantity during period t − 1, plus
the order quantity from APS i to DC j, minus the quantity delivered to the APL from DC j.

gyt
ji ≤ SYt

ji, ∀i ∈ I, ∀j ∈ J, ∀t ∈ T (10)

Constraint (10) ensures that the quantity of auto parts of APS i delivered from DC j to
the APL during period t does not exceed the inventory quantity at DC j during period t.

∑
i∈I

SYt
ji ≤ ∑

l∈L
WCl ·yjl , ∀j ∈ J, ∀t ∈ T (11)
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Constraint (11) guarantees that the total inventory quantity of all auto parts in the DC
j at each period is less than the inventory capacity of DC j.

SYt
ji ≤ xij·M0, ∀i ∈ I, ∀j ∈ J, ∀t ∈ T (12)

Constraint (12) indicates that only if the APS i is assigned to the DC j, the DC j will
store the auto parts of the APS i.

ort
ji ≤ M0·xij, ∀j ∈ J, t ∈ T, i ∈ I (13)

Constraint (13) points out that only if the APS i is assigned to the DC j, the DC j will
order auto parts from the APS i.

ort
ji ≤ M0·qt

ji, ∀j ∈ J, t ∈ T, i ∈ I (14)

qt
ji ≤ ort

ji ∀j ∈ J, t ∈ T, i ∈ I (15)

Constraints (14) and (15) ensure that when the DC j has a clear ordering demand for
the auto parts of APS i, the DC j will dispatch vehicles to APS i to pick-up the auto parts.

∑
i′∈I

rot
ji′ = ∑

i∈I
rot

ij, ∀t ∈ T ∀j ∈ J (16)

rot
ji′ ≤ qt

ji′ ∀i′ ∈ I ∀t ∈ T ∀j ∈ J (17)

rot
ij ≤ qt

ji ∀i ∈ I ∀t ∈ T ∀j ∈ J (18)

Constraint (16) indicates that the vehicles dispatched by DC j will depart from DC
j and finally arrive at DC j. Constraints (17) and (18) ensure that the first and final APSs
picked up by the vehicles have a clear order need.

∑
i′∈Nt

j ,i �=i,
rot

ii, + rot
ji, = qt

ji, ∀i, ∈ Nt
j , ∀t ∈ T , ∀j ∈ J (19)

∑
i′∈Nt

j ,i �=i,
rot

ii, + rot
ij = qt

ji ∀i ∈ Nt
j , ∀t ∈ T , ∀j ∈ J (20)

Constraints (19) and (20) describe the path planning for the vehicles to pick-up auto
parts. Nt

j is the set for APSs that are assigned to the same DC j and has order needs during
period t.

LCt
ji ≤ qt

ji·M0 ∀i ∈ I , ∀t ∈ T, ∀j ∈ J (21)

LCt
ji ≥ qt

ji ∀i ∈ I, ∀t ∈ T , ∀j ∈ J (22)

Constraints (21) and (22) ensure that the auto parts of APS i loaded in the vehicles
only occur at the APS, which has a clear order need.

LCt
ji +

(
1 − rot

ji

)
·M0 ≥ ort

ji∀i ∈ I, ∀t ∈ T , ∀j ∈ J (23)

LCt
ji′ +

(
1 − rot

ii′
)·M0 ≥ LCt

ji + ort
ji, ∀i, i′ ∈ I

(
i �= i′

)
, ∀t ∈ T , ∀j ∈ J (24)

Constraints (23) and (24) calculate the number of auto parts loaded in the vehicle after
it finishes loading at APS i during the period t.

LCt
ji ≤ VC +

(
1 − rot

ij

)
·M0 ∀i ∈ I , ∀t ∈ T , ∀j ∈ J (25)

LCt
ji ≤ VC , ∀i ∈ I , ∀t ∈ T , ∀j ∈ J (26)
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Constraints (25) and (26) require that the quantity of auto parts loaded in the vehicle
is no more than the vehicle capacity.

ort
ji ≤ LCt

ji ∀i ∈ I, ∀t ∈ T , ∀j ∈ J. (27)

Constraint (27) requires that the quantity loaded in the vehicle after it finishes loading
at APS i is greater than the order quantity needed.

xij, yj, yjl , rot
ii′ , rot

ji, rot
ij ∈ {0, 1}∀i ∈ I, ∀t ∈ T , ∀j ∈ J (28)

det
ji , gyt

ji ≥ 0∀i ∈ I, ∀t ∈ T , ∀j ∈ J (29)

Constraints (28) and (29) are the definitional domain of the decision variables.
Based on the above analysis, the comprehensive LIRP is formulated as the following

MIP model.
Deterministic model:

min Objective (1) (2)
s.t. Constraints (3)− (29)

3.4. Robust Model

In daily production activities, automobile production depends on the market demand,
which is easily influenced by the preference of consumers and unexpected events. Various
uncertain factors may lead to a sharp increase in auto parts demand. To avoid facing
a shortage of auto parts, we try to develop a robust model to formulate the uncertain
demand. To address the uncertain issue, this paper adopts the robust optimization method
of [40] and proposes a robust LIRP optimization model that is able to describe the degree
of conservation and uncertainty level.

We assume that the production demand for the APL during each period is unknown
and belongs to the symmetric range

[
Dt − D̂t, Dt + D̂t], where Dt is the nominal values

and D̂t is the maximum deviation value. For the sake of clarifying the uncertain D̂t,
we introduce the concept of uncertainty level β ∈ [0, 1] to represent the proportion of
deviation. Therefore, the automobile production demand for the APL falls in the range of[
Dt − β·D̂t, Dt + β·D̂t]. Subsequently, we let ρ describe the number of periods at which the

production demand is uncertain, and the value of ρ falls in the range of ρ ∈ [
0, T

]
, in which

T is the total number of planning periods. Specifically, if ρ = 0, there is no uncertainty
protection, and the model is deterministic. On the other hand, if ρ = T , there exists
uncertain demand during each period, indicating that the production scheme of the APL is
fairly conservative. Then, we employ a set U =

{(
t
∣∣D̂t > 0

)}
to describe the period set at

which the production demand is uncertain. Based on the above analysis, a robust model
is developed. Compared to the deterministic model, the difference is that constraint (6) is
substituted by robustness constraints, which are formulated in (30) and (31).

Robust model:
min (1), (2)

Subject to: (3)–(5), (7)–(29)

σt =

{
1 t ∈

{
ut
∣∣∣max{ut |ut∈U,|ut |=ρ}

{
∑t∈ut D̂t}}

0 others
(30)

∑
j∈J

gyt
ji + ∑

j∈J
det

ji = Dt
i + CPi·σt·β·D̂t, ∀i ∈ I, ∀t ∈ T (31)

In constraint (30), a compensation coefficient is introduced and represented as σt,
which describes the protection function against the worst case. Equation (31) describes the
demand satisfaction constraints under uncertain scenarios.
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3.5. Solution Approach

Regarding the multi-objective deterministic or robust model, the main challenge is
deciding how to manage the trade-offs. We adopt the linear programming solver Gurobi
to obtain the optimal solution. Gurobi allows the multi-objectives function to be treated
hierarchically. In the hierarchical approach, the priority is set for each objective. Concerning
the realistic problem, this paper first sets the same priority for the two objectives in the
following sensitivity analysis. Afterward, this paper generates a series of coupled priorities
to obtain the Pareto solution. The priority determination method is subjective to a certain
extent. The data envelopment analysis (DEA) method in [41] will be discussed in a future
study.

4. Numerical Experiments

To illustrate the practical application of the proposed models, we conduct numerical
experiments based on actual data provided by an automobile manufacturer located in
Changchun, China. The following experiments are run by Gurobi 9.5.1 software on a
personal computer equipped with an AMD Ryzen 7,5700 G with Radeon Graphics 3.80 GHz
and 32.0 GB RAM, using the Microsoft Windows 10 operating system.

The auto parts supply network consists of 30 APSs, 12 DCs, and 1 APL. Figure 3
graphically describes the location distribution of APSs, DCs, and the APL. In addition,
the units of travel cost, carbon emissions, and distance are measured with RMB (yuan),
kilogram (KG), and kilometers (KM), respectively. Next, we analyze in detail the sensitivity
of the deterministic model, the advantages of the robust optimization model, and the
usefulness of our proposed models.

 

Figure 3. Description of the study area.

We obtain experimental data from surveying and collecting the material and data
in Changchun. Through a series of data processing and simplification processes, the
parameters involved in these experiments are listed in Table 3. The automobile demand
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of the APL is derived from the actual statistical data. According to the corresponding
relationship between the automobile and the auto parts, we multiply the coefficients to
acquire the auto parts demand of each APS. In this paper, we consider four production
periods of the automobile APL, and the vehicle capacity is set as 1500. In addition, the
inventory capacity can be chosen from the set (8000, 9000, 10,000, and 11,000). Suppose
the unit transport cost from DCs to the APL and from APSs to the APL are the same and
set as 20. However, the unit transport cost for picking up auto parts from DCs to the
corresponding APSs is less and assumed as 14. Define the unit inventory holding cost for
auto parts as 0.1. Finally, the factor of carbon emission is defined as 0.3.

Table 3. Key input parameters.

T VC WCl UH FN/FZ FG CE

4 1500 (8000, 9000,
10,000, 11,000) 0.1 20 14 0.3

4.1. Sensitivity Analysis of Deterministic Model

This section conducts sensitivity experiments to investigate the impact of essential
parameters on the LIRP under deterministic demand. Namely, we discuss how the unit
inventory holding cost (UH), unit transport cost from DCs to the APL (FN), unit transport
cost from APSs to the APL directly (FZ), and unit transport cost for picking up auto parts
from DCs to corresponding APSs (FG) influence the total system cost and the carbon
emission. The results are shown in Figures 4 and 5, respectively.

  
(a) The impact of UH on total system cost (b) The impact of FN on total system cost 

  
(c) The impact of FZ on total system cost (d) The impact of FG on total system cost 

Figure 4. The impact of various parameters on the total system cost.
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As can be seen from Figure 4, there is an evident increase in the total system cost
with the growth of UH, FN, FZ, and FG, which is in accordance with the realistic situation.
For example, Figure 4a describes the relationship between total system cost and the unit
inventory holding cost (UH). When the UH changes from 10 to 15, the total system cost
increases sharply. As UH continues to increase, the growth rate will slow down. Hence, we
can draw the conclusion that the total system cost is more sensitive to the UH when it is
lower than 15.

  
(a) The impact of UH on the carbon emission. (b) The impact of FN on the carbon emission. 

  
(c) The impact of FZ on the carbon emission. (d) The impact of FG on the carbon emission. 

Figure 5. The impact of various parameters on the carbon emission.

Further, we analyze how these parameters influence the carbon emissions in Figure 5.
Figure 5b,c show that the carbon emission slightly decreases with the growth of the FN
and FZ. On the contrary, Figure 5a,d indicate that carbon emission rises significantly with
the increase in UH and FG.

According to Figures 4 and 5, it can be observed that both objectives are closely
associated with the UH and FG. The main reason is that the variations in UH and FG
greatly influence the delivery routing of auto parts. We propose the indicator Supplier
Delivery Amount (SDA) to represent the number of auto parts delivered from APSs to the
APL directly. Analogously, Distribution Center Delivery Amount (DCDA) is proposed to
describe the number of auto parts supplied from DCs to the APL. In addition, Supplier
Delivery Amount Percentage (SDAP) is proposed to capture the proportion of SDA in the
total number of auto parts transported.

Therefore, we summarize these indicators under different values of UH and FG in
Table 4. It is easy to observe that the SDAP increases from 0% to 14.89% with the growth of
UH, which means that if the unit inventory cost is high, more auto parts will be delivered

37



Mathematics 2022, 10, 2942

from APSs to the APL directly. Therefore, there is a need for more vehicles to undertake
auto parts transport activities. Consequently, the total system cost and the carbon emission
will arise. Compared to the UH, FG has a similar effect on the system performance of the
auto parts supply logistics network. A larger value for FG indicates that the centralized
pickup cost from DCs to corresponding APSs is high, resulting in more auto parts being
delivered from APSs to DCs directly, and the SDAP increases from 0% to 21.88%.

Table 4. Statistical data for the delivery routing of auto parts under various UH and FG.

SA
UH FG

0.1 0.15 0.2 0.25 0.3 5 10 14 20 25

SDA 0 874 886 2566 3561 0 0 0 4377 5233
DCDA 23,912 23,038 23,026 21,379 20,351 23,912 23,912 23,912 19,535 18,679
SDAP 0.00% 3.66% 3.71% 10.59% 14.89% 0.00% 0.00% 0.00% 18.30% 21.88%

To graphically depict the delivery routing decisions under different values of UH,
we portray the delivery routing distribution during periods t = 2 and t = 3 in Figure 6,
respectively. Figure 6a,b describe the routing decisions under the circumstance of UH = 0.1,
and Figure 6c,d assume UH = 1.5.

  
(a) UH = 0.1, t = 2 (b) UH = 0.1, t = 3 

(c) UH = 0.15, t = 2 (d) UH = 0.15, t = 3 

Figure 6. The impact of UH on the routing decisions.
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As can be seen in Figure 6, candidate L_5 is chosen as DCs and the delivery routing
decisions are described. The blue dotted line is the delivery routing from DCs to the
corresponding APSs to pick up auto parts, and each circle represents an assigned vehicle.
In addition, the solid black lines depict the routing from APSs to the APL, while the solid
red line describes the delivery routing from DCs to the APL. Through the comparison
between Figure 6a,c, it is clear that there are two extra direct delivery routes from APSs to
the APL, and the result again verifies the idea that a higher UH will increase the number of
auto parts delivered directly from APSs to the APL. We can obtain the same conclusion by
comparing Figure 6b,d. The impact of FG on the delivery decisions is similar to UH, and it
is not described in this article, to avoid repetition.

However, compared to UH and FG, FZ has a distinct influence on auto parts delivery
routing decisions. In the following, we analyze the delivery routing of auto parts under
various FZ in Table 4. Higher FZ indicates that the unit transport cost from APSs to the APL
is high. With the FZ upward, more auto parts are assigned to DCs to reduce the transport
cost by centralized pickup. Table 5 shows that as the FZ increases from 10 to 15, the SDAP
will decrease from 37.09% to 1.09%.

Table 5. Statistical data on the delivery routing of auto parts under various FZ.

SA
FZ

10 15 20 25 30

SDA 8772 260 0 0 0
DCDA 15,140 23,652 23,912 23,912 23,912
SDAP 37.09% 1.09% 0.00% 0.00% 0.00%

Similar to Figure 6, to graphically depict the delivery routing decisions under different
values of FZ, we portray the routing distribution during periods t = 2 and t = 3 in Figure 7.
Figure 7a,b delineate the routing decisions under the condition of FZ = 10, and Figure 7c,d
suppose FZ = 15.

Analogous to Figure 6, candidate point L_5 is selected as DCs. Figure 6a,b show that
there are a total of five routes from APSs to the APL during periods t = 2 and t = 3 when
FZ = 10. However, when FZ = 15 in Figure 6c,d, the total number of routes from APSs to
the APL is reduced to one. This is in accordance with Table 6 that higher FZ leads to more
auto parts being delivered through DCs, which perform centralized pickup and unified
delivery.

Table 6. Variations in LIRP decisions under different uncertainty levels (ρ = 1).

Uncertainty Level DC WC SDA DCDA SDAP

30% L_5 9000 2313 24,161 8.74%
60% L_5 9000 4827 24,209 16.62%
90% L_5 10,000 7410 24,188 23.45%
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(a) FZ = 10, t = 2 (b) FZ = 10, t = 3 

  
(c) FZ = 15, t = 2 (d) FZ = 15, t = 3 

Figure 7. The impact of FZ on the routing decisions.

The above parameters influence the system performance by affecting the location of
DCs, inventory capacity, and delivery routing decisions. Overall, we can conclude that the
total system cost and carbon emission are sensitive to the above four parameters.

Concerning the relationship between the total system cost and carbon emission, the
Pareto-set output from the deterministic model under different weights is depicted in
Figure 8, where one point in the figure represents a particular LIRP solution. The Pareto set
has a total system cost ranging from 7062 RMB to 7166 RMB and the carbon emission ranges
from 74 kg to 77 kg. It can also be seen in Figure 8 that carbon emission and total system
cost have the same tendency, which proves the essence of considering the sustainable LIRP
in auto parts supply logistics.
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Figure 8. Pareto set of LIRP.

4.2. Sensitivity Analysis of Robust Model

The above parameters sensitivity analysis in the deterministic model are suitable
for the robust model. Except for these analyses, this section further discusses how the
uncertainty level and the degree of conservatism influence the LIRP. Here, we first define
that the deviation value D̂t equals the nominal values Dt. According to the same input
parameters as the deterministic model, it is assumed that the uncertain demand is likely to
occur at any period, and, as introduced in 3.4, we use β ∈ [0, 1] to represent the uncertainty
level. This paper adopts ρ to describe the degree of conservatism.

First, we discuss the effect of uncertainty level on the system performance in Figure 9.
Three kinds of degrees of conservatism are considered. Figure 9a delineates the variation
in total system cost with increased uncertainty level, and Figure 9b shows the variation
in carbon emissions. It can be seen from Figure 8 that with the increase in the uncertainty
level, the total system cost and carbon emissions increase significantly under different
degrees of conservatism.

  
(a) Effect of uncertainty level on the total system cost (b) Effect of uncertainty level on the carbon emission 

β β

Figure 9. Effect of uncertainty level on the system performance.
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To further depict the impact of uncertainty level on the location of DCs, inventory
capacity, and delivery routing decisions, we take the degree of conservatism ρ = 1 as an
example and analyze how the decision variables change when the uncertainty level ranges
from 30% to 90%. The results are shown in Table 6, where the value of DC is the selected
candidate point for DCs and WC is the inventory capacity for DCs.

As shown in Table 6, although the location of DC does not change, the inventory
capacity of DC increases from 9000 to 10,000 when the uncertainty level grows. Another
interesting finding is that the proportion of auto parts delivered from APSs to the APL
directly increases from 8.74% to 23.45%. The reason may be that when the uncertainty level
grows, the production demand in the APL for the worst case is extremely high, which is
likely to exceed the inventory capacity of DCs. Therefore, the auto parts in APSs close
to the APL will be transported directly without needing transfers in DCs. The detailed
delivery routing decisions are graphically shown in Figure 10. It is clear to see that more
solid black lines are depicted with the increase in the uncertainty level, verifying that more
auto parts close to the APL are delivered directly.

  
(a)  (b)  

 

 

(c)   

Figure 10. The impact of uncertainty level on the delivery routing decisions.

Subsequently, the effects of the degree of conservatism on the location, inventory,
and delivery routing decisions are summarized in Table 7. We take the uncertainty level
β = 100% as an example and analyze how the decision variables change when the degree
of conservatism changes from 1 to 3. Similar to the uncertainty level, the inventory capacity
increases from 10,000 to 11,000 with the growth of the degree of conservatism, and the
proportion of auto parts delivered from APSs to the APL directly increases from 29.48% to
55.10%. This is because more production demand is needed under a more conservative
environment. Limited to the inventory capacity, more auto parts close to the APL will
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be delivered directly, and the detailed delivery routing distribution is similar to Figure 9,
which we do not display again.

Table 7. Variations in LIRP decisions under different conservatism degrees (β = 100%).

Degree of Protection DC WC SDA DCDA SDAP

1 L_5 10,000 9566 22,886 29.48%
2 L_5 10,000 18,439 22,126 45.46%
3 L_5 11,000 26,353 21,471 55.10%

4.3. Model Comparisons

At present, the auto parts are delivered directly from APSs to the APL, resulting in a
large waste in vehicle capacity and a high transport cost. This paper proposes a robust LIRP
in auto parts supply logistics to address the real problem of establishing DCs to minimize
the total system cost. We define the two scenarios as “Without DCs” and “With DCs”. In
the following, we conduct comparative analyses on the utilization rate of vehicle capacity,
total system cost, and carbon emission. The results are summarized in Table 8.

Table 8. Comparative analyses between without and with DCs.

Scenarios
The Utilization Rate
of Vehicle Capacity

Carbon Emission Total System Cost

Without DCs 17.71% 221.1108 14,740.72
With DCs 96.29% 76.05862 7139.92

Obviously, the total system cost and carbon emissions will decrease when establishing
DCs using the proposed LIRP model, and the utilization rate of vehicle capacity will be
dramatically improved. Consequently, we can draw the conclusion that the proposed LIRP
model is largely effective in the auto parts supply logistics network.

Moreover, to demonstrate the significance of considering uncertain demand, we
compared the system performance between the scenarios “Without DCs” and “With DCs”
under uncertain demand. Assuming the degree of conservatism ρ = 3, we further discuss
the variation in total system cost and carbon emission while the uncertainty level changes
from 0.1 to 1. As shown in Figure 11, the total system cost and the carbon emission obtained
by our robust LIRP model are significantly lower than the scenario “without DCs”.

  
(a) Comparison in total system cost (b) Comparison in Carbon emissions 

β β

Figure 11. Comparative analyses between without and with DCs considering uncertain demand.
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5. Discussion

In this paper, a multi-objective MIP model is proposed to deal with the LIRP of the
automotive parts supply chain with deterministic and uncertain demands. The objective of
the model is to minimize the cost and carbon emissions in the whole system.

Based on the above numerical analysis, we can have the following practical implica-
tions and insights on the LIRP system design problem. First, the model proposed in this
paper provides an integrated optimization scheme for automotive parts supply chain opti-
mization and gives a basis for micro-analysis of operation strategies. Compared with the
two-stage model [35], the integrated optimization model we choose can more adequately
consider the relationship between the three-level decisions. Second, compared to the LIRP
model of [42], we fully consider the idea of sustainability, which largely reduces carbon
emissions released from transport vehicles, and the results reveal that the total system cost
optimization direction is consistent with sustainable optimization. Finally, considering the
uncertainty in production demand, the robust optimization approach adopted in this paper
significantly outperforms the emergency order direct delivery by APSs in terms of both
total system cost reduction and carbon emission reduction.

The environment is becoming an increasingly important criterion in planning automo-
tive parts supply networks. The model presented in this paper has the potential to assist
decision-makers and managers solve the LIRP in the supply network configuration. It
also provides constructive suggestions for auto parts supply chain planners to select the
reasonable DC location and determine the cost-optimal routing decisions for centralized
collection and unified distribution. The results demonstrate that the method proposed
in this paper would contribute to significant savings in total system cost and reduce the
environmental impact.

Although this study proves that the LIRP model we proposed is effective in auto parts
supply logistics, there is still a few limitations that we would like to emphasize for future
research. First, for the sake of simplification, only one APL is considered. It is more realistic
to investigate multiple APLs, which will increase the complexity of this problem. Secondly,
as the number of periods and APSs increases, the size of the problem could become very
large, making it difficult to address by the solver. Therefore, it is necessary to explore
an efficient algorithm. With various metaheuristics available and many possibilities for
customization, future work might explore the best options for realistic networks.

6. Conclusions

This paper proposes a unified framework simultaneously considering the location-
inventory-routing problem in auto parts supply logistics, which are rarely considered from
a sustainable perspective. Within this framework, a novel multi-objective MIP model is
proposed to estimate the system performance. Specifically, this model determines the
location and capacity of DCs and routing decisions to minimize the total system cost
and carbon emissions while considering multi-period production demand. Concerning
uncertain factors in production activities, a robust optimization method is developed
further in the context of uncertain demand in the APL. A numerical example is investigated
to illustrate the effectiveness of the proposed framework in the LIRP. Sensitivity analyses of
essential parameters yield several managerial insights. The results show that the location,
inventory capacity, and delivery routing decisions are highly affected by various cost
parameters. Finally, we observe that the utilization of vehicle capacity will be dramatically
improved by our LIRP model, indicating that studying the LIRP of auto parts supply
logistics is extremely meaningful.

The current research can be extended in various directions to optimize the automotive
parts supply network LIRP. First, it is idealistic to assume the auto parts are classified as a
unified specification in the context of actual situations. It is of great significance to discuss
the diverse specifications of auto parts. Secondly, it seems that uncertain incidents can
occur in random stages. Hence, it is not enough to consider the uncertain demand in the
APL, but the uncertain circumstance during the supply and transportation should also be

44



Mathematics 2022, 10, 2942

taken into account. Finally, the urban road network structure deeply affects transportation
routing decisions, which will be included in our future study.
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Abstract: The distribution of emergency perishable materials after a disaster, such as an earthquake,
is an essential part of emergency resource dispatching. However, the traditional single-period
distribution model can hardly solve this problem because of incomplete demand information for
emergency perishable materials in affected sites. Therefore, for such problems we firstly construct a
multi-period vehicle path distribution optimization model with the dual objectives of minimizing
the cost penalty of distribution delay and the total corruption during delivery, and minimizing the
total amount of demand that is not met, by applying the interval boundary and most likely value
weighting method to make uncertain demand clear. Then, we formulate the differential evolutionary
whale optimization algorithm (DE-WOA) combing the differential evolutionary algorithm with the
whale algorithm to solve the constructed model, which is an up-and-coming algorithm for solving
this type of problem. Finally, to validate the feasibility and practicality of the proposed model and the
novel algorithm, a comparison between the proposed model and the standard whale optimization
algorithm is performed on a numerical instance. The result indicates the proposed model converges
faster and the overall optimization effect is improved by 23%, which further verifies that the improved
whale optimization algorithm has better performance.

Keywords: emergency material distribution; multi-period; uncertain demand; perishable materials;
whale optimization algorithm; differential evolution algorithm

MSC: 90B06

1. Introduction

Large-scale sudden natural or man-made disasters occur frequently around the world
every year, posing serious threats and impacts on society, human production, and life [1].
How to respond quickly effectively to these unpredictable emergencies has attracted much
attention from governments and management at all levels, and has also placed high
requirements on them from all aspects [2].

A scientific distribution and reasonable delivery of emergency relief materials, a key
aspect of emergency relief work, can reduce the damage to property and casualties caused
by disasters, improve the efficiency of rescue work and release the psychological pres-
sure on the victims [3–5]. Due to the suddenness of disasters and the urgency of rescues,
the demand for perishable emergency supplies for affected locations is often vague [6].
In addition, the longer the transport time, the more serious the spoilage phenomenon. Cur-
rently, this problem can be solved by a single-period delivery model. However, in this case,
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plenty of restrictions influence the solution’s precision. For example, the actual demand
for one disaster site is much greater than the maximum loading capacity of a vehicle, and
the number of vehicles is limited. Thus, the single-period delivery cannot satisfactorily
solve this problem. To more efficiently solve this problem, we consider a multi-period
distribution model. Given the situation of sufficient supplies in the distribution center, one
can use it to make decisions on the distribution vehicle’s path and the distribution quantity
in each period to minimize the cost penalty of distribution delay and total corruption
during delivery, and minimize the total amount of demand that is not met, which is worthy
of studying to improve relief work’s efficiency and reduce losses in disaster areas.

The remainder of this paper is organized as follows. Section 2 performs literature
reviews relevant to this study. Section 3 constructs the optimization model with the bi-
objective and multi-period vehicle path distribution, and proposes the improved differential
whale optimization algorithm, which is a novel algorithm for solving the vehicle path
problem with multi-objective optimization. Section 4 presents a practical example to verify
the validity of the proposed model and algorithm. A comparison of the solution results
of the algorithm before and after the improvement reveals that the improved differential
evolutionary whale optimization algorithm optimizes better regarding the two objectives
of minimizing the distribution delay penalty and corruption cost, and minimizing the
unsatisfied degree of demand. Finally, conclusions and possible future research are given
in Section 5.

2. Literature Review

The vehicle routing problem (VRP), as a classical problem in the field of operations
research and combinatorial optimization, has been widely studied and played a significant
role in transportation, logistics production and emergency rescue since its introduction in
1959 by Dantzig and Ramser [7]. A large number of experts and scholars have conducted
in-depth research and analysis on it so far. Many variants of the VRP problem have been
derived, and related theories and models have become relatively mature, among which,
the multi-period vehicle path problem (PVRP) is one. Traditional vehicle paths and their
derivatives are mostly deterministic vehicle path optimization problems, where the relevant
variables are known in advance. However, in practice, uncertain information abounds
whether in production transport or emergency relief, including demands, road condi-
tions, casualties and so on. It can be divided into fuzzy information, random information
and dynamic information concerning the properties of uncertain information. Therefore,
the analysis and research of uncertain vehicle path optimization problems have become
the focuses of experts and scholars. With the increasing development of intelligent opti-
mization algorithms in recent years, a good research foundation has been laid for solving
such problems.

The problem of optimizing the routes of emergency material distribution vehicles is a
typical VRP problem in which the distribution center provides materials to some demand
points with different quantities of materials, and vehicles are assigned to appropriate routes
which form closed loops such that departure and final return are both the distribution
center, so that the demand points’ needs are met. Such goals of minimum transport costs,
shortest driving distance and time spent under certain constraints should also be accounted
for. Given the condition of the demand of distribution being known, the shortest driving
distance is used as a goal to indicate the shortest resource allocation time, and a suitable
distribution path is selected for a vehicle to satisfy the distribution demand of each affected
location. Zhou et al. constructed a heterogeneous vehicle path optimization model for the
vehicle path problem in which the pre-emergency transporters’ vehicles are insufficient;
the maximum system satisfaction and the minimum total time and the total cost were
considered as the goals [8]. Li Zhuo et al., focusing on different interests of demand points
and transporters, developed a multi-objective hybrid vehicle path optimization model with
a soft time window, and a non-dominated sorting ant colony algorithm was proposed to
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solve this model. An arithmetic case analysis indicated the effectiveness of the modified
algorithm [9].

For the multi-site, open-emergency material distribution vehicle path problem consid-
ering secondary disasters, with the objective of shortest transportation time, Tan Jie et al.
established two types of mathematical planning models that, under the one-sided fuzzy
soft time window and fuzzy demand constraints, consider the risk of random failure at
supply points, and designed an improved variable neighborhood search algorithm to solve
the problem [10].

To solve the site-path problem of post-disaster emergency relief, different objectives
and models were developed by scholars. With the objectives of maximizing rescue effi-
ciency and minimizing the total cost, Gao Xinyu et al. developed a multi-stage site-path
optimization model under the constraint of demand uncertainty and proposed an im-
proved fast non-dominated genetic algorithm [11]. To maximize the matching degree of
emergency demand at each dispatch point in the current stage, minimize the variance of
the average matching degree of emergency demand at the previous k stages of dispatch
and minimize the total travel time of the dispatch path, Liu Yang et al. constructed a
multi-stage distribution and dispatching model for emergency relief supplies based on
the historical travel time functions of road sections to portray the dynamics of the traffic
on a road network [12]. In addition, an integrated optimization algorithm and coding
adjustment strategy were made for the solution of multi-stage distribution and dispatching
of disaster relief supplies. With the objective of minimizing the maximum distribution time,
Zhou Yufeng et al. formulated an emergency facility siting-allocation model applicable
to the initial post-earthquake relief phase by considering the phase characteristics, facility
disruption scenarios, multi-species uncertain demand, facility capacity limitations, etc.
The defuzzification of uncertain demand was processed through the expectation value for-
mula of interval boundary, and on this basis, the result could be obtained by the proposed
hybrid integer coding genetic algorithm [13].

The period vehicle routing problem (PVRP) was firstly proposed by Bekrami and
Bodin in 1974 [14], arguing that different customers have different access frequencies for
the recycling of industrial waste in New York City. Christofides et al. (1984) initially
constructed a mathematical model of PVRP [15]. After nearly forty-five years of devel-
opment, PVRP has been further extended in practical applications, such as the period
vehicle routing problem with time window (PVRPTW), multidepot and periodic vehi-
cle routing problems (MAPVRP) and the dynamic multi-period vehicle routing problem
(DPVRPD) [16–19], and other existing studies mostly used heuristic algorithms to solve the
extended PVRP model.

Wang et al. (2019) put forward a multi-stage model for distributing emergency sup-
plies to multiple affected locations with the objectives of minimizing losses caused by
shortages, total fixed costs of transportation and distribution costs. They designed and
constructed a nonlinear utility function to reflect the negative utility caused by a lack of
funding, and experiment results proved the feasibility of this model [20]. With the objectives
of minimizing total delay time and total system loss for distribution of emergency supplies,
Wang Yanyan et al. developed a dynamic distribution optimization decision model that
uses fuzzy information conditions with multiple demand points, multiple distribution
centers, multiple supplies, multiple periods and multiple objectives. After analyzing the
clarification methods of the interval objective function, interval fuzzy constraints and tri-
angular fuzzy constraints, they designed a two-dimensional Euclidean distance-based
objective empowerment fuzzy algorithm to solve the model [21]. With the dual objectives
of minimizing the risk of sending unsatisfying amounts of resources and minimizing the
risk of resources not reaching disaster areas, Zhou et al. considered of the inherent nature
of the multi-period dynamic emergency resource scheduling (ERS) problem to establish
a multi-objective optimization model for the multi-period dynamic emergency resource
scheduling (ERS) problem, and a decomposition-based multi-objective evolutionary algo-
rithm (MOEA/D) was made to achieve great performance [22].
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The vehicle routing problem for perishable goods (VRPFPG) is one of the vehicle
routing problems (VRP) [23]. Large quantities of perishable goods around the world
are transported from suppliers to consignees on a daily basis. Perishable goods, such as
food and pharmaceuticals, require special handling during transportation due to their
limited lifespans, and they must be transported as fast as possible before they deteriorate.
Besides transport time constraints, the high frequency of transport can generate high
transportation costs, which makes the optimization of perishable materials particularly
vital. With the multiple objectives of minimizing operational costs, spoilage costs and
carbon emissions, and maximizing customer satisfaction, Zulvia et al. paid attention to
time windows, different travel times during peak and off-peak hours and working hours
to develop a green VRP model and design a multi-objective gradient evolution (MOGE)
algorithm whose results showed great performance [24].

To solve the perishable with uncertain demand material distribution vehicle path
problem, researchers constructed various models with different objectives. With minimum
total cost, maximum product freshness and minimum carbon emission as objectives, Qian
Zhang et al. established a multi-objective optimization model for distribution path plan-
ning, and designed the main objective method and fruit fly algorithm based on robust
optimization to deal with the uncertainty problem [25]. With the objective of minimizing
the operating cost and emission cost, Babagolzadeh et al. constructed a two-stage stochastic
planning model to determine the optimal replenishment strategy and transportation plan
in the presence of carbon tax controls and uncertain demand, and an improved result was
obtained by the proposed mathematical algorithm with respect to iterative local search
(ILS) algorithm and mixed integer programming [26]. With the objectives of minimiz-
ing costs, minimizing environmental impacts and maximizing customer service levels,
Talouki et al. formulated a dynamic green vehicle path model for perishable material
under green transportation conditions in view of time window implementation, and then
designed an algorithm based on a new augmented-constrained heuristic for solutions [27].
With the goal of profit maximization, Wu et al. developed a variable fractional inequality
distribution path optimization model considering the uncertainty of perishable food de-
mand for high speed rail and designed an augmented Lagrangian with the Euler algorithm
based on the pairwise algorithm [28].

For the problem of uncertainty in demand and return of perishable goods with differ-
ent periods, with the objective of minimizing the total cost of the system, Guo Jiangyan et al.
constructed a multi-period closed-loop logistics network for perishable goods and figured
out a mixed-integer linear programming (MILP) model solving by a proposed genetic
algorithm [29].

For the problems of high-frequency distribution, uncertain demand and return of
fresh goods due to perishability, with the objective of minimizing the total cost of the
system, Yang et al. constructed the corresponding fuzzy mixed-integer linear programming
(FMILP) model for the system and designed genetic algorithm (GA) and particle swarm
optimization (PSO) algorithms to solve it [30].

The vehicle path problem is considered as an NP-hard problem, so it may be time-
consuming and ineffective to use ordinary mathematical methods, such as exact algorithms,
to deal with it. Most scholars nowadays use intelligent optimization algorithms for solving
such problems. The whale optimization algorithm (WOA) is a biomimetic metaheuristic
algorithm developed by Mirjalili et al. in 2016 to simulate the feeding mode of whales [31].
In recent years, it has been successfully applied to some large-scale optimization problems
with the advantages of few artificial parameters and simple operation, such as resource
scheduling problems [32], workflow planning for construction sites, site selection and
path planning [33] and neural network training [34]. However, because the traditional
WOA has the disadvantages of slow late convergence and easily falling into a local optima,
some scholars have combined other algorithms with it to improve its performance in op-
eration speed. Rohit Salgotra et al. addressed the problems of poor search performance
and easily falling into a local optimum of the WOA algorithm. Three different improved
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versions, including WOA-adversarial-based learning, exponentially reduced parameters
and worst-particle elimination and reinitialization methods, have been proposed to im-
prove its exploratory capabilities. These properties have been exploited to improve the
exploration capabilities of WOA by maintaining the diversity among search agents [35].
Shang Mang et al. proposed a WOA-based vehicle path optimization method for the
distribution logistics of the VRP problem; modified the WOA algorithm using random
inertia weights and a non-uniform variation strategy; and verified the effectiveness of the
improved algorithm by testing functions. The verification results showed that the improved
whale optimization algorithm can efficiently optimize the distribution path for vehicles
and reduce the distribution cost of logistics [36].

As a novel algorithm, the WOA algorithm has attracted extensive attention from schol-
ars in various fields since a basis has been built for the research, development and improve-
ment of the algorithm, and application studies have been conducted regarding engineering,
scheduling, optimization and site selection. Additionally, there is a richness in algorithm
improvement. However, there are fewer applications in vehicle path research, so further
development and utilization are needed.

A great deal of research has been carried out in the existing literature on the op-
timization of vehicle paths for the distribution of emergency and perishable materials.
In addition to large demands for emergency supplies, such as communication equipment,
quilts and tents, in the early stage of post-disaster relief, there also would be large demands
for life-saving and living emergency supplies, such as medicines and foodstuffs. As for
the perishable characteristics of these emergency supplies, along with the likelihood of
severe damage to some roads, there is often uncertainty about the needs of the affected
sites, making it difficult for these emergency perishable supplies to be delivered quickly
and meet demand requirements at once. Therefore, in order to improve the optimization
efficiency, this paper combines the differential evolutionary algorithm with the whale
optimization algorithm to solve the vehicle path problem for the distribution of emergency
perishable materials with dual objectives, which is rarely studied at present. Finally, further
verification of the effectiveness of the improved whale optimization algorithm at solving
the realistic vehicle path problem through examples shows convincing performance.

3. Multi-Period Optimization Model and DE-WOA Algorithm

The distribution vehicle path problem for emergency perishable materials has special
characteristics compared to the same problem for general emergency materials, which
negatively affect the solving process. The standard whale optimization algorithm greatly
improves the operation efficiency of the algorithm because of the relatively simpler process
and searching mechanism. Thus, it is suitable for solving the problem of emergency
perishable material distribution optimization. This sub-section, while taking the uncertain
demand situation into account, analyses the situation of adequate supplies in distribution
centers and constructs a multi-period vehicle path distribution optimization model with
the dual objectives of minimizing the cost penalty of distribution delay and total corruption
during delivery, and minimizing the total amount of demand that is not met. The improved
differential evolutionary whale algorithm is designed to solve the model by combining the
features of the differential evolutionary algorithm with the standard whale optimization
algorithm with strong global search capability.

3.1. Description of the Problem

Given a simple discrete undirected road traffic network G = (V, E), where V =
(v0, v1, v2, . . . , vn) is the set of nodes and v0 denotes the distribution center for emergency per-
ishable relief supplies, v1, v2, . . . , vn denotes the affected point and E =

{
e(vi, vj)|vi, vj ∈ V

}
is the set of edges. Assume that the supplies are sufficient. The demand for emergency perish-
able supplies at the affected point vi is represented by interval boundary D̃i(i = 1, 2, . . . , n).
The distribution center v0 possesses a sufficient emergency perishable supply, and the total
quantity is S. The spoilage rate of emergency perishable supplies during the distribution
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process will linearly change along with the distribution time, and it is θtj. The demand for
emergency perishables at each site can be hardly met at once due to uncertain information
on demand and limited vehicle capacity.

v0: The distribution center now has k vehicles available with a maximum capacity of
R for each; dij represents the distance between any two points; vij, depending on the road
conditions, represents the actual speed of the vehicle on edge (i, j) during transportation,
and vij represents the average speed of the vehicle so that the actual time for the vehicle
to reach the disaster site j is tj = dij/vij and the ideal time is tj = dij/vij. cj is defined
as the delay penalty, relying on the demand and the degree of damage at the disaster
site. The distribution service will deliver emergency perishable materials to each disaster
site and back to the distribution center until all the needs of the disaster sites are met.
The most probable value weighting method is used to identify the uncertain demand,
and the distribution route and the amount of each demand point in each period are decided
with the dual objectives of minimizing the cost penalty of distribution delay and the total
corruption during delivery, and minimizing the total amount of demand that is not met.

The model was constructed based on the following assumptions.

(1) The demand points’ locations and total amounts are known.
(2) A tour of one vehicle is a closed loop such that its departure and final return are both

the distribution center.
(3) The condition of the roads and the extent of damage to the affected sites are known

for each period, so vehicles’ ideal and actual speeds can be calculated.

3.2. Model Building and Notation Definition

The symbols and parameters used in this model are defined in Table 1. Decision
variables are identified in Table 2.

Table 1. The symbols and parameters used in the model.

P Collection of distribution periods
Z The set of all nodes
R The maximum load capacity per vehicle
D̃ip Disaster site i demand for emergency perishable goods for period p
S Total amount of material in distribution center
t0 The ideal arrival time of vehicles
tj The actual time of arrival of the vehicle
c Cost of delay penalties per unit of vehicle delivery time
k The number of vehicles that can be arranged
δ The minimum permissible rate of spoilage of material during vehicle transport
ω Vehicle utilization

Table 2. Decision variables.

xp
ijk

1, if vehicle transports material from point i to point j in period p
0, otherwise

yp
ik

1, if the task at point i is performed by vehicle k
0, otherwise

dipk
Volume of emergency perishable materials provided by vehicle k to disaster site i in

period p

Taking into account all the objectives and constraints, the model is developed.

min ∑
i∈Z

∑
p∈P

(tj − t0)c1jx
p
ijk + c2jdipkθtj, while tj ≤ t0, tj − t0 = 0 (1)

min

{
∑
p∈P

1 − dipk(1 − θ̃tj)/D̃ip, i ∈ Z, k ∈ K

}
(2)
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s.t. ∑
i∈Z

dipkyp
ik ≤ R, k ∈ K, p ∈ P; (3)

∑
i∈Z

∑
k∈K

dipk ≤ S, p ∈ P; (4)

0 ≤ ∑
k∈K

dipkθtj ≤ D̃ip, i ∈ Z, p ∈ P; (5)

∑
i∈S

∑
j∈S

xp
ijk ≤ |S| − 1, k ∈ K, p ∈ P; (6)

∑
j∈Z

xp
ojk = ∑

j∈Z
xp

jok ≤ 1, i ∈ Z, k ∈ K, p ∈ P; (7)

∑
j∈Z,i �=j

xp
ijk ≤ 1, i ∈ Z, k ∈ K, p ∈ P; (8)

xp
ijk ≤ yp

ik; (9)

0 ≤ dipkθtj

dipk
≤ δ; (10)

dipk

Rk
≥ ω; (11)

xp
ijk = 0 or 1, yp

ik = 0 or 1, (i, j) ∈ Z, p ∈ P; (12)

dipk ≥ 0; (13)

Equations (1) and (2), respectively, represent the dual objectives that minimize the
cost penalty of distribution delay and the total corruption during delivery and minimize
the total amount of demand that is not met. Equation (3) guarantees the load amount of
each vehicle does not exceed the maximum capacity per vehicle. Equation (4) ensures
that the total amount of distribution in each period is less than the available amount
in the distribution center. Equation (5) is aimed at restricting the amount of emergency
perishable supplies delivered to the disaster site in each period that does not exceed its
ideal demand. Equation (6) indicates that the sub-loop in the distribution process is broken.
Equation (7) guarantees each vehicle starts and ends transportation at the distribution center.
Equation (8) presents a vehicle does not pass through the same path twice or more in any
period. Equation (9) ensures that the vehicle serves a disaster site before passing through.
Equation (10) indicates the degree of spoilage of emergency perishable materials during
distribution should be less than a given rate. Equation (11) represents that each vehicle’s
utilization rate for each period should be more than a given rate. Equation (12) is related to
the integer variable constraint. Equation(13) represents the non-negative constraint.

Where D̃ip = D̃ip + |D̃i(p−1) − ∑ dik(p−1)| when p ≥ 2.

3.3. Clarity of Ambiguous Needs

In this paper, uncertain demand is expressed as interval boundary:

D̃ip = [q1i, q2i, q3i], q1i ≤ q2i ≤ q3i (14)

The affiliation function is:

μD̃i
(x) =

⎧⎪⎨⎪⎩
0 x ≤ q1i, x ≥ q3i

(x − q1i)/(q2i − q1i) q1i < x < q2i

(q3i − x)/(q3i − q2i) q2i < x < q3i

(15)

where q1i, q2i and q3i represent the left boundary, the point with affiliation 1 (most likely
value) and the right boundary of the interval boundary, respectively. The interval boundary
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is constant with the weights given by experts or decision-makers. D̃ip = [q1i, q2i, q3i] is
expressed by the Equation (16)

D̃ip = ω1q1i + ω2q2i + ω3q3i. (16)

ω1 is the weight of the lower boundary, ω2 is the weight of the most probable value
and ω3 is the weight of the upper boundary.

Such methods that determine weights by experience and knowledge of experts or
decision makers are relatively subjective. The results thus are influenced by strong human
elements. Some more objective methods to identify fuzzy weights were developed, such
as the same weight method and hierarchical analysis. The most common is the most
likely method. The most likely value of the interval boundary is given the highest weight,
as it is most accurate. The value of boundary is less accurate; thus, they are assigned
smaller weights.

To indicate differences between the three estimates q1,q and q3, the weights of them
are consequently determined by ω1 = ω3 = 1/6 and ω2 = 4/6. Therefore, Equation (15)
can be converted into Equation (16).

D̃ip =
q1i + 4q2i + q3i

6
(17)

After replacing Equation (5) with Equation (17), the updated constraint is shown as
Equation (18):

0 ≤ ∑
k∈K

dipk ≤ 1
6

q1i +
4
6

q2i +
1
6

q3i, i ∈ Z, p ∈ P (18)

min

{
∑
p∈P

1 − dikp(1 − θ̃tj)/
1
6

q1i +
4
6

q2i +
1
6

q3i, i ∈ Z, k ∈ K

}
(19)

3.4. Handling of Dual Targets

The ε conventional method aims to convert a muti-objective problem into a single-
objective optimization problem by linear weighting. However, because of the non-uniformity
of the objective magnitude, the solution of the original problem and that of the converted
problem are not in simple one-to-one correspondence. The weights of each objective
may largely affect the accuracy of solutions. This paper takes advantage of the idea of
the constraint method (Haimes et al. 1971), combining it with an improved differential
evolutionary whale algorithm.

In this case, two single-objective optimization problems are solved by converting one
of the dual objectives into the other’s constraints based on the importance of the objectives
in each period in turn and solving them separately to obtain the Pareto solution set of
the model.

1. Construct a single objective optimization problem with objective A and objective B, re-
spectively, and find the value domain (upper and lower bounds) of the two objective functions.

Objective A.

min ∑
j∈Z

∑
p∈P

(tj − t0)c1jx
p
ijk + c2jdipkθtj, while tj ≤ t0, tj − t0 = 0

s.t. constraint(1)− constraint(13)
(20)

Objective B.

min

{
∑
p∈P

1 − dipk(1 − θ̃tj)/D̃ip, i ∈ Z, k ∈ K

}
s.t. constraint(1)− constraint(13)

(21)
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2. Step 1 finds the minimum value of objective A as m, and then adds ZA ≤ a as a
constraint to get the result of objective B. Construct a single-objective optimization problem
for objective B. If the problem has a feasible solution, find the optimal solution for objective
B as Z∗

B, and go to Step 3; if there is no feasible solution, go to Step 4.
3. Then, add ZB ≤ Z∗

B as a constraint to objective A to construct a single objective
optimization problem for objective A. Similarly, if there is a feasible solution to the problem,
the optimal solution to objective A is found at Z∗

A, at which point the solution obtained in
the above step is counted in the Pareto solution set; if there is no feasible solution, then go
to step 4.

4. Make a = a + ε. ε is a fixed step; go to step 2 to continue solving.
5. Stop when a is greater than the maximum value of target A.

3.5. The Basic Process of DE-WOA

The improved differential evolutionary whale algorithm is computed as Figure 1.

Figure 1. Flowchart of the DE-WOA algorithm.

Step 1: Uncertain demand clarification. The demand parameters in the model are
the interval boundary. The most probable weight method is used to convert the interval
boundary into definite values and replace them in the model.
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Step 2: Initialize parameters. Assign values to parameters, such as population size pop,
the maximum number of iterations M, the logarithmic spiral shape constant b, the scaling
factor F and the crossover probability CR.

Step 3: Calculate the individual fitness function at F
′

and the population average
fitness function at F

′
average. Based on the obtained fitness function values, record the location

of the global optimal solution in the initial population xbest, where the global optimal value
is F

′
best.

Step 4: When F
′ ≤ F

′
average, iteratively update the solution and calculate the values of

parameters such as a, A, p, C and l; otherwise adapt it for global exploitation using Xi(t + 1)
= Xbest(t)− A ∗ D, A = 2a ∗ r − a, C = 2 ∗ r to expand the population diversity.

Step 5: When P < 0.5 and |A| < 1, the whale position is updated using D =
|C ∗ Xbest(t) − xi(t)|; when P ≥ 0.5 and |A| < 1, the whale position is updated using
D

′
= |Xbest(t)− xi(t)|; when P < 0.5 and |A| ≥ 1, the whale position is updated using

D = |C ∗ Xrand(t)− xi(t)|.
Step 6: Update the global optimal solution xbest and the global optimal value F

′
best.

Step 7: Stop the iteration if the algorithm stopping condition is met; otherwise, re-
peat step 4–step 7.

4. Analysis of Numerical Examples and Computational Results

In this section, we report the results of numerical experiments that were applied to
verify the feasibility and effectiveness of the constructed model and proposed algorithm.
All experiments were tested on a PC equipped with an Intel(R) Core(TM) i7-9750H CPU @
2.60 GHz 2.59 and 8 GB of RAM. The model programming was solved by Python 3.8.1.

4.1. Parameter Setting

There are one distribution center and ten disaster locations labeled in order from 0 to
10. Related information, including coordinate values, is shown in Table 3. The network
topology between the distribution center and the affected points is shown in Figure 2.

