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Preface to ”Calculus of Variations, Optimal Control,

and Mathematical Biology: A Themed Issue

Dedicated to Professor Delfim F. M. Torres on the

Occasion of His 50th Birthday”

This publication is a Special Issue of the journal Axioms entitled “Calculus of Variations, Optimal

Control and Mathematical Biology: A Themed Issue Dedicated to Professor Delfim F. M. Torres on

the Occasion of His 50th birthday”. This Special Issue is dedicated to Professor Delfim F. M. Torres

on his 50th birthday, as a recognition of his significant contributions to Mathematics, in particular

regarding the calculus of variations, optimal control, and mathematical biology. Professor Torres

is a distinguished University Professor, a highly cited researcher in Mathematics (in the top 1%

for Mathematics in the Web of Science in 2015, 2016, 2017, and 2019), and a lifetime member of

the American Mathematical Society. He is one of the founders of fractional variational analysis

and fractional optimal control, and has tremendously contributed to the theory of variational

analysis, with applications to many other fields such as optimization, optimal control, time-scale

analysis, and mathematical epidemiology and biology. Professor Torres is the recipient of several

international awards, including the 325 Years of Fractional Calculus Award, which is a testament

to the high regard in which his achievements in the area of fractional calculus and its applications

are held. He has been included in the World’s Top 2% Scientists by Stanford University in 2020,

2021, and 2022, both as a career-long highly cited researcher and as a single calendar year highly

cited researcher. He is considered by Thomson Reuters as one of the World’s Most Influential

Scientific Minds, has won a Publons Peer Review Award as a world’s top peer reviewer, and was

recognized in the top 1% of reviewers. He has also won a Sentinel of Science Award. Many of his

research works have been considered top papers in their area, served as research highlights, and

been awarded prizes. Besides being a great scholar, he is also a great teacher who has already

supervised twenty-four Ph.D. students from all over the world. This Special Issue covers many of

Professor Torres’ research interests, which include several areas of pure and applied mathematical

sciences, such as approximations and expansions, biology, and other natural sciences, calculus of

variations, and optimal control, optimization, difference and functional equations, fluid mechanics,

functional analysis, game theory, economics, social and behavioral sciences, general measure and

integration, the mechanics of deformable solids, number theory, numerical analysis, operations

research, mathematical programming, ordinary differential equations, partial differential equations,

quantum theory, real functions, systems and control theory, fractional calculus and its applications,

integral equations and transforms, higher transcendental functions and their applications, q-series

and q-polynomials, inventory modeling and optimization, dynamic equations on time scales, and

mathematical modeling.

This book comprises an editorial and fifteen original research papers that have been carefully

reviewed.

Natália Martins, Ricardo Almeida, Cristiana João Soares da Silva, and Moulay Rchid Sidi Ammi

Editors
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Natália Martins 1,*,†, Ricardo Almeida 1,†, Cristiana J. Silva 1,2,† and Moulay Rchid Sidi Ammi 3,†

1 Center for Research and Development in Mathematics and Applications, Department of Mathematics,
University of Aveiro, 3810-193 Aveiro, Portugal

2 Department of Mathematics, Instituto Universitário de Lisboa (ISCTE-IUL), Av. das Forças Armadas,
1649-026 Lisbon, Portugal

3 MAIS Laboratory, AMNEA Group, FST Errachidia, Moulay Ismaïl University of Meknès,
P.O. Box 509 Boutalamine, Errachidia 52000, Morocco

* Correspondence: natalia@ua.pt
† These authors contributed equally to this work.

1. Introduction

This publication is an editorial for the Special Issue of Axioms “Calculus of Variations,
Optimal Control and Mathematical Biology: A Themed Issue Dedicated to Professor
Delfim F. M. Torres on the Occasion of His 50th birthday”. This Special Issue is dedicated
to Professor Delfim F. M. Torres on the occasion of his 50th birthday, as recognition of
his significant contributions to Mathematics, in particular in the calculus of variations,
optimal control, and mathematical biology. Professor Torres is a distinguished University
Professor, a highly cited researcher in Mathematics (in the top 1% for Mathematics in
the Web of Science in the years 2015, 2016, 2017 and 2019), and a lifetime member of
the American Mathematical Society. He is one of the founders of fractional variational
analysis and fractional optimal control, and has made tremendous contributions to the
theory of variational analysis, with applications to many other fields such as optimization,
optimal control, time-scale analysis, and mathematical epidemiology and biology. Professor
Torres is the recipient of several international awards, including the 325 Years of Fractional
Calculus Award, which is testament to the high regard in which his achievements in
the area of fractional calculus and its applications are held. He has been included in
the World’s Top 2% Scientists by Stanford University in the years 2020, 2021 and 2022,
both as a career-long highly cited researcher and as a single calendar year highly cited
researcher. He is considered by Thomson Reuters as one of the World’s Most Influential
Scientific Minds, has won a Publons Peer Review Award as a world’s top peer reviewer,
and was recognized in the top 1% of reviewers. He has also won a Sentinel of Science
Award. Many of his research works have been considered top papers in their area, served
as research highlights and been awarded prizes. Besides being a great scholar, he is also
a great teacher who has already supervised twenty-four Ph.D. students from all over the
world. This Special Issue covers many of Professor Torres’ research interests, which include
several areas of pure and applied mathematical sciences, such as approximations and
expansions, biology and other natural sciences, calculus of variations and optimal control,
optimization, difference and functional equations, fluid mechanics, functional analysis,
game theory, economics, social and behavioral sciences, general measure and integration,
the mechanics of deformable solids, number theory, numerical analysis, operations research,
mathematical programming, ordinary differential equations, partial differential equations,
quantum theory, real functions, systems and control theory, fractional calculus and its

Axioms 2023, 12, 110. https://doi.org/10.3390/axioms12020110 https://www.mdpi.com/journal/axioms1
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applications, integral equations and transforms, higher transcendental functions and their
applications, q-series and q-polynomials, inventory modeling and optimization, dynamic
equations on time scales, and mathematical modeling.

This Special Issue comprises fifteen original research papers that have been carefully
reviewed. In the next section, we briefly describe the main contributions of these fifteen
papers. We finalize this editorial with a brief biography of Delfim F. M. Torres.

2. Contributions

In this section, we provide an overview of the scientific contributions of the papers
that constitute this Special Issue, gathering them into five mathematical research areas:
Calculus of variations, Optimal control, Mathematical biology, Fractional calculus, and
Differential geometry. We remark that some of the papers can be integrated in more than
one of these research topics.

2.1. Calculus of Variations

In the paper On a Non–Newtonian Calculus of Variations, Delfim F. M. Torres presents,
for the first time in the literature, a non-Newtonian calculus of variations that involves
the minimization of a function defined by a non-Newtonian integral with a Lagrangian
depending on the non-Newtonian derivative. The main result of this paper is a first-
order necessary optimality condition of a Euler–Lagrange type that each solution of a
non-Newtonian variational problem, with admissible functions taking positive values only,
must satisfy. The non-Newtonian calculus of variations introduced in this paper provides
a natural framework for dealing with multiplicative functions that arise in economics,
physics and biology.

In the article Weighted Generalized Fractional Integration by Parts and the Euler–Lagrange
Equation, Zine et al. introduce the right-weighted generalized fractional derivative in
the Riemann–Liouville sense, and also introduce its associated integral operator, proving
their main properties, and, in particular, their integration by parts formula. With the new
general integration by parts formula, the authors obtain an appropriate weighted Euler–
Lagrange equation for dynamic optimization, extending those existing in the literature.
The paper finishes with an illustration of the obtained theoretical results in the quantum
mechanics setting.

2.2. Optimal Control

The article Maximum Principle and Second-Order Optimality Conditions in Control Problems
with Mixed Constraints, by Arutyunov et al., concerns the optimality conditions for a smooth
optimal control problem with an endpoint and mixed constraints. Under the normality
assumption, second-order necessary optimality conditions based on the Robinson stability
theorem are derived. The main novelty is that only a local regularity with respect to
the mixed constraints is required, instead of the conventional stronger global regularity
hypothesis. This affects the maximum condition. Therefore, the normal set of Lagrange
multipliers in question satisfies the maximum principle, albeit along with the modified
maximum condition in which the maximum is taken over a reduced feasible set. In the
second part of this work, the case of abnormal minimizers, that is, when the full rank
of controllability matrix condition is not valid, is addressed. The same type of reduced
maximum condition is obtained.

In the paper Minimum Energy Problem in the Sense of Caputo for Fractional Neutral Evolu-
tion Systems in Banach Spaces, by Ech-chaffani et al., a class of fractional neutral evolution
equations on Banach spaces involving Caputo derivatives is investigated. Conditions for
the controllability of the fractional-order system and conditions for existence of a solution
to an optimal control problem of minimum energy are established. The main results are
proved with the help of fixed-point and semigroup theories.
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2.3. Mathematical Biology

In the paper Global Stability Condition for the Disease-Free Equilibrium Point of Fractional
Epidemiological Models, Almeida et al. present a new method to study the global asymptotic
stability of dynamical systems described by fractional differential equations. The usual
approach involves the determination of an appropriate Lyapunov function, very laborious
computations and the application of LaSalle’s invariance principle. The method proposed
by the authors uses only basic results from matrix theory and some well-known results
from fractional-order differential equations. To illustrate the applicability of the theoretical
results, the authors exemplify the procedure with three epidemiological models: a fractional-
order SEIR model with classical incidence function, a fractional-order SIRS model with a
general incidence function, and a fractional-order model for HIV/AIDS.

In the research Hybrid Method for Simulation of a Fractional COVID-19 Model with Real
Case Application, by Din et al., a mathematical analysis for the novel coronavirus responsible
for COVID-19 is provided. The fractional-order analysis is carried out using a non-singular
kernel type operator known as the Atangana–Baleanu–Caputo (ABC) derivative. The
model, adopting available information about the disease from Pakistan in the period from
9 April to 2 June 2020, is parametrized. The authors obtain the required solution with
the help of a hybrid method, which is a combination of the decomposition method and
the Laplace transform. Furthermore, a sensitivity analysis is carried out to evaluate the
parameters that are more sensitive to the basic reproduction number of the model. The
obtained results are compared with real data of Pakistan, and numerical plots are presented
at various fractional orders.

In the paper Fractional Dynamics of a Measles Epidemic Model, Abboubakar et al. propose
a fractional mathematical model for the transmission dynamics of measles, considering a
Caputo fractional derivative. The main goal of this work is to compare the dynamics of
a measles epidemic model with integer and Caputo fractional derivatives. The epidemic
model considers vaccination and hospitalization of infected individuals. A local and
global stability analysis of the equilibrium points is proved, and the theoretical results
are illustrated through numerical simulations using the Adams-type predictor–corrector
iterative scheme. The numerical simulations demonstrate that the fractional model shows
different quantitative behavior than the model with integer derivatives.

The paper Pattern Formation Induced by Fuzzy Fractional-Order Model of COVID-19, by
Alnahdi et al., proposes a mathematical model for COVID-19 using a fuzzy fractional
evolution equation, stated in Caputo’s sense for order α ∈ (1, 2). The model considers
six compartments: susceptible, exposed, totally infected, asymptotically infected, totally
recovered individuals and reservoir. The existence and uniqueness of the solution of the
model is proved using Schauder’s fixed point theorem. Moreover, the dynamic behavior
of the model is studied by combining the fuzzy Laplace approach with the Adomian
decomposition transform.

In the paper Modeling the Impact of the Imperfect Vaccination of the COVID-19 with Optimal
Containment Strategy, Benahmadi et al. propose a mathematical model applied to COVID-
19, aiming to investigate the impact of vaccination in the control of the disease’s spread.
The compartmental model is given by a system of nine ordinary differential equations.
After computing the basic reproduction number, a local and global stability analysis of the
disease’s free equilibrium is presented. An optimal control problem is proposed wherein
the aim is to find the optimal control strategy under imperfect vaccination. Three controls
are introduced in the model, representing awareness of taking the vaccine, movement
restrictions for susceptible and vaccinated individuals, and improvement of the vaccine’s
efficacy, respectively. In the numerical simulations, the model is calibrated to real data
from a vaccination campaign in Morocco between 1 February 2021 and 25 March 2021.
The numerical solutions show that to reduce the impact of imperfect vaccination, a longer
awareness campaign is needed to engage the population in vaccination. On the other hand,
restrictions on population mobility should not be long lasting. Moreover, to ensure the full

3
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protection of the health population, vaccination efficacy must be increased by 30% in the
first 50 days.

In the paper Determining COVID-19 Dynamics Using Physics Informed Neural Networks,
by Malinzi et al., the physics informed neural networks (PINNs) framework is applied to
COVID-19 epidemics, using a compartmental SIRD (susceptible–infected–recovered–death)
mathematical model. The main goal of this work is to find patterns of the transmission
dynamics of the disease, which involves predicting the infection, recovery and death rates
and therefore, predicting the actively infected, totally recovered, susceptible and deceased
individuals at any given time. First, the PINNs framework’s application to the SIRD model
is validated through numerical simulations using Mathematica, and after, the SIRD model is
tested and validated using a real COVID-19 dataset.

In the paper by Francesca Acotto and Ezio Venturino, entitled A Note on an Epidemic
Model with Cautionary Response in the Presence of Asymptomatic Individuals, the authors
studied an epidemiological model, taking into consideration some demographic features,
and also the case in which the illness appears in two forms, asymptomatic and symptomatic.
Because of the presence of asymptomatic individuals, fear drives a reduction in social
contact, lowering the overall transmission rate. With some numerical simulations, it is
shown that with an increase in information regarding the propagation of the disease, the
number of infected individuals decreases.

2.4. Fractional Calculus

In Riemann–Liouville Fractional Sobolev and Bounded Variation Spaces by Leaci and
Tomarelli, a study of fractional derivatives on Sobolev spaces is carried out. The frac-
tional operators are given by the mean value between the left and right fractional operators.
Some problems, such as embeddings or compactness properties, the Abel equation, and
semigroup properties, are considered. These methods can be applied into fractional varia-
tional models for image analysis.

In the article On Periodic Fractional (p, q)-Integral Boundary Value Problems for Sequential
Fractional (p, q)-Integrodifference Equations by Soontharanon and Sitthiwirattham, questions
on the existence and uniqueness of solution for a fractional (p, q)-integrodifference equation
with periodic fractional (p, q)-integral boundary condition are studied. The proofs are
based on Banach and Schauder’s fixed point theorems. Furthermore, some properties of
the fractional (p, q)-integral are obtained. The paper ends with some illustrative examples.

The paper Existence Results for a Multipoint Fractional Boundary Value Problem in the
Fractional Derivative Banach Space by Boucenna et al., deals with a class of nonlinear implicit
fractional differential equations subject to nonlocal boundary conditions, expressed in terms
of nonlinear integro-differential equations. Using the Krasnoselsky fixed-point theorem, via
the Kolmogorov–Riesz criteria, the existence of solutions in a specific fractional derivative
Banach space is established. Then, two numerical examples are given to illustrate the
theoretical results.

2.5. Differential Geometry

The paper Local Structure of Convex Surfaces near Regular and Conical Points, by Plakhov,
deals with the limiting behavior of a part of a surface when it is cut by a plane. More
precisely, given a point on a convex surface, and a plane of support Π to the surface at this
point, the author considers the plane parallel with Π cutting a part of the surface. Two
cases are studied: when the point is regular, and when it is singular conical. This work
follows on from a 1995 conjecture by Buttazzo, Ferone, and Kawohl, “Minimum problems
over sets of concave functions and related questions”, published in Math. Nachr., already
solved by the author under some assumptions, and continued in this current work.

3. Short Biography of Delfim F. M. Torres

Delfim Fernando Marado Torres was born 16 August 1971 in Nampula, Mozambique.
Since March 2015, he has been a full Professor of Mathematics at the University of Aveiro
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(UA), Director of the Research Unit CIDMA, the largest Portuguese research center in
Mathematics, and Coordinator of its Systems and Control Group. He obtained a PhD in
Mathematics from UA in 2002, and Habilitation in Mathematics from UA in 2011. His
main research areas are calculus of variations and optimal control, optimization, fractional
derivatives and integrals, dynamic equations on time scales and mathematical biology.
Torres has written outstanding scientific and pedagogical publications. In particular, he has
co-authored two books with Imperial College Press [1,2], three books with Springer [3–5],
and edited several research books, such as [6–8]. He has strong experience in graduate and
postgraduate student supervision and teaching in mathematics. Moreover, he has been
team leader and member in several national and international R&D projects, including EU
projects and networks. Since 2013, he has been the Director of the Doctoral Programme
Consortium in Mathematics and Applications (MAP-PDMA) of the Universities of Minho,
Aveiro, and Porto. Prof. Torres has been married since 2003, and has one daughter and
two sons.

Author Contributions: Conceptualization, N.M., R.A., C.J.S. and M.R.S.A.; methodology, N.M., R.A.,
C.J.S. and M.R.S.A.; writing—original draft preparation, N.M., R.A., C.J.S. and M.R.S.A.; writing—
review and editing, N.M., R.A., C.J.S. and M.R.S.A. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was partially funded by Portuguese funds through the CIDMA—Center for
Research and Development in Mathematics and Applications, and the Portuguese Foundation for
Science and Technology (FCT—Fundação para a Ciência e a Tecnologia), reference UIDB/04106/2020.
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Abstract: We analyse a simple disease transmission model accounting for demographic features and
an illness appearing in two forms, asymptomatic and symptomatic. Its main feature is the epidemic-
induced fear of the population, for which contacts are reduced, responding to increasing symptomatic
numbers. We find that in the presence of asymptomatic individuals, if the progression rate to
symptomatic is high, protection measures may prevent the whole population becoming infected. The
results also elucidate the importance of assessing transmission rates as quickly as possible.

Keywords: population dynamics; vertical transmission; epidemic fear

MSC: 95D30; 95D25

1. Introduction

Mathematical models for the spread of a communicable disease date back almost
a century, from the original work of Kermack and McKendric. From the early classical
models with no demographics, where the population at risk was fixed in size, the models
evolved to encompass size-varying populations [1,2]. A thorough review of infection
models, mainly for diseases affecting humans, is provided by [3]. Other reviews with
more recent developments in the field appear in [4,5]. In addition, stochastic models for
these situations can be developed [6]. These types of models have also been adapted for
various situations [7], also including, possibly, the spread of epidemics among interacting
populations, from which originated the so-called ecoepidemic models, see the fairly recent
review [8].

The first model that incorporated the human behavior response to an epidemic spread
is [9], an SIR-type system [10]. It models the fact that when the epidemic is spreading,
people react by reducing contacts, in order to not be infected, e.g., by using protective means
or distancing [11]. The use of vaccines, when available, would be another option. However,
more recently, other issues have arisen, such as the anti-vaccination attitude of parts of
populations. Some studies investigating this phenomenon have been undertaken [12,13].

The still ongoing COVID-19 epidemic [14] has highlighted another feature of these
transmissible diseases. Namely, there is a relevant role played by asymptomatics. In
fact, in the earlier phases of this pandemic, its spread was mainly due to contacts among
susceptibles and asymptomatic infected individuals. A similar situation is exemplified by
the Spanish flu of the XX century [15], or the most recent SARS. In the latter viral shedding
outbreaks only for advanced stages of the disease cause respiratory symptoms occur, but
for SARS-CoV-2, the infected can also spread the disease in the early stages, when they are
asymptomatic [16]. There are also other diseases that do not show symptoms promptly.
For instance, a measles-infected person is contagious in the very first days after getting
the disease, the average latent period is 14 days, while the symptoms appear later, with an
average infectious period of one week [3]. In the case of pneumonic plague, experiments
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with mice indicate that the initial 36 h of infection show fast bacterial replication in the
lungs, but no host immune responses or obvious disease symptoms appear, ref. [17]. In
addition, primary septicemic plague, the second most diffused, starts with no palpable
lymph nodes but with bacteremia [18]. For COVID-19, many models are now available,
see, e.g., [19], where a highly detailed SPEIQHRD model is presented and validated using
data from various different countries; Ref. [20], which introduces an SEIRD model and
is identified for different USA states; or [21], which empirically considers the chaotic and
cyclic behavior of the epidemics, verified by actual data.

However, we stress that this paper is not at all concerned with this specific epidemic.
Rather, we have mentioned COVID-19 as well as measles just as paradigms for diseases
where asymptomatic people appear. In summary, the salient feature of the epidemics that
we consider here consists of the presence of asymptomatic people who are able to spread it.
The present paper is also a theoretical investigation; therefore, the use of real data is not our
concern here. The goal of the paper focuses on people’s possible response to the spread of a
generic epidemic. In this sense, it, rather, represents a model for possible human behaviors.
Therefore, empirical data on specific contagious diseases are not needed as they are not
used. Nor are other possible numerical schemes for the forecasting of the disease incidence
of relevance for our purposes.

Along these lines, we would like to investigate a model in which people respond to
higher numbers of the infected, which are recognized as disease carriers, i.e., symptomatic
individuals. However, the disease is essentially transmitted by the asymptomatic people,
because it is assumed that the symptomatic ones, once discovered, are isolated so as not to
render them vehicles of propagation. We propose a model for this effect. Additionally, it
also incorporates demographic features of the population. Some other specific properties
of the system introduced here are the following. Essentially, it is a variation of the classical
SI infection model, in which asymptomatic individuals are also accounted for, by splitting
the infected (the class I of the SI model) into asymptomatics and symptomatics. The
latter, however, are assumed to be isolated; therefore, it can also be interpreted as an
SIR model, in which the R class denotes the set of individuals removed from circulation
and, therefore, are not able to spread the disease any longer, rather than those recovered
from the disease. Two variants are proposed: without and with vertical transmission.
The models are fully analysed, determining all their possible equilibria, feasibility and
stability. Their explicit coordinate expressions are determined, except for coexistence, for
which we provide sufficient conditions for its feasibility. Their transcritical bifurcations are
investigated both analytically and numerically, assessing the critical parameter values for
which they occur. Implications for people’s behavior are discussed in the final sections.

The most important result appears to be the fact that in the presence of a high pro-
gression rate from asymptomatic to symptomatic, the SAI model proposed here is able to
preserve some susceptibles from the contagion, in spite of being an SI model for which
everyone becomes infected.

The main findings of this investigation show that in the presence of asymptomatic
individuals, people’s voluntary means to reduce their own possible contagion must be
undertaken more strictly, by suitably lowering the overall transmission term, than in the
case where the epidemic’s symptoms are immediately manifested. Our simulations also
allow the quantification, if sufficient information on the spread of the disease is available,
of the number of susceptibles that remain unaffected by the epidemic. They also show the
importance of the prompt broadcasting of this information by the authorities.

2. Materials and Methods

As mentioned in the Introduction, we consider here a human population which
reproduces and experiences an epidemic. Thus, it is divided into susceptibles S and
infected individuals and, in turn, subdivided among those that do not show symptoms, but
still can spread the disease, A, and the symptomatic ones I, who are isolated as recognized
virus carriers. The latter, thus, do not contribute to the diffusion of the pathogenic agent
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among the population. We also assume that the susceptibles can react to the presence
of the disease, by reducing their contacts. However, this behavior is influenced by the
number of the people recognized as diseased, i.e., the Is; the higher this number, the lower
the contact rate must be. The model contains only three compartments, because in the
end its behavior will be compared with another classical model concerned with people’s
cautionary response, where asymptomatic individuals are absent, as elaborated at length
in Section 5.

The demographic features incorporate reproduction, natural mortality and compe-
tition for resources. All these involve, in principle, the three subsets into which the total
population is partitioned.

Two possibilities arise, considering reproduction: namely, that the disease is or is not
passed onto the offsprings. In the first model, we do not consider vertical transmission, so
asymptomatic individuals reproduce, but their offsprings are healthy and, therefore, are
accounted for among the new recruits of susceptibles. Alternatively, vertical transmission
hypothesizes that newborns from asymptomatic people appear in the asymptomatic class
as well. The two models are constructed and analysed in the following subsections.

2.1. The SAI Model without Vertical Transmission
Model Equations

Using the notation introduced in the above preamble, the system reads:

dS
dt

= r(S + A)−mS− cSSS2 − cSASA− cSISI − αSA
1 + βI

, (1)

dA
dt

= −mA− cAA A2 − cAS AS− cAI AI +
αSA

1 + βI
− πA,

dI
dt

= −(m + μ)I − cI I I2 − cIS IS− cIA IA + πA.

The first equation for susceptibles contains reproduction at rate r, which is related to both
the susceptible and asymptomatic classes, first term. Here, we implicitly assume that
the disease does not affect the asymptomatic reproduction rate. Susceptibles are subject
to natural mortality m, second term, as well as intraspecific competition, the next three
terms, due to other susceptible individuals, at rate cSS, or to asymptomatic ones, at rate
cSA, or finally by infected, at rate cSI . The last term is the epidemiological one, which
accounts for the disease spread. In view of our assumptions, it has two main features. The
disease transmission is modeled via a mass action term in the numerator, accounting for the
“successful” contacts between the susceptibles and the unrecognized disease carriers, i.e.,
the asymptomatic ones. The denominator, instead, accounts for the preventive measures,
so that susceptibles tend to reduce their intermingling with other people when more
and more diseased individuals are identified, i.e., it must decrease with an increasing
number of symptomatic individuals I. The transmission parameter α measures how many
contacts there are in the time unit, as well as how many of them yield a new case of the
infection. Instead, β can be considered the weight and relevance that susceptibles give to
the information about the disease spread.

The second equation models the asymptomatic dynamics. The first term contains the
natural mortality, assuming that at this stage the disease does not cause deaths. The next
three terms denote the intracompartment competition and the corresponding ones with the
other two population classes. The susceptible individuals that become infected in the pro-
cess described in the first equation appear here as new recruits, while the last term denotes
transition toward a more serious form of the disease, and, thereby, showing symptoms.

This very same term, the last one in the third equation, appears in the infected dy-
namics, as the only input in this class. Here, in addition to the natural mortality, the first
term also contains the disease-related one, μ. The following three terms again represent the
competition between individuals of this class as well as with the other two compartments.

Tables 1 and 2 summarize the meaning of the parameters, all assumed to be non-negative.
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Table 1. Interpretation and dimensions of demographic parameters.

Parameters Interpretation Dimensions

cXY , X, Y ∈ {S, A, I} competition pressure of Y on X
1
[t]

m natural mortality rate 1
[t]

r natural birth rate 1
[t]

Table 2. Interpretation and dimensions of epidemiological parameters.

Parameters Interpretation Dimensions

α transmission rate
1
[t]

β inhibitory effect coefficient -

μ disease-related mortality rate
1
[t]

π progression rate from asymptomatics to symptomatics
1
[t]

2.2. Boundedness

Note, first of all, that if r < m, by summing the three equations of (1) and dropping
most of the negative terms, we obtain

dT
dt

=
d(S + A + I)

dt
≤ (r−m)(S + A)− (m + μ)I,

which entails that the population T = S + A + I will eventually vanish, implying also
that each one of its subclasses does as well, as they are necessarily non-negative. Hence,
S → 0+, A → 0+ and I → 0+. Unless otherwise stated, from now on, we assume

r > m. (2)

On the other hand, even in case where (2) holds, the system trajectories are bounded.
Indeed, considering again the total population T, summing the equations in (1), but
retaining some of the quadratic terms for an arbitrary η > 0, we obtain

dT
dt

+ ηT ≤ ΠS(S) + ΠA(A) + ΠI(I),

where the functions on the right hand side are concave parabolae:

ΠS(S) = [r + η − cSSS]S, ΠA(A) = [r + η − cAA A]A, ΠI(I) = [η − cI I I]I.

By replacing the latter with their maxima, namely, evaluating each one of them, respectively,
at the abscissae

Sm =
r + η

2cSS
, Am =

r + η

2cAA
, Im =

η

2cI I
,

so that

ΠS(S) ≤ ΠS(Sm) =
(r + η)2

4cSS
, ΠA(A) ≤ ΠA(Am) =

(r + η)2

4cAA
, ΠI(I) ≤ ΠI(Im) =

η2

4cI I
,
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we obtain the bound for the differential inequality

dT
dt

+ ηT ≤ M, M =
(r + η)2

4cSS
+

(r + η)2

4cAA
+

η2

4cI I
.

It then follows that

T(t) ≤ max
{

T(0),
M
η

}
,

which is the desired result; since the total population is bounded, each subpopulation must
be bounded as well because it cannot have negative values.

2.3. Model Equilibria

The model allows only three possible equilibria. Two are easily found: the population
collapse E0 = (0, 0, 0) and the disease-free point,

ES =

(
r−m

cSS
, 0, 0

)
,

which are always admissible in view of the assumption (2).

2.3.1. Endemic Coexistence

The final allowed equilibrium point is coexistence of the three population classes, with
the disease becoming endemic. To assess this point, we need to study the three equilibrium
equations of (1). They give three surfaces in the S, A, I phase space. To understand their
shape, we intersect them with parallel planes to the coordinate planes.

The first surface Σ(1)

The first surface Σ(1),

Σ(1) : r(S + A)−mS− cSSS2 − cSASA− cSISI − αSA
1 + βI

= 0, (3)

arises from the corresponding equilibrium equation of (1). On the plane S = 0, this surface
intersects the first quadrant of the A-I plane only on the I axis.

On the plane A = 0, in addition to S = 0, i.e. the I axis, the intersection is the straight
line

cSSS + cSI I = r−m . (4)

There are two intersection points with the coordinate axes:

I0 =
r−m

cSI
, S0 =

r−m
cSS

,

both are strictly positive in view of (2).
On the generic plane I = h > 0, the intersection is the conic

r(S + A)−mS− cSSS2 − cSASA− cSISh− α̃SA = 0 , α̃ =
α

1 + βh
. (5)

To study this, it should be observed that the matrix of this quadratic form is

MΣ(1)

h =

⎡⎢⎢⎢⎢⎣
−cSS −1

2
(cSA + α̃)

1
2
(r−m− cSIh)

−1
2
(cSA + α̃) 0

r
2

1
2
(r−m− cSIh)

r
2

0

⎤⎥⎥⎥⎥⎦ ,
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whose determinant is

ΔΣ(1)

h =
r
4
(rcSS − (cSA + α̃)(r−m− cSIh)) .

The conic is nondegenerate whenever Δh �= 0, i.e., if and only if

r �= (m + cSIh)(cSA + α̃)

cSA + α̃− cSS
, (6)

a condition that we now assume. The principal minor of order two is always negative

δΣ(1)

h =

∣∣∣∣∣∣∣∣
−cSS −1

2
(cSA + α̃)

−1
2
(cSA + α̃) 0

∣∣∣∣∣∣∣∣ = −
1
4
(cSA + α̃)2 < 0

so that the conic is a hyperbola. It intersects the A axis only at the origin, while the
intersection with the S axis is given by the point

Sh
0 =

r−m− cSIh
cSS

which is positive if and only if h < I0. Thus, in such a case, the two intersections with the
coordinate axes are (0, 0) and

(
Sh

0, 0
)

. On the other hand, the origin is the only intersection
when h ≥ I0.

The conic (5) can be explicitly written as

Ah(S) =
(r−m− cSSS− cSIh)S

(cSA + α̃)S− r
, (7)

so that its vertical asymptote is

S = Sh
∞ =

r
cSA + α̃

=
r(1 + βh)

cSA(1 + βh) + α
.

Since Sh
∞ is strictly positive, for our only case of interest h > 0, there are two possible

situations for the conic (5)

• If h ≥ I0, it follows that Sh
0 ≤ 0; then, Ah(S) > 0 if and only if 0 < S < Sh

∞. The conic
is positive and increasing only from the origin to the vertical asymptote.

• If h < I0, the conic crosses the point
(

Sh
0, 0

)
. In such case, we have the following three

possibilities.

– If Sh
0 < Sh

∞, then Ah(S) > 0 if and only if Sh
0 < S < Sh

∞. The conic is a hyperbola
which is positive and increasing in the (I = h) S-A plane only from the zero to
the asymptote.

– If Sh
∞ < Sh

0, then Ah(S) > 0 if and only if Sh
∞ < S < Sh

0. The conic is a hyperbola

which is positive and decreasing only from the asymptote to
(

Sh
0, 0

)
.

– Finally, if Sh
0 = Sh

∞, then the conic is degenerate because (6) fails to hold, having,
in this case,

r =
(m + cSIh)(cSA + α̃)

cSA + α̃− cSS
.

Further, in the positive cone of the S–I plane, as h increases Sh
0 decreases linearly,

moving along the line segment (4), starting from S0 and vanishing when h = I0, while Sh
∞

increases, starting from S∞ and tending asymptotically to rc−1
SA.

12
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Thus, in the plane S–I, the trajectories of Sh
0 and Sh

∞ never intersect if S0 < S∞, while if
S0 ≥ S∞, they intersect on the line segment (4) at a point on the I = h plane with

h =
−(cSI(cSA + α)− βcSA(r−m) + βcSSr) +

√
D

2βcSIcSA
,

with

D = (cSI(cSA + α)− βcSA(r−m) + βcSSr)2 + 4βcSIcSA((r−m)(cSA + α)− cSSr) .

The second surface Θ(1)

The second surface Θ(1), from the corresponding equilibrium equation of (1)

Θ(1) : −m− cAA A− cASS− cAI I +
αS

1 + βI
− π = 0, (8)

meets the plane S = 0 on the segment with negative intersections with the coordinate axes

cAA A + cAI I = −m− π, Î0 = −m + π

cAI
< 0, Â0 = −m + π

cAA
< 0, (9)

so that no feasible portion exists.
On the plane A = 0, the intersection is

m + mβI + cASS + cASβSI + cAI I + cAI βI2 − αS + π + πβI = 0 . (10)

The matrix of this conic is

MΘ(1)
=

⎡⎢⎢⎢⎢⎣
0

1
2

cASβ
1
2
(cAS − α)

1
2

cASβ cAI β
1
2
(β(m + π) + cAI)

1
2
(cAS − α)

1
2
(β(m + π) + cAI) m + π

⎤⎥⎥⎥⎥⎦ ,

with determinant

ΔΘ(1)
=

1
4

αβ(cAScAI − cAIα− βcAS(m + π)) .

It is nondegenerate for Δ �= 0, i.e., if and only if

α �= cAS

(
1− βcAS(m + π)

cAI

)
. (11)

If (11) holds, since

δΘ(1)
=

∣∣∣∣∣∣∣∣
0

1
2

cASβ

1
2

cASβ cAI β

∣∣∣∣∣∣∣∣ = −
1
4

c2
ASβ2 < 0

it is a hyperbola. Its intersections with the coordinate axes are

Ŝ0 =
m + π

α− cAS
, (12)

which is positive only if
α > cAS, (13)

and the roots of the quadratic

cAI βI2 + ((m + π)β + cAI)I + m + π = 0 ,

13
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which, following Descartes’ rule, are both negative. Writing the hyperbola explicitly as

S(I) = − cAI βI2 + [(m + π)β + cAI ]I + m + π

cAS(1 + βI)− α
, (14)

we find its vertical asymptote

Î∞ =
α− cAS

βcAS
> 0

in view of (13). In such case, the hyperbola is positive if and only if 0 ≤ I < Î∞. Then, the
hyperbola increases from

(
0, Ŝ0

)
to the asymptote I = Î∞. If (13) fails to hold, no portion

of the conic lies in the first quadrant.
On the plane I = h, recalling (5), the surface Θ(1) gives the straight line

cAA A + (cAS − α̃)S = −m− π − cAIh , (15)

with the following intersections with the coordinate axes

Âh
0 = −m + π + cAIh

cAA
, Ŝh

0 =
m + π + cAIh

α̃− cAS
.

The former is always negative, the latter is positive if and only if α̃ > cAS, which is
equivalent to

h < Î∞ . (16)

Consequently, the surface Θ(1) does no intersect the plane I = h if h ≥ Î∞, while it crosses
the half-line portion in the positive cone of the line joining the point

(
Ŝh

0, 0
)

, with
(

0, Âh
0

)
,

if h < Î∞.
Further, as h increases, Âh

0 decreases linearly to −∞, while Ŝh
0 grows along the hyper-

bola (10), in the first quadrant of the S-I plane, starting from Ŝ0, recall (12), and tending
asymptotically to Î∞.

The third surface Γ
Here, we have

Γ : −(m + μ)I − cI I I2 − cIS IS− cIA IA + πA = 0, (17)

On the plane S = �, we obtain the conic

cI I I2 + cIA IA + (m + μ + cIS�)I − πA = 0 , (18)

whose matrix is

MΓ
� =

⎡⎢⎢⎢⎢⎣
cI I

cIA
2

1
2
(m + μ + cIS�)

cIA
2

0 −π

2
1
2
(m + μ + cIS�) −π

2
0

⎤⎥⎥⎥⎥⎦ ,

with

ΔΓ
� = −π

4
(πcI I + cIA(m + μ + cIS�)) < 0 .

14
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Since ΔΓ
� is always negative, the conic is always nondegenerate. Further, the principal

minor of order two is always negative, indicating that the conic is a hyperbola:

δΓ
� =

∣∣∣∣∣∣∣
cI I

cIA
2

cIA
2

0

∣∣∣∣∣∣∣ = −
1
4

c2
IA.

This hyperbola intersects the axes only at the origin in the feasible range. We can write it
explicitly as

A�(I) =
(m + μ + cI I I + cIS�)I

π − cIA I
. (19)

Its vertical asymptote is independent of �,

Ĩ∞ =
π

cIA
> 0 .

Hence, in the positive cone of the I-A plane, A�(I) > 0 if and only if 0 < I < Ĩ∞. Thus, the
conic (18) raises up from the origin to the asymptote, for every value of �.

It is also easily seen that on A = 0, the surface Γ intersects the first quadrant of the S–I
plane only on the S horizontal axis.

The possible intersections of Σ(1), Θ(1) and Γ
Thus, on the S = 0 coordinate plane, Σ(1) and Θ(1) meet at a point QI=0 if the condition

Ŝ0 < S0 (20)

is satisfied. In such case, on the plane A = 0, the segment joining S0 and I0 meets at the
point QA=0, the hyperbola generated by the intersection of the surface Θ(1) with A = 0.
The intersection of Σ(1) and Θ(1) always exists, provided the condition (20) holds, because
Σ(1) raises up to the vertical asymptote, while Θ(1) has a positive slope on the I = h planes.
The curve, ρ = Σ(1) ∩Θ(1), thus joins the points QI=0 and QA=0. However, the former has
a positive value of A, on the coordinate plane I = 0, the latter lies on the plane A = 0, and,
thus, they lie in the upper half space in which Γ partitions the phase space S–A–I, the latter
in the lower one. Hence, the line ρ intersects Γ and this intersection point represents the
endemic coexistence equilibrium.

2.4. Equilibria Stability
Local Stability

The Jacobian matrix associated with the system (1) is

J =

⎡⎢⎢⎢⎢⎣
J1,1 r− cSAS− αS

1 + βI
−cSIS +

αβSA

(1 + βI)2

−cAS A +
αA

1 + βI
J2,2 −cAI A− αβSA

(1 + βI)2

−cIS I −cIA I + π J3,3

⎤⎥⎥⎥⎥⎦ ,

where
J1,1 = r−m− 2cSSS− cSA A− cSI I − αA

1 + βI
,

J2,2 = −m− 2cAA A− cASS− cAI I +
αS

1 + βI
− π

and
J3,3 = −m− μ− 2cI I I − cISS− cIA A .
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For point E0, we immediately obtain the eigenvalues r − m, −m − π < 0 and
−m− μ < 0, so that the ecosystem collapses if

r < m (21)

in line with the earlier considerations.
In addition, at the disease-free point ES, the eigenvalues can all be determined analytically:

−r + m , −m− (r−m)(cAS − α)

cSS
− π, −m− μ− cIS

cSS
(r−m) .

In view of (2), the first and third eigenvalues are negative, and the feasibility conditions
reduce to

π + m >
(r−m)(α− cAS)

cSS
. (22)

For the coexistence endemic equilibrium ESAI , we rely on numerical simulations. Observe
that, using the equilibrium equations, the diagonal terms of the Jacobian simplify, becoming

J11 = − rA
S
− cSSS, J22 = −cAA A, J11 = −πA

I
− cI I I.

Thus, the trace is negative. The remaining two Routh–Hurwitz conditions are too compli-
cated to shed any further light on and are not analysed further.

Table 3 summarizes the information gathered on the three equilibrium points and
their local stability.

Table 3. Summary of equilibria and local stability for model (1).

Equilibria Existence Conditions Stability

E0 = (0, 0, 0) - stable if r < m

ES =

(
r−m

cSS
, 0, 0

)
r > m stable if (22)

ESAI = (S∗, A∗, I∗) sufficient: (20) numerical simulations

2.5. SAI Model with Vertical Transmission

The model is:

dS
dt

= rS−mS− cSSS2 − cSASA− cSISI − αSA
1 + βI

, (23)

dA
dt

= rA−mA− cAA A2 − cAS AS− cAI AI +
αSA

1 + βI
− πA,

dI
dt

= −(m + μ)I − cI I I2 − cIS IS− cIA IA + πA.

The variables and parameters retain the same meanings as (1), which is recalled in
Tables 1 and 2. Thus, the description of (1) holds in this case as well. The only change with
respect to model (1) is the fact that reproduction of asymptomatic individuals leads to new
offsprings in the very same class.

2.6. Preliminary Analysis

In view of the fact that (1) and (23) differ only in one term, the considerations that
lead to the system disappearance if (2) is not satisfied, as well as the boundedness of the
trajectories, can be repeated using the same steps and show that these results hold here
as well. Thus, in order to ensure that the model solutions do not vanish, the condition (2)
must be imposed here as well.
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Further, the equilibria E0 and ES are the same as the corresponding ones of (1), with
the same feasibility condition for the latter, namely, (2).

2.6.1. Equilibria

In addition to endemic coexistence, we find also the point E±AI , where the susceptibles
vanish. To investigate the latter, the second equilibrium equation yields

A =
1

cAA
(r−m− cAI I − π) . (24)

Substituting (24) into the third equilibrium equation, we find the following quadratic
equation I :

c2 I2 + c1 I + c0 = 0, c2 = cI I −
cIAcAI

cAA
,

c1 = m + μ +
cIAr− cIAm− cIAπ + cAIπ

cAA
, c0 = − π

cAA
(r−m− π) .

Its roots are

I± =
cAA

2(cI IcAA − cIAcAI)

(
−m− μ− cIAr− cIAm− cIAπ + cAIπ

cAA
±
√

Δ
)

, (25)

with

Δ =

(
m + μ +

cIAr− cIAm− cIAπ + cAIπ

cAA

)2
+

4π

cAA

(
cI I −

cIAcAI
cAA

)
(r−m− π) . (26)

Thus, there are two possible equilibria

E±AI =

(
0,

r−m− cAI I± − π

cAA
, I±

)
with feasibility conditions

r > m + cAI I± + π (27)

and
1

cI IcAA − cIAcAI

(
−m− μ− cIAr− cIAm− cIAπ + cAIπ

cAA
±
√

Δ
)
> 0 . (28)

2.6.2. The Endemic Coexistence Equilibrium

Again, we study this point through the intersection of suitable surfaces, arising from
the equilibrium equations of (23). Note that since the last equation in (23) is unchanged
with respect to the same one in (1), the resulting surface is once again represented by the
function Γ, already investigated at the end of Section 2.3.1.

The first surface Σ(2)

From the first equilibrium equation of (23), we have

Σ(2) : r−m− cSSS− cSA A− cSI I − αA
1 + βI

= 0 . (29)

On the plane A = 0, we obtain

cSSS + cSI I = r−m , (30)

which meets the coordinate axes at the points with nonvanishing abscissae given by

S0 =
r−m

cSS
, I0 =

r−m
cSI

. (31)
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Thus, the intersection with the coordinate plane A = 0 is the line segment joining the points
(0, I0) and (S0, 0).

Similarly, on the plane I = 0, we find the point A0 and the line

A0 =
r−m

cSA + α
, cSSS + (cSA + α)A = r−m , (32)

whose feasible portion joins the points (0, A0) and (S0, 0).
On the plane S = �, we obtain the conic

r−m− cSS�+ (β(r−m− cSS�)− cSI)I − (cSA + α)A− βcSA AI − βcSI I2 = 0 , (33)

whose coefficient matrix is

MΣ(2)

� =

⎡⎢⎢⎢⎢⎣
−cSI β −1

2
cSAβ

1
2
(β(r−m− cSS�)− cSI)

−1
2

cSAβ 0 −1
2
(cSA + α)

1
2
(β(r−m− cSS�)− cSI) −1

2
(cSA + α) r−m− cSS�

⎤⎥⎥⎥⎥⎦ ,

with determinant

ΔΣ(2)

� =
1
4

αβ(αcSI + βcSA(r−m− cSS�) + αcSIcSA) .

Now, if � ≤ S0, we have that ΔΣ(2)

� is always positive and the conic is nondegenerate. Since

δΣ(2)

� =

∣∣∣∣∣∣∣∣
−cSI β −1

2
cSAβ

−1
2

cSAβ 0

∣∣∣∣∣∣∣∣ = −
1
4

c2
SAβ2 < 0

the conic is a hyperbola. The intersections on this S = � plane with the coordinate axes are
the points

A�
0 =

r−m− cSS�

cSA + α

positive for
r > m + cSS� (34)

and the roots of the quadratic

βcSI I2 + (cSI − (r−m− cSS�)β)I − (r−m− cSS�) = 0 ,

namely,

I�±0 =
(r−m− cSS�)β− cSI ±

√
Δ�

I

2βcSI
,

with
Δ�

I = (β(r−m− cSS�) + cSI)
2 .

Recalling (31), the roots explicitly are

I�+0 =
r−m− cSS�

cSI
, I�−0 = − 1

β
= I−0 < 0.

Note that if (34) is not satisfied, no portion of the conic lies in the feasible cone. In addition,
both A�

0 and I�+0 are positive if and only if � < S0. As � increases, both I�+0 and A�
0 decrease

linearly, respectively, along the segments (30) and (32), starting, respectively, from I0 and
A0, and coalescing into the origin when � = S0.
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Writing the conic in explicit form

A�(I) = − βcSI I2 + (cSI − (r−m− cSS�)β)I − (r−m− cSS�)

cSA(1 + βI) + α
. (35)

the hyperbola is seen to have the vertical asymptote at I = I∞ = −(cSA + α)(cSAβ)−1 < 0,
always being negative and independent of �. Thus, if � < S0, the hyperbola is positive,
with a feasible branch on the plane S = � joining the points(

I�+0 , 0
)

,
(

0, A�
0

)
on the coordinate axes. This branch is concave because

I−0 = − 1
β
> − 1

β

(
1 +

α

cSA

)
= I∞ < 0.

The second surface Θ(2)

This surface has the expression

Θ(2) : r−m− π − cAA A− cASS− cAI I +
αS

1 + βI
= 0 . (36)

On the plane S = 0, we obtain the straight line

cAA A + cAI I = r−m− π . (37)

with intersections with the axes at the points

Î0 =
r−m− π

cAI
, Â0 =

r−m− π

cAA
,

giving the segment joining (0, Î0) and (Â0, 0). These are both positive if

r > m + π . (38)

If this condition does not hold, there is no feasible intersection.
Recalling (5), the intersection with the plane I = h gives

cAA A + (cAS − α̃)S = r−m− π − cAIh. (39)

Assuming (38), the intersections with the coordinate axes are

Âh =
r−m− π − cAIh

cAA
, Ŝh =

r−m− π − cAIh
cAS − α̃

.

Note that on I = 0, these intersections become Âh = Â0, found above, and Ŝ0 = (r−m−π)
(cAS − α)−1. The positivity of the latter is given by

cAS > α . (40)

On the plane A = 0 we once again obtain a conic section

βcAI I2 + βcASSI + (cAI − β(r−m− π))I + (cAS − α)S− (r−m− π) = 0 , (41)
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whose matrix is

MΘ(2)
=

⎡⎢⎢⎢⎢⎣
βcAI

1
2

βcAS
1
2
(cAI − β(r−m− π))

1
2

βcAS 0
1
2
(cAS − α)

1
2
(cAI − β(r−m− π))

1
2
(cAS − α) −(r−m− π)

⎤⎥⎥⎥⎥⎦ ,

with determinant

ΔΘ(2)
=

1
4

αβ(cASβ(r−m− π) + cAScAI − cAIα) .

It is nondegenerate if and only if

α �= cAS

(
1 +

β(r−m− π)

cAI

)
. (42)

Since

δΘ(2)
=

∣∣∣∣∣∣∣∣
βcAI

1
2

βcAS

1
2

βcAS 0

∣∣∣∣∣∣∣∣ = −
1
4

c2
ASβ2 < 0

the conic section is again a hyperbola. Its intersections with the axes are the points

Ŝ0 =
r−m− π

cAS − α
, Î±0 =

β(r−m− π)− cAI ±
√

ΔI
2βcAI

,

ΔI = (cAI − β(r−m− π))2 + 4βcAI(r−m− π) = (β(r−m− π) + cAI)
2,

the latter being the roots of the quadratic

βcAI I2 + (cAI − β(r−m− π))I − (r−m− π) = 0 .

Note that these roots are in fact

Î+0 = Î0, Î−0 = − 1
β

.

Writing this conic explicitly as

S(I) = − βcAI I2 + (cAI − β(r−m− π))I − (r−m− π)

cAS(1 + βI)− α
, (43)

we observe that it has a vertical asymptote at

Î∞ =
α− cAS

cASβ
,

which is positive if (40) does not hold.
The possible intersections of Σ(2), Θ(2) and Γ
We now briefly also discuss for this case the sufficient conditions for an intersection.

Now, an intersection between Σ(2) and Θ(2) can be guaranteed if the corresponding inter-
sections with the coordinate axes are suitably arranged, imposing some kind of interlacing
properties between the corresponding coordinates.

More specifically, assuming all intersections with the coordinate axes for both Σ(2) and
Θ(2) to be positive, imposing

S0 > Ŝ0, A0 < Â0, I0 < Î0, (44)
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the two surfaces meet on the S–A coordinate plane at the point W− = (S−, A−, 0),

S− =
1

δ−
[(r−m)cAA − (r−m− π)(cSA + α)],

A− =
1

δ−
[cSS(r−m− π)− (cAS − α)(r−m)],

δ− = cSScAA − (cAS + α)(cSA + α),

and also at a point on the S–I coordinate plane, say E+ = (S+, 0, I+)

S+ =
1

cSS
[(r−m)cSI I+],

where I+ a root of the quadratic

κ2 I2 + κ1 I + κ0 = 0, κ0 =
1

cSS
(r−m)(cAS − α)− (r−m− π),

κ1 =
1

cSS
(r−m)(cAS − α) + cAI − β(r−m− π), κ2 = β

(
cAI −

cAScS I
cSS

)
,

and clearly also on the line ρ1 joining these two points. In addition, imposing instead the
reverse inequalities

S0 < Ŝ0, A0 > Â0, I0 > Î0, (45)

Σ(2) and Θ(2) intersect each other again on the line ρ1. Both these sets of conditions (44)
and (45) represent sufficient intersection conditions, and more cases could arise and also
lead to other intersection lines; however, we do not examine them further.

In addition, the intersection line ρ1 meets Γ because W− = (S−, A−, 0) lies in the
upper semispace generated by Γ, while E+ = (S+, 0, I+) in the lower one. Hence, since the
intersection exists, it provides the population values of the endemic equilibrium for (23).

Table 4 summarizes these findings.

2.6.3. Local Stability

The Jacobian here has slight differences with respect to the one of (1), namely, it is

Ĵ =

⎡⎢⎢⎢⎢⎣
Ĵ1,1 −cSAS− αS

1 + βI
−cSIS +

αβSA

(1 + βI)2

−cAS A +
αA

1 + βI
Ĵ2,2 −cAI A− αβSA

(1 + βI)2

−cIS I −cIA I + π Ĵ3,3

⎤⎥⎥⎥⎥⎦ ,

with
Ĵ1,1 = r−m− 2cSSS− cSA A− cSI I − αA

1 + βI
,

Ĵ2,2 = r−m− 2cAA A− cASS− cAI I +
αS

1 + βI
− π

and
Ĵ3,3 = −m− μ− 2cI I I − cISS− cIA A .

For equilibrium E0 the stability condition is unchanged with respect to model (1), namely (21).
For ES, instead, there is a change in the second eigenvalue, for which, instead of (22), the
stability changes in

π >

(
1− cAS − α

cSS

)
(r−m). (46)
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For the equilibrium E±AI , one eigenvalue factorizes to give the first stability condition

r < m + cSA A± + cSI I± +
αA±

1 + βI±
. (47)

Applying the Routh–Hurwitz conditions to the remaining minor, we obtain from the
condition on the trace

r < 2m + π + μ + 2cAA A± + 2cI I I± + cAI I± + cIA A± , (48)

while the one on the determinant provides the last stability condition

cAI A±(−cIA I± + π) > (r−m− 2cAA A± − cAI I± − π)(m + μ + 2cI I I± + cIA A±) . (49)

For the coexistence equilibrium, using the equilibrium equations we can simplify the
diagonal terms of the Jacobian, which become

Ĵ11 = −cSSS, Ĵ22 = −cAA A, Ĵ33 = −πA
I
− cI I I,

immediately showing that the trace is negative. Stability hinges then on the remaining
two Routh–Hurwitz conditions, which are very much involved and are neither going to be
stated, nor investigated.

Table 5 summarizes these findings.

Table 4. Summary of equilibria and their feasibility for model (23).

Equilibria Existence Conditions

E0 = (0, 0, 0) -

ES =

(
r−m

cSS
, 0, 0

)
r > m

E±AI =

(
0,

r−m− cAI I± − π

cAA
, I±

)
(27), (28)

ESAI = (S∗, A∗, I∗) Sufficient: (38), (40) and either one of (44) or (45)

Table 5. Summary of equilibria and their local stability for model (23).

Equilibria Stability Conditions

E0 r < m

ES (46)

E±AI (47), (48), (49)

ESAI numerical simulations

3. Results

We proposed two models for the phenomenon of contact reduction in the case of
an epidemic’s spread. The novelty here is represented by the fact that the fear inducing
individuals’ intermingling reduction is based on the number of symptomatic cases, not just
on the “infected”, which also includes the asymptomatic individuals.

The numerical experiments were all performed using our own codes written in Matlab,
using the intrinsic function ode45 (or ode15s) for the differential equations integration. In
the simulations, we always took the following hypothetical initial conditions:

S(0) = 10,000, A(0) = 1, I(0) = 0. (50)
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In addition, the very same hypothetical competition rates are used, namely

cSS = 0.0004, cAA = 0.0005, cI I = 0.0006, cSA = 0.0008, cSI = 0.0003, (51)

cAS = 0.0001, cAI = 0.0002, cIS = 0.0009, cIA = 0.0007.

Two models are presented, differing in the way disease transmission occurs between
parents and offsprings. In the former, vertical transmission is not allowed, a fact that,
instead, is present in the second model.

We present the simulation results from these models in Figures 1–7.
In Figure 1, the disease-free point is attained for model (1) and the hypothetical parameters

α = 0.005, β = 0.006, μ = 0.06, π = 7, m = 0.2, r = 0.7. (52)

For model (1), in Figure 2, coexistence is obtained using the hypothetical parameter values

α = 0.5, β = 0.6, μ = 0.3, π = 1, m = 0.4, r = 3. (53)

In Figure 3, the hypothetical parameters are

α = 0.5, β = 6, μ = 0.5, π = 1, m = 0.4, r = 3. (54)

The hypothetical parameters of Figure 4 are

α = 0.5, β = 0.6, μ = 0.3, π = 4, m = 2, r = 3. (55)

Note that in the former case, the asymptomatics attain the highest value, followed
by the susceptibles. In the second case, instead, the disease seems to affect less of the
population; the most populated compartment is the one of the susceptibles, followed by the
asymptomatic individuals. Figure 4 shows an instance in which the largest population is
represented by the symptomatic individuals and the second largest are the asymptomatics.

Figure 1. Disease-free point for model (1) obtained with parameter values (52), (51) and initial
conditions (50).
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Figure 2. Coexistence equilibrium for model (1) obtained with parameter values (53), (51) and initial
conditions (50).

Figure 3. Coexistence equilibrium for model (1) obtained with parameter values (54), (51) and initial
conditions (50).

Figure 4. Coexistence equilibrium for model (23) obtained with parameter values (55), (51) and initial
conditions (50).

For the model (23) with vertical transmission, we also show three instances of the
endemic equilibrium. The hypothetical parameters of Figure 5 are (51) and

α = 0.5, β = 6, μ = 0.5, π = 2, m = 0.4, r = 3, (56)
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while those hypothetical of Figure 6, in addition to (51), instead being

α = 0.5, β = 0.6, μ = 0.5, π = 2.5, m = 0.4, r = 3 (57)

and those hypothetical parameters for Figure 7, in which the asymptomatics represent the
most numerous class, are

α = 1.6, β = 0.6, μ = 0.3, π = 4, m = 0.4, r = 3 (58)

The disease-free point is also attained with the following hypothetical parameters

α = 0.5, β = 0.6, μ = 0.3, π = 4, m = 0.4, r = 3.

The resulting figure is extremely close to Figure 1 and, therefore, it is not shown.
In case of Figure 5, the most populated compartment is the susceptibles, followed

by the asymptomatic individuals. In Figure 6, the asymptomatic prevail, followed by the
symptomatic individuals, so that in this case the disease has been contracted by a larger
proportion of the population. Figure 7 shows, instead, the case in which the asymptomatics
represent the largest class.

Figure 5. Coexistence equilibrium for model (23) obtained with parameter values (56), (51) and initial
conditions (50).

Figure 6. Coexistence equilibrium for model (23) obtained with parameter values (57), (51) and initial
conditions (50).
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Figure 7. Coexistence equilibrium for model (23) obtained with parameter values (58), (51) and initial
conditions (50).

