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Preface to ”Artificial Intelligence Techniques in
Hydrology and Water Resources Management”

The effective management of water cycles is of utmost importance in the context of climate

change and global warming. This entails overseeing the global, regional, and local water cycles, as

well as the water cycles within urban, agricultural, and industrial settings, with the aim of preserving

water resources and their interactions with energy, food production, microclimates, biodiversity,

ecosystem functioning, and human activities. Hydrological modeling plays an important role in

achieving this objective because it is crucial for water resources management and the mitigation

of natural disasters. In recent years, the integration of artificial intelligence (AI) techniques in

hydrology and water resources management has seen significant progress. When confronted with

uncertainties related to hydrology, geology, and meteorology, AI approaches have proven to be

powerful tools for accurately simulating intricate and nonlinear hydrological processes, as well

as effectively leveraging various digital and imaging data sources such as ground gauges, remote

sensing tools, and in situ Internet of Things (IoT) devices. The collection of thirteen research papers

featured in this Special Issue has made noteworthy contributions to both long- and short-term

hydrological modeling and water resources management in the face of changing environments,

utilizing AI techniques in combination with diverse analytical tools. These contributions encompass

areas such as hydrological forecasting, microclimate regulation, and climate adaptation, and have

the potential to enhance hydrology research and guide policy-making efforts toward sustainable and

integrated water resources management.

Fi-John Chang, Li-Chiu Chang, and Jui-Fa Chen
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Abstract: The sustainable management of water cycles is crucial in the context of climate change and
global warming. It involves managing global, regional, and local water cycles—as well as urban, agri-
cultural, and industrial water cycles—to conserve water resources and their relationships with energy,
food, microclimates, biodiversity, ecosystem functioning, and anthropogenic activities. Hydrological
modeling is indispensable for achieving this goal, as it is essential for water resources management
and mitigation of natural disasters. In recent decades, the application of artificial intelligence (AI)
techniques in hydrology and water resources management has made notable advances. In the face of
hydro-geo-meteorological uncertainty, AI approaches have proven to be powerful tools for accurately
modeling complex, non-linear hydrological processes and effectively utilizing various digital and
imaging data sources, such as ground gauges, remote sensing tools, and in situ Internet of Things
(IoTs). The thirteen research papers published in this Special Issue make significant contributions
to long- and short-term hydrological modeling and water resources management under changing
environments using AI techniques coupled with various analytics tools. These contributions, which
cover hydrological forecasting, microclimate control, and climate adaptation, can promote hydrology
research and direct policy making toward sustainable and integrated water resources management.

Keywords: machine learning; deep learning; hydroinformatics; hydrological modeling; early warning;
uncertainty; sustainability

1. Introduction

Artificial intelligence (AI) encompasses a broad range of computer-related disciplines
that focus on creating intelligent models to conduct work previously carried out by hu-
mans [1,2]. AI enables computers to model or even surpass human cognitive abilities,
thereby rapidly rationalizing and taking steps to achieve specific objectives, such as several-
steps-ahead predictions and pattern recognition. AI is also recognized for its ability to
manage massive amounts of data and sophisticated models with ease [3]. Since the mid-
20th century, the use of AI techniques has grown in a wide variety of engineering and
scientific disciplines [4,5]. With numerous interdisciplinary scientific approaches, recent
advancements in AI have triggered a paradigm shift in almost every field, including
engineering, hydrology, technology, and medical imaging [6–9].

Over the past two decades, AI approaches have rapidly emerged as a solution to
overcome the challenges presented by the high complexity, dynamics, non-linearity and
non-stationarity observed in hydrological processes [10,11]. The increase in severe natural
disasters resulting from climate change and global warming has posed a significant threat
to sustainable hydrology and water resources management. As a result, there has been a
notable surge in exploring AI models to characterize and predict hydrological variability
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under growing hydro-geo-meteorological uncertainty [12–14]. AI techniques offer a promis-
ing alternative or supplement to conventional physical-based or statistical approaches to
hydrological modeling [15–19]. By utilizing data from various sources, including micro-
sensing, imaging, in situ, and remote sensing devices, AI techniques are currently enabling
the creation of reliable and robust hydrological models at finer spatio-temporal resolutions
of interest, which is crucial for addressing highly nonlinear hydro-meteorological pro-
cesses [20–24]. Therefore, there is a need to explore innovative AI models to better allocate,
regulate, and conserve water resources, which will significantly contribute to sustainable
their management.

In 2021 and 2022, Water (MDPI) published thirteen research papers in a Special Issue
entitled “Artificial Intelligence Techniques in Hydrology and Water Resources Management”.

The objectives of the current Special Issue are as follows:

◊ To advance the use of AI techniques in hydrological modeling and water resources
management.

◊ To develop innovative solutions for hydrological forecasting and problem-solving in
watershed hydrology under changing environments.

◊ To improve water and environmental systems.
◊ To promote urban water–energy–food nexus synergies.
◊ To quantify uncertainty of hydrological modeling.

This editorial provides an overview of the Special Issue, offering insights and sugges-
tions for future research.

2. Highlights of the Articles in the Special Issue

The thirteen articles presented in the Special Issue have made substantial contributions
across five main research areas:

◊ The application of machine learning and deep learning techniques in hydro-meteorological
forecasting, classification and time series generation under changing environmen-
tal conditions;

◊ The use of AI techniques for smart microclimate control;
◊ The current and future roles of Geospatial Artificial Intelligence (GeoAI) in hydrologi-

cal and fluvial systems;
◊ Adaptation strategies for extreme hydrological events to mitigate hazards;
◊ The utilization of AI for processing hydro-geo-meteorological data.

These articles are grouped and highlighted as follows.

2.1. Smart Microclimate Control System Using AI

The prediction of a short-term microclimate is a challenging task due to the rapid
changes and strong interconnections among meteorological variables. To address this issue,
Chen et al. introduced a water-centric smart microclimate control system (SMCS) that
incorporates system dynamics and machine learning techniques, which can regulate the
micro-environment within a greenhouse canopy to induce environmental cooling while
improving resource-use efficiency [25]. The proposed SMCS demonstrates the practicality
of machine-learning-enabled greenhouse automation that enhances crop productivity and
resource-use efficiency, thereby contributing to the mitigation of carbon emissions and a
sustainable water–energy–food nexus.

2.2. Weather Typing for Smart Urban Agriculture Using AI

In outdoor agricultural production, weather is a crucial factor that affects crop growth.
Climate information can be utilized to help farmers plan their planting and production
schedules, especially for urban agriculture. Huang and Chang used a self-organizing map
(SOM) to investigate the spatiotemporal weather features of Taipei City by analyzing the
observed data of six key weather factors from five weather stations in Northern Taiwan
between 2014 and 2018 [26]. The results provide practical references for anticipating
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upcoming weather types and features within designated time frames, arranging potential
cultivation tasks or making necessary adjustments, and efficiently utilizing water and
energy resources to achieve sustainable production in smart urban agriculture.

2.3. AI-Driven Forecasting
2.3.1. Precipitation Forecasting

Abnormal changes in precipitation and temperature caused by climate change have
increased the risks of climate disasters and rainfall damage. Despite quantitative rainfall
estimates from weather forecasts, it remains difficult to estimate the damage caused by
rainfall. To address this issue, Chu et al. employed various methods, such as support
vector machine (SVM), random forest, and eXtreme Gradient Boosting (XGBoost), finding
that XGBoost has the best performance [27]. Using XGBoost, the threshold rainfall of
ungauged watersheds was calculated and verified using past rainfall events and damage
cases, enabling the accurate prediction of flooding-induced rainfall and preparation for
vulnerable areas. Alternatively, Pakdaman et al. proposed a learning approach based on
an artificial neural network (ANN) and random forest algorithms to provide multi-model
ensemble forecasting of monthly precipitation in Southwest Asia [28]. The approach em-
ployed four forecasting models from the North American multi-model ensemble (NMME)
project, including GEM-NEMO, NASA-GEOSS2S, CanCM4i, and COLA-RSMAS-CCSM4,
and used the ERA5 reanalysis dataset to train the models. The results show that the ANN
and random forest post-processing both performed better than individual NMME models,
with random forest outperforming ANN for all lead times and months of the year.

2.3.2. Temperature Forecasting

Temperature is a crucial weather variable required for various studies. Changes in
temperature and precipitation can have a significant impact on river basins. Hernández-
Bedolla et al. developed a stochastic model for daily precipitation occurrence and its effect
on maximum and minimum temperatures [29]. The study employed a Markov model to
identify the daily occurrence of rainfall and a multisite multivariate autoregressive model
(MASCV) to represent the short-term memory of daily temperature. The research was
conducted on the Jucar River Basin in Spain, where the proposed model could accurately
represent both the occurrence of rainfall and the maximum and minimum temperature
using a two-state and a lag-one multivariate stochastic model.

2.3.3. Streamflow Forecasting

Ghobadi and Kang proposed a probabilistic forecasting model for multi-step-ahead
daily streamflow forecasting, which uses Bayesian sampling in a long short-term memory
(BLSTM) neural network to address the subproblem of univariate time series models and
quantify epistemic and aleatory uncertainty [30]. The proposed method was validated by
three case studies in the USA, and three forecasting horizons demonstrate that BLSTM
outperformed the other models in terms of forecasting reliability, accuracy, and overall
performance. Moreover, BLSTM can handle data with higher variation and peaks, particu-
larly for long-term multi-step-ahead streamflow forecasting, compared to other models.
Alternatively, Forghanparast and Mohammadi compared the performance of three deep
learning algorithms, including convolutional neural networks (CNN), long short-term
memory (LSTM), and self-attention LSTM models, against a baseline extreme learning ma-
chine (ELM) model for monthly streamflow prediction in the headwaters of the Colorado
River in Texas [31]. The LSTM model was identified as a more appropriate, effective, and
parsimonious streamflow prediction tool for the headwaters of the Colorado River in Texas,
with better evaluation metrics than the ELM and CNN algorithms and a more competitive
performance then the SA-LSTM model.
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2.3.4. Dam Inflow Prediction

Kim et al. illustrated the process and methodology for selecting the most suitable deep
learning model using 16 design scenarios to predict dam inflow using hydrologic data from
the past two decades [32]. The study focused on Andong Dam and Imha Dam, located
upstream of the Nakdong River in South Korea. The optimal recurrent-neural-network-
based models demonstrated a better prediction of observed inflow than the storage function
model (SFM), which is currently used by both dams. Most deep learning models provided
more accurate predictions than the SFM under various typhoon conditions. Therefore, it is
crucial to make an informed decision by comparing the inflow predictions of both the SFM
and deep learning models for efficient dam operation and management.

2.3.5. Real-Time Inundation Depths Estimation

Wu et al. developed a stochastic model (SM_EID_IOT) for estimating the inundation
depths and associated 95% confidence intervals at the specific locations of the roadside
water-level gauges (IoTs) sensors under observed water levels/rainfalls and the precipi-
tation forecasts [33]. The goal was to improve the accuracy and reliability of inundation
depth estimations at the IoT sensors. The model was tested in the Nankon catchment
in northern Taiwan, and the results show that the SM_EID_IOT model was capable of
estimating inundation depths at various lead times with a high reliability and accuracy, as
validated by the datasets. The corrected inundation depth estimates also exhibited a good
agreement with the validated data over time, with an acceptable bias.

2.3.6. Rainfall Time Series Generation

Nguyen and Chen employed a Monte Carlo simulation, a bivariate copula, and a
modified Huff curve method to create a stochastic rainfall generator to produce continuous
rainfall time series at a high temporal resolution of 10 min [34]. The created rainfall
generator was then applied to duplicate rainfall time series for the Yilan River Basin in
Taiwan, with statistical indices staying close to those of the observed rainfall time series.
The results suggest the need and appropriateness of the newly generated rainfall type
for rainfall type classification. In summary, the developed stochastic rainfall generator is
capable of adequately reproducing continuous rainfall time series at a 10 min resolution.

2.4. Review of Geospatial Artificial Intelligence (GeoAI)

Gonzales-Inca et al. conducted a review of the current applications of GeoAI and
machine learning in various hydrological and hydraulic modeling fields [35]. GeoAI
is an effective tool for handling vast amounts of spatial and non-spatial data. GeoAI
demonstrates advantages in non-linear modeling, computational efficiency, integration of
multiple data sources, high prediction accuracy, and revealing new hydrological patterns
and processes. However, a significant drawback of most GeoAI models is the lack of
physical interpretability, explainability, and model generalization due to inadequate model
settings. Recent GeoAI research has focused on integrating physical-based models with
GeoAI methods and developing autonomous prediction and forecasting systems.

2.5. Data Processing Using AI

Measuring water levels in rivers is crucial for producing early warnings and detecting
risks. However, data collected by devices installed in remote locations may contain errors
due to malfunctions, which can result in missed or false alarms. Khampuengson and
Wang investigated deep reinforcement learning (DRL) due to its ability to automatically
detect anomalies. They found that this approach lacked consistency despite achieving a
higher accuracy than some machine learning models [36]. Thus, an ensemble approach
combining multiple DRL models was proposed and achieved higher consistency and
accuracy than other models such as multilayer perceptrons (MLP) and LSTM. On the other
hand, Papailiou et al. proposed a methodology using ensembles of ANNs to estimate the
missing data of daily precipitation in Chania, Greece [37]. The methodology aimed to
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generate precipitation time series based on observed data from neighboring stations. The
results indicate that ANNs achieved more accurate results but were more time-consuming
compared to multiple linear regression (MLR) models.

3. Conclusions

In recent decades, the field of hydrology and water resources management has wit-
nessed significant advances in the use of AI techniques. This Special Issue includes 12
research articles and 1 review article that propose innovative AI-based solutions for address-
ing the critical challenges associated with hydrology and water resources, with promising
outcomes.

As AI techniques continue to rapidly evolve across the globe, future research should
focus on developing AI techniques and methodologies and integrating advanced hydro-
logical monitoring devices with varying spatial and temporal scales to conduct compre-
hensive analyses of complex nonlinear hydrological processes in light of scientific and
socio-economic considerations. Furthermore, AI-powered solutions can also incorporate
low-carbon pathways to support hydrological and engineering sectors in achieving the net
zero goal by 2050.

The foundations of Earth and environmental studies lie in the modeling of dynamic
geophysical phenomena. While the geoscientific community has conventionally depended
on physically based models, the emergence of big Earth data and the widespread success
of AI tools suggest a more in-depth adoption of AI. A new grand vision for geoscience
involves the fusion of physically based mechanisms and AI techniques to generate hybrid
models, but the question of how to implement these approaches remains open.

We would like to extend our sincere gratitude to the authors, reviewers, and editorial
staff of Water for their valuable contributions to this Special Issue.
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Abstract: Agriculture is extremely vulnerable to climate change. Greenhouse farming is recognized
as a promising measure against climate change. Nevertheless, greenhouse farming frequently encoun-
ters environmental adversity, especially greenhouses built to protect against typhoons. Short-term
microclimate prediction is challenging because meteorological variables are strongly interconnected
and change rapidly. Therefore, this study proposes a water-centric smart microclimate-control system
(SMCS) that fuses system dynamics and machine-learning techniques in consideration of the internal
hydro-meteorological process to regulate the greenhouse micro-environment within the canopy for
environmental cooling with improved resource-use efficiency. SMCS was assessed by in situ data
collected from a tomato greenhouse in Taiwan. The results demonstrate that the proposed SMCS
could save 66.8% of water and energy (electricity) used for early spraying during the entire culti-
vation period compared to the traditional greenhouse-spraying system based mainly on operators’
experiences. The proposed SMCS suggests a practicability niche in machine-learning-enabled green-
house automation with improved crop productivity and resource-use efficiency. This will increase
agricultural resilience to hydro-climate uncertainty and promote resource preservation, which offers
a pathway towards carbon-emission mitigation and a sustainable water–energy–food nexus.

Keywords: smart microclimate-control system (SMCS); machine learning; system dynamics; water–
energy–food nexus; agricultural resilience

1. Introduction

The Sustainable Development Goals (SDGs) call for imperative action to ensure food
security while preserving natural resources and maintaining environmental sustainability,
especially in the era of climate change [1]. Significant changes in Earth’s climate have
fostered more extreme weather events in recent decades and therefore have increasingly
impacted global agriculture by deeply implicating the fate of food systems and directly
affecting the future of “eating” for humans. For instance, Taiwan suffered from 15 extreme
weather events in 2016, including 4 typhoons, 3 torrential rains, 4 severe rains, and 4 cold
snaps. The huge agricultural loss caused by these extreme weather events accounted
for 10.3% of the total value of agricultural production, resulting in severe fluctuations in
food prices and disturbance in social equilibrium. Besides, changes in temperature and
precipitation patterns may increase crop failures and production declines [2].

Agricultural systems are vulnerable to changes not only in climate but also in other
evolving factors like farming practices and technology. The impacts of climate change on
agricultural systems globally have been investigated in recent decades [3–6]. Greenhouses
are an expensive and technological solution for the challenges climate change poses to
agriculture. However, they are not a universal tool that will solve all problems since it
is infeasible to grow all crops indoors. For specific, high-value crops, this makes sense.
Climate-smart agriculture is an integrated approach that seeks to manage landscapes by
assessing interlinked food security and climate change to simultaneously improve crop pro-
ductivity as well as reduce agricultural vulnerability to pests and climate-related risks [7].
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Greenhouse cultivation that creates a controllable and stable environment facilitating crop
growth and yield could be a climate-smart practice [8–10]. Hemming et al. [11] indicated
that the opportunities and challenges for the future implementation of sensor systems in
greenhouses could be explored by using artificial-intelligence techniques. Greenhouse
farming is recognized as a promising measure to cope with climate change because this
physical practice can promote crop growth and productivity by adequately controlling a
microclimate to increase food security [12–14]. Due to the high agricultural loss induced by
extreme weather events in 2016, the Council of Agriculture in Taiwan launched a five-year
funding program in December of 2016 to encourage greenhouse construction or upgrades
(2000 ha expected) for mitigating agricultural losses and maintaining stable food prices in
the future. Among limited managerial tools, spraying plays a pivotal role in greenhouse
control of environmental cooling, especially for places like Taiwan with hot and humid
weather, where environmental adversity can occur in greenhouses. For instance, Bwambale
et al. [15] conducted a review of smart irrigation-monitoring and control strategies that
aimed to improve water-use efficiency in precision agriculture. Tona et al. [16] conducted
a technical–economic analysis on spraying equipment for specialty crops and indicated
that the purchase price would make the robotic platform profitable. Spraying systems
are evidently one of the key environmental-control strategies for greenhouse cultivation.
Nevertheless, most of the previous research related to spraying for environmental cooling
focused mainly on cooling effects [17], without considering resource consumption. For
resource preservation, it is required to consider the resource-use efficiency of spraying for
environmental cooling.

Greenhouse cultivation by nature substantially depends on environmental controls to
stabilize crop productivity [18,19]. Accurate prediction or simulation of a greenhouse
internal environment is needed to evaluate environmental-control strategies for crop
growth [20–25]. Besides, short-term microclimate prediction is challenging because me-
teorological variables are strongly interconnected with values changing rapidly during
an event. With the motivation to fill the research gap and support the above-mentioned
governmental greenhouse policy to achieve SDGs #2 (Zero Hunger), #12 (Responsible
Consumption and Production), and #13 (Climate Action), this study developed a water-
centric smart microclimate-control system (SMCS) for greenhouse cultivation in response
to climatic variation. The SMCS was designed to automatically activate early spraying
for environmental cooling while consuming less water and energy. The SMCS seamlessly
integrates a system-dynamics (SD) model coupled with a physically based (i.e., a hydro-
meteorological process) estimation model, a machine-learning prediction model, and a
spray mechanism. A traditional greenhouse-spraying system based on the physically based
estimation model and the spray mechanism coupled with operators’ experience served
as a benchmark for exploring the usefulness and applicability of the proposed SMCS. A
tomato greenhouse located in Changhua County of Taiwan formed the case study, where
the in situ datasets for use in this study were collected by Internet of Things (IoT) devices.
The SMCS is expected to increase greenhouse automation and reinforce the efficiency of
resource utilization, which can pave the way to reducing carbon emissions and promoting
water–energy–food-nexus synergies in greenhouse farming.

2. Materials and Methods

This study proposes a water-centric SMCS that fuses system-dynamics and machine-
learning techniques to regulate the greenhouse micro-environment within the canopy, with
improved resource-use efficiency. The research flow chart is shown in Figure 1. We first
collected the historical IoT monitoring data of the investigative greenhouse. Based on
the IoT data, the SD model simulated the greenhouse microclimate within the canopy
before and after spraying for environmental cooling. The back-propagation neural-network
(BPNN) model predicted one-hour-ahead greenhouse internal temperature and relative
humidity, where the initial inputs were the IoT data. Based on the prediction results, a spray
mechanism was designed to determine the necessity of early spraying for environmental
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cooling. Consequently, the impacts of spraying on the internal environment and resource
consumption were investigated. This study further compared the spray effects between
the SMCS and the traditional greenhouse-spraying system (a benchmark), with the main
focus on the resource consumption of spraying for environmental cooling. In the end, the
potential of the SMCS for agricultural-loss mitigation in the perspective of water–energy–
food-nexus synergies was discussed. It was noted that both traditional and machine-
learning-based systems were constructed based on the IoT data collected from the same
trial during 20 May and 20 July 2019.
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2.1. Study Area and Materials

In this study, a total of 1488 hourly meteorological datasets related to tomato cultivation
were collected on 20 May and 20 July 2019 by IoT devices installed inside and outside a
privately owned greenhouse located in Changhua County of Taiwan (Figure 2). The IoT
devices (Figure 2) installed in the greenhouse were developed by the Taiwan Agricultural
Research Institute. The size of the greenhouse is about 52 m × 30 m × 6 m (length × width ×
height), indicating that the land area of the greenhouse is about 1560 m2. Monitoring items
consisted of internal/external temperature, internal/external relative humidity, external
insolation, wind speed, and wind direction (Table 1). It is noted that this study adopted IoT
datasets for model-construction and evaluation purposes only.
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Table 1. IoT monitoring data collected in this study for model-validation purposes (20 May–20 July
2019 at a 10 min scale).

Item Notation SI Unit

External temperature To
◦C

External relative humidity RHo %
External insolation paro W/m2

Wind speed WS m/s
Wind direction WD ◦

Internal temperature Ti
◦C

Internal relative humidity RHi %

2.2. System Dynamics (SD) for Simulating Greenhouse Environment

SD is a set of process-oriented research methods specializing in the causal-feedback
relationship among many variables and high-order non-linear systems [26–28]. It also spe-
cializes in explaining the results of system behavior through structural reasons behind the
behavior [29]. SD has been widely used for simulating the non-linear behaviors in complex
systems over time in various fields, including greenhouse management, forecasting and
experimentation [30–32], rooftop farming [33], and the water–food–energy nexus [34,35].

This study explored the causal loops of SD for greenhouse cultivation by consideration
the spray effect (Figure 3a). It is noted that the SMCS was constructed to reduce internal
temperature and increase internal relative humidity by raising the partial pressure of water
vapor to achieve the effect of cooling and humidification. A physically based model was
constructed based on the SD model to estimate the greenhouse internal temperature and
relative humidity before and after spraying. The framework of the SD model coupled with
the physically based estimation model is shown in Figure 3.
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Physically based estimation model.

Referring to Lee et al. [17], greenhouse internal relative humidity and temperature
were considered to be a function of the conservation of mass and the conservation of energy,
which consisted of two parts. Part 1 estimated the internal relative humidity by calculating
enthalpy and heat conduction. Part 2 estimated the internal temperature by calculating the
variation in moisture in the air. The formulation of greenhouse internal relative humidity
and temperature is briefly introduced below.
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2.2.1. Formulation of Greenhouse Internal Relative Humidity

The physically based estimation model of internal relative humidity was constructed
by the equations of the conservation of mass and the conservation of energy (Equation (1)).

dH
dt

× VGH × Dair = βi,t × Wateri,t + Venti,t × Dair × (Ho,t − Hi,t) (1)

where dH
dt is the indoor absolute humidity change rate in a time period (kg/m3 h), βi,t is the

spray efficiency (%), Wateri,t denotes the amount of spray (kg), Venti,t denotes the indoor
ventilation (kg/h), and Hi,t (Ho,t) denote the internal (external) absolute humidity (kg/m3)
at t. VGH denotes the total capacity of the greenhouse (m3), and Dair denotes the air density
(1.2 kg/m3).

Hi,t = 0.62198 × RHi,t × esii,t
(Patm − RHi,t × esii,t)

(2)

Ho,t = 0.62198 × RHo,t × esio,t

(Patm − RHo,t × esio,t)
(3)

where RHi,t (RHo,t) denotes the indoor (external) relative humidity (%) at t, esii,t (esio,t)
denotes the indoor (external) saturated vapor pressure (kpa) at t, and Patm denotes the
atmospheric pressure (101 kpa).

esii,t = 0.6178 × e
17.2694×Ti,t
(Ti,t+237.3) (4)

esio,t = 0.6178 × e
17.2694×To,t
(To,t+237.3) (5)

where Ti,t (To,t) denotes the indoor (external) temperature (◦C) at t.

βi,t = 1.1906 − 0.09077 × RHi,t (6)

Venti,t = Ci,t × WSt × AGH (7)

where Ci,t is the ventilation utilization factor at t, AGH is the ventilation area of the green-
house (m2), and WSt denotes the wind speed (m/h) at t.

Hi,t+1 = Hi,t +
dH
dt

(8)

where Hi,t+1 and Hi,t denote the indoor absolute humidity at t + 1 and t (kg/m3),
respectively.

eii,t+1 =
Hi,t+1 × Patm

Hi,t+1 + 0.62198
(9)

where eii,t+1 denotes the indoor partial pressure of water vapor (kpa) at t + 1.
Consequently, the internal relative humidity (RHi,t+1) at t + 1 could be calculated by

Equation (10).

RHi,t+1 =
eii,t+1

esii,t+1
(10)

2.2.2. Formulation of Greenhouse Internal Temperature

The internal temperature was also constructed by the equations of the conservation of
mass and the conservation of energy (Equation (11)).

dh
dt × Dair × VGH
= (hi,t − ho,t)× Venti,t + Kin × Aw × (Ts,t − Ti,t) + Af × Kf × (Ti,t − Tf,t)

(11)

where dh
dt denotes the indoor change rate of enthalpy in a time period (kj/kg h); hi,t and ho,t

denote the indoor and external enthalpies (kj/kg) in the air at t, respectively; Venti,t denotes
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the ventilation rate (m3/h) at t; VGH denotes the total capacity of the greenhouse (m3);
Dair denotes the air density (1.2 kg/m3); Kin denotes the indoor coating material’s heat-
convection parameter in the air (6.4 W/m2 ◦C); Aw denotes the area of the coating material
(m2); Ts,t, Ti,t, and Tf,t denote the indoor temperature (◦C) of the coating material, the indoor
temperature (◦C), and the indoor ground temperature (◦C) at t, respectively; Af denotes
the total ground area of the greenhouse (m2); and Kf denotes the indoor ground-to-air heat
convection parameter (4.65 W/m2 ◦C).

hi,t = 1.006 × Ti,t + Hi,t × (2501 + 1.085 × Ti,t) (12)

where Hi,t denotes the indoor absolute humidity (kg/m3) at t.

ho,t = 1.006 × To,t + Ho,t × (2501 + 1.085 × To,t) (13)

where To,t denotes the external temperature (◦C) at t, and Ho,t denotes the external absolute
humidity (kg/m3) at t.

Ts,t = To,t + a ×
(

Rno,t

Kout

)
(14)

where a is the solar-absorption rate on the surface of the material (0.65%), Rno,t denotes
the external solar radiation (W/m2) at t, and Kout denotes the thermal conductivity on the
surface of the material (6.3 W/m2 ◦C).

Rno,t = (1 − ref)× paro,t + Rnlon (15)

where ref denotes the ground reflectivity (0.2), paro,t denotes the external insolation at t
(W/m2), and Rnlon denotes the atmospheric long-wave radiation (343 W/m2).

Tf,t = To,t +
Rno,t − B × (To,t + 273.15)4
(

4 × B × (To,t + 273.15)3
) (16)

where B is the Boltzmann constant (5.67 × 10−8 Wm−2K−4).
Because this study considered spray to be a means of humidification and cooling, it

required calculating the internal heat moving away due to spray, as shown in Equation (17)
(refer to [36]).

Qt = βi,t × Wateri,t × Hfg (17)

where Qt denotes the heat moving away due to spray (kj/h), βi,t denotes the indoor spray
efficiency (%) at t, Wateri,t denotes the indoor spray amount (kg/h) at t, and Hfg denotes
the latent heat of water evaporation (2256.6 kj/kg).

dT =
dh
dt × VGH × Dair − Qt

4.186 × Cp × VGH × Dair
(18)

where dT denotes the indoor temperature change in a time period (◦C/h), and Cp denotes
the specific heat of the air (1.0052 kj/kg ◦C).

Consequently, the internal temperature at t + 1 could be obtained from Equation (19).

Ti,t+1 = Ti,t + dT (19)

where Ti,t+1 and Ti,t denote the indoor temperature (◦C) at t + 1 and t, respectively.
Details of the formulation of greenhouse relative humidity (Part 1) and internal tem-

perature (Part 2) can be found in the Supplementary Material.

2.3. Machine Learning for Predicting Greenhouse Internal Environment

Artificial neural networks (ANNs) in machine learning are a family of computation
methods that imitate the operation and learning of the human nerve system. ANNs are
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broadly used to tackle diverse environmental issues, such as rainfall forecasts [37,38], evap-
oration prediction [39,40], flood forecasts [41–46], hydrological analysis [47–51], ecological-
environment analysis [52,53], air-quality estimation [54], agricultural automation [55], and
greenhouse environmental control [22,56,57].

The BPNN is one of the most widely used ANNs. This study utilized the BPNN to
predict one-hour-ahead greenhouse internal temperature (Ti(t + 1)) and relative humidity
(RHi(t + 1)) based on current information on six meteorological factors, including external
temperature (To), external relative humidity (RHo), external insolation (paro) and wind
speed (WS), internal temperature (Ti), and internal relative humidity (RHi) (Figure 3b).
The construction of the BPNN prediction model was based on a total of 1488 hourly IoT
data, where 64, 16, and 20% of the data were shuffled and randomly allocated into training,
validation, and testing stages, respectively. The architecture of the BPNN model constructed
in this study is illustrated in Figure 3b. The parameter setting of the BPNN model is shown
in Table 2, where the number of neurons in the hidden layer and the batch size were
determined to be 20 and 64, respectively, through trial-and-error processes. The relevant
trial-and-error results are presented in Tables 3 and 4.

Table 2. Parameter setting of the BPNN model.

Item BPNN

Number of hidden neurons 10, 20, 40
Number of epochs 200

Early stopping 20
Batch size 8, 16, 32, 64

Learning rate 0.001
Activation function Scaled exponential linear unit (SELU)

Optimizer Adam

Table 3. Trial-and-error results of the number of hidden neurons in the BPNN model.

Number of
Hidden Neurons

Temperature Relative Humidity

R2 RMSE R2 RMSE

10 0.80 1.61 ◦C 0.87 4.45%
20 1 0.82 1.55 ◦C 0.88 4.19%
40 0.81 2.42 ◦C 0.87 4.40%

Note: 1 The number of hidden neurons that was determined for constructing the BPNN model in consideration of
the model complexity and the values of the evaluation indicators.

Table 4. Trial-and-error results of the batch number in the BPNN model.

Batch Number
Temperature Relative Humidity

R2 RMSE R2 RMSE

8 0.83 2.08 ◦C 0.88 4.28%
16 0.81 1.56 ◦C 0.87 4.53%
32 0.82 1.67 ◦C 0.88 4.35%

64 1 0.83 1.55 ◦C 0.88 4.19%

Note: 1 The batch number that was determined for constructing the BPNN model in consideration of the values
of the evaluation indicators.

2.4. Construction of the Spray Mechanism

Figure 4 presents the spray-simulation flow chart of the SMCS. According to the one-
hour-ahead predictions (t + 1) of greenhouse internal temperature and relative humidity
obtained from the BPNN model, a spray mechanism with spraying criteria was designed
to determine the time to spray, which is introduced as follows.
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According to Xue et al. [58] on greenhouse cultivation, the net photosynthetic rate
and cumulative photosynthesis of tomato leaves could be significantly improved when
the internal relative humidity reached 70%. Liou et al. [59] indicated that the formation of
lycopene in tomatoes would be reduced if the greenhouse internal temperature exceeded
28 ◦C. Therefore, this study managed to activate sprayers for environmental cooling under
two conditions: when the internal relative humidity fell below 70%, and when the internal
relative humidity and the internal temperature exceeded 90% and 28 ◦C, respectively.

To avoid resource over-consumption, sprayers would not be activated if the internal
relative humidity exceeded 90% or the internal temperature fell below 25 ◦C. Besides, the
switching on/off of the sprayers would be carried out based on the predicted values of
internal relative humidity and temperature. Therefore, the spray mechanism would activate
sprayers for environmental cooling subject to two criteria: (1) the one-hour-ahead prediction
of internal relative humidity would be less than 70% and the one-hour-ahead prediction of
internal temperature would be higher than 25 ◦C, and (2) the one-hour-ahead prediction of
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internal relative humidity would be less than 90% and the one-hour-ahead prediction of
internal temperature would be higher than 28 ◦C. Spraying would terminate either when
the internal temperature and relative humidity met the environmental suitability for tomato
growth or when the total amount of spray exceeded the maximal spray volume within one
hour (i.e., 1.35 kg).

In the case of no spraying being required for environmental cooling, the one-hour-
ahead predictions of internal temperature and relative humidity obtained from the BPNN
model would be fed back to the system and serve as the initial input values of the BPNN
model at the next time-step (the orange dotted line in Figure 4). If either above-mentioned
activation criterion for spraying was met, a spray of 0.001 kg would be carried out, leading
to a re-calculation of the internal temperature and relative humidity after spraying by using
the physically based estimation model. The spraying process would repeat until reaching
the stop criteria. It is noted that a sprayer would not be activated if the required amount of
spray was less than its minimal spray volume (=the minimal duration of spray × the rate
of spray). When spraying terminates, the final one-hour-ahead estimates (t + 1) of internal
temperature and relative humidity obtained from the physically based model would be
fed back to the system and serve as the initial input values of the BPNN model at the next
time-step (the orange dotted line in Figure 4). For the greenhouse investigated and the
sprayer selected for use in this study, it would require three sprayers to cover the entire
greenhouse farm (1560 m2). The weight of spray each time would be 0.001 kg per sprayer,
and the total weight of spray per hour would be 1.35 kg for three sprayers. Therefore, the
control loop would be evaluated at a rate of 8 s.

2.5. Evaluation of Model Performances

To explore the spray effect of the SMCS on greenhouse farming, the above-mentioned
spraying process for environmental cooling was implemented on all 1488 IoT data collected
in this study. For comparison purposes, a traditional greenhouse-spraying system was
established by integrating the physically based estimation model with the spray mechanism
only, whereas the physically based model was responsible for estimating one-hour-ahead
greenhouse internal temperature and relative humidity before and after spraying.

This study used the root-mean-square error (RMSE) and the coefficient of determina-
tion (R2) as the statistical indicators to evaluate model performance. Their mathematical
formulas refer to Equations (20) and (21).

Root-Mean-Square Error

RMSE =

√
1
N ∑N

i=1(yi − oi)
2 (20)

Coefficient of Determination

R2 =


 ∑N

i=1(yi − y)(oi − o)√
∑N

i=1(yi − y)2
√

∑N
i=1(oi − o)2




2

(21)

where N is the total number of data, yi is the output value of the model, oi is the obser-
vation value, and y and o are the average of the output value and the observation value,
respectively.

According to the definitions of the two indicators, it is obvious that a model is con-
sidered to perform well if it produces a higher R2 value but a lower RMSE value than the
comparative model(s).

3. Results

This study developed a water-centric SMCS dedicated to greenhouse farming and
the spray effect on greenhouse microclimate for environmental cooling with the relevant
resource consumption being investigated. The operation of the SMCS was composed of
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four main phases: to simulate greenhouse environmental dynamics in consideration of the
spray effect (by the SD model), to predict one-hour-ahead internal temperature and relative
humidity (by the BPNN model), to determine the necessity of spraying for environmental
cooling (by the spray mechanism), and to estimate the required amount of spray to manage
a microclimate suitable for tomato growth in the coming hour (by the physically based
model). The SMCS was applied to the 1488 in situ data collected from a greenhouse on
20 May 2019 and 20 July 2019. The modeling results are presented and discussed as follows.

3.1. Comparison of Model Accuracy and Reliability between the Physically Based and ANN Models

Table 5 shows the performance of the physically based estimation model and the BPNN
prediction model with respect to greenhouse internal temperature and relative humidity
based on test datasets. For the physically based estimation model, the R2 and RMSE
values of the internal temperature were 0.80 and 1.89 ◦C, respectively, whereas those of the
internal relative humidity were 0.79 and 8.17%, respectively. The results demonstrate the
accuracy and reliability of the physically based model. As for the BPNN prediction model,
its R2 and RMSE values of the internal temperature were 0.83 and 1.37 ◦C, respectively,
whereas those of the internal relative humidity were 0.88 and 3.9%, respectively. The results
also demonstrate the accuracy and reliability of the BPNN model. It appears that the
BPNN model is superior to the physically based model in terms of higher R2 and lower
RMSE values.

Table 5. Performance of the physically based estimation model and the BPNN prediction model with
respect to greenhouse internal temperature and relative humidity based on test datasets.

Indicators
Temperature Relative Humidity

Physically Based BPNN Physically Based BPNN

R2 0.80 0.83 0.79 0.88
RMSE 1.89 ◦C 1.37 ◦C 8.17% 3.9%

Figures 5 and 6 show the errors and error distributions of internal-temperature and
relative-humidity estimates obtained from the physically based model and the BPNN
model, respectively. In both error plots, positive values indicate overestimation whereas
negative values indicate underestimation. Regarding the physically based estimation
model, it can be seen in Figure 5a that the errors of the internal temperature mostly fell
within 1 and 2 ◦C (overestimated), with an overestimation occurrence frequency (1098 times)
much higher than the underestimation one (387 times). According to Figure 5b, the errors
in the internal relative humidity were mostly concentrated within −3% and −6% (under-
estimated), with an underestimation occurrence frequency (787 times) higher than the
overestimation one (699 times).

Regarding the BPNN prediction model, the results of Figure 6a indicate that the errors
of the internal temperature mainly fell within −1 and 0 ◦C (under prediction), where
underprediction (1176 times) occurred more frequently than overprediction (302 times). Ac-
cording to Figure 6b, the errors in the internal relative humidity were mainly concentrated
within −3% and 0%, where underprediction (959 times) also occurred more frequently than
overprediction (517 times). It also appears that the BPNN model performed better than the
physically based model in terms of smaller error ranges and error distributions centering
at zero.

Furthermore, the results shown in Table 5 and Figures 5 and 6 are quite consistent,
which shows that the overall performance of the BPNN model was slightly better than that
of the physically based model. This recommended the incorporation of the BPNN model
into the SMCS to predict one-hour-ahead internal temperature and relative humidity in
this study.
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3.2. Comparison of the Spray Effect of Traditional and Smart Control Systems on Greenhouse
Internal Environment

Tables 6 and 7 show the results of internal temperature and relative humidity before
and after spraying by the traditional spraying system and the proposed SMCS, respectively.

Table 6. Results of greenhouse environmental control on internal temperature and relative humidity
before and after spraying for environmental cooling by the traditional spraying system (20 May
2019–20 July 2019).

Indicators
Temperature Relative Humidity

Before After Before After

Max 38.8 ◦C 28.1 ◦C 100% 100%
Min 23.8 ◦C 23.8 ◦C 37% 56%

Average 29.6 ◦C 27.0 ◦C 72% 86%
Standard deviation 3.6 ◦C 1.3 ◦C 16% 7%

Table 7. Results of greenhouse environmental control on internal temperature and relative humidity
before and after spraying for environmental cooling by the SMCS (20 May 2019–20 July 2019).

Indicators
Temperature Relative Humidity

Before After Before After

Max 34.3 ◦C 32.9 ◦C 91% 100%
Min 21.3 ◦C 22.1 ◦C 48% 69%

Average 28.0 ◦C 26.6 ◦C 74% 89%
Standard deviation 2.9 ◦C 1.5 ◦C 12% 4%

The results of Table 6 indicate that the average and standard deviation of the internal
temperature after spraying decreased by 2.6 and 2.3 ◦C, respectively. For the internal
relative humidity after spraying, the average value increased from 72% to 86%, whereas
the standard deviation dropped from 16% to 7%.

The results of Table 7 show that both the average and standard deviation of the internal
temperature after spraying decreased by 1.4 ◦C. For the internal relative humidity after
spraying, the average value increased from 74% to 89%, whereas the standard deviation
dropped from 12% to 4%. These results demonstrate that the SMCS could more effectively
reduce the internal temperature while increasing the internal relative humidity after spray-
ing than the traditional one, which supports the practicability of the proposed SMCS on
greenhouse farms.

3.3. Comparison of Resource Consumption between Traditional and Smart
Microclimate-Control Systems

Concerning spray-related resources utilization for greenhouse environmental control
over the entire investigative period, water consumption could be obtained directly from
summing up the amount of spray at each time-step while power consumption would
be converted from horsepower and the total operating hours of the sprayers. For spray-
simulation purposes, this study adopted the “FH-09 power spray motor” sprayer launched
by the Fog Century Environmental Protection and Energy Saving Enterprise Co. Ltd.,
located in Taichung City, Taiwan. The main specifications of the sprayer are a horsepower
of 1.125 kW, a water absorption of 0.15 kg/h, and an applicable area of about 400 to 600 m2.
Considering the greenhouse investigated in this study occupies an area of 1560 m2, it would
require three sprayers to cover the entire greenhouse farm.

Table 8 compares the traditional and the proposed control systems regarding the
resource consumption of spraying for environmental cooling.
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Table 8. Comparison between traditional and smart microclimate-control systems regarding the
resource consumption of spraying for environmental cooling.

Item Water
(kg)

Electric Power
(kWh)

Number of On/Off
Switch of Sprayers

Traditional spraying system 129,478 90.0 736/1488
Smart spraying system 42,962 29.8 726/1488

Resource-saving amount 1 86,516 60.2 10/-
Resource-saving rate 2 66.8% 66.8% 1.4%/-

Traditional spraying system 129,478 90.0 736/1488

Notes: 1 Amount of the traditional spraying system—amount of the SMCS. 2 Resource saving amount/amount of
the traditional spraying system.

It is noted that the numbers of the on/off switches of the sprayers associated with the
two comparative systems differed slightly (736 times for the traditional system vs. 726 times
for the smart system). Therefore, the difference of the two systems in power consumption
enabling the switching on/off of the sprayers could be ignored. Under this assumption, the
traditional system consumed about 129,478 kg of water and 90 kWh of electric power for
greenhouse environmental control during the entire tomato-cultivation period. In contrast,
the SMCS only consumed about 42,962 kg of water and 29.8 kWh of electric power. The
results demonstrate that the SMCS consumed far fewer resources for spraying than the
traditional system, with water- and power-saving rates reaching 66.8%. It was further
noticed that early spraying for environmental cooling suggested by the SMCS allowed the
wind to blow away excess internal water vapor one hour ahead, leading to a decrease in
the internal relative humidity. Spray efficiency is known to be inversely proportional to
the internal relative humidity. Therefore, the amount of spray could be reduced due to
early spraying.

4. Discussion
4.1. Evaluation of Hazard Mitigation by the SMCS

This study further evaluated the potential contribution of the proposed SMCS to the
governmental greenhouse policy launched in 2016 regarding the construction of 2000 ha of
reinforced greenhouses within five years. Taking the agricultural loss in 2020 released by
the Council of Agriculture in Taiwan as an example, under the scenario that all 2000 ha of
greenhouses could be equipped with the SMCS, the agricultural loss caused by extreme
weather events would be significantly reduced by 22% (=2000 (greenhouse area in ha)/9097
(total damaged area in ha)) on average. Besides, resource saving in water and energy would
achieve 1,109,918 tons (=((86,516 kg/1560 m2) × 10,000) × 2000 ha/1000) and 771,795 kWh
(=((60.2 kWh/1560 m2) × 10,000) × 2000 ha), respectively (Table 8). This suggests the
smart greenhouse microclimate-control practice bears high potential for tackling climate
change and can significantly promote the nexus synergies among water, energy, and food,
especially when encountering extreme weather events.

4.2. Conributions of the SMCS

The proposed SMCS makes two main contributions. Firstly, for maintaining an en-
vironment suitable for crop growth, the traditional greenhouse-spraying system requires
monitoring sensors like IoT devices to detect the internal temperature or relative humidity
for switching sprayers on/off. Nevertheless, this may impose the risk of an unsuitable
environment on greenhouse farming between two time-steps. For example, the operational
time interval was one hour in this study. Even if the greenhouse environment complies
with the suitability conditions of crop growth at the current minute, it may violate the
suitability conditions in the next minute. In contrast, the SMCS can predict the greenhouse
microclimate for the next hour well, thereby spraying in advance to prevent an unsuitable
environment for crop growth. Besides, the SMCS avoids using IoT sensors because the
extra hardware and maintenance costs of the monitoring devices also place a heavy burden
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on greenhouse owners. Secondly, the SMCS consumes fewer resources of water and energy
(electricity) when spraying for environmental cooling than the traditional method, indicat-
ing that the SMCS can mitigate greenhouse-gas emissions. Low resource consumption also
represents cost-effectiveness and relatively high profits, leading to more commercial value
that can be achieved by the SMCS.

The greenhouse-management practice developed can be applied to crops and areas
of interest with adequate modification of the environmental suitability for crop growth.
Similar methodology for developing the SMCS can also be applied to different greenhouse
types. Future research can consider incorporating crop evapotranspiration, soil-moisture
content, nutrients, and fertilization into the SMCS to increase the prediction accuracy of the
greenhouse environment and promote crop productivity and quality. Ventilation is also a
major factor in the control of greenhouse temperature. In future research, ventilation will be
considered by incorporating the greenhouse-control factors (e.g., skylight, roller shades on
each wall, and inner shade net) into the proposed water-centric smart microclimate-control
system (SMCS) to increase its operational efficiency and effectiveness.

5. Conclusions

This study proposed a water-centric smart microclimate-control system (SMCS) for
greenhouse farming, with a mission to manage the microclimate through efficient spray-
ing for environmental cooling. The SMCS can maintain stable crop productivity when
extreme weather events occur. The SMCS can determine the necessity of spraying for
environmental cooling according to the predictions of greenhouse internal temperature
and relative humidity. The results demonstrate that the SMCS could achieve the same
environmental-control effect as the traditional one while consuming far fewer resources for
spraying, which makes greenhouse farming move towards carbon-emission mitigation and
sustainable management of the water–energy–food nexus. There are four main findings
drawn from this study, shown below.

Firstly, the cost of sensor installation is a major concern for farmers in Taiwan, es-
pecially concerning device investment and maintenance issues. The BPNN model could
(Figure 1) predict greenhouse microclimate based on external climate conditions with less
water and energy. After the BPNN model is constructed, this science-based management
practice requires no in situ monitoring sensors, which favorably lessens greenhouse own-
ers’ investment in environmental control and makes a positive contribution to the overall
cost–benefit ratio of greenhouse farming. The physically based model engaging the inter-
nal hydro-meteorological process could produce satisfactory accuracy and reliability in
estimating greenhouse microclimate, despite it performing slightly worse than the BPNN
prediction model.

Secondly, the SMCS could predict the greenhouse internal environment well one hour
ahead and spray in advance when needed for environmental cooling, which prevents crops
from being exposed to an unsuitable cultivation environment.

Thirdly, the SMCS could achieve savings as high as 66.8% of water and energy com-
pared to the traditional method. Therefore, the SMCS gains more commercial value than
the traditional method because low resource consumption means low production cost and
relatively high profits.

Fourthly, the reduction in agricultural loss caused by extreme weather events in 2020
would reach 22% if the SMCS could be implemented in 2000 ha of greenhouses (the goal
of the governmental greenhouse policy launched in 2016 in Taiwan). This would lead to
effective resource saving in water and energy of 1,109,918 tons and 771,795 kWh per year,
respectively. This greenhouse-control strategy significantly contributes to environmental
sustainability and greenhouse-gas-emission mitigation.

This study suggests a practicability niche in machine-learning-enabled greenhouse
automation with improved crop productivity and resource-use efficiency. The proposed
SMCS substantially moves greenhouse farming towards the SDGs in the perspectives of
food security, natural-resource preservation, and environmental sustainability.
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Abstract: In recent decades, natural calamities such as drought and flood have caused widespread
economic and social damage. Climate change and rapid urbanization contribute to the occurrence of
natural disasters. In addition, their destructive impact has been altered, posing significant challenges
to the efficiency, equity, and sustainability of water resources allocation and management. Uncertainty
estimation in hydrology is essential for water resources management. By quantifying the associated
uncertainty of reliable hydrological forecasting, an efficient water resources management plan is
obtained. Moreover, reliable forecasting provides significant future information to assist risk assess-
ment. Currently, the majority of hydrological forecasts utilize deterministic approaches. Nevertheless,
deterministic forecasting models cannot account for the intrinsic uncertainty of forecasted values.
Using the Bayesian deep learning approach, this study developed a probabilistic forecasting model
that covers the pertinent subproblem of univariate time series models for multi-step ahead daily
streamflow forecasting to quantify epistemic and aleatory uncertainty. The new model implements
Bayesian sampling in the Long short-term memory (LSTM) neural network by using variational
inference to approximate the posterior distribution. The proposed method is verified with three case
studies in the USA and three forecasting horizons. LSTM as a point forecasting neural network model
and three probabilistic forecasting models, such as LSTM-BNN, BNN, and LSTM with Monte Carlo
(MC) dropout (LSTM-MC), were applied for comparison with the proposed model. The results show
that the proposed Bayesian long short-term memory (BLSTM) outperforms the other models in terms
of forecasting reliability, sharpness, and overall performance. The results reveal that all probabilistic
forecasting models outperformed the deterministic model with a lower RMSE value. Furthermore,
the uncertainty estimation results show that BLSTM can handle data with higher variation and peak,
particularly for long-term multi-step ahead streamflow forecasting, compared to other models.

Keywords: Bayesian neural network; forecasting uncertainty; multi-step ahead forecasting; probabilistic
streamflow forecasting; variational inference

1. Introduction

Sustainable water resource management is an essential requirement worldwide, and
streamflow forecasting is an essential component of an effective water resource manage-
ment plan [1]. Accurate streamflow forecasting plays a critical role in many decision-
making scenarios related to water resource management such as flood/drought control
and mitigation, reservoir management, hydropower generation, sediment transport, and
irrigation management [2]. Owing to the complex and nonlinear characteristics associated
with streamflow [3], forecasting is challenging. Sustainable water resource management
plans are used to meet the requirements of people today and in the future. To support
risk-aware decision-making in water resource management, current streamflow forecasting
approaches should be improved to estimate forecasting uncertainties and leverage large
volumes of data with complex dependencies [4].
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Deep learning (DL), a sophisticated and mathematically complex evolution of machine
learning (ML) algorithms, has recently received huge attention from researchers and has
gradually become the most widely used forecasting approach in hydrology [5–9]. The
advantage of DL is its flexibility to learn massive data and the ease of incorporating
exogenous covariates [10]. The advantages of DL techniques over traditional ML algorithms
for streamflow forecasting have been discussed in many studies [1,11]. However, DL has
not been extensively explored in forecasting uncertainty.

Only a few studies have been conducted on probabilistic approaches to streamflow
forecasting. Thus, the existing uncertainty was not addressed by most DL approaches.
However, deterministic approaches may not be as efficient as probabilistic methods and
exhibit suboptimal performance. In general, deterministic forecasting is widely used
in hydrology as an input for various water resource management plans. The transition
from deterministic to probabilistic forecasting methods with uncertainty quantification is
strongly favored in academia and industry. The primary issue in streamflow forecasting
is the complex uncertainty rooted in the stochastic characteristics of streamflow time
series. Furthermore, probabilistic forecasting has emerged to overcome the shortcomings
of conventional deterministic methods and to deal with uncertainty more effectively. The
probabilistic approach has recently gained importance because it can extract more valuable
information from historical data and quantify the uncertainty of the future by forming a
probability distribution over possible outcomes. The probabilistic approach extends beyond
single-point forecasting for each time step and can provide a band of likely forecasting
intervals above and below the mean forecasted value. Existing deterministic methods report
the mean of possible outcomes, and they are unable to reflect the inherent uncertainty that
exists in the real world.

Despite the fact that hydrological prediction can be most helpful when given in proba-
bilistic form [12], the use of probabilistic modeling is still a relatively new concept in the
field of hydrology [13]. Moreover, the probabilistic approach is crucial to optimal decision-
making that reveals the upper and lower bounds between which the uncertain actual
future values may exist. Occasionally, decision-making requires more than single-point
forecasting; this is where distribution would be beneficial. To make reliable forecasts and
to conduct a comprehensive performance evaluation, a probabilistic approach should be
considered in streamflow forecasting. Most existing streamflow forecasting methods focus
on deterministic forecasting. The application of various machine learning algorithms in
deterministic prediction has been investigated in many studies [14–19]. Limited research
has been conducted on multistep-ahead streamflow predictions [1,20–23]. Even though
considerable efforts have been made to improve the performance of streamflow forecasting
models from short- to long-term [24,25] and from single- to multi-step ahead [9,26,27], they
are still limited by uncertainties [28–31].

An effective way to perform probability forecasting in the field of hydrology is to apply
the Bayesian approach due to the benefits of uncertainty representation, understanding
generalization, and reliable prediction through the lens of probability theory. The Bayesian
approach can be classified into four primary groups: Bayesian model averaging (BMA),
Bayesian model updating (BMU), Bayesian networks (BN), and Bayesian neural networks
(BNN) [32]. A BNN is a type of stochastic artificial neural network that uses a BMU for
training and updating the probabilistic distributions of network parameters. Furthermore,
BMU and BN have become prevalent, and they have been implemented in various fields
such as computer vision, natural language processing, medical diagnostics, autonomous
driving, and flood hazard analysis [32]. Han and Coulibaly [33] presented a comprehensive
review of Bayesian approaches applied to flood forecasting from 1999 to 2015. The results
reveal that probabilistic flood forecasting can reduce uncertainty and provide more accurate
and reliable forecasting. Moreover, they mentioned that only a limited number of river
basins have been studied from the Bayesian perspective to date. Furthermore, we should
determine if the Bayesian approaches are suitable for different watersheds with different
sizes and physical and climatic characteristics. Costa and Fernandes [34] developed a
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Bayesian framework to estimate the extreme flood quantile from a rainfall-runoff model of a
dam in California. Xu et al. [35] developed a real-time probabilistic channel flood forecasting
model by combining a hydraulic model with the Bayesian approach in the upstream
reaches of the Three Gorges Dam on the Yangtze River, China. A state-of-the-art review
was provided by Huang et al. [36] to summarize the application of Bayesian inference in
system identification and damage assessment for civil infrastructure. Goodarzi et al. [37]
proposed a decision-making model using BN to predict heavy precipitation in the Kan Basin.
Bayesian neural networks are yet to be applied to probabilistic streamflow forecasting,
as aforementioned.

Recent studies on probabilistic prediction in the field of hydrology are summarized
in Table 1. As shown in Table 1, a few researchers trained a deterministic model and used
the obtained deterministic result to obtain a probabilistic forecasting result to estimate the
uncertainty [38]. However, in a few studies, a deterministic layer has been coupled with a
probabilistic layer to achieve forecasting uncertainty [39]. Conversely, a few studies have
focused on developing a probabilistic model by introducing stochastic components into the
network by giving the network either stochastic activation or weights [40–42].

Table 1. Overview of recent probabilistic prediction studies in the field of hydrology.

Field Probabilistic Method Base Models
Posterior Approximation * Evaluation Metrics

Ref.
VI MCM Deterministic Probabilistic

St
re

am
flo

w

LSTM-HetGP ANN, HetGP, GLM,
LSTM - - NSE, RMSE,

MRE, MSLE

percentage of
coverage (POC) and
the average interval

width (AIW)

[39]
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oo

d

LSTM ARIMA - - RMSE, MAE [40]
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PICP, PINAW, 

CRPS 
[43] 

) denotes the application of Posterior Approximation.

The application of probabilistic DL showed superior performance in various fields,
including residential net load forecasting [45,46], short-term scheduling in power mar-
kets [47], photovoltaic power [48], load forecasting for buildings [49], and electricity
consumption [50]. This indicates the wide range of the potential applicability of the
probabilistic DL approaches. Univariate streamflow forecasting using conventional data-
driven models has been investigated in the previous studies [51–54]. To the best of the
authors’ knowledge, the application of BLSTM in multi-step ahead probabilistic prediction
using a retrospective univariate time series has not been applied to streamflow prediction
yet. To address the aforementioned research gaps, this study proposed a framework for
transforming a deterministic model into a probabilistic model with improved performance.
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This study developed a Bayesian deep neural network framework to characterize the
prognostic uncertainties for probabilistic streamflow forecasting, which investigated both
epistemic and aleatoric uncertainties. The motivation of the framework was to transform
existing deterministic prediction models into their probabilistic counterparts for better
performance in water resources management and decision-making, and to cover newly
emerged challenges that humankind encountered primarily due to climate change.

The primary contributions of the study are as follows: For the first time, in stream-
flow prediction, we introduced the Bayesian LSTM network’s application for multi-step
ahead probabilistic forecasting in water resource management. Bayesian theory and LSTM
networks were combined to generate probabilistic streamflow forecasts to capture both
epistemic and aleatoric uncertainties. This is the first study to exploit Bayesian deep learn-
ing for streamflow prediction. Moreover, a comprehensive comparison with a series of
state-of-the-art probabilistic prediction methods is conducted. The superior performance
of the proposed scheme was demonstrated with respect to both the deterministic and
probabilistic forecasting results. Moreover, to demonstrate the superiority of probabilis-
tic forecasting, particularly for water resource management, a comparative analysis was
conducted for three case studies with different forecasting horizons and timescales.

The paper is organized as follows: In Section 2, the materials and methods are pre-
sented in subsections on Bayesian long-short-term memory (BLSTM) (2.1), experimental
setup (2.2), and performance evaluation (2.3). In Section 3, the case study, study area (3.1),
and experimental setup (3.2) are detailed. The results are presented in Section 4, with two
subsections focusing on the probabilistic forecasting performance assessment (4.1) and the
impact of the forecast horizon on probabilistic forecasting performance (4.2). Furthermore,
the concluding remarks of this study with directions for future research are discussed in
Section 5.

2. Materials and Methods

The proposed Bayesian deep-learning approach for probabilistic streamflow forecast-
ing is presented in detail in the following sections.

2.1. Bayesian Long Short-Term Memory (BLSTM)

In this study, the Bayesian approach is employed, which is a well-established and
thorough approach to fit probabilistic models that capture and distinguish different sources
of uncertainties [55]. The BNN is a stochastic artificial neural network (ANN) trained using
the Bayesian approach. Probability is defined in terms of the degree of belief in the Bayesian
approach; the more likely an outcome is, the higher its degree of belief. The primary idea of
the Bayesian approach in deep learning is to replace each weight with a distribution [56]. An
LSTM network overcomes the long-term dependency issue of conventional RNNs through
additional interactions in its various unit cells. Additionally, LSTM cells (memory cells)
are composed of three gates (input, forget, and output) for short-term memory selection
and a state vector transmission responsible for long-term memory. Information can be
selectively passed during the learning procedure by manipulating the gate settings. The
LSTM network is mathematically represented as follows [57]:

it = σ(Wi.[ht−1, xt] + bi) ft = σ(W f .[ht−1, xt] + b f ), (1)

ot = σ(Wo.[ht−1, xt] + bo), (2)

ht = ot × tanh(Ct), (3)

C̃ = tanh(Wc.[ht−1, xt] + bc), (4)

Ct = ft ◦ Ct−1 + it ◦ C̃, (5)

σ(x) = sigmoid(x) =
1

1 + e−x , (6)
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tanh(x) =
ex − e−x

ex + e−x , (7)

where at time step t, xt is the input vector, ht is the LSTM output and hidden state (short-
term memory), and it, ft, and ot are the input, forget, and output gates, respectively. W
and b are the weight matrix and bias, respectively. Ct is the current cell state (long-term
memory), and C̃ is the candidate cell state value. σ is a sigmoid activation function that
uses ht−1 and xt to make decisions regarding the input, forget, and output gates [57].

Given the input data, Xtrain = [x1, . . . , xTrain] and their corresponding output labels
Ytrain = [y1, . . . , yTrain]. The primary goal of the Bayesian approach is to identify the
parameter W of a function y = fW(x) that probably generates the desired output [58,59]. In
this approach, a prior distribution that represents the prior belief about the neural network
parameter distribution before observing the inputs is employed over W to capture epistemic
uncertainty. The Bayesian neural network structure is illustrated in Figure 1. Rather than a
single network, this method trains a set of networks in which the weight of each network is
derived from a shared learning probability distribution [59].

Figure 1. Structure of the Bayesian neural network.

Setting a standard normal distribution as a prior with zero mean, which can bring
the benefit of regularization, has been demonstrated as one of the most effective solutions
when the prior distribution is difficult to identify. After training the Bayesian deep neural
network and observing data, the model likelihood distribution p

(
YTrain

∣∣ f W) should be
defined as a normal distribution N

(
f W(XTrain

)
, σ2) and observation noise σ to capture

roughly suitable parameters. Based on the Bayesian rule, the posterior p(W|XTrain, YTrain)
is employed over the weights to generate samples of predictions rather than the prior
distribution. The posterior is calculated as follows [59]:

p(W|XTrain, YTrain) =
p(YTrain|XTrain, W).p(W)

p(YTrain|XTrain)
(8)

where p(YTrain|XTrain) is the marginal likelihood probability that cannot be estimated,
thereby, the posterior is not tractable without a variational inference to approximate it.
With this distribution, suitable parameters given by the input data can be captured, and the
output y can be predicted for a new input x by integration [58]:

p(y|x, XTrain, YTrain) =
∫

p(y|x, W)p(W|XTrain, YTrain)dW. (9)
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To evaluate the true posterior p(W|XTrain, YTrain), an approximation variational dis-
tribution qθ(W), which is parameterized by θ, is required to ensure that the optimal dis-
tribution q̃θ(W) can represent the posterior by minimizing the Kullback–Leibler (KL)
divergence [60] between the approximation variational and posterior distributions [61]:

KL(qθ(W) ‖ p(W|XTrain, YTrain)) =
∫

qθ(W) log
qθ(W)

p(W|XTrain, YTrain)
dW. (10)

Generally, two methods are available to approximate the posterior distribution: vari-
ational inference (VI) and Monte Carlo (MC) dropout [56,61,62]. The study employed
the VI to solve the optimization issue analytically. Interested readers can refer to [62] for
detailed information on the approximation method. The predictive distribution can be
approximated by:

p(y|x, XTrain, YTrain) =
∫

p(y|x, W)q̃θ(W)dW = q̃θ(y|x). (11)

2.1.1. Epistemic Uncertainty

Mathematically, by simulating the model based on input x, the predictive mean can be
estimated with an unbiased estimator, as follows [63]:

Ẽ[y] :=
1
T

T

∑
t=1

f Ŵt(x), (12)

where Ẽ[y] is the predictive mean, f Ŵt is the stochastic output of the prediction model,
Ŵt represents the sample weights, and T denotes the number of samples at time t. Simi-
lar to the estimation of the predictive mean, given that Ŵt ∼ q̃θ(W) and p

(
y
∣∣ f W(x)

)
=

N
(
y; f w(x), σ2) for σ > 0, the predictive variance can be estimated by an unbiased estima-

tor as follows [63]:

Ẽ
[
yTy

]
:=

1
T

T

∑
t=1

f Ŵt(x)T f Ŵt(x) + σ2. (13)

The term σ2 corresponds to inherent noise in the input data. Afterward, the epistemic
uncertainty, which represents the uncertainty of the model about its prediction outputs, is
captured by the predictive variance that can be approximated as [63]:

Ṽar[y] = Ẽ
[
yTy

]
− Ẽ[y]TẼ[y]. (14)

2.1.2. Aleatoric Uncertainty

Aleatoric uncertainty can be divided into homoscedastic and heteroscedastic uncer-
tainties. To capture the aleatoric uncertainty, parameter σ should be tuned. For each input
x, in the homoscedastic uncertainty, the observation noise σ is assumed to be constant. In
contrast, heteroscedastic uncertainty assumes that observation noise varies with the input.
Heteroscedastic models are data-dependent and can be expressed as:

L(θ) = 1
Ttrain

∑Ttrain
i=1

1

2σ(xi)
2 ‖ yi − f (xi)

2 ‖ +1
2

log(xi)
2. (15)

Because the maximum posterior is performed to find a single value for parameter θ,
this approach does not capture the epistemic uncertainty since it is a property of the model,
not the input data.

2.1.3. Combining Aleatoric and Epistemic Uncertainty

Abdar et al. [64] explained that an effective way to combine both uncertainties in a
single model is to transform the heteroscedastic model into a Bayesian model by placing
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a distribution over its weight and bias parameters. Thus, both the predictive mean and
variance were derived from the developed prediction model.

[
ŷ, σ̂2

]
= f W

M (X), (16)

where f W
M is the prediction model (BLSTM) used in this study, parameterized by the model

weight Ŵ [55,56]. The Gaussian likelihood is used to model the aleatoric uncertainty, and
the final loss function of the prediction model can be expressed as [58]:

LM(θ) =
1

Ttrain
∑Ttrain

i=1
1

2σ(xi)
2 ‖ yi − ŷi ‖2 +

1
2

logσ̂i
2. (17)

Finally, the predictive uncertainty of the prediction model, consisting of both aleatoric
and epistemic uncertainties, can be approximated as

Ṽar[y] =
1

Tsample
∑

Tsample
t=1 ŷt

2 −
(

1
Tsample

∑
Tsample
t=1 ŷt

)2

+
1

Tsample
∑

Tsample
t=1 σ̂t

2, (18)

where Tsample denotes the number of training samples. An example of the Bayesian LSTM
cell of the proposed BLSTM network is shown in Figure 2, with a zoomed-in plot of the
forget gate at time step t in the first layer.

Figure 2. Example of the proposed BLSTM network with a zoomed-in plot of the forget gate at time
step t in the first layer.

2.2. Performance Evaluation Metrics

To assess the performance of the prediction models, this study adopted the root mean
square error (RMSE) metric for deterministic prediction and three metrics for probabilistic
prediction: continuous ranked probability score (CRPS), prediction interval coverage
probability (PICP), and mean prediction interval width (MPIW), which are formulated
as follows.
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1. Metric for Deterministic Forecasting

To evaluate the accuracy of the deterministic forecasting results, the root-mean-square
error (RMSE) was selected as a commonly used hydrological evaluation indicator. The
RMSE is defined as follows:

RMSE

√
1
n ∑n

i=1 (Yi − Ŷi)
2, (19)

where Ŷi is the predicted variable, Yi is the observed value, and n is the number of samples.

2. Metrics for Probabilistic Forecasting

A useful metric to assess the accuracy of probabilistic prediction models is the CRPS.
The CRPS expresses the distance between the probabilistic forecast p and the observed
value Yi and is defined as

CRPS =
∫ +∞

−∞

[
P
(
Ŷi
)
− H

(
Ŷi −Yi

)]2dŶi, (20)

P
(
Ŷi
)
=
∫ Ŷi

−∞
p(x)dx, (21)

H
(
Ŷi −Yi

)
=

{
0 for Ŷi < Yi
1 for Ŷi ≥ Yi

, (22)

where p(x) is the probability density function (PDF), P
(
Ŷi
)

is the prediction cumulative dis-
tribution function (CDF), and H is the Heaviside step function, which equals 0 if Ŷi < Yi and
equals 1 otherwise.

The mean prediction interval width (MPIW) is an effective representation of sharpness
in probabilistic predictions. This metric is defined as

MPIW =
1
n ∑n

i=1(Ŷi
u − Ŷi

l), (23)

where n is the size of the test set, and Ŷi
u and Ŷi

l denote the upper and lower bounds of the
95% prediction interval, respectively.

Prediction interval coverage probability (PICP) or (PI) is the probability that the target
lies within the interval provided by the prediction model. PICP is defined as:

PICP =
1
n ∑n

i=1 ci, ci =





1, i f Yi ∈
[
Ŷi

l , Ŷi
u
]

0, i f Yi /∈
[
Ŷi

l , Ŷi
u
] . (24)

Thus, PICP indicates the frequency with which the prediction interval (PI) captures
the observed value, ranging from 0 if all predicted values lie outside the PI and 1 if all
predicted values lie inside the PI.

3. Case Study

To evaluate the performance of the probabilistic data-driven models under different
conditions, three basins in the United States with different hydroclimatic conditions and
drainage areas were selected as study areas, as described in the following section.

3.1. Study Area

The study basins were located in different climate regions of three states across the
United States, i.e., IN (Indiana), MN (Minnesota), and CA (California). Figure 3 shows the
locations of the three basins. The first case study was conducted in Bartholomew County,
IN, the second was conducted in Koochiching County, MN, and third was conducted in Shasta
County, CA. The drainage area of the river basins was approximately 1560–4420 km2.
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Figure 3. Location of 3 study basins in different climate regions across the United States.

Based on the USGS statewide streamflow–water year 2021 report, the annual mean
streamflow was ranked by state from 1 to 92, indicating the maximum and minimum
annual flow for all years analyzed. Streamflow rankings were grouped into categories
of much below normal, below normal, normal, above normal, and much above normal
based on percentiles of flow (<10%, 10–24%, 25–75%, 76–90%, and >90%, respectively) [65].
Much-below-normal streamflow with a rank 84–91 is reported in CA and below-normal
streamflow with a rank 70–83 is reported in MN. The annual mean streamflow rank for
IN was reported to be normal, with a rank 24–50. Daily historical streamflow data for the
three selected case studies were obtained from the United States Geological Survey (USGS)
website, (https://waterdata.usgs.gov/nwis) (accessed on 1 February 2022).

The descriptive information of the daily streamflow in the three case studies is pre-
sented in Table 2. Details of the case studies, including gauge ID, gauge name, and drainage
area, are presented in Table 3. For all catchments, streamflow with a 30-day lag was
considered owing to the cross-correlation results.

Table 2. Descriptive information of daily historical streamflow data for three case studies.

Criteria Case Study 1 Case Study 2 Case Study 3

No. Samples 27,146 34,205 22,645
Mean (m3/s) 58 30 31

Std (m3/s) 90 51 42
Min (m3/s) 2.5 0.6 3
25% (m3/s) 13 4 9
50% (m3/s) 31 11 20
75% (m3/s) 64 32 36
Max (m3/s) 1654 702 1274

Table 3. Details of the selected case studies.

Case Study. No. Station ID G-Name Elev. (m) Drainage Area (km2) Lon. (◦) Lat. (◦) Period

1 03364000 EAST FORK WHITE RIVER AT
COLUMBUS, IN 183.8 4421 85◦55′32” 39◦12′00” 1948–2022

2 05131500 LITTLE FORK RIVER AT
LITTLEFORK, MN 330.3 4403 93◦32′57” 48◦23′45” 1928–2022

3 11368000 MCCLOUD R AB SHASTA LK CA 335.3 1564 122◦13′07” 40◦57′30” 1945–2007

3.2. Experiment Setup

Before using the data to train the model, data preprocessing began with min-max
normalization and log transfer as the initial phase of model development. The input time
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step was then derived from an autocorrelation analysis of the transformed-streamflow
time series. Using a threshold of more than 0.5, which represents a moderate relationship,
the past 30 days were selected as input. The autocorrelation analysis results for three
case studies are given in the Supplementary File. The datasets for the three case studies
were split into three sets: the first set accounted for 60% of the data, and it was used for
model training; the second set was used for model validation (20%), and the remaining 20%
was used for test purposes. Subsequently, the sliding window technique with a window
size of 30 days was used. To demonstrate the superior performance of the Bayesian
forecasting approach, probabilistic methods that have been widely used in the literature
were employed for comparison. More specifically, LSTM-BNN [66], LSTM Monte-Carlo
Dropout (LSTM-MC) [62,67], BNN [68], and deterministic LSTM were implemented in this
study. Monte Carlo dropout is a straightforward epistemic uncertainty extension to the
neural network. In general, dropout is a technique used to avoid overfitting by randomly
dropping units during training. This can be considered the application of random noise in
training. When this dropout was performed multiple times, multiple results were obtained.
The distribution of the samples represents the uncertainty of the prediction model. The
structure of the prediction models along with their graphical scheme are given in the
Supplementary File.

The prediction models were developed in Python 3.6.9 with the Keras [69], Tensor-
Flow [70], and PyTorch [71] libraries. The prediction model was implemented by an
NVIDIA® GeForce® RTX 2070 SUPER and an Intel® Core i9-10920X central processing
unit at 3.5 GHz utilizing 128 GB random access memory. For a fair comparison among
the prediction models, a grid search for hyperparameter tuning was used to ensure identi-
cal evaluation.