Table 3. Coordinates of the distribution center and locations of affected points.

No. X Y

Distribution Center 0 30 70

Affected sites

1 35 55
2 38 73
3 25 70
4 30 55
5 32 85
6 38 62
7 43 79
8 40 60
9 38 85

10 24 65
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Figure 2. Network topology in the affected area.

Due to the lack of information on data from the affected areas, the demand for emer-
gency perishable goods and the speed of vehicle movements at each affected location need
to be estimated based on published information, such as local casualties and the probability
of secondary disasters. The specific demand parameters q1 (pessimistic value), q2 (most
likely value) and q3 (optimistic value) are shown in Table 4.

Table 4. Demand parameters.

Point of Need 0 1 2 3 4 5 6 7 8 9 10

q1 0 103 52 78 210 53 41 43 80 65 52
q2 0 125 70 86 226 70 50 56 91 74 61
q3 0 140 82 100 242 81 56 64 100 81 70

Demand 0 123.833 69 87 226 69 49.5 55.163 90.667 73.667 61

The distribution center has three small trucks of the same type. In order to obtain a
more accurate distribution time, the actual distance between any two points is measured
according to the latitude and longitude of the map, and the maximum speed of the vehicles
traveling on each road is estimated according to the road damage. The transport network
parameters (a, b) and vehicle parameters are shown in Tables 5 and 6.

Table 5. Transport network parameters.

1 2 3 4 5 6 7 8 9 10

0 (30,30) (22.4,38) (-,-) (6.5,45) (18.6,60) (-,-) (-,-) (32.5,35) (15.2,41) (7.7,46)
1 0,0 (40.6,37) (31.5,40) (-,-) (15.7,42) (20.4,33) (-,-) (43.7,37) (22.1,41) (-,-)
2 (40.6,37) 0,0 (51.2,40) (36.2,38) (25.6,42) (-,-) (17.5,39) (-,-) (-,-) (27.1,45)
3 (-,-) (51.2,40) 0,0 (-,-) (-,-) (34.6,47) (15.3,39) (-,-) (22.2,30) (-,-)
4 (6.5,45) (36.2,38) (-,-) 0,0 (-,-) (17.8,33) (-,-) (33.6,42) (-,-) (29.5,40)
5 (18.6,60) (25.6,42) (-,-) (-,-) 0,0 (-,-) (29.3,36) (19.3,42) (-,-) (-,-)
6 (-,-) (-,-) (34.6,47) (17.8,33) (-,-) 0,0 (-,-) (-,-) (42.1,36) (14.2,45)
7 (-,-) (17.5,39) (15.3,39) (-,-) (29.3,36) (-,-) 0,0 (-,-) (23.4,35) (-,-)
8 (32.5,35) (-,-) (-,-) (33.6,42) (19.3,42) (-,-) (-,-) 0,0 (-,-) (47.1,60)
9 (15.2,41) (-,-) (-,-) (-,-) (-,-) (42.1,36) (23.4,35) (-,-) 0,0 (38.9,39)

10 (7.7,46) (27.1,45) (29.5,40) (29.5,40) (-,-) (14.2,45) (-,-) (47.1,60) (38.9,39) 0,0
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Table 6. Vehicle parameters.

Vehicle Type
Quantity Max. Loading Average Travel Speed
(Volume) Capacity (kg) (km/h)

Small trucks 3 500 60

In Table 5, a denotes the distance between two points (km), b denotes the actual speed
of the vehicle traveling between this path vk (km/h) and “-” denotes that this section is
impassable, resulting in the delivery time parameters shown in Table 7.

Table 7. Distribution time parameters.

0 1 2 3 4 5 6 7 8 9 10

0 0 0.5 0.22 - 0.04 0 - - 0.39 0.12 0.02
1 0.5 0 0.42 0.26 - 0.11 0.28 - 0.45 0.17 -
2 0.22 0.42 0 0.43 0.35 0.18 - 0.16 - - 0.15
3 - 0.26 0.43 0 - - 0.16 0.14 - 0.37 -
4 0.04 - 0.35 - 0 - 0.24 - 0.24 - 0.25
5 0 0.11 0.18 - - 0 - 0.33 0.14 - -
6 - 0.28 - 0.16 0.24 - 0 - - 0.47 0.08
7 - - 0.16 0.14 - 0.33 - 0 - 0.28 -
8 0.39 0.45 - - 0.24 0.14 - - 0 - 0
9 0.12 0.17 - 0.37 - - 0.47 0.28 - 0 0.35

10 0.22 - 0.15 - 0.25 - 0.08 - 0 0.35 0

4.2. Results

After several trials, the parameters of the improved whale algorithm (DE-WOA) based
on the difference algorithm were set as shown in Table 8.

Table 8. DE-WOA parameter settings.

Parameter Description Value

pop_num Initial population size 80
Max_iteration Maximum number of iterations 300

R Maximum vehicle loading capacity 500 kg
θ Corruption rate 0.02 kg/h

σ
Minimum permissible rate of spoilage of materials during

vehicle transport 0.90

k Number of vehicles 3
β Minimum allowable loading rate during vehicle transport 0.5

After five trials, a Pareto frontier solution set for the problem was obtained and
is shown in Figure 3. The horizontal coordinates and vertical coordinates, respectively,
represent the value of objective A (the distribution delay penalty and corruption cost) and
the value of objective B (total amount of demand that is not met). Each point represents a
distribution solution that satisfies the Pareto optimum. The decision maker can choose a
relative compromise by weighing the relationship between multiple objectives according
to the situation in practice.

58



Mathematics 2022, 10, 3124

Figure 3. Pareto frontier solution set.

The relationship between the transport volume and the optimal solution at each
affected point is obtained, and the optimal path is output as shown in Tables 9 and 10.

Table 9. Relationship between transport volumes at affected sites and optimal path.

First Period Affected Sites
Transport

Second Period Affected Sites
Transport

Volume Volume

0 0 0 0

Vehicle 1

5 69 Vehicle 1 2 73.2
1 123.83 0 0
8 90.67

Vehicle 2

10 63.66
0 0 8 86

Vehicle 2

2 69 5 74.37
7 55.17 7 50
3 87 3 92.8
6 49.5 9 74.33
9 73.67 0 0
0 0

Vehicle 3
4 232.83

Vehicle 3
10 61 6 53.5
4 226 1 156
0 0 0 0

Table 10. Distribution vehicle paths and objective function values.

Periodicity Vehicles
Transport

Routes
Objective A Objective B

1
1 0-5-1-8-0

318.760 5.3582 0-2-7-3-6-9-0
3 0-10-4-0

2
1 0-2-0

490.679 7.7902 0-10-8-5-7-3-9-0
3 0-4-6-1-0

4.3. Algorithm Comparison

Two algorithms, the standard whale algorithm (WOA) and the improved differential
evolutionary whale algorithm (DE-WOA), were used to solve the algorithms, resulting in
the set of Pareto front solutions under both algorithms shown in Figure 4. It can be seen
from Figure 4 that the Pareto ranks of the solutions of the improved differential evolutionary
whale algorithm are lower than the Pareto ranks of the solutions of the standard whale
algorithm, thereby indicating that the improved differential evolutionary whale algorithm
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can effectively improve the local search capability and increase the diversity of solutions in
the population.

Figure 4. Set of Pareto front solutions under both algorithms.

After 100 runs of both algorithms, the optimal objective values were obtained as shown
in Table 8, and the convergence of the algorithms under the two objectives was obtained as
shown in Figures 5 and 6.

1. Comparison of target results.

Algorithms
Minimal Distribution Delay Penalty

and Corruption Costs
Minimize Total Amount of Demands

That Are Not Met

WOA 332.120 6.015
DE-WOA 318.760 5.358

2. Analysis of convergence effects.

Figure 5. Convergence diagram of distribution delay penalty and corruption costs.
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Figure 6. Convergence diagram of total amount of demand that is not met.

By comparison, it can be seen that the improved differential evolutionary whale
algorithm outperformed the standard whale algorithm in terms of solution results and
converged faster when solving. This shows that the improved differential evolutionary
whale algorithm outperforms the standard whale algorithm in solving the dual objective
model of this paper, thereby also verifying the validity of the model and algorithm.

5. Discussion and Conclusions

For the optimization problem of the multi-cycle distribution of emergency perishable
materials under a uncertain demand, this paper draws the following conclusions.

(1) In this paper, we studied the multi-cycle distribution problem for emergency perish-
able materials under the situation of sufficient materials in distribution centers after
disasters, and considered characteristics such as the degree of road destruction in real
situations. We established a dual-objective PVRP distribution optimization model
minimizing the cost penalty of distribution delay and the total corruption during
delivery, and minimizing the total amount of demand that is not met. Additionally,
the uncertain demand in the model is processed using the interval number and the
most probable weight method, and the dual objective is processed with the idea of a
constraint method. It was verified by an example that the solution is more accurate
and faster after the model is processed.

(2) Combined with the real application conditions and scenarios, the whale optimization
algorithm was chosen due to the characteristics of the model for optimization. To solve
the shortcomings of small population diversity and falling into a local optimum of the
standard whale optimization algorithm, the idea of combination with the differential
evolution algorithm was proposed. It was improved by adding the characteristics
of easy operation and strong global search ability of the differential evolution algo-
rithm. Finally, the analysis of the numerical calculation results of the earthquake
in Jiuzhaigou County, Sichuan, showed that the improved differential evolutionary
whale algorithm can find a better distribution solution than the standard whale op-
timization algorithm with less distribution time and the less material corruption.
Additionally, it improves the demand satisfaction, and converges faster, which further
verifies the feasibility and applicability of the algorithm in practical applications.

The main purpose of this paper was to provide a set of scientific distribution scheme for
emergency rescue, through the reasonable distribution of emergency perishable materials
and reasonable arrangement of vehicles, so as to effectively reduce the damage caused by
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an earthquake, reduce casualties, improve the rescue work efficiency, etc. The research
model and algorithm proposed in this paper can be applied not only to the disaster scenario,
but also to the logistics distribution in urban and rural areas in practical daily life, which
can effectively improve the operation efficiency among supply chains.

The model we proposed in this paper also has a few shortcomings. This case oper-
ates under the assumption that the distribution center has sufficient supplies and only
distributes a single variety of perishable materials, though in practice the distribution
center is often short of supplies and the demand for emergency perishable materials at
the disaster site is often multi-species. In future work, we will take this shortcoming
into account and consider how to combine and distribute multiple species of emergency
perishable materials and improve the model to take more factors into account and build a
more realistic emergency material distribution model. At the same time, as the complexity
of the model increases, more efficient algorithms should be designed to correspondingly
solve the model.
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Abbreviations

VRP Vehicle Routing Problem
PVRP Period Vehicle Routing Problem
PVRPTW Period Vehicle Routing Problem with Time Window
MAPVRP Multidepot and Periodic Vehicle Routing Problems
DPVRPD The Dynamic Multi-period Vehicle Routing Problem
ERS Emergency Resource Scheduling
MOAE/D Multi-objective Evolutionary Algorithm
VRPFPG The vehicle routing problem for perishable goods
MOGE Multi-objective Gradient Evolution Algorithm
MILP Mixed-integer Linear Programming
GA Genetic Algorithm
PSO Particle Swarm Optimization
WOA Whale Optimization Algorithm
DE Differential Evolutionary Algorithm
DE-WOA Differential Evolutionary-Whale Optimization Algorithm
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Abstract: Because of their flexibility, controllability and convenience, Automated Guided Vehicles
(AGV) have gradually gained popularity in intelligent manufacturing because to their adaptability,
controllability, and simplicity. We examine the relationship between AGV scheduling tasks, charging
thresholds, and power consumption, in order to address the issue of how AGV charging affects the
scheduling of flexible manufacturing units with multiple AGVs. Aiming to promote AGVs load
balance and reduce AGV charging times while meeting customer demands, we establish a scheduling
model with the objective of minimizing the maximum completion time based on process sequence
limitations, processing time restrictions, and workpiece transportation constraints. In accordance
with the model’s characteristics, we code the machine, workpiece, and AGV independently, solve the
model using a genetic algorithm, adjust the crossover mutation operator, and incorporate an elite
retention strategy to the population initialization process to improve genetic diversity. Calculation
examples are used to examine the marginal utility of the number of AGVs and electricity and validate
the efficiency and viability of the scheduling model. The results show that the AVGs are effectively
scheduled to complete transportation tasks and reduce the charging wait time. The multi-AGV
flexible manufacturing cell scheduling can also help decision makers to seek AGVs load balance by
simulation, reduce the charging times, and decrease the final completion time of manufacturing unit.
In addition, AGV utilization can be maximized when the fleet size of AGV is 20%-40% of the number
of workpieces.

Keywords: AGV scheduling; flexible manufacturing cell; AGV charging; genetic algorithm

MSC: 68T20

1. Introduction

An AGV is a transport vehicle that can navigate autonomously and carry out sponta-
neous or controlled transportation along a prescribed route [1]. It assists intelligent factories
to realize workpiece production tasks under the condition of unmanned driving. In order
to efficiently use AGVs to participate in intelligent operations, it is necessary to integrate
information such as processes, equipment, and workpieces into workshop scheduling.
This kind of scheduling is actually the Flexible Job-Shop Scheduling Problem (FJSP) that
has evolved from the traditional Job-Shop Scheduling (JSP). There is an exceptionally rich
domain of research that covers many aspects of AGV scheduling and proposes numerous
approaches. The majority of interest in AGV scheduling stems from its potential impact
in practice by increasing efficiency and lowering costs. However, due to its complexity
and numerous features, it remains a challenging problem [2]. The literature review and
discussion in this paper are limited to the number of available AGVs, the power threshold,
and the charging time in AGV and machine task scheduling issues with single or multiple
objectives AGVs. The scheduling optimization problem of AGVs is the primary focus of
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related research. Fu et al. [3] elaborated the analysis process, scheduling rules and optimiza-
tion methods for the AGV scheduling optimization problem. Bilge and Ulusoy [4] proposed
a pseudo-polynomial-time algorithm to obtain optimal machine and vehicle schedules. Ab-
delmaguid et al. [5] studied a hybrid genetic algorithm approach to schedule the machines
and used a heuristic technique to obtain a vehicle assignment. The authors addressed
the operations scheduling and provided the vehicle assigning heuristic with a starting
time for each operation, as well as its predecessor operation in the job sequence. Zhang
et al. [6] proposed a mixed integer linear programming model for the joint production and
transportation scheduling in flexible manufacturing system (FMS) without considering
the transportation tasks associated with each job from the lower and upper area to the
machine. Fontes and Homayouni [7] established a new mixed integer linear programming
model to solve the joint production transportation scheduling problem, which integrated
the machine scheduling problem and the AGV scheduling problem, and used two sets
of chain decision strategies (machine and AGV). Using the hybrid taboo bat algorithm,
Yonglai et al. [8] carried out in-depth analysis on AGV material distribution scheduling and
provided an effective solution for workshop material distribution scheduling by multiple
AGVs under certain constraints. In addition, Liu et al. [9] also adopted the improved
pollen algorithm to study the co-integration AGV manufacturing unit scheduling problem.
Regarding the average delay in flexible manufacturing units with AGVs, Heger [10,11] stud-
ied the dynamic priority assignment rules of AGVs using sorting and routing rules. Xu and
Guo [12] discussed the multi-objective and multi-dimensional green scheduling method of
FMS with AGV by means of the evolutionary algorithm of segmented coding, and Zhang
et al. [13] studied the AGV allocation problem for mixed-flow assembly lines considering
the load capacity of AGVs. Umar et al. [14] considered the path conflict problem of AGV
during transportation, and solved the problem with an improved genetic algorithm, but
the algorithm has a long running time and low efficiency. Mousavi et al. [15] compared
the genetic algorithm with the particle swarm algorithm that combined the multi-objective
AGV scheduling in order to solve the proposed model in the flexible manufacturing system,
which was different from the conventional intelligent algorithm Nouri et al. [16] proposed;
a hybrid meta-heuristic algorithm based on the clustering multi-agent model, which si-
multaneously scheduled the machines and AGVs, treated AGVs as special machines for
coding. Zhang et al. [17] proposed a two-stage solution approach and a particle sworn
optimization method to solve an energy-efficient path planning model of a single-load
AGV. The authors analyzed the AGV energy consumption characteristics by motion state
and vehicle structure, where it was found that energy consumption was an independent
optimization objective in AGV path planning.

The above research has effectively advanced the exploration of AGVs’ participation in
intelligent job scheduling. However, there are relatively few studies on the AGV charging
problem in the workshop scheduling problem in the existing literature, and only a few
experts and scholars have discussed the related issues. A typical example was given by
Dehnavi et al. [18], who studied the optimization problem of AGV charging station location
in manufacturing units through GAMES simulation. Zhengfeng and Yangyang [19] studied
the job-shop workshop scheduling problem under the consideration of multiple charging
AGVs. Wang et al. [20] studied an AGV scheduling method that integrated AGV energy
consumption and workshop complexity. However, this type of research adopted the AGV
to perform a task and then returned immediately, and did not perform the task continuously.
This was not in line with the reality that the AGV could continue to perform transportation
multiple times after being charged that directly affected the determination of the number
and scale of AGVs in the workshop, their work efficiency, and its evaluation. Fazlollahtabar
and Saidi-Mehrabad [21] examined literature related to different methodologies to optimize
AGV systems for the problems of scheduling and routing at manufacturing, distribution,
trans-shipment, and transportation systems. The authors categorized the methodologies
into simulation studies, metaheuristic techniques, artificial intelligent, exact, and heuristics
mathematical methods. Further, De Ryck et al. [22] overviewed a number of AGV-related
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control algorithms and techniques that were employed in not only the early stages of AGVs,
but also the algorithms and techniques used in the most recent AGV-systems, as well as the
algorithms and techniques with high potential.

Extant literature shows that experts and scholars have fully realized the significant
role played by intelligent robots in the manufacturing industry, and have carried out
research on the scheduling problem of flexible manufacturing cells with AGVs. The
model realizes the solution to the problem and optimizes the scheduling optimization
objective. However, the charging ability and continuous working ability of AGVs are
rarely addressed in the model in literature. In particular, most of the existing literature
assumes that the charging process is completed immediately and there is no waiting.
Moreover, the selection of AGVs to transport workpieces is based purely on the customer’s
demand for completion time without regard to AGV priority, resulting in load imbalance in
AGVs. Therefore, the calculation result is quite different from the actual scheduling AGV
result, and sometimes a part of the workpieces cannot be completed according to customer
demands. The load imbalance even caused some AGVs not to undertake any transportation
tasks, but some AGVs are always in the working state. Then, the core question of research
is: how to schedule AGVs to balance the distribution of transportation tasks and minimize
the maximum completion time, while meeting customer demands, and considering the
charging process and waiting time of AGVs?

Aiming to seek the marginal utility and load balance of AGV with charging, this paper
studies the allocation and handling process scheduling problems of AGVs on the basis of
FJSP. The AGV comprehensively considers factors such as workpiece scheduling, trans-
portation task scheduling, scheduling priority, and charging constraints, to build models,
and we solve these through genetic algorithms and complete use of AGV capabilities to
obtain optimal production efficiency. To achieve this objective, we describe the problem
and its formulation in Section 2. Further, algorithm development and solutions are given
in Section 3. Section 4 presents numerical experiments followed by conclusion and future
remarks in Section 5.

2. Mathematical Modelling

2.1. Problem Description

Given the number of machines, workpieces, and customer demands, the multi-AGV
flexible manufacturing cell scheduling model explores the optimal distribution of multiple
AGVs with charging, so as to complete all the processing tasks and minimize the final
completion time of the manufacturing unit. In the model, AGVs must transport workpiece
to machine according to the corresponding handling procedure. The total time consumption
includes not only AGV transportation time and machine processing time, but also AGV
charging time and waiting time. The problem of charging multiple AGVs in FJSP can
be described as: there are n workpieces to be machined in a machining cell, expressed
as J = {J1, J2, J3, . . . , Jn}, each workpiece Ji(Ji ∈ J) has p(p ≥ 1) different machining
operations. Each operation Oij can be machined by an optional set of machines, the
processing time of it is different for different operations Oi(Oi ∈ O) of each workpiece.
The processing time of the same process varies with the change of the machine, and
the processing sequence of the workpiece has been specified in the process route file in
advance. Workpiece Ji contains p + 1 handling procedures Tij, and the distance between
each processing machine is measured by the AGV travel time. In the course of processing, k
AGV handling robots R = {R1, R2, · · ·, Rk} take out the workpiece blanks from the loading
station and transport the workpiece J to m different machines M = {M1, M2, · · ·, Mm} for
processing until the last process of the workpiece is completed, and the AGV transports
the processed workpiece to the unloading station. The AGV charging method is to stay
and charge at the charging station. The charging time cannot be ignored; it affects the
final scheduling decision. Therefore, the charging time is taken into account in the AGV’s
handling time. The issues that need to be considered are the selection of the processing
machine where the process is located, the sequence of each process in the machine, and the
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AGV allocation problem that considers charging. In order to build a multi-AGV flexible
manufacturing cell scheduling model with charging, this paper introduces the symbol
definitions in Table 1, and assumes the following conditions:

(1) The machine follows the principle of first-come, first-served. Each machine can
process only one workpiece at a time, and each AGV can transport only workpiece for one
operation at a time; (2) Each machine and workpiece have the same priority except for user
requirements, and the processing and AGV transport process are uninterrupted; (3) There
is a workpiece buffer area next to each machine. Ignoring the workpiece congestion,
the buffer capacity is unlimited; (4) Ignore the time the AGV takes to load and unload
workpieces in the warehouse or machine buffer; (5) Initially, the AGV position and the
initial workpiece position are located in the loading station, and the workpieces that have
completed all processes are placed in the unloading station; (6) If two adjacent processes
of the same workpiece are in the same machine, the AGV handling resources will not
be occupied; (7) The AGV handling speed remains unchanged during transportation, is
not affected by the load, and does not consider path conflicts; (8) The difference between
power consumption of the AGV with or without a load is not considered, the unit power
consumption is fixed; and (9) After the AGV completes the handling of a process, if the
power is less than the threshold, it returns to the charging pile for charging. When the
power is greater than the threshold and meets the AGV to perform the handling task,
it waits for the next handling task. The following table provides symbols that satisfy
assumptions and model requirements.

Table 1. Symbol definitions.

Symbol Description

Ml , l ∈ {1, 2, . . . , m} Indicates the l-th processing machine, and the total number of
processing machines is m.

Rr, r ∈ {1, 2, . . . , k} Indicates the r-th AGV, the total number of AGV is k.

Ji, Ci, i ∈ {1, 2, . . . , n} Indicates the i-th workpiece and the time of completion, and the
total number of workpiece is n.

Oij, j ∈ {1, 2, . . . , p} Indicates the j-th processing operation of the i-th workpiece, and
the maximum number of operations of the workpiece is p.

Tij
Indicates the j-th delivery operation by AGV of the i-th workpiece,
and the maximum transportation process of the workpiece is p + 1.

tijs, tije Machining process Oij start time and end time.

τje
Latest finish time of the j-th processing operation required
by customer.

Tl−ij
The processing time of the process Oij in the processing
machine Ml .

Rr−able, Rr−actual Available time and actual power of the r-th AGV.

Tr−pos−Mij

The time from the current position of the r-th AGV to the machine
Mij(Mij ∈ Ml) where Oij is located.

Tr−pos−Oij−Δ
The time from the current position of the r-th AGV to loading
station Δ where workpiece for Oij is located.

Tr−Oij−Δ The wait time of the r-th AGV at loading station Δ for Oij.

Rr−total
The actual total travel time of the AGV to complete the
transportation task (load + no load).

Rr−ijs, Rr−ije, Rr−ij
AGV start time, completion time, and time consumption of the
transportation process Tij.

Umax, Urt Maximum load of AGV, and the load of the r-th AGV at time t.

{Ur1, Ur2, . . . , Urh}
{Urt1, Urt2, . . . , Urth}

The transportation load sequences completed by the r-th AGV, and
the completion time sequences of the corresponding
transportation load.

Ert, Econsumption
The battery power of the r-th AGV at time t, AGV energy
consumption per unit time.

Emax, Emin
Battery maximum power, the minimum power that AGV can
continue to work.
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There are multiple AGVs in the manufacturing unit, and they stop working when the
power stored in their batteries is exhausted, they are then required to be charged again.
Therefore, it is necessary to define the available time parameters of the AGVs to ensure that
when the AGVs are dispatched for handling, the AGVs are in the available state, not the
charging state. The driving path of the AGV can be divided into three sections: the no-load
time to the task location; the waiting time when waiting for the task profile to complete
the previous process; and the time for the loaded profile to go to the destination machine.
The waiting time is sometimes 0. Because the calculation of AGV power consumption is
based on the driving power consumption, it is necessary to define the three states of AGV
driving. The sum of the above three parts is the total time Rr−ij required to complete the
task. In the case when waiting time is 0, there is Rr−ij = Rr−total .

Due to the flexibility of selecting machines for processing in FJSP, the decision variable
PMl

ij needs to be set. It means assigning machine Ml to complete the machining work of Oij.
Similarly, the handling task needs to assign one AGV from multiple AGVs to perform the
task, so it is also necessary to define decision variables to specify the AGV to perform the
work. The specific decision variable symbols and meanings are as follows:

∂M
ij−i′j′ =

{
1, Oij is machined on the same machine before Oi′j′
0, else

∂R
ij−i′j′ =

{
1, Tij is being transported by the same AGV before Ti′j′
0, else

PMl
ij =

{
1, Operation Oij is processed on machine Ml
0, else

PRr
ij =

{
1, Conveying process Tij is transported by AGV(Rr)
0, else

2.2. Model Formulations

The multi-AGV flexible manufacturing cell scheduling considering charging problem
is actually a typical Flexible Job-shop Scheduling Problem. Because of the continuity of
the system, it is not suitable to be solved by Mixed Integer Linear Programming or Multi-
stage Stochastic Programming. Considering the complexity of Deep Q-learning in the
calculation of partial derivatives, we employed Multivariate Nonlinear Programming, so
as to comprehensively describe system constraints and process status. The scheduling
objective is to minimize the maximum time cost of production. The completion time of the
last process of the workpiece is tipe, then the objective function that can be expressed as:

f = min(max(
1≤i≤n

Ci)) (1)

The flexible manufacturing cell scheduling constraints considering multi-AGV charg-
ing are:

Ci ≥ tips + Tl−ij + Tr−l−U , Rr−i(j+1)s ≥ tijs + Tl−ij, ti(j+1)s ≥ Rr−ijs + Rr−ij (2)

∂
Ml
ij−i′ j′ + ∂

Ml
i′ j′−ij = 1, ∑

Ml∈(M1,M2,···,Mm)

PMl
ij = 1 (3)

tijs + Tl−ij ≤ ti′ j′s+(1−∂
Ml
ij−i′ j′)× Q, PMl

ij × PMl
i′ j′ × (ti′ j′s + Tl−i′ j′) ≤ tijs + ∂

Ml
ij−i′ j′ × Q (4)

∂Rr
ij−i′ j′ + ∂Rr

i′ j′−ij = 1 (5)

Rr−ijs + Rr−ij ≤ Rr−i′ j′s+(1−∂Rr
ij−i′ j′)× Q, PRr

ij × PRr
i′ j′ × (Rr−i′ j′s + Rr−i′ j′) ≤ tijs + ∂Rr

ij−i′ j′ × Q (6)
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∑
Rr∈(R1,R2,···,Rk)

PRr
ij = 1 (7)

Rr−ijs = max
{

Rr−able + Tr−pos−Mi(j−1)
, ti(j−1)e

}
(8)

Rr−ije = Rr−ijs + Rr−ij (9)

Rr−ij = Tagv × (Rr−able + Tr−pos−Mi(j−1)
− ti(j−1)e) + Tr−Oij−Δ + Tr−Mi(j−1)−Mij

Tagv =

{
−1, Rr−able + Tr−pos−Mi(j−1)

< ti(j−1)e

0, else
(10)

Rr−total = Tr−pos−Oij−Δ + Tr−Oij−Δ + Tr−Δ−Mij (11)

Rr−actual = Emax − (Rr−total × Eaverage), Rr−ct = (Emax − Rr−actual)/Ev (12)

Θr = Θ × 1
∑

Urth≤t
Urh + 1

× Ert

Emax − Emin
(13)

Ωr = Ω × Tr−Oij−Δ × τje × Emax − Emin

Ert
(14)

∀tije ≤ τje, ∀tijs ≤ Rr−ije, ∀Urt ≤ Umax (15)

∀Ert ≤ Emax, ∀Ert ≥ Emin (16)

[(∀Rr−ijs(r ∈ Rr)) ∩ (¬∃Rr′−ijs(r
′ ∈ Rr))] ∩ [¬∃r �= r′(Tr−Oij−Δ = Tr′−Oij−Δ)] (17)

i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , p}, r ∈ {1, 2, . . . , k} (18)

In the above inequalities and equations, constraint (2) represents the process sequence
constraint of the same workpiece, which means that the maximum completion time of the
workpiece is jointly constrained by the start processing time of the last process, the process-
ing time, and the AGV handling time, and the AGV start handling time must be greater
than the completion time of the previous process. Equation (3) represents the constraints of
processing machine resources, requiring that one machine can process only one workpiece
at a time, and the workpiece can be allocated to only one machine for processing. Here,
Q is a positive integer that represents the elasticity of the system. Equation (4) indicates
that the two machining processes on the same machine satisfy the sequence relationship.
Equations (5)–(12) represent the AGV resource constraints, where Equation (5) indicates
that an AGV can handle only one workpiece at a time, and Equation (6) indicates that
the two handling processes completed by the same AGV satisfy the sequence relation-
ship. Equation (7) means that a workpiece can be transported by only one AGV at a time.
Equation (8) indicates that the start time of the AGV is constrained by the available time
of the AGV, the time from the AGV to the processing equipment of the previous process,
and the completion time of the previous process of the workpiece. Formula (9) indicates
that the completion time of the AGV handling task is constrained by the time when the
AGV starts to transport and the time from the current position to the processing machine.
Equation (10) indicates that the actual transportation time is constrained by the available
time of the AGV, the current position of the AGV, the start position of the transportation,
and the completion time of the previous process. Equation (11) represents the constraint
on the total transportation time of the AGV. Equation (12) represents the constraint on the
actual power of the AGV and the charging time of the AGV. Equation (13) represents the
priority of selecting the AGV, which is composed of two parts, one is the load size of the
completed task, and the other is the current power situation. To achieve load balancing, the
AGV with sufficient power and small historical load is preferentially selected to undertake
transportation task. Θ is a constant for equivalent conversion. Equation (14) represents the
priority of the AGV loading workpiece for Oij. The AGV with earlier completion time and
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arrival time, and smaller power, has a higher priority for loading workpiece and a lower
wait time. Here, Ω is a constant for equivalent conversion. Equation (15) indicates the
time constraint and load constraint of any processing operation required by the customer.
Equation (16) indicates the power constraint on which the AGV can continue to work.
Equation (17) indicates the constraint to avoid deadlocks. The AGV must exclusively serve
the operation Oij in order. At the same time, only one AGV can serve one operation, and
only one AGV can pick up workpiece for an operation from loading station. Equation (18)
are the space sizes of all entities in the system.

3. Solution Algorithms

The scheduling problem of flexible manufacturing units with AGVs considering
charging can be divided into three sub-problems, namely, assigning processes to machines,
sequencing processes assigned to each machine, and AGV allocation for transportation
tasks. Ant Colony Algorithm, Gray Wolf Algorithm, and Deep Learning Network, is
applied to obtain optimal strategy, but all of these received local solutions. However,
Genetic Algorithm is more inclined to global search, which can quickly retrieve all feasible
solutions and prevent the convergence of local optimal solutions too fast. Thus, aiming at
the above three problems, this paper introduces the elite retention strategy and uses the
genetic algorithm to solve it. First, all feasible solutions are divided into three segments
of chromosomes: process, machine, and the AGV, then the population is obtained after
initialization, and then decoding is performed after performing crossover and mutation.
Finally, the fitness value is calculated to complete the selection until it reaches the threshold
of the number of iterations. The core algorithm part is as follows.

3.1. Coding and Initialization
3.1.1. Encoding Operation

The genetic algorithm involves three segments of chromosome coding: process cod-
ing, machine coding, and AGV coding. The process code describes the sequence of the

production process, and its gene length is L1 =
n
∑

i=1
(Pi + 1). The machine code indicates the

processing machine where the process of each workpiece is located, and the length of the

gene string is L2 =
n
∑

i=1
Pi. The AGV code corresponds to the task code, and the length of

the gene string is the length of the AGV task code string. For example, in the code shown
in Figure 1, process codes are sorted from left to right, the first number 3 represents the first
process of workpiece No. 3, and the fourth number 2 represents the workpiece No. 2. The
fifth number 3 of the machine code indicates that the second process of the workpiece No.
2 is processed by machine No. 3, and the tenth number 4 indicates that the unloading task
is virtualized by the virtual equipment, that is, the unloading station. The fourth number
of the AGV code is 1. The fourth task representing the process code, that is, the second
process of workpiece No. 2, is transported by the AGV numbered 1. If the handling process
is assigned to the corresponding AGV code, a sequence with process handling will be
generated: (O31, M3, T1−03),(O11, M1, T2−01),(O21, M2, T2−02), The corresponding handling
time series is [1, 1, 3].

Figure 1. Individual coding gene string.

3.1.2. Initialization Operation

During initialization, depending upon the requirement of minimizing the maximum
completion time, the machine with the shortest processing time is selected with a probability
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of 0.2, and the AGV code is initialized according to the principle of uniform distribution
to balance the usage efficiency of the AGV and avoid idleness. After obtaining the fitness
according to the objective function, the roulette method is used to select individuals from
the population of size N. The probability that individual i can be retained for the next
generation is related to the fitness value fi, and the probability is pi = fi/∑N

i=1 fi. In
addition, considering that after a series of genetic manipulations in the parent generation,
individuals with high fitness have a certain probability of being eliminated, which may
lead to a decrease in the average fitness of the group. To this end, we use an elite retention
strategy to ensure the top 10% of the parent population do not participate in crossover
and mutation. When there are multiple optimal solutions at the same time, the overall
handling time of the AGV is used as the second evaluation criterion to calculate the total

running time
k
∑

i=1
Rr−total of the AGV. The individuals are sorted in sequence according to

formula: F = F + 0.0001 × ∑k
i=1 Rr−total , and the individual with the smallest AGV total

running time is taken as the optimal solution. After participating in the crossover mutation,
a new species population of size P excepting the elite is generated, and then 10% of the
worst solutions are replaced with the optimal solution stored by the parent population
to maintain the next generation of the parent population and ensure excellent genetic
continuity and diversity.

3.2. Crossover and Mutation Operations
3.2.1. Crossover Operation

The interleaving operation of the process code uses the POX method. Select all
processes for a certain workpiece from the parent P1, keep the positions of all processes
of the workpiece unchanged on the chromosome, and keep them separate from the child
individual C1. Randomly generate the parent P2, and encode the parent individual P2.
(Except for the process selected in the previous step). Fill in the blank positions of C1
in turn. Similarly, the corresponding parts of P1 and P2 are combined in order to obtain
the offspring individual C2. As shown in Figure 2a, all processes of workpiece 3 in the
parent P1 are randomly selected and inherited to the offspring C1, and are kept in the
position in the gene string remains unchanged. Then, all the processes of the parent P2,
except for workpiece 3, are sequentially filled in the remaining gene string vacancies of
the offspring C1 to form a complete offspring C1. Similarly, the remaining parts of P1 and
P2 can be merged. The offspring C2 is obtained. The crossover selection of machine gene
strings is operated using the Multi-point Preservative Crossover (MPX) method, which is
used for machine crossover for chromosome process assignment, and the process order is
reserved for the offspring, as shown in Figure 2b. For the parent gene string P1 And P2, the
randomly generated 0_1 sequence, exchange the genes located at positions 2, 5, 6, 8, and 12,
of the chromosome, and cross to generate offspring C1 and C2, that is, 1 corresponds to
the same position of the parent P1 and P2 and the rest of the positions remain unchanged.
The crossover of the AGV gene string is consistent with the MPX crossover method of
the machine gene string. As shown in Figure 2c, the genes at positions 3, 6, 8, 10, and 12
are exchanged.
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Figure 2. Chromosome crossover operation and mutation operation. (a) POX crossover operation of
process code; (b) MPX interleaving operation of machine code; (c) MPX crossover operation of AGV
code; (d) Mutation operation of process code; (e) Mutation operation of machine code.

3.2.2. Mutation Operation

For process code, the extended insertion mutation method is adopted, that is, a gene
at a given position is randomly selected in the chromosome encoded by the process, and
it is randomly inserted into another position in the chromosome under the constraint
that the sequence of processes of the same workpiece is fixed. The sequence of the gene
after the insertion is set back one space. As shown in Figure 2d, insert the second process
of workpiece No. 3 at chromosome position 6 of parent P1 into the second process of
workpiece No. 2 at chromosome position 4, the second process of workpiece 2 originally at
position 4. The process needs to be moved one bit backwards. As shown in Figure 2e, the
mutation operation of the machine code randomly selects one of the two machine codes,
and selects the machine with the shortest processing time in the machine group. The gene
at position 7 is replaced, that is, the processing machine of the first process of workpiece 3
is replaced, and the original processing machine No. 3 and processing time 5 are mutated
into processing machine No. 2 and processing time 3. The AGV coding mutation operation
is the same as the machine coding. For example, the AGV No. 1 at position 6 in the parent
P1 chromosome is randomly selected according to the probability, and replaced by AGV
No. 2, and the feasible solution progeny C1 for handling the AGV is obtained.

3.3. Fit Function and Decoding

The fitness function solved by the genetic algorithm for scheduling of multi-AGV
flexible manufacturing units considering charging is f = max(

1≤i≤n
Ci), the maximum comple-

tion time. The smaller the f is, the better is the individual. The decoding operation of
chromosomes is actually the process of converting chromosomes into feasible solutions for
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scheduling, which can obtain the process profile, the machine used in the process and its
processing time, the AGV trolley transported, and its handling time, etc.

Step 1: Select a process chromosome from the process and machine code in turn
to judge the task type, convert it into the corresponding process Oij; the machine Ml
corresponding to the process; the corresponding processing time Tl−ij and the completion
time ti(j−1)e of the previous process Oi(j−1) in the machine.

Step 2: Obtain the transportation task sequence Tij, and the transportation start point
(L or machine), end point (U or machine) and transportation time.

Step 3: Read the AGV chromosome code in sequence, obtain the AGV status informa-
tion, and assign the handling tasks to the corresponding AGVs in sequence.

Step 4: Calculate the time Tr−pos−Mi(j−1)
from the AGV to the starting point of the

handling task and the time Rr−ijs when the transportation starts, update time Rr−ij it takes
for the AGV to handle the j process of Profile i, and calculate the total transportation time
Rr−total , current actual power Rr−actual , and available time Rr−able for the AGV to perform
each handling task.

Step 5: Based on the AGV status information, see whether the actual power of the
AGV is less than the threshold; if it is less than the threshold, it will be charged at the
loading station L, and calculate the charging time Rr−ct, and then update the available time
Rr−able of the AGV.

4. Analysis of Examples

In order to verify the performance of the model and the algorithm, genetic algorithm
and MATLAB programming are used to solve the FJSP 10×8 problem, FJSP 15×8 problem
and FJSP 25 × 8 problem. We conduct hyper-parameter fine-tuning by GeatPy. Based on
Values Exchanged Recombination and Mutation for Binary Chromosomes, the automated
machine learning method is applied to obtain the optimal crossover and mutation operation
probabilities. With the constructed field vector, objective vector, and fitness vector, we use
the Elite Copy Selection method for fitness selection, and use the constraint violation value
matrix to store the degree of individual violation constraints. After 1628 times evolution by
Evolution Tracker, we acquire the parameters, as shown in Table 2. In addition, to reduce
the problem scale, the maximum battery power is set to 100, the power threshold to 10, the
number of charging piles to 1, the power consumption per unit time to 2, and the AGV
charging rate to 6.

Table 2. The parameters of the algorithm model.

Parameters Values

maximum battery power 100
power threshold 10

power consumption 2
AGV charging rate 6

population size 100
iteration threshold 10,000

mutation probability 0.208
crossover probability 0.846

4.1. Analysis of Results

According to the conversion time of 1:5, that is, one unit of time represents 5 min, we
input the resource list and routing list according to the customer order. The final completion
time of the manufacturing unit is optimally 227.5 min, which is about 3.79 h. The specific
experimental results are shown in Figure 3. The black line in the figure is the driving path
of AGV No. 1, and the red line is the driving path of AGV No. 2. The maximum completion
time of the 10 × 8 scale case is a minimum of 45.5. The final completion time is measured
by AGV removing all the workpieces. The production planning department can determine
an appropriate time for different batches of production orders and draw actual schedules
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according to the scheduling plan. In the 10 × 8 calculation example, the two AGVs did not
reach the power threshold, so the charging state wherein the AGV cannot be used does not
appear in the Gantt chart. However, after the AGV completes the previous task and the
handling time is greater than 90 units of time, it will fall below the power threshold and
shall need to stop work for charging. In the case of 15 × 8 scale, the two AGVs reached
the power threshold once and in the case of 20 × 8 scale, the two AGVs reached the power
threshold twice. In both cases, the charging wait time is 0 and all transportation tasks are
completed. However, in the 25 × 8 scale case, the charging wait time is 6 with all tasks
completed. AGV1 reached the power threshold three times, and AGV2 reached the power
threshold twice in this case. It means that the AGVs need to be recharged five times in
total, which takes 438.06 units of time. Here, the current powers of AGVs when they go to
charge are 11.25, 12.08, 12.67, 12.90, and 13.04, respectively. Although the current powers
of the AGVs are higher than the minimum power Emin, they have to be charged because
they cannot complete a single transportation task. Obviously, the larger the number of
transportation tasks for workpieces, the more AGV charging times, and the longer the
waiting time. From the perspective of AGV load, AGV1 and AGV2 each completed 17
transportation tasks in the case 10 × 8 scale, that is, the load balance ratio reaches the
optimal state of value of 0. The load balance ratio is defined as (Ψmax − Ψmin)/Ψavg. Here,
Ψmax, Ψmin and Ψavg are the maximum, minimum, and average number of tasks completed
by AGVs. As for the cases of 15 × 8 scale, 20 × 8 scale, and 25 × 8 scale, the load balance
ratios are all less than 0.100, which are 0.074, 0.057, and 0.071, respectively. This shows that
our model can effectively avoid AGV resource waste while meeting customer demands.

Figure 3. FJSP Gantt chart with 2 AGVs.

In general, the final completion time of manufacturing unit increases with the size of
the problem. As shown in Table 3, when the number of AGVs is sufficient, the completion
time grows in proportion to the problem scale. On average, for every 10 additional customer
demands, the completion time increases by no more than 40 according to calculation
examples. In contrast, if the number of AGVs is too small, the completion time will increase
extremely with problem scale, and even some demands cannot be accomplished on time,
as shown in the data marked with “*” in Table 3. Only if the AGVs exceeds 4 can all
the problems of different scales from 20 × 8 to 100 × 8 be solved. Obviously, increasing
the number of AGVs will improve the ability to solve problems. As the amount of AGVs
increases exponentially, the completion time first decreases rapidly and then becomes stable.
For example, in the case of 80 × 8 scale problem, when the number of AGVs is doubled
from 1 to 32 successively, the completion time is improved by 128.57, 85.46, 50.07, 24.45, and
21.49, respectively. This shows that blindly increasing AGVs cannot significantly improve
the scheduling effect, but will cause part of the AGVs to be idle. It can be found that when
the number of AGVs exceeds 1/5 of the scale of workpieces, the improvement space of
completion time is very small. In this case, each additional AGV reduces the completion
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time by a maximum of 3.17 unites. In order to obtain a more reasonable AGV fleet size, the
marginal utility of the AGV is discussed in Section 4.2.

Table 3. Final completion time under different scales of problem and number of AGVs.

Number of
AGVs

Scale of FJSP Problem

10 × 8 20 × 8 30 × 8 40 × 8 50 × 8 60 × 8 70 × 8 80 × 8 90 × 8 100 × 8

1 66.47 148.50 215.09 * 282.54 * 367.97 * 436.58 * 487.95 * 580.10 * 778.69 * 990.64 *
2 45.50 102.60 148.75 199.63 238.43 * 287.11 * 342.72 * 451.53 * 581.27 * 751.48 *
4 40.50 83.75 126.28 178.41 212.57 268.36 314.48 366.07 427.50 * 627.31 *
8 35.50 78.15 113.60 151.66 184.41 235.08 264.19 316.00 372.09 554.80

16 34.00 70.30 105.35 142.17 175.85 215.50 251.34 291.55 341.18 460.75
32 34.00 70.30 105.35 142.17 175.85 215.50 251.34 270.06 312.30 448.95

“*” means some demands cannot be accomplished on time.

4.2. AGV Marginal Utility

The number of AGVs is closely related to transportation allocation, and it also has
a greater impact on optimization goals. Usually, the AGV is subject to transportation
constraints and a dedicated AGV is equipped for various workpieces, but it may increase
the cost of the enterprise. In order to deeply study the marginal utility of AGVs, this
paper selects 10 × 8 examples, takes different numbers of AGVs, and calculates the data 10
times. The results are shown in Table 4. When its number is about 20% of the number of
workpieces, the optimization effect is prominent and appears as an inflection point. On the
contrary, the optimization effect gradually decreases. The reason for the inflection point
is that when the AGV input is less than 20% of the number of workpieces, the turnover
between the AGV and workpiece is complicated, and the AGV needs more. It takes at least
15 units of time to charge during the next shutdown. It can be seen that AGV transportation
and charging greatly affects production efficiency. When the number of AGVs is greater
than 80% of the number of workpieces, although a better solution is achieved, the optimal
performance remains unchanged and the economic cost increases. Enterprises can assign
AGVs according to the economic situation of the workshop and planning of the completion
time. As shown in Tables 3 and 4, when the number of AGVs is greater than 2/5 of the
number of workpieces, the marginal utility by increasing the AGV is less than 2.5. It means
that when the AGV is 40% of the workpieces, the optimal schedule is almost reached and it
is uneconomical to increase the number of AGVs again. Thus, according to the results of
different scales and considering the fixed cost of AGVs, it is recommended that the number
of AGVs should account for 20–40% of the scale of the workpieces, and the marginal utility
is the most reasonable.

Table 4. AGV marginal utility.

Number of AGVs 1 2 3 4 5 6 7 8 9 10

AGV/workpiece
(percentage) 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Final completion time 66.47 45.50 43.00 40.50 38.50 37.00 36.00 35.50 34.00 34.00
Marginal utility — 20.97 2.50 2.50 2.00 1.50 1.00 0.50 0.50 0

4.3. AGV Load and Charging

In order to verify the optimization of our model on the charging process and load
balance, we conducted experiments in the case of 100 × 8 scale. The rapid increase in the
scale of the problem makes it difficult to complete all transportation tasks when AGVs
are insufficient. As shown in Table 5, while the number of AGVs is 1 and 2, respectively,
4 customer demands and 3 customer demands are uncompleted on time. Until the AGV
exceeds 4, all the workpiece transportation tasks can be effectively completed. Thereafter, as
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the number of AGVs increases, the total charging times decreases almost exponentially and
the waiting time drops sharply. When all transportation tasks are completed, the average
wait time remains between 4 and 6. This indicates that the AVGs are effectively scheduled
to accomplish all tasks, while maximizing the reduction of charging times and charging
wait time. Especially when the AGVs exceeds 8, the charging times tend to be flat, and the
utility brought by increasing AGV is not obvious. From the perspective of the AGV load,
the load balance ratio is always less than 0.25, which means that the difference between the
maximum and minimum load is less than 1/4 of the average load. This indicates that the
loads of different AGVs are similar and tend to be balanced. In addition, the load balance
ratio shows a bell-shaped trend of increasing first and then decreasing. The inflection point
occurs when AGVs is 8, where the minimum load of AGVs changes by 20.7% and the
maximum load of AGVs changes by only 17.3%. It means that when the charging times of
AGVs do not decrease dramatically, the loads of AGVs will gradually become balanced
based on scheduling priority. Furthermore, the rational load balance of AGVs is achieved
when the charging times remains stable (the number of AGVs is greater than 12). That is,
when considering charging, multi-AGV flexible manufacturing cell scheduling can assist
decision makers to select a reasonable number of AGVs through simulation to meet the
needs of all customers, reduce the charging times, and promote load balance.

Table 5. AGV load and charging.

Number of AGVs 1 2 4 6 8 10 12 14 16 18

Total waiting time for
charging 421.28 109.46 57.88 38.61 21.05 15.20 11.92 8.90 0 0

Total charging times of AGVs 45 23 14 8 6 3 2 2 2 0
Maximum load of AGVs 362 186 132 98 81 69 55 48 43 39
Minimum load of AGVs 362 176 114 82 65 57 47 42 38 35
Average load of AGVs 362 181 121 91 72 60 52 45 40 36

Load balance ratio 0.000 0.055 0.149 0.177 0.221 0.199 0.155 0.133 0.124 0.110
Uncompleted demands on time 4 3 1 0 0 0 0 0 0 0

5. Conclusions

AGVs are powered by batteries, they move along the planned path, and have auto-
matic guidance equipment such as magnetic strips, rails, or lasers, which can assist the
workshop to complete a series of transportation tasks, providing a strong support for intel-
ligent manufacturing enterprises to reduce the time consumption of the production process.
Considering the influence of the available number of AGVs, the power threshold, and the
charging time in the workshop scheduling, we adopted minimization of the maximum
completion time as the optimization objective, and have constructed a multi-AGV flexible
manufacturing unit scheduling model considering charging. The genetic algorithm was
used to solve the problem, and the optimized process arrangement, the AGV driving path,
and the scheduling plan after the AGV reached the power threshold were obtained, which
further confirmed the impact of AGV transportation and charging on production efficiency.
Compared with the models given in the literature [18,19], our model more comprehensively
considers the charging time and charging waiting. The AGV scheduling priority is also
designed to drive AGV load balance. The AGV with earlier completion time, arrival time,
and smaller power, has a higher priority for loading workpiece and a lower wait time.
To achieve load balancing, the AGV with sufficient power and a small historical load is
preferentially selected to undertake the transportation task. After analyzing the marginal
utility of the AGV under different problem scales, the results shows that the AGVs are
effectively scheduled to complete transportation tasks, while reducing the charging times
and charging wait time. It is clear that AGV utilization can be maximized when the number
of AGV scales is 20–40% of the number of workpieces. Furthermore, the scheduling model
of multi-AGV flexible manufacturing cell when considering charging can help decision
makers minimize the maximum completion time by simulation, and seek load balance,
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while meeting customer demands. The limitations of the model research in this paper
are as follows: (1) considering the complexity of research caused by diverse workpiece
weights, we ignored the time-consuming differences generated by AGV loads in order to
simplify model building; and (2) the objective function focuses on the final completion
time cost of manufacturing unit without considering the fixed cost of the AGV. There-
fore, future research can try to establish a multi-objective nonlinear programming model
including time cost and fixed cost, and discuss the influence of different loads on AGV
power consumption.