4. Global Behavior of the Systems

On the basis of the previous results, comparing the feasibility and stability conditions
of the various equilibria, we can conjecture the existence of bifurcations relating them. We
show analytically their presence, but we can go even further, completely assessing the
models behavior.

The first step in this direction is to recall that both models’ trajectories are confined
to a compact set, as discussed in Sections 2.2 and 2.6. In the second place, using So-
tomayor’s theorem [22], we show that a chain of transcritical bifurcations ties the various
systems’ equilibria.

Model (1) implies that no two such equilibria may appear simultaneously to be
stable and feasible, and, therefore, when locally asymptotically stable, they are also glob-
ally asymptotically stable. Therefore, these systems move from “disappearance” to the
susceptible-only, i.e., disease-free, point, and, finally, to the endemic case.

In order to apply Sotomayor’s theorem, some preliminary calculations are needed.
We slightly change our notation, denoting now by f (S, A, I) = ( f1(S, A, I), f2(S, A, I),
f3(S, A, I))T both systems’ (1) and (23) right-hand sides, and by D f their Jacobian.

4.1. Application of Sotomayor’s Theorem for Model (1)

We now determine the second partial derivatives of f with respect to the variables S,
A and I, i.e., the elements of D2 f :

∂2 f1

∂S2 = −2cSS ,
∂2 f1

∂I2 = − 2αβ2SA
(1 + βI)3 ,

∂2 f1

∂S∂A
=

∂2 f1

∂A∂S
= −cSA −

α

1 + βI
,

∂2 f1

∂S∂I
=

∂2 f1

∂I∂S
= −cSI +

αβA
(1 + βI)2 ,

∂2 f1

∂A∂I
=

∂2 f1

∂I∂A
=

αβS
(1 + βI)2 ,

∂2 f2

∂A2 = −2cAA ,

∂2 f2

∂I2 =
2αβ2SA
(1 + βI)3 ,

∂2 f2

∂S∂A
=

∂2 f2

∂A∂S
= −cAS +

α

1 + βI
,

∂2 f2

∂S∂I
=

∂2 f2

∂I∂S
= − αβA

(1 + βI)2 ,

∂2 f2

∂A∂I
=

∂2 f2

∂I∂A
= −cAI −

αβS
(1 + βI)2 ,

∂2 f3

∂I2 = −2cI I ,
∂2 f3

∂S∂I
=

∂2 f3

∂I∂S
= −cIS ,

∂2 f3

∂A∂I
=

∂2 f3

∂I∂A
= −cIA ,

∂2 f1

∂A2 =
∂2 f2

∂S2 =
∂2 f3

∂S2 =
∂2 f3

∂A2 =
∂2 f3

∂S∂A
=

∂2 f3

∂A∂S
= 0.

Furthermore, by differentiating the components of f with respect to r, we find

fr =

[
∂ f1

∂r
,

∂ f2

∂r
,

∂ f3

∂r

]T
= [S + A, 0, 0]T ,
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whose Jacobian, differentiating with respect to the variables S, A and I, is

D fr =

⎡⎣1 1 0
0 0 0
0 0 0

⎤⎦ . (59)

4.1.1. Transcritical Bifurcation E0 → ES

Consider the equilibrium point E0 and choose r as the bifurcation parameter.
Evaluating the Jacobian at the equilibrium E0, we obtain

J = D f (E0, r) =

⎡⎣r−m m 0
0 −m− π 0
0 π −m− μ

⎤⎦ ,

having the eigenvalues λ1 = r−m, λ2 = −m− π and λ3 = −m− μ; thus, two eigenvalues
have a negative real part and the first one vanishes by taking as the critical bifurcation value

r0 = m. (60)

Its right v and left w eigenvectors corresponding to the zero eigenvalue are, therefore

v = [1, 0, 0]T , w =

[
m + π

m
, 1, 0

]T
.

The only nonvanishing terms in D2 f (E0, m) are

∂2 f1

∂S2 = −2cSS ,
∂2 f1

∂S∂A
=

∂2 f1

∂A∂S
= −cSA − α ,

∂2 f1

∂S∂I
=

∂2 f1

∂I∂S
= −cSI , (61)

∂2 f2

∂A2 = −2cAA ,
∂2 f2

∂S∂A
=

∂2 f2

∂A∂S
= −cAS + α ,

∂2 f2

∂A∂I
=

∂2 f2

∂I∂A
= −cAI ,

∂2 f3

∂I2 = −2cI I ,
∂2 f3

∂S∂I
=

∂2 f3

∂I∂S
= −cIS ,

∂2 f3

∂A∂I
=

∂2 f3

∂I∂A
= −cIA.

Furthermore, recalling (59), we have

fr(E0, m) = [0, 0, 0]T , D fr(E0, m) = D fr .

Finally, the components of D2 f (E0, m)(v, v) are

D2 f1(E0, m)(v, v) = −2cSSv2
1 − 2(cSA + α)v1v2 − 2cSIv1v3 ,

D2 f2(E0, m)(v, v) = −2cAAv2
2 − 2(cAS − α)v1v2 − 2cAIv2v3 ,

D2 f3(E0, m)(v, v) = −2cI Iv2
3 − 2cISv1v3 − 2cIAv2v3 .

Thus, the three conditions required by Sotomayor’s Theorem for a transcritical bifurcation
are met; indeed

wT fr(E0, m) = 0 , wT [D fr(E0, m)v] = w1v1 =
m + π

m
�= 0 ,

wT
[

D2 f (E0, m)(v, v)
]
= −2cSSw1v2

1 = −2cSS(m + π)

m
�= 0 .

4.1.2. Transcritical Bifurcation ES → ESAI

Now consider the ES and choose r as the bifurcation parameter.
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The Jacobian evaluated at ES is

J = D f (ES, r) =

⎡⎢⎢⎢⎢⎣
− cSS(m + π)

α− cAS
J1,2 − cIS(m + π)

α− cAS
0 J2,2 0

0 π − (α− cAS)(m + μ) + cIS(m + π)

α− cAS

⎤⎥⎥⎥⎥⎦ ,

with

J1,2 =
(cSS − cAS − cSA)m + (cSS − cSA − α)π

α− cAS
, J2,2 = −m− π + (α− cAS)

r−m
cSS

.

Its eigenvalues are

λ1 = − cSS(m + π)

α− cAS
, λ2 = J22, λ3 = − (α− cAS)(m + μ) + cIS(m + π)

α− cAS
.

Now, λ2 vanishes by choosing the critical value

r† = m +
cSS(m + π)

α− cAS
, (62)

while the remaining ones are negative, if α > cAS; or the first one is positive, if α < cAS.
The left eigenvector is w = [0, 1, 0]T , while the right one is

v =

⎡⎢⎢⎢⎣
1

cSS(m+π)

(
((cSS−cAS−cSA)m+(cSS−cSA−α)π)((α−cAS)(m+μ)+cIS(m+π))

(α−cAS)π
− cSI(m + π)

)
(α− cAS)(m + μ) + cIS(m + π)

(α− cAS)π
1

⎤⎥⎥⎥⎦ .

Recalling (59), we further have

fr

(
ES, r†

)
=

[
m + π

α− cAS
, 0, 0

]T
, D fr

(
ES, r†

)
= D fr .

However, in spite of having wT fr
(
ES, r†) = 0 , Sotomayor’s Theorem is inconclusive

because the last condition is not satisfied, namely wT[D fr
(
ES, r†)v

]
= 0 .

Remark 1. This calculation is very interesting, because in spite of the fact that the analysis is
undecided concerning the existence of the transcritical bifurcation, the simulations below will show
that it does indeed take place. Thus, it is an example of the fact that the conditions in Sotomayor’s
Theorem are sufficient but not necessary.

4.2. Application of Sotomayor’s Theorem for Model (23)

The proof follows pretty much the one of model (1). We outline only the basic changes.
Once again, we use the same notation for f and D f , which, here, denote the right hand
side and the Jacobian of (23). The only changes in the Jacobian are the elements

∂ f1

∂A
= −cSAS− αS

1 + βI
,

∂ f2

∂A
= r−m− 2cAA A− cASS− cAI I +

αS
1 + βI

− π .

It further turns out that D2 f is the same as the one of model (1). Here, instead, we find

fr =

[
∂ f1

∂r
,

∂ f2

∂r
,

∂ f3

∂r

]T
= [S, A, 0]T ,
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whose Jacobian—differentiating with respect to the variables S, A and I—is now

D fr =

⎡⎣1 0 0
0 1 0
0 0 0

⎤⎦ .

4.2.1. Transcritical Bifurcation E0 → ES

We consider the equilibrium point E0 and we choose r as the bifurcation parameter.
By evaluating the Jacobian, we obtain

J = D f (E0, r) =

⎡⎣r−m 0 0
0 −π 0
0 π −m− μ

⎤⎦ ,

having the eigenvalues λ1 = r − m, λ2 = −π and λ3 = −m − μ, two of them being
negative. The first one vanishes by taking, again, r0 = m as in (60), the same the critical
bifurcation threshold as for model (1). The left and right eigenvectors are, respectively

v = [1, 0, 0]T , w = [1, 0, 0]T .

The elements of D2 f (E0, r0) are the same as the first model, because D2 f is the same;
consequently, also, are the components of

D2 f (E0, r0)(v, v) =
[

D2 f1(E0, r0)(v, v), D2 f2(E0, r0)(v, v), D2 f3(E0, r0)(v, v)
]T

.

Furthermore, recalling (59), we have

fr(E0, r0) = [0, 0, 0]T , D fr(E0, r0) = D fr .

Thus, the three conditions required by Sotomayor’s Theorem are met; indeed

wT fr(E0, m) = 0 , wT [D fr(E0, m)v] = w1v1 = 1 �= 0 ,

wT
[

D2 f (E0, m)(v, v)
]
= −2cSSw1v2

1 = −2cSS �= 0 .

Hence, at r = r0 = m, there is a transcritical bifurcation for which E0 becomes ES.

4.2.2. Transcritical Bifurcation ES → ESAI

We consider the equilibrium point ES and we choose r as the bifurcation parameter.
From the evaluation of the Jacobian, for

cAS �= cSS + α (63)

we obtain

J = D f (ES, r) =

⎡⎢⎢⎢⎣
− cSSπ

cSS − cAS + α
− (cAS + α)π

cSS − cAS + α
− cISπ

cSS − cAS + α
0 J22 0

0 π −m− μ− cISπ

cSS − cAS + α

⎤⎥⎥⎥⎦ ,

having the eigenvalues

λ1 = − cSSπ

cSS − cAS + α
, λ2 = J22, λ3 = −m− μ− cISπ

cSS − cAS + α
.
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The second eigenvalue vanishes by taking as the critical bifurcation threshold

r‡ = m +
cSSπ

cSS − cAS + α
> m, (64)

the latter inequality following by requiring λ1 < 0. Note that r† for model (1) and r‡ for
model (23) differ; compare (62) and (64). The left and right eigenvectors are, respectively

v =

⎡⎢⎢⎢⎣
cSI
cSS

− cAS + α

cSS

(
m + μ

π
+

cIS
cSS − cAS + α

)
m + μ

π
+

cIS
cSS − cAS + α

1

⎤⎥⎥⎥⎦ , w = [0, 1, 0]T .

The nonvanishing elements of D2 f
(
ES, r‡) are exactly those of (61) with the exception of

∂2 f1

∂A∂I
=

∂2 f1

∂I∂A
=

αβπ

cSS − cAS + α
,

∂2 f2

∂A∂I
=

∂2 f2

∂I∂A
= −cAI −

αβπ

cSS − cAS + α
,

∂2 f3

∂I2 = −2cI I .

Further, recalling once again (59), we have

fr

(
ES, r‡

)
=

[
π

cSS − cAS + α
, 0, 0

]T
, D fr

(
ES, r‡

)
= D fr .

Finally, the components of

D2 f
(

ES, r‡
)
(v, v) =

[
D2 f1

(
ES, r‡

)
(v, v), D2 f2

(
ES, r‡

)
(v, v), D2 f3

(
ES, r‡

)
(v, v)

]T

are

D2 f1

(
ES, r‡

)
(v, v) = −2cSSv2

1 − 2(cSA + α)v1v2 − 2cSIv1v3 +
2αβπ

cSS − cAS + α
v2v3 ,

D2 f2

(
ES, r‡

)
(v, v) = −2cAAv2

2 − 2(cAS − α)v1v2 − 2
(

cIA +
αβπ

cSS − cAS + α

)
v2v3 ,

D2 f3

(
ES, r‡

)
(v, v) = −2cI Iv2

3 − 2cISv1v3 − 2cIAv2v3 .

The first condition required to use Sotomayor’s Theorem is wT fr
(
ES, r‡) = 0. We would

also need the nonvanishing of the following quantities:

wT
[

D fr

(
ES, r‡

)
v
]
= v2 =

m + μ

π
+

cIS
cSS − cAS + α

, (65)

wT
[

D2 f
(

ES, r‡
)
(v, v)

]
= D2 f2

(
ES, r‡

)
(v, v) = −2cAA

(
m + μ

π
+

cIS
cSS − cAS + α

)2
(66)

−2(cAS − α)

(
cSI
cSS

− cAS + α

cSS

(
m + μ

π
+

cIS
cSS − cAS + α

))(
m + μ

π
+

cIS
cSS − cAS + α

)
−2

(
cIA +

αβπ

cSS − cAS + α

)(
m + μ

π
+

cIS
cSS − cAS + α

)
.

The first one is satisfied and shows that either a transcritical or a pitchfork bifurcation
is possible. The remaining ones are needed for a transcritical bifurcation. Thus, if these
quantities are different from 0 for r = r‡, there is a transcritical bifurcation from ES to ESAI .

In case (66) vanishes, we further investigate the situation. We can observe that (65) is
zero if and only if

π = − (m + μ)(cSS − cAS + α)

cIS
, (67)
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while (66) is zero if and only if either (67) holds or

cAA =
π(cSS − cAS + α)

(m + μ)(cSS − cAS + α) + πcIS

×
{
(α− cAS)

[
cSI
cSS

− cAS + α

cSS

(
m + μ

π
+

cIS
cSS − cAS + α

)]
− cAI −

αβπ

cSS − cAS + α

}
, (68)

and, in this second case, we must assume

π �= − (m + μ)(cSS − cAS + α)

cIS
. (69)

Now, because w = [0, 1, 0]T , the third derivatives simplify, namely

wT [D3 f (ES, r‡)(v, v, v)] = D3 f2(ES, r‡)(v, v, v) .

The only nonvanishing third partial derivatives of f2 are

∂3 f2

∂I3 = − 6αβ3SA
(1 + βI)4 ,

∂3 f2

∂I2∂S
=

∂3 f2

∂S∂I2 =
∂3 f2

∂I∂S∂I
=

2αβ2 A
(1 + βI)3 ,

∂3 f2

∂I2∂A
=

∂3 f2

∂A∂I2 =
∂3 f2

∂I∂A∂I
=

2αβ2S
(1 + βI)3

and

∂3 f2

∂S∂A∂I
=

∂3 f2

∂S∂I∂A
=

∂3 f2

∂A∂S∂I
=

∂3 f2

∂A∂I∂S
=

∂3 f2

∂I∂S∂A
=

∂3 f2

∂I∂A∂S
= − αβ

(1 + βI)2 .

Of these, upon evaluation at (ES, r‡), the only nonvanishing ones are those in the last two
groups, namely

∂3 f2(ES, r‡)

∂I2∂A
=

∂3 f2(ES, r‡)

∂A∂I2 =
∂3 f2(ES, r‡)

∂I∂A∂I
=

2αβ2π

cSS − cAS + α

and

∂3 f2(ES, r‡)

∂S∂A∂I
=

∂3 f2(ES, r‡)

∂S∂I∂A
=

∂3 f2(ES, r‡)

∂A∂S∂I
=

∂3 f2(ES, r‡)

∂A∂I∂S

=
∂3 f2(ES, r‡)

∂I∂S∂A
=

∂3 f2(ES, r‡)

∂I∂A∂S
= −αβ .

Consequently

wT [D3 f (ES, r‡)(v, v, v)] = D3 f2(ES, r‡)(v, v, v) =
3

∑
j1,j2,j3=1

∂3 f2(ES, r‡)

∂xj1 ∂xj2 ∂xj3
vj1 vj2 vj3

= 3
∂3 f2(ES, r‡)

∂A∂I2 v2v2
3 + 6

∂3 f2(ES, r‡)

∂S∂A∂I
v1v2v3 = 6αβv2v3

(
βπ

cSS − cAS + α
v3 − v1

)
.

Substituting into this expression the components of v we explicitly have

wT [D3 f (ES, r‡)(v, v, v)] = 6αβ

(
m + μ

π
+

cIS
cSS − cAS + α

)
×
[

βπ

cSS − cAS + α
− cSI

cSS
+

cAS + α

cSS

(
m + μ

π
+

cIS
cSS − cAS + α

)]
. (70)

31



Axioms 2023, 12, 62

Still assuming (63),we can observe that (70) is zero if and only if (67) holds or, alternatively

β =
cSIcSSπ − (cAS − α)cSIπ − (m + μ)(cAS + α)(cSS − cAS + α)− cIScSSπ

cSSπ2 . (71)

In summary, for the case (63), since Sotomayor’s Theorem gives only sufficient conditions,
we cannot conclude anything about the bifurcation from ES for r = r‡ being a saddle-node.
Instead, a sufficient condition for a transcritical bifurcation to exist is that the conditions (67)
and (68) are both not satisfied; alternatively, a pitchfork bifurcation occurs if (67) and (71)
are not satisfied but (68) is verified.

We, finally, also investigate the case for which (63) does not hold, i.e., cSS− cAS + α = 0.
The Jacobian evaluated at ES gives Ĵ22 = −π. Taking now π as the bifurcation parameter,
with threshold value π0 = 0, we find the right and left eigenvectors v = [v1, v2, 0]T

w = [0, 1, 0]T , with
v1 = − cSS

cSA + α
< 0, v2 = 1 > 0.

In addition, calculating the derivative with respect to the bifurcation parameter, fπ =
[0,−A, A]T so that fπ(ES, π) = [0, 0, 0]T and wT fπ(ES, π) = 0. Upon evaluation of the
Jacobian D fπ , it also follows that wT D fπ(ES, π)v = [0,−1, 0]Tv = −v2 > 0. Since w1 =
w3 = 0, it is enough to calculate just the partial derivatives of the second component of f :

wT D2 f (v, v) =
∂2 f2

∂S2 v2
1 + 2

∂2 f2

∂A∂S
v1v2 +

∂2 f2

∂A2 v2
2 = −2cASv1v2 − 2cAA Av2

2

so that
wT D2 f (v, v)|(ES ,π) = −2cASv1v2 > 0

and, therefore, there is also no transcritical bifurcation in this case.

Remark 2. Note that if we try to apply the same technique to the situation α− cAS = 0 for (1),
we obtain J22 = −m− π, so that in this case the threshold value for the bifurcation parameter π

would be negative, π
(1)
0 = −m < 0, and, therefore, not biologically feasible.

4.3. Numerical Simulations for the Bifurcations

In addition, we also show numerically the two transcritical bifurcation diagrams,
indicating in particular that the coexistence equilibrium in both models originates from
the disease-free equilibrium, which, in turn, arises from the origin when the population
reproduction rate overcomes its mortality rate, as it also appears from the theoretical
analysis. Note that Figures 8 and 9 qualitatively appear to be the same, but their vertical
axes differ quite a bit.

Figure 8. (Left): transcritical bifurcations for model (1) obtained with parameter values (72), (55) and
initial conditions (50). (Right): zoom of the left image showing two bifurcations as r changes; the first
from E0 to ES when r = r0 = 2 and the second from ES to ESAI when r = r† = 2.4898.
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Figure 9. (Left): transcritical bifurcations for model (23) obtained with parameter values (72), (55)
and initial conditions (50). (Right): zoom of the left image showing two bifurcations as r changes; the
first one from E0 to ES when r = r0 = 2 and the second from ES to ESAI when r = r‡ = 2.3019.

The transcritical bifurcation parameters for both model (1) and (23), still using (55) are:

cSS = 0.04, cAA = 0.05, cI I = 0.06, cSA = 0.08, cSI = 0.03, (72)

cAS = 0.01, cAI = 0.02, cIS = 0.09, cIA = 0.07.

5. Discussion

This investigation has been prompted by the recent COVID-19 pandemic, in which, at
least at its outbreak, the role of asymptomatic individuals was apparently fundamental. We
consider the general population response to such an event. The now classical Capasso–Serio
model [9] was the first to encompass this feature. Although more generally formulated, it
also contains three compartments: susceptibles, infected and removed.

The specific form for the model [9] that we adopt in our simulations for comparison
purposes is the following:

dS
dt

= − αSI
1 + βI2 , (73)

dI
dt

=
αSI

1 + βI2 − γI,

dR
dt

= γI.

As already mentioned in the Introduction, the SAI models (1) and (23) proposed here
from the epidemiological viewpoint are an extension of the classical SI model or as an SIR
model in which R stands for removed rather than recovered. Since, in the SI case, removed
do not appear, in a sense (1) and (23) share its properties. Introducing the asymptomatics A
in (1) and (23), the infected are split among A and symptomatics I. System (1) or (23) can
be compared with the Capasso–Serio model by means of the following matches:

S : (1)→ S : (73), (the susceptible classes)

A : (1)→ I : (73), (the classes that can transmit the disease)

I : (1)→ R : (73), (removed from circulation and unable to transmit the disease).

In (1) and (23), I are recognized as disease carriers. In order to possibly not get the
disease, the susceptibles take the size of symptomatic I as an index by which to measure
the reduction in their contacts with all other individuals. In (73), instead, both I and R
are recognized as disease carriers, but R are isolated and cannot produce new cases of the
disease. Here, the contact reductions are based on the size of the infected class I. Both
I for (1) and (23) as well as R for (73), represent sinks for the dynamical system. In the
comparison between (1) (or (23)) and (73), only the people that can spread the disease are
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relevant, respectively, A and I. However, the important point is that the people can only
react to the infected they see, i.e., I in both models. Note, indeed, that in spite of the above
matching among compartments, we cannot completely identify the asymptomatics A of
our case with the infected in [9], nor our symptomatic individuals I with the removed of [9],
because the “fear” response function in our model depends inversely on symptomatics,
while in [9], it does on the infected class. In [9], this dependence has to be quadratic to push
the disease transmission to zero, meaning a large contact reduction for a large number of
infected. There would (almost) be symmetrization if, in [9], the fear would be induced
by the removed. However, it is clearly assumed in [9] that in such a case the infected are
recognizable as disease carriers, in contrast to the asymptomatics of the model (1) (or (23)),
and, therefore, are seen by the susceptibles as potential contagion sources.

We now compare the two models, ours and [9], in several situations. Firstly, the full
cases, respectively, SAI and SIR. In the following figures, we show comparisons between
these compartments in [9] and our models. Note that to make the comparison fair in our
models, we set all demographic parameters of type cEB, with E, B ∈ {S, I, A}, to zero,
because in [9] no demographics is present. In this case, the models (1) and (23) coincide,
so from now on we can just refer to one of them. The remaining hypothetical reference
parameter values are the following

α = 0.5, β = 1, μ = 0, m = 0, r = 0. (74)

In both Figures 10 and 11, while in the classical model (73) ultimately almost the
whole population is affected, a good number of susceptibles are preserved in the SAI
model (1). For the (73) model, the higher the removal rate γ, the faster the disease affects
the population, Figure 10. Instead, for the SAI model, the higher the progression rate π, the
higher the number of susceptibles that are preserved from the disease. A similar effect is
noted if the disease contact rate α increases, Figure 11.

Figure 10. Here, the disease transmission rate is fixed and lower than the progression to the symp-
tomatic/removed classes, with α = 0.5 < π = γ ∈ [1, . . . , 10]. Comparison between (1) (or
equivalently (23)) on the left column, and the Capasso–Serio model (73) on the right column, in terms
of the progression from asymptomatic to symptomatic π for (1) (as well as (23)) and of the removal
rate γ for (73), with parameter values (74) and initial conditions (50). Left frame: the simulations
to show the settling of the systems. Right frame: the blow up of the initial instants to better show
the transients.
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Figure 11. Here, π = γ = 5. Comparison between (1) (or, equivalently, (23)) on the left column,
and the Capasso–Serio model (73) on the right column, in terms of the disease transmission rate
α ∈ [0.1, . . . , 1.0] so that, again, it is below the progression to symptomatic or removal rates, α < π = γ

with parameter values (74) and initial conditions (50). Left frame: the simulations to show the settling
of the systems. Right frame: the blow up of the initial instants to better show the transients.

Figure 12 contains the simulation of the opposite conditions: higher transmission rate
than progression/removal rates. In this situation, the susceptibles of the SAI model (1) are
quickly depleted and the whole population quickly becomes symptomatic. For (73), this
occurs much more slowly, and the slower the smaller the transmission rate is.

We next compare the two types of models as different versions of the SI model, with
just asymptomatics in (1) and recognizable infected for (73). We, thus, take π = γ = 0
to prevent progression respectively to symptomatics or removed. Figure 13 contains the
results of the simulations in this case. In the case of model (73), the R compartment is
initially empty and, in this case, clearly remains empty throughout the simulation. For
the SAI model, there is no progression to symptomatics and, also, this compartment is
empty. It is interesting to note that the lower values of α once again have a delaying effect
on the epidemics’ propagation for (73), the more marked the lower the value of the rate
α. However, in the SAI model, everyone is very quickly affected and the susceptibles are
quickly depleted. The important remark is that the behavior remains in agreement with the
ones found in the former, Figure 12, since π = 0 < α.

We also compared the two models (1) and (73), interpreting the former as an extension
of the SI model, allowing in it two classes of individuals affected by the disease: asymp-
tomatic and symptomatic. This is performed by allowing progression from A to I, while
there is no removal rate in the classical model. Hence, π �= 0 and γ = 0. Figure 14 shows
the results. It is clearly seen that for α < π, the SAI model preserves again part of the
susceptibles, while this does not occur for (73), and for α > π in both models the whole
population is affected.

We finally consider a less relevant simulation, for the reverse case π = 0 and γ = 0.05.
This is not a fair comparison as on one hand we have an SA model (the SI model with all
asymptomatics) versus a full SIR model. In the former case, everybody becomes asymp-
tomatic and in the latter, almost everyone also contracts the disease, within a timespan
that is longer the lower the contact rate. The results are not shown, as they coincide
with Figure 13.
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Figure 12. Here, we illustrate the case 0 = π < α ∈ [0.1 . . . , 1.0], γ = 0.05. In this case, in the SAI
model, the whole population is quickly affected, while for (73), the disease propagates at a lower
speed with a lower transmission rate. In the long run, here as well, the susceptible class is depleted.
Left frame: the simulations to show the settling of the systems. Right frame: the time interval is
shorter to better show the transients in the SAI model. Other parameter values are (74) and initial
conditions (50).

Figure 13. Here, π = γ = 0, so that both systems become SI models. Comparison between (1) (or,
equivalently, (23)) on the left column, and the Capasso–Serio model (73), on the right column. Left
frame: α ∈ [10, . . . , 100]. Right frame: α ∈ [0.1, . . . , 1.0]. The other parameter values are given in (74)
and initial conditions (50).
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Figure 14. Here, π = 5, γ = 0 and α ∈ [1.0, 10]. It is clearly seen that for α < 5 in the SAI model the
susceptibles are preserved, while for transmission rates higher than this threshold, α > π = 5, all
individuals eventually become symptomatic. The same occurs in the (73) model independently of α,
at a lower pace. Other parameter values are (74) and initial conditions (50).

The simulations for model (1), or equivalently (23), show a much higher impact of the
disease. For increasing disease contact rate, the susceptibles are very much reduced, and
symptomatic people rise to high values, Figure 11; instead, the asymptomatic ones quickly
vanish. Higher progression rates from asymptomatic to symptomatic are beneficial, because
they increase the number of susceptibles and sensibly reduce the symptomatic individuals.

6. Conclusions

In this paper, we analysed a simple disease transmission system with some demo-
graphic features. The illness is assumed to develop at first in an asymptomatic form. The
model accounts for epidemic-induced fear in the population, for which measures are taken
to reduce contacts. The main novelty is represented by the fact that susceptibles respond
not to a large number of asymptomatic infected, but just to the size of the symptomatic
individuals compartment.

The demographic part of the model accounts for inter- and intraspecific pressures
among the various compartments, but this is not symmetric. Specifically, such pressure
could be reduced in the class of symptomatic infected I, because they are known to be sick
and are, therefore, supposedly being cared for. Alternatively, it could be higher, meaning
that being debilitated by the disease, they feel more the competition of other compartments.
They instead exert a pressure on the other classes; this could be interpreted, e.g., as a
burden, namely, the costs for the society to hospitalize them. This is very approximate and
could be modified and expanded, if needed.

However, our main focus lies on the epidemiology. The susceptibles become infected
by the asymptomatic in a mild form, migrating, indeed, into the asymptomatic class. This
could be criticized and improved, but it is essential in order to compare the results with the
classical model (73). Considering other infection mechanisms that may lead directly from
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susceptibles to symptomatic individuals, this would indeed significantly change the model
and make the comparison less fair. In this way, both in (1) as well as in (23), because in the
absence of demographics they coincide, the transition between compartments is the same
used in (73). Thus, the simulations’ results can be compared in an adequate way. There
is only a minor mathematical change of a technical nature, in that the response function
depends inversely on 1 + βI2 in (73), and this is necessary to push it to zero for large values
of I, while for the SAI case it is enough for it to be inversely proportional to 1 + βI, in view
of the fact that in the numerator no I appears.

The main finding in the simulations is that the SAI model introduced here, in spite
of being an SI-type model with the infected individuals split between two classes, asymp-
tomatic and symptomatic, may prevent some susceptibles from contracting the disease,
in the proper situation, in contrast to the classical SI model. Specifically, this occurs if
the progression rate from asymptomatic to symptomatic is above the contact rate. The
progression rate plays, thus, a fundamental role. The explanation for this situation lies in
the fact that for a high progression rate, the asymptomatic class is fast depleted so that the
symptomatic reaches high numbers quickly. As a consequence, the transmission rate in the
SAI model quickly approaches zero, because the denominator grows and the numerator is
reduced. Specifically, for the single susceptible the infected washout rate should exceed
their recruitment rate i.e.,

αI
1 + βI

< π.

Thus the minimum weight that the individuals should give on the information about the
symptomatics, can be assessed by finding the critical threshold β†

β† =
α

π
− 1

I

where I is the number of observed symptomatics. In this way for β > β† the ratio of
transmission to progression rates falls below one, and a number of susceptibles are pre-
served from getting the disease, the higher the farther β is from the critical threshold. The
transmission rate of model (73), instead, contains the infected I also in the numerator.
Thus, although the denominator grows quickly because it contains the term 1 + βI2, the
transmission rate reaches zero at a slower pace than the SAI model does. This phenomenon
represents an instance of the well-known fact that diseases that severely affect individuals
preserve instead the whole community, while they significantly impact the population if
they are mild at the individual level.

This analysis shows that the determination of whether a disease is asymptomatic and
the assessment of the progression and transmission rates proves fundamental for its possible
containment. In addition, in the presence of asymptomatic diseased individuals, the
individual protection measures should have a higher impact, measured by a larger weight
coefficient β, when just a few symptomatics appear in the population. The simulations of
Figures 10 and 11 also help in quantifying the disease impact on the population, if a reliable
measure of the contact rate α, as well as of the transition rate to symptomatic π, exist.

Overall, this investigation reveals the importance of properly assessing these rates
as soon as possible. It also stresses that accounting for asymptomatics in the individual
response as well as in the epidemic control is of utmost importance.
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Abstract: We investigate a class of fractional neutral evolution equations on Banach spaces involving
Caputo derivatives. Main results establish conditions for the controllability of the fractional-order
system and conditions for existence of a solution to an optimal control problem of minimum energy.
The results are proved with the help of fixed-point and semigroup theories.
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minimum energy; Banach fixed point theorem
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1. Introduction

A neutral system is a system where time-delays play an important role. Precisely,
such delays appear in both state variables and their derivatives. A delay in the derivative
is called “neutral”, which makes the system more complex than a classical one where
the delays only occur in the state. Neutral delays do not only occur in physical systems,
but they also appear in control systems, where they are sometimes added to improve the
performance. For instance, a wide range of neutral-type control systems are expressed by

d
dt
[y(t)− Kyt] = Lyt + Bu(t), t ≥ 0, y0(·) = f0(·), (1)

where yt : [−1, 0] → Cn is defined by yt(s) = y(t + s); for f ∈ H1([−1, 0],Cn), the
difference operator K is given by K f = A−1 f (−1) with A−1 a constant n× n matrix. The
delay operator L is defined by

L f =
∫ 0

−1

[
A2(θ) f ′(θ) + A3(θ) f (θ)

]
dθ

with A2 and A3 n× n matrices whose elements belong to L2(−1, 0); B is a constant n× r
matrix; and the control u is an L2-function [1].

Nowadays, many researchers have investigated neutral differential equations in Ba-
nach spaces [2–4]. This interest is explained by the fact that neutral-argument differential
equations have interesting applications in real-life problems: they appear, e.g., while
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modeling networks containing lossless transmission lines or in super-computers. More-
over, second-order neutral equations play an important role in automatic control and in
aeromechanical systems, where inertia plays a central role [5–7].

Controllability plays an inherent crucial role in finite and infinite-dimensional systems,
being one of the primary concepts in control theory, along with observability and stability.
This concept has also attracted many authors; see, for instance, [8–10].

In the last two decades, several researchers have been interested in exploring the con-
cept of controllability for fractional systems [11–13]. This is natural because fractional dif-
ferential equations are considered a valuable tool in modeling various real-world dynamic
systems, including physics, biology, socio-economy, chemistry and engineering [14–16].

It turns out that system (1) can also be studied in the fractional sense, e.g., being
expressed by { CDq

t [y(t)− Kyt] = Ly(t) + Bu(t), t ∈ [0, T],
y0(·) = f0(·),

where CDq
t denotes the Caputo fractional derivative of order q. The existence of solutions

to fractional differential equations for neutral systems involving Caputo or other fractional
operators, like Riemann–Liouville fractional derivatives, has been paid much attention [17–19].
Recently, some achievements regarding the existence and uniqueness of mild solutions to
fractional stochastic neutral differential systems in a finite dimensional space have been
made [20]. Other works are consecrated to demonstrate existence of a mild solution for
neutral fractional inclusions of the Sobolev type [21].

In [22], Sakthivel et al. examined the exact controllability of fractional differential
neutral systems by establishing sufficient conditions via a fixed-point analysis approach.
Later on, Sakthivel et al. investigated the weak controllability of fractional dynamical
systems of order 1 < q < 2 using sectorial operators and Krasnoselskii’s fixed-point
theorem [23]. Using the same techniques as the previous authors, Qin et al. have studied
the controllability and optimal control of fractional dynamical systems of order 1 < q < 2
in Banach spaces [24]. Yan and Jia used stochastic analysis theory and fixed-point theorems
with the strongly continuous α-order cosine family to study an optimal control problem
for a class of stochastic fractional equations of order α ∈ (1, 2] in Hilbert spaces [25].
In 2021, Zhou and He obtained, via the contraction principle and Shauder’s fixed-point
theorem, a set of sufficient conditions for the exact controllability of a class of fractional
systems [26]. More recently, Xi et al. studied the approximate controllability of fractional
neutral hyperbolic systems using Sadovskii’s fixed point theorem while constructing a
Cauchy sequence and a control function [27]. Dineshkumar et al. addressed the problem
of approximate controllability for neutral stochastic fractional systems in the sense of
Hilfer, treating the problem using Schauder’s fixed-point theorem and extending the
obtained results to the case of nonlocal conditions [28]. In [29], Ma et al. analyzed the weak
controllability of a fractional neutral differential inclusion of the Hilfer type in Hilbert spaces
using Bohnenblust–Karlin’s fixed point theorem. The concept of complete controllability is
studied in [30] by Wen and Xi, where they establish sufficient conditions to assure this type
of controllability.

Here, we let (X, | · |) be a Banach space, and we denote the Banach space of contin-
uous functions by C(0, T; X) with the norm |x| = sup

t∈J
|x(t)|. Our main goal is to explore

the concepts of controllability and optimal control for the following general evolution
fractional system:{ CDν

t [x(t)− h(t, xt)] = Ax(t) + Bu(t), t ∈ (0, T],
x(0) = x0 ∈ D(A),

(2)

where CDν
t denotes the fractional derivative of order ν ∈ (0, 1) in the sense of Caputo,

h : [0, T]× C(0, T; X)→ X is a given continuous function, and the dynamic of the system
A : D(A) ⊆ X → X is a linear, closed operator with dense domain D(A) generating
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a compact and uniformly bounded C0 semigroup {T (t)}t≥0 on X. The control function
u(·) is given in L2(0, T; U), with U a reflexive Banach space, and the control operator
B ∈ L(U, X) is a linear continuous bounded operator, i.e., there exists a constant M1 > 0
such that |B| ≤ M1. (3)

Our main aim is to be able to obtain a set of sufficient conditions assuring the controllability
of system (2) and, afterwards, to consider an associated optimal control problem and prove
existence of a solution.

The rest of this paper is organized as follows. In Section 2, the definitions of Caputo
fractional derivative and mild solutions for system (2) are recalled. Our main result on
the controllability of (2) is proved in Section 3. In Section 4, we prove the existence of a
control giving minimum energy on a closed convex set of admissible controls. Section 5 is
consecrated to the analysis of a concrete example, illustrating the applicability of our main
results. We end with Section 6, which contains conclusions and points out some possible
future directions of research.

2. Background

In this section, basic definitions, notations, and lemmas are introduced to be used
throughout the paper. In particular, we recall the main properties of fractional calculus [31,32]
and useful properties of semigroup theory [33].

Throughout the paper, letA be the infinitesimal generator of a compact and uniformly
bounded C0 semi-group {T (t)}t≥0. Let 0 ∈ �(A), where �(A) denotes the resolvent of A.
Then, for 0 ≤ μ ≤ 1, the fractional power Aμ is defined as a closed linear operator on its
domain D(Aμ). For a compact semi-group {T (t)}t≥0, the following properties are useful
in this paper:

(i) There exists MT ≥ 1 such that

MT = sup
t≥0

|T (t)|; (4)

(ii) For any μ ∈ (0, 1], there exists Lμ > 0 such that

|AμT (t)| ≤ Lμ

tμ , 0 ≤ t ≤ T. (5)

Now we recall the notion of a Caputo fractional derivative.

Definition 1 (See [32]). The left-sided Caputo fractional derivative of order ν > 0 of a function
z ∈ L1([0, T]) is

C
0 Dν

t z(t) =
1

Γ(κ − ν)

∫ t

0
(t− s)κ−ν−1 dκ

dsκ
z(s)ds, (6)

where t ≥ 0, κ − 1 < ν < κ, κ ∈ N, and Γ(·) is the gamma function.

Using the probability density function and its Laplace transform [34] (see also [35,36]),
we recall the definition of a mild solution for system (2).

Definition 2 (See [34]). Let u ∈ U for t ∈]0, T]. A function x ∈ C(0, T; X) is said to be a mild
solution of system (2) if

x(t, u) = Sν(t)[x0 − h(0, x0)] + h(t, xt) +
∫ t

0
(t− s)ν−1AKν(t− s)h(s, xs)ds

+
∫ t

0
(t− s)ν−1Kν(t− s)Bu(s)ds,

(7)
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where Sν(·) and Kν(·) are the characteristic solution operators defined by

Sν(t) =
∫ ∞

0
φν(Θ)T (tνΘ) dΘ and Kν(t) = ν

∫ ∞

0
Θφν(Θ)T (tνΘ) dΘ

with
φν(Θ) =

1
ν

Θ−1− 1
ν ψν

(
Θ−

1
ν

)
and

ψν(Θ) =
1
π

∞

∑
n=1

(−1)n−1Θ−νn−1 Γ(nν + 1)
n!

sin(nπν), Θ ∈ (0, ∞),

the probability density. In addition, we have∫ ∞

0
ψν(Θ)dΘ = 1 and

∫ ∞

0
ΘΛφν(Θ)dΘ =

Γ(1 + Λ)

Γ(1 + νΛ)
, Λ ∈ [0, 1].

Remark 1. The solution x(t, u) of (2) is considered in the weak sense, and, when there are no
ambiguities, it is denoted by xu(t). We denote by xu(T) the mild solution of system (2) at the final
time T.

The following properties of Sν(·) and Kν(·) will be used throughout the paper.

Lemma 1 (See [34]).

1. For any t ≥ 0, the operators Sν(t) and Kν(t) are linear and bounded, i.e.,

|Sν(t)y| ≤ MT |y| and |Kν(t)y| ≤
νMT

Γ(1 + ν)
|y|

for any y ∈ X where MT = sup
t≥0

|T (t)|.

2. For t > 0, if T (t) is compact, then Sν(t) and Kν(t) are both compact operators.

Lemma 2 (See [34]). For any x ∈ X, ς ∈ (0, 1) and μ ∈ (0, 1] we have

(i) AKν(t)x = A1−ςKν(t)Aςx, 0 ≤ t ≤ a;

(ii) |AμKν(t)| ≤
νLμ

tνμ

Γ(2− μ)

Γ(1 + ν(1− μ))
, 0 < t ≤ a.

3. Controllability

Following [37], let us define the meaning of controllability for our system (2).

Definition 3. System (2) is said to be controllable in X on [0, T] if for any given initial state
x0 ∈ X and any desired final state xd ∈ X, there exists a control u(·) ∈ L2(0, T; U) such that the
mild solution x ∈ C(0, T; X) of system (2) satisfies xu(T) = xd.

To prove controllability, we make use of the following assumptions (A1) and (A2):

(A1) T (t) is compact for every t > 0;
(A2) The function h : [0, T] × C(0, T; X) → X is continuous, and there exists a constant

ς ∈]0, T[ and H, H1 > 0 such that h ∈ D(Aς), and for any z, y ∈ C(0, T; X), t ∈ [0, T],
the functionAςh(·, z) is strongly measurable andAςh(t, ·) satisfies the Lipschitz condition

|Aςh(t, z)−Aςh(t, y)| ≤ H‖z− y‖ (8)

and
|Aςh(t, z)| ≤ H1(‖z‖+ 1). (9)
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Let Hν : L2(0, T; U)→ X be the linear operator defined by

Hνu =
∫ T

0
(T − s)ν−1Kν(T − s)Bu(s)ds.

By construction, this operator is invertible. Indeed, because Hν takes values in the cokernel
L2(0, T; U)

/
kerHν, then it is injective. It is also surjective because L2(0, T; U)

/
kerHν 


ImHν (see [38,39]). The inverse operator H−1
ν takes values in L2(0, T; U)

/
ker Hν. Thus,

there exists a positive constant M2 ≥ 0 such that∣∣∣H−1
ν

∣∣∣
L
(

X,L2(0,T;U)
/

kerHν

) ≤ M2. (10)

Let r ≥ 0. Note that Br = {x ∈ C(0, T; X) : ‖x‖ ≤ r} is a bounded closed and convex
subset in C(0, T; X).

Theorem 1. If (A1) and (A2) are fulfilled, then the evolution system (2) is controllable in
[0, T] provided[

|A−ς|+ L1−ςΓ(1 + ς)

ςΓ(1 + νς)
Tνς +

MMTM1

Γ(1 + ν)
Tν

(
|A−ς|+ L1−ςΓ(1 + ς)

ςΓ(1 + νς)
Tνς

)]
H < 1. (11)

Proof. For any function x, we define the control

ux(t) = H−1
ν

[
xd − Sν(t)[x0 − h(0, x0)]− h(T, xT)

−
∫ T

0
(T − s)ν−1AKν(T − s)h(s, xs)ds

]
(t).

(12)

We shall prove that G : C(0, T; X)→ C(0, T; X), defined by

(Gx(t)) = Sν(t)[x0 − h(0, x0)] + h(t, xt) +
∫ t

0
(t− s)ν−1AKν(t− s)h(s, xs)ds

+
∫ t

0
(t− s)ν−1Kν(t− s)Bux(s)ds, t ∈ [0, T],

(13)

has a fixed point x for the control ux steering system (2) from x0 to xd in time T.
From (3), (10), Lemma 1 and (i) of Lemma 2, we have

|Bux(t)| ≤ MM1

(
|xd|+ MT

[
|x0|+ |h(0, x0)|

]
+ |h(T, xT)|

+
∫ T

0
(T − s)ν−1

∣∣∣A1−ςKν(T − s)Aςh(s, xs)
∣∣∣ds
)

.

In view of (9) and (ii) of Lemma 2, it follows that

|Bux(t)| ≤ MM1

(
|xd|+ MT

[
|x|+

(
r + 1

)
H1|A−ς|

]
+
(

r + 1
)

H1|A−ς|

+
νL1−ςΓ(1 + ς)

Γ(1 + νς)
H1

(
r + 1

) ∫ T

0
(T − s)νς−1ds

)

≤ MM1

(
|xd|+ MT

[
|x|+

(
r + 1

)
H1|A−ς|

]
+
(

r + 1
)

H1|A−ς|

+
L1−ς

Γ(1 + ς)
H1

(
r + 1

)
Tνς

)
.
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Let

Y = MM1

(
|xd|+ MT

[
|x|+

(
r + 1

)
H1|A−ς|

]

+
(

r + 1
)

H1|A−ς|+ L1−ς

Γ(1 + ς)
H1

(
r + 1

)
Tνς

)
.

It follows that
|Bux(t)| ≤ Y . (14)

In order to show that G has a unique fixed point on Br, we will proceed in two steps.
Step I: Gx ∈ Br whenever x ∈ Br. For any fixed x ∈ Br and 0 ≤ t ≤ T, we have

|(Gx(t))| ≤|Sν(t)[x0 − h(0, x0)]|+ |h(t, xt)|+
∫ t

0

∣∣∣(t− s)ν−1AKν(t− s)h(s, xs)
∣∣∣ ds

+
∫ t

0
(t− s)ν−1|Kν(t− s)Bux(s)|ds.

From Lemma 1, (9), and (i) of Lemma 2, it results that

|(Gx(t))| ≤ MT

[
r +

(
r + 1

)
H1|A−ς|

]
+
(

r + 1
)

H1|A−ς|

+
∫ t

0
(t− s)ν−1

∣∣∣A1−ςKν(t− s)Aςh(s, xs)
∣∣∣ ds

+
νMT

Γ(1 + ν)

∫ t

0
(t− s)ν−1|Bux|ds.

Now, by using (ii) of Lemma 2, we get

|(Gx(t))| ≤ MT [r + H|A−ς|
(

r + 1
)
] + H|A−ς|

(
r + 1

)∣∣∣
+

νL1−ςΓ(1 + ς)

Γ(1 + νς)
H
(

r + 1
) ∫ t

0
(t− s)νς−1ds

+
νMT

Γ(1 + ν)

∫ t

0
(t− s)ν−1

∣∣∣Bux(s)
∣∣∣ds.

According to (14), one has

|(Gx(t))| ≤ MT

[
r + H|A−ς|

(
r + 1

)]
+ H|A−ς|

(
r + 1

)
|

+
νL1−ςΓ(1 + ς)

ςΓ(1 + νς)
H
(

r + 1
)

Tνς +
MT

Γ(1 + ν)
YTν.

By choosing

r = MT

[
r +

(
r + 1

)
H1|A−ς|

]
+
(

r + 1
)

H1|A−ς|

+
νL1−ςΓ(1 + ς)

ςΓ(1 + νς)
H1

(
r + 1

)
Tνς +

νMT
Γ(1 + ν)

YTν,

we get that Gx ∈ Br whenever x ∈ Br.
Step II: G is a contraction on Br. For any v, w ∈ Br and 0 ≤ t ≤ T, in accordance with (12),
we obtain
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|(Gv)(t)− (Gw)(t)| ≤
∣∣∣∣h(t, vt)− h(t, wt)

∣∣∣∣
+
∫ t

0
(t− s)ν−1

∣∣∣∣Arν(t− s)
(

h
(
s, v(s)

)
− h

(
s, w(s)

))∣∣∣∣ ds

+
∫ t

0
(t− s)ν−1

∣∣∣∣rν(t− s)BH−1
ν

[
h(T, vT)− h(T, wT) +

∫ T

0
(T − τ)ν−1

×AKν(T − τ)

(
h
(
τ, v(τ)

)
− h

(
τ, w(τ)

))
dτ

]
(s)
∣∣∣∣ds.

Considering Lemma 2 and (A2), we get

|(Gv)(t)− (Gw)(t)| ≤ H|A−ς|v− w|+ νL1−ςΓ(1 + ς)

Γ(1 + νς)
H|v− w|

∫ t

0
(t− s)νς−1ds

+
νMMTM1

Γ(1 + ν)

∫ t

0
(t− s)ν−1

[∣∣∣∣h(T, vT)− h(T, wT)

∣∣∣∣
+
∫ t

0
(T − τ)ν−1

∣∣∣∣A1−ςKν(t− τ)Aς

[
h(τ, v(τ))− h(τ, w(τ))

]∣∣∣∣dτ

]
ds.

From (8), we obtain that

|(Gv)(t)− (Gw)(t)| ≤ H|A−ς|v− w|+ L1−ςΓ(1 + ς)

ςΓ(1 + νς)
H|v− w|Tνς

+
νMMTM1

Γ(1 + ν)

∫ T

0
(t− s)ν−1

[
H|A−ς|v− w|

+
L1−ςΓ(1 + ς)

ςΓ(1 + νς)
H|v− w|Tνς

]
ds

≤ H|A−ς|v− w|+ L1−ςΓ(1 + ς)

ςΓ(1 + νς)
H|v− w|Tνς

+
MMTM1

Γ(1 + ν)
Tν

[
|A−ς|+ L1−ςΓ(1 + ς)

ςΓ(1 + νς)
Tνς

]
H|v− w|

=

[
|A−ς|+ L1−ςΓ(1 + ς)

ςΓ(1 + νς)
Tνς +

MMTM1

Γ(1 + ν)
Tν

(
|A−ς|+ L1−ςΓ(1 + ς)

ςΓ(1 + νς)
Tνς

)]
H|v− w|.

From Theorem 1, we have[
|A−ς|+ L1−ςΓ(1 + ς)

ςΓ(1 + νς)
Tνς +

MMTM1

Γ(1 + ν)
Tν

(
|A−ς|+ L1−ςΓ(1 + ς)

ςΓ(1 + νς)
Tνς

)]
H < 1;

it follows that
|(Gv)(t)− (Gw)(t)| < |v− w|,

that is, G is a contraction on Br. We conclude from the Banach fixed-point theorem that G
has a unique fixed point x in C(0, T; X). Then, by injecting ux in (7), we have
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xux (T) = Sν(T)[x0 − h(0, x0)] + h(T, xT) +
∫ T

0
(T − s)ν−1AKν(T − s)h(s, xs)ds

+
∫ T

0
(T − s)ν−1Kν(T − s)Bux(s)ds,

= Sν(T)[x0 − h(0, x0)] + h(T, xT) +
∫ T

0
(T − s)ν−1AKν(T − s)h(s, xs)ds

+ Hν H−1
ν

[
xd − Sν(T)[x0 − h(0, x0)]− h(T, xT)

−
∫ T

0
(T − s)ν−1AKν(T − s)h(s, xs)ds

]
= xd

and system (2) is exactly controllable, which completes the proof.

We have shown, under assumptions (A1) and (A2), and with the help of Schauder’s
fixed-point theorem, that the neutral system (2) is controllable when condition (11) holds. It
would be interesting to clarify if the obtained control is unique in the sense that any control
that allows reaching the state xd is such that the associated state x is a fixed point of the
operator G. This uniqueness question is relevant but remains open.

4. Optimal Control

Now, we consider the problem of steering system (2) from the state x0 to a target state
xd in time T with minimum energy. We prove the existence of solution to such an optimal
control problem when the set of admissible controls is closed and convex.

Let Uad be the nonempty set of admissible controls defined by

Uad =
{

u ∈ L2(0, T; U) : xu(T) = xd

}
.

We shall prove that Uad is closed. For that, let us consider a sequence un in Uad such that
un → u strongly in L2(0, T; U), so

xun(T) = Sν(T)[x0 − h(0, x0)] + h(T, xT) +
∫ T

0
(T − s)ν−1AKν(T − s)h(s, xs)ds

+
∫ T

0
(T − s)ν−1Kν(T − s)Bun(s)ds.

Put

Qu =
∫ T

0
(T − s)ν−1AKν(T − s)h(s, xs)ds +

∫ T

0
(T − s)ν−1Kν(T − s)Bun(s)ds.

Since Qu is continuous, then Qun → Qu strongly in X. We also have that h : [0, T] ×
C(0, T; X) → X is continuous; then xun(T) → xu(T) in X, but xun(T) ∈ {xd}, which is
closed. Therefore, xu(T) ∈ {xd}, which means that u ∈ Uad. Hence, Uad is closed.

For a desired state xd, our optimal control problem consists of finding within Uad a
control minimizing the functional

J(u) =
ς

2

∫ T

0
|xu(t)− xd|2Xdt +

ε

2

∫ T

0
|u(t)|2Udt,

where xu(·) is the mild solution of system (2) associated with u. The parameters ε and ς are
non-negative constants. Precisely, our optimal control problem is:{

inf
u∈Uad

J(u),

s.t. (2).
(15)
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The following result gives a necessary condition for the existence of an optimal control
to our minimum energy problem.

Theorem 2. Let Uad be closed and convex. If 1−H|A−ς| > 0, then there exists a u� ∈ Uad
solution to the optimal control problem (15).

Proof. Let
∣∣up

∣∣2 ≤ 2
ε

J(up) with (up)p∈N bounded. Then there exists a subsequence, still

denoted (up)p∈N, that converges weakly to a limit u�. If Uad is closed and convex, then Uad
is closed for the weak topology, which implies that u� ∈ Uad. Let xp be the unique solution
of system (2) associated with up, and let x� be the unique solution of system (2) associated
with u�. Then,∣∣xp(t)− x∗(t)

∣∣ ≤ ∣∣h(t, xp(t)
)
− h(t, x�(t))

∣∣
+

∣∣∣∣∫ t

0
(t− s)ν−1AKν(t− s)[h

(
s, xp(s)

)
− h(s, x�(s))]ds

∣∣∣∣
+

∣∣∣∣∫ t

0
(t− s)ν−1Kν(t− s)B[up(s)− u�(s)]ds

∣∣∣∣
≤ H

∣∣A−ς
∣∣∣∣xp(t)− x�(t)

∣∣
+
∫ t

0
(t− s)ν−1

∣∣∣A1−ςKν(t− s)[Aςh
(
s, xp(s)

)
−Aςh(s, x�(s))]

∣∣∣ds

+

∣∣∣∣∫ t

0
(t− s)ν−1Kν(t− s)B[up(s)− u�(s)]ds

∣∣∣∣, t ∈ [0, T].

(16)

This leads us to(
1−H

∣∣A−ς
∣∣)∣∣xp(t)− x∗(t)

∣∣ ≤ νΓ(1 + ς)

Γ(1 + νς)
L1−ς

∫ t

0
(t− s)νς−1H

∣∣xp(t)− x�(t)
∣∣ds

+

∣∣∣∣∫ t

0
(t− s)ν−1Kν(t− s)B[up(s)− u�(s)]ds

∣∣∣∣, (17)

t ∈ [0, T]. Set K′ = 1
1−H|A−ς| . Then,

∣∣xp(t)− x∗(t)
∣∣ ≤ K′ νΓ(1 + ς)

Γ(1 + νς)
L1−ς

∫ t

0
(t− s)νς−1H

∣∣xp(t)− x�(t)
∣∣ds

+K′
∣∣∣∣∫ t

0
(t− s)ν−1Kν(t− s)B[up(s)− u�(s)]ds

∣∣∣∣, t ∈ [0, T].
(18)

Using the Gronwall lemma, we obtain that

∣∣xp(t)− x∗(t)
∣∣ ≤ K′∣∣∣∣∫ t

0
(t− s)ν−1Kν(t− s)B[up(s)− u�(s)]ds

∣∣∣∣
exp

(
K′ νΓ(1 + ς)

Γ(1 + νς)
L1−ςH

∫ t

0
(t− s)νς−1ds

)
≤ K′

∣∣∣∣∫ t

0
(t− s)ν−1Kν(t− s)B[up(s)− u�(s)]ds

∣∣∣∣
exp

(
K′ Γ(1 + ς)

ςΓ(1 + νς)
L1−ςHTνς

)
.

(19)
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Now, by the weak convergence, up ⇀ u∗ in L2(0, T, U), and from Lemma 1, we obtain that∣∣∣∣∫ t

0
(t− s)ν−1Kν(t− s)B[up(s)− u�(s)]ds

∣∣∣∣
≤ νMTM1

Γ(1 + ν)

∫ t

0
(t− s)ν−1∣∣up(s)− u�(s)

∣∣
L2(0,T,U)

ds, (20)

from which xp → x� strongly in L2(0, T; X). Hence,

lim
n→∞

∫ T

0

∣∣xp(t)− xd
∣∣2
Xdt =

∫ T

0
|x(t)− xd|2Xdt.

Using the lower semi-continuity of norms, the weak convergence of (up)n gives

|u�| ≤ lim
n→∞

inf
∣∣up

∣∣.
Therefore, J(u�) ≤ lim

n→∞
inf J(up), leading to J(u�) = inf

u∈Uad
J(up), which establishes the

optimality of u�.

We have just proved the existence of an optimal control for a closed convex set of
admissible controls. In Section 5, our main results are illustrated with the help of an
example.