4. Result and Discussion

To better clarify the forecasting performance of BLSTM method, the study compares
the BLSTM to the LSTM-BNN, BNN, and LSTM-MC in terms of prediction interval un-
certainty, sharpness, prediction reliability, and multi-step ahead probabilistic prediction
performance. Moreover, LSTM is used as a deterministic model to evaluate the performance
of all probabilistic prediction models against the deterministic model. In this section, the
predictive ability of the four probabilistic models for 1 day (Scenario I), 7 days (Scenario II),
and 30 days (Scenario III) ahead of streamflow prediction is investigated.

4.1. Probabilistic Prediction Performance Assessment

The PICP, MPIW, and CRPS values for the four models in the three case studies during
the test period are listed in Table 4. The length of the bar represents the value of the
evaluation metrics. In terms of PICP, the higher the value, the better and longer the bar,
and vice versa for the other measures. Three major aspects must be considered simultane-
ously to evaluate probabilistic forecasting performance. PICP refers to the reliability of a
model, MPIW refers to the model’s sharpness, and CRPS indicates overall performance.
In Scenario I, case study I was considered as an example because the models used the
same mechanism to quantify the forecast uncertainty, and the PICP values of the four
models were relatively close. Note that the larger the PICP and the smaller the MPIW
and CRPS, the better the model performance. We observed that BLSTM showed better
performance in handling datasets with high Std and peak streamflow. Case study III had
22,645 samples, which was ~17% and ~34% less than that of case studies I and II, with
27,146 and 34,205 samples, respectively. This difference did not lead to a particular change
in the prediction performance of all the models for the first scenario. In this case study,
from Scenarios I to III in BLSTM models, PICP decreased ~2% and 4%, respectively. While
for case study I, PICP decreased ~25% and 50%, respectively, and for case study II, PICP
decreased ~1% and 2%, respectively. Therefore, from the obtained results, we inferred that
for single-step ahead prediction, the results were promising for all case studies, and the
number of samples and peak streamflow did not affect the prediction performance. This
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made BNNs extremely data-efficient because they could learn from even a small dataset
without overfitting. Furthermore, we predict that more uncertainty is associated with the
results, particularly for the case study with a higher peak of streamflow, leading to wider
prediction intervals and lower coverage. As expected, all models exhibited better predictive
performance during shorter lead times (1–7 days) than during the longer horizon (30 days).
Therefore, from the obtained results, we can infer that the probabilistic forecasting model
can lead to higher uncertainty and lower accuracy over a longer forecasting horizon.

Table 4. Summary of prediction performance results for three case studies and three scenarios.

Forecast Horizon = 1 Forecast Horizon = 7 Forecast Horizon = 30

Model Metric Case I Case II Case III Case I Case II Case III Case I Case II Case III

BLSTM

PICP 0.950 0.964 0.956 0.709 0.958 0.941 0.477 0.943 0.921

MPIW 0.021 0.006 0.016 0.023 0.024 0.023 0.032 0.042 0.028

CRPS 0.087 0.035 0.066 0.375 0.212 0.214 0.576 0.437 0.337

LSTM-BNN

PICP 0.957 0.967 0.971 0.591 0.962 0.956 0.371 0.953 0.942

MPIW 0.023 0.008 0.018 0.035 0.037 0.032 0.039 0.076 0.040

CRPS 0.086 0.034 0.070 0.400 0.226 0.237 0.615 0.457 0.367

BNN

PICP 0.955 0.953 0.961 0.496 0.779 0.870 0.281 0.630 0.865

MPIW 0.027 0.009 0.022 0.045 0.050 0.040 0.053 0.141 0.047

CRPS 0.101 0.041 0.083 0.412 0.240 0.262 0.634 0.461 0.371

LSTM-MC

PICP 0.973 0.994 0.981 0.454 0.948 0.913 0.268 0.945 0.909

MPIW 0.046 0.040 0.027 0.049 0.050 0.032 0.057 0.076 0.039

CRPS 0.109 0.071 0.106 0.414 0.251 0.248 0.636 0.545 0.376

To further evaluate the results of the four probabilistic models for all scenarios in
the three case studies, LSTM as a well-known deterministic model was used to make
a comparison in terms of RMSE, as shown in Figure 4. All probabilistic models in all
horizons performed well and provided more accurate prediction performance in terms of
RMSE than the deterministic LSTM, indicating the superiority of all probabilistic models in
comparison with the conventional deterministic model. The range of RMSE indicated that
all models were fairly trained, and they showed promising predictability performance in
terms of RMSE.

Figure 4. Comparison among prediction models in terms of RMSE.
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As shown in Figure 5, the probability that the prediction lies within the prediction
interval by the LSTM-MC model is higher, followed by the LSTM-BNN, BNN, and BLSTM
in the first scenario. The values of PICP indicate the percentage of the observed streamflow
data lies within their 95% predictive intervals. In Scenario I, LSTM-MC outperformed BNN
in terms of PICP. Moreover, for a longer horizon (7 days and 30 days ahead), due to the
gradient vanishing of LSTM and BNNs as non-sequential models, both showed the lowest
coverage and the points falling within the interval decreased by increasing the uncertainty
in comparison with BLSTM and LSTM-BNN.

Figure 5. Comparison among prediction models in terms of PICP.

The MPIW values of the four models during the test period are shown in Figure 6a. The
MPIW was considered an effective representation of sharpness in probabilistic predictions,
and referred to the concentration of the predictive distributions. The more concentrated the
predictive distributions, the lower the MPIW, the sharper the prediction, and consequently
the better the predictive performance. As shown in Figure 6a, BLSTM has the lowest
MPIW, which indicates that it is the sharpest predictive model among the other models
in all scenarios. The stand-alone BNN and LSTM-MC were slightly different, whereas
the LSTM-MC obtained the highest MPIW value among the other models, particularly
by increasing the horizon. Compared with the BLSTM model with the narrowest MPIW,
LSTM-MC had the worst prediction sharpness over all horizons. The fact that BLSTM
presents the best predictive capability indicates the significance of capturing both epistemic
and aleatoric uncertainties.

To comprehensively evaluate the probability prediction accuracy and reliability, a com-
parison among all prediction models in terms of the CRPS is shown in Figure 6b. Overall,
BLSTM and LSTM-BNN competed with each other in all case studies and scenarios. How-
ever, in the longer horizon, BLSTM outperformed other models and proved its superiority
by keeping more points falling within its forecasting interval while keeping the interval as
narrow as possible while also increasing the uncertainty for a longer horizon. Therefore,
the proposed BLSTM model outperformed the other models in terms of RMSE, MPIW,
and CRPS, demonstrating the forecasting accuracy, sharpness, and overall performance of
the model.
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Figure 6. Comparison among prediction models in terms of (a) MPIW and (b) CRPS.

4.2. Impact of Forecast Horizon in Probabilistic Prediction Performance

The prediction results of all models are compared graphically in Figures 7–10 in the
form of time series for the entire test set for case study II for all scenarios (forecasting hori-
zon). Considering space limitations, we have avoided adding the results of all case studies
and scenarios in the main text, and only the results of case study II are presented. The actual
streamflow and forecast value for the test period are represented by black and red curves,
respectively. The red band represents the prediction interval, with a 95% confidence level.
The probabilistic forecasts generated with the BLSTM model presented the benefits of high
prediction coverage of observed streamflow data (PICP) with a tighter prediction width
(MPIW) and better overall performance (CRPS), corresponding to reliability, sharpness,
and resolution. Furthermore, accurate peak prediction, which is a crucial factor for disaster
prevention and water resources management, can be predicted with reasonable magnitudes
with the proposed BLSTM. Additionally, with increasing the forecast horizon, BLSTM still
showed reliable performance, while other models were incapable of handling such a situa-
tion. In forecast horizon 30, massive fluctuations in the prediction results occurred for all
the models and case studies. However, most of the prediction results were covered by the
95% interval in Scenario I, followed by Scenario II.
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Figure 7. Probabilistic streamflow forecasting results obtained by BLSTM for case study II for
(a) forecast horizon 1, (b) forecast horizon 7, and (c) forecast horizon 30.

Figure 8. Probabilistic streamflow forecasting results obtained by LSTM-BNN for case study II for
(a) forecast horizon 1, (b) forecast horizon 7, and (c) forecast horizon 30.
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Figure 9. Probabilistic streamflow forecasting results obtained by BNN for case study II for (a) forecast
horizon 1, (b) forecast horizon 7, and (c) forecast horizon 30.

Figure 10. Probabilistic streamflow forecasting results obtained by LSTM-MC for case study II
(a) forecast horizon 1, (b) forecast horizon 7, and (c) forecast horizon 30.
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As shown in Figure 11, with an increase in the forecasting horizon from 1 to 30 days,
the MPIW and CRPS values increase, and the PICP decreases. This indicates that the
accuracy of the prediction models decreases with an increase in the forecasting horizon. The
prediction accuracy over longer horizons decreased mainly as a result of the accumulative
error issue in multi-step ahead recursive models and the gradient vanishing issue in long
sequence time-series forecasting. Nevertheless, the predictive mean values of probabilistic
streamflow from the BLSTM model matched the observations better than the other three
models. The performance of all models gradually worsened with increasing lead times for
the three case studies. As shown in Figure 11, when the overall prediction accuracy was low,
MPIW was smaller. The interval width of the forecasting with LSTM-MC increased rapidly
with the prediction horizon. The average interval width of the proposed BLSTM was much
smaller than that of the other models. Simultaneously, the overall performance in terms
of CRPS was higher, proving the superiority of the proposed method for the probability
forecasting of daily streamflow, particularly for longer prediction horizons.

Figure 11. Change in probabilistic streamflow forecasting results by increasing horizon for (a) case
study I, (b) case study II, and (c) case study III.

For a better and more vivid comparison of all model performances, the time series of
all models for all case studies in the three scenarios are shown in Figure 12a–c for the first
year of the test period (365 days). We observed that BNN and LSTM-MC underestimated
the peak flows with a misleading trend in the first 365 days. In the first scenario, a 95%
PI was relatively narrow and constant for all models, indicating that models captured
both low and high flow values appropriately with low uncertainty. However, longer
horizons in Scenarios II and III were associated with a wider 95% PI, indicating greater
model uncertainty.
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Figure 12. Prediction results of all models with 1, 7, and 30 days ahead forecasting for (a) case study
I, (b) case study II, and (c) case study III.

Furthermore, we observed that all case studies can be effectively covered by the PI.
Furthermore, for case study II, which had the lowest peak, BLSTM achieved the best results
in all three scenarios. In contrast, case study I, with the highest peak at 1654 m3/s and
Std. of 90 m3/s, achieved the worst prediction results for all scenarios. From Scenarios
I to II in case study I for BLSTM, LSTM-BNN, BNN, and LSTM-MC, PICP decreased by
approximately 25, 38, 48, and 53%, respectively, indicating the best performance of BLSTM
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in maintaining its predictability in case study I, with the highest peak and Std in the
extended horizon prediction. Moreover, by increasing the horizon, prediction performance
for case study I dramatically decreased, whereas, in terms of PICP for BLSTM, case studies
II and III from Scenarios I to III decreased by approximately 1–2% and 2–4%, respectively.
Furthermore, LSTM-MC and BNN achieved the worst overall prediction performance for
all the scenarios. The catchment area of case study I was relatively large, and heavy rain
was the primary source of streamflow. These two characteristics cause the seasonal and
annual variations in streamflow to be greater than those in the other two case studies. In
this case study, the streamflow was very stable and small during the dry season, whereas
in the rainy season, the streamflow increased steeply and then decreased. This made
forecasting challenging and resulted in a higher uncertainty than that in the other case
studies. Therefore, for this type of catchment, using more in-situ meteorological predictors,
such as precipitation and temperature, along with available high-resolution large-scale
hydroclimate data, can improve forecasting accuracy.

The kernel density estimation plots of the daily streamflow prediction of all models for
case study II are displayed in Figure 13a–c. As depicted, the kernel density estimation plots
are on the top with boxplots, and the data points of the prediction are underneath. The
boxes represent the inner quartiles, the vertical lines within the box indicate the median, and
the diamonds represent the outliers in each model. As shown in Figure 13, the prediction
variance of BLSTM is lower in comparison with the other models, in particular for the
Scenario III which is forecasting horizon 30. Moreover, the inter-quartile range of BLSTM
is smaller which indicates that the BLSTM prediction results has less dispersion while
LSTM-MC has the highest dispersion. The results of this study indicate that BLSTM shows
the best overall probabilistic prediction performance.

Figure 13. Kernel density estimation plots of daily streamflow prediction of all models in case study
II for (a) forecast horizon 1, (b) forecast horizon 7, and (c) forecast horizon 30.

5. Conclusions

This study proposes BLSTM as a probabilistic prediction model to estimate streamflow
uncertainty. For comparison, three probabilistic models and one deterministic model,
including LSTM-BNN, BNN, LSTM-MC, and LSTM, are developed under three scenarios:
1 day, 7 days, and 30 days ahead daily streamflow forecasting. The results are compared
in terms of reliability, sharpness, and overall performance for three different case studies
in the USA. Reliability is measured by computing the PICP, sharpness is measured by
computing the MPIW, and overall performance is measured by CRPS. The results show
that all probabilistic models outperformed the deterministic model (LSTM). Moreover,
among the probabilistic models, BLSTM is superior. The Bayesian LSTM achieves better
results with less computing time and is easier to train than those of LSTM-BNN and
BNN. The results reveal that the BLSTM network with variational inference achieves the
highest accuracy. The fact that BLSTM shows the best predictive performance indicates
the significance of capturing temporal dependencies by considering both uncertainties.
Moreover, taking advantage of the long- and short-term dependencies and capturing the
inherent uncertainty that is inevitable in hydrology provides better prediction results. For
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longer forecast horizons, models such as the BNN and LSTM-MC perform poorly due
to the fact that the former is not an autoregressive model, and both have the gradient-
vanishing problem in the long sequence time series. In addition, the issue of cumulative
error in multi-step ahead recursive model is inevitable. Future research will investigate
an enhanced network structure with a large prediction capacity, such as attention-based
and parallel-feed architectures, to handle the long sequence time-series forecasting. In
addition to the recursive models, other multi-step ahead prediction strategies, such as direct
and hybrid, can be studied to minimize the accumulated error issue for longer horizons
forecasting. Moreover, in the relevant future work, meteorological parameters such as
precipitation, temperature, and humidity will be included as input to allow the model to
detect the complexity necessary to enhance the accuracy of prediction, particularly for the
longer horizon, and to evaluate the effect of multivariate input on model uncertainty.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w14223672/s1, Figure S1: Autocorrelation function plots of
transformed-streamflow timeseries; Figure S2: The visualizations of network execution graphs and
traces for BLSTM models’ outputs; Figure S3: The visualizations of network execution graphs and
traces for LSTM-BNN models’ outputs; Figure S4: The visualizations of network execution graphs
and traces for BNN models’ outputs; Figure S5: The visualizations of network execution graphs and
traces for LSTM-MC models’ outputs; Figure S6: Prediction results of all models for case study II;
Table S1: General structures of deep neural networks.
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Abstract: Temperature is one of the most influential weather variables necessary for numerous
studies, such as climate change, integrated water resources management, and water scarcity, among
others. The temperature and precipitation are relevant in river basins because they may be particularly
affected by modifications in the variability, for example, due to climate change. We developed a
stochastic model for daily precipitation occurrences and their influence on maximum and minimum
temperatures with a straightforward approach. The Markov model has been used to determine
everyday occurrences of rainfall. Moreover, we developed a multisite multivariate autoregressive
model to represent the short-term memory of daily temperature, called MASCV. The reduction of
parameters is an essential factor addressed in this approach. For this reason, the normalization of
the temperatures was performed through different nonparametric transformations. The case study
is the Jucar River Basin in Spain. The multisite multivariate stochastic model of two states and a
lag-one accurately represents both occurrences as well as maximum and minimum temperature. The
simulation and generation of occurrences and temperature is considered a continuous multivariate
stochastic process. Additionally, time series of multiple correlated climate variables are completed.
Therefore, we simplify the complexity and reduce the computational time for the simulation.

Keywords: multivariate stochastic model; autoregressive model; Markov model; daily temperature;
temperature generator

1. Introduction

The stochastic modeling approach has been widely used for hydrologic time series
analysis, including modeling weather variables [1,2] and flood prediction [3]. Therefore, it
is essential to build accurate forecast models in the hydrologic process [4]. The stochastic
modeling of temperature conditioned by precipitation is proposed when a day is wet or
dry. It is necessary to estimate the temperature for both dry and wet days.

The most common stochastic model is the first-order Markov model with two states.
It was introduced by Gabriel and Newman [5] and has since been used and modified by
many authors [3–19]. The rainfall occurrence process focuses on representing the dry and
wet days. Critical probability (pc) depends on transition probabilities of dry–wet (p01) and
wet–wet days (p11) [8]. Thus, the occurrence is a bivariate function (0,1) that relies on the
uniform random process (u) and critical probabilities [12].

The temperature displays a near-normal distribution. It is common to consider the
normal distribution to minimize the skewness coefficient of observed data. In other cases,
root transformation is used [20].

The statistical characteristics of the series change throughout the whole year. The
mean, variance, and standard deviation are periodic—these statistical changes are yearly,
monthly, daily, and even hourly. This periodicity is commonly modeled by the finite Fourier
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series [9,16,21,22]. The periodic component is necessary for standardization, which is a
process that converts into a series with a mean of zero and a standard deviation of one.
Standardization is usually applied to series with no follow-up normal distributions [7,23–25].
Moreover, standardization helps remove the seasonal effects [26]. Standardized series are
used to calculate the autoregressive parameters of the stochastic model [27].

It is desirable to generate synthetic temperature based on weather data [9]. The pro-
cess should be capable of representing different statistics from historical data [18]. The
basic statistics of the series are the sample mean, standard deviation, skewness coeffi-
cient, cross-correlation coefficients, and probability distribution. We must fit a proba-
bility distribution function (two or more parameters) or use a nonparametric transfor-
mation. Many authors have proposed stochastic weather generators (WG) for different
purposes, a few of which are downscaling, prediction, or simulation [28]. Some devel-
oped models are Weather GENerator (WGEN) [29], CLImate GENerator (CLIGEN) [30],
Agriculture and Agri-Food Canada Weather Generator (AAA-FC) [27], CLIMate GENera-
tor (CLIMGEN) [31], Long Ashton Research Station-Weather Generator (LARS-WG) [21],
the weather generator CLIMA [32], the closed skew-normal weather generator (WACS-
Gen) [26], École de technologie supérieure Weather Generator (WeaGETS) [22], and the
Multi-site Rainfall Simulator (MRS) [18]. We propose the multivariate autoregressive model
of climate variables (MASCV).

For precipitation, weather generators analyze the occurrence similarly. For exam-
ple, CLIMA [32], CLIGEN [30], and WGEN [9] model the occurrence process based on
transition probabilities of lag-one and two states for each month (two parameters). LARS-
WG [21] is based on an empirical function of wet and dry days for each month (21 pa-
rameters). CLIMGEN [31] models the occurrence process through transition probabilities
of a second-order Markov model at a monthly scale (four parameters). WeaGETS [22]
models the transition probabilities of a third-order Markov model with two states on a
biweekly scale (eight parameters). WASC-Gen uses a lag-one Markov model with different
states and parameters derived from the Bayesian information criterion [26]. AA-FC-WG
models the occurrence process with a second-order Markov model at a monthly scale
using two parameters [27]. Other stochastic models have proposed modifications or new
methods, such as the Markov renewal model [33], Copula-based models [34], the Hidden
Markov model [35,36], the Semi-Markov model [37], generalized chain-dependent process
models [38], the autoregressive model [39], and artificial intelligence [40].

Artificial intelligence (AI) has been used to predict hydrological data, including rain-
fall, rainfall runoff, and temperature [4]. Various machine learning methods have been
applied for rainfall and temperature prediction, such as the support vector machine (SVM)
classifier [41], ANN [42], long short-term memory (LSTM), statistical and multiple linear
regression (MLR) [43,44], and classification and regression trees [45].

Stochastic weather generators are used to represent different variables such as precipi-
tation and temperature. Long temperature series are commonly required, but historical data
are sometimes short in length. Therefore, it is necessary to apply stochastic weather gener-
ators for hydrological design [12]. The integrated water resources management (IWRM)
depends on water availability [46]. For the hydric balance and various decisions at a river
basin scale, the rainfall is fundamental [10], primarily to generate long synthetic series.

The issue with synthetic series is preserving the low-frequency variability in tempera-
ture and rainfall [47]. Daily temperature series have a strong correlation [48]. To preserve
low-frequency variability, different authors have proposed the fast Fourier transform (FFT)
algorithm [49], using crop variables [50], annual and monthly autoregressive models [51],
k-nearest neighbor bootstrap [52], and the copulas approach [53].

The objective of this paper was to develop an adequate stochastic model for daily
maximum and minimum temperature with a straightforward approach. We propose a
multisite multivariate stochastic model for precipitation occurrences and temperature ca-
pable of reproducing spatial and temporal dependence. We corrected the daily stochastic
model using an annual multisite multivariate autoregressive model. For precipitation, we
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applied a multivariate multisite lag-one Markov model with two states (wet and dry) and
few parameters. A normal distribution was used to define the precipitation occurrence
process. For the maximum and minimum temperature, we implemented the first-order mul-
tisite multivariate autoregressive model (MAR(p)) for daily and annual temperature. Our
approach simplifies the temperature simulation (continuous and nonparametric), which
implies a considerable advantage and versatility concerning other stochastic generators
(parametric distribution function for each month or biweekly).

The normalized mean and variance periodicity was modeled as a continuous daily
scale through the Fourier series. The model validation was performed by synthetic series of
precipitation, which accurately represent the main statistics of observed data for different
climates. MASCV was programmed in MATLAB and is capable of simulating with various
parameters for both occurrences and temperature. Moreover, we proposed a multisite
multivariate stochastic model in which different wet thresholds and nonparametric trans-
formations can be applied. A relevant advantage is that we modeled continuously for the
whole series. The method developed in this paper generates constant day-to-day rainfall
occurrences and temperature.

2. Materials and Methods

The purpose of generating long series of temperatures is to evaluate the effects of
hydrologic changes [4,9] and analyze different scenarios, such as environmental, agricul-
tural [28], or climate change. We focused on developing long multivariate synthetic series
of maximum and minimum temperature. The lag-one Markov model has been applied
for plenty of weather modelers due to its accurate representation of dependence [12]. Said
model is based on terms of occurrence given the previous day. We modeled the rainfall
occurrence and the temperature separately (Figure 1), so we defined the model according
to Equation (1):

Yt = TtXt (1)

where Tt is the temperature model, Xt is the precipitation occurrence model, and Yt is the
whole stochastic process.

2.1. Multivariate Precipitation Occurrence (Dry–Wet)

First, we must determine whether a day is wet or dry according to the day prior. We
used a bivariate function (Xt), and if the precipitation is greater than a given threshold,
the t day is wet (Xt = 1); otherwise, the t day is dry (Xt = 0). The first-order Markovian
approach only depends on the previous day, whether it was wet or dry. The high-order
Markov model has been notably studied [54,55] and is recommended for vast persis-
tence [10]. The two- and three-order Markov models significantly improve the fit [22,56,57].
In other cases, the results are nearly equivalent to the first-order Markov model [54]. One
disadvantage of the high-order Markov model is the increase in the number of parame-
ters [28]. The threshold for precipitation occurrence could change according to different
data. This depends on the minimum value of precipitation amount that the station in the
study can report. Common threshold values are 0 [9,21,29,30], 0. [22,26,58], 0.2 [25], 0.254,
and 0.3 mm [18]. We used the wet thresholds (0.001, 0.01, 0.1, and 0.25) and identified the
ones that provided the best results. A disadvantage in the case of stochastic modeling is
the limited data from the historical period.

For the occurrence process, we used the Wilks approach [12]. The conditional prob-
abilities for a one-order Markov model are a dry day followed by a wet day, p01, a wet
day followed by a wet day, p11, a wet day followed by a dry day, p10, and a dry day fol-
lowed by a dry day, p00. The conditional probabilities have a complementary relationship
between them.
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Figure 1. Proposed methodology for multisite multivariate precipitation occurrence, daily and
annual temperatures.

The normal critical probability (pc) depends on the previous day (Xt−1); if it is dry,
pc = p01, otherwise pc = p11. The boundary for the precipitation occurrence process is
determined for a random spatially correlated normal matrix nt = ∅−1ut [0, 1]. Only one
day is computed if the random variable is equal to or less than a critical probability.

i f nt ≤ pc ∴ Xt = 1; nt > pc ∴ Xt = 0 (2)
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The transition probability vectors vary on a monthly and daily scale. Therefore, the
occurrence process was simulated through different parameters. The lag-one Markov
model with two states enables the interaction between wet and dry days. Moreover, it
allows the residence time and periodicity in both the first (dry) and second (wet) states.

For the daily occurrence process, one of the disadvantages is the limited number of data,
primarily for dry seasons and arid river basins. These data limit the quality of results, and it
is common to model the transition probabilities monthly or biweekly [9,22,26,27,30,31].

Our approach was to simulate the transition probabilities on a daily scale, similar to
Woolhiser and Pegram [59]. It is imperative to preserve most of the characteristics for days,
months, and years. The number of parameters increases from a monthly to a daily scale;
therefore, it is essential to determine the most efficient model. In this study, we focused on
the relevance of evaluating different analyses, which depend on the number of parameters,
p01τ = P01

∣∣
τ

and p01τ = P11
∣∣
τ

.
Due to the distinct temporal scales of analysis, the number of parameters will increase

according to the variability of the occurrence process. The transition probabilities follow
a uniform distribution applicable in the case of univariate modeling. However, in the
case of multivariate modeling, a transformation to the normal distribution is more effi-
cient [15]. A transformation was performed from uniform to normal, pn11τ = ∅−1(p11τ)
and pn01τ = ∅−1 (p01τ). The spatial correlation between probability vectors with lag-k is
shown in Equation (3):

rk
(i,j)(p) = (pn11

(i,j) − pn01
(i,j))

k
i 6= j (3)

where rk
(i,j) is the spatial correlation with lag-k, pn11

(i,j) is the normalized probability vector
of two consecutive days of rainfall occurrence, and pn01

(i,j) is the normalized probability
vector of a dry day followed by a wet day. Based on these vectors, a spatially correlated
matrix was proposed in Equation (4):

Mk =




rk
(1,1)(p) · · · rk

(1,n)(p)
...

. . .
...

rk
(n,1)(p) · · · rk

(n,n)(p)


 (4)

where Mk is the cross-correlation matrix. The Cholesky factorization was used to determine
the spatial dependence of the series [15,19,60]. For a positive definite matrix, the Cholesky
factorization is a lower triangular matrix, D = [M][M]′. Multiplying this lower triangular
matrix by a random normal matrix results in a random spatially correlated normal matrix,
n, in Equation (5):

n = [M]′[N] =




M′(1,1) · · · 0
...

. . .
...

M′(n,1) · · · M′(n,n)


x




N(1,1) · · · N(1,m)

...
. . .

...
N(n,1) · · · N(n,m)


 (5)

where n is the random spatially correlated normal matrix, M
′(n,n) is the lower triangular

matrix for n series, and N(n,m) is the random normal matrix for n series and m days. We
used this matrix to generate multivariate precipitation occurrences. In addition, they were
used to determine synthetic wet and dry days.

2.2. Multivariate Maximum and Minimum Temperature

The maximum and minimum temperatures were modeled using the original maxi-
mum temperature data and the difference between the maximum and minimum temper-
ature, Trange in Equation (6). The target of modeling the temperature range is to avoid
negative values of the synthetic series [61].

Trange = Tmax− Tmin (6)
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The temperature process is commonly modeled considering normal distribution. How-
ever, according to our experience, in some cases, the maximum temperature and tempera-
ture range follow a normal distribution. We focused on the nonparametric transformations.
These are practical solutions to model the temperature [25,56,62].

Seasonal variability is one of the most significant characteristics of the stochastic
temperature process. The daily temperature shows recurrent changes within the year.
Parameters such as the mean and standard deviation are periodic components [1]. The
periodicity was analyzed through the Fourier series [59]. The number of parameters is
reduced when these are periodic or seasonal. The Fourier series [23,59] is present in
Equation (7). Several harmonics were used to represent 90% of the explicative variance of
the observed data.

v = u +
h

∑
j=1

[
Aj cos

(
2πτ

w

)
+ Bj sin

(
2πτ

w

)]
(7)

where u is the normalized temperature mean for wet (µ1τ) and dry days (µ0τ) and standard
deviation for wet (s1τ) and dry days (s0τ). A and B are the Fourier coefficient vectors,
j is the harmonic, and h is the total number of harmonics, equal to (w − 1)/2 for even
numbers and equal to w/2 for uneven numbers. For example, in a daily simulation, we
have 365 days, and the maximum number of harmonics is 182. Important harmonics
were selected according to the accumulated period-gram, defined as the ratio of mean
standard deviation (MSD) of the harmonics to the observed series. We accepted 90% of
the original data representation to select the significant harmonics applied at the mean,
standard deviation, and transition probabilities (µ1τ , µ0τ , s1τ , s0τ , p01τ , p11τ).

Once the periodic component was modeled, we standardized both temperatures
(maximum and range), allowing the analysis of temporal dependence. In addition, a stan-
dardized series served to generate residual series. Standardization removes the periodicity
of the series based on the mean (µ1τ , µ0τ) and standard deviation (s1τ , s0τ). We determined
the standardized series (zτ) at a daily scale, canceling the mean and standard deviation of
the normalized series according to Equation (8):

zτ =
yτ − µ0τ

s0τ
; yτ = 0; zτ =

yτ − µ1τ

s1τ
yτ > 0; (8)

A multivariate autoregressive model, MAR(1), with constant parameters was applied,
in which the best fit needs to represent the conditions of temporal and spatial depen-
dence. The first order of the multivariate autoregressive model was determined based on
the Cholesky factorization. In the same way, temporal dependence was conditioned by
precipitation occurrence in Equation (9):

[φ]1 = M0M1; [φ]0[φ]0T = M0 − [φ]1M1
T ; [φ]0[φ]0T = D (9)

where [φ]1 is the lag 1 autoregressive coefficient matrix, [φ]0 is the lag 0 autoregressive
coefficient matrix, [φ]0T is the transposed matrix, M0 and M1 are the cross-correlation
matrices, and D is the positive definite matrix. Finally, we determined the white noise
based on the multivariate autoregressive coefficient matrix using Equation (10):

ετ = [φ]0
−1({z}τ − [φ]1{z}τ−1

)
(10)

2.3. Evidence for the Goodness of Fit

The residual series must satisfy the residual normality (ε ∼= 0, sε
∼= 1), which is

neither correlated (rk(ε) ∼= 0) nor has a biased judgment (gε
∼= 0). The probability of

the residual series is verified by the confidence interval limits as well as for the mean,
skewness coefficient, standard deviation, and correlations to corroborate the residual series
normality. It must satisfy the mean and correlation of the entire series within 95% of the
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confidence limits [63]. In the case of the standard deviation of the chi-squared test, it should
comply with a 95% confidence for a normal distribution [64]. The skewness coefficient of
the residual series must be within the confidence limits [63]. Another evaluated aspect in
the stochastic process is the Akaike information criterion (AIC) [65].

2.4. Generation of Multivariate Synthetic Series

For the generation of synthetic series, the stochastic model is divided into two states,
the precipitation occurrence (Xt) and the maximum temperature and temperature range
(Tt). The precipitation occurrence will appear if the transition vector (pc) is a random
normally distributed number greater than the random normal distribution (nt); in other
words, if nt ≤ pc, it reaches the wet state. The stochastic temperature process starts
by generating a random number with a normal distribution (ε) and then obtains the
coupled standardized series (zt) and corrected using the annual low-frequency multivariate
stochastic model. Finally, the inverse normalization (yτ

−1) was used.
The obtainment of synthetic series through the stochastic process allows for validating

the developed model. The multivariate series were generated with the same characteristics
as the observed data. The statistical parameters of both series were assessed and should not
be significantly different; consequently, the developed model can be validated. The main
metrics were determined. Mean absolute error (MAE), root mean square error (RMSE), and
percent error estimate (PE) were defined.

2.5. Study Area

The Jucar River Basin is part of the Jucar Basin Agency (JBA), located in the eastern por-
tion of the Iberian Peninsula, Spain. The basin covers an area of approximately 22,291 km2.
Information regarding the zone was obtained from the official website of the confederation
(www.chj.es). The most relevant surface runoff is the Jucar River, which captures the surface
runoff of all sub-basins [66]. The most significant reservoirs are Alarcon (1088 hm3) and
Contreras (852 hm3). The river rises from the Tragacete (1600 ms.n.m) and subsequently
arrives at reservoirs Toba, Alarcon, Molinar, and Tous. The study area’s limit ends where
the Mediterranean Sea is reached (Figure 2). Rainfall in the Jucar River Basin has decreased
since 1980 [67,68]. Temporal and spatial variation characteristics of meteorological elements
in the Jucar River Basin are presented in Appendix A (Figures A1–A4).
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The Jucar River Basin is divided into five sub-basins: Alarcon, Contreras, Molinar, Tous,
and Huerto Mulet. The precipitation data for the study area were obtained from the Spain
02 database [69], a regular grid (20 × 20 km). The historical data have information from
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1950 to 2015. The observed data were interpolated using the inverse distance weighting
(IDW) method to generate a rainfall and temperature series for each sub-basin. The IDW
method is one of the most common interpolation techniques [46,70–72].

3. Results

According to the information of the Jucar River Basin, the average annual temperature
was between 17.5 ◦C (Contreras) and 21 ◦C for the years 1950–2015. In the present study,
we defined four wet day thresholds (0.001, 0.01, 0.1, and 0.25 mm). The range of rainy
days from October to May was between 7.3 and 12.17, and for June to September, the
average precipitation occurrences were between 2.4 and 8.72 days. The months with few
precipitation occurrences were between June and September, an important factor because
there were little data for the stochastic modeling process. In the case of the months from
October to May, the information was essential for the stochastic modeling to perform with
better confidence.

3.1. Multivariate Occurrence Synthetic Series

The occurrence process was developed through a Markov model of two states. The
transition probability vectors were identified, and the daily noise level can be observed.
The transition probabilities for all sub-basins p01τ were in a range of 0.05 (minimum) to
0.45 (maximum). On the other hand, the transition probabilities p11τ were between 0.3 and
0.95 (according to Figure 3).
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The transition vectors were evaluated with four parameters for the Fourier series. The
objective of analyzing the transition probability vectors was to select the best representation
of the wet–dry event. Simulations were carried out from two harmonics in the Fourier
series to reach approximately 90% of the explicative variance. However, the process of
rainfall occurrence can be represented by only a few parameters [9,22,29,73]; therefore,
using few harmonics is acceptable. The frequency of the precipitation for four parameters
represents a smoothed probability of occurrences, and with these few parameters, a good
approximation of p11τ and p01τ can be obtained (Figure 3). On the other hand, the confi-
dence limits for the vectors p11τ and p01τ were determined from the approximation to the
t-distribution with 95% confidence. For the Fourier probability p01τ , four main patterns
were observed, predominantly the Fourier probability increase in March, April, and May,
after a decrease in June and July, an increase again in August and September, and finally,
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from October to February, the smoothed Fourier probabilities were nearly constant. A
similar pattern was present for the Fourier probability p11τ , which had no considerable
fluctuations between October and May, decreases in June and July, and increases once
more in August and September. These Fourier series are sufficient for proper stochastic
performance of rainfall occurrence.

3.2. Stochastic Multisite Multivariate Temperature Series

In the case of the maximum temperature and temperature range, the skewness co-
efficient of the historical series was near normal. For this reason, we did not consider
normalization. Normality was assessed based on the skewness coefficient test for the
95% confidence limit. The daily temperature skewness coefficient was near the normal
distribution, according to the confidence limits (Figure 4).
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Figure 4. Skewness coefficient (daily average) of normalized series (66 years): (a) maximum tempera-
ture and (b) temperature range. Anderson confidence limits (95%).

Fourier series was applied to the mean and standard deviation (µτ , sτ), and the
objective was to reduce the number of parameters (Figure 5). The series were carried out
with four parameters, which provide a good fit for the model for the Jucar River Basin.
In Figure 5, we can observe the mean, standard deviation, and the Fourier series for the
stochastic models for wet and dry days with a 95% confidence interval. The results from
fitting Fourier series for the model in Figure 5a,b reflect the smoothed mean for wet and dry
days. In case of the standard deviation presented in Figure 6a,b, the fitted curve includes
the original data noise.

We calculated the standardization based on the normal series, mean, and standard
deviation of the fitted series. The objective of the standardization is to remove the series
periodicities and to obtain a mean of zero and variance of one. On the other hand, the
standardized series were determined by the multivariate autoregressive model. For the
Jucar River Basin, we defined the autoregressive parameters and residual series for different
wet thresholds.

We selected the wet threshold of 0.001 for determining the temperature multisite mul-
tivariate stochastic generator. First, we evaluated the normality of the residual series. Mean,
deviation, skewness coefficient, and lag-one autocorrelation were calculated (Table 1).
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Table 1. AIC for different wet thresholds and stochastic occurrence model.

Sub-Basin
Wet Day Threshold (mm)

0.001 * 0.01 0.10 0.25

Alarcon −590.2 −515.3 −362.2 −310.9
Contreras −681.5 −551.2 −459.5 −421.3
Molinar −562.3 −420.7 −261.2 −215.1

Tous −587.4 −463.6 −380.5 −340.0
Huerto Mulet −610.5 −554.7 −467.3 −427.3

* Best performance.

The autocorrelation for this series was also determined within the 95% confidence
limits for both models’ maximum temperature and temperature range. In addition, we
applied different tests to confirm that the residual series can be considered a normal
distribution with a mean of zero, variance of one, and skewness coefficient of zero (Figure 7).
The residual series of the two developed stochastic models were very similar.
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The residual series of the MAR(1) for the maximum temperature had a mean near
zero, the variance was around 0.85, the skewness coefficient was between −0.245 and
0.026, and the lag-one autocorrelation was around ±0.01. The skewness coefficient and
autocorrelation are within the confidence limits, the average is within 99% of the confidence
limits, and therefore we assumed the normality of the residual series (Table 2).

Table 2. Normality analysis for residual series for M1 and M2 (wet threshold 0.001).

Model Statistical/Sub-Basin Alarcon Contreras Molinar Tous Huerto Mulet

1 * Mean −6.7 × 10−5 −2.0 × 10−4 7.5 × 10−5 −2.6 × 10−4 5.6 × 10−5

Deviation 0.842 0.821 0.834 0.812 0.850
Skewness coefficient −0.185 −0.242 −0.245 −0.089 0.026

Lag-one autocorrelation 0.005 0.003 0.009 −0.041 −0.042
AIC −8369 −9508 −8814 −10,152 −7958

2 ** Mean −3.09 × 10−4 −5.98 × 10−4 −6.83 × 10−5 −2.70 × 10−4 −2.65 × 10−4

Deviation 0.937 0.920 0.942 0.900 0.942
Skewness coefficient −0.009 −0.038 −0.044 0.112 −0.028

Lag-one autocorrelation 0.036 0.043 −0.030 −0.082 −0.039
AIC −6471 −8233 −5957 −10,294 −5896

* Maximum temperature. ** Temperature range.

On the other hand, the series was also considered stationary since it complied with
∅1 < 1 for all sub-basins. The AIC value was −10,152 with the examined parameters.

Similar results were obtained for the stochastic model for temperature range: the
residual series had a mean of around −0.0005, variance of at least 0.92, skewness coefficient
between −0.044 and 0.112, and lag-one autocorrelation of about ±0.08 (Figure A5). For this
stochastic model, we assumed normality and stationarity of the residual series as well as for
stochastic Model 1 (Table 2). According to the AIC, the stochastic maximum temperature
model (M1) was similar to the stochastic temperature range (M2) for all sub-basins.

3.3. Generation of Multivariate Synthetic Temperature Series

For the process of generating synthetic series, 1000 series were created considering
the same length as the sample (66 years). The statistical sum, mean, standard deviation,
and skewness coefficient were determined for both the synthetic and historical series.
The occurrence depends on the correlated multivariate precipitation probabilities, critical
probability, and normal distribution. Multivariate synthetic series of rainfall occurrences
were generated for the five sub-basins using the stochastic process. The same occurrence
series was applied for both Model 1 (M1) and Model 2 (M2) to avoid the bias from the
MAR(1) model.

For the historical series, the sum of the number of rainy days in 66 years was calculated.
In the same way, the monthly occurrences of the synthetic and the historical series were
determined. Several statistical tests were performed to validate that the generated series are
not substantially different from the historical period. The tests applied to the precipitation
occurrence were the k-s test to verify that the results come from the same distribution,
the t-test for equality of means, and the Wilcoxon test for equality of medians. The tests
were applied considering a 95% reliability, and it was concluded that there is insufficient
evidence to refute that the generated precipitation occurrences and historical series, both
monthly and daily, are significant.

The scatter plots of daily mean occurrences (66 years) of historical versus simulated
data can be seen in Figure 8 for the five sub-basins. The daily rainfall occurrences varied
±5 days from the 1:1 line (Figure 8a). The monthly rainfall occurrences varied by±0.2 days.
Monthly occurrences provide better results than daily occurrences due to the number of
parameters applied (four in total). We used the same simulated rainfall occurrence (four
parameters) to generate the maximum temperature and temperature range.
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Figure 8. Scatter plots for rainfall occurrence (mean 66 years observed and 1000 simulated series)
for the five sub-basins: (a) daily mean for each calendar day (green) and (b) monthly mean for each
calendar moth (green) for M1 and M2.

The statistical mean, standard deviation, and skewness coefficient of daily data were
computed. The MAR(1) for mean daily temperatures had a deviation of ±1 ◦C, which
is more accurate than the stochastic Model 2 for the daily average temperature range
(±1.5 ◦C). Model 1 achieved better results on both a daily and a monthly scale (Figure 9).
The observed and generated series were not significantly different according to the k-s test,
which indicates that they originate from the same distribution, in addition to sharing the
same average according to the t-test and the same median according to the Wilcoxon test.
These tests were applied to the daily average temperatures and the monthly averages. The
best approximations were provided for the monthly data with higher reliability. Moreover,
the RMSE, MAE, and PE (Table 3) display the adequate performance of Model 1 (M1) and
Model 2 (M2).
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Table 3. Performance analysis for Model 1 and Model 2.

Parameter
Model 1 (M1) Model 2 (M2)

1 2 3 4 5 1 2 3 4 5

RMSE (◦C/day) 1.881 1.107 1.392 1.156 0.767 1.786 1.019 1.290 1.078 0.780
MAE (◦C/day) 1.503 0.820 1.092 0.896 0.572 1.455 0.773 1.021 0.852 0.582

PE (%) 0.043 0.027 0.017 0.031 0.021 0.035 0.049 0.040 0.025 0.012

The f-test was used for the standard deviation (Figure 10), which indicates the equality
of deviations for both models and showed minor differences. Both the maximum temper-
ature and temperature range performed well in the daily standard deviation. It is worth
mentioning that the deviations were overestimated concerning the observed data. For a
monthly scale, both models effectively reproduced the standard deviation.

Water 2022, 14, x FOR PEER REVIEW 14 of 22 
 

 

  

(a) (b) 

Figure 9. Scatter plots for observed mean versus generated temperature (mean 66 years observed 

and 1000 simulated series) for two models: (a) maximum temperature for each calendar day (blue) 

and (b) temperature range for each calendar day (red). 

  

(a) (b) 

Figure 10. Scatter plots for observed standard deviations versus generated (mean 66 years observed 

and 1000 simulated series) for two models: (a) maximum temperature for each calendar day (blue) 

and (b) temperature range for each calendar day (red). 

Regarding the skewness coefficient, MAR(1) was underestimated for the observed 

data. The same dispersion was present for the two models (M1 and M2) and for the daily 

and monthly averages (Figure 11). 

Even though the normalization’s function can be adjusted on average for the confi-

dence limits, this offers a variation for the observed skewness. The skewness of observed 

daily data was between −1.2 and 1.2, and the simulated was between −0.5 and 0.5. There-

fore, the multivariate stochastic model underestimated the skewness coefficient by less 

than −0.5 and more than 0.5. On a monthly scale, the skewness of the simulated precipita-

tion distribution was underestimated similarly to the daily scale. 

Figure 10. Scatter plots for observed standard deviations versus generated (mean 66 years observed
and 1000 simulated series) for two models: (a) maximum temperature for each calendar day (blue)
and (b) temperature range for each calendar day (red).

Regarding the skewness coefficient, MAR(1) was underestimated for the observed
data. The same dispersion was present for the two models (M1 and M2) and for the daily
and monthly averages (Figure 11).

Even though the normalization’s function can be adjusted on average for the confi-
dence limits, this offers a variation for the observed skewness. The skewness of observed
daily data was between −1.2 and 1.2, and the simulated was between −0.5 and 0.5. There-
fore, the multivariate stochastic model underestimated the skewness coefficient by less than
−0.5 and more than 0.5. On a monthly scale, the skewness of the simulated precipitation
distribution was underestimated similarly to the daily scale.

For monthly temperature, the multisite multivariate model preserved the main statis-
tics. Figure 12 presents all months for the 5 sub-basins and 66 years, in which the temporal
and spatial dependence was adequately performed. For maximum temperature, the values
were between 5.5 and 35 ◦C, with variability of ±2 ◦C (Figure 12a). In the case of tempera-
ture range, the values were between 5 and 25 ◦C with the same variability. For the monthly
mean of all sub-basins, the error was only ±0.1 ◦C.
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Figure 12. Monthly temperature for all sub-basins (mean 66 years observed and 1000 simulated series)
observed and simulated for (a) maximum temperature for each month (blue) and (b) temperature
range for each month (red), for 66 years, 5 sub-basins, and all months.

The multisite multivariate stochastic autoregressive Model 1 was selected to compare
temperature years with regard to the observed data. The stochastic model can represent
the temporal tendency of the results, providing an adequate indication of the yearly
temperatures (Figure 13). Due to the design of the multisite multivariate stochastic model
corrected by the annual model, we can simulate low frequency. The interannual variability
represents the autocorrelation and cross-correlations of observed data (Table 4). The results
indicate that variability was well-reproduced for the stochastic process. Moreover, the
maximum and minimum values were performed adequately. For annual temperature,
the stochastic model can produce the variability of both temperatures. The variability
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expressed for the model (sim) was greater than the observed data. Accordingly, the MAR(1)
can define the maximum and minimum temperature values.
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Figure 13. Yearly temperature for all sub-basins observed (obs) and simulated (sim) for (a) maximum
temperature and (b) temperature range. (1) Alarcon, (2) Contreras, (3) Molinar, (4) Tous, and
(5) Huerto Mulet. The outliers are plotted individually using the ‘+’ marker symbol.

Table 4. Annual cross-correlation matrix for all sub-basins.

Maximum Temperature Cross-Correlation

Sub-Basin Alarcon Contreras Molinar Tous Huerto M * Alarcon * Contreras * Molinar * Tous * Huerto M

Alarcon 1.000 1.000
Contreras 0.833 1.000 0.834 1.000
Molinar 0.760 0.797 1.000 0.765 0.819 1.000

Tous 0.239 0.492 0.598 1.000 0.243 0.489 0.610 1.000
Huerto M 0.223 0.371 0.390 0.802 1.000 0.230 0.377 0.398 0.800 1.000

Temperature Range Cross-Correlation

Sub-Basin Alarcon Contreras Molinar Tous Huerto M * Alarcon * Contreras * Molinar * Tous * Huerto M

Alarcon 1.000 1.000
Contreras 0.719 1.000 0.718 1.000
Molinar 0.891 0.592 1.000 0.895 0.590 1.000

Tous 0.563 0.494 0.754 1.000 0.565 0.499 0.759 1.000
Huerto M 0.504 0.331 0.710 0.918 1.000 0.502 0.333 0.708 0.917 1.000

* Simulated cross-correlation.

4. Discussion

The multisite multivariate autoregressive stochastic model (MASCV) was developed
using MATLAB and was verified for different stations within the same basin with similar
results. A Markov model of two states for the multivariate precipitation occurrence and
the conditioned multivariate stochastic model for temperature can represent spatial and
temporal parameters to study on-site conditions on daily, monthly, and annual scales. The
Markov model of two states with few parameters has been able to depict the precipitation
occurrence process. On the other hand, the temperature was accomplished considering
normal distribution. Therefore, a reduction of parameters was achieved in generating the
temperature. This represents a critical simplification in obtaining the daily temperature,
which according to the performed parameterization, provides acceptable results for the
Jucar River Basin. Moreover, it simplifies the complexity and reduces computational time.

The stochastic multivariate autoregressive model with few parameters adequately
reproduced the daily and monthly temperatures. The tests showed insignificant differences
between the observed and generated temperatures.
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The primary objective of this stochastic model is to determine the monthly runoff and
incorporate it into the integrated water resources management. It is noteworthy that this
validation is performed on a monthly scale. Therefore, MASCV must be able to represent
the statistics of the precipitation occurrence and temperatures in different timescales. The
developed stochastic MAR(1) adequately reproduced the main statistics.

5. Conclusions

The multivariate autoregressive model of climate variables (MASCV) is a daily stochas-
tic weather generator, programmed in MATLAB, with several user advantages, i.e., wet
day selection, number of harmonics for each case, normalization type, and synthetic series
to generate and automatize graphs. Moreover, MASCV can generate extreme temperatures
over extended periods of time. This is unique in stochastic weather generators because only
a few can reproduce extreme events. Furthermore, MASVC can be used for bias correction
for climate change studies, in this case, perturbing parameters according to climate models.
Finally, the results of MASCV can be incorporated for environment analysis.

MASCV presents the completion of a multivariate model for precipitation occurrences,
i.e., a Markov model of two states and the dependence of temperature with rainfall occur-
rence process. This multisite multivariate stochastic model is meant to become a beneficial
tool in a simplified manner, which may allow the incorporation of different climatic and
hydrological variables.

A Markov model of first order can reflect the time dependence of the precipitation
occurrence, preserving comparative statistical data with the historical series. Moreover, the
spatial and temporal structure using a stochastic multisite multivariate model and coupling
daily and annual temperature correction reproduced adequately in the different timescales.

Models M1 and M2 were suitably performed for different temperatures. For wet
and dry days, the multisite multivariate stochastic model can adjust to real dependence
with precipitation occurrence and spatial and temporal dependence of daily, monthly, and
annual temperatures.

This approach greatly simplifies the process of simulating precipitation, which implies
a considerable advantage and versatility over other stochastic generators. The reduction
of parameters is an important factor addressed in this approach for determining the
temperature and considering continuous modeling for days, months, and years.
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Appendix A

The spatial and temporal variation of the characteristics of meteorological elements in
the Jucar River Basin are presented in Figures A1–A4, showing the spatial distribution of
annual elements based on coordinates and 16 meteorological stations in Jucar River Basin.
The grid interpolation uses inverse distance weight interpolation (IDW). Figure A5 shows
the daily lag correlation for residual series.
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Abstract: Predicting streamflow in intermittent rivers and ephemeral streams (IRES), particularly
those in climate hotspots such as the headwaters of the Colorado River in Texas, is a necessity for all
planning and management endeavors associated with these ubiquitous and valuable surface water
resources. In this study, the performance of three deep learning algorithms, namely Convolutional
Neural Networks (CNN), Long Short-Term Memory (LSTM), and Self-Attention LSTM models, were
evaluated and compared against a baseline Extreme Learning Machine (ELM) model for monthly
streamflow prediction in the headwaters of the Texas Colorado River. The predictive performance of
the models was assessed over the entire range of flow as well as for capturing the extreme hydrologic
events (no-flow events and extreme floods) using a suite of model evaluation metrics. According
to the results, the deep learning algorithms, especially the LSTM-based models, outperformed the
ELM with respect to all evaluation metrics and offered overall higher accuracy and better stability
(more robustness against overfitting). Unlike its deep learning counterparts, the simpler ELM model
struggled to capture important components of the IRES flow time-series and failed to offer accurate
estimates of the hydrologic extremes. The LSTM model (K.G.E. > 0.7, R2 > 0.75, and r > 0.85), with
better evaluation metrics than the ELM and CNN algorithm, and competitive performance to the
SA–LSTM model, was identified as an appropriate, effective, and parsimonious streamflow prediction
tool for the headwaters of the Colorado River in Texas.

Keywords: LSTM; CNN; ELM; temporary rivers; hydrological extremes

1. Introduction

The cessation of flow for at least a portion of a year is a defining characteristic of inter-
mittent rivers and ephemeral streams (IRES) [1]. Different forms of IRES, from headwater
streams to the tributaries of mountainous rivers and snow-fed streams, make up about 60%
of the river network in the United States [2,3] and more than 50% of all streams globally [4].
These streams play a crucial role in their landscape’s environmental and hydrological
connectivity [5–7]. The transition between wet and dry states in IRES is an influential
factor in promoting the peak biodiversity of riparian vegetation [8], controlling the kinetics
of biogeochemical cycles [9], and channel geomorphology [10]. Additionally, IRES offer
beneficial ecosystem services like forage, nesting sites, and transportation routes for both
aquatic and terrestrial wildlife [11–15]. Further, there is significant interest in utilizing IRES
systems to address anthropogenic water supply needs [16].

Flow in IRES is primarily influenced by soil and precipitation characteristics, both of
which are heavily affected by changes in climatic patterns [4,17,18]. Many perennial streams
are projected to become ephemeral as a result of climate change [19–21]. Hence, reliable
models are required to capture the link between meteorological variables (e.g., precipitation,
temperature) and streamflow in IRES. Accurate streamflow prediction in IRES settings
is an essential step for including these increasingly necessary water resources in various
planning and management endeavors, from floodplain design and ecosystem conservation
efforts to long-term supply management and climate impact analysis.
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The headwaters of the Colorado River in Texas, a vital source of water for the state’s
agricultural, municipal, and industrial sectors, is an intermittent stream. The Colorado
River in Texas flows through several major reservoirs throughout the state and serves
a variety of purposes, such as power plant operations, drought mitigation, and flood
control [22]. Thus, accurate streamflow models are required to support the decision-making,
planning, and management endeavors associated with this valuable water resource. Further,
the Colorado River originates in the semi-arid lands of West Texas (Llano Estacado), known
to be a climate hotspot that has already been and is projected to be heavily influenced
by precipitation and temperature variability [23]. Therefore, the flow dynamics in the
headwaters of the Colorado River are likely to change, and developing effective hydro-
meteorological models that are capable of investigating the relationship between climatic
variability and IRES streamflow is a necessary step for supporting the active management
of this headwater stream. Despite the importance of the Colorado River in Texas, there
have not been any attempts to develop appropriate models for predicting streamflow in its
intermittent headwaters. This study seeks to fill this gap and answer some key questions
that could provide valuable guidelines for the Colorado River, as well as for numerous
other headwater streams with similar circumstances.

Accurate estimation of the two types of extreme hydrological events that bookend the
IRES flow spectrum—extremely high flows (large floods) and no-flow events—is essential
for modeling and understanding IRES flow dynamics. During flooding events, IRES
transport significant amounts of water and materials; thus, forecasting these extreme high
flows is critical for flood control and management applications [24]. Flow cessation (no-
flow conditions) occurs when water in the stream channel becomes disconnected and
exists in discontinuous pockets. The dryness promotes local biodiversity by providing
habitat and food for semi-aquatic and terrestrial biota [11]. Ultimately, periodic flow
intermittency helps improve biota resilience to drying and the development of new survival
and adaptation mechanisms [25]. Further, the no-flow periods are essential from the
water supply perspective, as they could serve as indicators of water stress and drought,
particularly in headwater streams. Reliable streamflow prediction models for IRES must be
capable of accurately capturing both extreme high flows and no-flow events.

Predicting streamflow in IRES is challenging; IRES flow often varies by several orders
of magnitude [26]. Moreover, in arid and semi-arid regions, IRES flow shows considerable
monthly variability, ranging from very high flowrates in one month to complete flow
cessation in the next [27,28]. Due to these natural characteristics of IRES flow data and
factors such as the paucity of gauging stations and long-term reliable flow records in
numerous headwater and low-order streams, many common rainfall-runoff approaches
may not be applicable for IRES streamflow prediction [29]. A variety of data-driven
machine learning techniques have been proposed as alternatives to model IRES flow
over the last two decades: Cheebane et al. [30] used a stochastic autoregressive approach
to reproduce monthly intermittent streamflow. Aksoy and Bayazit [31] generated daily
flowrates of an intermittent stream using a Markov chains-based model and reported
that their model is capable of preserving flow characteristics (e.g., hydrograph ascension
and recession, mean, serial correlation). For two stations in the European part of Turkey,
Kisi [32] proposed that the use of a conjunction model of discrete wavelet transform and
artificial neural networks (ANN) yields more accurate 1-day-ahead streamflow forecasts
than a single ANN model. Makwana and Tiwari [33] also recommended the use of wavelet
transformations to improve the predictive ability of ANNs, in forecasting daily intermittent
streamflow data in Gujarat, India’s semi-arid region, particularly over extreme values.
Mehr [29] combined a genetic algorithm (GA) with gene expression programming (GEP)
and reported that it outperformed a set of classic genetic programming-based models in
modeling monthly IRES streamflow in Shavir Creek, Iran. Badrzadeh et al. [34] concluded
that coupling wavelet pre-processing analysis with the adaptive neuro-fuzzy inference
system (ANFIS) for modeling IRES flow series in Western Australia could significantly
improve the performance of ANFIS models over daily, weekly, and monthly temporal scales.
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Rahmani-Rezaeieh et al. [35] used an ensemble gene expression programming (EGEP)
modeling approach for 1-day- and 2-day-ahead streamflow forecasting in Iran’s Shahrchay
River and reported competitive performance, sometimes with higher accuracy, compared to
regular ANN. Mehr and Gandomi [36] developed MSPG-LASSO, a new multi-stage genetic
programming technique coupled with multiple regression LASSO methods, for univariate
streamflow forecasting in Turkey’s Sedre River and found it superior to a series of models
from the genetic programming variant family. Kisi et al. [37] investigated the predictive
abilities of the Extreme Learning Machines (ELM) model coupled with Discrete Wavelet
Transform for monthly intermittent streamflow forecasting and found it superior to regular
ANN models. Li et al. [38] devised a staged error model that treats zero flows as censored
data for hourly streamflow forecasting over 18 ephemeral streams in Australia. In one of
the most recent researches on IRES flow, Alizadeh et al. [39] developed an attention-based
Long-Short Term Memory (LSTM) cell deep learning (DL) model and examined it for one-
to seven-day-ahead predictions of daily flows for four basins in different climatological
regimes of the United States and reported accurate and promising results.

While the reported advancements have improved the forecasting abilities of IRES
systems, capturing the high variability in most intermittent flow series and modeling
their extreme hydrologic events is still challenging. The streamflow models introduced in
the literature tend to over-predict the low flow events and under-predict the high flows.
Further, in many of these models, lagged values of streamflow (i.e., the model’s output
at previous time-steps) are utilized as inputs, which severely restricts their application
for long-term forecasting, as propagating the prediction errors using endogenous lags
causes the accuracy of the prediction to deteriorate quickly [40]. Many water planning
and flood management activities (e.g., damage mitigation, food production, environmental
protection) associated with IRES, such as the headwaters of the Colorado River in Texas,
depend upon accurate streamflow forecasts with the longest possible lead time [36,41].
Therefore, flexible and exogenous (inputs independent of output) hydro-meteorological
models are required to model the flow dynamics in intermittent settings and deliver reliable
long-term streamflow predictions.

Following the most recent recommendations on modeling IRES flow data, the main
objective of this study is to investigate the application of deep learning algorithms for
predicting intermittent streamflow in the headwaters of the Colorado River in Texas. Three
models, namely a Convolutional Neural Network (CNN), a Long Short-Term Memory
(LSTM), and a Self-Attention LSTM (SA–LSTM) model, were chosen to represent deep
learning algorithms of different levels of complexity. An Extreme Learning Machine
(ELM) model was developed as a baseline shallow learning model for better comparisons,
and to highlight the impacts of the use of deep learning versus shallow learning models.
Considering the importance of the Colorado River for long-term water planning for the
state, the heavy influence of climate on flow generation in IRES, and the location of the
Texas Colorado River headwaters in a climate hotspot, this study adopted a monthly
timescale and focused on capturing the links between climate variables and streamflow.
This research seeks to answer the following questions about the intermittent headwaters
of the Colorado River in Texas: (a) What is the difference between the performance of the
deep learning algorithms and that of the baseline ELM model in terms of capturing the
hydrological extremes and the entire range of flowrates? (b) Are deep learning algorithms
appropriate for intermittent streamflow prediction? (c) How much complexity is warranted
for predicting intermittent streamflow using deep learning algorithms?

2. Materials and Methods
2.1. Study Area

As illustrated in Figure 1a, The Colorado River rises near the Texas–New Mexico
border (south of Lubbock, TX, USA) and flows southeast for 1560 km into the Gulf of
Mexico at Matagorda Bay, making it the longest and largest river by length and drainage
area in Texas [42,43]. Its drainage area, which is about 16 percent of the total area of Texas, is
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stretched from the dryer west side of Texas, with higher elevations and lower precipitation
rates, to the more humid and lesser-elevated southeast of the state (Figure 1b,c). The average
annual runoff of the Texas Colorado River reaches a volume of more than 2 billion cubic
meters near the Gulf of Mexico [44]. Several dams (e.g., the J.B. Thomas, E.V. Spence, and
O.H. Ivie) and lakes (e.g., the Texas Highland Lakes) along the Colorado River serve water
supply, flood mitigation, recreational, and energy production purposes. The headwaters of
the Texas Colorado River are in the High Plains level III ecoregion at an elevation of 1195 m
asl, where the annual average temperature is 13.9 ◦C, and the average yearly precipitation
is 40 cm [45–47].
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2.2. Data

Streamflow data of the headwaters of the Colorado River in Texas were accessed from
the closest USGS streamflow monitoring station to the point of origin (Station 08117995,
located near Gail in Borden County, TX, USA) and used for this study. This USGS station has
a drainage area of 1290 square kilometers and is located upstream of Lake J.B. Thomas, one
of the three reservoirs operated by the Colorado River Municipal Water District, supplying
water to the rapidly growing Midland–Odessa region in West Texas. Monthly streamflow
records were obtained from March 1988 to May 2022 [48], with a total of 0.5% (the equivalent
of 2 months) missing data. Kalman filtering was applied as an imputation technique to fill
these missing records based on the available data [49,50].

The streamflow records indicate that Texas Colorado River headwaters were dry for
127 months during the study period, making its intermittency ratio (ratio of the duration
of dry runs to the total duration of the study) equal 31%. The frequency of extreme high
flow events has increased in the stream over the last decade because of changing climatic
patterns. The station of interest has recorded three extreme flooding events (greater than
5 cubic meters per second) in the last six years, including the floods of September 2014
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(14.29 cubic meters per second) and May 2015 (20.10 cubic meters per second) that were
almost two and three times greater than the greatest previously recorded flood (7.45 cubic
meters per second in May 1992), respectively.

Climate variables were required to develop appropriate hydro-meteorological stream-
flow prediction models. Utilizing precipitation and evaporation data for modeling IRES
systems is recommended in the literature [51–54]. Monthly precipitation and tempera-
ture data were extracted for the location of the streamflow monitoring site and the same
410-month period (March 1988–May 2022) from PRISM [55]. The Thronthwaite method
was used to calculate potential evapotranspiration based on temperature records [56]. A
summary of the collected data is provided in Table 1.

Table 1. Summary of the hydro-meteorological data used for this study.

Minimum Median Mean Maximum

Flowrate (m3/s) 0 0.013 0.377 20.102
Precipitation (mm) 0 29.8 42.0 251.2

ET (mm) 2.1 64.8 80.6 221.33

PPT and PET autocorrelation function (ACF) plots (Figure 2) revealed that the first two
lags correlated positively with observed precipitation and evapotranspiration fluxes. This
finding implies that the previous two months’ rainfall and evaporative fluxes influenced
streamflow observations during any given month. Seasonality of rainfall and PET can
be seen in these plots, but higher lags were not taken into account due to the parsimony
principle [57].
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Correlation analysis between the climate variables (and their first two lags) and the
streamflow data (Figure 3) indicated the flowrate at any given month shows a strong
correlation with the observed precipitation in that month (r = 0.7) and moderate correlation
with the PET (r = 0.27) and the first lag of precipitation (r = 0.31) and PET (r = 0.24). The
second lags of precipitation and PET had weak correlations with streamflow (r < 0.2) and,
therefore, were not included in the final set of the inputs. All parameters were standardized
by subtracting the mean values and dividing them by the standard deviations so that the
scale effects were removed, and the impacts of outliers were minimized.
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2.3. Methods
2.3.1. Extreme Learning Machine

An Extreme Learning Machine is composed of three main layers: input, hidden, and
output layer, which employ various weights to convey information through the network
(Figure 4a). Huang et al. [58,59] suggested the ELM method in which the weights from the
input layer to the hidden layer are randomly assigned. ELM reduces the computational
time and enhances the generalization ability of the single-layer Artificial Neural Network
(ANN) model [58,60,61]. ELMs have gained popularity in the hydrologic literature [62–67]
and are established as fast and effective streamflow forecasting models [37,68–73].
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An ANN architecture consisting of one input layer and L hidden neurons with an acti-
vation function called g(x) and a bias term (B), is presented mathematically as Equation (1):

∑L
i=1 βigi

(
xj
)
= ∑L

i=1 βigi
(
wi.xj + Bi

)
= ok (1)

where wi is the vector weights that connect ith hidden neuron to the input neurons, βi is the
vector of weights connecting ith hidden neuron to the output neurons, ok is the kth output
vector, Bi is the bias regarding ith hidden neuron, and gi is the output of ith hidden neuron.
Moreover, the equation is written based on the assumption of the network being trained
using a dataset composed of N arbitrary patterns (Xi, Yi). Equation (1) can be written as
the following matrix [58,74,75]:

Hβ = T (2)

where,

H =




g1(w1.x1 + b1) · · · gL(wL.x1 + bL)
...

...
...

g1(w1.xN + b1) · · · gL(wL.xN + bL)


 (3)

β =




βT
1

.

.

.
βT

L




(4)

T =




tT
1

.

.

.
tT
L




(5)

In which H is the hidden layer output of the network.
The following equation provides the output weights between the hidden layer and

the output layer:
β̂ = H+ T (6)

77



Water 2022, 14, 2972

where H+ represents the Moore–Penrose generalized inverse of the hidden layer output
matrix H [74]. Based on what is presented in Huang et al. [58,59], in an ELM model wi
weights and βi bias are randomly assigned (based on a probability density function). Then,
the H matrix is calculated based on Equation (3), and finally, H+ can be calculated.

2.3.2. Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a specific architecture of neural networks
that is designed based on the weight sharing concept and employs convolution and pooling
layers [76–78]. The family of CNN models include one-dimensional CNN (Conv1D),
two-dimensional CNN (Conv2D), and three-dimensional CNN (Conv3D) models, and
their primary difference is in the structure of the model inputs [79]. A standard CNN
architecture consists of an input layer, an output layer, and a hidden layer that is composed
of a convolution layer, a pooling layer, and a fully connected layer (Figure 4b). A unique
feature of the CNN is that a given neuron is only connected to its nearby local neurons in
the previous layer. While the neurons in the convolution layer are fully connected to the
input layer neurons, they are not connected to all the neurons in the pooling layer.

Convolution and pooling layers, as the core building blocks in CNN, extract different
features from the input layer and convert them to small dimensions by performing convolu-
tion operations on the input layer and merging neuron cluster outputs into a single neuron.
The pooling mechanism significantly reduces the number of coefficients in the network and
makes the training (learning) phase of the CNNs more efficient, easier, and faster than the
regular ANN networks [79,80]. Following that, the fully connected layer flattens all feature
maps in a feature vector and uses them as input variables to make predictions [81,82].

The application of CNN models for streamflow prediction has received more attention
over the last few years, and they have been found to be relatively fast, accurate, and stable
alternatives among the growing family of deep learning algorithms [78,83–85].

Streamflow is a one-dimensional data; thus, for this study, a Conv1D model is adopted.
The application of a rectified linear unit (ReLU) activation function for the convolutional
layer is recommended to enhance the model’s ability to capture non-linearity [86]. The
mean squared error (MSE) was used as the loss function for the fully connected layer.

2.3.3. Long Short-Term Memory

Hochreiter and Schmidhuber [87] introduced the Long Short-Term Memory (LSTM)
model as a form of recurrent neural network. Contextual state cells are used in LSTM
models as either long-term memory cells or short-term memory cells, making them suitable
substitutes for representing sequential data [88,89]. The LSTM model’s architecture (shown
in Figure 4c) is made up of unique units (memory blocks) in the recurrent hidden layer.
Self-connected memory cells and multiplicative units implemented in the memory blocks
are utilized to store the network’s temporal state. The input, output, and forget gates, which
are multiplicative units, are in charge of managing the information flow. The following
equations are used in different LSTM cells:

Input Gate : it = σ(WiXt + Uiht−1 + bi) = σ(WiXt + Uiht−1 + bi) (7)

Forget Gate : ft = σ
(

W f Xt + U f ht−1 + b f

)
(8)

Output Gate : Ot = σ(WoXt + Uoht−1 + bo) (9)

Previous Cell State : C̃t = tanh(WCXt + UCht−1 + bC) (10)

Current Cell State : Ct = ft ⊗ Ct−1 + it−1 ⊗ C̃t (11)

HiddenState : ht = Ot ⊗ tanh(Ct−1) (12)

In which, it, ft, and Ot represent the input gate, forget gate, and output gate, respec-
tively. Wi, W f , and Wo stand for the weights connecting the input, forget, and output
gates with the input, respectively; Ui, U f , and Uo are the weights from the input, forget, and
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output gates to the hidden layer, respectively; bi, b f , and bo indicate the input, forget, and
output gate bias vectors, respectively. Ct is the current state of the cell and C̃t is the state
of the cell at the previous time. Moreover, ht refers to the output of the cell at the current
time [90,91]. Additionally, the dropout mechanism was used to enhance the generalization
of the model and avoid overfitting [92].

LSTM models have become extremely popular for modeling hydrological
time-series [93–96], in particular, streamflow prediction [97–102], primarily because of
their unique architectural design and abilities to model highly nonlinear sequential data.

2.3.4. Attention-Based Long Short-Term Memory

Attention is a deep learning strategy and can be viewed as essentially implementing a
neural network within another neural network to weigh various portions of a sequence
for relative feature importance [103,104]. Multiplicative self-attention, a special type of
attention, is used for the SA–LSTM model in this study (Figure 4d), which is the mechanism
of relating different positions of a single sequence in order to compute a representation of
the same sequence [39,105].

ht = tanh(WxXt + Whht−1 + bh) (13)

et = σ
(

Xt
TWaXt−1 + bt

)
(14)

at = so f tmax(et) (15)

The self-attention mechanism is known as an effective technique for improving LSTMs
and enhancing the model’s performance by “paying attention” and assigning attention
scores (weights) to each observation [106,107]. Attention-based LSTM models are among
the most recent developments in machine learning that have found application for stream-
flow prediction [39,108,109].

The first 75% of the period of study, from April 1988 until September 2013, was used
for the training phase. 25% of these 307 months was used as the evaluation phase to find
the best values for the hyperparameters of the models. The period from October 2013 until
May 2022 was used as the independent testing dataset. For this study, the pre-processing
(e.g., Kalman filtering, data standardization) and post-processing (e.g., model evaluation
metric calculations, visualizations) were done in R [110]. The models were developed and
run in Python [111]. 25% of the training dataset was used for the validation process, where
the best values for the hyperparameters (e.g., the number of hidden neurons, dropout rate,
learning rate, and number of epochs) were determined based on grid search.

2.4. Model Evaluation Metrics

Common guidelines for model evaluation (e.g., [112,113]) were utilized here to com-
pare the closeness of model predictions to observations over a broad range of statistical
measures. The following model evaluation metrics were used in this study:

• The Mean Absolute Error (MAE) and Root Mean Square Error (RMSE):

MAE and RMSE measure the errors associated with the low and high flowrates,
respectively, and together they support model comparison with respect to accuracy. MAE
and RMSE are calculated as:

MAE =
1
N ∑N

i=1|Si −Oi| (16)

RMSE =

√
1
N ∑N

i=1(Si −Oi)
2 (17)

where N is the number of observations, and Si and Oi are the simulated and observed
flowrates, respectively.

• The Index of Agreement (d):
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Developed by Willmott [114], the index of agreement is a standardized measure
between 0 and 1 and describes the degree of model prediction error. This index can
identify additive and proportional differences between observed and simulated means
and variances, but it should be noted that this index is extremely sensitive to extreme
values [115]. The formula for the index of agreement is as follows:

d = 1− ∑N
i=1(Oi − Si)

2

∑N
i=1
(∣∣Si −O

∣∣+
∣∣Oi −O

∣∣)2 (18)

where, O is the average of observed flowrates.

• The Pearson’s r (r):

Pearson [116] developed the Pearson (Product–Moment) correlation (r), which was
based on the work of others, including Galton [117], who first introduced the concept of
correlation [118,119]. The r coefficient is considered the most common measure of associa-
tion between variables and is widely used for describing linear relationships. Pearson’s r is
calculated as:

r =
∑N

i=1
(
Oi −O

)(
Si − S

)
√

∑N
i=1
(

Oi −O
)2

∑n
i=1
(

Si − S
)2

(19)

where, S is the average of simulated flowrates. There are guidelines in the literature to
interpret different ranges of r. According to Schober et al. [120], thresholds of 0.1, 0.39,
0.696, and 0.89 can be used to describe negligible, weak, moderate, strong, and very strong
correlations, respectively. It should be noted that extraordinarily high outliers (extreme
high floods in the case of this study) can have a huge effect on Pearson’s r [119].