Author Contributions: Conceptualization, J.L. and W.C.; methodology, W.C.; software, W.C.; valida-
tion, J.L. and W.C.; formal analysis, J.L. and W.C.; investigation, W.C.; resources, W.C.; data curation,
W.C.; writing—original draft preparation, W.C.; writing—review and editing, J.L., K.K.L. and B.R.;
visualization, W.C.; supervision, K.K.L. and B.R. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The program code and data that support the plots discussed within
this paper are available from the corresponding author upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lacomme, P.; Larabi, M.; Tchernev, N. Job-shop based framework for simultaneous scheduling of machines and automated
guided vehicles. Int. J. Prod. Econ. 2013, 143, 24–34. [CrossRef]

2. Wu, N.; Zhou, M. Modeling and deadlock control of automated guided vehicle systems. IEEE/ASME Trans. Mechatron. 2004, 9,
50–57.

3. Fu, J.; Zhang, H.; Zhang, J.; Jiang, L. Review on AGV Scheduling Optimization. J. Syst. Simul. 2020, 32, 1664.
4. Bilge, Ü.; Ulusoy, G. A time window approach to simultaneous scheduling of machines and material handling system in an FMS.

Oper. Res. 1995, 43, 1058–1070. [CrossRef]
5. Abdelmaguid, T.F.; Nassef, A.O.; Kamal, B.A.; Hassan, M.F. A hybrid GA/heuristic approach to the simultaneous scheduling of

machines and automated guided vehicles. Int. J. Prod. Res. 2004, 42, 267–281. [CrossRef]
6. Zhang, Q.; Manier, H.; Manier, M.A. A genetic algorithm with tabu search procedure for flexible job shop scheduling with

transportation constraints and bounded processing times. Comput. Oper. Res. 2012, 39, 1713–1723. [CrossRef]
7. Fontes, D.; Homayouni, S.M. Joint production and transportation scheduling in flexible manufacturing systems. J. Glob. Optim.

2019, 74, 879–908. [CrossRef]
8. Yonglai, W.; Wei, L.; Yanyan, L. Research on AGV Material Delivery Scheduling Problem Based on Hybrid Tabu Bat Algorithm.

Modul. Mach. Tool Autom. Manuf. Tech. 2018, 1, 145–149.
9. Liu, E.H.; Yao, X.F.; Tao, T.; Jin, H. Improved flower pollination algorithm for job shop scheduling problems integrated with

AGVs. Comput. Integr. Manuf. Syst. 2019, 25, 2219–2236.
10. Heger, J.; Voss, T. Reducing mean tardiness in a flexible job shop containing AGVs with optimized combinations of sequencing

and routing rules. Procedia CIRP 2019, 81, 1136–1141. [CrossRef]
11. Heger, J.; Voß, T. Dynamic priority based dispatching of AGVs in flexible job shops. Procedia CIRP 2019, 79, 445–449. [CrossRef]
12. Xu, W.; Guo, S. A multi-objective and multi-dimensional optimization scheduling method using a hybrid evolutionary algorithms

with a sectional encoding mode. Sustainability 2019, 11, 1329. [CrossRef]
13. Zhang, L.; Hu, Y.; Guan, Y. Research on hybrid-load AGV dispatching problem for mixed-model automobile assembly line.

Procedia CIRP 2019, 81, 1059–1064. [CrossRef]
14. Umar, U.A.; Ariffin, M.K.A.; Ismail, N.; Tang, S.H. Hybrid multiobjective genetic algorithms for integrated dynamic scheduling

and routing of jobs and automated-guided vehicle (AGV) in flexible manufacturing systems (FMS) environment. Int. J. Adv.
Manuf. Technol. 2015, 81, 2123–2141. [CrossRef]

15. Mousavi, M.; Yap, H.J.; Musa, S.N.; Tahriri, F.; Md Dawal, S.Z. Multi-objective AGV scheduling in an FMS using a hybrid of
genetic algorithm and particle swarm optimization. PLoS ONE 2017, 12, e0169817. [CrossRef] [PubMed]

16. Nouri, H.E.; Driss, O.B.; Ghédira, K. Simultaneous scheduling of machines and transport robots in flexible job shop environment
using hybrid metaheuristics based on clustered holonic multiagent model. Comput. Ind. Eng. 2016, 102, 488–501. [CrossRef]

17. Zhang, Z.; Wu, L.; Zhang, W.; Peng, T.; Zheng, J. Energy-efficient path planning for a single-load automated guided vehicle in a
manufacturing workshop. Comput. Ind. Eng. 2021, 158, 107397. [CrossRef]

18. Dehnavi, A.S.; Sabaghian, A.; Fazli, M. A Job shop scheduling and location of battery charging storage for the automated guided
vehicles (AGVs). J. Optim. Ind. Eng. 2019, 12, 121–129.

19. Zhengfeng, L.; Yangyang, L. Research on job shop scheduling with multiple AGVs considering charging. Comput. Integr. Manuf.
Syst. 2021, 27, 2872–2879.

78



Mathematics 2022, 10, 3417

20. Wang, F.; Zhang, Y.; Su, Z. A novel scheduling method for automated guided vehicles in workshop environments. Int. J. Adv.
Robot. Syst. 2019, 16, 1729881419844152. [CrossRef]

21. Fazlollahtabar, H.; Saidi-Mehrabad, M. Methodologies to optimize automated guided vehicle scheduling and routing problems:
A review study. J. Intell. Robot. Syst. 2015, 77, 525–545. [CrossRef]

22. De Ryck, M.; Versteyhe, M.; Debrouwere, F. Automated guided vehicle systems, state-of-the-art control algorithms and techniques.
J. Manuf. Syst. 2020, 54, 152–173. [CrossRef]

79





Citation: Wan, M.; Qu, T.; Huang, M.;

Qiu, X.; Huang, G.Q.; Zhu, J.; Chen, J.

Cloud-Edge-Terminal-Based

Synchronized Decision-Making and

Control System for Municipal Solid

Waste Collection and Transportation.

Mathematics 2022, 10, 3558.

https://doi.org/10.3390/

math10193558

Academic Editor: Ripon

Kumar Chakrabortty

Received: 7 September 2022

Accepted: 22 September 2022

Published: 29 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Cloud-Edge-Terminal-Based Synchronized Decision-Making
and Control System for Municipal Solid Waste Collection
and Transportation

Ming Wan 1,2,3, Ting Qu 1,3,4,*, Manna Huang 1,2,3, Xiaohua Qiu 1,2,3, George Q. Huang 1,3,5, Jinfu Zhu 6

and Junrong Chen 7

1 GBA and B&R International Joint Research Center for Smart Logistics, Jinan University, Zhuhai 519070, China
2 School of Management, Jinan University, No.601 Huangpu Avenue West, Guangzhou 510632, China
3 Institute of Physical Internet, Jinan University (Zhuhai Campus), No.206 Qianshan Road,

Zhuhai 519070, China
4 School of Intelligent Systems Science and Engineering, Jinan University (Zhuhai Campus), No.206 Qianshan

Road, Zhuhai 519070, China
5 Department Industrial and Manufacturing Systems Engineering, The University of Hong Kong, Pokfulam

Road, Hong Kong, China
6 Gongbei Street Office, 123 Gangchang Road, Xiangzhou District, Zhuhai 519020, China
7 Zhuhai Top Cloud Tech Co., Ltd., No.2021, Qianshan Mingzhu South Road, Xiangzhou District,

Zhuhai 519070, China
* Correspondence: quting@jnu.edu.cn

Abstract: Due to dynamics caused by factors such as random collection and transportation re-
quirements, vehicle failures, and traffic jams, it is difficult to implement regular waste collection
and transportation schemes effectively. A challenge for the stable operation of the municipal solid
waste collection and transportation (MSWCT) system is how to obtain the whole process data in
real time, dynamically judge the process control requirements, and effectively promote the syn-
chronization operation between multiple systems. Based on this situation, this study proposes a
cloud-edge-terminal-based synchronization decision-making and control system for MSWCT. First,
smart terminals and edge computing devices are deployed at key nodes of MSWCT for real-time
collection and edge computing analysis of the whole process data. Second, we propose a collabora-
tive analysis and distributed decision-making method based on the cloud-edge-terminal multi-level
computing architecture. Finally, a “three-level and two-stage” synchronization decision-making
mechanism for the MSWCT system is established, which enables the synchronization operation
between various subsystems. With a real-world application case, the efficiency and effectiveness of
the proposed decision-making and control system are evaluated based on real data of changes in fleet
capacity and transportation costs.

Keywords: municipal solid waste; waste classification; waste logistics; waste collection and
transportation; IoT; cloud-edge collaboration; synchronization

MSC: 00A06

1. Introduction

Waste classification is an efficient way for municipal solid waste management under
the circular economy. It aims to maximize the value of recycling waste and achieve zero
waste [1]. The municipal solid waste collection and transportation (MSWCT) system is the
basis for ensuring waste classification [2]. The operation process of the system includes
four parts: the classification and storage of waste at collection points, the classification
and collection of collection vehicles, the compression and storage of transfer stations, and
the classification and transportation of transit trucks. Additionally, the operational cost of
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the MSWCT system accounts for 60–80% of the total waste management cost [3,4]. As the
MSWCT system operation process involves multiple units and decision-making subjects,
there are management challenges.

Due to random waste generation, the uncertain system resources, and the complex
driving paths, the operation process of the MSWCT system is subject to temporarily
increased collection and transportation orders, vehicle failures, traffic jams, and other
dynamic disturbances. It may affect the MSWCT scheme and progress of the system [5].
In addition, due to the lack of synchronization within and between units of the MSWCT
system [6], the dynamic disturbances of some units may cause a bullwhip effect. It may
result in poor operation of the overall system. This may cause the entire system to not run
smoothly, causing problems such as overflowing trash bins, full loading of transfer stations,
and odors in trash bins. Therefore, how to realize the synchronized decision making and
control of the system in a dynamic environment is the key to the management and control
of the MSWCT system [6,7].

For the above issues, relevant government departments and participating companies
have introduced the latest technologies of Internet of Things (IoT), aiming to obtain real-
time system data through the ubiquitous perception capabilities of IoT, and enable the
visualization of the operation process [8–12]. The development and wide application of
IoT technologies has improved the real-time data acquisition capability of the collection
and transportation process, and has enabled the system to capture dynamic disturbances
timely. However, the IoT information management system of local subsystems is still
unable to meet the requirements of real-time synchronized decision making and control of
the MSWCT system. There are three major challenges: (1) how to obtain the global system
disturbance information in real time; (2) how to dynamically judge process control require-
ments after the occurrence of system dynamics; and (3) how to realize the synchronized
operation among subsystems after clarifying the process dynamic control requirements,
and achieve the global optimization.

In order to address the above challenges, this paper proposes a cloud-edge-terminal-
based synchronized decision-making and control system (CET-SDCS) for MSWCT. First,
through the deployment of a large number of terminal collection devices and an appropriate
amount of edge computing devices, the accurate collection and efficient transmission of real-
time data in the whole process of the system is realized. Secondly, after the system detects
the occurrence of dynamics, the system will use the cloud-edge collaborative analysis
and processing to achieve accurate judgment of the dynamic level. Finally, through the
analysis of the multi-stage synchronized mechanism, the high real-time performance of
the MSWCT system is realized as high-precision, high-cooperative synchronized decision-
making and control.

The novelty and contribution of this paper is mainly to use the cloud-edge-terminal ar-
chitecture to build a set of synchronized decision-making systems for MSWCT management,
in order to realize distributed synchronized decision-making between multiple regions and
multiple subjects. It is an innovative application of the synchronization mechanism and
method in the MSWCT system, which significantly improves system operation efficiency
and reduces system operation cost. Case examples for the management of municipal solid
waste are provided.

The remainder of this paper is organized as follows: Section 2 briefly reviews relevant
literature on three types of research: IoT-enabled intelligent waste logistics management,
the concept of cloud-edge collaboration and its applications, and synchronized optimization
of complex systems in dynamic environments; Section 3 provides the problem descrip-
tion; Section 4 introduces the CET-SDCS framework, device deployment, and operation
mechanism; Section 5 provides a case study on how CET-SDCS improves the efficiency
of the real-world municipal solid waste collection and transportation operation and re-
covery of usable value; and Section 6 summarizes the findings of this paper and future
research directions.
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2. Literature Review

We summarize related research from three aspects: Internet of Things (IoT)-enabled
waste logistics management, the cloud-edge collaboration concept and its application, and
synchronized optimization of complex systems in dynamic environments.

2.1. Smart Waste Logistics Management Enabled by IoT

The whole life cycle management of municipal solid waste has received considerable
attention from scholars in recent years [13–16]. Due to the low efficiency of traditional waste
collection and transportation, more and more cities are choosing to use IoT to drive the
comprehensive, coordinated, and sustainable development of sanitation [17]. At present,
the application of the IoT in urban domestic waste treatment, mainly based on more
mature technology such as RFID electronic tags, GPS, etc., through the combination of a
variety of technologies, so that enterprises can effectively improve the efficiency of waste
collection [18]. As described by [19], modern tracking devices, such as volume sensors, can
be used to obtain real-time information to minimize the distance covered and the number
of vehicles required for collection by optimizing the route plan. Ref. [20] proposed a
novel model, structure, and smart sensing algorithm for a real-time solid waste monitoring
system, and this information can be used to optimize collection routes and reduce collection
costs and carbon emissions, thus contributing to environmental sustainability. Ref. [21]
optimized waste collection routes by locating and tracking bins to reduce costs and increase
recycling rates. Ref. [22] presented a smart waste collection path problem that attempted to
use real-time data on the bins to optimize the collection routes with three different business
management approaches to process the information transmitted by the sensors. Ref. [23]
proposed that IoT can also be used for intelligent coordination of waste trucks to improve
the management efficiency of waste disposal companies and to reduce harmful emissions
from waste trucks.

2.2. Cloud-Edge Collaboration Concept and Its Application

The concept of cloud computing was first introduced by Armbrust M in 2005, who
defined cloud computing as both the applications delivered as services over the Internet
and the hardware and systems software in the data centers that provide those services [24].
Its advantages include reduced computational costs, software costs, and improved com-
putational performance, while the availability of virtually unlimited storage and low-cost
processing power enables a new model of computing.

Edge computing can be traced back to the content delivery network proposed by
Akamai in 1998, and the concept of edge computing was formally introduced in 2013 [25],
and has been developed rapidly since then. Edge computing is a new computing mode,
which is an open platform that integrates core capabilities of the network, computing,
storage, and application close to objects or data sources to provide services closest to objects
or data sources [26,27]. Edge computing is essentially an extension of the definition of
cloud computing. Unlike cloud computing, edge computing is located at the edge of the
network, near IoT devices [28]. They complement each other. Edge computing needs the
support of a cloud computing center with powerful computing capacity and mass storage,
while cloud computing center also needs edge devices to deal with mass data and private
data to relieve the pressure of network broadband and the cloud data center. In the era
of Internet of everything, there are many cases of cloud computing and edge computing
combined together [29].

2.3. Synchronized Optimization of Complex Systems under Dynamics

Synchronization has received increasing attention in recent years as an important
production control mechanism in Industry 4.0. Ref. [30] defined the concept of synchro-
nization decision making as “a dynamic collaborative decision making approach in which
the system autonomously mobilizes the most appropriate capacity or resources within
and outside the system to best respond to dynamic disturbances throughout the life cycle
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of the production system”. Ref. [31] proposed an IoT-based production logistics linkage
system that responds to the dynamics of the manufacturing system execution process, thus
reducing the delivery time. Ubiquitous technology is employed to synchronize production
and logistics at the operational level to create a close decision–execution loop [32]. Ref. [33]
presented a new view of coordinated decision making in integrated supply chain schedul-
ing, i.e., coordinated lot delivery and order acceptance, and developed coordinated order
acceptance and supply chain scheduling for lot direct delivery using three PL suppliers, and
proposed two mixed integer plans. Ref. [34] proposed a multi-level cloud computing digital
twin system for real-time monitoring, decision making, and control of production logistics
linkage systems. In an IoT-driven production logistics linkage (PLS) system with complete
real-time information, the negative impact of dynamics on the overall operational state of
its system is evaluated to deal with dynamics in the most efficient and cost-effective way.
Ref. [35] discussed the problem of route determination of collection vehicles at the transfer
station, as well as their synchronization. The results show that the approach combining the
collection phase with the transport phase can achieve a consistent reduction in the number
of collection vehicles required.

2.4. Literature Summary

Firstly, IoT and cloud-edge collaborative technologies provide effective methods and
technical frameworks for decision making and control of municipal waste management
systems. However, to our knowledge, using two such methods for managing waste
collection and transportation rarely has been discussed.

Secondly, in recent studies, waste collection and waste transportation have been
treated as two systems with independent decision making, and few studies have focused
on the study of linked decision making for waste collection and transportation systems in
dynamic environments. Therefore, how to establish the integrated framework considering
multi-scale and multi-stage state sensing and timely synchronized optimization is an urgent
problem in the MSWCT system.

3. Problems Description

This section mainly introduces the operation process of the MSWCT system, and
analyses the difficulties faced by the current system.

3.1. Operation Process of the MSWCT System

The operation process of the MSWCT system is shown in Figure 1, including “two
stages and four steps”. The two stages mainly refer to the collection stage and the trans-
portation stage. The four units include the waste storage at the collection point, the recycling
waste pick-up of collection vehicles, the waste transfer, and the waste transit. The entire
system operation is triggered by pick-up requirements of the waste collection point. After
going through the four steps in sequence, the waste at the collection point finally goes to
the circular economy industrial park for final treatment.

3.2. Analysis of the Operation Process of the MSWCT System

During the operation process of the MSWCT system, each step is decided indepen-
dently, but all steps are closely associated in operation. The collection fleet develops
and executes the collection plan according to the pick-up requirements of the collection
point and the internal resource allocation. The transit fleet develops and executes the
transit plan according to the transit requirements of the transfer station and the internal
resource configuration.
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Figure 1. Operation process of the MSWCT system.

However, due to the random generation time of waste and the high uncertainty of the
amount of waste generated, the collection and transportation requirements are constantly
changing at the collection point. Moreover, the waste collection and transportation and
transit process faces random disturbances from various internal and external factors such
as vehicle failure, traffic jam, and bad weather. Regarding random changes in requirements
and various disturbances, if the system decision is not made timely, the collection plan
and the transit plan may fail to be executed normally. Additionally, there will be problems
including overflowing trash bins, overfilled warehouses at transfer stations, and trash
bin odors.

After analysis, we conclude three main reasons for the above problems:
(1) Failure to obtain the real-time information on the whole process of waste collection

and transportation. There are two main parts: first, vertically speaking, the internal
decision-making layer of each subsystem cannot truly understand the real-time operation
status of the execution layer. Due to inaccurate underlying data or delayed data upload,
decisions and processing cannot be made timely after the dynamics occur in the execution
process. Second, horizontally speaking, each subsystem operates independently, and the
data are not shared between subsystems, resulting in information silos.

(2) Insufficient real-time decision-making ability of the system to respond to dynamics.
This mainly affects real-time decision-making from two aspects: on one hand, in the
traditional IoT platform environment, the massive real-time data are uploaded to the cloud
for processing. Its long delay may cause untimely decision-making. On the other hand,
due to the lack of timely judgment on the dynamic level, dynamics that can be processed
within the subsystem are also uploaded to the cloud for analysis and processing, and then
no real-time decision-making is made.

(3) Failure of synchronization operation between subsystems. When the system is
affected by dynamics, the system cannot quickly make the optimal decision as it lacks a
dynamic level judgment and processing mechanism.
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Therefore, the key technical challenges to resolve the above problems lie in how to
obtain real-time data of the whole process, how to dynamically judge the process control
requirements, and how to establish a synchronization decision-making mechanism between
subsystems. These are the key points addressed in this paper.

4. Cloud-Edge-Terminal-Based Synchronized Decision-Making and Control System
for Waste Collection and Transportation

To address the above three challenges, this paper extends the traditional IoT archi-
tecture and the cloud-side collaborative computing architecture to propose a multi-level
computing based on “cloud-edge-terminal” synchronized decision-making and control
system architecture for MSWCT. The following three aspects are introduced regarding the
system architecture, equipment deployment, and system operation mechanism.

4.1. Introduction to the Framework and Modules of CET-SDCS for MSWCT

The overall architecture of the MSWCT system is divided into three layers, from
bottom to top: terminal layer, edge layer, and cloud layer, as shown in Figure 2.

Figure 2. CET-SDCS architecture for MSWCT.

4.1.1. Terminal Layer

The terminal layer is the bottom smart device layer of CET-SDCS for MSWCT, which
is also equivalent to the sensing layer of IoT.

Here, terminal smart devices refer to the installation of IoT devices (such as FRID tags,
gravity sensors, RFID readers, cameras, bracelets, GPS locators, etc.) on traditional trash
bins, waste collection kiosks, collection vehicles, transfer stations, transit trucks, and other
equipment and facilities, so that these equipment and facilities have active/passive sensing
functions and become terminal smart devices. The terminal smart devices also include
smart bracelets and PDA that may be used by sanitation workers.

The main function of the terminal layer is responsible for real-time data collection and
transmitting information to the edge layer. After the data are analyzed and decided by the
system, the results are fed back to the terminal layer, and the terminal layer executes the
decision instructions.
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4.1.2. Edge Layer

The edge layer is the second layer of CET-SDCS for MSWCT, including the edge device
layer and the edge service layer.

• Edge device layer

The main devices in the edge device layer are routers, mobile gateways, in-vehicle
PAD, and specific edge servers. The router is mainly suitable for installation at waste
collection points with waste collection kiosks, and is responsible for storing, processing and
analyzing the video monitoring data of waste collection points, the status data of trash bins,
and the interaction data of the collection vehicles for pick-up. The mobile gateway is mainly
suitable for sanitation workers to carry out and complete data collection and processing at
collection points without waste collection kiosks. The in-vehicle PAD is mainly placed on
the collection vehicles and transit trucks to collect and process vehicle operation status data,
location data, load data, etc. The specific edge server is mainly placed in the transfer station
and used to handle the interactive collection of the transfer link, including the information
of vehicle incoming and outgoing, the amount of waste unloaded by the collection vehicle,
the status of the transfer box, and the transfer box incoming and outgoing.

• Edge service layer

The edge service layer is mainly services provided by edge devices, including the
local data storage service, local data processing service, local device control service, and the
cloud edge collaborative decision-making service. The edge service layer has the autonomy
to make decisions in the local scope, and it can make decisions quickly by analyzing the
data and determining that the dynamic situation is within the edge decision processing
scope. The situation beyond the decision range is handled by the cloud edge collaborative
decision service. The cloud edge collaborative decision means that the edge pre-analyzes
the real-time data and predicts that the dynamic situation is beyond the decision authority;
then, the pre-analyzed results are fed back to the cloud for further analysis, and the cloud
finally feeds the final analysis and decision results to the edge.

The main function of the edge layer is to assist the cloud in staging and pre-processing
the data collected in the first layer to improve data quality and reduce the upload of
redundant data, as well as to make decisions on local issues while communicating control
instructions to the lower layers.

4.1.3. Cloud Layer

The cloud layer is the uppermost layer of CET-SDCS for MSWCT, including the cloud
service layer and the cloud application layer.

• Cloud service layer

The cloud service layer mainly includes the big data service center, resource manage-
ment service, real-time scheduling service, synchronization operation algorithm library,
and the synchronization operation model library.

The big data service center is mainly for big data storage, big data processing, and
big data analysis of high-quality data and system historical decision data uploaded by the
edge service layer, and forms a knowledge base that can be invoked by the system at any
time. The data, algorithms, and models of the big data service center can also be invoked
and support the operation of other services at any time.

The resource management service mainly refers to the visual management service for
real-time traceability and status of system resources.

The real-time scheduling service is mainly for system resource work task issuance,
task execution process control, and task adjustment.

The library of synchronized operational algorithms includes multidisciplinary design
optimization (MDO), such as cooperative optimization (CO), analytic target cascade (ATC),
and augmented Lagrangian coordination (ALC), as well as various types of heuristic
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optimization algorithms, such as genetic algorithms (GA), ant colony algorithms (ACO),
and artificial neural networks (ANN).

The library of synchronized operation model mainly includes the waste collection
stage path optimization model, the waste transportation stage path optimization model,
the grade determination analysis model of system dynamics, the waste collection and
transportation synchronized decision model, etc.

The main function of this layer is to provide service support for the cloud application
layer and decision analysis service for the edge layer. The operation logic is to retrieve the
necessary data from the data center according to the application requirements of specific
scenarios in the upper layer, and combine and match resources, algorithms, and models to
provide specific decision analysis for application scenarios.

• Cloud application layer

The cloud application layer includes the subsystem application layer and the synchro-
nization application layer.

The application layer of the sub-system includes: (1) the waste collection point man-
agement system, which is mainly applicable to the community property or sanitation
management department (such as street office). It is used for the management of trash
bins and waste collection kiosk equipment resources at all collection points, including
the registration, operation status, visualization of equipment and supervision of resident
drop-off behavior, etc. (2) The management system of collection vehicles is mainly used
by third-party collection companies for the registration, operation status, location, driving
path optimization and driving record analysis of all collection vehicles, etc. New third-
party collection and transportation companies must first register in the system before
they can start business. (3) The management system of transfer stations is mainly used
by government sanitation management departments (such as street offices). The transfer
station management system is mainly applied to the relevant departments of government
sanitation management or the collection company which has its own transfer station. It
is used to manage the location, operation status and irregularities of all transfer stations.
(4) The transit truck management system is mainly used by transit companies to manage
the transfer business and the operation status, location, and driving path of transit trucks.

The synchronized application layer is mainly the synchronized operation between
the MSWCT system, and also includes the synchronized operation between the MSWCT
system internal subsystems. According to the core roles of different subsystems in different
scenarios, it can be divided into collection synchronization transportation, transportation
synchronization collection, and collection and transportation bi-directional synchronization.
The related synchronization mechanism will be introduced in detail in the later contents.

The basic function of the cloud application layer is to provide application systems to
meet the internal business needs of different participating entities in the MSWCT system;
in addition to that, the most important thing is to provide application systems to support
the synchronized operation between the subsystems.

4.2. CET-SDCS for MSWCT Endpoint Smart Device and Edge Computing Device Deployment

This section will show how to deploy terminal smart devices and edge computing
devices to capture, collect, and process real-time data at each key point of waste collection
and transportation. As shown in Figure 3, the main steps of the device deployment route
are as follows.
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Figure 3. Deployment of devices at CET-SDCS for MSWCT.

4.2.1. Terminal Smart Device Deployment

Terminal smart device deployment at collection points: as shown in Scenario I in
Figure 3, including a camera 1©, RFID reader 2© and RFID tag 5©. (1) Camera deployment:
mainly deployed at waste collection points for real-time monitoring of residents’ irregu-
larities, as well as the overflow of trash bins, and when abnormalities are found timely
alerts will be issued. For sporadic distributed small waste points, from the perspective
of realistic cost, the conditions can be installed: cameras for real-time monitoring, and no
camera points can contact the collection fleet through the system cell phone app. (2) RFID
reader deployment: the fixed RFID readers in collection points will be deployed to auto-
matically bind new empty trash bins when they enter the collection point and record the
point location and merchant information into the RFID tag. For sporadically distributed
small waste points, the points information can be manually bound by equipping PDAs to
the workers of the collection stage when the trash bin has reached its collection capacity.
(3) RFID tag deployment: the trash bin is the most important monitoring target in the waste
collection process, and each waste bin must be deployed with an RFID tag.

Terminal smart device deployment on collection vehicles: as shown in Scenario II in
Figure 3, the devices deployed on each collection vehicle include the gravity-sensing device
4© and RFID readers 2©. (1) The gravity-sensing device: the gravity-sensing devices are

placed mainly at the rear of the collection vehicle, and the weight of each bin is recorded.
(2) RFID readers: the RFID readers will record the merchant information of each trash bin
and bind it with the weight information measured by the gravity-sensing device, and then
transmit it to the on-board central control record.

Deployment of terminal smart devices in waste transfer stations: as shown in Scenario
III in Figure 3, the waste transfer station is a key data transition point, which is an important
link between waste collection and transportation. The IoT devices deployed are mainly
cameras 1©, RFID readers 2©, and weighing machines 5©. (1) The cameras are deployed
mainly to monitor illegal dumping behavior, as well as the safety monitoring of workers
and vehicles in the waste transfer station. (2) The RFID reader is mainly installed in the
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waste transfer station entrance and internal, where the transfer station entrance RFID reader
is mainly used to read the information of vehicles in and out, and the station internal RFID
reader is mainly used to read the information of large waste containers in and out. (3) After
entering the station, the trash bins unloaded by the collection vehicles are weighed by the
weighing machine and the merchants information of the trash bins are read; then, the trash
bins are transported by conveyor belt to the large waste transit container for dumping. In
addition to this, gas monitoring equipment and liquid level monitoring equipment are
deployed to prevent odor and liquid spillage.

Terminal smart device deployment on transit truck: as shown in Scenario IV in Figure 3,
RFID readers 2© and RFID tags 3©, the IoT sensing devices, are deployed on each transit
truck. (1) The RFID reader is mainly used to read the category, station, weight, and other
information of the transit container. (2) The RFID tag is mainly attached to transit containers
to facilitate information recording in and out of transfer stations.

4.2.2. Edge Computing Device Deployment

Edge computing device deployment at the collection points: as shown in scenario I
in Figure 3, the edge computing devices are mainly routers (a). All of the waste collection
points have fixed network lines, and the routers can be deployed at the waste collection
points to analyze and process the real-time video data.

Edge computing device deployment on the collection vehicles: as shown in scenario
II in Figure 3, the deployed edge computing devices are mainly PDA (b) and in-vehicle
PAD (c). (1) PDA is equivalent to a mobile gateway, mainly used for sanitation workers
of the collection stage to write data on sporadic waste collection points and assist RFID
readers to read and analyze data. (2) In-vehicle PAD is responsible for storing and analyzing
real-time data of the collection vehicles. Real-time data, including vehicle travel speed,
location, tire pressure, and loading capacity.

Edge computing device deployment on the waste transfer station: as shown in scenario
III in Figure 3, the edge computing devices deployed are mainly specific edge servers
(d) to store and process data of vehicles coming in and out, dumping waste volume, and
containers coming in and out.

Edge computing device deployment on the transit truck: as shown in scenario IV in
Figure 3, the in-vehicle PAD (c) is responsible for storing and analyzing real-time data of the
transit truck, including the truck travel speed, position, tire pressure, and loading capacity.

In addition to the deployment of terminal smart devices and edge computing devices,
it is also necessary to deploy related communication network equipment. The communica-
tion network is deployed using common 4G\5G, which is not described here, and can be
deployed according to the actual demand.

4.2.3. System Process Reengineering

With the systematic deployment of smart devices and edge computing devices at
each node of the MSWCT system and on transportation resources, an environment for
real-time online decision making and control of the whole process of waste collection and
transportation is created. The whole process of waste collection and transportation is
redesigned to accommodate the intelligent environment.

The following highlights a few key operations in the reengineering process:
(1) The user of the waste collection point needs to send a demand for collection on the

system’s mobile app to trigger collection.
(2) The planner of the waste collection company planning department receives an

order, develops the collection scheme, and sends the scheme to the collection fleet and
waste transfer stations manager.

(3) The sanitation workers (driver) of the collection fleet download the collection
scheme through the in-vehicle PAD, and drive to the collection point to collect the waste
according to the scheme.

90



Mathematics 2022, 10, 3558

(4) When the collection vehicle arrives at the collection point, the empty trash bins are
first unloaded, and bound to the collection point with a PDA. Then, the filled trash bins
are put on the vehicle, weighed, and the collection point information read, which will be
recorded in the in-vehicle PAD.

(5) When the collection vehicle arrives at the waste transfer station, it will be automati-
cally sensed and recognized by the RFID reader. After completing the inbound registration,
sanitation workers move into the designated position to unload the waste. The trash bins
are first weighed by the weighing machine, and the synchronized RFID reader reads the
RFID tag information of the trash bins, which is uploaded to the specific edge server of the
transfer station for processing. Then, the waste is automatically dumped into the container
by the lift, and then the sanitation workers clean the trash bin and label information is
released. The collection vehicle loads the empty trash bin, registers to leave the transfer
station, and accepts the next collection task.

(6) The waste transfer station sends transit demand to the transit fleet based on the
collection scheme sent by collection company and the real-time storage situation of the
container.

(7) The planning department of the transit company receives the transit order, develops
the transit scheme, and sends it to the transit fleet.

(8) The sanitation workers of the transit fleet download the transit scheme through the
in-vehicle PAD, and drive to the transfer station to transit the waste as planned.

(9) When the transit truck arrives at the transfer station, it will be automatically sensed
and recognized by the RFID reader. After completed the inbound registration, the on-board
RFID reader reads the transfer container information and adds the information to the transit
truck on-board central control to make records. When the truck leaves the station and the
registration is complete, the transit truck drives to the final waste treatment plant.

(10) The transit truck arrives at the final waste treatment plant. After completing the
registration of entering the plant, the unloading of waste is carried out. After the waste is
unloaded, the container is transported back to the transfer station. The sanitation workers
confirm the completion of the whole transfer work on the vehicle-mounted integrated
machine and accept the next transit task.

The above is the basic operation of the system process reengineering. In the actual
operation process, the system often faces a variety of internal and external dynamic distur-
bances. Therefore, this paper further proposes a synchronous operation mechanism to deal
with various dynamic disturbances faced by the system operation.

4.3. Operation Mechanism of CET-SDCS for MSWCT

This section follows the basic idea of synchronization operation proposed by Qu et al. [30,36]
in the field of intelligent manufacturing, and extends its application to the field of waste
management. A set of synchronization decision-making mechanisms for the MSWCT
system is proposed, which includes two steps: firstly, the dynamics level of the system is
classified and a set of classification rules for the dynamics level is established; secondly,
a set of synchronization decision-making mechanisms is designed for different levels
of dynamics.

4.3.1. The Dynamics Classification of the MSWCT System in Cloud-Edge-Terminal Architecture

The scope of the dynamics impact of the MSWCT system on the system or each unit
is marked as R. The value of R is determined by the responsive threshold (T[min,max]) of
the dynamics acting on the system and the state St at time T. Based on the value of R, the
dynamics of the MSWCT system is classified into three levels, as follows:

First-level dynamics: When the impact of dynamic interference is less than the maxi-
mum responsive threshold for each unit within the MSWCT system (the collection point,
the recycling waste pick-up of collection vehicles, the waste transfer, and the waste transit),
i.e., when R is less than Tmax, the dynamics can be eliminated by task readjustment within
the units.

91



Mathematics 2022, 10, 3558

Second-level dynamics: When the impact of dynamic interference is more than the
maximum responsive threshold for each unit, i.e., when R is more than Tmax, the responsive
ability of each unit is no longer able to respond to the dynamic impact on its own, and it
needs to coordinate with other units to adjust tasks to deal with the dynamic impact.

Third-level dynamics: The impact of dynamic interference exceeds the responsive
ability of multiple units collaboratively, i.e., the units cannot respond to the dynamic
impact by readjusting tasks. At this time, it is necessary to call on external resources of
the system, i.e., change the existing resource configuration (e.g., temporarily renting an
external vehicle), to cope with the dynamic impact. (The third-level dynamics involves a
game between the cost of bringing in external resources and the penalty cost for failure to
fulfil orders. In this paper, the third-level dynamics is the case where the cost of calling in
external resources is less than the penalty cost.)

According to the above classification rules for dynamics, examples of the dynam-
ics encountered in the real operation of the MSWCT system and their levels are shown
in Table 1.

Table 1. The example of dynamics classification of the MSWCT system.

Stages of Dynamic
Generation

Dynamics The Responses Dynamics Classification

The waste storage at the
collection point

Some of the bins at the collection
point are full Close the door of the full bin First-synchronization

The bins at the collection point are
all full

Call the collection vehicle
priority to pick up Second-synchronization

The bins at the collection point are
all full

Collection vehicles are out of
reach and external bins are
brought in to replace full ones
at the collection point

Third-synchronization

The recycling waste pick-up of
collection vehicles

Traffic jams Wait or reroute First-synchronization

Collection vehicle breakdown
(with a spare vehicle to call) Call the spare vehicle Second-synchronization

Collection vehicle breakdown (no
spare vehicle to call) Rental of external vehicles Third-synchronization

The waste transfer

Some of the garbage transfer
containers are full Close container door First-synchronization

All the garbage transfer
containers are full

Call the transfer truck to
transfer, or call the collection
vehicle to temporarily not
enter the station

Second-synchronization

All the garbage transfer
containers are full

Rental of external transfer
containers Third-synchronization

The waste transit

Traffic jams Wait or reroute First-synchronization

Transit truck breakdown (the fleet
has idle truck calls)

Contact collection vehicles to
unload at a less loaded
transfer station

Second-synchronization

Transit truck breakdown (the fleet
has no idle truck calls) Rental of external trucks Third-synchronization

4.3.2. The Synchronization Decision-Making Mechanism of MSWCT System in
Cloud-Edge-Terminal Architecture

The synchronization decision-making mechanism includes “three levels of synchro-
nization, two stages of decision-making”, referred to as the “three levels, two stages”
decision-making mechanism, as shown in Figure 4 and described in detail below.
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Figure 4. “Three levels, two stages” synchronization mechanism description.

• Three levels of synchronization

“Three levels of synchronization” is a three-level synchronization decision-making
method, including first-, second- and third-synchronization, in response to the dynamics of
three different levels.

First-synchronization: When the dynamic is a first-level dynamic, the terminal smart
device can get accurate information about the unit operation in real time and send the infor-
mation to the edge computing device within the unit for analysis. On top of guaranteeing
normal operation within the unit, the edge computing server schedules and optimizes the
unit tasks to eliminate the dynamic impact so as not to affect the normal operation of other
decision-making units.

Second-synchronization: When the dynamic is a second-level dynamic, the terminal
smart device takes the acquired real-time information and feeds it back to the edge com-
puting devices for pre-processing. After the information pre-processing is completed, the
edge server sends it to the cloud server for analysis. On the premise of guaranteeing each
units’ own interests, the cloud server can eliminate the dynamics by coordinating and
changing the tasks and plans between the units to avoid affecting the stable operation at
the system level.

Third-synchronization: When the dynamic is a third-level dynamic, the process of
data collection, transmission, and pre-processing in the early stage is similar to that of
second-synchronization processing, while the difference is the analytical processing in the
cloud, where the algorithms and models of third-synchronization are more complex. After
considering the full process optimization analysis, the system can eliminate the dynamics
by re-scheduling system resources (e.g., vehicle scheduling between different collection
companies) or adding new resources (e.g., temporarily renting or purchasing transportation
and storage services).

• Two stages of decision-making

The two stages of decision-making includes two processes: initial scheduling (pre-
decision) and rescheduling (revision decision making), as shown in Figure 4.

Initial scheduling: When the MSWCT system receives a collection order from a waste
collection point, the synchronization service layer analyses, evaluates, and predicts the state
of each subsystem component according to the requirements and constraints of the order,
and determines the resource configuration, task assignment, and route planning according
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to the center of models to develop the waste collection and transit schemes. Then, the plan
is transmitted to the main service systems. Each main service system proposes their own
revisions after trade-offs and feedback to the synchronization service center of the system.
This iteration is repeated until the system’s optimal collection and transit scheduling (initial
scheduling) is obtained.

Rescheduling: After receiving the initial scheduling, the waste collection and transit
company organize the collection, transfer (temporary storage), and transit activities accord-
ing to the instructions. In the real execution process, if the terminal device monitors the
occurrence of dynamic interference and determines that the dynamic difference is more
than the terminal device’s predetermined degree, the dynamic response mechanism of the
edge service layer is triggered first. If the dynamic difference exceeds the predetermined
degree of the edge server, a request is made by the edge server to the cloud server, which
determines the level of dynamics by analyzing. After determining the dynamics level,
the cloud server analyzes and obtains the corresponding processing countermeasures and
reformulates a revised planning scheme. Finally, the revised solution is obtained, and the
instructions are transmitted to the terminal device layer for execution. The iteration is
repeated until the end of the implementation task.

The “three levels, two stages” decision-making mechanism relying on the support of
the cloud-edge-terminal architecture can quickly respond to the impact of the dynamics of
the system and is the guarantee of the efficient operation of the system.

5. Case Study

This case takes the MSWCT system of a central street (Gongbei Street, Zhuhai City) in
a key city node (a core city located on the west bank of China’s Pearl River Estuary and a
coastal tourist city) in the Guangdong-Hong Kong-Macao Greater Bay Area as the research
object. Gongbei Street covers a total area of 10.32 square kilometers, with a permanent
population of 230,000 and dense residential buildings. The street boasts a developed service
and catering industry, producing an average of about 230 tons of waste per day. Gongbei
Street is one of the pioneers in Zhuhai to apply the management mode of waste collection
and transportation after classification.

The street currently has 420 registered waste collection points, 20 waste transfer
stations, 9 waste collection companies, and 1 waste transit company. In total, 50 tons of
kitchen waste and 170 tons of other waste are collected on a daily basis. Hazardous waste
and recyclables are not collected every day, with an average daily collection volume of
about 0.1 ton and 17 tons, respectively.

The “waste collection and transportation” process in Gongbei Street is under the
unified supervision of the Urban Refinement Management Office (hereinafter referred
to as the Refinement Office) under the Street Office. Initially, the units are required to
fill in the paper documents manually for registration in a traditional way, and then the
Refinement Office collect the paper documents and import them into the computer for
statistical analysis. In this mode, due to the low data collection efficiency, low accuracy,
and poor real-time data, various dynamic disturbances may occur in the actual operation
process. When a disturbance occurs, the three parties, including the collection company,
the transit company, and the Street Office, cannot obtain real-time data of the system to
make timely adjustments.

In order to solve the above-mentioned management decision-making problems, the
Street entrusted a third-party information system company to develop an IoT-based visual
management system for waste classification. By placing RFID tags on trash bins, installing
in-vehicle PDAs on waste trucks, and equipping sanitation workers and transfer stations
with RFID tag readers, the platform aims to achieve online management of the MSWCT
system. Here we present the details and challenges of the system operation.
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5.1. The Operation of the MSWCT System and Its Challenges

With the help of the waste visual management system, the Gongbei Street Office has
established a six-step operation process of the MSWCT system.

Step 1: The property management company (PMC) or merchant managing the collec-
tion points determine the daily waste collection and transportation requirements for a fixed
period (for example, one month) based on the empirical value of its own waste collection
volume (assuming the daily collection and transportation volume is equal). Then, they
convert the collection and transportation requirement into an order, which is sent to the
collection company.

Step 2: The waste collection company (WCC) develops the monthly collection and
transportation scheme according to received orders, and sends it to the collection fleet (the
driver is responsible for driving the collection vehicle and clearing the waste).

Step 3: The collection workers check the monthly collection scheme through the PDA.
Based on the method of cyclic pick-up, they drive to the collection point with empty bins to
collect waste with a fixed route every day.

Step 4: The empty bins are removed from the vehicle, and information regarding
collection points and trash bin types are written into the RFID tag of the trash bin through
handheld terminals. The full waste bins are put onto the vehicle, and driven to the next
collection point after loading.

Step 5: The collection vehicles are loaded up and driven to the nearest transfer station
to unload. Weighing by an intelligent weighbridge is the first part of the unloading process,
and the RFID tag information of the bin is automatically read and bound before being
uploaded to the system. After loading the empty bin at the transfer station, a new round of
collection and transportation begins until the task is complete.

Step 6: The transfer station manager collects statistics on the current carrying capacity
of the waste transfer station. When the transfer station reaches the preset transit threshold,
a shipping request is sent to the transit company.

Step 7: After the waste transit company (WTC) receives the transportation request, it
develops a transit scheme and, in turn, transits the waste from the waste transfer station
to the waste final treatment plant. After the whole vehicle is weighed in the treatment
plant, the data are fed back to the Street Office’s Waste Classification Visualization Manage-
ment System.

However, the street still faces three decision-making challenges: the acquisition of real-
time data in the whole process, real-time dynamic decision making, and the synchronization
of decision making among units.

Acquisition of real-time data in the whole process: The data currently obtained by the
decision-making management of the Street Office are the execution results fed back by each
subsystem. However, the real-time operation status data of trash bins, transfer stations,
and transportation trucks involved in the whole process cannot be obtained.

Real-time dynamic decision-making: The current system adopts periodic decision
making instead of real-time dynamic decision making. The actual implementation varies
from day to day, and various dynamic disturbances are faced during the implementation
process. When the system dynamic occurs, the system cannot monitor it, and can only take
intervention measures after the dynamic impact results are produced.

Synchronization decision-making between units: Since there is no synchronization
operation mechanism, the subsystems all make decisions independently. In the case of
optimal operation of local subsystems, it is difficult to guarantee that the entire system
works optimally because no synchronization relationship is established among units.

The main reasons for the above-mentioned challenges in the Gongbei Street Office are
the lack of methods for acquiring real-time data during the whole process, methods for
distributed data processing and decision making, and synchronization mechanisms and
methods among system units. In response to these challenges, a project was launched with
the support of Top Cloud Tech Co., Ltd., (Zhuhai, China) which provides system platform
services for the Gongbei Street Office. By combining the ubiquitous perception architecture
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of IoT with the cloud-edge collaborative computing architecture, the project aims to build a
synchronization system of real-time perception, multi-level collaborative computing and
decision making for the whole process of waste collection and transportation. This project
is highly aligned with the intelligent management strategy of waste classification promoted
by the central government, and is a pilot project for the intelligent upgrading of waste
classification in Zhuhai, which has won the recognition from the government department.

5.2. Re-Engineering Waste Collection and Transportation Operations

In order to adapt to the whole-process real-time perception and edge computing
environment of IoT, the waste collection and transportation operation of the Gongbei Street
Office was re-engineered with the help of CET-SDCS for MSWCT. Details are as shown in
Figure 5 below.

 

Figure 5. Re-engineered process with CET-SDCS for MSWCT.

(1) The management persons at the waste collection point (such as property manage-
ment persons, and merchants) issue collection and transportation orders through the system
mobile app. Therefore, some disturbances, such as urgent collection and transportation
orders from merchants, can be handled in real time.

(2) The planner of the WCC’s planning department receives an order, develops the
collection and transportation plan according to the use of the company’s resources, and
sends the plan to the fleet. The collection and transportation plan determines the departure
time, driving route, and transfer station location for unloading.
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(3) The sanitation workers of the collection and transportation fleet download the
collection and transportation scheme through the in-vehicle PAD, and go to the collection
point to collect and transport the waste according to the scheme.

(4) When the collection vehicle arrives at the collection point, the empty trash bins
are unloaded and bound to the collection point with a handheld mobile terminal/fixed
RFID reader. The filled trash bin on put on the vehicle, weighed, and the collection point
information read, which is be recorded in the in-vehicle PAD. If the weight is inconsistent
with the planned amount, the in-vehicle PAD will send a signal of abnormal amount
of waste to the system. After the vehicle is full, it drives to the nearest transfer station
to unload. (As different types of waste have different characteristics, the collection and
transportation forms are also different. For example, food waste is mostly transported with
bins, which need to be changed. Bins are not required to be changed for other waste, but
the basic process is the same. Take kitchen waste as an example in this paper.)

(5) When the collection vehicle arrives at the transfer station, it will be automatically
sensed and recognized by the gate. After detection, the vehicle drives into the designated
position to unload the waste. The waste is weighed, and the information of the trash bin
is read and matched with the information that was recorded in the in-vehicle PAD. The
operation process also includes dumping of the full waste trash bin, waste compression,
empty bin cleaning, label information release, empty bin loading, and vehicle departure.
The next cycle is started after completing the above operations.

(6) The waste transfer station downloads the collection and transportation scheme,
and develops a waste transit order based on the actual waste volume. As such, some
dynamic disturbances can be avoided.

(7) The planning department of the transit company receives the transit order, develops
the transfer plan based on the internal vehicle status, and sends the transit plan to the
transit fleet. The transit plan confirms the departure time of the transit truck, the sequence
of the transit at the transfer station, and the driving route of the truck.

(8) The sanitation workers of the transit fleet download the transit plan through the
in-vehicle PAD, and go to the transfer station to transit the waste as planned.

(9) When the transit truck arrives at the transfer station, it will be automatically sensed
and recognized by the gate. After the detection, the transit truck enters the designated
position to load the waste transfer box. The system automatically senses that the waste
transfer box leaves the position, and the gate records the departure of the truck and the
waste transfer box.

(10) The transit truck carries the waste transfer box to the final waste treatment plant.
After the admission registration, the intelligent weighing device automatically reads the
waste transfer box information, binds it with the weight information, and uploads the
information to the system. The transit truck returns to the previous transfer station with
the new empty transfer box and starts another round of transfer.

5.3. Benefits of CET-SDCS for MSWCT

Using the CET-SDCS for MSWCT, Gongbei Street can acquire real-time data of the
whole process of waste collection and transportation and monitor the operation status
in real time. At the same time, the real-time data collected by the terminal smart device
is processed and analyzed through the edge computing device, which avoids redundant
data uploading to the cloud, relieves the pressure on the network bandwidth and cloud
data center, and greatly reduces the time delay of the system. It has improved the street’s
response speed to different levels of dynamics, and realized the synchronization of decision
making among multiple units. It has also significantly improved the operating efficiency of
the system, and reduced the operating costs of waste collection and transportation. The
details are shown in Table 2.
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Table 2. Efficiency and cost effectiveness of CET-SDCS for MSWCT.

Item
Year

Change (%)
2020 2021

Daily collection weight per vehicle (taking kitchen waste
collection as an example) 6 tons 18 tons Increase by 200%

Total number of collection vehicle shifts per month 520 shifts 436 shifts Decrease by 16.15%
Total cost of waste collection per year 6.24 million 5.232 million Decrease by 16.15%

Annual operating costs of the transfer station 2.7 million 2 million Decrease by 25.93%

In terms of the operating efficiency of the system, taking kitchen waste collection
vehicles as an example, before the implementation of the project, the total collection
volume of each vehicle per day was up to 6 tons, which increased to 18 tons after the
implementation of the project. With the same number of vehicles, the transportation
capacity of the collection and transportation fleet has been increased three-fold. In addition,
the frequency of departures has also been reduced from 520 shifts per month before the
implementation of the project to 436 shifts per month after the implementation, an average
reduction of 84 shifts per month, with a year-on-year decrease of 16.15%.