5. An Application

In this section we illustrate the results given by our Theorems 1 and 2.
Let X = L2((0, 1);R) and consider the fractional differential system{

CD1/2
t

(
y(t, z)− h(t, yt)

)
= Δy(t, z) + Bu(t, z), t ∈ [0, 1],

y(t, 0) = y(t, 1) = 0, t ∈ [0, 1],
(21)

where the order ν of the fractional derivative is equal to
1
2

, and the function h : [0, 1]× C →
X is given by

h(t, yt)(x) =
∫ 1

0
F (x, z)ut(v, z)dz, (22)

where F is assumed to satisfy the following conditions:

(a) The function F (x, z), x, z ∈ [0, 1], is measurable and

∫ 1

0

∫ 1

0
F 2(x, z)dz < ∞;

(b) The function ∂xF (x, z) is measurable, F (0, z) = F (1, z) = 0, and

(∫ 1

0

∫ 1

0

(
∂xF (x, z)

)2dzdx

)1/2

< ∞.

Let A : D(A) ⊆ X → X be defined by Ax = −x′′ with the domain

D(A) =
{

x(·) ∈ X : x, x′ absolutely continuous , x′′ ∈ X, x(0) = x(1) = 0
}

.

We begin by proving that the assumption (A1) holds. Indeed, operator A is self-
adjoint, with a compact resolvent, and generating an analytic compact semi-group T (t).
Furthermore, the eigenvalues of A are Λp = p2π2, p ∈ N, with corresponding normalized

eigenvectors ep(z) =

√
2
π

sin(pπz), {ei}∞
i=1 forming an orthonormal basis of X. Then,
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Ax = −
p=∞

∑
p=1

Λp(x, ep)ep, x ∈ D(A),

and

T (t)x(s) =
i=∞

∑
i=1

exp(Λit)(x, ei)ei(s), x ∈ X.

Note that T (·) is a uniformly stable semi-group and ‖T (t)‖L2[0,1] ≤ exp(−t). The
following properties hold:

(i) A− 1
2 x =

∞

∑
p=1

1
p
(x, ep)ep;

(ii) The operator A 1
2 is given by

A 1
2 x =

∞

∑
p=1

p(x, ep)ep

and D(A 1
2 ) =

{
x(·) ∈ X,

∞

∑
p=1

p(x, ep)ep ∈ X

}
.

Clearly, (4), (5), and (A1) are satisfied.
Under our assumptions (a) and (b) on F , (8) and (9) are also satisfied, and assumption

(A2) also holds.
Let U be a reflexive Banach space. We consider the control operator B : U → X

defined by
Bu =

p=∞

∑
p=1

Λp(ū, ep)ep,

where

ū =

{
up, p = 1, 2, . . . N,
0, p = N + 1, N + 2, . . .

We see that B is a bounded continuous operator with M1 = NΛN . For N ∈ N and
H1/2 : L2([0, 1], U)→ X given by

H1/2u =
∫ 1

0
(1− s)1/2P1/2(1− s)Bu(s)ds,

we have

H1/2u =
∫ 1

0
(1− s)1/2 1

2

∫ ∞

0
Θφ1/2(Θ)T((1− s)1/2Θ)Bu(s)dΘ ds

=
∫ 1

0
(1− s)1/2 1

2

∫ ∞

0
Θφ1/2(Θ)

i=∞

∑
i=1

exp(Λi(1− s)1/2Θ)(Bu, ei)ei(s)dΘ ds

=
∫ 1

0
(1− s)1/2

∞

∑
i=1

∫ ∞

0

1
2

Θφ1/2(Θ)
∞

∑
j=0

Λi(1− s)1/2Θ)j

j!
(u, ei)ei(s)dΘ ds

=
∫ 1

0
(1− s)1/2

∞

∑
i=1

∞

∑
j=0

(Λi(1− s)1/2)j

Γ(1/2 + 1
2 j)

(u, ei)ei(s)ds

=
∞

∑
i=1

∞

∑
j=0

∫ 1

0

Λj
i

Γ( 1
2 + 1

2 j)
(1− s)

1+j
2 (u, ei)ei(s)

=
∞

∑
i=1

∞

∑
j=0

2Λj
i

Γ( 1
2 + 1

2 j)(3 + j)
(u, ei)ei(s).

Applying Theorem 1, we deduce that the fractional differential system (21) is controllable.

Moreover, for function h defined as in (22) with the Lipshitz constant H <
1∣∣∣A− 1

2

∣∣∣ , we
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conclude from Theorem 2 that there exists a control steering the system, in one unit of time,
from a given initial state to a given terminal state with minimum energy.

6. Conclusions

Using the Banach fixed-point theorem, we have obtained a set of sufficient conditions
for the controllability of a class of fractional neutral evolution equations involving the
Caputo fractional derivative of order α ∈]0, 1[ (cf. Theorem 1). The result is proved in two
major steps: (i) in the first step, we proved that the operator G defined by (13) is an element
of the bounded closed and convex subset Br, (ii) while in the second, we proved that G is a
contraction on the same subset Br. Moreover, we formulated a minimum energy optimal
control problem and proved conditions assuring the existence of a solution for the optimal
control problem inf

u∈Uad
J(u) subject to (2) (cf. Theorem 2). An example was given illustrating

the two main results.
Our work can be extended in several directions: (i) to a case of enlarged control-

lability using different fractional derivatives; (ii) by developing methods to determine
the control predicted by our existence theorem, e.g., by using RHUM and penalization
approaches [10,40,41]; (iii) or by giving applications of neutral systems to epidemiological
problems [42,43]. Many other questions remain open, as is the case of regional control-
lability and regional discrete controllability for problems of the type considered here. A
strong motivation behind the investigation of neutral evolution systems, such as (2) con-
sidered here, comes from physics, since they describe well various physical phenomena
as fractional diffusion equations. However, neutral systems are difficult to study, since
such control systems contain time-delays not only in the state but also in the velocity
variables, which make them intrinsically more complicated. The limitations of the method
we proposed here is that we are not able to provide conditions under which the optimal
control is unique. Additionally, we do not have an explicit form for it.
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Abstract: In this work, we replaced the integer derivative with Caputo derivative to model the
transmission dynamics of measles in an epidemic situation. We began by recalling some results on
the local and global stability of the measles-free equilibrium point as well as the local stability of the
endemic equilibrium point. We computed the basic reproduction number of the fractional model
and found that is it equal to the one in the integer model when the fractional order ν = 1. We then
performed a sensitivity analysis using the global method. Indeed, we computed the partial rank
correlation coefficient (PRCC) between each model parameter and the basic reproduction number
R0 as well as each variable state. We then demonstrated that the fractional model admits a unique
solution and that it is globally stable using the Ulam–Hyers stability criterion. Simulations using the
Adams-type predictor–corrector iterative scheme were conducted to validate our theoretical results
and to see the impact of the variation of the fractional order on the quantitative disease dynamics.

Keywords: measles; mathematical model; global sensitivity analysis; partial rank correlation coefficient
(PRCC); fractional derivative; Caputo derivative; Ulam–Hyers stability

MSC: 92D30; 26A33

1. Introduction

Measles, also called rubeola or morbilli, is an infectious illness caused by the Morbil-
livirus of the family of Paramyxoviridae [1,2]. It principally affects children below five years
of age and has high mortality [2,3]. Despite the availability of a vaccine against the measles
virus, this illness remained a health problem that concerns the World Health Organization
(WHO). Indeed, in 2017, about 110,000 people died from measles, particularly children
below the age of 6 [2,4]. Table 1 depicts the 10 countries that have mainly been affected by
a global measles outbreak, while Figure 1 shows the global repartition of measles.

Several works based on mathematical modeling have been proposed to study the
transmission dynamics of several diseases. These works are mainly based on the SIR-type
compartmental modeling [5–12]. The interest in using mathematical modeling to study
the measles transmission dynamics and to find control measures that permit preventing or
stopping measles outbreaks is increasing [13]. Many authors have proposed and analyzed
different mathematical models of measles based on compartmental modeling [2,14–22].
Among these works, only [2] took into account the effects of hospitalization of the infected
individuals. Indeed, most of them consider the traditional SEIR-compartmental models.
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Table 1. Top 10 countries with global measles outbreaks [23].

Rank Country
Number of

Rank Country
Number of

Cases Cases

1 Nigeria 17,794 6 Democratic Republic 1907
of the Congo

2 India 5874 7 Afghanistan 1621
3 Somalia 4772 8 Liberia 1495
4 Ethiopia 3403 9 Cameroon 1373
5 Pakistan 2677 10 Ivory Coast 1152

Figure 1. World repartition of measles in 2019 [24].

Fractional calculus has been a useful tool to model, predict, and forecast epidemic out-
breaks for the last 20 years. Indeed, as fractional calculus was predicted by Leibniz to be a
paradox, it has become a central interest for many researchers in various fields, such as engi-
neering sciences [25], mathematical epidemiology [26,27], physics [28], and economics [29].
The most commonly known fractional operators are Caputo derivatives and their vari-
ants [30–38], the Caputo–Fabrizio derivative [39], Atangana–Baleanu derivative [40,41],
and piece-wise derivative [42]. The kernels of some of these mentioned operators have
different characteristics. For example, the Caputo operator is defined with the power
law-type kernel (nonlocal but singular), and that of Caputo–Fabrizio has an exponentially
decaying (nonsingular) kernel, while the Atangana–Baleanu operator in the Caputo sense
has a Mittag–Leffler-type kernel [43]. In a recent work [44], Atangana formulated and
studied a compartmental model that could be used to depict the survival of fractional
calculus. The fact that the Caputo operator has a memory effect and the Caputo derivative
of a constant function is equal to zero [45] means that this derivative is the most used.

Concerning the transmission dynamics of measles, few authors have used fractional
derivatives [22,46–49]. In [46]. Farman et al. employed a fraction Caputo operator on a SEIR
epidemic model to control measles for infected populations. Ogunmiloro et al. [47] studied
a mathematical model describing the transmission dynamics of measles with a double
vaccination dose, treatment, and two groups of measles-infected and measles-induced
encephalitis-infected humans with relapse under the fractional Atangana–Baleanu–Caputo
(ABC) operator. Qureshi, in [22], proposed a new epidemiological system for the measles
epidemic using the Caputo fractional derivative with a memory effect.

The objective of this work was to compare, from a quantitative point of view, the dy-
namics of an epidemic model of measles with integer derivatives and fractional derivatives
(in the sense of Caputo). To achieve our goal, we extended the model by Olumuyiwa et al. [2],
which consists of a six-compartmental model integrating vaccinated and hospitalized in-
dividuals, by replacing the integer derivative with the Caputo derivative. The theoretical
analysis of the fractional model was performed by a classical method and consists of the al-
gebraic determination of the basic reproduction number R0, which depends on the fractional
order ν, the proof of the local and global stabilities of the disease-free equilibrium, as well
as the local stability of the endemic equilibrium. To determine the model parameters that
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have a great influence on the measles epidemic in Nigeria, we performed a global sensitivity
analysis of the model by computing the partial rank correlation coefficients between the
basic reproduction number (as well as state variables) and the model parameters. We proved
the existence and uniqueness of the solutions of the fractional model as well as its global
stability using the Ulam–Hyers method. We then constructed a numerical scheme based
on the Adams-type predictor–corrector iterative scheme [50,51], and finally, performed a
numerical simulation to see the impact of the variation of the fractional order on the disease
dynamics.

The paper is presented as follows: Section 2 is devoted to the model formulation and
basic results. Section 3 is devoted to the global sensitivity analysis. In Section 4, we recall
some definitions and useful results concerning fractional calculus. We also formulated the
fractional measles model with the Caputo derivative and performed asymptotic stability of
equilibrium points. Then, we provide the proof of existence, the uniqueness of the solution,
and the global stability of the fractional model. The numerical scheme is also presented in
this section. Section 5 is devoted to the numerical simulations. A conclusion rounds up the
paper.

2. Model Formulation and Basic Results

In [2], Olumuyiwa et al. proposed and studied the following SVEIHR compartmen-
tal model with the integer derivative⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d
dt
S(t) = Λ + αV − βSI −

k1︷ ︸︸ ︷
(c + d) S ,

d
dt
V(t) = cS −

k2︷ ︸︸ ︷
(d + α)V ,

d
dt
E(t) = βSI −

k3︷ ︸︸ ︷
(d + γ) E ,

d
dt
I(t) = γE −

k4︷ ︸︸ ︷
(d + a + φ) I ,

d
dt
H(t) = φI −

k5︷ ︸︸ ︷
(σ + a + d)H,

d
dt
R(t) = σH− dR.

(1)

to model the transmission dynamics of measles in Nigeria. In Equation (1), S denotes
the susceptible population, V is the vaccinated population, E is the total number of latent
persons (infected but not infectious), I is the total number of infected persons, H is the
total number of hospitalized persons, andR is the total number of recovered persons. The
description of the model parameters and their values are consigned in Table 2.

Table 2. Biological description of model parameters and their numerical values [2].

Parameter Description Values (per Week)

Λ Recruitment rate 68,027
α Rate of loss of vaccine immunity 0.003286
β Transmission Rate 10−9

c Vaccination rate 10−6

d Natural death rate 0.000309
γ Rate of progression from E to I 0.5
a Disease-induced rate 0.033720
φ Rate of progression from I toH 0.036246
σ Rate of progression fromH toR 0.062366
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The following subset of R6

Σ =

{
(S ,V , E , I ,H,R)t ∈ R6

+ : N := S + V + E + I +H+R ≤ Λ
d

}
is positively invariant for system Equation (2), which defines a dynamical system. Since the
state variableR only appears in the last equation of Equation (1), it is sufficient to study
the following reduced system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d
dt
S(t) = Λ + αV − βSI −

k1︷ ︸︸ ︷
(c + d) S ,

d
dt
V(t) = cS −

k2︷ ︸︸ ︷
(d + α)V ,

d
dt
E(t) = βSI −

k3︷ ︸︸ ︷
(d + γ) E ,

d
dt
I(t) = γE −

k4︷ ︸︸ ︷
(d + a + φ) I ,

d
dt
H(t) = φI −

k5︷ ︸︸ ︷
(σ + a + d)H.

(2)

The model Equation (2) admits two nonnegative equilibrium points: the disease-

free equilibrium E0 = (S0,V0, 0, 0, 0, 0)t =

(
(d + α)Λ

(d + α + c)d
,

cΛ
(d + α + c)d

, 0, 0, 0, 0
)t

and a

unique endemic equilibrium E1 = (S1,V1, E1, I1,H1,R1)
t, where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I1 =
Λγ

R0k3k4
(R0 − 1),

S1 =
k2Λ

cα + k2(k1 + βI1)
,

V1 =
c
k2
S1,

E1 =
β

k3
S1I1,

H1 =
φ

k5
I1,

(3)

with R0, which denotes the basic reproduction number expressed as follows:

R0 =
βγ

k3k4

(d + α)Λ
(d + α + c)d

. (4)

From Equation (3), it follows that:

Proposition 1. The model Equation (2) admits a unique endemic equilibrium point E1 =
(S1,V1, E1, I1,H1,R1)

t if and only if R0 > 1.

Theorem 1 ([2]). (i) The disease-free equilibrium point E0 is locally and globally asymptotically
stable if and only if R0 ≤ 1;

(ii) The unique endemic equilibrium point E1 is locally stable whenever R0 > 1.

Remark 1. As suggested in [44], the epidemic spread can also be evaluated by computing the
so-called threshold “strength number”. Indeed, the strength number permits knowing, in an
epidemic period, if there is the possibility for a renewal process [44]. In the case of epidemic measles,
model Equation (9), this threshold is equal to zero, which implies that the spread does not have a
renewal process.
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3. Uncertainty and Global Sensitivity Analysis

In [2], the authors performed a local sensitivity analysis by computing the sensitivity
indices of R0 against model parameters. The disadvantage of this kind of sensitivity
analysis (SA) is that the sensitivity index is calculated by varying only one parameter
while the remaining parameters are fixed. Considering the combined variability from all
input parameters simultaneously, we performed a global sensitivity analysis to examine
the model’s response to parameter variation in the parameter space. To this aim, we
computed the partial rank correlation coefficient (PRCC) between R0 (as well as each state
variable of the model) and each model parameter. PRCC is the best and most reliable
sensitivity analysis method that provides monotonicity between parameters and the model
output when we want to measure the nonlinear (but monotonic) relationship between
two variables [52,53]. The Latin hypercube sampling (LHS) was used as a sampling
technique [54] with the number of runs equal to 5000. Each model parameter was supposed
to be random with uniform distribution and their mean values are listed in Table 2. The
most influential parameter is the one with the PRCC less than−0.5 or greater than +0.5 [53].
The results of the SA are depicted in Figures 2–4.

From Figure 2, it is clear that the parameters β, a, and φ have the highest influence
on R0. This suggests that individual protection combined with efficient treatment may
potentially be the most effective strategy to reduce the basic reproduction number.

From Figure 3, the parameters with the highest influence on S are β, a, and φ; the ones
with the highest influence on V are β, α, and c, while the ones with the highest influence on
R are a, φ, and σ.

From Figure 4, the parameters with the highest influence on E are Λ and γ; the ones
with the highest influence on I are Λ, a, and φ, while the ones with the highest influence on
H are a, φ, and σ. In general, mass vaccination combined with personal protection and care
as soon as the first symptoms appear would make it possible to effectively fight measles.
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Figure 2. Partial rank correlation coefficients between the basic reproduction number R0 and
model parameters.
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Figure 3. Partial rank correlation coefficients between uninfected state variables of the model and
model parameters.
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Figure 4. Partial rank correlation coefficients between infected state variables of the model and
model parameters.
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4. The Fractional Model and Its Analysis

4.1. Primarily Definition and Results of Fractional Calculus

Now, we present some main properties of the fractional-order differential equations.

Definition 1 ([55,56]). The Caputo fractional derivative of a function f ∈ C([a, b],R) can be
written as follows:

C
0 D

ν
t ψ(t) = χμ−ν f (μ)(t), β > 0, (5)

where C
0 D

ν is the Caputo operator, 0 < ν ≤ 1 is the fractional order, μ is the smallest integer not
equal to ν, and χφ is the Riemann–Liouville integral operator of order φ, defined as follows

χφΥ(t) =
1

Γ(φ)

∫ t

0
(t− τ)φ−1Υ(τ)μτ, φ > 0. (6)

Theorem 2 ([55,57]). Consider the m-dimensional system{
θνz
θtν = ωz,
z(0) = z0,

(7)

where ω is a squared constant matrix of order m × m, and 0 < ν < 1. Let us denote by γi,
i = 1, 2, . . . , m the eigenvalues of ω.

• |arg(γi)| > νπ
2 , i = 1, 2, . . . , m iff z = 0 is asymptotically stable;

• z = 0 is stable if |arg(γi)| ≥ νπ
2 , i = 1, 2, . . . , m, and eigenvalues with |arg(γi)| = νπ

2 have
the same algebraic and geometric multiplicities.

Theorem 3 ([55,57]). Let us consider the following system:{
μνz
μtν = Ψ(z),
z(0) = z0 with 0 < ν < 1 and z ∈ Rν.

(8)

Solving equation Ψ(z) = 0 permits obtaining the equilibrium points of system Equation (8).
If all of the eigenvalues γi of J = ∂ψ(z∗)

∂z satisfy |arg(γi)| > νπ
2 , then the equilibrium point z∗ is

locally asymptotically stable (LAS).

4.2. The Fractional Model with Caputo Operator

By replacing integer derivative with Caputo fractional derivative in system (1), we
obtain the following system:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

C
0 D

νS(t) = Λν + ανV − βνSI − (cν + dν)S ,
C
0 D

νV(t) = cνS − (dν + αν)V ,
C
0 D

νE(t) = βνSI − (dν + γν)E ,
C
0 D

νI(t) = γνE − (dν + aν + φν)I ,
C
0 D

νH(t) = φνI − (σν + aν + dν)H,
C
0 D

νR(t) = σνH− dνR,

(9)

For this model, the corresponding basic reproduction number is given by

R0 =
βνγν(dν + αν)Λν

(dν + γν)(dν + aν + φν)(dν + αν + cν)dν
. (10)

From Equation (10), we note that for ν = 1, the basic reproduction number coincides
for both models.
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As in the case of the model with the integer derivative Equation (2), the fractional
model Equation (4) only has one endemic equilibrium E1 = (S1,V1, E1, I1,H1,R1)

′, where⎧⎪⎪⎨⎪⎪⎩
I1 =

Λνγν

R0k3k4
(R0 − 1), S1 =

(dν + αν)Λν

cα + k2(k1 + βνI1)
,

V1 =
cν

k2
S1, E1 =

βν

k3
S1I1, H1 =

φν

k5
I1, R1 =

σν

dν
H1,

(11)

with Setting k1 = cν + dν, k2 = dν + αν, k3 = dν + γν, k4 = dν + aν + φν, and k5 =
σν + aν + dν.

4.2.1. Asymptotic Stability of the Disease-Free Equilibrium

The following theorems are proved in the same way as in [2].

Theorem 4. The disease-free equilibrium point E0 is locally asymptotically stable if R0 < 1;
otherwise, it is unstable.

Theorem 5. The disease-free equilibrium point (E0) is globally asymptotically stable whenever
R0 < 1.

Theorem 6. The endemic equilibrium point (E1) is locally stable, when R0 > 1.

4.2.2. Existence and Uniqueness of Solution

In this section, we present the results of the existence and uniqueness of the solution
of the fractional differential Equation (9).

For this purpose, let η = C([0; a],R), a Banach space of the continuous function from
[0; a] to R, endowed with the norm ‖ Z ‖η= sup

t∈[0,a]
{|Z|}.

The system Equation (9) can be rewritten in the following compact form:

C
t DX (t) = ξ(t,X ), X (0) = X0 ≥ 0, t ∈ [0, a], ν ∈ (0; 1). (12)

where X = (S ,V , E , I ,R)′ and ξ = (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6)
′ with⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ξ1 = Λν + ανV − βνSI − (cν + dν)S ,
ξ2 = cνS − (dν + αν)V ,
ξ3 = βνSI − (dν + γν)E ,
ξ4 = γνE − (dν + aν + φν)I ,
ξ5 = φνI − (σν + aν + dν)H,
ξ6 = σνH− dνR,

Since ξi ∈ η, for all of i ∈ [0; 6] ∩N, then the following operator

(PX )(t) = X0 +
1

Γ(ν)

∫ t

0
(t− α)ν−1ξ(α,X (α))dα, (13)

is well-defined. The following result is valid:

Lemma 1. Let X = (S ,V , E , I ,H,R)′. The function ξ = (ξi)
′ defined above satisfies

‖ ξ(t,X (t))− ξ(t,X (t)) ‖η≤ Nξ ‖ X − X ‖η for some Nξ > 0.

Proof. We proceed as follows for the first component of ξ:∣∣ξ1(t,X (t))− ξ1(t,X (t))
∣∣

=
∣∣αν(V(t)− V(t))− βν(S(t)I(t)− S(t)I(t))− h1(S(t)− S(t))

∣∣,
≤ h1

∣∣S(t)− S(t)∣∣+ αν
∣∣V(t)− V(t)∣∣+ βν

∣∣S(t)I(t)− S(t)I(t)∣∣. (14)
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However,∣∣S(t)I(t)− S(t)I(t)∣∣ = ∣∣I(t)(S(t)− S(t))+ S(t)(I(t)− I(t))∣∣
≤ |I(t)|

∣∣S(t)− S(t)∣∣+ ∣∣S(t)∣∣∣∣I(t)− I(t)∣∣.
Thus, we obtain∣∣ξ1(t,X (t))− ξ1(t,X (t))

∣∣
=
∣∣αν(V(t)− V(t))− βν(S(t)I(t)− S(t)I(t))− h1(S(t)− S(t))

∣∣,
≤ h1

∣∣S(t)− S(t)∣∣+ αν
∣∣V(t)− V(t)∣∣

+ βν
(
|I(t)|

∣∣S(t)− S(t)∣∣+ ∣∣S(t)∣∣∣∣I(t)− I(t)∣∣)
= (h1 + βν|I(t)|)

∣∣S(t)− S(t)∣∣+ αν
∣∣V(t)− V(t)∣∣

+ βν
∣∣S(t)∣∣∣∣I(t)− I(t)∣∣

≤ N1
(∣∣S(t)− S(t)∣∣+ ∣∣V(t)− V(t)∣∣+ ∣∣I(t)− I(t)∣∣),

(15)

where N1 = h1 + αν + max
t∈[0,a]

{
βν|I(t)|+ βν

∣∣S(t)∣∣}, with h1 = cν + dν.

Similarly, with ξ2, we also have :∣∣ξ2(t,X (t))− ξ2(t,X (t))
∣∣ = ∣∣cν(S(t)− S(t))− h2(V(t)− V(t))

∣∣,
≤ cν

∣∣(S(t)− S(t))∣∣+ h2
∣∣(V(t)− V(t))∣∣

≤ N2
(∣∣S(t)− S(t)∣∣+ ∣∣V(t)− V(t)∣∣), (16)

where N2 = cν + h2, where h2 = dν + αν.
Based on the analogous reasoning, we obtain ξi, i ∈ [0; 6] ∩N :∣∣ξ3(t,X (t))− ξ3(t,X (t))

∣∣ ≤ N3
(∣∣S(t)− S(t)∣∣+ ∣∣I(t)− I(t)∣∣+ ∣∣E(t)− E(t)∣∣),∣∣ξ4(t,X (t))− ξ4(t,X (t)

∣∣ ≤ N4
(∣∣E(t)− E(t)∣∣+ ∣∣I(t)− I(t)∣∣),∣∣ξ5(t,X (t)− ξ5(t,X (t)

∣∣ ≤ N5
(∣∣I(t)− I(t∣∣+ ∣∣H(t)−H(t)

∣∣),∣∣ξ6(t,X (t))− ξ6(t,XY(t))
∣∣ ≤ N6

(∣∣H(t)−H(t)
∣∣+ ∣∣R(t)−R(t)

∣∣),
(17)

where N3 = h3 + max
t∈[0,a]

{
βν
(
|I|+

∣∣S ∣∣)}, N4 = γν + h4, N5 = φν + h5, N6 = φν + dν with

h3 = dν − γν,h4 = dν + aν + φν, h5 = σν + aν + dν.
Therefore, we finally obtain

‖ ξ(t,X (t))− ξ(t,X (t)) ‖η = supt∈[0;a]

6

∑
i=1

∣∣ξi(t,X (t))− ξi(t,X (t))
∣∣,

≤
Nη︷ ︸︸ ︷

(N1 + N2 + N3 + N4 + N5 + N6) ‖ X −X ‖η .

Theorem 7. Let the result of Lemma 1 hold and � =
aν

Γ(ν + 1)
. If �Nη < 1, then there exists a

unique solution of the model Equation (12) on [0, a], which is uniformly Lyapunov-stable.

Proof. The function ξ : [0, a]×R6 → R6
+ is clearly continuous in its domain. Thus, the

existence of the solutions to Equations (9) and (12) follows from (Theorem 3.1, [58]).
The Banach contraction mapping principle on operator P (see Equation (13)) will

be used in the following to prove the uniqueness of the solution of the fractional model

64



Axioms 2022, 11, 363

Equation (12). By definition, sup
t∈[0,a]

‖ ξ(t, 0) ‖= Λν. Let us now define ζ >
‖ X0 ‖ +�Λν

1−�Nη

and a closed convex set Zζ =
{
X ∈ η :‖ X ‖η≤ ζ

}
. Thus, for the sel- map property, it

suffices to show that PZζ ⊆ Zζ . Let X ∈ Zζ , we have

‖ PX ‖η = sup
t∈[0,a]

{∣∣∣∣X0 +
1

Γ(ν)

∫ t

0
(t− ε)ν−1ξ(ε,X (ε))dε

∣∣∣∣},

≤ |X0|+
1

Γ(ν)
sup

t∈[0,a]

{∫ t

0
(t− ε)ν−1(|ξ(ε,X (ε))− ξ(ε, 0)|+ |ξ(ε, 0)|)dε

}
,

≤ |X0|+
1

Γ(ν)
sup

t∈[0,a]

{∫ t

0
(t− ε)ν−1(‖ ξ(ε,X (ε))− ξ(ε, 0) ‖η + ‖ ξ(ε, 0) ‖η)dε

}
,

≤ |X0|+
Nη ‖ X ‖η +Λν

Γ(ν)
sup

t∈[0,a]

{∫ t

0
(t− ε)ν−1dε

}
,

≤ |X0|+
Nηζ + Λν

Γ(ν)
sup

t∈[0,a]

{∫ t

0
(t− ε)ν−1dε

}
,

= |X0|+
aν

Γ(ν + 1)
(
Nηζ + Λν

)
,

= |X0|+ �(Nηζ + Λν),

≤ ζ.

Then, PX ⊆ Zζ and P are indeed the self-map. It remains to show that P is a
contraction. Let X and X two solutions of Equation (12). Using the result of Lemma 1, we
obtain

‖ PX −PX ‖η = sup
t∈[0,a]

{∣∣(PX )(t)− (PX )(t)
∣∣},

=
1

Γ(ν)
sup

t∈[0,a]

{∫ t

0
(t− ε)ν−1∣∣ξ(ε,X (ε))− ξ(ε,X (ε))

∣∣dε

}
,

≤ Nη

Γ(ν)
sup

t∈[0,a]

{∫ t

0
(t− ε)ν−1(

∣∣X (ε)−X (ε)
∣∣dε

}
,

≤ �Nη ‖ X − X ‖η .

The condition �Nη < 1 ensures that P is a contraction mapping. Thus, by the Banach
contraction mapping principle, P has a unique fixed point on [0, a], which is the solution of
Equation (12). Theorem 3.2 in [58] ensures the uniformly Lyapunov stability of the solution.

4.3. Global Stability of the Fractional Model

In what follows, we will perform the global stability of the fractional-order model
Equation (9) in the sense of Ulam–Hyers [59,60]. To this aim, we introduce the following in-
equality: ∣∣∣C0 DνX (t)− ξ(t,X (t))

∣∣∣ ≤ b, t ∈ [0; a]. (18)

A function X ∈ η is a solution of Equation (18) if there exists ℵ ∈ η satisfying

1. |ℵ(t)| ≤ b;
2. C

0 D
νX (t) = ξ(t,X (t)) + ℵ(t), t ∈ [0; a].
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SinceX ∈ η is a solution of Equation (18), thenX ∈ η is also a solution of the following
integral inequality∣∣∣∣X (t)−X (0)− 1

Γ(ν)

∫ t

0
(t− ε)ν−1ξ(ε,X (ε))dε

∣∣∣∣ ≤ �b. (19)

We claim the following result:

Theorem 8. Assume that the result of Lemma 1 holds, and 1− �Nη > 0 with � =
aν

Γ(ν + 1)
.

The fractional order model Equation (9) (and equivalently Equation (12)) is Ulam–Hyers-stable and,
consequently, generalized Ulam–Hyers-stable.

Proof. Let X be a unique solution of Equation (12), and X satisfies Equation (18). For
b > 0, t ∈ [0, a], we have

‖ X (t)−X (t) ‖η = sup
t∈[0,a]

∣∣X (t)−X (t)
∣∣

= sup
t∈[0,a]

∣∣∣∣X (t)−X (0)− 1
Γ(ν)

∫ t

0
(t− ε)ν−1ξ(ε,X (ε))dε

∣∣∣∣
≤ sup

t∈[0,a]

∣∣∣∣X (t)−X (0)− 1
Γ(ν)

∫ t

0
(t− ε)ν−1ξ(ε,X (ε))dε

∣∣∣∣
+ sup

t∈[0,a]

1
Γ(ν)

∫ t

0
(t− ε)ν−1∣∣ξ(ε,X (ε))− ξ(ε,X (ε))

∣∣dε

≤ �b +
Nη

Γ(ν)
sup

t∈[0,a]

∫ t

0
(t− ε)ν−1∣∣X (ε)−X (ε)

∣∣dε

≤ �b + �Nη ‖ X (t)−X (t) ‖η ,

which implies that ‖ X (t)−X (t) ‖η≤ b

Cη︷ ︸︸ ︷(
�

1−�Nη

)
. Thus, from (Definitions 4.5 & 4.6, [59]),

we conclude that The fractional order model Equation (9) (and, equivalently, Equation (12))
is Ulam–Hyers-stable and, consequently, generalized Ulam–Hyers-stable. This ends the
proof.

4.4. Numerical Scheme

In this section, we provide the numerical solution of the nonlinear mathematical model
using an appropriate iterative scheme, which is very important in mathematical modeling.
We use the Adams-type predictor–corrector iterative scheme [50,51] to numerically solve
our fractional order model, Equation (9). Let us consider a uniform discretization of [0, a]
given by tn = nχ, n = 0, 1, 2, . . . , N, where χ =

a
n

denotes the step size. Now, given any
approximation,

Yχ(ti) = (Sχ(ti),Vχ(ti), Eχ(ti), Iχ(ti),Hχ(ti),Rχ(ti))

≈ Y(ti) = (S(ti),V(ti), E(ti), I(ti),H(ti),R(ti)),
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we obtain the next approximation Yχ(ti+1) using the Adams-type predictor–corrector
iterative scheme, as follows :

Sn+1 = S0 +
χν

Γ(ν + 2)

(
Λν + ανV p

n+1 − βνS p
n+1I

p
n+1 − k1S p

n+1

)
+

χν

Γ(ν + 2)

n

∑
j=0

θj,n+1
(
Λν + ανVj − βνSjIj − k1Sj

)
,

(20)

Vn+1 = V0 +
χν

Γ(ν + 2)

{
cνS p

n+1 − k2V p
n+1 +

n

∑
j=0

θj,n+1
(
cνSj − k2Vj

)}
, (21)

En+1 = E0 +
χν

Γ(ν + 2)

{
βνS p

n+1I
p
n+1 − k3E p

n+1 +
n

∑
j=0

θj,n+1
(

βνSjIj − k3Ej
)}

, (22)

In+1 = I0 +
χν

Γ(ν + 2)

{
γνE p

n+1 − k4I p
n+1 +

n

∑
j=0

θj,n+1
(
γνEj − k4Ij

)}
, (23)

Hn+1 = H0 +
χν

Γ(ν + 2)

{
φνI p

n+1 − k5Hp
n+1 +

n

∑
j=0

θj,n+1
(
φνIj − k5Hj

)}
, (24)

Rn+1 = R0 +
χν

Γ(ν + 2)

{
σνHp

n+1 − dνRp
n+1 +

n

∑
j=0

θj,n+1
(
σνHj − dνRj

)}
, (25)

where

S p
n+1 = S0 +

1
Γ(ν)

n

∑
j=0

bj,n+1
(
Λν + ανVj − βνSjIj − k1Sj

)
,

V p
n+1 = V0 +

1
Γ(ν)

n

∑
j=0

bj,n+1
(
cνSj − k2Vj

)
,

E p
n+1 = E0 +

1
Γ(ν)

n

∑
j=0

bj,n+1
(

βνSjIj − k3Ej
)
,

I p
n+1 = I0 +

1
Γ(ν)

n

∑
j=0

bj,n+1
(
γνEj − k4Ij

)
,

Hp
n+1 = H0 +

1
Γ(ν + 2)

n

∑
j=0

bj,n+1
(
φνIj − k5Hj

)
,

Rp
n+1 = R0 +

1
Γ(ν + 2)

n

∑
j=0

bj,n+1
(
σνHj − dνRj

)
,

(26)

with

θi,n+1 =

⎧⎨⎩
nν+1 − (n− ν)(n + 1), i f i = 0,
(n− i + 2)ν+1 − 2(n− i + 1)ν+1 + (n− i)ν+1, i f 1 ≤ i ≤ n,
1, i f i = n + 1.

and
bi,n+1 =

χν

ν
((n− i + 1)ν − (n− i)ν).

Theorem 9. The numerical scheme given by Equations (20)–(26) is stable.

Proof. The proof follows the proof of Theorem 3.3 in [61] (see also Theorem 5.1, [62]).
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5. Numerical Simulations

In this section, we present numerical simulations of the model using the parameter
values listed in Table 2, which were estimated using real data from the measles outbreak in
Nigeria [2]. From Equation (10), it is clear that the basic reproduction number varies accord-
ing to the value of the fractional order ν. Thus, for fractional orders ν ∈ 1, 0.9, 0.8, 0.7, 0.6,
the corresponding values of the basic reproduction number R0 are, respectively, 3.13, 2.60,
2.15, 1.76, and 1.44. From Figure 5, it is clear that R0 is an increasing function of the
fractional order ν.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

1

1.5

2

2.5

3

3.5

R
0

Figure 5. The basic reproduction number R0 versus the fractional order ν. All other parameter values
are listed in Table 2.

Figure 6a shows the combined effect of the fractional order and vaccination on
the basic reproduction number, while Figure 6b shows the combined effect of the frac-
tional order and hospitalization on the basic reproduction number. We see that R0 de-
creases according to the increases in the vaccination rate c. Note that for ν = 1 and
c ∈

{
10−6, 10−3, 10−2, 10−1}, the basic reproduction number is R0 ∈ {3.13, 2.45, 0.83, 0.11},

for ν = 0.9 and c ∈
{

10−6, 10−3, 10−2, 10−1}, the basic reproduction number is R0 ∈
{2.60, 1.99, 0.76, 0.13}, for ν = 0.8 and c ∈

{
10−6, 10−3, 10−2, 10−1}, the basic reproduction

number is R0 ∈ {2.15, 1.61, 0.69, 0.15}. This proves that the measles epidemic can be con-
trollable if the vaccination rate coverage is very high (indeed, from c = 0.01,R0 is less than
one). Moreover, effectively caring for the sick makes it possible to reduce the number of
infected. Indeed,R0 decreases when the hospitalized rate φ increases. Figure 7 combines
mass vaccination with the efficient treatment in the basic reproduction number, while the
combining effect of individual protection with effective healthcare is depicted in Figure 8. It
is clear that when these two control strategies are at their high levels, the basic reproduction
number is less than one, which implies the end of the epidemic.

The effect of the fractional order on the dynamics of the measles model is depicted in
Figures 9 and 10. It is clear that susceptible (as well as vaccinated) individuals decrease
according to the decrease of the fractional order ν, while recovered individuals increase
(Figure 9). The populations of all infected classes (E , I , andH) increase when the fractional
order decreases (Figure 10). Nevertheless, we can observe in Figure 10 that the epidemic
‘pick’ is backward-delayed according to the decrease of the fractional order ν. For example,
the total number of infected individuals in the latent stage E tended to its maximum value
(11,000,000) at the 160th week after the beginning of the epidemic for ν = 1, while this time
was backward-delayed to the 15th week.
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The effects of the two control measures, namely, vaccination and effective medical
care, are depicted in Figures 11 and 12. As in the case of the basic reproduction number, it
is clear from Figure 11 that a high level of vaccination coverage can decrease the number of
new cases of measles. Similarly, we see in Figure 12 that better care for patients (consisting
of systematic hospitalization of new cases from the first symptoms of the disease) will allow
for better control of the epidemic. Thus, the combination of these two control measures
will help in the fight against the disease spread.

(a)

(b)

Figure 6. The basic reproduction number R0 versus (a) the vaccination rate c and the fractional order
ν; (b) the hospitalized rate φ and the fractional order ν.
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Figure 7. The basic reproduction number R0 versus the vaccination rate c and the hospitalization
rate φ.
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Figure 8. The basic reproduction number R0 versus the transmission rate β and the recovered rate σ.
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Figure 9. The time series of non-infected state variables of the model Equation (9) with the parameter
values listed in Table 2 and different values for the fractional order derivatives ν.
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Figure 10. The time series of infected state variables of the model Equation (9) with the parameter
values listed in Table 2 and different values for the fractional order derivatives ν.
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Figure 11. The time series of the total infected population E(t) + I(t) with the parameter values listed
in Table 2, except the vaccination rate c and the fractional order derivative ν, which vary.
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Figure 12. The time series of the total infected population E(t) + I(t) with the parameter values
listed in Table 2, except the hospitalized rate φ and the fractional order derivative ν, which vary.

6. Conclusions and Perspectives

The main objective of this work was to compare the quantitative dynamics of an
epidemic model of measles with the integer derivative and fractional derivative (in the
sense of Caputo). Thus, we replaced the integer derivative with the Caputo derivative
in an existing measles compartmental model, which took into account vaccinations and
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hospitalized individuals. We performed a global sensitivity analysis by computing the
partial rank correlation coefficient between the model parameters, the basic reproduction
number, and each state variable of the model. For the fractional model, we computed the
basic reproduction number, which is a function of the model parameters and fractional-
order parameter. We proved the local and global stability of the disease-free equilibrium
as well as the local stability of the endemic equilibrium point. The existence, uniqueness
of the solutions, and global stability of the fractional model were also conducted using
the Ulam–Hyers stability method. Simulations via the Adams-type predictor–corrector
iterative scheme, were conducted to validate our theoretical results and to see the impact of
the variation of the fractional order on the disease dynamics. Indeed, the simulation results
reveal that the model with the Caputo fractional derivative has a different quantitative
behavior than the model with the integer derivative. This suggests that depending on the
fractional order, we can forecast the number of total cases in a given interval of time.

It is important to note that some other aspects, such as limited medical resources, mass
vaccination, and other fractional derivatives operator (Caputo–Fabrizio, Atangana–Baleanu,
piecewise derivatives) can represent direct perspectives to this work. Moreover, there is
evidence that the measles vaccine is flawed [63]. Thus, another future direction of this
work would be to consider that some individuals who received the measles vaccine may
be infected.
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Abstract: Consider a point on a convex surface in Rd, d ≥ 2 and a plane of support Π to the surface at
this point. Draw a plane parallel with Π cutting a part of the surface. We study the limiting behavior
of this part of the surface when the plane approaches the point, being always parallel with Π. More
precisely, we study the limiting behavior of the normalized surface area measure in Sd−1 induced
by this part of the surface. In this paper, we consider two cases: (a) when the point is regular and
(b) when it is singular conical, that is the tangent cone at the point does not contain straight lines. In
Case (a), the limit is the atom located at the outward normal vector to Π, and in Case (b), the limit is
equal to the measure induced by the part of the tangent cone cut off by a plane.

Keywords: convex surfaces; surface area measure of a convex body; Newton’s problem of
minimal resistance

MSC: 52A20; 26B25

1. Introduction

Consider a convex compact set C with a nonempty interior in Euclidean space Rd,
d ≥ 2. Let r0 ∈ ∂C be a point on its boundary, and let Π be a plane of support to C at r0.
Consider the part of the boundary ∂C containing r0 and bounded by a plane parallel with
Π. We are interested in studying the limiting properties of this part of the boundary when
the bounding plane approaches Π.

In what follows, a convex compact set with a nonempty interior will be called a
convex body.

The point r0 ∈ ∂C is called regular if the plane of support at this point is unique and
singular otherwise. It is well known that regular points form a full-measure set in ∂C.

Let e denote the outward unit normal vector to Π. Take t > 0, and let Πt be the
plane parallel with Π at the distance t from it, on the side opposite to the normal vector.
Thus, the plane Π = Π0 is given by the equation 〈r− r0, e〉 = 0 and Πt by the equation
〈r − r0, e〉 = −t. The body C is contained in the closed half-space {r : 〈r − r0, e〉 ≤ 0}.
Here and in what follows, 〈· , ·〉means the scalar product.

Consider the convex body:

Ct = C ∩ {r : 〈r− r0, e〉 ≥ −t}.

In other words, Ct is the part of C cut off by the plane Πt. The boundary of Ct is the
union of the convex set of codimension 1:

Bt = C ∩ {r : 〈r− r0, e〉 = −t} (1)

and the convex surface:
St = ∂C ∩ {r : 〈r− r0, e〉 ≥ −t}; (2)

Axioms 2022, 11, 356. https://doi.org/10.3390/axioms11080356 https://www.mdpi.com/journal/axioms79
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thus, ∂Ct = Bt ∪ St.
In what follows, we will denote as |A|m the m-dimensional Hausdorff measure of the

Borel set A ⊂ Rd. By default, | · |means | · |d−1.
Let nr denote the outward unit normal to C at a regular point r ∈ ∂C, and let S be a

Borel subset of ∂C. The surface area measure induced by S is the Borel measure νS defined in
Sd−1 satisfying

νS(A) := |{r ∈ S : nr ∈ A}|
for any Borel subset A ⊂ Sd−1. In the case when S coincides with ∂C, we obtain the well-
known measure ν∂C called the surface area measure of the convex body C. For this measure, the
following well-known relation takes place:∫

Sd−1
n ν∂C(dn) =�0. (3)

Denote by νt the normalized measure induced by the surface St; more precisely,

νt :=
1
|Bt|

νSt .

That is, for any Borel set A ⊂ Sd−1, it holds

νt(A) =
1
|Bt|

|{r ∈ St : nr ∈ A}|.

The surface area measure of ∂Ct equals ν∂Ct = |Bt|δ−e + |Bt|νt; hence,∫
Sd−1

n dν∂Ct(n) = |Bt|(−e +
∫

Sd−1
n νt(dn)).

Here and in what follows, δe means the unit atom supported at e. Applying Formula (3)
to ∂Ct, one obtains ∫

Sd−1
n νt(dn) = e. (4)

We say that νt weakly converges to ν∗ as t → 0 and denote limt→0 νt = ν∗, if for any
continuous function f on Sd−1, it holds

lim
t→0

∫
Sd−1

f (n) νt(dn) =
∫

Sd−1
f (n) ν∗(dn).

Similarly, we say that ν∗ is a weak partial limit of the measure νt, if there exists a
sequence of positive numbers ti, i ∈ N converging to 0 such that, for any continuous
function f on Sd−1, it holds

lim
i→∞

∫
Sd−1

f (n) νti (dn) =
∫

Sd−1
f (n) ν∗(dn).

In this article, we are going to study the limiting properties of the measure νt as t → 0.
One such property is derived immediately. Let ν∗ be a weak limit or a weak partial

limit of νt. Passing to the limit t → 0 or to the limit ti → 0 in Formula (4), one obtains∫
Sd−1

n ν∗(dn) = e. (5)

The tangent cone to C at r0 ∈ ∂C is the closure of the union of all rays with vertex at r0
that intersect C \ r0. Equivalently, the tangent cone at r0 is the smallest closed cone with the
vertex at r0 that contains C; see Figure 1.
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Figure 1. The tangent cone and the normal cone to a convex body C.

If the tangent cone at r0 is a half-space, then the point r0 is regular, and vice versa.
The normal cone to C at r0 is the union of all rays with vertex at r0 whose director

vector is the outward normal to a plane of support at r0. It is denoted as N(r0). An
equivalent definition is the following: the normal cone at r0 is the set of points r that satisfy
〈r − r0, r′ − r0〉 ≤ 0 for all r′ ∈ C. The normal cone to a convex body does not contain
straight lines. Both tangent and normal cones are, of course, convex sets.

If the dimension of N(r0) equals d (equivalently, if the tangent cone does not contain
straight lines), then r0 is called a conical point of C. If the dimension of N(r0) equals 1, then
r0 is regular, and vice versa. In the intermediate case, that is if the dimension of N(r0)
is greater than 1, but smaller than d, r0 is called a ridge point. This notation goes back to
Pogorelov [1].

The motivation for this study comes, to a great extent, from extremal problems in
classes of convex bodies and, in particular, from Newton’s problem of least resistance for
convex bodies [2]. It is natural to try to develop a geometric method of the small variation
of convex bodies for such problems, and perhaps, the simplest way would be cutting a
small part of the body by a plane. This method proved itself to be effective in the case of
Newton’s problem. Let us describe this problem in some detail.

The problem in a class of radially symmetric bodies was first stated and solved by
Newton himself in 1687 in [3]. The more general version of the problem was posed
by Buttazzo and Kawohl in 1993 in [2]. This general problem can be formulated in the
functional form as follows:

Find the smallest value of the functional∫∫
Ω

1
1 + |∇u(x, y)|2 dxdy (6)

in the class of convex functions u : Ω → R satisfying 0 ≤ u ≤ M, where Ω ⊂ R2

is a planar convex body and M > 0.

The physical meaning of this problem is as follows: find the optimal streamlined shape
of a convex body moving downwards through an extremely rarefied medium, provided
that the body–particle collisions are perfectly elastic.

Problem (6) (along with its further generalizations) has been studied in various papers
including [4–13], but has not been solved completely until now.

It was conjectured in 1995 in [6] that the slope of the graph of an optimal function
near the zero level set L0 = {(x, y) : u(x, y) = 0} equals 1. This conjecture was numerically
disproven by Wachsmuth (personal communication) in the case when L0 has an empty
interior and, therefore, is a line segment. Moreover, numerical simulation shows that the
infimum of |∇u| in the complement of L0 is strictly greater than 1.
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On the other hand, this conjecture was proven by the author in [14] in the case when
L0 has a nonempty interior. More precisely, it was proven that if u minimizes functional (6),
then for almost all (x, y) ∈ ∂L0, it holds

lim
(x′ ,y′) ( �∈L0)→(x,y)

|∇u(x′, y′)| = 1.

The proof is based on the results concerning local properties of convex surfaces near
ridge points in the case d = 3. These results were formulated, with the proofs being briefly
outlined, in [14].

Remark 1. The limiting behavior of νt in the case d = 2 is quite simple. In this case, the tangent
cone is an angle, which degenerates to a half-plane if the point is regular. We will call it the tangent
angle. Let the tangent angle to C ⊂ R2 at r0 be given by

〈r− r0, e1〉 ≤ 0, 〈r− r0, e2〉 ≤ 0, |e1| = 1, |e2| = 1,

and e be given by
e = λ1e1 + λ2e2, λ1 ≥ 0, λ2 ≥ 0, |e| = 1.

Thus, e1 and e2 are the outward unit normals to the sides of the angle, and e is the outward
unit normal to a line of support at r0. Then, the limiting measure is the sum of two atoms:

lim
t→0

νt = λ1δe1 + λ2δe2 .

The proof of this relation is simple and is left to the reader.
Note that if the point r0 is regular, then e1 = e2 = e. It may also happen that the point is

singular, that is e1 �= e2, and e coincides with one of the vectors e1 and e2. In both cases, the limiting
measure is an atom:

lim
t→0

νt = δe.

The limiting behavior of νt is different for different kinds of points:
(a) If the point r0 is regular, then the limiting measure is an atom.
(b) If r is a conical point, then the limiting measure coincides with the measure induced

by the part of the boundary of the tangent cone cut off by a plane Πt, t = σ (note that all
the induced measures with t > 0 are proportional).

(c) The case of ridge points is the most interesting. In this case, the limiting measure
may not exist, and the characterization of all possible partial limits is a difficult task.

Still, the study is nontrivial also in Cases (a) and (b). In this paper, we restrict ourselves
to these cases, while Case (c) is postponed to the future. The main results of the paper are
contained in the following Theorems 1 and 2.

Theorem 1. If r0 is a regular point of ∂C, then

lim
t→0

νt = δe. (7)

Let r0 be a conical point, K be the tangent cone at r0, Ŝt be the part of ∂K containing
r0 cut off by the plane Πt, and B̂t be the intersection of the cone with the cutting plane Πt,
t > 0, that is

Ŝt = ∂K ∩ {r : 〈r− r0, e〉 ≥ −t} and B̂t = K ∩ {r : 〈r− r0, e〉 = −t}.

Let Kt = K ∩ {r : 〈r− r0, e〉 ≥ −t} be the part of the cone cut off by the plane Πt; its
boundary is ∂Kt = Ŝt ∪ B̂t.
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All measures induced by Ŝt are proportional, that is the measure:

ν� :=
1
|B̂t|

νŜt

does not depend on t.

Theorem 2. If r0 is a conical point of ∂C, then

lim
t→0

νt = ν�. (8)

2. Proof of Theorem 1

The proof is based on several propositions.
Consider a convex set D ⊂ Rd−1, and let A = |D| be its (d− 1)-dimensional volume

and P = |∂D|d−2 be the (d− 2)-dimensional volume of its boundary.

Proposition 1. If D contains a circle of radius a, then

P ≤ d− 1
a

A. (9)

Proof. Let ds ⊂ ∂D be an infinitesimal element of the boundary of D and denote by p(ds)
its (d− 2)-dimensional volume. Consider the pyramid with the vertex at the center O of
the circle and with the base ds, that is the union of line segments joining O with the points
of ds. Let A(ds) be the element of the (d− 1)-dimensional volume of this pyramid; see
Figure 2. Then, we have

A(ds) ≥ a
d− 1

p(ds),

and therefore,
A =

∫
∂D

A(ds) ≥ a
d− 1

∫
∂D

p(ds) =
a

d− 1
P.

From here follows Inequality (9).

Figure 2. The convex set D containing a circle of radius a.

Consider Euclidean space Rd with the coordinates (x, z), x = (x1, . . . , xd−1), and fix
t > 0 and 0 < ϕ < π/2.

Proposition 2. Let a convex body C ⊂ Rd be contained between the planes z = 0 and z = t,
t > 0. Let D be the image of C under the natural projection of Rd on the x-plane, (x, z) �→ x, and
let P = |∂D|d−2 be the (d− 2)-dimensional volume of ∂D. Let a domain U ⊂ ∂C be such that the
outward normal nr = (nr,1, . . . nr,d−1, nr,d) at each regular point r ∈ U satisfies |nr,d| ≤ cos ϕ.
(In other words, the angles between nr for r ∈ U and the vectors ±(0, . . . , 0, 1) are ≥ ϕ.) Then,

|U | ≤ 2tP
sin ϕ

.
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Proof. The body C is bounded below by the graph of a convex function, say u1, and above
by the graph of a concave function, say u2; see Figure 3. Both functions are defined on D.
That is, we have

C = {(x, z) : x ∈ D, u1(x) ≤ z ≤ u2(x)}.

Figure 3. The body C between two parallel planes z = 0 and z = t is shown. Here, U is represented
by the union of two curves bounded by the points.

Let Ui (i = 1, 2) denote the intersection of U with the graph of ui. Clearly, if a point
(x, ui(x)) is regular and belongs to Ui, then |∇ui(x)| ≥ tan ϕ.

For 0 ≤ z ≤ t, denote by Pz the (d− 2)-dimensional volume of the set:

Lz = {x : u1(x) = z and (x, u1(x)) ∈ U1}.

One clearly has Pz ≤ P. Let s be the (d− 2)-dimensional parameter in Lz, and let ds
be the element of the (d− 2)-dimensional volume in Lz. Denote by x(z, s) the point in Lz
corresponding to the parameter s. Then, the (d− 1)-dimensional volume of U1 equals

|U1| =
∫ t

0
dz
∫

Lz

√
1 +

1
|∇u1(x(z, s))|2 ds ≤

∫ t

0
Pz

√
1 + cot2 ϕ dz ≤ tP

sin ϕ
.

The same argument holds for U2. It follows that |U | = |U1|+ |U2| ≤ 2tP/ sin ϕ.

Proposition 3. If a convex set in Rd−1 contains d− 1 mutually orthogonal line segments of length
1, then it also contains a ball of radius c = 1/2(d− 1).

Proof. Denote the convex set by D and the segments by [A0
i , A1

i ], i = 1, . . . , d− 1. Since

all points Aj
i lie in D, each convex combination of the form PJ =

1
d−1 ∑d−1

i=1 AJ(i)
i , where J

denotes a map {1, . . . , d− 1} �→ {0, 1}, also lies in D. The convex combination of the set of
points PJ is a hypercube with the size of length 1/(d− 1) and contains the ball of radius
1/2(d− 1) with the center at the hypercube’s center.

Proposition 4. Bt contains d− 1 mutually orthogonal line segments of length βt, where βt/t →
∞ as t → 0.

Proof. Take a unit vector e′ orthogonal to e, and consider the 2-dimensional plane Π′

through r0 parallel with e and e′. The intersection Π′ ∩ C =: C′ is a 2-dimensional convex
body, and r0 is a regular point on its boundary; the intersection Π′ ∩ Πt = l′t is a line
orthogonal to e at the distance t from r0; the intersection Π′ ∩ Bt is a line segment (maybe
degenerating to a point or the empty set). Equivalently, this segment is the intersection of
the body C′t with the line l′t. Since the point r0 ∈ ∂C′ is regular, we conclude that the length
of this segment β′t satisfies β′t/t → ∞ as t → 0.

Now, choose unit vectors e1, . . . , ed−1 in such a way that the set of vectors e1, . . . , ed−1, e
forms an orthonormal system in Rd. For each i = 1, . . . , d− 1, draw the 2-dimensional
plane Πi through r0 parallel with e and ei. The intersections Πi ∩ Bt are line segments
parallel with ei, and therefore, they are mutually orthogonal. The lengths of these segments
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βi
t satisfy βi

t/t → ∞ as t → 0. Taking βt = min1≤i≤d−1 βi
t, one comes to the statement of

the proposition.

Recall that St is the intersection of ∂C with the half-space {r : 〈r− r0, e〉 ≥ −t} and
Πt is the plane of the equation 〈r− r0, e〉 = −t. For ϕ ∈ (0, π/2), denote by St,ϕ the part of
St containing the regular points r satisfying 〈nr, e〉 ≤ cos ϕ. In other words, St,ϕ is the set
of regular points r in St such that the angle between e and nr is greater than or equal to ϕ.

Proposition 5. We have
|St,ϕ|
|Bt|

→ 0 as t → 0.

Proof. Consider a coordinate system (x, z), x = (x1, . . . , xd−1) such that the x-plane co-
incides with Πt and the z-axis is directed toward the vector e. For t0 > 0 sufficiently
small, the intersection of Πt and the interior of C is nonempty for all t ≤ t0. The angle
between −e and the outward normal at each regular point of St, t ≤ t0 is greater than a
positive value ϕ0. That is, for any regular point r ∈ St, it holds 〈nr, e〉 ≥ − cos ϕ0. Without
loss of generality, one can take ϕ < ϕ0, and then, for all regular points r ∈ St,ϕ, it holds
|〈nr, e〉| ≤ cos ϕ.

In the chosen coordinate system, Ct is contained between the planes z = 0 and z = t.
Denote by Dt the image of Ct under the natural projection (x, z) �→ x. The domain Dt con-
tains Bt and is contained in the (t cot ϕ)-neighborhood of Bt; hence, its (d− 2)-dimensional
volume does not exceed Pt = |∂Bt|d−2 + sd−2(t cot ϕ)d−2, where sd−2 = |Sd−2|d−2 means
the area of the (d− 2)-dimensional unit sphere.