• The Coefficient of Determination (R2):

The coefficient of determination describes how well observed outcomes are simulated
by the model, based on the proportion of total variation of outcomes explained by the
model [121].

R2 = 1− RSS
TSS

(20)

where RSS is the sum of squares of residuals and TSS is the total sum of squares.

• The Nash–Sutcliffe Efficiency (NSE):

The Nash–Sutcliffe efficiency (NSE) is a normalized statistic that measures the relative
magnitude of residual variance (“noise”) versus measured data variance [122]. The NSE is
computed using the following equation:

NSE = 1− ∑N
i=1(Si −Oi)

2

∑N
i=1
(
Oi −O

)2 (21)

The NSE varies between -infinity and 1, with NSE = 1 corresponding to an ideal match
between the model estimation and the observed data. While positive values of NSE are
generally considered “acceptable levels of performance,” a negative NSE score suggests
that the mean of the observed data is a better predictor than the model [113]. The NSE
is a reliable and widely used model evaluation metric in the field of hydrology [123,124].
According to Moriasi et al. [113] thresholds of 0.5, 0.65, and 0.75 can be used to rate
the model performance as “very good”, “good”, “satisfactory”, and “unsatisfactory”,
respectively.
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• The Kling–Gupta Efficiency (KGE):

The Kling–Gupta Efficiency (KGE) was developed initially by Gupta et al. [125] and
later revised by Kling et al. [112] to decompose the Nash–Sutcliffe Efficiency metric into
correlation (Pearson’s r), bias (the ratio between the mean of the simulated values and
the mean of the observed ones), and variability components to facilitate its use and pro-
viding more insight to model performance. Similar to the NSE, the KGE metric has been
increasingly used as a model evaluation metric in the hydrologic literature [126–130].

σo/µo

The KGE is computed as:
KGE = 1− ED (22)

ED =

√
(s[1] ∗ (r− 1))2 + (s[2] ∗ (vr− 1))2 + (s[3] ∗ (β− 1))2 (23)

where r is Pearson’s r, and s is a vector of length three which contains the scaling factor for
correlation, variability, and bias. Variability (vr) and bias (β) can be calculated as:

Variability Ratio (vr) =
σs/µs

σo/µo
(24)

Bias (β) =
∑N

i=1( Si −Oi)

∑N
i=1( Oi)

(25)

where σs and σo are the standard deviation of simulated and observed flowrates, and µs
and µo are the average values of simulated and observed flowrates, repextively. Knoben
et al. [131] showed that a KGE > −0.41 indicates that the model is more informative than
the mean of the observed data.

3. Results and Discussion
3.1. Predictive Performance over the Entire Range of Flowrates

A summary of the model evaluation metrics during the training and testing periods
is provided in Tables 2 and 3, respectively. The error indices, MAE, and RMSE, were
significantly lower for the deep learning algorithms against the ELM model. With almost
20% lower Pearson’s r value, 10% lower index of agreement, and almost 30% lower R2, the
baseline ELM model was outperformed by the more complex deep learning counterparts
during the testing period. According to the NSE scores, the deep learning models achieved
“very good” levels of performance (NSE > 0.75) against the unsatisfactory performance
of the ELM model (NSE < 0.5). All models achieved “skillful” predictions (KGE > −0.41);
however, the deep learners, particularly LSTM-based models offered better estimations
with lower biases and better variability ratios and, thus, considerably better KGE scores in
comparison to the ELM.

Table 2. Summary of model evaluation metrics during the training period.

ELM CNN LSTM SA–LSTM

MAE (m3/s) 0 0.02 0.04 0.04
RMSE (m3/s) 0 0.04 0.07 0.07

d 1 1 1 1
r 1 1 1 1

R2 1 1 0.99 0.99
NSE 1 1 0.99 0.99
KGE 1 0.98 0.99 0.99

A serious problem associated with utilizing artificial neural networks is overfitting
or poor generalizability, which occurs when the model performs well with the train-
ing data and fails to maintain the same performance quality on the independent testing
data [132–135]. A comparison of the metrics achieved by the four models during the train-

81



Water 2022, 14, 2972

ing and testing periods indicated that the ELM model exhibited the worst performance
decline from training to testing (substantially higher than the deep learning models). The
ELM model achieved the best scores during training (almost perfect with respect to all
metrics) and the worst scores during testing compared to the other models. Finding ELM
prone to overfitting is consistent with the previous reports of its application in literature and
is mostly due to the large number of hidden nodes required to capture complex non-linear
relationships [74,136,137]. A variety of contributing factors to the problem of overfitting
are stated in the literature: from architecture-related reasons (e.g., high model complexity,
an extensive number of hidden units) [138–140] to data-related reasons (e.g., noisy training
samples, under-sampled training data) [141–143]. Bejani and Ghatee [144] categorize meth-
ods for controlling overfitting as passive, active, and semi-active. The pooling mechanism
built into CNN [79] and the dropout mechanism [92] utilized with the LSTM and SA–LSTM
models belong to the category of active (regularization) and semi-active (dynamic architec-
ture), respectively. The results indicated that the applied overfitting control mechanisms
and architectural advancement of the deep learning models granted them an enhanced
ability to learn the information (input-output relationships) and distinguish the noise in
data during the learning (training) phase.

Table 3. Summary of model evaluation metrics during the testing period (the best performing model
is highlighted with respect to each metric).

ELM CNN LSTM SA–LSTM

MAE (m3/s) 1.15 0.51 0.49 0.47
RMSE (m3/s) 1.85 1.28 1.26 1.24

d 0.81 0.9 0.92 0.92
r 0.7 0.9 0.88 0.88

R2 0.49 0.82 0.78 0.77
NSE 0.47 0.75 0.76 0.76
KGE 0.48 0.63 0.7 0.73

While the metrics of the three deep learning algorithms were close (within a 10%
difference), SA–LSTM achieved slightly less errors and higher correlations, as reflected in
higher KGE scores. To further explore the streamflow predictions by the four algorithms,
their estimated flowrates are plotted against the observed values during the testing period
in Figure 5.

During the testing period, the streamflow monitoring station at the headwaters of the
Texas Colorado River recorded 35 dry months (no-flow), which is equivalent of 34% of the
testing period. Additionally, three relatively large flooding events (greater than 5 cubic
meters per second) were recorded that were greater than the highest previously recorded
flood at the station of interest. Given the limitation of data-driven models in predicting
beyond the range of training data, the first two large flooding events were expected to
be more challenging for all models. According to the results, the baseline ELM model
predicted a considerable number of physically unrealistic negative streamflow predictions,
mostly when the stream was dry (Figure 5a). Further, ELM severely underpredicted the
largest flood events. While the overall better performance of the deep learning algorithms,
previously discussed using the evaluation metrics, can also be seen with the time-series
plot, Figure 5b–d provide more insight into the differences between the CNN and LSTM
counterparts. Compared to the ELM model, the extent of negative flowrate estimates is less
severe with the deep learning models. Additionally, the more complex models provided
more accurate predictions of the extremely high flows. Based on the results, the LSTM and
SA–LSTM models were superior among the investigated algorithms as they captured the
extreme hydrologic events more accurately.
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3.2. Predictive Performance for the No-Flow Events

As discussed earlier, the distinguishing characteristic of IRES is the presence of no-
flow events (zero flowrate entries) in their flow time-series, and capturing these events is
both important and challenging. Figure 6 illustrates the flowrate estimations of the four
models for the cases when a no-flow event was recorded. While ideally, all the model
predictions should be on the horizontal line of 0, according to the results, none of the
investigated models in this study estimated an absolute zero flowrate. When predicting a
true zero flowrate, the models either exhibited over-estimation and predicted a positive
flowrate, or under-estimated the no-flow event and predicted physically unrealistic negative
flowrates. The inability to capture the no-flow events leads to an uncertainty concern for
the application of these streamflow prediction algorithms in IRES settings, and the extent of
over- and under-estimation errors (as measured by the MAE) can be viewed as a measure
of this uncertainty. The deep learning algorithms achieved closer values to zero when
predicting no-flow events with lower errors (MAE < 0.1 m3/s) in comparison to the ELM
model (MAE = 0.67 m3/s).

Table 4 summarizes the percentage of negative flowrate estimations by each model
during the testing period. Despite achieving a relatively low MAE, the CNN model
had the highest percentage of negative predictions, followed by the baseline ELM model.
However, the advanced architecture of the LSTM models, and particularly, utilizing the
attention unit, considerably reduced the extent of negative flowrate estimations. There
are a number of factors contributing to the limited predictive ability of these models in
estimating no-flow events.

From a hydrological perspective, the flow in headwater IRES systems tends to be
seasonal and is largely controlled by overland flows following rainfall or snow-melt event.
In arid and semi-arid regions, water tables tend to be deep, and the river systems are
hydraulically disconnected from the water-bearing subsurface system [145]. Flow cessation
(i.e., no-flow conditions) begins as water in the stream channel becomes disconnected
and is present in discontinuous pockets. In the absence of precipitation, slow-moving
water paths (e.g., groundwater discharges), or anthropogenic discharges (e.g., wastewater
discharge from municipalities), the IRES dries up. Eventually, the intermittent headwater
stream translates to ephemeral flow conditions, and the disconnected parcels of water and
the exposed soils will continue to undergo evaporation until the complete flow cessation
happens, resulting in no-flow conditions. As the mechanisms of flow and no-flow regimes
are controlled by different hydrological processes, the assumption that they arise from a
single underlying distribution is perhaps the main limitation of current data-driven models.

Further, as the streamflow prediction models try to match both zero and extremely
high flows using a limited set of calibration parameters, they underestimate the high
flows and overestimate the no-flow events. Therefore, the results from such models must
be post-processed to induce intermittency. A cut-off threshold is often subtracted from
the predicted flows to simulate intermittent flow conditions [146]. This approach, while
pragmatic, is also subjective, and requires a careful assessment by experts and a detailed
understanding of the surface and subsurface hydrological and geological conditions, which
may not be known with certainty, even in well-characterized streams.

Table 4. Summary of the percentage of negative flowrate estimations by each model during the
testing period.

ELM CNN LSTM SA–LSTM

% of negative flowrates 36% 45% 30% 21%

Thus, even though the deep learning models, particularly the LSTM models, out-
performed the baseline ELM model and estimated considerably fewer negative flowrate
estimations, there is still room to improve the performance of IRES streamflow prediction
models and develop algorithms capable of accurately capturing no-flow conditions.
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3.3. Predictive Performance for the Extreme High Flow Events

The errors associated with the flowrate estimations of the four models for the three
extreme flooding events are summarized in Table 5. For the 2021 flood, which was relatively
similar to the 1992 flood included in the training data, and for the 2015 flood, the highest
recorded flowrate in the history of the Texas Colorado River headwaters, the LSTM and
SA–LSTM models offered the most accurate estimates among the investigated algorithms.
The baseline ELM model was outperformed by the deep learning algorithms, with almost
50% underestimation of the largest three extreme flood events.

85



Water 2022, 14, 2972

Table 5. Summary of estimation errors for each model for the three highest flowrates during the
testing period.

Error in Flood Estimation% ELM CNN LSTM SA–LSTM

September 2014 −47% −37% −39% −39%
May 2015 −42% −43% −29% −24%
June 2021 −56% −25% +6% +6%

To further explore the predictive ability of the models of interest for extreme high
flows, their performances were compared for the top 30% of high flow events (all the flow
events that were greater than or equal to the 70th quantile of all positive flowrates). MAE,
RMSE, and KGE metrics were computed (Figure 7) for the four algorithms over extreme
high flow estimations.
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Considering the MAE and RMSE metrics (Figure 7a,b), it is clear that the deep learning
algorithms achieved similar estimation errors, which were lower (~0.8 cubic meters per
second) than the baseline ELM model. Thus, the deep learning models were identified as
appropriate tools for extreme high flow estimation in the headwaters of the Colorado River
in Texas and were advantageous compared to the shallow learning ELM counterpart.

A comparison of the KGE scores showed the advantage of the more complex LSTM
models (K.G.E. > 0.65) in capturing the extreme high flows compared to the ELM and
CNN algorithms (KGE < 0.55). As KGE is a composite metric that accounts for correlation,
bias, and variability, it was concluded that the more advanced architecture and complex
algorithm of the LSTM units were better alternatives for capturing the extreme high flows
in the intermittent headwaters of the Colorado River in Texas.

There are two major limitations to the predictive ability of the data-driven models for
estimating extreme high flow events, particularly in an IRES setting. First, as discussed
earlier, the investigated data-driven models assume that the entire IRES flow data arise
from a single distribution, and fitting a curve in the presence of numerous zero flow entries
curtails the predictive performance of the models for the extreme high flowrates, resulting
in underestimation of these events.

Second, the flow generation process in IRES is highly climate-driven, and changes in
climatic patterns are likely to cause unprecedented flow events (e.g., record-breaking floods,
prolonged dry spells) in such streams. This is exemplified by the case of the 2014 and 2015
floods in the headwaters of the Colorado River in Texas, where they broke the previous
flood record by twice the magnitude. In such cases, to achieve an accurate streamflow
estimation, the model must make a prediction outside its valid domain. The extrapolation
problem or severe deviation of model performance when the inputs are dissimilar to the
training data is a well-known weakness of the data-driven models, even the more complex
deep learning algorithms [147–149]. According to the results, utilizing the more advanced
LSTM deep learning models yielded more accurate estimates for the extrapolation cases,
making them more reliable alternatives for modeling intermittent headwaters in the face
of climate change. However, further research on methods to address the extrapolation
problem, removing the burden of the no-flow events on extreme high flow prediction, and
reducing the uncertainty associated with extreme flow analysis of IRES is needed.

4. Summary and Conclusions

Reliable streamflow prediction of intermittent rivers and ephemeral streams, such as
the headwaters of the Colorado River in Texas, is an essential requirement for a variety of
planning and management tasks associated with these streams, from drought analysis to
flood warning systems, supply allocation, and riparian ecosystem conservation. In this
study, the application of advanced deep learning algorithms, namely CNN, LSTM, and
SA–LSTM models, were compared against a baseline ELM model for hydro–meteorological
modeling and monthly streamflow prediction at the headwaters of the Texas Colorado
River, located in a climate hotspot and exposed to changes in precipitation and temperature
variability. The performance of these algorithms was evaluated using a suite of model
evaluation metrics and compared over the entire range of flow, as well as for the no-flow
events and extreme high flowrates. Here is a list of the major findings of this study for
intermittent streamflow prediction at the headwaters of the Texas Colorado River:

• While all the investigated models offered skillful streamflow predictions (as measured
by the KGE score above−0.41), overall, the deep learning models clearly outperformed
the baseline ELM model with respect to all evaluation metrics. The more advanced
models better captured the flow dynamics in the IRES setting and were found to be
appropriate tools for streamflow prediction at the site of study.

• None of the investigated data-driven algorithms were able to capture absolute zero
flowrates. However, deep learning models, more specifically LSTM and SA–LSTM,
estimated closer values to zero and predicted considerably less unrealistic negative
flowrates.
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• Deep learners also offered more accurate predictions of the extreme high flows, with
lower RMSE and MAE errors and higher correlations and KGE scores in comparison
to the ELM.

• With respect to the principle of parsimony, the LSTM model is the most appropriate
model among the considered alternatives as it outperformed the ELM and CNN
models with considerable higher performance metrics and achieved relatively similar
results to the SA–LSTM model, despite not having the attention unit and being a
slightly simpler methodology.

• LSTM and SA–LSTM models outperformed their counterparts when challenged with
the extrapolation problem for the unprecedented record-breaking flood events of 2014
and 2015.

• Despite its simplicity and fast speed, the ELM model was found to provide unreliable
streamflow estimations, and its application is not recommended for the studied stream,
particularly because it exhibited the most severe underestimation of the extreme
high flows.

• The ELM model was found to be prone to overfitting and learning the noise in the
training data, which yielded noticeably lower quality of performance during the
independent testing period.

• The CNN model, while achieving better evaluation metrics than the baseline ELM
model, predicted a large number of negative flowrates and failed to provide accurate
estimates of the extreme high flows. Hence, the application of the CNN algorithm is
not recommended for the stream of study.

• The SA–LSTM, as the cutting-edge alternative and the most complex tool among the
investigated models, offered the best performance in capturing the extreme ends of
the IRES streamflow spectrum: no-flow events and extreme floods.

• The pooling mechanism in CNNs and the dropout mechanism for the LSTM-based
models were found to be effective in considerably lowering the extent of performance
loss from training to testing and controlling overfitting.

According to the results of this study, deep learning algorithms are powerful and
effective tools for predicting streamflow in the headwaters of the Colorado River in Texas.
The layered architecture and advanced algorithm of these models allow them to model
various portions of the IRES flow series, including the extreme hydrologic events, with
higher accuracy, enhanced reliability, and a considerably lower extent of overfitting. Deep
learning streamflow prediction models offer valuable information about IRES flow dynam-
ics to support various management and planning efforts associated with these growingly
important surface water resources. However, modelers and other groups of users should
be cautious with the estimations of these data-driven models due to their limitations,
such as their inability to capture absolute zero flowrates or their failure to maintain high
performance when applied to data dissimilar to the training set (e.g., an unprecedented
flood event). Such limitations introduce uncertainties that should be considered when
applying data-driven models and interpreting their results, regardless of how advanced
their architecture may be. Further research is required to develop methodologies that can
capture the complex streamflow generation and cessation processes in IRES, tackle the
extrapolation problem with minimal performance loss, and provide reliable intermittent
streamflow prediction. Additionally, increasing the quality and quantity of available hy-
drologic and meteorologic data in IRES sites, such as the headwaters of the Texas Colorado
River, can significantly enhance the performance of data-driven models and lead to more
effective water planning in these usually water-scarce regions.
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Abstract: As demand for more hydrological data has been increasing, there is a need for the de-
velopment of more accurate and descriptive models. A pending issue regarding the input data of
said models is the missing data from observation stations in the field. In this paper, a methodology
utilizing ensembles of artificial neural networks is developed with the goal of estimating missing
precipitation data in the extended region of Chania, Greece on a daily timestep. In the investigated
stations, there have been multiple missing data events, as well as missing data prior to their installa-
tion. The methodology presented aims to generate precipitation time series based on observed data
from neighboring stations and its results have been compared with a Multiple Linear Regression
model as the basis for improvements to standard practice. For each combination of stations missing
daily data, an ensemble has been developed. According to the statistical indexes that were calculated,
ANN ensembles resulted in increased accuracy compared to the Multiple Linear Regression model.
Despite this, the training time of the ensembles was quite long compared to that of the Multiple
Linear Regression model, which suggests that increased accuracy comes at the cost of calculation time
and processing power. In conclusion, when dealing with missing data in precipitation time series,
ANNs yield more accurate results compared to MLR methods but require more time for producing
them. The urgency of the required data in essence dictates which method should be used.

Keywords: rainfall time series; artificial neural networks; Multiple Linear Regression; Chania

1. Introduction

The successful development of reliable models for predicting the status of water
resources of a particular region is inextricably linked to the quantity and quality of the
climate and hydrological data used [1]. One of the most critical pieces of data for such a
study is the available rainfall data in the area of interest [2]. The possibility of errors or gaps
within an available rainfall data time series is real and may be due to errors in the measuring
instruments, a possible instrument failure, or an extreme weather event. Therefore, the
development of a model capable of accurately simulating, or even complementing, a time
series of rainfall data is necessary.

The importance of rainfall data availability is inarguable in hydrological modelling
as these data are an essential input parameter in almost any approach. Previous research
has supported the notion that the traditional statistical methods for infilling (imputing)
missing data may be inefficient for small temporal and spatial scales [3,4]. Thus, an
indicator of the success of the model is its outperformance over standard interpolation
methods. Such practices have become more nuanced over the years, specifically with the
incorporation of weighting factors that compensate for the variation between stations due
to the morphological features of each case study [5].

When looking at the recently published scientific literature, Artificial Neural Networks
have shown encouraging results in modeling nonlinear problems, such as hydrological
processes [6]. They are able to recognize strong seasonal patterns without the need for
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preprocessing raw data to remove outliers, and there is solid evidence that supports the
accuracy of their prediction [7]. A work similar to the current article has been conducted
using meteorological data from the internet, with the intent of forecasting future rainfall
using multi-layer perceptron (MLP) with back propagation and optimization algorithms [8].
In another work, the MLPs are used for forecasting future precipitation using rainfall
data from nearby weather stations as inputs [9]. As an alternative method for monthly
rainfall prediction, it has been suggested that the use of ANNs with wavelet regression
provides more accurate results compared to models using ANNs, which implies the need
for optimization [10]. An alternative to MLPs is Long Short-Term Memory networks, which
are a class of recurrent neural networks that have shown promising results in estimating
runoff from rainfall. With respect to the problem at hand, the selected neural networks
provide a high degree of regression ability. Using recurrent networks, like those used in
rainfall runoff modelling [11], would not have a physical meaning, since the relationship
between inputs and outputs (daily rainfall values) does not include a temporal delay. Other
techniques for filling in missing data in the field of hydrology include K-nearest neighbors
(KNN), adaptive neuro-fuzzy inference systems (ANFISs) and random forest regression
(RFR) [12–14], but these go beyond the scope of this work and could be considered for
future research. Regarding the number of inputs, large numbers of different inputs do not
guarantee more accurate results. A genetic algorithm can improve the process of selection
when aiming for forecasting, but in this work, in order to reduce computational demands
and given the nature of the network, another optimization method was chosen [15]. Apart
from genetic algorithms as optimization techniques, others exist, such as particle swarm,
cuckoo search, and bat- or kidney-inspired algorithms, depending on the level of strictness
demanded [16]. In this paper, optimization is achieved through the use of a competitive
algorithm in the creation of each ensemble, corresponding to each combination of missing
data from the observation stations. Artificial intelligence tools have been implemented in
the past in different scientific fields, from filling in spatially and temporally missing data
by using augmented interpolation [17] to using photonic neural networks analysis for the
changing morphology of an area [18]. In regions with high unpredictability due to extreme
weather conditions, ANNs have been successful in forecasting rainfall [19]; given this fact,
ANNs might perform even better in regions with strong seasonal patterns and a temperate
climate, such as Crete. In large areas with varied topography, proximity of stations does
not always guarantee a correlation between observed rainfall values, especially if the
stations belong in two different hydrological catchments [1]. In the current case study, the
area is hydrologically homogenous with only a small increase in precipitation at higher
elevations [20]. In addition, fluctuations between extreme values can be smoothed out
by classifying data either spatially [21] or based on intensity [22], which implies training
and using multiple ANNs. Multiple ANNs with targeted training working on their own
niche outperform an all-purpose ANN trained with the whole data set, with differences
being dependent on the physical problem [23]. As hinted previously, multiple ANNs
creating an ensemble might outperform a singular one by minimizing the occurrence of
local minimums and individual biases [24]. The most simplified approach to composing an
ensemble of neural networks is averaging their results using simple or weighted averages.
Previous research has also proposed that the structure of the ANN ensemble can itself
become the input of a general regression neural network [25]. This technique can exploit
the variability of results produced by biased individuals and increase overall accuracy. In
addition, it utilizes a full set of ANNs in which there may be individuals that produce error-
increasing results. In order to address this, it is suggested to develop competitive algorithms
where ANNs or ensembles are compared to each other and the best-performing method
ends up being used for predictions [26]. In the same manner of thinking, elimination of
the least significant input variables can be performed in an ensemble by considering the
correlation coefficient, which has been mostly applied to climatic variables in forecasting
rather than regression-based forecasting [27]. One approach to creating an ensemble with a
limited data set is to alternate between training and testing data sets during the training
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period and eventually average out the ensemble outputs [28]. Another issue arising when
working with ANNs, especially ensembles, is the network architecture, since it can greatly
impact the performance; in most cases, an optimization algorithm is developed since there
is no standard and optimal architecture is defined by trial and error [24]. Finally, one
optimization technique which borders on architecture modification is the dropout method
which randomly turns off units and their connections during training [29], which shows
that random-based optimization might produce adequate results.

This paper aims to develop a methodology to estimate missing daily precipitation
values from weather stations. Five weather stations monitoring rainfall in the prefecture of
Chania, Greece, were used as a case study. This work focuses on the comparison of ANN
ensembles based on multi-layer perceptrons and the more commonly used multiple linear
regression (MLR) for completion of time series of daily rainfall data. This way, the results
of the ANNs are compared to a technique that is standard practice in the field (MLR) [13].
In this approach, the best ANN from each ensemble imputes the missing data values to end
up with a completed dataset for all stations. It is important to state that classification based
on different combinations of missing data (henceforth called cases) adds to the accuracy
of the model in general, since the ANNs are specialized in each case. This would not be
feasible if modeling was done by creating a single ensemble for all stations, or an ensemble
for each station. The respective MLR results are calculated as a baseline for comparison.

2. Materials and Methods
2.1. ANN and MLR Creation

The proposed methodology starts from a dataset with missing rainfall data for some
stations and results in two completed datasets from the ANN ensembles and the MLR. The
first step of the algorithm is to check every date containing recorded data. If a daily dataset
has no missing values, then it is included in the dataset which will be used for training and
validation of the ANN ensembles and validation of the MLR model. Otherwise, it is added
to the dataset meant for imputing. It is important at this point to state that if a daily dataset
has no recorded data at any of the stations, then imputation is unfeasible with the proposed
methodology, primarily because completion of the time series occurs on a daily timestep
by correlating the missing data with the observed data. In addition, a precipitation event
is not dependent on a past precipitation event, and since rainfall is the sole input in this
model, it was deemed both unnecessary and accuracy-decreasing to impute the time series
by correlating data from datasets that correspond to different dates. This is the reason why
the completed time series span from the first recorded dataset up to the current day and
not further into the past or future.

The outcomes of the separation are two datasets: a complete and an incomplete one.
The full daily datasets will be used for the training and validation of the ANN ensemble.
Due to the different cases of missing data, it was deemed necessary to create multiple ANNs
(multiple layer perceptron) that are specialized to each case, since inputs and outputs for
each case differ, which implies a different topology for each case. The inputs and outputs
are always daily rainfall values from weather stations, and for each different combination
of missing data, the stations with observed values are used as input nodes and the stations
with missing values are used as output nodes. In order to increase the accuracy of the model
altogether, for each case an ensemble of 10,000 ANNs with one hidden layer was trained,
in which the daily datasets for training and validation were randomly selected from the
full set. With the use of a competitive algorithm, only one ANN—the best-performing one,
according to its test error value—was selected to give outputs, using MATLAB’s ANN
tool version 2017b. According to the literature [30,31], one hidden layer is sufficient and
might also outperform ANNs with multiple hidden layers when used for regression. The
competitive algorithm selects the best-performing ANN based on training error and the
results are produced solely based on that ANN. The use of ensembles instead of one single
ANN addresses any concerns regarding the reliability, performance, and behavior of the
proposed approach. The calibration (training and validation) dataset was 80% of the full
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available dataset with complete records, and the testing dataset consisted of the remaining
20% for all ANNs. After the training and validation are conducted, the ensembles are ready
to complete the time series. Similarly, the MLR functions are created by the training and
validation dataset for each case. After both processes have completed the time series, all
negative values that are generated are turned into zeroes.

The whole process is graphically represented in Figure 1 below.

Figure 1. Flowchart of the methodology.

2.2. Model Evaluation

The validity of the results of both models is verified by the calculation of the correlation
coefficients between the target and the simulated value. The value of the Nash–Sutcliffe
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coefficient is calculated, which can take values from minus infinity to one (−∞ to 1),
based on which the validity of the model is determined, with a value of one (1) indicating
complete agreement between the simulated values given by the model and those observed
by the stations. According to the literature, an NSE index value above 0.7 corresponds to a
very good estimation [32]. Finally, the Root Mean Square Error is extracted from the model
results in each of the cases considered [32].

2.3. Case Study

In the prefecture of Chania, near the northern coast of Crete, there are five automatic
weather stations at a relatively close distance (approximately 5 km) to each other, as shown
in Figure 2.

Figure 2. Weather station locations.

Regarding the locations of the stations as shown in Figure 2, the overall highest value
of rainfall, historically, has occurred at Alikianos station, while the lowest has occurred at
Platanias station. Platanias station has the lowest recorded altitude at 12 m, while Alikianos
station is located at 95 m. Chania station (137 m) is located at a higher altitude than
Alikianos station (95 m). Although it would be expected that a station at a higher altitude
has a greater amount of rainfall, it was observed from the data that Alikianos station has a
greater amount of rainfall. The reason for this might be that Alikianos station is furthest
from the sea compared to all the other stations considered and is situated at the foot of the
Lefka Ori. Platanias, on the other hand, is located a short distance from the sea and at a
low altitude.

Table 1 contains a summary of the recorded daily precipitation values available from
the automatic weather station NOANN network [33] (in total 15,040 records).
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Table 1. Daily data availability and initial operating day of each rainfall station.

Station Altitude (m) Number of Data Start of Data

Alikianos 95 3044 1 September 2012
Chania 137 5448 1 February 2006

Chania (Center) 7 3745 1 October 2010
Platanias 12 2011 1 July 2015

Stalos 93 792 1 November 2018

Based on these records, a timeline showing the availability and gaps in the datasets
for the study period is shown in Figure 3. In total, 759 days had a complete dataset and
were used for calibration and 4689 days had at least one missing value.

Figure 3. Timeline of daily rainfall data availability and gaps in the datasets (red color indicates gaps).

The recording of the data used in this work starts with the creation of Chania station
on 1 February 2006. This means that for the period from 1 February 2006 to 30 September
2010, the available rainfall data originates only from Chania station. As of the next day, on
1 October 2010, when Chania station (Center) was put into operation, the recorded rainfall
data come from the two stations previously mentioned. On 1 September 2012 the Alikianos
meteorological station was put into function, therefore the recorded rainfall data come
from the above three meteorological stations. To continue, on 1 July 2015, the recording
of rainfall data from Platanias meteorological station starts, which means that the model
input data comes from four stations. Finally, on 1 November 2018, the last station, Stalos,
was put into operation. Therefore, for the next period, we have logging data from all five
stations until 31 December 2020. It is worth noting that the period of time that a station is
in operation is not always the same as the period of time that it records data, as there may
be losses due to errors in the measuring instruments, a possible instrument failure, or an
extreme weather phenomenon. This is clearly shown in Figure 3 of the paper.

2.4. Different Combinations of Stations Missing Data (Cases)

There are five rainfall stations in our study and each one of them has a different
installation date, from which point on data are available. In addition, there are periods
when, for different reasons (maintenance, power cuts, malfunction), one or more daily
values are missing from the time series. The values missing for each day, together with the
values available, can be categorized into different cases, in order to organize and group the
different dates based on different calculation needs.

Figure 4 shows all the possible combinations of stations having or missing a daily
record. By having all the possible cases identified, the algorithm is able to create ensembles
for cases that have not occurred yet.

In the full, observed dataset, 9 cases occur out of a total of 32 that were theoretically
possible. Specifically, the included cases are Case 2, Case 3, Case 6, Case 11, Case 14, Case
15, Case 22, Case 24, and Case 29. In three cases, namely Cases 2, 3 and 6, one station had a
missing value; in three other cases, namely Cases 11, 14 and 15, two stations had missing
values; in two cases, Cases 22 and 24, three stations had missing values; and in the last case,
Case 29, four stations had missing values. The numbering of each case is not derived from
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the numerical order, but from the corresponding case, as shown in Figure 4. For example, in
Case 2 the input precipitation data are the values from Chania, Chania (Center), Platanias
and Stalos stations, and the output is the precipitation value for Alikianos station.

Figure 4. Possible combinations of availability of daily rainfall data. Red indicates that the station in
question has no recorded rainfall value for the day of recording. Cases occurring in the dataset are
shown in bold.

3. Results

After completing a full run of the algorithm built using the proposed methodology,
the incomplete time series of each station receives model-generated data for the full period
in which at least one of the five stations has an observed value. In the following charts
(Figure 5), the results of the two methodologies are shown for all stations. In the left column,
the model-generated values of the ANN have an orange color, and in the right column,
the model-generated values of the MLR have a red color, while the observed values in all
charts are in a blue color.
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Figure 5. Observed values (blue), and model-generated values from the ANNs (orange) and MLR
model (red).

To compare the two methods, three different metrics were used, the root mean square
error, the Nash–Sutcliffe efficiency coefficient, and the correlation coefficient. The results
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are shown on a per-case basis, as the two methods might show different sensitivities to
missing data. Comparative tables at the end of each section summarize the results of the
testing dataset.

Concerning the computational effort and time needed for the two methods, the ANN
did take a considerably large amount of time to optimize its structure (almost 36 h on a
PC (Personal Computer) with an Intel i7 8th generation processor). On the other hand, the
MLR was significantly faster, and required only a few minutes to run.

3.1. Root Mean Square Error (RMSE)

The RMSE index indicates the deviation between the observed and simulated values
and indicates whether the data are clustered around the line of best fit. The models
calculate the Root Mean Square Error (RMSE) for each of the cases considered. Regarding
the Artificial Neural Network model, the best value is presented in Case 15 and shows an
error equal to 1.16 mm, while the worst value is presented in Case 29, with an error value
equal to 2.42 mm. The corresponding results of the Multiple Linear Regression model are
shown in Case 3 with a value of 2.37 mm and Case 2 with a value of 6.43 mm. Overall, the
Artificial Neural Network model shows lower errors, ranging from 42% to 72.6%, compared
to the Multiple Linear Regression model.

The following Table 2 contains all the above results aggregated as follows:

Table 2. Root Mean Square Error of testing dataset.

Case
RMSE [mm]

ANN MLR

Case 2 1.76 6.43
Case 3 1.22 2.37
Case 6 1.22 2.92

Case 11 2.30 4.99
Case 14 1.24 3.03
Case 15 1.16 2.46
Case 22 2.19 4.47
Case 24 1.83 3.16
Case 29 2.42 4.94

3.2. Nash–Sutcliffe Efficiency

The Nash–Sutcliffe coefficient can take values from minus infinity to one (-∞ to 1),
where for these values the following applies:

• If NSE = 1, then there is a complete match between the simulated values given by the
model and those observed by the stations;

• If NSE = 0, then the values simulated by the model give the same result as if the
average of the observed values of the stations were used as the forecast model for each
time point;

• If NSE < 0, then the model is practically unusable, as the values simulated by it give
a less accurate result than if the average of the observed values of the stations were
used as a predictive model for each time point.

With respect to the calculation of the Nash–Sutcliffe coefficients, the Artificial Neural
Network model shows, again, higher overall values ranging from 2.1% to 28.7%. For
the Artificial Neural Network model, the best value of the Nash–Sutcliffe coefficient is
presented in Case 15, with a value of 0.989, while the worst value is presented in Case 29,
with a value of 0.911. The corresponding results for the Multiple Linear Regression model
appear in Case 15 with a value of 0.968 and in Case 29 with a value of 0.708.

Similarly, the Nash–Sutcliffe Efficiency values for all cases are presented in the follow-
ing Table 3 which contains all the results in an aggregated way:
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Table 3. Nash–Sutcliffe Efficiencies of testing dataset.

Case
Nash–Sutcliffe Efficiency Simulated Precipitation

Value Station(s)ANN MLR

Case 2 0.967 0.803 Alikianos
Case 3 0.975 0.937 Chania
Case 6 0.981 0.882 Stalos

Case 11
0.954 0.803 Alikianos
0.957 0.882 Stalos

Case 14
0.976 0.908 Platanias
0.969 0.845 Stalos

Case 15
0.989 0.968 Chania (Center)
0.973 0.871 Stalos

Case 22
0.934 0.802 Alikianos
0.957 0.908 Platanias
0.927 0.844 Stalos

Case 24
0.975 0.954 Chania (Center)
0.957 0.869 Platanias
0.943 0.781 Stalos

Case 29

0.911 0.708 Alikianos
0.971 0.933 Chania (Center)
0.968 0.843 Platanias
0.959 0.748 Stalos

The results show a clear increase in the performance of the Nash–Sutcliffe efficiency
when using the ANN instead of MLR. The ANN’s performance was also higher when
fewer stations were available compared to its MLR counterpart, which had a declining
performance especially when one or two stations were available. It is also clear that there
is a great correlation between the Chania (Center) and Chania stations, so when one is
available, the results for the other are always very good. This is confirmed by the results of
Case 3 where only Chania station is missing and from the results of Cases 15, 24 and 29,
where station Chania is available, and Chania (Center) is missing.

3.3. Coefficient of Correlation (R)

The Coefficient of Correlation (R) indicates the proportion of variance of the dependent
variable derived from the independent variable. A value of one (1) is the maximum value
the coefficient can take, which indicates that there is a complete match between the two
compared values.

Regarding the calculation of the Correlation Coefficient (R) for each case, the Artificial
Neural Network model shows higher overall values ranging from 5.4% to 29.7%. More
specifically, the best value of the above coefficient for the Artificial Neural Network model
is presented in Case 15, with a value of 0.99274, while the worst value is presented in Case
6, with a value of 0.93957. The corresponding results for the Multiple Linear Regression
model appear in Case 3, with a value of 0.93740 and in Case 29, with a value of 0.74782.
Similarly, the Coefficients of Correlation for each case are presented in the following Table 4
which contains the aggregated results:

Table 4. Coefficients of Correlation of testing dataset.

Case
Coefficient of Correlation (R)

ANN MLR

Case 2 0.98353 0.80337
Case 3 0.98777 0.93740
Case 6 0.99066 0.88198

Case 11 0.97737 0.76844
Case 14 0.98639 0.87493
Case 15 0.99101 0.90800
Case 22 0.96842 0.78287
Case 24 0.97975 0.86749
Case 29 0.96998 0.74782
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4. Discussions

This work developed and compared two models for the simulation of precipitation
values, which simulated and accurately completed five time series of precipitation data
from five meteorological stations in the region of Chania, Crete. The first model was devel-
oped using an Artificial Neural Network ensemble approach (similar to other previously
published works [6,10,27]), while the second model was developed using the Multiple
Linear Regression method, both in a MATLAB environment.

It is observed that the four meteorological stations that are relatively close to the
sea, while at the same time are relatively close to each other (Chania, Chania (Centre),
Platanias and Stalos), show similar results for their total rainfall values (Figure 5). From
a hydrological standpoint, both models present results that are in accordance with the
theoretical expectations; the simulated values at the weather stations near the seafront are
always lower when compared to those of stations at higher altitude. In addition, there is a
small decline in the precipitation values along the west to east axis, which is expected since
most of the water load in the clouds is released when they reach the coastal fronts coming
from the Western Mediterranean.

Looking at the ANN results, a couple of simulated values might draw the attention
of the reader as being exceptionally high and possibly outliers (e.g., October 2006 and
January 2019). Nevertheless, the scientific literature and the observed values from already
installed stations confirm that these were months with extreme rainfall events, confirming
the plausibility of these simulated values. In October 2006, extreme rainfall events occurred
throughout the study area, leading to flooding in the city of Chania, serious material
damages and one casualty [20]. At that time, the only installed and operating station
was the one in Chania, which had a very high observed value of 214.6 mm, one of the
highest ever recorded. For the same month, the simulated precipitation value for Alikianos
station is 345 mm based on ANNs, while the corresponding value using the MLR method
is 194 mm. These values, although they seem quite high for the area concerned, are in
accordance with the value observed in Chania. In January and February 2019, other extreme
rainfall events occurred with similar results. In 2019, all weather stations were operational,
but there was a 10-day gap in the beginning of January in Alikianos station, possibly
because of device failure due to the extremity of the rainfall events. Regarding the month
of January 2019, the simulated precipitation value for Alikianos station is 692 mm based on
ANNs, while the corresponding value using the MLR method is 362 mm. The extremity of
those values is confirmed by the literature, while the events continued in February with
the Chionis and Oceanida storms [20]. The seemingly high simulated value for January
is confirmed by the observed values in February at all weather stations. In Figure 5, the
observed values in February are significantly high, with the highest value recorded at
Alikianos station (568.8 mm in total) and the next highest value at Chania station (360 mm
in total). Based on the above, we conclude that the simulated values for Alikianos are
plausible and do not consider them as outliers. Comparing the two models, the results
of the ANN model show that it is more capable of simulating extreme weather values
compared to the model obtained with the MLR method.

5. Conclusions

Both methods have proven more than adequate for the task of imputation of gaps
in the daily rainfall time series. The Nash–Sutcliffe coefficient for both methods is above
0.7 for all cases, a value generally considered as the threshold for very good performance.
Nevertheless, throughout this work, the Artificial Neural Network ensembles consistently
outperformed the Multiple Linear Regression model. The obvious caveat is the increased
time needed for training the ANN model. When comparatively small datasets are available
for training (like in this work), the computational effort for training the ANN ensembles is
also relatively small (taking just over thirty-six hours). In such cases using ANNs might
make more sense, always considering the urgency of the application. In cases where the
available dataset is large the training time is expected to increase, but the results will
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probably be better than those obtained with Multiple Linear Regression. A decision should
be made as to whether accuracy or speed is more important. For increased accuracy,
the results of this study suggest using ANNs, for increased speed, the results point to
using Multiple Linear Regression. Given the good performance of the ensembles in this
work, future work can focus on testing different activation functions like the reLU and
tanhLU [34].
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Abstract: In the midst of climate change, the need for accurate predictions of dam inflow to reduce
flood damage along with stable water supply from water resources is increasing. In this study, the
process and method of selecting the optimal deep learning model using hydrologic data over the
past 20 years to predict dam inflow were shown. The study area is Andong Dam and Imha Dam
located upstream of the Nakdong River in South Korea. In order to select the optimal model for
predicting the inflow of two dams, sixteen scenarios (2 × 2 × 4) are generated considering two dams,
two climatic conditions, and four deep learning models. During the drought period, the RNN for
Andong Dam and the LSTM for Imha Dam were selected as the optimal models for each dam, and the
difference between observations was the smallest at 4% and 2%, respectively. In typhoon conditions,
the GRU for Andong Dam and the RNN for Imha Dam were selected as optimal models. In the case
of Typhoon Maemi, the GRU and the RNN showed a difference of 2% and 6% from the observed
maximum inflow, respectively. The optimal recurrent neural network-based models selected in this
study showed a closer prediction to the observed inflow than the SFM, which is currently used to
predict the inflow of both dams. For the two dams, different optimal models were selected according
to watershed characteristics and rainfall under drought and typhoon conditions. In addition, most of
the deep learning models were more accurate than the SFM under various typhoon conditions, but
the SFM showed better results under certain conditions. Therefore, for efficient dam operation and
management, it is necessary to make a rational decision by comparing the inflow predictions of the
SFM and deep learning models.

Keywords: deep learning; dam inflow; RNN; LSTM; GRU; hyperparameter

1. Introduction

Due to extreme climatic change, accurate analysis of water resources is increasingly
demanded for stable water supply and flood damage mitigation. Among various research
subjects, the amount of the dam inflow is an important element in establishing plans for
coping with drought, flooding, and operating the dam. The major factors affecting the amount
of the inflow are climatic factors, including rainfall, which is the most influential, temperature,
and wind speed, as well as topographical factors such as the basin area and the height of the
slope [1]. However, recently, local rainfalls, which are difficult to predict, have frequently oc-
curred nationwide. In particular, in Andong and Imha Dams in 2015, the inflow decreased
to one-third the level of the average inflow over the past 20 years; and in 2017 and 2018, the
discharge rates were adjusted due to entering the drought “attention stage.” In addition,
in 2020, due to the prolonged rainy season, the inflow increased to more than 40%, and
therefore, floodgate discharge was performed at Andong Dam for the first time in 17 years.
As such, it is an important issue to predict more accurately and quickly the inflow for two
dams, which frequently change in drought and flood conditions every year. The reason for
this study is that Andong Dam and Imha Dam are important dams that account for 50% of
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the water supply in the Nakdong River watershed, but there are few studies that predict the
dam inflow using a deep learning model. In addition, although the geographical locations
of the two dams are adjacent, dam inflow tends to be different depending on the watershed
and precipitation characteristics. In particular, during the typhoon Maisak and Haishen in
2020, an instantaneous inflow greater than the designed flood was observed at Imha Dam.
Therefore, it is necessary to accurately predict the inflow using deep learning for the two
dams in consideration of climate change. In the past, the amount of inflow was calculated
using conceptual and physical models; however, recently, artificial intelligence technology
has been used in more and more cases to analyze the amount of inflow. Kim et al. [2] took
Chungju Dam and Soyanggang Dam as subjects and used the artificial neural network
(ANN) model in predicting the inflow of the dams by applying the meteorological data
in their basin areas, and the basin precipitation was calculated using the Thiessen net-
work. This study showed that the model using all rainfall stations in the Thiessen network
performed better than using only in-watershed or out-watershed stations. Kim et al. [3] ana-
lyzed the average precipitation and the inflow data of Chungju Dam in the Han River basin
by applying an ANN model including a back propagation algorithm. This study showed
that there was a significant improvement in the model accuracy including the correlation
coefficient (CC) when data preprocessing was performed. Mok et al. [4] applied the Long
Short-Term Memory (LSTM) and the ANN model to predict the inflow per hour of Yongdam
Dam. In this study, the LSTM hyperparameters (sequence, hidden dimension, learning rate,
and iteration) were optimized and the model accuracy was improved by applying dam
inflow and rainfall as input variables. Lee et al. [5] performed a quantitative evaluation by
adjusting and simulating input variables for the Taehwa River basin using recurrent neural
network (RNN), time delay neural network (TDNN), and nonlinear autoregressive exoge-
nous (NARX) models. This study improved the Nash–Sutcliffe efficiency (NSE) from 0.530
to 0.988 by adjusting the time delay parameter of the model. Chang et al. [6] introduced
recent advances in machine learning in flood prediction and management, and presented an
academic approach to flood risk-related modeling. Chang et al. [7] explored the effectiveness
of multiple rainfall sources for assimilation-based multi-sensor precipitation estimates
and performed multi-step-ahead rainfall forecasts based on the assimilated precipitation.
Chakravarti et al. [8] demonstrated that the ANN model could be a promising tool to pro-
vide insights from learned relationships as well as accurate modeling of complex processes
through a comparison of the runoff generated by rainfall simulator in the laboratory and
the predicted runoff of the ANN model. Kao et al. [9] proposed a Long Short-Term Memory
based Encoder-Decoder (LSTM-ED) for multi-step-ahead flood prediction for the first time.
Shen et al. [10] suggested that hydrology scientists consider research using DL-based data
mining to complement traditional approaches. Tokar et al. [11] compared and analyzed the
conceptual models and the ANN models, which differed for each basin. After comparing
the Watbal model for the Fraser River, the Sacramento Soil Moisture Accounting (SAC-
SMA) model for the Raccoon River, and the Simple Conceptual Rainfall–Runoff (SCRR)
model for the Little Patuxent River, Colorado, USA, with the ANN model, it was shown as
a result that the ANN model together with the existing conceptual model could be utilized
for rainfall-discharge prediction. Chen et al. [12] compared and analyzed the hourly precip-
itation and discharge data for each hour following the hit of 27 typhoons from 2005 and
2009 at the Linbien River Basin, Taiwan, by applying the conventional regression model
and the ANN model along with the concept of backpropagation. In statistical evaluation,
the ANN model showed better results than the conventional regression analysis model.
Coulibaly et al. [13] predicted the inflow of multi-purpose dams by applying rainfall,
snowfall, inflow, and temperature as input variables of four models: Multilayer Perceptron
(MLP), Input Delayed Neural Network (IDNN), RNN, and Time Delay Current Neural
Network (TDRNN).

In this study, a deep learning model was used to predict the inflow of Andong and
Imha Dams in the Nakdong River watershed in Korea. To build an optimal prediction
model based on inflow and rainfall data over the past 20 years, accuracy and reliability
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were evaluated by generating various scenarios according to input variables. In addition,
the RNN models were applied considering that the dam inflow is time series data and the
learning efficiency of the existing ANN model decreases as the number and period of data
increase. The prediction model derived from this study is expected to contribute to stable
dam operation management and coping with the disaster.

2. Study Methods
2.1. ANN and RNNs

In this study, the ANN model and the RNN model were compared and analyzed to
derive an optimal model for predicting dam inflow. The flow chart of this study is shown
in Figure 1. Deep learning is one of the algorithms of machine learning and is a more
deeply constructed algorithm than conventional neural network structures. Non-linear
characteristics between input variables can be estimated and have superior effects over
traditional machine learning algorithms. Machine learning is a process in which humans
feed the computers a lot of information, and then the computers predict information, while
deep learning has the characteristics of the computers learning and predicting it without
human’s teaching specifically. The typical activation functions used in the hidden layers of
deep learning are mainly Sigmoid, tanh (hyperbolic tangent), and Rectified Linear Unit
(ReLU). The sigmoid function is a logistic regression function with values between “0” and
“1,” which is utilized for simple classification problems. The tanh function has a value
between “−1” and “1,” and as it moves away from the center value, the slope is lost during
the backpropagation. For solving this slope loss problem is the ReLU function, and all
values below “0” are treated as “0” to stop the learning progress [14].
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The RNN is a specialized model in the field of ordered data processing. In particular,
time series data are mainly utilized, and the previous output data are cycled back into
the input. The following is a comparison of the hidden layer calculation Equation (1) of
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Convolution Neural Network (CNN), which processes grid data like an image, and the
hidden layer calculation Equation (2) of the RNN.

CNN ht = Wxhxt (1)

RNN ht = tan h( Whhht−1 + Wxhxt) (2)

The RNN has the characteristics of weighing each data individually to determine its
importance and memorize it while turning to the next data, but there appears a gradual loss
of information of distant past data in the hidden layer; therefore, a method supplemented
with a separate memory cell prepared is LSTM [15]. The LSTM is one of the RNN models
and is composed of a Forget gate, an Input gate and an Output gate. In order to solve the
problem of gradient loss that occurs as the time difference increases in the RNN model,
the LSTM model introduces a cell. Information is stored in this cell, and it plays a role in
preventing the stored information from being lost in the process of analysis. The gate serves
as a filter that allows unnecessary information to be forgotten or necessary information
to be stored and passed through the cell. This is represented by Equations (3)–(6). In the
forget gate, how much past data will be forgotten is determined, and the input gate plays a
role in estimating important values among the incoming data. Output gates are used to
keep information from past data and predict them simultaneously.

Forget Gate : ft = σ
(

U f ht−1 + W f xt + b
)

(3)

Input Gate : it = σ(Uiht−1 + Wixt + b) (4)

Output Gate : ot = σ(Uoht−1 + Woxt + b) (5)

ht = ot × tanh(Cell) (6)

where σ is the activation function, U is the input weight, W is the cyclic weight, ht−1 is the
previous stage output, ht is the new output value, xt is the current input vector, and b is
the bias.

In addition, the Gated Recurrent Unit (GRU) is a method with the structure improved
for processing faster than LSTM [16]. GRUs are configured as Reset gate and Update gate
for the advantage of lower learning weights; therefore, faster processing speed with similar
performance compared to LSTM is observed. Reset gate determines the ratio of past data to
remove, and Update gate determines the discarding past data, such as forget gate of LSTM,
and selects only one of t − 1 and t memory data.

2.2. The Storage Function Model (SFM)

The SFM is one of the rainfall–runoff models, and calculates the runoff from the
watershed using the reservoir storage and rainfall as main input variables. In this case,
impervious area, infiltration, and groundwater are considered. The model makes the basic
assumption that stream channels ( I ∼ O) have a downward slope and that the watershed
receives the same amount of precipitation (Rave) as shown in Figure 2. The runoff from the
watershed is calculated by Equation (7) [17].

QT

(
m3/s

)
=

1
3.6
× f1 ×A× q f +

1
3.6
× (fsa − f1)×A× qs + qb (7)

where f1 is the primary runoff rate (dimensionless), A is the watershed area (km2), q f . is
the unit runoff height of runoff area (mm/day), qs is the unit runoff height of infiltration
area (mm/day), fsa is the unit runoff in seepage areas directly infiltrating groundwater, and
qb is the base runoff (m3/s).
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Figure 2. Schematic diagram of the storage function model [17].

Korea Water Resources Corporation (K-water) operates dams through inflow prediction
using the SFM, and the parameters of the SFM corresponding to each dam are optimized in
consideration of the characteristics of the dam basin [17].

2.3. Study Area

Sufficient learning materials are required to calculate the inflow of dams using deep
learning. In this study, Andong Dam and Imha Dam of Nakdong River were selected as the
study areas among multi-purpose dams in Korea that have collected hydrological data for
more than 20 years and secured the largest amount of water supply and storage capacity in
the water system. The locations of Andong Dam and Imha Dam are shown in Figure 3.
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Figure 3. Location and Watershed of Andong and Imha Dams.

Andong Dam was completed in 1976, with a basin area of 1584 km2 and a total water
storage capacity of 1248 × 106 m3. It was built to reduce flood damage by utilizing 110 ×
106 m3 of flood control capacity and facilities. It is responsible for supplying 926 × 106 m3

of water annually, including Nakdong River’s living water, industrial water, and river
maintenance flow. Imha dam was completed in 1993 and has a basin area of 1361 km2

and a total storage capacity of 595 × 106 m3. It is 73.0 m-high, with a 515.0 m-long central
cutoff-wall type rockfill dam built to prevent flood damage in the mid- and downstream
of the Nakdong River and to supply water to the Nakdong River and the southeast coast
areas. It supplies 615.3 × 106 m3 of water annually, including living water, industrial water,
and river maintenance flow (Table 1).
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Table 1. General status of Andong and Imha Dams.

Category Andong Imha

Storage(106 m3) 1248 595

Flood control capacity(106 m3) 110 80

Water supply (106 m3/y) 926.0 615.3

Flood volume (m3/s) 6480 4500

Discharge (m3/s) 4600 2500

2.4. Database Buliding

In this study, the time series period required to compare and analyze four models,
ANN, RNN, LSTM, and GRU models, was set from 2001 to 2020, and we intend to build
an inflow prediction model by utilizing the inflow and precipitation data of Andong and
Imha Dams in the subject period. The equations for daily and hourly inflow are as shown
in Equations (8) and (9). Rainfall data collected from nine rainfall observatories in Andong
Dam basin and eight rainfall observatories in Imha Dam basin were used.

Daily inflow
(

m3

s

)
=

Water Storage(at 24 : 00 today− at 24 : 00 the day before)× 106

60× 60× 24
+ Daily Average Outflow (8)

Hourly inflow
(

m3/s
)
=

Water Storage(at fixed time− at 1hr ago)× 106

60× 60
+ Hourly Average Outflow (9)

Considering the inflow of Andong and Imha Dams from 2001 to 2020, the annual
inflow of Andong Dam in 2003 and 2015 was almost six times different. The inflows of
Andong and Imha Dams during the flood period accounts for approximately 2/3 of the
average annual inflows, and the precipitation and inflow during specific periods, such as
the normal season or the drought and flood periods, are different. Therefore, it is necessary
to analyze after dividing the seasons into the normal season or the drought and flood
periods when selecting the optimal model later. Figure 4 shows the rainfall and inflow of
Andong Dam watershed for 20 years.
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Figure 4. Inflow and rainfall at Andong Dam. (a) Inflow and rainfall for 2001–2020. (b) Rainfall for
the flood period (21 June–20 September).

There were four releases through Andong–Imha connection tunnel from 2019 to 2020.
The corresponding discharge was calculated as the inflow of Andong Dam and, therefore,
excluded from data preprocessing. Since the range of inflow and precipitation data is wide,
data normalization was used to convert it to a value between 0 and 1 by Min–Max Scaling.
In addition, the data for 20 years are divided into a training set, a validation set, and a
testing set in a 5:3:2 ratio as shown in Figure 5.
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Figure 5. Data analysis flow chart.

2.5. Input and Output Predictors

In this study, precipitation and dam inflow from previous times were used as input
data to predict the inflow of the dam. The number of previous times precipitation and
inflow are considered for dam inflow prediction is related to the sequence hyperparameter
to be described later. For example, if the sequence is 21, 21 precipitations (Pt, Pt−1, ···
Pt−20) and 21 dam inflows (Qt, Qt−1, ··· Qt−20) are simultaneously considered. Pt and
Qt are precipitation and dam inflow at the current time, respectively, Qt+1 is the dam
inflow at the next time step to be predicted, and Pt−1 and Qt−1 are the precipitation and
dam inflow at the previous time steps to be considered for predicting the dam inflow,
respectively. Figure 6 shows a schematic diagram of the input and output data of the model
with sequence 21.
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2.6. Optional Hyperparameter

In this study, two hyperparameters (Sequence and Batch size) were optimized by
applying a grid search at regular intervals as shown in Table 2. The hyperparameters were
optimized by applying a grid search at regular intervals shown in Table 2. The trial-and-
error method was additionally applied to compensate for the shortcomings of grid search,
which can be difficult to find optimal hyperparameters with regular interval application.
The trial-and-error method found optimal variables for sequence length and batch size
within the range of 1–100 and compared them with the results of grid search. In particular,
the reason why the sequence length(hour) was selected as 12 is that for flood control at the
multi-purposed dam, outflow discharge is approved by the government one day before
the opening of the gate and notified to downstream residents in advance. Among the
high-accuracy models, when overfitting occurs compared to the validation data and test
data, the dropout method was used to supplement the analysis results. The remaining
hyperparameters without grid search were optimized with trial and error. The application
ranges of each parameter are shown in Table 2, and Learning rate 0.001, Dropout 0.2, and
Hidden layer 3 were applied as optimal values in this study.
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Table 2. Application range for hyperparameter optimization.

Optimization Grid Search T and E

Sequence
day 7, 14, 21

1~100
hour 12, 24, 48

Batch size
day 7, 14, 21, 28, 35

1~100
hour 12, 24, 36, 48, 60, 72

Epoch - 100~500 (Early stop)

Learning rate - 0.01~0.0001

Dropout - 0.1~0.25

Hidden layer - 2~5

The name of the scenario is the first letter of ‘dam name–day/time–application model–
scenario order or optimization′. As an example, the scenario is named “ADA-S1”, which
means “Andong–Day–ANN–Scenario No.1”, and “ADA-Opt”, which means “Andong–
Day–ANN–Optimize”.

To evaluate the statistical error and accuracy of the model according to the hyper-
parameter for each model scenario, the coefficient of determination (R2), mean abso-
lute error (MAE), root mean square error (RMSE), and volume error (VE) presented by
Hu et al. [18] were used as performance indicators. Table 3 representatively shows the
ANN model results for Andong Dam among 8 cases (2 dams × 4 deep learning mod-
els) that analyzed the best performance according to each scenario. Among the various
scenarios, ADA-S9 for daily data and AHA-S4 for hourly data were selected.

Table 3. Statistical performance by scenario for the ANN at Andong Dam.

Scenario
Input Statistical Indices

Selection
Sequence Batch R2 MAE RMSE VE

Day

ADA-S1 7 7 0.89 12.01 25.17 0.29

. . .

ADA-S4 14 14 0.83 9.56 20.10 0.13

. . .

ADA-S7 21 21 0.81 9.83 22.37 0.31

ADA-S8 21 28 0.86 9.54 28.62 0.33

ADA-S9 21 35 0.91 9.40 19.18 0.03 #
ADA-Opt 20 20 0.82 11.36 24.40 0.28

Hour

AHA-S1 12 12 0.80 20.70 42.42 0.17

. . .

AHA-S4 24 24 0.94 12.26 22.94 0.12 #
AHA-S5 24 36 0.89 11.34 30.50 0.20

AHA-S6 24 48 0.88 11.82 32.52 0.29

AHA-S7 48 48 0.91 12.59 27.72 0.27

. . .

AHA-Opt 10 10 0.91 11.77 29.45 0.13

#: Selected optimal scenario.

Table 4 shows the optimal scenario selection and the corresponding R2 by comparing
the observations and simulations for each model. The ANN model of the daily data at
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Andong Dam had a correlation R2 validation indicator of 0.91, which was closest to the
observation compared to other models. However, in the peak inflow, the GRU model
showed the closest results to the observations. In the peak inflow of the daily data of Imha
Dam, LSTM model showed 925.2 m3/s, least different from the actual inflow. As for the
scenario result applying the time data of Andong Dam, the correlation of the ANN model
was 0.94, similar to the daily data usage, which was the closest to the observation. Unlike
Andong Dam, in Imha Dam, the RNN model showed less difference between actual peak
inflow and predicted peak inflow than the ANN model. In particular, it was the smallest in
the LSTM model at 34.5 m3/s.

Table 4. Optimal scenario selection.

Dam/Time
Observed

(m3/s)

Simulated (m3/s), R2

ANN RNN LSTM GRU

Andong

Day 998.5

ADA-S9 ADR-Opt ADL-S1 ADG-S1

696.8 725.7 921.6 956.1

0.91 0.82 0.81 0.79

Hour 2629.1

AHA-S4 AHR-S8 AHL-S9 AHG-S6

1835.3 2327.7 3458.1 3053.5

0.94 0.86 0.87 0.87

Imha

Day 935.1

IDA-S9 IDR-S4 IDL-Opt IDG-S5

653.0 915.17 925.2 988.1

0.92 0.82 0.79 0.87

Hour 4890.1

IHA-S4 IHR-S9 IHL-S6 IHG-S7

3909.0 4226.0 4855.6 4248.5

0.92 0.95 0.95 0.95

2.7. Performance Evaluation of Optional Scenarios

For the evaluation for the performance evaluation of the scenarios, the RMSE-observed
standard deviation ratio (RSR) and the Nash–Sutcliffe efficiency (NSE) were applied among
various criteria. The equations for each criterion are shown in the following Equations (10)
and (11). With the calculated RSR and NSE, the model performance can be judged based
on the general performance rating (Table 5) [19].

RSR =
RMSE

STDEVobs
=

√
(∑n

i=1(yi − ŷi)
2)

√
(∑n

i=1(yi − yi)
2)

(10)

NSE = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (11)

where yi is the observed value, yi is the mean value, ŷi is the predicted value, and n is the
numbers of data.

Table 5. General performance ratings [19].

Performance Rating RSR NSE

Very Good 0.00 ≤ RSR ≤ 0.50 0.75 < NSE ≤ 1.00

Good 0.50 < RSR ≤ 0.60 0.65 < NSE ≤ 0.75

Satisfactory 0.60 < RSR ≤ 0.70 0.50 < NSE ≤ 0.65

Unsatisfactory RSR > 0.70 NSE ≤ 0.50
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Table 6 shows the RSR and the NSE calculated for the validation and test data of the
selected scenarios (Table 4), and the performance ratings evaluated with these values. As
a result of having validated the selected scenarios, the RSR value of Andong Dam daily
data was low and similar compared to the Imha Dam results, and the evaluation result was
“Very Good” in the ANN model and “Good” in the RNN model. In the hourly data, the
ANN model showed the lowest result of 0.34, and was evaluated as “Very Good” in all
models. Similar to Andong Dam, Imha Dam was evaluated as “Good” in the RNN model
except the ANN model. In the hourly data, the evaluation was “Very Good” in all models
and the NSE value was above 0.90, deriving reliable results.

Table 6. Performance rating evaluation for selected scenarios.

Case
RSR/NSE

ANN RNN LSTM GRU

Andong

Day

Validation 0.31/0.91 0.55/0.70 0.56/0.72 0.54/0.68

Test 0.31/0.90 0.53/0.68 0.56/0.75 0.56/0.66

Evaluation Very Good Good Good Good

Hour

Validation 0.33/0.99 0.38/0.99 0.38/0.99 0.37/0.99

Test 0.34/0.89 0.48/0.96 0.48/0.95 0.46/0.96

Evaluation Very Good Very Good Very Good Very Good

Imha

Day

Validation 0.36/0.87 0.54/0.68 0.52/0.70 0.59/0.73

Test 0.36/0.87 0.54/0.66 0.53/0.70 0.58/0.70

Evaluation Very Good Good Good Good

Hour

Validation 0.28/0.99 0.22/0.99 0.20/0.99 0.20/0.99

Test 0.29/0.91 0.24/0.95 0.25/0.96 0.24/0.96

Evaluation Very Good Very Good Very Good Very Good

3. Selection of Optimal Models
3.1. Drought Period

In order to select the optimal model according to the period for Andong Dam and
Imha Dam, first, the inflow by quantile for the total test period (2017–2020) was compared.

Then, the analysis results for each quantile of the inflow during the normal and dry
season are derived, and the daily inflow from Andong and Imha Dams are used to select the
inflow prediction model with the highest reliability during the drought period. In addition,
the periods of 28 June–20 August 2017, and 13 February–29 March 2018 in the study area
was in the ‘caution’ stage of drought crisis warning under the “Fundamental Act on Disaster
and Safety”. Therefore, this period data was used for drought period analysis.

Table 7 shows the inflows of the 1st (25%), 2nd (50%), and 3rd (75%) quartiles and
peak inflows of ADA-S9, ADR-Opt, ADL-S1, and ADG-S1, which are the optimal scenarios
for Andong Dam (Table 4). Over the total period (2017–2020), the RNN model showed
that the 1st, 2nd, and 3rd quartile values were close to the observations, especially within
the maximum difference of up to 2 m3/s. In the drought period (2017–2018), the RNN
predicted the 2nd and 3rd quartile inflows and maximum inflows closest to the observations,
excluding the 1st quartile values. The difference in the maximum inflow between RNN
predictions and observations was 6.25 m3/s, the smallest difference compared to other
RNN models. Figure 7 shows a comparison of the predicted inflow ranges for each model
versus the observed ranges for the total and drought periods.
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Table 7. Inflow prediction by period at Andong Dam.

Andong
Observed

(m3/s)
Simulated (m3/s)

ANN RNN LSTM GRU

Total period
(2017–2020)

25% 3.70 10.88 5.61 1.56 4.43

50% 8.12 11.09 8.50 4.43 7.54

75% 20.41 24.44 21.75 16.09 14.49

Drought period
(2017–2018)

25% 3.38 10.88 5.61 1.15 4.65

50% 6.38 10.88 6.52 2.28 7.26

75% 14.62 16.65 13.65 10.94 8.67

Max 299.03 214.77 305.28 241.11 258.09
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In the case of Imha Dam, the inflows of the 1st, 2nd and 3rd quartiles and peak inflows
were calculated by applying the optimal scenarios (IDA-S9, IDR-S4, IDL-Opt, IDG-S5).
Figure 8 shows a comparison of the predicted inflow ranges and the observed ranges of each
model for the total and drought periods at Imha Dam. As shown in Table 8 and Figure 8, the
prediction of the RNN shows the largest difference from the quartile value of the measured
inflow compared to other models. On the other hand, inflow predictions of LSTM have
the smallest differences from observations in the 1st and 3rd quartiles during the total
period and in the 1st and 2nd quartiles and the maximum during the drought period. In
the prediction of the maximum inflow, the difference between observation and prediction
was 45.14 m3/s, which showed a difference of approximately 10%. The GRU prediction
showed the most accurate result with a difference of 0.27 m3/s from the observation in the
3rd quartile of the drought period. As shown in Table 8, in Imha Dam, LSTM was selected
as the optimal model for inflow prediction during the total and drought periods.

As a result of predicting the dam inflow during the drought period, the RNN model for
Andong Dam and the LSTM model for Imha Dam were closest to the observed inflow. The
reason that the RNN model yielded better results than the LSTM model at Andong Dam
lies in the activation function. The existing RNN model uses the tanh function among the
activation functions to cause the gradient loss problem. However, in this study, the ReLu
function was used to reduce gradient loss during backpropagation learning. The reason
that the LSTM model was selected as the optimal model in Imha Dam is that the loss was
less than that of the RNN model due to the cells of the LSTM with memory function. In
addition, although the watersheds of the two dams are close, the optimal model is different
because various factors such as land conditions, river slope, and rainfall characteristics
worked. Therefore, it can be seen that the analysis process to find an appropriate model is
important by referring to these points.
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Table 8. Inflow prediction by period at Imha Dam.

Imha
Observed

(m3/s)
Simulated (m3/s)

ANN RNN LSTM GRU

Total period
(2017–2020)

25% 1.58 3.20 11.18 1.16 3.49

50% 4.12 3.87 12.82 4.57 5.08

75% 10.55 7.27 20.15 12.82 14.79

Drought period
(2017–2018)

25% 1.19 3.18 10.72 0.60 3.70

50% 2.52 3.40 11.80 2.61 4.91

75% 7.88 5.27 15.26 9.00 7.61

Max 470.37 652.99 415.17 425.23 388.09

3.2. Typhoons

It is important not only to analyze the normal or drought period using daily data to
predict the inflow to the dam, but also to analyze it using hourly data for flood control. In
particular, in the case of Imha Dam, the inflow of dams in flood season (21 June–20 September)
was 157.9 × 106 m3 in 2019, while it was 743.6 × 106 m3 in 2020.In other words, the inflow
amount was 4.7 times different even in the same period. Accordingly, by applying the six
major typhoon cases to each model, the maximum observed inflow and the prediction of
models are compared, and the most accurate model is selected by calculating R2. Table 9
shows the six major typhoons applied in this study. In particular, after the rainy season in
2020, typhoons occurred consecutively, and approximately 270 mm of rainfall fell in the
basins of Andong and Imha Dam, and a maximum of 23.4 mm of rainfall per hour was
recorded in the basin of Imha Dam. Among the six typhoon cases, Typhoon Maysak and
Haishen in 2020 occurred consecutively and, therefore, are considered to be one case.

Tables 10 and 11 show the peak inflow predicted by each deep learning model using
hourly inflow data for Andong Dam and Imha Dam, respectively. In Andong Dam, the GRU
predictions had the smallest differences from the peak inflows observed from Typhoons
Maemi, Kongrei, and Maysak and Haishen (Table 10). On the other hand, in Imha Dam, the
RNN prediction showed the smallest difference from the peak inflow observed in Typhoon
Rusa, Kongrei and Mitag (Table 11). Figure 9a,b show the comparison of the observations
and predicted inflow by four models for Typhoons Maysak and Haisen in Andong Dam
and Imha Dam, respectively. The GRU for Andong Dam and the RNN for Imha Dam
were selected as the optimal model based on the maximum inflow prediction and R2 value
under typhoon conditions. However, as the maximum inflow prediction and R2 values
differ greatly depending on the characteristics of each typhoon, such as rainfall strength
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and preceding rainfall, as shown in Tables 10 and 11, it is considered desirable to compare
various models and analyze for future flood simulation.

Table 9. Typhoon cases.

Typhoon Period
Andong (mm) Imha (mm)

Rainfall Hour (Max) Rainfall Hour (Max)

Rusa 23 August–1 September 2002 165.4 21.9 182.9 29.3

Maemi 6–14 September 2003 251.7 31.5 220.8 26.9

Kongrey 29 September–7 October 2018 94.3 5.1 128.3 10.4

Mitag 28 September–3 October 2019 133.1 12.5 166.6 19.9

Maysak and
Haishen 28 August–7 September 2020 268.1 15.0 270.0 23.4

Table 10. Predicted inflow to Andong Dam by typhoon cases.

Typhoon Observed
(m3/s)

Simulated (m3/s)

ANN RNN LSTM GRU

Rusa
Max 3678 2570 3623 4016 4025

R2 - 0.94 0.95 0.94 0.96

Maemi
Max 4522 3161 4267 4339 4597

R2 - 0.95 0.94 0.96 0.96

Kongrey
Max 793 549 644 683 699

R2 - 0.62 0.77 0.81 0.76

Mitag
Max 1845 1286 1866 2117 1773

R2 - 0.91 0.95 0.94 0.95

Maysak andHaishen
Max 2629 1835 2328 3458 3053

R2 - 0.80 0.72 0.73 0.90

Table 11. Predicted inflow to Imha Dam by typhoon cases.

Case
Observed

(m3/s)
Simulated (m3/s)

ANN RNN LSTM GRU

Rusa
Max 7113 5677 7102 7014 6709

R2 - 0.94 0.96 0.95 0.94

Maemi
Max 6665 5312 6221 6848 6938

R2 - 0.95 0.95 0.94 0.92

Kongrey
Max 2584 2086 2458 2174 2222

R2 - 0.90 0.97 0.88 0.87

Mitag
Max 3534 2856 3488 3647 2793

R2 - 0.96 0.97 0.94 0.95

Maysak and
Haishen

Max 4890 3909 4226 4856 4248

R2 - 0.91 0.91 0.89 0.90

K-water, which operates Andong Dam and Imha Dam, is currently using the SFM to
predict the inflow of the two dams. Therefore, the inflow of the SFM and the predicted
inflow of the GRU (Andong Dam) and the RNN (Imha Dam) were compared through
analysis according to typhoon conditions. The SFM was calibrated so that the predicted
inflow was closest to the observed maximum inflow while adjusting the parameters. In
some cases, the R2 has increased while the maximum predicted inflow has decreases.
However, in practical dam operation, the maximum inflow and arrival time are more
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important factors. Therefore, the calibration was performed to better match the maximum
inflow than the R2 between the prediction and the observation.