In terms of cost saving, before the implementation of the project, the annual collection
and transportation cost was CNY 6.24 million, and the operation and management cost of
the transfer station was CNY 2.7 million. After the implementation, the annual collection
and transportation cost is CNY 5.232 million, with a year-on-year decrease of 16.15%. The
annual operation and management cost of the transfer station is CNY 2 million with a
year-on-year decrease of 25.93%. The cumulative cost saving is CNY 1.708 million per year.

Although CET-SDCS has many of the above advantages, the initial investment cost
of CET-SDCS is relatively large, and the main cost increase comes from the investment
of a large number of edge computing devices. In the future, with the development and
maturity of edge computing technology, the cost of CET-SDCS will gradually decrease.

6. Conclusions

This paper introduces the CET-SDCS for MSWCT, which can be applied by government
sanitation departments and participating enterprises in different units involving waste
classification. Both government departments and participating enterprises are faced with
the challenges of acquiring real-time data during the whole process, dynamically judging
process control requirements, and a lack of synchronized decision-making mechanism
among subsystems in the operation of the MSWCT system. The entire waste collection and
transportation scheme and progress are subject to many dynamic disturbances. Intelligent
terminals and edge computing devices are systematically deployed at each key node
of the MSWCT system to create an environment for real-time online decision making
and control during the whole process of waste collection and transportation. Under
an intelligent environment, the resources of the MSWCT system are transformed into
intelligent objects that can be tracked. We can collect operating status data and perceive the
occurrence of dynamics in real time. CET-SDCS for MSWCT supports the synchronized
decision making and control of the system in a dynamic environment with real-time
information. We developed a set of three-level dynamic hierarchical rules for the MSWCT
system. Moreover, the cloud-edge-terminal multi-level computing architecture is used to
collaboratively analyze and process different dynamics. We proposed a “three-level and
two-stage” synchronized decision-making mechanism suitable for the MSWCT system.
By implementing CET-SDCS for MSWCT system, we can not only improve the response
speed of the system to dynamics of different levels in the operation process, and realize the
synchronized decision making among multiple units, but we can also significantly improve
system operating efficiency and cut operating costs.

This paper mainly explores the innovative applications of cloud-edge collaborative
computing technologies and IoT technologies in the field of waste logistics operation
management. Firstly, intelligent terminals and edge computing devices are systematically
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deployed to the key units of the MSWCT system, which realizes the acquisition of insen-
sitive data during the whole process, and eliminates the phenomenon of non-sharing of
information within and between units. Secondly, the dynamic disturbances affecting the
operation of the MSWCT system are captured by IoT devices, and computed and analyzed
through the cloud-edge collaborative computing architecture to establish the matching
relationship between cloud-edge decision rights and different dynamic levels, and enable
fast decision making for dynamics of different levels. Thirdly, the idea of synchronized
operation is applied to the operation and management of waste logistics, which realizes the
synchronized decision-making between the waste collection stage and the transportation
stage, and the overall optimization of the system.

Future research work will answer the following questions. The first question is how
to use the historical data of the system to establish a big data prediction model and a
dynamic disturbance prediction model for the amount of waste generated, with an aim
to prevent the dynamic occurrence in advance. The second question is how to achieve a
better allocation of system resources under the synchronized operation environment. The
third question is how to improve the convenience of introducing external resources of the
system and achieve the business symbiosis of multi-stakeholders.
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Abstract: Disassembly is one of the most time-consuming and labor-intensive activities during the
value recovery of end-of-life (EOL) products. The completion time (makespan) of disassembling
EOL products is highly associated with the allocation of operators, especially in parallel disassembly.
In this paper, asynchronous parallel disassembly planning (APDP), which avoids the necessity to
synchronize disassembly tasks of manipulators during the parallel disassembly process, is studied to
optimize the task assignment of manipulators for minimal makespan. We utilize four mixed integer
linear programming (MILP) formulations to identify the optimal solutions. A set of different-sized
instances are used to test and compare the performance of the proposed models, including some real-
world cases. Finally, the proposed exact algorithm is further compared with the existing approach
to solving APDP. Results indicate that a significant difference exists in terms of the computational
efficiency of the MILP models, while three of four MILP formulations can efficiently achieve better
solutions than that of the existing approach.

Keywords: demanufacturing; disassembly planning; asynchronous parallel disassembly; mixed
integer linear programming; exact algorithm

MSC: 90B30

1. Introduction

As sustainable manufacturing and circular economy become popular in the industry,
demanufacturing has recently attracted increasing attention. In demanufacturing, the first
step is to disassemble end-of-life (EOL) products into components or parts and retrieve
usable or repairable subassemblies. In addition to economic benefits, the disassembly
of EOL products can bring environmental benefits due to the subsequent treatment of
subassemblies (e.g., reuse, remanufacturing, and recycling) [1,2], especially toxic materials
including solid, liquid, and gas. Disassembly planning (DP) aims to select the optimal
disassembly sequence of an EOL product with maximum recovery value and/or process-
ing efficiency [3].

According to the disassembly process, DP can be classified into two categories:
(1) sequential disassembly, where parts are disassembled one by one; (2) parallel dis-
assembly, where multiple parts can be disassembled by multiple manipulators simulta-
neously [4,5]. Sequential disassembly is a typical disassembly problem that has been
studied for decades [6], in which only one part or component is disassembled at a time.
Obviously, this one-by-one processing could incur a longer makespan to disassemble a
product, especially for large or complex products. Parallel disassembly is thus developed
that allows multiple manipulators to simultaneously perform disassembly operations.
However, parallel disassembly must consider not only the precedence relationships among

Mathematics 2022, 10, 3854. https://doi.org/10.3390/math10203854 https://www.mdpi.com/journal/mathematics101



Mathematics 2022, 10, 3854

parts/disassembly operations but also the coordination among manipulators [4]. For paral-
lel disassembly, two challenges need to be addressed: (1) which manipulator is selected
for disassembling each part (allocation problem), (2) how to assign parts or disassembly
tasks to each manipulator (sequencing problem). Therefore, parallel disassembly is more
complicated than sequential disassembly, where sequential disassembly only involves a
sequencing problem of disassembling parts/disassembly tasks.

To date, the existing literature on parallel disassembly largely focuses on synchronous
manipulator processing, that is, synchronous parallel disassembly planning (SPDP) [3,7–9],
which requires that the starting time of manipulators are synchronized in each parallel
disassembly process. This synchronization simplifies parallel disassembly planning but
increases the idle time of manipulators, which affects the disassembly efficiency. Recently,
Ren et al. [4] presented a novel parallel disassembly, called asynchronous parallel disas-
sembly, to eliminate the synchronous restriction and strengthen the collaboration among
manipulators. Asynchronous parallel disassembly allows a manipulator to continuously
work after completing a task as long as precedence (and other) constraints are not violated.
In Ren et al.’s work, asynchronous parallel disassembly planning (APDP) was first studied
and solved by an improved genetic algorithm (IGA). However, the authors did not describe
APDP mathematically and there is no guarantee that the optimal disassembly solutions
can be found by IGA. In order to make up for this shortcoming, this paper will make an
improvement in terms of mathematical models and methodology based on [4]. Moreover,
the proposed method in this work can solve the problems more optimally than the IGA in
Ren et al.’s work.

This paper aims at developing an exact method based on the APDP, in which the
minimum completion time (makespan) of disassembling a product can be identified. First,
we propose a basic mathematical model (i.e., Model 1) for the APDP. Then, three extended
models (i.e., Model 2, Model 3, and Model 4) are further developed. To evaluate the
performance of the proposed models, a set of different-sized instances are tested. The
results of these four formulations are presented and analyzed. Finally, the proposed
approach is compared with the IGA used in [4]. Experimental results demonstrate that
three of four MILP formulations outperform IGA, specifically, the solutions obtained from
IGA are improved in 5 out of 11 test instances. In summary, the key contributions of this
work can be summarized as follows:

(1) A nonlinear mathematical model is formulated to demonstrate the APDP.
(2) Four MILP formulations are developed based on the nonlinear model.
(3) The branch-and-cut algorithm of the CPLEX solver is employed to search for exact

solutions. The results demonstrate that the exact solutions of three MILP models are
able to improve the current best solutions in the test instances.

The remainder of this paper is organized as follows. Section 2 provides a literature
review, primarily focusing on DP. Section 3 describes the APDP and Section 4 presents four
MILP formulations for the APDP. Section 5 first presents the computational results of the
models in terms of the problem complexity and the computational performance. Then, the
computational results obtained from the proposed approach are compared with that of
the existing IGA method. Finally, concluding remarks and future directions are covered
in Section 4.

2. Literature Review

The DP is a combinatorial optimization problem and it can be solved by both exact
algorithms and heuristic/metaheuristic approaches [10–14]. In terms of exact methods,
branch-and-bound algorithms [5,15] and mathematical programming [16] are commonly
used, especially the latter. For example, Johnson and Wang [17] established an integer
linear programming model based on a two-commodity network flow formulation to find
an optimal solution with maximum profit. Kang et al. [18] presented an integer program-
ming model for disassembly sequence planning by modifying the shortest path problem.
Lambert [19] formulated a binary integer linear programming approach to maximize profit
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by applying an AND/OR graph for enumerating the complete set of possible disassembly
operations. Ren et al. [16] presented a MILP model to maximize the profit of a partial
disassembly process. Edis et al. [20] proposed a MILP model for the disassembly line
balancing problem. In addition, several extensions on the MILP model regarding line
balancing, hazardousness and demand of parts, and direction changes are proposed.

The exact algorithms perform well when solving relatively small-sized problem in-
stances [21]. However, with the increase in the problem size, their computational times
grow exponentially. Therefore, approximate methods are widely used to solve DP prob-
lems [22]. Approximate methods mainly refer to heuristics and meta-heuristic algorithms.
Smith and Hung [8] studied selective parallel disassembly planning and aimed to maxi-
mize product quality and minimize product cost and environmental impacts. Sanchez and
Haas [23] studied building disassembly and designed a rule-based recursive method to
obtain a near-optimal solution. Seo et al. [24] aimed to optimize the disassembly sequence
considering economic and environmental aspects and proposed a genetic algorithm (GA).
Kongar and Gupta [25] proposed a weighted multi-objective model to solve the DP prob-
lem with consideration of disassembly time, the penalty for direction changes, and the
penalty for disassembly method changes. Tian et al. [26] studied the disassembly planning
considering uncertainty and proposed a GA to minimize disassembly cost. Based on that,
they proposed a hybrid intelligent algorithm that integrates fuzzy simulation and artificial
bee colony [27]. Kheder et al. [28] designed a GA to optimize a disassembly process con-
sidering several criteria such as maintainability of components and disassembly direction
changes. Ren et al. [3] proposed a hierarchical disassembly tree to model selective SPDP
and a multi-objective evolutionary algorithm to simultaneously minimize disassembly
time and maximize profit. Guo et al. [29] used a scatter search algorithm to simultaneously
maximize disassembly profit and minimize time using the weighted coefficient method. Re-
cently, Pistolesi and Lazzerini [9] studied a multi-objective SPDP and proposed a Tensorial
Memetic Algorithm (TeMA) to maximize the degree of parallelism, the level of ergonomics,
and the balance of workers’ workload, while minimizing the disassembly time and the
number of rotating the product.

Meta-heuristic approaches also include the artificial bee colony (ABC)
algorithm [27,30–32], the particle swarm optimization (PSO) algorithm [33], the gravi-
tational search algorithm (GSA) [16], and the discrete flower pollination algorithm [34].
They are highly dependent on solution encoding and decoding, parameter setting, and
evolutionary operators [35]. On the other hand, it is difficult to guarantee both robustness
and optimality of the solutions obtained from a meta-heuristic method [36].

From the literature review above, it is noted that (1) the meta-heuristic algorithms are
commonly used to solve DPs, especially for large instances; (2) few studies are available on
APDP. In particular, no work exists that models and solves APDP optimally. To fill these
gaps, this work is focused on modeling and developing an efficient exact algorithm for
APDP. Except for that, this work attempts to optimally solve APDP with medium-/large-
sized instances.

3. Problem Description

3.1. Representation of DP

To model a DP problem, we first draw a disassembly precedence diagram to represent
the prior relationships among disassembly operations/parts in a product. In a precedence
diagram, each part of a product is indexed by j, j = 0, 1, . . . , N. N is the number of parts and
part 0 is a dummy part that denotes an initial point of the disassembly process. Figure 1
shows an example of the disassembly precedence diagram, in which there are 10 parts
and a directed edge is used to represent the precedence relationship between pairwise
adjacent parts. The edge can be viewed as a disassembly operation, which means that
part j will be removed after traversing the edge pointing to it. In Figure 1, the disassembly
operations are either solid lines (indicating AND precedence relationships) or dotted lines
(indicating OR precedence relationships). A part that is an AND predecessor of part j
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must be disassembled before removing part j. For example, part 7 is the AND predecessor
of parts 5 and 6 so it has to be removed before part 5 or 6 can be disassembled. Before
disassembling part j, not less than one of the parts that are OR predecessors of part j must
be done. For example, part 3 is one of OR predecessors of parts 1 and the other is part 2, so
either part 2 or part 3 has to be removed before part 1 can be disassembled.

 

Figure 1. An example of the disassembly precedence diagram for a product.

3.2. Synchronous Parallel Disassembly and Asynchronous Parallel Disassembly

Here, we adapt the example in Figure 1 to differentiate synchronous and asynchronous
disassembly processes, which are illustrated in Figure 2a,b, respectively. In Figure 2, the
numbers labeled in the parentheses denote the indices of parts and the disassembly time
of parts, respectively. Two manipulators are employed to perform the same disassembly
sequences in both Figure 2a,b, that is, {2, 8, 7, 5} and {3, 10, 9, 1, 4, 6}. The projection of each
rectangle denotes the disassembly time of the corresponding part. From Figure 2a, it is ob-
served that the beginning time of disassembling parts of manipulators is synchronous and
a manipulator cannot start a new disassembly task until all other manipulators complete
their current ones. The makespan of the synchronous disassembly process is the sum of the
maximum disassembly time among parts in each parallel disassembly, which are marked
in shadows in Figure 2a. It can be seen that little idle time exists in the asynchronous disas-
sembly process, that is, Figure 2b but a large amount of idle time occurs in synchronous
manipulator processing, that is, Figure 2a.

(a) 

(b) 

Figure 2. The comparison between two parallel disassembly processes. (a) Synchronous parallel
disassembly process. (b) Asynchronous parallel disassembly process.

In this work, the following assumptions or specifications are considered:

• AND precedence and OR precedence relationships are ensured.
• Work area collisions among manipulators are considered.
• Once a part begins, it cannot be interrupted.
• Each part is exactly removed once by one manipulator.
• Disassembly times of parts are determined in advance.
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• A manipulator can remove at most one part at the same time.

4. MILP Modeling of APDP

The notations are shown as follows:

N the number of parts
i, j part indices in a product, i, j ∈ I = {1, 2, . . . , N}

p, p′ position indices of manipulators, where p, p′ ∈ P = {1, 2, . . . , N}
Nm the number of manipulators
m manipulator index, m ∈ {1, 2, . . . , Nm}
ti the disassembly time of part i

ANDP(i) index set of AND predecessors of part i
ORP(i) index set of OR predecessors of part i

W(i)
index set of parts that have work area collisions with part i in the parallel

disassembly process
M a large positive number

xi,m,p
a binary decision variable, xi,m,p = 1, if part i occupies pth position of the

disassembly sequence of manipulator m; otherwise, xi,m,p = 0

xi,m
a binary decision variable,xi,m = 1, if part i is removed by manipulator m;

otherwise, xi,m = 0

ui,j,m
a binary decision variable, ui,j,m = 0, if part i is removed immediately

before part j by manipulator m; otherwise, ui,j,m = 0

yi,j

a binary decision variable, yi,j = 1, if part i is removed before (adjacent or
non-adjacent) part j; otherwise, yi,j = 0, part j is removed before (adjacent

or non-adjacent) part i
si a continuous decision variable, the starting time of disassembling part i

smm,p
a continuous decision variable, the time when manipulator m starts to

remove the pth part

Cmax
a continuous decision variable, the maximum completion time (makespan)

of the disassembly process

As shown in Equation (1), the objective of our APDP is to minimize the makespan of
completely disassembling a product, in which the assignment of disassembly tasks and
the sequence of removing parts are integrally determined for each manipulator. In the
following, we will illustrate the MILP formulations of the APDP.

minCmax (1)

4.1. Model 1

As aforementioned, two subproblems, that is, the allocation problem and sequencing
problem need to be addressed. Here, we introduce a binary decision variable xi,m,p that
represents whether part i is the pth part removed by manipulator m. Moreover, two
continuous decision variables, that is, si and Cmax, are employed to denote the starting
time of removing part i and the makespan of the disassembly process, respectively. The
constraint sets of Model 1 are described in Equations (2)–(10):

Nm

∑
m=1

N

∑
p=1

xi,m,p = 1, ∀i (2)

N

∑
i=1

xi,m,p ≤ 1, ∀m, p (3)

sixi,m,p+1xj,m,p ≥ (sj + tj)xi,m,p+1xj,m,p,
∀i, j, m, p ∈ {1, 2, . . . , N − 1} (4)
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N

∑
i=1

xi,m,p ≥
N

∑
j=1

xj,m,p+1, ∀ m, p ∈ {1, 2, . . . , N − 1} (5)

si ≥ sj + tj, ∀i, j ∈ ANDP(i) (6)

si ≥ sj + tj, ∀i, ∃ j ∈ ORP(i) (7)

si ≥ sj + tj or sj ≥ si + ti, ∀i, j ∈ W(i) (8)

Cmax ≥ si + ti, ∀i (9)

si ≥ 0, ∀i (10)

Constraint (2) denotes that each part must be exactly removed once by one manipulator
during the disassembly process. Constraint (3) denotes that a manipulator can remove
at most one part simultaneously. Constraint (4) ensures that a manipulator can begin to
disassemble the next part only after the current part is completely disassembled. To be
more specific, if xj,m,p and xi,m,p+1 are equal to 1, parts j and i are successively disassembled
by manipulator m, which indicates that the completion time of removing part j is no more
than the starting time of removing part i; otherwise, both sides of inequation (4) are equal
to 0. Constraint (5) denotes that there is no idle position in each disassembly sequence until
the last part of each disassembly sequence is removed by the manipulator. Constraint (6)
and (7) guarantee the AND, and OR precedence relationships among parts, respectively.
Constraint set (7) can also be formulated as ∑

j∈ORP(i)
si ≥ sj + tj, ∀i, among which si ≥ sj + tj

returns 1 or 0. Constraint (8) excludes the work area collisions between manipulators when
they work at the same time. Constraint (9) means that the makespan of a disassembly
process must be more than the completion time of disassembling each part. Constraint (10)
defines the decision variable si.

Equations (1)–(10) are linear except constraint (4). Constraint (4) includes the product
of binary and continuous variables, which is typically non-convex and difficult to be solved.
Here, we use the big M method to linearize formulation (4). Then, constraint (4) is converted
to constraint (11). The MILP of Model 1 can be depicted by formulations (1)–(3) and (5)–(11).

si ≥ sj + tj − M ∗ (2 − xi,m,p+1 − xj,m,p),
∀i, j, m, p ∈ {1, 2, . . . , N − 1} (11)

4.2. Model 2

Although constraint (11) is linear, it involves four indices (i.e., i, j, m, and p) and
consists of a large number of constraints. This could incur an increase in the computa-
tional complexity of Model 1. To avoid the complex computation, we attempt to simplify
constraint (11) in this segment.

First, a continuous variable smm,p is defined that denotes the starting time of removing
the pth part by manipulator m. With xi,m,p, si, and smm,p, we can obtain the following
equations:

smm,p =
N

∑
i=1

sixi,m,p, ∀m, p (12)

smm,p+1 ≥ smm,p +
N

∑
i=1

xi,m,pti, ∀i, m, p ∈ {1, 2, . . . , N − 1} (13)

Equation (12) illustrates the relationships among the decision variables, which denotes
that if part i is the pth part removed by manipulator m, that is, xi,m,p = 1, smm,p must
be equal to si. Constraint (13) is used to replace constraint (11), where the number of
constraints becomes small. However, the right-hand side of Equation (12) is nonlinear.
To linearize it, we formulate constraints (14)–(16), which are equivalent to constraint (12).
To be more specific, if xi,m,p = 1, constraint (14) enforces smm,p to be no less than si and
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constraint (15) enforces smm,p to be no more than si. Therefore, smm,p is equal to si. If
xi,m,p = 0, constraint (14) and (15) are relaxed and holds, and constraint (16) guarantee that
smm,p is equal to 0.

smm,p ≤ si + M(1 − xi,m,p), ∀i, m, p (14)

smm,p ≥ si − M(1 − xi,m,p), ∀i, m, p (15)

smm,p ≥ 0, ∀m, p (16)

4.3. Model 3

Decision variable xi,m,p is indispensable and crucial in both Model 1 and Model 2.
Here, xi,m,p is simplified to be xi,m to reduce the solution space and it determines whether
part i is removed by manipulator m without considering the position p. Nevertheless, xi,m
can only deal with the allocation problem of removal parts, and additional binary variable
yi,j is thus introduced. If yi,j equals 1, part i is removed before part j; otherwise, part i is
removed after part j, by which the disassembly sequence of parts can be determined.

The relationships among xi,m, yi,j, and si are formulated as:

Nm

∑
m=1

xi,m = 1, ∀i (17)

(sj − si − ti)xi,mxj,myi,j ≥ 0, ∀m, i, j, i < j (18)

(si − sj − tj)xi,mxj,m(1 − yi,j) ≥ 0, ∀m, i, j, i < j (19)

Constraint (17) denotes that the disassembly task of each part must be exactly assigned
to one manipulator. Constraints (18) and (19) are equivalent to constraint (11). Specifically,
inequation (18) requires that the starting time of removing part j is later than the completion
time of removing part i when xi,m = 1, xj,m = 1 and yi,j = 1. Instead, inequation (19)
denotes that the starting time of removing part i is later than the completion time of
removing part j when xi,m = 1, xj,m = 1 and yi,j = 0. Notably, constraints (18) and (19)
are dual with respect to i and j. Hence, both indices can be subjected to i < j, which helps
reduce the number of constraints in constraints (18) and (19).

Due to the nonconvexity and nonlinearity of constraints (18) and (19), we further
transform them into constraints (20) and (21), respectively. The MILP of Model 3 is obtained
by Equations (1), (6)–(10), (17), and (20)–(21).

sj ≥ si + ti − M(3 − xi,m − xj,m − yi,j), ∀m, i, j, i < j (20)

sj + tj ≤ si + M(2 − xi,m − xj,m + yi,j), ∀m, i, j, i < j (21)

4.4. Model 4

As presented in Model 3, xi,m is integrated with yi,j to address the allocation and
sequencing problems of APDP. Herein, we combine xi,m and yi,j into a binary decision
variable, i.e., ui,j,m. Let ui,j,m = 1 mean that part i is removed immediately before part j for
the same manipulator m, and otherwise ui,j,m = 0 [37]. Clearly, ui,j,m can simultaneously
decide on the task assignment of manipulators and the disassembly sequence of parts. Fur-
thermore, a dummy part, that is, part 0 is assumed to start and terminate each disassembly
sequence. This implies that part 0 is disassembled twice by each manipulator, that is, the
starting and the completion time of each disassembly sequence. It should be noted that the
disassembly time of part 0 is zero.

Based on decision variables ui,j,m, and si, Model 4 can be formulated as follows.

N

∑
i=0

Nm

∑
m=1

ui,j,m = 1, ∀j (22)
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N

∑
i=0

Nm

∑
m=1

ui,j,m =
N

∑
i=0

Nm

∑
m=1

uj,i,m, ∀j ∈ {0, 1, . . . , N} (23)

N

∑
j=1

u0,j,m ≤ 1, ∀m (24)

(sj − si − ti)
Nm

∑
m=1

ui,j,m ≥ 0, ∀i, j (25)

s0 = 0 (26)

Constraint (22) is equivalent to constraint (17), which indicates that each part has
exactly one immediate predecessor that is disassembled by the same manipulator. Con-
straint (23) guarantees the equilibrium of in-degree and out-degree, that is, each part has
exactly one immediate predecessor and follower in the disassembly sequence. Actually, the
disassembly sequence of each manipulator is a tour that starts from part 0 and terminates
at part 0. Constraint (24) is formulated to eliminate the subtour, that is, each manipulator
can at most complete one disassembly sequence. Similar to constraint (4), constraint set
(25) denotes that the immediate predecessor of each part must be earlier removed before it.
Constraint (26) denotes that the starting time of part 0 is equal to zero.

Finally, inequation (25) is linearized to (27) using the big M method, and the MILP of
Model 4 is formulated by Equations (1), (6)–(10), (22)–(24), and (26)–(27).

si + ti ≤ sj + M(1 −
Nm

∑
m=1

ui,j,m), ∀i, j (27)

5. Computational Results

The Branch-and-Cut (B&C) algorithm of IBM ILOG CPLEX 12.7.1 is used to solve the
proposed MILP formulations. The B&C algorithm is embodied in the CPLEX software (i.e.,
IBM ILOG CPLEX 12.7.1, IBM International Business Machines Corporation, New York, NY,
USA), which is very popular in solving mixed integer programming (MIP), especially for
mixed integer linear programming (MILP). In this section, four product cases previously
used in [4] are applied to test our models and evaluate the exact solutions found by the
B&C. Except Case 1 with 10 parts as presented in Figure 1, others are real-world cases, that
is, a valve cover head fixture with 22 parts (Case 2), an engine block with 35 parts (Case 3),
and a five-speed mechanical transmission with 40 parts (Case 4). Also, the maximum CPU
time (timelimit) used by the B&C is set to be 600 s and other configurations of the algorithm
adopt the default settings in the CPLEX software. The algorithm is implemented on a
desktop computer equipped with Intel Core i5-4460 CPU@3.20 GHz.

5.1. Comparisons of MILP Models

This subsection compares four MILP models in both size complexity and computa-
tional complexity. Three indicators are employed to evaluate the size complexity, that is,
the number of binary decision variables (NBV), the number of constraints (NC), and the
number of continuous decision variables (NCV). The performance of the MILP formula-
tions is highly associated with NBV, NC, and NCV [38,39]. Like others, in this paper, the
computational complexity is measured by the current solution (CS) found in the B&C, CPU
time consumed by the B&C, Gap, and Opt. CPU time is equal to timelimit if the B&C
algorithm cannot prove the optimal solution; otherwise, it is the time consumed for proving
the optimal solution. Note that Gap is the relative tolerance between CS and BS, where BS
is the lower bound obtained from the CPLEX solver, and Gap = |CS − BS|/CS% [40–43].
Opt represents the total number of problem instances solved to optimality by the B&C
algorithm within 600 s.

108



Mathematics 2022, 10, 3854

5.1.1. Size Complexity

Table 1 summarizes the four MILP models, and Table 2 reports the detailed information
on NBV, NC, and NCV of each model in the test instances. The first column of Table 2
denotes the number of manipulators employed in each case. It can be seen from Table 2
that Model 3 has the smallest NBV, Model 4 has the smallest NC, and Models 1, 3, and 4
have the smallest NCV. Model 1 has much more constraints than Model 2 since constraint
(11) in Model 1 comprises of much more constraints than constraints (13)–(16) in Model 2.
Due to decision variable smm,p, NCV in Model 2 is larger than that in Model 1. In Model 3,
two-dimensional variables xi,m and yi,j replace the three-dimensional decision variables.
Herein, the differences in the MILP models are analyzed with respect to decision variables
and constraints, the following subsection will further discuss the relationships between the
size complexity and the computational complexity.

Table 1. Summary of four MILP Models.

Models Model 1 Model 2 Model 3 Model 4

Binary variables xi,m,p xi,m,p xi,m, yi,j ui,j,m

Constraint sets (2)–(3), (5)–(11) (2)–(3), (5)–(10),
(13)–(16) (6)–(10), (17), (20)–(21) (6)–(10), (22)–(24),

(26)–(27)

Continuous variables si, Cmax si, smm,p, Cmax si, Cmax si, Cmax

Table 2. Comparison of size complexity.

Nm Case
Model 1 Model 2 Model 3 Model 4

NBV NC NCV NBV NC NCV NBV NC NCV NBV NC NCV

2

1 244 2504 12 244 610 34 79 262 12 288 190 13

2 968 20,503 23 968 2197 67 275 1013 23 1056 622 24

3 2458 83,593 36 2458 5331 106 673 2535 36 2598 1455 37

4 3216 125,140 41 3216 6898 121 876 3302 41 3376 1867 42

3

1 365 3735 12 365 894 45 90 372 12 431 203 13

2 1452 30,710 23 1452 3251 89 297 1475 23 1584 646 24

3 3683 125,312 36 3683 7919 141 708 3725 36 3893 1492 37

4 4816 187,619 41 4816 10,256 161 916 4862 41 5056 1909 42

4

1 486 4966 12 486 1178 56 101 482 12 574 216 13

2 1936 40,917 23 1936 4305 111 319 1937 23 2112 670 24

3 4908 167,031 36 4908 10,507 176 743 4915 36 5188 1529 37

4 6416 250,098 41 6416 13,614 201 956 6422 41 6736 1951 42

5.1.2. Computational Complexity

This segment focuses on the analysis of computational complexity among the models
and the comparison of the results is shown in Table 3. The first column of Table 3 denotes
the number of manipulators employed in each case. It is observed that Model 1 performs
worst in both the solution quality and the computational efficiency. It can only find the
optimal solutions for 5 out of 12 instances and its Gap values are equal to 0 in 4 instances.
For Case 3 and Case 4, Model 1 cannot even find any feasible solutions within 600 s. As
described in Table 1, Model 1 includes a three-dimensional binary variable xi,m,p and a
complex constraint (11), which results in poor computational performance.
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Table 3. Comparisons of computational complexity.

Nm Case
Model 1 Model 2 Model 3 Model 4

CS
CPU
(s)

Gap CS
CPU
(s)

Gap CS
CPU
(s)

Gap CS
CPU
(s)

Gap

2

1 89 2.18 0 89 0.37 0 89 0.03 0 89 0.20 0

2 25.5 600 29.41 20.5 484.26 0 20.5 1.67 0 20.5 1.61 0

3 - 600 - 1727 600 16.33 1726 600 13.04 1726 600 16.28

4 - 600 - - 600 - 365 600 6.85 384 600 24.74

3

1 89 0.81 0 89 0.14 0 89 0.03 0 89 0.08 0

2 20 600 10.0 20 179.28 0 20 0.91 0 20 0.27 0

3 - 600 - 1445 169.65 0 1445 3.25 0 1445 548.67 0

4 - 600 - - 600 - 338 600 5.92 338 600 14.50

4

1 89 0.42 0 89 0.16 0 89 0.05 0 89 0.06 0

2 18 346.31 0 18 50.5 0 18 0.20 0 18 0.25 0

3 - 600 - 1445 204.92 0 1445 0.91 0 1445 345.54 0

4 - 600 - - 600 - 305 600 1.97 310 600 6.77

Mean 429.14 6.57 290.77 1.18 200.59 0.49 274.72 1.69

Opt 5 8 8 8

In terms of computational performance, Model 2 is significantly better than Model 1.
Firstly, Model 2 is able to optimally solve 8 out of 12 instances (i.e., Gap = 0). Secondly, its
computational cost is much less than that of Model 1. By comparing their size complexities,
we can find that constraint (11) is simplified to constraint (13) in Model 2, which highly
reduces its complexity.

The Gap values of Models 2 and 3 show that the same instances can be optimally
solved by both models. As seen in the CS values, Model 3 can obtain feasible or optimal
solutions in each case within 600 s, whereas Model 2 cannot explore a feasible solution in
3 out of 12 instances within 600 s. This demonstrates that the computational efficiency of
Model 3 is superior to that of Model 2. By comparing their decision variables in Table 1,
we find that Model 3 does not involve a three-dimensional binary variable xi,m,p and a
continuous variable smm,p. Furthermore, the constraints of Model 3 are much less than
those of Model 2 according to the NC values in Table 2. Hence, the simplified decision
variables and the reduced constraints might improve the computational performance of
the models.

For Model 4, its CS values are slightly different from those of Model 3. Specifically,
only two solutions are found in Model 4, which is a little inferior to Model 3 in all tests. On
the other hand, the Gap values of Model 4 are significantly bigger than those of Model 3
when both cannot optimally solve the test instances. Therefore, Model 4 is not as good as
Model 3 in terms of solution convergence.

The last two rows of Table 3 provide the mean CPU time, the mean Gap, and Opt of
each model over all test instances. Notably, we only consider the instances that feasible
solutions can be found within 600 s when computing the mean Gap. It is noted that Model
1 finds the least optimal solutions (i.e., Opt = 4), while the other models explore 8 optimal
solutions within 600 s. Although Models 2, 3, and 4 have the same Opt, both the mean
CPU time and the mean Gap of Model 3 significantly outperform those of Models 2 and 4.
Therefore, Model 3 is the best, Models 2 and 4 are secondary, and Model 1 performs worst
for solving the APDP.

Table 4 presents the best solutions for Cases 3 and 4 with Nm = 2, 3, and 4, respectively.
Figures 3 and 4 present the Gantt charts of the best solutions for Cases 3 and 4, respectively.
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As seen in Table 4, Figures 3 and 4, the makespan gets some extent improvement with the
increase of manipulators. However, there exists a threshold with respect to Nm. In other
words, the makespan of the disassembly process will not be reduced once the manipulators
are redundant. For example, Case 3 with 3 and 4 manipulators are able to find the same
optimal solution (i.e., 1445). This situation also usually happens in practice. Our proposed
method can help decision-makers select the ideal manipulator configuration, where trade-
offs have to be made between the makespan and the cost of manipulators. With regard to
the case with considering unlimited manipulators, the four MILP mod-els can be seen in
Appendix A.

Table 4. Best Solutions for cases 3–4 with 2–4 Manipulators.

Case Nm Solution Cmax

3

2 M1:15,4,34,5,12,29,33,21,8,10,18,6,9,30,14
M2:1,13,31,16,35,24,20,7,11,19,26,17,23,25,32,22,3,2,27,28 1726

3
M1:1,13,20,4,5,15,29,24,26,25,10,31,9,11,21,18,3,2,22,12,27,28
M2:34,35,32,17,30
M3:14,8,7,6,33,16,19,23

1445

4

M1:34,33,24,29,25,16,13,4,5,3,2,22,27,28
M2:35,32,20,8,19,18,12,11,6
M3:15,21,14,7,30
M4:1,31,26,17,10,9,23

1445

4

2 M1:15,18,21,23,24,19,33,32,39,34,36,22,20,4,3,29,28,6,10,8,11
M2:16,17,2,25,26,5,37,40,35,38,31,7,9,27,30,14,13,1,12 365

3
M1:17,22,2,19,21,5,31,37,38,7,9,28,1,10,8,12
M2:15,16,24,25,34,33,36,20,14,29,13
M3:18,26,23,40,35,32,39,4,27,30,6,3,11

338

4

M1:15,2,26,25,5,34,38,7,9,30,29,6,10,8,12
M2:17,40,36,13
M3:18,24,20,32,31,39,22,14,3
M4:16,23,35,33,37,19,21,4,28,27,1,11

305

 

 
(a) 

 
(b) 

 
(c) 

Figure 3. Gantt charts of Case 3 with 2–4 manipulators. (a) Case 3 with 2 manipulators (Cmax = 1726).
(b) Case 3 with 3 manipulators (Cmax = 1445 ). (c) Case 3 with 4 manipulators (Cmax = 1445 ).
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(a) 

(b) 

(c) 

Figure 4. Gantt charts of Case 4 with 2–4 manipulators. (a) Case 4 with 2 manipulators (Cmax = 365).
(b) Case 4 with 3 manipulators (Cmax = 338 ). (c) Case 4 with 4 manipulators (Cmax = 305 ).

5.2. Result Comparisons with IGA

The exact solutions obtained from the proposed MILP models are compared with
the solutions from the IGA in [4]. Table 5 shows the result comparisons, in which the
best solution for each instance is highlighted. It can be seen that IGA can obtain seven
best solutions in 12 test instances. Models 1–4 can identify 5, 9, 12, and 10 best solutions,
respectively. Obviously, IGA outperforms Model 1, while it is not as good as Models 2–4.
On the other hand, IGA cannot ensure that the same solution is obtained in each test,
which can be demonstrated by the difference among the Best, Average and Worst values of
IGA. Instead, the proposed method aims to solve the exact solutions of the APDP. Except
for that, it can guarantee the robustness of the solution. In summary, three out of four
proposed MILP models perform better than the IGA in both the quality and robustness of
the solutions. This is because the IGA is one of the approximation algorithms, and it cannot
guarantee obtaining the same solution within the same time limit. This is the commonness
of most approximation algorithms. With regard to MILP formulation, it is solved by the
exact Branch-and-Cut (B&C) algorithm of CPLEX, and the same solution within the same
time limit can be obtained.
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Table 5. Computational results of our MILP models and the IGA.

Case Nm
IGA

Model 1 Model 2 Model 3 Model 4
Best Average Worst

1

2 89 90.3 93 89 89 89 89

3 89 89 89 89 89 89 89

4 89 89 89 89 89 89 89

2

2 20.5 20.8 21 25.5 20.5 20.5 20.5

3 20 20 20 20 20 20 20

4 18 18 18 18 18 18 18

3

2 1728 1731.9 1736 - 1727 1726 1726

3 1505 1516.6 1525 - 1445 1445 1445

4 1445 1454.9 1467 - 1445 1445 1445

4

2 400 414.8 426 - - 365 384

3 342 350.5 357 - - 338 338

4 306 312.8 317 - - 305 310

The best values are marked in bold.

6. Conclusions

This paper is focused on exploring the exact solutions of asynchronous parallel dis-
assembly planning (APDP) with minimal makespan during the disassembly process. A
basic nonlinear mathematical model is presented to demonstrate the APDP. To improve
the basic model, four MILP models are further developed using linearization or relaxation
techniques. We employ the branch-and-cut algorithm embedded in CPLEX to solve the
models. In the experimental tests, the four MILP models are analyzed from the perspective
of size complexity. Then, the computational performance of each model is evaluated and
compared by solving a set of instances. The obtained results indicate that Model 3 performs
best, Models 2 and 4 are secondary, and the worst is Model 1. Finally, the obtained exact
solutions are compared with the existing solutions from an improved genetic algorithm
(IGA). The comparison demonstrates that three out of four proposed models can obtain
better solutions than the IGA.

In this paper, only 12 tests are done to evaluate the differences of different MILP
models. We welcome related researchers to use our MILP formulations to solve more
different-sized instances and find more differences between different MILP models. It is
undeniable that the efficiency of IGA (approximation algorithm) will be much higher than
the MILP model for solving large-sized instances, this has been proved by much existing
research for solving other combinatorial optimization problems [21,40]. This is because,
with the increase of the size of the instance, the solution space, the number of decision
variables, and the number of constraints will enlarge exponentially, which will result in
difficult branching and finding new low bounds of the B&C algorithm.

In future studies, other important factors such as the recovered profit of EOL products
and the manipulator configuration will be considered as the objective for APDP, which
could help find much better optimal solutions that involve the balance between disassembly
efficiency, cost, and profit.
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Appendix A

With regard to the case considering unlimited manipulators, the four MILP models are
as follows. Model 1 is subjected to constraint sets (A1)–(A8), Model 2 is subjected to con-
straint sets (A1)–(A12), Model 3 is subjected to constraint sets (A4)–(A8) and (A13)–(A14),
and Model 4 is subjected constraint sets (A4)–(A8) and (A15)–(A18).

N

∑
p=1

xi,p = 1, ∀i (A1)

N

∑
i=1

xi,p ≤ 1, ∀p (A2)

N

∑
i=1

xi,p ≥
N

∑
j=1

xj,p+1, ∀ p ∈ {1, 2, . . . , N − 1} (A3)

si ≥ sj + tj, ∀i, j ∈ ANDP(i) (A4)

si ≥ sj + tj, ∀i, ∃ j ∈ ORP(i) (A5)

si ≥ sj + tj or sj ≥ si + ti, ∀i, j ∈ W(i) (A6)

Cmax ≥ si + ti, ∀i (A7)

si ≥ 0, ∀i (A8)

smp+1 ≥ smp +
N

∑
i=1

xi,pti, ∀i, p ∈ {1, 2, . . . , N − 1} (A9)

smp ≤ si + M(1 − xi,p), ∀i, p (A10)

smp ≥ si − M(1 − xi,p), ∀i, p (A11)

smp ≥ 0, ∀p (A12)

sj ≥ si + ti − M(1 − yi,j), ∀m, i, j, i < j (A13)

sj + tj ≤ si + Myi,j, ∀m, i, j, i < j (A14)

N

∑
i=0

ui,j = 1, ∀j (A15)

N

∑
i=0

ui,j =
N

∑
i=0

uj,i,∀j ∈ {0, 1, . . . , N} (A16)

N

∑
j=1

u0,j ≤ 1 (A17)

s0 = 0 (A18)
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Abstract: Energy conservation, emission reduction, and green and low carbon are of great significance
to sustainable development, and are also the theme of the transformation and upgrading of the
manufacturing industry. This paper concentrates on studying the energy-efficient hybrid flowshop
scheduling problem with consistent sublots (HFSP_ECS) with the objective of minimizing the energy
consumption. To solve the problem, the HFSP_ECS is decomposed by the idea of “divide-and-
conquer”, resulting in three coupled subproblems, i.e., lot sequence, machine assignment, and lot
split, which can be solved by using a cooperative methodology. Thus, an improved cooperative
coevolutionary algorithm (vCCEA) is proposed by integrating the variable neighborhood descent
(VND) strategy. In the vCCEA, considering the problem-specific characteristics, a two-layer encoding
strategy is designed to represent the essential information, and a novel collaborative model is
proposed to realize the interaction between subproblems. In addition, special neighborhood structures
are designed for different subproblems, and two kinds of enhanced neighborhood structures are
proposed to search for potential promising solutions. A collaborative population restart mechanism
is established to ensure the population diversity. The computational results show that vCCEA can
coordinate and solve each subproblem of HFSP_ECS effectively, and outperform the mathematical
programming and the other state-of-the-art algorithms.

Keywords: hybrid flowshop scheduling; energy efficiency; consistent sublots; collaborative coevolu-
tionary algorithm; variable neighborhood descent

MSC: 90B30

1. Introduction

With the changing climate and environment, green development, energy saving, and
emission reduction become the themes of transformation and upgrading of the manu-
facturing industry. Advanced production scheduling technology can effectively improve
production efficiency and reduce energy consumption in the manufacturing industry, en-
hancing the core competitiveness of enterprises. As a branch of scheduling problems, the
hybrid flowshop scheduling problem (HFSP) [1] has a very strong industrial application
background, such as microelectronics, furniture, textile, petrochemical, and pharmaceutical
fields [2–5]. In HFSP, a group of jobs need to go through a series of processing stages
in succession and each stage has multiple identical machines. The goal of the HFSP is
to determine the job sequence and machine assignment of these jobs at each stage with
considering production constraints. The problem is a very complex combinatorial opti-
mization problem [6], and even on a very small scale, it proves to be NP-hard [1]. In the
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most research on the HFSP [7], each job is treated as a whole, and the job cannot proceed
to the next stage before the completion of the processing at a given stage [8]. In the actual
production scenario [9,10], a job, called a lot in the following, usually consists of a number
of identical items. When the lot is large, items already processed completely on a machine
need to wait a long time in the output buffer of this machine, whereas the downstream
machine may be idle. This scenario will have a negative impact on the production efficiency
and lead to unnecessary energy consumption. Therefore, it is very important to develop
a scheduling methodology suitable for this scenario to enhance the energy efficiency and
core competitiveness of such factories.

In this paper, we introduce the technique of lot streaming into the HFSP, resulting in a
novel problem, i.e., lot streaming HFSP. The lot streaming, first introduced by Reiter [11] in
the context of job shop scheduling, is preferable for implementing the time-based strategy
and widely adopted by top-notch companies to improve their customer service. Lot
streaming is the process of splitting a large lot into several sublots and scheduling those
sublots in an overlapping fashion to accelerate progress [12]. That is, the lot streaming is
used to divide a lot with a large number of items into several sublots with a small number of
items. Each sublot can be transported to the downstream stage for processing immediately
after its completion at the upstream stage and does not have to wait for the completion
of the entire lot. This method can effectively reduce the production cycle and improve
production efficiency so that products can be delivered to customers faster, and more orders
can be accepted within a limited time. Moreover, this method can effectively increase
machine utilization, reduce machine idle time, and thus reduce energy consumption.

According to the lot streaming studies, the lot division methods [13] are equal sublots,
consistent sublots, and variable sublots. With equal sublots, a lot can be divided into several
sublots with equal size, i.e., each sublot contains the same number of items, and the number
and size of sublots remain unchanged throughout the processing process. Consistent
sublots mean that a lot is divided into several sublots that may have different sizes, and the
number and size of sublots remain unchanged throughout the processing process. Equal
sublots can also be understood as a specific case of consistent sublots. Unlike consistent
sublots, in variable sublots [14], the number and size of sublots may change throughout
the processing process. In real production, variable sublots are rarely used because their
diverse nature seriously increases the difficulty of production management. Moreover, its
comprehensive cost performance is not high for most enterprises. In contrast, consistent
sublots are often used in most enterprises’ actual production.

In sum, the energy-efficient HFSP with consistent sublots (HFSP_ECS) is the focus of
our study. To solve the problem, three coupled subproblems must be addressed, i.e., lot
sequence, machine assignment, and lot split. Thus, the HFSP_ECS is much more complex
than the classical HFSP, and obviously NP-hard. With its NP-hard property, the meta-
heuristics are suggested to solve the problem. In addition, when using the metaheuristics,
in order to obtain a globally optimal solution, the three subproblems must be coevolved
and addressed simultaneously [15,16]. It is therefore natural to employ the cooperative
coevolutionary algorithm (CCEA) [17]. Its design is inspired by the natural phenomenon
that the coexisting species promote each other and coevolve. The algorithm adopts the
strategy of “divide and conquer”, which decomposes an optimization problem into several
subproblems. In addition, the whole problem is optimized by a reciprocal evolutionary
mechanism driven by cooperative or competitive interactions between subproblems [18].
The local search strategy also plays an important role in CCEA. This paper develops an
improved cooperative coevolutionary algorithm (vCCEA) by integrating the variable neigh-
borhood descent (VND) strategy [19]. The vCCEA can solve the whole problem by evolving
the subproblems simultaneously and interacting between the subproblems. In addition,
considering the problem-specific characteristics, a two-layer encoding strategy is designed
to represent the solution information and a novel collaborative model is proposed to realize
the interaction between subproblems. Special neighborhood structures are designed for
different subproblems and two kinds of enhanced local disturbance strategies are pro-
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posed to search for potential promising solutions. This algorithm mainly contains four
processes, i.e., initialization process, cooperative coevolutionary process, VND processes,
and population restart processes. First, an archive that holds several complete solutions
is initialized and two populations based on these solutions are built in the initialization
process. Then, the two populations and archive coevolve through the collaborative model
in the coevolutionary process. While in the cooperative coevolutionary process, the VND
process is used to generate a new solution. With the evolution proceeding, the population
restart process can be triggered to ensure the population diversity.

The main contributions of this study are as follows. (1) An energy-efficient hybrid
flowshop scheduling problem with consistent sublots (HFSP_ECS) is studied and a mathe-
matical model is developed for it. (2) An improved cooperative coevolutionary algorithm
based on the idea of “divide-and-conquer” is proposed by integrating the VND strategy.
(3) A novel collaborative model suitable for the specific characteristics of HFSP_ECS is
designed to realize the interaction between the populations and the archive. (4) Two kinds
of enhanced local neighborhood structures are proposed to search for potential promising
solutions.

The remaining of the paper is organized as follows. A brief literature review is
provided in Section 2. Section 3 describes HFSP_ECS in detail and a linear integer program-
ming model (MILP) is established for a better representation of this problem. Section 4
introduces the algorithm process of vCCEA and improvement strategies in detail. In
Section 5, the experimental study design is presented and the results are analyzed. Finally,
some conclusions are given and future research prospects are outlined in Section 6.

2. Literature Review

Although HFSP has been studied for several decades, little research has been carried
out on energy-efficient HFSP with lot streaming. Most of the existing studies have been
conducted with the objective of minimizing the production cycle to optimize HFSP with lot
streaming, and little attention has been paid to the energy consumption in the production
process. The following is a first review of the HFSP with lot streaming in detail, and then
the existing research results on green scheduling are analyzed. Finally, the characteristics
of the research problem in this paper are summarized.

With the development of a multi-species small-scale production model in recent years,
more and more scholars are focusing on the HFSP with lot streaming. Depending on the
number of lots, the lot streaming HFSP can be divided into two main categories, i.e., single-
lot HFSP and multiple-lot HFSP. The single-lot HFSP means that only one lot needs to
be processed, and how to divide lots and how to sort sublots are two major problems,
i.e., sublot size and sublot sequence. Zhang et al. [12] studied a special two-stage HFSP
with single-lot that the first stage has multiple identical machines and the second stage
only has one machine. They first formulated the problem as an MILP considering the equal
sublots, and proposed a heuristic to reach an effective solution. For the same problem,
Liu [20] used linear programming and rotation methods to solve the sublot sequence and
sublot size, respectively. Moreover, an effective heuristic rule is proposed for the general
HFSP with equal sublots. Cheng et al. [21] studied a two-stage HFSP that the first stage
only has one machine and the second stage has two parallel machines. Assuming that the
number of sublots are known, the closed-form expressions are used to obtain the best sublot
sizes. Then, according to the best sublot sizes, the upper bound of the sublot quantities is
defined, and an algorithm combining closed-form expressions is used to obtain the global
optimal solution. In addition, a heuristic is proposed for the case where the number of
sublots is unknown.

Compared with the single-lot HFSP, more research focuses on multiple-lot HFSP. Potts
and Baker [22] first showed how to use equal sublots in the one-job model and analyzed
equal-sized sublots as a heuristic procedure. After that, they cited some difficulties in
multiple-lot scheduling. Kalir and Sarin [23] studied a multiple-lot HFSP with small
equal sublots, and proposed a heuristic called bottleneck minimal idleness with the ob-
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jective of minimizing the maximum completion time. Naderi and Yazdani [24] studied a
multiple-lot HFSP with setup time constraints. Assuming that the number of sublots were
known, an MILP was established and an imperialist competitive algorithm was proposed.
Zhang et al. [25] studied the HFSP with equal sublots, and a discrete fruit fly optimization
algorithm was developed for solving this problem, where two main search procedures
were designed to balance the exploration and exploitation abilities of the algorithm. For
the same problem, Zhang et al. [26] proposed an effective migrating birds optimization
algorithm with the objective of minimizing the total flow time, and a heuristic rule was
introduced to address the case that the sublots from different lots have the changes to reach
the downstream stage at the same time.