Applying Proposition 2 to the body C = Ct and the domain U = St,ϕ, one obtains

|St,ϕ| ≤
2tPt

sin ϕ
= 2t

|∂Bt|d−2 + sd−2(t cot ϕ)d−2

sin ϕ
.

By Propositions 3 and 4, Bt contains a ball of radius cβt, and therefore, by Proposition 1,

|∂Bt|d−2 ≤
d− 1
cβt

|Bt|

and additionally, |Bt| ≥ bd−1(cβt)d−1, where bd−1 means the volume of the unit ball in
Rd−1. Hence,

|St,ϕ|
|Bt|

≤ 2t
d−1
cβt
|Bt|+ sd−2(t cot ϕ)d−2

sin ϕ|Bt|
≤ 2(d− 1)

c sin ϕ

t
βt

+
2sd−2

c sin ϕ bd−1

t
βt
→ 0 as t → 0.

Let us now finish the proof of Theorem 1.
Recall that νS is the surface area measure induced by S. For all ϕ ∈ (0, π/2), one has

νt =
1
|Bt|

νSt,ϕ +
1
|Bt|

νSt\St,ϕ
.

Proposition 5 implies that the measure 1
|Bt | νSt,ϕ converges to 0 as t → 0. Indeed, for

any continuous function f on Sd−1,

∫
Sd−1

f (n)
1
|Bt|

νSt,ϕ(dn) ≤ max | f | |St,ϕ|
|Bt|

→ 0 as t → 0.

On the other hand, the measure 1
|Bt | νSt\St,ϕ

is supported in the set in Sd−1 containing
all points whose radius vector forms the angle ≤ ϕ with e. It follows that each partial limit
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of 1
|Bt | νSt\St,ϕ

and, therefore, each partial limit of νt are supported in this set. Since ϕ > 0
can be made arbitrary small, one concludes that each partial limit of νt is proportional to δe.
Finally, utilizing Equality (5) true for each partial limit ν∗, one concludes that the limit of νt
exists and is equal to δe.

3. Proof of Theorem 2

In the proof, we will use the well-known fact that the surface area measure is continu-
ous with respect to the Hausdorff topology in the space of convex bodies.

More precisely, we say that a family of convex bodies Ct, t > 0 in Rd converges to a
convex body C ⊂ Rd as t → 0 in the sense of Hausdorff and write Ct −−→

t→0
C, if for any

ε > 0, there exists t0 > 0 such that for all t ≤ t0, Ct is contained in the ε-neighborhood of C
and C is contained in the ε-neighborhood of Ct.

It is well known that if Ct −−→
t→0

C, then ν∂Ct → ν∂C as t → 0.

Choose σ > 0 so |B̂σ| = 1, and therefore,

νŜσ
= ν�. (10)

Let the origin coincide with the point r0, that is r0 =�0; then, the homothety of a set A
with the center at r0 and ratio k is kA. See Figure 4.

Figure 4. The tangent cone at r0, the cutting planes Πt and Πσ, and the sets Bt, Bσ, and B̂σ in the case
when the point r0 is conical.

Proposition 6. σ
t Bt −−→

t→0
B̂σ.

Proof. Note that for all positive t1 and t2,

t1

t2
Πt2 = Πt1 and

t1

t2
B̂t2 = B̂t1 .

Additionally, since the tangent cone K contains C, then B̂t contains Bt, and so,

σ

t
Bt ⊂

σ

t
B̂t = B̂σ.

Let now 0 < t1 ≤ t2. Since�0 and Bt2 belong to C, so does their linear combination,

t1

t2
Bt2 =

(
1− t1

t2

)
�0 +

t1

t2
Bt2 ⊂ C.

On the other hand, t1
t2

Bt2 ⊂ t1
t2

Πt2 = Πt1 . It follows that t1
t2

Bt2 ⊂ C ∩Πt1 = Bt1 . We
conclude that

σ

t2
Bt2 ⊂

σ

t1
Bt1 ,

that is σ
t Bt, t > 0 form a nested family of sets contained in B̂σ.
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Suppose that σ
t Bt does not converge to B̂σ. This implies that the closure of the union

⋃
t>0

σ

t
Bt =: B̃σ

is contained in, but does not coincide with, B̂σ.
The union: ⋃

t>0

t
σ

B̃σ =: K̃

is a cone with the vertex at r0; it is contained in the tangent cone K, but does not coincide
with it. On the other hand,

C =
⋃
t≥0

Bt ⊂
⋃
t≥0

t
σ

B̃σ = K̃;

that is C is contained in the cone K̃, which is smaller than the tangent cone K. This
contradiction proves our proposition.

From Proposition 6, it follows, in particular, that

lim
t→0

∣∣∣σ
t

Bt

∣∣∣ = |B̂σ| = 1, (11)

and therefore,
νσ

t Bt
=
∣∣∣σ

t
Bt

∣∣∣δ−e −→ |B̂σ|δ−e = νB̂σ
as t → 0. (12)

Denote
Σt

σ := conv
(σ

t
Bt ∪ r0

)
.

Since the convex body σ
t Ct contains both r0 and σ

t Bt, we have Σt
σ ⊂ σ

t Ct.
Recall that Kσ is the part of the tangent cone cut off by the plane Πσ. We have

Kσ = conv(B̂σ ∪ r0). Since by Proposition 6, σ
t Bt −−→

t→0
B̂σ, we conclude that conv

(
σ
t Bt ∪

r0
)
−−→
t→0

conv(B̂σ ∪ r0), that is

Σt
σ −−→t→0

Kσ.

Using this relation and the double inclusion:

Σt
σ ⊂

σ

t
Ct ⊂ Kσ,

one concludes that σ
t Ct converges to Kσ in the sense of Hausdorff, and therefore,

νσ
t ∂Ct

→ ν∂Kσ
as t → 0.

Using that σ
t ∂Ct =

σ
t St ∪ σ

t Bt and ∂Kσ = Ŝσ ∪ B̂σ and using (12), one obtains

νσ
t St
→ νŜσ

as t → 0,

and taking account of (11), one obtains

lim
t→0

νt = lim
t→0

1
|Bt|

νSt =
1

limt→0
∣∣ σ

t Bt
∣∣ lim

t→0
νσ

t St
= νŜσ

= ν�.

Theorem 2 is proven.
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Abstract: A novel coronavirus infection system is established for the analytical and computational
aspects of this study, using a fuzzy fractional evolution equation (FFEE) stated in Caputo’s sense for
order (1,2). It is constructed using the FFEE formulated in Caputo’s meaning. The model consist
of six components illustrating the coronavirus outbreak, involving the susceptible people K�(ω),
the exposed population L�(ω), total infected strength C�(ω), asymptotically infected population
M�(ω), total number of humans recovered E�(ω), and reservoir Q�(ω). Numerical results using the
fuzzy Laplace approach in combination with the Adomian decomposition transform are developed to
better understand the dynamical structures of the physical behavior of COVID-19. For the controlling
model, such behavior on the generic characteristics of RNA in COVID-19 is also examined. The
findings show that the proposed technique of addressing the uncertainty issue in a pandemic situation
is effective.

Keywords: approximation solution; fuzzy number; fuzzy fractional order derivative; coronavirus
infection system; Adomian decomposition method

MSC: 26A33; 34K37

1. Introduction

Recently, the entire world has been afflicted by a novel coronavirus pandemic known as
the “novel coronavirus 2019”, abbreviated as “nCOVID-19”, which was initially reported in
Wuhan, central China [1]. It has been discovered that nCOVID-19 is spread from animal to
human; several afflicted people claimed to have contracted the virus after visiting a local fish
and wild animal market in Wuhan on 28 November [2]. Following that, other researchers
confirmed that transmission can also occur from one person to another [3]. According to
World Health Organization data, the number of reported laboratory-confirmed human
infections in 187 countries, territories, or places around the world reached 292,142 on
21 March 2020, with 12,784 mortality cases [4]. The death rate was as high as 0.0666 in
some nations, such as Italy and Spain. This confirms the severity and high infectivity of
nCOVID-19. Most patients infected with nCOVID-19 will have mild to moderate respiratory
symptoms, such as shortness of breath, low fever, nausea, cough, and other symptoms.
Other symptoms have been described, including gastroenteritis and neurological illnesses
of varying severity [5]. nCOVID-19 is primarily transmitted by droplets from the nose
when an infected person coughs or sneezes. A person is in danger of catching the virus if
he or she inhales droplets from infected people in the air. As a result, avoiding meetings
and contacting other individuals is the greatest approach to avoid contracting the virus.

To manage people flow and movement, Wuhan has been shut down by the Chinese
government, and they have decreased or restricted the transportation system of the country,
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including airplanes, trains, buses, and private cars, among other things. People have had
to stay at home and have their body temperature taken every day. If they have to go
outside, they are advised to wear respirators. With the spread of nCOVID-19 around the
world, more governments have entered the antivirus fight in the footsteps of the Chinese
government. It was reported that an increasing number of governments have begun to
issue restrictions prohibiting international travel, as well as closing schools, shopping malls,
and businesses. The nCOVID-19 pandemic has caused significant economic loss throughout
the world, as well as huge hardship for country administrations and even all human beings.
A large number of doctors and researchers also dedicated themselves to the anti-pandemic
fight and conducted research based on their knowledge. They studied nCOVID-19 from
a variety of perspectives, including microbiology, virology, sociology, veterinary sciences,
infectious diseases, public environmental occupational health, political economy, media
studies, and so on. The main countries in nCOVID-19 research include China, the United
States, and Korea, as a result of the virus’s early epidemic, which prompted them to begin
relevant research right away. The origins of nCOVID-19 were investigated by a group of
scientists. Initially, bats were thought to be the source of nCOVID-19, which is comparable
to SARS (severe acute respiratory syndrome), a worldwide epidemic that began in China
and other parts of the world in 2003 [6,7].

Following that, some studies linked nCOVID-19 to the 2012 pandemics of SARS and
MERS (Middle East respiratory syndrome) to show that there are lessons to be learned from
the two pandemics. SARS-COVID, MERS-COVID, and nCOVID-19 all belong to SARS-
COVID, according to Lu [8] and belong to the same family of Betacoronaviruses. Previous
studies, according to Zhou, suggest that nCOVID-19 has a significant degree of resemblance
to SARS-COVID, and, as evidenced by [9], has the same predicted cell entry mechanism and
human cell receptor use based on full-length genome phylogenetic research. Xiaolong and
Mose also analyzed the high RBD (receptor binding domain) identity between nCOVID-19
and SARS-COVID, and proposed that the SARS-COVID specific human antibody, CR3022,
might bind potently to the virus. nCOVID-19 RBD has a KD of 6.3 nM, indicating that
the difference within the RBD is 6.3 nM. SARS-COVID and nCOVID-19 have a significant
impact on neutralizing antibody cross-reactivity, which is still needed to produce novel
monoclonal antibodies that bind selectively to nCOVID-19 RBD [10]. Syed et al. determined
SARS-COVID-derived B lymphocyte epitopes and T-cell epitopes experimentally based on
previous studies on SARS-COVID immunological systems and structures and discovered
that they are similar and contain no mutation within the available nCOVID-19 sequences,
which is critical for narrowing down the hunt for potent targets for an efficient vaccine
against the nCOVID-19. Some researchers are concentrating on the transmission and
identification of the nCOVID-19 virus in people. Human-to-human transmission is widely
acknowledged as a factor in the rapid spread of illnesses. Ahmed said that viral strains
from the area’s affected persons had been analyzed, but that there was a limited genetic
difference, meaning that they all descended from a single ancestor [11]. Zhou, on the
other hand, claimed that the sequences of the seven conserved viral replicase domains in
ORF 1ab in nCOVID-19 and SARS-COVID [9] are 94.6 percent similar. Chaudhury et al.
demonstrated that using accurate, physics-based energy functions, computational protein–
protein docking can disclose the native-like, low-energy protein–protein complex from the
unbound structures of two separate, interacting protein components [12]. In this paper, we
attempt to mathematically examine the nCOVID-19 infection mechanism. The numerical
findings are obtained using the fuzzy Laplace transform based on Adomian decomposition,
which can be useful in understanding the dynamical structures of the physical behavior
of nCOVID-19. In the form of nonlinear fractional order differential equations (FODEs),
we define the system of six equations illustrating the coronavirus outbreak, involving
susceptible people A�(ω), the exposed population B�(ω), total infected strength C�(ω),
asymptotically infected population D�(ω), total number of humans recovered E�(ω), and
reservoir F�(ω), which are listed in the following order [13]:
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Dϑ
ωA�(ω) = r� − ı�A� − s�A�(C� + λD�)− s�S�F�,

Dϑ
ωB�(ω) = s�A�(C� + �D�) + slA�F− (1−��)μ�B� −��μ

′
�B� − ı�B�,

Dϑ
ωC�(ω) = (1−��)μ�B� − (ϑ� + ı�)C�,

Dϑ
ωD�(ω) = ��μ�′B� − (γ′� + ı�)C�,

Dϑ
� E�(ω) = γ�C� + γ′�D� − ı�E�,

Dϑ
� F�(�) = ςC� + ψD� − �F�,

(1)

where r� is the birth rate, ı� is the death rate of infected people, s� is the transmission
coefficient, sl is the disease transmission coefficient, and λ is the transmissibility multiple.
The symbols μ� and μ� signify the incubation period. The recovery rates of C� and D� are
represented by ϑ� and ϑ′�, respectively. ς and ψ reflect the virus’s influence from C� and D�

to F�, respectively, and � indicates the virus’s elimination rate from F�. The parameters are
included in Table 1 for convenience. In recent years, fuzzy calculus and FODEs [14–17] have
been added to current calculus and DEs, respectively. Then, FODEs were expanded to fuzzy
FODEs [18–20]. Many academics have researched FODEs and fuzzy integral equations
in order to establish the existence–uniqueness theory of solutions [21–26]. It is extremely
time consuming to compute more precise solutions to each fuzzy FODE when dealing
with fuzzy FODEs. Mathematicians have put forth a lot of effort to solve fuzzy FODEs
using various approaches, such as perturbation methods, integral transform methods,
and spectral techniques [27–32]. Some researchers examined the stability of fuzzy DEs [33].
Niazi et al. [34], Iqbal et al. [35], Shafqat et al. [36] and Abuasbeh et al. [37] investigated the
existence and uniqueness of the FFEE. Ahmad et al. [38] worked on Model (2), the fuzzy
fractional-order model of the novel coronavirus as

Dϑ
ωL�(ω) = r̂� − ı̂�L� − ŝ�L�(N� + λ̂P�)− ŝ�L�R�,

Dϑ
ωM�(ω) = ŝ�L�(N� + �P�) + ŝ�L�R− (1− �̂�)μ̂�M� − �̂�μ̂�′M� − ı̂�M�,

Dϑ
ωN�(ω) = (1− �̂�)μ̂�M� − (ϑ̂� + ı̂�)N�,

Dϑ
ωP�(ω) = �̂�μ̂�′K� − (ϑ̂�′ + ı̂�)P�,

Dϑ
ωQ�(ω) = ϑ̂�N� + ϑ̂�′P� − ı�Q�,

Dϑ
ωR�(ω) = ς̂N� + ψ̂P� − �̂R�.

(2)

Inspired by the above, Model (3) with a fuzzy fractional-order derivative by using
mild solution is investigated here, with the uncertainty in initial data. For 1 < ϑ ≤ 2,

c
0Dϑ

ωK�(ω) = r̂� − ı̂�K� − ŝ�K�(C� + λ̂M�)− ŝ�K�Q�,
c
0Dϑ

ωL�(ω) = ŝ�K�(C� + �M�) + ŝ�K�Q− (1− �̂�)μ̂�L� − �̂�μ̂
′
�L� − ı̂�L�,

c
0Dϑ

ωC�(ω) = (1− �̂�)μ̂�L� − (ϑ̂� + ı̂�)C�,
c
0Dϑ

ωM�(ω) = �̂�μ̂
′
�L� − (ϑ̂′� + ı̂�)M�,

c
0Dϑ

ωE�(ω) = ϑ̂�C� + ϑ̂′�M� − ı�E�,
c
0Dϑ

ωQ�(ω) = ς̂C� + ψ̂M� − �̂Q�,

(3)

associated to fuzzy initial condition, for Ξ ∈ (0, 1),

K(0, Ξ) = (K(0, Ξ), K(0, Ξ)) + (−1)g(K), K′(0, Ξ) = (K(0, Ξ), K(0, Ξ)),

L(0, Ξ) = (L(0, Ξ), L(0, Ξ)) + (−1)g(L), L′(0, Ξ) = (L(0, Ξ), L(0, Ξ)),

C(0, Ξ) = (C(0, Ξ), C(0, Ξ)) + (−1)g(C), C′(0, Ξ) = (C(0, Ξ), C(0, Ξ)),

M(0, Ξ) = (M(0, Ξ), M(0, Ξ)) + (−1)g(M), M′(0, Ξ) = (M(0, Ξ), M(0, Ξ)),

E(0, Ξ) = (E(0, Ξ), E(0, Ξ)) + (−1)g(E), E′(0, Ξ) = (E(0, Ξ), E(0, Ξ)),

Q(0, Ξ) = (Q(0, Ξ), Q(0, Ξ)) + (−1)g(Q), Q′(0, Ξ) = (Q(0, Ξ), Q(0, Ξ)),

where r� is birth rate, ı� is death rate of infected people, s� is transmission coefficient, sl is
the disease transmission coefficient, and λ is the transmissibility multiple. The symbols
μ� and μ′� signify the incubation period. The recovery rates of C� and M� are represented
by ϑ� and ϑ�, respectively. ς and ψ reflect the virus’s influence from C� and M� to Q�,
respectively, and � indicates the virus’s elimination rate from Q�.
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Table 1. Description of the model’s parameters (3).

Notation Parameters Description Numerical Value

r� Birth rate 1
ı� Death rate of infected population 1

(76.79×365)
s� Transmission coefficient 0.05
sl Disease transmission coefficient 0.001231
μ�, μ′� Signified incubation period 0.001234, 0.05
ϑ�, ϑ′� Recovery rate of C�, M� 0.1389
ς, ψ Influence of virus from C� and M� to Q� 0.0398, 0.01
�̂ Amount of asymptotic infection 0.1243
λ̂ Transmissibility multiple 0.02
ψ̂ Elimination rate of virus from Q� 0.01
K0 Initial value of susceptible 220 million
C0 Initial value of infected 0.015 million
L0 Initial value of exposed 100 million
M0 Initial value of asymptotically infected 0.60 million
E0 Initial value of recovered 0 million
Q0 Initial value of reservoir 0.1 million

We use fuzzy fractional-order model of order (1, 2) by using a fuzzy mild solution
of the novel coronavirus with nonlocal conditions. Owing to it, our model’s graphs are
more accurate. The theory of fuzzy sets continues to gain scholars’ attention because of its
huge range of applications in domains such as engineering, mechanics, robotics, electrical,
control, thermal systems, and signal processing. In light of the foregoing arguments and
to meet the current uncertain scenario, based on fuzzy fractional calculus, we suggested a
new coronavirus infection strategy. We ensure that the proposed model is closer to the true
behavior of a system growing the basic properties of RNA in COVID-19 by researching it,
which also improves the physical behavior of such an infection system. Our major goal is
to obtain the existence–uniqueness result of a COVID-19 model of order (1, 2). Applying
mild solutions to this COVID-19 model becomes more complicated. However, via rigorous
analysis, we show that the suggested function deduces a novel representation of solution
operators and then provides a new idea of mild solutions. As a result, the research of
system (3) differs greatly from earlier studies on the COVID-19 model. The other section
of this paper is as follows. Section 2 discusses the definitions. Section 3 introduces the
existence–uniqueness of the solution to the succeeding fuzzy model. A general method
is also shown here for using fuzzy Laplace transform to determine the solution of the
examined system. In Section 4, numerical results and discussion are presented. Finally,
in Section 5, a conclusion is given.

2. Preliminaries

Definition 1 ([39,40]). Take ρ : Rm → [0, 1] to be a fuzzy real line set meeting the below properties:

(i) ρ is normal.
(ii) ρ is upper semicontinuous on Rm.
(iii) ρ is convex.
(iv) cl{a ∈ Rm, ρ(a) > 0} is compact.

Then, it is known as a fuzzy number.

Definition 2 ([39]). On a fuzzy number ρ, the ℘-level set is defined by

[u]℘ = {x ∈ Rm : μ(x) ≤ ℘},

where ℘ ∈ (0, 1] and x ∈ Rm.
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Definition 3 ([39,40]). Suppose [ρ(θ), ρ(θ)] is the parametric form of a fuzzy number ρ, where
0 ≤ θ ≤ 1 and the below properties are satisfied:

(a) ρ(θ) is left continuous, bounded, and increasing function over (0, 1] and right continuous
at 0.

(b) ρ(θ) is left continuous, bounded, and increasing function over (0, 1] and right continuous
at 0.

(c) ρ(θ) ≤ ρ(θ).

Additionally, if ρ(θ) = ρ(θ) = 0, then θ is called a crisp number.

Definition 4 ([30]). If a mapping υ : Em × Em → Rm and let � = (�(θ) ≤ �(θ)) and μ =
(μ(θ) ≤ μ(θ)) be two fuzzy numbers in their parametric form. The Hausdorff distance between �
and μ is defined as

υ(�, μ) = max{sup
a∈A

inf
b∈B
||a− b||, sup

b∈B
inf
a∈A

||a− b||}.

In Em, the metric υ has the below properties:

(i) υ(v + �, w + �) = υ(v, w) for all v, �, w ∈ Em;
(ii) υ(vσ, wσ) = |συ(v, w) for all v, w ∈ Em, � ∈ Rm;
(iii) υ(v + ς, w + ζ) ≤ υ(v, w) + υ(ξ, ζ) for all v, w, ς, ζ ∈ Em;
(iv) (Em, υ) is a complete metric space.

Definition 5 ([30]). Let τ1, τ2 ∈ Em. If there exist τ3 ∈ Em such that τ1 = τ2 + τ3 then τ3 is said
to be the H-difference of τ1 and τ2, denoted by τ1 � τ2.

Definition 6 ([30]). If Θ : Rm → Em be a fuzzy mapping. Then Θ is called continuous if for any
ε > 0 ∃ δ > 0 and a fixed value of λ0 ∈ [ζ1, ζ2], we have

υ(Θ(λ), Θ(λ0)) < ε,

whenever
|λ− λ0| < �.

Definition 7 ([27,30]). Let ϕ be a continuous fuzzy function on [0, b] ⊆ Rm, a fuzzy fractional
integral in RL sense corresponding to ω is defined by

Iλφ(ω) =
1

Γ(λ)

∫ ω

0
(ω− ζ)λ−1φ(ζ)dζ, where λ, ζ ∈ (0, ∞).

If φ ∈ CF[0, b]
⋂

LF[0, b], where CF[0, b] and LF[0, b] are the spaces of fuzzy continuous
fractions and fuzzy Lebesgue integrable functions, respectively, then the fuzzy fractional integral is
defined as

[Iλφ(ω)]℘ = [Iκφ
℘
(ω), Iλφ℘(ω)], 0 ≤ ℘ ≤ 1,

where

Iλφ
℘
(ω) =

1
Γ(λ)

∫ ω

0
(ω− ζ)λ−1φ

℘
(ω)dζ, λ, ζ ∈ (0, ∞),

Iλφ℘(ω) =
1

Γ(λ)

∫ ω

0
(ω− ζ)λ−1φ℘(ω)dζ, λ, ζ ∈ (0, ∞).

Definition 8 ([30]). If a fuzzy fraction φ ∈ CF[0, b]
⋂

LF[0, b] is such that φ = [φ
℘
(ω), φ℘(ω)],

0 ≤ ℘ ≤ 1 and ω1 ∈ (0, b), then the fuzzy fractional Caputo’s derivative is defined as

[Dβφ
℘
(ω0), Dβφ℘(ω0)], 0 ≤ β ≤ 1,
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where

Dβφ
℘
(ω0) =

1
Γ(n− β)

[ ∫ ω

0
(ω− ζ)n−β−1 dn

dζn φ
℘
(ω)dζ

]
ω=0

,

Dβφ℘(ω0) =
1

Γ(n− β)

[ ∫ ω

0
(ω− ζ)n−β−1 dn

dζn φ℘(ω)dζ

]
ω=ω0

,

whenever the integrals on the right-hand sides converge and n = [β].

Definition 9 ([29–31]). Suppose φ is a continuous fuzzy-valued function. Assume that φ(χ).e−sχ

is an improper fuzzy Riemann-integrable on [0, ∞), then its fuzzy Laplace transform is

L[φ(χ)] =
∫ ∞

0
φ(χ).e−sχdχ.

For 0 ≤ r ≤ 1, the parametric form of φ(χ) is represented by

∫ ∞

0
φ(χ, r).e−sχdχ =

[ ∫ ∞

0
φ(χ, r).e−sχdχ,

∫ ∞

0
φ(χ, r).e−sχdχ

]
.

Hence,
L[φ(χ, r)] = [Lφ(χ, r), Lφ(χ, r)].

Theorem 1 ([31]). If φ ∈ CF[0, b]
⋂

LF[0, b], then the Laplace transform of the fuzzy fractional
derivative in Caputo’s form is given for 0 ≤ ℘ ≤ 1 and 0 < β ≤ 1 by

L[(Dβφ(ω))℘] = sβL[φ(ω)]− sβ−1[φ(0)].

Theorem 2 (Schauder Fixed Point Theorem). Let (X, ‖.‖) be a Banach space and S ⊂ X be
compact, convex and nonempty. Any continuous operator A : S → S has at least one fixed point.

3. Main Result

The existence–uniqueness of solutions to succeeding fuzzy fractional model (FFM) are
examined in the following section, and we show how to discover a semi-analytic solution
to model (3) using the fuzzy Laplace transform by using mild the solution.

3.1. Existence–Uniqueness

The existence–uniqueness of the succeeding FFM are addressed in this section using
fixed point theory. Consider the right-hand side of Model (3):

�(ω, K�(ω), L�(ω), C�(ω), M�(ω), E�(ω), Q�(ω)) = r̂� − ı̂�K� − ŝ�K�(C� + λ̂M�)− ŝ�K�Q�,
�(ω, K�(ω), L�(ω), C�(ω), M�(ω), E�(ω), Q�(ω)) = ŝ�K�(C� + �M�) + ŝ�K�Q− (1− �̂�)μ̂�L� − �̂�μ̂′�L� − ı̂�L�,
Φ(ω, K�(ω), L�(ω), C�(ω), M�(ω), E�(ω), Q�(ω)) = (1− �̂�)μ̂�L� − (ϑ̂� + ı̂�)C�,
Ψ(ω, K�(ω), L�(ω), C�(ω), M�(ω), E�(ω), Q�(ω)) = �̂�μ̂�′L� − (ϑ̂′� + ı̂�)M�,
Υ(ω, K�(ω), L�(ω), C�(ω), M�(ω), E�(ω), Q�(ω)) = ϑ̂�C� + ϑ̂′�M� − ı�E�,
Λ(ω, K�(ω), L�(ω), C�(ω), M�(ω), E�(ω), Q�(ω)) = ς̂C� + ψ̂M� − �̂Q�,

(4)

where �,�, Φ, Ψ, Υ and Λ are fuzzy functions. Thus, for 1 < γ ≤ 2, the model (3) is

Dϑ
ωK�(ω) = ψ(�(ω, K�(ω), L�(ω), C�(ω), M�(ω), E�(ω), Q�(ω))),

Dϑ
ωL�(ω) = �(ω, K�(ω), L�(ω), C�(ω), M�(ω), E�(ω), Q�(ω))),

Dϑ
ωC�(ω) = Φ(ω, K�(ω), L�(ω), C�(ω), M�(ω), E�(ω), Q�(ω))),

Dϑ
ωM�(ω) = Ψ(ω, K�(ω), L�(ω), C�(ω), M�(ω), E�(ω), Q�(ω))),

Dϑ
ωE�(ω) = Υ(ω, K�(ω), L�(ω), C�(ω), M�(ω), E�(ω), Q�(ω))),

Dϑ
ωQ�(ω))) = Λ(ω, K�(ω), L�(ω), C�(ω), M�(ω), E�(ω), Q�(ω))),

(5)
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with fuzzy initial conditions

K(0, Ξ) = (K(0, Ξ), K(0, Ξ)) + (−1)g(K), K′(0, Ξ) = (K(0, Ξ), K(0, Ξ)),

L(0, Ξ) = (L(0, Ξ), L(0, Ξ)) + (−1)g(L), L′(0, Ξ) = (L(0, Ξ), L(0, Ξ)),

C(0, Ξ) = (C(0, Ξ), C(0, Ξ)) + (−1)g(C), C′(0, Ξ) = (C(0, Ξ), C(0, Ξ)),

M(0, Ξ) = (M(0, Ξ), M(0, Ξ)) + (−1)g(M), M′(0, Ξ) = (M(0, Ξ), M(0, Ξ)),

E(0, Ξ) = (E(0, Ξ), E(0, Ξ)) + (−1)g(E), E′(0, Ξ) = (E(0, Ξ), E(0, Ξ)),

Q(0, Ξ) = (Q(0, Ξ), Q(0, Ξ)) + (−1)g(Q), Q′(0, Ξ) = (Q(0, Ξ), Q(0, Ξ)).

Now applying a mild solution and using the initial conditions, we obtain

K�(ω) = Cq(ω)(K(0, Ξ) + (−1)g(K)) + Kq(ω)K′(0, Ξ)+
1

Γ(ϑ)

∫ ω
0 (ω−∧)ϑ−1Pϑ(ω−∧)�(ω, K�(ω), L�(ω), C�(ω), M�(ω), E�(ω), Q�(ω)))d∧,

L�(ω) = Cq(ω)(L(0, Ξ) + (−1)g(L)) + Kq(ω)L′(0, Ξ)+
1

Γ(ϑ)

∫ ω
0 (ω−∧)ϑ−1Pϑ(ω−∧)�(ω, K�(ω), L�(ω), C�(ω), M�(ω), E�(ω), Q�(ω)))d∧,

C�(ω) = Cq(ω)(C(0, Ξ) + (−1)g(C)) + Kq(ω)C′(0, Ξ)+
1

Γ(ϑ)

∫ ω
0 (ω−∧)ϑ−1Pϑ(ω−∧)Φ(ω, K�(ω), L�(ω), C�(ω), M�(ω), E�(ω), Q�(ω)))d∧),

M�(ω) = Cq(ω)(M(0, Ξ) + (−1)g(M)) + Kq(ω)M′(0, Ξ)+
1

Γ(ϑ)

∫ ω
0 (ω−∧)ϑ−1Pϑ(ω−∧)Ψ(ω, K�(ω), L�(ω), C�(ω), M�(ω), E�(ω), Q�(ω)))d∧,

E�(ω)) = Cq(ω)(E(0, Ξ) + (−1)g(E)) + Kq(ω)E′(0, Ξ)+
1

Γ(ϑ)

∫ ω
0 (ω−∧)ϑ−1Pϑ(ω−∧)Υ(ω, K�(ω), L�(ω), C�(ω), M�(ω), E�(ω), Q�(ω)))d∧,

Q�(ω) = Cq(ω)(Q(0, Ξ) + (−1)g(Q)) + Kq(ω)Q′(0, Ξ)+
1

Γ(ϑ)

∫ ω
0 (ω−∧)ϑ−1Pϑ(ω−∧)Λ(ω, K�(ω), L�(ω), C�(ω), M�(ω), E�(ω), Q�(ω)))d ∧ .

(6)

Let us define a Banach space as G = G1 ×G2 under the fuzzy norm:

||K�(ω) + L�(ω) +C�(ω) +M�(ω) + E�(ω) +Q�(ω)|| = max
ω∈[0,�]

[|K�(ω) + L�(ω) +C�(ω) +M�(ω) + E�(ω) +Q�(ω)|].

Equation (6) becomes

N(ω) = Cq(ω)N(0, Ξ) + Kq(ω)N′(0, Ξ) +
1

Γ(ϑ)

∫ ω

0
(ω−∧)ϑ−1Pq(ω−∧)Θ(∧, N(∧))d∧, (7)

where

Θ(ω, N�(ω)) =

�(ω, K�(ω), L�(ω), C�(ω), M�(ω), E�(ω), Q�(ω))),
�(ω, K�(ω), L�(ω), C�(ω), M�(ω), E�(ω), Q�(ω))),
Φ(ω, K�(ω), L�(ω), C�(ω), M�(ω), E�(ω), Q�(ω))),
Ψ(ω, K�(ω), L�(ω), C�(ω), M�(ω), E�(ω), Q�(ω))),
Υ(ω, K�(ω), L�(ω), C�(ω), M�(ω), E�(ω), Q�(ω))),
Λ(ω, K�(ω), L�(ω), C�(ω), M�(ω), E�(ω), Q�(ω))).

On the nonlinear function Θ : G → G, we add the following assumptions:

Assumption 1 (H1). There exists constant KN > 0 such that for each N�1(ω), N�2(ω) ∈ G,

|Θ(ω, N�1(ω))−Θ(ω, N�2(ω))| ≤ KN|Θ(ω, N�1(ω))−Θ(ω, N�2(ω))|.

Assumption 2 (H2). There exist constants FN > 0 such that

|Θ(ω, N�(ω))| ≤ FN|N�(ω))|+ NN.

Theorem 3. Under Assumption 2, the considered Model (5) has at least one solution.
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Proof. Suppose A = {N�(ω) ∈ G : ||N�(ω))|| ≤ r} ⊂ G is a closed and convex fuzzy set,
and ψ : I → I is a mapping defined as

ζ(Nk(ω)) = Cq(ω)N(0, Ξ) + Kq(ω)N′(0, ω) +
1

Γ(ϑ)

∫ ω

0
(ω−∧)ϑ−1Pq(ω−∧)Θ(∧, N�(∧))d ∧ . (8)

For any N�(ω) ∈ I, we have

||ψ(N�(ω)|| = max
ω∈[0,�]

∣∣∣∣Cq(ω)N(0, Ξ) + Kq(ω)N′(0, Ξ) +
1

Γ(ϑ)

∫ ω

0
(ω−∧)ϑ−1Pq(ω−∧)Θ(∧, N�(∧))d ∧

∣∣∣∣
≤ |Cq(�)N(0, Ξ) + Kq(ω)N′(0, Ξ)|+ 1

Γ(ϑ)

∫ ω

0
(ψ−∧)ϑ−1Pq(ω−∧)|Θ(∧, N�(∧))|d ∧

≤ |Cq(ω)N(0, Ξ) + Kq(ω)N′(0, Ξ)|+ 1
Γ(ϑ)

∫ ω

0
(ω−∧)ϑ−1Pq(ω−∧)[MN|N�(ω)|+ NN]d ∧

≤ |N(0, Ξ)|+ τϑ

Γ(ϑ + 1)
[MN|Nk(ω)|+ NN].

We obtain ζ(I) ⊂ I from the previous inequality, implying that the operator ϕ is
bounded. The operator φ is then shown to be completely continuous. Allow φ1, φ2 ∈ [0,�]
to be such that φ1 < φ2, and then

||φ(N�(ω)(φ2)− φ(N�(ω)(φ1)|| =

∣∣∣∣ 1
Γ(γ)

∫ φ2

0
(φ2 −∧)ϑ−1Pq(ω−∧)Θ(∧, N�(∧))d ∧

− 1
Γ(γ)

∫ φ1

0
(φ1 −∧)γ−1Pq(ω−∧)Θ(∧, N�(∧))d ∧

∣∣∣∣
≤ [φγ

2 − φ
γ
1 ]
[FN|N�(ω)|+ NN]

Γ(γ + 1)
.

We can see that the right-hand side of the inequality goes to zero as φ2 → φ1. Hence,

||φ(N�(ω)(φ2)− φ(N�(ω))(φ1)|| → as φ2 → φ1.

As a result, φ is an equicontinuous operator. The operator φ is entirely continuous
according to the Arzela–Ascoli theorem, and it was previously bounded. As a result of
Schauder’s fixed point theorem, System (5) has at least one solution.

Theorem 4. If τϑKN < Γ(ϑ + 1), the investigated system (5) has a unique solution if
Assumption 1 holds.

Proof. Let N�1(ω), N�2(ω) ∈ G, then

||φ(N�1(ω))− φ(N�2(ω))|| = max
ω∈[0,�]

∣∣∣∣ 1
Γ(ϑ)

∫ ω

0
(ω−∧)ϑ−1Pq(ω−∧)Θ(∧, N�1(∧))d ∧

− 1
Γ(ϑ)

∫ ω

0
(ω−∧)ϑ−1Pq(ω−∧)Θ(∧, N�2(∧))d ∧

∣∣∣∣
≤ τϑ

Γ(ϑ + 1)
KN|N�1(ω)−N�2(ω)|.

As a result, ζ is a contraction. As a result, according to the Banach contraction theorem,
System (5) has a single solution.
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3.2. Procedure for Solution

A general method is shown here for using the fuzzy Laplace transform to determine
the solution of the examined system.

We have the fuzzy Laplace transform of (5) when we use beginning conditions:

L[c0Dϑ
ωK�(ω)] = L[�(ω, K�(ω), L�(ω), C�(ω), M�(ω), E�(ω), Q�(ω))],

L[c0Dϑ
ωL�(ω)] = L[�(ω, K�(ω), L�(ω), C�(ω), M�(ω), E�(ω), Q�(ω))],

L[c0Dϑ
ωC�(ω)] = L[Φ(ω, K�(ω), L�(ω), C�(ω), M�(ω), E�(ω), Q�(ω))],

L[c0Dϑ
ωM�(ω)] = L[Ψ(ω, K�(ω), L�(ω), C�(ω), M�(ω), E�(ω), Q�(ω))],

L[c0Dϑ
ωE�(ω)] = L[Υ(ω, K�(ω), L�(ω), C�(ω), M�(ω), E�(ω), Q�(ω))],

L[c0Dϑ
ωQ�(ω)] = L[Λ(ω, K�(ω), L�(ω), C�(ω), M�(ω), E�(ω), Q�(ω))],

sϑL[c0Dϑ
ωK�(ω)] = sϑ−1K(0, Ξ) + sϑ−1K′(0, Ξ) + L[�(ω, K�(ω), L�(ω), C�(ω), M�(ω), E�(ω), Q�(ω))],

sϑL[c0Dϑ
ωL�(ω)] = sϑ−1L(0, Ξ) + sϑ−1L′(0, Ξ) + L[�(ω, K�(ω), L�(ω), C�(ω), MM�(ω), E�(ω), Q�(ω))],

sϑL[c0Dϑ
ωC�(ω)] = sϑ−1C(0, Ξ) + sϑ−1C′(0, Ξ) + LΦ(ω, K�(ω), L�(ω), C�(ω), M�(ω), E�(ω), Q�(ω))],

sϑL[c0Dϑ
ωM�(ω)] = sϑ−1M(0, Ξ) + sϑ−1D′(0, Ξ) + L[Ψ(ω, K�(ω), L�(ω), C�(ω), M�(ω), E�(ω), Q�(ω))],

sϑL[c0Dϑ
ωE�(ω)] = sϑ−1E(0, Ξ) + sϑ−1E′(0, Ξ) + L[Υ(ω, K�(ω), L�(ω), C�(ω), M�(ω), E�(ω), Q�(ω))],

sϑL[c0Dϑ
ωQ�(ω)] = sϑ−1Q(0, Ξ) + sϑ−1Q′(0, Ξ) + L[Λ(ω, K�(ω), L�(ω), C�(ω), M�(ω), E�(ω), Q�(ω))],

L[c0Dϑ
ωK�(ω)] =

1
s

K(0, Ξ) +
1
s

K′(0, Ξ) +
1
sϑ

L[�(ω, K�(ω), L�(ω), C�(ω), M�(ω), E�(ω), Q�(ω))],

L[c0Dϑ
ωL�(ω)] =

1
s

L(0, Ξ) +
1
s

L′(0, Ξ) +
1
sϑ

L[�(ω, K�(ω), L�(ω), C�(ω), M�(ω), E�(ω), Q�(ω)))],

L[c0Dϑ
ωC�(ω)] =

1
s

C(0, Ξ) +
1
s

C′(0, Ξ) +
1
sϑ

L[Φ(ω, K�(ω), L�(ω), C�(ω), M�(ω), E�(ω), Q�(ω))],

L[c0Dϑ
ωM�(ω)] =

1
s

M(0, Ξ) +
1
s

M′(0, Ξ) +
1
sϑ

L[Ψ(ω, K�(ω), L�(ω), C�(ω), M�(ω), E�(ω), Q�(ω))],

L[c0Dϑ
ωE�(ω)] =

1
s

E(0, Ξ) +
1
s

E′(0, Ξ) +
1
sϑ

L[Υ(ω, K�(ω), L�(ω), C�(ω), M�(ω), E�(ω), Q�(ω))],

L[c0Dϑ
ωQ�(ω)] =

1
s

Q(0, Ξ) +
1
s

Q′(0, Ξ) +
1
sϑ

L[Λ(ω, K�(ω), L�(ω), C�(ω), M�(ω), E�(ω), Q�(ω))].

The infinite series solution is

K�(ω) =
∞

∑
n=0

K�n(ω), L�(ω) =
∞

∑
n=0

L�n(ω), C�(ω) =
∞

∑
n=0

C�n(ω),

M�(ω) =
∞

∑
n=0

M�n(ω), E�(ω) =
∞

∑
n=0

E�n(ω), Q�(ω) =
∞

∑
n=0

Q�n(ω),

K�(ω))C�(ω) =
∞

∑
n=0

X1,n, K�(ω)M�(ω) =
∞

∑
n=0

X2,n, K�(ω)Q�(ω) =
∞

∑
n=0

X3,n,

where X1,n, X2,n and X3,n are Adomian polynomials that represent nonlinear terms. As
a result, the final equation is

L
[ ∞

∑
n=0

Dϑ
ωK�(ω)

]
=

1
s

K(0, Ξ) +
1
s

K′(0, Ξ) +
1
sϑ

L[�(ω, K�(ω), L�(ω), C�(ω), M�(ω), E�(ω), Q�(ω))],
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L
[ ∞

∑
n=0

Dϑ
ωL�(ω)

]
=

1
s

L(0, Ξ) +
1
s

L′(0, Ξ) +
1
sϑ

L[�(ω, K�(ω), L�(ω), C�(ω), M�(ω), E�(ω), Q�(ω)))],

L
[ ∞

∑
n=0

Dϑ
ωC�(ω)

]
=

1
s

C(0, Ξ) +
1
s

C′(0, Ξ) +
1
sϑ

L[Φ(ω, K�(ω), L�(ω), C�(ω), M�(ω), E�(ω), Q�(ω))],

L
[ ∞

∑
n=0

Dϑ
ωM�(ω)

]
=

1
s

D(0, Ξ) +
1
s

M′(0, Ξ) +
1
sϑ

L[Ψ(ω, K�(ω), L�(ω), C�(ω), M�(ω), E�(ω), Q�(ω))],

L
[ ∞

∑
n=0

Dϑ
ωE�(ω)

]
=

1
s

E(0, Ξ) +
1
s

E′(0, Ξ) +
1
sϑ

L[Υ(ω, K�(ω), L�(ω), C�(ω), M�(ω), E�(ω), Q�(ω))],

L
[ ∞

∑
n=0

Dϑ
ωQ�(ω)

]
=

1
s

Q(0, Ξ) +
1
s

Q′(0, Ξ) +
1
sϑ

L[Λ(ω, K�(ω), L�(ω), C�(ω), M�(ω), E�(ω), Q�(ω))].

When we use the inverse Laplace transform, we obtain

∞

∑
n=0

Dϑ
ωK�(ω) = K(0, Ξ) +

1
s

K′(0, Ξ) + L−1
[

1
sϑ

L[�(ω, K�(ω), L�(ω), C�(ω), M�(ω), E�(ω), Q�(ω))]

]
,

∞

∑
n=0

Dϑ
ωL�(ω) = L(0, Ξ) +

1
s

L′(0, Ξ) + L−1
[

1
sϑ

L[�(ω, K�(ω), L�(ω), C�(ω), M�(ω), E�(ω), Q�(ω))]

]
,

∞

∑
n=0

Dϑ
ωC�(ω) = C(0, Ξ) +

1
s

C′(0, Ξ) + L−1
[

1
sϑ

L[Φ(ω, K�(ω), L�(ω), C�(ω), M�(ω), E�(ω), Q�(ω))]

]
,

∞

∑
n=0

Dϑ
ωM�(ω) = M(0, Ξ) +

1
s

M′(0, Ξ) + L−1
[

1
sϑ

L[Ψ(ω, K�(ω), L�(ω), C�(ω), M�(ω), E�(ω), Q�(ω))]

]
,

∞

∑
n=0

Dϑ
ωE�(ω) = E(0, Ξ) +

1
s

E′(0, Ξ) + L−1
[

1
sϑ

L[Υ(ω, K�(ω), L�(ω), C�(ω), M�(ω), E�(ω), Q�(ω))]

]
,

∞

∑
n=0

Dϑ
ωQ�(ω) = Q(0, Ξ) +

1
s

Q′(0, Ξ) + L−1
[

1
sϑ

L[Λ(ω, K�(ω), L�(ω), C�(ω), M�(ω), E�(ω), Q�(ω))]

]
,

We evaluate the first two terms of two terms of the series when comparing the terms
on both sides:

K�0
(ω) = K(0, Ξ), K′�0

(ω) = K′(0, Ξ), K�0(ω) = K(0, Ξ), K
′
�0
(ω) = K

′
(0, Ξ),

L�0
(ω) = L(0, Ξ), L′�0

(ω) = L′(0, Ξ), L�0(ω) = L(0, Ξ), L
′
�0
(ω) = L

′
(0, Ξ),

C�0
(ω) = C(0, Ξ), C′�0

(ω) = C′(0, Ξ), C�0(ω) = C(0, Ξ), C
′
�0
(ω) = C

′
(0, Ξ),

M�0
(ω) = M(0, Ξ), M′

�0
(ω) = M′(0, Ξ), M�0(ω) = M(0, Ξ), M

′
�0
(ω) = M

′
(0, Ξ),

E�0
(ω) = E(0, Ξ), E′�0

(ω) = E′(0, Ξ), E�0(ω) = E(0, Ξ), E
′
�0
(ω) = E

′
(0, Ξ),

Q
�0
(ω) = Q(0, Ξ), Q′

�0
(ω) = Q′(0, Ξ), Q�0

(ω) = Q(0, Ξ), Q
′
�0
(ω) = Q

′
(0, Ξ),

(9)

K�1
(ω) = L−1[ 1

sϑ L[r̂� − ı̂�K�0
− ı̂�K′�0

− ŝK�0
(C�0

+ λM�0
)− ŝK′�0

(C′�0
+ λM′

�0
)− ŝ�K�0

Q̂
�0
− ŝ�K′�0

Q̂
′
�0
]],

K�1(ω) = L−1[ 1
sϑ L[r̂� − ı̂�K�0 − ı̂�K

′
�0
− ŝK�0(C�0 + λM�0)− ŝK

′
�0
(C
′
�0
+ λM

′
�0
)− ŝ�K�0 Q̂�0

− ŝ�K
′
�0

Q̂
′
�0
]].

(10)

We may find the other terms in the same way.
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As a result, the examined system’s series solution is

K�(ω) = K�0
(ω) + K�0

(ω)′ + K�1
(ω) + K�1

(ω)′ + K�2
(ω) + K�2

(ω)′ + . . . ,
K�(ω) = K�0(ω) + K�0(ω)′ + K�1(ω) + K�1(ω)′ + K�2

(ω) + K�2
(ω)′ + . . . ,

L�(ω) = L�0
(ω) + L�0

(ω)′ + L�1
(ω) + L�1

(ω)′ + L�2
(ω) + L�2

(ω)′ + . . . ,
L�(ω) = L�0(ω) + L�0(ω)′ + L�1(ω) + L�1(ω)′ + Lk2(ω) + L�2(ω)′ + . . . ,
C�(ω) = C�0

(ω) + C�0
(ω)′ + C�1

(ω) + C�1
(ω)′ + C�2

(ω) + C�2
(ω)′ + . . . ,

C�(ω) = C�0(ω) + C�0(ω)′ + C�1(ω) + C�1(ω)′ + C�2
(ω) + C�2

(ω)′ + . . . ,
M�(ω) = M�0

(ω) + M�0
(ω)′ + M�1

(ω) + M�1
(ω)′ + M�2

(ω) + M�2
(ω)′ + . . . ,

M�(ω) = M�0(ω) + M�0(ω)′ + M�1(ω) + M�1(ω)′ + M�2
(ω) + M�2

(ω)′ + ...,
E�(ω) = E�0

(ω) + E�0
(ω)′ + E�1

(ω) + E�1
(ω)′ + E�2

(ω) + E�2
(ω)′ + . . . ,

E�(ω) = E�0(ω) + E�0(ω)′ + E�1(ω) + E�1(ω)′ + E�2
(ω) + E�2

(ω)′ + . . . ,
Q

�
(ω) = Q

�0
(ω) + Q

�0
(ω)′ + Q

�1
(ω) + Q

�1
(ω)′ + Q

�2
(ω) + Q

�2
(ω)′ + . . . ,

Q�(ω) = Q�0
(ω) + Q�0

(ω)′ + Q�1
(ω) + Q�1

(ω)′ + Q
�2
(ω) + Q

�2
(ω)′ + . . .

(11)

4. Numerical Results and Discussion

We take a look at Table 1 that corresponds to the model’s parameters. Consider initial
conditions for the proposed model (3).