Water 2022, 14, x FOR PEER REVIEW 13 of 16 
 

 

Tables 10 and 11 show the peak inflow predicted by each deep learning model using 

hourly inflow data for Andong Dam and Imha Dam, respectively. In Andong Dam, the 

GRU predictions had the smallest differences from the peak inflows observed from Ty-

phoons Maemi, Kongrei, and Maysak and Haishen (Table 10). On the other hand, in Imha 

Dam, the RNN prediction showed the smallest difference from the peak inflow observed 

in Typhoon Rusa, Kongrei and Mitag (Table 11). Figure 9a,b show the comparison of the 

observations and predicted inflow by four models for Typhoons Maysak and Haisen in 

Andong Dam and Imha Dam, respectively. The GRU for Andong Dam and the RNN for 

Imha Dam were selected as the optimal model based on the maximum inflow prediction 

and R2 value under typhoon conditions. However, as the maximum inflow prediction and 

R2 values differ greatly depending on the characteristics of each typhoon, such as rainfall 
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Figure 9. Comparison of observations and predictions for Typhoon Maisak and Haishen. (a) An-

dong Dam. (b) Imha Dam. 

Table 10. Predicted inflow to Andong Dam by typhoon cases. 

Typhoon 
Observed 

(m3/s) 

Simulated (m3/s) 

ANN RNN LSTM GRU 

Rusa 
Max 3678 2570 3623 4016 4025 

R2 - 0.94 0.95 0.94 0.96 

Maemi 
Max 4522 3161 4267 4339 4597 

R2 - 0.95 0.94 0.96 0.96 

Kongrey 
Max 793 549 644 683 699 

R2 - 0.62 0.77 0.81 0.76 

Mitag 
Max 1845 1286 1866 2117 1773 

R2 - 0.91 0.95 0.94 0.95 

Maysak and  

Haishen 

Max 2629 1835 2328 3458 3053 

R2 - 0.80 0.72 0.73 0.90 

Table 11. Predicted inflow to Imha Dam by typhoon cases. 

Case 
Observed 

(m3/s) 

Simulated (m3/s) 

ANN RNN LSTM GRU 

Rusa 
Max 7113 5677 7102 7014 6709 

R2 - 0.94 0.96 0.95 0.94 

Maemi 
Max 6665 5312 6221 6848 6938 

R2 - 0.95 0.95 0.94 0.92 

Figure 9. Comparison of observations and predictions for Typhoon Maisak and Haishen. (a) Andong
Dam. (b) Imha Dam.

In Andong Dam, the difference between the predictions and the observations of the
maximum inflow for Typhoons Kongrei and Mitag was larger in the SFM than in the GRU.
In the case of Imha Dam, the inflow of the SFM was predicted to be lower than the observed
value as well as the RNN inflow in all Typhoon conditions (Table 12). These results show
that the RNN selected in this study is a reliable model when compared with the results of
the SFM currently being used for dam inflow prediction. Overall, the predictions of the
deep learning models were closer to the observed maximum inflow than that of the SFM.
On the other hand, during Typhoon Maysak and Haishen at Andong Dam, the predictions
of the SFM were better in agreement with the observed inflow than those of deep learning
models. Therefore, it is necessary to derive more reasonable results through comparison of
the predicted values of the SFM and deep learning models when making decisions related
to dam operation.

Table 12. Predicted inflow by optimal deep learning model and the SFM in typhoon conditions.

Case

Andong Imha

Observed
(m3/s)

Simulated (m3/s) Observed
(m3/s)

Simulated (m3/s)

GRU SFM RNN SFM

Rusa
Max 3628 4025 3799 7113 7102 6098

R2 - 0.96 0.96 - 0.96 0.98

Maemi
Max 4522 4597 4267 6665 6221 5767

R2 - 0.96 0.92 - 0.95 0.96

Kongrey
Max 793 699 668 2584 2458 2241

R2 - 0.76 0.80 - 0.97 0.96

Mitag
Max 1845 1773 1982 3534 3488 3207

R2 - 0.95 0.95 - 0.97 0.98

Maysak and
Haishen

Max 2629 3053 2486 4890 4226 4011

R2 - 0.90 0.89 - 0.91 0.93

4. Discussion

This study showed the process of predicting and analyzing dam inflow using deep
learning models. The reason for conducting this study is that it is important to predict the
inflow with high accuracy for dam operation in disaster situations such as drought and
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flood. Most of the prediction results showed that the RNN models had higher accuracy
than the ANN model. The reason for these results is that precipitation and inflow are
time-series data, and the RNN models circulate the previous results as input variables
so that learning is performed continuously without compromising the learning ability
relatively. In typhoon and drought conditions, recurrent neural network models (RNN,
LSTM, GRU) were selected as optimal models. In comparison with the SFM and the deep
learning models, the prediction of most deep learning models was found to be closer to the
observed maximum inflow than that of the SFM, but the SFM also showed better results
under certain conditions.

These results suggest that even if dam basins are adjacent, different deep learning
models may be selected as the optimal model for each dam by various factors including
land condition and rainfall characteristics. Therefore, further studies including various
factors such as land condition, evaporation, temperature, and wind speed that have not
been considered in this study are needed to predict more accurate dam inflow using deep
learning model.

5. Conclusions

In this study, for efficient water resource management of Andong Dam and Imha
Dam, the optimal model was selected through comparison and validation of deep learning
models in predicting the inflow to the two dams. Considering that dam inflow prediction is
a time series analysis, RNN models were mainly applied. Four deep learning techniques—
ANN, RNN, LSTM, and GRU—were utilized based on dam hydrology data for the past
20 years to predict the inflow of the dams, and optimal input variables were derived
through various indicators. In addition,

(1) To evaluate the detailed prediction capability of the deep learning model with each
scenario, the data were analyzed according to quartile values after differentiating the
entire period and the drought period. To select a deep learning model most suitable
to the drought and normal season based on the scenario, predictions and observations
for the inflows of the 1st, 2nd and 3rd quartiles and peak inflow were compared using
the daily time series data. In Andong Dam, the RNN model produced the closest
quartile values to the observed inflow in the total period (2017–2020) and it also
derived the closest to the measurements in the normal and drought period. In Imha
Dam, the LSTM model showed the closest to the observations in the normal season.
During the drought period, the LSTM prediction showed the smallest difference from
the observations in the 1st and 2nd quartiles, whereas the GRU prediction showed
the smallest difference in the 3rd quartile.

(2) A comparative analysis of six cases of past typhoons showed different predictions
depending on the deep learning models. In Andong Dam, the GRU model showed
higher accuracy compared to other models in the inflow prediction. In Imha Dam,
unlike Andong Dam, the predicted inflow of the RNN showed the highest correlation
and the most agreement with the observations. In Typhoon Mitag, R2 has a high
correlation of 0.97 and a difference of 1% between the observations and predictions
which is the closest to the measured value compared to other models. As a result of an-
alyzing the selected model, since the dam inflow and precipitation were characterized
as time series data, the RNN derived predicted inflow with relatively high reliability.

(3) Compared with the SFM currently used to predict the inflow into the dam, the
selected deep learning models derived results that were closer to the observed inflow
in the maximum inflow prediction. In predicting future typhoon inflows, using a
conceptual or physical model and a deep learning model together will help in efficient
decision making.

The appropriate deep learning model varies depending on weather conditions such as
drought, typhoon, and torrential rain; therefore, it is important to compare various deep
learning models to cope with uncertain future climate change and to manage the operation
of reservoirs efficiently and safely. In addition, as the SFM rather than the deep learning
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model shows better prediction results under certain typhoons, the analytical ability of
hands-on workers to utilize deep learning models, as well as existing SFMs is important,
as shown in the previous analysis. This study, which analyzed inflow predictions using
hydrological data and deep learning models, is expected to contribute to stable dam
operation management and disaster response when used as basic data for inflow prediction
models of various multi-purpose dams including Andong and Imha Dams.
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Abstract: Southwest Asia has different climate types including arid, semiarid, Mediterranean, and
temperate regions. Due to the complex interactions among components of the Earth system, fore-
casting precipitation is a difficult task in such large regions. The aim of this paper is to propose a
learning approach, based on artificial neural network (ANN) and random forest (RF) algorithms
for post-processing the output of forecasting models, in order to provide a multi-model ensemble
forecasting of monthly precipitation in southwest Asia. For this purpose, four forecasting models,
including GEM-NEMO, NASA-GEOSS2S, CanCM4i, and COLA-RSMAS-CCSM4, included in the
North American multi-model ensemble (NMME) project, are considered for the ensemble algorithms.
Since each model has nine different lead times, a total of 108 different ANN and RF models are trained
for each month of the year. To train the proposed ANN an RF models, the ERA5 reanalysis dataset is
employed. To compare the performance of the proposed algorithms, four performance evaluation
criteria are calculated for each model. The results indicate that the performance of the ANN and RF
post-processing is better than that of the individual NMME models. Moreover, RF outperformed
ANN for all lead times and months of the year.

Keywords: multi-model ensemble; artificial neural network; random forest; precipitation; forecasting;
persian gulf

1. Introduction

The accurate forecasting of precipitation has been an important topic from both theo-
retical points of view and practical applications. Many researchers around the world are
working to improve the accuracy of monthly and seasonal weather forecasts. Such forecasts
are essential for various water resource planning practices, as well as related actions for
agricultural planning and securing food supplies in many regions of the world. With in-
creasing populations that rely on such water resources and the increasing impact of climatic
variations and climate change, requirements for the accuracy of such forecasts are also
increasing. Different computational methods are used for improving forecasts that are gen-
erally divided into two categories: dynamical and statistical methods for post-processing
the outputs of General circulation models (GCMs). The performance of these techniques
can vary for different geographical areas with different topographies and climate types.

Among the computational methods for post-processing the output of forecasts, the use
of machine learning (ML) techniques is very widespread. ML theory employs several types
of tools such as fuzzy systems (e.g., [1]), artificial neural networks, decision trees, and so on.
The widespread use of these techniques can be attributed to the ability of these methods to
model Big Data and their flexibility in calculations, as well as their increased abilities to use
such techniques with available modern computational resources. Examples in hydrology
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include flood forecasting applications (see e.g., [2]) and climate modelling applications for
sub-grid processes ([3]).

In seasonal weather forecasting, [4] employed artificial neural networks (ANNs) for
the monthly forecasting of precipitation over Iran, and used the outputs of the North
American multi-model ensemble (NMME) project. They also used other machine learning
techniques including ANN, support vector regression, decision tree, and random forests for
the monthly forecast of precipitation [5]. Ref. [6] used the non-linear autoregressive neural
network (NARNN), non-linear input–output (NIO), and NARNN with exogenous input
(NARNNX), for annual precipitation forecasting over 27 precipitation stations located in
Gilan, Iran. Their results showed that the accuracy of the NARNNX was better than that of
the NARNN and NIO. Ref. [7] proposed a model for the monthly forecasting of precipi-
tation for East Azarbaijan in Iran, over a ten-year period using the multilayer perceptron
neural network (MLP) and support vector regression (SVR) models. They employed the
flow regime optimization algorithm (FRA) for training step in multilayer neural network
and support vector machine. Ref. [8] constructed an artificial neural network model for
generating probabilistic subseasonal precipitation forecasts over California. They used an
artificial neural network (ANN) to establish relationships between the 7-day accumulated
precipitation of numerical weather prediction (NWP) ensemble forecast. Ref. [9] tried to
use the random-forest-based machine learning algorithm for nowcasting convective rain in
Kolkata, India, with a ground-based radiometer. They found that their proposed model
is very sensitive to the boundary layer instability, as indicated by the variable importance
measure. Their study showed the suitability of a random forest algorithm for nowcasting
the application and other forecasting problems. Ref. [10] used the ensemble precipitation
forecasts of six numerical models from the THORPEX Interactive Grand Global Ensemble
(TIGGE) database, associated with four basins in Iran for 2008–2018, which were extracted
and bias-corrected by the quantile mapping (QM) and random forest (RF) methods. Their
results demonstrated that most models had better skills in forecasting precipitation depth
after bias correction using the RF method, compared to using the QM method and raw
forecasts. Ref. [11] used random forests and regression tree for quantitative precipitation
estimates with operational dual-polarization radar data. The use of neural networks
and machine learning techniques is not limited to precipitation forecasting. For exam-
ple, Ref. [12] used decision tree and neural networks for lightning prediction. Ref. [13] used
a kernel least mean square algorithm for solving fuzzy differential equations and studied
its application in earth’s energy balance model and climate. Ref. [14] studied the theoretical
impact of changing albedo on precipitation and [15] found that fuzzy uncertainty for albedo
creates more real results after solving the fuzzy energy balance equation. For some other
applications of machine learning in climate modeling, see [16–23].

Southwest Asia contains many geographical features including water bodies of Caspian
Sea, Persian Gulf, Oman Sea, Arabian Sea, and elongated mountains of Zagros and Alborz,
as well as widespread deserts in Saudi Arabia, Iraq, and Iran (Lut and Dasht-e-Kavir).
The region has different types of climates including arid, semiarid, Mediterranean, and tem-
perate regions. Due to complex interactions among components of the earth and weather
systems, the forecasting of precipitation is a difficult task in such large regions. Several
researches have conducted monthly forecasts of precipitation in this region and countries
therein. Ref. [24] studied the attributes of precipitation for the Middle East and southwest
Asia during periods of enhanced or reduced tropical eastern Indian Ocean precipitation as-
sociated with opposing phases of the Madden–Julian oscillation (MJO). They used multiple
estimates of both observed precipitation and MJO state during November–April 1981–2016
to provide a more robust assessment in this data-limited region. Ref. [25] assessed the
sensitivity of southwest Asia precipitation during the November–April rainy season to
four types of El Niño–Southern Oscillation (ENSO) events, El Niño and La Niña, using an
ensemble of climate model simulations forced by 1979–2015 boundary conditions. Ref. [26]
studied the potential predictability and skill of boreal winter (December to February: DJF)
precipitation over central-southwest Asia by using six models of the North American
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multi-model ensemble project for the period 1983–2018. Ref. [27] explored the predictability
of central-southwest Asia wintertime precipitation based on its time-lagged relationship
with the preceding months’ (September–October) sea surface temperature (SST), using a
canonical correlation analysis (CCA) approach. They showed that the regional potential
predictability has a strong dependency on the ENSO phenomenon, and the strengthening
(weakening) of this relationship yields forecasts with higher (lower) predictive skill. Based
on the literature review, there are various studies in precipitation forecasting for the coun-
tries of the Southwest Asian region separately. However, there is no integrated approach
based on machine learning methods as well as MME approaches that consider multiple
countries simultaneously. Although extending the computations to a larger area increases
the computational costs, it can better model large precipitation patterns. On the other hand,
using a MME approach can help reduce forecasting error.

The aim of this research is to construct a framework based on ANN and RF meth-
ods to improve the performance of monthly forecast of precipitation in Southwest Asia.
For this purpose, a multi-model approach is proposed which uses the output of four GCMs,
including GEM-NEMO, NASA-GEOSS2S, CanCM4i, and COLA-RSMAS-CCSM4 from
the NMME project. We build on previous developments, but include a wider range of
ensemble forecasts, and apply these methods to a larger region, to assess its performance.
The paper is organized as follows: Section 2 contains information about the datasets and
Section 3 illustrates the details of the proposed algorithms. Section 4 contains the results,
and finally Section 5 contains concluding remarks.

2. Data

We propose a multi-model ensemble approach for monthly precipitation forecasting in
Southwest Asia using the output of four models (GEM-NEMO, NASA-GEOSS2S, CanCM4i,
and COLA-RSMAS-CCSM4) from the NMME project. We also need observed precipitation
data as a benchmark to compare the forecasts (or, in this case, the hindcasts). In this regard,
we use ERA5 data for estimating monthly precipitation. The region of southwest Asia in
this paper is contained in the region which is depicted in Figure 1. This region is limited to
latitude 22 ◦N to 42 ◦N and longitude 39 ◦E to 70 ◦E.
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Figure 1. Region of study.
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Details of the GCMs and their abbreviation are provided in Table 1. The applied spatial
resolution in this study is 1◦ × 1◦. The number of members of NEMO, CanCM4i, and
CCSM4 is 10, while the number of members of the NASA model is 4. For simplicity, for each
of four GCMs, we calculated the average values of all members. Moreover, the number of
lead times of NEMO, CanCM4i, and CCSM4 is 12 while the number of lead times of NASA
is 9. Thus, we considered the same number of lead times (nine) for all four GCMs. Based on
the hindcast period and available data for all four models and also the ERA5 data, the period
1982–2016 was considered for constructing the post-processing model. Data of the four
NMME models were downloaded from https://iridl.ldeo.columbia.edu (accessed on 22
January 2022), while the ERA5 data are accessible via https://cds.climate.copernicus.eu
(accessed on 22 January 2022). The unit of the amount of precipitation for NMME models
was different from the units in the ERA5 data. In preprocessing step, the data were prepared
for the post-processing algorithms. No missing data were found in the datasets.

Table 1. Four models which are used in this study for post-processing.

Models Abbreviation Members Lead Times Hindcast Period

GEM-NEMO NEMO 10 12 (0.5–11.5 months) 1981–2018
NASA-GEOSS2S NASA 4 9 (0.5–8.5 months) 1981–2017

CanCM4i CanCM4i 10 12 (0.5–11.5 months) 1981–2018
COLA-RSMAS-CCSM4 CCSM4 10 12 (0.5–11.5 months) 1982–2021

3. Methods

In this section, we use the ability of ANN and RF for monthly forecast of precipitation
in Southwest Asia. Based on [28], MLP neural networks, with hidden layers and sigmoid
transfer function

s(t) =
1

1 + exp(−t)
, (1)

are universal approximators, and we can use them for regression tasks. Figure 2 depicts
a general architecture of a single (hidden) layer perceptron neural network which was
considered in this paper.

Figure 2. General architecture of a single (hidden) layer perceptron neural network. f is the activa-
tion function.

On the other hand, random forest (RF) is an ensemble method in machine learning
that can be used for both classification and regression purposes. The base algorithm in
RF is a decision tree (DT). Based on the type of the problem, two different types of DT are
available: regression DT and classification DT. Thus, based on the type of DT, we can have
RF for regression or classification. For more details about the RF, ANN, and DT, see [29].
In this paper, we used the machine learning toolbox of MATLAB 2018b. A general form
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of the proposed algorithm is depicted in Figure 3, wherein we will simply replace the
ensemble learning algorithm by ANN or RF.

Figure 3. A general architect of the proposed algorithm.

More details about the proposed approach are illustrated in Figure 4. As the figure
shows, the proposed algorithm has six inputs and one output. The inputs include the
monthly precipitation data of four models from the NMME project, along with the latitude
and longitude of the region. In Figure 4, ERA5 data are used to train RF and ANN, and
finally the output of the algorithm is an approximation of monthly precipitation.

Figure 4. Details of the proposed algorithm.

Suppose that M is the output of the ANN or RF algorithm. Since each climate model
generates the forecast data for different lead times, we need to construct a specific post-
processing model related to each month and lead time. Suppose that Mi(m, l) is the output
of the i-th NMME model M, i = 1, 2, 3, 4 for month m and lead time l. We can say that
Mi ∈ {CanCM4i, CCSM4, NASA, NEMO}. Also suppose that, M̂(m, l) is the output of
the RF or ANN algorithm for month m, and lead time l. Indeed, M̂(m, l) is a function of
Mi(m, l), i = 1, 2, 3, 4, latitude, and longitude, as depicted in Figure 4. This function can be
defined as follows:

M̂(m, l) = F(M(m, l), x, y, P), (2)

wherein M(m, l) contains all data of Mi(m, l), i = 1, 2, 3, 4 (four NMME models), and x and
y indicate longitude and latitude, respectively. Furthermore, P indicates the adjustable
parameters of RF or ANN. If F indicates the RF, P indicates the adjustable parameters
of RF (for example the number of decision trees in the RF algorithm). If F indicates the
ANN algorithm, P indicates the weights of input, hidden, and output layers of the ANN
algorithm. The optimal values of P (which will be indicated by P∗) will be obtained for the
training period. For a seasonal forecast, we do not need to provide separate RF and ANN
algorithms. The monthly results of three consecutive months can be aggregated for the
seasonal forecast of three months.
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For selecting the correct initial months for each month for which the prediction is
made, see Table 2. An example is provided in Table 3 for a situation which we have four
lead times. This table indicates the correct month number for different initial months.

Table 2. Lead times versus months.

Month
Lead Time 1 2 . . . 9

1 M(1,1) M(1,2) . . . M(1,9)

2 M(2,1) M(2,2) . . . M(2,9)
...

...
... . . .

...

12 M(12,1) M(12,2) . . . M(12,9)

Table 3. An example of determining the target month for a given month and lead time.

Month
Lead Time L1 L2 L3 L4

January January February March April

February February March April May

March March April May June

April April May June July

May May June July August

June June July August September

July July August September October

August August September October November

September September October November December

October October November December January

November November December January February

December December January February March

To compare the performance of the models, the values of the correlation coefficient,
root mean squared error (RMSE), Kling–Gupta efficiency (KGE), and Nash–Sutcliffe effi-
ciency (NSE) can be calculated as follows:

r = ∑n
i=1 (Mi −M)(Oi −O)√

∑n
i=1 (Mi −M)2 ∑n

i=1 (Oi −O)2
, (3)

wherein M and O indicate the values of the model and observation, respectively. Fur-
thermore, M and O denote the mean values of corresponding values. The RMSE can be
calculated as follows:

RMSE =

√
1
n

n

∑
i=1

(Mi −Oi)2. (4)

Kling–Gupta efficiency (KGE) is defined as follows (see [30]):

KGE = 1−
√
(r− 1)2 + (

σM
σO
− 1)2 + (

M
O
− 1)2 (5)
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wherein σ indicates the standard deviation. The maximum value of KGE is 1 which
indicates perfect agreement between the model output and observations. Finally, the NSE
(Nash–Sutcliffe efficiency) is calculated as follows ([31]):

NSE = 1− ∑n
i=1(Mi −Oi)

2

∑n
i=1
(
Oi −O

)2 . (6)

Similar to KGE, the maximum value of NSE is 1 which indicates perfect agreement
between model output and observations.

For tuning the hyperparameters of the ANN and RF algorithms, we used an empirical
approach. We examined several values for each hyperparameter and selected the best case.
For example, to determine the best value for the number of decision trees in the RF, we
examined the values 20, 40, 60, . . . , 200. The best performance of RF was achieved for the
number of trees equal to 100. As another example, for the number of neurons in the hidden
layer of the ANN, we examined the values 3, 6, 9, . . . , 21. The best performance of ANN
(considering the RMSE, KGE, NSE, and the correlation coefficient) was achieved for the
number of neurons equal to 15. It must be noted that using more (less) neurons or more
(less) DTs may cause overfitting (underfitting).

4. Results and Discussion
4.1. Monthly Forecasts

After applying ANN and RF for post-processing the output of the four NMME mod-
els, the values of root mean squared error (RMS), correlation coefficient, Nash–Sutcliffe
efficiency (NSE), and Kling–Gupta efficiency (KGE) were calculated to evaluate the perfor-
mance of the proposed algorithms for each model separately.

The raw forecast performance of the four models (before post-processing), along with
the performance of RF and ANN (after post-processing), was calculated for all lead times
and months. To train and test the RF and ANN, the dataset was divided into two subsets.
Since the hindcast period was 1982–2016 and contains 35 years, the period 1982–2007
(26 years) was considered for training the RF and ANN, while the period 2008–2016
(9 years) was considered to test the RF and ANN. This means that approximately 75% of
data were used for training and 25% was used for testing.

Figure 5 depicts the values of KGE for all months and lead times 1–4 while Figure 6
depicts the values of KGE for all months and lead times 5–9. For example, the maximum
value of KGE in the first lead time of Figure 5 occurs in May (which predicts May itself)
and for both ANN and RF. The maximum value of KGE in the second lead time of Figure 5
occurs in April (which predicts May) and for both ANN and RF. It is also should be noted
that all calculated performance indices (KGE, RMSE, and NSE), as well as the correlation
coefficient, were calculated for test period 2008–2016. Thus, all generated figures are
devoted to period 2008–2016.

As shown in Figure 5, the values of KGE for RF and ANN are higher than the other
NMME models. This is true for approximately all months and lead times (except May in
lead 4, whereby the KGE of ANN is lower than that of NASA and CanCM4i). However,
the values of KGE (for RF) for all months and lead times are higher than those for ANN
and also the NMME models.

When considering the RF and ANN methods, Figure 5 shows that for lead time
1, the maximum forecast error occurs in September, which may be due to the fact that
September is the transition month from the warm period to the cold period of the year. A
similar discussion can be made for Figure 6. As shown in Figure 5, the lowest values of
KGE for the NMME models are −0.27 (for CCSM4 and month 8), −0.27 (for NEMO and
month 7), −0.31 (for CCSM4 and month 5), and −0.27 (for NEMO and month 5) for lead
times 1–4, respectively. These values are improved by applying the RF method to 0.68, 0.66,
0.67, and 0.68 respectively. Similarly, as shown in Figure 6, the lowest values of KGE for
the NMME models are −0.27 (for NEMO and month 4), −0.29 (for NEMO and month 3),
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−0.21 (for NEMO and month 3), −0.19 (for NEMO and month 2), and −0.13 (for NEMO
and month 1) for lead times 5–9, respectively. These values are improved to 0.62 (using the
RF and ANN), 0.63 (RF and ANN), 0.4 (RF), 0.41 (ANN), and 0.4 (RF), respectively.
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Figure 5. Kling–Gupta efficiency (KGE) for lead times 1–4.

1 2 3 4 5 6 7 8 9 10 11 12

Month

-0.5

0

0.5

1

K
G

E

Lead time 5

1 2 3 4 5 6 7 8 9 10 11 12

Month

-0.5

0

0.5

1

K
G

E

Lead time 6

1 2 3 4 5 6 7 8 9 10 11 12

Month

-0.2

0

0.2

0.4

0.6

0.8

K
G

E

Lead time 7

1 2 3 4 5 6 7 8 9 10 11 12

Month

0

0.2

0.4

0.6

0.8

1

K
G

E

Lead time 8

1 2 3 4 5 6 7 8 9 10 11 12

Month

0

0.2

0.4

0.6

0.8

1

K
G

E

Lead time 9

ANN

CanCM4i

CCSM4

NASA

NEMO

RF

Figure 6. Kling–Gupta efficiency (KGE) for lead times 5–9.
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Figure 7 shows the values of NSE for all months and lead times 1–4. As it can be
observed in Figure 7, the values of NSE for the RF and ANN are higher than those for the
other NMME models. This is true for approximately all months and lead times (except
some months of lead 2). However, the values of NSE for the RF algorithm (for all months
and lead times) are higher than those for the ANN and also for the NMME models. As
shown in Figure 7, the lowest values of NSE for the NMME models are −0.48 (for CCSM4
and month 8),−0.42 (for CCSM4 and month 6),−0.39 (for CCSM4 and month 5), and−0.44
(for CCSM4 and month 4) for lead times 1–4, respectively. These values are improved by
the RF method to 0.6, 0.57, 0.61, and 0.57, respectively.
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Figure 7. Nash–Sutcliffe efficiency (NSE) for lead times 1–4.

Figure 8 shows the values of RMSE for all months and lead times 1–4. As it can be
observed in Figure 8, the values of RMSE for the RF and ANN are lower than those for the
other NMME models. This is true for approximately all months and lead times. However,
the values of RMSE for the RF algorithm (for all months and lead times) are lower than
those for the ANN and also the NMME models. As shown in Figure 8, the maximum values
of RMSE for the NMME models are 47.64 (for CCSM4 and month 8), 46.81 (for CCSM4
and month 6), 46.24 (for CCSM4 and month 5), and 47.1 (for CCSM4 and month 4) for lead
times 1–4, respectively. These values are improved by the RF method to 24.83, 25.79, 24.5,
and 25.8, respectively.

Figure 9 shows the values of correlation coefficient for all months and lead times 1–4.
As it can be observed in Figure 9, the correlation coefficient values for the RF and ANN are
higher than those for the other NMME models. This is true for approximately all months
and lead times. However, the values of correlation coefficient for the RF algorithm (for all
months and lead times) are higher than those for the ANN and also the NMME models.
As shown in Figure 9, the lowest values of correlation coefficient for the NMME models
are 0.41 (for CCSM4 and month 8), 0.27 (for CanCM4i and month 9), 0.3 (for CanCM4i
and month 8), and 0.26 (for CanCM4i and month 7) for lead times 1–4, respectively. These
values are improved to 0.77 (RF), 0.81 (RF), 0.81 (ANN), and 0.82 (RF), respectively.
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Figure 8. Root mean square error (RMSE) for lead times 1–4.
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Figure 9. Correlation coefficient for lead times 1–4.
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4.2. Seasonal Forecasts

In this section, the skills of the proposed algorithm are evaluated for seasonal fore-
casts including: DJF (winter), MAM (spring), JJA (summer), and SON (autumn). For this
purpose, the lead 1 data of three consecutive months were considered in order to gen-
erate the seasonal data. Similar calculations can be performed for the other lead times.
Figure 10 depicts the values of RMSE for all seasons and for the test data (2008–2016).
Except SON, whereby ANN has lower RMSE than RF, for other seasons, RF outperforms
ANN. Furthermore, in comparison to four NMME models, the RMSE of ANN and RF
is lower.
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Figure 10. Seasonal RMSE for the models.

Figure 11 depicts the values of NSE for all seasons and for test data. Except SON,
for which ANN has a larger NSE than RF, RF outperforms ANN. Moreover, in comparison
with four NMME models, the values of NSE for ANN and RF are larger.

Figure 12 depicts the values of correlation coefficient for all seasons and for test data.
Except SON, for which ANN has a larger correlation coefficient than RF, for other seasons,
RF outperforms ANN. Furthermore, in comparison with four NMME models, the values of
correlation coefficient for ANN and RF are larger.

To indicate the performance pattern of the models, during the DJF season, the values
of RMSE are plotted for test data in Figure 13. As it can be observed in Figure 13a, the RF
algorithm has the best performance among the other models. After the RF algorithm, based
on Figure 13b, the ANN algorithm has better performance in comparison with the NMME
models. Moreover, it can be inferred that in the raw (NMME) model data, the maximum
error occurs in the mountainous areas of Zagros and Alborz and lands in the east and
south of the region. However, the ANN and RF methods are able to reduce the error
over high-elevation lands, while the ability of the RF method to reduce the error is larger
than that for the ANN. However, in both methods, the error increased slightly in some
lowland areas.
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Figure 11. Seasonal NSE for the models.
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Figure 13. The values of RMSE during the DJF for test data: (d–f) have the same range of RMSE in
the color bar, unlike the other models in (a–c).

5. Conclusions

In this paper, a multi-model ensemble approach was proposed for the monthly fore-
casting of precipitation using ANN and RF algorithms for southwest Asia. For this purpose,
the outputs of four NMME models GEM-NEMO, NASA-GEOSS2S, CanCM4i, and COLA-
RSMAS-CCSM4 were post-processed using the ERA5 data as a reference. The period
1982–2007 was used for learning the ANN and RF, while the data from period 2008–2016
were used for testing the algorithms. Since each model contains of nine different lead
time, for each month of year, we had nine different datasets. In this paper, we trained
108 ANN and RF models for each lead time and month separately. Four performance
evaluation criteria (root mean squared error (RMS), correlation coefficient, Nash–Sutcliffe
efficiency (NSE), and Kling–Gupta efficiency (KGE), were calculated for each of 108 models
along with NMME models. The results indicate that, approximately, the output of ANN
and RF outperforms the NMME models for all months and lead times. Specifically, RF
outperforms the ANN and the other four NMME models for all months and all lead times.
The proposed algorithms and approach can be used for monthly forecasting precipitation in
southwest Asia, but can also be modified for the monthly forecasting of, e.g., temperature
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and other variables. Moreover, other machine learning techniques could be applied to
improve the accuracy of the proposed multi-model approach. The results of this research
show that despite the vastness of the studied area and the different climates contained
therein, machine learning methods can be used for post-processing and improving forecasts
in a multi-model ensemble approach.
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The following abbreviations are used in this manuscript:

ANN artificial neural network
DJF December, January, February (winter)
ERA5 ECMWF re-analysis dataset 5
JJA June, July, August (summer)
KGE Kling–Gupta efficiency coefficient
MAM March, April, May (spring)
NMME North American multi-model ensemble
NSE Nash–Sutcliffe efficiency coefficient
RF Random forest
RMSE Root mean squared error
SON September, October, November (autumn)
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Abstract: Water levels in rivers are measured by various devices installed mostly in remote locations
along the rivers, and the collected data are then transmitted via telemetry systems to a data centre
for further analysis and utilisation, including producing early warnings for risk situations. So, the
data quality is essential. However, the devices in the telemetry station may malfunction and cause
errors in the data, which can result in false alarms or missed true alarms. Finding these errors
requires experienced humans with specialised knowledge, which is very time-consuming and also
inconsistent. Thus, there is a need to develop an automated approach. In this paper, we firstly
investigated the applicability of Deep Reinforcement Learning (DRL). The testing results show that
whilst they are more accurate than some other machine learning models, particularly in identifying
unknown anomalies, they lacked consistency. Therefore, we proposed an ensemble approach that
combines DRL models to improve consistency and also accuracy. Compared with other models,
including Multilayer Perceptrons (MLP) and Long Short-Term Memory (LSTM), our ensemble models
are not only more accurate in most cases, but more importantly, more reliable.

Keywords: anomaly detection; deep reinforcement learning; telemetry water level; time series;
ensemble

1. Introduction

As climate change becomes more apparent, strong storms that bring heavy rainfalls
occur with unusual patterns in many parts of the world. They can cause severe floods
that result in devastating damages to infrastructure and loss of human life. In Thailand,
flooding occurs more frequently and can cause enormous damages and huge economic
losses of up to $46.5 billions a year [1]. On the other hand, drought happened in several
parts of Thailand in 2015, notably in the Chao Phraya River Basin, the largest river basin
in Thailand. This is consistent with a report from the UNDRR (2020) [2] that the ongoing
drought crisis from 2015 to 2016 was the most severe drought in Thailand in 20 years.
Therefore, it is essential to monitor water levels around the country because they form an
important basis for making decisions on early warning.

In order to monitor the water levels in rivers, the Hydro Informatics Institute (HII) has
been studying, building, and deploying water level telemetry stations around Thailand
since 2013. Every ten minutes, each station transmits the measured data to the HII data
centre through cellular or satellite networks. However, the water level data collected from
telemetry station sensors might be incorrect due to some factors, such as human or animal
activity, malfunctioning equipment, or interference of items surrounding the sensors. Any
irregularity in the data might result in an inaccurate decision, such as false alarms or missed
true alarms. Although water level data may be manually reviewed before being distributed
for further analysis, the procedure necessitates the use of skilled specialists who examine
the data from each station and make judgments about any probable abnormalities that may
exist. This process is slow, very time-consuming and also unreliable. This motivates us to
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develop an automated approach that can identify irregularities in a more accurate, efficient,
and reliable manner.

In our previous work [3], we studied seven statistics-based models for detecting the
anomalies. We found that although an individual model can be used to identify anomalies,
it produces too many false alarms for some situations, such as when the water level will
dramatically rise before a flood occurs, which is a scenario notably different from the others,
and hence led to that the majority of statistical models identify such points as anomalous.
We also created two ensembles as the ensemble methods [4], if constructed properly,
have been demonstrated to be able to improve accuracy and reliability over individual
models. The first ensemble was built with a simple strategy as it just combines some
selected models with majority voting as its decision-making function. However, the test
results showed that the simple ensemble models did not work well enough, even though
they were usually better than most of the basic individual models. We then developed
a complex ensemble method. It basically builds an ensemble of some simple ensembles
selected from the candidates with some criteria, and these simple ensembles’ outputs are
combined with a weighted function. The findings indicate that a complex ensemble can
improve the accuracy and consistency in recognising both abnormal and normal data.

In recent decades, deep machine learning methods have been demonstrated to be
more powerful than conventional machine learning techniques in tackling complex prob-
lems such as speech recognition, handwriting recognition, image recognition, and natural
language processing. One of these methods is the Long Short-Term Memory (LSTM) [5],
outperformed the Multilayer Perceptron (MLP), although trained with only normal data,
for detecting anomaly patterns from ECG signals. Moreover, the C-LSTM methods, which
integrated a convolutional neural network (CNN), well performed to detect anomaly sig-
nals that are difficult to classify in web traffic data as shown in [6]. Another deep neural
network based on anomaly detection technique was recently proposed, called DeepAnt,
which consists of a time series predictor that uses CNN to predict the values of the next
time step and classify the predicted values as normal or abnormal by passing them to the
anomaly detector [7].

Reinforcement Learning (RL) is an algorithm that imitates the human learning process.
It is based on the self-learning process in which an agent learns by interacting with the
environment without any assumptions or rules. With the advantage of being able to
learn on their own, it can identify unknown anomalies [8], which gives it an edge over
other models. RL has been applied to a variety of applications such as games [9,10],
robotics [11,12], natural language processing [13,14], computer vision [15], etc. It has also
been used in some studies to detect anomalies in data, such as an experiment [16] that
shows the use of the deep Q-function network (DQN) algorithm to detect anomalies in
time series. Network intrusion detection systems (NIDS) are developed by [17], based on
deep reinforcement learning. They utilised it to identify anomalous traffic on the campus
network with a combination of flexible switching, learning, and detection modes. When the
detection model performs below the threshold, the model is retrained. In the comparison
against three traditional machine learning approaches, their model outperformed on two
benchmark datasets, NSL-KDD and UNSW-NB15. A binary imbalanced classification
model based on deep reinforcement learning (DRL) was introduced in [18]. They developed
the reward function by setting the rewards for the minority class to be greater than the
rewards for the majority class, which made DRL paying more attention to the minority class.
They compared it to seven imbalanced learning methods and found that it outperformed
other models in text datasets and extremely imbalanced data sets.

Although deep learning and RL methods have achieved excellent results in time series,
one common issue is that their performance varies and it is hard to predict when they
do better and when they perform relatively poor. In order to improve their consistency
and accuracy, ensemble methods can be used. One example of such a method is the
technique called particle swarm optimization (PSO), which was developed [19] to predict
the changing trend of the Mexican Stock Exchange by combining several neural networks.
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An ensemble of MLP, Backpropagation network (BPN), and LSTM, as shown in [20],
was used to make models for detecting anomalous traffic in a network. The ensemble
approach that utilises DRL schemes to maximise investment in stock trading was developed
in [21]. They trained a DRL agent and obtained an ensemble trading strategy using three
different actor-critics-based algorithms that outperformed the individual algorithm and
two baselines in terms of the risk-adjusted return. Another ensemble RL that employed
three types of deep neural networks in Q-learning and used ensemble techniques to make
the final decision to increase prediction accuracy for wind speed short-term forecasting
was suggested [22].

We discovered that none of the DRL methods have been applied to identify anomalies
in telemetry water level data. We wonder whether DRL is applicable for identifying
abnormalities in telemetry water level data. Even if the final DRL models perform well
on training data, there is no guarantee that they will also perform well on testing data.
Previous research has shown that combining many models that were trained in different
ways may be more accurate than any of the individual models. So, in this paper, we aim to
answer the following two research questions.

(Q1) Is DRL applicable and effective for identifying abnormalities in water level data?

(Q2) Can we build some ensembles of DRL to improve accuracy and consistency?

To answer them, in this paper, we conducted intensive investigation by evaluated the
accuracy of DRL models with real-world data. Then we proposed a strategy to build some
ensembles by selecting some suitable DRL models. The testing results show that DRL is
applicable for identifying abnormalities in telemetry water level data with the advantage
of identifying an unknown anomaly. However, the process of training takes a long time.
The constructed ensembles not only improve accuracy and consistency, but also reduce the
rate of false alarms.

Thus, the main contributions of this paper are:

(C1) DRL models have been demonstrated to be able to detect anomalies in telemetry
water level data.

(C2) The ensembles we have constructed in this research with some suitable DRL mod-
els and use a weighted decision-making strategy can improve both accuracy and
consistency. The proposed approach has a potential to be further developed and
implemented for real-world application.

The rest of the paper is organised as follows: Section 2 overviews related work for
anomaly detection. Section 3 describes the methodology. Section 4 presents the experiment
design-from data preparation, parameters configurations, to evaluation metrics. Results
and discussions are provided in Sections 5 and 6; the conclusion and suggestions for further
work are summarised in Section 7.

2. Related Work

There are many methods for detecting anomalies in time series data. One basic
approach is to use statistics-based methods, as reviewed in [23,24]. For example, simple
and exponential smoothing techniques were used to identify anomalies in a continuous
data stream of temperature in an industrial steam turbine [25]. But in general whilst
they provided a baseline, they have a disadvantage in handling trends and periotics,
e.g., the water level will dramatically rise before the flood, which differs considerably
from the other data points and may lead to an increased false alarm rate. In addition,
they can be affected by the types of anomaly and some work well for a certain type
of problem. For example, for missing and outlier values, when the data is normally
distributed, the K-means clustering method [26] is usually used, as it is simple and relatively
effective. However, there is unfortunately no general guideline for choosing a method for a
given problem.
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Change Point Detection (CPD) is an important method for time series analysis. It
indicates an unexpected and significant change in the analysed time series stream data
and has been studied in many fields, as surveyed in [27,28]. However, the CPD has no
ability to detect anomalies since not all detected change points are abnormalities. Many
studies are being conducted to solve this problem by integrating CPD with other models
to increase anomaly detection effectiveness. For example, researchers from [29] presented
new techniques, called rule-based decision systems, that combine the results of anomaly
detection algorithms with CPD algorithms to produce a confidence score for determining
whether or not a data item is indeed anomalous. They tested their suggested method
using multivariate water consumption data collected from smart metres, and the findings
demonstrated that anomaly detection can be improved. Moreover, it has been proposed to
detect anomalies in file transfer by using the CPD to detect the current bandwidth status
from the server, then using this to calculate the expected file transfer time. The server
administrator has been notified when observed file transfers take longer than expected,
which may mean it may have something wrong [30]. The author of [31] investigated the
CUSUM algorithm for change point detection to detect SYN flood attacks. The results
demonstrated that the proposed algorithm provided robust performance with both high
and low intensity attacks. Although change point detection performed well in many
domains, the majority of them focused on changes in the behaviour of time series data
(sequence anomaly) rather than point anomaly, which is my primary research emphasis.
Furthermore, water level data at certain stations is strongly periodic with tidal effects,
resulting in numerous data points changing from high tides to low tides each day, which is
typical behaviour.

In recent decades, machine learning methods, including deep neural networks (DNNs),
have been satisfactorily implemented in various hydrological issues such as outlier de-
tection [32,33], water level prediction [34,35], data imputation [36], flood forecasting [37],
streamflow estimation [38], etc. For example, in [39], the authors proposed the R-ANFIS
(GL) method for modelling multistep-ahead flood forecasts of the Three Gorges Reservoir
(TGR) in China, which was developed by combining the recurrent adaptive-network-based
fuzzy inference system (R-ANFIS) with the genetic algorithm and the least square estimator
(GL). The authors of [40] presented a flood prediction by comparing the expected typhoon
tracking and the historical trajectory of typhoons in Taiwan in order to predict hydrographs
from rainfall projections impacted by typhoons. The PCA-SOM-NARX approach was devel-
oped by [41] to forecast urban floods, combining the advantages of three models. Principal
component analysis was used to derive the geographical distributions of urban floods
(PCA). To construct a topological feature map, high-dimensional inundation recordings
were grouped using a self-organizing map (SOM). To build 10-minute-ahead, multistep
flood prediction models, nonlinear autoregressive with exogenous inputs (NARX) was
utilised. The results showed that not only did the PCA-SOM-NARX approach produce
more stable and accurate multistep-ahead flood inundation depth forecasts, but it was also
more indicative of the geographical distribution of inundation caused by heavy rain events.
Even though we can use forecasting methods to find anomalies by using prediction error
as a threshold to classify data points as normal or not, it may take time to find the suitable
threshold for each station.

An autoencoder is an unsupervised learning neural network. It is comprised of two
parts: an encoder and a decoder. The encoder uses the concepts of dimension reduction
algorithms to convert the original data into the different representations with the under-
lying structure of the data remaining and ignoring the noise. Meanwhile, the decoder
reconstructs the data from the output of the encoder with as close of a resemblance as
possible to the original data. An autoencoder is effectively used to solve many applied
problems, from face recognition [42,43] and anomaly detection [44–47] to noise reduc-
tion [48–50]. In the time series domain, the authors of [51] proposed two autoencoder
ensemble frameworks for unsupervised outlier identification in time series data based on
sparsely connected recurrent neural networks, which addressed the issues from [52] given

144



Water 2022, 14, 2492

the poor results when using an autoencoder with time series data. In one of the frameworks
called the Independent Framework, multiple autoencoders are trained independently of
one another, whereas in the other framework, the Shared Framework, multiple autoen-
coders are trained jointly in a manner that is multitask learning. They experimented by
using univariate and multivariate real-world datasets. Experimental results revealed that
the suggested autoencoder ensembles with a shared framework outperform baselines and
state-of-the-art approaches. However, a disadvantage of this method is its high memory
consumption when training many autoencoders together. In the hydrological domain, the
authors of [53] presented the SAE-RNN model, which combined the stacked autoencoder
(SAE) with a recurrent neural network (RNN) for multistep-ahead flood inundation fore-
casting. They started with SAE to encode the high dimensionality of input datasets (flood
inundation depths), then utilised an LSTM-based RNN model to predict multistep-ahead
flood characteristics based on regional rainfall patterns, and then decoded the output by
SAE into regional flood inundation depths. They conducted experiments on datasets of
flood inundation depths gathered in Yilan County, Taiwan, and the findings demonstrated
that SAE-RNN can reliably estimate regional inundation depths in practical applications.

Time series based on ensemble methods have recently attracted attention. In a study
by [54], they introduced the method EN-RTON2, which is an ensemble model with real-
time updating using online learning and a submodel for real-time water level forecasts.
However, they experimented with fewer datasets, a smaller number of records, and lower
data frequency than our datasets. Furthermore, the authors offered no indication of the time
necessary for training models and forecasting, which may be inadequate in our case given
the number of stations and frequency of data transmission. The ensemble models were
proposed by [55], which applied the sliding window based ensemble method to find the
anomaly pattern in sensor data for preventing machine failure. They used a combination
of classical clustering algorithms and the principle of biclustering to construct clusters
representing different types of structure. Then they used these structures in a one-class
classifier to detect outliers. The accuracy of these methods was tested on a time series of
real-world datasets from the production of industry. The results have verified the accuracy
and the validity of the proposed methods.

Despite the fact that numerous studies have used different anomaly detection tech-
niques to tackle problems in many domains, only a few have focused on finding anomalies
in water level data. Furthermore, the various employed sensors, installation area, fre-
quency of data transmission, and measurement purposes lead to a variety of types of
anomalies. As a result, techniques that perform well with one set of data may not work
well with another.

3. Materials and Methods

This section describes firstly how deep reinforcement learning is constructed for
detecting anomalies in water level telemetry data; and then how an ensemble can be built
effectively by selecting suitable individual models to improve the accuracy of anomaly
detection. The frameworks of these investigations were implemented with Python and their
code can be accessed via GitHub (https://github.com/khaitao/RL-Anomaly-Detection-
Water-Level, The last check on 5 August 2022).

3.1. Reinforcement Learning (RL)

Reinforcement learning (RL) is a branch of machine learning and it is one of the most
active areas of research in artificial intelligence (AI), which is growing rapidly with a wide
variety of algorithms. It is goal-oriented learning. The learner, or agent, learns from the
result, or rewards, of its actions without being taught what actions to take. The way in
which the agent decides which action to perform depends on the policy, which can be in
the form of a lookup table or a complex search process. So, a policy function defines the
agent’s behaviour in an environment.
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Most techniques that are used to find the optimal policy for resolving the RL problem
are based on the Markov decision process (MDP), whereby the probability of next state
s′ depends only on the current state s and action a. It is represented by five important
variables [56]:

• A finite set of states (S), which may be discrete or continuous.
• A finite set of actions (A). The agent takes an action a from the action set A, a ∈ A.
• A transition probability (T(s, a, s′)), which is the probability to get from state s to

another state s′ with action a.
• A reward probability (R(s, a, s′) ∈ R), which is the reward after going from state s to

another state s′ with action a.
• A discount factor (γ), which focuses on controls the important immediate and future

rewards and lies within 0 to 1, γ ∈ [0, 1].

The goal of learning is to maximise the expected cumulative reward in each episode.
The agent should try to maximise the reward from any state s. The total reward R at state s
as the sum of current rewards and the total discounted reward at the next state s′, which
can be represented as follow:

R(s) = R(s, a, s′) + γR(s′)

The algorithm that has been widely used in RL is Q-learning. It tries to maximize the
values from Q-function, as shown in Equation (1), which can be approximated using the
Bellman equation, which represents how good it is for an agent to perform a particular
action in a state s.

NewQ(s, a) = Q(s, a) + α(r + γ max Q′(s′, a′)−Q(s, a)) (1)

where α is the learning rate, and max Q′(s′, a′) is the highest Q value between possible
actions from the new state s′.

3.1.1. Deep Q-Learning Network

Q-learning has a limitation: it does not perform well with many states and actions.
Furthermore, going through all the actions in each state would be time-consuming. There-
fore, the deep Q-learning network [57] (DQN) has been developed to solve those issues
by using a neural network (NN). The Q-value is approximated by an NN with weights w,
instead of finding the optimal Q-value through all possible state-action pairs, and errors are
minimized through gradient descent. The overall process of DRL is depicted in Figure 1.

An agent usually does not know what action is best at the beginning of training. It may
select the greatest action that is the best based on history (exploitation) or may explore new
possibilities that may be better or worse (exploration). However, when should an agent
“exploit” rather than “explore”? This remains a challenge since if the chosen action results
in a faulty selection, an agent may get stuck in incorrect learning for a time. The epsilon-
greedy algorithm is a simple way to balance exploration and exploitation. It does this by
randomly choosing between exploration and exploitation and using the hyperparameter
ε to switch between random action and Q-values, as shown in Equation (2). The normal
procedure is to begin with ε = 1.0 and gradually lower it to a small value, such as 0.01.

a =





select a random action a with probability ε

argmaxaQ(s, a) otherwise

(2)

Moreover, we make a transition from one state s to the next state s′ by performing
some action a and receive a reward r as T(s, a, s′). So, neural networks may overfit with
correlated experience from those transitions. So, we saved the transition information in
a buffer called replay memory and trained the DQN with a random transition in replay
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memory instead of training with last transitions. It will reduce the correlated experience of
learning each time, and then it will reduce the overfitting of the model.

Figure 1. Overall process of DRL (Deep Reinforcement Learning).

3.1.2. Deep Reinforcement Learning Model (DRL)

The action of the DRL agent is to determine whether or not a data point is an ab-
normality. We assigned a value of 1 to the anomaly class and a value of 0 to the normal
class. DQN was chosen as our reinforcement learning strategy. When state s is received, an
MLP is used as the RL agent’s brain to generate Q-value, which is then followed by the Q
function. The epsilon decay approach is used for exploration and exploitation. In order to
explore the entire environment space, we use the greedy factor ε to determine whether our
DRL agent should follow the Q function or randomly select an action.

For each iteration, DQN receives the set of states S and predicts the label for training
the DRL model. The transition is stored in replay memory. In each epoch, a mini batch of
replay memory is sampled and used to train the model for loss minimization. Moreover,
whether the model will learn well or not depends on the rewards function. The good
reward function has an effect on the model’s performance. If we offer a high reward for
correctly identifying normal data in datasets, DRL may identify all data as normal in order
to get the highest score. If, on the other hand, we give a high reward for finding outliers,
DRL might label all data as outliers to get the best score.

Since our datasets are imbalanced, we will give the reward of the minority class higher
than the majority class and give the penalty when our model misclassifies [18]. This will
impact on the results in Q-values, then the model will select the best action to maximize
the rewards. The reward function is defined below

rewards =





A predicted anomaly correct
B predicted wrong
C predicted normal correct

(3)

A general issue in training neural networks is to determine how long they should
be trained. Too few epochs may result in the model learning insufficiently, whereas too
many epochs may result in the model overfitting. So, the performance of the model must
be monitored during training by evaluating it on a validation data set at the end of each
epoch and updating the model if the performance of the model on a validation is better
than at the previous epoch. In our experiments, we selected 5 criteria as the conditions for
generating the models: four performance metrics and the maximum number of epochs. The
four measures are F1-score, the reward of each epoch, accuracy, and validation loss values.
In the end, we will have five models: the finished training model (DRL), the models with
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the highest F1-score (DRLF1), the models with the highest rewards (DRLRwd), the model
with the highest accuracy (DRLAcc), and the model with the lowest validation loss values
(DRLValid).

3.1.3. Ensemble Methods

In general, the capacity of an individual model is limited and may have only learned
some parts of the problem, and hence may make mistakes in the areas where it has not
learned sufficiently. Therefore, it can be useful to combine some individual models to form
an ensemble to allow them to work collectively to compensate for each other’s weaknesses.
Many studies [4,58–60] have shown that if an ensemble is built with diverse models and
appropriate decision-making functions, it can improve the accuracy of classification and
also reliability. In our research, we created multiple ensembles by selecting suitable DRL
models that had been generated from the previous experiments. We investigated two
combining methods to aggregate the outputs from the member models of an ensemble:
simple majority voting and weighted voting algorithms.

• Majority Voting: The predictions of each model in an ensemble have to be aggregated,
and the final prediction is the class that gets the most votes. Each of our ensembles will
be built with an odd number of classifiers in order to avoid a tie situation in voting.

• Weighted Voting: As the performance of individual models is usually different, treat-
ing them all the same way in decision marking appears unlogical, so we devised a
weighted voting mechanism to take this difference into consideration when making
a final decision in an ensemble. With the weighted voting method, the contribution
from a model is weighed by its performance. For a model mi, after it has been trained
with the training data, its weight score wi is derived by using its F1 score that is
calculated on the given validation dataset; we then have a set of F1-scores of each
model, F1m = {F1m1, F1m2, ..., F1mM}. Then, these F1-scores are ranked to find the
maximum and minimum scores. Finally, we calculate the normalised weighting score
wi for module mi using the equation below:

wi =
F1mi −min(F1m)

max(F1m)−min(F1m)
, ∀ i = 1, ..., M (4)

The output of an ensemble, Φ(x), is calculated by multiplying the weight with the
output of an individual module and taking the argument of maxima as follows:

Φ(x) = argmax
M

∑
i=1

wimi(x) (5)

where M is the number of models in an ensemble, and mi(x) is the predicted class of
model i.

3.2. Data Labelling

Water level data from telemetry stations were unlabelled for anomalies. It is then
necessary to assign ground truth labels to all anomalies and normal data points in each
time series of water level data in order to train the models with supervised algorithms.
This was manually done by a group of the domain experts at the HII in a manner similar to
the ensemble approach. Each specialist looked at the data and identified all the anomalies
based on their experience. Then their judgements were aggregated by taking a consensus
to decide if a data point is an anomaly or not.

3.3. Datasets

Since the DRL algorithm takes a lot of time for training on the computing facilities
that we had, we were limited to consider some relatively small datasets. After data
preprocessing, the 8 stations from the HII telemetry water level station were chosen for
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use in this experiment, including CPY011, CPY012, CPY013, CPY014, CPY015, CPY016,
CPY017, and YOM009. We chose the datasets from May and June for CPY011, CPY012,
CPY013, CPY015, CPY016, and CPY017 in 2016 and similar months in 2015 for CPY014 and
YOM009 because they have a low percentage of missing data. Figure 2 shows the water
levels of these eight stations. It is visually clear that station YOM009 has very different
behaviour from the others because it is located in a different region.

(a) CPY011 (b) CPY012

(c) CPY013 (d) CPY014

(e) CPY015 (f) CPY016

(g) CPY017 (h) YOM009

Figure 2. Water level data from eight stations: CPY011, CPY012, CPY013, CPY014, CPY015, CPY016,
CPY017, and YOM009 (a–h). The different colours show the partitions of the data for training (blue),
validation (orange) and testing (green). The anomalies are indicated by red crosses, x.

All the data are normalised and divided into 3 subsets, with the first 60% of a time
series for training, the next 20% for validating, and the last 20% for testing, respectively.
Table 1 shows the demographics of one partition of the data from each station. As can be
seen, in general, the rates of anomalies are quite low for most stations, but the variances are
considerably large. For example, they varied from 0.14% to 7.22% in the training data.
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Table 1. Demographic summary of the water level data of 8 stations used in this research.

Code Training Validating Testing Total
Rec. Anomaly Rec. Anomaly(%) Rec. Anomaly(%) Rec. Anomaly(%)

CPY011 5142 16(0.31%) 1713 7(0.41%) 1714 7(0.41%) 8569 30(0.37%)
CPY012 5142 101(1.96%) 1713 41(2.39%) 1714 34(1.98%) 8569 176(2.05%)
CPY013 5142 97(1.89%) 1713 33(1.93%) 1714 28(1.63%) 8569 158(1.84%)
CPY014 5142 49(0.95%) 1713 7(0.41%) 1714 4(0.23%) 8569 60(0.70%)
CPY015 5142 7(0.14%) 1713 15(0.88%) 1714 34(1.98%) 8569 56(0.65%)
CPY016 5142 367(7.14%) 1713 220(12.84%) 1714 107(6.24%) 8569 694(8.10%)
CPY017 5142 42(0.82%) 1713 2(0.12%) 1714 3(0.18%) 8569 47(0.55%)
YOM009 5142 417(7.22%) 1713 173(10.97%) 1714 81(3.79%) 8569 624(7.28%)

Avg. 5142 137(2.66%) 1713 62(3.63%) 1714 37(2.17%) 8569 231(2.69%)

3.4. Evaluation Metrics and Comparison Methods

As our task is basically a classification problem. We therefore chose some commonly
used measures: Recall, Precision, and F1, to evaluate the accuracy of models. They are
defined by the following equations, based on the confusion matrix shown in Table 2.

Table 2. Confusion matrix of classification results.

Actual/Predicted Anomaly Normal

Anomaly TP FN
Normal FP TN

Recall =
TP

TP + FN

Precision =
TP

TP + FP

F1 = 2
Precision ∗ Recall
Precision + Recall

where TP, FP, FN, and TN denote the number of true positive—correct predictions for
anomaly data, false positive—the number of incorrect predictions for anomaly data, false
negative—the number of incorrect predictions for normal data, and true negative—the
number of correct predictions for normal data, respectively.

To make statistical comparisons, we implemented a statistically rigorous test for
multiple classifiers across many datasets. This approach was initially described in [61]
and is intended to examine the statistical significance of classifiers. This technique takes
the strategy of testing the null hypothesis against the alternative hypothesis. The null
hypothesis states that no difference exists between the average rankings of k algorithms on
N datasets. The alternative hypothesis is that at least one algorithm’s average rank differs.

In the first place, the k methods are ranked according to their performance over the
N datasets; then, the average ranking of each algorithm is calculated. To test the null
hypothesis, the Friedman test is calculated using Equation (6).

χ2
F =

12N
k(k + 1)

[
∑

j
R2

j −
k(k + 1)2

4

]
(6)

where Rj is the rank of the jth of k algorithms on N datasets and the statistic is estimate
using a chi-squared distribution with k− 1 degrees of freedom.

If the null hypothesis is rejected at the selected significance level α, the post-hoc
Nemenyi test is used to compare all classifiers to each other. The Nemenyi test is similar
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to the Tukey test for ANOVA and uses a critical difference (CD), which is presented in
Equation (7)

CD = qα

√
k(k = 1)

6N
(7)

where qα is calculated by the difference in the range of standard deviations between the
smallest valued sample and the largest valued sample. The results of these tests are often
visualised using a critical difference (CD) diagram. Classifiers are shown on a number
line based on their average rank across all datasets, and bold CD lines are used to connect
classifiers that are not significantly different.

In comparison, the performance of our approach, MLP, and LSTM have been used
with the same number of hidden layers and the number of neurons in each hidden layer.

4. Experiment Design and Setting
4.1. Four Sets of Experiments

We designed four sets of experiments to test DRL models and ensemble models. (1) to
train various DRL models and test them with the different data sampled from the same
water level monitoring stations; (2) to train various DRL models with the data from a
station and then test them with the data from other stations; (3) to build several ensembles
by selecting different numbers of the DRL models and test them with the testing data from
the same stations; and (4) to test the ensembles with the data from different stations. The
purpose of doing these cross-station testing is to check and evaluate the generalisation
ability of the DLR models and the ensembles.

4.2. Parameter Setting

For the DRL model, a multilayer perceptron network was used in the Q-network with
the following parameters: the number of input nodes in the input layer was 36, one hidden
layer with 18 nodes, and 2 nodes in the output layer. Moreover, epsilon-greedy policy (ε)
was used for exploration from 0.1 to 0.0001. The size of replay memory is 50,000, discount
factor of intermediate rewards γ was 0.99. The Adam algorithm was used to optimise the
parameters of Q-Network and the learning rate was 0.001. The batch size was 256, training
with 100, 500, 1000, 5000, and 10,000 episodes. The episode was over when the number of
incorrectly identified anomalies was greater than the number of certain anomalies in the
training set or had been trained on all the samples in the training set. We set the reward
function parameters for A, B, and C to be 0.9, −0.1, and 0.1, respectively. Furthermore,
the window size of 6 was chosen to save time during the training process.

For comparison, MLP and LSTM were used with the identical structures as we used
in DRL. They were trained using 100 epochs with early stopping to avoid overfitting. For
each setting, the experiments were repeated 10 times with variations, and then the means
and standard deviations of the results are reported in the next section.

4.3. Computing Facilities

All the experiments were coded with Python Programming Language (V3.6) (Python
Software Foundation, https://www.python.org/, accessed on 30 June 2022) and Tensor-
Flow 2.8, and run on a personal computer with an Intel Core i5-7500 CPU @ 3.4 GHz,
32 GB RAM, 64-Bit Operating System.

5. Results
5.1. Accuracies of DRL Models

For each station, various DRL models were generated over a range of epochs from 100
to 10,000, with the intention of investigating how well our proposed DRL method learns at
the different points of training. The results are shown in Table 3.

Using the CPY011 dataset, we observed that DRL and DRLRwd with 1000 training
iterations not only earned the highest F1-score of 0.8333, 0.7143 recall, and 1.0000 precision
but also provided the highest average F1-score of 0.7433. However, after 1000 epochs of
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training, the performance of all models, with the exception of DRLValid decreased and then
rose when 10,000 epochs were used.

Table 3. The performance of DRL when increasing the learning epochs (the best F1-score of each row
shown in bold).

Station Epochs
DRL DRLF1 DRLRwd DRLAcc DRLValid

Recall Prec F1 Recall Prec F1 Recall Prec F1 Recall Prec F1 Recall Prec F1

CPY011 100 0.8571 0.5455 0.6667 0.8571 0.7500 0.8000 0.8571 0.5455 0.6667 0.8571 0.7500 0.8000 0.7143 0.6250 0.6667
500 0.8571 0.7500 0.8000 0.8572 0.5455 0.6667 0.8571 0.7500 0.8000 0.8571 0.5455 0.6667 0.8571 0.6667 0.7500

1000 0.7143 1.0000 0.8333 0.8571 0.6667 0.7500 0.7143 1.0000 0.8333 0.8571 0.6667 0.7500 0.4286 0.2727 0.3333
5000 0.7143 0.6250 0.6667 0.8571 0.5000 0.6316 0.7143 0.6250 0.6667 0.8571 0.5000 0.6316 0.7143 0.7143 0.7143

10,000 0.8571 0.6667 0.7500 1.0000 0.5833 0.7368 0.8571 0.6667 0.7500 1.0000 0.5833 0.7368 0.8571 0.4000 0.5455

Avg 0.8000 0.7174 0.7433 0.8857 0.6091 0.7170 0.8000 0.7174 0.7433 0.8857 0.6091 0.7170 0.7143 0.5357 0.6020
Std 0.0782 0.1743 0.0760 0.0639 0.0997 0.0674 0.0782 0.1743 0.0760 0.0639 0.0997 0.0674 0.1749 0.1901 0.1689

CPY012 100 0.7059 0.4000 0.5106 0.7647 0.7027 0.7324 0.6764 0.3898 0.4946 0.7059 0.6857 0.6957 0.7647 0.7027 0.7324
500 0.7647 0.6341 0.6933 0.7941 0.7297 0.7606 0.7353 0.6250 0.6757 0.7941 0.7297 0.7606 0.7941 0.7297 0.7606

1000 0.6765 0.6571 0.6667 0.7647 0.6667 0.7123 0.6176 0.6000 0.6087 0.7647 0.6667 0.7123 0.7647 0.4062 0.5306
5000 0.7059 0.7059 0.7059 0.6176 0.6176 0.6176 0.7059 0.7273 0.7164 0.6765 0.6970 0.6866 0.7059 0.7273 0.7164

10,000 0.6471 0.7586 0.6984 0.7059 0.8000 0.7500 0.7059 0.7742 0.7385 0.7059 0.8276 0.7619 0.7941 0.7714 0.7826

Avg 0.7000 0.6311 0.6550 0.7294 0.7033 0.7146 0.6882 0.6233 0.6468 0.7294 0.7213 0.7234 0.7647 0.6675 0.7045
Std 0.0436 0.1378 0.0821 0.0702 0.0684 0.0572 0.0446 0.1489 0.0984 0.0483 0.0637 0.0357 0.0360 0.1481 0.1005

CPY013 100 0.8710 0.3506 0.5000 0.8710 0.6136 0.7200 0.9032 0.3836 0.5385 0.8710 0.6136 0.7200 0.6774 0.1214 0.2059
500 0.6774 0.3684 0.4773 0.8065 0.5000 0.6173 0.7419 0.3966 0.5169 0.8065 0.5000 0.6173 0.8387 0.4906 0.6190

1000 0.8065 0.5952 0.6849 0.8065 0.5682 0.6667 0.7097 0.6111 0.6567 0.8065 0.5682 0.6667 0.9677 0.5556 0.7059
5000 0.7742 0.5714 0.6575 0.6774 0.6774 0.6774 0.8065 0.5682 0.6667 0.6774 0.6364 0.6562 0.6774 0.5250 0.5915

10,000 0.7097 0.6667 0.6875 0.8387 0.7647 0.8000 0.7742 0.6857 0.7273 0.8387 0.7647 0.8000 0.7419 0.6571 0.6970

Avg 0.7678 0.5105 0.6014 0.8000 0.6248 0.6963 0.7871 0.5290 0.6212 0.8000 0.6166 0.6920 0.7806 0.4699 0.5639
Std 0.0770 0.1423 0.1039 0.0736 0.1015 0.0685 0.0743 0.1337 0.0899 0.0736 0.0978 0.0706 0.1237 0.2045 0.2061

CPY014 100 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500
500 0.7500 0.3750 0.5000 0.7500 0.7500 0.7500 0.7500 1.0000 0.8571 0.7500 0.7500 0.7500 0.7500 1.0000 0.8571

1000 0.7500 0.3750 0.5000 0.7500 0.5000 0.6000 0.7500 0.3750 0.5000 0.7500 0.5000 0.6000 0.7500 0.5000 0.6000
5000 0.7500 0.3333 0.4615 0.7500 0.5000 0.6000 0.7500 0.3333 0.4615 0.7500 0.5000 0.6000 0.7500 0.4286 0.5455

10,000 0.2500 0.1667 0.2000 0.7500 0.6000 0.6667 0.2500 0.1667 0.2000 0.7500 0.6000 0.6667 0.7500 0.4286 0.5455

Avg 0.6500 0.4000 0.4823 0.7500 0.6200 0.6733 0.6500 0.5250 0.5537 0.7500 0.6200 0.6733 0.7500 0.6214 0.6596
Std 0.2236 0.2137 0.1952 0.0000 0.1255 0.0751 0.2236 0.3405 0.2584 0.0000 0.1255 0.0751 0.0000 0.2495 0.1385

CPY015 100 0.2353 0.4706 0.3137 0.3235 0.5238 0.4000 0.2353 0.4706 0.3137 0.3235 0.5238 0.4000 0.1765 0.3529 0.2353
500 0.2059 0.4667 0.2857 0.3235 0.5000 0.3929 0.2059 0.4667 0.2857 0.3235 0.5000 0.3929 0.1471 0.3846 0.2128

1000 0.3824 0.4483 0.4127 0.3824 0.5000 0.4333 0.3824 0.4483 0.4127 0.3824 0.5000 0.4333 0.4118 0.4516 0.4308
5000 0.2353 0.4706 0.3137 0.3235 0.5238 0.4000 0.2353 0.4706 0.3137 0.3235 0.5238 0.4000 0.2353 0.4706 0.3137

10,000 0.3824 0.4483 0.4127 0.3824 0.5200 0.4407 0.3824 0.4483 0.4127 0.3824 0.5200 0.4407 0.3824 0.4483 0.4127

Avg 0.2883 0.4609 0.3477 0.3471 0.5135 0.4134 0.2883 0.4609 0.3477 0.3471 0.5135 0.4134 0.2706 0.4216 0.3211
Std 0.0868 0.0116 0.0604 0.0323 0.0124 0.0219 0.0868 0.0116 0.0604 0.0323 0.0124 0.0219 0.1202 0.0503 0.0995

CPY016 100 0.6636 0.3100 0.4226 0.5981 0.5203 0.5565 0.6916 0.2960 0.4146 0.5981 0.5203 0.5565 0.6168 0.4889 0.5455
500 0.6636 0.2763 0.3901 0.6355 0.4048 0.4945 0.6449 0.2727 0.3833 0.5981 0.5161 0.5541 0.5047 0.5094 0.5070

1000 0.6355 0.2547 0.3636 0.5981 0.5333 0.5639 0.6449 0.2644 0.3750 0.6168 0.5641 0.5893 0.6168 0.4342 0.5097
5000 0.5888 0.2727 0.3728 0.5888 0.6238 0.6058 0.3084 0.2089 0.2491 0.5421 0.6105 0.5743 0.5234 0.2902 0.3733

10,000 0.5794 0.2366 0.3360 0.6168 0.4177 0.4981 0.6355 0.2208 0.3277 0.6262 0.5447 0.5826 0.6168 0.4177 0.4981

Avg 0.6262 0.2701 0.3770 0.6075 0.5000 0.5438 0.5851 0.2526 0.3499 0.5963 0.5511 0.5714 0.5757 0.4281 0.4867
Std 0.0402 0.0274 0.0321 0.0187 0.0904 0.0472 0.1562 0.0366 0.0644 0.0326 0.0384 0.0156 0.0567 0.0858 0.0659

CPY017 100 1.0000 0.7500 0.8571 1.0000 0.5000 0.6667 1.0000 0.7500 0.8571 1.0000 0.7500 0.8571 1.0000 0.7500 0.8571
500 1.0000 0.7500 0.8571 1.0000 0.5000 0.6667 1.0000 0.7500 0.8571 1.0000 0.3750 0.5455 0.6667 0.5000 0.5714

1000 1.0000 0.2143 0.3529 1.0000 0.7500 0.8571 1.0000 0.2000 0.3333 1.0000 0.7500 0.8571 0.0000 0.0000 -
5000 1.0000 0.5000 0.6667 1.0000 0.4286 0.6000 1.0000 0.5000 0.6667 1.0000 0.4286 0.6000 1.0000 0.3333 0.5000

10,000 0.6667 0.6667 0.6667 0.6667 0.2857 0.4000 0.6667 0.6667 0.6667 1.0000 0.6000 0.7500 0.6667 0.6667 0.6667

Avg 0.9333 0.5762 0.6801 0.9333 0.4929 0.6381 0.9333 0.5733 0.6762 1.0000 0.5807 0.7219 0.6667 0.4500 0.6488
Std 0.1491 0.2266 0.2062 0.1491 0.1683 0.1641 0.1491 0.2323 0.2140 0.0000 0.1755 0.1443 0.4082 0.2982 0.1547

YOM009 100 0.6308 0.3178 0.4227 0.5692 0.3033 0.3957 0.6462 0.3182 0.4264 0.5692 0.3033 0.3957 0.5692 0.3394 0.4253
500 0.5846 0.2734 0.3725 0.6769 0.3121 0.4272 0.6923 0.3020 0.4206 0.4769 0.4769 0.4769 0.4769 0.4769 0.4769

1000 0.5385 0.2966 0.3825 0.6769 0.2973 0.4131 0.5538 0.3103 0.3978 0.4615 0.3947 0.4255 0.5846 0.3016 0.3979
5000 0.5538 0.1818 0.2738 0.6615 0.3644 0.4699 0.6154 0.2581 0.3636 0.4923 0.4103 0.4476 0.5077 0.4177 0.4583

10,000 0.4769 0.2627 0.3388 0.5692 0.2741 0.3700 0.4769 0.2605 0.3370 0.5385 0.2917 0.3784 0.4308 0.4308 0.4308

Avg 0.5569 0.2665 0.3581 0.6307 0.3102 0.4152 0.5969 0.2898 0.3891 0.5077 0.3754 0.4248 0.5138 0.3933 0.4378
Std 0.0570 0.0519 0.0558 0.0565 0.0334 0.0373 0.0839 0.0285 0.0382 0.0449 0.0776 0.0395 s0.0640 0.0712 0.0306

The top models to identify anomalies on the CPY012 dataset are DRLValid, with a
maximum F1-score of 0.7826 after 10,000 training epochs. However, DRLAcc obtained the
greatest average F1-score with 0.7234. Meanwhile, 10,000 training epochs with DRLF1 and
DRLAcc delivered the highest F1-score for identifying anomalies in CPY013 data, at 0.8000
F1-score. Furthermore, DRLF1 provided the highest average F1-score of 0.6963.