The multiple-lot HFSP studied above were all with equal sublots, and this means that
sublots from the same lot have the equal size. When the sublots from the same lot are not
equal in size, the multiple-lot HFSP is called HFSP with consistent sublots. For example,
Ming Cheng and Sarin [13] studied a two-stage HFSP where the first stage only had one
machine and the second stage had two identical machines. They used some conclusions
from the single-lot scheduling problem, and proposed a mathematical programming-based
heuristic method for this problem. Zhang et al. [27] studied a special two-stage HFSP
where the first stage had multiple identical machines and the second stage only had a single
machine. Additionally, two heuristic strategies were proposed to solve two subproblems,
i.e., lot sequence, and lot split. Nejati et al. [28] studied a multiple-lot k-stage HFSP with
a specific production scenario. They improved the genetic algorithm and simulated an
annealing algorithm for this particular problem, and the effectiveness of the improved
strategy was verified. Lalitha et al. [29] studied a special k-stage HFSP where the front k-1
stages only had one machine per stage and the last stage had multiple machines. An MILP
was developed and some small-scale problems were solved by the optimizer. A two-stage
heuristic algorithm was proposed to solve medium–large scale problems, hierarchically.
Zhang et al. [30] studied an HFSP with consistent sublots and considered the setup and
transportation operations. A collaboration operator was proposed and a collaborative
variable neighborhood descent algorithm was developed based on this operator.

Green development, energy saving, and emission reduction are of great significance
to sustainable development. Qin et al. [31] studied an HFSP with an energy-saving crite-
rion, and considered blocking constraints. A mathematical model for HFSP with blocking
constraints and energy-efficient criterion was developed and an improved iterative greedy
algorithm based on the swap operator was proposed. Duan et al. [32] studied a heteroge-
neous multi-stage HFSP with energy-efficient for large metal component manufacturing,
and an improved NSGA-II combined with the moth-flame optimization algorithm (NSGA–
II–MFO) with the objective of minimizing the maximum completion time and carbon
emission was proposed. Dong et al. [33] studied a distributed two-stage re-entrant green
HFSP, a two-level mathematical model and an improved hybrid slap swarm and NSGA-III
algorithm with the objectives of minimum completion time, total carbon emission and total
energy consumption was proposed. Geng et al. [34] studied an energy-efficient re-entrant
HFSP with considering customer order constraints under Time-of-Use (TOU) electricity
price, and a memetic algorithm with an energy saving strategy was proposed to solve
this problem.

In summary, both the lot streaming HFSP and the green HFSP have had a certain
number of research results. Compared with these studies, the characteristics of our study
can be summarized as follows. A k-stage energy-efficient HFSP with consistent sublots is
studied in this paper, and the number of machines per stage is not limited. While Ming
Cheng and Sarin [13] and Wei Zhang et al. [27] studied the special two-stage HFSP, and
Lalitha et al. [29] studied a special k-stage HFSP that the first k-1 stages only have one
machine at each stage and the last stage has multiple machines. Compared with these
studies, the HFSP_ECS studied in this paper has a wider scope of application. In study of
Ming Cheng and Sarin [13] and Naderi and Yazdani [24], the sublots from different lots can
be mixed and cross-processed, but they are prohibited in our research. This is because in
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real production, the machine needs to be adjusted accordingly before processing different
products. Assuming that sublots are allowed to be mixed, the machine will be in a state of
frequent adjustment, which has a serious impact on productivity and increases unnecessary
energy consumption. Additionally, in the above studies on lot streaming, the research
focuses on minimizing the completion time without considering the energy consumption
in the process. However, in the actual production, energy consumption is a non-negligible
factor. In our study, all machines were turned on and off uniformly, and there was a positive
correlation between energy consumption and minimized completion time.

3. Problem Description

The HFSP_ECS addressed can be described as follows. A set of lots J is to be consecu-
tively processed in a series of K stages. Each stage k has Mi ≥ 1 identical parallel machines
and at least one stage has the number of machines greater than one, i.e., Mi > 1. Each lot to
be processed is made up of a group of identical items. The consistent sublots is employed to
split a lot to several sublots with assuming that the maximum sublot quantities are limited.
Each sublot contains a certain number of items, and the number of the items contained in
a sublot is defined as the sublot size. The number and size of the sublots do not change
during the K processing stages. At the same stage, different sublots from the same lot are
processed continuously on the same machine. Similarly, the items from the same sublot
need to be processed continuously. The sublots can proceed to the next stage immediately
after its completion of the previous stage. The processing time of a sublot is the product of
the sublot size and the item processing time. The processing energy consumption of the
sublot is the product of the unit energy consumption and processing time. The idle energy
consumption of a machine is the product of unit idle energy and idle time, the idle time,
and the idle energy consumption per unit. The scheduling task of the HFSP_ECS is to solve
the three subproblems’ lot sequence, machine assignment, and lot split, and its objective is
to minimize the energy consumption. The assumptions are summarized as follows:

• All machines are available at time 0, and all machines turn off uniformly at the end of
the process.

• Assume an infinite buffer between stage and allow the machine to be idle.
• Each lot must be processed through all stages, and only one machine can be selected

at the same stage, and interrupt and preemption are not allowed during processing.
• One machine can at most process only one item at the same time, and the items from

the same sublot need to be processed continuously.
• Each lot is divided into several sublots and the sublot quantities are limited by a

maximum value.
• The sublots of each lot can be processed at the next stage immediately after the

completion of the previous stage.
• The first sublot can be started as soon as it arrives at this stage. After the remaining

sublots reach the stage, it also needs to wait for the previous sublots to complete
processing before it can be processed.

• Sublots from different lots are not allowed to be mixed during processing; if two lots
are processed on the same machine, the later lot will not be processed until all the
sublots of the previous lot have been processed.

• Machine setup and transport operations are included in the machining process.

With the above description and assumptions, to better describe and solve this problem,
an MILP [30] is established, the notations and constraints are described as follows:

Objective:
Minimize(Emax) (1)

Constraints:
Cmax ≥ CK,j,L ∀j ∈ {1, 2, . . . , J} (2)
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Mk

∑
i=1

Dk,j,i = 1 ∀k ∈ {1, 2, . . . , Mk}, ∀j ∈ {1, 2, . . . , J} (3)

L

∑
e=1

Nj,e = Tj ∀j ∈ {1, 2, . . . , J}, ∀e ∈ {1, 2, . . . , L} (4)

Nj,e ≥ 0 ∀j ∈ {1, 2, . . . , J}, ∀e ∈ {1, 2, . . . , L} (5)

Nj,e + (1 − Wj,e)× G ≥ 1 ∀j ∈ {1, 2, . . . , J}, ∀e ∈ {1, 2, . . . , L} (6)

Nj,e − Wj,e × G ≤ 0 ∀j ∈ {1, 2, . . . , J}, ∀e ∈ {1, 2, . . . , L} (7)

Wj,e ≥ Wj,e+1 ∀j ∈ {1, 2, . . . , J}, ∀e ∈ {1, 2, . . . , L − 1} (8)

S1,j,1 ≥ 0 ∀j ∈ {1, 2, . . . , J} (9)

Ck,j,e = Sk,j,e + Pk,j × Nj,e ∀k ∈ {1, 2, . . . , K}, ∀j ∈ {1, 2, . . . , J}, ∀e ∈ {1, 2, . . . , L} (10)

Sk+1,j,e − Ck,j,e ≥ 0 ∀k ∈ {1, 2, . . . , K − 1}, ∀j ∈ {1, 2, . . . , J}, ∀e ∈ {1, 2, . . . , L} (11)

Sk,j,e+1 − Ck,j,e ≥ 0 ∀k ∈ {1, 2, . . . , K}, ∀j ∈ {1, 2, . . . , J}, ∀e ∈ {1, 2, . . . , L − 1} (12)

Yk,j,j1,i + Yk,j1,j,i ≤ Dk,j,i ∀k ∈ {1, 2, . . . , K}, ∀j! = j1, j ∈ {1, 2, . . . , J}, j1 ∈ {1, 2, . . . , J},
∀e ∈ {1, 2, . . . , L − 1}, i ∈ {1, 2, . . . , Mk} (13)

Yk,j,j1,i + Yk,j1,j,i ≤ Dk,j1,i ∀k ∈ {1, 2, . . . , K}, ∀j! = j1, j ∈ {1, 2, . . . , J},
j1 ∈ {1, 2, . . . , J}, i ∈ {1, 2, . . . , Mk} (14)

Yk,j,j1,i + Yk,j1,j,i ≥ Dk,j,i + Dk,j1,i − 1 ∀k ∈ {1, 2, . . . , K}, ∀j! = j1, j ∈ {1, 2, . . . , J},
j1 ∈ {1, 2, . . . , J}, i ∈ {1, 2, . . . , Mk} (15)

Sk,j,1 − Ck,j1,L + G × (3 − Yk,j1,j,i − Dk,j,i − Dk,j1,i) ≥ 0 ∀k ∈ {1, 2, . . . , K}, ∀j! = j1,
j ∈ {1, 2, . . . , J}, j1 ∈ {1, 2, . . . , J}, i ∈ {1, 2, . . . , Mk} (16)

Eprocess =
K

∑
k=1

J

∑
j=1

L

∑
e=1

Nj,e × EPk,j (17)

Eidle =
K

∑
k=1

Mk

∑
i=1

(Cmax −
J

∑
j=1

Tj × Pk,j × Dk,j,i)× EIk (18)

Emax = Eprocess + Eidle (19)

Equation (1) indicates that the optimization objective minimizes the energy consump-
tion Emax. Equation (2) requires Cmax to be greater than or equal to the completion time of
the last sublot of all lots in the last stage. Equation (3) requires that only one processing
machine can be selected for each lot at the same stage. Equation (4) indicates that the sum
of the items contained in all sublots from the same lot must equal the number of items
contained in this lot. Equation (5) defines that the number of items contained in each
sublot of lots is greater than or equal to 0. Equations (6) and (7) represent the value of
Wj,e. Equation (8) shows that the nonempty sublot in the lots is expected to precede the
empty sublot. Equation (9) make sure the start processing time is a non-negative number.
Equation (10) shows the calculation method of completion time. In Equation (11), the sublot
is required to complete the processing of the previous stage before starting the next stage
of processing. Equation (12) expresses that the sublots from the same lot are processed in
numbered order at each stage. Equation (13) defines Yk,j,j1,i and Yk,j1,j,i. They cannot take
the value of 1 at the same time. Equations (14) and (15) are dual constraints, similar to
Equation (13), emphasize that the machine can only process one lot at a time. Equation (16)
indicates that at the same machine, the later lot can be processed only after the previous lot
has been processed; otherwise, the equation does not work. Equations (17) and (18) give the
calculation method of total process energy and total idle energy, respectively. Equation (19)
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shows that the total energy consumption is equal to the sum of the total process energy
consumption and the total idle energy consumption.

4. Improved vCCEA for Solving HFSP_ECS Problem

The proposed vCCEA is developed in this section. First, the design motivation
and the algorithm framework are illustrated. After that, the components of vCCEA,
involving solution encoding and decoding strategies, initialization strategy, cooperative
coevolutionary strategy, VND strategy, and the population restart mechanism, are described
in detail. Finally, the whole algorithm procedure is given.

4.1. The Motivations and Framework of vCCEA

The HFSP_ECS is a highly complex combinatorial optimization problem. Recall that
when solving the HFSP_ECS, three subproblems must be addressed simultaneously: lot
sequence, machine assignment and lot split. These subproblems are not independent
but highly coupled. That is, if only one subproblem is optimized, the global optimal
solution is almost impossible to be obtained. Therefore, the CCEA is employed, which
uses the idea of “divide and conquer” to achieve global optimization by optimizing each
subproblem as well as implementing the interaction between subproblems. Among three
subproblems, the machine assignment is generally addressed by the proposed heuristic
rules [35]. This paper still uses heuristic rules to solve this subproblem, and this rule is
incorporated into the decoding strategy. For the other two subproblems, two populations
are set up, each of which corresponds to a subproblem. These two populations are lot
sequence population and lot split population, which represent lot sequence subproblem
and lot split subproblem, respectively. In addition, an archive is also created, where a
number of references or complete solutions are stored. It aims to establish collaborative
relationships among the individuals from lot sequence and lot split populations in the
collaborative coevolutionary process.

The whole algorithm consists of an initialization process, cooperative coevolutionary
process of two populations, VND processes, and population restart processes. First, the
archive and the two populations are initialized. Then the novel cooperative model was
used to control the populations for the cooperative coevolution. In the cooperative coevo-
lutionary process, each individual from the population collaborates with one reference
randomly selected from the archive to construct a complete solution. This complete solution
is perturbed by the VND process to generate new individuals for updating the population
and archive. In this process, different neighborhood structures are designed for individuals
from different populations. Moreover, a restart strategy is designed for the individuals who
have not been updated for several generations in the population to prevent the algorithm
falling into local optima. The vCCEA framework is shown in Figure 1.

4.2. Ending and Decoding
4.2.1. Solution Encoding

Recall that this problem contains three subproblems: lot sequence, machine assign-
ment, and lot split. Based on the problem specific characteristics, a two-layer encoding strat-
egy is adopted in this paper. The first layer uses a permutation ΠJ =

{
π1, π2 . . . πj . . . πJ

}
to represent the scheduling order of the lots. Where πj indicates the lot index and J repre-
sents the total number of the lots. Note that a legitimate permutation requires that each lot
only appears once [36]. The lot that appears in advance in the permutation is given higher
processing priority, and the scheduling order of lots in subsequent stages is determined by
the heuristic rules mentioned in the solution decoding. The second layer uses a matrix ZJ×L
with J rows and L columns to represent the lot split, where each row represents the seg-
mentation information of a lot. A complete solution consists of two parts: lot permutation
and lot split matrix, which can be expressed as

〈
ΠJ , ZJ×L

〉
.
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Figure 1. The framework of vCCEA.

Here, a simple illustrative example is given for illustrating the solution encoding. In
this example, there are five lots and two stages. The first stage has two parallel machines,
i.e., M1 and M2, and the second stage contains three parallel machines, i.e., M3, M4, and
M5. The unit idle energy consumption of machines M1 and M2 is 2, and the unit idle energy
consumption of machines M3, M4, and M5 also is 2. Lot size, sublot size, item processing
time and other specific production data are given in Table 1. According to the above
encoding strategy, the encoding for this simple example can be expressed as 〈Π5, Z5×3〉,
where the first layer is a legal permutation-based encoding vector Π5 = {3, 5, 1, 4, 2}. This
permutation indicates that the current scheduling order is 3,5,1,4,2. In other words, lot 3
was processed first, followed by lot 5, lot 1, lot 4, and lot 2. The matrix Z5×3 serves as the
second layer, and is shown in Equation (20). Using lot 5 as an example, the lot 5 is divided
into three sublots. The first sublot size is 1, the second sublot size is 1, and the third sublot
size is 2.

Z5×3 =

⎡⎢⎢⎢⎢⎣
1 2 2
2 3 3
2 2 2
1 2 2
1 1 2

⎤⎥⎥⎥⎥⎦ (20)
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Table 1. Illustrative example of HFSP_ECS.

Lot Lot Size
Sublot Size

Single Item
Process Time

Energy Consumption
Per Unit Time

Sublot1 Sublot2 Sublot3 Stage1 Stage2 Stage1 Stage2

Lot1 5 1 2 2 1 2 3 2
Lot2 8 2 3 3 1 1 4 3
Lot3 6 2 2 2 2 2 2 4
Lot4 5 1 2 2 2 2 3 3
Lot5 4 1 1 2 1 2 1 2

4.2.2. Solution Decoding

The solution decoding can transform the solution into a feasible schedule, and it mainly
solves two problems, lot sequence and machine assignment. For machine assignment, we
give priority to idle machines, thus, the “first available machine” rule (FAM) [37] is adopted
in this paper. Regarding the lot sequence, the lot scheduling order at stage is determined by
the permutation ΠJ =

{
π1, π2 . . . πj . . . πJ

}
, while the lot sequence of subsequent stages

is determined by the “first-come–first-served” rule. That is, the lot completed earlier at
the previous stage is given priority to be scheduled at the following stages. In HFSP_ECS,
the sublot of a lot can be immediately transported to the downstream stage for processing
when the sublot completes the processing at the current stage. Based on this feature, the
“first-come–first-served” rule based on sublot preemption is adopted, i.e., the lot whose
first sublot completes the processing at the previous stage first has higher priority at the
downstream stage. Under this rule, if the completion time of the first sublots of some lots
at the previous stage is equal, the completion time of their second sublots is compared, and
so on.

According to the above encoding and decoding strategies, the Gantt chart of the
schedule for the illustrative example in Section 4.2.1 is shown in Figure 2. Here, the
(a, b) represents a sublot, where a is the lot number, b is the sublot number, and then the
minimum energy consumption is 555.

Figure 2. The schedule Gantt chart for the illustrative example.

4.3. Algorithm Initialization

At the beginning of the algorithm, an archive and two collaborative populations need
to be initialized. The archive

{〈
ΠR[1], ZR[1]

〉
,
〈

ΠR[1], ZR[1]
〉

, . . . ,
〈

ΠR[PS], ZR[PS]
〉}

is made

up of PS combinations. Each combination
〈

ΠR[ind], ZR[ind]
〉

, ind = 1 . . . PS represents a

complete solution, where ΠR[ind] represents the lot sequence for solution ind. Similarly,
ZR[ind] represents the lot split for solution ind. When the archive is initialized, the two
components of each solution are initialized in two different ways. The lot sequence is
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initialized by a random way, while the lot split is determined by the uniform initialization
method [38]. The uniform initialization procedure is described as follows.

Procedure Uniform initialization

Step1. Each lot is evenly divided into several sublots. For the jth lot, the size of each sublot is

Nj,e =
⌊

Tj/L
⌋

,where � � means the nearest integer that is smaller than Tj/L.

Step2. For the jth, the remaining size rj is obtained that rj = Tj − ∑L
e=1 Nj,e.

Step3. For the jth, rj is added to any sublot randomly.

The two populations are the lot sequence population and the lot split population. The
lot sequence population consists of PS individuals, i.e.,

{
Π[1] , Π[2] , . . . , Π[ps]

}
. That is, each

individual only represents the lot sequence of a solution, this population is initialized with
the lot sequences of the solutions in the archive, i.e., Π[ind] = ΠR[ind] for ind = 1, 2, . . . , PS.
Obviously, the individuals in lot sequence population are indeed not the complete solutions,
such that they cannot be evaluated directly. To evaluate each Π[ind], a collaborator must be
identified to build an evaluable solution. Here, the lot split individual ZR[ind] is determined
as the collaborator, and the index of this collaborator is recorded by Col1[ind] = ind,
where ind = 1, 2, . . . , PS. The individual Π[ind] and its collaborator Z[Col1[ind]] construct a
complete solution

〈
Π[ind], Z[Col1[ind]]

〉
. The energy consumption value of the solution is

also that of the individual Π[ind]. Similarly, the lot split population consists of PS lot split
matrix initially, i.e.,

{
Z[1], Z[2], . . . , Z[PS]

}
where Z[ind] for ind = 1, 2, . . . , PS. The individual

ΠR[ind] is determined as the collaborator for
{

Z[1], Z[2], . . . , Z[PS]
}

, and the index of this

collaborator is recorded by Col2[ind] = ind, where ind = 1, 2, . . . , PS. Individual Z[ind]

in this population and a lot sequence collaborator Π[Col2[ind]] comprise a new solution〈
Π[Col2[ind]], Z[ind]

〉
. The energy consumption value of the solution is also that of the

individual Z[ind].

4.4. Cooperative Coevolution Process

The whole cooperative coevolutionary process can be divided into two parts: evolution
of the lot sequence population and evolution of the lot split population. The evolution of
the lot sequence population is first performed. Through this process, individuals in the lot
sequence population are updated on the one hand, and certain solutions in the archive can
obtain better information of lot sequences on the other hand. Then, the evolution of the
lot split population is performed. This process aims to update individuals in the lot split
population and ensures that solutions in the archive can obtain better lot split information.
Through the above two processes, the evolution of both populations is achieved and the
solutions in the archive are also updated during the evolution process. The two processes
are described in detail below.

4.4.1. Evolution of the Lot Sequence Population

In the evolution process of the lot sequence population, a complete solution is first
constructed by individual Π[ind] from lot sequence population and its collaborator Z in the
archive. To maintain the diversity of the population and to avoid premature convergence,
the last collaborator ZR[Col1[ind]] of Π[ind] that is pointed by the index is not used. Instead,
the lot split matrix ZR[rand] is randomly selected from the archive as the current collaborator,
where rand is a randomly generated integer between 1 and PS. The combined solution
here can be expressed as

〈
Π[ind], ZR[rand]

〉
. Then, the VND process is performed on lot

sequence Π[ind] of the combined solution. A new lot sequence individual Π′ [ind] is gen-
erated by individual Π[ind], and the solution

〈
Π[ind], ZR[rand]

〉
comes to

〈
Π′ [ind], ZR[rand]

〉
.
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According to the VND characteristics [39], as long as a new individual Π′ [ind] is generated,
the performance of the new solution

〈
Π′ [ind], Z[rand]

〉
needs to be evaluated first. If the

objective value of
〈

Π′ [ind], Z[rand]
〉

is better than
〈

Π[ind], Z[rand]
〉

, then the archive and

the population will be updated by a new solution
〈

Π′ [ind], Z[rand]
〉

. Otherwise, the VND

process continues. If the whole VND process fails to find a good Π′ [ind], then the evolution
of the individual is ended for this time.

The process of updating the archive and lot sequence population can be described
as follows. If the objective value of the new solution

〈
Π′ [ind], ZR[rand]

〉
is better than〈

Π[ind], ZR[Col1[ind]]
〉

, the solution
〈

Π[ind], ZR[Col1[ind]]
〉

will be updated by the new solution〈
Π′ [ind], ZR[rand]

〉
, i.e., Π[ind] = Π′ [ind], Col1[ind] = rand. Note that the last collaborator

ZR[Col1[ind]] may have been changed in the evolutionary process of the lot split population.
At the same time, the archive is attempted to be updated. If the objective value of the new
solution

〈
Π′ [ind], ZR[rand]

〉
is better than

〈
ΠR[rand], ZR[rand]

〉
, then the individual ΠR[rand]

will be updated by individual Π′ [ind], i.e., ΠR[rand] = Π′ [ind]. The above process is repeated
from ind = 1 to ind = PS. Given the above, the coevolutionary process for the individuals
Π[ind] in the lot sequence population is shown in Figure 3.

 

Figure 3. Evolution process of the lot sequence population.

An efficient neighborhood structure plays a key role in the whole algorithm. To design
a good neighborhood structure, the problem characteristics must be exploited. When
the lot sequence population evolves, the neighborhood structure only works on the lot
sequence. That is, a new individual Π′ [ind] is formed by perturbing the individual Π[ind] in
the neighborhood structure. Therefore, to obtain a better lot sequence, three neighborhood
structures are specially designed based on a solution encoding strategy, and the VND
process is used to switch the neighborhoods. Two of these neighborhood structures are
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the insert and swap operations that are widely used in HFSP problems, referred to as lot
insertion and lot swap. However, when solving the large-scale problems, a single insertion
or swap may not effectively perturb the current solution. Therefore, a lot swap operation
with a large search range is proposed by improving the lot swap, called the Enhanced lot
swap in this instance. The lot insertion is not enhanced here since its high time complexity.
The three neighborhood structures for lot sequence are described below: (1) Lot insertion.
A new lot sequence is formed by taking a random lot from the lot sequence and inserting
it into a randomly different position. (2) Lot swap. Take two lots at random from the lot
sequence and exchange their positions in the sequence. (3) Enhanced lot swap. Perform l
times of the lot swap, where l is dynamically determined by the number of lots in the lot
sequence. We set l as L × J, where L is a real number between 0 and 1, and J is the number
of lots. Additionally, the detailed process of lot sequence population evolution is shown in
Algorithm 1.

Algorithm 1 Evolution of the lot sequence population

1: Define a set of neighborhood structures N1
k, k = 1, . . . , kmax

2: for ind = 1 to PS
3: rand ← generate a random integer in [1 − PS]
4:

〈
Π[ind], ZR[rand]

〉
← constitute a complete solution

5: Define Π ← Π[ind]

6: Let k ← 1 , Count ← 0
7: while k ≤ kmax do
8: while Count < C do
9: Π′ [ind] ← Neighborhood(Π, N1

k)

10: if
〈

Π′ [ind], ZR[rand]
〉

better than
〈

Π, ZR[rand]
〉

11: Count ← 0 , k ← 1 , Π ← Π′ [ind]

12: if
〈

Π′ [ind], ZR[rand]
〉

better than
〈

Π[ind], ZR[Col1[ind]]
〉

or ZR[Col1[ind]] was changed

13: Π[ind] ← Π′ [ind] , Col1[ind] = rand
14: end if
15: if

〈
Π′ [ind], ZR[rand]

〉
better than

〈
Π[rand], ZR[rand]

〉
16: Π[rand] ← Π′ [ind]

17: end if
18: else
19: Count ++
20: end if
21: end while
22: k ++
23: end while
24: end for

4.4.2. Evolution of the Lot Split Population

Similar to the evolution process of the lot sequence population, a complete solution is
constructed by individual Z[ind] from lot split population and its collaborator ΠR[rand] in the
archive, where rand is a randomly generated integer in the range [1, PS]. The constructed
solution here can be expressed as

〈
ΠR[rand], Z[ind]

〉
. After that, the VND procedure is

executed on the solution
〈

ΠR[rand], Z[ind]
〉

, and the neighborhood structure here only

works on the lot split. Through the VND process, Z[ind] becomes Z′ [ind], and thus, the
solution

〈
ΠR[rand], Z[ind]

〉
comes to

〈
ΠR[rand], Z′ [ind]

〉
. In the process, as long as a new

solution
〈

ΠR[rand], z′ [ind]
〉

is generated, the new solution
〈

ΠR[rand], Z′ [ind]
〉

is evaluated.

If
〈

ΠR[rand], Z′ [ind]
〉

is better than
〈

ΠR[rand], Z[ind]
〉

, then the solution
〈

ΠR[rand], Z′ [ind]
〉
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is used to update the archive and lot split population. Otherwise, the VND process
continues to find a potentially better solution. The process of updating the archive and
lot split population can be described as follows: If the solution

〈
ΠR[rand], Z′ [ind]

〉
is better

than
〈

ΠR[Col2[ind]], Z[ind]
〉

, then the Z[ind] and the Col2[ind] will be updated by Z′ [ind] and

ΠR[rand], i.e., Z[ind] = Z′ [ind], Col2[ind] = rand. It should also be noted that ΠR[Col2[ind]]

may have been changed as the lot sequence population evolves. At the same time, if
the objective value of the solution

〈
ΠR[rand], Z′ [ind]

〉
is better than

〈
ΠR[rand], ZR[rand]

〉
, set

ZR[rand] = Z′ [ind]. This process is shown in Figure 4.

 

Figure 4. Evolution process of the lot split population.

In the evolution process of the lot split population, to obtain high-quality individuals
Z′ [ind], three neighborhood structures acting only on the lot split part are specially designed,
and the VND process is used to switch the neighborhood. The three perturbation strategies
for lot split are described below: (1) Lot split mutation. As shown in Figure 5, from the
lot split matrix, a lot with two or more sublots are randomly selected. Reduce a random
number in distribution U [1,5] from the size of one sublot and add the number to the size of
another sublot. (2) Enhanced lot split mutation. Perform l times lot split mutation, where
l is dynamically determined by the number of lots. We set l as L × J, where L is a real
number between 0 and 1, and J is the number of lots. (3) Stochastic splits. All lots are
redivided into sublots in a random manner. The procedure of the evolution of the lot split
population is given in Algorithm 2.
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Algorithm 2 Evolution of the lot split population

1: Define a set of neighborhood structures N2
k, k = 1, . . . , kmax

2: for ind = 1 to PS
3: rand ← generate a random integer in [1 − PS]
4:

〈
ΠR[rand], Z[ind]

〉
← constitute a complete solution

5: Define Z ← Z[ind]

6: Let k ← 1 , Count ← 0
7: while k ≤ kmax do
8: while Count < C do
9: Z′ [ind] ← Neighborhood(Z, N2

k)

10: if
〈

ΠR[rand], Z′ [ind]
〉

better than
〈

ΠR[rand], Z
〉

11: Count ← 0 , k ← 1 , Z ← Z′ [ind]

12: if
〈

ΠR[rand], Z′ [ind]
〉

better than
〈

ΠR[Col2[ind]], Z[ind]
〉

or ΠR[Col2[ind]] was changed

13: Z[ind] ← Z′ [ind] , Col2[ind] = rand
14: end if
15: if

〈
ΠR[rand], Z′ [ind]

〉
better than

〈
ΠR[rand], ZR[rand]

〉
16: Z[rand] ← Z′ [ind]

17: end if
18: else
19: Count ++
20: end if
21: end while
22: k ++
23: end while
24: end for

 

Figure 5. Illustrations of the lot split mutation.

4.5. Coevolutionary Population Restart

With the evolving of the algorithm, the diversity of the two populations might be
reduced. In this case, the efficiency of the population coevolution may be poor. To avoid
the algorithm falling into the local optimality, two different restart strategies are adopted
for the populations. For the lot sequence population, an individual Π[ind] is reinitialized if it
has not been improved in a predetermined number of R consecutive generations. The novel
individual should contain valuable information about the original individual and remain
somewhat different from the original individual. For this purpose, a two-point crossover
(TPX) method was used, as illustrated in Figure 6. Where two parent lot sequences are
randomly selected from the archive because good solutions are stored in an archive. For the
lot split population, an individual Z[ind] is also reinitialized if it has not been updated in a
predetermined number of R consecutive generations. Due to the lot split matrix is different
from the regular sequence, the classical TPX might produce infeasible schedules. Therefore,
a cooperative selection operator is proposed. When determining the split information for
one lot, two solutions are selected at random from the archive and compared based on
their objective values, and the split information for this lot comes from the better one. The
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process is repeated from the first lot to the last lot. Here, we use Z[ind]
j to represent the lot

split information for lot j in individual ind, and this process is shown in Algorithm 3.

Algorithm 3 Lot split population restart

1: for j = 1 to j = J
2: Randomly select two solutions in archive 〈Πa, Za〉 and

〈
Πb, Zb

〉
3: if 〈Πa, Za〉 better than

〈
Πb, Zb

〉
4: Z[ind]

j ← Za
j

5: else
6: Z[ind]

j ← Zb
j

7: end if
8: end for

 
Figure 6. Illustration of TPX for a lot sequence.

4.6. The Algorithm Procedure

With the above description, the whole vCCEA is displayed in Algorithm 4. Where
the UpdateBestSolution(〈Π, Z〉) means update the optimal solution using solution 〈Π, Z〉,
and the Age(〈Π, Z〉) represents the number of consecutive update failures of the solution
composed of individual Π (or Z) and their collaborators.

Algorithm 4 Lot split population restart

1: Initialize algorithm parameters, including PS, C, L, R.
2: Define the termination criterion T.
3: Define a set of neighborhood structures N1

k , k = 1, . . . , kmax and N2
k , k = 1, . . . , kmax

4: Initialize archive and two populations

5: Find the best solutions
〈

Πbest, Zbest
〉

in archive
6: while T is not satisfied do
7: for ind = 1 to PS
8: rand ← generate a random integer in [1 − PS]
9:

〈
Π[ind], ZR[rand]

〉
← constitute a complete solution

10: Define Π ← Π[ind]

11: Let k ← 1 , Count ← 0
12: while k ≤ kmax do
13: while Count < C do
14: Π′ [ind] ← Neighborhood(Π, N1

k)

15: if
〈

Π′ [ind], ZR[rand]
〉

better than
〈

Π, ZR[rand]
〉

16: UpdateBestSolution(
〈

Π′ [ind], ZR[rand]〉)

17: Count ← 0 , k ← 1 , Π ← Π′ [ind]

18: if
〈

Π′ [ind], ZR[rand]
〉

better than
〈

Π[ind], ZR[Col1[ind]]
〉
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19: Π[ind] ← Π′ [ind] , Col1[ind] = rand
20: Age

(〈
Π[ind], ZR[Col1[ind]]

〉)
← 0

21: else
22: Age

(〈
Π[ind], ZR[Col1[ind]]

〉)
++

23: end if
24: if

〈
Π′ [ind], ZR[rand]

〉
better than

〈
Π[rand], ZR[rand]

〉
25: Π[rand] ← Π′ [ind]

26: end if
27: else
28: Count ++
29: end if
30: end while
31: k ++
32: end while
33: end for
34: for ind = 1 to PS
35: rand ← generate a random integer in [1 − PS]
36:

〈
ΠR[rand], Z[ind]

〉
← constitute a complete solution

37: Define Z ← Z[ind]

38: Let k ← 1 , Count ← 0
39: while k ≤ kmax do
40: while Count < C do
41: Z′ [ind] ← Neighborhood(Z, N2

k)

42: if
〈

ΠR[rand], Z′[ind]
〉

better than
〈

ΠR[rand], Z
〉

43: UpdateBestSolution
(〈

ΠR[rand], Z′ [ind]
〉)

44: Count ← 0 , k ← 1 , Z ← Z′ [ind]

45: if
〈

ΠR[rand], Z′ [ind]
〉

better than
〈

ΠR[Col2[ind]], Z[ind]
〉

46: Z[ind] ← Z′ [ind] , Col2[ind] = rand
47: Age

(〈
ΠR[Col2[ind]], Z[ind]

〉)
← 0

48: else
49: Age

(〈
ΠR[Col2[ind]], Z[ind]

〉)
++

50: end if
51: if

〈
ΠR[rand], Z′ [ind]

〉
better than

〈
ΠR[rand], ZR[rand]

〉
52: Z[rand] ← Z′ [ind]

53: end if
54: else
55: Count ++
56: end if
57: end while
58: k ++
59: end while
60: end for
61: for ind = 1 to PS
62: if Age

(〈
Π[ind], ZR[Col1[ind]]

〉)
> R

63: Restart1(Π[ind]), Age
(〈

ΠR[Col2[ind]], Z[ind]
〉)

← 0
64: end if
65: if Age

(〈
ΠR[Col2[ind]], Z[ind]

〉)
> R

66: Restart2(Z[ind]), Age
(〈

ΠR[Col2[ind]], Z[ind]
〉)

← 0
67: end if
68: end for
69: end while
70: Output the best solution

〈
Πbest, Zbest

〉
.

132



Mathematics 2023, 11, 77

5. Experimental Analyses

In this section, the performance of the proposed vCCEA is evaluated by experimental
design and results analysis. The simulation experiment environment of this paper is a
PC with 3.60 GHz Intel Core i7 processor and 32 GB RAM. The vCCEA and all compared
algorithms are written in the Visual Studio 2019 C++, and run on the release x64 platform.
In the algorithm test, the maximum running time is used as the algorithm termination to
ensure fairness. In addition, it is considered that the algorithm has practical significance
only when it can solve the problem in an acceptable time. Therefore, the termination
condition is set as t × J × K milliseconds, where J indicates the number of lots and K
represents the number of stages, respectively. Referring to the literature [30], t is set as 80.

5.1. Experimental Dataset and Performance Indicators

In this paper, two benchmark sets β1 and β2 are designed to verify the validity of the
vCCEA. Where 48 small-scale instances are designed in β1 to study the difference between
the MILP and the vCCEA in solving HFSP_ECS, and 100 medium–large scale instances
solved by the metaheuristic algorithm are designed in β2 to verify the performance of
vCCEA. In β1, the number of lots is J comes from {6, 8, 10, 12, 14}, and the number of
stages S comes from {3, 5, 8}. Thus, there are 15 different combinations of J × S that can be
obtained. In β2, the number of lots in J comes from {20, 40, 60, 80, 100}, and the number
of stages is S comes from {3, 5, 8, 10}. Similarly, there are 20 different combinations in β2.
For β1, only one instance is randomly generated per combination. For β2, five instances
are randomly generated per combination. Thus, there are 15 small scale instances and
100 medium–large scale instances in β1 and β2, respectively. In β1 and β2, the number of
parallel machines at each stage is randomly generated from the range [1, 5]. In addition,
the number of items for each lot is obtained from a uniform distribution U[50, 100], the
processing time of items at each stage is randomly sampled from the uniform distribution
U[1, 10], the processing energy consumption per unit time is obtained from the range [2, 5],
the energy consumption per idle unit of the machine takes a value in the range [1, 3], and
the maximum number of sublots is set as 5. In this study, time is measured in seconds, and
energy consumption is measured in joules, and the relative percentage increase (RPI) is
used as the performance metric. The RPI is calculated as in Equation (21).

RPI =
Eavg − Ebest

Ebest
× 100 (21)

where Eavg is the average energy consumption of an instance solved by the given algorithm
independently performed several times, and Ebest is the best result obtained by all the
compared algorithms. Algorithms with smaller RPI values will have better performance.

5.2. Parameter Setting

Appropriate parameters are very important to the metaheuristics, which can effectively
improve their efficiency and robustness. There are four parameters in the vCCEA proposed
in this paper, including the number of solutions in the archive (PS), the maximum number
of consecutive failures in a neighborhood during the VND process (C), the parameters (L)
that control the number of executions in the two enhanced neighborhood structures and
the maximum number of successive generations (R) of updating the individual in two
populations unsuccessfully. We first determine the value level of each parameter through
preliminary experiments, where the details of value levels are shown in Table 2. To verify
the influence of each parameter and its value at different levels, an orthogonal array L16 is
designed using the Taguchi experimental method to determine their combinations and is
displayed in Table 3. For the combinations in Table 3, five instances with different scale
problems are selected from benchmark set β2, and the five different problem scales are
20 × 5, 40 × 5, 60 × 5, 80 × 5, and 100 × 5. Each instance is run independently 20 times, and
the RPI value of each instance is calculated. Then, as shown in Table 3, the average RPI
value of the five instances in each combination is collected as the response value.
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Table 2. Parameter level factor.

Parameters
The Level of Parameter

1 2 3 4

PS 5 10 15 20
C 5 10 15 20
L 0.1 0.2 0.3 0.4
R 50 100 150 200

Table 3. Orthogonal array and response values.

Combination
Parameter Response

(RPI)PS C L R

1 5 5 0.1 50 0.084
2 5 10 0.2 100 0.0711
3 5 15 0.3 150 0.0384
4 5 20 0.4 200 0.0653
5 10 5 0.2 150 0.0688
6 10 10 0.1 200 0.0766
7 10 15 0.4 50 0.0406
8 10 20 0.3 100 0.0480
9 15 5 0.3 200 0.0806
10 15 10 0.4 150 0.0601
11 15 15 0.1 100 0.0884
12 15 20 0.2 50 0.0623
13 20 5 0.4 100 0.0706
14 20 10 0.3 50 0.0664
15 20 15 0.2 200 0.0748
16 20 20 0.1 150 0.0803

The trend of the parameter level is shown in Figure 7, and Table 4 gives the significance
rank of each parameter of the vCCEA. According to Figure 7 and Table 4, it can be concluded
that parameter L has the greatest impact on the algorithm among these parameters. This
is because the parameter L is related to the VND strategy. In the process of VND, the
good or bad neighborhood structure has an important influence on the algorithm. A good
neighborhood structure can promote the exploration ability of the algorithm and speed
up the convergence. For parameter PS, a larger population size can accommodate more
potential solutions and help the algorithm search globally. However, it does not support
longitudinal and deep search in a limited running time. Too small a population size is not
conducive to global search. For parameter C, a too small value will not make full use of each
neighborhood perturbation strategy and a too large value will waste the computational
time. For parameter R, if the value is set too small, the good information of advanced
individuals in the two populations cannot be fully utilized, and if the value is set too large,
the diversity of the population cannot be guaranteed and the algorithm may converge
prematurely. Therefore, the appropriate parameters are critical for vCCEA. Through the
above parameter experiment and analysis, the best parameter combination we can obtain
is PS = 10, C = 15, L = 0.3 and R = 150. This parameter combination is used in the
following experiments.

5.3. Evaluation of the Algorithm Components and Strategies

In this subsection, the algorithm components and strategies are validated and analyzed
for effectiveness. Our algorithm contains the VND process, collaborative model, and two
enhanced neighborhood structures, and these three strategies are not independent but
highly coupled. To verify the effect of each of the three components and the cooperation
between them, three other versions of vCCEA are constructed, vCCEA_1, vCCEA_2, and
vCCEA_3, where the vCCEA_1 is the vCCEA that removes the VND process. The vCCEA2
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is used to verify the validity of the collaboration model. The VCCEA_3 is the vCCEA that
remove the two enhanced neighborhood structures during the VND process. And the β2
is used to verify vCCEA and the other three versions of vCCEA. For each instance in β2,
the four algorithms are independently run 20 times. For each algorithm, the RPI value of
each instance is obtained first. Then, the average RPI of five instances from the same scale
problem is calculated and represented by the average RPI values (ARPI). The results are
shown in Table 5.

Figure 7. The trend of the parameter level.

Table 4. The average RPI response values.

Level PS C L R

1 0.0647 0.0760 0.0823 0.0633
2 0.0585 0.0686 0.0693 0.0695
3 0.0729 0.0606 0.0584 0.0619
4 0.0730 0.0640 0.0592 0.0743

Delta 0.0145 0.0155 0.0240 0.0124
Rank 3 2 1 4

From Table 5, we can clearly see that the whole vCCEA is the best performer. In the
other three versions of the vCCEA, the vCCEA_1 is the worst one. In the cooperative
coevolutionary process, the VND process is used to generate new individuals Π(or Z).
With the same perturbation strategy, the result of neighborhood switching using VND
process is obviously better than that of traditional neighborhood perturbation. Thus, the
VND process is crucial to the algorithm. Among these 20 problems with different sizes, the
vCCEA_2 is worse than the vCCEA. It can be seen that the collaborative model proposed
in this paper is effective. By comparing vCCEA_3 and vCCEA, the validity of the two
enhanced neighborhood structures is proven. These two enhanced neighborhood structures
can enlarge the search area of the VND process, and it is beneficial for the vCCEA to find
the potential promising solution in a larger solution space.
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Table 5. Comparison of vCCEA components.

ARPI vCCEA vCCEA_1 vCCEA_2 vCCEA_3

20_3 0.0716 0.4028 0.5022 0.2135
20_5 0.0328 0.111 0.0713 0.1105
20_8 0.0283 0.0671 0.0195 0.0553

20_10 0.0052 0.0617 0.0226 0.0487
40_3 0.0251 0.0841 0.0776 0.0988
40_5 0.02 0.0961 0.0766 0.1121
40_8 0.0195 0.0523 0.0148 0.056
40_10 0.0167 0.0501 0.0886 0.0578
60_3 0.0049 0.0379 0.0186 0.0431
60_5 0.0068 0.0582 0.0272 0.0597
60_8 0.0148 0.0623 0.0668 0.0707

60_10 0.0083 0.0571 0.017 0.0506
80_3 0.0032 0.0297 0.0085 0.0273
80_5 0.0142 0.0556 0.038 0.0549
80_8 0.0104 0.044 0.0141 0.0438
80_10 0.0193 0.0479 0.0321 0.0465
100_3 0.0141 0.0672 0.041 0.0649
100_5 0.0204 0.0631 0.0444 0.0532
100_8 0.0192 0.0773 0.0318 0.0749

100_10 0.0189 0.0416 0.0278 0.0371
Mean 0.0187 0.0784 0.062 0.069

5.4. Evaluation of the vCCEA on the Small-Scale Instances

This section focuses on the differences between vCCEA and MILP when solving the
small-scale problems. We use the Gurobipy 9.1.2 optimizer to run the MILP on the instances
in β1, and the maximum running time is limited to 3600 s. In addition, the vCCEA is used
to solve the instances in β1, and the termination condition is set to 80 × J × K. The results
are shown in Table 6.

Table 6. The validation results of MILP.

Problem
MILP vCCEA

Objective Time (s) RPI Objective Time (s) RPI

6_3 48,421 4.36 0 48,421 1.453 0
6_5 169,894 8.13 0 169,894 2.406 0
6_8 364,151 10.13 0 364,151 3.844 0
8_3 104,164 20.06 0 104,164 1.921 0
8_5 220,119 154.4 0 220,119 3.203 0
8_8 369,027 46.73 0 369,027 5.125 0
10_3 122,068 17.41 0 122,068 2.406 0
10_5 223,049 3600 0 223,049 4 0
10_8 612,361 3600 0 612,361 6.406 0
12_3 222,509 3600 0 222,509 2.906 0
12_5 311,630 3600 0 311,630 4.813 0
12_8 612,660 3600 0 612,660 7.688 0
14_3 237,372 3600 0 237,372 3.375 0
14_5 281,607 3600 3.678 271,617 5.609 0
14_8 684,055 3600 0.1826 683,506 8.984 0

From Table 6, it can be concluded that for small-scale instances, both the MILP and
vCCEA can find optimal solutions. The MILP and vCCEA find the same results for the
first 13 instances in β1. In addition, for instances 14_5 and 14_8, the vCCEA revealed
better results. As the complexity of the problem increases, the effectiveness of the MILP is
gradually inferior to the vCCEA. For large-scale instances, the MILP model has difficulty in
providing a good solution in a short time. As we know that time is a non-negligible factor
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in actual production, thus the near-optimal solutions are required in an acceptable time.
Therefore, with the increasing size of the instances, the advantages of vCCEA become more
and more obvious.

5.5. Evaluation of vCCEA on the Medium–Large Scale Instances

Next, the performance of the proposed vCCEA is evaluated on the medium–large
scale instances in β2. Here, we collected five metaheuristic algorithms for comparisons,
namely, CVND [30], GA [40], GAR [24], VMBO [41], and DABC [42], which are those
presented for the HFSP in the literature most recently and have been proven to have
excellent performance. For the HFSP_ECS, three highly coupled subproblems need to
be solved, i.e., lot sequence, machine assignment, and lot split. Due to the specificity
of the problem, we retain the original characteristics of each comparison algorithm and
modify it to adapt to our problem. All algorithms use the same double-layer encoding
and decoding strategies as proposed in this paper, and select the corresponding lot split
operator from this article. As these comparison algorithms have been partially changed
for adapting to our problem, their parameters are also optimized and adjusted on the
original basis by using the DOE method to ensure that these algorithms can play with
better performance. For each instance in β2, each algorithm is run independently 20 times,
and the average energy consumption and the ARPI of five instances from the same scale
problem are calculated. The experimental results are given in Table 7. Additionally, to more
visually demonstrate the differences between these six algorithms, the means and 95% least
significant difference (LSD) confidence intervals [43] were analyzed. Figure 8 shows the
confidence interval comparisons between vCCEA and each algorithm, and Figure 9 shows
the confidence interval comparison among all algorithms, where the X-axis represents the
various algorithms and the Y-axis is the ARPI value.

Table 7. Comparison results of vCCEA and other algorithms on β2.

Problem
vCCEA CVND GA GAR VMBO DABC

AVG RPI AVG RPI AVG RPI AVG RPI AVG RPI AVG RPI

20_3 104,859.2 0.0716 105,168.8 0.367 105,241.6 0.4366 105,622.4 0.8 105,118.9 0.3194 105,380.9 0.5695
20_5 286,304.1 0.0328 286,558.3 0.1216 286,650.9 0.154 287,162.9 0.3329 286,555.6 0.1207 286,341.3 0.0458
20_8 556,484.2 0.0376 556,780.2 0.0908 556,746.2 0.0847 557,223.5 0.1705 556,616.3 0.0614 556,421 0.0262
20_10 674,734.2 0.0135 675,111.7 0.0695 675,225 0.0863 675,640 0.1478 674,985.4 0.0507 674,824.4 0.0269
40_3 249,561.5 0.0251 249,702.6 0.0817 249,803.9 0.1223 250,206.8 0.2838 249,746.1 0.0991 249,831.4 0.1333
40_5 435,346.9 0.024 435,831.7 0.1353 435,944.6 0.1613 436,981.2 0.3994 435,847.7 0.139 436,000.1 0.1741
40_8 1,040,283 0.0228 1,040,946 0.0865 1,041,001 0.0918 1,042,108 0.1982 1,040,757 0.0683 1,040,905 0.0825
40_10 1,150,216 0.0186 1,151,282 0.1113 1,151,477 0.1282 1,153,416 0.2969 1,151,298 0.1127 1,151,912 0.1661
60_3 406,475.4 0.0049 406,556.5 0.0248 406,668.4 0.0524 406,839.1 0.0943 406,672.4 0.0533 406,640 0.0454
60_5 772,749.8 0.0068 772,993.9 0.0384 773,326.6 0.0815 773,701.2 0.1299 773,183 0.0629 773,111.7 0.0536
60_8 1,272,264 0.0205 1,272,954 0.0747 1,273,432 0.1123 1,277,052 0.3969 1,273,614 0.1266 1,275,208 0.2519
60_10 1,781,242 0.0082 1,782,288 0.0669 1,782,747 0.0927 1,784,128 0.1703 1,782,522 0.0801 1,782,387 0.0725
80_3 538,223.9 0.0032 538,356.1 0.0278 538,429.4 0.0414 538,612.1 0.0753 538,420.2 0.0397 538,330.7 0.0231
80_5 1,105,906 0.0143 1,106,629 0.0796 1,106,944 0.1081 1,107,842 0.1893 1,106,768 0.0922 1,107,026 0.1155
80_8 1,666,493 0.0105 1,668,307 0.1193 1,667,385 0.064 1,668,484 0.13 1,667,195 0.0526 1,667,606 0.0772
80_10 2,381,343 0.0193 2,382,087 0.0506 2,382,973 0.0878 2,385,528 0.1951 2,382,764 0.079 2,383,807 0.1228
100_3 647,384.2 0.0141 647,558.7 0.041 647,756.7 0.0716 648,072.5 0.1204 647,836.8 0.084 647,836.7 0.084
100_5 1,225,888 0.0203 1,226,310 0.0548 1,226,695 0.0862 1,228,023 0.1946 1,226,821 0.0965 1,227,563 0.1571
100_8 2,474,499 0.0179 2,477,750 0.1493 2,476,969 0.1178 2,477,487 0.1387 2,475,958 0.0769 2,476,269 0.0895

100_10 2,907,226 0.0188 2,908,332 0.0569 2,908,726 0.0704 2,910,371 0.127 2,908,690 0.0692 2,910,773 0.1409
Mean 1,083,874 0.0202 1,084,575 0.0924 1,084,707 0.1126 1,085,725 0.2296 1,084,568 0.0942 1,084,909 0.1229
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Figure 8. Confidence interval graph. (a) Confidence intervals of vCCEA and CVND; (b) confidence
intervals of vCCEA and GA; (c) confidence intervals of vCCEA and GAR; (d) confidence intervals of
vCCEA and VMBO; (e) confidence intervals of vCCEA and DABC.
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Figure 9. Confidence interval graph for these six algorithms.