We used the initial conditions and applied the proposed procedure to (3):

K�0
(ω, Ξ) = 2Ξ− 1, Kh̄0(ω, Ξ) = 1− 2Ξ, K′�0

(ω, Ξ) = 2Ξ− 1, K
′
h̄0
(ω, Ξ) = 1− 2Ξ,

L�0
(ω, Ξ) = 2Ξ− 1, Lh̄0(ω, Ξ) = 1− 2Ξ, L′�0

(ω, Ξ) = 2Ξ− 1, L
′
h̄0
(ω, Ξ) = 1− 2Ξ,

C�0
(ω, Ξ) = 2Ξ− 1, Ch̄0(ω, Ξ) = 1− 2Ξ, C′�0

(ω, Ξ) = 2Ξ− 1, C
′
h̄0
(ω, Ξ) = 1− 2Ξ,

M�0
(ω, Ξ) = 2Ξ− 1, Mh̄0(ω, Ξ) = 1− 2Ξ, M′

�0
(ω, Ξ) = 2Ξ− 1, M

′
h̄0
(ω, Ξ) = 1− 2Ξ,

E�0
(ω, Ξ) = 2Ξ− 1, Eh̄0(�, Ξ) = 1− 2Ξ, E′�0

(ω, Ξ) = 2Ξ− 1, E
′
h̄0
(ω, Ξ) = 1− 2Ξ,

Q
�0
(ω, Ξ) = 2Ξ− 1, Qh̄0

(ω, Ξ) = 1− 2Ξ, Q′
�0
(ω, Ξ) = 2Ξ− 1, Q

′
h̄0
(ω, Ξ) = 1− 2Ξ,

The second term of the series solution is

K�1
(ω, Ξ) = [r̂� − ı̂�(2Ξ− 1)− ŝ(2Ξ− 1)2 − λŝ�(2Ξ− 1)2 − ŝ�(2Ξ− 1)2] ωΞ

Γ(ϑ+1) ,

K′�1
(ω, Ξ) = [r̂′� − ı̂′�(2Ξ− 1)− ŝ′(2Ξ− 1)2 − λŝ′�(2Ξ− 1)2 − ŝ′�(2Ξ− 1)2] ωΞ

Γ(ϑ+1) ,

K�1(ω, Ξ) = [r̂� − ı̂�(1− 2Ξ)− ŝ(1− 2Ξ)2 − λŝ�(1− 2Ξ)2 − ŝ�(1− 2Ξ)2] ωΞ

Γ(ϑ+1) ,

K
′
�1
(ω, Ξ) = [r̂′� − ı̂′�(1− 2Ξ)− ŝ′(1− 2Ξ)2 − λŝ′�(1− 2Ξ)2 − ŝ′�(1− 2Ξ)2] ωΞ

Γ(ϑ+1) ,

(12)

L�1
(ω, Ξ) = [ŝ�(2Ξ− 1)2 + λŝ�(2Ξ− 1)2 + ŝ�(2Ξ− 1)2 − (1− �̂)μ̂�(2Ξ− 1)− �̂�μ̂�(2Ξ− 1)−

ı̂�(2Ξ− 1)] ωΞ

Γ(ϑ+1) ,
L′�1

(ω, Ξ) = [ŝ′�(2Ξ− 1)2 + λŝ′�(2Ξ− 1)2 + ŝ′�(2Ξ− 1)2 − (1− �̂)μ̂′�(2Ξ− 1)− �̂�μ̂
′
�(2Ξ− 1)−

ı̂′�(2Ξ− 1)] ωΞ

Γ(ϑ+1) ,
L�1(ω, Ξ) = [ŝ�(1− 2Ξ)2 + λŝ�(1− 2Ξ)2 + ŝ�(1− 2Ξ)2 − (1− �̂)μ̂�(1− 2Ξ)− �̂�μ̂�(1− 2Ξ)−

ı̂�(1− 2Ξ)] ωΞ

Γ(ϑ+1) ,

L
′
�1
(ω, Ξ) = [ŝ′�(2Ξ− 1)2 + λŝ′�(2Ξ− 1)2 + ŝ′�(2Ξ− 1)2 − (1− �̂)μ̂′�(2Ξ− 1)− �̂�μ̂

′
�(1− 2Ξ)−

ı̂′�(1− 2Ξ)] ωΞ

Γ(ϑ+1) ,

(13)

C�1
(ω, Ξ) = [(1− $̂�)μ̂

′
�(2Ξ− 1)− (ϑ̂′p + ı̂�)(2Ξ− 1)] ωΞ

Γ(ϑ+1) ,

C′�1
(ω, Ξ) = [(1− $̂�)μ̂k(2Ξ− 1)− (ϑ̂p + ı̂�)(2Ξ− 1)] ωΞ

Γ(ϑ+1) ,

C�1(ω, Ξ) = [(1− $̂�)μ̂
′
�(1− 2Ξ)− (ϑ̂′p + ı̂�)(1− 2Ξ)] ωΞ

Γ(ϑ+1) ,

C
′
�1
(ω, Ξ) = [(1− $̂�)μ̂k(1− 2Ξ)− (ϑ̂p + ı̂�)(1− 2Ξ)] ωΞ

Γ(ϑ+1)

(14)
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M�1
(ω, Ξ) = [�̂�μ̂

′
�(2Ξ− 1)− (ϑ̂′� − ı̂�)(2Ξ− 1)] ωΞ

(2Ξ−1)
ωΞ

Γ(ϑ+1) ,

M′
�1
(ω, Ξ) = [�̂�μ̂

′
�(2Ξ− 1)− (ϑ̂′� − ı̂′�)(2Ξ− 1)] ωΞ

(2Ξ−1)
ωΞ

Γ(ϑ+1) ,

M�1(ω, Ξ) = [�̂�μ̂
′
�(1− 2Ξ)− (ϑ̂′� − ı̂�)(1− 2Ξ)] ωΞ

(1−2Ξ)
ωΞ

Γ(ϑ+1) ,

M
′
�1
(ω, Ξ) = [�̂�μ̂

′
�(1− 2Ξ)− (ϑ̂′� − ı̂′�)(1− 2Ξ)] ωΞ

(1−2Ξ)
ωΞ

Γ(ϑ+1) ,

(15)

E�1
(ω, Ξ) = (2Ξ− 1)[ϑ̂� + ϑ̂′� − ı̂�] ωΞ

Γ(ϑ+1) ,

E′�1
(ω, Ξ) = (2Ξ− 1)[ϑ̂′� + ϑ̂′� − ı̂′�]

ωΞ

Γ(ϑ+1) ,

E�1(ω, Ξ) = (1− 2Ξ)[ϑ̂� + ϑ̂′� − ı̂�] ωΞ

Γ(ϑ+1) ,

E
′
�1
(ω, Ξ) = (1− 2Ξ)[ϑ̂′� + ϑ̂′� − ı̂′�]

ωΞ

Γ(ϑ+1) ,

(16)

Q
�1
(ω, Ξ) = (2Ξ− 1)[ς̂� + ψ̂− �̂] ωΞ

Γ(ϑ+1) ,

Q′
�1
(ω, Ξ) = (2Ξ− 1)[ς̂′� + ψ̂′ − �̂′] ωΞ

Γ(ϑ+1) ,

Q�1
(ω, Ξ) = (1− 2Ξ)[ς̂� + ψ̂− �̂] ωΞ

Γ(ϑ+1) ,

Q
′
�1
(ω, Ξ) = (1− 2Ξ)[ς̂′� + ψ̂′ − �̂′] ωΞ

Γ(ϑ+1) ,

(17)

assume that

I1 = r̂� − ı̂�(2Ξ− 1)− ŝ(2Ξ− 1)2 − λŝ�(2Ξ− 1)2 − ŝ(2Ξ− 1)2,

I1 = r̂� − ı̂�(1− 2Ξ)− ŝ(1− 2Ξ)2 − λŝ�(1− 2Ξ)2 − ŝ�(1− 2Ξ)2,

I2 = ŝ�(2Ξ− 1)2 + λŝ�(2Ξ− 1)2 + ŝ�(2Ξ− 1)2 − (1− �̂)μ̂�(2Ξ− 1)− �̂�μ̂
′
�(2Ξ− 1)− ı̂�(2Ξ− 1)],

I2 = ŝ�(1− 2Ξ)2 + λŝ�(1− 2Ξ)2 + ŝ�(1− 2Ξ)2 − (1− �̂)μ̂�(1− 2Ξ)− �̂�μ̂
′
�(1− 2Ξ)− ı̂�(1− 2Ξ)],

I3 = [(1− �̂�)μ̂�(2Ξ− 1)− (ϑ̂p + ı̂�)(2Ξ− 1)],

I3 = [(1− �̂�)μ̂�(1− 2Ξ)− (ϑ̂p + ı̂�)(1− 2Ξ)],

I4 = �̂�μ̂
′
�(1− 2Ξ)− (ϑ̂� + ı̂�)(1− 2Ξ),

I4 = �̂�μ̂
′
�(1− 2Ξ)− (ϑ̂′� − ı̂�](1− 2Ξ),

I5 = (2Ξ− 1)[ϑ̂� + ϑ̂′� − ı̂�],

I5 = (1− 2Ξ)[ϑ̂� + ϑ̂′� − ı̂�],

I6 = (2Ξ− 1)[ς̂� + ψ̂− �̂],

I6 = (1− 2Ξ)[ς̂� + ψ̂− �̂],

I′1 = r̂′� − ı̂′�(2Ξ− 1)− ŝ′(2Ξ− 1)2 − λŝ′�(2Ξ− 1)2 − ŝ′�(2Ξ− 1)2,

I′1 = r̂′� − ı̂′�(1− 2Ξ)− ŝ′(1− 2Ξ)2 − λŝ′�(1− 2Ξ)2 − ŝ′�(1− 2Ξ)2,

I′2 = ŝ′�(2Ξ− 1)2 + λŝ′�(2Ξ− 1)2 + ŝ′�(2Ξ− 1)2 − (1− �̂′)μ̂′�(2Ξ− 1)− �̂′�μ̂
′
�(2Ξ− 1)− ı̂′�(2Ξ− 1)],

I2 = ŝ′�(1− 2Ξ)2 + λŝ′�(1− 2Ξ)2 + ŝ′�(1− 2Ξ)2 − (1− �̂)μ̂′�(1− 2Ξ)− �̂′�μ̂
′
�′(1− 2Ξ)− ı̂′�(1− 2Ξ)],

I3 = [(1− �̂′�)μ̂
′
�(2Ξ− 1)− (ϑ̂p + ı̂′�)(2Ξ− 1)],

I3 = [(1− �̂′�)μ̂
′
�(1− 2Ξ)− (ϑ̂p + ı̂′�)(1− 2Ξ)],

I4 = �̂′�μ̂
′
�(1− 2Ξ)− (ϑ̂′�′+ ı̂′�)(1− 2Ξ),

I4 = �̂′�μ̂
′
�(1− 2Ξ)− (ϑ̂′� − ı̂�](1− 2Ξ),

I5 = (2Ξ− 1)[ϑ̂′� + ϑ̂′�′ − ı̂�],

I5 = (1− 2Ξ)[ϑ̂′� + ϑ̂′� − ı̂′�],

I6 = (2Ξ− 1)[ς̂′� + ψ̂− �̂],

I6 = (1− 2Ξ)[ς̂′� + ψ̂− �̂],

The series’ third term is now underway.
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K�2
(ω, Ξ) = r̂� ωϑ

Γ(ϑ+1) − ı̂� I1
ω2ϑ

Γ(2ϑ+1) [ŝ�(2Ξ− 1)I3 + I1]
ω2ϑ

Γ(2ϑ+1) − [ŝ�(2Ξ− 1)(I6 + I1)]
ω2ϑ

Γ(2ϑ+1) ,

K�2(ω, Ξ) = r̂� ωϑ

Γ(ϑ+1) − ı̂� I1
ω2ϑ

Γ(2ϑ+1) [ŝ�(2Ξ− 1)I3 + I1]
ω2ϑ

Γ(2ϑ+1) − [ŝ�(2Ξ− 1)(I6 + I1)]
ω2ϑ

Γ(2ϑ+1) ,

L�2
(ω, Ξ) = [ŝ�(2Ξ− 1)(I3 + I1)]

ω2Ξ

Γ(2ϑ+1) + [λŝ�(2Ξ− 1)2 + ŝ�(2Ξ− 1)2

−(1− �̂)μ̂�(2Ξ− 1)− �̂�μ̂
′
�(2Ξ− 1)− ı̂�(2Ξ− 1)] ωΞ

Γ(ϑ+1) ,

L�2(ω, Ξ) = [ŝ�(1− 2Ξ)(I3 + I1)]
ω2Ξ

Γ(2ϑ+1) + [λŝ�(1− 2Ξ)2 + ŝ�(1− 2Ξ)2

−(1− �̂)μ̂�(1− 2Ξ)− �̂�μ̂
′
�(1− 2Ξ)− ı̂�(2Ξ− 1)] ωΞ

Γ(ϑ+1) ,

C�1
(ω, Ξ) = (1− $̂�)ω̂�(2Ξ− 1)− (ϑ̂p + ı̂�)(2Ξ− 1)] ωΞ

Γ(ϑ+1) ,

C�1(ω, Ξ) = (1− $̂�)μ̂�(1− 2Ξ)− (ϑ̂p + ı̂�)(1− 2Ξ)] ωΞ

Γ(ϑ+1) ,

M�1
(ω, Ξ) = [�̂�μ̂

′
�(2Ξ− 1)− (ϑ̂′� − ı̂�)]ωΞ

(
2Ξ− 1) ωΞ

Γ(ϑ+1) ,

M�1(ω, Ξ) = [�̂�μ̂
′
�(1− 2Ξ)− (ϑ̂′� − ı̂�)]ωΞ

(
1− 2Ξ) ωΞ

Γ(ϑ+1) ,

E�2
(ω, Ξ) = [ϑ̂� I3 − ϑ̂′� I4 − ı̂� I5]

ω2Ξ

Γ(2Ξ+1) ,

E�2(ω, Ξ) = [ϑ̂� I3 − ϑ̂′� I4 − ı̂� I5]
ω2Ξ

Γ(2ϑ+1) ,

Q
�2
(ω, Ξ) = [ς̂� I3 + ψ̂I4 − �̂I6]

ωΞ

Γ(ϑ+1) ,

Q�2
(ω, Ξ) = (1− 2Ξ)[ς̂� I3 + ψ̂I4 − �̂I6]

ωΞ

Γ(ϑ+1) ,

(18)

K′�2
(ω, Ξ) = r̂′�

ωϑ

Γ(ϑ+1) − ı̂′� I′1
ω2ϑ

Γ(2ϑ+1) [ŝ
′
�(2Ξ− 1)I′3 + I′1]

ω2ϑ

Γ(2ϑ+1) − [ŝ′�(2Ξ− 1)(I′6 + I′1)]
ω2ϑ

Γ(2ϑ+1) ,

K
′
�2
(ω, Ξ) = r̂′�

ωϑ

Γ(ϑ+1) − ı̂′� I′1
ω2ϑ

Γ(2ϑ+1) [ŝ
′
�(2Ξ− 1)I′3 + I′1]

ω2ϑ

Γ(2ϑ+1) − [ŝ′�(2Ξ− 1)(I′6 + I′1)]
ω2ϑ

Γ(2ϑ+1) ,

L′�2
(ω, Ξ) = [ŝ′�(2Ξ− 1)(I′3 + I′1)]

ω2Ξ

Γ(2ϑ+1) + [λŝ′�(2Ξ− 1)2 + ŝ′�(2Ξ− 1)2

−(1− �̂)μ̂′�(2Ξ− 1)− �̂′�μ̂
′
�(2Ξ− 1)− ı̂′�(2Ξ− 1)] ωΞ

Γ(ϑ+1) ,

L
′
�2
(ω, Ξ) = [ŝ′�(1− 2Ξ)(I′3 + I1)

′] ω2Ξ

Γ(2ϑ+1) + [λŝ′�(1− 2Ξ)2 + ŝ′�(1− 2Ξ)2

−(1− �̂)μ̂′�(1− 2Ξ)− �̂�μ̂
′
�(1− 2Ξ)− ı̂′�(2Ξ− 1)] ωΞ

Γ(ϑ+1) ,

C′�1
(ω, Ξ) = (1− $̂′�)ω̂

′
�(2Ξ− 1)− (ϑ̂′p + ı̂′�)(2Ξ− 1)] ωΞ

Γ(ϑ+1) ,

C
′
�1
(ω, Ξ) = (1− $̂′�)μ̂

′
�(1− 2Ξ)− (ϑ̂′p + ı̂′�)(1− 2Ξ)] ωΞ

Γ(ϑ+1) ,

M′
�1
(ω, Ξ) = [�̂′�μ̂

′
�′(2Ξ− 1)− (ϑ̂′�′ − ı̂′�)]

ωΞ

(
2Ξ− 1) ωΞ

Γ(ϑ+1) ,

M
′
�1
(ω, Ξ) = [�̂′�μ̂

′
�′(1− 2Ξ)− (ϑ̂′�′ − ı̂�)′]ωΞ

(
1− 2Ξ) ωΞ

Γ(ϑ+1) ,

E′�2
(ω, Ξ) = [ϑ̂′� I′3 − ϑ̂′�′I′4 − ı̂′� I′5]

ω2Ξ

Γ(2Ξ+1) ,

E
′
�2
(ω, Ξ) = [ϑ̂′� I′3 − ϑ̂′�′I

′
4 − ı̂′� I′5]

ω2Ξ

Γ(2ϑ+1) ,

Q′
�2
(ω, Ξ) = [ς̂′� I′3 + ψ̂′ I′4 − �̂′ I′6]

ωΞ

Γ(ϑ+1) ,

Q
′
�2
(ω, Ξ) = (1− 2Ξ)[ς̂′� I′3 + ψ̂′ I′4 − �̂′ I′6]

ωΞ

Γ(ϑ+1) .

(19)

Here, we present the computational results based on the numerical scheme discussed
above. Figures 1–6 show a comparison of approximate fuzzy and approximate normal
solutions for the considered model at various fractional orders for the given uncertainty.
Figure 1 presents the susceptible population versus days; in Figure 2, the exposed popula-
tion versus days; in Figure 3 the infected population versus days; in Figure 4, the recovered
population versus days; in Figure 5, the asymptotically infected population versus days;
and in Figure 6, the reservoir population versus days for a fuzzy and normal solution at
1.25, 1.50 and 1.75. Figure 7 shows the recovered population versus days and in Figure 8,
the asymptotically infected population versus days for a fuzzy and normal solution at 1.00,
1.25, 1.50, 1.75 and 2.00. As the susceptible class value decreases, the exposed population
grows, and the infection spreads at a different rate due to changing fractional orders. Simi-
larly, when the number of death cases rises, the recovered class expands, the asymptotically
infected class expands, and the virus population in the reservoir expands. We can see from
the pictures that fuzziness, in combination with fractional order (1, 2), provides global
dynamics to nonlinear problems where the data are uncertain.
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Figure 1. Illustration of approximate fuzzy and normal susceptible compartment solutions for three
terms at given uncertainty levels ϑ ∈ [1, 2] versus fractional order.

Figure 2. Illustration of approximate fuzzy and normal exposed compartment solutions for three
terms at given uncertainty levels ϑ ∈ [1, 2] versus fractional order.
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Figure 3. Illustration of approximate fuzzy and normal infected compartment solutions for three
terms at given uncertainty levels ϑ ∈ [1, 2] versus fractional order

Figure 4. Illustration of approximate fuzzy and normal recovered compartment solutions for three
terms at given uncertainty levels ϑ ∈ [1, 2] versus fractional order.
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Figure 5. Illustration of approximate fuzzy and normal asymptotically infected compartment solu-
tions for three terms at given uncertainty levels ϑ ∈ [1, 2] versus fractional order.

Figure 6. Illustration of approximate fuzzy and normal reservoir compartment solutions for three
terms at given uncertainty levels ϑ ∈ [1, 2] versus fractional order.
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Figure 7. Illustration of approximate fuzzy and normal recovered compartment solutions for five
terms at given uncertainty levels ϑ ∈ [1, 2] versus fractional order.

Figure 8. Illustration of approximate fuzzy and normal asymptotically infected compartment solu-
tions for five terms at given uncertainty levels ϑ ∈ [1, 2] versus fractional order.

Remark 1. According to the results, the lower bounded is a growing set-valued function, while the
upper bounded is a decreasing one, indicating that the solutions are fuzzy numbers. It is also worth
noting that under fuzzy differentiability, identical findings can be derived in general circumstances.

Remark 2. Given that stochastic and random parameters are more difficult to address, and that
uncertainty might contribute to an increase in computation costs, using fuzzy notions to model
such real-world systems may be the best option.

5. Conclusions

In this paper, we present an analytical investigation of the fractional order COVID-19
model (3) for existence–uniqueness results, as well as numerical simulations. We used the
Schauder’s fixed point theorem to prove that the solution to the fuzzy fractional-order
model of COVID-19 exists and is unique. Using the fuzzy Laplace transform and the
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Adomian decomposition approach, we established a reasonable strategy for obtaining
an approximate solution for the recommended model. We compared fuzzy and normal
results for up to three phrases to demonstrate the utility of this method. We discovered
that fuzziness combined with a fractional calculus technique yielded outstanding global
dynamics in instances where data uncertainty exists. For future research, we recommend
that readers revisit the problem for stochastic differential operators, optimal control and
sensitivity analysis. Furthermore, the provided results can be compared to simulations for
different fractional derivatives.
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Abstract: We study a class of nonlinear implicit fractional differential equations subject to nonlocal
boundary conditions expressed in terms of nonlinear integro-differential equations. Using the
Krasnosel’skii fixed-point theorem we prove, via the Kolmogorov–Riesz criteria, the existence of
solutions. The existence results are established in a specific fractional derivative Banach space and
they are illustrated by two numerical examples.
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fixed point theorems; Nemytskii operator
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1. Introduction

It is noticeable, in recent years, that the field of fractional calculus has been swept for
research by many mathematicians, due to its effectiveness in describing many physical
phenomena, see, e.g., [1–7].

A fractional derivative is a generalization of the ordinary one. Despite the emergence
of several definitions of fractional derivative, the content is one that depends entirely
on Volterra integral equations and their kernel, which facilitates the description of each
phenomenon as a temporal lag, such as rheological phenomena [8–10].

The study of differential equations is considered of primary importance in mathemat-
ics. In applications, differential equations serve as mathematical models for all natural
phenomena. Regardless of their type (ordinary, partial, or fractional), the study of differ-
ential equations is developed in three directions: existence, uniqueness, and stability of
solutions. Therefore, to investigate boundary value problems is always a central question
in mathematics [11–16].

Often, it is of central importance to know the behavior of any solution, of the equation
under study, at the boundary of the domain, because that makes it easier to find the solution.
In 2009, Ahmad and Nieto considered the following boundary value problem [17]:

CDαy(t) = f
(

t, y(t),
∫ t

0
ϕ(t, s)y(s)ds

)
, 1 < α < 2,

ay(0) + by′(0) =
∫ 1

0
q1(y(s))ds,

ay(1) + by′(1) =
∫ 1

0
q2(y(s))ds.

(1)
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Their results of existence are obtained via Krasnosel’skii fixed-point theorem in the space
of continuous functions. For that, they apply Ascoli’s theorem in order to provide the
compactness of the first part of the Krasnosel’skii operator.

The pioneering work of Ahmad and Nieto of 2009 [17] gave rise to several different
investigations. These include: inverse source problems for fractional integrodifferential
equations [18]; the study of positive solutions for singular fractional boundary value
problems with coupled integral boundary conditions [19]; the expression and properties of
Green’s function for nonlinear boundary value problems of fractional order with impulsive
differential equations [20]; existence of solutions to several kinds of differential equations
using the coincidence theory [21]; existence and uniqueness of solution for fractional
differential equations with Riemann–Liouville fractional integral boundary conditions [22];
sufficient conditions for the existence and uniqueness of solutions for a class of terminal
value problems of fractional order on an infinite interval [23]; existence of solutions, and
stability, for fractional integro-differential equations involving a general form of Hilfer
fractional derivative with respect to another function [24]; existence of solutions for a
boundary value problem involving mixed generalized fractional derivatives of Riemann–
Liouville and Caputo, supplemented with nonlocal multipoint boundary conditions [25];
existence conditions to fractional order hybrid differential equations [26]; and an existence
analysis for a nonlinear implicit fractional differential equation with integral boundary
conditions [27]. Motivated by all these existence results, we consider here a more general
multipoint fractional boundary value problem in the fractional derivative Banach space.

Let 1 < p < ∞ and 1 ≥ γ > 1
p and consider the following fractional boundary

value problem:

CDαy(t) = f
(

t, y(t),C Dγy(t)
)
+C Dα−2g(t, y(t)), 2 < α < 3,

y(0) + y′(0) =
∫ 1

0
q1(y(s))ds,

y(1) + y′(1) =
∫ 1

0
q2(y(s))ds,

y′′(0) = 0,

(2)

where CDα is the standard Caputo derivative, f : [0, 1] × R× R → R, and g : [0, 1] ×
R → R and q1, q2 : R → R are given functions such that g(t, 0)= g(0, y) = q1(0) =
q2(0) = 0 for any (t, y) ∈ [0, 1]×R. Our problem (2) generalizes (1) and finds applications
in viscoelasticity, where the fractional operators are associated with delay kernels that
make the fractional differential equations the best models for several rheological Maxwell
phenomena. In particular, for α ∈ (1, 2), we can model oscillatory processes with fractional
damping [28].

We prove existence of a solution to problem (2) in the special Banach space Eγ,p that
is known in the literature as the fractional derivative space [29]. This Banach space is
equipped with the norm

‖u‖γ,p =

(∫ T

0
|u(t)|p +

∫ T

0

∣∣∣CDγ
0 u(t)

∣∣∣p) 1
p
. (3)

The paper is organized as follows. In Section 2, we recall some useful definitions and
lemmas to prove our main results. The original contributions are then given in Section 3.
The main result is Theorem 1, which establishes the existence of solutions to the fractional
boundary value problem (2) using Krasnosel’skii fixed point theorem. Two illustrative
examples are given. We end with Section 4, discussing the obtained existence result.

2. Preliminaries

For the convenience of the reader, and to facilitate the analysis of problem (2), we
begin by recalling the necessary background from the theory of fractional calculus [30,31].
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Definition 1. The Riemann–Liouville fractional integral of order α > 0 of a function f :
(0,+∞)→ R is given by

Iα
0 f (t) =

1
Γ(α)

∫ t

0
(t− s)α−1 f (s)ds.

Definition 2. The Caputo fractional derivative of order α > 0 of a function f : (0,+∞)→ R is
given by

CDα
0 f (t) =

1
Γ(n− α)

∫ t

0

f (n)(s)

(t− s)α−n+1 ds = In−α
0 f (n)(t),

where n = [α] + 1, with [α] denoting the integer part of α.

Lemma 1 (See [17]). Let α > 0. Then, the fractional differential equation CDα
0+u(t) = 0 has

u(t) = c0 + c1t + c2t2 + · · ·+ cn−1tn−1, ci ∈ R, i = 1, 2, . . . , n− 1,

as solution.

Definition 3. A map f : [0, 1]×R×R→ R is said to be Carathéodory if

(a) t → f (t, u; v) is measurable for each u, v ∈ R;
(b) (u, v)→ f (t, u; v) is continuous for almost all t ∈ [0, 1].

Definition 4. Let J be a measurable subset of R and f : J ×Rd1 → Rd2 satisfies the Carathéodory
condition. By a generalized Nemytskii operator we mean the mapping Nf taking a (measurable)
vector function u =

(
u1, . . . , ud1

)
to the function Nf u(t) = f (t, u(t)), t ∈ J.

The following lemma is concerned with the continuity of the operator Nf with d1 = 2
and d2 = 1.

Lemma 2 (See [32]). Consider the same data of Definition 4. Assume there exists w ∈ L1([0, 1])
with 1 ≤ p < ∞ and a constant c > 0 such that | f (t, u, v)| ≤ w(t) + c

(
|u|p + |v|p

)
for almost

all t ∈ [0, 1] and u, v ∈ R. Then, the Nemytskii operator

Nf u(t) = f (t, u(t)), u = (u1, u2) ∈ Lp(0, 1)× Lp(0, 1), t ∈ [0, 1] a.e.,

is continuous from Lp([0, 1])× Lp([0, 1]) to L1(0, 1).

Lemma 3 (See [33]). Let F be a bounded set in Lp([0, 1]) with 1 ≤ p < ∞. Assume that

lim
|h|→0

‖τh f − f ‖p = 0 uniformly on F .

Then, F is relatively compact in Lp([0, 1]).

For any 1 ≤ p < ∞, we denote

‖u‖Lp [0,T] :=
(∫ T

0
|u(t)|p

) 1
p
, ‖u‖∞ := max

t∈[0,T]
|u(t)|.

Now, we give the definition and some properties of Eγ,p. For more details about the
following lemmas, see [29,34] and references therein.
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Definition 5. Let 0 < γ ≤ 1 and 1 < p < ∞. The fractional derivative space Eγ,p is defined by
the closure of C∞([0, T]) with respect to the norm

‖u‖γ,p =

(∫ T

0
|u(t)|p +

∫ T

0

∣∣∣CDγ
0 u(t)

∣∣∣p) 1
p
. (4)

Lemma 4 (See [29,34]). Let 0 < γ ≤ 1 and 1 < p < ∞. The fractional derivative space Eγ,p is a
reflexive and separable Banach space.

Lemma 5 (See [29,34]). Let 0 < γ ≤ 1 and 1 < p < ∞. For all u ∈ Eγ,p, we have

‖u‖Lp ≤ Tα

Γ(γ + 1)

∥∥∥CDγ
0 u
∥∥∥

Lp
. (5)

Moreover, if γ > 1
p and 1

p + 1
q = 1, then

‖u‖∞ ≤
Tα− 1

p

Γ(γ)((γ− 1)q + 1)
1
q

∥∥∥CDγ
0 u
∥∥∥

Lp
. (6)

According to the inequality (5), we can also consider the space Eγ,p with respect to the
equivalent norm

‖u‖γ,p =
∥∥∥CDγ

0 u
∥∥∥

Lp
=

(∫ T

0

∣∣∣CDγ
0 u(t)

∣∣∣p) 1
p
, u ∈ Eγ,p.

3. Main Results

We begin by considering a linear problem and obtain its solution in terms of a
Green function.

Lemma 6. Assume h, k ∈ C([0, 1]), k(0) = 0 and α ∈ (2, 3). Then, the solution to the boundary
value problem

CDαy(t) = h(t) +C Dα−2k(t), t ∈ (0, 1),

y′′(0) = 0,

y(0) + y′(0) =
∫ 1

0
η1(s)ds,

y(1) + y′(1) =
∫ 1

0
η2(s)ds,

(7)

is given by

y(t) =
1∫

0

G(t, s)h(s)ds +
∫ 1

0
H(t, s)k(s)ds + (2− t)

∫ 1

0
η1(s)ds + (t− 1)

∫ 1

0
η2(s)ds,

where

G(t, s) =

⎧⎪⎨⎪⎩
(t−s)α−1+(1−t)(1−s)α−1

Γ(α) + (1−t)(1−s)α−2

Γ(α−1) , 0 ≤ s ≤ t ≤ 1,

(1−t)(1−s)α−1

Γ(α) + (1−t)(1−s)α−2

Γ(α−1) , 0 ≤ t ≤ s ≤ 1,
(8)

and

H(t, s) =

⎧⎨⎩ (t− s) + (1− t)(2− s), 0 ≤ s ≤ t ≤ 1,

(1− t)(2− s), 0 ≤ t ≤ s ≤ 1.
(9)
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Proof. Let y be a solution of problem (7). By Lemma 1, we have

y(t) = c0 + c1t + c2t2 +
1

Γ(α)

∫ t

0
(t− s)α−1h(s)ds + I2

0 k(t).

Taking the conditions (7) into account, it follows that

c2 = 0,

y(0) + y′(0) = c0 + c1 =
∫ 1

0
η1(s)ds,

and

y(1) + y′(1) = c0 + 2c1 +
1

Γ(α)

∫ 1

0
(1− s)α−1h(s)ds +

∫ 1

0
(1− s)k(s)ds

+
1

Γ(α− 1)

∫ 1

0
(1− s)α−2h(s)ds +

∫ 1

0
k(s)ds

=
∫ 1

0
η2(s)ds,

which implies

c0 =
1

Γ(α)

∫ 1

0
(1− s)α−1h(s)ds +

1
Γ(α− 1)

∫ 1

0
(1− s)α−2h(s)ds

+
∫ 1

0
(2− s)k(s)ds + 2

∫ 1

0
η1(s)ds−

∫ 1

0
η2(s)ds,

and

c1 = − 1
Γ(α)

∫ 1

0
(1− s)α−1h(s)ds− 1

Γ(α− 1)

∫ 1

0
(1− s)α−2h(s)ds

−
∫ 1

0
(2− s)k(s)ds +

∫ 1

0
η2(s)ds−

∫ 1

0
η1(s)ds.

Hence, the solution of problem (7) is

y(t) =
∫ t

0

(
(t− s)α−1 + (1− t)(1− s)α−1

Γ(α)
+

(1− t)(1− s)α−2

Γ(α− 1)

)
h(s)ds

+
∫ 1

t

(
(1− t)(1− s)α−1

Γ(α)
+

(1− t)(1− s)α−2

Γ(α− 1)

)
h(s)ds

+
∫ t

0
((t− s) + (1− t)(2− s))k(s)ds +

∫ 1

t
(1− t)(2− s)k(s)ds

+ (2− t)
∫ 1

0
η1(s)ds + (t− 1)

∫ 1

0
η2(s)ds

=
∫ 1

0
G(t, s)h(s)ds +

∫ 1

0
H(t, s)k(s)ds

+ (2− t)
∫ 1

0
η1(s)ds + (t− 1)

∫ 1

0
η2(s)ds.

The proof is complete.

Lemma 7. Functions G, H, ∂γ

∂t G and ∂γ

∂t H are continuous on [0, 1] × [0, 1] and satisfy for all
t, s ∈ [0, 1]:

1. |G(t, s)| ≤ 3
Γ(α−1) , |H(t, s)| ≤ 3.
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2.
∣∣∣ ∂γ

∂t G(t, s)
∣∣∣ ≤ Γ(α)

Γ(α−γ)
+ 2

Γ(2−γ)Γ(α−1) ,
∣∣∣ ∂γ

∂t H(t, s)
∣∣∣ ≤ 3

Γ(2−γ)
.

Proof. We have
CDγ

0 (1− t) = I1−γ
0 (1− t)′ = − 1

Γ(2− γ)
t1−γ, (10)

and
∂γ

∂t
(t− s)α−1 = I1−γ

0
∂

∂t
(t− s)α−1 = (α− 1)I1−γ

0 (t− s)α−2.

Thus, for 0 ≤ s ≤ t ≤ 1, we get ∂γ

∂t (t− s)α−1 ≥ 0 and

∂γ

∂t
(t− s)α−1 ≤C Dγ

0 tα−1 =
Γ(α)

Γ(α− γ)
tα−γ−1. (11)

On the other hand, we have Γ(α− 1) ≤ Γ(α) for 2 ≤ α ≤ 3. Now, we give the bound
of functions |G(t, s)| and

∣∣∣ ∂γ

∂t G(t, s)
∣∣∣. From the definition of function G and (10) and (11),

we obtain:

• For 0 ≤ s ≤ t ≤ 1,

|G(t, s)| = (t−s)α−1+(1−t)(1−s)α−1

Γ(α) + (1−t)(1−s)α−2

Γ(α−1)

≤ (1−s)α−1(1+(1−t))
Γ(α) + (1−t)(1−s)α−2

Γ(α−1)

≤ 1+(1−t)
Γ(α) + (1−t)

Γ(α−1)
≤ 3

Γ(α−1) ,

and ∣∣∣ ∂γ

∂t G(t, s)
∣∣∣ ≤

∣∣∣ Γ(α)
Γ(α−γ)

tα−γ−1
∣∣∣+ ∣∣∣∣ t1−γ

Γ(2−γ)

(
(1−s)α−1

Γ(α) + (1−s)α−2

Γ(α−1)

)∣∣∣∣
≤ Γ(α)

Γ(α−γ)
+ 1

Γ(2−γ)

(
1

Γ(α) +
1

Γ(α−1)

)
≤ Γ(α)

Γ(α−γ)
+ 2

Γ(2−γ)Γ(α−1) .

• For 0 ≤ t ≤ s ≤ 1,

|G(t, s)| = (1−t)(1−s)α−1

Γ(α) + (1−t)(1−s)α−2

Γ(α−1)

≤ (1−t)
Γ(α) + (1−t)

Γ(α−1)
≤ 2

Γ(α−1) ,

and ∣∣∣ ∂γ

∂t G(t, s)
∣∣∣ =

∣∣∣∣− t1−γ

Γ(2−γ)

(
(1−s)α−1

Γ(α) + (1−s)α−2

Γ(α−1)

)∣∣∣∣
≤ 1

Γ(2−γ)

(
1

Γ(α) +
1

Γ(α−1)

)
≤ 2

Γ(2−γ)Γ(α−1) .

By using the same above calculation, we obtain the estimation of |H(t, s)| and
∣∣∣ ∂γ

∂t H(t, s)
∣∣∣.

The proof is complete.

In the sequel, we denote

Gγ(t, s) :=
∂γ

∂t
G(t, s), t, s ∈ [0, 1]× [0, 1].

Moreover, we also use the following notations: G∗ := maxt,s∈[0,1]×[0,1]|G(t, s)| and

G∗γ := max
t,s∈[0,1]×[0,1]

|Gγ(t, s)|.

114



Axioms 2022, 11, 295

Theorem 1. Assume that the following four hypotheses hold:

(H1) f : [0, 1]×R×R→ R satisfies the Carathéodory condition.
(H2) There exist w ∈ L1(0, 1) and c > 0 such that

| f (t, u, v)| ≤ w(t) + c
(
|u|p + |v|p

)
for t ∈ (0, 1) and u, v ∈ R. (12)

(H3) There exist two strictly positive constants k1 and k2 and a function ϕ1 ∈ Lq((0, 1),R+),
1
p + 1

q = 1, such that for all t ∈ [0, 1] and x, y ∈ R, we have

|g(t, x)− g(t, y)| ≤ ϕ1(t)|x− y|,
|q1(x)− q1(y)| ≤ k1|x− y|,
|q2(x)− q2(y)| ≤ k2|x− y|.

(H4) There exists a real number R > 0 such that

R
[
3‖ϕ1‖q + k1 + k2

]
Γ(2− γ)Γ(1 + γ)

+ G∗γ

(
‖w‖1 + c

(
1 +

(
1

Γ(γ + 1)

)p)
Rp
)
≤ R. (13)

Then, if
3‖ϕ1‖q + k1 + k2

Γ(2− γ)Γ(1 + γ)
< 1, (14)

the boundary value problem (2) has a solution in Eγ,p.

Proof. We transform problem (2) into a fixed-point problem. Define two operators F, L :
Eγ,p → Eγ,p by

Fy(t) =
∫ 1

0
G(t, s) f (s, y(s), Dγy(s))ds,

and

Ly(t) =
∫ 1

0
H(t, s)g(s, y(s))ds + (2− t)

∫ 1

0
q1(y(s))ds + (t− 1)

∫ 1

0
q2(y(s))ds.

Then, y is a solution of problem (2) if, and only if, y is a fixed point of F + L. We define the
set BR as follows:

BR := {u ∈ Eγ,p, ‖u‖Eγ,p ≤ R},

where R is the same constant defined in (H3). It is clear that BR is convex, closed, and a
bounded subset of Eγ,p. We shall show that F, G satisfy the assumptions of Krasnosel’skii
fixed-point theorem. The proof is given in several steps.

(i) We prove that F is continuous. Let (yn)n∈N be a sequence such that yn → y in Eγ,p.
From (12) and Lemma 2, and for each t ∈ [0, 1], we obtain∣∣∣(CDγ

0 Fyn

)
(t)−

(
CDγ

0 Fy
)
(t)
∣∣∣

≤
∫ 1

0
|Gγ(t, s)| | f (s, yn(s), Dγyn(s))− f (s, y(s), Dγy(s))|ds

≤ G∗γ
∥∥∥Nf yn − Nf y

∥∥∥
1
.

Applying the Lp norm, we obtain that ‖Fyn − Fy‖Eγ,p → 0 when yn → y inEγ,p. Thus,
the operator F is continuous.
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(ii) Now, we prove that Fx + Ly ∈ BR for x, y ∈ BR. Let x, y ∈ BR, t ∈ (0, 1). In view of
hypothesis (H3), we obtain∣∣∣CDγ

0 Fy(t)
∣∣∣ ≤ ∫ 1

0
|Gγ(t, s)|| f (s, y(s), Dγy(s))|ds

≤ G∗γ

(
‖w‖1 + c

(
‖y‖p

p +
∥∥∥CDγ

0 y
∥∥∥p

p

))
≤ G∗γ

(
‖w‖1 + c

(
1 +

(
1

Γ(γ + 1)

)p)
Rp
)

.

Applying the Lp norm, we obtain that

‖Fy‖Eγ,p ≤ G∗γ

(
‖w‖1 + c

(
1 +

(
1

Γ(γ + 1)

)p)
Rp
)

. (15)

Also, ∣∣∣CDγ
0 L(x)(t)

∣∣∣ ≤ 3
Γ(2− γ)

∫ 1

0
|g(s, x(s))|ds

+
1

Γ(2− γ)

∫ 1

0
|q1(x(s))|ds +

1
Γ(2− γ)

∫ 1

0
|q2(x(s))|ds

≤ 3
Γ(2− γ)

∫ 1

0
ϕ1(s)|x(s)|ds +

1
Γ(2− γ)

∫ 1

0
k1|x(s)|ds

+
1

Γ(2− γ)

∫ 1

0
k2|x(s)|ds.

Applying again the Lp norm, we obtain from Holder’s inequality that

‖L(x)‖Eγ,p ≤ 3
Γ(2− γ)

(
‖ϕ1‖q‖x‖p

)
+

k1

Γ(2− γ)
‖x‖p +

k2

Γ(2− γ)
‖x‖p.

In view of (5), we obtain

‖L(x)‖Eγ,p ≤
[

3‖ϕ1‖q

Γ(2− γ)Γ(1 + γ)
+

k1

Γ(2− γ)Γ(1 + γ)
+

k2

Γ(2− γ)Γ(1 + γ)

]
‖x‖Eγ,p .

Then,

‖L(x)‖Eγ,p ≤
R
[
3‖ϕ1‖q + k1 + k2

]
Γ(2− γ)Γ(1 + γ)

. (16)

From (13), (15) and (16), we conclude that Fx + Ly ∈ BR whenever x, y ∈ BR.

(iii) Let us prove that F(BR) = {F(u) : u ∈ BR} is relatively compact in Eγ,p. Let t ∈ (0, 1)
and h > 0, where t + h ≤ 1, and let u ∈ DR. From (12), we obtain that∣∣∣CDγ

0 Fy(t + h)−C Dγ
0 Fy(t)

∣∣∣
≤
∫ 1

0
|Gγ(t + h, s)− Gγ(t, s)|| f (s, y(s), Dγy(s))|ds

≤
∫ 1

0
|Gγ(t + h, s)− Gγ(t, s)|

[
w(s) + c

(
|y(s)|p + |Dγy(s)|p

)]
ds

≤ sup
t∈[0,1]

[
sup

s∈[0,1]
|Gγ(t + h, s)− Gγ(t, s)|

](
‖w‖1 + c

(
1 +

(
1

Γ(γ + 1)

)p)
Rp
)

.
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Therefore,

‖Fu(·+ h)− Fu(·)‖Eγ,p(
‖w‖1 + c

(
1 +

(
1

Γ(γ+1)

)p)
Rp
) ≤ sup

t∈[0,1]

[
sup

s∈[0,1]
|Gγ(t + h, s)− Gγ(t, s)|

]
. (17)

Then, ‖Fu(·+ h)− Fu(·)‖Eγ,p → 0 as h → 0 for any u ∈ BR, since Gγ is a continuous
function on [0, 1]× [0, 1]. From Lemma 3, we conclude that F : BR → BR is compact.

(iv) Finally, we prove that L is a contraction. Let x, y ∈ DR and t ∈ (0, 1). Then,

∣∣∣CDγ
0 L(x)(t)−C Dγ

0 L(y)(t)
∣∣∣ ≤ 3

Γ(2− γ)

∫ 1

0
|g(s, x(s))− g(s, y(s))|ds

+
1

Γ(2− γ)

∫ 1

0
|q1(x(s))− q1(x(s))|ds

+
1

Γ(2− γ)

∫ 1

0
|q2(x(s))− q2(x(s))|ds

≤ 3
Γ(2− γ)

∫ 1

0
ϕ1(s)|x(s)− y(s)|ds

+
k1

Γ(2− γ)

∫ 1

0
|x(s)− x(s)|ds

+
k2

Γ(2− γ)

∫ 1

0
|x(s)− x(s)|ds.

Applying the Lp norm and Holder’s inequality, we obtain that

‖L(x)− L(y)‖Eγ,p ≤ 3
Γ(2− γ)

(
‖ϕ1‖q‖x− y‖p

)
+

k1

Γ(2− γ)

(
‖x− y‖p

)
+

k2

Γ(2− γ)

(
‖x− y‖p

)
.

Then, from (5), we obtain

‖L(x)− L(y)‖Eγ,p ≤
3‖ϕ1‖q + k1 + k2

Γ(2− γ)Γ(1 + γ)
‖x− y‖Eγ,p .

From (14), the operator L is a contraction.

As a consequence of (i)–(iv), we conclude that F : BR → BR is continuous and compact.
As a consequence of Krasnosel’skii fixed point theorem, we deduce that F + G has a fixed
point y ∈ BR ⊂ Eγ,p, which is a solution to problem (2).

We now illustrate our Theorem 1 with two examples.

Example 1. Consider the fractional boundary value problem (2) with

α = 2.5, γ = 0.5, p = 3, q =
3
2

,

f (t, x, y) =
exp(−t)

5
− 1

164π
arctan

(
x3 + y3

)
,

g(t, x) =
1

10
t

2
3 x,

q1(x) = q2(x) =
1

20
x,
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which we denote by (P1). Hypotheses (H1) and (H2) are satisfied for

w(t) =
exp(−t)

5
∈ L1(0, 1), c =

1
164π

, ϕ1(t) =
t

2
3

10
, and k1 = k2 =

1
20

.

Moreover, we have

[
3‖ϕ1‖q + k1 + k2

]
Γ(2− γ)Γ(1 + γ)

=

[
3

10

(
1
2

) 2
3
+ 1

10

]
(
Γ
( 3

2
))2 
 0.368 < 1.

If we choose R = 2, then we obtain

R
[
3‖ϕ1‖q + k1 + k2

]
Γ(2− γ)Γ(1 + γ)

+ G∗γ

(
‖w‖1 + c

(
1 +

(
1

Γ(γ + 1)

)p)
Rp
)
− R

≤
2
[

3
10

(
1
2

) 2
3
+ 1

10

]
(
Γ
( 3

2
))2 + 4.047

⎛⎝1
5
+

1
164π

⎛⎝1 +

(
1

Γ
( 3

2
))3

⎞⎠23

⎞⎠− 2


 −0.301.

Since all conditions of our Theorem 1 are satisfied, we conclude that the fractional boundary value
problem (P1) has a solution in Eγ,p.

Example 2. Consider the fractional boundary value problem (2) with

α = 2.7, γ = 0.7, p = 4, q =
4
3

,

f (t, x, y) =
1

10
sin(t) +

1
200

cos
(

x4 + y4
)

,

g(t, x) =
1

9π
t

3
4 arctan(x),

q1(x) = q2(x) =
1

10
sin(x),

which we denote by (P2). Hypotheses (H1) and (H2) are satisfied for

w(t) =
1
10

sin(t) ∈ L1(0, 1), c =
1

200
, ϕ1(t) =

t
3
4

9π
and k1 = k2 =

1
10

.

Moreover, we have

[
3‖ϕ1‖q + k1 + k2

]
Γ(2− γ)Γ(1 + γ)

=

[
1

3π

(
1
2

) 3
4
+ 1

5

]
Γ(1.3)Γ(1.7)


 0.323 < 1.

If we choose R = 2, then we obtain

R
[
3‖ϕ1‖q + k1 + k2

]
Γ(2− γ)Γ(1 + γ)

+ G∗γ

(
‖w‖1 + c

(
1 +

(
1

Γ(γ + 1)

)p)
Rp
)
− R

≤
2
[

1
3π

(
1
2

) 3
4
+ 1

5

]
Γ(1.3)Γ(1.7)

+ 3.9995

(
1
10

+
1

200

(
1 +

(
1

Γ(1.7)

)4
)

24

)
− 2


 −0.163.
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Since all conditions of our Theorem 1 are satisfied, we conclude that the fractional boundary value
problem (P2) has a solution in Eγ,p.

4. Discussion

The celebrated existence result of Ahmad and Nieto [17] for problem (1) is obtained
via Krasnosel’skii fixed-point theorem in the space of continuous functions. For that, they
needed to apply Ascoli’s theorem in order to provide the compactness of the first part of
the Krasnosel’skii operator. Here, we proved existence for the more general problem (2) in
the fractional derivative Banach space Eγ,p, equipped with the norm (3). From norm (3), it
is natural to deal with a subspace of Lp × Lp. Since Ascoli’s theorem is limited to the space
of continuous functions for the compactness, we had to make use of a different approach
to ensure existence of solution in the fractional derivative space Eγ,p. Our tool was the
Kolmogorov–Riesz compactness theorem, which turned out to be a powerful tool to address
the problem. To the best of our knowledge, the use of the Kolmogorov–Riesz compactness
theorem to prove existence results for boundary value problems involving nonlinear
integrodifferential equations of fractional order with integral boundary conditions is a
completely new approach. In this direction, we are only aware of the work [35], where
a necessary and sufficient condition of pre-compactness in variable exponent Lebesgue
spaces is established and, as an application, the existence of solutions to a fractional Cauchy
problem is obtained in the Lebesgue space of variable exponent. As future work, we intend
to generalize our existence result to the variable-order case [36].

Author Contributions: Conceptualization, D.B., A.C. and D.F.M.T.; validation, D.B., A.C. and
D.F.M.T.; formal analysis, D.B., A.C. and D.F.M.T.; investigation, D.B., A.C. and D.F.M.T.; writing—
original draft preparation, D. B., A.C. and D.F.M.T.; writing—review and editing, D.B., A.C. and
D.F.M.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research was partially funded by FCT, grant number UIDB/04106/2020 (CIDMA).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Acknowledgments: The authors are grateful to the referees for their comments and remarks.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Dhar, B.; Gupta, P.K.; Sajid, M. Solution of a dynamical memory effect COVID-19 infection system with leaky vaccination efficacy
by non-singular kernel fractional derivatives. Math. Biosci. Eng. 2022, 19, 4341–4367. [CrossRef] [PubMed]

2. Kumar, A.; Malik, M.; Sajid, M.; Baleanu, D. Existence of local and global solutions to fractional order fuzzy delay differential
equation with non-instantaneous impulses. AIMS Math. 2022, 7, 2348–2369. [CrossRef]

3. Failla, G.; Zingales, M. Advanced materials modelling via fractionalcalculus: Challenges and perspectives. Philos. Trans. R. Soc.
2020, A378, 20200050. [CrossRef] [PubMed]

4. Fang, C.; Shen, X.; He, K.; Yin, C.; Li, S.; Chen, X.; Sun, H. Application of fractional calculus methods to viscoelastic behaviours of
solid propellants. Philos. Trans. R Soc. A 2020, 378, 20190291. [CrossRef]

5. Wei, E.; Hu, B.; Li, J.; Cui, K.; Zhang, Z.; Cui, A.; Ma, L. Nonlinear viscoelastic-plastic creep model of rock based on fractional
calculus. Adv. Civ. Eng. 2022, 2022, 3063972. [CrossRef]

6. Marin, M.; Othman, M.I.; Vlase, S.; Codarcea-Munteanu, L. Thermoelasticity of initially stressed bodies with voids: A domain of
influence. Symmetry 2019, 11, 573. [CrossRef]

7. Ndaïrou, F.; Area, I.; Nieto, J.J.; Silva, C.J.; Torres, D.F.M. Fractional model of COVID-19 applied to Galicia, Spain and Portugal.
Chaos Solitons Fractals 2021, 144, 110652. [CrossRef]

8. Mainardi, F.; Spada, G. Creep, relaxation and viscosity properties for basic fractional models in rheology. Eur. Phys. J. Spec. Top.
2011, 193, 133–160. [CrossRef]

9. Chidouh, A.; Guezane-Lakoud, A.; Bebbouchi, R.; Bouaricha, A.; Torres, D.F.M. Linear and Nonlinear Fractional Voigt Models. In
Theory and Applications of Non-Integer Order Systems; Springer: Berlin/Heidelberg, Germany, 2017; pp. 157–167. [CrossRef]

10. Mainardi, F.; Gorenflo, R. Time-fractional derivatives in relaxation processes: A tutorial survey. Fract. Calc. Appl. Anal. 2007,
10, 269–308.

119



Axioms 2022, 11, 295

11. Keten, A.; Yavuz, M.; Baleanu, D. Nonlocal Cauchy problem via a fractional operator involving power kernel in Banach spaces.
Fractal Fract. 2019, 3, 27. [CrossRef]

12. Wang, Y.; Liang, S.; Wang, Q. Existence results for fractional differential equations with integral and multi-point boundary
conditions. Bound. Value Probl. 2018, 2018, 7129796. [CrossRef]

13. Ahmad, B. Existence results for multi-point nonlinear boundary value problems for fractional differential equations. Mem. Differ.
Equ. Math. Phys. 2010, 49, 83–94.

14. Area, I.; Cabada, A.; Cid, J.A.; Franco, D.; Liz, E.; Pouso, R.L.; Rodríguez-López, R. (Eds.) Nonlinear Analysis and Boundary Value
Problems; Springer: Cham, Switzerland, 2019. [CrossRef]

15. Behrndt, J.; Hassi, S.; de Snoo, H. Boundary Value Problems, Weyl Functions, and Differential Operators; Monographs in Mathematics;
Birkhäuser/Springer: Cham, Switzerland, 2020; Volume 108. [CrossRef]

16. Kusraev, A.G.; Totieva, Z.D. (Eds.) Operator Theory and Differential Equations; Trends in Mathematics; Birkhäuser/Springer: Cham,
Switzerland, 2021. [CrossRef]

17. Ahmad, B.; Nieto, J.J. Existence results for nonlinear boundary value problems of fractional integrodifferential equations with
integral boundary conditions. Bound. Value Probl. 2009, 2009, 708576. [CrossRef]

18. Wu, B.; Wu, S. Existence and uniqueness of an inverse source problem for a fractional integrodifferential equation. Comput. Math.
Appl. 2014, 68, 1123–1136. [CrossRef]

19. Wang, Y.; Liu, L.; Zhang, X.; Wu, Y. Positive solutions for (n− 1, 1)-type singular fractional differential system with coupled
integral boundary conditions. Abstr. Appl. Anal. 2014, 2014, 142391. [CrossRef]

20. Zhou, J.; Feng, M. Green’s function for Sturm-Liouville-type boundary value problems of fractional order impulsive differential
equations and its application. Bound. Value Probl. 2014, 2014, 69. [CrossRef]

21. Ariza-Ruiz, D.; Garcia-Falset, J. Existence and uniqueness of solution to several kinds of differential equations using the
coincidence theory. Taiwan. J. Math. 2015, 19, 1661–1692. [CrossRef]

22. Abbas, M.I. Existence and uniqueness results for fractional differential equations with Riemann-Liouville fractional integral
boundary conditions. Abstr. Appl. Anal. 2015, 2015, 290674. [CrossRef]

23. Hussain Shah, S.A.; Rehman, M.U. A note on terminal value problems for fractional differential equations on infinite interval.
Appl. Math. Lett. 2016, 52, 118–125. [CrossRef]

24. Abdo, M.S.; Panchal, S.K. Fractional integro-differential equations involving ψ-Hilfer fractional derivative. Adv. Appl. Math.
Mech. 2019, 11, 338–359. [CrossRef]

25. Shammakh, W.; Alzumi, H.Z.; AlQahtani, B.A. On more general fractional differential equations involving mixed generalized
derivatives with nonlocal multipoint and generalized fractional integral boundary conditions. J. Funct. Spaces 2020, 2020, 3102142.
[CrossRef]

26. Shah, A.; Khan, R.A.; Khan, A.; Khan, H.; Gómez-Aguilar, J.F. Investigation of a system of nonlinear fractional order hybrid
differential equations under usual boundary conditions for existence of solution. Math. Methods Appl. Sci. 2021, 44, 1628–1638.
[CrossRef]

27. Ali, A.; Shah, K.; Abdeljawad, T.; Mahariq, I.; Rashdan, M. Mathematical analysis of nonlinear integral boundary value problem
of proportional delay implicit fractional differential equations with impulsive conditions. Bound. Value Probl. 2021, 2021, 7.
[CrossRef]

28. Bagley, R.L.; Torvik, P.J. On the appearence of the fractional derivative in the behavior of real materials. J. Appl. Mech. 1984,
51, 294–298. [CrossRef]

29. Jiao, F.; Zhou, Y. Existence of solutions for a class of fractional boundary value problems via critical point theory. Comput. Math.
Appl. 2011, 62, 1181–1199. [CrossRef]

30. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics
Studies; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006; Volume 204.

31. Podlubny, I. Fractional Differential Equations; Mathematics in Science and Engineering; Academic Press, Inc.: San Diego, CA, USA,
1999; Volume 198.

32. Precup, R. Methods in Nonlinear Integral Equations; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002. [CrossRef]
33. Brezis, H. Functional Analysis, Sobolev Spaces and Partial Differential Equations; Universitext; Springer: New York, NY, USA, 2011.
34. Nyamoradi, N.; Rodríguez-López, R. On boundary value problems for impulsive fractional differential equations. Appl. Math.

Comput. 2015, 271, 874–892. [CrossRef]
35. Dong, B.; Fu, Z.; Xu, J. Riesz-Kolmogorov theorem in variable exponent Lebesgue spaces and its applications to Riemann-Liouville

fractional differential equations. Sci. China Math. 2018, 61, 1807–1824. [CrossRef]
36. Almeida, R.; Tavares, D.; Torres, D.F.M. The Variable-Order Fractional Calculus of Variations; Springer Briefs in Applied Sciences and

Technology; Springer: Cham, Switzerland, 2019. [CrossRef]

120



Citation: Zine, H.; Lotfi, E.M.; Torres,

D.F.M.; Yousfi, N. Weighted

Generalized Fractional Integration by

Parts and the Euler–Lagrange

Equation. Axioms 2022, 11, 178.

https://doi.org/10.3390/

axioms11040178

Academic Editor: Chris Goodrich

Received: 21 March 2022

Accepted: 13 April 2022

Published: 15 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Weighted Generalized Fractional Integration by Parts and the
Euler–Lagrange Equation

Houssine Zine 1,†, El Mehdi Lotfi 2,†, Delfim F. M. Torres 1,*,†, and Noura Yousfi 2,†

1 Center for Research and Development in Mathematics and Applications (CIDMA), Department of
Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal; zinehoussine@ua.pt

2 Laboratory of Analysis, Modeling and Simulation (LAMS), Faculty of Sciences Ben M’sik, Hassan II
University of Casablanca, P.O. Box 7955, Sidi Othman, Casablanca 20000, Morocco;
lotfiimehdi@gmail.com (E.M.L.); nourayousfi.fsb@gmail.com (N.Y.)

* Correspondence: delfim@ua.pt
† These authors contributed equally to this work.

Abstract: Integration by parts plays a crucial role in mathematical analysis, e.g., during the proof
of necessary optimality conditions in the calculus of variations and optimal control. Motivated
by this fact, we construct a new, right-weighted generalized fractional derivative in the Riemann–
Liouville sense with its associated integral for the recently introduced weighted generalized fractional
derivative with Mittag–Leffler kernel. We rewrite these operators equivalently in effective series,
proving some interesting properties relating to the left and the right fractional operators. These
results permit us to obtain the corresponding integration by parts formula. With the new general
formula, we obtain an appropriate weighted Euler–Lagrange equation for dynamic optimization,
extending those existing in the literature. We end with the application of an optimization variational
problem to the quantum mechanics framework.

Keywords: weighted generalized fractional calculus; integration by parts formula; Euler–Lagrange
equation; quantum mechanics; calculus of variations

MSC: 26A33; 49K05

1. Introduction

In the last decade, fractional calculus played an important role in the theoretical
study of dynamical systems by showing significant results in many natural fields and
engineering domains [1,2]. For this reason, mathematicians are paying more attention to
the generalization of several important formulas in the integral theory of Mathematical
Analysis, namely, the Newton–Leibniz formula, the Green formula, and the Gauss and
Stokes formulas [3,4]. Some are central tools that enable mathematicians to extend other
theories, such as the integration by parts formula, Taylor’s formula, the Euler–Lagrange
equation, Grönwall’s inequality, Lyapunov theorems and LaSalle’s invariance principle [5,6].

Often, memory effects are fractionally modeled with Riemann–Liouville and Caputo
derivatives [7,8]. However, the fact that the Mittag–Leffler function is a generalization of the
exponential function naturally gives rise to new definitions for fractional operators [9,10].
In 2020, Hattaf [11] has proposed a new left-weighted generalized fractional derivative
for both Caputo and Riemann–Liouville senses and their associated integral operator,
see also [12]. Motivated by their applications in mechanics, where the introduction of
the correct operator is needed [8,13], here, we introduce the right-weighted generalized
fractional derivative and its associated integral operator, proving their main properties and,
in particular, their integration by parts formula.

It is worth emphasizing that integration by parts is of great interest in integral calculus
and mathematical analysis. For example, it represents a strong tool to develop the calculus
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of variations through the so-called Euler–Lagrange equation, which is the central result of
dynamic optimization [8]. In recent years, the development of some theoretical practices
using fractional derivatives has drawn the attention of several researchers. In 2012, Almeida,
Malinowska and Torres [14] reviewed some recent results of fractional variational calculus
and discussed the necessary optimality conditions of Euler–Lagrange type for functionals
with a Lagrangian containing left and right Caputo derivatives. In 2017, Abdeljawad and
Baleanu obtained an adequate integration by parts formula and the corresponding Euler–
Lagrange equations using the nonlocal fractional derivative with Mittag–Leffler kernel.
In 2019, Abdeljawad et al. [15] developed a fractional integration by parts formula for
Riemann–Liouville, Liouville–Caputo, Caputo–Fabrizio and Atangana–Baleanu fractional
derivatives. In 2020, Zine and Torres [16] introduced a stochastic fractional calculus,
and obtained a stochastic fractional Euler–Lagrange equation. Motivated by these works,
particularly [14–17], and with the help of our weighted generalized fundamental integration
by parts formula, we extend the available Euler–Lagrange equations.

The main purpose of our work is to compute a new integration by parts formula
for the weighted generalized fractional derivative and to discuss the associated necessary
optimality conditions of Euler–Lagrange type. To do this, we organize the paper as follows.
In Section 2, we recall some necessary results from the literature. We proceed with Section 3,
introducing the right-weighted generalized fractional derivative and its associated integral
and studying their well-posedness. Integration by parts is investigated in Section 4, fol-
lowed by Section 5, where the weighted generalized fractional Euler–Lagrange equation is
rigorously proved. We end with Section 6, illustrating the obtained theoretical results with
their application in the quantum mechanics framework.

2. Preliminaries

In this section, we present some definitions and properties from the fractional calculus
literature, which will help us to prove our main results. In the text, f ∈ H1(a, b) is a sufficiently
smooth function on [a, b] with a, b ∈ R. In addition, we adopt the following notations:

φ(α) :=
1− α

B(α)
, ψ(α) :=

α

B(α)
,

where 0 ≤ α < 1 and B(α) is a normalization function obeying B(0) = B(1) = 1. In the
paper, we denote

μα :=
α

1− α
.

Lemma 1 (See [18]). Let α > 0, p ≥ 1, q ≥ 1 and
1
p
+

1
q
≤ 1 + α (p �= 1 and q �= 1 in the case

1
p
+

1
q
= 1 + α). If f ∈ Lp(a, b) and g ∈ Lq(a, b), then

∫ b

a
f (x) RL

a,1 Iαg(x)dx =
∫ b

a
g(x) RL Iα

b,1 f (x)dx,

where RL
a,1 Iα is the left standard Riemann–Liouville fractional integral of order α given by

RL
a,1 Iα f (x) =

1
Γ(α)

∫ x

a
(x− s)α−1 f (s)ds, x > a, (1)

and RL Iα
b,1 is the right standard Riemann–Liouville fractional integral of order α given by

RL Iα
b,1 f (x) =

1
Γ(α)

∫ b

x
(s− x)α−1 f (s)ds, x < b. (2)
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Definition 1 (See [11]). Let 0 ≤ α < 1 and β > 0. The left-weighted generalized fractional
derivative of order α of function f , in the Riemann–Liouville sense, is defined by

R
a,wDα,β f (x) =

1
φ(α)

1
w(x)

d
dx

∫ x

a
(w f )(s)Eβ

[
−μα(x− s)β

]
ds, (3)

where Eβ denotes the Mittag–Leffler function of parameter β defined by

Eβ(z) =
∞

∑
j=0

zj

Γ(βj + 1)
, z ∈ C, (4)

and w ∈ C1([a, b]) with w, w′ > 0. The corresponding fractional integral is defined by

a,w Iα,β f (x) = φ(α) f (x) + ψ(α) RL
a,w Iβ f (x), (5)

where RL
a,w Iβ is the standard weighted Riemann–Liouville fractional integral of order β given by

RL
a,w Iβ f (x) =

1
Γ(β)

1
w(x)

∫ x

a
(x− s)β−1w(s) f (s)ds, x > a. (6)

3. Well-Posedness of the Right-Weighted Fractional Operators

We denote the right-weighted generalized fractional derivative of order α in the
Riemann–Liouville sense by RDα,β

b,w, and we define this so that the following identity occurs:

Q
(

R
a,wDα,β f

)
(x) =

(
RDα,β

b,wQ f
)
(x)

with Q being the reflection operator, that is, (Q f )(x) = f (a + b− x) with function f defined
on the interval [a, b].