With just 500 epochs of training on CPY014 data, DRLRwd and DRLValid delivered the
best F1-score of 0.8571. However, the maximum average F1-score achieved by DRLF1 and
DRLAcc was just 0.6733. When looking at the results on CPY015 data, the best models are
DRLF1 and DRLAcc. This is shown by the fact that their F1-scores were the highest in many
training epochs.

DRLAcc was the best model for detecting anomalies in CPY016 data since it not only
had the greatest F1-score in almost every training epoch but also had the highest average
F1-score of 0.5714. Meanwhile, every model scored the best F1-score of 0.8571, 100 percent
recall, and 0.7500 accuracy when trained with 100 epochs on CPY017, with the exception of
the DRLF1 model, which achieved just 0.6667 F1-score. While the best models for detecting
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anomalies on YOM009 are DRLAcc and DRLValid, which both have the same F1-score of
0.4769, the worst models are DRL while training with 5000 iterations at a 0.2728 F1-score,
0.5538 recall, and 0.1818 precision.

Figure 3 shows the comparison of the critical differences between the different DRL
models. The number associated with each algorithm is the average rank of the DRL models
on each type of dataset, and solid bars represent groups of classifiers with no significant
difference. There is no statistically significant difference across the models, with DRLAcc
ranking first, followed by DRLF1, DRL, DRLRwd, and DRLValid ranking last.

Figure 3. A critical difference diagram for 5 different DRL models on different datasets of telemetry
water level data.

Figure 4 also shows a line graph of the F1-score as the number of epochs of training
from each model increases. We can observe that as the number of epochs is increased,
the performance of all deep reinforcement learning models using data from CPY012,
CPY013, and CPY015 tends to improve. When training with CPY014 data, on the other
hand, the F1-score of each model tends to stay the same or go down as the number of
epochs goes up. In the case of trained models with CPY016 data, the F1-score of each model
tends to stabilise and slightly decrease, with the exception of DRLValid, which tends to
grow after 5000 epochs of training. When we looked at the models that were trained with
the CPY017 dataset, the F1-score of DRLF1 went up after training with 1000 epochs and
then went down. Other models, however, went up when training with more epochs, even
though the performance of some models went down after 1000 epochs, while the F1-score
of models that have been trained with CPY011 and YOM009 remained stable when training
with more epochs.

(a) CPY011 (b) CPY012

(c) CPY013 (d) CPY014

(e) CPY015 (f) CPY016

Figure 4. Cont.
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(g) CPY017 (h) YOM009

Figure 4. F1-score when increasing the learning epochs at each station.

Figure 5 shows the findings of the best DRL model for each station. We can observe
that the DRL model performs well, capturing the majority of abnormalities in testing
datasets. However, it still did not work well when there were anomalies in data that
changed frequently, like when there were anomalies in YOM009 data between 29 June and
1 July 2015, and in CPY015 data on 19 June 2016.

(a) CPY011 (b) CPY012

(c) CPY013 (d) CPY014

(e) CPY015 (f) CPY016

(g) CPY017 (h) YOM009

Figure 5. Anomaly detection from the best DRL model of each station. (a) CPY011 with DRL;
(b) CPY012 with DRLValid; (c) CPY013 with DRLF1; (d) CPY014 with DRLRwd; (e) CPY015 with
DRLF1; (f) CPY016 with DRLF1; (g) CPY017 with DRL; (h) YOM009 with DRLAcc.

5.2. Performance on the Same Station

We evaluated the performance of our techniques with MLP and LSTM models on
eight telemetry water level datasets. The data in each station is first divided into training,
validating, and testing parts in a 6:2:2 ratio. The results were averaged after being run ten
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times and then were compared to the averaged DRL models of each station as shown in
Table 4. It demonstrated that DRLF1 and DRLAcc had the highest average F1-scores for
detecting anomalies on CPY015, with F1-scores of 0.4133. MLP had the greatest average
F1-score when it came to detecting anomalies on CPY011, CPY012, and CPY014 with
scores of 0.8505, 0.7822, and 0.8571, respectively. On the other stations, LSTM was the top
performing model. According to the CD diagram in Figure 6, the best LSTM model had the
greatest ranking of performance, followed by DRLAcc and MLP.

Figure 6. A critical difference diagram of each model.

Table 4. The mean F1-scores and standard deviation of all DRL, MLP, and LSTM models when testing
with the dataset from different stations (the best F1-score of each row is shown in bold).

Station DRL DRLF1 DRLRwd DRLAcc DRLValid MLP LSTM

CPY011 0.7433 (±0.08) 0.7170 (±0.07) 0.7433 (±0.08) 0.7170 (±0.07) 0.6020 (±0.17) 0.8505 (±0.06) 0.8167 (±0.04)
CPY012 0.6550 (±0.08) 0.7146 (±0.06) 0.6468 (±0.10) 0.7234 (±0.04) 0.7045 (±0.10) 0.7822 (±0.03) 0.7753 (±0.02)
CPY013 0.6014 (±0.10) 0.6963 (±0.07) 0.6212 (±0.09) 0.6920 (±0.07) 0.5639 (±0.21) 0.6998 (±0.03) 0.7265 (±0.02)
CPY014 0.4823 (±0.20) 0.6733 (±0.08) 0.5537 (±0.26) 0.6733 (±0.08) 0.6596 (±0.14) 0.8571 (±0.00) 0.8571 (±0.00)
CPY015 0.3477 (±0.06) 0.4134 (±0.02) 0.3477 (±0.06) 0.4134 (±0.02) 0.3211 (±0.10) 0.2220 (±0.10) 0.3276 (±0.09)
CPY016 0.3770 (±0.03) 0.5438 (±0.05) 0.3499 (±0.06) 0.5714 (±0.02) 0.4867 (±0.07) 0.5651 (±0.14) 0.6252 (±0.06)
CPY017 0.6801 (±0.21) 0.6381 (±0.16) 0.6762 (±0.21) 0.7219 (±0.14) 0.6488 (±0.15) 0.9778 (±0.07) 0.9857 (±0.05)
YOM009 0.3581 (±0.06) 0.4152 (±0.04) 0.3891 (±0.04) 0.4248 (±0.04) 0.4378 (±0.03) 0.2358 (±0.05) 0.2596 (±0.06)

We discovered that DRLF1 and DRLAcc had the highest average F1-scores for detecting
anomalies on CPY015, with F1-scores of 0.4133. MLP had the greatest average F1-score
when it came to detecting anomalies on CPY011, CPY012, and CPY014 with scores of 0.8505,
0.7822, and 0.8571, respectively. On the other stations, LSTM was the top performing model.
The LSTM model has the highest ranking of performance, according to the CD diagram in
Figure 6, followed by DRLAcc and MLP.

Since RL models need time to learn until they have enough knowledge to do their task,
time costing is the one important thing that we need to be interested in. We calculate the
time spent by the best deep learning models (BDRL) and comparative models, as shown
in Table 5. The MLP model requires the least training time per epoch, with an average of
0.30 s, followed by the LSTM model at 0.64 s, and the DRL model at 17.56 s. For MLP and
LSTM training with early stopping, they needed an average of 12 and 15 training epochs,
respectively, while our method requires around 4638 epochs to get optimal results. It means
that the MLP model took an average of 2.97 s to train, while LSTM took 9.20 s and DRL
took an average of 78,756 s, which is about 22 h.
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Table 5. The number of training epochs and the time spent on each epoch for each model.

Station Training Epochs Time (s./epochs) Total Time (s.)
MLP LSTM BDRL MLP LSTM BDRL MLP LSTM BDRL

CPY011 12 17 1000 0.17 0.64 18.66 2.04 10.88 18,666
CPY012 15 19 10,000 0.16 0.62 18.20 2.40 11.78 182,000
CPY013 11 17 10,000 0.18 0.64 17.88 1.98 10.88 178,000
CPY014 11 6 500 0.55 0.83 18.32 6.05 4.98 2490
CPY015 7 11 10,000 0.24 0.62 16.03 1.68 6.82 160,300
CPY016 17 21 5000 0.17 0.51 16.58 2.89 10.71 82,900
CPY017 13 17 100 0.20 0.56 16.74 2.6 9.52 1674
YOM009 6 11 500 0.69 0.73 18.82 4.14 8.03 4015

avg 12 15 4638 0.30 0.64 17.65 2.97 9.20 78,756

5.3. Performance on the Different Station

After generating various models on some stations’ data and testing them with the
same stations, we tested these models with the data collected from different stations with
the intention of examining their generalisation ability. The F1-scores of each model are
provided in Table 6.

Table 6. The F1-scores of the best DRL models when testing with the dataset from same station (show
in the bracket) and different stations, while the average F1-scores and standard deviations of each
station were calculated without their own scores.

Tested Dataset Trained Dataset
CPY011 CPY012 CPY013 CPY014 CPY015 CPY016 CPY017 YOM009

CPY011 (0.8333) 0.1667 0.1967 0.0255 0.4138 0.0596 0.2000 0.1556
CPY012 0.6000 (0.7826) 0.7164 0.1136 0.0533 0.5088 0.6667 0.6667
CPY013 0.6531 0.6667 (0.8000) 0.1875 0.1034 0.5421 0.5970 0.5952
CPY014 0.4000 0.8571 0.8571 (0.8571) 0.0000 0.2727 0.5871 0.6000
CPY015 0.0000 0.1538 0.1474 0.0672 (0.4407) 0.0900 0.2078 0.0839
CPY016 0.5369 0.6129 0.6550 0.1276 0.4103 (0.6058) 0.1203 0.6703
CPY017 0.5000 0.3529 0.5455 0.2308 0.0000 0.1765 (0.8571) 0.4000
YOM009 0.0000 0.3297 0.1905 0.0771 0.0000 0.4189 0.3158 (0.4769)

avg 0.3843 0.4485 0.4727 0.1185 0.1401 0.2955 0.3850 0.4531

std 0.2742 0.2680 0.2908 0.0713 0.1896 0.1975 0.2257 0.2457

Using DRLRwd-the best model for detecting anomalies by training with CPY011 data
and then identifying anomalies from other stations, we can see that, though it works rather
well, with F1-scores ranging from 0.4 on CPY014 to 0.65 on CPY013 data, it is unable to
detect anomalies on CPY015 and YOM009. Using the BDRL model of the CPY012 training
dataset, DRLValid, although it provided good performance when identifying anomalies
in the CPY013, CPY014, and CPY016 datasets with F1-scores greater than 0.61, especially
CPY014 with a 0.8571 f1-score, which more than detected anomalies on its own dataset, it
provided poor performance, with an F1-score lower than 0.4000, when detecting anomalies
in other stations. Similar to DRLF1, which was trained using CPY013 data, it not only
performs well when recognising anomalies on its own dataset but also when detecting
anomalies on the CPY014 dataset, with an F1-score of 0.8571. The BDRL model, DRLRwd,
that was trained with CPY014 did the worst when it was used to find anomalies in other
stations’ data, with an F1-score of less than 0.23 for every dataset and the lowest F1-score
of only 0.0255 for CPY011. Similar to the best model on CPY015 datasets, which performed
poorly, with the highest F1-score on CPY011 data being 0.4138 and being unable to identify
anomalies on CPY014, CPY017, and YOM009. Meanwhile, the best model for detecting
anomalies on CPY016 data performed the best for detecting anomalies on CPY013 with a
0.5421 F1-score. The model that was trained on CPY017 did the best of finding anomalies
in data from CPY012, CPY013, and CPY014 with an F1-score greater than 0.58. While the
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best model from the YOM009 training dataset achieved a low F1-score on CPY011, CPY015,
and CPY017, 0.0839 is the lowest F1-score. However, when it was used to find outliers on
COY012, CPY013, CPY014, and CPY016 with F1-scores higher than 0.59, it did better than
its own training data.

It is worth noting that models trained using CPY014 and CPY015 data perform poorly
when used to identify anomalies from other stations. This may be due to the fact that the
actual number of anomalies in those stations are relatively low and most of them are kind
of extreme outliers, as shown in Figure 2, so the models were trained with only those kinds
of anomalies, which may not be enough for the model to learn. In contrast to YOM009,
which has a many number and types of anomalies for model to learn, as a result, it can
identify abnormalities on CPY012, CPY013, CPY014, and CPY016 better than other models
that were trained with another station.

Then, we tested MLP and LSTM using data from different stations to compare our
method to the candidate models. Table 7 represents the results of the MLP models when
tested with the datasets from the same and different stations. Using the CPY011 dataset,
the MLP models achieved the highest F1-score of 0.5430 on CPY016, despite their being
unable to identify anomalies on CPY014 and YOM009. Similar to finding anomalies on
CPY012, it offered good results with F1-scores of more than 0.63, with the exception of
CPY011, CPY015, and YOOM009, which produced F1-scores of less than 0.4. The best
MLP of the CPY013 training dataset provided the highest F1-score on the CPY014 dataset
(0.8571 F1-score) and the lowest on CPY015 (0.2093 F1-score). Anomalies on the YOM009
dataset were the most difficult for the MLP models trained on CPY014 to detect, with an
F1-score of just 0.1818. However, it performed excellent results in identifying anomalies
on CPY017 with a 1.0000 F1-score. Meanwhile, the MLP model on the CPY015 dataset
performed poorly when detecting abnormalities from other stations. On the other hand,
the MLP models that were trained on CPY016 and CPY017 generated good results when
used to identify anomalies from other stations, despite still performing poorly in some
stations. In contrast, the MLP model trained on YOM009 worked well when used to detect
abnormalities on other stations but performed badly when detecting anomalies on its own
data. Furthermore, it performed well on CPY017 data, with a 1.000 F1-score.

Table 7. The F1-scores of the MLP models when testing with the dataset from the same station (shown
in the bracket) and different stations.

Tested Dataset Trained Dataset
CPY011 CPY012 CPY013 CPY014 CPY015 CPY016 CPY017 YOM009

CPY011 (0.9231) 0.4000 0.2917 0.7778 0.0000 0.1373 0.7059 0.6087
CPY012 0.4889 (0.8387) 0.8060 0.7500 0.0541 0.6923 0.7273 0.7857
CPY013 0.4390 0.6786 (0.7500) 0.7000 0.0000 0.7123 0.6909 0.7719
CPY014 0.0000 0.8571 0.8571 (0.8571) 0.0000 0.6000 0.8571 0.8571
CPY015 0.1951 0.1509 0.2093 0.2593 (0.3529) 0.1420 0.3077 0.2414
CPY016 0.5430 0.6380 0.6587 0.6322 0.0915 (0.6629) 0.5665 0.6550
CPY017 0.5000 0.6667 0.6000 1.0000 0.0000 0.2857 (1.0000) 1.0000
YOM009 0.0000 0.2308 0.2955 0.1818 0.0000 0.4404 0.1772 (0.2857)

avg 0.3094 0.5174 0.5312 0.6144 0.0208 0.4300 0.5761 0.7028

std 0.2396 0.2609 0.2643 0.2929 0.0371 0.2473 0.2460 0.2408

In the case of the LSTM model, as depicted in Table 8. They performed well, with an
average F1-score of more than 0.42 for each station except CPY015, which had an average
F1-score of 0.1099. However, they generated poor performances in some stations, such
as the LSTM of CPY016 that achieved an F1-score of only 0.1754 when used to detect
anomalies on the CPY011 dataset, and it was unable to detect anomalies on CPY014,
CPY017, and YOM009 datasets with the LSTM that had been trained on the CPY015 dataset.
However, it provided excellent performance when detecting anomalies on CPY017 with
the LSTM that has been trained on the CPY014 dataset. When the LSTM was trained
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on YOM009, it did well at finding anomalies from other stations, especially CPY014 and
CPY017, with an F1-score of 0.8571.

Table 8. The F1-scores of the LSTM models when testing with the dataset from the same station
(shown in the bracket) and different stations.

Tested Dataset Trained Dataset
CPY011 CPY012 CPY013 CPY014 CPY015 CPY016 CPY017 YOM009

CPY011 (0.8571) 0.4828 0.2333 0.5000 0.3077 0.1754 0.7059 0.5185
CPY012 0.6400 (0.8387) 0.8308 0.7368 0.0444 0.7536 0.7500 0.7458
CPY013 0.5652 0.7333 (0.7463) 0.7213 0.1081 0.6857 0.7333 0.7188
CPY014 0.4000 0.8571 0.8571 (0.8571) 0.0000 0.8571 0.8571 0.8571
CPY015 0.3043 0.3636 0.2340 0.3939 (0.4364) 0.2045 0.3704 0.2564
CPY016 0.5679 0.6897 0.6824 0.5634 0.3089 (0.6630) 0.6296 0.6359
CPY017 0.5000 1.0000 0.5455 1.0000 0.0000 0.3333 (1.0000) 0.8571
YOM009 0.0000 0.2619 0.3146 0.2727 0.0000 0.4190 0.2857 (0.3542)

avg 0.4253 0.6269 0.5282 0.5983 0.1099 0.4898 0.6189 0.6557

std 0.2190 0.2679 0.2717 0.2430 0.1410 0.2747 0.2111 0.2129

Furthermore, we generated a bar chart to compare the average F1-score from each
model when tested with the data collected from different stations, as shown in Figure 7.
When evaluated with data from other stations, the models trained with CPY012 and
CPY013 produced an average F1-score greater than 0.4. The models trained on CPY015
earned poor performance when used to identify anomalies from other stations, with an
average F1-score lower than 0.2. DRL models that were trained with CPY015 outperform
other models in detecting anomalies in data from other stations. LSTM models trained on
CPY011, CPY012, CPY016, and CPY017, on the other hand, outperform other models in
detecting abnormalities on other datasets. When trained with data from CPY013, CPY014,
and YOM009, MLP had the best F1-score for finding outliers in other datasets.

Figure 7. Bar charts of average F1-scores of the DRL, MLP, and LSTM when tested with the data
collected from different stations.

5.4. Ensemble Results

Since we have multiple RL models after each epoch of training, and since each model
performs the best in each of the criteria, we then built an ensemble that combined the deci-
sions of all RL models, with the aim of generating a better final decision. In model selection,
we select all five models and select the three models with the highest ranking in F1-score to
build our ensemble model. For decision making, we used majority voting and weighted
voting strategies to make a final decision. So, we have 4 ensemble models for each epoch
of training, including a majority voting ensemble model with 3 (EDRL3) and 5 (EDRL5)
models, and a weighted ensemble model with 3 (WEDRL3) and 5 (WEDRL5) models.
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5.4.1. Performance on the Same Station

The results of our ensemble models are shown in Table 9 demonstrated that ensemble
with majority voting and weighted voting that were generated from the top three DRL
models of CPY011 provided the best with 0.8333 F1-score, while WDRL3 that was gen-
erated from the DRL model after trained with 10,000 epochs is the best model to detect
anomalies in CPY012 datasets with an F1-score of 0.7941. The ensemble model of CPY013
that performs the best is EDRL3 and WEDRL3 at 0.8000. The best ensemble model for
identifying anomalies in CPY014 datasets is the ensemble model that provided the F1-score
of 0.8571. With CPY015 data, the models with the highest F1-score are EDRL3, WEDRL3,
and WEDRL5. These models were built based on the individual DRL model, which was
trained for 10,000 iterations. Meanwhile, WEDRL3 got the highest F1-score of 0.5922 for
CPY016 by combining the best three DRL models that were trained over 5000 iterations.
With CPY017, EDRL5 outperforms other ensemble models with a 100 percent in every
metric. The ensemble results of YOM009, WEDRL5, offered the highest performance with
an F1-score of 0.5032 that was generated from the DRL model after 500 epochs of training.

Table 9. The performance of ensemble models (the best F1-score of each row is shown in bold).

Station Epochs
EDRL3 EDRL5 WEDRL3 WEDRL5

Recall Prec F1 Recall Prec F1 Recall Prec F1 Recall Prec F1

CPY011 100 0.8571 0.7500 0.8000 0.7143 0.6250 0.6667 0.8571 0.7500 0.8000 0.8571 0.7500 0.8000
500 0.8571 0.7500 0.8000 0.8571 0.6667 0.7500 0.8571 0.7500 0.8000 0.8571 0.6667 0.7500

1000 0.7143 1.0000 0.8333 0.7143 0.8333 0.7692 0.7143 1.0000 0.8333 0.8571 0.7500 0.8000
5000 0.7143 0.6250 0.6667 0.7143 0.6250 0.6667 0.7143 0.7143 0.7143 0.7143 0.7143 0.7143

10,000 0.8571 0.6667 0.7500 1.0000 0.7778 0.8750 0.8571 0.6667 0.7500 0.8571 0.6000 0.7059

Avg 0.8000 0.7583 0.7700 0.8000 0.7056 0.7455 0.8000 0.7762 0.7795 0.8285 0.6962 0.7540
std 0.0782 0.1455 0.0650 0.1278 0.0949 0.0863 0.0782 0.1297 0.0471 0.0639 0.0637 0.0451

CPY012 100 0.7647 0.7027 0.7324 0.7353 0.7353 0.7353 0.7647 0.7027 0.7324 0.7647 0.6842 0.7222
500 0.7941 0.7297 0.7606 0.7941 0.7297 0.7606 0.7941 0.7297 0.7606 0.7941 0.7105 0.7500

1000 0.7647 0.6667 0.7123 0.7353 0.8621 0.7937 0.7647 0.6667 0.7123 0.7353 0.6410 0.6849
5000 0.7059 0.7273 0.7164 0.7059 0.7500 0.7273 0.7059 0.7273 0.7164 0.7353 0.7353 0.7353

10,000 0.7059 0.8276 0.7619 0.7059 0.8276 0.7619 0.7941 0.7941 0.7941 0.7353 0.8333 0.7812

Avg 0.7471 0.7308 0.7367 0.7353 0.7809 0.7558 0.7647 0.7241 0.7432 0.7529 0.7209 0.7347
std 0.0394 0.0598 0.0236 0.0360 0.0601 0.0261 0.0360 0.0466 0.0342 0.0263 0.0719 0.0355

CPY013 100 0.8710 0.6136 0.7200 0.8387 0.6190 0.7123 0.8710 0.6136 0.7200 0.9032 0.5957 0.7179
500 0.8065 0.5000 0.6173 0.7742 0.5714 0.6575 0.8387 0.4906 0.6190 0.8065 0.5556 0.6579

1000 0.8065 0.6098 0.6944 0.8065 0.6098 0.6944 0.9355 0.6042 0.7342 0.9032 0.6087 0.7273
5000 0.8065 0.5952 0.6849 0.7097 0.5789 0.6377 0.7097 0.6471 0.6769 0.7742 0.6486 0.7059

10,000 0.8387 0.7647 0.8000 0.7419 0.6765 0.7077 0.8387 0.7647 0.8000 0.8387 0.7429 0.7879

Avg 0.8258 0.6167 0.7033 0.7742 0.6111 0.6819 0.8387 0.6240 0.7100 0.8452 0.6303 0.7194
std 0.0288 0.0949 0.0660 0.0510 0.0417 0.0328 0.0822 0.0983 0.0674 0.0577 0.0712 0.0467

CPY014 100 0.7500 0.7500 0.7500 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 0.7500 0.7500
500 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571

1000 0.7500 0.5000 0.6000 0.7500 0.6000 0.6667 0.7500 0.3750 0.5000 0.7500 0.3750 0.5000
5000 0.7500 0.5000 0.6000 0.7500 0.5000 0.6000 0.7500 0.5000 0.6000 0.7500 0.3750 0.5000

10,000 0.7500 0.6000 0.6667 0.7500 0.6000 0.6667 0.7500 0.6000 0.6667 0.7500 0.7500 0.7500

Avg 0.7500 0.6700 0.6948 0.7500 0.7400 0.7295 0.7500 0.6950 0.6962 0.7500 0.6500 0.6714
std 0.0000 0.2110 0.1097 0.0000 0.2408 0.1196 0.0000 0.2896 0.1584 0.0000 0.2710 0.1625

CPY015 100 0.3235 0.5238 0.4000 0.2647 0.5000 0.3462 0.3235 0.5238 0.4000 0.2647 0.4737 0.3396
500 0.3235 0.5000 0.3929 0.2059 0.4667 0.2857 0.3235 0.5000 0.3929 0.2941 0.5263 0.3774

1000 0.3824 0.5000 0.4333 0.4118 0.4828 0.4444 0.3824 0.5000 0.4333 0.3824 0.4643 0.4194
5000 0.3235 0.5238 0.4000 0.2353 0.4706 0.3137 0.3235 0.5238 0.4000 0.3235 0.5238 0.4000

10,000 0.3824 0.5200 0.4407 0.3824 0.4483 0.4127 0.3824 0.5200 0.4407 0.3824 0.5200 0.4407

Avg 0.3471 0.5135 0.4134 0.3000 0.4737 0.3605 0.3471 0.5135 0.4134 0.3294 0.5016 0.3954
std 0.0323 0.0124 0.0219 0.0916 0.0192 0.0666 0.0323 0.0124 0.0219 0.0526 0.0300 0.0390

CPY016 100 0.5981 0.5203 0.5565 0.6075 0.4962 0.5462 0.5981 0.5203 0.5565 0.6168 0.5366 0.5739
500 0.5981 0.5203 0.5565 0.6168 0.3952 0.4818 0.6075 0.5603 0.5830 0.5981 0.5333 0.5639

1000 0.6168 0.5323 0.5714 0.6542 0.4636 0.5426 0.6168 0.5546 0.5841 0.6168 0.5455 0.5789
5000 0.5701 0.6100 0.5894 0.5514 0.4275 0.4816 0.5701 0.6162 0.5922 0.5888 0.3987 0.4755

10,000 0.6168 0.4177 0.4981 0.6262 0.4295 0.5095 0.6262 0.5447 0.5826 0.6449 0.5111 0.5702

Avg 0.6000 0.5201 0.5544 0.6112 0.4424 0.5123 0.6037 0.5592 0.5797 0.6131 0.5050 0.5525
std 0.0191 0.0684 0.0343 0.0377 0.0386 0.0314 0.0215 0.0353 0.0135 0.0215 0.0608 0.0434

CPY017 100 1.0000 0.7500 0.8571 1.0000 0.7500 0.8571 1.0000 0.7500 0.8571 1.0000 0.7500 0.8571
500 1.0000 0.7500 0.8571 1.0000 1.0000 1.0000 1.0000 0.7500 0.8571 1.0000 0.7500 0.8571

1000 1.0000 0.7500 0.8571 1.0000 0.2308 0.3750 1.0000 0.7500 0.8571 1.0000 0.7500 0.8571
5000 1.0000 0.5000 0.6667 1.0000 0.5000 0.6667 1.0000 0.5000 0.6667 1.0000 0.5000 0.6667

10,000 0.6667 0.6667 0.6667 0.6667 0.6667 0.6667 1.0000 0.6000 0.7500 0.6667 0.6667 0.6667

Avg 0.9333 0.6833 0.7809 0.9333 0.6295 0.7131 1.0000 0.6700 0.7976 0.9333 0.6833 0.7809
std 0.1491 0.1087 0.1043 0.1491 0.2868 0.2354 0.0000 0.1151 0.0866 0.1491 0.1087 0.1043
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Table 9. Cont.

Station Epochs
EDRL3 EDRL5 WEDRL3 WEDRL5

Recall Prec F1 Recall Prec F1 Recall Prec F1 Recall Prec F1

YOM009 100 0.6308 0.3254 0.4293 0.5846 0.3115 0.4064 0.6154 0.3226 0.4233 0.6462 0.3281 0.4352
500 0.4769 0.4769 0.4769 0.6154 0.3960 0.4819 0.4769 0.4769 0.4769 0.6000 0.4333 0.5032

1000 0.5538 0.3600 0.4364 0.5538 0.3186 0.4045 0.5231 0.3778 0.4387 0.4923 0.3299 0.3951
5000 0.5538 0.4091 0.4706 0.5846 0.4086 0.4810 0.6308 0.3981 0.4881 0.5538 0.3830 0.4528

10,000 0.5385 0.2991 0.3846 0.4923 0.3048 0.3765 0.4154 0.3971 0.4060 0.4615 0.3158 0.3750

Avg 0.5508 0.3741 0.4396 0.5661 0.3479 0.4301 0.5323 0.3945 0.4466 0.5508 0.3580 0.4323
std 0.0548 0.0707 0.0371 0.0467 0.0501 0.0484 0.0914 0.0554 0.0350 0.0757 0.0494 0.0503

Figure 8 depicts line charts that indicate the F1-score of each ensemble model that
was trained using data from each station. It was clear from the results that the ensemble
models not only delivered good performances and had a tendency to either improve or
keep their F1-scores steady but also reduced the false alarms by increasing the precision
scores. When we compared the results of each training epoch of the individual DRL model
and the ensemble model, as shown in Tables 3 and 9, we discovered that ensemble models
performed better than every single DRL model in many training epochs. In particular,
EDRL5 on the CPY017 with 500 training epochs generated an excellent score of 1.0000
in every metrics index, resulting from a 25% increase in accuracy and a 15% increase in
F1-score. Meanwhile, EDRL5 on the CPY011 with 10,000 training epochs improved the
performance of the best individual model with an F1-score from 0.75 to 0.8750, reached 1.00
in terms of recall, and increased precision by 20%. By combining the DRL models trained
on only 500 epochs, the ensemble model on YOM009 got the highest F1-score of 0.5032.

(a) CPY011 (b) CPY012

(c) CPY013 (d) CPY014

(e) CPY015 (f) CPY016

Figure 8. Cont.
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(g) CPY017 (h) YOM009

Figure 8. F1-score of ensemble model when increasing the learning epochs at CPY011, CPY012,
CPY013, CPY014, CPY015, CPY016, CPY017, and YOM009 (a–h).

As shown in Table 10, we evaluated the average F1-score of each individual DRL
model and ensemble of DRL models against the other neural network models. We can
see that the LSTM model was the best model when detecting anomalies on CPY013,
CPY014, CPY016, and CPY017, while WEDRL3 provided the highest average F1-score
on CPY015 and YOM009. The highest F1-score was 0.4134 on CPY015, which was provided
by DRLF1, DRLAcc, EDRL3, and WEDRL3. Although MLP and LSTM beat other models in
many datasets, WEDRL3 has the greatest average ranking, as shown in Figure 9. In other
words, the ensemble model not only has the potential to improve the performance of a
single model, but it also has a higher reliability to deliver excellent performance than a
single model.

Table 10. The mean F1-scores and standard deviations of all of the DRL, MLP, LSTM, and ensemble
of DRL-based models when testing with the dataset from different stations (the best F1-score of each
station is shown in bold).

Models CPY011 CPY012 CPY013 CPY014 CPY015 CPY016 CPY017 YOM009

DRL 0.7433 (±0.08) 0.6550 (±0.08) 0.6014 (±0.10) 0.4823 (±0.20) 0.3477 (±0.06) 0.3770 (±0.03) 0.6801 (±0.21) 0.3581 (±0.06)
DRLF1 0.7170 (±0.07) 0.7146 (±0.06) 0.6963 (±0.07) 0.6733 (±0.08) 0.4134 (±0.02) 0.5438 (±0.05) 0.6381 (±0.16) 0.4152 (±0.04)
DRLRwd 0.7433 (±0.08) 0.6468 (±0.10) 0.6212 (±0.09) 0.5537 (±0.26) 0.3477 (±0.06) 0.3499 (±0.06) 0.6762 (±0.21) 0.3891 (±0.04)
DRLAcc 0.7170 (±0.07) 0.7234 (±0.04) 0.6920 (±0.07) 0.6733 (±0.08) 0.4134 (±0.02) 0.5714 (±0.02) 0.7219 (±0.14) 0.4248 (±0.04)
DRLValid 0.6020 (±0.17) 0.7045 (±0.10) 0.5639 (±0.21) 0.6596 (±0.14) 0.3211 (±0.10) 0.4867 (±0.07) 0.6488 (±0.15) 0.4378 (±0.03)
EDRL3 0.7700 (±0.06) 0.7367 (±0.02) 0.7033 (±0.07) 0.6948 (±0.11) 0.4134 (±0.02) 0.5544 (±0.03) 0.7809 (±0.10) 0.4396 (±0.04)
EDRL5 0.7455 (±0.09) 0.7558 (±0.03) 0.6819 (±0.03) 0.7295 (±0.12) 0.3605 (±0.07) 0.5123 (±0.03) 0.7131 (±0.24) 0.4301 (±0.05)
WEDRL3 0.7795 (±0.05) 0.7432 (±0.03) 0.7100 (±0.07) 0.6962 (±0.16) 0.4134 (±0.02) 0.5797 (±0.01) 0.7976 (±0.09) 0.4466 (±0.03)
WEDRL5 0.7540 (±0.05) 0.7347 (±0.04) 0.7194 (±0.05) 0.6714 (±0.16) 0.3954 (±0.04) 0.5525 (±0.04) 0.7619 (±0.10) 0.4323 (±0.05)
MLP 0.8505 (±0.06) 0.7822 (±0.03) 0.6998 (±0.03) 0.8571 (±0.00) 0.2220 (±0.10) 0.5651 (±0.14) 0.9778 (±0.07) 0.2358 (±0.05)
LSTM 0.8167 (±0.04) 0.7753 (±0.02) 0.7265 (±0.02) 0.8571 (±0.00) 0.3276 (±0.09) 0.6252 (±0.06) 0.9857 (±0.05) 0.2596 (±0.06)

Figure 9. Critical difference diagram.

5.4.2. Performance on the Different Station

We then tested the generalisation ability of the best ensemble (WEDRL3) with the data
collected from different stations. The F1-score of each model is depicted in Table 11. We
can observe that the ensemble model that was created from the model trained on CPY011
data performed well not only on their own dataset but also on CPY017, with an F1-score
of 0.8200, similarly to WEDRL3 on CPY012 and CPY013, which recognised anomalies on
CPY014 better than their own dataset with F1-scores of 0.8421 and 0.8143, respectively.
Inversely, the ensemble model on CPY014, CPY015, and CPY016 trained datasets provided
poor performance when used to detect anomalies on other stations. Even though the
ensemble model trained on the CPY017 dataset got an F1-score of more than 0.5 on CPY012,
CPY013, and CPY014, it did not do well on many stations, with an F1-score of less than
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0.3. WEDRL3 scored badly not just on their own dataset but also on others, with F1-scores
ranging from 0.0739 on CPY015 to 0.5748 on CPY016.

Table 11. The mean F1-scores of the WEDRL3 models when testing with the dataset from the same
station (shown in the bracket) and different stations.

Tested Dataset Trained Dataset
CPY011 CPY012 CPY013 CPY014 CPY015 CPY016 CPY017 YOM009

CPY011 (0.7795) 0.2772 0.2278 0.1718 0.4345 0.0788 0.2830 0.0900
CPY012 0.7183 (0.7432) 0.6817 0.4624 0.2182 0.5355 0.6419 0.5096
CPY013 0.6920 0.7281 (0.7101) 0.5512 0.2713 0.5625 0.5959 0.4816
CPY014 0.7276 0.8421 0.8143 (0.6962) 0.5714 0.5471 0.7948 0.3450
CPY015 0.3748 0.2683 0.1664 0.1482 (0.4134) 0.1290 0.1994 0.0739
CPY016 0.5813 0.6283 0.6450 0.3327 0.3647 (0.5797) 0.4711 0.5748
CPY017 0.8200 0.4423 0.4514 0.3803 0.3545 0.2075 (0.7976) 0.2931
YOM009 0.1084 0.3261 0.3109 0.2619 0.0568 0.4613 0.3375 (0.4466)

avg 0.6002 0.5320 0.5010 0.3756 0.3356 0.3877 0.5152 0.3518

std 0.2426 0.2310 0.2451 0.1887 0.1551 0.2121 0.2292 0.1889

5.4.3. Ensemble with All Seven Models

Then, to learn more about how well the ensemble worked, we combined our developed
DRL models with MLP and LSTM models. In model selection, we selected all seven models
and selected the five and three models with the highest ranking in F1-score to build
our ensemble model. We used the same strategy to make a final decision. So, we have
6 ensemble model for each epochs of training include majority voting ensemble model with
3 (E3), 5 (E5), and 7 (E7) model, and weighted ensemble model with 3 (WE3), 5 (WE5), and
7 (WE7) models, and the results are displayed in Table 12.

We can see that, on the CPY011 dataset, the ensemble of the top three models (E3)
earned the greatest F1-score of 0.9231 with every epoch of training. On CPY012, the greatest
F1-score of 0.8438 was obtained by E5 and WE7 with models trained with 10,000 epochs,
and E7 with models trained with 500 epochs, while E3 and WE3 models trained with
10,000 epochs performed the best in identifying anomalies on the CPY013 dataset. With the
CPY014 dataset, all ensemble models gave an F1-score of 0.8571, with the exception of
the ensemble with majority voting of all seven models trained with 10,000 epochs, which
performed badly with an F1-score of 0.6667. WE7 surpassed other ensemble models on the
CPY015 and CPY016 datasets, with the greatest F1-score of 0.4615 and 0.6704, respectively.
Every ensemble model on CPY017 produced outstanding results with a 1.0000 F1-score,
particularly E3, WE3, WE5, and WE7, which produced excellent results with all training
epochs. The weighted ensemble with 5 models (WE5) trained with 500 epochs performed
the best on the YOM009 dataset, with a 0.5032 F1-score.

As indicated in Table 13, we averaged the F1-score of each individual model and
ensemble model to compare their performance. We can observe that E3 not only performed
the best model with the greatest average F1-score on all datasets but also excellently
performed with a 1.0000 F1-score on CPY017 and YOM009. Among the models tested
on the CPY014 dataset, the best F1-score of 0.8571 was achieved by MLP, LSTM, E3,
E5, WE3, WE5, and WE7. In contrast, on the CPY015 dataset, the model with DRL-
based (DRLF1, DRlAcc, EDRL3, and WEDRL3) generated the highest F1-score of 0.4134.
Furthermore, as shown in Figure 10, the CD diagram was chosen to make a statistical
comparison of our results, which revealed that E3 had the highest ranking, and the ensemble
model that combined all seven individual models outperformed both the individual model
and the ensemble model created using DRL models. It also demonstrated the ability
of ensemble methods to improve the performance of individual DRL models because it
represented a significant difference from individual models (DRL, DRLRwd, and DRLValid).
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Table 12. The performance of the ensemble models built by combining DRL and candidate models
(the best F1-score of each row is shown in bold).

Station Epochs
E3 E5 E7 WE3 WE5 WE7

Recall Prec F1 Recall Prec F1 Recall Prec F1 Recall Prec F1 Recall Prec F1 Recall Prec F1

CPY011 100 0.8571 1.0000 0.9231 0.8571 0.7500 0.8000 0.8571 0.7500 0.8000 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571
500 0.8571 1.0000 0.9231 0.8571 0.7500 0.8000 0.8571 0.7500 0.8000 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571

1000 0.8571 1.0000 0.9231 0.8571 1.0000 0.9231 0.8571 1.0000 0.9231 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571
5000 0.8571 1.0000 0.9231 0.7143 0.7143 0.7143 0.8571 0.7500 0.8000 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571

10,000 0.8571 1.0000 0.9231 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571

avg 0.8571 1.0000 0.9231 0.8285 0.8143 0.8189 0.8571 0.8214 0.8360 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571
std 0.0000 0.0000 0.0000 0.0639 0.1168 0.0774 0.0000 0.1101 0.0546 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

CPY012 100 0.7647 0.9286 0.8387 0.7647 0.8387 0.8000 0.7941 0.7714 0.7826 0.7647 0.8966 0.8254 0.7647 0.8966 0.8254 0.7647 0.8966 0.8254
500 0.7647 0.9286 0.8387 0.7941 0.7297 0.7606 0.7941 0.9000 0.8438 0.7647 0.8966 0.8254 0.7647 0.8966 0.8254 0.7647 0.8966 0.8254

1000 0.7647 0.9286 0.8387 0.7647 0.8966 0.8254 0.7647 0.8966 0.8254 0.7647 0.8966 0.8254 0.7647 0.8966 0.8254 0.7647 0.8966 0.8254
5000 0.7647 0.9286 0.8387 0.7059 0.7500 0.7273 0.7353 0.8333 0.7812 0.7647 0.8966 0.8254 0.7647 0.8966 0.8254 0.7647 0.8966 0.8254

10,000 0.7647 0.9286 0.8387 0.7941 0.9000 0.8438 0.7059 0.8276 0.7619 0.7647 0.8966 0.8254 0.7647 0.8966 0.8254 0.7941 0.9000 0.8438

avg 0.7647 0.9286 0.8387 0.7647 0.8230 0.7914 0.7588 0.8458 0.7990 0.7647 0.8966 0.8254 0.7647 0.8966 0.8254 0.7706 0.8973 0.8291
std 0.0000 0.0000 0.0000 0.0360 0.0800 0.0475 0.0383 0.0537 0.0342 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0131 0.0015 0.0082

CPY013 100 0.7742 0.7273 0.7500 0.8387 0.6842 0.7536 0.8065 0.6757 0.7353 0.7419 0.6765 0.7077 0.7742 0.6857 0.7273 0.7742 0.6857 0.7273
500 0.7742 0.7273 0.7500 0.8387 0.6341 0.7222 0.7419 0.6970 0.7188 0.7419 0.6765 0.7077 0.7419 0.6765 0.7077 0.7419 0.6765 0.7077

1000 0.7742 0.7273 0.7500 0.8710 0.6750 0.7606 0.8065 0.6410 0.7143 0.7419 0.6765 0.7077 0.7742 0.6857 0.7273 0.7742 0.6857 0.7273
5000 0.7742 0.7273 0.7500 0.7419 0.6765 0.7077 0.7419 0.6765 0.7077 0.7419 0.6765 0.7077 0.7419 0.6765 0.7077 0.7742 0.6857 0.7273

10,000 0.8387 0.7647 0.8000 0.7742 0.7742 0.7742 0.7742 0.7742 0.7742 0.8387 0.7647 0.8000 0.7742 0.7273 0.7500 0.7419 0.6765 0.7077

avg 0.7871 0.7348 0.7600 0.8129 0.6888 0.7437 0.7742 0.6929 0.7301 0.7613 0.6941 0.7262 0.7613 0.6903 0.7240 0.7613 0.6820 0.7195
std 0.0288 0.0167 0.0224 0.0530 0.0516 0.0277 0.0323 0.0497 0.0267 0.0433 0.0394 0.0413 0.0177 0.0212 0.0175 0.0177 0.0050 0.0107

CPY014 100 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571
500 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571

1000 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571
5000 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571

10,000 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 0.6000 0.6667 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571

avg 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 0.9200 0.8190 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571
std 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1789 0.0851 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

CPY015 100 0.3235 0.5238 0.4000 0.2647 0.5000 0.3462 0.2647 0.5000 0.3462 0.3235 0.5238 0.4000 0.2647 0.4737 0.3396 0.2353 0.4444 0.3077
500 0.3235 0.5000 0.3929 0.2353 0.5000 0.3200 0.2353 0.5000 0.3200 0.3235 0.5000 0.3929 0.2941 0.5263 0.3774 0.2647 0.5000 0.3462

1000 0.3824 0.5000 0.4333 0.4118 0.4828 0.4444 0.2647 0.4286 0.3273 0.3824 0.5000 0.4333 0.3824 0.4643 0.4194 0.3824 0.4333 0.4062
5000 0.3235 0.5238 0.4000 0.2647 0.5000 0.3462 0.2647 0.5000 0.3462 0.3235 0.5238 0.4000 0.2941 0.5000 0.3704 0.2941 0.5000 0.3704

10,000 0.3824 0.5200 0.4407 0.3824 0.4483 0.4127 0.3529 0.4800 0.4068 0.3824 0.5200 0.4407 0.3824 0.5200 0.4407 0.4412 0.4839 0.4615

avg 0.3471 0.5135 0.4134 0.3118 0.4862 0.3739 0.2765 0.4817 0.3493 0.3471 0.5135 0.4134 0.3235 0.4969 0.3895 0.3235 0.4723 0.3784
std 0.0323 0.0124 0.0219 0.0795 0.0225 0.0522 0.0446 0.0309 0.0342 0.0323 0.0124 0.0219 0.0551 0.0274 0.0404 0.0858 0.0315 0.0587

CPY016 100 0.5421 0.8529 0.6629 0.5981 0.5470 0.5714 0.6075 0.5462 0.5752 0.5421 0.8406 0.6591 0.5421 0.8286 0.6554 0.5421 0.8286 0.6554
500 0.5421 0.8529 0.6629 0.5981 0.6154 0.6066 0.5888 0.6632 0.6238 0.5421 0.8406 0.6591 0.5421 0.8406 0.6591 0.5421 0.8406 0.6591

1000 0.5421 0.8529 0.6629 0.5794 0.5794 0.5794 0.6075 0.5372 0.5702 0.5421 0.8406 0.6591 0.5421 0.8286 0.6554 0.5421 0.8286 0.6554
5000 0.5421 0.8529 0.6629 0.5607 0.7059 0.6250 0.5607 0.6122 0.5854 0.5421 0.8406 0.6591 0.5421 0.8286 0.6554 0.5607 0.8333 0.6704

10,000 0.5421 0.8529 0.6629 0.6075 0.5752 0.5909 0.5981 0.4638 0.5224 0.5421 0.8406 0.6591 0.5421 0.8286 0.6554 0.5421 0.8529 0.6629

avg 0.5421 0.8529 0.6629 0.5888 0.6046 0.5947 0.5925 0.5645 0.5754 0.5421 0.8406 0.6591 0.5421 0.8310 0.6561 0.5458 0.8368 0.6606
std 0.0000 0.0000 0.0000 0.0187 0.0616 0.0215 0.0194 0.0762 0.0363 0.0000 0.0000 0.0000 0.0000 0.0054 0.0017 0.0083 0.0103 0.0063

CPY017 100 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.7500 0.8571 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
500 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1000 1.0000 1.0000 1.0000 1.0000 0.7500 0.8571 1.0000 0.7500 0.8571 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
5000 1.0000 1.0000 1.0000 1.0000 0.7500 0.8571 1.0000 0.7500 0.8571 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

10,000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.6667 1.0000 0.8000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

avg 1.0000 1.0000 1.0000 1.0000 0.9000 0.9428 0.9333 0.8500 0.8743 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
std 0.0000 0.0000 0.0000 0.0000 0.1369 0.0783 0.1491 0.1369 0.0745 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

YOM009 100 0.6308 0.3254 0.4293 0.5846 0.3115 0.4064 0.5538 0.3303 0.4138 0.6154 0.3226 0.4233 0.6462 0.3281 0.4352 0.5846 0.3065 0.4021
500 0.4769 0.4769 0.4769 0.6154 0.3960 0.4819 0.3538 0.4694 0.4035 0.4769 0.4769 0.4769 0.6000 0.4333 0.5032 0.6154 0.4082 0.4908

1000 0.5538 0.3600 0.4364 0.5538 0.3186 0.4045 0.4769 0.3875 0.4276 0.5231 0.3778 0.4387 0.4923 0.3299 0.3951 0.5538 0.3396 0.4211
5000 0.5538 0.4091 0.4706 0.4923 0.4384 0.4638 0.4462 0.4531 0.4496 0.6308 0.3981 0.4881 0.5538 0.3789 0.4500 0.5385 0.4430 0.4861

10,000 0.5385 0.2991 0.3846 0.4923 0.3048 0.3765 0.4154 0.3293 0.3673 0.4154 0.3971 0.4060 0.4615 0.3158 0.3750 0.5538 0.3186 0.4045

avg 0.5508 0.3741 0.4396 0.5477 0.3539 0.4266 0.4492 0.3939 0.4124 0.5323 0.3945 0.4466 0.5508 0.3572 0.4317 0.5692 0.3632 0.4409
std 0.0548 0.0707 0.0371 0.0550 0.0599 0.0443 0.0741 0.0661 0.0305 0.0914 0.0554 0.0350 0.0757 0.0489 0.0500 0.0308 0.0595 0.0440

Table 13. The mean F1-scores and standard deviation of all models when testing with the dataset
from different stations (the best F1-score of each station is shown in bold).

Models CPY011 CPY012 CPY013 CPY014 CPY015 CPY016 CPY017 YOM009

DRL 0.7433 (±0.08) 0.6550 (±0.08) 0.6014 (±0.10) 0.4823 (±0.20) 0.3477 (±0.06) 0.3770 (±0.03) 0.6801 (±0.21) 0.3581 (±0.06)
DRLF1 0.7170 (±0.07) 0.7146 (±0.06) 0.6963 (±0.07) 0.6733 (±0.08) 0.4134 (±0.02) 0.5438 (±0.05) 0.6381 (±0.16) 0.4152 (±0.04)
DRLRwd 0.7433 (±0.08) 0.6468 (±0.10) 0.6212 (±0.09) 0.5537 (±0.26) 0.3477 (±0.06) 0.3499 (±0.06) 0.6762 (±0.21) 0.3891 (±0.04)
DRLAcc 0.7170 (±0.07) 0.7234 (±0.04) 0.6920 (±0.07) 0.6733 (±0.08) 0.4134 (±0.02) 0.5714 (±0.02) 0.7219 (±0.14) 0.4248 (±0.04)
DRLValid 0.6020 (±0.17) 0.7045 (±0.10) 0.5639 (±0.21) 0.6596 (±0.14) 0.3211 (±0.10) 0.4867 (±0.07) 0.6488 (±0.15) 0.4378 (±0.03)
MLP 0.8505 (±0.06) 0.7822 (±0.03) 0.6998 (±0.03) 0.8571 (±0.00) 0.2220 (±0.10) 0.5651 (±0.14) 0.9778 (±0.07) 0.2358 (±0.05)
LSTM 0.8167 (±0.04) 0.7753 (±0.02) 0.7265 (±0.02) 0.8571 (±0.00) 0.3276 (±0.09) 0.6252 (±0.06) 0.9857 (±0.05) 0.2596 (±0.06)
EDRL3 0.7700 (±0.06) 0.7367 (±0.02) 0.7033 (±0.07) 0.6948 (±0.11) 0.4134 (±0.02) 0.5544 (±0.03) 0.7809 (±0.10) 0.4396 (±0.04)
EDRL5 0.7455 (±0.09) 0.7558 (±0.03) 0.6819 (±0.03) 0.7295 (±0.12) 0.3605 (±0.07) 0.5123 (±0.03) 0.7131 (±0.24) 0.4301 (±0.05)
E3 0.9231 (±0.00) 0.8387 (±0.00) 0.7600 (±0.02) 0.8571 (±0.00) 0.4134 (±0.02) 0.6629 (±0.00) 1.0000 (±0.00) 1.0000 (±0.04)
E5 0.8189 (±0.08) 0.7914 (±0.05) 0.7437 (±0.03) 0.8571 (±0.00) 0.3739 (±0.05) 0.5947 (±0.02) 0.9428 (±0.08) 0.9428 (±0.04)
E7 0.8360 (±0.05) 0.7990 (±0.03) 0.7301 (±0.03) 0.8190 (±0.09) 0.3493 (±0.03) 0.5754 (±0.04) 0.8743 (±0.07) 0.8743 (±0.03)
WEDRL3 0.7795 (±0.05) 0.7432 (±0.03) 0.7100 (±0.07) 0.6962 (±0.16) 0.4134 (±0.02) 0.5797 (±0.01) 0.7976 (±0.09) 0.4466 (±0.03)
WEDRL5 0.7540 (±0.05) 0.7347 (±0.04) 0.7194 (±0.05) 0.6714 (±0.16) 0.3954 (±0.04) 0.5525 (±0.04) 0.7619 (±0.10) 0.4323 (±0.05)
WE3 0.8571 (±0.00) 0.8254 (±0.00) 0.7262 (±0.04) 0.8571 (±0.00) 0.4134 (±0.02) 0.6591 (±0.00) 1.0000 (±0.00) 1.0000 (±0.03)
WE5 0.8571 (±0.00) 0.8254 (±0.00) 0.7240 (±0.02) 0.8571 (±0.00) 0.3895 (±0.04) 0.6561 (±0.00) 1.0000 (±0.00) 1.0000 (±0.05)
WE7 0.8571 (±0.00) 0.8291 (±0.01) 0.7195 (±0.01) 0.8571 (±0.00) 0.3784 (±0.06) 0.6606 (±0.01) 1.0000 (±0.00) 1.0000 (±0.04)
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Figure 10. A critical difference diagram.

We then tested the generalisation ability of ensemble models with the data collected
from different stations. The F1-score of each station is depicted in Table 14. Using ensemble
E3 with CPY011 data, to identify anomalies from other stations, we can see that it works
well with F1-scores of more than 0.5800, but it performed poorly at detecting anomalies
on CPY015 and YOM009 with F1-scores of 0.3444 and 0.1017, respectively. E3 on CPY012
performed well when detecting anomalies on CPY014 with a 0.8635 F1-score. Similarly, E3
on CPY013 provided a higher F1-score on their own dataset when detecting anomalies on
CPY012 and CPY014 with an F1-score of 0.8060 and 0.8571, respectively. The best ensemble
on CPY014 generated excellent performance when identifying anomalies on CPY017 data.
In contrast, E3 on CPY015 performed poorly on YOM009 with an F1-score of only 0.0437.
While considered E3 on CPY016, although it provided good performance with an F1-score
higher than 0.6 on CPY012, CPY013, and CPY014, it performed poorly on CPY011, CPY015,
CPY017, and YOM009 with an F1-score lower than 0.45. E3 on CPY017 provided good
results with an F1-score of more than 0.69, except on CPY015, CPY016, and YOM009 with
an F1-score lower than 0.56. Meanwhile, E3 on YOM009 generated an F1-score on its own
of only 0.43, but it performed excellently when detecting anomalies on CPY017 and other
datasets with an F1-score higher than 0.65, except on CPY015 with an F1-score of 0.2414.

Table 14. The F1-scores of the E3 models when testing with the dataset from the same station (shown
in the bracket) and different stations.

Tested Dataset Trained Dataset
CPY011 CPY012 CPY013 CPY014 CPY015 CPY016 CPY017 YOM009

CPY011 (0.9231) 0.4000 0.3222 0.7778 0.4028 0.1373 0.7059 0.6087
CPY012 0.7183 (0.8387) 0.8060 0.7500 0.1508 0.6923 0.7273 0.7857
CPY013 0.6920 0.7350 (0.7600) 0.7000 0.2117 0.7123 0.6909 0.7719
CPY014 0.6895 0.8635 0.8571 (0.8571) 0.5714 0.6000 0.8571 0.8571
CPY015 0.3444 0.2192 0.2093 0.2593 (0.4132) 0.1420 0.3077 0.2414
CPY016 0.5840 0.6398 0.6603 0.6322 0.3495 (0.6629) 0.5665 0.6580
CPY017 0.7600 0.6667 0.6000 1.0000 0.3651 0.2857 (1.0000) 1.0000
YOM009 0.1017 0.2948 0.3221 0.2908 0.0437 0.4500 0.3230 (0.4396)

avg 0.6016 0.5822 0.5671 0.6584 0.3135 0.4603 0.6473 0.6703

std 0.2603 0.2468 0.2496 0.2607 0.1682 0.2432 0.2412 0.2415

6. Discussion

We can observe that when the number of training epochs increases, the performance
of each model grows or decreases in each epoch, then drops and bounces back. This might
indicate that our model is still learning or is learning too much—that is, it is difficult to
decide when it is time to stop training.
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Even though DRL can do better than other models, it is time-consuming—at least
50 times slower than MLP models on average—because we have to train it until it performs
well enough and we cannot predict how long that will take. The size of the windows must
also be taken into account. A larger window size takes more time than a smaller window
size. The window size has an effect on the comparison of data in windows to identify the
anomaly. Additionally, we may add additional neural networks to improve the accuracy of
our technique, but training will take longer.

DRL does better than other models when it is trained on datasets with a low number
of outliers. This proves the ability to detect unknown anomalies. However, its performance
is insufficient, which may be due to an imbalance in our dataset. As a result, models may
lack sufficient information to explore and leverage knowledge for adaptive detection of
unknown abnormalities.

Moreover, the neural structure that works well with one station may not function
well with another. Hence, the problems of this topic include determining the suitable
neural structure for each station. Furthermore, the primary parameter that requires fur-
ther attention is the reward function, since a suitable reward will impact the model’s
learning process.

In the case of ensemble models, when all of the individual models in an ensemble
perform similarly, majority voting is the best method for determining the final decision.
However, when the accuracies of individual models are different, the weighted voting is
the best way to utilise the strengths of the good models in making a decision. Furthermore,
the ensemble model can also reduce the false alarm rate, as seen by an increased precision
score. It should be noted that, although single models performed well on certain stations,
they did poorly on others, such as the LSTM model. As a result, we cannot rely on a single
model since we do not know if it is the best or not. The ensemble models, on the other hand,
are more reliable, even though they may not produce the best accuracy for every station.
On the whole, nevertheless, most ensembles, such as WEDRL3 performed consistently very
well and their accuracies are always ranked highly at every station, whilst the individual
models: DRL, MLP and LSTM, are not consistent through out all the stations.

7. Conclusions

In this research, we firstly investigated how deep reinforcement learning (DRL) can be
applied to detect anomalies in water level data and then devised two strategies to construct
more effective and reliable ensembles. For DRL, we defined a reward function as it plays a
key role in determining the success of an RL. We developed ensemble models with five deep
reinforcement learning models, generated by the same DRL algorithm but with different
criteria of performance measurement. We tested our ensemble approach on telemetry water
level data from eight different stations. We compared our approach to two different neural
network models. Moreover, we demonstrate the ability to detect unknown anomalies by
using the trained model to detect anomalies from other stations’ data.

The results indicate that DRLAcc models are the best individual DRL models, but they
performed slightly poor than LSTM. When tested on different stations, LSTM still does
better than others, but its accuracy is not satisfactory. When compared to an ensemble
approach, LSTM was more accurate in some stations than other ensembles with DRL
models, but less accurate in some others. On the whole, the statistical results from the
CD diagram showed that our ensemble approach with only 3 members of DRL models,
WEDRL3, was superior. Furthermore, all ensemble models that were combined by selecting
models from 5 DRL models, MLP, and LSTM outperformed both the best individual model,
LSTM, and the best ensemble using DRL models, WEDRL3. This is supported by the
highest F1-score and rankings with the CD diagram. It is clear that ensemble methods
not only increased the accuracy of a single model but also provided a higher reliability
of performance.

In conclusion, DRL is applicable for detecting anomalies in telemetry water level data
with added benefit of detecting unknown anomalies. Our ensemble construction methods
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can be used to build ensemble models from selected single DRL models in order to increase
the accuracy and reliability. In general, the ensembles are consistent in producing more
accurate classification, although they may not always achieve the best results. Moreover,
they are superior in reducing the number of false alarms in identifying abnormalities in
water level data, which is very important in real application. The next stage in our study
will be to develop more effective and efficient techniques for correcting the identified
anomalies in the data.
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Abstract: This paper reviews the current GeoAI and machine learning applications in hydrological
and hydraulic modeling, hydrological optimization problems, water quality modeling, and fluvial
geomorphic and morphodynamic mapping. GeoAI effectively harnesses the vast amount of spatial
and non-spatial data collected with the new automatic technologies. The fast development of GeoAI
provides multiple methods and techniques, although it also makes comparisons between different
methods challenging. Overall, selecting a particular GeoAI method depends on the application’s
objective, data availability, and user expertise. GeoAI has shown advantages in non-linear modeling,
computational efficiency, integration of multiple data sources, high accurate prediction capability,
and the unraveling of new hydrological patterns and processes. A major drawback in most GeoAI
models is the adequate model setting and low physical interpretability, explainability, and model
generalization. The most recent research on hydrological GeoAI has focused on integrating the
physical-based models’ principles with the GeoAI methods and on the progress towards autonomous
prediction and forecasting systems.

Keywords: GeoAI; artificial intelligence; machine learning; hydrological; hydraulic; fluvial; water
quality; geomorphic; modeling

1. Introduction

Hydrology and fluvial research are inexact fields of science, with a large extent of
epistemic uncertainty and limited knowledge about the system’s complexity, structure, and
functioning [1]. Both disciplines have been hindered by the limited quality and availability
of data [2]. Nowadays, access to temporally and spatially high-resolution hydrological and
fluvial data has substantially increased, mainly due to advances in the use of automatic
sensors in monitoring, environmental 3D scanners, and high-resolution remote sensing
from different sources, producing ‘big data’. The use of big hydrological data requires the
development and the use of the applications of new geospatial tools for computational
analytics and hydrological models. Technologies under the geospatial artificial intelligence
(GeoAI) concept, such as machine learning (ML) and parallel computing, provide the means
to utilize this spatial and non-spatial dataset effectively and also to enhance integrated
hydrological and fluvial systems modeling [3].

Hydrological and fluvial modeling took a giant leap forward when the computer
revolution started in the 1960s [4–6]. Since then, engineers and scientists have developed
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a wide range of hydrological models with different levels of complexity, including em-
pirical and physical-based models [7–10]. Similarly, several 1D, 2D, and 3D numerical
hydraulic models are available to model fluvial processes, such as flow characteristics,
sediment transport, flood extent, and water depth [5,11]. Currently, despite a wide range
of physical-based model availability, those models still have challenges in adequately and
accurately modeling the complex and non-linear hydrological and hydraulic processes
occurring in nature [5]. In addition, the application of these models has been restricted to
small areas due to limited data availability, challenges in representing spatially varying
parameters, and computational intensity [12]. Alternatively, GeoAI and ML data-driven
models, such as artificial neural networks (ANNs) and long short-term memory (LSTM)
deep learning show promising results for hydrological and hydraulic prediction and fore-
casting in natural environments and at a large geographical scale [13]. They can represent
the non-linear processes and provide high-accuracy predictions [14,15]. ML application in
hydrological predictions dates to the 1990s [16], but the development of the new GeoAI
and ML algorithms, particularly the deep learning techniques, alongside new data collec-
tion technologies, has substantially increased in recent years [17,18]. Moreover, there are
new studies on developing hybrid models (ML and physical-based models) [14,19,20] and
physical process-guided ML methods [21–24]. Therefore, a review of the potential of the
new GeoAI and ML methods for integrated hydrological and fluvial systems modeling is
needed to guide scientists and practitioners to select the proper tools and to be aware of
current and potential future methodologies.

Existing reviews of GeoAI and ML applications in hydrological modeling and fluvial
studies have covered specific topics, such as the prediction of runoff, floods, and water
quality [25–29]. Other reviews have focused on applying a particular GeoAI and ML
method [30–33]. However, an overarching review of GeoAI and ML in hydrology is lacking.
We aim to review the most recent GeoAI and ML method applications in hydrological,
hydraulic, water quality, and fluvial process modeling.

This broad review on using GeoAI in hydrological and fluvial processes modeling pro-
vides a critical assessment of the technical development, the potential, and the limitations of
the models and the current research trends and gaps from the standpoint of hydrology and
fluvial system researchers. The review identified more than 1300 publications over the last
two decades, published mainly in water resources, civil and environmental engineering,
geosciences, and environmental sciences journals.

2. Review Methodology and Outline

The application of GeoAI in hydrological and fluvial systems research has substan-
tially increased and diversified in recent years, comprising a wide range of topics. There-
fore, a systematic review is challenging. In this review, we adopted a scoping review
methodology [34,35]. The scoping review supports consistent and structured literature
searches to capture relevant information and provides a comprehensive overview of the
current applications and research. We explored four categories of GeoAI applications:
(1) hydrological and hydraulic modeling; (2) hydrological model calibration and model-
ing optimization problems; (3) water quality modeling; and (4) fluvial geomorphology
and morphodynamic mapping. We searched the literature from the Web of Science, in-
cluding Scopus, Springer Link, Wiley Online Library, and MDPI. We used the Boolean
operators (AND and OR), the proximity operators (NEAR and PRE), and nested logic (use
of parentheses) to constrain the literature search to those works containing topic keywords
combined with GeoAI methods in the article’s title, abstract, or keywords. Because the
GeoAI terminologies are diverse and commonly phrase-named, e.g., deep neural networks,
deep convolutional neural networks, and deep learning, we used proximity operators to
find records containing all the terms within a defined number (n) of word neighbors. In
the case of a more common GeoAI phrase name, such as machine learning or artificial
intelligence, we used double quotation marks to indicate that the words should not be
searched separately. In addition, we used left and right truncation or shortening to ac-
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count for the GeoAI or topic names that vary in prefixes and suffixes, using the asterisk
symbol, e.g., *morpho* to select papers containing the terms geomorphologic, geomor-
phometry, morphodynamic, or hydromorphological. An example of the searching query
construction in the Web of Science database for a GeoAI application in fluvial geomor-
phology and morphodynamic studies is: (TS = (Deep NEAR/3 neural NEAR/3 learn*) OR
TS = (Artificial NEAR/3 Neural NEAR/3 Network*) OR TS = “Artificial Intelligence” OR
TS = AI OR TS = geoAI OR TS = “Machine learning”) AND TS = fluvial AND TS = *morpho*.
We used different keywords combined with GeoAI terminologies according to the hydro-
logical subfields of interest, e.g., hydrological, optimization, calibration, water quality,
nutrient, pollutant, sediment, etc. In some cases, we also used the NOT operator to further
refine the searching by excluding papers containing certain words from other topics or
subfields. For example, we excluded water quality terminologies to search for papers
focusing purely on hydrological modeling. Figure 1 shows the yearly publication statistics
of the GeoAI and ML applications in the different hydrological subfields.
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We applied additional selection criteria in each database, including only peer-reviewed
journal publications. After gathering the initial list, we briefly reviewed them to select only
papers within our review’s scope. The publication list was further filtered to ensure that the
selected publications provided relevant information about GeoAI applications in hydrologi-
cal and fluvial studies. We thoroughly studied the selected papers to extract information
about the GeoAI model performance, the software used, and the advantages and limitations.
Based on this information, we further discussed the comparison of GeoAI methods with
the conventional and physical-based hydrological models (Section 5) and identified further
opportunities and future trends in applying GeoAI methods in hydrological and fluvial
studies (Section 6).

3. Brief Introduction to Geospatial Artificial Intelligence

GeoAI is an emerging discipline that combines innovations in spatial data science,
AI, ML, and big geospatial data [36]. GeoAI is the study, development, and application of
intelligent computer programs to automatic geospatial and non-spatial data processing; it
models geospatial association and interaction, predicts spatial dynamics phenomena, pro-
vides spatial reasoning, and discovers spatio-temporal patterns and trends [37,38]. GeoAI
includes the methods, techniques, and tools of AI and ML to carry out geospatial modeling,
such as spatial hydrological prediction and fluvial landform classifications. The GeoAI
and ML methods (henceforth, GeoAI) can be grouped into unsupervised learning (clus-
tering and dimension reduction), supervised learning (regression and classification), and
modeling optimization problems (see Table 1). A detailed theoretical and mathematical de-

171



Water 2022, 14, 2211

scription of the GeoAI and ML methods is given by Hastie et al. [39], Goodfellow et al. [40],
and Lee et al. [41].

Table 1. General classification of geospatial artificial intelligence (GeoAI) and machine learning methods.

Unsupervised Learning Supervised Learning Modeling Optimization Problems

Clustering: Regression and Classification: Evolutionary Computing:

- K-mean
- K-medoids
- Fuzzy C-means
- Density-based spatial clustering

of applications with noise
(DBSCAN)

- Linear and logistic regression
- Least absolute shrinkage and selection

operator (LASSO)
- Classification and regression trees

(CART)
- Generalized boosted regression
- k-nearest neighbors algorithm (k-NN)
- Support vector machine (SVM)
- Random forest (RF)
- Naive Bayesian
- Bayesian network
- Multilayer perceptron (MLP)
- Artificial neural networks (ANNs)
- Adaptive neuro-fuzzy inference system

(ANFIS)
- Restricted Boltzmann machine
- Convolutional neural network (CNN,

depth learning)
- Recurrent neural network (RNN)
- Gated recurrent units networks (GRUs)
- Long short-term memory networks

(LSTMs)

Genetic algorithm (GA)

- Non-dominated sorted genetic
algorithm II (NSGA-II)

- The genetically adaptive
multi-objective method
(AMALGAM)

Genetic programing (GP)

Dimension reduction unsupervised/
semi-supervised depth learning: Metaheuristic methods:

- Self-organized map (SOM)
- t-distributed stochastic neighbor

embedding (t-SNE)
- Uniform manifold approximation

and projection (UMAP)
- Restricted Boltzmann machine
- AutoEncoder
- Generative adversarial networks

(GANs)

Particle swan optimization (PSO) algorithm
Artificial bee colony (ABC)
Ant colony optimization (ACO)
Gray wolf optimization algorithm
Whale optimization algorithm (WOA)

Self-supervised learning/Reinforced
learning (RL)

Single agent/Multi-agent RL
Model-based RL
Model-free RL

Unsupervised clustering techniques are oriented towards automatically grouping or
clustering the input data [42]. Several GeoAI clustering algorithms are used for geospa-
tial and time-series data clustering (Table 1). A clustering algorithm does not require
prior knowledge about the types and number of classes. More advanced dimension re-
duction clustering algorithms, such as autoencoders, can be used for data compression,
reconstruction, and anomalies detection [43].

GeoAI regression techniques are oriented towards evaluating the relationship between
response variables (dependent) and with one or more causative/independent variables
(predictors). There is a wide range of methods and techniques in this category, ranging from
traditional regression methods to ensemble and boosting regression trees, e.g., random
forest, boosted regression, SVM, the traditional ANN, and deep learning methods [39,40,44].

The GeoAI supervised learning techniques are oriented towards identifying classes or
categories. They learn from the given set of observations, called training data, and based
on that, classify new observations into predefined classes. Unlike regression-based ML
algorithms, the output variable of the classification is a category. The values represent class
names or labels [39]. Several GeoAI classification methods are available (Table 1), e.g., SVM,
random forest, ANN, and deep learning. GeoAI classification is widely used in remote
sensing image classification, landform pattern recognition, and change detection.

An ML optimization algorithm is applied to find the best solution out of the solution
space [45]. The ML optimization algorithm plays an essential role in optimizing the objective
function, e.g., identifying the optimal parameter values of a complex model. ML optimiza-
tion algorithms can be broadly categorized into evolutionary computing and metaheuristic
methods (Table 1). ML optimization shows a wide range of applications, e.g., catchment
models, parameter calibration by identifying the optimal set of parameter values and scale of
analysis, identification of the best management scenarios for a multi-objective operation, etc.
Additionally, the reinforced learning method is another approach for problem optimization.
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It enables an agent(s) to learn in a dynamic environment by defining states, actions, and
maximum rewards, using feedback from an agent’s actions and experiences [46].

4. Current GeoAI Applications in Integrated Hydrological and Fluvial Systems Modeling

GeoAI applications in hydrology and fluvial studies are rapidly increasing and replac-
ing the traditional methods. A reason for rapid GeoAI adoption in hydrological sciences
might be linked to the progress in collecting big hydrological datasets, using automatic
sensors with internet transmission, or the internet of things (IoT). Similarly, the evolution
and increase in earth observation satellites (conventional and nanosatellites), unmanned
aerial vehicles (UAV), light detection and ranging (LiDAR), and other surveying technolo-
gies produce high-resolution geospatial data, allowing better landscape characterization.
GeoAI allows the harnessing of big and high-dimensional data to better understand the hy-
drological processes in a particular system. Specifically, GeoAI provides new data analytic
tools to the entire data processing cycle, such as sensor data fusion, hydrological modeling,
data assimilation, multi-objective scenario optimization, smart decision support, evaluation
of climate change impact, construction of early warning systems, and geo-visualization.
Therefore, GeoAI greatly enhances and supports decision making in integrated water
resources management (IWRM) and nexus approaches [47]. Figure 2 depicts a GeoAI
application model for a smart IWRM support system.
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Figure 2. A GeoAI application model for a smart decision support system for integrated water
resources management (IWRM). (1) Internet of things (IoT) supports real-time, high-frequency,
hydrological monitoring. The data are stored in a cloud platform and accessed by an application
programming interface (API). These data can be used for the real-time identification of problems
in the system, e.g., a river basin. (2) GeoAI provides data analytic and online real-time modeling
tools for hydrological system analysis and prediction. (3) GeoAI also supports multi-objective, multi-
scenario optimization modeling, which in turn is the basis of smart decision support systems for
IWRM. (4) Geovisualization in web mapping and mobile apps can be used for data dissemination
and stakeholder engagements and implementing early warning systems. The smart IWRM system
can be closed with the evaluation and adjustment of the IWRM plan and the improvement of the
hydrological monitoring system. WQ (automatic water quality monitoring), ADCP (acoustic doppler
current profiler for water current velocity measurement and river bathymetry), GW (automatic
groundwater monitoring in wells), UAV (unmanned aerial vehicle for very high-resolution land cover
mapping and surface elevation models), EOS (earth observation system for environmental condition
monitoring), LiDAR (LiDAR survey of high-resolution topography data), and GNSS (use of global
navigation satellite systems for ground truth data collection).
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This section provides an overview of the current applications of the GeoAI methods
and techniques and their advantages and limitations in many hydrological subfields such
as hydrological and hydraulic modeling, optimization problems for hydrological model
calibration and decision-making support, surface water quality, and fluvial geomorpholog-
ical studies.

4.1. Hydrological and Hydraulic Modeling

Water flow in the catchments and river networks is a complex and stochastic process,
operating in different spatio-temporal scales and characterized by non-stationarity, dy-
namism, and non-linearity [48,49]. These properties have limited the development of a
reliable hydrological and hydraulic prediction model that can be generalized to a large
geographical area. The increasing sensor-based, high-frequency (sub-hourly) hydrological
data collection and the high spatial and temporal resolution mapping of land cover and
topography have enhanced the understanding of hydrological processes. This fact has led
to the development of more sophisticated physical-based hydrological models. However,
these models are computationally expensive and limited to small-scale applications. Alter-
natively, several data-driven GeoAI methods have emerged for hydrological and hydraulic
classification and prediction at multiple spatial-temporal scales. Table 2 shows examples of
the current applications of the GeoAI in hydrological and hydraulic modeling.