As seen in Table 7, the vCCEA is the best one among these algorithms, which obtains
best results for 19 of the 20 different problems in β2. The DABC algorithm finds the optimal
solution for the remaining one scale problem, with the scale being 20 × 8. The last row
of Table 7 gives the average energy consumption and average RPI for all instances. It is
obvious that vCCEA has the best results among all the algorithms. In addition, according to
the confidence intervals shown in Figures 8 and 9, it can clearly be seen that the performance
of the proposed vCCEA is obviously better than that of the other five algorithms. To further
evaluate the performance of the algorithm, we analyze the convergence of the algorithm,
and the convergence curves of these algorithms on two examples are given. These two
examples are from 40 × 5 and 80 × 10, respectively, and the convergence curves are shown
in Figures 10 and 11. The X-axis represents the running time of the algorithm, and the
Y-axis represents the energy consumption value.

Figure 10. The convergence curve for instances of 40 × 5.
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Figure 11. The convergence curve for instances of 80 × 10.

From Figures 10 and 11, the convergence speed of vCCEA is the fastest, and the
convergence degree is also better than that of the other algorithms. This is closely related to
the cooperative coevolutionary strategy and VND process in the proposed vCCEA. Two
populations in the algorithm evolve separately using the VND process specifically designed
for them and constantly interacting with the archive. As well as with the population
restart strategy, the local search capability of the vCCEA can be ensured, and it also
balances the diversity and density of the populations, which further improves the algorithm
performance.

Therefore, through the above analysis, the conclusion can be drawn that the vCCEA
can effectively solve HFSP_ECS and the robustness of the vCCEA can be guaranteed.

6. Conclusions

In this paper, the energy-efficient flowshop scheduling problem with consistent sublots
(HFSP_ECS) is studied, and it supports the overlap of successive operations within a multi-
stage manufacturing system. This is a highly complex combinatorial optimization problem
that consists of three highly coupled subproblems. We use the minimized energy consump-
tion as the optimization objective. By limiting the maximum number of sublots, a linear
integer programming model (MILP) of the addressed problem is established and its validity
is verified by the Gurobi optimizer. An improved cooperative coevolutionary algorithm
(vCCEA) is proposed by integrating the variable neighborhood decent (VND) strategy. In
vCCEA, with the consideration of the problem-specific characteristics, a two-layer encoding
strategy is designed, and a novel collaborative interaction model is proposed. Addition-
ally, to ensure the local search ability of the algorithm, different neighborhood structures
are designed for different subproblems, and two kinds of enhanced local neighborhood
structures are proposed to search for potential promising solutions. To avoid trapping
into the local optima, a population restart mechanism is designed. Moreover, through a
large number of experiments on different benchmark sets, the effectiveness of the proposed
strategies is proved. The experimental results show that vCCEA is significantly better than
the mathematical programming and the other algorithms in solving the HFSP_ECS.

For the HFSP_ECS, the maximum sublot quantities is limited in this paper, so in the
future, how to divide the lots and the number of sublots is a direction of our research.
At the same time, we will consider more production constraints in the future, such as
setup, blocking, transportation, and delivery time. In addition, the realistic manufacturing
processes always have multi-objective characteristics and variability. This requires us
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to consider more optimization objectives and weigh the relationship between multiple
objective functions. Furthermore, the possible emergencies during production are also
required and studied to derive useful dynamic and rescheduling strategies.
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Abbreviations

Notations
K Total number of stages.
k Index of stages, k ∈ {1, 2, . . . , K}.
J Total number of lots.
j Index of lots, j ∈ {1, 2, . . . , J}.
Mk Number of parallel machines at stage k.
i Index of machines at stage k, i ∈ {1, 2, . . . , Mk}.
Tj Total number of items of lot j.
L Maximum number of sublots of each lot.
e Index of the sublots, e ∈ {1, 2, . . . , L}.
Pk,j Item processing time of lot j at stage k.
EPk,j The energy consumption per unit time when lot j is processed on stage k.
EIk The energy consumption per unit time when the machine on stage k is idle.
G A positive large number.
Decision variables
Nj,e Number items of sublot e of lot j.
Sk,j,e Beginning time of sublot e of lot j at stage k.
Ck,j,e Ending time of sublot e of lot j at stage k.
Wj,e A binary variable. The value is 1 if items in the sublot e of lot j is greater than 0, and

0 otherwise.
Dk,j,i A binary variable. The value is 1 if lot j is scheduled on machine i at stage k, and 0 otherwise.
Yk,j,j1,i A binary variable. When lot j and lot j1 are scheduled on the same machine at stage k, the

value is 1 if lot j is processed before lot j1, and 0 otherwise.
Cmax Completion processing time for all lots.
Eprocess Total energy consumption for all machine processing.
Eidle Total energy consumption of all machines when they stay in the idle.
Emax The total energy consumption.
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Abstract: Traditional energy-saving optimization of shop scheduling often separates the coupling
relationship between a single machine and the shop system, which not only limits the potential
of energy-saving but also leads to a large deviation between the optimized result and the actual
application. In practice, cutting-tool degradation during operation is inevitable, which will not only
lead to the increase in actual machining power but also the resulting tool change operation will disrupt
the rhythm of production scheduling. Therefore, to make the energy consumption calculation in
scheduling optimization more consistent with the actual machining conditions and reduce the impact
of tool degradation on the manufacturing shop, this paper constructs an integrated optimization
model including a flexible job shop scheduling problem (FJSP), machining power prediction, tool
life prediction and energy-saving strategy. First, an exponential function is formulated using actual
cutting experiment data under certain machining conditions to express cutting-tool degradation.
Utilizing this function, a reasonable cutting-tool change schedule is obtained. A hybrid energy-
saving strategy that combines a cutting-tool change with machine tool turn-on/off schedules to
reduce the difference between the simulated and actual machining power while optimizing the
energy savings is then proposed. Second, a multi-objective optimization model was established to
reduce the makespan, total machine tool load, number of times machine tools are turned on/off and
cutting tools are changed, and the total energy consumption of the workshop and the fast and elitist
multi-objective genetic algorithm (NSGA-II) is used to solve the model. Finally, combined with the
workshop production cost evaluation indicator, a practical FJSP example is presented to demonstrate
the proposed optimization model. The prediction accuracy of the machining power is more than
93%. The hybrid energy-saving strategy can further reduce the energy consumption of the workshop
by 4.44% and the production cost by 2.44% on the basis of saving 93.5% of non-processing energy
consumption by the machine on/off energy-saving strategy.

Keywords: cutting-tool degradation; machine tool turning-on/off schedule; hybrid energy-saving
strategy; multi-objective optimization; flexible job shop scheduling

MSC: 90B30; 90B35

1. Introduction

In the current industrial environment, the manufacturing industry, as an important
part, consumes a lot of energy and resources in the process of product manufacturing [1].
The report on power consumption released by the China Electricity Council in 2022 showed
that China’s industrial electricity consumption accounted for 64.5% of the total social
electricity consumption in the first 10 months of 2022, while manufacturing electricity
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consumption accounted for 76% of industrial electricity consumption. In addition, research
shows that 99% of environment-related problems in mechanical processes are due to elec-
trical energy consumption [2]. Therefore, the establishment of an energy-saving machining
system is an urgent requirement to reduce environmental impacts and every manufacturing
enterprise needs to focus on it.

Energy-saving strategies using new materials and technologies may require enterprises
to transform and invest a lot in existing manufacturing systems, therefore enterprises are
usually inclined to carry out energy-saving scheduling and management [3]. Through
scientific matching of production tasks and machine tools, more accurate calculation of
tasks sequencing, reduce idle time of machine tools, and reasonable selection of machine
tools on/off time can improve energy efficiency [4]. Additionally, Guzman et al. indicated
that a gap still exists in developing mathematical models to deal with scheduling problems.
Novel modeling approaches should be developed to address and associate the parameters
related to production and sustainability [5], among which Feng et al. integrated multiple
optimization algorithms and apply edge artificial intelligence (AI) to smart green scheduling
of sustainable flexible shop floors [6]. Guzman et al. provided a mixed integer linear
programming (MILP) model to address the multi-machine CLSD-BPIM (a capacitated
lot-sizing problem with sequence-dependent setups and parallel machines in a bi-part
injection molding) [7]. Mula et al. proposed a matheuristic algorithm to optimize the
job-shop problem, which combines a genetic algorithm with a disjunctive mathematical
model to cut computational times, and the Coin-OR Branch and Cut open-source solver
is employed [8]. Rakovitis et al. developed a novel mathematical formulation for the
energy-efficient flexible job-shop scheduling problem using the improved unit-specific
event-based time representation and proposed a grouping-based decomposition approach
to efficiently solve large-scale problems [9]. Knowing that approximately 80% of the energy
consumption of machine tools is attributed to non-processing operations, whereas the
actual energy consumed by processing operations accounts for less than 20% [10]. If only
relying on advanced algorithms to achieve further energy saving in the workshop, the
effect is limited. Wu and Sun realized energy saving by changing the turning on/off time
of machine tools and choosing different machining speeds [11]. Gong et al. effectively
reduced the number of machine restarts and total energy consumption by changing the
start time of operations on different machines [12]. Cheng et al. proposed machine tool
on/off criterion criteria, speed-scaling policy and transportation optimization strategy,
and applied them to manufacturing unit scheduling problems to achieve overall energy
saving [13]. An et al. proposed a worn cutting-tool maintenance strategy that reduced
the impact of cutting-tool degradation and the total energy consumption of cutting-tool
maintenance in manufacturing workshops [14]. Setiawan et al. studied a shop rescheduling
problem caused by the failure or reduced service life of cutting tools [15].

As can be seen from the aforementioned literature, on the one hand, most energy-
saving scheduling problems start from the perspective of improving the performance of
the algorithm, which makes the optimization calculation of shop energy consumption
more accurate. However, on the other hand, from the perspective of workshop system
management to achieve energy saving, in order to further realize the energy saving of
the manufacturing system, it is important to consider the contribution of the coupling
relationship between the energy consumption of individual equipment and the energy
consumption of the system to the actual production and optimization objectives; however,
this was almost ignored in previous studies. As the basic energy consumption equipment
in the manufacturing process [16], the energy consumption caused by machine tools cannot
be ignored. However, accurate estimation of energy consumption is the basis for improving
energy efficiency. In recent years, different modeling methods for machine tool energy
consumption have been proposed, such as those by He et al. and He et al., who combined
the tool machining path with the energy consumption model to improve machining effi-
ciency [17,18]. Shailendra et al. established an empirical model between cutting parameters
and energy consumption of end turning by experiments [19]. Haruhiko et al. proposed
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an empirical model for predicting machine tool power consumption based on the power
function between specific energy consumption and material removal rate [20]. In addition,
as the direct implementer of machine tool cutting, tool changing and maintenance will
directly affect the production schedule, in order to avoid the tool suddenly reaching the end
of life, resulting in the conflict of resources, energy consumption increase and the extension
of the makespan and other problems. T. Mikołajczyk et al. and Sun et al. established the
prediction model of tool residual life based on the historical data of tool wear [21,22]. M.
Castejo’n et al. and P.J. Bagga et al. constructed a tool wear image dataset to predict tool
life using cluster analysis and an exponential model [23,24]. Shi et al., Zhang et al. and
Muhammad et al. introduced tool wear into the energy consumption model to achieve
accurate energy consumption modeling, which laid a foundation for the integration of
tool life prediction and energy consumption model [25–27]. Figure 1 summarizes the
above literature.

 
Figure 1. Analysis of energy-saving scheduling research status.

In summary, few researchers combine shop scheduling under low-carbon production
with single-machine tool energy consumption and tool life prediction. This paper analyzes
the coupling relationship between shop scheduling, single-machine tool energy consump-
tion and tool life prediction, and organically integrates the three to achieve deeper shop
consumption reduction. Firstly, the machining power model and the tool life model of the
machine tool were established through the tool wear-cutting experiment. Then, the two
models were integrated into the shop scheduling system to obtain the machining power
of each production procedure and the tool change time of each machine tool in the shop
scheduling process, so as to realize the precise modeling of energy consumption at the
system level. In addition, on the basis of the machine tool turn-on/off strategy of the work-
shop, considering the relationship between the tool change time and the turn-on/off time
of the machine tool, the tool change time is adjusted to further reduce the machining power
and the makespan of the workshop, so as to reduce the production energy consumption of
the workshop, as shown in Figure 2.

The remainder of the paper is organized as follows. Section 2 describes the FJSP,
cutting-tool degradation model, and hybrid energy-saving strategy of cutting-tool change
and machine tool turn-on/off. In Section 3, a multi-objective optimization model of
flexible job shop scheduling is established that considers tool degradation and energy-
saving measures. Section 4 introduces the proposed NSGA-II algorithm and its specific
improvements. Section 5 sets the optimization model parameters through data collection
and the analysis of actual cases. The rationality, effectiveness, and practical effects of the
proposed model and algorithm are analyzed through verification experiments. Section 6
presents the conclusions and directions for future study.

147



Mathematics 2023, 11, 324

 

(݊݅݉/ݎ)ݒ݊ (ݎ/݉݉)݂ ܽ (݉݉) ܽ݁(݉݉)

,1ܯ 2ܯ

,3ܯ 4ܯ

,5ܯ 6ܯ

CCD industrial 
camera

Figure 2. Energy-saving scheduling research route.

2. Problem Description

The relevant symbols are provided in this section. Then, the FJSP that considers cutting-
tool degradation with energy-saving measures (FJSP–CTD–ESM) is described. First, the
FJSP is described. Then, the calculation method of the cutting-tool life, dynamic machining
power, and the hybrid energy-saving strategy of cutting-tool change and machine tool
turn-on/off is proposed, which combines the cutting-tool degradation and machine tool
turn-on/off effects.

2.1. FJSP Description

In the FJSP, there are n kinds of jobs J = {Ji}i=1,2,...,n and k machine tools M =

{Mm}m=1,2,...,k, and each job Ji has Si preset sequence of operations O =
{

oi,j
}

j=1,2,...,Si
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(Li et al., 2012). At least one operation oi,j in O can be processed by different machine tools,
with a corresponding difference in the processing time and efficiency for the same operation.

The following conditions should be met in the FJSP: (1) A machine tool cannot be
assigned to two or more operations simultaneously. (2) Each job has the same processing
priority: initially, all jobs can be processed. (3) There is no constraint relationship between
different jobs. (4) The optional machine tools for the job have no priority relationship.
(5) All job processing tasks are non-preemptive. (6) The processing power of the machine
tool and degree of cutting-tool wear obey the law of tool degradation. (7) Once a process
begins, it cannot be interrupted before completion. Changing the cutting tool and turning
the machine tool on/off cannot be inserted into the machining process. (8) The conversion
time between different jobs with the same machine tool as well as the transportation time
between different stages of the same job are ignored.

The symbols used in this paper are defined in Table 1.

Table 1. The symbols used in this paper.

Symbol Descriptions

i, h The index for jobs, i, h = 1, 2, . . . , n
j, g The index for operations, j, g = 1, 2, . . . , max{Si , Sg

}
m The index for machine tools, m = 1, 2, . . . , k
r The index for the machine tool’s processing task, r = 1, 2, . . . , lm

lm The number of processing tasks for the machine tool Mm
Si The number of operations for job Ji
n The number of jobs
k The number of machine tools
Ji The i − th job

oi,j The j − th operation of the job Ji
Mm The m − th machine tool
Pm The total power of the machine tool Mm
Pijm The power of operation oi,j which is on the machine tool Mm
Pdm The dynamic power of the machine tool Mm
Psm The static power of the machine tool Mm
Pctm The cutting-tool changing power of the machine tool Mm
PAdd The additional power of the workshop

a1 − a8 The exponential parameters between each cutting parameter and the dynamic power
K1, K2 The coefficients of the dynamic power model
b1 − b4 The exponential parameters between each cutting parameter and the cutting-tool life

K3 The coefficients of the tool life model
nv The spindle speed
f The feed speed

ap The cutting depth
ae The cutting width
tm The used time of the cutting tool of the machine tool Mm
Tm The cutting-tool life of the machine tool Mm
tctm The cutting-tool changing time of the machine tool Mm
PT The processing time of an operation
PTij The processing time of the operation oi,j

PTijm The processing time of the operation which is on the machine tool Mm
STij The start time of the operation oi,j
STmr The start time of the r − th processing task of the machine tool Mm
CTij The end time of the operation oi,j
CTmr The end time of the r − th processing task of the machine tool Mm
TRm The no-load balance time of the machine tool
Hm The on/off security threshold time of the machine tool Mm

RTmean The actual average turning-on/off machine tool time
Wm The degree of tool wear
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Table 1. Cont.

Symbol Descriptions

Etotal The total energy consumption of the workshop
Ec The processing energy consumption of machine tools

ERe The energy consumption of turning on/off machine tools
ERem The energy consumed by a single on/off of the machine tool
Ect The total energy consumption of changing the cutting tool
Es The standby energy consumption of machine tools

EAdd The additional energy consumption of the workshop
RTEmean The actual average energy consumption of turning on/off the machine tool

Cmax The makespan
G The total number of turning-on/off machine tools and changing cutting tools

WL The total load of machine tools
CFm The coefficient of cutting tool capacity of the machine tool Mm
DW The degree of reduction in processing capacity of the cutting tool

COST The production cost
SFm The additional coefficient of turning on/off the machine tool Mm
ωe Unit energy cost
ωm The unit operating cost of the machine tool
ωt Machine tool turn on/off loss cost
ωl Cost per unit of labor time
x The number of tasks that cutting-tool changing operation can be advanced

γijmr/γhgmr
γijmr/γhgmr = 1, if the operation oi,j is the r − th processing task of Mm, γijmr=1; otherwise

γijmr/γhgmr = 0

ηmr
ηmr = 1, if the machine tool Mm is turned on/off before its r − th processing task; otherwise,

ηmr =0

λmr
λmr = 1, if the machine tool Mm changes the cutting tool before its r − th processing task;

otherwise, λmr =0
δm δm = 1, if the machine tool Mm turns on/off twice or more; otherwise, δm =0

2.2. Cutting-Tool Degradation Model

In the FJSP, the degradation of the cutting tool reduces its machining capacity, leading
to an increase in the machining power and the interruption of the process caused by the
blunt cutting tool. If the cutting-tool wear is considered in advance during the scheduling
process, the change in machining power caused by cutting-tool wear can be accurately
predicted. This not only improves processing efficiency and reduces energy consumption
but also prevents the cutting tool from becoming blunt.

This section introduces the machining power model and cutting-tool life model de-
rived from the tool degradation model.

(1) Machining power model
From the point of view of the working state of the machine tool, the machine tool

power Pm in the workshop production process can be divided into two parts, as shown
in Equation (1). The first part is the dynamic machining power of the machine tool Pdm,
which includes the spindle power of the machine tool in the workpiece-cutting process.
The second part is the static power Psm of the machine tool, including the no-load power of
the motor and the power of the numerical control, lighting, and cooling systems.

Pm = Pdm + Psm, (1)

Psm exhibits little change in the machining process; hence, it is regarded as a constant value.
The dynamic power model [28,29] proposed by Tian et al. and Tian et al. is divided

into two parts: the initial dynamic power without tool wear, and the additional dynamic
power caused by tool wear, as shown in Equation (2):

Pdm = K1nv
a1 f a2 ap

a3 ae
a4 + K2tmna5 f a6 ap

a7 ae
a8 (2)
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(2) Cutting-tool life model
To determine the relationship between the cutting-tool life and different cutting pa-

rameters, a type of cutting-tool failure should be selected as the criterion. According to ISO
8688-2:1989 Tool life testing in milling-part 2: end milling (1989), the wear of an end milling
cutter can be divided into rake-face wear and flank-face wear [30]. Because the flank-face
wear is easy to measure, the blunt standard of the tool wear is often set according to the
maximum allowable value of the flank-face wear (usually expressed as VB). In this study,
the end of the end milling cutting tool’s life was defined as having a maximum VB of
0.3 mm in one of all teeth (VBmax = 0.3). The cutting-tool life model of Tian et al. and
Sun et al. is shown in Equation (3) [22,29]:

Tm = K3·nv
b1 f b2 ae

b3 ae
b4 (3)

As we all know, tool wear is produced in complex mechanical and thermal envi-
ronments, and there will be different dullness criteria for different processing objects or
different quality requirements. In this paper, according to the dullness criterion mentioned
in the ISO standard, in other application scenarios with higher cutting quality require-
ments, this part of modeling needs to establish a dullness criterion that meets the quality
requirements and build models under these standards. This article only provides such
a solution.

2.3. The Hybrid Energy-Saving Strategy

Section 2.2 shows that the cutting-tool life is not only related to the material and
specifications of the cutting tool but also to the cutting parameters. Therefore, the cutting
tool remaining useful life (RUL) cannot be calculated directly from the processing time
of different operations. This results in a unique tool-changing schedule that affects the
makespan and machine tool turn-on/off schedule.

Three measures are proposed to solve this problem.
(1) The cutting-tool change strategy
In this study, the cutting tool is changed before it is damaged to ensure that it meets

processing quality requirements, reduces the risk of accidents, and improves the reliability
of the processing system. Therefore, if the remaining service life of the cutting tool is
insufficient to support the next processing task in the schedule, the cutting tool is considered
unavailable and changed before the start of the next processing task, as expressed by
Equation (4).

Tm − tm < PT (4)

Owing to the different cutting-tool lives under different cutting parameters, the cutting-
tool service time cannot be added directly. A normalized approach is adopted to deal with
this problem, that is, the increase in cutting-tool wear caused by the processing task is
obtained using the processing task time/cutting-tool life under the cutting parameters of
the task. Then, the total cutting-tool wear Wm is used to determine whether the cutting tool
has reached the end point of its service life, as expressed by Equation (5).

Wm + PT/ Tm < 1 (5)

Equation (5) defines that cutting-tool wear must be less than 1.
(2) The machine tool turn-on/off strategy
During the production process, if a machine tool remains idle for some time, it is

sensible to turn it off to avoid wasting energy and reduce carbon emissions. Turning
machine tools on/off leads to additional energy consumption and could also damage their
performance and service life. Therefore, the no-load balance time TRm should be set to
control when to turn the machine tool on/off, as expressed by Equation (6). Meanwhile,
to reduce the damage caused by turning the machine tool on/off, the interval between
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on/off times is controlled by setting the on/off security threshold time Hm, as expressed by
Equation (7) [11].

STmr − CTm(r−1) ≥ TRmηmr (6)∣∣∣ηmrCTm(r−1) − ηmr′STmr′
∣∣∣ ≥ Hmδm, r > r′ (7)

Equation (6) shows that if the time interval between two subsequent processing tasks is
greater than the no-load balancing time, the machine tool should be turned off. Equation (7)
shows that if the machine tool is turned on/off twice or more, the interval between the
time the machine tool is turned on and the next turn-off must exceed the on/off security
threshold time of the machine tool.

(3) Hybrid energy-saving strategy of cutting-tool change and machine tool turn-on/off
If the cutting-tool change operation is separated from the machine tool turn-on/off

operation, the single cutting-tool change operation not only increases the makespan but
also the standby energy consumption of the machine tool. Sacrificing a small amount
of cutting-tool processing capacity by advancing the timing of the cutting-tool change
will shorten the makespan and reduce energy consumption. Here, we set a reasonable
coefficient CFm of the cutting-tool capacity to control when to change the cutting tool.
Equation (8) ensures that the reduced processing capacity of the machine tool Mm is within
an acceptable range. The cutting-tool change operation can be carried out before x tasks to
realize energy savings.

CFm ≥ 1 − Wm +
x

∑
r=0

(λmrPTmr/ Tm) (8)

3. Formulation of FJSP–CTD–ESM

In this section, the energy footprint model is defined. Then, the optimization model of
the FJSP–CTD–ESM is established.

3.1. Energy Footprint Model

The total energy consumption Etotal of the workshop consists of five parts, as shown
in Equation (9). Figure 3 shows the energy consumption of the machine tool at different
stages [1].

Etotal = EC + ERe + Ect + ES + EAdd (9)

 

Figure 3. Schematic diagram of energy consumption distributions for different running states.
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The energy consumption of each part is analyzed in detail below.
(1) Processing energy consumption Ec of machine tools
The processing energy consumption Ec of process oi,j is closely related to the cutting

time PTijm and the machine tool power Pijm, which varies with the machine tool type,
cutting parameters, and cutting-tool wear. The energy consumption of cutting is calculated
as Equation (10).

Ec =
k

∑
m=1

n

∑
i=1

Si

∑
j=1

lm

∑
r=1

γijmrPijmPTijm (10)

(2) Energy consumption ERe of turning machine tools on/off
The energy consumption when turning the machine tool on/off ERe is influenced

by the type and performance of the machine tool; it has no relation with the processing
operation. Thus, the energy consumption of turning the machine tool on/off ERem once was
set as a constant value. The energy consumption of machine tool turn-on/off is calculated
as Equation (11).

ERe =
k

∑
m=1

lm

∑
r=1

ηmrERem (11)

(3) Total energy consumption Ect of changing the cutting tool
As the processing time increases, it is necessary to change the cutting tool before it

becomes blunt. The energy consumption of cutting-tool change is calculated as Equation (12).

Ect =
k

∑
m=1

lm

∑
r=1

λmrPctmtctm (12)

(4) Standby energy consumption Es
When the machine tool is idle and kept on between two processes, it consumes energy

while on standby, which is expressed as:

Es =
k

∑
m=1

lm

∑
r=1

Psm(1 − ηmr)
(

STmr − CTm(r−1)

)
(13)

(5) Additional energy consumption EAdd of the workshop
The energy consumption of the workshop results not only from machine tool-related

processes but also from lighting, computer utilization, and other sources. In this study, the
additional energy consumption is not examined in detail; hence, it is set to a constant and
calculated as Equation (14).

EAdd = PAdd ∗ Cmax (14)

where PAdd = 9.65 Kw.

3.2. Formulation of the FJSP–CTD–ESM Optimization Model

In actual production, the total energy consumption is not the only indicator; the
makespan, total load of the machine tool, and the total number of times the machine tool
is turned on/off and cutting tools are changed also need to be considered. Therefore,
the multi-objective optimization model proposed in this paper has four objectives: the
makespan f1 (min), the total energy consumption of f2 (Kw·min), the total load of machine
tools f3 (min), and the total number of times the machine tools are turned on/off and
cutting tools are changed f4 (time), expressed as Equations (15)–(35).

min F = [ f1, f2, f3, f4] (15)

where
f1 = Cmax = max

m,r
CTmr (16)
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f2 = Etotal = Ec + ERe + Ect + Es + EAdd

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

k
∑

m=1

n
∑

i=1

Si
∑

j=1

lm
∑

r=1
γijmrPijmPTijm+

k
∑

m=1

lm
∑

r=1
ηmrERem+

∑k
m=1 ∑lm

r=1 λmrPctmtctm+

∑k
m=1 ∑lm

r=1 Psm(1 − ηmr)
(

STmr − CTm(r−1)

)
+ PAdd ∗ Cmax

(17)

f3 = WL =
k

∑
m=1

n

∑
i=1

Si

∑
j=1

lm

∑
r=1

γijmrPTijm (18)

f4 = G =
k

∑
m=1

lm

∑
r=1

(ηmr + λmr) (19)

Subject to
CTij − PTij ≥ CTi(j−1) (20){

STm(r+1) − STmr > 0
STm(r+1) − CTmr ≥ 0

(21)

k

∑
m=1

γijmr = 1 (22)

STmr − CTm(r−1) ≥ TRmηmr (23)∣∣∣ηmrCTm(r−1) − ηmr′STmr′
∣∣∣ ≥ Hmδm, r > r′ (24)

Wmr < 1 (25)

STmr − CTm(r−1) ≥ tctmλmr (26)

CFm ≥ 1 − Wm +
x

∑
r=0

(λmrPTmr/ Tm) (27)

γijmr =

{
1,
0,

if the operation oi,j is the r th processing task of the machine tool Mm
otherwise

(28)

ηmr =

{
1,
0,

if the machine tool Mm is turned on/off before its r th processing task
otherwise

(29)

λmr =

{
1,
0,

if the machine tool Mm changes the cutting tool before its r th processing task
otherwise

(30)

δm =

{
1,
0,

if the machine tool Mm is turned on/off twice or more
otherwise

(31)

ST > 0 (32)

CT > 0 (33)

PT > 0 (34)

i ∈ [1, n], j ∈ [1, s], m ∈[1, k], r ∈[1, lm] (35)

Constraint [20] indicates that an operation cannot begin unless the preceding operation
was completed. Constraint [21] confirms that a machine tool cannot be assigned to two
or more processes simultaneously. Constraint [22] ensures that the same process cannot
be conducted by two or more machine tools. Constraint [23] states that the machine tool
turn-on/off does not overlap with the processing task, and the on/off time must exceed
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the no-load balance time. If it is the first round of processing, CTijm0 = 0; otherwise,
CTijm0 = CTijmlm . Constraint [24] indicates that the interval between the time the machine
tool is turned on and the next turn-off must exceed the machine tool on/off security
threshold time Mm. Constraint [25] implies that the actual degree of tool wear Wmr must
be less than 1. Constraint [26] requires that the cutting-tool change does not overlap with
the processing task, and the time interval between the two processes is greater than the
defined cutting-tool change time. Constraint [27] shows that the cutting-tool change of Mm
is carried out in advance to achieve energy savings under the reduced processing capacity
of the machine tool within an acceptable range. Constraints [28–35] are the constraints of
decision variables.

4. Proposed NSGA-II

In this section, a general framework to solve the FJSP–CTD–ESM is proposed; the
NSGA-II is briefly introduced, and the motivation behind the NSGA-II to optimize the
FJSP–CTD–ESM is analyzed. Specific improvement measures of the NSGA-II algorithm are
also described.

4.1. Framework

The optimization method of integrating the cutting-tool degradation, hybrid energy-
saving strategy, and production scheduling determines the cutting-tool capability and
the order and priority of production tasks by combining machine tools and scheduling.
The scheduling scheme is implemented in two steps: First, the machining power model
and cutting-tool life model based on tool degradation were added to the fast and elitist
multi-objective genetic algorithm (NSGA-II) scheduling algorithm [31] to generate an initial
scheduling scheme, which includes the cutting-tool change. Second, through the schedul-
ing mechanism, the cutting-tool change and machine tool turn-on/off were arranged to
generate the final scheduling scheme to achieve the goal of energy conservation.

4.2. Details and Improvements in NSGA-II
4.2.1. Scheduling Mechanisms

In the FJSP–CTD–ESM, processing energy consumption is mainly determined by
machining power, which is also affected by cutting parameters and machine tool type.
Non-machining energy consumption is mainly determined by the running state of machine
tools. Because the cutting parameters were determined, the allocation of the appropriate
machine tool to the operation and choosing the suitable machine tool turn-on/off and
cutting-tool change times are the main considerations of the scheduling scheme. Two
scheduling mechanisms are proposed:

(1) Cutting-tool degradation mechanism
During the processing operation, the cumulative processing time of the cutting tool

is calculated in advance and the machining power Pm and degree of cutting-tool wear
Wm of machine tool Mm are then calculated using the tool degradation model. When the
degree of cutting-tool wear is expected to be greater than 1 (Wm > 1) after the machine tool
completes the next operation, the cutting tool will be changed before processing (λmr = 1),
and the machining power Pm is recalculated. The cutting-tool degradation mechanism is
shown in Figure 4.

(2) Hybrid mechanism of cutting-tool change and machine tool turn-on/off
Based on the scheduling algorithm, the hybrid mechanism of cutting-tool change and

machine tool turn-on/off is added to determine when to turn the machine tool on/off and
change the cutting tool, as shown in Figure 5.

Step 1: According to the start and end time of the processing task, determine whether
the non-processing time is greater than the no-load balancing time TRm. If so, go to Step 2;
otherwise, end.
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Step 2: Determine whether there is an on/off operation before this non-processing
stage. If so, go to Step 3. Otherwise, turn off the machine tool in this non-processing stage
and go to Step 5.

Step 3: Compare whether the time difference between the start of the non-processing
stage and the last turn-on time of the machine tool is greater than the defined on/off
security threshold time Hm. If the difference exceeds Hm, turn off the machine tool at the
beginning of the non-processing stage and go to Step 5; otherwise, go to Step 4.

Step 4: Set the last turn-on time of the machine tool to t1 and the start time of the
non-processing stage to t2. If t2 − t1 − Hm > TRm, turn off the machine tool at (t1 + Hm)
and go to Step 5; otherwise, end.

Step 5: Check whether the machine tools have both cutting-tool change and turn-
on/off operations. If so, go to Step 6; otherwise, end.

Step 6: Determine whether the degree of tool wear Wm at the nearest machine tool
on/off position before the cutting-tool change operation is greater than the difference
between 1 and the cutting-tool capacity coefficient. If so, combine the cutting-tool change
and machine tool turn-on/off operations, and recalculate the optimization target value;
otherwise, end.

Figure 4. Cutting-tool degradation mechanism.
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Figure 5. Hybrid mechanism algorithm form of cutting-tool change and machine tool turn-on/off.

4.2.2. Encoding and Decoding with Changing Cutting and Turn-on/off

In the FJSP, encoding and decoding are expressed in the form of chromosomes, which
are divided into the process chromosome and the machine tool chromosome. We utilize
the encoding and decoding methods proposed by Zhang et al. [32], as shown in Figure 6.

 
Figure 6. Chromosome encoding process.

In addition, changing the cutting tool and turning the machine tool on/off affects the
scheduling scheme, including the following six scenarios. (1) Scenario 1: If the machine tool
Mm needs to be turned off before oi,j+1, the non-processing time and the last turn-on time
of Mm should be considered. When the non-processing time is greater than the no-load
balancing time TRm, and the difference between the start time CTmr of the non-processing
time and the last turn-on time STmr′ of Mm is greater than the defined on/off security
threshold time Hm, the machine tool is directly turned off between CTmr and STm(r+1), as
shown in Figure 7. (2) Scenario 2: If CTmr − STmr′ < Hm and STm(r+1) − STmr′ − Hm > TRm,
turn off Mm between (STmr′+ Hk) and STm(r+1), as shown in Figure 8. (3) Scenario 3. If
machine tool Mm needs a cutting-tool change before oi,j+1, the non-processing time must
be considered. If (STm(r+1)-CTmr) is greater than the cutting-tool change time tctm, change
the cutting tool in CTmr, as shown in Figure 9. (4) Scenario 4: If the machine tool Mm needs
a cutting-tool change before oi,j+1 and STm(r+1)-CTmr < tctm, STm(r+1) needs to move to the
right to ST′

m(r+1) to make ST′
m(r+1)-CTmr = tctm, as shown in Figure 10. (5) Scenario 5: If

157



Mathematics 2023, 11, 324

the cutting-tool change and machine tool turn-on/off occurs in sequence, these should be
combined, as shown in Figure 11. (6) Scenario 6: If the conditions of scheduling mechanism
2 are met, two cases will occur. Case 1: the cutting-tool change is incorporated into the
machine tool turn-on/off. Case 2: Advance the cutting-tool change and eliminate the
machine tool turn-on/off, as shown in Figure 12.

(a) (b) 

Figure 7. Scenario 1: (a) Initial Gantt chart; (b) Adjusted Gantt chart.

 
(a) (b) 

Figure 8. Scenario 2: (a) Initial Gantt chart; (b) Adjusted Gantt chart.

(a) (b) 

Figure 9. Scenario 3: (a) Initial Gantt chart; (b) Adjusted Gantt chart.

(a) (b) 

Figure 10. Scenario 4: (a) Initial Gantt chart; (b) Adjusted Gantt chart.
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(a) (b) 

Figure 11. Scenario 5: (a) Initial Gantt chart; (b) Adjusted Gantt chart.

(1)  

(2)  

(a) (b) 

Figure 12. Scenario 6: (1) Sufficient machine-off time; (2) Insufficient machine-off time. (a) Initial
Gantt chart; (b) Adjusted Gantt chart.

4.2.3. Crossover

A crossover is used to maintain population diversity and explore a new solution space.
In the parent population, two types of crossover were performed according to chromosome
types [32], with the crossover of the process chromosome occurring in odd positions, while
that of the machine tool chromosome occurring in even positions, as shown in Figure 13.

 
(a) 

 
(b) 

Figure 13. Crossover: (a) Crossover of the process chromosome; (b) Crossover of the machine
tool chromosome.
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4.2.4. Mutation

A mutation is the use of the solution space to generate different neighborhood solutions
through different mutations to prevent the population from falling into a local optimum
during the process of population evolution convergence and increase the diversity of the
population. The mutation can be divided into the process chromosome mutation and the
machine tool chromosome mutation [32]. In the process chromosome mutation, gene I at
a random mutation site on a random parental chromosome is mutated into the random
gene I ′. At the same time, one of the genes I ′ on the other sites of this chromosome is
randomly selected to become gene I, and the corresponding machine tool chromosome is
changed accordingly. In the machine tool chromosome mutation, the genes at two random
mutation sites on a random parental chromosome are mutated into any gene within the
allowed mutation range, as shown in Figure 14.

 
(a) 

 
(b) 

Figure 14. Mutation: (a) Crossover of the process chromosome; (b) Crossover of the machine
tool chromosome.

5. Case Study

In this section, the parameter determination method in FJSP–CTD–ESM is briefly
described, and the comparison experiment based on the FJSP is designed. In addition, to
provide enterprises with a better basis for selecting scheduling schemes, this paper inte-
grates production functional resources with job-shop scheduling and provides production
cost indicators to evaluate scheduling schemes. Thereafter, the rationality and effectiveness
of the cutting-tool degradation model and hybrid energy-saving strategy of cutting-tool
change and machine tool turn-on/off are illustrated by the example results.

5.1. Design of Experiments
5.1.1. Environment Setting

All the algorithms were run in Python 2.7 on a personal computer with an Intel (R)
Core (TM) i7-9750H, 2.6 GHz CPU and 8 GB RAM.

5.1.2. Model Parameter Determination

To obtain stable machining power and tool wear data, the workpiece (i.e., 45# steel
with dimensions 60 × 60 × 35 mm) was processed by milling. The cutting mode was
straight-line face milling. The cutting path of the experimental workpiece is shown in
Figure 15. The basic properties of the machine tool and tool used in the experiment are
shown in Table 2. To establish the relationship between the machining power of machine
tools and machining parameters, and that between the tool life and machining parameters,
the machining power of machine tools and tool life under different cutting parameters
were obtained by an orthogonal experiment. By referring to the Concise Manual of Cutting
Parameters, it is found that in general, when the high-speed end milling cutter face-milling
45 steel, the recommended cutting speed is 21~40 m/min, and the recommended range of
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feed per tooth is 0.12~0.2 mm. Therefore, within the recommended range, we consider the
workpiece conditions, machine conditions, test costs and other factors, and through a large
number of tests select the cutting parameters, as shown in Table 3 for the experiment. All
the power data of a single milling cutter in a stable cutting period were collected for each
group of experiments. The experimental devices are shown in Figure 16.

Figure 15. The tool cutting path.

Table 2. Basic parameters of experimental devices.

Machine
Tools

Machine
Tools Type

(Model)

Cutting-
Tool
Type

Diameter of
Milling
Cutter

Edge (mm)

Milling Cutter
Material

Number of
Milling

Cutter Edges

Length of
Milling
Cutter

Edge (mm)

Length of
Milling

Cutter (mm)

Cutting
Fluid

Anti-wear
Coating

M1,M2

Three-axis
CNC

machining
center(TSIM-
VMA8050V4)

End Mill ϕ10 M2AI high-
speed steel 4 25 66 Water No

M3,M4

Three-axis
CNC

machining
center
(TSIM-

VMC1580)

End Mill ϕ12 M2AI high-
speed steel 4 35 85 Water No

M5,M6

Five-axis
CNC

machining
center
(TSIM-

VMA210V)

End Mill Φ8 M2AI high-
speed steel 4 22 66 Water No

Table 3. Experimental cutting parameters table.

Machine Tools nv (r/min) f (mm/r) ap (mm) ae (mm)

M1,M2

700
0.15 0.8 1
0.16 1 1.5
0.17 1.2 2

800
0.15 1 2
0.16 1.2 1
0.17 0.8 1.5

900
0.15 1 1.5
0.16 0.8 2
0.17 1.2 1
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Table 3. Cont.

Machine Tools nv (r/min) f (mm/r) ap (mm) ae (mm)

M3,M4

600
0.17 0.8 1
0.18 1 1.5
0.19 1.2 2

700
0.17 1 2
0.18 1.2 1
0.19 0.8 1.5

800
0.17 1 1.5
0.18 0.8 2
0.19 1.2 1

M5,M6

850
0.13 0.8 1
0.14 1 1.5
0.15 1.2 2

950
0.13 1 2
0.14 1.2 1
0.15 0.8 1.5

1050
0.13 1 1.5
0.14 0.8 2
0.15 1.2 1

  
(a) (b) 

  
(c) (d) 

CCD industrial 
camera

  
(e) (f) 

Figure 16. Experimental device: (a) Tool wear detection device; (b) Clamp on power logger
(PW3360A982-04); (c) Tool wear detection process; (d) Power acquisition wiring diagram; (e) CNC
machining center (M1/2,M3/4,M5/6); (f) Positioning device and fixture.
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During the milling process, cutting-tool wear was detected once per ten cuts according
to the cutting route. When the end point of the cutting-tool wear was reached, machining
was stopped and the tool was changed. Photos of the detected partial cutting-tool wear are
shown in Figure 17.

 

Figure 17. Partial tool wear detection photos.

The multivariate linear regression method [33] was used to determine the parameters
in the cutting-tool degradation model, as shown in Figure 18. The machining power and
cutting-tool life models are shown in Table 4.

 

Figure 18. Multivariate linear regression method.
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Table 4. Cutting-tool degradation model.

Machine Tools Model

M1,M2
Pd = 0.9442nv

0.6385 f 0.1416ap
0.3255ae

0.2693 + 4.24 × 10−5tmnv
1.6716 f 1.2510ap

0.9296ae
0.7356

T = 10.0048nv
−0.3821 f−2.44733ap

0.59782ae
−0.26984

M3,M4
Pd = 1.0400nv

0.6580 f−0.2245ap
0.1842ae

0.0789 + 2.24 × 10−5tmn2.2058 f 3.0474ap
0.0977ae

0.4933

T = 23.3873nv
−0.1448 f−1.2645ap

0.7309ae
−0.0774

M5,M6
Pd = 1.7413nv

0.5870 f 0.1269ap
0.1231ae

0.0932 + 1.15 × 10−5tmnv
0.3816 f−2.5387ap

−0.5164ae
0.2689

T = 25.5911nv
0.1248 f−0.0842ap

0.0048ae
−0.0726

The no-load balance time TRm of the machine tool was determined by measurement
experiments and the on/off security threshold time Hm was obtained from the equip-
ment manual.

The no-load balance time TRm must meet the following condition:{
TRm ≥ RTmean

TRm = RTEmean
Psm

∗ SFm
(36)

where SFm = 1.2.

5.1.3. Job and Workshop Configuration Information

The flexible job shop has six machine tools and five types of workpieces. The machin-
ing process information on the machine tools and workpieces are listed in Tables 5 and 6,
respectively. The axonometric drawing of the five workpieces is shown in Figure 19.

Table 5. Machine tool information.

Machine Tools
The No-Load Balance

Time (Tm
R /s)

The on/off Security
Threshold Time (Hk/s)

Cutting-Tool Change
Time (tct/s)/Power (Pct/W)

Static Power (Psm/W)

M1,M2 48 100 60/195 520

M3,M4 45 90 80/295 420

M5,M6 32 60 40/156 325

 

Figure 19. Three-dimensional model drawing of the five workpieces.
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Table 6. Workpiece information.

Job
Number

Operations
Optional

Machine Tools
Processing
Time (min)

Cutting Parameters
(nv, f, ap, ae)

J1

O1,1 Milling 50 × 50 × 15 convex platform M1 , M2 16.34 900,0.17,3,2.5
M3, M4 8.16 800,0.19,3,5

O1,2 Milling 30 × 10 × 15 slot M1 , M2 2.68 700,0.16,1.5,2

O1,3
Enlarge holes

2 ×∅12 × 15 → 2 ×∅15 × 15
M1 , M2 3 700,0.15,1.5,1.5
M5, M6 4 850,0.13,1.5,1.5

J2

O2,1 Milling 50 × 50 × 15 convex platform M1 , M2 16.34 900,0.17,3,2.5
M3 , M4 8.16 800,0.19,3,5

O2,2 Milling 40 × 40 × 10 convex platform M1 , M2 12.45 900,0.15,2.5,2.5
M5 , M6 14.8 1050,0.13,2,2.5

O2,3 Enlarge hole ∅12 × 15 → ∅15 × 15 M5, M6 2 850,0.13,1.5,1.5

J3

O3,1 Milling 50 × 50 × 15 convex platform M1, M2 16.34 900,0.17,3,2.5
M3 , M4 8.16 800,0.19,3,5

O3,2 Milling 2 × 27 × 8 × 8 slots M5 ,M6 4 850,0.13,1,2

O3,3 Enlarge hole ∅12 × 15 → ∅15 × 15 M1, M2 1.5 700,0.15,1.5,1.5
M5 , M6 2 850,0.13,1.5,1.5

O3,4
Enlarge holes

2 ×∅10 × 15 → 2 ×∅11 × 15 M5 , M6 2.56 850,0.13,1,0.5

J4

O4,1 Milling 50 × 50 × 15 convex platform M1 , M2 16.34 900,0.17,3,2.5
M3 , M4 8.16 800,0.19,3,5

O4,2 Milling 19 × 12 × 8 slot M3 , M4 1.49 600,0.17,1,2
O4,3 Milling 2×10×10 × 8 slots M1, M2 1.53 700,0.15,1,2
O4,4 Milling 2 × 10 × ×8 × 8 slots M5 ,M6 1.45 850,0.13,1,2

J5

O5,1 Milling 50 × 50 × 15 convex platform M1 ,M2 16.34 900,0.17,3,2.5
M3 ,M4 8.16 800,0.19,3,5

O5,2 Milling 2 × 50 × 10 × 8 slots M1 ,M2 7.62 700,0.15,1,2
O5,3 Enlarge hole ∅9 × 15 → ∅10 × 15 M5 ,M6 0.85 850,0.13,1,0.5

5.1.4. Establishment of Production Cost Indicator

Reducing cost plays an important role in the profitability, survival and development of
an enterprise. How to get the maximum benefit with the minimum cost is an important topic
that enterprises and even the whole society face and need to study and solve. To provide a
better basis for selecting scheduling schemes, this paper establishes a mathematical model
of production cost to evaluate scheduling schemes [34,35], as shown in Equation (36).

COST = ωeEtotal + ωmWL + ωtG + ωlCmax (37)

Table 7 shows the specific unit cost components in the production cost indicator, which
includes unit energy cost, unit operating cost of machine tool, machine tool turn-on/off
loss cost and cost per unit of labor time.

Table 7. Related unit costs.

Unit Energy Cost
(CNY/KW·h)

Unit Operating Cost
of Machine Tool

(CNY/h)

Machine Tool Turn
on/off Loss Cost

(CNY/time)

Cost Per Unit of
Labor Time (CNY/h)

0.725 9 1 30

5.2. Evaluation
5.2.1. Experiment Results

(1) Hybrid mechanism of cutting-tool change and machine tool turn-on/off
It can be seen from Section 2.3 that machining power is not only related to tool wear

but also related to cutting parameters. Therefore, to reflect and highlight the relationship
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between machining power variations and tool wear, the relationship between machining
power and tool wear and the accuracy of the power model was analyzed by using actual
and simulation data under the premise of certain cutting parameters.

It can be seen from the model that the machining power is linearly related to the tool
utilization time. By comparing the actual collected power data with the tool utilization
time and power data predicted by regression, it was found that the errors were all within
a controllable range. The maximum error of the M1,M2; M3,M4; and M5,M6 models are
6.44%, 3.36%, 4.67%, respectively, as shown in Figure 20.

 
(a) 

 
(b) 

 
(c) 

Figure 20. Comparison of machining power and tool utilization time data: (a) M1,M2; (b) M3,M4;
(c) M5,M6.
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(2) Scheduling algorithm results
To reflect the performance of the improved NSGA-II (INSGA-II), scheduling solutions

were generated under the premise that the degrees of cutting-tool wear of machine tools M1-M6
are 60%, 70%, 50%, 50%, 70% and 60%, respectively. Table 8 summarizes the experimental
results and shows the number of Pareto solutions, target values (Cmax, Etotal , WL, and G)
and production cost indicator for each Pareto solution. The production cost is between
CNY 36 and 40. The Pareto solution of the example is shown in Figure 21, where the X-,
Y-, and Z-axis represents the WL, Cmax, and Etotal , respectively; the color represents G. As
seen in Figure 21, the solution space is sufficient and the Pareto front is well distributed.
The makespan is between 27 and 31 min, the total energy consumption of the workshop
is between 319 and 350 Kw·min, the total machine tool load is 80–90 min, and the total
number of times machine tools were turned on/off and cutting tools were changed is
from five to nine times. The above data show that the INSGA-II algorithm can balance
the four target values. The decision-maker can choose the optimal compromise using the
multicriteria decision-making method.

Table 8. Cutting-tool degradation model.

Pareto Numbers Pareto Solutions (Cmax(min),Etotal(Kw·min), WL(min),G (time)) Production Cost (CNY)

15

(29.60,337.46,81.93,7), (28.95,329.10,84.78,8), (27.18,319.5,90.61,8),
(28.95,331.36,81.93,8),(28.95,331.32,82.43,9), (27.18,317.67,92.96,8),
(28.95,329.10,84.78,8), (28.95,329.34,84.28,9),(28.96,329.01,85.78,8),
(28.95,331.36,81.93,8), (27.79,325.47,90.11,8), (28.96,334.26,93.96,7),
(29.47,335.72,82.43,6), (31.18,349.53,85.78,5), (29.60,334.64,85.78,6)

37.17, 38.17, 38.04, 37.77, 38.84, 38.37,
38.17, 39.10, 38.32, 37.77, 38.34, 38.61,

36.16, 36.68, 36.71

Figure 21. Pareto solutions.