Definition 2 (right-weighted generalized fractional derivative). Let 0 ≤ α < 1 and β > 0.
The right-weighted generalized fractional derivative of order α of function f , in the Riemann–
Liouville sense, is defined by

RDα,β
b,w f (x) =

−1
φ(α)

1
w(x)

d
dx

∫ b

x
(w f )(s)Eβ

[
−μα(s− x)β

]
ds, (7)

where w ∈ C1([a, b]) with w, w′ > 0.

To properly define the new right-weighted fractional integral, we need to solve the
equation RDα,β

b,w f (x) = u(x). We have

RDα,β
b,w f (x) = RDα,β

b,wQQ f (x) = Q R
a,wDα,βQ f (x) = u(t).

Then,
R
a,wDα,βQ f (x) = Qu(x)

and thus,

Q f (x) = φ(α)Qu(x) + ψ(α) RL
a,w IβQu(x) = φ(α)Qu(x) + ψ(α) QRL Iβ

b,wu(x),

where RL Iβ
b,w is the right-weighted standard Riemann–Liouville fractional integral of order

β given by
RL Iβ

b,w f (x) =
1

Γ(β)

1
w(x)

∫ b

x
(s− x)β−1w(s) f (s)ds, x < b. (8)
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Applying Q to both sides of (8), we obtain

f (t) = φ(α)u(x) + ψ(α) RL Iβ
b,wu(x).

Moreover,

a,w Iα,βQ f (x) = φ(α)Q f (x) + ψ(α) RL
a,w IβQ f (x)

= φ(α)Q f (x) + ψ(α) QRL Iβ
b,w f (x)

= Q
[
φ(α) f (x) + ψ(α) RL Iβ

b,w f (x)
]
.

We are now in the position to introduce the concept of the right-weighted generalized
fractional integral.

Definition 3 (right-weighted generalized fractional integral). Let 0 ≤ α < 1 and β > 0. The
right-weighted generalized fractional integral of order α of function f is given by

Iα,β
b,w f (x) = φ(α) f (x) + ψ(α) RL Iβ

b,w f (x), (9)

where w ∈ C1([a, b]) with w, w′ > 0.

Our next result provides a series representation to the left- and right-weighted gener-
alized fractional derivatives.

Theorem 1. Let 0 ≤ α < 1 and β > 0. The left- and right-weighted generalized fractional
derivatives of order α of function f can be written, respectively, as

R
a,wDα,β f (x) =

1
φ(α)

∞

∑
j=0

(−μα)
j RL

a,w Iβj f (x) (10)

and
RDα,β

b,w f (x) =
−1

φ(α)

∞

∑
j=0

(−μα)
j RL

b,w Iβj f (x). (11)

Proof. The Mittag–Leffler function Eβ(x) is an entire series of x. Since the series (4) lo-
cally and uniformly converges in the whole complex plane, the left-weighted generalized
fractional derivative can be rewritten as

R
a,wDα,β f (x) =

1
φ(α)

1
w(x)

d
dx

∫ x

a
(w f )(s)

∞

∑
j=0

(−μα)
j (x− s)βj

Γ(βj + 1)
ds

=
1

φ(α)

1
w(x)

∞

∑
j=0

(−μα)
j 1
Γ(βj + 1)

d
dx

∫ x

a
(w f )(s)(x− s)βjds

=
1

φ(α)

1
w(x)

∞

∑
j=0

(−μα)
j 1
Γ(βj)

∫ x

a
(w f )(s)(x− s)βj−1ds

=
1

φ(α)

∞

∑
j=0

(−μα)
j( RL

a,w Iβj f (x)
)
.

From Definition 2, and using the same steps that were used before, one can easily
rewrite the new right-weighted generalized fractional derivative as equality (11). The proof
of (10) is similar.
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Theorem 2. Let 0 ≤ α < 1 and β > 0. The left- and right-weighted generalized fractional
derivative and their associated integrals satisfy the following formulas:

a,w Iα,β(R
a,wDα,β f

)
(x) =R

a,w Dα,β(
a,w Iα,β f

)
(x) = f (x) (12)

and
Iα,β
b,w
(RDα,β

b,w f
)
(x) =R Dα,β

b,w
(

α,β Ib,w f
)
(x) = − f (x). (13)

Proof. We note that

a,w Iα,β(R
a,wDα,β f

)
(x) = φ(α)

(R
a,wDα,β f

)
(x) + ψ(α)RL

a,w Iβ
(R

a,wDα,β f
)
(x)

=
∞

∑
j=0

(−μα)
j RL

a,w Iβj f (x) + μα
RL
a,w Iβ

( ∞

∑
j=0

(−μα)
j RL

a,w Iβj f
)
(x)

=
∞

∑
j=0

(−μα)
j RL

a,w Iβj f (x)−
∞

∑
j=0

(−μα)
j+1 RL

a,w Iβ+βj f (x)

= f (t).

Then,

R
a,wDα,β(

a,w Iα,β f
)
(x) =

1
φ(α)

∞

∑
j=0

(−μα)
j RL

a,w Iβj(
a,w Iα,β f

)
(x),

=
1

φ(α)

∞

∑
j=0

(−μα)
j RL

a,w Iβj
[

φ(α) f (x) + ψ(α) RL
a,w Iβ f (x)

]

=
∞

∑
j=0

(−μα)
j RL

a,w Iβj f (x) + μα

∞

∑
j=0

(−μα)
j RL

a,w Iβj+β f (x)

=
∞

∑
j=0

(−μα)
j RL

a,w Iβj f (x)−
∞

∑
j=0

(−μα)
j+1 RL

a,w Iβj+β f (x)

= f (x)

and equality (12) holds true. The proof of equality (13) is similar.

4. Integration by Parts

Our formulas of integration by parts are proved in suitable function spaces.

Definition 4 (See [19]). For α > 0, β > 0 and 1 ≤ p ≤ ∞, the following function spaces
are defined:

a,w Iα,β(Lp) :=
{

f : f = a,w Iα,β(η), η ∈ Lp(a, b)
}

and
Iα,β
b,w(Lp) :=

{
f : f = Iα,β

b,w(θ), θ ∈ Lp(a, b)
}

.

Theorem 3 (integration by parts without the weighted function). Let 0 ≤ α < 1, β > 0,

p ≥ 1, q ≥ 1 and
1
p
+

1
q
≤ 1 + α (p �= 1 and q �= 1 in the case

1
p
+

1
q
= 1 + α).

• If f ∈ Lp(a, b) and g ∈ Lq(a, b), then

∫ b

a
f (x)(a,1 Iα,βg)(x)dx =

∫ b

a
g(x)(Iα,β

b,1 f )(x)dx. (14)
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• If f ∈ Iα,β
b,w(Lp) and g ∈ a,w Iα,β(Lq), then

∫ b

a
f (x)(R

a,1Dα,βg)(x)dx =
∫ b

a
g(x)(RDα,β

b,1 f )(x)dx. (15)

Proof. First, we prove equality (14). Since,

∫ b

a
f (x)(a,1 Iα,βg)(x)dx =

∫ b

a
f (x)

[
φ(α)g(x) + ψ(α) RL

a,1 Iβg(x)
]

= φ(α)
∫ b

a
f (x)g(x)dx + ψ(α)

∫ b

a
f (x) RL

a,1 Iβg(x)dx,

it follows from Lemma 1 that∫ b

a
f (x)(a,1 Iα,βg)(x)dx = φ(α)

∫ b

a
f (x)g(x)dx + ψ(α)

∫ b

a
g(x) RL Iβ

b,1 f (x)dx

=
∫ b

a
g(x)

[
φ(α) f (x) + ψ(α) RL Iβ

b,1 f (x)
]

=
∫ b

a
g(x)(Iα,β

b,1 f )(x)dx.

Now, we prove (15):

∫ b

a
f (x)(R

a,1Dα,βg)(x)dx =
∫ b

a
Iα,β
b,1 θ(x)

(
R
a,1Dα,β( a,1 Iα,βη)

)
(x)dx

=
∫ b

a
η(x)Iα,β

b,1 θ(x)dx
(
from Theorem 2

)
=
∫ b

a
θ(x) a,1 Iα,βη(x)dx

(
from equality (14)

)
=
∫ b

a
g(x)( RDα,β

b,1 f )(x)dx
(
from Theorem 2

)
.

The proof is complete.

Theorem 4 (weighted generalized integration by parts). Let 0 ≤ α < 1, β > 0, p ≥ 1,

q ≥ 1 and
1
p
+

1
q
≤ 1 + α (p �= 1 and q �= 1 in the case

1
p
+

1
q
= 1 + α). If f ∈ Lp(a, b) and

g ∈ Lq(a, b), then

∫ b

a
f (x)(a,w Iα,βg)(x)dx =

∫ b

a
w(x)2g(x)

(
Iα,β
b,w

(
f

w2

))
(x)dx, (16)∫ b

a
f (x)( R

a,wDα,βg)(x)dx =
∫ b

a
w(x)2g(x)

(
RDα,β

b,w

(
f

w2

))
(x)dx. (17)

Proof. We have∫ b

a
f (x)(a,w Iα,βg)(x)dx =

∫ b

a
w(x)

f (x)
w(x)

(
a,w Iα,β

( gw
w

))
(x)dx

=
∫ b

a

f (x)
w(x)

(
a,1 Iα,β(gw)

)
(x)dx

=
∫ b

a
w(x)g(x)

(
Iα,β
b,1

(
f
w

))
(x)dx

(
from Theorem 3

)
=
∫ b

a
g(x)w(x)2

(
Iα,β
b,w

(
f

w2

))
(x)dx.
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Therefore, equality (16) is true. Similarly, we have

∫ b

a
f (x)(R

a,wDα,βg)(x)dx =
∫ b

a
w(x)

f (x)
w(x)

(
R
a,wDα,β

( gw
w

))
(x)dx

=
∫ b

a

f (x)
w(x)

(
R
a,1Dα,β(gw)

)
(x)dx

=
∫ b

a
w(x)g(x)

(
Dα,β

b,1

(
f
w

))
(x)dx

(
from Theorem 3

)
=
∫ b

a
g(x)w(x)2

(
Dα,β

b,w

(
f

w2

))
(x)dx

and equality (17) holds.

Remark 1. When w(t) = 1 and α = β, then we can obtain from our Theorem 4 the integration by
parts formula [17] associated with Atangana–Baleanu derivatives:

∫ b

a
f (x)

(
AB
a Iαg

)
(x)dx =

∫ b

a
g(x)

(
AB Iα

b f
)
(x)dx,∫ b

a
f (x)

(
ABR
a Dαg

)
(x)dx =

∫ b

a
g(x)

(
ABRDα

b f
)
(x)dx.

From (16) and (17), we obtain the following consequence.

Corollary 1. Let 0 ≤ α < 1, β > 0, p ≥ 1, q ≥ 1 and
1
p
+

1
q
≤ 1 + α (p �= 1 and q �= 1 in the

case
1
p
+

1
q
= 1 + α). If f ∈ Lp(a, b) and g ∈ Lq(a, b), then

∫ b

a
f (x)

(
Iα,β
b,wg

)
(x)dx =

∫ b

a
w(x)2g(x)

(
a,w Iα,β

(
f

w2

))
(x)dx,∫ b

a
f (x)

(
RDα,β

b,wg
)
(x)dx =

∫ b

a
w(x)2g(x)

(
R
a,wDα,β

(
f

w2

))
(x)dx.

For a symmetric view of weighted generalized integration by parts, we propose the
following corollary of Theorem 4.

Corollary 2. Let 0 ≤ α < 1, β > 0, p ≥ 1, q ≥ 1 and
1
p
+

1
q
≤ 1 + α (p �= 1 and q �= 1 in the

case
1
p
+

1
q
= 1 + α). If f ∈ Lp(a, b) and g ∈ Lq(a, b), then

∫ b

a
w(x) f (x)

(
a,w Iα,β g

w

)
(x)dx =

∫ b

a
w(x)g(x)

(
Iα,β
b,w

f
w

)
(x)dx, (18)∫ b

a
w(x) f (x)

(
R
a,wDα,β g

w

)
(x)dx =

∫ b

a
w(x)g(x)

(
RDα,β

b,w
f
w

)
(x)dx. (19)

5. The Weighted Generalized Fractional Euler–Lagrange Equation

Let us denote by AC(I → R) the set of absolutely continuous functions X, where
I = [a, b], such that the left and right Riemann–Liouville-weighted generalized fractional
derivatives of X exist, endowed with the norm

‖X‖ = sup
t∈I

(
| X(t) | + | RL

a,wDα,βX(t) | + |RL Dα,β
b,wX(t) |

)
.
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Let L ∈ C1(I ×R×R×R→ R) and consider the following minimization problem:

J[X] =

(∫ b

a
L
(

t, X(t),RL Dα,β
a,wX(t),RL Dα,β

b,wX(t)
)

dt
)
−→ min (20)

subject to the boundary conditions

X(a) = Xa, X(b) = Xb. (21)

Under appropriate general conditions, one can prove that the minimum of J[·] ex-
ists [20]. Here, we are interested in showing the usefulness of our Theorem 4 to prove the
necessary optimality conditions for problem (20) and (21). With the help of weighted gen-
eralized fractional integration by parts, we obtain the following Euler–Lagrange necessary
optimality condition for the fundamental weighted generalized fractional problem of the
calculus of variations (20) and (21).

Theorem 5 (the weighted generalized fractional Euler–Lagrange equation). If L ∈ C1(I ×
R×R×R→ R) and X ∈ AC([a, b]→ R) is a minimizer of (20) subject to the fixed end points
(21); then, X satisfies the following weighted generalized fractional Euler–Lagrange equation:

∂2L + w(t)2 RDα,β
b,w

(
∂3L

w(t)2

)
+ w(t)2 R

a,wDα,β
(

∂4L
w(t)2

)
= 0,

where ∂iL denotes the partial derivative of the Lagrangian L with respect to its ith argument
evaluated at

(
t, X(t),RL Dα,β

a,wX(t),RL Dα,β
b,wX(t)

)
.

Proof. Let J[X] =
∫ b

a
L
(

t, X(t),Ra,w Dα,βX(t),R Dα,β
b,wX(t)

)
dt and assume that X∗ is the opti-

mal solution of problem (20) and (21). Set

X = X∗ + εη,

where η, X ∈ AC([a, b]→ R) and ε is a small, real parameter. By linearity of the weighted
generalized fractional derivative, we obtain

R
a,wDα,βX(t) = R

a,wDα,βX∗ + ε
(

R
a,wDα,βη(t)

)
and

RDα,β
b,wX(t) = RDα,β

b,wX∗ + ε
(

RDα,β
b,wη(t)

)
.

Now, consider the following function:

J(ε) =
∫ b

a
L
(

t, X∗(t) + εη(t), R
a,wDα,βX∗(t) + ε

(
R
a,wDα,βη(t)

)
,

RDα,β
b,wX∗(t) + ε

(
RDα,β

b,wη(t)
))

dt.

Fermat’s theorem asserts that
d
dε

J(ε)
∣∣∣∣
ε=0

= 0 and we deduce, by the chain rule, that

∫ b

a

(
∂2L · η + ∂3L ·Ra,w Dα,βη + ∂4L ·R Dα,β

b,wη
)

dt = 0.

Using Theorem 4 of weighted fractional integration by parts, we obtain that

∫ b

a

(
∂2L · η + w(t)2 · η · RDα,β

b,w

(
∂3L

w(t)2

)
+ w(t)2 · η · R

a,wDα,β
(

∂4L
w(t)2

))
dt = 0.
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The result follows by the fundamental theorem of the calculus of variations.

6. An Application

Let us consider the weighted generalized fractional variational problem (20) and (21) with

L
(

t, X(t),Ra,w Dα,βX(t),R Dα,β
b,wX(t)

)
=

1
2

(
1
2

m |Ra,w Dα,βX(t) |2 +
1
2

m |R Dα,β
b,wX(t) |2

)
−V(X(t)),

where X is an absolutely continuous function on [a, b] and V maps C1(I → R) to R.
Note that

1
2

(
1
2

m |Ra,w Dα,βX(t) |2 +
1
2

m |R Dα,β
b,wX(t) |2

)
can be viewed as a weighted generalized kinetic energy in the quantum mechanics frame-
work. By applying our Theorem 5 to the current variational problem, we obtain that

1
2

m

⎡⎣w(t)2 RDα,β
b,w

(
R
a,wDα,βX(t)

w(t)2

)
+ w(t)2 R

a,wDα,β

⎛⎝ RDα,β
b,wX(t)

w(t)2

⎞⎠⎤⎦ = V′(X(t)), (22)

where V′ is the derivative of the potential energy of the system. We observe that relation (22)
generalizes Newton’s dynamical law mẌ(t) = V′(X(t)).

7. Conclusions

In this work, some definitions and properties of a recent class of fractional operators
defined by general integral operators, with and without singular kernels, are recalled. A
new definition of a right-weighted generalized fractional operator in the Riemann–Liouville
sense is then posed, serving as a prerequisite for the establishment of a new weighted
generalized integration by parts formula, which shows a duality relation with the existing
left weighted generalized fractional operator in the Riemann–Liouville–Hattaf sense [11].
In the context of the fractional calculus of variations, we have investigated weighted
generalized Euler–Lagrange equations, which were then used to produce an effective
application in the quantum mechanics setting, after a proper definition of kinetic energy.
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Abstract: Since the beginning of the COVID-19 pandemic, vaccination has been the main strategy to
contain the spread of the coronavirus. However, with the administration of many types of vaccines
and the constant mutation of viruses, the issue of how effective these vaccines are in protecting
the population is raised. This work aimed to present a mathematical model that investigates the
imperfect vaccine and finds the additional measures needed to help reduce the burden of disease. We
determine theR0 threshold of disease spread and use stability analysis to determine the condition
that will result in disease eradication. We also fitted our model to COVID-19 data from Morocco to
estimate the parameters of the model. The sensitivity analysis of the basic reproduction number, with
respect to the parameters of the model, is simulated for the four possible scenarios of the disease
progress. Finally, we investigate the optimal containment measures that could be implemented with
vaccination. To illustrate our results, we perform the numerical simulations of optimal control.

Keywords: COVID-19; vaccination; basic reproduction number; stability; Lyapunov function;
optimal control

1. Introduction

Since the beginning of the ongoing COVID-19 pandemic, the world has been racing
to develop a vaccination that helps protect the populations around the world and bring
human life to a normal status. This race to find a vaccine was not only challenged by the
fast spread of the disease, but also the high rate of mutation of COVID-19. As a result, we
witness many vaccination types with different biotechnological approaches and different
efficacy [1]. These efficacies are based on clinical trials that might have some limitations
as their samples do not necessarily cover a wide population from different parts of the
world. These facts make the question of the efficacy of vaccines legitimate and need to
be investigated.

This problem was investigated using mathematical modeling to study the possible
measure that needed to be implemented to reduce the impact of an imperfect vaccine.

The mathematical model of the imperfect vaccination of infectious disease was started
by the work of Arino et al. [2]. Many papers have followed up on this work, looking into
the various spreads of imperfect vaccination for various diseases. For example, the work
of Abu-Raddad [3] studied the mathematical model of a possible HIV vaccination where
the authors investigated the impact of the defectiveness of vaccination on the progress of
the disease. Liu et al. [4] studied a general SIR with an added vaccination compartment
and imperfect vaccination. This study showed how vaccination reduced the infected
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population but could not eradicate the infection. In fact, the eradication required an
additional necessary condition. If vaccination efficacy improves, this condition may be
alleviated. A mathematical model with the imperfect vaccination of birds in the case of
avian influenza was studied in [5]. This model considered age-since-vaccination structure
and symptomatically infected birds. This study showed that the only way eradicate
the disease was by the full coverage of the bird population or by full efficacy. A time
delay model of imperfect vaccination was studied in [6] with a possible loss of immunity.
The study showed the existence of the critical vaccination coverage needed to eliminate the
infection. In the case of imperfect vaccination, the authors showed that a critical proportion
of the population needed vaccination. Another delay model with distributed delay [7] and
the delay model with a generalized incidence function were studied in [8].

Regarding the ongoing pandemic, there are some studies that have investigated imper-
fect vaccination in the USA ([9,10]) and the UK [11] but without finding optimal measures
that could help contain the pandemic, as the use of an imperfect vaccine cannot achieve the
low endemicity of COVID-19. On the other hand, many studies (see [12–22]) used optimal
control to find the optimal way to allocate vaccination and the best strategy to vaccinate
the population, depending on the age or comorbidity of the population. The goal of this
paper was to investigate a mathematical model of the imperfect vaccination of COVID-19.
The aim was to study the dynamics of this model and present the possible control measures
that need to be implemented in order to reduce the impact of the vaccine’s imperfection.

To our knowledge, our work is the only one to date to have studied the potential
dynamics of imperfect vaccination and the optimal use of other public health measures
that help to reduce the effect of administering imperfect vaccination. The only work that
combined these two problems was used in the case of possible malaria vaccination [23].

The structure of this paper is summarized as follows. In Section 2, the mathematical
model is formed and the existence conditions of the system are verified. Section 3 takes
into account the basic reproduction number. Sections 4 and 5 analyze the local and global
stability at the disease-free equilibrium point, respectively. The optimal control problem of
vaccination and additional measures to reduce the disease spread are presented in Section 6.
In Section 7, we fit our model to data from Morocco to estimate the parameters of the
model. We also discussed four possible scenarios of the dynamic of the model via the
elasticity of the basic reproduction number and we give the illustration of the optimal
solution via numerical simulations. The conclusion and discussion of the results are given
in Section 8.

2. The Mathematical Model

Nine epidemiological compartments were recognized in the population: susceptible
(S); vaccinated (V); exposed (E) (asymptomatic); infected with mild symptoms (I); quaran-
tined in a home with mild symptoms (Q); hospitalized (H); quarantined in a hospital with
complications (C) (i.e., isolated in a hospital with breathing assistance); and mortality due
to disease (D):
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dS
dt

= −β1
SE
N − β2

SI
N − λ1S

dV
dt

= λ1S− β3
VE
N − β4

VI
N − λ2V

dE
dt

= β1
SE
N + β2

SI
N + β3

VE
N + β4

VI
N − θE

dI
dt

= θE− (γ1 + γ2 + γ3)I

dQ
dt

= γ1 I − (σ1 + δ1)Q

dH
dt

= γ2 I + σ1Q− (σ2 + δ2)H

dC
dt

= γ3 I + σ2H − (μ + δ3)C

dR
dt

= δ1Q + δ2H + δ3C + λ2V

dD
dt

= μC

(1)

In this model, we assume that vaccination does not provide complete protection
against COVID-19. As a result, the rate of being vaccinated is λ1, and λ2 is the rate of
vaccinated persons who have recovered and developed immunity. We suppose that each
infectious sub-population (E and I) infected the healthy population at varying densities,
where βi is the infection density per capita with i = 1, 2. In reality, our major assumption
about vaccination’s imperfection is that some vaccinated persons may only receive partial
protection and may become sick if they are exposed to multiple infections. The imperfection
can be due to the mutation of the virus. In fact, when people are vaccinated, they tend to
relax their guard and take fewer protection measures again the virus. θ is the proportion of
infected individuals. Some people show mild symptoms with the per capita rate γ1 and can
stay at home with treatment; whilst others develop hard symptoms and must be monitored
in the hospital with the per capita rate γ2 and another critical condition that requires
penetrating breathing with per capita rate γ3. The parameter δi, with i = 1, 2, 3, represents
the recovery rates of quarantined, hospitalized and critical infected persons (respectively).
Average quarantine and hospitalization times are 1/σ1 and 1/σ2, respectively. Finally, μ
represents the mortality rate due to disease. The flow chart of the model is given in the
Figure 1. When the nine equations in (1) are combined together, the total population size N
remains constant.

2.1. Positivity and Boundedness

This part is dedicated to establishing the positivity and boundedness of the model (1)
solutions under non-negative conditions.

Theorem 1. If S(0) ≥ 0, V(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0 Q(0) ≥ 0, H(0) ≥ 0, C(0) ≥ 0,
R(0) ≥ 0 and D(0) ≥ 0, then the solution S(t), V(t), E(t), I(t) Q(t), H(t), C(t), R(t), D(t) of
system (1) is non-negative and the solutions exist in Ω for all t ≥ 0.

The proof of positivity follows the standard argument, as can be seen, for example,
in [24].

The solution of the model (1) exists in the positively invariant region:

Ω = {(S(t), V(t), E(t), I(t), Q(t), H(t), C(t), R(t), D(t)) ∈ R9
+

: S(t) + V(t) + E(t) + I(t) + Q(t) + C(t) + R(t) + D(t) = N ≤ N(0)}.

Since all the parameters and sub populations of the system are non-negative and N(t)
= constant ∀t ≥ 0.
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Straightforwardly, we obtain S(t) ≤ N(t) ≤ N(0) for all t ≥ 0. The other variables
yielded the same result. As a result, the overall population is finitely upper bounded.
For system (1), the region Ω is positively invariant.

Figure 1. Flow chart of the model.

2.2. Existence and Uniqueness of Solutions

Theorem 2. The system (1) that fulfills a given initial condition (S(0), V(0), E(0), I(0) Q(0),
H(0), C(0), R(0), D(0)) has a unique solution.

Proof. The system (1) may be expressed as follows:

Ẋ = AX + B(X) (2)

where X(t) = [S(t), V(t), E(t), I(t), Q(t), H(t), C(t), R(t), D(t)]�

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−λ1 0 0 0 0 0 0 0 0
λ1 −λ2 0 0 0 0 0 0 0
0 0 −θ 0 0 0 0 0 0
0 0 θ −γ1 − γ2 − γ3 0 0 0 0 0
0 0 0 γ1 −σ1 − δ1 0 0 0 0
0 0 0 γ2 σ1 −σ2 − δ2 0 0 0
0 0 0 γ3 0 σ2 −μ− δ3 0 0
0 λ2 0 0 δ1 δ2 δ3 0 0
0 0 0 0 0 0 μ 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3)
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B(X) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−β1
SE
N − β2

SI
N

−β3
VE
N − β4

VI
N

β1
SE
N + β2

SI
N + β3

VE
N + β4

VI
N

0
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Equation (2) is a non-linear system that can be written as

Σ(X) = AX + B(X).

We have:

|B(X1)− B(X2)| ≤ 2β1
N |S2E2 − S1E1|+ 2β2

N |S2 I2 − S1 I1|+ 2β3
N |V2E2 −V1E1|+ 2β4

N |V2 I2 −V1 I1|
≤ 2β1

N |S1(E2 − E1) + E2(S2 − S1)|+ 2β2
N |S1(I2 − I1) + I2(S2 − S1)|+

2β3
N |V1(E2 − E1) + E2(V2 −V1)|+ 2β4

N |V1(I2 − I1) + I2(V2 −V1)|
≤ 2β1(|E2 − E1|+ |S2 − S1|) + 2β2(|I2 − I1|+ |S2 − S1|)+

2β3(|E2 − E1|+ |V2 −V1|) + 2β4(|I2 − I1|+ |V2 −V1|)
≤ 2(β1 + β3)|E2 − E1|+ 2(β1 + β2)|S2 − S1|+ 2(β2 + β4)|I2 − I1|+ 2(β3 + β4)|V2 −V1|
≤ 4M(|S2 − S1|+ |V2 −V1|+ |E2 − E1|+ |I2 − I1|), where M = max{β1, β2, β3, β4}
≤ 4M‖X2 − X1‖

then, we obtain |Σ(X1)− Σ(X2)| ≤ M‖X1 − X2‖, where M = max{M, ‖A‖} < ∞. As a
result, the function Σ(t) is uniformly Lipschitz continuous. The restriction on S(t) ≥ 0,
V(t) ≥ 0, E(t) ≥ 0, I(t) ≥ 0, Q(t) ≥ 0, H(t) ≥ 0, C(t) ≥ 0, R(t) ≥ 0, and D(t) ≥ 0. Thus,
a solution to the system (2) exists [25].

3. The Basic Reproduction Number

The basic reproduction numberR0 is the average number of persons in a susceptible
population that one person infected with COVID-19 is expected to infect, and it is calculated
using the next generation matrix approach [26]. The disease compartments are thus E and
I. Therefore, the all-time disease-free equilibrium point E0 = (N0, 0, 0, 0, 0, 0, 0).

F =

(
β1

S∗E∗
N + β2

S∗ I∗
N + β3

V∗E∗
N + β4

V∗ I∗
N

0

)
, V = V− − V+ =

(
θ E

(γ1 + γ2 + γ3)I∗ − θE∗

)
The Jacobian matrices ofF and V computed at E0 are provided by F and V, respectively,

such that:

F =

(
β1 β2
0 0

)
, V =

(
θ 0
−θ (γ1 + γ2 + γ3)

)
The inverse of V is given by

V−1 =

(
1
θ 0
1

(γ1+γ2+γ3)
1

(γ1+γ2+γ3)

)
and FV−1 =

(
β1
θ + β2

γ1+γ2+γ3

β2
γ1+γ2+γ3

0 0

)

Therefore, the domainant eigenvalue of FV−1:

R0 = ρ(FV−1) =
β1

θ
+

β2

(γ1 + γ2 + γ3)
(4)
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4. Local Stability Analysis at Disease-Free Equilibrium (DFE) E0

The DFE’s local stability is investigated as follows.
The Jacobian matrix of the system (1) at E0 = (N, 0, 0, 0, 0, 0, 0) is:

J∗(E0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−λ1 0 −β1 −β2 0 0 0
λ1 −λ2 0 0 0 0 0
0 0 β1 − θ β2 0 0 0
0 0 θ −(γ1 + γ2 + γ3) 0 0 0
0 0 0 γ1 −(σ1 + δ1) 0 0
0 0 0 γ2 σ1 −(σ2 + δ2) 0
0 0 0 γ3 0 σ2 −(μ + δ3)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (5)

The eigenvalues of the Jacobian matrix J∗(E0) are the roots of the following character-
istic equation:

(−λ1 − λ)(−λ2 − λ)(−σ1 − δ1 − λ)(−σ2 − δ2 − λ)(−μ− δ3 − λ)(λ2 + a1λ + a0)= 0 (6)

where:
a0 = (θ − δ1)(γ1 + γ2 + γ3)− θβ2
a1 = (θ − δ1) + (γ1 + γ2 + γ3)

(7)

The roots of (λ2 + a1λ + a0) = 0 are given by

λ1 =
β1−θ−(γ1+γ2+γ3)−

√
(β1−θ+γ1+γ2+γ3)2+4θβ2
2 =

α1−γ−
√

(α1+γ)2+4θβ2
2

λ2 =
β1−θ−(γ1+γ2+γ3)+

√
(β1−θ+γ1+γ2+γ3)2+4θβ2
2 =

α1−γ+
√

(α1+γ)2+4θβ2
2

with α1 = β1 − θ and γ = (γ1 + γ2 + γ3).
It is straightforward that if α1 − γ < 0⇒ R∗ = β1

θ+γ < 1 and λ1 < 0.
In the case for λ2, we write the equation:

1−R0 =
−α1γ− θβ2

γθ
(8)

From the previous Equation (8), ifR0 < 1, then:

α1γ + θβ2 < 0
⇒ 4α1γ + 4θβ2 < 0
⇒ 2α1γ + 4θβ2 < −2α1γ
⇒ α2

1 + 2α1γ + 4θβ2 + γ2 < α2
1−2α1γ + γ2

⇒ (α1 + γ)2 + 4θβ2 < (γ− α1)
2

⇒
√
(α1 + γ)2 + 4θβ2 < γ− α1

⇒ α1 − γ +
√
(α1 + γ)2 + 4θβ2 < 0

⇒ λ2 < 0

Using the same steps as in Equation (8), ifR0 > 1, then:

α1γ + θβ2 > 0
⇒ 4α1γ + 4θβ2 > 0
⇒ 2α1γ + 4θβ2 > −2α1γ
⇒ α2

1 + 2α1γ + 4θβ2 + γ2 > α2
1−2α1γ + γ2

⇒ (α1 + γ)2 + 4θβ2 > (γ− α1)
2

⇒
√
(α1 + γ)2 + 4θβ2 > γ− α1

⇒ α1 − γ +
√
(α1 + γ)2 + 4θβ2 > 0

⇒ λ2 > 0

Notice that the fact that R0 < 1 implies that
β1

θ
< 1 and since R∗ < β1

θ
. Then, we

conclude that it is enough to have R0 < 1 to ensure that the roots of (λ2 + a1λ + a0)= 0
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are negative. On the other hand, ifR∗ > 1, thenR0 > 1. As a result, we have just proven
the following theorem:

Theorem 3. IfR0 < 1, the disease-free equilibrium E0 of the system (1) is locally asymptotically
stable, but unstable ifR∗ > 1, where: R∗ = β1

θ+γ .

5. Global Stability Analysis at Disease-Free Equilibrium

The global stability of the disease-free equilibrium point E0 was found in this part by
creating the Lyapunov function as follows:

Theorem 4. The disease-free equilibrium E0 of the model (1) is globally asymptotically stable
wheneverR0

Total ≤ 1, whereR0
Total = R0 +R0

v.

Proof. Consider the Lyapunov function L in the trivial equilibrium point E0, which has
non-negative coefficients g1 and g2:

L = g1E + g2 I (9)

Differentiating Equation (9) with respect to time t, and substituting both
dE
dt

and
dI
dt

from Equation (1) yields the result:

L̇ = g1Ė + g2 İ
= g1β1

SE
N + g1β2

SI
N + g1β3

VE
N + g1β4

VI
N − g1θE

+g2θE− g2(γ1 + γ2 + γ3)I
(10)

By simplifying Equation (10) by collecting similar terms of E and I, then by solving
for coefficient g1 and g2, this yields:

L̇ ≤ g1β1E + g1β3E + g2θE− g1θE + g1β2 I + g1β4 I − g2(γ1 + γ2 + γ3)I

≤ g1θ

(
β1 + β3

θ
+

g2

g1
− 1

)
E + g1(β2 + β4 − g2(γ1 + γ2 + γ3))I

≤ g1

(
β2 + β4 − g1(1−

β1 + β3

θ
)(γ1 + γ2 + γ3)

)
I

≤ g2
1

(
β2 + β4

g1
− (γ1 + γ2 + γ3) +

β1 + β3

θ
(γ1 + γ2 + γ3)

)
I

≤ g2
1(γ1 + γ2 + γ3)

(
β2

g1(γ1 + γ2 + γ3)
+

β1

θ
− 1 +

β4

g1(γ1 + γ2 + γ3)
+

β3

θ

)
I

≤ (γ1 + γ2 + γ3)(R0 +R0
v − 1)I

(11)

where g1 = 1 ,
g2

g1
= 1− β1 + β3

θ
.

R0
Total =

(
β2

(γ1 + γ2 + γ3)
+

β1

θ
+

β4

(γ1 + γ2 + γ3)
+

β3

θ

)
= R0 +R0

v. (12)

Since
g2

g1
> 0, then

β1 + β3

θ
< 1. Therefore, L̇ is negative ifR0

Total < 1. Furthermore,

L̇ = 0 if and only if I = 0. It can thus be investigated whether singleton E0 is the highest
compact invariant set for the model (1). Thus, by LaSalle’s invariance principle [27], the
DFE is globally asymptotically stable in a region Ω around E0.

Remark 1. The above result shows that R0
Total and R0 can be reduced to less than a unit so

that the disease disappears. Obviously, R0 < R0
Total means that if R0 < 1, then the complete

eradication of disease is guaranteed.
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6. The Optimal Imperfect Vaccination

When imperfect vaccination is administered to a population, there is a need to find the
optimal approach to use it in order to reduce the burden of the disease in the population.
The goal of this section is to implement the best control strategy possible in the situation of
an imperfect vaccination. Three types of control are used for this purpose. First, the control
u1 represents the awareness of taking the vaccine via media, as well as creating knowledge
of the positive effects of vaccination to gain herd immunity in the population. The second
control u2 is the movement restrictions for susceptible and vaccinated individuals by
adhering to a preventative protocol, avoiding the exposure of the vaccinated people to
the coronavirus via non-pharmaceutical measures. The third one u3 seeks to improve the
efficacy of the vaccine.

Therefore, the model with control strategies is given by

dS
dt

= − S
N (1− u2)(β1E + β2 I)− (λ1 + u1)S

dV
dt

= (λ1 + u1)S− V
N (1− u2)(β3E + β4 I)− (λ2 + u3)V

dE
dt

= S
N (1− u2)(β1E + β2 I) + V

N (1− u2)(β3E + β4 I)− θE

dI
dt

= θE− (γ1 + γ2 + γ3)I

dQ
dt

= γ1 I − (σ1 + δ1)Q

dH
dt

= γ2 I + σ1Q− (σ2 + δ2)H

dC
dt

= γ3 I + σ2H − (μ + δ3)C

dR
dt

= δ1Q + δ2H + δ3C + (λ2 + u3)V

dD
dt

= μC

(13)

With:
(u1(t), u2(t), u3(t)) ∈ UT

ad (14)

and UT
ad is a set of admissible controls defined by

UT
ad =

{
u |(u1(t), u2(t), u3(t)) are measurable, 0 ≤ u1(t) ≤ 1− λ1, 0 ≤ u2(t) ≤ 1,

0 ≤ u3(t) ≤ 1− λ2, t ∈ [0, T]

}
(15)

The objective function to minimize is:

J(u1(t), u2(t), u3(t)) =
∫ T

0
[−A1V(t) + A2 I(t)− A3R(t) +

1
2

τ1u2
1(t) +

1
2

τ2u2
2(t) +

1
2

τ3u2
3(t)]dt (16)

The positive weight constants A1, A2 and A3, respectively, keep the sizes of V(t), I(t),
and R(t) in balance. Positive weight parameters: τ1, τ2, and τ3 are related with the controls
u1(t), u2(t), and u3(t) in the objective functional.

To solve the problem, we first compute the Lagrangian and Hamiltonian. Equation (16)
in order to identify an optimal solution. The optimal problem’s Lagrangian is:

L = −A1V(t) + A2 I(t)− A3R(t) +
1
2

τ1u2
1(t) +

1
2

τ2u2
2(t) +

1
2

τ3u2
3(t). (17)

For the control problem, we may define the Hamiltonian H as follows:
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H = L + ζ1(t)
dS
dt

+ ζ2(t)
dV
dt

+ ζ3(t)
dE
dt

+ ζ4(t)
dI
dt

+ ζ5(t)
dQ
dt

+ ζ6(t)
dH
dt

+ ζ7(t)
dC
dt

+ζ8(t)
dR
dt

+ ζ9(t)
dD
dt

(18)

where ζ1, . . . , ζ9 are the adjoint functions to be found.
We have the existence result:

Theorem 5. The optimal control problem, defined by Equations (13)–(16), has a solution (u∗1, u∗2, u∗3)
that satisfies

J(u∗1, u∗2, u∗3) = min
(u1,u2,u3)∈UT

ad

J(u1, u2, u3)

Proof. We use the result [28] to show that an optimal control exists. The control and the
state variables are both non-negative. This minimization problem satisfies the convexity
requirement of the objective functional.

The control space previously defined as (15) is both convex and closed by definition.
In order for the optimal control to exist, it is necessary for the optimal system to be compact.
The boundedness of the optimal system determines the compactness needed. Additionally,
an integrand throughout the functional (16) is convex on the control (u1(t), u2(t), u3(t)). It
can be concluded that the constant ρ > 1 exists, as do positive integers w1, w2 and w3 such
that J(u1, u2, u3) ≥ −w2 + w1(‖(u1, u2, u3)‖2)

ρ
2 . This leads us to conclude that optimal

control exists.

Characterization of the Optimal Control

We then investigate the necessary optimal control conditions. For this purpose,
the maximum principle of Pontryagin to Hamiltonian [29] can be applied.

Theorem 6. Let S∗(t), V∗(t), E∗(t), I∗(t), Q∗(t), H∗(t), C∗(t), R∗(t) and D∗(t) represent
optimal state solutions with optimal control variables (u∗1(t), u∗2(t), u∗3(t)) for the optimal control
problem (16). ζ1, . . . , ζ9 are thus adjoint variables that satisfy:

ζ̇1(t) = (1− u2)(β1
E(t)

N + β2
I(t)
N )(ζ1(t)− ζ3(t)) + (λ1 + u1)(ζ1(t)− ζ2(t))

ζ̇2(t) = A1 + (1− u2)(β3
E(t)

N + β4
I(t)
N )(ζ2(t)− ζ3(t)) + (λ2 + u3)(ζ2(t)− ζ8(t))

ζ̇3(t) = (1− u2)β1
S(t)
N (ζ1(t)− ζ3(t)) + (1− u2)β3

V(t)
N (ζ2(t)− ζ3(t)) + θ(ζ3(t)− ζ4(t))

ζ̇4(t) = −A2 + (1− u2)β2
S(t)
N (ζ1(t)− ζ3(t)) + (1− u2)β4

V(t)
N (ζ2(t)− ζ3(t))

+γ1(ζ4(t)− ζ5(t)) + γ2(ζ4(t)− ζ6(t)) + γ3(ζ4(t)− ζ7(t))

ζ̇5(t) = σ1(ζ5(t)− ζ6(t)) + δ1(ζ5(t)− ζ8(t))

ζ̇6(t) = σ1(ζ6(t)− ζ7(t)) + δ2(ζ6(t)− ζ8(t))

ζ̇7(t) = μ(ζ7(t)− ζ9(t)) + δ3(ζ7(t)− ζ8(t))

ζ̇8(t) = A3

ζ̇9(t) = 0

(19)

Conditions of transversality.

ζ1(T) = ζ3(T) = ζ5(T) = ζ6(T) = ζ7(T) = ζ9(T) = 0,
ζ2(T) = −A1, ζ4(T) = A2, ζ8(T) = −A3,

(20)

Moreover, the optimal control (u∗1, u∗2, u∗3) is provided by
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u∗1(t) = max{min{ S(t)
τ1

(ζ1(t)− ζ2(t)), 1− λ1}, 0}.

u∗2(t) = max{min{ S(t)
τ2 N (β1E(t) + β2 I(t))(ζ3(t)− ζ1(t)) +

V(t)
τ2 N (β3E(t) + β4 I(t))(ζ3(t)− ζ2(t)), 1}, 0}.

u∗3(t) = max{min{V(t)
τ3

(ζ2(t)− ζ8(t)), 1− λ2}, 0}
(21)

Proof. By using Hamiltonian (18), Pontryagin’s maximum principle and setting S(t) =
S∗(t), V(t) = V∗(t), E(t) = E∗(t), I(t) = I∗(t), Q(t) = Q∗(t), H(t) = H∗(t), C(t) = C∗(t),
R(t) = R∗(t) and D(t) = D∗(t) to obtain the following:

dζ1

dt
= (1− u2)(β1

E(t)
N + β2

I(t)
N )(ζ1(t)− ζ3(t)) + (λ1 + u1)(ζ1(t)− ζ2(t))

dζ2

dt
= A1 + (1− u2)(β3

E(t)
N + β4

I(t)
N )(ζ2(t)− ζ3(t)) + (λ2 + u3)(ζ2(t)− ζ8(t))

dζ3

dt
= (1− u2)β1

S(t)
N (ζ1(t)− ζ3(t)) + (1− u2)β3

V(t)
N (ζ2(t)− ζ3(t)) + θ(ζ3(t)− ζ4(t))

dζ4

dt
= −A2 + (1− u2)β2

S(t)
N (ζ1(t)− ζ3(t)) + (1− u2)β4

V(t)
N (ζ2(t)− ζ3(t)) + γ1(ζ4(t)− ζ5(t))

+ γ2(ζ4(t)− ζ6(t)) + γ3(ζ4(t)− ζ7(t))

dζ5

dt
= σ1(ζ5(t)− ζ6(t)) + δ1(ζ5(t)− ζ8(t))

dζ6

dt
= σ1(ζ6(t)− ζ7(t)) + δ2(ζ6(t)− ζ8(t))

dζ7

dt
= μ(ζ7(t)− ζ9(t)) + δ3(ζ7(t)− ζ8(t))

dζ8

dt
= A3

dζ9

dt
= 0

Using optimality conditions, we conclude that:
dH(t)
du1(t)

= τ1u∗1(t) + S(t)(ζ2(t)− ζ1(t))

dH(t)
du2(t)

= τ2u∗2(t) +
S(t)
N (β1E(t) + β2 I(t))(ζ1(t)− ζ3(t)) +

V(t)
N (β3E(t) + β4 I(t))(ζ2(t)− ζ3(t))

dH(t)
du3(t)

= τ3u∗3(t) + V(t)(ζ8(t)− ζ2(t)).

Hence:

dH(t)
du1(t)

= 0 ⇒ u∗1(t) =
S(t)
τ1

(ζ1(t)− ζ2(t)),

dH(t)
du2(t)

= 0 ⇒ u∗2(t) =
S(t)
τ2 N (β1E(t) + β2 I(t))(ζ3(t)− ζ1(t)) +

V(t)
τ2 N (β3E(t) + β4 I(t))(ζ3(t)− ζ2(t))

dH(t)
du3(t)

= 0 ⇒ u∗3(t) =
V(t)

τ3
(ζ2(t)− ζ8(t)).

By applying the control space property, we obtain that:⎧⎪⎪⎨⎪⎪⎩
u∗1 = 0 if S(t)

τ1
(ζ1(t)− ζ2(t)) ≤ 0

u∗1 = S(t)
τ1

(ζ1(t)− ζ2(t)) if 0 < S(t)
τ1

(ζ1(t)− ζ2(t)) < 1

u∗1 = 1 if S(t)
τ1

(ζ1(t)− ζ2(t)) ≥ 1− λ1.

which means that:
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⎧⎪⎪⎨⎪⎪⎩
u∗2 = 0 if S(t)

τ2 N (β1E(t) + β2 I(t))(ζ3(t)− ζ1(t)) +
V(t)
τ2 N (β3E(t) + β4 I(t))(ζ3(t)− ζ2(t)) ≤ 0

u∗2 = ω∗ if 0 < S(t)
τ2 N (β1E(t) + β2 I(t))(ζ3(t)− ζ1(t)) +

V(t)
τ2 N (β3E(t) + β4 I(t))(ζ3(t)− ζ2(t)) < 1

u∗2 = 1 if S(t)
τ2 N (β1E(t) + β2 I(t))(ζ3(t)− ζ1(t)) +

V(t)
τ2 N (β3E(t) + β4 I(t))(ζ3(t)− ζ2(t)) ≥ 1.

Since:

ω∗ =
S(t)
τ2N

(β1E(t) + β2 I(t))(ζ3(t)− ζ1(t)) +
V(t)
τ2N

(β3E(t) + β4 I(t))(ζ3(t)− ζ2(t)).

We have:⎧⎪⎪⎨⎪⎪⎩
u∗3 = 0 if V(t)

τ3
(ζ2(t)− ζ8(t)) ≤ 0

u∗3 = V(t)
τ3

(ζ2(t)− ζ8(t)) if 0 < V(t)
τ3

(ζ2(t)− ζ8(t)) < 1

u∗3 = 1 if V(t)
τ3

(ζ2(t)− ζ8(t)) ≥ 1− λ2.

Thus, optimal control is defined as

u∗1 = max{min{ S(t)
τ1

(ζ1(t)− ζ2(t)), 1− λ1}, 0},

u∗2 = max{min{ S(t)
τ2 N (β1E(t) + β2 I(t))(ζ3(t)− ζ1(t)) +

V(t)
τ2 N (β3E(t) + β4 I(t))(ζ3(t)− ζ2(t)), 1}, 0}.

u∗3 = max{min{V(t)
τ3

(ζ2(t)− ζ8(t)), 1− λ2}, 0}

7. Numerical Simulation

The goal of this section is to show how the control strategies can be used to im-
prove outcomes in vaccination campaigns in Morocco. After fitting the model to the data,
the estimated parameters are taken to perform sensitivity analysis and determine the
optimal control.

7.1. Parameter Estimation

We used data from a vaccination campaign in Morocco between 1 February 2021
and 25 March 2021 to validate our findings. We consider the data from the COVID-19
data [30] and the initial conditions within the values of available data on 1 February 2021
are (S0, V0, E0, I0, Q0, H0, C0, R0, D0) = (36,202,000, 200,081, 25,543, 13,099, 9824, 1572, 131,
450,052, 8287). These initial values were estimated from the data, apart from E0 and Q0,
which were assumed. To obtain the best fitting curve for actual data, we applied the least-
squares fitting technique [31]. The parameter values of the model are estimated based on
this fitting and are given as follows: λ1 = 3.23× 10−3, λ2 = 1.5× 10−4, θ = 7.4385× 10−2,
σ1 = 3.9601× 10−2, σ2 = 5.1954× 10−2, δ1 = 2.04× 10−2, δ2 = 1.01× 10−2, δ3 = 0.00203,
β1 = 9.813× 10−3, β2 = 2.4× 10−3, β3 = 0.21, β4 = 0.21, γ1 = 9.81× 10−2, γ2 = 1.2× 10−2,
γ3 = 1.02× 10−4 and μ = 1.501× 10−3. The value of the basic reproduction number in this
case isR0 = 0.1536999. The fit of the number of individuals infected with COVID-19 in
Morocco is described in Figure 2.
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Figure 2. Fitting the infected population with real data from 1 February 2021 to 25 March 2021.

7.2. Sensitivity Analysis

In this part, we aimed to study the sensitivity of the model parameters with respect to
R0

Total . The goal is to determine the impact of these parameters on the endemicity of the
disease. The sensitivity analysis for this outbreak threshold demonstrates the importance
of each parameter in the spread of COVID-19, allowing us to determine which parameter
to make more sensitive onR0

Total with respect to a specific parameter, ρ, via the sensitivity
index define by

ζR0
Total

ρ =
∂R0

Total

∂ρ

ρ

R0
Total . (22)

Using the previous definition:

ζR0
Total

β1
= 1

θ
β1

R0
Total , ζR0

Total

β2
= 1

(γ1+γ2+γ3)
β2

R0
Total

ζR0
Total

β3
= 1

θ
β3

R0
Total , ζR0

Total

β4
= 1

(γ1+γ2+γ3)
β4

R0
Total

ζR0
Total

γ1 = −(β2+β4)
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γ1
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Total , ζR0
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(γ1+γ2+γ3)2
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R0

Total

ζR0
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γ3 = −(β2+β4)
(γ1+γ2+γ3)2

γ3
R0

Total , ζR0
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θ = −(β1+β3)
θ2

θ
R0

Total .

(23)

Each parameter’s sensitivity index, corresponding to the basic reproductive numbers
R0

Total , was computed and displayed in Table 1, and the graphical bar-graph findings were
generated in Figure 3. The sensitivity indices indicate the importance of each parameter in

disease transmission and prevalence. These are some examples: if ζR0
Total

β1
= 0.931, it means

that if β1 went up (or decreased) by 93.1%,R0
Total is also likely to increase or decrease by

93.1%. Similarly, for ζR0
Total

θ = −0.8202, the decrease in the parameter θ by 82.02% will fall
(or increase )R0

Total by a similar proportion.
Our goal is to simulate the elasticity of R0

Total with respect to model parameters in
four scenarios that represent the different scenarios of the dynamics of the model as follows:

• Scenario 1: There is no disease persistence (R0 < 1,R0
v < 1 andR0

Total < 1).
• Scenario 2: Persistence of diseases with low threshold values (R0 < 1,R0

v < 1 and
R0

Total > 1).
• Scenario 3: The disease persists, with a high endemicity among vaccinated people and

a low endemicity among non-vaccinated people (R0 < 1,R0
v > 1 andR0

Total > 1).
• Scenario 4: The disease persists, with low endemicity among the vaccinated and high

endemicity among the unvaccinated (R0 > 1,R0
v < 1 andR0

Total > 1).

142



Axioms 2022, 11, 124

Case 1: R0= 0.1147472,  Rv= 0.2386217 , RTotal = 0.3533689  
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Case 2: R0= 0.1537,  Rv= 0.8761813 , RTotal = 1.0299  
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Case 3: R0=0.1537,  Rv=4.7287 , RTotal =4.8824 
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Case 4: R0= 1.5370,     Rv= 0.4728741 ,    RTotal =2.0099 
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Figure 3. Scenarios ofR0
Total sensitivity respecting the parameters.
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Table 1. Sensitivity index for each parameter that has a direct correlation toR0
Total .

Scenarios Scenario 1 Scenario 2 Scenario 3 Secnario 4

Parameters Values S. Index Values S. Index Values S. Index Values S. Index

β1 6.71 × 10−3 2.55 × 10−1 9.81 × 10−3 1.28 × 10−1 9.81 × 10−3 2.70 × 10−2 9.81 × 10−2 6.56 × 10−1

β2 2.70 × 10−3 6.93 × 10−2 2.40 × 10−3 2.11 × 10−2 2.40 × 10−3 4.46 × 10−3 2.40 × 10−2 1.08 × 10−1

β3 1.10 × 10−2 4.18 × 10−1 5.10 × 10−2 6.66 × 10−1 2.10 × 10−1 5.78 × 10−1 2.10 × 10−2 1.40 × 10−1

β4 1.00 × 10−2 2.57 × 10−1 2.10 × 10−2 1.85 × 10−1 2.10 × 10−1 3.90 × 10−1 2.10 × 10−2 9.48 × 10−2

γ1 9.81 × 10−2 −2.90 × 10−1 9.81 × 10−2 −1.84 × 10−1 9.81 × 10−2 −3.51 × 10−1 9.81 × 10−2 −1.81 × 10−1

γ2 1.20 × 10−2 3.08 × 10−1 1.20 × 10−2 1.06 × 10−1 1.20 × 10−2 2.23 × 10−2 1.20 × 10−2 5.42 × 10−2

γ3 2.00 × 10−6 2.62 × 10−3 1.02 × 10−4 8.99 × 10−4 1.02 × 10−4 1.90 × 10−4 1.02 × 10−4 4.61 × 10−4

θ 7.44 × 10−2 −2.20 × 10−1 7.44 × 10−2 −1.39 × 10−1 7.44 × 10−2 −2.66 × 10−1 7.44 × 10−2 −1.37 × 10−1

All of the sensitivity scenarios described above demonstrate that the basic reproductive
numberR0

Total is more sensitive to some parameters than others—particularly in the cases
of β1, β3, γ1 and θ. Scenario 1 has no persistent disease, but Scenario 3 has persistent disease
with significant endemicity among the vaccinated, as can be seen from the sensitivity indices
of γ1 (rate of infected getting isolated) and θ (incubation period). The same observation
applies to the scenarios of the persistence of disease with low endemicity in Scenario 2
and the persistence of disease with high endemicity among the vaccinated in Scenario 4.
The level of sensitivity of these parameters is higher when endemicity is low among the
non-vaccinated population. Our simulations revealed that the value of the sensitivity
index changes depending on the Scenarios (1, 2, 3, 4), with β3 being the highest value for
Scenarios 1 and 2. However, in β1, we can see more domination for the index in Scenario 4.

7.3. Simulation of Optimal Control

The time series of variables in the model without and with optimal control are shown
in the figures below. The goal is to compare the effect of control on the different variables of
the model.

The three variables are shown in Figure 4: susceptible, infected and recovered without
and with optimal control effect. These simulations show that optimal control increases
the number of susceptible and recovered people while decreasing the number of infected
individuals. The effect of control on the susceptible and recovered populations is obviously
more significant since the susceptible and recovered populations rose four-fold in 50 days
while the infected population declined by one fold during the same period. This means
that the control is very effective for all of these three compartments.

The simulation of the time series of the variables representing the vaccinated, exposed
and deceased individuals is shown in Figure 5. Clearly, the vaccinated population benefits
more from the optimal control than the exposed population since the control aims to
improve vaccination effectiveness. The control strategy, on the other hand, has no obvious
effect on the number of deaths.

Similarly, as seen in Figure 6, the control strategy reduces the number of isolated
populations (at home or in hospital). However, there is more benefit to controlling the
population with mild symptoms compared to people in the hospital with severe or critical
symptoms. When applying the control to all three categories of quarantined, hospitalized,
and critical cases of COVID-19, it is clear that the control is obvious.

The three types of optimal controls are given in Figures 7–9. Those figures show the
intensity of each measure needed to be implemented in the case of imperfect vaccination.
The awareness campaign should stay as long as 7 weeks with maximum intensity. At the
same time, non-pharmaceutical measures must take place, including mobility restrictions
or lockdown for at least 24 days. With regard to the third control measure, the improvement
of the vaccine population should increase to reach possible efficacy during the first week of
vaccination and stay above 30% within the first 50 days of vaccination. The outcome of this
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control approach shows that these three measures must be simultaneously implemented to
deal with imperfect vaccination.
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Figure 4. Time series of the states S, I and R without and with control.
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Figure 5. The time series of states V, E and D without and with control.
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Figure 6. Time series of the states Q, H and C with and without control.
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Figure 7. Evolutionary dynamics of the control u1(t).
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Figure 8. Evolutionary dynamics of the control u2(t).
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Figure 9. Evolutionary dynamics of the control u3(t).

8. Conclusions

COVID-19 is still taking a toll on people’s lives all over the world. Countries are
rushing to implement the vaccination to gain herd immunity, to contain the spread of the
disease, and to bring the fatality rate of the disease to the lowest possible level. However,
the administered vaccines have different levels of efficacy among the same population,
which means the idea of relying on vaccination alone to control the pandemic would not
provide total protection for the population against further waves of COVID-19. In this work,
we aimed to present a mathematical model of the imperfect vaccination of COVID-19 and
to study the dynamics of this model. One further element of this model is that susceptible
and vaccinated people have different infection rates and the fatality rate of the disease
(rate of death due to the infection) is related to the percentage of the isolated population
that is in critical condition. We derive a threshold R0 which is the basic reproduction
number of disease transmission among the population. We showed that this threshold
does not give us sharp epidemiological properties of the model. In fact, we prove, via the
Lyapunov method, that the disease is globally asymptotically stable if R0

Total ≤ 1 with
R0

Total is the sum of R0 and R0
v, which is the threshold of transmission of the disease
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among the vaccinated population. This finding shows that the increase in the efficacy of
the vaccination should lead to protecting the population from infection (low β3 and β4)
which will help control the pandemic.