Table 2. Selected GeoAI applications in hydrological and hydraulic modeling.

Method and Software Objectives, Advantages, and Limitations Reference

ANN and RF and permuted feature
importance
Software: Coded in r, available online:
https://gitlab.com/lennartschmidt/
floodmagnitude
(accessed on 21 June 2022).

Objective: To compare ANN and RF flood prediction at the national level
in Germany
Advantages: ANN and RF achieved higher prediction accuracy for a large
area with a large dataset than linear models. They reflect basic
hydrological principles.
Limitations: Heterogeneity of results across algorithms. The
non-uniqueness/equifinality problem was identified due to the ML
model setting.

[50]

ANN, ANFIS, wavelet neural networks,
and hybrid ANFIS with wavelets
transformation
Software:
MATLAB toolboxes

Objective: Hourly rainfall-runoff forecasting in Richmond River, Australia
Advantages: Several ML methods compared, showing that hybrid ANFIS
wavelet-based models significantly outperform ANFIS and ANN.
Limitations: Only rainfall and runoff data were used in the modeling.
Catchment physical features were not included.

[51]

RF and hybrid RF and
the hydromad hydrological model.
Software:
RF package in R and hydromad package
(available online:
https://hydromad.catchment.org)
(accessed on 21 June 2022).

Objective: To study the RF model performance vs. hydromad conceptual
models in USA and Canada.
Advantages: The RF model is simple and outperformed existing
conceptual flood-forecasting models, predicting low and medium flood
magnitudes.
Limitations: The RF models exhibit inaccuracies for higher flood events,
and their performance depends on the catchment characteristics.

[52]

ANN
Software:
Matlab toolboxes (e.g., wavelet)

Objective: Comparison of ANN and ARMA, combining them with
wavelet analysis, empirical model decomposition, and singular spectrum
analysis, for hindcasting and forecasting of monthly streamflow in two
Chinese basins.
Advantages: In hindcasting, the hybrid ANN and ARAM models
performed better than the non-hybrid ones.
Limitations: Hybrid models were not suitable for monthly streamflow
forecasting, needing further refinement.

[53]
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Table 2. Cont.

Method and Software Objectives, Advantages, and Limitations Reference

SOM and modified SOM (MSOM)
Software: Not stated

Objective: To compare SOM and the MSOM clustering approaches, to
deal with missing values, identifying groundwater exchange areas
between the Serra Geral and Guarani aquifers (Brazil).
Advantages: The MSOM showed higher accuracy in mapping
hydrochemistry and groundwater physical properties, quantifying
relationships in a large set of variables, which would not be revealed
with conventional multivariate statistics.
Limitations: SOM requires extensive data to obtain accurate and
informative clusters.

[54]

CNN with transfer learning in time-series
flood prediction
Software: Not stated

Objective: To introduce a new CNN transfer-learning model as a
conversion tool between time-series and image data to predict water
levels in flood events.
Advantages: CNN showed acceptable agreement with the observed water
level data. Quantitative improvement in the CNN transfer learning
appeared in the reduction in computational costs.
Limitations: CNN captured higher peaks poorly. CNN was not as good as
a fully connected deep neural network or RNN, especially when
predicting the highest peaks.

[55]

Deep neural network (DNN) and data
augmentation.
Software: Not stated

Objective: To assess the feasibility of DNN in urban flood mapping,
integrated with the stormwater management model (SWMM). Study
area was two small urban catchments in Seoul, Korea.
Advantages: The DNN was about 300 times faster than SWMM. Data
augmentation could improve the poor predictive power of DNN.
Limitations: Limited amount of input data needed to be improved by
applying data augmentation.

[56]

CNN-based segmentation, VGG16, U-net,
and Segnet
Software: Not stated

Objective: To learn the spatiotemporal patterns of the mismatch between
total water storage anomalies derived from the GRACE satellite mission
and those simulated by the NOAH land surface model. Study area
was India.
Advantages: CNN models significantly improve the match with modeled
and satellite-based observations of terrestrial total water storage.
Limitations: Current grid resolution is relatively coarse.

[57]

LSTM and sequence-to-sequence
(seq2seq) model
Software: uses the Keras and TensorFlow
packages in Python 3

Objective: To present a prediction model based on LSTM and the seq2seq
structure to estimate hourly rainfall-runoff. Study area was two small
watersheds in Iowa, US.
Advantages: The LSTM-based seq2seq model was demonstrated to be an
effective method for rainfall-runoff predictions and applicable to
different watersheds.
Limitations: Needs sufficient predictive power.

[58]

Transfer entropy (TE), ANN, LSTM,
random forest regression (RFR), and
support vector regression (SVR)
Software: Not stated

Objective: To predict discharge with ML models and identify dominant
drivers of discharge and their timescales using sensor data and TE. Study
area was the Dry Creek Experimental Watershed, ID, USA.
Advantages: The LSTM model is effective in identifying the key lag and
aggregation scales for predicting discharge. TE was able to identify
dominant streamflow controls and the relative importance of different
mechanisms of streamflow generation.
Limitations: Restricting ML models based on dominant timescales
undercuts their skill at learning these timescales internally.

[59]

ANN and K-nearest neighbor
Software: Not stated

Objective: To introduce the coupled ANN with the K-nearest neighbor
hybrid machine learning (HML) for flood forecast. The study area was
the Tunxi watershed, Anhui, China.
Advantages: HML model showed satisfactory performance and reliable
stability and predicted discharge continuously without accuracy loss.
Limitations: Peak flow was not well captured.

[60]
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Table 2. Cont.

Method and Software Objectives, Advantages, and Limitations Reference

Extreme learning machine (ELM) and the
multilayer perceptron (MLP) for data
assimilation with GR4J lumped
hydrological model.
Software: Not stated

Objective: To test two new ELM and MLP data assimilation methods in
the rainfall-runoff models. The study catchments were Mistassibi
(Canada), Schwuerbitz (Germany), Ourthe (Belgium), and Los Idolos
(Mexico).
Advantages: It shows that ELM and MLP can be successfully used for
data assimilation, with a noticeable improvement over the GR4J and
OpenLoop hydrological models for all studied catchments.
Limitations: The ELM, MLP, and hydrological models are loosely coupled
and simulated on an open-loop approach, and no feedback from the
model output is considered. Furthermore, few observed variables in the
ANN training are used (discharge and temperature).

[61]

Bayesian and variational data
assimilation hybrid algorithm called
OPTIMISTS (Optimized PareTo Inverse
Modeling through Integrated STochastic
Search)
Software: code available online:
https://github.com/felherc/OPTIMISTS
(accessed on 21 June 2022).

Objective: To introduce the new data assimilation algorithm OPTIMISTS
and to test it using the DHSVM hydrological models in the Blue River
and Indiantown watershed, USA.
Advantages: OPTIMISTS combines the features from Bayesian and
variational approaches. OPTIMISTS produced probabilistic forecasts
efficiently, with the combined advantages of allowing for fast,
non-Gaussian, non-linear, and high-resolution prediction and for the
balancing of the imperfect observation.
Limitations: The model seems to be under development.

[62]

4.1.1. Hydrological System Classification

The classification of the different types of hydrological systems is one of the most
widely applied modeling tasks in hydrology and ecohydrology. It aims to find similarities
between different hydrological systems, e.g., those based on the hydrological response, the
hydromorphological and climatic characteristics, and other variables. Unsupervised GeoAI
algorithms, such as K-mean clustering [63] and SOM [64,65], have been applied to catch-
ment classification. Both algorithms organize multidimensional input data through linear
and non-linear techniques, depending on the intrinsic similarity of the data themselves.
Several studies highlight the SOM nonlinear techniques for producing robust and consis-
tent hydrological classification [66–68], even though the classification consistency is highly
influenced by the quality of the input variables [69]. Additionally, where training data is
available, supervised GeoAI methods have produced highly accurate and biophysically
meaningful catchment classification [70,71].

4.1.2. Hydrological Data Fusion and Geospatial Downscaling

Integrated hydrological modeling requires the extensive data collocation of different
components of the hydrological system in various spatial and temporal scales. Therefore, it
is necessary to complete data and/or create new data by integrating several datasets from
different sources, resolutions, and measurement noisiness [72]. This approach is called
data fusion. Data fusion can increase the measurement quality and reliability, estimate
unmeasured states, and increase spatial and temporal coverage. Several probabilistic and
GeoAI data fusion techniques are available [73,74]. The commonly used GeoAI techniques
in data fusion are non-linear Bayesian regression, ANN, RF, and deep learning [73–76].
These methods provide several advantages in representing non-linear, complex, and lagged
relationships in different hydrological datasets. GeoAI data fusion is also applied to
automatic data denoising and anomaly detection and remote sensing data fusion [77].
GeoAI data fusion is also used in rain, soil moisture, and discharge data generation.
Sist et al. [78] introduce the ANN-based data fusion of multispectral (visible and infrared)
satellite data with radar (microwave) satellite data to improve rainy area mapping and the
estimation of the precipitation amount. Zhuo and Han [79] used data fusion to generate soil
moisture products from satellite data, land surface temperature, and multi-angle surface
brightness reflectance and were able to significantly increase the availability of daily soil
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moisture products. Fehri et al. [80] used the best linear unbiased predictor data fusion
technique to generate discharge data from crowdsourced data and existing monitoring
systems. There are more examples of using data fusion in data integration in areas other
than in improving knowledge, which could be the next step to be further explored.

Environmental geospatial data, particularly remote sensing data, are usually measured
at different spatial and temporal scales; high-temporal resolution data are usually measured
at coarse (low) spatial resolution, and fine (high) spatial resolution data are obtained with
low temporal frequency [77,81]. Therefore, combining the different datasets by downscaling
methods is necessary to generate spatio-temporal high-resolution data. GeoAI-based
downscaling has shown several advantages. For example, CNN is frequently used for
downscaling coarse-resolution to fine-resolution precipitation products, using different
static and dynamic variables as predictors [82,83]. These studies have shown that CNN
achieves different degrees of accuracy, depending on the precipitation rate and the condition
complexity; it has, e.g., lower accuracy in extreme wet conditions [83]. Other studies have
shown a higher downscaling accuracy of GeoAI methods by having a spatial component in
the model, e.g., spatial RF vs. RF in downscaling daily fractional snow cover [84] and land
surface temperature from MODIS data [85–87].

4.1.3. Spatial Prediction of Hydrological Variables

The application of GeoAI in hydrological spatial prediction is diverse; it can be
used, for example, in the risk mapping of hydrological extremes such as flood and
drought [88–90]. In particular, GeoAI is widely applied in flood mapping, using satel-
lite imagery, UAVs, high resolution LiDAR topographic data, and automatic water level
sensors [91–93]. The common GeoAI algorithms used, e.g., in flood prediction are SVM,
RF, ANN, and deep learning [92–94]. The selection of the methods is variable and depends
on the mapping objective, the system complexity, and the data availability [91]. In areas
with limited data and/or complex systems, where nonlinear methods are not easily in-
terpretable, ANFIS soft computing has been applied with good prediction accuracy and
strong generalization ability [95]. ANFIS combines data and expert knowledge through a
set of fuzzy semantic conditional rules [96–98].

Another GeoAI application is the spatial prediction of hydrological model variables,
e.g., saturated hydraulic conductivity [99,100] and weather data [101]. This is particularly
useful as spatial hydrological variables are not available. Thus, they can only be predicted
using points observation and surrogate spatial data such as remote sensing data. GeoAI
spatial prediction has shown advantages in modeling nonlinear processes. However, the
prediction quality depends on the quality and quantity of the observed data points and the
applied GeoAI method [102].

4.1.4. Hydrological Process Modeling

GeoAI has shown the potential for accurate hydrological modeling, such as for rainfall-
runoff, river discharge, soil moisture dynamics, and groundwater table fluctuation [95,103,104].
The non-linear nature of these processes is challenging to model with simple empirical
and physical-based models. Therefore, GeoAI methods such as ANNs have proved to be
better for modeling complex hydrological processes and forecasting them in the short and
long term and in different management scenarios [26]. However, traditional ANNs do not
model sequential order data such as time-series data. Therefore, a further development
for the temporal dynamics of hydrological sequential events is the RNN and LSTM neural
networks. RNN and LSTM use the previous information in the sequence to produce the
current output, although RNN is better designed to model short sequences only. In the case
of long temporal sequences of the antecedent conditions, LSTM is preferred. LSTM uses an
additional ‘memory cell’ compared to RNN to maintain information for long sequences or
periods of time [105,106]. This memory cell lets the model learn longer-term dependencies,
e.g., the effects of antecedent soil moisture conditions on runoff generation [105,107]. LSTM
is advantageous for modeling hydrological processes in regions with strong seasonality,

177



Water 2022, 14, 2211

such as a northern climate with varying winter conditions [91,105]. The LTSM model
also allows the use of multiple time-series predictors, such as precipitation, temperature,
discharge, and time [58,108]. A further extension of LSTM is created by combining it with
CNN. In CNN, learning is achieved through convolving an input with filter layers to speed
up parameter optimization [107,109]. Combining CNNs and LSTM encodes both the spatial
and the temporal information [87,110]. LSTM techniques can also be coupled with other
signal-processing algorithms such as wavelet transformation (WT). WT is applied to time-
series data decomposition, e.g., the decomposition of high- and low-frequency flow signals,
the identification of seasonality and trend, the decomposition of non-stationary signals,
and data denoising [30]. Denoised data are used as inputs for the LSTM model [111].

Another approach is to use a physical-based model coupled with GeoAI, e.g., for
runoff and flood prediction [19,112,113]. Overall, the output of the physical-based model is
used as the input for GeoAI model training. For example, Noori and Kalin [14] used the
SWAT model to simulate daily streamflow and estimate baseflow and stormflow, which
were used as inputs for ANNs. The benefit of this approach is that once the model is
trained, it can perform orders of magnitude faster than the original physical-based models
without impairing prediction accuracy [17]. Another benefit of the hybrid modeling is that
a trained model, e.g., in catchment hydrological modeling, can achieve better performance
for other catchments than the uncalibrated process-based models [105,112].

Overall, most of the GeoAI models achieved higher prediction accuracy than the
physical-based hydrological models. However, there are several types of GeoAI algorithms,
with different architectures and mathematical formulations (e.g., ANN, CNN, and LSTM) to
perform similar tasks. In addition, different types of predictor variables and data sampling
sizes are used, making the GeoAI model performance comparison challenging. GeoAI
models are less physically interpretable, as they do not explicitly represent the physical
laws governing the hydrological processes. Therefore, their causal inference is still limited.
GeoAI applications are currently oriented towards hydrological prediction. GeoAI has the
potential to provide accurate and timely information which is applicable to large areas, and
using data from IoT sensors and cloud computing, it can deliver real-time prediction [114].

4.1.5. Hydraulic Modeling

The new generation of very-high-resolution river bathymetry has improved the 1D,
2D, and 3D hydraulic modeling of rivers [115,116]. River hydraulic models have been
widely used in the estimation of flood extent, water depth and velocity, sediment transport,
and the assessment of fluvial morphodynamics [5,11,117]. However, very complex hy-
draulic models (3D) are data and computationally demanding and restricted to small-scale
applications. Hydraulic modeling is sometimes inconsistent and does not represent all the
bio-physical processes occurring in the natural fluvial environment [118,119]. In addition,
the numerical solving approach of the hydraulic model results in high numerical instability
due to sensitivity to the initial and boundary conditions, model structure, and spatial
and temporal discretization [120]. Thus, the GeoAI method has emerged as a promising
tool for hydraulic modeling in large-scale and natural systems [19,119,121,122]. Emerging
deep learning applications in computer fluid dynamics have also shown potential for the
modeling of turbulent and complex flow structures [123–125]. Additionally, coupling the
hydraulic model with the Bayesian GeoAI methods improves hydraulic modeling over a
broad range of spatiotemporal scales and physical processes [126].

4.1.6. Hydrological Data Assimilation

Hydrological data assimilation (DA) is a state estimation theory that assumes that
models are an imperfect representation of the system and that hydrological data might con-
tain noise. Both can also contain different types of information and be complementary [127].
DA aims to harness the information in the hydrological model and in the observations to
approximate the true state of the system, considering its uncertainty statistically [127–129].
DA methods include linear dynamics (e.g., Kalman filter, the most popular state estimation
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method) and nonlinear dynamics [127]. The DA methods can be related to ML. Data fusion
and DA use similar techniques, but the problem formulation differs [130].

In hydrological modeling, the ML-based DA is the most common type of coupling of
ML and the physical-based model, the so-called loosely hybrid hydrological model [131].
DA updates the state system predicted by a physical-based model at a given time or place
with observational data, using Bayesian approximation such as the ensemble Kalman filter
(EnKF) [127] or ML methods, e.g., ANN, RNN, and LSTM [132]. Both the DA and the ML
methods solve an inverse problem, expressed as the model y = h(x,w), where h is the model
function, x represents the state/feature variable, w is the parameters/weights of the model,
and y is the observations/labels in DA/ML, respectively. DA is oriented to find the true
state of the system (x) from the observation and ML is commonly oriented to find model
parameters or weight (w) from the observation. DA holds w constant to estimate x; ML
holds x constant to estimate w; see [133] for a detailed revision.

Many studies have shown that ANN data assimilation outperforms conventional DA,
particularly for complex and non-linear response systems [61]. An additional development
of ML-based DA methods is the so-called deep DA [132], which trains deep learning neural
networks such as LSTM for high dynamic systems. Deep DA has shown potential for
accurate prediction for periods or sites where observations are unavailable and conventional
DA cannot be applied to reduce the model error [132].

4.2. Modeling Optimization Problems for Hydrological Model Calibration and Decision
Support System
4.2.1. Hydrological Model Calibration

In hydrological modeling, the inverse modeling approach is widely applied. In inverse
modeling, the model features and parameter values are unknown, and those are identified
by minimizing the error between the model output and the observed data [134,135]. The
model feature identification includes the definition of the main hydrological processes, the
mathematical equations representing it, the boundary conditions, and the time regime [136].
The parameter identifications encompass the identifying of the model optimal parameter
set values that reproduce the observed data acceptably [136]. In highly parameterized
models, identifying the optimal values of the parameters is challenging and represents a
substantial part of the modeling work. Usually, there is not a single set of optimal values
of parameters that can simulate the observed data well but a set of optimal parameters
values that can achieve similar model performance. This modeling phenomenon is called
the non-uniqueness or equifinality problem [137]. The hydrological model calibration often
requires specialized optimization algorithms, and several ML-based calibration algorithms
have been developed to support model calibration (see Table 3 for examples).

Table 3. Selected GeoAI applications for model calibration and decision support systems.

ML Method Objectives, Advantages, and Limitations Reference

Non-dominated sorting genetic algorithm II
(NSGA-II), particle swarm optimization
(MPSO), the Pareto envelope-based selection
algorithm II (PESA-II), the strength Pareto
evolutionary algorithm II (SPEA-II) with the
combined objective function and
genetic algorithm.
Software: Not stated

Objective: To compare optimization techniques to calibrate conceptual
hydrological models.
Advantages: All techniques perform well, better results gained than
when using a single-objective algorithm. The NSGA-II with two
indicators performed better than the MPSO with one indicator.
Limitations: Depending on the selected performance indicators, the
best model varied.

[138]

The multi-objective evolution algorithm
MODE-ACM and the enhanced Pareto
multi-objective differential evolution
algorithm (EPMODE).
Software: Not stated

Objective: To introduce the MODE-ACM and the enhanced EPMODE
model. To test model efficacy by comparing the NSGA-II and SPEA2
model.
Advantages: The EPMODE and the MODE-ACM were both reliable
and showed better performance than the NSGA-II and SPEA2 models.
Limitation: Very complex model.

[139]
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ML Method Objectives, Advantages, and Limitations Reference

The multi-objective particle swarm
optimization (MOPSO), NSGA-II and the
multi-objective shuffled complex evolution
metropolis (MOSCEM-UA).
Software: Not stated

Objective: Comparison of three multi-objective algorithms for
hydrological model calibration.
Advantages: All three algorithms are able to find Pareto sets of
solutions. The most uniform distribution of the solutions was derived
with MOSCEM-U as the NSGA-II has the shortest Pareto optimal
front and the MOPSO has the maximal extent of the obtained
non-dominated front.
Limitations: The rate of convergence with the optimal solutions varies
across the three algorithms.

[140]

MOSCEM-UA and shuffled complex
evolution metropolis (SCEM-UA).
Software: Not stated

Objective: To calibrate hydrological models using more effective and
efficient multi-objective algorithms called MOSCEM-UA.
Advantages: MOSCEM-UA allows multi-objective calibration,
preventing the collapse of the algorithm to a single region of highest
attraction. It combines the complex shuffling and the probabilistic
covariance-annealing search procedure of the SCEM-UA algorithm.
Limitations: Challenging to make sure that a diverse and large initial
population size is provided, which supports multiple objective
approaches.

[141]

ANN coupled with SWAT model.
Software: SWAT-ANN, available online:
https://zenodo.org/record/3699658#
.YewXid_RZaQ (accessed on 21 June 2022).

Objective: Evaluation of SWAT-ANN rainfall-runoff simulation in a
catchment, Italy.
Advantages: The SWAT-ANN prediction accuracy was acceptable and
useful in the absence of observational data.
Limitations: The overall model calibration is only evaluated by model
residual error.

[142]

Genetic algorithm
Software: Multi-objective evolutionary
sensitivity handling algorithm (MOESHA),
programed in Python

Objective: River discharge modeling with a hydrological model called
EXP-HYDRO, applied in a small catchment in Wales, UK.
Advantages: The MOESHA algorithm determines well the optimal
distribution of the model parameters that maximize model
robustness and minimize error; it also estimates model parameter
uncertainty.
Disadvantages: Computationally expensive.

[143]

Multi-algorithm, genetically adaptive
multi-objective method (AMALGAM), single
evolutionary multi-objective optimization
(SPEA-II and NSGA-II).
Software: AMALGAM code in Visual Basic

Objective: Comparative study of SWAT model calibration using
single- and multi-evolutionary optimization algorithms. The study
areas are the Yellow River Headwaters Watershed (Tibet Plateau,
China), the Reynolds Creek Experimental Watershed (Idaho, USA),
the Little River Experimental Watershed (Georgia, USA), and the
Mahantango Creek Experimental Watershed (Pennsylvania, USA).
Advantage: The advantage of the multi-evolutionary algorithm
AMALGAM calibrating the SWAT model has been demonstrated.
AMALGAM provides fast, reliable, and computationally efficient
solutions to multi-objective optimization problems.
Limitations: With a small number of run schemes, multiple trials
might be needed for implementing AMALGAM. The solution
contribution of the different algorithms used in AMALGAM varies in
the different watersheds.

[144]

Single-objective and multi-objective particle
swarm optimization (PSO) algorithms.
Software: Not stated

Objective: Automatic calibration of hydrologic engineering center-
hydrologic modeling systems (HEC-HMS) rainfall-runoff model. The
study area is the Tamar sub-basin of the Gorganroud River Basin, Iran.
Advantages: Multi-objective PSO calibration outperforms the
single-objective one. However, an appropriate combination of
objective functions is essential in multi-objective calibration.
Limitations: Increasing the number of objective functions did not
necessarily lead to a better performance than the bi-objective
calibration. The increasing number of objective functions also
introduces computational challenges. Insufficient data and flood
events seriously affect the calibration performance.

[145]
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ML Method Objectives, Advantages, and Limitations Reference

The deep learning gradient-based optimizer.
Software: Python code, available online:
https://github.com/ckrapu/gr4j_theano
(accessed on 21 June 2022).

Objective: Estimating unknown parameters for GR4J conceptual
hydrological model.
Advantages: The deep learning gradient-based optimizer is effective
for high-dimensional inverse estimation problems for hydrological
models.
Limitations: Need for hydrological model to be established at the site
and high computational effort.

[146]

Partial least squares regression (PLSR) and
ANFIS.
Software: Not stated

Objective: Development of a smart irrigation decision support system,
using PLSR and ANFIS as reasoning engines. The study area is in the
southeast of Spain.
Advantages: ANFIS prediction was better than PLSR for water
requirement estimation and identifying timely crop irrigation needs.
Limitations: The model has been tested with a few soil and weather
variables.

[147]

Reinforcement learning (RL)
Software: Python code, available online: https:
//github.com/kLabUM/rl-storm-control
(accessed on 21 June 2022).

Objective: To implement a smart stormwater real-time system control
based on RL.
Advantages: The RL-based model learned the control valve strategy in
a distributed stormwater system by interacting with the system it
controls under thousands of simulated storm scenarios. It effectively
tries various control strategies until it achieves target water level and
flow set points.
Limitations: RL performance is highly sensitive to the RL agent
reward formulation and requires a significant amount of
computational resources to achieve a good performance.

[148]

Hydrological models are often calibrated with a single objective function, although
adequate and fast multi-objective optimization techniques exist, which better support the
several output variables [141]. There are many optimization algorithms, meta-heuristic and
ML-based, for model parameter calibration, such as particle swarm optimization (PSO),
grey wolf optimization (GWO), genetic algorithms (GAs), genetic programming (GP),
strength Pareto evolutionary algorithms (SPEA), micro-genetic algorithms (micro-GA),
and Pareto-archived evolution strategies (PAES). Depending on the selected performance
indicators of the model, the best model for hydrologists varied. According to the free lunch
theorem [149], this is not expected to change for a while; it proposes that no one model fits
all. In any case, all the models performed well. See Yusoff et al. [150] and Ibrahim et al. [45]
for a specific review of optimization algorithms.

Meta-heuristic optimization algorithms, which are mostly inspired by the biologi-
cal/behavioral strategies of animals, provide a good solution to optimization problems, par-
ticularly with incomplete or imperfect information or limited computational capacity [151].
An advantage of these algorithms is that they make relatively few assumptions about the
optimization problems and reduce the computational demand by randomly sampling a sub-
set of solutions, which otherwise would be too large to be iterated entirely [151]. However,
some meta-heuristic algorithms such as PSO may not guarantee that a globally optimal
solution will be found, particularly when the number of decision variables or dimensions
being optimized is large [45]. The GA is inspired by genetic evolutionary concepts, such
as the non-dominated sorted genetic algorithm II (NSGA-II). The genetically adaptive
multi-objective method (AMALGAM) [152] has been applied for multi-objective, multi-site
calibration and to solve highly non-linear optimization problems [144,153]. AMALGAM is
a multi-algorithm that blends the attributes of several optimization algorithms (NSGA-II,
PSO, the adaptive metropolis search, and differential evolution) [144]. The GA has been
shown to be well-suited for hydrological models, such as the SWAT semi-distributed hy-
drological models, which cannot be adequately calibrated by gradient-based calibration
algorithms [144,153,154]. The objective function for each solution in a GA can be assessed
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in parallel computation, providing computational efficiency [144]. Additional calibration
methods based on deep learning have also been developed, outperforming many of the
existing evolutionary and regionalization methods [20,146].

4.2.2. Decision Support System for Integrated Water Resources Management

Integrated water resources management (IWRM) deals with multiple actors to con-
sensually and communicatively integrate decisions in a hydrological unit to ensure eq-
uitable economic development and social welfare while assuring hydrological system
sustainability [155]. IWRM demands quality and timely information. Hence, increasing au-
tomation with GeoAI-based decision support systems is thought to enhance IWRM [17,156].
Multi-objective and scenario analysis are typical applications of GeoAI techniques in IWRM
to find solutions for conflicting objectives, forecast the impact of management strategies,
and optimize hydrological system operation [157,158]. We found widespread applications
of GeoAI in reservoir and water distribution optimization using ANN [159,160], assembled
and deep learning algorithms, and genetic programming [161,162]. Another application
is found in building a smart irrigation decision support system [147]. Here, partial least
square regression and the adaptive network-based fuzzy inference system (ANFIS) are
proposed as reasoning engines for automated decisions. An additional example of arti-
ficial intelligence application is the adaptive intelligent dynamic urban water resource
planning [158]. It uses Markov’s decision process to tackle complex water management
problems, predicting water demand, scheduling management, financial planning, tariff
adjustment, and the optimization of water supply operations [158] (See Table 3). Overall,
the GeoAI-based IWRM integrates various types of algorithms to perform different tasks,
such as prediction and forecasting using various types of geospatial data, and optimization
algorithms for management scenarios with multiple objectives. Algorithms such as ANFIS
are used for system reasoning to automate the decision support [157,158,163]. ANFIS
allows the mimicking of human reasoning and decision making based on a set of fuzzy
IF-THEN rules. ANFIS has the learning capability to approximate nonlinear functions and
can self-improve in order to adjust the membership function parameters directly from the
data [164].

4.3. Automatic Water Quality Monitoring and Spatio-Temporal Prediction
4.3.1. Automatic Water Quality Monitoring

The data collection of water quality with wireless sensor networks and internet of
things (IoT) technologies is rapidly increasing and providing very-high-frequency WQ data
(sub-hourly) [165,166]. There is evidence that the high-frequency data better represent the
dynamics variation of river discharge and sediment and solute fluxes [167]. It enables the
early mitigation of floods and drinking water problems [168,169]. High-frequency data can
also lead to a more precise and accurate classification of the biochemical status of rivers
and lakes [170]. However, such sensors and devices are subject to failures, poor calibration,
and inaccurate data recording in certain conditions [171,172]. Therefore, automatic data
quality control, error and anomaly detection, sensor drift compensation, and uncertainty
assessment are important [171–173]. GeoAI showed advantages in managing WQ sensor
networks and sensor data fusion, such as fault detection, data correction, and upgrades
from different monitoring sensors by data fusion [174]. See Table 4 for selected examples
of GeoAI applications on WQ monitoring. Additional applications of GeoAI are in the
detection, localization, and quantification of pollutant critical sources and critical periods
of loading in monitoring networks [175,176]. The most common GeoAI algorithms for WQ
sensor fusion are based on Bayesian algorithms, fuzzy set theory, genetic programming,
ANN, and LSTM [177–180].
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Table 4. Selected GeoAI applications in monitoring and spatio-temporal prediction of water quality.

Method and Software Objective, Advantages, and Limitations Reference

ANN
Software: ANNs computed and fitted with the
Keras package in R.
Available online: https:
//github.com/benoit-liquet/AD_ANN
(accessed on 21 June 2022).

Objective: To use ANN to detect anomalies caused by the technical
error of in situ sensor monitoring of conductivity and turbidity.
Advantage: Semi-supervised ANN very well suited to identifying
short-term anomalous events. Supervised classification able to
identify long-term anomalies.
Limitations: High rate of false positive detection. Large dataset
required due to relative scarcity of anomalous events to train data.

[174]

MLP, SVM-SMO, lazy-instance-based
learning K nearest-neighbor (IBK), KStar, RF,
random tree, and REPTree.
Software: Python

Objective: To compare ML techniques for soft sensor monitoring of
biological oxygen demand (BOD).
Advantage: IBK algorithm was best for estimating BOD based on
turbidity, dissolved oxygen, pH, and water temperature sensors. IBK
algorithm can also be used within a low-cost system to allow
incorporation into IoT-based WQ systems.
Limitations: Overloading of servers may occur in IoT-based systems if
prediction algorithms run on the cloud for a large number of
sensing nodes.

[181]

Feed-forward ANN (FF-ANN).
Software: Python using the scikit-learn library.

Objective: To compare FF-ANN and traditional methods for
drift correction.
Advantages: The FF-ANN model outperformed traditional methods
for drift calibration and may increase calibration lifetime and reduce
calibration frequency for water quality sensors.
Limitations: High error rate apparent when using logistic function.

[172]

RF, SVM, and logistic regression
Software: Python

Objective: Evaluation of 3D wide-area WQ monitoring and analysis
systems, using unmanned surface vehicles (USV) and ML algorithms.
Advantage: RF demonstrated high precision for estimating WQ status,
using WQ measured data (turbidity, total dissolved solid, and pH) by
USV at multiple points and different water depth levels.
Limitations: USV drifting control, working performance, and system
accuracy were evaluated just in one environmental condition (a small
lake) and for a few WQ parameters.

[177]

Gradient boosting (XGBoost), RF, coupled
with denoising model called CEEMDAN.
Software: Not stated

Objective: Hourly prediction of several WQ parameters in Tualatin
River, Oregon, USA.
Advantages: The best model performance depended on the predicted
WQ variable. CEEMDAN-RF and CEEMDAN-XGBoost show better
performance, less errors, and higher stability than simple RF and
XGBoost. New error metric is introduced for model performance
evaluation and compared with conventional methods of
model evaluation.
Limitations: The prediction model only depends on time-series data
and no other explanatory variables were included.

[182]

Multi-layer perceptron, radial basis function
ANN, ANFIS, and ANFIS with wavelet
denoising technique (WDT-ANFIS).
Software: wavelet and fuzzy logic toolboxes
of MATLAB

Objective: Prediction of WQ parameters such as ammoniacal nitrogen,
suspended solid, and pH in Johor river, Malaysia.
Advantages: Several ML algorithms were compared, where the
WDT-ANFIS model advantage was well illustrated.
Limitations: Complex models and not possible to identify a single
network structure that can best predict WQ parameters.

[28]

Decision tree (DT), RF, and deep cascade
forest (DCF), trained by big data.
Software: Python. RF and DT built using the
package Scikit-learn v.019. DCF was built
with the package gcForest

Objective: Comparison of 7 traditional learning models vs. 3 ensemble
models for prediction of 6 levels of WQ parameters for major rivers
and lakes in China.
Advantages: DT, RF, DCF trained by big data all had significantly
better prediction of WQ compared with traditional learning models.
DCF had the best performance overall for prediction of all 6 levels
of WQ.
Limitations: DCF unable to learn directly from big raw data.

[183]
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RF
Software: Python using the libraries
Scikit-Learn (0.20.1) and MLxtend (0.13.0)

Objective: Comparison of random forest to multiple linear regression
for estimation of high-frequency nutrient concentration.
Advantages: RF outperformed linear models when more than one
predictor was included.
Limitations: At least 3 predictors required to identify clear benefit of
using RF compared to multiple linear regressions.

[184]

Integrated LSTM, using cross-correlation and
association rules (apriori).
Software: Not stated

Objective: GeoAI system to identify and trace point sources of
pollution in Shandong Province, China.
Advantages: LSTM algorithm had high prediction accuracy for tracing
the main point sources of pollution.
Limitations: GeoAI model was not aware of the change in aquatic
environment conditions. It requires multi-dimensional and
multi-spatial perspectives to identify, analyze, and respond to data.

[185]

ANN
Software: Mathematica

Objective: Modeling daily total organic carbon (TOC), total nitrogen
(TN), total phosphorous (TP), and predicting future fluxes under
climate change scenarios for two streams in Finland.
Advantages: ANN model managed to recreate most dynamics in TOC,
TN, and TP.
Limitations: ANN model struggled to capture extreme values for TOC,
TN, and TP.

[186]

Least square-SVM (LS-SVM) and
multivariate adaptive regression spline
(MARS).
Software: Not stated

Objective: Prediction of 5-day biochemical oxygen demand (BOD) and
chemical oxygen demand (COD) in natural streams in Karoun River,
southwest Iran.
Advantages: LS-SVM and MARS models performed better in terms of
external validation criteria and F test compared with
multiple-regression-based models and ANN and ANFIS equations.
Limitations: Intensive amount of data collection required for a wide
variety of parameters.

[187]

ANN using feed-forward network with
Levenberg–Marquardt back-propagation
learning.
Software: Not stated

Objective: Hybrid approach using a SWAT model as an input to an
ANN to simulate monthly nitrate, ammonium, and phosphate loads
in Atlanta, GA, USA.
Advantages: Hybrid model outperformed standalone SWAT and ANN
models for prediction of monthly loads. Hybrid models are useful for
predictions in unmonitored catchments.
Limitations: Hybrid model for nitrate had substantially better
predictions than the ammonium and phosphate models. Large peaks
of ammonium and phosphate were underestimated.

[188]

ANN compared with SVM and group
method of data handling (GMDH).
Software: Not stated

Objective: ML techniques compared for predicting various WQ
components in Tireh River, southwest Iran.
Advantages: SVM models were most accurate, with less
data dispersion.
Limitations: All models overestimated some properties.

[189]

Twelve hybrid data mining algorithms
compared, spanning two main groups.
Group one featured decision tree algorithms,
and group two featured meta-classifier or
hybrid algorithms.
Software: Not stated

Objective: Comparison of 12 hybrid GeoAI models predicting WQ
indices in Talar Catchment, Iran.
Advantages: Hybrid models showed improved predictive power
compared to standalone algorithms.
Hybrid bagging random tree (BA-RT) model showed greatest
predictive power and was able to produce reliable results despite a
dataset spanning a short time period.
Limitations: BA-RT model struggled to accurately predict extreme
WQ index values, while most models also overestimated WQI values.

[190]
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SVM and RF
Software: e1071 R package used to build SVM
model and random forest R package used to
build RF model.

Objective: SVM and RF algorithms compared to predict
high-frequency variation in stream solutes in Hubbard Brook,
New Hampshire, USA.
Advantages: Both ML algorithms were capable of effectively
predicting concentrations of major ions.
Limitations: Solutes with atmospheric, episodic, or strong biotic and
abiotic controls were much more poorly predicted than solutes least
affected by ecosystem dynamics.

[191]

Many WQ parameters cannot easily be measured in situ and in real time for various
reasons, such as high-cost sensors, low sampling rate, multiple processing stages, and the
requirement of frequent cleaning and calibration. Therefore, a common practice is the
estimation of a particular WQ parameter value based on other surrogate parameters, called
soft sensors [181,183,184]. ML techniques showed higher accuracy in implementing soft
sensors than conventional regression-based models [181,183,184,192].

The ML method has also shown an advantage in automatic hysteresis pattern analysis
using high-frequent water quality data with, e.g., restricted Boltzmann ANN [193]. A
more detailed hysteresis pattern classification allows the gaining of new insights into WQ
pollutants sources and drivers, the influence of catchment and riverine features, the effect of
antecedent conditions, and the influence of changes in rainfall and snowmelt patterns [193].

4.3.2. Spatio-Temporal Water Quality Prediction

We found diverse applications of the GeoAI methods in WQ spatio-temporal pattern
analysis, the classification of WQ, and the prediction of WQ variables and the pollutant
loading estimation. A detailed review of the ML application in WQ prediction is found
in Rajaee et al. [27], Naloufi et al. [29], and Chen et al. [194]. Table 4 shows examplesof
GeoAI applications for this purpose. Commonly used GeoAI for WQ prediction and
classification are unsupervised clustering such as k-means, density-based spatial clustering
of applications with noise (DBSCAN), and SOM, but also time-series segmentation such as
dynamic time warping [195]. Supervised ML classification and prediction algorithms for
WQ are RF, SVM, the Bayesian network, and ANN, and deep learning such as LSTM is also
frequently used [190,196,197].

High-frequency WQ monitoring data contains noise signals due to random and sys-
tematic errors, impairing the WQ prediction accuracy. Hence, combining data denoising
techniques such as Fourier and wavelet transform with GeoAI improves WQ prediction.
For example, Song et al. [198] found that combining synchro-squeezed wavelet transform
and an LSTM network substantially improved the WQ parameter prediction. Similarly, Na-
jah Ahmed et al. [28] integrated wavelet discrete transform with the artificial neuro-fuzzy
inference system (WDT-ANFIS) to obtain high-accuracy prediction of river WQ parameters.

Additionally, the WQ data usually have temporal autocorrelation and multi-collinearity
between the WQ parameters. To consider these characteristics in the prediction models,
Zhou et al. (2020) [199] proposed an ML model based on t-distributed stochastic neighbor
embedding (t-SNE) and self-attention bidirectional LSTM (SA-Bi-LSTM), demonstrating
substantial WQ prediction improvement. Another promising approach is uniform mani-
fold approximation and projection (UMAP) for multidimensional WQ data ordination and
classification. Unlike other dimension reduction methods, UMAP retains a global and local
information structure, and the data ordination is bio-physically meaningful [200].

Inland water has naturally high spatial variation. It requires complex spatial pre-
diction models and large datasets. The GeoAI have shown breakthroughs in spatial WQ
prediction by combining field observations, remote sensing data, or UAV imagery. For
example, using deep learning, RF, genetic algorithm—RF, adaptive boosting (AdaBoost),
genetic algorithm—AdaBoost and the genetic algorithm—extreme gradient boosting (GA-
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XGBoost) [183,194]. However, these models usually demand extensive training data, which
are restricted to a few pilot areas or intensely monitored areas.

Another approach in WQ prediction is the application of hybrid models and the
integration of physical-based models with GeoAI methods, such as SVM, RF, ANN, and
LSTM. Hybrid models usually outperformed physical-based models. For example, Noori
et al. [188] found substantial improvement in monthly nitrate, ammonium, and phosphate
load prediction when using hybrid SWAT-ANN models. Hybrid models are also helpful
for unmonitored catchment predictions [188]. The hybrid model also improves GeoAI
explanatory and generalization capability, although some disadvantages observed in the
physical-based model, such as extreme values not being well predicted, persisted in the
hybrid models. Similarly, the process-guided recurrent neural network (RNN), which
combines the biophysical principles of the process-based model and RNN, modeled the
seasonal variation of lake phosphorus loading with lower bias and better reproduced the
long-term changes of phosphorus loading compared to using the physical-based model
and RNN independently [21].

Overall, the GeoAI water quality prediction depends not only on the selected algo-
rithms and settings but also on the WQ parameters, data size, and training data quality for
the learning models [183,188,191].

4.4. Machine Learning in Fluvial Geomorphic and Morphodynamic Mapping

Fluvial geomorphology triggered the quantitative dynamic paradigm [201] as an ap-
proach to quantifying and understanding the processes of the fluvial environment [5]. The
simultaneous development of techniques such as multispectral satellite images, synthetic
aperture radar (SAR), LiDAR, UAV imagery, structure from motion photogrammetry (SfM),
multibeam sonar (sound navigation and ranging), among others, has resulted in an un-
precedented, seamless characterization and quantification of the fluvial environment and
its dynamics [202–204]. This geospatial dataset explosion, as in many other disciplines, has
resulted in the perfect foundation for applying GeoAI methods in fluvial geomorphology.
Here, we reviewed the recent GeoAI applications in fluvial geomorphological studies.
Table 5 shows selected examples of GeoAIapplications in fluvial geomorphic studies.

Table 5. Selected GeoAI applications in fluvial geomorphic and morphodynamic mapping.

Method and Software Objective, Advantages and Limitations Reference

NASNet CNN
Software: Python based. CNN supervised
classification available for PyQGIS

Objective: To classify fluvial scenes in 11 rivers in Canada, Italy, Japan,
the United Kingdom, and Costa Rica.
Advantages: The NasNet-CNN model outperformed other supervised
classifiers, e.g., maximum likelihood, MLP, and RF. The NasNet-CNN
model can be transferable to other rivers with no training data,
obtaining good classification accuracy of fluvial land cover.
Limitations: CNN is sensitive to the hyperparameters definition. CNN
was also affected by imbalanced training data size in land cover
classes. Some features were misclassified.

[205]

Fuzzy-CNN
Software: Python based. Dependency
packages: TensorFlow

Objective: To predict vegetation, bare sediment, and water bodies at a
sub-pixel scale with Sentinel-2 images, trained with high resolution
UAV images. Study areas were Sesia, Po, and Paglia Rivers in Italy.
Advantages: Fuzzy-CNN models were successfully used to provide
continuous and crisp subpixel classification of Sentinel-2 imagery.
The model was transferable to satellite images with different
acquisition time. It can be used for annual change detection.
Limitations: UAV reference data obtained with manual OBIA was
highly time-consuming. The process was computationally expensive
due to the “super-resolution” process used to feed the CNN. The
model was tested only in Mediterranean drainage basins.

[206]
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ANN
Software: MATLAB-based software. Leaf area
index calculation (LAIC)

Objective: Hydromorphological features classification using very high
resolution UAV images (2.5 cm) in a reach of the River Dee,
Wales, UK.
Advantages: ANN LAIC model showed satisfactory classification
accuracy and potential to identify multiple hydromorphological
classes that can be attributed to site features based, e.g., on their
hydraulic, habitat, or vegetation types. The model settings seem to be
transferable to other rivers without training data.
Limitations: The algorithm showed misclassification of small fluvial
entities, e.g., shallow water areas with rippled surface, water areas
affected by tree shadow, and vegetated banks and/or areas obscured
by brown submerged vegetation.
The authors provided very limited information about the model
parameter setting in the paper.

[207]

CNN
Software: Matlab- based software.
Visualization and image processing for
environmental research (VIPER)

Objective: To measure river wetted width (RWW) with a novel
approach at the subpixel scale by using MODIS and Landsat OLI
images in Bay of Bengal, India, and Landsat TM in
Columbia River, USA.
Advantages: CNN-based sub-pixel scale classification resulted in a
more accurate estimation of RWW than the conventional hard
image classification.
Limitations: No full spectral unmixing was possible due to the
spectral variations of land cover classes and the nonlinear mixture
phenomenon. Misclassification issues were reported when shadows,
bridges, or trees were located along riverbanks. In such situations,
RWW was unmeasured.

[208]

GEOBIA, EL, RF, extra tree (ET), gradient tree
boosting (GTB), extreme gradient boosting
(XGB). Then, it was combined with a
voting classifier.
Software: Python-based with scikit-learn
package.

Objective: To map the main hydromorphological types that
characterize fluvial landscapes in Europe by using Copernicus image
mosaic and EU DEM. Target classes: water, sediment bars, riparian
vegetation, other floodplain units.
Advantages: RF outperformed any other tested classifier, e.g., ET, GTB,
and XGB. Hierarchical object-based segmentation is robust for
combining spectral and topographical data at different spatial
resolutions and enhancing low spectral resolutions. Area-based
validations were the preferred method to validate the quality of the
object-based maps.
Limitations: Vegetation units and sediment bars were not very well
classified. Main source of error was related to the high mixture of
riparian vegetation, sediment bars, and other floodplain features.

[209]

Object-based RF and pixel-based RF,
combined with recursive feature elimination
and PCAs
Software: rpart and caret R packages, and
EnMAP-Box (environmental mapping and
analysis program) 2.1.1 software.

Objective: To reveal uncertainty, overfitting, and efficiency of terrain
attribute identification in fluvial landforms using morphometric
variables derived from a LiDAR DTM from Tisza River, Hungary.
Advantages: Object-based RF method had a better classification
accuracy (95%) than the pixel-based RF method (78%) when
identifying 4 different river landforms (crevasse channels, swales,
point bars, levees). Overfitting was controlled in the study by
limiting the number of input variables.
Limitations: Object-based RF classifications needed visual
interpretation, field observations, and high-resolution data. PCAs did
not help to select more efficient and important variables.

[210]
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Table 5. Cont.

Method and Software Objective, Advantages and Limitations Reference

RF and SVM
Software: eCognition developer 9 software.

Objective: Semi-automatic map of riverscape units and in-stream
microhabitats, providing continuous, objective, and multi-scale
classification using very-high-resolution near-infrared aerial imagery
and LiDAR DTM from the Orco River, Italy.
Advantages: RF better identified riverscape elements, e.g., channel and
bars, while SVM did better when classifying in-stream meso-habitats.
Topographical data, in particular detrended DTM (DDTM), was a
relevant data source for an accurate classification of the riverscape
units. Near-infrared imagery combined with DDTM was the
best predictor.
Limitations: Extensive expert-based training was necessary for
detailed post-classification. Several subjective rules added to the
process. Most confusion in the classification was detected between
the floodplain and sparse vegetation classes, where the DDTM was
not helpful.

[211]

K-means clustering
Software: ArcGIS based. Geoprocessing tool
(multivariate clustering)

Objective: To delineate valley bottom extent across large catchments
and automatically classify valley bottom segments of variable length
by using DEM-based derivatives from Richmond River, Australia.
Advantages: The k-means successfully clustered the entire river
network into 6 valley bottom segments of varying length.
Limitations: The resulting cluster is unlabeled and needs expert
recognition. Only used a low number of the variables selected (slope
and valley bottom width). The model was validated with a
basin-scale expert mapping of valley types. This is time-consuming
and not available for other areas.
The model was only proposed as a preliminary assessment for
further studies.

[212]

Modified Hebbian algorithms and k-mean
clustering.
Software: On-line batch Hebbian algorithm
and CoSA (clustering of sparse
approximations) packages.

Objective: To investigate the applicability of ML classifier in Arctic
regions using DigitalGlobe Worldview-2 visible/near-infrared,
high-resolution imagery from Mackenzie River, Canada, and Selawik
and Barrow Rivers in Alaska (USA).
Advantages: Allows automatic discretization of landscape units in
large areas. Useful as a preliminary method to learn which scale of
clustering is suitable to study different processes or focuses of the
study (e.g., hydrology versus vegetation). Capable of detecting
vegetation changes as it recognizes vegetation levels in
different classes.
Limitations: No error assessment was performed, nor was there
ground truth validation. The selection of an appropriate number of
clusters depends on the expert’s decision.

[213]

SVM, RF, ANN, partial least squares,
multivariate adaptive regression splines,
flexible discriminant analysis, k-NN,
regression tree, bagged trees, linear
discriminant analysis, regularized linear
discriminant analysis, and naive Bayes.
Software: Caret and h2o R packages.

Objective: To extrapolate a geomorphic classification of channel types
to a regional stream network using DEMs and thematic maps
(e.g., lithology, soil, stream network, etc.) from
Sacramento River, USA.
Advantages: Multiple algorithms compared. RF outperformed other
models with more accuracy and stability and lower entropy in
reach-scale river type classification. Rigorous approach in model
design and evaluation of performance with 20 × 10-fold cross
validation used for clarification of some black box aspects of ML.
Limitations: Needs large expert-based field survey data. It is unclear if
ML is able to integrate predictors at different scales and to show
different uncertainty across the watershed.

[214]
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Table 5. Cont.

Method and Software Objective, Advantages and Limitations Reference

RF and RF combined with recursive feature
elimination (RF-RFE).
Software: R program

Objective: To detect structural and/or neotectonic controls influencing
the knickpoints of the drainage network using DEM and thematic
maps (geology and geomorphology) from Abaeté Watershed, Brazil.
Advantages: Simple and reproducible methodology that provides
causal relationship of knickpoint formation to lithological contacts
and neotectonic configuration and activity. RF succeeded in partially
predicting geomorphic indices (e.g., stream length gradient index or
normalized channel steepness index) and can be used to predict them
in unsampled areas without overfitting.
Limitations: Low performance of the methods, obtaining R2 = 0.38 as
the highest correlation between predicted and direct estimation
values of geomorphic indices. It may have been affected by the
selection of the covariables.

[215]

Template-matching (object-based) algorithm
(TMA) and pixel-based SVM.
Software: Feature Analyst (Overwatch
Systems Ltd.). Not specified for SVM.

Objective: To delineate water surface boundaries and assess the
influence of river and bank characteristics in the efficacy of a
template-matching compared to a pixel-based algorithm, using
high-resolution images with false-color infrared, from the Brazos
River, USA.
Advantages: Both algorithms adequately delineate the water surface.
SVM performed better and handled complex and noisy class
relationships. TMA performed better than SVM in spatially complex
channel morphologies (e.g., partially submerged sediment deposits,
sediment bar structures) due to its capability to incorporate both
spectral and spatial information.
Limitations: Validation relies on expert knowledge and previous maps.
Selection of ancillary data types depends on expert decision and the
delineation accuracy of TMA. In addition, the low spectral dimension
of the images limited the pixel-based classification. Both algorithms
encounter problems when classifying multiple complex features (e.g.,
overhanging trees) and illumination conditions (e.g., shading). The
TMA performance was less spatially consistent than that of SVM.

[216]

SOM
Software: R based (R v3.5.1). Package
“kohonen” v3.0.7

Objective: To produce waterbody typology from 22 GIS-derived
continuous catchment characteristics to capture the dominant
controls that influence river reaches across England and Wales.
Advantages: SOM-based water body topology reflects catchment
functional feature controls on river reaches. The method is extendable
to other areas where reach-level monitoring is relevant. The SOM
combined with hierarchical clustering can be applied over a wide
range of catchment, e.g., a national-level waterbody typology map.
Limitations: The method could not isolate individual effects from
catchment controls as they are dependent on each other. It does not
detect temporal change and local controls such as dams,
channelization, and others not taken into account.

[217]

U-Net convolutional neural networks
(CNNs).
Software: Not stated.

Objective: To introduce the BathyNet framework, a photogrammetry
and radiometric-based combined retrieval of water depth using
U-Net CNNs. Study area was Lech river, Augsburg,
Bavaria, Germany.
Advantages: U-Net CNNs approximate arbitrary functions and
include spatial context. The U-Net CNN-based depth retrieval
outperformed traditional regression-based optical inversion methods.
Limitations: U-Net CNNs require large amounts of training data and
their application might be unfeasible in areas with scarce water-depth
field samples.

[218]

The current state-of-the-art of GeoAI in fluvial geomorphology consists of an auto-
matic extraction of fluvial features at a fine scale by integrating larger and multidimen-
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sional datasets, using unsupervised classifiers (e.g., K-means, SOM), supervised classifiers
(e.g., RF, SVM, ANN, deep learning, CNN), or by combining both methods, e.g., K-means
with ANN. Most of the reviewed articles were focused on the development of the methods
and workflow, the testing of new applications, or the comparison of algorithm perfor-
mances [205,207,209], rather than the study of fluvial processes and underlying dynamics.
These applications of GeoAI provide the basis to the discovery of new fluvial patterns and
trends and increase knowledge about fluvial environments (e.g., Ling et al. 2019; Guillon
et al. 2020, Heasley et al. 2020) [208,214,217].

Overall, GeoAI outperforms conventional methods of fluvial landform classification,
reaching a classification accuracy of over 80%. Most common applications are found in river
channels and water body mapping [208,216], the classification of riverine landforms and
vegetation successions [213,214,219,220], the estimation of catchment hydrogeomorphic
characteristics (e.g., valley bottom, floodplain, and terrace) [212,221], and benthic and fish
habitat mapping [207,211,222,223].

Another application of GeoAI is the integration of multiple techniques to provide
more accurate and very-high-resolution data for fluvial studies. For example, the fluvial
environment is highly dynamic and demands frequent bathymetry surveys to understand
the change and morphodynamic drivers in lakes and rivers. Emerging technologies,
such as acoustic Doppler current profiler (ADCP), green LiDAR, high-resolution image
radiometric model, and 3D cloud points generation with SfM, allow more frequent and
accurate bathymetry mapping [203,204]. However, each approach has limitations, e.g.,
ADCP collects data only from areas where the sensor has passed, and it does not provide
continuous spatial scanning. It does not measure near-bank areas, and it is subject to
the acoustic side-lobe effect [224]. Photogrammetry and the green LiDAR method are
sensitive to water turbidity and light penetration in the water column [225,226]. Therefore,
multisource bathymetry modeling using the GeoAI method increases the bathymetric data
accuracy and reduces uncertainties due to data quality in change detection. For example,
ADCP data, image radiometric-based water depth, and SfM depth data can be integrated
using U-Net convolutional neural networks [218,227].

The GeoAI approach, when using multi-temporal remote sensing data, allows the
mapping of a broader fluvial landscape and its change, thereby revealing spatiotemporal
scales of fluvial morphodynamics, as in e.g., Van Iersel et al. [228], Hemmelder et al. [229],
and Boothroyd et al. [230]. There are different GeoAI approaches for automatic change
detection using multi-temporal images such as generative adversarial networks (GAN),
autoencoder, CNN, and others, as presented by Shi et al. [231].

Although GeoAI has been rapidly adopted in fluvial geomorphological studies, a
wide spectrum of workflows and software is found; many GeoAI approaches seem to be
under development and in the testing stage. Therefore, without a general, consistent, and
robust workflow among them, it is difficult to generalize and compare the GeoAI methods
performance and overall accuracies, as well as the study results.

The current limitations of GeoAI methods in fluvial studies are that the classification
quality is highly dependent on expert knowledge. The unsupervised classification output is
often inconsistent, and the cluster classes do not have direct geomorphic or fluvial process
meaning and need a post-classification labeling. Supervised GeoAI classifiers require
a large training sampling, and the training data quality is highly dependent on expert
knowledge. In addition, many of the studies using GeoAI to classify fluvial landform or
river typologies have been conducted in areas where an extensive quantity of previous
studies and data collection exists [212,214]. Therefore, its application in poorly sampled
areas is somewhat limited.

In many cases, GeoAI is enhanced with the use of fine-scale fluvial geomorphic
mapping, e.g., LiDAR or UAV-based images, which are still restricted to pilot areas, mostly
in Western countries. In addition, several different landform class names are used to rename
fine-scale fluvial landforms, and therefore, a standardized fluvial landform taxonomy is
lacking [232].
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Another limitation of supervised GeoAI applications is the misclassification of el-
ements out of the GeoAI training range, as presented, e.g., in Carbonneau et al. [205].
Moreover, the use of very different methods for assessing the GeoAI algorithm’s per-
formance and accuracy may lead to inconsistencies in the validity of results, e.g., map
cross-tabulation often uses limited validation points rather than areal-based reference data,
due to the lack of geomorphological reference maps at a very fine scale. Another issue
with regard to performance and accuracy assessments is the use of scalar error statistics,
such as root mean square error, which may not be reliable in fluvial mapping. Here the
resulting error is a complex combination of random and systematic components, and the
isotropy and stationary assumptions do not apply to the fluvial process [233]. It is also
heavily influenced by a small percentage of classification errors, which lead to incorrect
rankings of overall model performances or to prediction error [206]. Therefore, a more
consistent and comparable GeoAI-based fluvial mapping accuracy assessment is needed.

5. GeoAI Causal and Predictive Inference Capability
5.1. Renewed Data-Driven Research

Observational and experimental studies have been the basis of understanding the
empirical relationships of physical processes occurring in the earth and the development
of the mechanical or physical-based models to predict them [234]. With the substantial
increase in observational data and the development of GeoAI methods, empirical studies
have been renewed with data-driven models [17,235]. Unlike traditional statistical models,
GeoAI methods do not rely on a formal assumption about the data structure and types of
data distribution such as normality. They are more flexible and adaptable for nonlinear
and high-dimensional data. GeoAI methods automatically identify and exploit correlations
and patterns (classification) in the data to make predictions. For example, an ANN, with
many hidden layers and free parameters estimated by training and arbitrary fitting curves,
converts inputs to outputs by simply minimizing error variances [39].

To date, in most of the GeoAI applications for hydrological studies the cause–effect
relationship inference has been limited, because the multiple driven factors and interactions
between the used variables and scales are not explicitly represented in the models [50,123].
In addition, the GeoAI and ML internal hyper-parameter optimization is not explicitly
stated in most of the modeling studies. For this reason, GeoAI methods are often called
“black-box” models [236]. See Table 6 for the characteristics of physical-based and GeoAI
hydrological models. Therefore, causal inferences might be questionable without robust
assumptions and the veracity of the assumed data structure [237]. Thus, most GeoAI
models are mostly inductive approaches, mainly oriented for operational prediction and
forecasting work, such as early warning systems. Nevertheless, GeoAI models have the
potential to reveal unknown associations and complex patterns of hydrology processes
by integrating more high-dimensional and multi-source data than traditional methods.
By implementing proper model interpretation and explainability methods, they can also
extend GeoAI applications for causal inference [236,237].

Table 6. Characteristics of physical-based and GeoAI hydrological models.

Process-Based Model GeoAI Model

Based on general physical laws. A data-driven approach, inductive model building, may not fully
respect physical laws.

All input variables and parameter ranges are
well-structured and known.

Unstructured data, not all input variables’ role in the model is known,
making the output less interpretable.

Limited to the current state-of-the-art. Able to reveal unknown associations and patterns.

It is a deductive, hypothesis testing approach. It can be
used for causal inference.

It is an inductive, exploratory approach. Their use in causal inference
depends on the GeoAI model building and selected variables.
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Table 6. Cont.

Process-Based Model GeoAI Model

No uniqueness problem due to inverse modeling in
model parameterization.

No uniqueness problem due to GeoAI hyper-parameter optimizations.

Mostly deterministic, the system is represented by the
average values of variables.

Deterministic and probabilistic, depending on the GeoAI method,
variables can be treated as probabilistic.

Reductionist, considerable simplification of complex
processes which can result in prediction bias.

Integrative, GeoAI can be integrated into several types of observation
and may be able to reveal patterns not represented by a physical-based
model. Therefore, GeoAI prediction can be less biased.

It is assumed to be of general application. It is assumed to be applied only within the range of the training data.

Fixed to the model basis data requirement, and unable to
deal with multisource data.

Flexible to data input, from minimal input to big data. GeoAI can
maximize the use of all types of available data, from different sources,
types, and quality.

High computing demand for high-frequency and
large-scale modeling.

High computing efficiency and suitable for high-frequency and
large-scale modeling.

One-time calibration, once the model is calibrated, the
parameters are usually fixed.

Continuous learning model, the model calibration is constantly
updated with past and new data.

Well-defined framework for model performance,
uncertainty, and error propagation evaluation.

Diverse and developing approaches for model performance,
uncertainty, and error propagation evaluation.

5.2. Generalization of GeoAI Prediction

GeoAI models may only be applicable within their specific training data or calibrated
ranges [238], unless the modeling scheme and variables used can be argued to be generally
valid, e.g., representing general laws such as conservation and momentum laws that govern
natural processes [234]. GeoAI modeling generalization is also a challenging problem from
the perspective of model performance assessment, depending on the model complexity,
variables, and training dataset size. A very simple model cannot learn the problem being
modeled (underfitting problem), whereas a highly complex model with a large dataset
might overfit the training dataset (overfitting problem). Both cases are not generalizable
or applicable to new datasets. Current GeoAI generalization approaches are based on
finding an optimal tradeoff between training and validation accuracy, using regularization,
weight decay, ensembles, and other approaches in the model training stage [40]. However,
the decision boundary in complex models becomes sensitive to data size and outliers,
model architecture, and hyper-parameter optimization. It has also been observed that
different sets of the model architecture and hyper-parameters can produce a similar model
performance, leading to the non-uniqueness modeling problem [50,239].

5.3. GeoAI Data Requirement for Reliably Prediction

GeoAI models depend on the quality and quantity of the data. The amount of data
required for them depends on many factors, such as the complexity of the hydrological
system and the applied GeoAI algorithm [47]. A complex system with more sophisticated
GeoAI methods will demand a large and multidimensional dataset [42]. For example,
deep/extreme learning algorithms usually demand large sample sizes to compute accept-
able results [240]. Current hydrological and geospatial data are increasing rapidly, fostered
by the development of automatic monitoring systems and land surveying technologies.
However, the data quantity (volume) and quality (veracity and value) vary; the data
types are diverse (unstructured, structures, spatial, non-spatial, etc.), and the datasets
usually come from different sources. Datasets with these characteristics are called big
data [241,242] and require advanced and new methodologies to integrate them with GeoAI
models properly.
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5.4. GeoAI Capacity to Provide Novel Physical Insights

GeoAI data-driven research and data mining are increasingly used to gain information
from data, elucidate systems behavior, reveal new insights about the system functioning,
and detect change in the system responses [17]. There are several examples of GeoAI
applications in hydrological modeling [91,105,107,243]. Recent studies applying deep
learning to rainfall-runoff simulation indicate that there is significantly more information
in large-scale hydrological data sets than hydrologists have been able to translate into
theory or models [129]. GeoAI has also revealed new hydrological patterns and trends,
using heterogeneous data from different sources and quality [244,245]. Therefore, novel
data-driven modeling provides the potential to gain new information and knowledge and
a better understanding of the hydrological system and its changes [129,235].

6. GeoAI Research Trends in Integrated Hydrological and Fluvial Systems Modeling
6.1. Toward Transdisciplinary GeoAI Research in Hydrological Modeling

Nowadays, earth science has mostly adopted GeoAI approaches developed in other
fields, particularly computer science. GeoAI is also an active field of research in advanced
hydrological modeling, providing new insights into hydrological system functioning,
advantages in computational efficiency, and prediction accuracy. Nevertheless, it depends
on how the hydrological GeoAI model has been set up by the user, the quantity and quality
of the data, and the types and number of variables used.

GeoAI methods can be integrated with other data analysis techniques, e.g., Fourier
and wavelet transformation, to remove noise and provide better hydrological feature
extraction [30,198]. Hence a transdisciplinary approach is demanded to ensure insightful
research on GeoAI applications in hydrological and fluvial studies [235]. This is particularly
relevant as the complexity of the GeoAI models is increasing continuously, and model
parametrization and parallel computing solutions require expert knowledge for proper
GeoAI technology adoption [18,240]. Similarly, these issues also arise when hydrological
science principles are not explicitly integrated with the GeoAI data-driven models, resulting
in a limited explainability of the underlying physical laws that govern hydrological and
hydraulic processes [50,129].

6.2. Augmenting GeoAI Prediction Capability with Open Data and Crowdsourced Data

GeoAI models demand a large amount of training data. Although data collection
technology has progressed substantially, only a few geographical areas or pilot hydrological
systems are well equipped. For example, very few catchments have implemented IoT hy-
drological monitoring technology. GeoAI models will demand a rapid and massive increase
in data collection. The current open-access policy of many governmental environmental
agencies, related to climatological, hydrological, and environmental data, enhances the
data-driven research and GeoAI applications, particularly in Western countries. Similarly,
open access to high-resolution topographical and earth observation data (e.g., NASA and
the ESA-EU Copernicus Programme) also accelerates the development of GeoAI-based hy-
drological models [241,246]. Additionally, the current trend of implementing open-access
training libraries, e.g., training data for land cover classification, is valuable, but more
specialized hydrogeomorphic labeled data are still under development.

Citizen science also plays a key role in complementing and increasing data collection
worldwide. There are several examples of how hydrological crowdsourcing enhances hy-
drological data availability for scientific research, using images and social media data [247]
and low-cost data loggers [248,249], but the success and quality of hydrological crowd-
sourcing are variable, depending on the regions, the instrument used, and the variables
reported [250]. GeoAI-based hydrological model development will benefit from crowd-
sourcing data collection.
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6.3. From Physical-Based and GeoAI Hybrid Models to Fully Integrated
GeoAI–Physical-Based Models

Physical-based and GeoAI hydrological models have had different paths of devel-
opment. As discussed previously, a physical-based model is derived from empirical and
experimental research; meanwhile, a GeoAI model is derived from data sciences techniques.

Physical-based and GeoAI models are not complementary per se, but in many cases,
the integration of both approaches has shown a great potential to improve hydrological
modeling [18,129]. Currently, there is a different level of integration; most of them are
still so-called loose integrated models, where the GeoAI and the physical-based models
work independently. The GeoAI method is used for data preparation and the refining
of physical-based models, e.g., data fusion, ad hoc parameter optimizations, and data
assimilation. In some cases, the outputs of physical-based models are used to train GeoAI
models [19,188,251]. Currently, full GeoAI-physical integration is under development, em-
bedding machine learning solutions into physical-based models or developing physically
guided GeoAI models; see, e.g., Hanson et al. [21]. Both approaches tend to overcome
current GeoAI model limitations by providing more physical explanatory power, physically
consistent and robust prediction, and a high level of generalization.

6.4. From Small-Scale to Global-Scale Hydrological Modeling

In recent years, substantial attention has been paid to large-scale and global-scale
hydrological modeling [252–254]. Although only experimental catchments have sufficient
data to perform a reliable hydrological prediction, the global availability of climatological,
hydrological, and remote sensing data allows for the parametrizing of the global-level
hydrological model. This planet-wide dataset can only be handled thanks to a combined
advancement in GeoAI application and cloud computing development, e.g., Google Earth
Engine, CoLab, SEPAL [255], and many other national high-performance computer clusters.
However, global-scale hydrological modeling still involves a high level of prediction
uncertainty [256,257], but current progress in the development of physical-based GeoAI
models and remote sensing data assimilation can improve global modeling accuracy.

6.5. Automation of Hydrological and Fluvial System Modeling

GeoAI applications are increasing the automation of hydrological prediction and fore-
casting [258]. Some hydrological modeling has already applied internal self-calibration [259–261].
Similarly, there is also substantial progress in developing automated machine learning
(autoML) by self-tuning the models’ hyperparameters, such as, e.g., autotune and AUTO-
SKLEARN [262,263]. The hyperparameters drive both the efficiency of the model training
process and the resulting model quality [262]. Therefore, a self-tuning module will enhance
a more rapid adoption of GeoAI models in hydrological modeling, and the integration of
physical-based and GeoAI models can improve autonomous hydrological prediction.

Similarly, self-supervised image classification, particularly that developed in the
robotic field [264], is rapidly being adopted in hydrological studies in, e.g., satellite im-
age classification, fluvial landform classification, and landform change detection. Self-
supervised models use automatically generated pseudo-labels, significantly reducing
manual labeling, one of the most time-consuming tasks in supervised classification [265].
Self-supervised image classification is enhanced by machine learning methods such as
autoencoder and the generative adversarial network (GAN). Autoencoder enhances im-
age quality and reduces noise by dimension reduction and retaining latent features [266].
GAN is a promising technique to further automate high-dimensional image classifica-
tion with limited data training. GAN generates new data instances that resemble the
existing training data by the competition between a generator and a discriminator [267].
Several examples show the advantages of incorporating GAN models in hydrological
classification [267–269] or combining it with autoencoder [270]. Integrating GAN with an
LSTM network model [271–273]; combining GAN with an ANN fuzzy model [274] was also
found to improve the automated hydrological and weather prediction using satellite data.
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6.6. GeoAI-Based Multi-Dimensional Geo-Visualization and Digital Twin

Hydrological systems are complex by nature and have been challenged to compre-
hensively and effectively convey spatial and non-spatial hydrological information. The
explosion of high-dimensional, multi-source, spatio-temporal hydrological data demands
new ways of multi-dimensional geo-visualization [275]. The GeoAI model optimizes the
transformation of multi-dimensional data into conventional 3D geo-visualization (x, y, and
z features), but also into 4D (including temporal dimension) and 5D geo-visualization
(including geographical scale). The 4D and 5D visualization is crucial for dynamic and
interactive web-based geo-visualization [276]. The GeoAI also supports building hydrolog-
ical digital twins, integrating IoT sensors, and multi-scale satellite and close-range remote
sensing data, with web-based hydrological GeoAI models for real-time prediction and
geo-visualization. A ‘digital twin’ is a comprehensive digital emulator of the real-world
system that aims to optimize the design and operations of complex processes through a
highly interconnected workflow [277]. Hydrological digital twins support the correct im-
plementation of the IWRM actions, including natural disaster response, nexus approaches,
and adaptation to climate change. Those actions require approaches underpinned by a
deeper analysis of river basin systems functioning, scaling-up field-based knowledge, and
new digital solutions to provide real-time, high-resolution information [278]. Addition-
ally, the advance in web-mapping services (WMS) and mobile app development with
interactive geo-visualization [279] enhances hydrological information dissemination for
decision-makers, stakeholders, and the general public engagement.

7. Conclusions

GeoAI applications in integrated hydrological and fluvial system modeling have
steadily increased in recent years. We found plenty of GeoAI applications in hydrological
and fluvial studies. The main applications were for assessing GeoAI hydrological prediction
and classification performance, comparing GeoAI methods with hydrological physical-
based models and integrating physical-based models with GeoAI. A wide range of GeoAI
methods are currently applied in this field, e.g., RF, SVM, ANN, LSTM, GAN, GA, and meta-
heuristic algorithms. The selection of a particular algorithm depends on the application
objective, data availability, and user expertise.

Overall, GeoAI applications showed advantages in non-linear modeling, computa-
tional efficiency, integration of heterogeneous data sources, high-accuracy prediction, and
the unraveling of new hydrological patterns or in detecting changes using high-dimensional,
multi-source geospatial data. GeoAI methods seem particularly relevant for complex sys-
tems and large geographical-scale modeling. A significant disadvantage of GeoAI models
is the low level of physical interpretability, explainability, and model generalization. There-
fore, current research trends focus on integrating the physical-based model with GeoAI
methods to bridge data-driven and theory-driven knowledge generation. Several levels of
model integrations exist, but a full physical-based GeoAI model is still under development.
The GeoAI models have shown high potential for autonomous hydrological prediction and
forecasting and early warning systems.
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Abbreviations

AI Artificial Intelligence
ANN Artificial Neural Network
CNN Convolution Neural Network
DA Data Assimilation
DEM Digital Elevation Model
GA Genetic Algorithm
GAN Generative Adversarial Networks
GeoAI Geospatial Artificial Intelligence
GP Genetic programing
IoT Internet of Things
IWRM Integrated Water Resources Management
LiDAR Light Detection and Ranging
LSTM Long Short-term Memory Networks
ML Machine Learning
RF Random Forest (RF)
RL Reinforced Learning
RNN Recurrent Neural Network (RNN)
SVM Support Vector Machine (SVM)
UAV Unmanned Aerial Vehicles
WQ Water Quality
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Abstract: In this study, a stochastic rainfall generator was developed to create continuous rainfall
time series with a high temporal resolution of 10 min. The rainfall-generation process involved
Monte Carlo simulation for stochastically generating rainfall parameters such as rainfall quantity,
duration, inter-event time, and type. A bivariate copula was used to preserve the correlation between
rainfall quantity and rainfall duration in the generated rainfall series. A modified Huff curve method
was used to overcome the drawbacks of rainfall type classification by using the conventional Huff
curve method. The number of discarded rainfall events was lower in the modified Huff curve
method than in the conventional Huff curve method. Moreover, the modified method includes a new
rainfall type that better represents rainfall events with a relatively uniform temporal pattern. The
developed rainfall generator was used to reproduce rainfall series for the Yilan River Basin in Taiwan.
The statistical indices of the generated rainfall series were close to those of the observed rainfall
series. The results obtained for rainfall type classification indicated the necessity and suitability of
the proposed new rainfall type. Overall, the developed stochastic rainfall generator can suitably
reproduce continuous rainfall time series with a resolution of 10 min.