Figure 22 is a Gantt chart of Pareto solutions for this example. The X-axis represents
the time, the Y-axis represents the machine number, and each block represents an operation.
O denotes the machine tool processing operation, e.g., the first block O5,1 of M3 indicates
that the first process of J3 was processed on M3. CT denotes the cutting-tool change. Idle
indicates that the machine tool is not in use, e.g., the gray block on M6. On/O f f indicates
that the machine tool is turned off, e.g., the green block on M1. R_C_T indicates that the
machine tool is off; however, the cutting tool will be changed at the beginning or end of this
period, e.g., the gray-green block on M2. S indicates that the machine tool is on standby,
e.g., the light blue block on M5. The scheduling scheme can provide the appropriate
cutting-tool change time and turn off the machine tools on standby when necessary to
save energy.
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Figure 22. Gantt chart of an instance.

5.2.2. Assessing the Effects of the Cutting-Tool Degradation Model

In this section, based on the cutting-tool degradation model, multi-objective scheduling
optimization is conducted starting with new cutting tools. Five schemes are selected
from the Pareto optimal solutions for comparison, as follows: Scheme 1 includes the
minimum sum of the four target values (Cmax, Etotal , WL, and G) with the weight of
[0.3, 0.1, 0.5, and 0.1], and its four target values and cost are CNY (26.64, 309.7, 92.96, and
7) and 37.01. Scheme 2 includes the minimum makespan, and its four target values and
cost are CNY (26.64, 309.7, 92.96, and 7) and 37.01. Scheme 3 includes the minimum total
energy consumption of the workshop, and its four target values and cost are CNY (26.64,
309.7, 92.96, and 7) and 37.01. Scheme 4 includes the minimum total load of machine
tools, and its four target values and cost are CNY (28.95, 328.13, 81.93, and 7) and 36.73.
Scheme 5 includes the least number of times that the machine tools are turned on/off and
cutting tools are changed, and its four target values and cost are CNY (36.82, 408.87, 90.61,
and 5) and 40.94. Figure 23 shows the Gantt chart of production scheduling of Scheme 1.
Figures 24 and 25 show the simulation power curve and degree of cutting tool wear curve
of each machine tool, respectively, in the production process of Scheme 1. These reflect the
change in the machining power of each machine tool with the processing operation, verify
the influence of the cutting-tool degradation model on the total energy consumption of
machine tools, and highlight the necessity of the tool degradation model.

Figure 23. Gantt chart of scheme 1.
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Figure 24. Simulation machining power curve.

Figure 25. Scatter chart of tool wear.

From the cutting-tool degradation model, all machine tools can provide feedback on
the real power condition of the machining process. Taking machine tool M1 as an example,
the curve of simulated and actual machining power can be obtained after actual machining,
as shown in Figure 26. The simulated and actual average machining power of the three
processes are 58.46 W, 69.49 W, and 65.24 W; and 56.7 W, 68.9 W, and 69.5 W, respectively.
The power errors of the three processes are 3.15%, 0.85%, and 6.14%, respectively. The main
reason for the considerable fluctuation in the actual machining power is that the cutting
direction is not constant during machining. Changes in the cutting direction lead to an
instantaneous power decrease because no cutting occurs at that moment, and the spindle
generates a large amount of instantaneous power when it just touches the workpiece. The
reason for the large error in the simulation results of the third process is that during hole
enlargement, the actual cutting width is larger than the given cutting width (1.5 mm)
because the actual processing path is circumferential; this makes the actual machining
power larger than the simulation power. However, overall, the errors are all within the
acceptable range and the cutting-tool degradation model can be applied in scheduling
planning. This is conducive to making the simulation closer to the actual production,
making the scheduling scheme and scheduling results more practical, and it plays a key
role in predicting the machining power of machine tools.
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Figure 26. Comparison curve between simulated power and actual machining power.

5.2.3. Assessing the Effects of the Energy-Saving Strategies

Comparing the results of the five scheduling schemes in Section 2.3 shows that adopt-
ing the machine tool turn-on/off measure reduced the average total machine standby time
in the five schemes by over 99.2%: from 77.18 min to 35.40 s. The total energy consump-
tion of turning machine tools on/off increased from 0 Kw·min to 1.744 Kw·min, whereas
the standby energy consumption of the machine tools decreased from 31.891 Kw·min to
2.044 Kw·min. In addition, the cost of energy consumption decreased by about CNY 0.36.
Although the machine tool turn-on/off strategy slightly increased the energy consumption
when these are turned on/off, it significantly reduced the standby energy consumption,
as shown in Figure 27. Therefore, it can be concluded that the machine tool turn-on/off
energy-saving strategy is very effective.

Figure 27. Influence of the machine tool on/off strategy on non-processing energy consumption.

To assess the effects of the hybrid energy-saving strategy, we compared the energy
consumption and makespan distinction before and after its adoption. Figure 28 shows the
scheduling scheme changes before and after the hybrid energy-saving measure was applied.
The four target values and cost before and after optimization are CNY 30.47, 347.18, 89.93,
10 and 39.92 and CNY 28.95, 331.76, 89.93, 10 and 38.97, respectively. It can be seen from the
Gantt chart that after adopting the energy-saving strategy, the cutting-tool change of M3
was performed before O5,1, resulting in a 3.95% reduction in the makespan from 30.14 min
to 28.95 min, a 4.44% reduction in the total energy consumption of the workshop from
347.18 kW ·min to 331.76 kW ·min and a 2.44% reduction in the production cost from CNY
39.92 to 38.97, equivalent to CNY 47.3 saved every 24 h. However, the cutting-tool life of
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M3 was calculated as 143.002 min using the cutting-tool life model, while the processing
time of O5,1 was 8.16 min, thus reducing the processing capacity of the cutting tool DW by
5.7%, as shown in Figure 29.

(a) 

(b) 

Figure 28. Comparison of scheduling schemes before and after the hybrid energy-saving strategy:
(a) Before the hybrid energy-saving strategy; (b) After the hybrid energy-saving strategy.

 

Figure 29. Total impact of the hybrid energy-saving strategy.

The energy-saving strategy mainly reduced the energy consumption of the workshop
by changing the timing of the cutting-tool change while reducing the makespan; the
total machine tool load and the total number of times the machine tools were turned
on/off and cutting tools were changed were not affected. The changes in the total energy
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consumption of the workshop were analyzed, as shown in Figure 30. In the solutions
before and after optimization, the additional energy consumption of the workshop EAdd
was the highest. This is because the energy consumption of a large number of additional
equipment such as lighting, air pumps, and air conditioners in the actual workshop was far
greater than that of the machine tools. Because this equipment is continuously operated, its
energy consumption is positively correlated with time. As shown in Figure 31, the power
consumption of M3 changed when the cutting tool was changed in advance. The red and
green parts represent the energy consumed before and after optimization, respectively. On
the whole, the processing energy consumption Ec of the optimized solution decreased.

 

Figure 30. Effect of the hybrid energy-saving strategy on energy consumption.

 

Figure 31. Power contrast curve of M3 after adopting the hybrid energy-saving strategy.

However, the reduction in Ec is much smaller than that in EAdd in terms of energy
consumption and has little influence on the total energy consumption. The decrease in
EAdd is mainly attributed to the integration of the cutting-tool change and machine tool
turn-on/off processes, which leads to the reduction in the makespan, thus reducing the
energy consumption of additional equipment. However, the cutting-tool change and
machine tool turn-on/off processes were not eliminated; hence, their energy consumption
did not change. In summary, the hybrid energy-saving strategy effectively reduced energy
consumption and optimized the makespan, making it vital within the acceptable degree of
reduction in the cutting-tool processing capacity.
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6. Conclusions

Production planning and scheduling are usually the most critical activities in intel-
ligent manufacturing enterprises. In the manufacturing process, manufacturers not only
need to use the minimum resources to meet the production demand with as little energy
consumption and in as short a time as possible but also face the challenge of the lack
of mutual responsibility between the scheduling system and the single machine, which
often leads to a large deviation between the scheduling optimization results and the actual
application. Therefore, a new FJSP–CTD–ESM method is proposed in this paper to provide
strong support for intelligent manufacturing enterprises to reduce the time and energy
consumption in the production process. Through analyzing the coupling relationship
between shop scheduling, single-machine tool energy consumption and tool life prediction,
and organically integrating the three to achieve deeper shop consumption reduction. The
resulting effect is as follows:

(1) Cutting-tool degradation during shop scheduling was analyzed. Based on the
experimental data, exponential regression models of the dynamic power and cutting-tool
life were established under certain machining conditions, with an error of approximately
6.5%. (2) A dynamic cutting-tool change strategy by monitoring the RUL was proposed to
change the cutting tool before it becomes blunt. This makes the optimization model closer
to the real machining situation. (3) Oriented towards low-carbon production objectives,
the conventional machine tool turn-on/off schedule can reduce the non-processing energy
consumption by 93.5%. Integrating the cutting-tool change strategy into the conventional
machine tool turn-on/off schedule further reduces the total energy consumption by 4.44%
and production cost by 2.44%. It was proved that this hybrid energy-saving strategy effec-
tively reduces the energy consumption of workshops and has great application prospects.

In terms of the defects in this study, the proposed model does not consider the con-
straints of transport, clamping, and assembly on shop scheduling. In addition, the estab-
lishment of the machining power model and the tool life model of each machine tool in the
workshop needs to spend a lot of time on the cutting wear experiment (about 45 h), which
brings a lot of work to the preparation of the early production. When the shop changes
the machine tool or changes a different type of tool, the models need to be rebuilt. Based
on the above limitations, some suggestions are recommended as follows: (1) To explore a
fast method to obtain the machining power model and the tool life model and make these
models have a certain universal applicability. (2) To integrate more practical constraints
such as transport, clamping, assembly, random breakdown or rush orders into the opti-
mization model. (3) To design an efficient solution algorithm to solve multi-objective and
many-objective optimization problems.
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Abstract: With the development of China’s express delivery industry, the number of express pack-
aging has proliferated, leading to many problems such as environmental pollution and resource
waste. In this paper, the process of reverse logistics network design for express packaging recycling is
given as an example in the M region, and a four-level network containing primary recycling nodes,
recycling centers, processing centers, and terminals is established. A candidate node selection model
based on the K-means algorithm is constructed to cluster by distance from 535 courier outlets to
select 15 candidate nodes of recycling centers and processing centers. A node selection model based
on the NSGA-II algorithm is constructed to identify recycling centers and processing centers from
15 candidate nodes with minimizing total cost and carbon emission as the objective function, and a
set of Pareto solution sets containing 43 solutions is obtained. According to the distribution of the
solution set, the 43 solutions are classified into I, II, and III categories. The results indicate that the
solutions corresponding to Class I and Class II solutions can be selected when the recycling system
gives priority to cost, Class II and Class III solutions can be selected when the recycling system gives
priority to environmental benefits, and Class III solutions can be selected when the society-wide
recycling system has developed to a certain extent. In addition, this paper also randomly selects a
sample solution from each of the three types of solution sets, conducts coding interpretation for site
selection, vehicle selection, and treatment technology selection, and gives an example design scheme.

Keywords: express packaging; green reverse logistics; reduce carbon emissions; K-means algorithm;
bi-objective model; NSGA-II algorithm

MSC: 93-10

1. Introduction

In recent years, to promote the high-quality development of green couriers, green
transportation, green consumption, and other areas, the concept of saving has been deeply
rooted in people’s hearts; green low-carbon mode of production and lifestyle is accelerating
the formation. The report of the 20th National Congress of the Communist Party of China
proposed to “accelerate the green transformation of the development mode”, and such
measures are especially evident in the express delivery industry. The 2021 government
work report clearly pointed out that we should strengthen the construction of urban
and rural circulation systems, especially to speed up e-commerce and express into the
countryside, and expand consumption at the county and township level, which is the
eighth time “express” was included in the government work report. According to the
National Bureau of Statistics data, China’s 2011–2021 express business volume increased
significantly (see Figure 1). At the same time, along with the in-depth implementation of
the new development pattern strategy, China’s express industry will certainly enter a new
stage of development shortly, bringing a new round of growth in the volume of express
business and its revenue [1–4].
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Figure 1. The 2011–2021 express business volume.

The monitoring data of the State Post Bureau showed that the country received 569 mil-
lion express parcels on the Double Eleven, an increase of 28.54% year-on-year. However,
the rapid development of the express industry has also brought about many social and
environmental problems; especially the environmental pollution, management chaos, and
waste of resources caused by express packaging waste are increasingly obvious [5–7]. Data
show that in China’s megacities, the increment of express packaging waste has accounted
for 93% of the increment of domestic waste, and in some large cities 85% to 90%. How
to effectively manage courier waste has become an urgent environmental problem to be
solved. The main problems are manifested in the following areas.

(1) The phenomenon of excessive packaging of express products. The problem is more
common in the current courier industry because the first impression of consumers
on the courier packaging directly affects the entire shopping experience, and the
contribution of consumer shopping satisfaction is greater, so e-commerce merchants
in the delivery of goods based on basic protective protection, usually increase the
protective measures to avoid damage and other situations in transit [8–10].

(2) Some of the courier packaging used in the production of materials with poor envi-
ronmental performance, resulting in packaging waste that is difficult to naturally
degrade. The common airbag foam padding, tape, and black bags made of PVC and
other materials in courier packaging degrade slowly under natural conditions and
produce a lot of toxic and harmful substances when incinerated [11].

(3) The existing courier packaging has a low degree of standardization and a low reuse
rate. The development of express packaging standards involves many aspects, such
as packaging materials, filler materials, size specifications, plastic sealing methods,
marking, and inspection methods. Low standardization will, on the one hand, reduce
logistics efficiency, reduce the management level and quality of logistics services, and
increase unnecessary costs, and on the other hand, reduce packaging mobility, narrow
the scope of application, increase the difficulty of coordinating the use of express
packaging, and make the overall recycling rate lower [12].

(4) The overall recycling rate of express packaging is low. A related research study shows
that the actual recycling rate of cardboard and recyclable plastic in China in a year is
less than 10%, and the overall courier packaging recycling rate is less than 20%. In
some densely populated cities, the incremental amount of courier packaging waste
accounts for more than 90% of the total incremental amount of domestic waste.
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(5) The reverse logistics system of express packaging recycling is not sound, and sys-
tematic scientific planning guidance is missing, manifested by the lagging work of
express packaging classification, the confusion of social recycling channels and the
low degree of specialization of treatment methods, the inadequacy of institutional
mechanisms of relevant enterprises and government departments, the lack of laws and
regulations and policy support, and the low enthusiasm of consumer participation in
recycling [13–16].

Promoting the green transformation of express packaging, solving the bottlenecks
faced by the industry, and achieving the sustainable development of the express industry is
a complex and long-term systemic project that requires the participation and joint efforts
of experts from different fields and different industry sectors [17]. In response to the
above-mentioned problems in the express delivery industry, scholars have studied express
packaging recycling from different perspectives.

In terms of site selection, Harsaj proposed a fuzzy multi-objective optimization model
that quantifies three aspects simultaneously: economic, environmental, and social, and
solved it using an improved particle swarm algorithm (PSO), and finally validated the
model with a medical syringe recycling system [18]. Gao proposed a reverse logistics
network design scheme based on a forward logistics network, and constructed an optimiza-
tion model based on a multi-objective scenario with the objective functions of maximizing
the expected total monetary profit, minimizing the expected total carbon emission cost,
and maximizing the expected total job creation, and transformed it into a single-objective
model to finally obtain the Pareto-optimal solution, and finally validated the effectiveness
by using tires as an example [19]. Nie studied the supply chain configuration problem,
constructed a mixed integer linear programming model with minimizing carbon emissions
as the objective function, solved it using dynamic programming algorithms, and finally
carried out an example verification to achieve a balance between economic and social
benefits [20]. Guo studied fresh food distribution, built a two-stage model, considered
the total system cost and vehicle path, and solved using a genetic algorithm and particle
swarm algorithm, which effectively reduced carbon emissions and total cost [21]. Reddy
constructed a multi-level multi-period mixed integer linear programming model with profit
maximization as the objective function, considering the effects of facility location, vehicle
type, and return rate, and finally gave an example analysis [22].

From the perspective of recycling model selection research, Liang used the Internet
as a bridge to realize the design of a virtual APP and recycling device from the perspec-
tive of consumer psychology, real consumption situation, and the current situation of
packaging recycling, to form a complete express packaging recycling system [2]. Yang con-
structed a multi-agent express packaging waste recycling system including the government,
individuals, and enterprises. Based on differential game theory, the behavioral charac-
teristics of individuals and the optimal strategies of government and enterprises under
the market-driven recycling model, government-driven recycling model, and cooperative-
driven recycling model were explored [23]. Based on previous studies by scholars, the
main research contributions of this paper are as follows [24].

• From the concept of reducing carbon emission and environmental pollution, this paper
gives the process of designing the reverse logistics network for express packaging
recycling, taking the M region as an example, and establishes a four-level network con-
taining primary recycling nodes, recycling centers, processing centers, and terminals.

• Construct a candidate node selection model based on the K-means algorithm, cluster
by distance from 535 express outlets, and use the obtained basic data to calculate the
distance between each node, the express volume of each node, etc.

• Construct a node selection model based on the NSGA-II algorithm, with the objective
function of minimizing the total cost and carbon emission, and consider the effects
of different locations of the selected nodes, different types of vehicles between nodes,
and different processing technologies adopted by the processing centers.
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2. Problem Description

In this paper, according to the economic development and administrative division of
Changchun, seven district administrative units under Changchun are selected as the area
under study (hereinafter collectively referred to as M area), including Nanguan District,
Kuancheng District, Chaoyang District, Erdao District, Lvyuan District, Shuangyang Dis-
trict, and Jiutai District (not considering Gongzhuling District). In this paper, we design the
reverse logistics network for express packaging in region M. The regional map of region M
is shown in Figure 2.

Figure 2. Regional map of M area.

According to the relevant data from Changchun Bureau of Statistics, this paper obtains
the 2018–2020 population figures for the seven administrative regions mentioned above, as
shown in Appendix A Table A1.

The proportion of the population of each district to the total population of Changchun
was obtained (see Appendix A Table A2), in which the average proportion of the municipal
districts to the total population of the city from 2018 to 2020 was the weighted average, and
the weights of each year from 2018 to 2020 were 0.5, 0.3, and 0.2 according to the principle
that the closer the year, the greater the weight.

In this paper, Baidu map API was used to obtain the original data of the latitude and
longitude of courier points in the M area of Changchun and obtain 535 final valid data
points after eliminating individual invalid data points, including 99 in Nanguan District,
81 in Kuancheng District, 107 in Chaoyang District, 103 in Erdao District, 81 in Lvyuan
District, 17 in Shuangyang District, and 47 in Jiutai District. The latitude and longitude of
express points in Nanguan District are shown in Appendix A Table A3, and the rest of the
areas are omitted.

The relevant statistical information of Changchun Postal Administration was checked
to obtain the express business volume in Changchun from 2013 to 2020, as shown in Table 1.
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Table 1. The 2013–2020 express business statistics table in Changchun.

Year Express Business Volume/Million Pieces Year Express Business Volume/Million Pieces

2013 27.1409 2017 98.9954
2014 41.3411 2018 129.7255
2015 52.3329 2019 161.9971
2016 78.6633 2020 237.2633

To meet the design requirements of the subsequent recycling network, the data in
Table 1 need to be used to forecast the express business volume of Changchun in the
next few years and select the appropriate value as the design value. In this paper, the
least squares method is used to fit a linear function and an exponential function to the
express business volume data of Changchun from 2013 to 2020, and the obtained functional
relationships are shown in Equations (1) and (2).

y = 2242.9x − 540.05 (1)

y = 2183e0.2971x (2)

In the above Equations (1) and (2), x = Year − 2012. The fitted image is shown in
Figure 3, and it can be visually seen that the fitting effect of Equation (2) is better than the
fitting effect of Equation (1). Using Equations (1) and (2), the prediction of express business
volume for 2013–2020 and 2021–2025 is shown in Table 2 and Figure 3.

Figure 3. Fitting graph of express business volume.

181



Mathematics 2023, 11, 812

Table 2. Express business volume forecast.

Serial Number
Actual Value/

Million Pieces
Linear Forecast

Value/Million Pieces
Error

Index Forecast
Value/Million Pieces

Error

1 27.1409 17.0285 37.26% 29.38209 8.26%
2 41.3411 39.4575 4.56% 39.54682 4.34%
3 52.3329 61.8865 18.26% 53.22803 1.71%
4 78.6633 84.3155 7.19% 71.64226 8.93%
5 98.9954 106.7445 7.83% 96.4269 2.59%
6 129.7255 129.1735 0.43% 129.7858 0.05%
7 161.9971 151.6025 6.42% 174.6851 7.83%
8 237.2633 174.0315 26.65% 23511.74 0.90%
9 / 196.4605 / 316.4563 /
10 / 218.8895 / 425.9343 /
11 / 241.3185 / 573.2863 /
12 / 263.7475 / 771.6146 /
13 / 286.1765 / 1038.555 /

As we can see in Table 3, the prediction effect of Equation (2) is better than that of
Equation (1), so the express volume of 103,855,000 pieces in 2025 (x = 13) predicted by
Equation (2) is selected as the design value.

Table 3. The parameters given in this paper and their values.

M = 6000 kg c = 4000 kg/m2

m0 = 0.3 kg car1 = 0.00800 kg/m2

Vmax = 30, 000, 000 pieces car2 = 0.00804 kg/m2

Vmaxm0 = 9, 000, 000 kg car3 = 0.00808 kg/m2

C1= 1200 CNY/m2 a1= 1.2500 CNY/kg
C2= 900 CNY/m2 a2= 1.2400 CNY/kg
C3 = 850 CNY/m2 a3= 1.2300 CNY/kg
C4= 800 CNY/m2 α = 0.5, β = 0.2, γ = 0.3

3. Algorithm Introduction

3.1. Introduction to K-Means Algorithm
3.1.1. Principle of K-Means Algorithm

The K-means algorithm belongs to unsupervised machine learning and is a common
classical clustering algorithm with the advantages of simplicity, efficiency, and ease of
implementation, but it is sensitive to the selection of the initial clustering centers, which
can affect the accuracy and speed of convergence if not selected properly. The K-means
problem in a general sense can be described as follows: given a dataset containing N
elements, each of which is an M-dimensional real vector, the objective is to select K points
as clustering centers and divide the N elements into K sets, where each set corresponds
to a clustering center so that the sum of the squared distances of all elements to the
corresponding clustering center is minimized, at which point the clustering center of each
set is the mean point of each set element [25].

3.1.2. K Value Determination Method

(1) Select-on-demand method: This means that the number of classification groups of
data is determined according to the actual demand.

(2) Elbow method: error squared and SSE is a function of the number of clusters K, SSE
becomes smaller with the increase of K, and when K increases to a certain value, the
rate of change of SSE will rapidly become smaller; that is, as the value of K continues
to increase and tends to level off, so that the relationship between K and SSE graph is
similar to the elbow, the inflection point of the elbow is the optimal number of clusters
K.
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(3) Contour coefficient method: the contour coefficient of a certain data point of a cluster
is the difference between the average distance (cohesion) of the data and the data of
the same cluster and the average distance (separation) of all data of the nearest cluster
and the ratio of the larger of the two. After finding the data, the contour coefficient
of the rest of the data in the same cluster is obtained, and the average value is the
average contour coefficient of the data in the group. The larger the average contour
coefficient, the better the clustering effect, the corresponding K value is the optimal
number of clusters.

(4) Gap Statistics method: in the sample area in accordance with the uniform distribution
of randomly generated and the original sample number of random samples, and these
random samples and K-means clustering, calculate the loss of random samples and the
actual sample loss of the difference between the maximum value of the corresponding
K is the optimal number of clusters.

3.2. Introduction of NSGA-II Algorithm
3.2.1. Introduction to Multi-Objective Optimization Algorithms

When there are two or more objective functions, it is called multi-objective optimiza-
tion.

The general form of multi-objective optimization is shown in Equation (3).

minF = [ f1(x), f2(x), f3(x), . . . fm(x)]T (3)

In the above equation, F(x) is the multi-objective optimization result, f1(x), f2(x),
f3(x), . . . fm(x) is the objective component, and m is the objective dimension.

3.2.2. Introduction to NSGA-II Algorithm

NSGA-II algorithm is a commonly used multi-objective genetic algorithm with the
advantages of lower computational complexity and better population goodness and diver-
sity. Its core is the introduction of fast non-dominated sorting, crowding degree, and elite
strategy, as shown below [26].

(1) Introduction to the fast non-dominated sorting method.

Let ni denote the number of individuals dominating individual in the population, and
Si is the set of individuals dominated by individual i. Find all individuals with ni= 0 in the
population, i.e., the number of individuals dominating individual i is 0, i.e., individual i is
not dominated, and deposit the eligible individual i into the non-dominated set R1, which
means the subdominated rank is 1.

For all individuals j in the current non-dominated set R1, iterate through the set Sj of
the individuals it dominates. Since the individuals j dominating individual t have been
deposited in the current non-dominated set R1, the nt of each individual t in the set Sj is
subtracted by 1. That is, the number of individuals governing the solution of individual t is
reduced by 1. If nt − 1 = 0 is satisfied, then individual t is deposited in the set H.

R1 is used as the first level of the set of non-dominated individuals, and the individuals
in this set are only dominated by other individuals and not by any other individuals, and
all individuals in this set are assigned the same non-dominated ranking level, and then
the above grading operation is continued for the set H, and the corresponding ranking
level is also assigned, until all individuals are graded, i.e., all individuals are assigned the
corresponding ranking level.

(2) Crowding degree profile.

The crowding degree id denotes the density of individuals around a given point in a
population of a given generation, and in practice, it is measured by the length of the largest
rectangle around individual i that contains individual i but not other individuals, where the
crowding degree of individuals on each rank boundary is +∞. According to the definition
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of crowding degree, it can be seen that the larger the crowding degree is, the better the
individuals are. The specific algorithm text is not repeated.

(3) Introduction to the elite strategy.

The elite strategy is to prevent the elimination of good individuals in the population
in each generation, and to mix all individuals in the parent and child generations, and
then select them according to the rank of non-dominance sorting and the size of crowding
degree to get the new generation population that meets the population size requirement,
effectively avoiding the loss of good individuals in the parent population, and the execution
process is shown in Figure 4 [27].

Figure 4. Elite strategy diagram.

As shown above, firstly, the parents Pt and Qt are merged to obtain a new population
with two times the original population size, and the individuals in the new population
are sorted non-dominantly and selected according to the rank of non-dominant rank
from smallest to largest until the selection reaches the rank of Zi, so that the number of
selected individuals plus the number of individuals in this rank is greater than the original
population size for the first time, and then the Zi is calculated. Zi rank in the crowding
degree of individuals, and according to the size of the crowding degree from the largest
to the smallest selection, until the population number requirement is met, so that the new
generation of parents P′

t .

4. Model Building

4.1. Modeling of Reverse Logistics Network in M Region

This paper determines the third-party logistics-centered express packaging model con-
sidering government participation, i.e., in the subsequent design of this paper, it is assumed
that a third-party logistics enterprise specializing in express packaging recycling will carry
out unified recycling and processing of express packaging of each courier company.

4.1.1. Network Level and Node Analysis

According to the development status of the M region, this paper designs a four-
layer recycling network, and the schematic diagram of express packaging reverse logistics
network layers and nodes in the M region is shown in Figure 5.

Among them, the first level is the primary recycling layer; the nodes of this level
are the 535 courier points acquired, responsible for the recovery of express packaging
directly from consumers, mainly by the consumers themselves to return express packaging,
supplemented by door-to-door service for recycling. The second level is the recycling
level; the node of this level is the recycling center, which is responsible for collecting and
storing the express packaging recovered by the courier points within a certain area and
connects to the primary recycling level with the relevant carriers leased or purchased, and
the transportation process is short-distance transportation. The third level is the processing
layer; the node of this level is the processing center, which is responsible for classifying the
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express packaging recovered by each recycling center and carrying out different technical
treatments according to different categories, mainly including reuse treatment and transport
to each recycling center, transport to the paper mill, and transport to landfill, with the
relevant carrier leased or purchased to connect the recycling layer and the terminal layer,
the transport process is medium and long-distance transport compared with the transport
process of the first and second levels. The transportation process is medium to long distance
compared to the first and second levels. The fourth level is the terminal level, the nodes of
this level are the paper mill and the landfill, which are responsible for accepting the express
packaging after sorting in the processing center, the longitude and latitude of the paper
mill and the landfill are (43.910551◦ N, 125.420776◦ E) and (43.964575◦ N, 125.358692◦ E),
and they are connected to the processing level by the relevant carriers leased or purchased.
The process is also medium to long distance.

Figure 5. Schematic diagram of express packaging reverse logistics network hierarchy and nodes in
M region.

4.1.2. Determination of Candidate nodes Based on the K-Means Algorithm

• Basic assumptions

(1) Euclidean distance is used in this paper to calculate the distance between the data
and the center of clusters (center of mass).

(2) It is assumed that the influence of the Earth’s surface on the distance calculation is
negligible in the range of M region.

• Symbol Description

Symbols Meaning

SSE Clustering error of all sample data.
V New cluster center and old cluster center error.

K
Number of cluster centers Ki set of values,
K = {1, 2, · · · , N − 1, N}.

K0 Number of clustering centers, K0 ∈ K.

μi
The ith clustering center (center of mass), 1 ≤ i ≤ K and i is
an integer.

Si
The center of clustering (center of mass) is the ith data set of
μi, 1 ≤ i ≤ K and i is an integer.

xj The jth data, xj ∈ Si

• Model Building

SSE =
K

∑
i=1

∑
xj∈Si

∣∣∣∣xj−μi
∣∣∣∣2 (4)

minV =
K0

∑
i=1

∑
xj∈Si

∣∣∣∣xj−μi
∣∣∣∣2 (5)
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• K-means clustering algorithm steps

(1) Determine K0 (see Figure 6)

Figure 6. Determining K0 in the K-means algorithm.

(2) K-means clustering (see Figure 7)

Figure 7. K-means algorithm specific steps.
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4.2. NSGA-II Algorithm-Based Node Siting Modeling

1. Basic assumptions
(1) The calculation cycle is one year.
(2) Each recycling center can only be handled by one processing center.
(3) The ratio of inflow to the outflow of express business is 1:1, and the recycling rate is

50%.
(4) The recycled products are single, all are cartons.
(5) Straight line approximation instead of actual distance.
(6) The available vehicles are sufficient, and vehicle path planning and scheduling prob-

lems are not considered.
(7) When the vehicle is from the recycling center to the processing center, only one model

can serve, and vice versa, two processes can be served by different models (there are
four models 1, 2, 3 and 4, the last two of which are battery-driven), each model has
the same rated mass, and the corresponding data are solved according to the full-load
state in the calculation.

(8) The processing center is for rental use.
(9) Expenses such as equipment purchase, maintenance, and workers’ wages are included

in the unit processing costs.
(10) No consideration is given to inventory costs, landfill costs, etc.
(11) Other parameters such as fixed construction costs for different types of areas are

known.
(12) The express packaging after processing will be transported to each recycling center,

and then by each recycling center to each first-level network.
(13) Only the transportation cost between the recycling center, treatment center, landfill,

and paper mill and the carbon emission of the transportation process and treatment
process is considered.

• Symbol Description

Symbols Meaning

F Total cost
f1 Shipping cost
f2 Processing cost
f3 Construction cost
N Number of candidate nodes

dji
The straight-line distance between the jth candidate node and the ith
candidate node

Vji
Packing volume between the jth candidate node transported to the ith
candidate node

Vi Amount of packaging recycling at the ith node
Vmax The ith node can carry the maximum recycling volume
m0 Mass equivalent per courier package
trk Freight rate for the kth vehicle unit, k = 1, 2, 3, 4
aj Processing cost using the jth technology unit (j = 1,2,3)
Ck Regional k unit construction costs, k = 1, 2, 3, 4
c Unit storage capacity

g1 CO2 emissions during transportation
g2 CO2 emissions from the treatment process
ctrk The kth vehicle unit carbon emission factor, k = 1, 2
ctrk Carbon emission factor per unit for the kth vehicle, k = 3, 4
Lk Fuel consumption per unit distance for the kth vehicle, k = 1, 2
Lk Electricity consumption per unit distance for the kth vehicle, k = 3, 4

L∗
k

The fuel consumption per unit distance of the kth vehicle, when fully
loaded, k = 1, 2

L∗
k

The electricity consumption per unit distance of the kth vehicle, when
fully loaded, k = 3, 4
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Symbols Meaning

L0
k

The fuel consumption per unit distance of the kth vehicle, when
unloaded, k = 1, 2

L0
k

Electricity consumption per unit distance for the kth vehicle, at no
load, k = 3, 4

m The kth load capacity
M The kth rated capacity

carj
CO2 emissions per unit mass of packaging treated with the jth
technology, (j = 1,2,3)

α Reuse rate

β
Percentage of packaging that is disposed of and transported to
landfill

γ Percentage of packaging shipped to paper mills after processing

• Objective function

In this paper, the objective function is set from two perspectives: economic and
environmental.

(1) Economic perspective: Since the revenue source of reverse logistics is complicated,
government subsidies and profit distribution need to be considered, so only cost
minimization is considered in this paper.

(2) Environmental perspective: to minimize the emissions of CO2, one of the greenhouse
gases [28–31].

minF = f1 + f2 + f3 (6)

minG = g1 + g2 (7)

f1 =
N

∑
i=1

N

∑
j=1

XiXjidjiVjim0trk +
N

∑
i=1

XidimVimm0trk +
N

∑
i=1

XidinVinm0trk +
N

∑
i=1

N

∑
j=1

XiXijdijVijm0trk (8)

f2 =

{
ajVim, Vim ≤ Vmax m0
+∞, Vmax m0 < Vi Vi

(9)

f3 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N
∑

i=1
XiVimC1, i ∈ {1, 2, 3}

N
∑

i=1
XiVimC2, i ∈ {4, 5, 6}

N
∑

i=1
XiVimC3, i ∈ {7, 8, 9, 10, 11, 12, 13}

n
N
∑

i=1
XiVimC4, i ∈ {14, 15}

(10)

g1 =
N

∑
i=1

N

∑
j=1

XiXjidjiVjim0Lkctrk +
N

∑
i=1

XidimVimm0Lkctrk +
N

∑
i=1

XidinVinm0Lkctrk +
N

∑
i=1

N

∑
j=1

XiXijdijVijm0Lkctrk (11)

Lk = L0
k +

L∗
k − L0

k
N

m0 (12)

g2 = V1m0carj (13)

• Constraints
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Xi =

{
1, The ith candidate node is selected as the processing center
0, The ith candidate node is selected as the recycling center

(14a)

Xji =

{
1, The jth candidate node is assigned to the ith candidate node
0, The jth candidate node is not assigned to the ith candidate node

(14b)

0 ≤ Vi ≤ Vmax (15a)

Vi = Vii + Vji (15b)

Vi = Vim + Vin (15c)

Equation (6) represents the cost, including transportation cost, construction cost, and
treatment cost, in which, transportation cost includes three parts from recycling center to
treatment center, treatment center to landfill and paper mill, and treatment center back
to the recycling center, construction cost considers four types of areas A, B, C, and D
and the cost per unit construction area is different for candidate nodes in different areas,
and treatment cost considers alternative of three technologies, and the treatment cost of
different technologies is different. Equation (7) represents carbon emissions, including
carbon emissions from the transportation process and carbon emissions from the treatment
process, where carbon emissions from the transportation process include three parts from
recycling center to treatment center, from treatment center to landfill and paper mill, and
from treatment center back to the recycling center, and carbon emissions from treatment
process consider the three alternative technologies, and the carbon emissions generated
by different technologies are different. The above Equation (15a) indicates that the storage
volume of node i takes a range of values, Equation (15b) indicates that node i is equal to its
storage volume plus the volume transported from point j to point i, Equation (15c) indicates
that the volume transported out of node i is not greater than the storage volume of node i.
Equations (15a) and (15b) indicate that the above two equations indicate the conservation
of flow, the way to achieve each of the above constraints, especially the capacity constraint
through the constraint matrix.

According to the relevant information and combined with the actual situation, the
following values of the relevant parameters are given in this paper. The values of each
variable are as follows in Table 3.

Take fuel consumption per unit distance at no load L0
1= 0.11 L/km, L∗

1= 0.15 L/km
at full load, carbon emission factor per unit fuel consumption ctr1 = 2.5 kg/L, freight per
unit tr1 = 0.001 CNY/km/kg in vehicle type 1, fuel consumption per unit distance at no
load L0

2= 0.1 L/km, L∗
2= 0.15 L/km at full load. The carbon emission factor per unit of

fuel consumption ctr2 is 2.8 kg/L, the freight cost per unit tr2 is 0.0008, and the electricity
consumption per unit distance L0

3 is 0.1 in vehicle type 2. When vehicle type 3 is empty,
L∗

3= 0.3, when fully loaded, the carbon emission factor per unit of electricity consumption
ctr3 is 0.8, the freight cost per unit tr3 is 0.0015, and the electricity consumption per unit
distance L0

4= 0.1. When vehicle type 4 is empty, L∗
4= 0.3 when fully loaded, the carbon

emission factor per unit of electricity consumption ctr4 = 0.1, unit freight tr4 is 0.0012.

5. Algorithm Design

5.1. NSGA-II Algorithm Description

(1) Chromosome coding
In this paper, we set each generation of the population containing n individuals, and

each individual has only one chromosome, using a repeatable integer coding method,
and the total length of the chromosome is 75. From the perspective of corresponding
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functions, each chromosome can be divided into five parts, and the length of each part is
15. Specifically, the first part indicates the site selection code, the second part indicates the
vehicle type selection code from the recycling center to the treatment center, the third part
indicates the vehicle selection code from the processing center to the recycling center, the
fourth part indicates the vehicle selection type code from the processing center to the paper
mill and the landfill, and the fifth part is the processing technology selection code.

• First part: site selection code

For a generational population, the first part of the chromosome of the ith (1 ≤ I ≤ n,
and i is an integer, the same below) individual, the jth (1 ≤ j ≤ 15, and j is an integer, the
same below) position indicates j candidate nodes and the value k corresponding to the jth
position indicates that the jth candidate node is assigned to node k, and k becomes the
processing center, where k ∈ {1 ≤ k ≤ 15, and k is an integer}.

For example, Figure 8I represents the first part of the chromosome of the first individual
of a generation population, whose length is 15, and the value corresponding to the first
position is 1, indicating that node 1 is assigned to node 1, i.e., node 1 is selected as a
processing center by the candidate node, and so on, and the value corresponding to the
15th position is 15, indicating that node 15 is assigned to node 15, i.e., node 15 is selected as
a processing center.

(I) 

(II) 

(III) 

(IV) 

 
(V) 

(VI) 

Figure 8. (I,II) indicate the site selection code, (III,IV) indicate the vehicle type selection code from
the recycling center to the processing center, the vehicle selection code from the processing center to
the recycling center and the vehicle type selection code from the processing center to the paper mill
and landfill, (V,VI) are the processing technology selection code.

Figure 8II represents the first part of the chromosome of the 7th individual of this
generation population, whose length is 15, and the 1st, 2nd, and 3rd positions correspond
to values all of 5, indicating that nodes 1, 2, and 3 are assigned to node 5, i.e., node 5 is
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selected as a processing center by the candidate node, and accordingly, nodes 1, 2, and 3
are selected as a recycling center by the candidate node, and so on, and the 12th, 13th, 14th,
and 15th positions correspond to the value 13, indicating that nodes 12, 13, 14, and 15 are
assigned to node 13, i.e., node 13 is selected as the processing center by the candidate node,
and nodes 12, 14, and 15 are selected as the recycling center by the candidate node.

• Second, third, and fourth parts.

For the second part of the ith (1 ≤ i ≤ n and i is an integer, same below) individual
chromosome of a generational population, the value l corresponding to the jth (16 ≤ j ≤ 30
and j is an integer, same below) position indicates the type of transport vehicle between the
(j-15)th candidate node and the kth node corresponding to the (j-15)th position in the first
part, where l ∈ {1 ≤ l ≤ 4 and l is an integer } and k∈{1 ≤ k ≤ 15 and k is an integer}.

For example, Figure 8III represents the second part of the chromosome of the first
individual of a generational population which is the same population as the population of
Figure 8I with a length of 15. The 16th position corresponds to a value of 1, indicating that
the type of the transport vehicle between the first candidate node and the first candidate
node corresponding to the first position in the first part is type 1, and so on, and the
30th position corresponds to the value of 4 indicates that the type of the transport vehicle
between the 15th candidate node and the 15th candidate node corresponding to the 15th
position in the first part is type 4.

Figure 8IV represents the chromosome of the 7th individual of this generation popu-
lation with a length of 15, and the values corresponding to the 16th, 20th, 24th, and 28th
positions are all 1, indicating that the type of transport vehicle between the 1st, 5th, 9th,
and 13th candidate nodes and the 5th, 6th, 11th, and 13th candidate nodes corresponding
to the first part is all type 1, and the values corresponding to the 17th, 21st, 25th, and
29th positions are 2, indicating that the vehicle types of the transport vehicles between the
2nd, 6th, 10th, and 14th candidate nodes and the corresponding 2nd, 6th, 10th, and 14th
candidate nodes in the first part are all of type 2, and the remaining cases and so on.

• Fifth part.

For the ith (1≤ i ≤ n, i is an integer, the same below) individual chromosome of the
fifth part of a generational population, the value p corresponding to the jth (61 ≤ j ≤ 75,
j is an integer, the same below) position denotes the pth technique chosen for the kth node
corresponding to the j-15th position of the first part, where p∈{1≤ l ≤ 3 and p is an integer}
and k ∈{1 ≤ k ≤ 15 and k is an integer}. For example, Figure 8V represents the fifth part of
the chromosome of the first individual of a generational population (this population is the
same population as the population in Figure 8), whose length is 15, and the 61st position
corresponds to a value of 1, indicating the j60th candidate node, i.e., the first candidate
node uses technology 1, and so on, and the 75th position corresponds to a value of 1,
indicating the j60th candidate node i.e., the 15th candidate node also adopts technique 1.

Figure 8VI represents the chromosome of the seventh individual of this generation
population with a length of 15, and the values corresponding to the 61st, 64th, 65th,
69th, 72nd, and 73rd positions are all 1, indicating that the 1st, 4th, 5th, 9th, 12th, and
13th candidate nodes corresponding to the first part adopt technology 1, and the values
corresponding to the 62nd, 66th, 70th, and 74th positions are all 2, indicating that the 2nd,
6th, 10th, and 14 candidate nodes adopt technique 2, and the values corresponding to the
63rd, 67th, 68th, 71st, and 75th positions are all 3, indicating that the 3rd, 7th, 8th, 11th, and
15th candidate nodes adopt technique 3.

(2) Population initialization
According to the above coding method, in this paper, let there be n = 50 individuals

per generation of population, each individual has only one chromosome, and the length of
each chromosome is 75, i.e., m = 75, the first part corresponds to the candidate processing
center coding, each position randomly generates a repeatable integer k (1≤ k ≤15), the
second, third, and fourth parts correspond to the vehicle type coding, each position ran-
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domly generates a repeatable integer l (1 ≤ l ≤ 4), the fifth part corresponds to the type of
technology used, p ∈ {1 ≤ l ≤ 3, and p is an integer}.

(3) Adaptation degree function
In this paper, the fitness of each individual is calculated according to the rank size and

crowding degree of the non-dominated stratum, specifically, the parents and children are
merged, the new population after the merger is non-dominated stratified, and the crowding
degree is calculated for all individuals, and finally, the individuals are selected according to
the principle that priority is given to individuals with small non-dominated stratification
rank and priority is given to individuals with large crowding degree in the same stratum
until the population number is satisfied requirements, the method has a slightly different
logic from the classical NSGA-II algorithm, but is identical in purpose and fully equivalent
in effect [32–34].

(4) Crossover operation [35]
In this paper, the simulated binary crossover method is used to perform crossover

operations on population chromosomes. Assuming that the children generated by the
crossover of parents xa and xb are ya and yb, then for the kth position of children ya and yb
we have.

ya(k) =
1
2
[(1 + β)xa(k) + (1 − β)xb(k)] (16)

yb(k) =
1
2
[(1 − β)xa(k) + (1 + β)xb(k)] (17)

Among them,

β =

{
2r

1
1+η , r ≤ 0.5

(2 − 2r)r−
1

1+η , r > 0.5
(18)

In the above equation, r ∼ U [0, 1], η is a custom parameter, and the larger the value,
the closer the offspring is to the parent.

In this paper, we take η = 20, and for crossover, the first half of individuals and the
second half of individuals in each generation of the population are combined two by two,
and when the number of individuals is odd, the last individual does not participate in the
crossover.

(5) Variation operation
In this paper, the polynomial variation method is used to perform various operations

on population chromosomes; specifically, the variation form is,

v′k = vk + δ(uk − lk) (19)

Among them,

δ =

⎧⎪⎨⎪⎩
[
2u + (1 − 2u)(1 − δ1)

ηm+1
] 1

ηm+1 − 1, u ≤ 0.5

1 −
[
2(1 − u) + 2(u − 0.5)(1 − δ2)

ηm+1
] 1

ηm+1 , u > 0.5
(20)

In the above equation, δ1 = (vk − Ik)/(uk − Ik), δ2 = (vk − vk)/(uk − Ik), u is a random
number in the interval [0, 1], ηm is a custom parameter, and this paper takes ηm= 20.

5.2. NSGA-II Algorithm Steps

Step 1: encoding by repeatable integer coding.
Step 2: initialize the population and generate a population containing m individuals, each
containing one chromosome, at this point, set as the initial population.
Step 3: non-dominated stratification of the individuals of the initial population.
Step 4: calculate the fitness of the individuals of the initial population based on the results
of the non-dominated stratification in step 3.
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Step 5: select a certain number of individuals in the initial population as the evolutionary
generation 0 according to the calculation result in step 4, and all individuals of the initial
population are selected as generation 0 in this paper.
Step 6: start evolution, take generation i (i ∈ {0 ≤ i < 50 and k is an integer}) as the parent,
perform crossover and mutation operations on the individuals of the parent to generate the
children corresponding to the parent of generation i, and fuse the individuals of the parent
and children of generation i.
Step 7: decode the fused individuals from step 6 and calculate the objective function values
of the fused individuals.
Step 8: non-dominated stratification of the fused individuals from step 6 and calculation of
their crowding degree.
Step 9: according to the calculation result of step 8, select m individuals as the (i + 1)th
generation according to the non-dominated stratification level from the lowest to the highest
and when the same level according to the crowding degree from the largest to the smallest,
and return to step 6 if the required number of evolutionary iterations is not satisfied.
Step 10: the (i + 1)th generation of individuals has been noted as the Pareto solution and
the corresponding solution is the Pareto frontier solution [36–38].

The algorithm terminates.
The basic flow chart of the algorithm is shown in the following Figure 9.
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Figure 9. The basic process of mutation operation.

6. Analysis of Results

6.1. Candidate Points

(1) Execution of the algorithm yields the SSE versus K plot, as shown in Figure 10.
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Figure 10. SSE versus K.

From the above Figure 8, it can be seen that the inflection point appears between
K = 5 and K = 10. It is known from the rule of elbow law that K0 = 15 should satisfy
5 ≤ K0 ≤ 10, but considering the actual demand, K0 can be expanded appropriately by
the rule of on-demand selection law, and K0 = 15 is taken in this paper.

(2) Take K0 = 15, execute K-means algorithm, get 15 clustering centers, and use them
as candidate processing centers, whose latitude and longitude information is shown in
Table 4, and the location schematic is shown in Figure 11.

 
Figure 11. Schematic diagram of the location of the candidate nodes, paper mill, and landfill.
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Table 4. Latitude and longitude of candidate nodes.

Serial Number Latitude/◦N Longitude/◦E Serial Number Latitude/◦N Longitude/◦E

1 44.20957 125.9666 9 43.89134 125.3411
2 43.85894 125.2093 10 43.97082 125.2716
3 43.54504 125.6638 11 43.9477 125.1507
4 43.84200 125.2989 12 43.95960 125.4261
5 44.05939 125.1975 13 44.03693 125.6269
6 43.82241 125.4182 14 43.89649 125.4009
7 43.89262 125.2839 15 43.81163 125.2380
8 43.93453 125.3227

6.1.1. Classification of Candidate Nodes in Region M

Considering the economic development status of seven districts, this paper delineates
four categories of regions A, B, C, and D, as shown in Figure 12.

Figure 12. Schematic diagram of candidate node sub-region location.

According to the above classification results, the regions to which each candidate node
belongs are shown in Table 5.

Table 5. Classification regions and administrative regions to which each candidate node belongs.

Candidate
Nodes

Classification
Area

Administrative
District

Candidate
Nodes

Classification
Area

Administrative District

1 A Kuancheng District 9 C Lvyuan District
2 A Nanguan District 10 C Kuancheng District
3 A Lvyuan District 11 C Kuancheng District
4 B Lvyuan District 12 C Nanguan District
5 B Erdao District 13 C Erdao District
6 B Chaoyang District 14 D Jiutai District

7 C Chaoyang District 15 D Shuangyang
District

8 C Lvyuan District
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6.1.2. Determination of The Distance between Candidate Nodes

The latitude and longitude of 15 nodes can be known from Table 3, and the distance
between any two points (L 1, N1) and (L 2, N2) is calculated using Equation (20) to obtain
the distance between each candidate node, as shown in Table 6.

d =

√
[111(N1 − N2)]

2 + {111[E1 cos(N1)− E2 cos(N2)]}2 (21)

Table 6. Distance between candidate nodes.