To make our analysis more realistic, we estimated the parameters of our model using
data from Morocco between 1 February 2021 and 25 March 2021. Within the range of
the estimated parameters, we performed a sensitivity analysis of R0

Total with respect to
the parameters of the model to find the elasticity index with respect to each parameter.
Depending on the disease status, our simulation (3) produced four outcomes. Scenario 1:
There is no disease persistence. Scenario 2: Persistence of diseases with low threshold
values. Scenario 3: The disease persists with a high endemicity among vaccinated people
and a low endemicity among non-vaccinated people. Scenario 4: The disease persists,
with low endemicity among the vaccinated and high endemicity among the unvaccinated.

To further investigate the possible additional measures that help with vaccination.
We introduce an optimal control problem with the goal of increasing the awareness of
vaccination, limiting the probability of infection by adhering to a preventative protocol
and increasing the efficacy of the vaccine. The public health authorities can easily imple-
ment these measures. In fact, as the virus mutates, many governments are pushing their
populations to get vaccinated and asking people to reduce their contact and wear masks.
Moreover, there is a constant effort to increase the efficacy of the vaccine by producing new
ones or by boosters.

Our solution of optimal control showed that, to reduce the impact of imperfect vacci-
nation, we needed a longer awareness campaign to engage the population in vaccination.
On the other hand, the restriction on population mobility should not be long, since our
simulation showed a drop of u2 from 1 (full restriction) after 24 days. To ensure the full
protection of the health population, vaccination efficacy must increase by 30% in the first
50 days.

In conclusion, our work showed that facing the imperfection of the vaccination of
COVID-19, we mainly have to focus on two measures. The first one is to increase awareness
of the importance of vaccination, which will increase the number of people vaccinated.
The second is to work on developing vaccines with high efficacy that give more protection
to the population instead of making the symptoms of viruses less severe. With these two
measures, our study showed that population mobility restrictions have the lowest impact
on controlling the virus spread.
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Abstract: The Physics Informed Neural Networks framework is applied to the understanding of the
dynamics of COVID-19. To provide the governing system of equations used by the framework, the
Susceptible–Infected–Recovered–Death mathematical model is used. This study focused on finding
the patterns of the dynamics of the disease which involves predicting the infection rate, recovery rate
and death rate; thus, predicting the active infections, total recovered, susceptible and deceased at
any required time. The study used data that were collected on the dynamics of COVID-19 from the
Kingdom of Eswatini between March 2020 and September 2021. The obtained results could be used
for making future forecasts on COVID-19 in Eswatini.

Keywords: Physics Informed Neural Networks; mathematical modeling; data analysis; COVID-19

1. Introduction and Background

1.1. Introduction

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus causes
Coronavirus Disease of 2019 (COVID-19) [1]. On 11 March 2020, the World Health Organi-
zation (WHO) declared it a pandemic after it spread globally and inflicted havoc [2,3]. This
virus is a member of the Beta coronavirus family, which are quite likely to cause severe
symptoms and potentially death [4]. The massive impact of the viral disease demonstrates
the need for an agent comprehension of its dynamics [3,5–8].

In order to curtail the spread of the disease, many countries have executed partial to
full lockdowns, South Africa being among the first country to do so and the Kingdom of
Eswatini following suit a day later. The pandemic has forced these countries to, periodically,
close down most economic activities and this has had some serious ramifications on its
citizenry including their currencies, the rand and emalangeni respectively, declining in
value along with a rise in commodity prices [9]. It is therefore highly imperative that a
solution to the pandemic is quickly found.

The spread of diseases like COVID-19 has been modelled using systems of ordi-
nary differential equations (ODEs) amongst other types of mathematical approaches.
Mathematical modeling has already been used to derive several useful insights about
COVID-19 [10–22]. Several aspects have been investigated, ranging from determining the
epidemic curves [11,17,20–22], investigating the role played by asymptomatic cases in the
spread of the disease [15], determining the efficacy of wearing masks [12] and investigating
the efficacy of the different control measures [13,16,19].

Data analysis tools such as machine learning (ML) have also been used to better
understand the distribution patterns of COVID-19 [8,23]. The viability of applying artificial
intelligence (AI) technologies to solve ODEs has been questioned because these equations
are governed by scientific rules that are never imposed during the training process [24]. A
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novel framework called Physics Informed Neural Networks has been developed to address
this problem (PINNs). It can also make very accurate predictions based on very small
datasets [25].

Various studies conducted on COVID-19 are gradually utilizing the Physics Informed
Neural Network structure. PINNs was used in one investigation to evaluate the spread
of COVID-19 after quarantine restrictions were implemented. As the governing systems
of equations, the researchers used the Susceptible–Exposed–Infected–Removed model.
It primarily sought to comprehend the advantages of COVID-19 restrictions being im-
plemented [6]. A time-varying set of parameters was employed in another experiment.
The governing systems of equations were based on the Susceptible–Infected–Recovered–
Deceased (SIRD) model. However, a recurrent neural network was used to create this
model [8].

The PINNs framework is an Artificial Neural Network (ANN) architecture that ex-
poses the generated neural network to datasets and governing laws during the training pro-
cess. The governing laws are provided to the model in the form of ODEs or PDEs [24–26].
Understanding the dynamics of COVID-19 is critical for minimizing the virus’s conse-
quences. Although AI models have been built, the majority of them require a large amount
of training data to obtain high accuracy. However, because COVID-19 was recently discov-
ered it has a tiny dataset, hence these AI models are not viable. Other models just suit the
facts provided, making future predictions less accurate. This necessitates the creation of
models that can generate accurate predictions on the dynamics of disease spread using
tiny datasets.

The goal of this research is to determine the dynamics of COVID-19 using Physics
Informed Neural Networks. To achieve this, the study used the Physics Informed Neural
Networks architecture. The SIRD model was employed as a PINNs mathematical model in
this investigation. The dynamics that this study aims to figure out are the virus’s average
rates of infection, recovery, and mortality. It further uses the dynamics to predict the
number of active infections, the number of people who have recovered, how many are
vulnerable or susceptible, and how many are deceased at any point in time. To perform
the training process of the neural network, the research utilized data collected from the
Kingdom of Eswatini between March 2020 and September 2021.

The rest of the document is divided into four parts, the first of which is a literature
review. This section provides a review of some previous studies which have utilized the
PINNs framework. The methodology section follows, which examines the mathematical
and physics informed neural network framework and its development. The results and
simulations part follows, which includes the analysis as well as the results and display
of inaccuracies acquired. The last section is the conclusion, which concludes the research
findings and provides recommendations for further research.

1.2. Background

Artificial Neural Networks (ANNs) are the building blocks of deep learning, a branch
of AI and machine learning [27]. They are computer models that try to combine the
capabilities of human brains and computers [25,28]. Nodes are placed in a layer format
and interlinked by connectors in the widely used ANN structure [29]. The input layer
receives data in vector format and transmits a dot product of the connector weight and
the received data to the next node layer. The activation function multiplies the node’s
dot product [30]. The activation function is a mathematical function that converts linear
input values into non-linear format [31]. The feedforward process is the name given to this
method. Backpropagation is the technique of taking the error and adjusting the weights
during the training phase.
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Definition 1. A feedforward neural network with a total of N neurons arranged in a single layer
is a function y : Rd → R of the form:

y(t) =
N

∑
i=1

αiσ(wT
i + bi),

where t ∈ Rd, αi, bi ∈ R. σ is the activation function, wi are weights for each neuron multiplied to
input value t. αi are neural network weights and are applied to the output of each neuron in the
layer and bi is the bias of each neuron.

There are numerous activation functions used in neural networks. This study employ-
ees the tangent hyperbolic function (tanh).

Definition 2. A tangent hyperbolic activation function is a function σ : R→ R such that:

σ(t)→
{

1 as t → ∞,

−1 as t → −∞.

The ability of neural networks to alter internal variables during training so that they
can tackle any given problem with some degree of precision is one of its most important
features. Discriminatory functions are what neural networks are by definition. As a result
of this attribute, the neural network is a universal approximator.

Theorem 1. If the σ in the neural network definition is continuous, then the set of all neural
networks is dense in a space of continuous discriminatory functions function with domain C on In
denoted by C(In), where In is an n-dimensional unit cube.

Proof. Let N ⊂ C(In) be the set of neural networks where N is a linear subspace of C(In).
To show that N is dense in C(In), we show that its closure is C(In). By contradiction,
suppose N �= C(In). Then N is a closed proper subspace of C(In).

The mathematical modeling approach and the data-based approach are the two pri-
mary methods for making predictions. The benefits and drawbacks of these two models
are distinct. The majority of mathematical models used are generated from the underlying
processes. As a result, these models follow governing laws, resulting in a directed output
that, when given the correct initial values, always yields accurate results. However, one
of the most significant drawbacks is that mathematical models do not account for any
unanticipated changes, which is a flaw in real-time process analysis [32].

Data models that include machine learning algorithms identify patterns in incoming
data and produce the desired output. Larger datasets are required to fully comprehend
these trends. This means that if a limited data collection is available, other datasets that are
similarly relevant can be utilised. The margin of error is increased by this compromise. The
necessity for a huge amount of data and an extensive training procedure necessitates the
use of a lot of computing power, which is expensive. Data can also be compressed to fit the
processing power available, compromising results.

2. Review of Studies on Physics Informed Neural Networks

Multiple world problems have been analyzed and simulated using the recently es-
tablished Physics Informed Neural Networks framework. This section summarizes some
research on Physics Informed Neural Networks. COVID-19-related research is among the
studies included.

2.1. Physics Informed Deep Learning for Traffic State Estimation

Real-time traffic states were analyzed using the Physics Informed Neural Networks
framework. The method of estimating traffic variables using partial data is known as traffic
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state estimation. The traffic variables employed in the analysis are f , which stands for traffic
flow rate, v, which stands for vehicle average speed rate, and ρ, which stands for vehicle
density. The goal of traffic state analysis is to improve road planning and comprehension.
This includes the early detection of traffic jams and high transit demand. A dramatic
decline in average speed v, for example, could signal significant traffic congestion or an
accident [24].

The methods used to conduct these traffic estimations are primarily mathematical
or data-driven methods. This research takes a data-driven approach. However, data-
driven technologies such as machine learning necessitate a large amount of data. This is
a significant disadvantage because it necessitates the employment of a large number of
sensors and other equipment to be archived, which is a very costly undertaking. This forces
transportation planners to collect data primarily in cost-effective locations, resulting in
noisy or error-filled data. To address these issues, the researchers used a physics informed
neural network technique [24].

They set the variables based on the data acquired when developing mathematical
models, q being the stated number of cars traversing a certain area at a specific time. The
mean speed of vehicles is used to get the average speed v, and the vehicle density ρ is
calculated as the number of vehicles in a given road distance. The cumulative traffic flow
is defined as the total number of vehicles passing through a specific point x over a given
time period t. The partial differential equation of cumulative flow q(x, t) represents the
flow with regard to time (t). The partial differential equation of cumulative flow ρ(x, t) is a
partial differential equation of density with regard to x. The mathematical representations
of the densities is:

q(x, t) =
∂N(x, t)

∂t
, (1)

ρ(x, t) =
−∂N(x, t)

∂x
. (2)

The conservation law states:

∂qN(x, t)
∂x

+
∂ρN(x, t)

∂t
= 0. (3)

The relationship between the stated variables is:

v(ρ) = v f

(
1− ρ

ρm

)
, (4)

q(ρ) = ρv f

(
1− ρ

ρm

)
, (5)

where v f = traffic free flow and ρm = maximum traffic flow.
The mean square error (MSE) of N number of outputs at point x at time t is used to

construct the cost function (JDL), which is utilized to increase the accuracy of the neural
network. The neural network’s forecast is ρ ∗ (x, t), but the genuine value is ρ(x, t). The
MSE JPHY is found in relation to the conservation of the specified conservation laws as a
result of the deployment of the physics informed neural network.

JDL =
1
N

N

∑
i=1
|ρ(x, t)− ρ∗(x, t)|2, (6)

JPHY =
1
N

N

∑
i=1
|v f (1−

2ρ(x, t)
ρm

) +
∂ρ(x, t)

∂x
) +

∂ρ(x, t)
∂t

)|2. (7)

154



Axioms 2022, 11, 121

The neural network is then optimized using the physics informed neural network,
and a parameter μ is added to give the neural network an adjustment weight. The PINNs
implementation equation was then included.

J = μJDL + (1− μ)JPHY. (8)

The Frobenius norm is then used to calculate the accuracy of the neural network. The
model was put to the test with various data sizes and collection locations, with positive
results [24].

This research used a physics informed neural network to analyze electricity generation.
Generators are used in the power generation process, which are powered by diverse energy
sources such as wind and water. The analysis and comprehension of a real-time power
generation is critical in determining the amount of power generated by the generators [32].
It is not new to utilize data models to analyze power production and mathematical models
to produce estimations. However, they all have disadvantages. For example, using data
and machine learning models demands a large amount of data. It is also necessary to have
the data analyzed by professionals before use in order to eliminate the noisy data. This data
analysis paradigm also entails the creation of sophisticated neural network designs [32].

As a result, the study introduces the usage of a physics-informed neural network
to construct a training process that is data and physics-based. The study employs a
single machine infinite bus (SMIB) system, which is a single-generator model. The inertia
constant m1, the damping coefficient d1, and the bus sustenance entry B12 are all parameters
and variables in the equation. The power supplied by the generator is P1, the voltage
magnitudes of buses 1 and 2 are V1 and V2, and the voltage angle behind reactance is σ1
and σ2. The angular frequency of generators is sigma. As a result, the final function is:

fσ(t, P1) = m1σ.. + d1σ. + B12V1V2 sin(σ)− P1. (9)

Equation (9) is used as the governing equation in the implementation of the physics
informed neural network. The model adjusts σ, σ. and P1 between [Pmin, Pmax] during
the learning process. The model was simulated using datasets that were created using
computer models and showed very positive results [32].

2.2. Neural Network Aided Quarantine Control Model Estimation of Global COVID-19 Spread

Two deep learning models are presented in the paper to approximate the parameters
of COVID-19 spread. Forecasts are made using statistics from the United States, China
(Wuhan), Italy, and South Korea. Both of the deep learning models employed in the models
are physics informed neural networks. The PINNs is used to solve problems with machine
learning and conventional neural network models. Overfitting of data, the necessity for
high processing capacity, and the need for more data from other pandemics or diseases
spread, such as MERS and SARS in this case, are all examples of these issues. Because
artificial neural networks are so complicated, it is difficult to understand how the final
approximation is achieved. PINNs, on the other hand, simplify the process, making it
easier to comprehend and analyze COVID-19’s distribution. The study’s main goal is to
determine the advantages of implementing COVID-19 limitations [6].

The first model employs an SEIR system of ODEs. In the model, S stands for the
number of susceptible people in the population, E for the number of Exposed people
individuals, I is the number of people who are infected, and R stands for the number
of individuals who have been removed. The first model utilized ignores the potential
consequences of COVID-19 control rules.

The common mathematical models, however, do not account for these in the predic-
tions they make; making it hard to account for variables or elements such as over crowding,
social distancing and other policies which may have been implemented by the different
countries. The main policies highlighted by the authors include the use of police to enforce
proper social distancing in traffic crossings, shops and other places. It also focuses on the
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shutdown of public transport, trains and airports. Thus, to account for these multiple
policies and have a better prediction the study uses real data. This study is conducted
using data and estimations. The study also estimates the effective reproduction rate. The
first model:

dS(t)
dt

= − βS(t)I(t)
N

, (10)

dE(t)
dt

=
βS(t)I(t)

N
− σE(t), (11)

dI(t)
dt

= σE(t)− γI(t), (12)

dR(t)
dt

= γI(t), (13)

subject to the initial conditions, S = S0, I = I0, R = R0 and E = E0.
The second model used in the study accounts for quarantine control. The model

thus introduces a time dependent variable T(t) = Q(t) × I(t). This also changes the
effective reproduction rate to Rt =

β
γ+Q(t) . The parameter Q(t) is also determined using a

separate neural network, which takes in the data of Time, Susceptible, Exposed, Infected
and Recovered as input data. The model processes the data in a 2-layer network with
10 nodes per layer and uses a ReLu activation function (NN(W, U) ). The determined Q(t)
is then put in the Physics Informed Neural Network which uses the model below to make
the approximations of the model.

dS(t)
dt

= − βS(t)I(t)
N

, (14)

dI(t)
dt

=
βS(t)I(t)

N
− (γ−Q(t))I(t), (15)

dI(t)
dt

=
βS(t)I(t)

N
− (γ− NN(W, U))I(t), (16)

dR(t)
dt

= γI(t), (17)

dT(t)
dt

= Q(t)I(t) = NN(W, U)I(t). (18)

Subjected to the initial conditions, S = S0, I = I0, R = R0 and T = T0.
The results that were attained by the study showed that the first model, which does

not account for imposed restrictions, had approximations which were bigger than the real
values. This means it approximated that the virus would be more catastrophic. The second
model achieved a better fit showing that the imposed restrictions have had a positive impact
in the spread of COVID-19. The model was also comprehensible providing parameters
which can be used to make future predictions [6].

2.3. Identification and Prediction of Time-Varying Parameters of COVID-19 Model: A
Data-Driven Deep Learning Approach

This study focused on finding the parameters of an SIRD model which are time based
rather than to the average parameter [8]. This study also used a deep learning model and
specifically a Physics Informed Neural Network. The virus spreading model employed
is that study is an SIRD where S represents the number of people who are Susceptible, I
represents the Infected people or active cases, R represents the number of Recovered people
and D represents the number of Deaths. Where β is the spreading rate, γ is the recovery
rate and δ is the death rate [8].
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dS(t)
dt

= − βS(t)I(t)
N

, (19)

dI(t)
dt

=
βS(t)I(t)

N
− γI(t)− δI(t), (20)

dR(t)
dt

= γI(t), (21)

dD(t)
dt

= δI(t). (22)

The model is subjected to the initial values, S = S0, I = I0, R = R0 and D = D0.

3. Problem Formulation and Methodology

The governing laws of the Physics Informed Neural Networks framework are provided
as mathematical equations. This section covers the development and evaluation of the key
mathematical models of focus. The mathematical model serve as the assumed physics laws
that the model should adhere to.

The Susceptible–Infected–Recovered–Deceased (SIRD) model used assumes that the
population can assume four states, Susceptible (S), Infected (I), Recovered (R) and Deceased
(D). The susceptible population is the group which can contract the virus, this contraction
occurs at the rate β. The infected population is the population group that has contacted the
virus and it is still active. The infected group can be removed to either assume a recovered
population at the rate γ or deceased population at the rate δ. This means δ is the death rate,
β is the infection rate and γ is the recovery rate. Figure 1 shows the resulting COVID-19
transmission SIRD flow diagram.

S(t) I(t)

R(t)

D(t)

β

γ

δ

Figure 1. A schematic flow diagram representing a Susceptible-Infected-Recovered-Dead (SIRD)
COVID-19 transmission.

From the flow diagram in Figure 1 we obtain the system:

dS(t)
dt

= − βS(t)I(t)
N

, (23)

dI(t)
dt

=
βS(t)I(t)

N
− γI(t)− δI(t), (24)

dR(t)
dt

= γI(t), (25)

dD(t)
dt

= δI(t). (26)

The model is subjected to the initial values, S = S0, I = I0, R = R0 = 0 and
D = D0 = 0.

The system in general reflects the mathematical behaviour of the virus. Equation (23)
indicates the change in the number of susceptible individuals S(t) with respect to time
t; which is a reduction by a factor of the product of the spreading rate β, the susceptible
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population at the time S(t) and the Infected population at time I(t) divided by the total
population N. Equation (24) shows that the change in the number of active infections I(t)
with respect to time t; which is an addition by size at which the susceptible population
was reduced. This is then reduced by a factor of the product of the recovery rate γ and
the Infected population at the time I(t) and a product of the death rate δ and the Infected
population at the time I(t). Equation (25) shows that the change in the number of recoveries
is an addition by a factor of the product of the recovery rate γ and the Infected population
at the time I(t). Equation (26) shows that the change in the number of deaths is and a
product of the death rate δ and the Infected population at the time I(t). The model also
assumes that initially the are no recoveries or deaths and that the infected and susceptible
populations are greater than zero.

Studies and implementations of neural networks have shown that using numbers
less than one improves accuracy and optimisation. As a result, we must use the non-
dimentionalisation technique to rescale the provided data to values between 0 and 1.

We let w = S
N , x = I

N , y = R
N , z = D

N , t = q.
To rescale the SIRD model, we make these assumptions, with the goal of reducing the

number of variables and so obtaining new SIRD model values, thus:
S = wN, I = xN, R = yN, D = zN. Substituting in the SIRD model we obtain:

d(wN)

dq
= − β(wN)(xN)

N
, (27)

d(xN)

dq
=

β(wN)(xN)

N
− γxN − δxN, (28)

d(yN)

dq
= γxN, (29)

d(zN)

dq
= δxN. (30)

Hence the resulting system is:

dw
dq

= −βwx, (31)

dx
dq

= βwx− γx− δx, (32)

dy
dq

= γx, (33)

dz
dq

= δx. (34)

3.1. The Neural Network

The neural network we create, as a consequence, takes a single input value of time
t. The input is processed through the layers with weights Wi,j, where i is the start node
position and j is the finishing node position. The product of the weight and time is applied
to an activation function tanh denoted by σ at every node, forming a matrix. The model’s
output nodes, which make up the output layer, are S(t), I(t), R(t), and D(t).

σ(x) =
ex − e−x

ex + e−x . (35)

The representation of a neural network matrix with m layers and n nodes per layer.

3.1.1. Residual of Model’s Equations

The difference between the right and left sides of an ODE is the residual error. The
residual error is utilized to determine the neural network’s loss function in the construction
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of PINNs. We get four residual error functions from the SIRD model. We get ResS, the
residual error of the susceptible population, from Equation (23), which is the margin of
how wrong the mathematically predicted susceptible population change is. We get ResI
from Equation (24), which is the residual error of the infected population, or the margin
of error in the mathematically estimated active infection change. The residual error of the
recovered population ResR is given by Equation (25). We get ResD the residual error of
the deceased population from Equation (26), which is the margin of how much wrong the
mathematically predicted deceased population change is.

ResS =
dS(t)

dt
+

βS(t)I(t)
N

, (36)

ResI =
dI(t)

dt
− βS(t)I(t)

N
+ γI(t) + δI(t), (37)

ResR =
dR(t)

dt
− γI(t), (38)

ResD =
dD(t)

dt
− δI(t). (39)

3.1.2. The Loss Function

A loss function must first be constructed before back propagation can be used to
optimize a neural network. We derive the loss function lossT for the PINNs we constructed
by adding the total of two loss functions loss1 and loss2. The total of the mean square
errors of the susceptible population MSESoutput is loss1. The gap between the actual and
forecast population sizes is the total of the sensitive population’s mean square error. The
total of the difference between the actual size of the infected population and the values
predicted by the ANNs is the mean square errors of the infected population MSEIoutput. The
difference between the actual size of the recovered population and the anticipated recovered
population size, as well as the mean square errors of the deceased population MSEDoutput,
make up the recovered population mean square errors MSERoutput. MSEDoutput is the mean
square error of the difference of the predicted deceased D∗(ti) and the actual data value Di.

The sum of the mean square errors of the susceptible population residual error MSESres,
the mean square errors of the infected population residual error MSEIres, the mean square
errors of the recovered population residual error MSERres, and the mean square errors of
the deceased population residual error MSEDres is loss2.

loss1 = MSESoutput + MSEIoutput + MSERoutput

+ MSEDoutput, (40)

loss2 = MSESres + MSEIres + MSERres

+ MSEDres, (41)

lossT = loss1 + loss2, (42)

MSESres =
1
M

M

∑
i=1
|ResS|2, (43)

MSEIres =
1
M

M

∑
i=1
|ResI |2, (44)

MSERres =
1
M

M

∑
i=1
|ResR|2, (45)

MSEDres =
1
M

M

∑
i=1
|ResD|2, (46)
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MSESoutput =
1
M

M

∑
i=1
|S∗(ti)− Si|2, (47)

MSEIoutput =
1
M

M

∑
i=1
|I∗(ti)− Ii|2, (48)

MSERoutput =
1
M

M

∑
i=1
|R∗(ti)− Ri|2, (49)

MSEDoutput =
1
M

M

∑
i=1
|D∗(ti)− Di|2. (50)

We get a neural network that looks like Figure 2 using the time input, the layer matrix,
the output layer, and the residual functions.

t

...

...

...

...

...

S(t)

I(t)

R(t)

D(t)

ResS

ResI

ResR

ResD

Figure 2. A schematic representation of the Physics informed neural network, which takes an input
of time (t) and outputs Susceptible (S), Infected (I), Recovered (R) and Deceased D. The output is
subjected to PINN.

3.2. Basic Model Properties

The analysis of the mathematical model is presented in the next part. This part exam-
ines the model’s features and expected behaviour, such as determining the reproduction
number, which is the minimal number of transmissions required for a pandemic to occur,
and the sensitivity analysis of the ODE system.

3.2.1. Basic Reproduction Number

To comprehend COVID-19, which has now become a pandemic, we must first estimate
the minimal rate of secondary infections required for a pandemic to arise. The reproduction
number R0 is also the rate at which a spread would be stopped if it fell below it. Its
derivation is as follows:

0 < βS0 I0 − (γ + δ)I0, (51)

0 < βS0 − (γ + δ), (52)

βS0 < (γ + δ), (53)

R0 =
βS0

γ + δ
. (54)

The change described by the left hand side, obtained after non-dimentionalization, must
be strictly greater than 0 for a pandemic to occur, according to Equation (51). Equation (52)
is produced by dividing both sides by I0, and Equation (53) is obtained by moving the term
containing the spreading rate to the left hand side. We can deduce from Equation (54) that
the lowest needed spreading rate for a pandemic is equal to the left hand side divided by
the right hand side.
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3.2.2. SIRD Model Analysis

The mathematical model’s sensitivity analysis also reveals some of the model’s essen-
tial aspects, such as the estimated maximum number of infections Imax. Equations (23)–(26),
which are all part of the SIRD model, are used to calculate the maximum number of infected
individuals that can occur at any given time.

dI(t)
dS(t)

= −1 +
γ + δ

βS
. (55)

To obtain this we first divide Equation (23) by Equation (24) to obtain Equation (55)
and integrate it to obtain Equation (56).

I + S− γ + δ

β
(ln S) = I0 + S0 −

γ + δ

β
(ln S0). (56)

To obtain the maximum possible value of infection, we find a point where the
Equation (56) is equal to zero. It was determined that this occurs when S = β

γ+δ .

I + S− γ + δ

β
(ln S) = I0 + S0 −

γ + δ

β
(ln S0), (57)

Imax + S− γ + δ

β
(ln S) = I0 + S0 −

γ + δ

β
(ln S0), (58)

Imax +
β

γ + δ
− γ + δ

β
(ln(

β

γ + δ
)) = I0 + S0 −

γ + δ

β
(ln S0), (59)

Imax = I0 + S0 −
γ + δ

β
[1 + (ln(

β

γ + δ
)S0)], (60)

Imax = I0 + S0 −
γ + δ

β
[1 + (ln(R0))]. (61)

In Equation (59), we substitute the value of S, to obtain the equation. In Equation (60),
the model is simplified and rearranged. In Equation (61), the value R0 is substituted where
possible such that the remaining equation is attained. We now have the estimated number
of persons who will become infected. Individuals infected with the virus either recover
Rend or die Dend, thus we calculate the predicted number of persons who will either recover
or die.

Rend = Rend + Dend, (62)

Rend = S0 + I0 − Send. (63)

According to the created SIRD model, the whole number of people who will be infected
will either recover from the disease or die from it, therefore the total number of persons
affected will be equal to the sum of the recoveries Rend and the deceased Dend illustrated
in Equation (62). We estimate the total infected at the conclusion of the virus spreading
period to be equal to the sum of the original susceptible and infected populations minus
the Susceptible population at the end of the period, as shown in Equation (63).

Send =
γ + δ

β
ln(Send), (64)

Send = I0 + S0 −
γ + δ

β
ln(S0), (65)

where S, I, R and D, respectively, represents susceptible, infectious, recovered and deceased
individuals and N = S + I + R + D is the total population. The parameters β, γ and δ,
respectively, represent the infection, recovery rate and death rates. Since in the analysis or
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in the model recovered and deceased individuals have the same effects on the model, we
group them as R representing removed with the removal rate of (γ + δ); such that we have,

dS(t)
dt

= − βS(t)I(t)
N

, (66)

dI(t)
dt

=
βS(t)I(t)

N
− (γ + δ)I(t), (67)

dR(t)
dt

= (γ + δ)I(t). (68)

Which can be rewritten as:

dS(t)
dt

= − βS(t)I(t)
N

, (69)

dI(t)
dt

=
βS(t)I(t)

N
− (γ + δ)I(t), (70)

R = N − I − S. (71)

The results of the simulations of the Physics Informed Neural Networks framework
are presented in this section. It also includes a full analysis of the results, as well as changes
in accuracy as parameters like data size change. The information was gathered through
national daily updates and a Google studio analysis website created by the University of
Eswatini and Wits Ithemba Labs [33]. Due to location/resource constraints, the model
was constructed using Python 3 on a Spyder interface running in offline mode. Numpy,
Mathplotlib, and Tensorflow were the main packages utilized.

3.3. Simulation Using Mathematica Generated Data

To test the model and validate the PINNs, we used Mathematica to create fictional
data for an SIRD model. The benefit of this type of data was that it was less noisy. We
started the model with a 100,000-person susceptible population, 0 recoveries and deaths,
and five infections. In order to acquire the data shown in Figure 3, the average infection
rate was set to be 0.14, the average healing rate was 0.037, and the average mortality rate
was 0.005.

Figure 3. A Mathematica generated graph simulation of an example SIRD model. The green
represents Susceptible population, blue represents the recoveries, red is the active infected population
and orange is the deceased population.

The traditional behaviour of a SIR mode is seen in Figure 3, where the size of the
vulnerable population decreases as the size of active illnesses increases. The size of the
recoveries and deaths then increases until they reach a maximum or stabilize.
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PINNs Model of Mathematica Results

The aforementioned model produced data from a PINNs of three layers, each with
30 nodes.

The findings provided after the model was trained were compared to the susceptible
population, which was also utilized as the training dataset. There is only a small error
between the two plots because they are so tightly aligned. Figure 4 depicts the resulting
findings, which compare active infections from the dataset used to train the model to the
values obtained by the trained model. This graph is well-fitting, indicating that it has a low
degree of error. The graph in Figure 5 depicts the results of the recovered dataset used for
training, as well as the produced results following the training process, which have a strong
match and hence less errors. Figure 6 shows the outcome of comparing the actual deceased
with the results acquired after the training procedure; this graph has a good match but is
less accurate than the others.

Figure 4. The resulting graph of the predicted values of the Infected population and the actual values
of the infected population from the Mathematica generated data.
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Figure 5. The graphs shows the results of the predicted values of the Recovered and the actual values
of the recovered from the Mathematica generated data.

Figure 6. The resulting graph of the predicted values of the Deceased population and the actual
values of the deceased population from the Mathematica generated data.

3.4. PINNs Simulations of Alabama State Data

We used a dataset from the American state of Alabama to test the SIRD model for
further validation. The dataset spanned roughly 300 days, and the simulation used a
three-layer neural network with 30 nodes per layer, with 1,000,000 iterations.

Figure 7 shows the outcome of data fitting, which compares the susceptible population
data from the real data to that obtained by the trained PINNs model, and shows that there is a
decent fit, implying that there is a little inaccuracy. The resulting graph of the data fitting is
shown in Figure 8; it has a good fit, implying that there is a little error. The graph in Figure 9
compares the values acquired by the training model to the original data used in the recoveries,
and it likewise has a strong match and less mistakes. Figure 10 is the last graph that compares
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the findings received after the model was trained to the actual data of the deceased population.
This graph has a good match, but it is more erroneous than the others.

Figure 7. This graph shows a comparison of the predicted values of susceptible population and the
actual data of susceptible population for the State of Alabama.

Figure 8. The graph shows a comparison of the predicted infected population values and the actual
data infected population for the State of Alabama.
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Figure 9. This graph shows a comparison of the predicted values of recovered population and the
actual data of recovered population for the State of Alabama.

Figure 10. The graph shows a comparison of the predicted deceased population values and the actual
data deceased population for the State of Alabama.

3.5. PINNs Simulation of a Model Using 170 Data Points

To put the model to the test and further test the potential of the PINNs model, a
simulation using a smaller dataset was conducted. To conduct the simulation a dataset
derived from the existing data to fully stretch over the period making up only 30% of the
available data results were obtained.

The resulting graph, in Figure 11, compares the values acquired by the trained model
to the actual data for the data fitting purposes of the vulnerable population and finds a
good match, resulting in a tiny sized error. The obtained graph of data fitting is shown in
Figure 12; it has a good fit, which indicates it has a minimal error. The graph in Figure 13
shows the recovered population results, which are a comparison of the trained model
results and the real data, with a strong match and less mistakes. This graph has a good
fit, but it has a larger error than the other graphs. Figure 14 is the resulting graph of the
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deceased population, which is a comparison of the trained model results and the actual
data. The total result reveals that while the fitting has less mistakes, they are larger when
compared to scenarios where larger data was employed.
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Figure 11. This graph shows a comparison of the predicted values of susceptible population and the
actual data of susceptible population for a 130 data points.
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Figure 12. The graph shows a comparison of the predicted infected population values and the actual
data of the infected population for a 130 data points.
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Figure 13. This graph shows a comparison of the predicted values of recovered population and the
actual data of the recovered population for a 130 data points.
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Figure 14. The graph shows a comparison of the predicted deceased population values and the actual
data of the deceased population for a 130 data points.

3.6. PINNs Simulation of a Model Using All Available Data Points at the Time (576 Data Points)

The simulation was carried out with 5,000,000 iterations and four layers, each with
30 nodes. The dataset used was 576 days long, which was the maximum number of days
accessible at the time.

In this situation, the best simulation is carried out utilizing all of the data available;
the training data account for 70% of the data, while the testing sample accounts for just 30%
of the data and is chosen at random. The resulting graph for data fitting purposes for the
sensitive population is shown in Figure 15, and there is a tiny sized error and good fitting.
The obtained graph of data fitting is shown in Figure 16; it has a good fit, which indicates it
has a minimal error. The graph in Figure 17 depicts the recovered findings, and it has a
strong fit and few mistakes. The resulting graph of deceased is shown in Figure 18; this
graph has a decent fit, although it has a larger error than the other graphs. The overall result
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demonstrates that, while the fitting has less mistakes, they are larger than in circumstances
when additional data was employed.
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Figure 15. This graph shows a comparison of the predicted values of susceptible population and the
actual data of the susceptible population for a 530 data points.
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Figure 16. The graph shows a comparison of the predicted infected population values and the actual
data of the infected population for a 530 data points.
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Figure 17. This graph shows a comparison of the predicted values of recovered population and the
actual data of the recovered population for a 530 data points.
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Figure 18. The graph shows a comparison of the predicted deceased population values and the actual
data of the deceased population for a 530 data points.

3.7. PINNs Simulation Forecasting 30 Days

Simulations using the three layers of 30 nodes per layer was conducted and there were
5,000,000 iterations made during the training.

Figure 19 is a result graph based on the forecasting of the sensitive population for
the next 30 days; the numbers appear to be declining, as expected. The resultant graph,
shown in Figure 20, provides the anticipated data of active infections in a curved shape.
The results of the anticipated recoveries are depicted in Figure 21. The resulting graph of
the anticipated deceased population is shown in Figure 22. The prediction also determined
the total predicted recoveries Rend, as well as the maximum expected infections Imax,
susceptibles population expected at the end of the disease’s spread Send, and the maximum
expected infections Iend. Using the estimated parameter values, we obtained Imax = 72,121,
Send = 1,094,719, and Rend = 70,274.
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Figure 19. This graph shows a comparison of the predicted values of susceptible population and the
actual data of susceptible population for a SIRD model with future predictions.
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Figure 20. The graph shows a comparison of the predicted infected population values and the actual
data infected population for a SIRD model with future predictions.
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Figure 21. This graph shows a comparison of the predicted values of recovered population and the
actual data of recovered population for a SIRD model with future predictions.
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Figure 22. The graph shows a comparison of the predicted deceased population values and the actual
data deceased population for a SIRD model with future predictions.

3.8. Deep Learning Sensitivity Analysis

The study’s Physics Informed Neural Network framework is primarily influenced by
four elements. The number of iterations conducted during training, the quantity of the
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training data utilized, the total number of layers in the model, and the number of nodes in
each layer are all variables to consider. To begin the sensitivity analysis, the default model
is set up with the following parameters: number of iterations 200,000, amount of training
data 400, number of layers 3 and number of nodes 30.

Then, many simulations were run, with all model variables set to default, only two pa-
rameters changed, and all mean square errors recorded. The model setup is only subjected
to a single simulation. Because the beginning values for each scenario are set at random,
there are certain uncontrollable margins of error. A contingency only enables one further
simulation trial in such instances.

The number of layers in the neural network and the number of performed iterations
were the parameters that were varied in Table 1. The number of layers was varied between
two, four and eight, while the number of iterations was varied between 100, 200, 400, and
800,000. The simulation results show that increasing the number of iterations reduces
the amount of the error for the same number of layers. When the number of iterations is
kept constant, the margin of error is reduced as well. This means that, as the number of
iterations and layers increases, the accuracy improves.

Table 1. Results of the mean square error analyzing of varying number of iterations and number of
layers in the simulations.

Number of Layers
Iterations

2 4 8

100,000 3.397 × 10−6 1.996 × 10−7 5.461 × 10−8

200,000 2.434 × 10−6 1.871 × 10−7 3.866 × 10−8

400,000 2.098 × 10−7 2.340 × 10−8 3.584 × 10−9

800,000 1.454 × 10−7 1.621 × 10−8 3.055 × 10−9

Table 2 compares the correlation impacts that the number of nodes per layer and the
number of layers included in the neural network have. The number of nodes utilized in
this test were 10, 20, 40, and 80, respectively, and the number of layers employed were
two, four and eight. The data obtained, which are also displayed on the table of concern,
show that increasing the number of nodes improves the margin of error given a constant
number of layers. However, increasing the number of layers for a given number of layers
reduces the margin of error. This means that, as the number of layers and nodes per layer
are raised, the lowest margin of error is achieved for the physics informed neural network
model established for this study.

Table 2. Results of the mean square error analysing of varying number of nodes in a layer and
number of layers in the simulations.

Number of Layers
Nodes

2 4 8

10 1.870 × 10−7 2.098 × 10−8 4.783 × 10−9

20 2.494 × 10−7 2.243 × 10−8 4.131 × 10−9

40 2.144 × 10−7 2.830 × 10−8 4.723 × 10−9

80 2.789 × 10−7 2.941 × 10−8 8.794 × 10−9

The results of an analysis and simulations studying the correlation of the data size
and the number of layers are shown in Table 3. The data sizes were 100, 150, 200, and 350,
while the number of layers tested was two, four and eight. The results show that increasing
the number of layers while keeping the data size constant reduces the margin of error. The
investigation of a variety of data sizes on a fixed number of layers reveals that the values do
not vary in a predictable way, but rather shift within a tiny margin. These findings reveal
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that data size has no effect on the number of layers, however data size has an effect on the
number of layers, which reduces the margin of error.

Table 3. Results of the mean square error analysing of varying sizes of data points and number of
layers in the simulations.

Number of Layers
Data Size

2 4 8

100 2.269 × 10−7 2.070 × 10−8 3.438 × 10−9

150 2.121 × 10−7 3.473 × 10−8 4.123 × 10−9

200 3.364 × 10−7 2.904 × 10−8 1.015 × 10−9

350 3.214 × 10−7 4.470 × 10−8 3.440 × 10−9

The results of an investigational analysis on the number of nodes per layer and the
number of iterations are shown in Table 4. 10,000, 400,000, and 800,000 iterations were
completed. The numbers 10, 20, 40, and 80 were used to test the nodes. The results show
that increasing the number of iterations reduces the amount of the error while the number
of nodes remains constant. The findings also reveal that increasing or decreasing the
number of nodes has no effect on the amount of money spent. As a result, increasing the
number of iterations reduces the amount of the error while having no effect on the number
of nodes.

Table 4. Results of the mean square error analysing of varying number of iterations and number of
nodes per layer in the simulations.

Number of Iterations
Nodes

100,000 400,000 800,000

10 8.991 × 10−7 3.655 × 10−8 5.824 × 10−8

20 2.361 × 10−6 2.323 × 10−8 2.390 × 10−8

40 5.144 × 10−7 7.846 × 10−8 2.632 × 10−8

80 7.642 × 10−7 5.921 × 10−8 3.327 × 10−8

The results of simulations undertaken to determine the correlation between the data
size used during the training process and the number of iterations are shown in Table 5 .
The experiment included data sizes of 100, 150, 200, and 350, as well as iterations of 100,
400, and 800,000. The results show that increasing the number of iterations while keeping
the training data size constant minimizes the margin of error. The results also show that
changing the data size while maintaining a constant number of iterations has no effect on
the number of iterations. As a result, increasing the number of iterations decreases the
amount of the error, whereas changing the size of the training data has no effect.

Table 5. Results of the mean square error analysis of varying number of iterations and data size per
layer in the simulations.

Number of Iterations
Data Size

100,000 400,000 800,000

100 1.292 × 10−6 1.188 × 10−7 2.752 × 10−8

150 2.536 × 10−6 3.273 × 10−8 2.843 × 10−8

200 1.110 × 10−6 1.491 × 10−8 2.064 × 10−8

350 1.063 × 10−6 3.399 × 10−8 1.661 × 10−8
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The data size used during the training process and the number of nodes per layer are
shown in Table 6. The experiment used 100, 150, 200, and 350 data sizes, as well as 100,
150, 200, and 350 iterations. The results suggest that increasing the number of nodes while
keeping the training data size constant lowers the margin of error. The results also reveal
that changing the data size while keeping the number of nodes fixed has no effect on the
number of nodes. As a result, increasing the number of nodes lowers the amount of the
error, however changing the size of the training data has no effect.

Table 6. Results of the mean square error analyzing of varying sizes of data points iterations and
number of nodes in layers in the simulations.

Number of Nodes
Data Size

10 40 80

100 6.102 × 10−8 4.882 × 10−8 1.533 × 10−7

150 4.574 × 10−8 3.127 × 10−8 1.823 × 10−7

200 4.053 × 10−8 3.386 × 10−8 5.401 × 10−8

350 1.277 × 10−7 3.318 × 10−8 1.231 × 10−8

4. Discussion

The results obtained showed high accuracy especially in data fitting compared to the
mathematical method’s accuracy [34], particularly in data fitting. Another feature of this
model is that it anticipates the wave behaviour of the active infected population as it makes
forecasts. In comparison to other PINNs techniques, the model achieved roughly similar
results, while a convolutional neural network time varying model [6,8] outperformed it
somewhat. The method’s major flaw is that it relies on previous data. This reduces its
efficiency when it becomes accustomed to forecasting data, especially if the anticipated
time is extended, because other previously unforeseeable factors, such as new species,
are introduced.

5. Conclusions

The study’s goal was to examine current data in order to determine COVID-19’s
behavioural dynamics. The Physics Informed Neural Networks framework was used to
accomplish this analysis and to be able to estimate the dynamics of COVID-19. The focus
of the research was to establish the number of patients who were susceptible, infected,
recovered, and deceased in a timely manner. The study also intended to establish the
disease’s dissemination rate, death rate, and recovery rate based on this information. The
rates were to be calculated on an average basis. The study attempted to take advantage of
neural networks’ ability to uncover hidden patterns in data, such as prospective increases
and falls in dynamics, because they have this capability.

The Physics Informed Neural Networks framework used in the study is an ANN model
that trains a neural network by exposing it to both the training data and the governing
equations of the underlying problem. The Susceptible–Infected–Recovered–Deceased
model was the mathematical model introduced as the governing equations of the PINNs
training model. The underlying data for the simulations was collected between March
2020 and September 2021 in the kingdom of Eswatini. The main advantage of adopting the
PINNs model was that it outperformed all other data analysis models even when given
minimal quantities of training data, which was important given the disease’s newness and
the lack of data and knowledge [8].

The generated PINNs model was used to run simulations, and the results were pre-
sented in the form of tables and graphs. The study’s first model was created artificially
and had the advantage of being both accurate and covering a disease spread that lasted
the entire life of the simulated disease spread. The acquired result had a modest margin of
error, with the sole exception being the forecasts for the deceased population, which had a
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larger margin of error. This demonstrated that the proposed model could produce accurate
findings and that the model could be used to assess the model over its entire life cycle.
Another experiment was carried out with data from the state of Alabama in the United
States. With a minimal margin of error, the constructed model was able to produce reliable
results.This test was primarily performed to determine whether there was no overfitting;
overfitting occurs when a created ANN can only handle a problem in the context of that
specific data. As a result, while the study focused on using data from Eswatini, the results
demonstrated that the data can be transferred and used with data from any country, region,
continent, or sample of specification.

Only 170 data points were included in the first simulation results provided in the study
using the main Eswatini dataset. The goal of this simulation was to see if the model could
produce viable findings with limited amounts of data. This would be particularly useful
in formulating predictions about the virus’s behaviour in circumstances where data were
sparingly collected or big gaps of missing data existed. The results collected revealed some
positive outcomes with few faults. However, the results were less accurate when compared
to those obtained when bigger datasets were employed. There were also substantially larger
margins in the death forecasts, which was a problem that persisted across all simulations.
This contradicts the conclusions of the sensitivity analysis, which found that increasing the
size of the training dataset had a minimal margin of change.

To build the training and testing datasets, a bigger dataset encompassing all of the data
available at the time was also employed. The results were similar to those obtained during
the training of the smaller dataset, but with a far higher level of precision. This enormous
dataset was also used to create forecasts for the future. These predictions were found to be
quite accurate, but as the number of days forecasted increased, the accuracy declined. Even
while making these future predictions, the determined dynamics demonstrated that they
can both account for the creation of a wave, which was a critical and extremely unusual
aspect that was found. This suggests that the model was able to adjust the dynamics both
positively and negatively without any external help based on the data patterns.

The model was created over a long period of time, with early tests and simulations
carried out when there were few data available. Although it is not displayed in the findings,
it was discovered that the model was unable to forecast the major changes in the wave—
namely the crust and thrust—during the first wave. However, as the data grew larger, the
model began to recognize these patterns, and the results improved, eventually leading to
those that were reached. The results produced during these simulations and tests were more
accurate than those obtained during research that used the mathematical model [35,36]
to conduct tests. This is because, while average rates are employed in both cases, the
generated PINNs model gradually learned to modify these rates or dynamics based on
hidden patterns in the data. In comparison to [6,8], the results had similar margins of error,
primarily due to data fitting because no future predictions were offered in these research.

The results show that the model is well adapted to making value predictions during
the training period. As a result, the model is highly adapted to data fitting in situations
when data were not gathered, were incorrectly input, or were lost. Another advantage of
the architecture is that it returns the spreading rate, death rate and recovery rate, which
were set up to function as modifying variables for the neural network’s PINNs component.
However, as the number of projected days grows larger, the accuracy of the forecast
decreases. This happens because the projections are based on the spread rate, mortality
rate and recovery rate trends, all of which are based on outdated data. The wave format
produced by active infections is also predicted by the model. The results show that the
model is well equipped to make decisions. As a result, while the model is well-suited to
making short-term predictions, it may also be used to make long-term predictions with a
manageable margin of error.

The study had the misfortune of only lasting a few weeks. As a result, the model was
unable to make a number of jumps, including the inability to forecast when a potential
wave would occur. There have also been some new developments, such as the discovery
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that some infected individuals can become re-affected. As a result, the SIRD model would
be more accurate than the SIRD model currently in use. Thus, future research into these
areas, which are currently understudied, is necessary.

The lack of data and processing power was a major stumbling block during the project.
As a result, we advocate developing a model that groups each of the SIRD populations by
age for future research, as it has been proven that different age groups are impacted by the
disease differently. Each of the metrics or rates can then be defined per age group using the
well segmented data. We also suggest testing a model identical to the one employed in the
study, but on a larger scale with more processing capacity.
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Abstract: This article concerns the optimality conditions for a smooth optimal control problem with
an endpoint and mixed constraints. Under the normality assumption, which corresponds to the full-
rank condition of the associated controllability matrix, a simple proof of the second-order necessary
optimality conditions based on the Robinson stability theorem is derived. The main novelty of this
approach compared to the known results in this area is that only a local regularity with respect to the
mixed constraints, that is, a regularity in an ε-tube about the minimizer, is required instead of the
conventional stronger global regularity hypothesis. This affects the maximum condition. Therefore,
the normal set of Lagrange multipliers in question satisfies the maximum principle, albeit along with
the modified maximum condition, in which the maximum is taken over a reduced feasible set. In
the second part of this work, we address the case of abnormal minimizers, that is, when the full
rank of controllability matrix condition is not valid. The same type of reduced maximum condition
is obtained.

Keywords: optimal control; maximum principle; mixed constraints

1. Introduction

In this article, second-order necessary optimality conditions for an optimal control
problem with mixed equality and inequality constraints are investigated. Under the
normality condition, which is ensured by the full rank of the controllability matrix, a rather
simple proof of the optimality conditions is proposed based on Robinson’s theorem on the
metric regularity for set-valued mappings. For the case in which the normality condition is
violated, the second-order conditions are derived based on the index approach. This means
that some reduced cone of Lagrange multipliers is invoked, which is defined by using the
index of the quadratic form of the Lagrange function; see, e.g., [1–3].

In work [4], the two notions of the strong and of weak regularity of an admissible
trajectory with respect to mixed constraints have been considered. Strong regularity means
that the constraint qualification, or the so-called Robinson condition, is satisfied for all time-
points and for all admissible control values. This corresponds to the regularity condition in
the classical sense. Weak regularity means that this condition is satisfied merely in some
neighborhood of the optimal process. By their nature, these two concepts correspond,
respectively, to global, and local regularity settings. Under weak regularity, a refined
maximum condition of Pontryagin’s type has been obtained, in which the maximum is
taken over the closure of regular points of the feasible set, but not over the entire feasible
set. In this article, the results of [4] are carried over to the second-order conditions in the
case of global minimum.

The literature on optimality conditions for optimal control problems with mixed
constraints is extensive. In the context of this research related to the study of mixed
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constraints, we note the works of [5–12]. Regarding the second-order conditions in mixed
constrained problems, one may consider, e.g., [3,13,14] and the bibliography cited therein.
At the same time, these selective lists of publications are far from exhaustive.

This work is organized as follows. In the next section, the problem formulation is
presented, together with main definitions and notation. In Section 3, the issue of normality
is discussed. In Section 4, the main result of this work—the normal maximum principle
and second-order optimality conditions—is formulated and proved. In Section 5, the
abnormal situation is taken into consideration, and the result of the previous section is
refined. Section 6 concludes the work with a short summary.

2. Problem Formulation

Consider the following optimal control problem on the fixed time interval [0, 1]:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Minimize ϕ(p)

subject to ẋ(t) = f (x(t), u(t), t) for a.a. t,

e1(p) ≤ 0, e2(p) = 0,

u(t) ∈ U(x(t), t) for a.a. t,

(1)

where p = (x0, x1), x0 = x(0), x1 = x(1), t ∈ [0, 1], and

U(x, t) := {u ∈ Rm : r1(x, u, t) ≤ 0, r2(x, u, t) = 0}.

The mappings ϕ : R2n → R, ei : R2n → Rki , f : Rn ×Rm ×R1 → Rn, ri : Rn ×Rm ×
R1 → Rqi , i = 1, 2, satisfy the following hypothesis.

Hypothesis 1 (H1). Mappings ϕ, e1, e2, f , r1, r2 are twice continuously differentiable.

The vector p = (x0, x1) is termed the endpoint, as well as the constraints given by
mappings e1, e2. The scalar function ϕ(p) defines the minimizing functional. Mappings
r1, r2 define the mixed constraints which are imposed on both state and control variables.

A pair of functions (x, u) is designed by the control process; if x(·) is absolutely
continuous, u(·) is measurable and essentially bounded, whereas ẋ(t) = f (x(t), u(t), t)
for a.a. t ∈ [0, 1]. A control process is feasible, provided that the endpoint, control and
state constraints are satisfied. A feasible process (x̄, ū) is termed optimal if, for any feasible
process (x, u), ϕ( p̄) ≤ ϕ(p), where p̄ = (x̄(0), x̄(1)).

This concept of the minimum is known as a global strong minimum. The purpose
of this work is to derive the second-order necessary optimality conditions for this type
of minimum under the normality assumptions. That is, to find such a set of Lagrange
multipliers that simultaneously satisfies the maximum principle and Legendre’s condition,
and for which λ0 > 0. Such a set of multipliers must be unique upon normalization. The
abnormal situation is also examined after the normal case.

Consider the reference control process (x̄, ū), which can be optimal, extremal, regular,
or normal in what follows. Denote by r = (r1, r2) the joint mapping acting onto Rq,
where q = q1 + q2. Let J(x, u, t) := {j : rj(x, u, t) = 0} be the set of active indices,
where the upper index specifies the vector component. Set J(u, t) := J(x̄(t), u, t). Let
U (·) designate the closure of function ū(·) w.r.t. the Lebesgue measure; that is, for a
given t ∈ [0, 1], the set U (t) consists of essential values of ū(·) at point t, [8]. Recall that
the vector a is said to be the essential value of a function u(·) at point τ, provided that
�({t ∈ [τ − ε, τ + ε] : u(t) ∈ Bε(a)}) > 0 ∀ ε > 0, where Bε(a) is the closed ball centered at
a with the radius ε, and � designates the Lebesgue measure on R.

The main regularity concept is as follows.
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Definition 1. The control process (x̄, ū) is said to be regular w.r.t. the mixed constraints, provided
that, for all t ∈ [0, 1] and for all u ∈ U (t), the active gradients (rj)′u(x̄(t), u, t), j ∈ J(u, t) are
linearly independent.

The following proposition represents an equivalent reformulation of the introduced
regularity concept. For ε ≥ 0, define the set

Jε(x, u, t) :=
{

j ∈ {1, . . ., q1} : rj(x, u, t) ∈ [−ε, 0]
}
∪ {q1 + 1, . . ., q},

which is subject to the same conventions as the mapping J(x, u, t). It is clear that J ⊆ Jε,
and J0 = J.

Proposition 1. Let the control process (x̄, ū) be regular w.r.t. the mixed constraints. Then,
there exists a number ε0 > 0 such that, for all t ∈ [0, 1] and for almost all s ∈ [0, 1] such that
|s − t| ≤ ε0, the ε0-active gradients (rj)′u(x̄(s), ū(s), s), j ∈ Jε0(s) are linearly independent.
Moreover, the number ε0 can be chosen such that the modulus of surjectivity for this set of gradients
is not lower than ε0.

The proof is based on a simple contradiction argument.
The point u ∈ U(x, t) is termed regular provided that the gradients (rj)′u(x, u, t),

j ∈ J(x, u, t) are positively linearly independent. The subset of all regular points of U(x, t)
is denoted as UR(x, t). Denote

Θ(x, t) := clos UR(x, t).

It is clear that, for the regular process (x̄, ū), one has U (t) ⊆ Θ(x̄(t), t) �= ∅ ∀ t ∈ [0, 1].
Consider the Hamilton–Pontryagin function

H(x, u, ψ, t) := 〈ψ, f (x, u, t)〉,

and the Lagrangian

L(p, λ) := λ0 ϕ(p) + 〈λ1, e1(p)〉+ 〈λ2, e2(p)〉.

Here, ψ ∈ (Rn)∗, λ = (λ0, λ1, λ2) ∈ (R1+k1+k2)∗ are the conjugate variables.

Definition 2. The control process (x̄, ū) is said to satisfy the maximum principle provided that
there exists a vector λ = (λ0, λ1, λ2) ∈ (R1+k1+k2)∗, where λ0 ≥ 0 and λ1 ≥ 0, an absolutely
continuous vector-valued function ψ ∈W1,∞([0, 1]; (Rn)∗), and a measurable, essentially bounded,
vector-valued function ν ∈ L∞([0, 1]; (Rq)∗) of which the j-th component is nonnegative for
j = 1, . . ., q1, such that λ �= 0, and, on [0, 1], it holds that:

ψ̇(t) = −H′x(x̄(t), ū(t), ψ(t), t) + ν(t)r′x(x̄(t), ū(t), t) for a.a. t, (2)

ψ(α) = (−1)αL′xα
( p̄, λ) for α = 0, 1, (3)

max
u∈Θ(x̄(t),t)

H(x̄(t), u, ψ(t), t) = H(x̄(t), ū(t), ψ(t), t) for a.a. t, (4)

H′u(x̄(t), ū(t), ψ(t), t)− ν(t)r′u(x̄(t), ū(t), t) = 0 for a.a. t, (5)

〈λ1, e1( p̄)〉 = 0, and
∫ 1

0
〈ν(t), r(x̄(t), ū(t), t)〉dt = 0. (6)

Here, Condition (2) is the co-state equation, that is, the differential equation for the
conjugate variable ψ. Equalities (3) are the transversality conditions. Equality (4) is the
maximum condition. Equality (5) is the so-called Euler–Lagrange equation. Equalities (6)
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are known as the complementary slackness condition. Furthermore, (λ, ψ, ν) are known as
the Lagrange multipliers.