Keywords: stochastic rainfall generator; Huff rainfall curve; copula

1. Introduction

A stochastic rainfall generator is a statistical model that produces synthetic rainfall time
series with desired statistical properties. Synthetic rainfall time series can be used for vari-
ous purposes, such as rainfall–runoff modeling [1,2], design flood estimation [3–5], rainfall
projection under climate change scenarios [6–8], and prediction in ungauged basins [9,10].
The Richardson-type rainfall generator [11,12], a popular stochastic rainfall generator, can
reproduce long-term continuous daily precipitation time series. This generator uses Markov
chains to determine the occurrence of wet or dry days and then simulates the rainfall quan-
tity on wet days through Monte Carlo techniques. Although the aforementioned generator
has been proven to be successful in reproducing daily precipitation time series, it cannot be
used to obtain sub-daily or high-temporal-resolution rainfall time series.

High-temporal-resolution rainfall data can be used for different purposes, such as
analyzing short-duration extreme rainfall events and simulating floods in small catchment
areas. To generate rainfall time series with high temporal resolution [13,14], the temporal
characteristics of a rainfall event must be determined. High-temporal-resolution rainfall
data can be generated using two models: the profile- and pulse-based models. The profile-
based model combines the total rainfall quantity and rainfall profile (rainfall type) to obtain
a rainfall hyetograph. Typical rainfall types include rainfall described by the Chicago
curve [15], Huff curve [16], and triangular curve [17]. The pulse-based model considers
a rainfall event to consist of a cluster of rain cells whose occurrences follow a Poisson
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distribution. Rodriguez-Iturbe et al. [18,19] examined two popular pulse-based models in
detail: the Neyman–Scott cluster model [20–25] and Bartlett–Lewis cluster model [26–31].

In the present study, the profile-based model with Huff rainfall curves, proposed by
Huff [16] and modified by Huff and Vogel [32] and Huff [33], was adopted. Huff rainfall
curves are presented using four types of dimensionless cumulative hyetographs according
to the quarter in which the peak rainfall intensity occurs. Huff curves are popularly
used in design storm, runoff simulation, design flood, and rainfall predictions [34–40].
However, Huff curves are not representative of rainfall events with uniform temporal
distribution, and the rainfall type cannot be determined when a rainfall event has multiple
peak intensities. Therefore, this paper proposes modified Huff rainfall curves for solving
the limitations of the original Huff curves. The modified Huff rainfall curves have an
additional rainfall type to account for rainfall events with uniform temporal distribution
and can be used to classify rainfall events with multiple peak intensities. The proposed
rainfall generator uses Monte Carlo simulation for stochastically generating modified Huff
rainfall curves and other rainfall parameters (rainfall quantity, duration, and inter-event
time) to form continuous rainfall time series with a temporal resolution of 10 min.

A suitable rainfall generator should reproduce rainfall data with anticipated statistical
properties. Usually, a single rainfall parameter can be suitably generated through Monte
Carlo simulation with an appropriate marginal distribution. However, various rainfall
parameters can be interrelated. For example, a rainfall event with a longer duration is
typically associated with higher cumulative rainfall. Therefore, the generation of rainfall
parameters individually may result in the correlation between rainfall variables being lost
and distorted rainfall data being obtained. Hence, the present study used a copula [41]
to account for the correlation between parameters during the rainfall generation process.
Copulas are mathematical functions that model the dependence among interrelated vari-
ables. An advantage of a copula is that it allows the dependence structure of variables to
be modeled without the selection of marginal distributions. Therefore, copulas are widely
employed in frequency analysis in hydrology [42–48]. The present study examined the
correlation between rainfall parameters and constructed copulas for rainfall quantity and
duration to generate rainfall data with appropriate correlation properties.

The remainder of this paper is structured as follows. The basic structure of the
proposed continuous rainfall generator, the copula theory, and the modified Huff rainfall
curves are described in Section 2. Section 3 presents information on the study area, the
Yilan River Basin in Taiwan, and the collected 10 min rainfall data. Section 4 details the
development of the proposed stochastic rainfall generator, with a focus on the modified
Huff rainfall curves and adopted copula functions. The rainfall-generation results are
presented in Section 5, and the conclusions of this study are provided in Section 6.

2. Methodology
2.1. Continuous Rainfall Time Series Generation

In this study, a stochastic rainfall generator was developed to produce a continuous
rainfall time series with a high temporal resolution of 10 min. A continuous rainfall time
series contains data for alternate wet and dry periods. The wet period indicates a rainfall
event, and the dry period is called the inter-event time. A rainfall event can be characterized
by rainfall duration, quantity, and type. Therefore, a continuous rainfall time series contains
data related to four parameters: total rainfall quantity (R), rainfall duration (D), rainfall
type, and rainfall inter-event time (T) (Figure 1).
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Figure 1. Example of rainfall time series and parameters.

In this study, the generation of continuous rainfall time series basically involved Monte
Carlo simulation. First, the statistical properties and probability distribution of the four
rainfall parameters were obtained and analyzed. Subsequently, on the time coordinate,
an alternating sequence of rainfall duration and rainfall inter-event time was randomly
generated according to their statistical properties and probability distributions. Total
rainfall quantity, rainfall type and rainfall duration were generated simultaneously to
construct a rainfall event. Because of the statistical correlation between rainfall quantity
and duration, the copula method (Section 2.2) was used for simultaneously producing
rainfall quantity and duration data. Moreover, modified Huff rainfall curves (Section 2.3)
were used for better describing the temporal distribution of rainfall data. By using a
repetitive generation process based on Monte Carlo simulation, continuous rainfall time
series with the desired length were constructed.

2.2. Bivariate Copula

A copula is a multivariate distribution function that links the univariate distribution
functions of each random variable. Copulas, originally introduced in the theorem proposed
by Sklar [41], can model the correlation among variables without the assumptions made
about the marginal distributions. According to this theorem, the joint cumulative distribu-
tion function FXY of random variables X and Y with respect to the marginal cumulative
distribution functions FX and FY can be expressed as follows:

FXY(x, y) = C(FX(x), FY(y)) = C(u, v) (1)

where C is a bivariate copula, and u and v are the cumulative probabilities of x and y,
respectively. Let I = [0, 1], and let the bivariate copula C be a mapping function defined
on a unit square, where C : [0, 1]2 → I . When FX and FY are continuous, a unique copula
representation exists. Thus, FXY defines a joint distribution function with the marginal
distributions FX and FY [49]. For any u and v in I = [0, 1], the copula is bounded as follows:

C(u, 0) = 0, C(0, v) = 0, C(u, 1) = u, C(1, v) = v (2)

The aforementioned copula satisfies the two-increasing property; thus, for all u1 ≤ u2
and v1 ≤ v2, the following equation is satisfied:

C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0 (3)

209



Water 2022, 14, 2123

Copulas are categorized into various families. The Archimedean copula family is
popular in hydrology because of its simplicity and practicality in application [3,50–52].
This family includes various copulas with different numbers of parameters. Salvadori
and De Michele [53,54] and Genest and Favre [55] suggested the use of one-parameter
copulas in hydrology. The present study adopted three commonly used one-parameter (θ)
copulas from the Archimedean copula family: the Frank, Clayton, and Gumbel copulas.
The parameter θ can be calculated from the relationship between θ and Kendall’s tau (τ),
which is the rank correlation coefficient. Table 1 lists the copula functions adopted in this
study and the relationships between θ and τ for these functions [56].

Table 1. Three copula functions used in this study and the relationships between θ and τ for
these functions.

Copula Function Parameter Space Relationship between θ and τ

Clayton C(u, v) =
(

u−θ + v−θ − 1
)−1/θ

θ > 0 τ = θ
θ+2

Frank
C(u, v) =
− 1

θ ln
{

1 + [exp(−θu)−1]·[ exp(−θv)−1]
exp(−θ)−1

} θ 6= 0
τ =
1 + 4

θ

[
1
θ

∫ θ
0

t
exp(t)−1 dt− 1

]

Gumbel C(u, v) = exp
{
−
[
(− ln u)θ + (− ln v)θ

]1/θ
}

θ ≥ 1 τ = 1− 1
θ

2.3. Modified Huff Rainfall Curves

Profile-based models typically use Huff rainfall curves as the basis for defining the
temporal distribution of rainfall events. These curves are empirical and dimensionless,
probabilistic representations of cumulative hyetographs. The temporal rainfall patterns
were classified into four types (Type 1 to Type 4) according to the time when the peak
intensity occurred (i.e., in the first, second, third, or fourth quarter of rainfall duration).
Figure 2 presents the temporal patterns, median (solid line), and 10% and 90% cumula-
tive probabilities (lower and upper dashed lines, respectively) of the four types of Huff
curves. The cumulative rainfall depth and cumulative rainfall duration were standardized
by the total rainfall depth and total rainfall duration, respectively, and are presented in
dimensionless form within the interval from 0% to 100%.

Although Huff rainfall curves are popular because of their ease of use, they have
certain limitations. First, if a rainfall event has multiple peak intensities, then the rainfall
type cannot be determined, and this event is omitted or randomly classified into one of
the four rainfall types [57]. Second, a rainfall event with a relatively uniform temporal
distribution cannot be well-represented by the four Huff curves. This paper proposes
the solution described in the following text to the problem caused by the existence of
multiple peak rainfall intensities. When a rainfall event has multiple peak intensities,
the maximum total rainfall in a quarter instead of the peak intensity should be used to
determine the rainfall type. However, a rainfall event with multiple peak intensities and
the same maximum total rainfall in two or more quarters cannot be classified using the
aforementioned solution. Nevertheless, this type of rare event occupies a very small
portion of rainfall time series. Because Huff curves cannot be used to designate a rainfall
event with a relatively uniform temporal distribution, this paper proposes an additional
rainfall type (Type 5) for labeling such a rainfall event. The Schutz index (explained in the
following paragraph) was used to distinguish Type 5 rainfall events from the other types of
rainfall events.
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Figure 2. Huff’s four rainfall types with the corresponding median (solid line) and 10% and 90%
cumulative probabilities (lower and upper dashed lines, respectively).

The Schutz index [58] was originally proposed as an equity measure for income metrics
in economics. Therefore, the Schutz index is an appropriate measure for assessing the
uniformity of a distribution. Schutz [58] proposed the aforementioned index on the basis of
the Lorenz curve [59], which is a probability plot with respect to a variable accumulated
in a nondecreasing order. Figure 3 illustrates a Lorenz curve for income distribution
among a population. Figure 3a depicts the histogram of the income of each 10% of the
population versus the cumulative population in a nondecreasing order (the unit of income
and population is percentage in this graph). By accumulating the income with respect to
the population, the Lorenz curve (the red curve in Figure 3b) can be obtained. The 45◦

diagonal in Figure 3b indicates the perfect-equity income. When the Lorenz curve is close
to the 45◦ diagonal, a uniform income distribution is identified. The Schutz index is an
objective measure of the closeness of the Lorenz curve to the line of perfect equity. Thus,
the Schutz index quantifies the total deviation of the income of each category (yi) from
the mean income (ymean). Figure 4 presents an example of a rainfall event to describe the
calculation of the Schutz index. The rainfall in each time step (yi) of an original event is
sorted and rearranged in a nondecreasing order, where i = 1, 2, . . . , n, and n is the last time
step. The Schutz index (S) is calculated using the following equation:

S =
1
2
·∑

n
i=1|yi − ymean|

∑n
i=1 yi

(4)
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Figure 3. Example of the derivation of a Lorenz curve: (a) income of each 10% of the population
arranged in a nondecreasing order and (b) comparison of the Lorenz curve and the line of perfect equity.

Water 2022, 14, x FOR PEER REVIEW 6 of 21 
 

 

 

Figure 3. Example of the derivation of a Lorenz curve: (a) income of each 10% of the population 

arranged in a nondecreasing order and (b) comparison of the Lorenz curve and the line of perfect 

equity. 

 

Figure 4. Example of the calculation of the Schutz index by using rainfall data: (a) original rainfall 

event and (b) sorted nondecreasing rainfall depth. 

When 𝑆 is 0, the rainfall in each step (𝑦𝑖) is the same as the mean rainfall (𝑦𝑚𝑒𝑎𝑛), and 

the rainfall distribution is perfectly uniform. Thus, in the aforementioned scenario, the 

cumulative rainfall pattern corresponds to the diagonal in Figure 3b. When 𝑆 approaches 

1, the rainfall distribution is far from uniform. Thus, a small 𝑆 value indicates that the 

rainfall distribution can be categorized as Type 5 (uniform rainfall distribution), and a 

large 𝑆 value suggests that the rainfall distribution belongs to one category among Types 

1 to 4. The modified Huff curve method is illustrated in Figure 5. First, the Schutz index 

(𝑆) of a rainfall event is calculated to determine whether the rainfall distribution is uniform. 

If 𝑆 is smaller than a threshold (which is determined in the following section), the rainfall 

distribution is considered to be uniform and categorized as Type 5. If 𝑆 is larger than the 

threshold, the rainfall distribution is not close to Type 5 and belongs to one category 

among Types 1 to 4. In this circumstance, the existence of multiple peak rainfall intensities 

is checked. If only one peak intensity exists, the conventional Huff method is used to iden-

tify the rainfall type. If multiple peak intensities exist, the maximum total rainfall in a 

quarter is used to determine the rainfall type. 

Cumulative Population (%)

C
u
m

u
la

ti
v
e
 I

n
c
o
m

e
 (

%
)

In
c
o
m

e
 o

f 
E

a
c
h
 

1
0
%

 P
o
p
u
la

ti
o
n
 (

%
)

(a) (b)

Cumulative Population (%)

ymean

yi

ymean

yi

ymean

yi

(a) (b)

Figure 4. Example of the calculation of the Schutz index by using rainfall data: (a) original rainfall
event and (b) sorted nondecreasing rainfall depth.

When S is 0, the rainfall in each step (yi) is the same as the mean rainfall (ymean), and
the rainfall distribution is perfectly uniform. Thus, in the aforementioned scenario, the
cumulative rainfall pattern corresponds to the diagonal in Figure 3b. When S approaches
1, the rainfall distribution is far from uniform. Thus, a small S value indicates that the
rainfall distribution can be categorized as Type 5 (uniform rainfall distribution), and a large
S value suggests that the rainfall distribution belongs to one category among Types 1 to 4.
The modified Huff curve method is illustrated in Figure 5. First, the Schutz index (S) of
a rainfall event is calculated to determine whether the rainfall distribution is uniform. If
S is smaller than a threshold (which is determined in the following section), the rainfall
distribution is considered to be uniform and categorized as Type 5. If S is larger than the
threshold, the rainfall distribution is not close to Type 5 and belongs to one category among
Types 1 to 4. In this circumstance, the existence of multiple peak rainfall intensities is
checked. If only one peak intensity exists, the conventional Huff method is used to identify
the rainfall type. If multiple peak intensities exist, the maximum total rainfall in a quarter
is used to determine the rainfall type.
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3. Study Area and Rainfall Data

In this study, 10 min rainfall data from 2012 to 2018 were collected for the Yilan River
Basin in Taiwan. The Yilan River’s watershed is located in northeastern Taiwan (Figure 6),
where the typical climate is humid and rainy. Nine rain gauges collect 10 min rainfall data
for the Yilan River Basin. As displayed in Figure 6, seven of these rain gauges are located
inside the basin, whereas two are located outside the basin.
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Rainfall time series must be analyzed to obtain their statistical properties. The primary
task is to define and distinguish a rainfall event. Researchers have used various methods to
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distinguish rainfall events and determine the rainfall inter-event time [60,61]. The selection
of minimum rainfall duration and minimum rainfall inter-event time is dependent on the
temporal resolution of the available data. Because the time resolution of the data collected
in this study was 10 min, and the rainfall types were distinguished according to Huff
rainfall curves, the minimum duration of a rainfall event was set as 40 min. Thus, rainfall
events shorter than 40 min were not included in the rainfall event database. Moreover, the
minimum inter-event time was set as 1 h. Thus, when a dry period was shorter than 1
h, this period and the wet periods preceding and following it were regarded as a rainfall
event [62,63]. This approach considerably reduced the number of discarded rainfall events
with durations less than 40 min.

Summer and winter monsoons occurred in the study area. Therefore, the rainfall
events in this study were divided into those occurring in the summer (from May to October)
and winter (from November to April of next year) seasons. A total of 4317 summer rainfall
events and 3246 winter rainfall events were identified in this study.

4. Stochastic Rainfall-Generation Model Development
4.1. Rainfall Type

A threshold value of the Schutz index (S) was determined to identify Type 5 rainfall
events. No a priori criterion can be used to set the threshold value; however, Bonta and
Shahalam [64] suggested using the data of more than 120 storms to obtain stable Huff
curves. The present study assumed that the number of Type 5 rainfall events was not greater
than the numbers of Type 1 to Type 4 rainfall events. This assumption is rational because
the number of rainfall events with a uniform distribution (Type 5) is usually less than those
with a nonuniform distribution (Types 1 to 4). Therefore, a grid search method was used
for S under the condition of increasing the number of Type 5 rainfall events; however,
the number of Type 5 rainfall events was constrained by the minimum number of Type
1 to Type 4 rainfall events. Consequently, the number of Type 5 rainfall events could not
exceed the minimum number of Type 1 to Type 4 rainfall events. Table 2 lists the threshold
values of S for the summer and winter seasons as well as the numbers and percentages
of Type 1 to Type 5 rainfall events. The threshold values for the summer and winter
seasons were 0.29 and 0.30, respectively. By using the derived thresholds and the process
described in the previous section (Figure 5), the identified rainfall events were categorized
into different types. Figure 7 shows the classification of rainfall types for the summer
season by using modified Huff rainfall curves. The bold black curves connecting squares,
circles, and triangles indicate the 10%, 50%, and 90% percentiles of the rainfall categories,
respectively. The colored curves represent the observed rainfall distributions. The rainfall
classification curves obtained for the winter season were analogous to those obtained for
the summer season. In Figure 7, the Type 5 rainfall events exhibit the characteristic of
uniform distribution, which is different from the characteristics of Type 1 to Type 4 rainfall
events. The results displayed in Figure 7 support the rationale that the Type 5 category is
essential for better representing a uniform rainfall distribution.

Table 2. Threshold values of the Schutz index as well as the numbers and percentages of Type 1 to
Type 5 rainfall events.

Summer Season Winter Season

Number of
Events

Percentage
(%)

Number of
Events

Percentage
(%)

Type 1 1069 24.76 869 26.77
Type 2 1003 23.24 721 22.21
Type 3 857 19.85 610 18.79
Type 4 704 16.31 534 16.45
Type 5 684 15.84 512 15.78

Schutz index 0.29 0.30
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In the traditional Huff method, approximately 40% of the identified rainfall events
would need to be ignored because they are associated with multiple peak rainfall intensities.
However, in the proposed method, only 5% of the identified rainfall events were ignored.

4.2. Copula Function

This study examined the correlation between each pair of the rainfall parameters by
using normalized rank scatter plots [48]. The rainfall quantity, duration, and inter-event
time were normalized between 0 and 1 and sorted in ascending order. These normalized
and sorted data were then used to draw scatter plots. Figure 8 displays the normalized
rank scatter plots for different pairs of rainfall parameters in the summer season. The rows
in this figure indicate different rainfall types (Types 1 to 5), and the three columns denote
three pairs of parameters. The patterns in the first column in Figure 8 indicate that the
rainfall quantity and duration (R, D) are correlated, especially for large values. However,
the patterns in the second and third columns suggest that no correlation exists between
rainfall duration and inter-event time (D, T) and between rainfall quantity and inter-event
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time (R, T), respectively. The normalized rank scatter plots for the winter season are similar
to those for the summer season and thus are not shown in this paper. Pearson correlation
coefficients were calculated using the data in the rank-normalized plots to quantify the
correlation between the rainfall parameters. The average correlation coefficients for (R,
D) in the summer and winter seasons were 0.70 and 0.85, respectively. However, the
correlation coefficients for (D, T) and (R, T) were close to 0. Therefore, the rainfall quantity
and duration (R, D) were adopted to construct a bivariate copula for rainfall generation.
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The next step involved determining which bivariate distribution function (from among
the Frank, Clayton, and Gumbel copulas) was best suited for describing the correlation
between the rainfall quantity and duration in the study area. Kendall’s tau (τ) was calcu-
lated and used to determine the θ value of the three copulas adopted in this study (Table 1).
The τ and θ values derived for the three copulas are listed in Table 3. After deriving the
aforementioned values, the three copulas were used to model the correlation between
rainfall quantity and rainfall duration. The cumulative probability functions of the three
copulas for the summer season are illustrated in Figure 9. The blue, red, and green curves
indicate the cumulative probability functions of the Clayton, Frank, and Gumbel copulas,
respectively. The black dotted line represents the cumulative probability function of the
empirical copula, which was constructed using the observed rainfall quantity and duration.
The Clayton, Frank, Gumbel, and empirical copulas exhibited similar patterns to each
other except for the Type 5 rainfall data under low cumulative probabilities. In general, the
Clayton, Frank, and Gumbel copulas can suitably model the correlation between rainfall
quantity and rainfall duration. The present study used the root mean square error (RMSE)
for objectively determining the copula with the best fit to the empirical copula. Table 4 lists
the RMSEs in probability (the vertical axis in Figure 9) for different copulas and rainfall
types. The minimum RMSEs are highlighted in bold although some values are the same
after being rounded off. The results indicate that the Frank copula was the most appropri-
ate copula for modeling the correlation between the rainfall quantity and duration in the
study area.

Table 3. Values of τ and θ for the three copulas in summer and winter.

Summer Season Winter Season

Kendall’s Tau τ
Parameter θ

Kendall’s Tau τ
Parameter θ

Clayton Frank Gumbel Clayton Frank Gumbel

Type 1 0.487 1.901 5.510 1.950 0.602 3.021 7.975 2.511
Type 2 0.417 1.428 4.394 1.714 0.633 3.455 8.893 2.727
Type 3 0.465 1.739 5.136 1.870 0.613 3.161 8.273 2.581
Type 4 0.436 1.546 4.680 1.773 0.623 3.307 8.581 2.653
Type 5 0.490 1.920 5.553 1.960 0.743 5.785 13.70 3.892

Table 4. RMSEs in probability values for different copulas and rainfall types.

Summer Season Winter Season

Clayton Frank Gumbel Clayton Frank Gumbel

Type 1 0.030 0.027 0.028 0.038 0.036 0.037
Type 2 0.024 0.019 0.018 0.026 0.024 0.025
Type 3 0.026 0.020 0.020 0.023 0.022 0.022
Type 4 0.034 0.030 0.031 0.042 0.040 0.041
Type 5 0.059 0.059 0.060 0.052 0.052 0.052

Because the rainfall quantity and duration were fitted using the Frank copula, the
rainfall inter-event time was modeled using a univariate probability distribution. In this
study, the observation data was directly applied to construct the empirical distribution for
the rainfall inter-event time.
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Figure 9. Copula functions for different rainfall types in summer.

4.3. Procedure for Stochastic Rainfall Generation

In this study, rainfall data generation was conducted through Monte Carlo simulation,
which involves repeated random sampling. First, a 50% probability is used to determine
whether a rainfall time series begins with a rainfall event or rainfall inter-event time.
Rainfall events and inter-event times are then alternately produced. To produce a rainfall
inter-event time, a number in the range of (0, 1) is randomly generated and substituted into
the empirical probability distribution. To produce a rainfall event, three rainfall parameters,
namely rainfall quantity, duration, and type, are generated.

The rainfall quantity and duration are generated simultaneously by using the Frank
copula. First, a random number is generated as the cumulative probability of the copula,
which is represented by a contour curve in Figure 9. Next, a point on the contour curve
is randomly selected with equal probability. The values of rainfall quantity and duration
can then be obtained from the location of the selected point. For the generation of rainfall
type, one out of the five rainfall types (Types 1 to 5) is randomly selected according to
their probabilities of occurrence (Table 2). After the rainfall type is determined, a random
number is generated as the percentile for that rainfall type (Figure 7). Thus, a rainfall curve
can be retrieved for the identified rainfall type with the generated percentile value.

By using the aforementioned process to produce rainfall parameters repetitively,
synthetic continuous rainfall time series of any desired length can be generated. This study
repeated the aforementioned procedure 10,000 times to generate a continuous rainfall time
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series with 10,000 sets of rainfall events and inter-event times. The results of this study are
discussed in the following section.

5. Results and Discussion

This paper proposes a methodology for generating a continuous rainfall time series
with a temporal resolution of 10 min. The statistical properties of the generated rainfall
time series should correspond to those of the observed rainfall time series. The observed
rainfall time series from 2012 to 2018 in the study area was used as the database to generate
a synthetic rainfall time series. The study area has two main seasons: summer (from
May to October) and winter (from November to April of next year). The summer season
includes the “plum rain” season (May and June) and typhoon rain season (July to October).
The typical rainfall types occurring in the summer season are stationary frontal rainfall,
convective rainfall, and typhoon rainfall. The winter season is dominated by the northeast
monsoon, which constantly brings moist ocean air into the study area. Short-duration,
heavy rainfall is typically received in summer, whereas long-duration, moderate rainfall is
typically received in winter.

The statistics of four rainfall parameters were calculated to assess the performance
of the proposed rainfall generator. Figure 10 presents the average rainfall quantity and
the standard deviation of the rainfall quantity in the summer (red circle) and winter (blue
square) seasons. The average and standard deviation were calculated with respect to rainfall
type (Types 1 to 5); therefore, five points were obtained for each of the aforementioned
parameters in each season. These points lie close to the 45◦ diagonal, which indicates
that the average generated rainfall quantity and the standard deviation of the generated
rainfall quantity are analogous to the corresponding observation data. As displayed in
Figure 10, the average rainfall quantity and the standard deviation of the rainfall quantity
were larger in the summer than in the winter season for all types of rainfall except for Type
5 rainfall (the smallest value represented by a red circle). Type 5 rainfall has a relatively
uniform temporal distribution, and Type 5 rainfall events are usually short-duration events
with low rainfall quantities. Therefore, in this study, the average rainfall quantity and
standard deviation of the rainfall quantity were low for Type 5 rainfall. In general, the
aforementioned parameters were larger for Type 2 and Type 3 rainfall than for the other
types of rainfall.
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Figure 11 displays the average rainfall duration and the standard deviation of the
rainfall duration, and the duration unit in this graph is 10 min. This figure reveals that
the average rainfall durations were generally longer in the winter than in the summer
season. The shortest average rainfall durations in the summer and winter seasons (the
lowest red circle and blue square in the left part of Figure 11) were observed for Type 5
rainfall. Moreover, the standard deviations in winter were larger than those in summer.
The aforementioned results correspond to the rainfall characteristics in the study area.
The points plotted for the average rainfall duration and the standard deviation of the
rainfall duration are close to the 45◦ diagonal, which indicates that the generated values are
close to the observed values. The rainfall quantity and duration were generated using the
copula method. Figure 12 illustrates the correlation between the rainfall quantity and the
rainfall duration in terms of τ. Positive correlation coefficients were obtained between the
aforementioned factors, which indicates that in general, the longer the rainfall duration, the
higher the rainfall quantity. The higher correlation in winter than in summer suggests that
more persistent rainfall was received for a longer duration in the winter rainfall events than
in the summer rainfall events. The lower correlation in summer can be attributed to the
various rainfall patterns observed during this season (i.e., frontal, convective, and typhoon
rainfalls). Overall, the results displayed in Figures 10–12 indicate that the selected copula
can accurately reproduce the correlation between rainfall quantity and rainfall duration.
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generated rainfall duration.

Figure 13 presents the average and standard deviation values obtained for the rainfall
inter-event time (the time unit in this figure is 10 min). The rainfall inter-event times in
the summer and winter seasons were similar (i.e., approximately 3000 min (approximately
2 days)). The developed rainfall generator reproduced the inter-event time on the basis of
the empirical probability distribution. The averages of the generated rainfall inter-event
times were in line with the corresponding observations; however, the standard deviations
were somewhat smaller than the corresponding observations, especially for the winter
season. Figure 14 presents the number of rainfall events (in percentage) generated for the
different rainfall types. The percentages of rainfall events generated for each rainfall type
were close to the corresponding observation data presented in Table 2. In conclusion, the
proposed rainfall generation model can suitably reproduce rainfall time series with high
temporal resolution.
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6. Conclusions

This paper proposes a stochastic rainfall generator for producing a continuous rainfall
time series with high temporal resolution. Observed 10 min rainfall time series from
2012 to 2018 for the Yilan River Basin in Taiwan were collected, and the rainfall events
identified in the collected data were divided into summer and winter rainfall events
(4317 and 3246 events, respectively). Although the stochastic rainfall-generation process
adopted in the proposed generator is based on conventional Monte Carlo simulation,
the use of modified Huff curves and a copula enables the generated rainfall series to
exhibit appropriate rainfall types and precise correlation between rainfall quantity and
rainfall duration.

The modified Huff method not only overcomes the limitation related to classifying
rainfall events with multiple peak intensities but also includes a new rainfall type for
labeling rainfall events with uniform temporal distribution. The Schutz index was used
in this study to distinguish this new rainfall type, which is ignored in the traditional Huff
method. The modified Huff method reduced the number of omitted rainfall events in
the study area from 40% (with the conventional Huff method) to 5%. Moreover, a copula
was used to model the correlation between each pair among three rainfall parameters in
the generation process. The results indicated that the rainfall quantity and duration were
correlated. Three copulas from the Archimedean family were used in this study, and the
Frank copula was found to be the optimal copula for modeling the correlation between
rainfall quantity and rainfall duration.

The proposed stochastic rainfall generator was used to generate a continuous rainfall
time series with 10,000 sets of alternating rainfall events and inter-event times. The gen-
erated rainfall time series was assessed by comparing its statistical indices with those of
the observed rainfall data. The results of this comparison indicated that the mean values
obtained for the generated and observed rainfall quantity, duration, and inter-event time
were similar. The standard deviations of the generated rainfall quantity and duration
were close to those of the observed rainfall quantity and duration, respectively. Only the
standard deviation of the rainfall inter-event time in winter was marginally underestimated.
By using the Frank copula, the correlation between rainfall quantity and rainfall duration
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can be suitably preserved in the rainfall time series generated using the proposed stochastic
rainfall generator. Moreover, the differences between the statistical properties of Type 5
rainfall events and other types of rainfall events support the rationality and necessity of
using the modified Huff rainfall curves adopted in this study. In summary, the results of
this study indicate that the developed stochastic rainfall generator can accurately reproduce
continuous rainfall time series with a temporal resolution of 10 min.

Nonetheless, some issues are discussed in the following as potential improvements for
future works. This study used all collected rainfall observations to examine the performance
of the rainfall generator. Future work may conduct the cross-validation scheme to check
the generation performance with respect to a certain period or a particular site. This
study adopted the bivariate copula due to the correlation relationship among the rainfall
variables in the study area. The trivariate copula can be tested to model the correlation
among multiple variables. This study proposed an additional rainfall type on the basis of
Huff rainfall curves, and analysis results demonstrated the success of the modified Huff
method. However, the temporal distribution of rainfall events are not certainly restricted to
the five types of modified Huff model in this study. Alternative rainfall type methods can
be adopted in generating the rainfall time series. The proposed rainfall generator focused
on reproducing the rainfall time series with correct statistical characteristics. The spatial
rainfall feature was not considered herein. Future works can focus on developing a rainfall
generator accounting for the spatial and temporal characteristics simultaneously.
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Abstract: In recent years, Korea has seen abnormal changes in precipitation and temperature driven
by climate change. These changes highlight the increased risks of climate disasters and rainfall
damage. Even with weather forecasts providing quantitative rainfall estimates, it is still difficult
to estimate the damage caused by rainfall. Damaged by rainfalls differently for inch watershed,
but there is a limit to the analysis coherent to the characteristic factors of the inch watershed. It
is time-consuming to analyze rainfall and runoff using hydrological models every time it rains.
Therefore, in fact, many analyses rely on simple rainfall data, and in coastal basins, hydrological
analysis and physical model analysis are often difficult. To address the issue in this study, watershed
characteristic factors such as drainage area (A), mean drainage elevation (H), mean drainage slope (S),
drainage density (D), runoff curve number (CN), watershed parameter (Lp), and form factor (Rs) etc.
and hydrologic factors were collected and calculated as independent variables, and the threshold
rainfall calculated by the Ministry of Land, Infrastructure and Transport (MOLIT) was calculated as a
dependent variable and used in the machine learning technique. As for machine learning techniques,
this study uses the support vector machine method (SVM), the random forest method, and eXtreme
Gradient Boosting (XGBoost). As a result, XGBoost showed good results in performance evaluation
with RMSE 20, MAE 14, and RMSLE 0.28, and the threshold rainfall of the ungauged watersheds
was calculated using the XGBoost technique and verified through past rainfall events and damage
cases. As a result of the verification, it was confirmed that there were cases of damage in the basin
where the threshold rainfall was low. If the application results of this study are used, it is judged that
it is possible to accurately predict flooding-induced rainfall by calculating the threshold rainfall in
the ungauged watersheds where rainfall-outflow analysis is difficult, and through this result, it is
possible to prepare for areas vulnerable to flooding.

Keywords: machine learning; random forest; regression analysis; support vector machine; threshold
rainfall; threshold runoff; XGBoost

1. Introduction

Climate change has increased rainfall in Korea, resulting in various natural disasters
that cause rapidly increasing social and economic loss [1]. However, Korean weather
forecasts only provide rainfall information in absolute terms, and the same heavy rain
warnings and special reports apply to all areas in Korea, which means a failure to reflect
regional differences. For this reason, even with accurate forecasts, the forecast system
fails to provide specific information on how different areas are affected and damaged by
weather events. Forecasts focused on physical aspects of weather events do not provide
sufficient information on how people’s properties and safety are affected by them.

It is for this reason that the World Meteorological Organization (WMO) emphasizes
the need for ‘impact forecasts’ that consider the socioeconomic effects that may be caused
by weather events [2]. In Korea, different organizations provide different definitions of
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impact forecasting. However, they can be summarized as follows: forecast that scientifically
estimates the socioeconomic impact of weather at different times and places and delivers
the estimates along with detailed weather information [3,4]. Outside of Korea, the WMO
defines impact forecast as forecast that provides information on expected risks along with
weather forecasts when disaster-causing high impact weather is expected. According to
the Met Office of the United Kingdom, it is defined as a forecast that estimates the socioeco-
nomic impact of a climate disaster at the time and place of its occurrence by considering
meteorological disasters, level of exposure to disasters, and regional vulnerabilities. The
National Weather Service of the United States defines it as a service aimed at providing the
people with information on the social, economic, and environmental impact of weather,
hydrological, and climate events [5]. Leading countries in the field of meteorology already
provide information on socioeconomic impact of weather events along with high-resolution
weather information. In the United Kingdom, the Flood Forecasting Centre (FFC) provides
Flood Guidance Statements (FGS) that assess the risks of all flood types over five days and
publish the findings daily [6,7]. The FFC uses the information to publish a table of flood
risks which divides flood impact into four stages.

Impact forecasting requires threshold rainfall. Threshold rainfall means the rainfall
amount that causes inundation. Accurate impact assessment requires calculation of the
precise inundation-causing rainfall in each area. However, in Korea, research on threshold
rainfall has been lacking. Most researchers use simplified analysis methods rather than
refined hydraulic and hydrological analyses. Hydrological analyses of coastal areas are too
complex to conduct properly.

As for previous literature on threshold rainfall calculation, ref [8] developed a flash
food monitoring and prediction (F2MAP) model to calculate the flash flood-threshold runoff
from rainfall. Ref [9] analyzed the relationship between flash flood index and runoff number
characteristics to develop an equation between the two. Ref [10] proposed a threshold
runoff calculation method using the flash flood guidance (FFG) model, which is more
suitable for Korea rather than those used in the United States. The researchers presented
the method as a way to acquire basic data for a flash flood forecast system. Ref [11]
analyzed runoff in Jeju using the SWAT-K model that combines DEM, landcover, soil
map methods, and developed a threshold runoff simulation method (TRSM) specifically
for the island. Ref [12] used ArcGIS and HEC-GEOHMS to divide the Nakdonggang
River watershed into 2268 sectors, drew rainfall-peak flow curves for different initial
loss scenarios and antecedent moisture conditions, and calculated the threshold rainfalls.
Ref [13] estimated threshold rainfalls for different durations using events with damage
caused by past rainfall in urban areas and others without such damage. Ref [14] stressed the
need for impact forecast and estimated threshold rainfalls using the SWMM model. Ref [7]
also linked the grid base inundation analysis model (GIAM) for grid-based inundation
analysis. Using the Huff distribution [14], the researcher converted the data into time-series
rainfall data to simulate inundation depths, and inversely estimated the threshold rainfall
based on the inundation depths. Ref [15] collected data on rainfall and typhoon damage
over the last five years where inundation was caused, analyzed the relationship between
rainfall and the damages, and developed an equation for threshold rainfall (y = axb). As
can be seen from the literature cited above, Korean studies on threshold rainfall mostly
used hydrological models. Few researchers studied threshold rainfall by considering
hydrological characteristics.

More recently, a number of researchers used machine learning to improve the accuracy
of threshold rainfall analysis [16–18]. Additionally growing is the body of literature that
study rainfall-runoff, rainfall damage, and flood estimation with machine learning and deep
learning rather than hydrological models [19–23]. However, few studies were identified
in Korea that used machine learning to calculate threshold rainfall. Ref [19] sought to
predict river water levels using observation data and deep learning algorithms. To that
end, the researchers used tensor flow to predict water levels at the Okcheon Observatory
location along the upper stream sectionof the Daecheong Dam within the Geumgang
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watershed and used TensorFlow to develop a multiple regression model and a long short-
term memory (LSTM) artificial neural network model. Ref [24] used three machine learning
techniques (support vector machine, decision-making tree, and random forest) to develop
a function for predicting rainfall damage in the Seoul Metropolitan Area (SMA) and found
that support vector machine analysis using meteorological observation data from two
days before yields the highest prediction performance. Ref [25] used the machine learning
method on Gyeonggi-do, the province that suffers the worst rainfall damage each year. Choi
used the data on rainfall damage of public facilities from the 2006–2015 Disaster Yearbooks
published by the Ministry of the Interior and Safety (MIST) as the dependent variable.
Ref [26] used machine learning methods such as ESN and DeepESN to predict rainfall using
rainfall, pressure, and humidity from 2004 to 2014 as mediating variables. The correlation
factors calculated using DeepESN yielded better results. Ref [27] performed hydrological
rainfall adjustment using Light GBM and XGBoost. They found clear adjustment effects
across all rainfall events after Light GBM and XGBoost learning, despite the fact that rainfall
is adjusted 5 to 20 mm less.

Much of the literature cited above only used a single hydrological model. However, in
this study, two models were coupled and used to calculate the marginal rainfall [8] and it is
considered an advantage of this paper to apply the results to machine learning. Figure 1
shows the flow chart of this study. It was analyzed through machine learning using
threshold rainfall and topographic factors of standard watershed units. The threshold
rainfall was used as a dependent variable, and the topographic factor of the standard
watershed unit was designated as an independent variable. In addition, the model with
the smallest error was selected using error performance analysis to calculate the threshold
rainfall in the ungauged basin where hydrological analysis was difficult. The ungauged
basin means a coastal area where it is difficult to calculate the threshold rainfall.

Water 2022, 14, x FOR PEER REVIEW 3 of 16 
 

 

Okcheon Observatory location along the upper stream sectionof the Daecheong Dam 
within the Geumgang watershed and used TensorFlow to develop a multiple regression 
model and a long short-term memory (LSTM) artificial neural network model. [24] used 
three machine learning techniques (support vector machine, decision-making tree, and 
random forest) to develop a function for predicting rainfall damage in the Seoul 
Metropolitan Area (SMA) and found that support vector machine analysis using 
meteorological observation data from two days before yields the highest prediction 
performance. [25] used the machine learning method on Gyeonggi-do, the province that 
suffers the worst rainfall damage each year. Choi used the data on rainfall damage of 
public facilities from the 2006–2015 Disaster Yearbooks published by the Ministry of the 
Interior and Safety (MIST) as the dependent variable. [26] used machine learning methods 
such as ESN and DeepESN to predict rainfall using rainfall, pressure, and humidity from 
2004 to 2014 as mediating variables. The correlation factors calculated using DeepESN 
yielded better results. [27] performed hydrological rainfall adjustment using Light GBM 
and XGBoost. They found clear adjustment effects across all rainfall events after Light 
GBM and XGBoost learning, despite the fact that rainfall is adjusted 5 to 20 mm less. 

Much of the literature cited above only used a single hydrological model. However, 
in this study, two models were coupled and used to calculate the marginal rainfall [8] and 
it is considered an advantage of this paper to apply the results to machine learning. Figure 
1 shows the flow chart of this study. It was analyzed through machine learning using 
threshold rainfall and topographic factors of standard watershed units. The threshold 
rainfall was used as a dependent variable, and the topographic factor of the standard 
watershed unit was designated as an independent variable. In addition, the model with 
the smallest error was selected using error performance analysis to calculate the threshold 
rainfall in the ungauged basin where hydrological analysis was difficult. The ungauged 
basin means a coastal area where it is difficult to calculate the threshold rainfall. 

 

Figure 1. Flowchart of study.

229



Water 2022, 14, 859

2. Theoretical Background
2.1. Definition of Threshold Rainfall

In this study, threshold rainfall is calculated using the method used by the MOLIT in
2007, according to which threshold rainfall means the three-hour rainfall causing inundation
depth at which the flow overflows the river embankment [8]. Threshold rainfall can be
calculated by determining the rainfall of the rainfall-runoff curve corresponding to the
threshold rainfall. In general, the runoff calculation equation for a rainfall-runoff model
can be expressed as follows [15,28].

Rt = Ri + Rp (1)

where Rt is the total runoff, Ri is the runoff at the impermeable layer, and Rp is the flow at
the permeable area.

Rt = FFG× I + f (FFG)× (I − 1) (2)

In a rainfall-runoff model, rainfall and soil moisture constitute the inputs. However,
the opposite is true with the flash flood threshold; calculation of flash flood threshold
requires current soil moisture and required flow as inputs. As such, the equation on upper
stream water and small-sized rivers is converted for FFG using the repetitive calculation
method, as shown in Figure 2, to calculate the rainfall that causes threshold runoff. The
FFG is the rainfall corresponding to the threshold runoff in the relationship of the rainfall
and runoff curve. If there is no impervious area, the relationship between R and FFG can
be expressed in Figure 2 and Equation (2). R means the threshold runoff (mm), FFG means
the flash flow guidance (mm), and f () means the fall-runoff process. Moreover, I means
rainfall intensity.
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2.2. Machine Learning Method

Machine learning is an area of artificial intelligence where numerical models, algo-
rithms, and programs are used to have a machine learn from given data as humans do, and
new information is derived, or decisions are made based on what it learns [29]. In other
words, machine learning means a system that uses accumulated empirical data to build
models and improve performance. The amount of data matters in machine learning, and
higher-quality data leads to higher-performing results. As for machine learning methods,
this study used random forest, support vector machine, and XGBoost.

(1) Random Forest
The random forest method uses bootstraps to create several samples and applies them

to a decision tree model to compile the results [30]. A decision-making trees produces
estimates by creating and learning one-time training data from a given dataset. On the other
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hand, a random forest creates multiple training data from a given data set and creates and
combines multiple decision-making threes for improved prediction [31]. The observations
not used by individual decision-making trees are out-of-bagging (OOB) data and are used
for estimating prediction probability and identifying variables. The prediction probability
of OOB observations for each observation k within the xi category (0 or 10) [32].

This study used Python and the random forest method to calculate threshold rainfalls.
Figure 3 shows the conceptual diagram of a random forest.

p̂k(xi) =
∑j∈OOBi

Iŷ
(
xi, tj

)
= k

|OOBi|
, for k = 0, 1 (3)
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(2) Support Vector Machine
Support vector machine (SVM) is a supervised learning algorithm used for both

linear and non-linear classification issues. The purpose of SVM algorithms is to determine
the lines or boundaries dividing an n-dimensional space into separate groups, so that
they can be classified as their proper categories when new data are given. There may be
multiple lines or boundaries for dividing an n-dimensional space into classes. However, the
optimal boundary should be identified to determine categories. This optimal determination
boundary is called the hyperplane. A support vector is the vector closest to the hyperplane
and affects its position. The support vector machine is an algorithm that determines
the optimal hyperplane that maximizes the margin, which means the distance between
different data points.

The support vector regression (SVR) model has a small number of support vectors, and
thus is known to be less sensitive to outliers. Ref [33] developed support vector regression
that adopts a ε-insensitive loss function into the support vector machine. Support vector
regression is estimated using the function shown in Equation (4) [32].

f (x) = ωtx + b (4)

Equation (5) shows the constraints for calculating the optimal hyperplane function
while calculating the error that minimizes Equation (4). 1

2‖ω‖
2 describes the degree of

flattening of the function. If the data cannot be completely linearly separated, a slack
variable ξ(i = 1, . . . I) is introduced to process it. ξ means the distance between the margin
and the data outside the boundary between the margins. The main superparameters of the
support vector regression are C (cost) and γ, and C adjusts the complexity of the estimation
model and the degree of error tolerance. An increase in C means imposing a high penalty
on errors within the margin. ε is not considered in the calculation process if the error is less
than ε due to the maximum deviation between the actual value and the estimated value.
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In this study, SVM was converted into SVR to predict arbitrary real values and used,
and a Gaussian kernel (RBF) known for its excellent performance was applied. Figure 4
shows the conceptual diagram of the support vector machine.

Minimuze : 1
2 ‖ w ‖2 +C ∑I

i=1(ξi + ξ∗i )
Subject to : yi − wxi − b ≤ ε + ξi

wxi + b− yi ≤ ε + ξ∗i
ξiξ
∗
i ≥ 0

(5)
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(3) eXtreme Gradient Boosting
Similarly to random forests, XGBoost is an ensemble algorithm that addresses the

errors of multiple decision trees [35]. It offers improved prediction performance over
gradient boosting machine (GBM) through distribution and parallel processing. In general,
it is ten times faster than GBM. The efficiency and scalability of this method has been
validated in multiple previous studies [36,37]. This boosting method lowers errors by
grouping multiple classification and regression trees (CARTs).

ŷi = ∑k
k=1 fk(xi), fk ∈ F (6)

Equation (6) shows an ensemble model of trees, where K is the number of trees and F
represents the set of CARTs. fk corresponds to the weight of each independent tree and
leaf. The scores of the leaves are summed up and compared for final prediction.

Obj = ∑n
i = l(yi, ŷi) + ∑K

k=1 Ω( fk) (7)

Equation (7) represents an XGBoost model. The first l(yi, ŷi) is a loss function that
represents the difference between a prediction and an actual observation. The second Ω( fk)
is the normalization term that controls the complexity of the model to prevent overfitting.

2.3. Performance Assessment Using K-Fold Cross Validation

This study uses MAE, RMSE, and RMSLE to compare the performance of different
models. Most studies use the above three indicators a lot for data comparison [38–40]. They
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are widely used to objectively assess the accuracy of a regression equation by analyzing
differences between observations and estimates. MAE and RMSE are statistical indicators
for confirming the degree of errors included in an estimate calculated using an equation,
when compared with an observation. A value closer to 0 represents better fit. RMSLE
represents the average ratio of observations to predictions.

MAE =
1
N ∑N

i=1 |yi − ŷi| (8)

RMSE =

√
1
n ∑n

i=1(yi − ŷi)
2 (9)

RMSLE =

√
1
n ∑n

i=1(log(yi + 1)− log(ŷi + 1))2 (10)

Ideally, these errors need to be tested by applying them to actual ungauged watersheds.
However, due to data and time constraint, the prediction models were validated using
five-fold cross validation. K-fold cross validation is a model assessment method that uses a
part of the overall data as a validation set. It ensures that all data are used as dataset at least
once. Figure 5 shows dividing the data into five datasets and validating the models with
a different dataset each time. An average cross-validation uses five datasets. This study
selects the optimal parameters following cross validation to calculate threshold rainfalls.
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3. Selection of Target Watersheds and Variables
3.1. Selection of Target Watersheds

This study chose the Han River watershed as its target, as the area includes the
highest number of standard watersheds according to the water resource unit map. 290 of
Korea’s 850 standard watersheds are included in the Han River watershed. 237 of the
290 watersheds are inland, and the other 53 are coastal watersheds, as shown in Figure 6.

The (a) section of Figure 7 shows the learning watersheds; 80% of the learning wa-
tersheds were used for machine learning, and the other 20% were used for validation.
High-performing models were selected with (a), and predictions were performed for the
watersheds highlighted yellow in (b). The data set of the basin used for machine learning
was randomly selected and proceeded.
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3.2. Dependent and Independent Variables

This study used the threshold rainfalls calculated using the MOLIT method [8,15,41]
as dependent variables. Figure 8 shows the calculated threshold rainfalls on the map.

Characteristic factors of the watersheds were used as independent variables. The anal-
ysis only considered topographical factors and hydrological factors. The watershed charac-
teristic factors used in were collected from the Water Resources Management Information
System (www.wamis.go.kr, accessed on 31 December 2011) and the geographic information
system (GIS). Data on 15 characteristic factors were collected, including: drainage area
(km2), mean drainage elevation (m), mean drainage slope (%), highest drainage elevation
(m), drainage density, runoff curve number, river length (km), drainage perimeter (km),
form factor, circularity ratio, stream frequency, channel maintenance constant, relative
relief, number of reliefs, and river length ratio.
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The drain area refers to the area on the plane of the basin and refers to the plane area
within the closed curve, which is usually made up of a watershed. The basin average
elevation is calculated by arithmetically averaging the elevation values corresponding
to each cell of the DEM (Digital Elevation Model). The mean drain slope is calculated
by arithmetically averaging the slope corresponding to each cell of the DEM in degrees.
Highest drain evaluation means the highest elevation in the basin, and drain density means
the length of rivers per unit area. It means that the degree of outflow of the basin is
quantified by the Soil Conservation Service (SCS) using the runoff curve number land use
and soil map. River length is the total length of all rivers in a given drainage basin. The
drain perimeter is defined as the length measured along the boundary of the watershed of
a given order projected on the horizontal plane of the map, and the form factor is defined
as the ratio of the main river length of the watershed to the diameter of the circle having
the same area as the watershed area. The circularity ratio is a dimensionless parameter
defined as the ratio of the basin area to the area of a circle with the same length as the basin
circumference. Stream frequency is defined as the ratio of river water in the basin to the
basin area, and the channel maintenance constant is the reciprocal of the aqueous density.
Relative relief is defined as the ratio of watershed undulations to watershed circumference,
number of reliefs is defined as the product of watershed undulations and water density,
and river length ratio is defined as the ratio of river length w to average river length w − 1.
Table 1 shows a summary of the watershed characteristics factor.

Table 1. Summary of independent variables.

A H S Em H CN Lw Lp Rs Rc Cf C Rp Rn RL

Count 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290

mean 144.6 324.0 35.4 253.3 1.7 58.7 12.9 67.3 1.0 0.4 2.4 0.7 13.3 1376 1.8

Max 571.6 930.3 65.1 302.7 4.0 87.9 63.3 262.3 3.6 0.7 12.6 9.5 36.8 3921.4 4.4

min 39.0 4.9 4.0 103.7 0.1 33.7 0.0 32.7 0.0 0.0 0.1 0.3 0.9 32.8 0.7

A correlation analysis was performed to select statistically correlated independent
variables, as independent variables not correlated to dependent variables may lower the
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prediction performance. The correlation analysis was performed as shown in Figure 9.
Given the fact that the threshold runoffs required for calculating threshold rainfalls were
calculated from peak flood volumes and overflowing runoffs, the following variables were
determined to be significantly correlated: drainage area, river length, drainage perimeter,
relative relief, and river length ratio. Among those factors, river length, river length ratio,
relative relief, and drainage perimeter were determined to be more highly correlated with
the independent variables. The correlation coefficient was 0.65 for threshold rainfall and
drainage area, 0.64 for drainage perimeter, and 0.31 for river length. As such, drainage
area, drainage perimeter, and river length were finally selected as independent variables.
In most data analyses, principal component analysis (PCA) should be used to reduce initial
independent variables [42], but in this study, a principal component analysis was omitted
because the amount of data for each independent variable was not large.
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4. Machine Learning Application and Results

This study used SVM, random forest, and XGBoost. Excel 2010 and Python ver. 3.6
were used to record and statistically analyze the collected data and generate graphs. This
study also used the model packages provided by Python-based Scikit-learn.

Effective machine learning requires pre-processing of the data to be used. The indepen-
dent variable data went through data scaling and missing values were removed. As data
scales vary depending on the variable, the data were standardized to render them more
suitable for machine learning. Independent variables were analyzed using RobustScaler,
which is less affected by outliers. A higher accuracy can be expected by removing outliers.
However, the small number of inputs in this study means possible overfitting. Therefore,
this study addressed outliers through pre-processing rather than outlier removal.
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4.1. Validation of Prediction Models

The optimal parameters for each model were selected through K-fold cross-validation.
An error closer to 0 indicates a better result. Table 2 shows the MAE, RMSLE, and RMSLE
values of each of the five datasets created by dividing the datasets through the k-fold
cross-validation. All three performance assessments found that XGBoost produces the
results closest to actual observations compared with the other models.

Table 2. Comparison of model performance evaluation.

Model MAE RMSE RMSLE

Support Vector

Fold 1 15 19 0.26

Fold 2 23 38 0.4

Fold 3 19 26 0.29

Fold 4 21 26 0.47

Fold 5 28 38 0.34

Random Forest

Fold 1 12 19 0.28

Fold 2 20 32 0.46

Fold 3 16 20 0.34

Fold 4 22 27 0.47

Fold 5 21 26 0.45

XGBoost

Fold 1 14 20 0.28

Fold 2 20 33 0.38

Fold 3 16 20 0.29

Fold 4 21 27 0.46

Fold 5 25 37 0.35

Parameters were applied to increase the accuracy of machine learning, and n_estimator
represents variables that adjust the number of trees to generate. max_depth means the
number of tree depths. min_samples_split represents the minimum number of sample
data to split nodes, and min_samples_leaf means the minimum number of sample data
required for a leaf node. learning_rate means a parameter that, in machine learning and
statistics, moves toward the min loss function and determines the size of each stage of
repetition. The calculated parameter values area n_estimators: 100, learning_rate = 0.04,
min_samples_leaf = 3, min_samples_split = 2, max_depth = 4.

Figure 10 compares the existing threshold rainfalls with those calculated using XG-
Boost. Most threshold rainfalls are distributed between 40 and 60 mm and between 60 and
80 mm and are close to actual observations.

Figure 11 is a map representing threshold rainfall values. The watersheds with low
threshold rainfalls in (a) are reflected in (b) as well.

4.2. Calculation of Threshold Rainfalls in Ungauged Watersheds

This study used XGBoost, which produced good results in error performance as-
sessment, to calculate the threshold rainfalls of ungauged watersheds. Figure 12 shows
the distribution of the threshold rainfalls calculated for the ungauged basins. The ma-
jority of watersheds show threshold rainfalls between 40 mm and 80 mm. Figure 13 is a
map showing the threshold rainfalls of the ungauged basins other than the those in the
inland areas.
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As shown in Figure 14, based on the rainfall events in 2017, 2020, and 2021 of each affected
watershed, among the ungauged watersheds outside the purple lines around the inland part
of the Han River, Yongin, Cheonan, Samcheok, Gangneung, and Sokcho watersheds were
found to be vulnerable against heavy rain. An application to actual rainfall events showed that
damage was caused when the rainfall exceeds the specified rainfall in the legends. However,
the researchers’ ability to verify damages in other areas was restricted by the fact that damage
was verified from news articles and social network posts.
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5. Conclusions

Damage caused by localized heavy rain continues to increase in Korea. However,
research on inundation-causing threshold rainfall is still largely absent in the country. More
researchers need to study technologies for predicting and responding to inundation in
advance. This study can be summarized as follows.

The purpose of this study was to identify threshold rainfalls in areas not readily avail-
able for hydrological analysis, using the calculation method and characteristic factors used
by the MOLIT. Three machine learning methods (SVM, random forest, and XGBoost) were
compared in terms of accuracy using MAE, RMSE, and RMSLE, and XGBoost was selected
as the best-performing method. Watershed characteristics, hydrological factors, and XG-
Boost were used to calculate the threshold rainfalls of the ungauged coastal watersheds. In
this study, it is judged that what can reflect actual topographic and hydrological factors can
be differentiated from other machine learning and marginal rainfall papers. In addition,
distinct from conventional simple data, data using physical models were used in machine
learning techniques, so high accuracy could be secured through a small number of data,
and anyone could use it by using widely known machine learning techniques.

However, this study has its limitations. First, outliers were found while calculating the
threshold runoffs of the hydrological models. More sophisticated hydrological models and
more accurate data may be needed for analysis. In addition, threshold rainfall calculation
based on the runoff-rainfall curve simply used polynomials. However, higher accuracy may
be achieved by applying a machine learning method to threshold runoff and runoff-rainfall
curve calculation.

This study compared the calculated threshold rainfalls with real world cases identified
from news reports and social network posts, which was found to pose limitations to
quantitative assessment.

The researcher plans to conduct a similar study nation-wide. Watershed data with
more diverse hydrological models and outliers will improve the accuracy of the findings.
Although not included in this study, quantitative validation using real world events will
yield meaningful results. The current water forecast system provides only quantitative
figures without considering the damage caused, which some regard as insufficient for
supporting effective decision-making to prevent and prepare for damage caused by natural
disasters. Threshold rainfall prediction suggested in this study may, if implemented on
a continued basis, provide accurate information on rainfall damage in advance and help
decisionmakers make better decisions on disaster control.
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Abstract: Weather plays a critical role in outdoor agricultural production; therefore, climate informa-
tion can help farmers to arrange planting and production schedules, especially for urban agriculture
(UA), providing fresh vegetables to partially fulfill city residents’ dietary needs. General weather in-
formation in the form of timely forecasts is insufficient to anticipate potential occurrences of weather
types and features during the designated time windows for precise cultivation planning. In this
research, we intended to use a self-organizing map (SOM), which is a clustering technique with
powerful feature extraction ability to reveal hidden patterns of datasets, to explore the represented
spatiotemporal weather features of Taipei city based on the observed data of six key weather factors
that were collected at five weather stations in northern Taiwan during 2014 and 2018. The weather
types and features of duration and distribution for Taipei on a 10-day basis were specifically ex-
amined, indicating that weather types #2, #4, and #7 featured to manifest the dominant seasonal
patterns in a year. The results can serve as practical references to anticipate upcoming weather
types/features within designated time frames, arrange potential/further measures of cultivation
tasks and/or adjustments in response, and use water/energy resources efficiently for the sustainable
production of smart urban agriculture.

Keywords: weather types and features; meteorological feature extraction; artificial neural network;
self-organizing map (SOM); urban agriculture; resource utilization efficiency; urban northern Taiwan

1. Introduction

Urban agriculture (UA), which is defined by the Food and Agriculture Organization
(FAO) as “the small areas within the city for growing crops and raising small livestock or
milk cows for own-consumption subsistence or small-scale sale in local/neighborhood mar-
kets” [1,2], takes advantage of vacant rooftops, balconies, and community spaces to plant
vegetables for neighborhoods’ fresh diet in urban areas. In East Asia, Europe, and North
America, many urban farmers produce potential high-quality food at an affordable cost [3].
Compared with large-scale commercial cultivation on rural farms, UA usually occupies
smaller land areas and is operated by community volunteers/seniors (non-professionals)
for leisure, social interaction, and partial self-sufficiency purposes [4,5]. Leafy vegetables
are often the primary products of UA since they are highly valued for their nutritional
content, with dietary diversity with shorter growing periods [6,7]. Therefore, the planting
activities of UA generally produce short-term vegetable crops with more diversified species
but less yield quantity and crop rotation is often carried out after each harvest upon the
growers’ interests.

Weather plays a critical role in outdoor agricultural production by affecting the op-
timal growth, development, and yields of crops, as well as the incidence and spread of
pests/diseases, water needs, and fertilizer requirements for cultivation. The spatiotemporal
(short-term and annual) variations of weather factors (i.e., temperature, rainfall, humidity,
sunshine, etc.) of a particular place over the selected time interval during the cultivation
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season should be considered for assessing their influences on crop growth. In addition,
climate change has also caused impacts on agricultural operation and management [8,9].

Decision making in agriculture is based on knowledge of the crop behavior and
cultivation information, which may also include characterization of the local growing
conditions, management practices, and the response of the crop to these variables at any
given time. In particular, the timing of planting, cultivation, and harvest based on cultural
tasks are often determined based upon weather forecasts; therefore, a good climate-based
strategy for agronomic planning can help to reduce the stresses of crop growth and increase
the effectiveness of the timing of preventive measures and cultural operations, as well as
engage farmers to organize and use appropriate cultural practices to cope with or take
advantage of weather forecasts in various ways. On the other hand, once the crop season
starts and resources demands and technology are committed, only certain cultivation
operations can be adopted in response to weather phenomena by relying on advanced
notice of the occurrence of erratic weather for minimizing the hazardous effects during
mid-season [10].

Despite the agricultural weather forecast being available for upcoming days, many
farmers in East Asia today still follow the traditional solar terms of the Lunar Calendar
(also known as the Farmer Calendar or the Yellow Calendar in Chinese) from rural proverbs
as important rules of thumb for the timing of cultivation practices in light of anticipating
local weather in each season. Based on the experiences of ancestors, farmers are suggested
to use specific agricultural operations for better efficiency due to the expectation for the
occurrence of certain seasonal weather phenomenon on specific dates in a year.

In addition to nowcasting, short-term forecasts or monthly climate projections for
agricultural producers are usually preferred by farmers when making agricultural de-
cisions. The use of non-forecast climate information on seasonal pattern analysis, i.e.,
historical climate information, long-term climate outlooks, and decision calendars, can
also be valuable as a practically useful reference for cultivation tasks and agricultural
risk management [11,12]. The seasonal pattern of weather types requires probing into
years of historical data of various weather factors, and feature patterns can be extracted
through effective and efficient data-mining techniques to explore more information that
might not otherwise be disclosed. Various machine learning methods were employed
in precedent studies to classify weather features and make forecasts [13,14], for example,
a deep neural network (DNN) for weather forecasting [15]; a recurrent neural network
(RNN) and long short-term memory (LSTM) for air temperature forecasting [16]; an RNN
for hourly rainfall forecasting during typhoon periods [17]; a multilayer perceptron neural
network (MLP) for air temperature prediction inside greenhouse [18]; a convolutional
neural network (CNN) for wind speed prediction [19] and weather pattern clustering [20];
a deep convolutional neural network (DCNN) for weather phenomenon classification
based on images [21]; a backpropagation neural network (BPNN) for weather system
prediction [22–24]; a self-organizing map (SOM) for estimating meteorological variables
of evaporation [25], a method to train an SOM for clustering high-dimensional flood in-
undation maps [26]; an adaptive model of the enhanced multiple linear regression model
(EMLRM) for rainfall forecasting [27]; a combined modular models comparison using
moving average (MA), MLP, and support vector regression (SVR) for daily and monthly
prediction on rainfall time series [28]; an artificial neural network (ANN)-based lower up-
per bound estimation (LUBE) and multi-objective fully informed particle swarm (MOFIPS)
for interval forecasting for streamflow discharge [29]; and a comparison of BPNN, group
method of data handing (GMDH), and autoregressive integrated moving average (ARIMA)
for monthly rainfall forecasting [30].

As one of the powerful methods of exploratory data analysis for data mining and
visualization interpreting [31,32], SOMs have been usually used to discover intrinsic pat-
terns by downscaling the complex weather data sets from a high-dimensional space to
a low-dimensional one through clustering similar data patterns into neighboring SOM
units for easy comprehension [33,34]. For the feature extraction from large datasets, di-

244



Water 2021, 13, 3457

mensionality reduction is a critical step to eliminate redundant information for simplifying
the subsequent processes of classification and the search for information while retaining
meaningful properties of the original datasets. Compared with traditional methods, such
as principal component analysis (PCA) and wavelet decomposition methods, SOM may
better classify datasets and present results in a two-dimensional topology well [35].

An increasing number of SOM applications were also adopted to assist with agricul-
tural decision making when considering the weather information from recent years [36].
For agricultural applications, some data-driven models were developed to identify land
covers for agricultural control and management and provide information for production
systems to better manage their crops according to the specific conditions on farms [37–40].
Time series of climatic and agro-climatic indices were used to examine the signs of climate
changes in rainfall, temperature, and agricultural drought to identify potential impacts on
the agricultural water balance [41]. In addition, SOM was also applied to data clustering
and pattern recognition for many types of climatic and meteorological data to analyze
synoptic climatology at various spatial and temporal scales [42–44], forecasting and now-
casting [45–47], and investigation of extreme climate events [48–50], as well as variations
of meteorological variables, such as evaporation and rainfall pattern analysis [25,51,52],
cloud classification [53], and climate change analysis [54,55].

Generally, monthly/annual meteorological statistics provide very rough information
about respective weather factors rather than substantially reflect the overall phenomenon
of weather features during a certain period and give no characteristics on the temporal and
sequential distribution of repetition and alteration trends. Weather forecasts are provided
based on the surrounding atmospheric circulation condition. Both types of information are
often used as reference guidelines for crop cultivation for farmers, but it is challenging for
farmers to anticipate and grasp precisely what weather phenomena and features would
potentially occur during a specific time window. Therefore, this research aimed to use
data-mining techniques to discover/induce the annual pattern and distribution of weather
types and features of a region based on historical meteorological data, including their
occurrence time, frequency, continuity, and intensity, so that agricultural operationists can
anticipate the occurrences and trends of weather types and features during each specified
period for engaging in appropriate cultivation tasks in advance.

In this regard, this research adopted an SOM to cluster large and complex historical
meteorological data into several categories (types) of similar weather features while explor-
ing each type’s characteristics on temporal distribution, sequential continuity, occurrence
time, and frequency so that crops can adapt to the weather in northern urban Taiwan
owing to the measures that were taken beforehand (when necessary). Therefore, the even-
tual findings are expected to provide practical weather reference to help with sustainable
production in terms of species selection, planting schedules, precautions arrangement,
and further efficiency enhancement of water and energy resources that are used for the
planning and design of urban agriculture/farming for promotion purposes.

2. Materials and Methodology

Various weather factors for agricultural forecasting are intertwined and affect farm
planning and operations from place to place and from season to season. This research
aimed to explore the representative spatiotemporal weather features by collecting and
analyzing the observed data of 6 key weather factors at 5 weather stations in northern
Taiwan. An SOM, as one of the effective artificial neural network approaches, was adopted
to cluster the meteorological data to reveal the hidden weather features. Subsequently,
the temporal patterns of such features at the Taipei Station were specifically examined so
that potential measures in response to certain weather phenomena at certain periods for
the smart and efficient utilization of resources (water/energy) in urban agriculture can
be provided.

To cross-reference to the results of weather types and features, the Da-an rooftop farm,
which has been a successful urban agriculture (UA) site since 2014 and had a complete
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work log and harvest records in Taipei City in northern Taiwan, was chosen as the real
case in operation for reference. In addition, due to the special characteristics of UA, i.e.,
it usually involves smaller planting areas, lower harvest weight, higher crop rotation
frequency, more species diversity, and short-term crops (with growing periods of a few
months), the data collected during 2014–2018 were selected to form the weather types and
features in this study.

2.1. Materials of Weather Data Collection

Taipei City, New Taipei City, Taoyuan City, and Keelung City, which constitute the
main metropolitan area in northern Taiwan, were selected for this research. The four cities
cover an area of 3675 km2 (accounting for 10.2% of the total area of Taiwan) and have
a population of 8.82 million (about 38.3% of the total population of Taiwan). The daily
meteorological data were collected from five Central Bureau of Weather (CBW) ground
weather stations in northern Taiwan, including the Banqiao, Tamshui, Taipei, Keelung,
and Xinwu Weather Stations (locations are shown in Figure 1) from 1 January 2014 to
31 December 2018 [56]. Being located in downtown areas in Taipei Metropolitan, the five
weather stations were selected because they are governed directly by the Central Weather
Bureau in Taiwan and can provide the most comprehensive, complete, and extensive
monitoring weather data at urban areas in northern Taiwan. With Taipei City being located
in the Taipei Basin and the Taipei Weather Station being situated in the main urban area
in the city, the Taipei Weather Station was specifically examined to explore the weather
types and features in this research because the Da-an rooftop farms, with its harvest logs
for reference, was located there. With a similar approach, the weather types and patterns at
the other four weather stations are also valuable and deserve further in-depth exploration
in future research.
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Figure 1. The location of five Central Weather Bureau stations in northern Taiwan.

The meteorological factors (variables) for agricultural weather forecasts that immedi-
ately affect farm planning or operations vary from place to place and from season to season.
According to the Köppen climate classification, Taiwan is an island that is classified as
having a “warm oceanic climate/humid subtropical climate,” while Taipei City is classified
as “temperate, no dry season, hot summer” (Köppen: Cfa) [57]. Temperature (for heat suc-
cession), relative humidity (for transpiration), precipitation (for irrigation), sunshine hours
(insolation duration), global radiation (light and thermal condition for plant physiology),
and total cloud cover (character of prevailing clouds that reduce the global solar radiation)
are the core weather factors that influence crop-growing processes; therefore, each dataset
comprised the daily logs of the 6 weather factors. Wind speed and direction were excluded
from this research because the wind blowing around UA sites with a relatively small scale
is often affected by the surrounding buildings. It is noted that these heterogeneous datasets
were normalized (within a value range of 0–1.0) for preprocessing. Then, the normalized
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datasets were input into the SOM for clustering the weather features, and the clustering
results were displayed in a honeycomb arrangement.

A total of 9130 datasets were collected from the 5 weather stations in northern Taiwan
over the 5 years, and their basic statistics are given in Table 1.

Table 1. Basic statistics of the meteorological data collected at five weather stations in northern Taiwan during 2014–2018.

Station
Name

Temperature
(◦C)

Relative
Humidity

(%)

Precipitation
(mm)

Sunshine
Duration
(Total h)

Global
Radiation
(MJ/m2)

Total Cloud
Cover (Level

0–10)

Banqiao

Max 32.3 96.0 246.0 12.7 29.8 10.0
Min 5.4 46.0 0.0 0.0 0.0 0.0

Avg * 23.5 72.9 6.1 3.7 11.4 7.0
Std ** 5.5 7.9 17.0 3.5 7.3 2.6

Tamshui

Max 32.3 100.0 379.5 12.5 29.1 6.7
Min 5.1 1.8 0.0 0.0 0.0 0.0
Avg 23.0 76.7 5.4 4.5 13.2 5.0
Std 5.5 9.4 19.7 4.0 7.8 1.6

Taipei

Max 33.2 97.0 306.7 11.6 28.9 10.0
Min 5.6 5.6 0.0 0.0 0.0 0.0
Avg 23.8 23.8 6.1 3.6 12.0 7.2
Std 5.6 5.6 18.2 3.5 7.2 2.5

Xinwu

Max 31.7 100.0 246.5 12.9 30.6 10.0
Min 5.7 50.0 0.0 0.0 0.0 0.0
Avg 23.0 79.8 3.9 5.1 14.9 6.2
Std 5.5 8.5 14.6 4.2 8.5 2.9

Keelung

Max 32.4 96.0 337.6 12.6 31.1 10.0
Min 5.4 49.0 0.0 0.0 0.0 0.0
Avg 23.1 76.1 9.2 3.8 11.7 7.6
Std 5.3 8.9 22.6 4.0 9.0 2.6

All Stations

Max 33.2 100.0 379.5 12.9 31.1 10.0
Min 5.1 1.8 0.0 0.0 0.0 0.0
Avg 23.3 75.6 6.1 4.2 12.6 6.6
Std 5.5 9.1 18.7 3.9 8.1 2.7

* Average, ** standard deviation.

2.2. Self-Organizing Map (SOM)

The SOM proposed by Kohonen in 1982 [58,59] is an artificial neural network that is
configured with an unsupervised learning algorithm. It consists of repeatedly learning
processes to gradually update the data nodes in the output map until converging to a
stable and representative solution of the input space. Each of its learning steps starts with
randomly selecting an input weight vector. A node in the input layer is searched for by
competing with each other in the output map (the topological layer) to find the most “simi-
lar” one (also called the “winning” node or the “best matching unit” (BMU)) to best match
the input vector. Next, the training continues to make the BMU and its neighbors closer to
the input vector in a manner that is governed by the learning rate and the neighborhood
function [34,42]. The map is then reconfigured to adaptively transform high-dimensional
input patterns into two-dimensional arrays of neurons in a topologically ordered fashion,
which facilitates the detection of the inherent structure and the interrelationships between
data [25]. Thus, the patterns of a large number of clusters and the transitional nodes
between patterns can be more readily understood and discerned [60]. The SOM technique
preserves the neighborhood relations of the input data to form a meaningful topological
map [30] so that a large amount of information can be stored in the weight values of the
SOM’s neurons with similar characteristics in input vectors [61,62]. An SOM is capable of
conserving the space continuum between daily meteorological datum so that there is some
resemblance in the neighboring clusters. Therefore, an SOM can cover the overall data
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characters to offer a more detailed presentation of particular features [63], and the result
of the clustering can provide a means to visualize the complex distribution and reveal
weather patterns and attributes of the temporal sequence over a region of interest [42].