Serial Number 1 2 3 4 5 6 7 8

23.86859 0 40.23685 12.67707 23.22249 44.70217 29.2916 73.10302 13.03013
16.60001 40.23685 0 29.87562 18.59793 6.318052 10.96083 113.3377 27.81905
13.40235 12.67707 29.87562 0 11.51298 33.4658 19.47316 84.28883 3.378439
3.75025 23.22249 18.59793 11.51298 0 21.95307 9.150016 95.73491 10.19329

20.84032 44.70217 6.318052 33.4658 21.95307 0 16.03422 117.6109 31.87447
6.106751 29.2916 10.96083 19.47316 9.150016 16.03422 0 102.3944 17.09786
96.87778 73.10302 113.3377 84.28883 95.73491 117.6109 102.3944 0 85.74007
11.22128 13.03013 27.81905 3.378439 10.19329 31.87447 17.09786 85.74007 0
39.59672 63.28908 23.0548 52.68995 41.21885 19.52163 34.00031 136.3915 50.81169
4.792569 19.34723 20.89395 10.23743 6.236652 25.49322 9.973975 92.44419 7.36417
8.717617 16.11011 24.30006 9.500052 9.929159 29.18902 13.34816 89.14593 6.131975
35.19108 48.15778 30.43948 45.10163 38.93564 35.71272 30.90118 114.8546 41.757
16.30645 30.78207 18.70151 25.93917 20.0393 25.01903 13.35269 101.709 22.63918
7.435185 27.15075 14.28599 19.15585 11.17926 20.04865 4.903537 99.99842 16.22207

0 23.86859 16.60001 13.40235 3.75025 20.84032 6.106751 96.87778 11.22128

Serial Number 9 10 11 12 13 14 15

1 63.28908 19.34723 16.11011 48.15778 30.78207 27.15075 23.86859
2 23.0548 20.89395 24.30006 30.43948 18.70151 14.28599 16.60001
3 52.68995 10.23743 9.500052 45.10163 25.93917 19.15585 13.40235
4 41.21885 6.236652 9.929159 38.93564 20.0393 11.17926 3.75025
5 19.52163 25.49322 29.18902 35.71272 25.01903 20.04865 20.84032
6 34.00031 9.973975 13.34816 30.90118 13.35269 4.903537 6.106751
7 136.3915 92.44419 89.14593 114.8546 101.709 99.99842 96.87778
8 50.81169 7.36417 6.131975 41.757 22.63918 16.22207 11.22128
9 0 43.94864 47.30247 39.51704 38.13702 36.7922 39.59672
10 43.94864 0 3.958057 35.54501 16.25327 8.920409 4.792569
11 47.30247 3.958057 0 35.63389 16.58221 11.11113 8.717617
12 39.51704 35.54501 35.63389 0 19.29206 27.75662 35.19108
13 38.13702 16.25327 16.58221 19.29206 0 9.082896 16.30645
14 36.7922 8.920409 11.11113 27.75662 9.082896 0 7.435185
15 39.59672 4.792569 8.717617 35.19108 16.30645 7.435185 0

6.1.3. Determination of the Candidate Node Express Volume

According to the previous data, the design values were weighted according to the
average ratio of the population in the seven districts of the M region to the total population
of Changchun, and the results are shown in Table 7.

The classification results of the candidate nodes, Nanguan District has one class A and
C regional nodes, respectively, candidate nodes 2 and 12, known from Table 1 Nanguan
District express the business volume of 103,352,300 pieces. This paper assumes that the ratio
of A and C regional nodes express business volume in Nanguan District is 7: 3, then the
express business volume of candidate nodes 2 and 12 are 7234.65967 and 3100.56843 million
pieces. According to the above rules, the express business volume of each candidate node
is shown in Table 8.
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Table 7. Express business volume by district.

Administrative District Express Business Volume/Million Pieces

Nanguan District 103.3523
Kuancheng District 90.56302
Chaoyang District 103.4675

Erdao District 79.95588
Lvyuan District 90.23914

Shuangyang District 50.62379
Jiutai District 92.637

Table 8. Express the business volume of each candidate node.

Candidate Nodes
Express Business Volume/

Million Pieces
Candidate Nodes

Express Business Volume/
Million Pieces

1 54.33781 9 9.023914
2 72.3466 10 18.1126
3 45.11957 11 18.1126
4 27.07174 12 31.00568
5 47.97353 13 31.98235
6 62.08048 14 50.62379
7 41.38699 15 92.637
8 9.023914

6.2. Number of Iterations, Crossover Variance Probability Selection

In this paper, we use Python 3.8.5 for algorithm implementation, in which some sub-
functions directly call the functions of the Geatpy library, such as selection sub-functions
and crossover sub-functions.

In this paper, we set the number of population individuals m = 100 and M = 3000, in
the actual problem, the number of iterations will have a large impact on the performance
of the whole algorithm, so in this paper, the two single objectives of total cost and carbon
dioxide total emission, as shown in Figure 13, where the blue line indicates the average
value and the red line indicates the minimum value, it can be seen that both the average
value and the minimum value decrease gradually with the increase of the number of
generations and tend to be stable, and both objective functions show good convergence, so
it is feasible to take M = 3000.

Figure 13. Plot of the total cost–number of iterations, total carbon dioxide emissions–number of
iterations c (M = 3000).

In this paper, we compare and analyze the relevant indicators for four cases with
cross-variance probabilities of 0.9, 0.8, 0.7, and 0.6. Total cost vs. total carbon dioxide
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emissions relationship diagram (cross-variance probability is 0.9, 0.8, 0.7, 0.6) as shown in
Figure 14A–D and Table 9.

(A) (B) 

(C) (D) 

Figure 14. (A) Total cost vs. total carbon dioxide emissions relationship diagram (cross-variance
probability is 0.9). (B) Total cost and total carbon dioxide emissions relationship diagram (cross-
variance probability is 0.8). (C) Total cost versus total carbon dioxide emissions relationship diagram
(cross-variance probability is 0.7). (D) Total cost and total carbon dioxide emissions relationship
diagram (cross-variance probability is 0.6).

Table 9. Correlation indicators.

Cross-Variance
Probabilities

Indicator Name

Percentage of
Non-

Dominated
Solutions

HV Spacing

0.9 Numerical value 0.24 0.016768 3312.822067
0.8 Numerical value 0.21 0.019379 3649.327564
0.7 Numerical value 0.43 0.019267 2713.471153
0.6 Numerical value 0.88 0.017934 3232.380758

Note: After testing, each index fluctuates somewhat during repeated calculations, and the best value in each
calculation process is taken.
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Integrating the three indicators of non-dominated solution percentage, HV, and Spac-
ings, and the final three generated images, this paper selects the case of M = 3000 and the
probability of cross-variance is 0.7 for analysis, and pools the analysis results to give man-
agement suggestions. According to the results of the selection of the number of iterations,
this paper runs the procedure at M = 3000 and the cross-variance probability is 0.7, and a
total of 43 Pareto solutions are obtained, as shown in Figure 15, which can be more clearly
seen in the Pareto frontier solutions [39,40].

Figure 15. Total cost and carbon dioxide emissions Pareto solution set.

For further analysis, the obtained Pareto solution sets can be classified into I, II, and
III, as shown in Figure 16.

Figure 16. Classification of total cost and total carbon dioxide emissions (M = 3000) Pareto solution
set.

Among them, the total cost of class I is at a low level and carbon emission is at a high
level, the total cost and carbon emission of class II are both at a medium level, and the
total cost of class III is at a high level and carbon emission is at a low level. For different
development stages of recycling system construction and development, different solution
sets of different regions can be selected as design solutions under the consideration of total
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cost and carbon emission only. When the whole society’s recycling system has developed
to a certain extent, Region III can be chosen.

In this paper, one point from each of the three categories I, II, and III is randomly
selected for analysis, and the selected points are shown in Figure 17.

Figure 17. Schematic diagram of sample solution selection for the Pareto solution of total cost and
total carbon dioxide emissions (M = 3000).

The coordinates of the point selected for Class I are (3.333 × 107, 2.160 × 105), which is
noted as the sample solution for Class I, i.e., the total cost is 3.333 × 107 CNY and carbon
emission is 2.160 × 105 kg. The first, second, third, and fourth parts of the chromosome
corresponding to this point are coded as

[14 10 4 7 11 7 4 14 5 14 14 13 13 12 14 ]
[2 1 1 2 3 4 2 4 4 1 3 4 4 2 4 ]
[2 2 3 1 2 1 2 2 4 2 2 1 2 1 2 ]
[3 3 1 2 3 1 3 4 3 2 4 2 3 4 4 ]
[2 3 2 1 3 2 3 3 1 1 3 3 3 3 3 ]

According to the algorithm design rules, the above code is decoded to obtain the
recycling center responsible for each processing center, the model used, and the technology
used, as shown in Table 10 (for convenience, Table 11 notes the recycling center to the
processing center as Section 1, the processing center back to the recycling center as Section 2,
and the processing center to the landfill and paper mill as Section 3, the same as the
following table). The location of each node is shown in Figure 18A.

Table 10. Class I sample solution analysis.

Processing
Center

Recycling Center in
Charge

Road Section Technical
Processing1 2 3

4 3 1 3 1 1

5 9 4 4 3 1

7 4, 6 2, 4 1, 1 2, 1 1, 2

10 2 1 2 3 3

11 5 3 2 3 3

12 14 2 1 4 3

13 12, 13 4, 4 1, 2 2, 3 3, 3

14 1, 8, 10, 11, 15 2, 4, 1, 3, 4 2, 2, 2, 2, 2 3, 4, 2, 4, 4 2, 3, 1, 3, 3

201



Mathematics 2023, 11, 812

Table 11. Class II sample solution analysis.

Processing
Center

Recycling Center in
Charge

Road Section
Technical Processing

1 2 3

3 7 2 2 3 3

4 3 2 2 3 3

5 9 4 4 2 2

6 1 4 2 3 3

7 4, 6 2, 2 1, 1 2, 1 2, 3

10 2 2 2 3 3

11 5 3 2 4 3

12 14 1 1 3 3

13 13 4 2 3 3

14 8, 10, 11, 12, 15 4, 1, 3, 4, 4 2, 1, 2, 2, 2 4, 4, 3, 3, 4 3, 2, 3, 3, 3

 
(A) (B) 

(C) 

Figure 18. (A) Schematic diagram of the location of each node of the class I sample solution.
(B) Schematic diagram of the location of each node of the class II sample solution. (C) Location
diagram of nodes of Class III sample solutions.
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The coordinates of the point selected for class II are (3.340 × 107, 2.023 × 105), which is
noted as the sample solution for class II, i.e., the total cost is 3.340× 107 CNY and the carbon
emission is 2.023 × 105 kg. The first, second, third, and forth parts of the chromosome
corresponding to this point are coded as

[ 6 10 4 7 11 7 3 14 5 14 14 13 13 12 14 ]
[4 2 1 2 3 2 2 4 4 1 3 4 4 1 4 ]
[2 2 3 1 2 1 2 2 4 1 2 2 2 1 2 ]
[3 3 1 2 4 1 3 4 2 4 3 3 3 3 4 ]
[3 3 2 2 3 3 3 3 2 2 3 3 3 3 3 ]

The above codes were decoded to obtain the recycling centers responsible for each
processing center, the models used, and the technologies used, as shown in Table 11. The
location of each node is shown in Figure 18B.

The coordinates of the point selected for class III are
(
3.363 × 107, 1.961 × 105), which

is noted as the sample solution for class III, i.e., total cost is 3.363 × 107 CNY and carbon
emission is 1.961 × 105 kg. The first, second, third, and fourth parts of the chromosome
corresponding to this point are coded as,

[ 6 10 4 7 11 12 3 14 5 9 14 1 13 12 7 ]
[3 4 3 3 3 4 2 4 2 2 3 3 4 4 4 ]
[1 2 3 1 3 3 2 2 4 1 4 2 2 1 2 ]
[3 3 1 2 3 2 3 3 3 4 4 4 3 3 3 ]
[2 3 2 2 3 2 3 3 2 1 3 3 3 3 2 ]

After the above encoding and decoding, the recycling centers, models, and technolo-
gies adopted by each processing center are obtained, as shown in Table 12. The location of
each node is shown in Figure 18(C).

Table 12. Class III sample solution analysis.

Processing
Center

Recycling Center
in Charge

Road Section Technical
Processing1 2 3

1 12 3 2 4 3

3 7 2 2 3 3

4 3 3 3 1 2

5 9 2 4 3 2

6 1 3 1 3 2

7 4, 15 3, 4 1, 2 2, 3 2, 2

9 10 2 1 4 1

10 2 4 2 3 3

11 5 3 3 3 3

12 6, 14 4, 4 4, 1 2, 3 2, 3

13 13 4 2 3 3

14 8, 11 4, 3 2, 4 3, 4 3, 3

Compare and analyze the sample solutions of class I, II, and III selected above: From
the perspective of site selection, it can be seen that among the nodes selected by class I
sample solutions, 2 nodes are located in region B, 5 nodes are located in region C, and
1 node is located in region D. Among the nodes selected by region B sample solutions,
1 node is located in region A, 3 nodes are located in region B, 5 nodes are located in region
C, and 1 node is located in region D. Among the nodes selected by class III sample solutions,
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2 nodes are located in region A, 4 are located in region B, 5 are located in region C, and
1 is located in region D, and the node selected by the sample solution of class III contains
class II, and class II contains class I. From the perspective of the selected vehicle types,
excluding some invalid codes such as starting and ending points being the same node,
it can be seen that the transportation modes between nodes are widely selected, and all
four types of vehicles have been applied. From the perspective of the selected technology,
it can be seen that the same processing center can choose 2 or more kinds of processing
technology, and each processing technology has an application. To sum up, after selecting
the regional category, the specific location, vehicle type, and technology should be taken
into consideration to optimize the whole system.

7. Conclusions

Green and low-carbon products are becoming increasingly popular, and green carbon
reduction has become the mainstream way of consumption upgrading. This paper analyzes
and summarizes the existing courier packaging recycling model, and establishes a new
courier packaging recycling model based on the concept of sharing from a low-carbon
perspective. From the perspective of engineering research, this paper proposes a complete
set of reverse logistics network design process for express packaging, especially from the
existing express network, and establishes a network optimization model by combining
qualitative and quantitative analysis, which provides a certain technical reference value
for similar projects. From the application value point of view, this paper defines the
scope of region M. According to the population of each administrative region in region
M, the design value is used to weight according to the population number to estimate the
courier volume of each administrative region in region M. The location information of
535 courier points in region M was obtained and filtered. The courier packaging recycling
mode adopted in region M was determined. This paper also randomly selects one sample
solution from each of the three types of solution sets, conducts the coding interpretation of
site selection, vehicle selection, and processing technology selection and gives an example
design scheme. The express packaging recycling network constructed in this paper can
avoid the waste of express packaging, reduce environmental pollution, and promote the
sustainable development of social environment and economy for the social development
of region M. For the express enterprises in region M, it can improve the utilization rate of
express packaging, reduce the cost, actively assume social responsibility, and establish a
good corporate image. There are shortcomings in this paper. Affected by the epidemic,
there are large errors in the estimation of express business volume in each administrative
region of M. The performance of the program written by the relevant algorithm is unstable,
and the time complexity and space complexity are not considered, and the algorithm design
and program writing should be further optimized. In future research, this aspect should be
considered more comprehensively and carefully.
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Appendix A

Table A1. Total population of each district in Region M.

Name of Administrative Region
Year

2020 2019 2018

Nanguan District 764,163 744,357 717,550
Kuancheng District 663,020 651,892 645,688
Chaoyang District 758,991 747,508 729,875
Erdao District 580,277 579,356 577,012
Lvyuan District 651,635 654,046 659,108
Shuangyang District 364,782 366,780 371,912
Jiutai District 667,942 671,291 679,336
Total population of Changchun 7,537,969 7,512,896 7,511,748

Table A2. The proportion of the population of each district in the total population of Changchun in
M region.

Name of
Administrative Region

The Percentage of the Population in the Current Year

2020 2019 2018 2018–2020

Nanguan District 10.14% 9.91% 9.55% 9.95%
Kuancheng District 8.80% 8.68% 8.60% 8.72%
Chaoyang District 10.07% 9.95% 9.72% 9.96%

Erdao District 7.70% 7.71% 7.68% 7.70%
Lvyuan District 8.64% 8.71% 8.77% 8.69%

Shuangyang District 4.84% 4.88% 4.95% 4.87%
Jiutai District 8.86% 8.94% 9.04% 8.92%

Table A3. Location of express points in Nanguan District.

Serial Number Latitude/◦N Longitude /◦E Serial Number Latitude/◦N Longitude/◦E

1 43.837454 125.327664 51 43.85571 125.400205
2 43.789996 125.437189 52 43.843923 125.425986
3 43.88474 125.350858 53 43.803751 125.315023
4 43.893736 125.35813 54 43.750018 125.409793
5 43.834801 125.333301 55 43.899874 125.332733
6 43.827144 125.329905 56 43.827882 125.414442
7 43.840422 125.373367 57 43.878994 125.336723
8 43.826949 125.375575 58 43.896309 125.351509
9 43.882053 125.349496 59 43.882392 125.347125

10 43.842641 125.374858 60 43.905428 125.342984
11 43.906604 125.343757 61 43.861626 125.359128
12 43.844766 125.380254 62 43.844444 125.38038
13 43.813458 125.457464 63 43.813495 125.465922
14 43.897753 125.338467 64 43.802057 125.283431
15 43.782392 125.406786 65 43.85151 125.450023
16 43.820709 125.314338 66 43.891005 125.339234
17 43.842253 125.40775 67 43.903562 125.344714
18 43.827599 125.32845 68 43.891354 125.337182
19 43.830943 125.309065 69 43.81103 125.400753
20 43.879202 125.334329 70 43.835494 125.433065
21 43.827144 125.329905 71 43.789372 125.375345
22 43.796082 125.309145 72 43.871081 125.353375
23 43.869381 125.339793 73 43.893203 125.350009
24 43.839403 125.356681 74 43.897777 125.345988
25 43.842627 125.348033 75 43.915569 125.360708
26 43.805436 125.29279 76 43.77458 125.269852
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Table A3. Cont.

Serial Number Latitude/◦N Longitude /◦E Serial Number Latitude/◦N Longitude/◦E

27 43.908228 125.353404 77 43.788377 125.267272
28 43.833878 125.377279 78 43.872522 125.360277
29 43.793152 125.398239 79 43.80733 125.454246
30 43.861092 125.388539 80 43.828481 125.318853
31 43.843238 125.425431 81 43.798887 125.30516
32 43.840715 125.360151 82 43.793443 125.315005
33 43.812281 125.402488 83 43.837223 125.406287
34 43.834626 125.39462 84 43.844025 125.339175
35 43.85298 125.450993 85 43.792858 125.42437
36 43.832712 125.391496 86 43.841206 125.410059
37 43.835115 125.442014 87 43.792006 125.395835
38 43.893361 125.352221 88 43.852766 125.356367
39 43.8931 125.34364 89 43.899677 125.344485
40 43.89796 125.352507 90 43.802605 125.336546
41 43.860657 125.369726 91 43.880092 125.345643
42 43.838179 125.460384 92 43.899882 125.332816
43 43.826313 125.378839 93 43.833841 125.367847
44 43.83805 125.412816 94 43.840575 125.408217
45 43.834954 125.392255 95 43.833253 125.388789
46 43.893672 125.346473 96 43.82796 125.379248
47 43.903571 125.353122 97 43.835528 125.380312
48 43.790302 125.440001 98 43.811003 125.397103
49 43.82728 125.375988 99 43.821876 125.453335
50 43.837934 125.300282
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Abstract: Large-volume waste products, such as refrigerators and automobiles, not only consume
resources but also pollute the environment easily. A two-sided disassembly line is the most effec-
tive method to deal with large-volume waste products. How to reduce disassembly costs while
increasing profit has emerged as an important and challenging research topic. Existing studies ignore
the diversity of waste products as well as uncertain factors such as corrosion and deformation of
parts, which is inconsistent with the actual disassembly scenario. In this paper, a partial destructive
mode is introduced into the mixed-model two-sided disassembly line balancing problem, and the
mathematical model of the problem is established. The model seeks to comprehensively optimize
the number of workstations, the smoothness index, and the profit. In order to obtain a high-quality
disassembly scheme, an improved non-dominated sorting genetic algorithm-II (NSGA-II) is pro-
posed. The proposed model and algorithm are then applied to an automobile disassembly line as an
engineering illustration. The disassembly scheme analysis demonstrates that the partial destructive
mode can raise the profit of a mixed-model two-sided disassembly line. This research has significant
application potential in the recycling of large-volume products.

Keywords: multi-objective; mixed-model; two-sided; disassembly line balancing; partial destructive
mode
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1. Introduction

The lifecycle of products is continually getting shorter due to the quick development
of new technology and advances in science. Many products are quickly phased out due
to outdated functions, or scrapped, leading to the generation of more and more waste [1].
Remanufacturing is the manufacturing of waste products as raw materials, which can
effectively conserve energy and resources and significantly lowers production costs. Dis-
assembly is the first and mandatory step of remanufacturing; it plays a significant role in
recycling of resources [2–4].

Paced assembly lines are increasingly being used by recycling companies instead of
the fixed disassembly position layout. They have a great advantage in efficiency while
dealing with a significant volume of waste products. In the process of disassembly, the
priorities among parts must be taken into consideration and the toxic residues must be
removed. How to rationally assign the tasks to the stations on the paced line to achieve
the optimal goals under these constraints is called the disassembly line balancing problem
(DLBP), which was first proposed by Gupta and Gungor [5] and has garnered considerable
interest from experts and scholars from related fields.

According to the different objectives and conditions, DLBPs mainly fall into two major
types. As addressed in our study, the type of DLBP that aims to minimize the number

Mathematics 2023, 11, 1299. https://doi.org/10.3390/math11061299 https://www.mdpi.com/journal/mathematics209



Mathematics 2023, 11, 1299

of workstations for a given cycle time is called DLBP-I. DLBP- II has the objective of
minimizing the cycle time with a fixed number of workstations. The majority of DLBP
research is focused on Type-I, and based on this, the optimization aims are expanded
to include additional factors to make it more practical for disassembly businesses. The
following are some of the most commonly considered objectives: energy consumption [6,7],
workload smoothness index [8], number of workers [9], disassembly profit [7], and line
efficiency [10].

Complete disassembly necessitates the removal of every part, whereas partial dis-
assembly only necessitates the removal of required and hazardous parts, leaving the
remaining parts intact [11]. It is obvious that for disassembling businesses, the partial
disassembly mode is more suited to lowering costs and raising productivity and profits.
In addition to this, unlike assembly lines, disassembly lines are facing uncertainty factors,
such as corrosion and deformation of the connectors, which makes it difficult for each part
to be removed conventionally [12,13]. At the same time, the conventional disassembly
mode is not suitable for the disassembling of low-value and long task time parts. Pointing
to this condition, a partial destructive disassembly mode is considered in this article [7]. In
this mode, the major parts of the waste products are conventionally disassembled, and the
rest of the parts are destructively disassembled or discarded under cost considerations.

Single-model disassembly lines are designed to produce high volumes of standardized
homogeneous products, making them unsuitable for customer demand with a wide range
of products. Firms tend to add a new disassembly line for new waste product during the
recycling process. This strategy has drawbacks such as higher disassembly costs, wasted
layout space, and decreased disassembly efficiency. A more cost-effective alternative for the
disassembly of waste products with comparable assembly structures is to achieve mixed
disassembly of these products on the same disassembly line [14]. When disassembling
on two-sided lines, the disassembly tasks could be distinct because of variations in part
designs, or the disassembly of the same part might result in different operating times
and value because of variations in waste products’ quality [15]. There are few studies on
the mixed model two-sided disassembling line problem, and the existing studies lack the
consideration of the uncertainty of the product state and how to maximize the disassembly
revenue through partial destructive disassembly.

It was proved that DLBP is an NP-complete problem [16]. Since the problem was
proposed, various methods have been developed to solve it. Exact methods primarily
use integer programming and dynamic programming to solve the DLBP in solvers, such
as CPLEX, LINGO, and GUROBI [17,18]. With increasing DLBP scale, exact methods are
unable to provide feasible disassembly solutions in a reasonable time, so heuristic and
metaheuristic methods are proposed [19]. For heuristics, the AHP with PROMETHEE [20]
and a greedy/2-opt algorithms [21] are mainly applied. For meta-heuristics, this includes
traditional algorithms like genetic, simulated annealing, ant colony, artificial bee colony,
etc., [22–24] and recently, other algorithms have been proposed, such as gravitational
search, gray wolf, migrating birds optimization, etc. [25,26]. According to the findings,
meta-heuristics are more computationally efficient than the other two types of approaches,
and they can lead to satisfactory answers [27].

Although the existing literature has made great progress in the research of DLBP,
there are still gaps in the following aspects: Above all, the current research on the mixed-
model two-sided disassembly of large-volume waste products did not take into account the
partial destructive mode and the tool changes during the disassembly process. Secondly,
existing studies only focus on single objectives such as profit maximization or workstation
minimization as optimization goals, without comprehensive consideration of various needs
of enterprises. In the end, there is a lack of a feasible case to provide research for this type
of problem.

In view of the shortcomings of the current research, this paper takes minimizing the
number of workstations, minimizing the smoothness index, and maximizing the profit as
the objectives, and studies the mixed-model two-sided disassembly line balancing problem
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suitable for large-volume waste products disassembling in the partial destructive mode.
The main contributions can be listed as follows. Firstly, a new multi-objective mathematical
model is developed for solving PD-MTDLBP. Secondly, an improved NSGA-II algorithm
is proposed for multi-objective optimisation of PD-MTDLBP. Finally, a multi-model case
transformed from a real disassembly scenario is provided.

The remainder of this paper is structured as follows. In Section 2, the partial destructive
mixed-model two-sided disassembly line balancing problem (PD-MTDLBP) is described,
and the MIP formulation of PD-MTDLBP is presented. In Section 3, the proposed approach
for solving PD-MTDLBP is given in detail. In Section 4, a computational example to validate
the performance of the proposed model and algorithm are given. Conclusions are then
drawn in the final section, along with suggestions for further research avenues.

2. Problem Statement

2.1. Problem Description

In the arrangement of a two-sided disassembly line, the workstations are symmetrically
positioned along both sides of the conveyor. The stations on the left and right sides refer to
one another as a companion station. Together, they form a mated station. Each workstation
has a corresponding operator and disassembly tools [28]. The disassembly task is subject
to the disassembly direction constraint on the two-sided disassembly line, which can be
divided into three types: left type (L), right type (R), and either type (E). Each type of task
is only allowed to be disassembled in its corresponding direction.

A two-sided disassembly line is referred to as a mixed-model two-sided disassembly
line if it is used to disassemble multiple waste products with similar structural charac-
teristics in a mixed flow [29]. Each waste product has a task disassembly precedence
relationship that can be combined to create a joint disassembly precedence diagram.

Generally speaking, destructive disassembly can increase the efficiency of disassembly,
thereby lowering energy consumption and disassembly costs, but it can also make parts less
valuable. Hence, parts that are not in high demand or not hazardous can be disassembled
either conventionally or destructively. High-demand and hazardous parts, on the other
hand, must be disassembled conventionally.

2.2. Mathematical Model

The mathematical model for PD-MTDLBP is as follows, and the parameters and
variables required by the model are as shown in Appendix A.

min f1 = ∑
s∈S

∑
k=1,2

Wsk (1)

min f2 =

√
∑
s∈S

∑
k=1,2

(Tsk − max{Tsk})2/ ∑
s∈S

∑
k=1,2

Wsk (2)

max f3 = ∑
i∈I

∑
e=1,2

xivie − ∑
m∈M

∑
i∈I

∑
s∈S

∑
k=1,2

∑
e=1,2

(xiskcie + xisktm
ie (cs + hich))

− ∑
s∈S

∑
k=1,2

∑
q∈Q

∑
i∈I

∑
j∈I

xiskqxjsk(q+1)zijttcs − |S|c f
(3)

s.t.
xi = 1, ∀i ∈ {i|hm

i + dm
i ≥ 1} (4)

xi ≤ 1, ∀i ∈ {i|hm
i + dm

i = 0} (5)

xj = 1, ∀Pij = 1, xi = 1 (6)

xiei = 1, ∀i ∈ {i|hm
i + dm

i ≥ 1} (7)

ei ≤ 1, ∀i ∈ {i|(hm
i + dm

i = 0) ∧ (xi = 1)} (8)
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∑
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∑
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xjsk ≤ 1 +
(
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)
, ∀ij ∈ I, s ∈ S (13)

∑
i∈I

xisk ≤ nWsk, ∀s ∈ S, k = 1, 2 (14)

∑
k=1,2

Wsk − 2Gs − Fs = 0, ∀s ∈ S (15)

Gs ≤ Gs−1, ∀s ∈ {2, . . . , |S|} (16)

In the objective functions, the number of workstations is minimized by Equation (1).
Workloads on of the disassembly line are smoothed by Equation (2). Disassembly profit is
maximized by Equation (3) [30]. In the constraints, Equations (4) and (5) represents that
the parts that are hazardous or demanded must be disassembled; the rest of the parts are
disassembled randomly [7]. All of a task’s immediate predecessors must be completed in
order for it to be performed, as shown in Equation (6). Equations (7) and (8) indicate that the
parts that are hazardous or demanded must be disassembled in conventional mode, whilst
others can be disassembled in destructive or conventional mode. Equation (9) denotes
that the parts selected for disassembly must be assigned to a workstation. Equation (10)
represents the cycle time constraint. For the whole disassembly line, the mated-station index
of the immediate predecessor must not be greater than that of the immediate successor,
as shown in Equation (11). Equation (12) represents the precedence constraint of tasks
within the same workstation. Equation (13) represents the position constraint within the
station, which defines the relative position between two tasks successively assigned to the
same workstation. Equation (14) is the disassembly station and disassembly task constraint,
so that the workstation is opened after the disassembly task is assigned. Equation (15)
indicates that the total number of workstations is equal to the sum of the mated stations
and companion stations [31]. Formula (16) indicates that the mated stations are started one
by one.

3. The Proposed Method

For the purpose of solving multi-objective optimisation problems (MOP), meta-heuristic
algorithms have been repeatedly shown to be very efficient. In this study, the non-
dominated sorting genetic algorithm-II (NSGA-II) is improved and applied to address
the proposed PD-MTDLBP. The NSGA-II algorithm is a Pareto-based approach, and its
optimal solution set is essentially the non-inferior solution to the MOP. The NSGA algo-
rithm is improved from the following aspects. Based on the multi-chromosomes encoding
method proposed by Wang [7] et al., a decoding method suitable for PD-DLBP was con-
structed. Two processes, two-point crossover and single-point mutation, suitable for
multi-chromosomes operations, are applied to generate new populations. The NSGA-II
flowchart is depicted in Figure 1, and the detailed processes are given below.
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Figure 1. Flowchart of NSGA-II.

3.1. Encoding

Encoding, also known as the process of coming up with a workable disassembly
task sequence, is the first and most important step in solving the PD-MTDLBP problem.
Three integer vectors are employed for the encoding of the PD-MTDLBP based on the
disassembly precedence matrix: the task sequence vector (TS), task decision vector (TD),
and task mode vector (TM). Each vector is a one-dimensional array with Nt elements.
The TS designates the order in which the tasks of the mix-model are carried out on the
two-sided disassembly line.

The TD determines whether the tasks in the TS participate in the disassembly process,
and its encoding process should meet Equations (4)–(6). The TM determines which mode
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the tasks involved in the disassembly should adopt. Its encoding process needs to satisfy
Equations (7) and (8). Taking Figure 2, as an example, assuming that the hazard index of
tasks 4 and 6 is 1, and is 0 for the others; and the demand index of task 2 and 11 is 1, and
is 0 for the others. The TS, TD, and TM of a feasible initial solution can be constructed as
shown in Table 1.

 
Figure 2. Disassembly precedence diagram.

Table 1. Encoding vector.

Task 1 2 3 4 5 6 7 8 9 10 11 12
TS 3 5 6 9 12 1 2 8 10 4 7 11
TD 1 1 1 0 1 0 1 1 1 1 0 1
TM 1 0 1 - 1 - 1 0 1 1 - 1

3.2. Decoding

During the decoding process, tasks are assigned to each workstation in the order
specified in the task sequence vector, subject to cycle time and disassembly direction
constraints. The decoding processes are as follows:

Step 1: Turn on the first mated station and begin decoding.
Step 2: Determine whether each model’s mated station has received all of the tasks in

the TS. Proceed to step 8 if so. If not, move on to step 3.
Step 3: Assign the first task i in the TS as the active task.
Step 4: If TD[i] = 1, proceed to step 5. Otherwise, remove current task from TS and

return to step 2.
Step 5: Determine the disassembly time of the current task according to TM[i]. If there

is a tool change, add the required time to the disassembly time.
Step 6: Assign the current task to the left or right side of the mated station if it has a

definite disassembly direction (L or R). If E, place it on the side where there is more time
for disassembly.

Step 7: If the cycle time constraint is met, assign the task to the current companion
station, otherwise, assign the task to a new one. After the assignment, remove the current
task from TS and go back to step 2.

Step 8: Output the decoding result.

3.3. Crossover

The crossover of the task sequence vector is usually carried out at random in numerous
research. It is easy to produce infeasible individuals by this type of crossing. In this study,
a two-point crossover operator is adopted to guarantee that the crossed individuals meet
the precedence constraints.

The individuals TS1 and TS2 are used to designate two parents of the two-point
crossover operation, as seen in Figure 3. Two crossover points P1 and P2 are randomly
selected in the parent individuals to determine the section of crossover. Keep the sequences
before P1 and after P2 in TS1 unchanged. The sub-sequence {9, 12, 1, 2, 8, 10} between
P1 and P2 in TS1 becomes {1, 2, 9, 8, 12, 10} through mapping of the same sequence in
TS2, namely, the offspring individual N1 = {3, 5, 6, 1, 2, 9, 8, 12, 10, 4, 7, 11}. Under these
crossover operations, the offspring always satisfy the precedence constraint [32].
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Figure 3. Individual crossover operation.

The crossover operation of the task decision vector and task mode vector is consistent
with the crossover of the task sequence vectors. However, it should be noted that after the
completion of the crossover of the task decision vector, the sequence should be checked
and adjusted to ensure that the disassembly decision variable of all the predecessor tasks of
the selected task is 1.

3.4. Mutation

A random mutation of the task sequence vector can also create infeasible individuals.
A single-point mutation operator based on a precedence constraint is employed to find a
feasible individual. The individual TS is regarded as the parent of the single-point mutation
operation, as depicted in Figure 4. In TS, first a mutation point P is chosen at random, and
the closest predecessor {3} and successor {8} tasks of the chosen task are identified. The
chosen task {5} is then randomly inserted between the predecessor and successor to create
the feasible individual set [33]. The offspring individual N {3, 5, 6, 1, 2, 4, 7, 9, 8, 12, 10, 11}
is then chosen at random from the set.

215



Mathematics 2023, 11, 1299

 

Figure 4. Individual mutation operation.

The task decision vector and task mode vector adopt the same mutation operation as
the task sequence vector. Following the mutation of the task decision vector, the sequence
should also be verified and corrected.

4. Case Study

A practical case of automobile is selected to verify the reliability and validity of the
proposed model and method. Table 2 illustrates the 74 tasks that make up the entire process
of disassembling an automobile. It includes information such as the hazardous property
(h), the demanded property (d), the preferred operation direction (k), the disassembly mode
€, the disassembly time (t) for three models (m), the revenue (v), and the type of tools (o)
of each task. Figure 5 depicts the relationships between tasks in terms of priority. The
precedence relationship, the preferred operation direction, and hazardous property for each
task are taken from Liang [15] et al. The population and iteration times of the algorithm
are set as 100 and 500. The crossover probability and mutation probability involved in the
algorithm are set as 0.8 and 0.2, respectively. Minimum product set is MPS = {1, 1, 1}.

Table 2. Tasks information of the automobile disassembly.

No. Parts h d k

e = 1 e = 0

t v o t v o

m1 m2 m3 - - m1 m2 m3 - -

1 Left engine
hood hinge 0 0 L 20 18 17 19 6 2 2 2 14 9

2 Right engine
hood hinge 0 0 R 17 21 13 19 1 2 2 2 14 9

3 Engine hood 0 1 E 10 15 12 833 6 1 2 1 625 9
4 Airbag 1 1 L 100 103 91 1296 6 9 9 8 972 7
5 Battery 1 0 R 33 39 39 110 5 3 4 4 83 8
6 Fuse Box 1 0 R 28 27 30 18 3 3 3 3 14 8
7 Waste fluid 1 0 E 13 8 16 20 6 2 1 2 15 7
8 Waste oil 1 0 E 195 202 143 2 3 17 17 12 2 7
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Table 2. Cont.

No. Parts h d k

e = 1 e = 0

t v o t v o

m1 m2 m3 - - m1 m2 m3 - -

9 Refrigerant 1 0 E 63 38 43 17 4 6 4 4 13 8
10 Left front wheel 0 0 L 41 31 31 130 1 4 3 3 98 7
11 Left rear wheel 0 0 L 27 41 29 130 5 3 4 3 98 7
12 Right front wheel 0 0 R 32 22 30 130 4 3 2 3 98 8
13 Right rear wheel 0 0 R 38 40 39 130 3 4 4 4 98 9
14 Left fender 0 0 L 22 20 21 31 6 2 2 2 23 8
15 Right fender 0 0 R 22 33 24 31 5 2 3 2 23 8
16 Left front bumper 0 0 L 43 23 43 182 5 4 2 4 137 8
17 Right front bumper 0 0 R 23 38 42 182 2 2 4 4 137 8
18 Front bumper 0 0 E 17 19 14 285 5 2 2 2 214 7
19 Air intake grille 0 0 E 29 18 22 107 2 3 2 2 80 8
20 Left lamps 0 0 L 31 24 26 944 2 3 2 3 708 9
21 Right lamps 0 0 R 25 42 30 944 1 3 4 3 708 7
22 Left front door 0 1 L 38 44 44 1149 1 4 4 4 862 9
23 Left rear door 0 1 L 29 45 48 1149 3 3 4 4 862 8
24 Right front door 0 1 R 51 38 48 746 4 5 4 4 560 9
25 Right rear door 0 1 R 50 34 42 746 2 5 3 4 560 8

26 Left trunk cover
hinge 0 0 L 19 19 17 61 3 2 2 2 46 8

27 Right trunk cover
hinge 0 0 R 20 15 17 61 2 2 2 2 46 9

28 Trunk cover 0 1 E 41 27 22 910 1 4 3 2 683 7
29 Spare wheel 0 0 E 23 20 32 83 5 2 2 3 62 7
30 Left rear bumper 0 0 L 35 24 28 159 4 3 2 3 119 9
31 Right rear bumper 0 0 R 28 33 38 159 5 3 3 4 119 9
32 Rear bumper 0 0 E 13 19 14 244 1 2 2 2 183 8
33 Radiator 0 0 E 56 56 48 742 1 5 5 4 557 9
34 Condenser 0 0 E 48 62 77 409 1 4 6 7 307 9
35 Coolant tank 1 0 E 70 71 53 452 5 6 6 5 339 8
36 Air cleaner 0 0 E 38 35 28 787 5 4 3 3 590 7
37 Wiper 0 0 E 33 32 32 123 5 3 3 3 92 8
38 Wiper motor 0 0 E 37 30 26 58 4 4 3 3 44 8

39 Left front
windscreen 0 0 L 42 56 52 70 4 4 5 5 53 7

30 Right front
windscreen 0 0 R 57 43 42 70 4 5 4 4 53 7

41 Front windscreen 1 0 E 30 32 18 248 3 3 3 2 186 8
42 Left rear windscreen 0 0 L 23 33 25 51 3 2 3 3 38 9

43 Right rear
windscreen 0 0 R 33 33 26 51 3 3 3 3 38 8

44 Rear windscreen 1 0 E 24 23 20 156 5 2 2 2 117 9
45 Left seat 0 1 L 95 126 100 977 3 8 11 9 733 7
46 Right seat 0 1 R 137 134 149 1186 6 12 12 13 890 9
47 Armrest box 0 0 E 37 68 35 25 5 4 6 3 19 9
48 Fuel tank 1 0 R 43 76 77 637 6 4 7 7 478 7
49 Steering wheel 0 0 L 56 39 47 189 2 5 4 4 142 9

50 Left center
console bolt 0 0 L 63 67 59 1 2 6 6 5 1 9

51 Right center
console bolt 0 0 R 50 36 46 2 2 5 3 4 2 8

52 Center console panel 0 0 E 38 34 44 438 3 4 3 4 329 8
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Table 2. Cont.

No. Parts h d k

e = 1 e = 0

t v o t v o

m1 m2 m3 - - m1 m2 m3 - -

53 Dashboard 0 0 L 48 39 35 508 3 4 4 3 381 7
54 Shift handle 0 0 E 68 76 60 106 6 6 7 5 80 9
55 Brake rigging 0 0 L 89 103 77 226 2 8 9 7 170 9
56 Clutch pedal 0 0 L 27 25 35 81 2 3 3 3 61 9
57 Accelerator pedal 0 0 L 39 36 39 81 6 4 3 4 61 8
58 Air conditioner 0 1 E 47 64 70 660 5 4 6 6 495 8
59 Steering system 0 0 L 103 121 121 512 4 9 11 11 384 8
60 Carbon canister 1 0 E 14 13 13 23 1 2 2 2 17 8
61 Bottom guard board 0 0 E 26 30 27 70 2 3 3 3 53 9
62 Exhaust pipe 1 1 E 70 41 53 1440 1 6 4 5 1080 9
63 Drive shaft 0 1 E 99 164 109 577 1 9 14 10 433 7
64 Electric generator 0 0 E 103 100 96 392 1 9 9 8 294 9
65 Front suspension 0 0 E 122 102 109 64 1 11 9 10 48 7
66 Rear suspension 0 0 E 93 116 128 57 6 8 10 11 43 8
67 Engine 0 1 E 163 180 213 6188 4 14 15 18 4641 8
68 Transmission 0 1 E 117 156 93 6562 2 10 13 8 4922 8
69 Left decoration 1 0 L 47 47 80 91 1 4 4 7 68 9
70 Right decoration 1 0 R 45 76 56 62 4 4 7 5 47 7
71 Interior light 1 0 E 24 16 19 8 4 2 2 2 6 9
72 Audio system 0 0 E 44 30 35 244 4 4 3 3 183 9
73 Left wiring harness 0 0 L 35 35 39 385 3 3 3 4 289 7
74 Right wiring harness 0 0 R 21 33 31 331 1 2 3 3 248 7

 

Figure 5. Precedence relationships among the parts of the waste automobile.
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The cycle time of the disassembly line is 521 s. The conventional disassembly times
of each model are randomly generated between 1/3~2/3 of the original task times. The
destructive disassembly times are achieved by multiplying the conventional disassembly
times by 1/12. The disassembly costs of different types of tools are shown in Table 3. The
revenue generated from the conventional disassembly is randomly generated within the
range of 20% to 50% of its market value. The revenue generated from the destructive
disassembly is 3/4 of that from a conventional disassembly. The other auxiliary parameters
are as follows: cs = 1 RMB/s, ch = 0.2 RMB/s, c f = 200 RMB, tt = 2 s.

Table 3. Disassembly costs of different types of tools.

o 1 2 3 4 5 6 7 8 9

c 6 10 8 4 7 9 2 5 3

NSGA-II algorithm has been run 10 times and 12 Pareto solutions have been obtained.
The Pareto front of the algorithm is shown in Figure 6. The three objective function values
of the Pareto front corresponding to Figure 6 are shown in Table 4. It can be seen from the
results of f1 and f2 that there is a trade-off between the number of workstations and profit.
This may be related to the longer disassembly time of high-value parts. However, from
the results of f3, there is no significant correlation between the smoothness index and the
number of workstations or between the smoothness index and profit; this is because the
station time varies between disassembly schemes. This is consistent with the conclusion of
Wang [7] et al.

 
Figure 6. The Pareto front of NSGA-II.

In order to evaluate the benefits of the partial destructive mode, profits are calculated
for each of the three modes (partial destructive mode, conventional mode, and destructive
mode) as shown in Table 4. In the destructive mode, harmful parts and high-value parts
are still disassembled in a conventional way, and the rest of the parts are disassembled
destructively. The maximum values in the three results are highlighted in bold. It can
be seen that in almost all results, the profit calculated under the partial destructive mode
is the largest. The partial destructive mode clearly outperforms the conventional and
destructive modes.
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Table 4. The computational result of NSGA-II.

No. f1 f2

−f3

Partial Destructive
Disassembly

Conventional
Disassembly

Destructive
Disassembly

1 6 67.4 −92,893.6 −91,939.6 −92,108.6
2 6 49.4 −92,807.6 −92,581.6 −92,126.6
3 6 29.6 −92,397.6 −92,581.6 −92,126.6
4 6 134.9 −93,804.6 −91,963.6 −92,084.6
5 8 15.9 −92,041.6 −91,939.6 −92,084.6
6 8 106.8 −94,004.6 −91,933.6 −92,072.6
7 8 44.9 −92,638.6 −91,945.6 −92,090.6
8 8 82.9 −93,152.6 −91,981.6 −92,090.6
9 8 95.7 −93,770.6 −92,557.6 −92,102.6
10 8 115.3 −94,423.6 −91,963.6 −92,126.6
11 8 29.8 −92,260.6 −91,969.6 −92,078.6
12 8 76.4 −92,911.6 −92,551.6 −92,102.6

The three points marked in Figure 6 correspond to schemes that obtain better value on
each of the three objectives. These are point P1 with the largest profit, point P2 with the best
smoothness, and point P3 with the smallest workstation. The objective values ( f1, f2, − f3)
of the three points are (8, 115.3, −94,423.6), (8, 15.9, −92,041.6), and (6, 29.6, −92,397.6),
respectively. The Gantt charts corresponding to the three points are shown in Figures 7–9.
It shows the task sequence, start, and end time of each task, and the tool changes between
different tasks (filled with black in the figure). The disassembly scheme S1 and S2 are both
performed on eight workstations. The optimal smoothness index can be obtained when
scheme S2 is adopted. A total of 19 tasks are destructively dismantled. Although it has
minimal idle time, its profits are not the highest. When scheme S1 is adopted, 22 tasks are
destructively disassembled. The decrease in conventionally disassembled tasks, combined
with the presence of the multi-constraint, resulted in a large amount of idle time, but it is
still the most profitable scheme. In scheme S3, 31 tasks are destructively disassembled so
that more tasks can be performed in fewer workstations. In this case, the impact on profit
mainly comes from revenue of the parts and disassembly time cost, while the impact on
profit from starting a new workstation is not the main one. Thus, there is a situation where
six workstations have no advantage over eight workstations.

 
Figure 7. Gantt chart of disassembly scheme S1.
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Figure 8. Gantt chart of disassembly scheme S2.

 
Figure 9. Gantt chart of disassembly scheme S3.

The disassembly scheme S1 with the maximum profit is selected to analyse the rela-
tionships among task profit, revenue, and cost, as shown in Figure 10. Here, the cost is
expressed as a negative value. As the disassembly operation progresses, the cost increases
gradually. Although four new mated stations are opened, the cost does not change dra-
matically. This indicates that the cost is mainly the time cost of disassembly. The profit of
disassembly increases with the increase in revenue. Among them, when the high-value
parts corresponding to Task 67 (Engine) and Task 68 (Transmission) are disassembled, the
revenue and profit are dramatically improved. This is due to a fact that the revenue of these
two parts is much higher than their disassembly cost.
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Figure 10. The relationships among task profit, revenue, and cost.

As can be seen from the above results, fewer workstations do not lead to higher
profit. At the same time, better smoothness does not effectively increase profits. This is
related to the characteristics of the partial destructive disassembly mode itself. When fewer
workstations are pursued, more tasks may be destructively disassembled to assign more
tasks in one workstation. When pursuing the best smoothness, high-value parts may be
destructively disassembled in order to achieve the balance of tasks among workstations,
thus they are unable to obtain higher benefits. For enterprises, profit is the first priority.
When the factory site is sufficient, the disassembly scheme with a relatively large number
of workstations but the highest profit should be selected.

5. Conclusions

This research innovatively designed a mixed-model two-sided disassembly line con-
sidering a partial destructive mode. Harmful parts and high-value parts are disassembled
in a conventional mode, and other parts are disassembled randomly in a conventional
or destructive mode. The impact of tool change on operation time is considered to more
accurately describe the actual disassembly process. Then, the mathematical model of the
disassembly process is established, and the three objectives of the number of workstations,
the smoothness index, and the profit are optimized. In addition, in order to solve this
combinatorial optimization problem efficiently, NSGA-II, which has been proved to be
superior by many studies, is selected in this study, and the encoding, decoding, crossover,
and mutation rules are redefined according to the characteristics of the problem. The results
show that the partial destructive disassembly mode can maximize profits.

In this work, the mixed-model disassembly of large-volume products is studied from
the perspective of a partial destructive mode, which provides a new research idea for the
disassembly of waste products under uncertain conditions. The mathematical model and
algorithm constructed in this paper can provide theoretical and technical guidance for the
construction of large-volume products disassembly line.

Future research can be extended to many fields. This study did not take into account
the correlation between parts. In the same disassembly sequence, whether the destructive
disassembly of the predecessor will affect the disassembly mode of the successors is a
problem worth further investigation. Further, disassembly lines for large-volume products
can be combined with assembly lines for large-volume products, allowing economic and
environmental indicators of the disassembly to assembly process to be considered at a more
automated disassembly level.
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Appendix A

The parameters and variables required by the model are as follows:

• Indices:
i, j, a, b: Index of tasks, i, j, a, b ∈ I.
s, s′ : Index of mated stations, s, s′ ∈ S.
k : Side of the stations, left side, k = 1; right side, k = 2.
q : Position of the tasks within a workstation, q ∈ Q.
m : Product model, m ∈ M.
• Parameters:
I : Set of tasks, I = {1, 2, . . . , i, . . . , Nt}.
S : Set of mated stations, S = {1, 2, . . . , s, . . . , Ns}.
Q : Set of task positions, Q =

{
1, 2, . . . , q, . . . , Nq

}
.

M : Set of product model, M = {1, 2, . . . , m, . . . , Nm}.
tm
ie : Disassembly time when the task i of model m adopts disassembly mode e.

tt : Tool replacement time.
vie : Disassembly revenue when task i adopts disassembly mode e;
cie : Disassembly cost when task i adopts disassembly mode e;
cs : Unit time cost of running the workstation.
ch : The additional unit time cost to the workstation while handling hazardous tasks.
c f : Fixed cost of starting workstation.
oi : Type of tool for task i.
Tsk : Total disassembly time in workstation.
CT : Cycle time.
MPS : Minimum product set, MPS = {a1, a2, a3, . . . , aM}.
am : Number of models m in MPS, am = Am/L, (m = 1, 2, . . . , Nm).
Am : Number of products m.
L : The greatest common divisor of all Am.
• Decision variables:
xi : 1, if task i is performed, 0, otherwise.
xisk : 1, if task i is assigned to the k side of the mated station s, 0, otherwise.
xiskq : 1, if task i is assigned to position q on k side of the mated station s, 0, otherwise.
ei : 1, if the task i is disassembled conventionally, 0, if the task i is disassembled destructively.
Wsk : 1, if the k side of the mated station s is used, 0, otherwise.
Gs : 1, if the entire mated station s is used, 0, otherwise.
Fs : 1, if only one side of the mated station s is used, 0, otherwise.
yijs : For mated station s, 1, if task i is assigned to the s before task j, 0, otherwise.

• Indicator variables:
hi : 1, if the task i is hazardous, 0, otherwise.
di : 1, if the task i is demanded, 0, otherwise.
zij : 1, if the disassembly tools for task i and task j are different, 0, otherwise.
Pij : 1, if task j is an immediate predecessor of task i, 0, otherwise.
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