Figure 2 illustrates the concept of the SOM approach in this research. The datasets
were input into the SOM network for clustering according to weather similarities by
calculating the differences, namely, the distances, between every two inputs on the multi-
dimensional topology. The shortest distance (i.e., the minimal difference) between any two
inputs indicates that they share more resembling weather characters than others; therefore,
they are grouped into one category (i.e., one neuron). Weather features may be clustered
into various categories (neurons) depending on the research purposes. Given relatively
limited differences in terms of geographical distance among the five weather stations
and environmental conditions in northern Taiwan, the variation in weather features may
not be too drastic; therefore, this study determined the network size of the SOM to be
3 × 3 (= 9 categories of weather types in total).
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In reference to the traditional Chinese Farmers’ Calendar, the concept of a “10-day
period”, also called the “xun” in Chinese, has been commonly used as a temporal cycle for
planning and engaging cultivation tasks in Chinese society. There are basically three 10-day
periods in a month. With variations of week numbers and start/end dates in a month every
year, as well as month/seasons, it is relatively complicated to specify the same period in a
year for the analysis and comparison of weather types/features and generalizing weather
features over very long temporal periods. Therefore, following the agricultural tradition
in Taiwan, the 10-day period was adopted to be the conveniently unified and appropriate
temporal scale in this research. Therefore, this research considered the 10-day period to
be the temporal scale. The software that was used to run the SOM in this research was
MATLAB version 2019b.

3. Results

The strength of an SOM is the ability to directly use uncompressed data rather than
only using traditional statistics with diluted weather attributes or converting them into
certain performance indicators [63]. SOM also effectively provides a means to visualize
the complex distribution of weather features to classify and reveal the synoptic weather
patterns and attributes of the temporal sequence over a region of interest. In this research,
the SOM led to two outcomes for further analysis: first, the result of nine weather feature
types (neurons) at each weather station in northern Taiwan, and second, the distribution of
weather types throughout the years at the specific weather station indicated the temporal
trend/pattern of local weather features. These two results are delineated as follows.

3.1. Types of Weather Features

Figure 3 illustrates the SOM results. Figure 3a shows the number of datasets in each
SOM neuron that represented similar features. Figure 3b shows the numbering labels that
were associated with the neurons of the SOM topological map. It is evident that neurons #2,
#3, #4, and #7 accounted for 64% of the total inputs; therefore, these four neurons were the
most representative types to depict the overall weather characteristics in northern Taiwan.
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Figure 3. The counts of datasets and numbering labels that were associated with the neurons of the
SOM topological map. (a) The hits of datasets clustered in each neuron. (b) Numbering label for
each neuron.

Figure 4 presents the heatmap of the SOM results, indicating the weather-type con-
figuration that can be considered to be the six stratified layers of weather factors with
the corresponding characteristics. Every neuron was held at the same position across all
weather factor layers so that similar heatmaps in different factor planes represent a high
correlation of features. On each weather factor layer, every neuron is shaded in a specific
color with a spectrum from light to dark to indicate the weight significance from the highest
(in yellow) to the lowest (in black). Therefore, each heatmap represents the feature intensity
of a weather factor learned by the SOM. The four corners of the SOM can thus be taken
as the most extreme nodes in terms of climate variability, with a smooth continuum in
between [60]. All data inputs that were assigned in each neuron for each weather factor
layer were extracted to further explore their typical characteristics in common via statistics
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methods, where the characteristics of each weather factor are illustrated in the form of a
stock chart. They are visually presented to show the significance and variation of each
specific weather factor in each neuron in this research. With the neuron labels (#1–#9) on
the horizontal axis, each blue rectangle comprises the ranges of average value plus/minus
one standard deviation of all data in that specific neuron. The top and bottom tips of
black vertical lines indicate the maximum and minimum values of all data in that specific
neuron, respectively. It is noted that in the precipitation layer, the enormous values of the
maximum rainfalls are labeled directly on top so that the precipitation variation is still
visually explicit.
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Among all nine neurons, the temperature weighed most significantly (the highest
value) in neuron #3, then followed by neurons #2, #9, #1, and #4 accordingly with gradually
darker colors, and lastly, neuron #7 in black denoted the lowest value. As for the total
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cloud cover layer, neurons #6 and #3 on the lower-right presented the least cloud cover
(i.e., the sunniest condition), then neurons #2, #5, and #9 followed with gradually higher
temperatures toward the upper-left, and neuron #7 in yellow denoted the most cloudy
condition (i.e., least sunny).

Therefore, through integrating the characteristics of the six weather factors with
various significances allocated, each neuron designated one type of weather feature. Since
neurons #7 and #2 comprised the two most significant inputs, they were taken to illustrate
how the six weather factors are transformed into a radar diagram of each weather type
and what their overall features were, as shown in Figure 5.
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Figure 5. The significance of weather factors in each weather type are transformed into radar
diagrams (with examples of weather types #7 and #2). (a) Weather factors integrated into weather
type #7. (b) Weather factors integrated into weather type #2.

In neuron #7, the temperature, sunshine hours, and global radiation factors were
all colored black, indicating these three factors displayed the lowest levels. In contrast,
relatively high humidity and total cloud cover appear (in yellow), suggesting that these
factors displayed the highest levels. Precipitation was orange, meaning it displayed a
medium level. As a consequence, neuron #7, which was also denoted as weather type
#7, integrated the weather characteristics of the lowest temperature, the highest humidity,
medium rainfall, the least sunshine hours, the lowest global radiation, and the highest
total cloud cover, which complied with the general weather phenomena in winter from
our observation (Figure 5a). With the same rationale, neuron #2 exemplified the weather
characteristics of high temperature, medium humidity, and low precipitation, along with
lower sunshine hours, high global radiation, and lower total cloud cover (Figure 5b).

When converting the above results of neuron #2 to the radar diagram shown in
Figure 5b, the green line linking the green points (average values) formed the “shape of
type #2 in terms of average values”. The same rationale applied to the orange points and
line, denoting the “shape of type #2 in terms of the maximum values”, as well as to the
yellow ones, denoting the “shape of type #2 in terms of the minimum values”. Therefore,
the daily average, maximum, and minimum records for each weather type were delineated
explicitly. Overall, type #2 indicated that the maxima of temperature, relative humidity,
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and total cloud cover reached the highest level of 1.0 at the outmost edge on the hexagon,
while the sunshine hours and global radiation positions were at 0.8 (the second-highest
level) and precipitation positions were at 0.2 (a very low level). The “shape of the average
values” profiled the dominant weather factors, which were temperature, humidity, and
total cloud cover positioning in the range 0.6–0.8. The other three factors played much
less significant roles, where precipitation, sunshine hours, and global radiation positioning
were at around 0.0, 0.4, and 0.6, respectively.

3.2. Weather Pattern at Five Stations in Northern Taiwan

This research originally explored the weather features from five stations in northern
Taiwan, where Table 2 illustrates the integrated results. Each station presented its own
weather characteristics, but overall, types #2, #3, #4, #7, and #9 were the most typical ones
at the Banqiao, Taipei, and Xinwu stations, while Tamshui and Keelung presented their
own types of weather features. The seasonal characteristics of weather features at the other
four stations also deserve more elaboration in the form of the comprehensive analysis that
was given for the Taipei Station in this research.

Table 2. Features of weather types at 5 weather stations in northern Taiwan.

Station Main
Types

Occupying
Percentage

Absent
Types

Summer
Types

Concentration in
Summer Months

Winter
Types

Concentration in
Winter Months

Banqiao 4, 7 (1~9) 40% 0 1, 2, 3, 4, 6 April–September 4, 5, 7, 8, 9 October–March
Tamshui 3, 8 55% 1, 6, 7 2, 3, 4 April–October 5, 8 October–May
Taipei 2, 4, 7 70% 1, 6 2, 3, 4 April–October 5, 7, 8, 9 October–April

Keelung 1, 5, 6 83% 2, 3, 5 4, 6 April–October 7, 8 October–April
Xinwu 2, 3, 4, 7 72% 1, 6 2, 3, 4 April–October 5, 7, 8, 9 October–April

3.3. Temporal Pattern of Weather Types

The result of the Taipei weather station is taken as the main focus for elaboration in
this research. Figure 6 shows the occurrences (counts) of the nine weather types on a 10-day
basis from 2014 to 2018. Each cell is visually shaded with a color spectrum indicating
the frequency intensification. The higher the occurrence frequency is, the darker the cell
color is. Therefore, the occurrence time, frequency, and duration of each weather type
are presented explicitly on the pattern of weather types that occurred at specific weather
stations throughout the years between 2014 and 2018.

Figure 7 shows the percentage of each weather type that occurred on an annual basis.
Figures 6 and 7 explicitly display that there was a stable trend and similar occurrence
percentages for the variation of weather types over the five years. Though the annual
occurrences of each weather type might be slightly different and/or offset, the timings of
the sequential trend and the duration were generally consistent. In this regard, it is essential
to examine the high-frequency occurrence distribution, duration, continuity, and extent
profiles rather than the forecasts of weather features on specific dates. Therefore, it was
reasonable to aggregate the 5-year occurrences under the same 10-day basis into overall
seasonal features by summing all the values in each cell to strengthen the significance and
distribution of feature types, as illustrated in Figure 8a.

In addition, when the specific weather type lasted continuously (especially with
high occurrence frequency) and multiple weather types took place over the same time
frame, these weather types could be considered altogether to be the “representing weather
features” of the sequential regularity and pattern. In this regard, from the distribution of
concentration and continuity, it is explicit that the nine weather types that were distributed
throughout the thirty-six 10-day periods formed three distinct sections of temporal groups
annually, referring to sections A, B, and C marked with dashed rectangles in Figure 8a.

Section A (marked with a dashed orange rectangle) represented the period from “early
spring through late fall” (mainly full summer). Section B (marked with a dashed blue
rectangle) represented the period from “mid-fall through next mid-spring” (mainly full
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winter), with two sub-sections, namely, section B2 from early autumn to winter at the
year-end and section B1 from winter at the beginning of the year (1 January) to early
summer. Section C (marked with a dashed yellow rectangle) referred to the absent or barely
occurring types all year round. There were some overlaps of 10-day periods between
sections A and B1, similarly between sections B2 and A. This explained the seasonal
alternation with diverse weather types and complex variations during spring and fall.

Figure 8b also delineates the two leading weather types with the associated occurrence
percentages summed from major (in pink shades) and secondary (in yellow shades) weather
types in each 10-day period. With shaded cells indicating that the percentage exceeded
the designated one listed in the sum column, this demonstrates how significant and
representative the weather type was in each 10-day period. In addition, the last row
shows the subtotal percentage of the two leading types, together with over 60% (in green
shades) as a high concentration and continuum of occurrences. The 10-day periods without
green shaded cells represent the percentage <60% as non-leading major and secondary
occurrences, which also refers to more diverse and variant weather types taking place in
springs and falls as the seasonal transition.
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Figure 6. The occurrence distribution on a 10-day basis for each weather type at Taipei Station.
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Figure 8. The occurrences distribution of nine weather types on a 10-day basis and the leading types at Taipei Station.
(a) Seasonal weather features of sections A, B and C on aggregated occurrences. (b) Leading weather types analysis on a
10-day basis.

3.4. Frequency, Duration, and Distributions of Type Occurrences

The collective occurrences of the nine weather types at Taipei Station were analyzed
from two perspectives: the features and distribution of occurring types and the compre-
hensive outcome during designated timespans (season, month, and 10-day periods), which
are elaborated in the following.

Figure 8a illustrates that among all nine feature types, types #2 (25.8%), #4 (24.7%),
and #7 (19.8%) were the main weather types at the Taipei Station and altogether accounted
for 70.3% of the occurrences out of the occurrences of all types over the five years. There
were barely any type #1 or #6 weather patterns each year.

Figure 9 illustrates the occurrence distribution and duration of types in sections A, B,
and C. Section A in Figure 9a basically spanned from April to early October, where the
highest frequency weather types were types #2 (red bar), #4 (green bar), and #3 (yellow bar),
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implying they are the representative weather types during the season from mid-spring
to early fall. These types tended to appear sporadically or were absent before April and
disappeared gradually after mid-October till the year-end. The occurrence timespans and
high frequencies of types #2 and #4 seemed complementary to each other, with one rising
(appearing) and the other falling (disappearing), while type #3 peaked shortly in the hottest
days of mid-summer (mid-July to mid-September). Section B in Figure 9b, on the other
hand, shows the duration starting from mid-October to the next late April (covering late
fall, winter, and the following spring), with a gradual transition through types #4, #7, #5,
and #9. There were barely any type #1 or #6 weather patterns, with only 1–2 occurrences in
early August in Section C.
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Figure 9. The occurrence distribution of the main weather types in sections A, B & C at Taipei Station from 2014 and 2018.
(a) Section A. (b) Section B & C.

3.5. Main Features of Weather Types in Taipei City

To elaborate the weather types and features in the Taipei area for further application to
UA, Figure 10 highlights the features of the two leading weather types for sections A, B, and
C to visually present the variations of the six weather factors during the designated period.

Comprehensively, with cross-referencing to Figures 8–10, the annual weather pattern
in the Taipei area presented the following features in the sequential timing of a year are
elaborated as follows.
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Figure 10. The leading weather types of Sections A, B, and C in radar diagrams.

Though mainly concentrating from April to mid-June and from mid-August to Novem-
ber (before and after summer), type #4 weather patterns occurred in almost every 10-day
period throughout 2014–2018. This was taken as the basic annual weather feature in Taipei.

Intensifying from January to March and in December, type #7 weather patterns domi-
nated the weather features in winter, with the lowest temperature range (14–20 ◦C), little
rainfall, high humidity (80%), the least global radiation (0–5 MJ/m2) and sunshine hours,
the highest level of cloud cover of the year, and sometimes accompanied by the second
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most frequent weather pattern, namely, type #5, with its relatively mild/less “winter
touch” features.

During the periods of March–April (spring) and October–November (fall), all the
weather types, except for types #1 and #6, appeared alternatively, indicating greater
variations and less stable features, for instance, temperature (14–31 ◦C), precipitation
(15–43 mm), global radiation (0–26 MJ/m2), sunshine duration (0.5–11 h), and cloud cover
(levels 1–10). Types #7 (winter) and #5 played the most significant roles and frequently
occurred in early March and then gradually disappeared, followed by types #4 and #2,
mainly from April (as the summer began to emerge). Such weather features proceeded in a
mirrored way from October to November as winter approached.

From May to September (late spring through summer to early fall), types #2 and
#4 occur were dominant and alternated, with their high temperature (25–30 ◦C), little
precipitation, and large variation in global radiation, sunshine hours, and cloud cover.
Furthermore, accompanied with a slight trace of type #3, the summer feature reached its
climax occurrences, with the highest temperature (27–31 ◦C), very limited rainfall, the most
abundant global radiation (19–26 MJ/m2) and sunshine hours (7–11 h), the least rainfall,
and lower cloud cover (levels 2.5–5) in the summer peak from mid-July to September.
Then, from October, the weather feature returned gradually to the basic type (type #4) and
transformed into fall–winter patterns.

4. Discussion

Weather classification of typical local weather features from past experiences and
historical data can greatly enhance agricultural decision making by identifying the timings
for effective cultivation activities and the corresponding efficiency of resource use. For
example, the statistics of the historical average, maximum, and minimum of certain weather
factors (e.g., temperature and precipitation) within a time interval (month or year) provides
a very rough idea of the local weather condition with variation ranges. In addition, some
specific daily phenomena with the presence of various weather factors occurred frequently
and repetitively during a certain period in a year; therefore, such alternation of seasonal
features can be considered to be the “typical weather patterns” and is expected to continue
in the following years. This section discusses and extends the use of SOM, weather types,
and features and particularly focuses on the potential application of the feature results.

4.1. SOM Approach Contributions to the Weather Typing

The results of the weather features from the SOM approach can effectively excavate
out more hidden details of characteristics on the key weather types. It explicitly visualizes
the weather patterns and trends in terms of their occurring time, frequency, intensity,
distribution, duration, and transition nexus with various types. Furthermore, it is rational
to elucidate/interpret what weather types are likely to occur during designated periods of
interest and how meteorological factors are expected to appear substantially. Therefore, it
is practical to grasp the temporal distribution and seasonal changes of weather features to
plan for appropriate strategies and measures when necessary.

4.2. Potential Applications

The investigation of weather features and historical meteorological data throughout
the year can be a reference for agricultural decisions in various cultivation activities, such
as species selection, planting, harvesting, transplanting, defoliation, fertilization, and
irrigation [11]. In addition, necessary precautions can be further adopted to preempt crop
stress control, sheltering, disease risk reduction, and pest control, as well as to explore
sustainable resource mechanisms in terms of collection, storage, and utilization.

The symbolic representation of temporal weather features is the key to effective crop
planting plans that suggest farmers take necessary actions and measures for optimal crop
growing and harvesting, with more efficient resource utilization and protection from
potential weather damage. For example, the timings of meteorological conditions of
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temperature, precipitation, and sunshine hours affect crop-growing schedules regarding
seeding, seedling, flowering, fruiting, and harvesting, particularly through the necessary
heat for succession, water supply for irrigation, and sunlight exposure for photosynthesis.
Therefore, the understanding of the temporal distribution and intensity of local weather
types would contribute to enhancing the cropping (such as the species selection) under
favorable weather, with adequate supporting facilities being installed when necessary (such
as the provision of shade for crops from sunscald and increasing ventilation to prevent
against potential insects/disease due to high temperature and humidity).

The features of weather types can also enhance the prediction of rainwater and solar
power output by calculating the related green resources input based on meteorology for
cultivation during the process of species selection, maintenance, and resources regulation
regarding collection, storage, and provision. Particularly for urban agriculture via rooftop
farming and community gardening, the water and electricity that are needed for irrigating
farms often come from public utilities. Hence, drawing practical planting plans and
operation strategies by taking advantage of favorable weather features during designated
periods for specific measurements/adaptations can be sustainable. For instance, installing
an external rainwater tank and solar power facility, as well as prioritizing the use of rainfall
and sunlight as green/renewable resources for efficient collection, storage, and reuse for
farming irrigation, reduces the dependence on tap water and municipal electricity.

The Da-an rooftop farm with elevated planters extensively laid out on its rooftop can
be taken as a study site for the application of weather types and features that are relevant to
UA activities. The selection of crop species and some auxiliary measurements are proposed
as application examples in the following.

Sweet potato leaves (SPL) (Ipomoea batatas (L.) Lam.) has been one of the commonly
planted species at the Da-an site over the years. As popular leafy vegetables, SP is a
subtropical herbaceous trailing vine with a relatively short growing cycle to produce
frequent harvests during growing seasons; it requires continuous heat, abundant daily
watering (with good drainage), long sunlight exposure, and is very sensitive to chilly
temperatures [64]. SPL prefers cooler and drier seasons as seedlings, then it can mature fast
in hot and humid months (with a favorable optimal temperature range between 20–30 ◦C).
SP leaves can be picked for harvest within as short as 18 days in hot summers but as long
as 30 days in cold winters [65]. According to the analysis of major weather types that
were developed for Taipei in this research, SPL can serve as a very good species that is
suitable to grow under the weather conditions in Taipei, and its most favorable growing
seasons would fall within section A. By referring to Figures 4, 8 and 10, with SPL seedlings
planted in April, they can grow prosperously from May to September when weather types
#2 and #4 are dominant (with characteristics of high temperature (25–30 ◦C); constantly
high humidity; limited daily precipitation but sometimes showers up to over 300 mm;
and large variations in global radiation, sunshine hours, and cloud cover). It is noted that
type #3 is concentrated from mid-July to mid-September (with characteristics of very hot
days, reaching the highest temperature (27–31 ◦C), sunshine hours (7–11 h daily), and
radiation (19–26 MJ/m2). SPL grows slowly from November to next February, during
which, weather types transform gradually from types #4 to #7 with winter characteristics.
In other words, as seen in Figures 4 and 8b, the total occurrence frequency of weather types
#2, #3, and #4 accounted for 72–95% in section A starting from late April to the end of
September. Therefore, SPL would enjoy the high temperature and humidity, as well as
the long sunshine hours and strong radiation, with some fluctuation between these three
weather types.

With types #2, #3, and #4 occurring alternately during section A, cross-referencing
between Figures 4, 8, and 9, types #2 and #3 featured low daily precipitation (12–15 mm)
whereas type #4 featured high daily precipitation (42 mm). Furthermore, all three types had
occasional extremely high daily precipitation (with a maximum of up to 86–307 mm). These
showed that there were potential demands to set up provisional rainwater tanks, such as
additional water containers and large inclined planes to increase rainwater collection areas
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and storage volume as watershed during intensive showers, which could be set aside for
later irrigation in a sustainable way. Therefore, by way of providing an SPL irrigation plan
to satisfy SPL’s abundant water needs in hot summers, the daily irrigation water supply
can be managed to come from an additional setup of a rainwater tank to collect and store
torrential rain as a supplement to irrigation water from May to September, specifically
during section A. The potential size of the suggested rainwater tank depends on the SPL
planting area, the number of plants, and the loading capacity of the rooftop of the building.

The sunshine duration can affect plants’ growth due to sunlight exposure for photosyn-
thesis; therefore, some crop species prefer longer sunlight exposure to grow prosperously
than others. The features of sunshine duration, global radiation, and total cloud cover
level can also impact the efficiency of solar power utilization. Therefore, seasons with long
sunshine hours and radiation (type #3) showed higher suitability for heliophyte species or
require some shading facility for sciophyte species to prevent sunscald. On the other hand,
this also suggests the great potential to establish a solar power facility for providing green
energy to the automatic irrigation system in the farm.

5. Conclusions

This study proposed an SOM neural network to cluster and identify the specific
features of weather types based on six meteorological variables at five weather stations in
northern metropolitan Taiwan. The daily meteorological datasets, comprising temperature,
precipitation, relative humidity, sunshine duration, global radiation, and total cloud cover
from 2014–2018, were collected as inputs to the SOM network and then were classified
into a topological map based on the similarities of weather features to investigate their
multi-collinear relationships for spatiotemporal distribution analysis.

The results of the weather features from the SOM classification not only corresponded
to what we know about the general weather features in the five metropolitan areas but
also provided detailed and integrated information of weather features on the occurrence
period, duration, frequency, intensity, and variation range from historical data sets on a
10-day basis. This study contributes to the practicability for urban agriculture planning
by exploring the in-depth weather features in northern Taiwan to conduct urban farming
in planting arrangement, installing equipment, and managing the crop-growing process
(seeding, seedling, growth rate, maturing, flowering, fruiting, harvesting, etc.) in response
to local weather features before launching planting in the five study areas.

The results of this study can also be applied to selecting appropriate species for
planting in favorable seasons with appropriate weather features. The size of the rainwater
tank and the scale of solar power equipment can also be identified to comply with weather
features to achieve the optimal resource utilization efficiency to grow and irrigate vegetables
so as to reduce the municipal water and electricity use during farming operations.

Given the arising phenomenon of climate change, the chances of unprecedented
weather with continuous hot/chilly days, rainstorms, and droughts tend to occur more
frequently. However, such weather conditions were not included in the weather typing
in this research because outlier data (especially for extremely high precipitation, which is
mostly caused by typhoons or sudden torrential rains) were removed at the data prepro-
cessing stage. It is suggested that the extreme weather events in cities of northern Taiwan
require further investigation regarding their occurrence time and frequency, as well to help
with providing advice as a further reference/strategy for urban agriculture operations if
possible so that more risks may be anticipated and stronger adaptation measures could
be prepared.
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Abstract: This paper aims to develop a stochastic model (SM_EID_IOT) for estimating the inundation
depths and associated 95% confidence intervals at the specific locations of the roadside water-level
gauges, i.e., Internet of Things (IoT) sensors under the observed water levels/rainfalls and the
precipitation forecasts given. The proposed SM_EID_IOT model is an ANN-derived one, a modified
artificial neural network model (i.e., the ANN_GA-SA_MTF) in which the associated ANN weights
are calibrated via a modified genetic algorithm with a variety of transfer functions considered. To
enhance the reliability and accuracy of the proposed SM_EID_IOT model in the estimations of the
inundation depths at the IoT sensors, a great number of the rainfall induced flood events as the
training and validation datasets are simulated by the 2D hydraulic dynamic (SOBEK) model with
the simulated rain fields via the stochastic generation model for the short-term gridded rainstorms.
According to the results of model demonstration, Nankon catchment, located in northern Taiwan,
the proposed SM_EID_IOT model can estimate the inundation depths at the various lead times with
high reliability in capturing the validation datasets. Moreover, through the integrated real-time
error correction method integrated with the proposed SM_EID_IOT model, the resulting corrected
inundation-depth estimates exhibit a good agreement with the validated ones in time under an
acceptable bias.

Keywords: ANN; roadside IoT sensors; simulations of the gridded rainstorms; 2D inundation
simulation and real-time error correction

1. Introduction

Owing to climate change and the occurrence of extreme rainstorm events, rainfall-
induced flood frequently takes place, causing severe damage to people’s lives and prop-
erties. Hence, flood early warning operation plays an important role in the prevention
and mitigation of flood-induced hazards. Recently, with the establishment of the dike
system, flooding is triggered merely as a result of overtopping from the embankments;
in contrast, inundation frequently occurs in the urban and drainage zone owing to the
failure of draining the runoff through the sewer systems [1]. In the past, the flood early
warning operation was executed based on specific thresholds (e.g., rainfall or inundation
depth) in accordance with real-time measurements; however, the real-time practical inun-
dation depths, especially in urban areas, are hardly measured owing to the limitation of
measurement equipment or hindrance in data acquisition, processing, and analysis [1–3].

To achieve the goal of immediately capturing and transferring the temporal changes
in the inundation depths on the roads, the IoT is commonly utilized to set up the road-
side sensors in order to measure the flooding/inundation depths, especially on the roads
where the water levels result from the rainstorms of which the corresponding strength
is perhaps greater than the draining capability with respect to the sewers. Moreover, to
achieve the goals of flood early warning and flood-induced hazard mitigation, receiving
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and estimating the inundation information is an essential task. Among the flooding infor-
mation, the potential inundation region and associated area are supposed to be known
in advance. In spite of the difficulty in obtaining real-time measured observations (e.g.,
water level), they could be established through the hydraulic numerical models under
consideration of the design rainfall events regarding the various return periods [4–6]. For
example, Chen et al. [4] established a potential inundation-map database by means of the
hydraulic numerical model (HEC_RAS) with the design rainfall events of the various return
periods. In referring to the above inundation-map database, the possible flooding area
under conditions of rainfall characteristics could be quantified for the flood warning sys-
tems and emergency. In addition to the hydraulic/hydrological numerical modeling with
the given precipitations, another commonly used data-derived method is to roughly and
rapidly perform the flooding mapping in accordance with the at-site observations [7], such
as the water-level gauges [8] or the observed inundation depths recorded at the roadside
IoT sensors [9,10]. Furthermore, the observations related to the water levels/inundation
depths can be generally incorporated with a GIS model with the digital elevation map
(DEM) to estimate the area of the floodplain [11,12]. For illustration, Shastry and Du-
rand [12] proposed the two-step algorithm for effectively regulating the more accurate
floodplain topography by combining the results from the flood model associated with the
DEM and inundation-related observations. In conclusion, the at-site inundation-depth
estimates/forecasts should be advantageous to flooding prevention and mitigation.

Generally speaking, the well-known flood simulation models applied in the inunda-
tion simulation can be classified into two types: deterministic models (i.e., physical-based
models) and statistical-related models (i.e., data-driven models) [13,14]. Deterministic-based
flooding simulation models have been proposed to forecast the water levels/inundation
depths within the specific zone under the given precipitation of high resolution in time and
space, leading to a possible problem where a long computation time might affect the effec-
tiveness and performance [15–18] attributed to the uncertainties in the complicated model
structure and insufficient direct measurements regarding physical signification [18–20].
Recently, artificial intelligent (AI) modeling has been comprehensively applied in the
prediction of the flood-related hydrological variates (e.g., precipitation, discharge, and
water level) [18,21–26]. Of the relevant AI models, the ANN-based model can be more
efficiently applied in modeling difficult and complicated phenomena described in terms of
nonlinear mathematic relationships by constructing the linear multi-layer network using
all possible predictor variables through the multiple training algorithm, especially for
hydrological forecasts, such as the precipitation, discharge, and water level [9,10,27,28].
For example, Campolo et al. [10] utilized the logistic function as the transfer function,
namely, the activation function, to train an ANN model that describes the spatial relation-
ship between rainfall and water levels to issue forecasting information on the distributed
water levels. Shamseldin [27] proposed an ANN-derived rainfall-runoff model based
on the structure of the multi-layer perceptron with a specific transfer function (i.e., the
logistic/sigmoid function) to provide the river-runoff forecasts using the weighted average
of rainfall and expectation of the rainfall index as well as the observed discharge as model
inputs. Furthermore, Tamiru and Dinka [28] combine the results from the ANN model and
the hydraulic numerical model (HEC-RAS) to carry out the flood-triggered inundation
simulation; in detail, the inundation simulation is implemented by the HEC-RAS model
under the boundary condition of runoff hydrographs at the up-stream and lateral branches
estimated by the ANN model. However, the performance of the resulting forecasts from
the ANN models is possibly impacted by uncertainties in the network structure, as well
as selection of the transfer functions and associated parameters (i.e., connection weights
between different layers, ANN weights). Thus, Wu et al. [18] presented a modified ANN
(called ANN_GA-SA_MTF) model by adopting a variety of transfer functions in which the
ANN weights are calibrated using the genetic algorithm based on the parameter sensitivity
(GA-SA) [29]. Particularly, within the ANN_GA-SA_MTF model, a real-time error correc-
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tion model for the water-level forecasts derived using the time series and Kalman filtering
approach RTEC_TS&KF [30] are combined in order to boost the accuracy of the estimates.

Therefore, this study intends to develop a stochastic model for estimating the inunda-
tion depths at the roadside water-level IoT sensors by training an ANN-derived models,
named the SM_EID_IOT model. With training the proposed SM_EID_IOT model, to en-
hance the reliability of its results, a great number of rainfall-induced inundation simulations
are adopted as the training dataset; in particular, the relevant concepts regarding the real-
time error correction technique on the basis of the different estimations and observations at
the previous times during the rainfall-induced flood event are applied in the development
of the proposed SM_EID_IOT model in order to obtain more accurate model outputs. It is
expected that the proposed SM_EID_IOT can not only provide the inundation depths at the
roadside IoT sensors with high accuracy, but also quantify their corresponding reliability,
which is advantageous to the decision-making regarding early flood warning operation
and infrastructure-planning of a water-proofing system as a reference.

2. Methodology
2.1. Model Concept

As mentioned in Section 1, an ANN-based inundation-depth estimation model at the
IoT sensors of interest, called the SM_EID_IOT model, is developed herein; the framework
of the model development can be generally classified into the three parts: (1) generation of
the gridded rainstorm events in the study area; (2) 2D inundation simulations by means
of the well-known hydraulic dynamic numerical modeling; and (3) establishment of an
ANN-derived model for estimating inundation depths at the IoT sites.

At first, to facilitate the accuracy and reliability of the results from the proposed
SM_FIDEP_IOT, a great number of the regional rainfall events are simulated via the
stochastic modeling for generating the gridded short-term rainstorms (i.e., SM_GSTR
model) [31]. Afterwards, they are used in the two-dimensional (2D) inundation simulation
by the hydraulic dynamic numerical model (i.e., SOBEK) [32] to reproduce the big data
involving the rainfall-induced inundation simulations, including the gridded inundations
and corresponding floodplain area treated as the training datasets. Within the development
of the proposed SM_EID_IOT model, this study adopts the ANN-based model, ANN_GA-
SA_MTF, proposed by Wu et al. [18] for describing the relationship between the at-site
inundation depths and the related rainfall and water levels. The associated connection
weights of the neurons at various layers are calibrated through the genetic algorithm
based on the sensitivities of model parameters (named the SA-GA method) [29] under
consideration of the multiple transfer functions.

Unlike the well-known ANN-based models, in order to reduce the effect of uncertain-
ties in the observations and model parameters, the resulting inundation-depth estimates
from the proposed SM_EID_IOT model need to be immediately corrected in accordance
with the difference between the observed inundation depths and forecasted ones at the
forward time steps through the real-time error correction method, RTEC_TS&KF [30]. The
aforementioned relevant methods and concepts are addressed below.

2.2. Generation of Gridded Rainstorm Events

It is well-known that a large training dataset is desired for training the ANN model.
Therefore, in this study, the stochastic modeling of gridded short-term rainstorms devel-
oped by Wu et al. (2021) (named the SM_GSTR model) is employed to simulate a great
number of rainstorms at all grids within the study area. Within the SM_GSTR model,
the event-based rainstorm is basically grouped into three rainfall characteristics, includ-
ing the event-based rainfall duration, gridded rainfall depths, and gridded storm depths
composed of the dimensionless rainfalls at the various dimensionless times; with respect
to the gridded storm pattern, it can be grouped into two components, the areal average
of the dimensionless rainfalls (i.e., the storm pattern) and the associated deviations at
the various dimensionless times. Of these, the gridded rainfall characteristics, gridded
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rainfall depths, and deviations regarding the areal average of the storm patterns are treated
as the spatially correlated variates and the areal average storm patterns are regarded as
the temporally correlated variates [31]. Figure 1 shows the process of characterizing the
gridded rainstorms into five features (i.e., the gridded rainfall characteristics).

Figure 1. Graphical process of extracting the gridded rainfall characteristics from observed hyetographs of rainstorm
events [31]).

Upon obtaining the gridded rainfall characteristic, within the SM_GSTR model, the
non-normal correlated multivariate Monte Carlo simulation approach (Chang et al., 1996)
based on the correlation structures of gridded rainfall characteristics in time and space is
adopted to generate a desired number of event-based rainfall events through the trans-
form algorithms. The transform algorithms could be employed via the Nataf bivariate
distribution model [32], including the transformation to standard normal space, orthogonal
transform, and inverse transformation, based on the following correlation relationship:

ρij =
∫ ∞

−∞

∫ ∞

−∞

⌊
xi − µi

σi

⌋⌊ xj − µj

σj

⌋
∅ij(〈 zi, zj

∣∣∣ρ∗ij 〉)dzidzj (1)

zi =
xi − µi

σi
; zj =

xj − µj

σj
(2)

where Xi and Xj are the correlated variables at the points i and j, respectively, with the means
µi and µj, the standard deviations σi and σj, and correlation coefficient ρij, respectively; i and
Zj are bivariate standard normal variables corresponding to the variables Xi and Xj, with the
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correlation coefficient ρ∗ij and the joint standard normal density function ∅ij(·). To generate
a number of variables with high correlation ρij, a set of semi-empirical formulae [33]
was derived to modify ρij in the original space to ρ∗ij in the normal space through a
transformation factor Tij, depending on the marginal distributions and correlation of Xi
and Xj, as follows:

ρ∗ij = Tij × ρij (3)

Eventually, the simulated gridded rainstorms can be achieved in accordance with the
process of combining the generated gridded rainfall characteristics, as shown Figure 2 [31].

Figure 2. Graphical process of combining the simulated gridded rainfall characteristics as the gridded rainstorms [31].

2.3. 2D Inundation Simulation Modeling

Using the estimated runoff hydrograph from the observed and predicted precipitation
and tide levels, the water level hydrographs at various cross-sections along the river and at
the computation grids within the region can be calculated through the inundation simula-
tion models developed using the depth-averaged Navier–Stokes equation (NSE), named
the Saint-Venant shallow water equations. Several numerical models for simulating 2D
inundation have been developed based on the NSE, such as SOBEK 1D-2D [32], MIKE 11-
21 [34,35], TrimR2D [36], and TELEAC-2D [37] In general, the above inundation-simulation
models can be classified into numerical, statistical, and flood inundation mapping models.
The hydraulic numerical SOBEK model is a sophisticated one-dimensional open-channel
dynamic flow and two-dimensional overland flow modeling system (named SOBEK 1D-2D
hydrodynamic model); it can be used to simulate and tackle problems in river management,
flood protection, design of canals, irrigation systems, water quality, navigation, and dredg-
ing. Therefore, this study uses the SOBEK model to carry out the inundation simulation
with a large number of generated grid-based rainstorms.

2.4. Artificial Neural Network Model Associated with Multiply Transfer Functions

It is well-known that the related artificial neural network (ANN) models are frequently
adopted in the forecast/estimation regarding flood-rated variates. In spite of the prediction
of the hydrological variates being effectively carried out by the ANN-based models, their
reliability and accuracy should be influenced by the uncertainties in the transfer function
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(i.e., activation functions) and selected and associated neuron weights between two layers
(i.e., ANN weights) attributed to the variation in the observations [18,38,39]. Moreover,
although the back-propagation (BP) algorithm with the gradient descent method is com-
monly utilized in training the ANN model, the formula of adjusting the connection weights
regarding the neurons is difficult to derive under constraint with the transfer functions
(or activation function) used. By doing so, the training performance fails to achieve the
local optimal values with high likelihood, contributing to the given inappropriate initial
values and leaning rate, which leads to the problem with oscillation, thereby reducing the
convergence speed [18,22].

Furthermore, the numbers of neurons at hidden layers are significantly increased
owing to the performance of training the ANN model. Thus, if few neurons are considered,
the corresponding network structure does not easily emulate the underlying function
attributed to the insufficient parameters; in contrast, as a result of a great number of
the neurons adopted in the network structure, the overfitting problem might occur [40].
Therefore, several methods are proposed to estimate the number of neurons included in
Table 1.

Table 1. Formulae for estimating the number of hidden neurons (Wu et al., 2021) [18].

No of Formulae Formula Reference

1 NHN =
(√

1 + 8× NIP − 1
)
/2 Li et al. method [41]

2 NHN = NIP − 1 Tamura and Tateishi method [28]
3 NHN = 2×NIP

NIP
+ 1 Zhang et al. method [42]

4 NHN =
√

NIP × NOP Shibata and Ikeda method [43])
5 NHN = 2NIP − 1 Hunter et al. method [44]
6 NHN =

[4×(NIP)
2+3]

[(NIP)
2−8]

Sheela and Deepa method [45]

Therefore, the network structure and the types of the transfer functions are supposed
to be regarded as the uncertainty factors for training the ANN models; to figure out the
problem with the above uncertainties in the training of the ANN model, Wu et al. [18]
proposed an ANN-derived model (named the ANN_GA-SA_MTF) by adopting the net-
work structure of three layers with multiple transfer functions (see Table 2) in which the
associated ANN weights are calibrated by means of the genetic algorithm based on the
sensitivities to model parameters (called the GA-SA algorithm) [29].

Table 2. Transform functions commonly used (Wu et al., 2021, Maca et al., 2014) [18,38].

Transfer function Formula Derivative

TF1 Logistic (soft step, Sigmoid) f (x) = 1
1+e−∝x f ′(x) = f (x)(1− f (x))

TF2 Tanh f (x) = tan h(x) = 2
1+e−2∝x − 1 f ′(x) = 1− f (x)2

TF3 Arctan f (x) = tan−1(∝ x) f ′(x) = 1
(∝x)2+1

TF4 Identity f (x) = ∝x f ′(x) = ∝
TF5 Rectified linear unit (ReLU) f (x) =

{
0 f or x < 0
1 f or x ≥ 0 f ′(x) =

{
0 f or x < 0
1 f or x ≥ 0

TF6 Parametric rectified linear unit
(PReLU, leaky ReLU) f (x) =

{
∝ x f or x < 0

x f or x ≥ 0 f ′(x) =
{

∝ f or x < 0
1 f or x ≥ 0

TF7 Exponential linear unit (ELU) f (x) =
{

∝ (ex − 1) f or x < 0
x f or x ≥ 0 f ′(x) =

{
f (x)+ ∝ f or x < 0

1 f or x ≥ 0
TF8 Inverse abs (IA) y(x) = x

1+|∝x| y′(x) = 1
(1+|a∝x|)2

TF9 Rootsig (RS) y(x) = ∝x

1+
√

1+(∝x)2
y′(x) = 1(

1+
√

1+(∝x)2
)√

1+a(∝x)2

TF10 Sech function (SF) y(x) = 2
exp(∝x)+exp(−∝x) y′(x) = −y(x)tan h(∝ x)
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To quantify the reliability of the model outputs, the proposed ANN_GA-SA_MTF
model is collaborated with a nonparametric method, named the weighted likelihood sample
quantile estimator method proposed by Yang and Tung [46], to compute the quantiles of
resulting model outputs via the following equation:

Xp,WL = ∑
r∈ω

Wr,n,WLX(r) (4)

in which Wr,n,WL = Fr,n(p)
∑s∈ω Fs:n(p) , with ω being the band width that contains a set of order

statistics (X(1) ≤ X(2) ≤ . . . ≤ X(n)) that are deemed significant in contributing to the
estimation of Xp as a result of the band width being no smaller than 2.0.

In addition to quantifying the reliability of the model estimates using the results from
the ANN_GA-SA_MTF model, the weighted averages of model estimates are issued as
forecasts using the following equation:

ŶWA = ∑NTF
i=1

[
Wi

TF × Ŷ
(

θ
j
TFi

)]
(5)

Wi
TF =

1
E(θi

TF)

∑NTF
i=1

1
E(θi

TF)

(6)

in which NTF is the number of transfer functions considered; Yk and Ŷk
(
θi

TF
)

denote the
observed hydrological data and estimated ones by the ANN_GA-SA_MTF model with the
jth set of the appropriate parameters θi

TF, respectively; and Wi
TF represents the weighted

factor of the ith transfer function with the appropriate parameters θi
TF calculated, with the

E
(
θi

TF
)

being the objective-function value (i.e., the root mean square error, RMSE).
In particular, to provide more reliable and accurate model outputs, the real-time error

correction method established using the time-series approaches and Kalman filtering [30] is

adopted within the ANN_GA-SA_MTF to immediately adjust the forecasts (Y
tpred
corr ) based on

real-time observations through the Internet of Things (IoT) using the ANN_GA-SA_MTF
model by means of the following equation:

Y
tpred
corr = Y

tpred
pred + ε

tpred
TS + ε

tpred
KF (7)

where Y
tpred
pred stands for the model estimates (i.e., the forecasts); and ε

tpred
TS and ε

tpred
KF serve as

the forecast error estimated by the time series approaches and Kalman filtering method,
respectively.

In summary, the framework of developing the ANN_GA-SA_MTF model is generally
classified into the four steps (see Figure 3): the parameter calibration using the GA-SA
approach, the reliability quantification of model outputs, the estimation of model outputs,
and the real-time correction of model outputs; the associated concepts are briefly introduced
as follows.
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Figure 3. Graphic framework of developing and applying the ANN_GA-SA_MTF model [18].

2.5. Model Formulation

To sum up the aforementioned concepts, this study intends to utilize the ANN_GA-
SA_MTF model to develop a smart model for forecasting the inundation depth at the
roadside IoT sensors, named the SM_EID_IOT model. As a result of the inundation being
significantly increased by the rainstorm, the inundation depths at the specific locations,
where the IoT sensors are set up, should be temporally and spatially related to the rainfalls
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and inundation depths at the previous time steps during an event (Notaro et al., 2013;
Lyu et al., 2018). Although the resolution of the rainstorm in space obviously impacts the
estimation of the flood/inundation, the areal average rainfalls calculated from a number of
the raingauges within the small basin are frequently applied in the hydrological/hydraulic
analysis under simplification of the rainfall-runoff simulation [47]. Therefore, in this study,
in addition to the uncertainties in the resolutions of the rainfall and inundations in time (i.e.,
the forward time step from the current time), the distances to the IoT sensor for calculating
the areal-average rainfall with the rainfalls at the grids (i.e., gridded rainfall) is treated as
the uncertainty factor calculated through the following equation:

Rt
IOT =

1
Ng

∑Ng
i=1 Rt

i (8)

where Rt
IOT accounts for the areal-average rainfall at the IoT sensor; Ng is the number of

the grids, the distance of which to the IoT senor is equal to or less than the specific critical
distance (i.e., critical spatial resolution); and Lc and Rt

i serve as the gridded rainfalls for the
time step t-hour at the ith grid.

Therefore, on the basis of the ANN_GA-SA_MTF model with generated rainfall-
inundation depths and associated gridded rainstorms, this study establishes the relation-
ship of the inundation depths at the IoT sensors with the inundation depths and rainfall at
the lead times, as well as the previous time steps, and the inundation depths at the forward
time step can be written as follows:

ĥt+1
IOT = fANNGA−SA_MTF

(
Rt+1

IOT , Rt
IOT · · · R

t−Tc−1
IOT , ht

IOT , · · · ht−Tc−1
IOT

)
(9)

in which Tc serves as the critical values of the resolutions in time (i.e., critical temporal
resolution); ĥt+1

IOT is the inundation-depth estimate for the lead time (t + 1 h); Rt+1
IOT denotes

the rainfall forecast at the lead time (t + 1 h); Rt
IOT , · · · Rt−Tc−1

IOT account for the areal average
rainfall at the current time (t hour) and those from the forward TR hours calculated from
the gridded rainfalls within the specific critical spatial resolution, i.e., the distance Lc to the
IoT sensor; and ht

IOT , · · · ht−Tc−1
IOT represent the observed inundation depths from the t hour

to the t-Th hours under consideration of the critical temporal resolution (i.e., the forward
time steps Th.). Note that the critical values of the resolution in time and space TR and Th
can be determined by evaluating the spatially and temporally varying trend of the at-site
inundation depth with the areal average rainfall via the correlation and sensitivity analysis
in this study.

2.6. Model Framework

According to the aforementioned concepts, the development and application of the
proposed SM_FIDEP_IOT model can be grouped into six parts: (1) generation of the
rainstorm events at all grids within the study area; (2) 2D rainfall-induced inundation
simulation; (3) extraction of the at-site inundation depths and corresponding rainfall at
neighboring grids; (4) identification of critical resolution in time and space; (5) development
of the proposed SM_EID_IOT model on the basis of the ANN_GA-SA_MTF model; and
(6) integration with the real-time error correction (RTEC_TS&KF) method to adjust the
inundation-depth estimates. The detained framework of the model development and
application are addressed as follows.

2.6.1. Model Development

Step 1 Collect the historical rainstorm events at all grids within the study area and extract
their gridded characteristics, i.e., rainfall duration, gridded rainfall depth, areal
average of cumulative dimensionless rainfall, and the associated bias.

Step 2 Reproduce a great number of rainfall fields with high spatiotemporal resolutions
comprised of the simulated gridded rainfall characteristics by the SM_GSTR model
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with the results from uncertainty analysis using the observations obtained in
Step [1].

Step 3 Carry out the 2D inundation simulation by means of the SOBEK model with a
great number of gridded rainstorms simulated in Step [2] to obtain the simulations
of inundations depths at the IoT sensors.

Step 4 Extract the simulated inundation depths at the IoT sensor under consideration of
different periods (i.e., critical temporal resolution) and the corresponding simulated
rainfalls at the neighboring girds within the specific distances to the IoT sensor
(i.e., critical spatial resolution).

Step 5 Perform correlation and sensitivity analysis to determine the appropriate critical
resolutions in time and space.

Step 6 Calculate the areal average rainfalls from the simulations of the gridded rainfall
under the consideration of critical temporal and spatial resolutions determined in
Step [5].

Step 7 Calibrate the parameters of the ANN_GA-SA_MTF model used in the estimation of
inundation depths via the proposed SM_EDI_IOT model using the simulations of
the inundation depths at the IoT sensor and corresponding areal average rainfalls.

2.6.2. Model Application

Step 1 Collect the observed inundation depths during the rainfall-induced flood event at
the IoT sensor and calculate the corresponding areal average rainfalls under the
conditions of the appropriate temporal and spatial resolutions.

Step 2 Obtain the resulting inundation-depth estimate at the lead times and associated
95% confidence intervals from the proposed SM_EID_IOI model.

Step 3 Carry out the real-time correction regarding the resulting inundation-depth esti-
mates at the lead times from the proposed SM_EID_IOT model with the RTEC_TS&KF
method in accordance with the bias of the inundation-depth estimates in compari-
son with the observations at the forward time steps during the event.

3. Study Area and Data

The Nankan River—whose length and drainage area and slope are 31 km and 224 km2,
respectively (see Figure 4)—in Taoyuan County is one of the most polluted rivers in
northern Taiwan; further, its average slope and mountain area are about 0.0077 and over
900 m, respectively. Additionally, it flows through Guishan, Taoyuan, and Luzhou Districts
in Taoyuan City, including six riverside parks and three branches, Dongmon Creek, KengZi
Creek, and Kengzi Creek. Of the aforementioned branches, Dongmon Creek is frequently
inundated as a result of a reduction in the number of detention ponds and the cross-section
area in the river channel. Note that, within the Nankan River watershed, Taiwan Central
Weather Bureau (CWB) provides the quantitative precipitation estimation (QPE) with a
spatial resolution of 1.5 km × 1.5 km, i.e., the rainfall data of 336 grids (called QPE grids),
as shown in Figure 4.

As the purpose of this study is to develop a stochastic ANN-derived model using
the training datasets comprising a great number of the rainfall-induced 2D inundation
simulations with high resolution in time and space, the hourly rainfall of 20 rainstorm
events at 336 grids within the study area (Nankan River watershed) (see Table 3) is adopted
as the study data.

Figure 5 shows the hyetographs of the 20 selected radar-based rainstorm events
(2005–2017) provided by Taiwan Central Weather Bureau. According to the process of
extracting the gridded rainfall characteristics, the gridded rainfall depths and storm pat-
terns of the concerned 20 rainstorm events in the study area can be obtained. Therefore,
upon establishing the proposed SM_EID_IOT model, the uncertainties in the gridded
rainfall characteristics should be taken into account and quantified for the simulations of
the rainstorm events at all grids within the study area. Accordingly, big data regarding the
2D rainfall-induced flood events can be generated at the training and validation datasets.
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Figure 4. Locations and DEM as well as QPE grids (blue circle) within the study area, Nankan River
watershed (yellow region) [18].

Table 3. Summary for hydraulic facilities, hydrological analysis, and topographic features used in the SOBEK model for the
Nankan River watershed.

Hydraulic Facility Number Hydrologic Analysis Model

1. Sub-basins 579 Rainfall-runoff modeling SCS UH
2. Cross-sections 3219 Topographic feature Measurement date

3. Gates 18 1. Digital elevation map 2012
4. Bridges 90 2. Map for land-use 2014
5. Sewer 1386 Hydraulic factors Kn Magnitude

6. Manholes for sewer system 1382 Roughness coefficient 0.2–0.45
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4. Results and Discussion
4.1. Simulation of Rainfall-Induced Inundation

Before carrying out the rainfall-induced inundation, a great number of the gridded
rainstorms should be reproduced in advance. Thus, in this study, using the SG_GSTR
method with the above statistical moments of gridded rainfall characteristics, 1000 simu-
lations can be obtained. After that, the SOBEK 1D-2D hydrodynamic model is employed
to carry out the inundation simulation with 20 m × 20 m DEM of Nankan River water-
shed provided by Water Resource Agency in Taiwan (see Figure 5). Figure 6 presents the
river-channel internet and computation nodes in the SOBEK 1D-2D dynamic model set up
according to the geographical and hydrological data in the study area. Within the Nankan
River watershed, a mesh composed of 335 × 520 computation grids whose the spatial
resolution is 20 m × 20 m is adopted. The above topographic, hydrologic, and hydraulic
features used in Nankan River SOBEK model are listed in Table 3. Finally, using the SOBEK
model for the Nankan River watershed with 1000 simulations of the gridded rainstorm
events, the resulting 2D inundation simulations, including the gridded inundation depths
and corresponding flooding area, could be accordingly obtained.

Figure 6. 2D SOBEK model for the study area (Nankan River watershed) (note: the circle is the
rainfall-runoff computing node for each sub-basin).

Thereby, this study implements the 2D inundation simulation by taking into account
the spatiotemporal uncertainty in the rain field to achieve the goal of providing detailed 2D
inundation information with high spatial and temporal resolution as the training datasets
for the proposed SM_EID_IOT model.

4.2. Identification of Potential Locations of Roadside IoT Sensors

On the basis of the results from the simulated grid-based inundation depths within the
study area, a 2D inundation simulation with high spatial and temporal resolution can be
used to determine the locations of the roadside water-level sensors. In detail, the road-side
water-level sensors can be set up at the locations in association with high flooding fre-
quency calculated from the above 2D inundation simulations for the correction of flooding
forecasts [30]. Under the consideration of IoT quality, the most appropriate locations of
roadside water-level sensors can be accordingly determined and named IoT sensors.
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To quantify the flooding risk at all grids, this study utilizes the following equation to
calculate the flooding probability (Pf

(
h f > 0

)
) within the study area, the Nankan River

watershed (see Figure 4):
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where I f

(
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)
is the flooding indicator and max

(
h f

)
stands for the maximum gridded

inundation. In Equation (10), if the maximum of gridded inundation depth is greater
than zero, the corresponding flooding probability I f

(
hi

f

)
is equal to one; otherwise, it

is equal to 0. Thus, in reference to Figure 7, it can be seen that inundation mainly takes
place in the four regions. Apparently, the first 46 grids associated with high flooding
probabilities (approximately 0.7) can be identified in the two locations marked with a red
line, near the locations (TWD97X:280200.2, TWD97Y:2765356.7) and (TWD97X:281523.6,
TWD97Y:2761435.5), respectively; they can be treated as the potential inundated grids.
Therefore, among the aforementioned potential inundated spots, the locations of desired
roadside IoT sensors can be determined.

Figure 7. Flooding risk map and locations of potential inundated spots within the study area (the Nankan River watershed).

In conclusion, the quantification of flood risk at all grids within the study area can be
carried out using a large number of inundation simulations by the hydraulic numerical
model with the generated grid-based rainstorm events through the proposed SM_GSTR
model. Additionally, the resulting big data of rainfall-inundation simulations are advanta-
geous to the identification of roadside inundation-depth sensors, which can be used in the
real-time error correction of flood forecasts [1].

As the Nankan River watershed lacks practical roadside IoT sensors, the grid with
high flooding risk, the TWD97 coordination of which is (TWD97X: 281523.6, TWD97Y:
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2761435.5), is selected as the potential IoT sensor. As a result, the corresponding simula-
tions of rainfall-induced inundation, consisting of the inundation depths and associated
areal average rainfalls, are employed in the development and validation of the proposed
SM_EID_IOT model.

4.3. Determination of Critical Resolutions in Time and Space

In this study, the correlation and sensitivity analysis for the inundation depth at the
IoT sensor of interest (TWD97X: 281523.6, TWD97Y: 2761435.5) is carried out to detect the
appropriate critical value of the spatial and temporal resolutions. In detail, the critical
distance to the IoT sensor for calculating the areal average rainfalls and the forward time
steps from the current time for selecting the observed inundation depths and areal average
rainfalls are required for deriving Equation (9) within the proposed SM_EID_IOT model.

4.3.1. Critical Resolution in Space

To quantify the fitness of the areal average rainfall for various critical distances to the
inundation depth, Pearson correlation coefficients (ρ) are adopted, as shown in Figure 8,
presenting that most correlation coefficients gradually increase/decrease with the critical
distances, i.e., the critical spatial resolution Lc used in Equation (9). For example, regarding
the 5th, 500th, and 1000th simulation cases, the correction coefficient generally declines from
the critical distance of 1.5 km to 4 km critical distance; it then remains constant. Contrarily,
in the case of the remaining simulation cases, the correlation coefficient remains constant.

Figure 8. Relationship between the inundation depth and associated areal average of rainfall calculated using the simulated
gridded rainfall with the specific distances from the IoT sensor of interest.

To quantify and assess the effect of critical distances regarding the calculation of areal
average rainfall on the estimated inundation depth, the statistical properties of Pearson
coefficients (i.e., mean value µ and standard deviation σ) calculated from 1000 simulation
cases are computed as shown in Figure 9, where the mean value of the correlation coefficient
ρ declines with the critical distance from 1.5 km (ρ = 0.655) km to 3 km (ρ = 0.645), and
the correlation coefficient then reaches its constant value (ρ = 0.645); further, its standard
deviations for various critical distances approximate 0.69, except for the 2 km critical
distance (σ = 0.688).

To sum up, the above results from the correlation analysis reveals that, in spite of
the 2 km distance having the smallest variation, the areal average rainfall calculated
from the precipitations at the grids, the distance of which to the IoT sensor is less than
or equal to 3 km, exhibits a stable variation in terms of the correlation coefficient. In
conclusion, the critical resolution in space is assigned as 3 km for the calculation of the
areal average rainfalls.
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Figure 9. Correlation coefficients and associated statistical properties of inundation depths with the
areal average rainfall calculated using the simulated gridded rainfall with specific distances from the
IoT sensor of interest.

4.3.2. Critical Resolution in Time

Generally speaking, the water level at the current time is markedly related to the areal
average rainfall and inundation depths at the previous time steps. Thus, the temporal
resolution of the areal average rainfall and inundation depths in terms of the correlations
within the specific forward time steps, i.e., critical temporal resolution Tc hour in the
standardized regression equation, possibly affect the estimation of the inundation depths
at the current time step for the IoT sensors. The standardized regression equation is as
follows (Speed and Yu, 1993):

Y−Y
SY

= ∑n
i=1 βi

Xi − X̂i
SXi

(11)

where Y and X are the model output and inputs; Y and X̂ account for the mean of the
model output and inputs, respectively; SY and SX separately represent the corresponding
standard deviation; and βi denotes the regression coefficient that is inversely related to the
model outputs; otherwise, the model parameter is proportional to the model output in the
case of the associated βi being positive. Note that the standard regression coefficient βi
accounts for the sensitivities of the ith model parameter to the model outputs, meaning
that a larger absolute value indicates that the change in the ith model parameter more
significantly impacts the estimation of the model outputs. Moreover, the model parameter
is associated with the negative βi. Accordingly, the above specific forward period k hours
should be treated as the sensible factors, which can be determined based on the regression
coefficients β (i.e., the sensitivity coefficient) of the standard regression Equation (11).

In this study, using 1000 simulations of the rainfall-induced inundation, the inundation
depths at the six particular time steps—0.3, 0.5, 0.6, 0.7,0.8, and 0.9 times the duration—and
the inundation depths as well as the areal average rainfall at the forward 6 h are used in the
establishment of the standard regression equation; their resulting regression coefficients
could be obtained as shown in Figure 10. By observing Figure 10, the average of absolute
sensitivity coefficients regarding the areal average rainfall and inundation depths at the
forward 1–6 h, it is known that, with respect to the inundation depth, the average of the
absolute sensitivity coefficients of the forward period from Tc = 1 h to Tc = 3 h ranges
between 0.563 and 0.43, which are obviously greater than the coefficients regarding the
forward Tc = 4 h to Tc = 6 h (about 0.029–0.127). Furthermore, in the case of the areal
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average rainfall, the absolute sensitivity coefficients corresponding to the forward 3 h
change on average from 0.123 to 0.426, which are significantly greater than the coefficients
at the forward 4–6 h (approximately 0.015–0.048).

Figure 10. The averages of absolute sensitivity coefficients regarding the areal average rainfall and inundation depths at the
various forward time steps.

To sum up the above results, the inundation depths at a particular time step are
strongly and significantly related to the areal average of rainfall and inundation depths
at the forward Tc = 3 h. Therefore, in referring to Equation (9), the relationship of the
estimated/forecasted inundation depth regarding the lead time (t + 1 h) at a specific IoT
sensor ĥt+1

IOT with the observation of the areal average rainfall at the lead time (t + 1 h) and
current time (t hour) as well as the forward 2 h and the inundation depths at the forward
3 h (i.e., t, t − 1 and t − 2 h) can be written as follows:

ĥt+1
IOT = fANN−GA−MTF

(
Rt+1

IOT , Rt
IOT , Rt−1

IOT , Rt−2
IOT , ht

IOT , ht−1
IOT , ht−2

IOT

)
(12)

where Rt
IOT is the rainfall forecast at the lead time (t + 1 h); Rt

IOT , Rt−1
IOT , and Rt−2

IOT are the
areal average rainfalls calculated using the gridded rainfall at the current time (t hour)
and forward 2 h (t − 1 and t − 2 h) within the distance of 3 km to the location of the IoT
sensor; and ht

IOT , ht−1
IOT , and ht−2

IOT represent the observed inundation depths at the current
time (t hour) and forward 2 h (t − 1 and t − 2 h).

4.4. Development of the Proposed SM_EID_IOT Model

In referring to the framework of the model development, the proposed SM_EID_IOT
model for estimating the inundation depths at the lead time regarding the IoT sensor is
developed based on the ANN-derived ANN_GA-SA_MTF model by taking into account
the uncertainty factors, including the areal average rainfall at the lead time and forward
3 h and the inundation depths at the forward 3 h. Furthermore, according to the induction
to the ANN_GA-SA_MTF model, the initial conditions regarding the parameters should be
given in advance, including the number of the hidden layers, the total number of neurons
used, and the candidate transfer functions, as listed in Table 2. It is well-known that
the three-layer network structure, comprising one input layer, one output layer, and one
hidden layer, is commonly adopted in hydrological/hydraulic modeling (e.g., Wu et al.,
2021); thus, the hidden layer used in the derivation of the SM_EID_IOT model is derived
on the basis of the three-layer ANN-based model (i.e., the ANN_GA-SA_MTF model).
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Moreover, in general, the number of neurons in the entire ANN network structure can be
set up by means of a variety of formulae listed in Table 1 in accordance with the number
of model inputs and outputs. Figure 11 indicates the resulting number of neurons from
the different equations, ranging from 3 neurons to 127 neurons. Accordingly, their average
number of 8 neurons is employed in the model development. In addition, the statistical
properties, the mean and standard deviation, of the ANN weights are assigned as 0 and 1,
respectively. As for the remaining parameters, their initial conditions can be referred to in
Table 4.

Figure 11. Summary for the estimation of the number of hidden neurons via various methods.

Table 4. Definition of parameters used in the proposed ANN-GA-SA_MTF model.

Parameters Definition

Transfer functions used TF1-TF10

Input factors Average rainfall Rt+1
IOT , Rt

IOT , Rt−1
IOT , Rt−2

IOT
Inundation depth ht

IOT , ht−1
IOT , ht−2

IOT

Output factor Inundation depth ĥt+1
IOT

Number of hidden levels 1

Number of neurons 8

Calibration of parameters of transfer function

Number of optimizations 10

Weights of neurons (ωHL)
Mean 1

Standard deviation 3

Bias of function (θTF)
Mean 0

Standard deviation 1

Adjusting factor (∝TF)
Mean 1

Standard deviation 0.005

Using the parameter definition shown in Table 5, the SM_EID_IOT model can be
developed by training the ANN_GA-SA_MTF model with 650 simulations of the train-
ing datasets, extracted from 1000 rainfall-induced inundation simulations obtained in
Sections 4.1 and 4.2. Table 5 summarizes the results from the parameter calibrations under
consideration of the transfer function TF1 (Sigmoid function). Furthermore, according
to Figure 12, the inundation-depth estimates are the weighted average using the model
estimates resulting from a variety of transfer functions with the corresponding weights, as
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shown in Figure 13, in which TF2 (Tanh function) and TF5 (ReLU function) are associated
with the maximum and minimum weights, 0.10045 and 0.0996, respectively, indicating that
the various transfer functions significantly contribute to different degrees to the estimation
of the inundation depths at the IoT sensors. Consequently, it is necessary to take into ac-
count the effect of uncertainty in the formulation of the transfer functions on the estimation
of model outputs via the proposed SM_EID_IOT model.

Table 5. Summary for the calibrated parameter of the SM_EID_IOT model in the study area (the Nankan River Watershed).

Transfer Function Adjust Factor (∝TF) 0.99139

TF1 (Sigmoid)
Connection
weights of

neurons ωHL

First Hidden Layer
Model Inputs at Input Layer

1 2 3 4 5 6 7 Bias

Neuron

1 2.105 −0.146 −3.114 −3.035 1.756 −3.039 −3.355 0.169
2 1.879 −0.267 2.018 −3.344 −1.904 −0.069 −4.633 −2.275
2 1.898 3.023 −3.828 −2.855 4.008 −1.024 4.944 −3.015
4 −0.186 −1.392 2.213 1.737 4.005 6.746 −2.054 −0.052
5 −1.372 2.638 −1.166 −3.536 1.961 −2.736 −3.007 −0.043
6 3.729 −3.363 −2.254 −0.530 −4.844 4.774 2.666 5.212
7 5.364 0.546 5.105 0.169 −4.981 2.625 2.180 3.198
8 10.950 −3.238 6.896 −1.404 −5.472 1.547 −4.310 −4.908

Output layer Connection neurons at the first hidden layer
Model
output 1

1 2 3 4 5 6 7 8 Bias
−0.264 −0.002 0.357 0.136 −0.560 −1.682 −0.582 0.368 0.085

Figure 12. Summary of the weights of the transfer function for calculating the weighted average of
inundation-depth estimates.

4.5. Model Validation

To demonstrate the reliability and accuracy of the resulting inundation-depth estimates
from the proposed SM_EID_IOT model, a simulated rainfall-induced inundation event,
i.e., the 825th simulated rainstorm event (see Figure 13) is adopted as the validated one,
where the duration and average rainfall intensity regarding the validated event are 57 h
and 3.7 mm/h, respectively; moreover, in the validated water-level hyetograph, the two
peaks of the inundation depths are 0.12 m and 0.1 m at the 30th and 40th hours, respectively.
As the Center Weather Bureau (CWB) in Taiwan can provide the gridded rainfall forecasts
at lead times of 3 h, the model verification focuses on the evaluation in comparison with
the inundation-depths estimates at the 1, 2, and 3 h lead times, namely, t + 1, t + 2, and
t + 3 h, respectively (t = current time).
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Figure 13. Relationship between the areal average rainfall and inundation depths regarding the 825th
validated rainfall-induced flood event.

4.5.1. Reliability Quantification of Inundation-Depth Estimates

Accordingly, as for the 460th simulation case, the resulting inundation-depth esti-
mates and associated 95% confidence intervals at the IoT sensor can be obtained from
the SM_EID_IOT model as compared with the validated ones, as shown in Figure 14. It
can be seen that the temporal change in the inundation-depth estimates at the three lead
times resembles variation regarding the areal average rainfall in accordance with the high
correlation. Moreover, at the 1 h lead time, the estimated inundation depths mostly lie
around the 95% confidence interval, except for the 30th–31th and 40th–41th hour, where
the inundation-depth estimates are about 0.119 m and 0.09 m, exceeding the upper bounds
of 0.075 m and 0.085 m, respectively. Similar results can be found for the inundation-
depth forecasts at the 2 h and 3 h lead times. The above results imply that the proposed
SM_EID_IOT model can produce the inundation-depth estimate with high likelihood of
approaching the true values (i.e., observations).

As can be seen in Figure 14, in spite of the proposed SM_EID_IOT model possibly
producing reasonable inundation-depth estimates, the inundation-depth estimates at the
1 h lead time are underestimated as compared with the validated data at the 30th–32th hours
regarding the 825th simulated event. Hence, to evaluate the accuracy of the inundation-
depth forecasts at the various lead times, the performance in comparison with the estimated
inundation depths and validated ones at the 31th–51th hours is carried out in terms of the
root mean error (RMSE) and correlation coefficients, as shown in Figure 15. According to
the results from Figure 15, the RMSE increases with the lead time; however, the correlation
coefficient declines with the lead time. For example, although the estimations exhibit an
obvious difference from the validation data in association with a large root mean error
square (RMSE) (about 0.01 m), the corresponding correlation coefficient approaches 0.3,
meaning the change in the average rainfall in time is close to that regarding the inundation
depth; similar conclusions are also made based on the results from the 2 h and 3 h lead
time. The above difference between the estimation and validations might be caused by the
uncertainties in the observation and model parameters.
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Figure 14. Comparison among the validated, estimated, and corrected inundation depths as well
as the quantified 95% confidence intervals for the validated rainfall-induced flood event by the
proposed SM_EID_IOT model.
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Figure 15. Summary of the performance indices of the inundation-depth estimates and comparison
with the validation datasets at various lead times.

4.5.2. Real-Time Correction of Inundation-Depth Estimates

To facilitate the accuracy of the results from the proposed SM_EID_IOT model, the
inundation-depth estimates are supposed to be adjusted based on the real-time measured
data. The real-time error correction method is developed via the time series approach and
Kalmen filtering equation (RTEC_TS&KF) [30]. Figures 16 and 17 show the comparison
between the validated, estimated, and corrected inundation depths, respectively, as well
as the corresponding performance indices, respectively, indicating that the RMSE value
increases with the lead time; in contrast, the correlation coefficient markedly decreases with
the lead time. In spite of the RMSE values for the corrected inundation-depth estimates
significantly increasing with the lead time, from 0.007 m to 0.014 m, on average, they are
less than those for the forecasts (0.012 m). Moreover, with respect to the consistency wof
the validations, the correlation coefficients for both inundation-depth estimations and
corrections generally decrease with the lead time, 0.28–0.26 (estimations) and 0.74–0.06
(corrections), respectively. For illustration, the correlation coefficients for the corrections at
the 1 h lead time approximate 0.7, obviously greater than that from the estimates (about
0.28). In particular, at the 3 h lead time with the worst correlation, −0.25 (estimations) and
0.07 (corrections), the corrections have better consistency with the validated datasets than
the estimations. The above results reveal that the corrected inundation-depth forecasts
exhibit better agreement with the observations than the underestimated/overestimated
inundation-depth forecasts, with the marked errors even for the long lead times being able
to be immediately adjusted.

Figure 16. Cont.
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Figure 16. Comparison among the validated inundation depths and the corrected as well as corrected
ones by the proposed SM_EID_IOT model during the validated rainfall-induced flood event.

Figure 17. Cont.
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Figure 17. Summary of the performance indices of the inundation-depth estimates and the corre-
sponding corrections for the validated rainfall-induced flood event.

In summary, the accuracy of the resulting inundation-depth estimates at various
lead times (hours) from the proposed SM_EID_MTF with a reasonable reliability can be
effectively improved based on the difference between the observations and estimates at the
previous time steps during a rainfall-induced flooding event.

5. Conclusions

This study intends to propose a stochastic ANN-derived model for the estimation
of the inundation depths at the roadside water-level sensors set up through the Internet
of Things (IoT) (named the SM_EID_IOT). The proposed SM_EID_IOT is developed on
the basis of the artificial neural network model ANN_GS-SA_MTF (Wu et al., 2021), in
which the associated parameters are calibrated by means of the modified genetic algorithm
(GA-SA) [30] under the consideration of multiple transfer functions. A basin located
in northern Taiwan, the Nankan River watershed, is selected as the study area and the
associated grid-based precipitation data regarding 20 historical rainstorms provided by
Center Weather Bureau in Taiwan are utilized to reproduce 1000 simulations of the rainfall-
induced inundations via as the training dataset for the development of the proposed
SM_EID_IOT model.

According to the results from the correlation and sensitivity analysis, the inundation
depths at the IoT sensor for the forward periods of 3 h (i.e., critical temporal resolution) and
the corresponding precipitations at the neighboring grids within the specific distance of
3 km (i.e., critical spatial resolution) to the IoT sensor should be regarded as the uncertainty
factors for the resulting inundation-depth estimate (i.e., model inputs) from the proposed
SM_EID_IOT model. Additionally, the results from the model demonstration indicate
that the validated inundation depths at the lead times of 3 h are almost located within the
quantified 95% confidence intervals by the proposed SM_EID_IOT model, revealing that
the proposed SM_EID_IOT can provide the inundation-depth estimates at the lead times of
3 h with a high likelihood of approaching the validated datasets. Furthermore, the corrected
inundation-depth estimates by the real-time error correction method RTEC_TS&KF method
integrated within the proposed SM_EID_IOT model could effectively improve the accuracy
of the inundation-depth estimates by 50%; thereby, the estimate exhibits a good match
with the validated datasets under a better temporal correlation (i.e., correlation coefficient
approaching 0.8). Consequently, the proposed SM_EID_IOT model is capable of estimating
more accurate inundation depths at the IoT sensors of interest with high reliability.

In addition to the estimation of the inundation depths at the particular locations
at which the roadside water-level IoT sensors are set up, the rainfall-induced flooding
map is necessarily delineated in order to primarily estimate the possible inundation area
under conditions of the flood-rated indices, such as the flash-food potential index (FFPI)
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and flooding potential index (FPI) [48], and rainfall-rated variables, such as the radar
precipitation [49,50]. As a result of the flooding map being composed of the gridded
inundation depths, the inundation depths at the ungauged locations should be quantified;
by doing so, future work would improve the application of the framework and detailed
concepts of developing the proposed SM_EID_IOT model in the derivation of stochastic
ANN-derived modeling (i.e., the ANN_GA-SA MTF model) for the inundation-depth
estimates at the ungauged locations within the flood-prone zones.
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