Under the regularity condition given in Definition 3, the multipliers ψ, and ν are
uniquely defined by the vector λ, where (λ, ψ, ν) is the set of Lagrange multipliers corre-
sponding to (x̄, ū) in view of the maximum principle. This assertion simply follows from the
Euler–Lagrange equation. Then, denote by Λ = Λ(x̄, ū) the set of vectors λ ∈ (R1+k1+k2)∗

for which there exist (ψ, ν) such that the corresponding set of Lagrange multipliers (λ, ψ, ν)
generated by λ satisfies the maximum principle.

3. Normality Condition

Let us introduce the notion of normality. This notion is based on the concept of
linearization of the control problem and the corresponding variational differential sys-
tem. Consider the reference control process (x̄, ū), and a pair (δx0, δu) ∈ X := Rn ×
L2([0, 1];Rm). Denote by δx(·) the solution to the variational differential equation on the
time interval [0, 1], which corresponds to (δx0, δu), that is,

δ̇x(t) = f ′x(x̄(t), ū(t), t)δx(t) + f ′u(x̄(t), ū(t), t)δu(t), (7)

where δx(0) = δx0. Such a solution exists on the entire time interval [0, 1] and, as soon as
δu is an L2-function, one finds that δx ∈W1,2([0, 1];Rn).

In what follows, it is not restrictive to set e1( p̄) = 0. Thus, all the endpoint constraints
of the inequality type are assumed to be active. Consider the two following subspaces in X :

Ne :=
{
(δx0, δu) ∈ X : e′( p̄)δp = 0

}
,

Nr :=
{
(δx0, δu) ∈ X : D(t)

[
r′x(x̄(t), ū(t), t)δx(t) + r′u(x̄(t), ū(t), t)δu(t)

]
= 0

}
.

Here, e is the joint mapping of e1, e2; δp = (δx0, δx1), where δx1 = δx(1), and D(t) is
the diagonal q× q-matrix which has 1 in the position (j, j) iff j ∈ J(t) and 0 otherwise.

Consider the matrix

R(t) = r′u(x̄(t), ū(t), t)∗D(t)r′u(x̄(t), ū(t), t).

Set
M(t) := R(t)+r′u(x̄(t), ū(t), t)∗D(t)r′x(x̄(t), ū(t), t).

Here, A+ stands for the generalized inverse [15]. Here, the generalized inverse
R(t)+ can be computed as follows. Let T(t) be a non-singular orthogonal linear trans-
form which maps the subspace ker R(t)⊥ = im R(t) onto the subspace of Rm with the
first m− q(t) coordinates vanished, where q(t) = |J(t)| is the number of active indices.
Then, R(t)+ = T−1(t)[T(t)R(t)T−1(t)]−1T(t), where the pseudo-inverse of the block( 0 0

0 A

)−1
is understood as

( 0 0
0 A−1

)
.

Consider the matrix differential system

Φ̇(t) = f ′x(x̄(t), ū(t), t)Φ(t)− f ′u(x̄(t), ū(t), t)M(t)Φ(t), (8)

where Φ(0) = I. Let Φ(t) be the solution to (8), and P(t) be the matrix of orthogonal
projection onto ker R(t).

It is clear that by virtue of the construction, any element (δx0, δu) ∈ Nr can be
represented as

(δx0, δu) = (δx0, Pδu + V [δx0, δu]), (9)

where V [δx0, δu] = M(t)δx(t), whereas

δx(t) = Φ(t)
(

δx0 +
∫ t

0
Φ−1(s) f ′u(x̄(s), ū(s), s)P(s)δu(s)ds

)
. (10)
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Conversely, any δx0 ∈ Rn and δv ∈ L2([0, 1];Rm): δv(t) ∈ ker R(t) a.e. yields an ele-
ment of Nr as (δx0, δv + V [δx0, δv]) ∈ Nr. Therefore, there is a one-to-one correspondence
between Nr and the space of the above-specified elements (δx0, δv). At the same time, the
formula for the solution δx in Nr is given by (10).

Let us proceed with the construction of the controllability matrix. Define the Rn×k-
matrix A as

A = e′x0
( p̄) + e′x1

( p̄)Φ(1),

with the Rm×k-matrix B(t) given as

B(t) = e′x1
( p̄)Φ(1)Φ−1(t) f ′u(x̄(t), ū(t), t).

Now, the controllability matrix Q is introduced as the Rk×k-matrix:

Q = AA∗ +
∫ 1

0
B(t)P(t)B∗(t)dt.

Definition 3. The regular control process (x̄, ū) is said to be normal, provided that Q > 0, or
equivalently, rank Q = k.

4. Main Result

In this section, the second-order necessary optimality conditions are addressed. Con-
sider the two cones

Ce :=
{

y ∈ Rk : yj ≤ 0 for j = 1, . . ., k1, and yj = 0 for j = k1 + 1, . . ., k
}

,

Cr :=
{

y ∈ Rq : yj ≤ 0 for j = 1, . . ., q1, and yj = 0 for j = q1 + 1, . . ., q
}

.

Define the cone

K :=
{
(δx0, δu) ∈ X : e′( p̄)δp ∈ Ce,

D(t)
[
r′x(x̄(t), ū(t), t)δx(t) + r′u(x̄(t), ū(t), t)δu(t)

]
∈ Cr

}
.

On the space X , consider the quadratic form

Ωλ[(δx0, δu)]2 = L′′pp( p̄, λ)[δp]2 −
∫ 1

0
H′′ww(x̄(t), ū(t), ψ(t), t)[δw(t)]2dt

+
∫ 1

0

〈
ν(t), r′′ww(x̄(t), ū(t), t)[δw(t)]2

〉
dt.

Here and further, for convenience of notation: w = (x, u), δw(t) = (δx(t), δu(t)).
The main result of this section consists in the following theorem.

Theorem 1. Let (x̄, ū) be an optimal control process in Problem (1). Suppose that this process
is normal.

Then, Λ �= ∅. Moreover, dim span(Λ) = 1, and, for λ = (λ0, λ1, λ2) ∈ Λ, it holds that
λ0 > 0, and

Ωλ[(δx0, δu)]2 ≥ 0 ∀ (δx0, δu) ∈ K. (11)

The proof is preceded with the following auxiliary assertion.

Lemma 1. Consider linear bounded operators A and Ai, i = 1, 2, . . ., acting in a given Hilbert
space X, such that Ai → A pointwise. Assume that the spaces im Ai and im A∗i are closed and that
im A ⊆ im Ai for all i. Assume also that the sequence of norms ‖(Ai A∗i )

−1‖im Ai is uniformly
bounded. Let C ⊆ X be a closed and convex set.
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Then,
A−1(C) = Limsup

i→∞
A−1

i (C). (12)

Proof. Let ξi ∈ A−1
i (C) and ξi → ξ0 as i → ∞. By virtue of the uniform boundedness

principle, Aiξi → Aξ0. Thus, Aξ0 ∈ C and the embedding ‘⊇’ is proven.
Let us confirm the inverse embedding. Given ξ0 ∈ A−1(C), it is necessary to indicate

a sequence of elements ξi ∈ A−1
i (C), such that ξi → ξ0.

Consider the extremal problem

‖ξ − ξ0‖2 → min, Aiξ = Aξ0.

Denote the solution to this problem as ξi. The solution exists since im A ⊆ im Ai and
since the quadratic functional is weakly lower semi-continuous, whereas the closed convex
set A−1

i (Aξ0) is weakly closed. Since the image of Ai is closed, one can apply the Lagrange
multiplier rule as follows. There exists a non-zero vector λi ∈ im Ai such that

ξi − ξ0 + A∗i λi = 0.

Applying Ai, the multiplier is expressed as follows

λi = (Ai A∗i )
−1(Aiξ0 − Aiξi).

Therefore,
ξi =

(
I − A∗i (Ai A∗i )

−1(Ai − A)
)

ξ0.

Note that ‖A∗i (Ai A∗i )
−1‖ ≤ ‖Ai‖ · ‖(Ai A∗i )

−1‖ ≤ const by the assumption of the
lemma. However, Aiξ0 → Aξ0, and thus, ξi → ξ0.

Proof to Theorem 1. By virtue of Theorem 3.5 in [4] and the regularity of the process (x̄, ū),
there exists a set of multipliers (λ, ψ, ν) satisfying the maximum principle, such that λ �= 0.

Firstly, we prove that the given λ satisfies the following Lagrange multipliers rule:

λ0(〈ϕ′x0
( p̄), δx0

〉
+
〈

ϕ′x1
( p̄), δx1

〉)
+ (λ1, λ2)

(
e′x0

( p̄)δx0 + e′x1
( p̄)δx1

)
= 0 (13)

for all (δx0, δu) ∈ Nr.
Due to the maximum principle, one has

〈ψ(1), δx(1)〉 = 〈ψ(0), δx(0)〉+
∫ 1

0

(
〈ψ̇(t), δx(t)〉+

〈
ψ(t), δ̇x(t)

〉)
dt

= 〈ψ(0), δx(0)〉+
∫ 1

0

(
〈−ψ(t) f ′x(x̄(t), ū(t), t)+ν(t)r′x(x̄(t), ū(t), t), δx(t)〉〈

ψ(t), f ′x(x̄(t), ū(t), t)δx(t) + f ′u(x̄(t), ū(t), t)δu(t)
〉)

dt

=
〈
L′x0

( p̄, λ), δx0
〉

+
∫ 1

0

(
ν(t)r′x(x̄(t), ū(t), t)δx(t) + ψ(t) f ′u(x̄(t), ū(t), t)δu(t)

)
dt.

Let us add and subtract the term ν(t)r′u(x̄(t), ū(t), t)δu(t) under the integral. Then, by
virtue of (5), and also by taking into account that

ν(t)
(
r′x(t)δx(t) + r′u(t)δu(t)

)
= 0 for a.a. t

when (δx0, δu) ∈ Nr, we derive 〈ψ(1), δx(1)〉 =
〈
L′x0

( p̄, λ), δx0
〉
. Then, from (3),〈

−L′x1
( p̄, λ), δx1

〉
= 〈ψ(1), δx(1)〉 =

〈
L′x0

( p̄, λ), δx0
〉
.
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Hence, 〈
L′x0

( p̄, λ), δx0
〉
+
〈
L′x1

( p̄, λ), δx1
〉
= 0,

and therefore, Condition (13) is proven.
Consider the endpoint constraint operator

E(δx0, δu) := e′( p̄)δp

acting from X to Rk. It is a straightforward task to derive that condition Q > 0 implies that
E(Nr) = Rk. Then, using λ �= 0, Equation (13) yields that λ0 > 0. Moreover, the multiplier
λ is unique, upon normalization.

Let us proceed to the proof of the second-order condition (11). Take a number ε > 0.
Let Dε(t) designate the diagonal q× q-matrix defined as D(t) but, now, with the set J(t)
replaced by Jε(t). Define the cone Kε in the same way as K, but with the matrix D(t)
replaced by Dε(t). It is clear that Kε ⊆ K for all ε > 0. Firstly, we prove (11) for the reduced
cone Kε. Consider the space X∞ = Rn × L∞([0, 1];Rn) as the L∞-analogue of X , and the
following image-space Yε := ∏

q
j=1 L∞(Tε

j ;R) × Rk, where Tε
j = {t ∈ [0, 1] : j ∈ Jε(t)},

j = 1, . . ., q.
Define the mapping Fε : X∞ → Yε as follows

Fε(x0, u(·)) =
(

r1(x(·), u(·), ·)|Tε
1
, . . ., rq(x(·), u(·), ·)|Tε

q , e1(p), e2(p), . . ., ek(p)
)

.

Set ȳε = Fε(x̄0, ū(·)). Let Cε ⊂ Yε be the closed cone such that, for all pairs (ξ(·), γ) ∈
Cε, one has ξ(t) ∈ Cr for a.a. t ∈ [0, 1], and γ ∈ Ce. Here, ξ j(t) = 0 when t /∈ Tε

j .
Consider the inclusion

Fε(x0, u(·)) ∈ ȳε + Cε, (x0, u(·)) ∈ X∞. (14)

The Fréchet derivative F′ε(x̄0, ū(·)) is the linear mapping (Aε,B) : X∞ → Yε, where
Aε = (A1

ε , . . .,Aq
ε ),

Aj(δx0, δu) := (rj)′x(x̄(t), ū(t), t)δx(t) + (rj)′u(x̄(t), ū(t), t)δu(t), t ∈ Tε
j ,

and B(δx0, δu) := e′( p̄)δp. The proof of this fact involves a standard argument.
Firstly, consider this derivative as the extended linear mapping acting from X to

∏
q
j=1 L2(Tε

j ;R) × Rk, that is, in Hilbert spaces. Let us prove its surjection. Since the
linear mapping Aε is surjective due to regularity w.r.t. the mixed and state constraints
(this is a simple task to ensure by solving the corresponding Volterra equation and using
Proposition 1 in this way), it is sufficient to show that the linear mapping B is surjective on
kerAε. Let Qε be the matrix constructed as Q; however, with the matrix D(t) replaced by
Dε(t). It is clear that Qε → Q as ε → 0. Therefore, one has that Qε > 0 for all sufficiently
small ε. At the same time, this condition implies that E(kerAε) = Rk. Therefore, it is
simple to conclude that (Aε,B) is a surjective linear mapping for all sufficiently small ε.

The surjection of (Aε,B) as the linear mapping from X∞ to Yε results from the follow-
ing simple argument. Firstly, notice that, in space X , one has the relation

clos(kerAε ∩ X∞) = kerAε, (15)

which is clear due to Formulas (9) and (10), as these still hold when D(t) is replaced by
Dε(t) for a sufficiently small ε. Then, simply, Nr = Nr(ε) = kerAε. At the same time, the
linear operator Aε is surjective as the mapping from X∞ to ∏

q
j=1 L∞(Tε

j ;R) by virtue of
the same arguments involving the solution to a Volterra equation. However, the image
of B is finite-dimensional, whereas, as has already been confirmed, B is surjective on the
space kerAε. Therefore, by virtue of (15), one finds that B is surjective on the subspace
kerAε ∩ X∞. Thus, the derivative F′ε(x̄0, ū(·)) is surjective and, thereby, (x̄0, ū(·)) is a
normal point for the mapping Fε.
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The Robinson theorem (see Theorem 1 in [16]) asserts the existence of a neighbourhood
Oε of point ((x̄0, ū(·)), ȳε) ∈ X∞ ×Yε such that

dist
(
(x0, u(·)),F−1

ε (y + Cε)
)
≤ c dist(Fε(x0, u(·)), y + Cε) ∀ ((x0, u(·)), y) ∈ Oε. (16)

Consider an arbitrary element h = (δx0, δu) ∈ Kε ∩ X∞, and a number τ > 0. By
putting in (16) the value ξ(τ) = (x̄0, ū(·)) + τh for (x0, u(·)), and ȳε for y, one obtains

dist
(

ξ(τ),F−1
ε (ȳε + Cε)

)
≤ o(τ),

and, thus, the setKε ∩X∞ is tangent to the solution set F−1
ε (ȳε + Cε); see Corollary 2 in [16].

This means that, for every small τ, there exists a vector ω(τ) = (a(τ), v(·; τ)) ∈ X∞ such

that
‖ω(τ)‖

τ
→ 0 as τ → 0, whereas Fε(ξ(τ) + ω(τ)) ∈ ȳε + Cε.

Let us set x0(τ) := x̄0 + τδx0 + a(τ), and u(t; τ) := ū(t) + τδu(t) + v(t; τ). Then,
one may verify that the control pair (x0(τ), u(·; τ)) ∈ X∞ is admissible to Problem (1)
for all sufficiently small τ due to the construction of the mapping Fε. At this point, it is
essential that ε > 0. Let x(·; τ) be the trajectory corresponding to the pair (x0(τ), u(·; τ)),
and p(τ) = (x(0; τ), x(1; τ)). Take the multiplier λ = (1, λ1, λ2) ∈ Λ(x̄, ū), and the
corresponding multiplier ν entailed by λ. Let ϕ( p̄) = 0.

Consider the inequality

L(p(τ), λ) +
∫ 1

0
〈ν(t), r(x(t; τ), u(t; τ), t)〉dt ≥ 0, (17)

which results from the condition of minimum and from the fact that the control process
(x(·; τ), u(·; τ)) is admissible.

Consider the second-order variational system⎧⎪⎨⎪⎩
δ̇x(1)(t; τ) = f ′x(x̄(t), ū(t), t)δx(1)(t; τ) + f ′u(x̄(t), ū(t), t)δu(t; τ),

δ̇x(2)(t; τ) = f ′x(x̄(t), ū(t), t)δx(2)(t; τ) + 1
2 f ′′ww(x̄(t), ū(t), t)[(δx(1)(t; τ), δu(t; τ))]2,

δx(1)(0; τ) = δx0(τ), δx(2)(0; τ) = 0.

Here, δx0(τ) = δx0 +
a(τ)

τ
, and δu(t; τ) = δu(t) +

v(t; τ)

τ
. It is clear that

x(t; τ) = x̄(t) + τδx(1)(t; τ) + τ2δx(2)(t; τ) + o(τ2).

Therefore, by expanding in the Taylor series in (17), one has

o(τ2) ≤
〈
L′x0

( p̄, λ), τδx0(τ)
〉
+
〈
L′x1

( p̄, λ), τδx(1)(1; τ) + τ2δx(2)(1; τ)
〉

+
τ2

2
L′′pp( p̄, λ)

[
(δx0(τ), δx(1)(1; τ))

]2
+
∫ 1

0

〈
ν(t), r′x(x̄(t), ū(t), t)

[τδx(1)(t; τ) + τ2δx(2)(t; τ)] + τr′u(x̄(t), ū(t), t)δu(t; τ)

+
τ2

2
r′′ww(x̄(t), ū(t), t)[(δx(1)(t; τ), δu(t; τ))]2

〉
dt.

Using the adjoint equation, one has

d
dt

〈
ψ(t), δx(1)(t; τ)

〉
= ν(t)r′x(t)δx(1)(t; τ) + ψ(t) f ′u(t)δu(t; τ),

d
dt

〈
ψ(t), δx(2)(t; τ)

〉
= ν(t)r′x(t)δx(2)(t; τ) +

1
2

ψ(t) f ′′ww(t)[(δx(1)(t; τ), δu(t; τ))]2.
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Here, and from now on, the dependence on the optimal process is, for simplicity,
omitted. Therefore, using these relations and the transversality conditions (3), and by
gathering the terms with τ, and τ2 in two different groups, we obtain

o(τ2) ≤ −τ
∫ 1

0
[H′u(t)−ν(t)r′u(t)]δu(t; τ)dt+

τ2

2

(
L′′pp( p̄, λ)[(δx0(τ), δx(1)(1; τ))]2

−
∫ 1

0

(
ψ(t) f ′′ww(t) + ν(t)r′′ww(t)

)
[(δx(1)(t; τ), δu(t; τ))]2dt

)
.

Now, as the implication of (5), we obtain (11) for the given (δx0, δu) ∈ Kε ∩ X∞. Then,
Estimate (11) is proven on the cone Kε by a simple passage to the limit in X .

Let us pass to the limit as ε → 0, and prove (11) on the entire cone K. Take h ∈ K.
One needs to justify that, for all ε > 0, there exists hε ∈ Kε such that hε → h in X .
Indeed, then, (11) is proven due to a simple passage to the limit. However, the existence
of such hε is yielded by Lemma 1. Indeed, it is a straightforward task to verify that the
derivative operator F′ε satisfies all the assumptions of this assertion; it obviously converges
pointwise to F′0 as ε → 0, while its image is closed, as was confirmed above. The image
of the conjugate operator is closed due to the regularity of the reference control process
with respect to the mixed constraints which is merely a technical step to ensure. Another
technical step is to assert that F′ε [F′ε ]∗ is positive due to normality. Moreover, the constant
of covering does not depend on ε. It is also a straightforward task to verify that the rest of
the assumptions hold if we consider C0 as C.

The proof is complete.

5. Abnormal Case

In this section, we consider the case when rank Q < k. This case, when the normality
condition is not satisfied, is called abnormal. Then, as a simple example can show that
Theorem 1 fails to hold. Firstly, the normalized multiplier λ is no longer unique, and
moreover, there may not exist such a multiplier from the cone Λ for which Estimate (11)
is still valid everywhere on K. Therefore, Theorem 1 requires a certain refinement in the
abnormal case. Let us formulate the “abnormal” version of this statement. In this enterprise,
we follow the method based on the so-called index approach.

Consider the reduced cone of Lagrange multipliers Λa = Λa(x̄, ū), which contains
multipliers λ ∈ Λ such that

indN Ωλ = k− rank Q.

Here, the notation indX stands for the index of a quadratic form over the space X, and
N = Ne ∩Nr. Consider also the following extra hypotheses.

Hypothesis 2 (H2). Mappings f , r2 are affine w.r.t. u, while r1 is convex w.r.t. u.

Hypothesis 3 (H3). Mixed constraints are globally regular, that is, U(x, t) = UR(x, t) for all x
and t. Moreover, the set-valued mapping U(x, t) is uniformly bounded.

The main result of this section is as follows.

Theorem 2. Let (x̄, ū) be an optimal control process in Problem (1). Suppose that this process is
regular with respect to the mixed constraints.

Then, Λa �= ∅. Moreover, under (H2) and (H3), one has

max
λ∈Λa

Ωλ[(δx0, δu)]2 ≥ 0 ∀ (δx0, δu) ∈ K. (18)

In the case of local weak minimum, Estimate (18) has been proven in [14]. Here, our
task is to prove it in the case of global strong, or Pontryagin’s type of the minimum. In [3],
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the condition that the cone Λa is non-empty has been proven in the class of generalized con-
trols. Note that, under the normality condition of the optimal control process, Estimate (18)
implies (11) since the normalized multiplier is unique. Thus, Theorem 2, in essence, repre-
sents a stronger assertion than Theorem 1, albeit under some extra assumptions such as
(H2) and (H3). These two assumptions are meant to simplify the presentation. Note that
(H3) is sufficient to suppose on the optimal trajectory only.

Proof. The proof of theorem is divided into the two stages.

STAGE 1. In this stage, we prove that Λa �= ∅. In the beginning, suppose that Hypothesis
(H3) is valid. Under (H1) and (H3), it is convenient to assume that f (x, u, t), and r(x, u, t)
are constant with respect to (x, u), and t, outside of some sufficiently large ball. This can be
obtained due to a simple problem reduction. In what follows, it will not also be restrictive
to consider that ϕ(p∗) = 0, and, for the simplicity of exposition, to consider that all the
constraints are scalar-valued, i.e., k1 = k2 = q1 = 1, while q2 = 0.

Let a, b be non-negative numbers. Consider the mapping

Δ(a, b) :=

⎧⎨⎩
ab−4 if b > 0,
1 if a > 0, b = 0,
0 if a = b = 0.

This function is lower semi-continuous. It will serve as a penalty function in the
applied method below.

Take a pair (x0, u) ∈ X , and consider the unique solution to the Cauchy problem
ẋ(t) = f (x(t), u(t), t), x(0) = x0, which exists on the entire time interval [0, 1] due to the
above assumptions. Set p = (x0, x1), where x1 = x(1). Note that p depends on (x0, u).
Let {εi} be an arbitrary sequence of positive numbers converging to zero. Consider the
mapping ϕ+

i (p) = (ϕ(p) + εi)
+, where a+ = max{a, 0} for a ∈ R. Thus, the following

functional over the space X is well-defined:

Fi(x0, u) := ϕ+
i (p) + Δ

(
(e+1 (p))2 + |e2(p)|2 +

∫ 1

0
(r(x, u, t)+)2dt, ϕ+

i (p)
)

.

Functional Fi is lower semi-continuous which is a straightforward exercise to verify
due to the assumptions made above regarding the mappings f and r. At the same time,
this functional is positive everywhere: Fi > 0.

Consider the following problem

Minimize Fi(x0, u), (x0, u) ∈ X .

Note that Fi(x̄0, ū) = εi. By applying the smooth variational principle, see, e.g., in [17],
for each i, there exists an element (x0,i, ui) ∈ X and a sequence of elements (x̃j, ũj) ∈ X ,
j = 1, 2, . . ., converging to (x0,i, ui) such that

Fi(x0,i, ui) ≤ Fi(x̄0, ū) = εi, (19)

|x0,i − x̄0|2 +
∫ 1

0
|ui(t)− ū(t)|2dt ≤ 3

√
ε2

i , (20)

and the pair (x0,i, ui) is the unique solution to the following problem:

Minimize Fi(x0, u) + 3
√

εi

∞

∑
j=1

2−j
(
|x0 − x̃j|2 +

∫ 1

0
|u− ũj(t)|2dt

)
, (x0, u) ∈ X .

Suppose that ϕ+
i (pi) = 0. Then, ϕ(pi) < 0 and, in view of optimality, taking into

account that ϕ( p̄) = 0, it follows that some of constraints in (1): e1, or e2, or r, are violated.
Therefore, by definition of Δ, one has Fi(x0,i, ui) ≥ 1. However, this contradicts (19) for
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i > 1. Thus, ϕ+
i (pi) > 0. Consider a number δi > 0 such that ϕ+

i (p) > 0 ∀ p: |p− pi| ≤ δi.
Then, by virtue of, again, the definition of Δ, the pair (x0,i, ui) is the unique global minimum
to the following control problem:

Minimize z0 + z−4
0

(
(e1(p)+)2 + |e2(p)|2

)
+
∫ 1

0
z−4(r(x, u, t)+)2dt

+ 3
√

εi

∞

∑
j=1

2−j
(
|x0 − x̃j|2 +

∫ 1

0
|u− ũj(t)|2dt

)
,

subject to ẋ = f (x, u, t),
ż = 0, for a.a. t ∈ [0, 1],

|p− pi| ≤ δi, z0 = ϕ+
i (p).

(21)

Denote by xi, zi the solution to (21), that is, the trajectory corresponding to the pair
(x0,i, ui(·)). Note that function zi(·) is constant, and thus it can be treated simply as number
zi ∈ R.

Problem (21) is, as a matter of fact, unconstrained. Consider the first and second-order
necessary optimality conditions for this problem.

The first-order conditions are stated as follows. There exist a number λ0
i > 0, and abso-

lutely continuous conjugate functions ψi and σi which correspond to xi, and zi, respectively,
such that, for a.a. t ∈ [0, 1],

ψ̇i(t) = −H′x(xi(t), ui(t), ψi(t), t) + 2λ0
i z−4

i r+(xi(t), ui(t), t)r′x(xi(t), ui(t), t),

σ̇i(t) = −4λ0
i z−5

i (r(xi(t), ui(t), t)+)2,
(22)

ψi(s) = (−1)sλ0
i

(
2z−4

i

(
e+1 (pi)

∂e1

∂xs
(pi)+e2(pi)

∂e2

∂xs
(pi)

)
+(1−s) 3

√
εiω

′
1,i(x0,i)

)
− (−1)sρi

∂ϕ

∂xs
(pi), s = 0, 1,

σi(0) = λ0
i

(
1− 4z−5

i (e+1 (pi))
2 − 4z−5

i |e2(pi)|2
)
+ ρi,

σi(1) = 0,

(23)

max
u∈Rm

(
H(xi(t), u, ψi(t), t)− λ0

i z−4
i (r(xi(t), u, t)+)2 − λ0

i
3
√

εi ·ω2,i(u, t)
)

= H(xi(t), ui(t), ψi(t), t)−λ0
i z−4

i (r(xi(t), ui(t), t)+)2−λ0
i

3
√

εi ·ω2,i(ui(t), t),
(24)

Here, ρi ∈ R is the multiplier corresponding to the constraint z0 = ϕ+
i (p),

ω1,i(x) :=
∞

∑
j=1

2−j|x− x̃j|2, and ω2,i(u, t) :=
∞

∑
j=1

2−j|u− ũj(t)|2.

Conditions (22)–(24) are the first-order optimality conditions in the form of the maxi-
mum principle. Consider the second-order optimality conditions for Problem (21).

Take an element (δx0, δu) ∈ X . Consider the variational differential equation related
to (21), that is,

δ̇xi(t) =
∂ f
∂x

(xi(t), ui(t), t)δxi(t) +
∂ f
∂u

(xi(t), ui(t), t)δu(t),

δ̇zi(t) = 0,
(25)

for a.a. t ∈ [0, 1], where
δxi(0) = δx0,

δzi(0) = ϕ′(pi)δpi.

Here, δpi := (δx0, δxi(1)).
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The solution to (25) exists, and it is unique on the entire time interval [0, 1] due to the
assumptions made above. The function δzi(·) is obviously constant, thus, it is treated just
as number δzi in what follows.

On the space X , consider the quadratic form

Ωi[(δx0, δu)]2 = λ0
i 2z−4

i e1(pi)
+e′′1 (pi)[δpi]

2 + 2z−4
i e2(pi)e′′2 (pi)[δpi]

2

+20z−6
i

(
(e1(pi)

+)2+|e2(pi)|2
)

δz2
i −

(
ρi ϕ

′′(pi)+λ0
i

3
√

εiω
′′
1,i(pi)

)
[δpi]

2

−
∫ 1

0
H′′ww(xi(t), ui(t), ψi(t), t)[(δxi(t), δu(t))]2dt

+λ0
i

∫ 1

0
2z−4

i r(xi(t), ui(t), t)+r′′ww(xi(t), ui(t), t)[(δxi(t), δu(t))]2dt

+
∫ 1

0
20z−6

i (r(xi(t), ui(t), t)+)2δz2
i dt+λ0

i
3
√

εi

∫ 1

0
ω′′2,i(ui(t), t)[δu(t)]2dt.

Consider the closed subspace Ni ⊆ X of pairs (δx0, δu) such that

(a) e′(pi)δpi = 0;
(b) r′x(xi(t), ui(t), t)δxi(t) + r′u(xi(t), ui(t), t)δu(t) = 0 for a.a. t ∈ Ti.

Here, Ti := {t ∈ [0, 1] : r(xi(t), ui(t), t) ≥ 0}.
Then, the second-order necessary optimality condition is given by the inequality

Ωi[(δx0, δu)]2 ≥ 0 ∀ (δx0, δu) ∈ Ni. (26)

(Note that functional F(x0, u) is not twice continuously differentiable. At the same
time, the scalar function F(x0,i + τδx0, ui + τδu) of τ possesses the second derivative w.r.t.
τ at τ = 0, provided that (δx0, δu) ∈ Ni. Using this fact, and the fact that Problem (21) is
unconstrained, it is simple to derive (26) by applying direct variations arguments.)

The next step is to pass to the limit as i → ∞ in the obtained optimality conditions.
Firstly, it follows from (20) that x0,i → x̄0, and ui(t) → ū(t) strongly in L2, and, thereby,
xi(t) ⇒ x̄(t) uniformly on [0, 1]. Then, zi → 0. Define

λ1
i := 2λ0

i z−4
i e1(pi)

+;

λ2
i := 2λ0

i z−4
i e2(pi);

νi(t) := 2λ0
i z−4

i r(xi(t), ui(t), t)+,

and consider the following normalization for the multipliers

|λi|+ |ψi(0)|+ ‖νi‖L2 = 1, (27)

where λi = (λ0
i , λ1

i , λ2
i ).

Let us show that σi(0)→ 0. Indeed, one has

σi(0) = 4
∫ 1

0
λ0

i z−5
i r(xi(t), ui(t), t)+)2dt = 2

∫ 1

0
νi(t)z−1

i r(xi(t), ui(t), t)+dt.

However, due to (19), one has ‖z−1
i r(xi(t), ui(t), t)+‖L2 → 0. This, together with (27),

implies that σi(0)→ 0. Then, the transversality condition and, again, (19) and (27) simply
yield that λ0

i − ρi → 0.
By passing to a subsequence, in view of the compactness argument, one may assume

from (27) that λi → λ, ψi(t) ⇒ ψ(t) and νi
w→ ν weakly in L2 as i → ∞ for some

multipliers λ = (λ0, λ1, λ2), ψ and ν. Then, ρi → λ0. It is also clear that by passing
to a subsequence, one can assert that λ0

i z−4
i → ∞. Indeed, otherwise all the multipliers

converge to zero, contradicting (27). By virtue of the regularity of the optimal control
process with respect to mixed constraints, for each i, there exists a control function ζi such
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that ζi(t) ∈ U(xi(t), t) a.e., and ζi → ū in L∞. Thus, from the maximum condition (24), it
follows that r(xi(t), ui(t), t)+ → 0 uniformly. Since the set U(x̄(t), t) is uniformly bounded,
this implies, again due to regularity, that the control function ui is essentially bounded
uniformly with respect to i, that is ‖ui‖L∞ ≤ const.

From (24), one derives that

νi(t) · r′u(xi(t), ui(t), t) = H′u(xi(t), ui(t), ψi(t), t)− λ0
i

3
√

εi ·
∂ω2,i

∂u
(ui(t), t).

Whence, using regularity and the above obtained facts, one has

|νi(t)| ≤ const
(
|ψi(t)|+ λ0

i

)
∀ i, t ∈ [0, 1]. (28)

Using the facts and estimates obtained above, one can simply pass to the limit
in (22)–(24) and prove that the set of multipliers (λ, ψ, ν) satisfies the maximum principle.
At the same time, the fact that λ �= 0 follows from (28).

Now, let us pass to the limit in (26). Take numbers ε > 0 and σ > 0. Restricting to a
subsequence, one can state that ui(t) → ū(t) for a.a. t ∈ [0, 1]. Due to Egorov’s theorem,
there is a subset Eσ, the measure of which equals 1− σ, such that ui(t) ⇒ ū(t) uniformly
on Eσ. Denote Tε := {t ∈ [0, 1] : r(x̄(t), ū(t), t) ≥ −ε}, Tε(σ) := Tε ∩ Eσ.

Consider the bounded linear operator Ai : X (Eσ)→ L2(Tε(σ);R) such that

Ai(δx0, δu) = r′x(xi(t), ui(t), t)δxi(t) + r′u(xi(t), ui(t), t)δu(t)|Tε(σ),

where X (Eσ) is defined as X , but δu(t) = 0 for a.a. t /∈ Eσ. It is a simple matter to show
that, due to the uniform convergence, one has Ai → A strongly, where

A(δx0, δu) = r′x(x̄(t), ū(t), t)δx(t) + r′u(x̄(t), ū(t), t)δu(t)|Tε(σ).

Then, as is known, kerAi → Xε(σ) := kerA ⊆ X (Eσ). It is clear that Xε(σ)→ Xε :=
Xε(0) as σ → 0 by virtue of its definition and the regularity condition. One needs to use
the solution to a corresponding Volterra equation to prove this simple fact. Then, Lemma 1
yields that Xε → Nr as ε → 0 if we consider C = {0}. Here, when treating the convergence
of spaces, the symbol ‘→’ stands for Limsup.

Let Πi ⊆ X denote the kernel of the endpoint operator e′(pi)δpi. It is clear that
codim Πi ≤ k. Then, this is a simple exercise to ensure the existence of a subspace Π ⊆ Ne
such that codim Π ≤ k and

Π ∩Nr ⊆ Limsup Πi ∩ kerAi,

where Limsup is total: firstly as i → ∞, then, as σ → 0 and finally, as ε → 0. At the
same time, note that Ti ∩ Eσ ⊆ Tε(σ) for all large i. Therefore, one has the embedding
kerAi ∩Πi ⊆ Ni ∩ X (Eσ), and then, the passage to the limit in (26) gives the condition
Λa �= ∅. In the latter deduction, Proposition 1 of [14] has been used and also the fact that
the terms with δz2

i in Ωi converge to zero in view of (19) and (27).
Now, it is necessary to remove the extra assumptions imposed in (H3) regarding the

boundedness and global regularity. However, this can be done following precisely the
same method as presented in [4]. Take c > 0, and consider the additional control constraint
|u| ≤ c. For each ε > 0, there will be N specifically constructed regular selectors of U(x, t)
which are surrounded with N ε-tubes as in the above-cited source. Then, the passage to the
limit, firstly as ε → 0, then, as N → ∞, and, at the end, as c → ∞ will complete the proof
for Stage 1.

The full proof for the next stage is rather lengthy. Therefore, let us present it schemati-
cally, in a sketch-form, exposing the main idea.
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STAGE 2. Here, under (H2) and (H3), we prove Estimate (18). For this purpose, the notion
of χ-problem is used. Take any ε, δ > 0 and (δx0, δu) ∈ K. It is not restrictive to assume
that the minimum in (1) is absolute.

Consider the problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimize ϕ(p)− χϕ( p̄ε) + (max{0, χ− 1})4 + δ|x0 − x̄0 − εδx0|2

+δ
∫ 1

0
|u(t)− ū(t)− εδu(t)|2dt,

subject to ẋ(t) = f (x(t), u(t), t) for a.a. t,
e(p)− χe( p̄ε) ∈ Ce, |x0 − x̄0| ≤ δ,

r(x(t), u(t), t)− χr(x̄ε(t), ū(t) + εδu(t), t) ∈ Cr for a.a. t,
χ ≥ 0.

(29)

Here, x̄ε(·) is the trajectory corresponding to the perturbed pair (x̄0 + εδx0, ū(t) +
εδu(t)), whereas p̄ε is the corresponding endpoint vector.

Note that the infimum in Problem (29) is finite due to the imposed assumptions.
Moreover, it is not greater than zero, since the process (x̄ε(t), ū(t) + εδu(t)), χ = 1 is
feasible, whereas the value of the cost equals zero. At the same time, when χ = 0, the
infimum over X is positive due to the absolute optimality in (1) and since ϕ( p̄) = 0. This
suggests the application of the smooth variational principle, albeit in the version from
Ref. [18], so the finite-dimensional variable χ is not subject to perturbation. That is, the
adding to the cost due to the variational principle is within the space X only. Then, for
any sufficiently small α > 0, one can assert the solution (x0,α, uα(·)), χα to the perturbed
problem such that χα > 0. Indeed, otherwise there is a contradiction with the range of the
infimum.

The remaining arguments are somewhat standard: the results of Stage 1 are applied
to the α-solutions which are regular due to (H3). By taking α = α(ε) appropriately small
according to the given ε, one can prove the convergence of this solution to the optimal
solution (x̄0, ū(t)) as ε → 0. (In this enterprise, Hypothesis (H2) is essentially used together
with the weak sequential compactness of controls uα(ε) implemented by virtue of a standard
technique. It is also needed to use the form of the minimizing functional in (29) and the
above obtained fact that the infimum is not greater than zero, in order to prove the strong
convergence of these controls.) Then, it is necessary to pass to the limit in the obtained
conditions, firstly as α → 0, then, as ε → 0 and finally, as δ → 0. At the same time, the
transversality condition with respect to the χ-variable will yield the desired Estimate (18)
by virtue of the expansion in Taylor series.

The proof is complete.

6. Conclusions

In this article, second-order necessary conditions in the form of Estimate (18) have
been derived for both normal and abnormal cases. The notion of normality is defined as
the condition of full rank for the corresponding controllability matrix. In the normal case,
the set of Lagrange multipliers is unique, upon normalization, while the multiplier λ0 is
positive. In the abnormal case, it is essential that the reduced cone of Lagrange multipliers
Λa is considered and that it has been proven non-empty. Along with the second-order
necessary conditions, a refined version of the maximum condition in the form (4) has been
obtained. The principal feature of the obtained result is that the maximum is taken over the
reduced feasible set Θ(x, t), which is the closure of the set of regular points.
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Abstract: We establish some properties of the bilateral Riemann–Liouville fractional derivative Ds.
We set the notation, and study the associated Sobolev spaces of fractional order s, denoted by
Ws,1(a, b), and the fractional bounded variation spaces of fractional order s, denoted by BVs(a, b).
Examples, embeddings and compactness properties related to these spaces are addressed, aiming to
set a functional framework suitable for fractional variational models for image analysis.

Keywords: fractional derivatives; distributional derivatives; Sobolev spaces; bounded variation
functions; embeddings; compactness; calculus of variations; Abel equation

1. Introduction

Among several different available definitions for fractional derivatives and corre-
sponding functional spaces, this paper focuses the analysis on some classical pointwise
defined or distributional fractional derivatives connected to integral-convolution operators.
Precisely, we refer to bilateral definitions of Riemann–Liouville fractional derivatives and
related Sobolev and bounded variation spaces that we introduced in [1]: here, we show
some compactness and embedding properties of these spaces.

First, we recall the classical Riemann–Liouville left and right fractional derivatives
(d/dx)s

+ and (d/dx)s
− and introduce the distributional Riemann–Liouville left and right

fractional derivatives Ds
+, Ds

− together with their bilateral even and odd versions, respec-
tively Ds

e , Ds
o, all of them defined for non-integer orders s, 0< s<1 (see Definition 4).

Second, we provide the definitions of the fractional Sobolev spaces Ws,1 and fractional
bounded variation spaces BVs, associated to these bilateral derivatives (see Definitions 9
and 10). These function spaces are studied here (see Theorem 6, Examples 2–5, 6 and 8) in
comparison with their non-bilateral counterpart ([2–8]).

The spaces Ws,1 and BVs turn out to be the natural setting for data of Abel integral
equations in order to make them well-posed problems in the distributional framework
too: see Propositions 2 and 3 showing that if f ∈ BVs(a, b) with −∞ < a ≤ b ≤ +∞,
then the distributional Abel integral equation Is

a+[u] = f admits a unique solution and
provides an explicit resolvent formula. Corollaries 1 and 2 state analogous results for
backward equations. This approach provides an alternative formulation of classical L1

representability (see [9]); precisely, this approach leads to a straightforward extension of
solvability for the Abel integral equation under conditions weaker than L1 representability,
namely with data possibly belonging to BVs(a, b).

Basic properties of the functional spaces introduced in present article (weak compact-
ness property stated by Theorems 3 and 11 together with comparison embeddings and
strict embeddings stated in Theorems 6 and 8 and by (92) and (93)), namely

BV(a, b) ⊂
�=

⋂
σ∈(0,1)

Wσ,1(a, b) ⊂
�=

Ws,1(a, b) ⊂
�=

BVs
+(a, b) ∀s ∈ (0, 1),
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Ws,1(a, b)⊂
�=

BVs
+(a, b) , Ws,1(a, b)⊂

�=
BVs

−(a, b) , ∀s ∈ (0, 1) .

are studied with the aim of providing a functional framework suitable to fractional varia-
tional models for image analysis ([10–17]), which are the object of a forthcoming paper [18].
The present preliminary study deals with the one-dimensional case only.

We thank an anonymous referee for useful remarks and pointing us to the recent article [19]
containing a different approach to the Sonin–Abel equation in weighted Lebesgue spaces.

2. Bilateral Fractional Integral and Derivative

In this paper (a, b) ⊂ R is a nonempty (possibly unbounded) open interval, u is
a real function of one variable and 0 < s < 1. The support of a function u is denoted
by spt u. The notation d/dx stands for the classical pointwise derivative; Dx, or shortly
D, denotes the distributional derivative with respect to the variable x. For every open
interval A ⊂ R, we denote by AC(A) the set of absolutely continuous functions with the
domain in the interval A, which coincides ([20]) with the space the Gagliardo–Sobolev
space W1,1

G (A) = {u ∈ L1(A) | Du ∈ L1(A)} when they are both endowed with the
standard norm ‖u‖L1(A) + ‖Du‖L1(A). Moreover, we set L1

loc(A) as the set of measurable
functions which are Lebesgue integrable on every compact subset of A, and ACloc(A) =

W1,1
G,loc(A) = {u ∈ L1

loc(A) | Du ∈ L1
loc(A)} and BV(A) = {u ∈ L1(A) | Du ∈M(A)},

where M(A) denotes the measures whose total variation on A is bounded. We denote
by D′(A) and S′(A) respectively the space of distributions and the space of tempered
distributions on the open set A. We denote by C0,α(K) the space of of Hölder continuous
functions on the set K.

For the reader’s convenience, we recall the definition of Gagliardo’s fractional Sobolev
spaces Ws,1

G ([21,22]). For any s ∈ (0, 1), we set

Ws,1
G =

{
u ∈ L1(a, b) :

|u(x)− u(y)|
|x− y|1+s ∈ L1([a, b]× [a, b])

}
, (1)

which is a Banach space endowed with the norm

‖u‖Ws,1
G

=

[∫
[a,b]

|u(x)|dx +
∫
[a,b]

∫
[a,b]

|u(x)− u(y)|
|x− y|1+s dx dy

]
,

and we recall also the definition of the Riemann–Liouville fractional integral and deriva-
tive of order s for L1-functions, whose standard references can be found in the book by
Samko et al. [9].

In the sequel, H denotes the Heaviside function H(x)=1 if x≥0, H(x)=0 if x<0, while
sign denotes the sign function sign(x)=1 if x>0, sign(x)=−1 if x<0, sign(0)=0.

Definition 1. (Riemann–Liouville fractional integral)
Assume u ∈ L1(a, b) and s > 0.
The left-side and right-side Riemann–Liouville fractional integrals RL Is

a+ and RL Is
b− are defined

by setting, respectively,

RL Is
a+[u](x) =

1
Γ(s)

∫ x

a

u(t)
(x− t)1−s dt , x ∈ [a, b] , (2)

RL Is
b−[u](x) =

1
Γ(s)

∫ b

x

u(t)
(t− x)1−s dt , x ∈ [a, b] , (3)

Here, Γ denotes the Euler gamma function [23].
Notice that RL I1

a+[u](x) =
∫ x

a u(t) dt and in general, for every strictly positive integer
value, s = n ∈ N, RL In

a+[u] coincides with the n-th order primitive, vanishing at x = a
together with all derivatives up to order n− 1.

Both RL Is
a+[u] and RL Is

b−[u] are absolutely continuous functions if s ≥ 1 since they are
primitives of L1 functions, whereas we can only say that they are Lq functions if 0< s<1,
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1≤q<1/(1− s) (see [9]): indeed, jump discontinuities are allowed if 0< s<1, as shown by
the next example.

Example 1. Set (a, b) = (−1, 1). Then for every 0< s < 1 there is u∈ Lp(−1, 1), 1≤ p < 1/s,
s.t. Is

(−1)+[u] is discontinuous. For instance, consider u(x)=H(x) x−s, thus, exploiting the Euler

beta function B(ν, μ)=
∫ 1

0 yν−1(1− y)μ−1dy = Γ(ν)Γ(μ)
Γ(ν+μ)

, one gets

RL Is
(−1)+[u](x) =

1
Γ(s)

∫ x

−1

H(t)
ts (x− t)1−s dt=H(x)

B(s, 1− s)
Γ(s)

=

{
0 if − 1< x≤0

Γ(1− s) if 0< x<1 .

Thus, Is
(−1)+[u] is a piecewise constant function on (−1,+1) with a jump at x = 0.

Next, we recall the classical definition of left and right Riemann–Liouville fractional
derivatives as in [9,24–27].

Definition 2. (Classical Riemann–Liouville fractional derivative)
Assume u ∈ L1(a, b) and 0 < s < 1.
The left Riemann–Liouville derivative of u at x ∈ [a, b] is defined by

RL

(
d

dx

)s

a+
[u](x) =

d
dx RL I1−s

a+ [u](x) =
1

Γ(1− s)
d

dx

∫ x

a

u(t)
(x− t)s dt (4)

for every value of x such that this derivative exists.
Similarly, we may define the right Riemann–Liouville derivative of u at x ∈ [a, b] as

RL

(
d

dx

)s

b−
[u](x) = − d

dx RL I1−s
b− [u](x) =

−1
Γ(1− s)

d
dx

∫ b

x

u(t)
(t− x)s dt (5)

for every value of x such that this derivative exists.

Then we introduce the distributional Riemann–Liouville fractional derivative as
in [25]: a refinement of the Riemann–Liouville fractional derivative, obtained by the plain
substitution of the pointwise classical derivative with the distributional derivative

Definition 3. (Distributional Riemann–Liouville fractional derivative)
Assume u ∈ L1(a, b) and 0 < s < 1. The distributional left Riemann–Liouville derivative of

u, RLDs
a+[u]∈D′(a, b), is defined by

RLDs
a+[u](x) = Dx RL I1−s

a+ [u](x) =
1

Γ(1− s)
Dx

∫ x

a

u(t)
(x− t)s dt . (6)

Similarly, we may define the distributional right Riemann–Liouville derivative of u,
RLDs

b−[u]∈D′(a, b), as

RLDs
b−[u](x) = −Dx RL I1−s

b− [u](x) =
−1

Γ(1− s)
Dx

∫ b

x

u(t)
(t− x)s dt . (7)

Remark 1. The distributional Riemann–Liouville fractional derivatives Ds
± provide a suitable

refinement of the classical ones (d/dx)s
± for the purposes of the present paper. However, we

emphasize that they coincide on every L1 function u such that I1−s[u] is absolutely continuous, as
it was always the case in the classical applications of fractional derivatives ([28–30]).

In Lemma 5 below, we examine the case when the above pointwise-defined derivative
d/dx exists a.e. and defines an L1 function coincident with the distributional derivative D,
respectively of RL I1−s

a+ [u] and RL I1−s
b− [u].

197



Axioms 2022, 11, 30

In the sequel, we omit the suffix RL of the interval without loss of information, since in
this paper, we do not consider any other fractional derivative than the Riemann–Liouville
one; we omit also the endpoints a+ and b− suffix whenever they are clearly established.

Therefore, we will write shortly Is
+[u], Is

−[u], Ds
+[u], Ds

−[u], (d/dx)s
+[u] and (d/dx)s

−[u],
respectively, in place of RL Is

a+[u], RL Is
b−[u], RLDs

a+[u], RLDs
b−[u], RL(d/dx)s

a+[u] and
RL(d/dx)s

b−[u].
One of the disadvantages of the one-side Riemann–Liouville derivative and integral,

as defined above, is the fact that only one endpoint of the interval plays a role (see (56)
and (57) ) since they are “anisotropic” definitions (see [31] and Lemma 6). On the other
hand, if we aim to exploit such definitions in a variational context, we have to deal with
boundary conditions so that both interval endpoints must play a role ([32]). Therefore, we
introduced the bilateral fractional integral and derivative, by keeping separate their “even”
and “odd” parts:

Definition 4. For every u ∈ L1(a, b) we set the even and odd versions of bilateral fractional
integrals and derivatives:

Is
e [u](x) :=

1
2
(Is

+[u](x) + Is
−[u](x)) (8)

=
1

2 Γ(s)

∫ b

a

u(t)
|x− t|1−s dt =

(u ∗ 1/|t|1−s)(x)
2 Γ(s)

,

Ds
e [u](x) := Dx I1−s

e [u](x) (9)

=
1
2
(Ds

+[u](x)− Ds
−[u](x)) = Dx

(u ∗ 1/|t|s)(x)
2 Γ(1− s)

,

Is
o [u](x) :=

1
2
(Is

+[u](x)− Is
−[u](x)) (10)

=
1

2 Γ(s)

∫ b

a
u(t)

sign(x− t)
|x− t|1−s dt =

(u ∗ sign(t)
|t|1−s )(x)

2 Γ(s)
,

Ds
o[u](x) := Dx I1−s

o [u](x) (11)

=
1
2
(Ds

+[u](x) + Ds
−[u](x)) = Dx

(u ∗ sign(t)/|t|s)(x)
2 Γ(1− s)

.

So that

Is
+[u] = Is

e [u] + Is
o [u] , Ds

+[u] = Ds
e [u] + Ds

o[u] , (12)

Is
−[u] = Is

e [u] − Is
o [u] , Ds

−[u] = Ds
o[u] − Ds

e [u] . (13)

Whenever (a, b) �= R, the convolution in (8)–(11) has to be understood, without re-
labeling, as the convolution of the trivial extension of u (still an L1(R) function with
support on [a, b]) with either 1/|t|s or sign(t)/|t|s (both belonging to L1

loc(R)). Also
Is
±[u](x), Is

e [u](x), Is
o [u](x) have to be understood, without relabeling, as the natural exten-

sion for x ∈ R\[a, b], provided by the convolution of the trivial extension of u with the
corresponding kernels (here, H denotes the Heaviside function):

Is
+[u] = u ∗ H(x)

Γ(s)|x|1−s , Is
−[u] = u ∗ H(−x)

Γ(s)|x|1−s , for every x ∈ R , (14)

Is
e [u] = u ∗ 1

2Γ(s)|x|1−s , Is
o [u] = u ∗ sign(x)

2Γ(s)|x|1−s , for every x ∈ R , (15)

namely
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Is
+[u](x) =

1
Γ(s)

∫ b

a

u(t) H(x− t)
|x− t|1−s dt for every x ∈ R , (16)

Is
−[u](x) =

1
Γ(s)

∫ b

a

u(t) H(t− x)
|x− t|1−s dt for every x ∈ R , (17)

Is
e [u](x) =

1
2 Γ(s)

∫ b

a

u(t)
|x− t|1−s dt for every x ∈ R , (18)

Is
o [u](x) =

1
2 Γ(s)

∫ b

a

u(t) sign(x− t)
|x− t|1−s dt for every x ∈ R . (19)

Moreover
spt Is

+[u] ⊂ [a,+∞) spt Is
−[u] ⊂ (−∞, b] . (20)

Remark 2. In (9) and (11), Dx denotes the distributional derivative in D′(R), but obviously its
restriction as a distribution on the open set (a, b) is understood whenever one works in the bounded
interval (a, b).

Up to a normalization constant (see (25)), Is
e [u] is called the Riesz potential of u ([1,9]).

These fractional integrals Is
+[u], Is

−[u], Is
e [u], Is

o [u] turn out to be in Lp
loc
(
R) (thus Lp(I) on

every bounded interval I) for every 1 ≤ p < 1/(1− s), since they are convolutions of
u ∈ L1(R) with an Lp

loc(R) kernel. Moreover, we have the next result.

Lemma 1. If −∞ < a < b < +∞, u ∈ L∞(R), spt(u) ⊂ [a, b] and 0 < s < 1 then
Is
+[u], Is

−[u], Is
e [u], Is

o [u] belong to L∞(R) ∩ C0,s.

Proof. See Lemmas 2.5 and 3.6 (iii) in [1].

The behavior of all the above operators, as s → 0+ or s → 1−, is clarified by subsequent
Lemmas of the present section, whose proof can be found in [1].

Notice that both 1/|x|s and sign(x)/|x|s belong to L1
loc(R), for 0 < s < 1; hence,

the convolution with any L1 function is well defined and belongs to L1
loc(R); moreover

sign(x)/|x|s → p.v. 1
x in S′ as s → 1−, while 1/|x|s has no limit in S′ as s → 1−, where S′

denotes the space of tempered distributions.
Fractional derivatives degenerate developing singularities as s → 1−; nevertheless,

they can be made convergent to meaningful limits by suitable normalization.

Lemma 2. Assume 0 < s < 1 , u ∈ W1,2
G (R) and choose the constants in the Fourier transform

such that û(ξ) =
∫
R exp(−iξx) u(x) dx . Then

Ds
e [u]

sin(s π/2)
−→ F−1 { i ξ û(ξ) } = Du in L2(R) as s → 1− , (21)

Ds
o[u]

cos(s π/2)
−→ F−1 { |ξ| û(ξ) } in L2(R) as s → 1− , (22)

Ds
+[u] −→ Du in L2(R) as s → 1− , (23)

Ds
−[u] −→ −Du in L2(R) as s → 1− . (24)

Remark 3. Notice that relations (21), (23) and (24) tell that, as s → 1−, both Ds
+[u] (left

Riemann–Liouville fractional derivative of order s of u) and Ds
e [u] (even Riemann–Liouville frac-

tional derivative of order s of u) converge in L2 to the distributional derivative Du, while Ds
−[u]

converges in L2 to −Du.
On the other hand relationship (22) means that Ds

o[u] (odd Riemann–Liouville fractional deriva-
tive of order s of u) fades as s → 1− but, when suitably normalized as Ds

o[u]/ cos(s π/2), it con-
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verges in L2 to the Gagliardo fractional derivative of order 1 of u, say
(−Δ)1/2u := F−1 { |ξ| û(ξ) } .

Fractional integrals degenerate developing singularities as s → 0+; indeed the convo-
lution term fulfills |x|s−1/(2Γ(s) cos(sπ/2))→ δ in S′ as s → 0+; nevertheless, fractional
integrals are convergent to meaningful limits by suitable normalization.

Lemma 3. Assume 0 < s < 1 , u ∈ L1(R) with û ∈ L1(R) and set the constants in the Fourier
transform such that û(ξ) =

∫
R exp(−iξx) u(x) dx. Then

1
cos(s π/2)

Is
e [u](x) −→ u(x) uniformly in R as s → 0+ , (25)

π

sin(s π/2)
Is
o [u](x) −→ (p.v. 1/x) ∗ u in S′(R) as s → 0+ . (26)

Lemma 4. Assume 0 < s < 1 , u ∈ L1(R) .
If I1−s

o [u] ∈ ACloc(R), then

1

(cos(s π/2))2 Is
e [ Ds

o[u] ] = u . (27)

If I1−s
e [u] ∈ ACloc(R), then

1

(sin(s π/2))2 Is
o [ Ds

e [u] ] = u . (28)

If I1−s
o [Is

e [u]] ∈ ACloc(R), then

1

(cos(s π/2))2 Ds
o[ Is

e [u] ] = u . (29)

If I1−s
e [Is

o [u]] ∈ ACloc(R), then

1

(sin(s π/2))2 Ds
e [ Is

o [u] ] = u . (30)

Lemma 5. Assume 0 < s < 1 , u ∈ L1(R) . Then

Ds
+[ Is

+[u] ] = u (31)

Ds
−[ Is

−[u] ] = u . (32)

If in addition I1−s
+ [u] ∈ ACloc(R), then

Is
+[ Ds

+[u] ] = u . (33)

If in addition I1−s
− [u] ∈ ACloc(R), then

Is
−[ Ds

−[u] ] = u . (34)

Remark 4. Every distributional fractional derivative (left, right, even, and odd) appearing in the
statements of Lemmas 3–5, which are proved in [1] with fractional classical derivatives (d/dx)s

±,
still hold true in the present formulation with corresponding distributional derivatives (Dx)s

± by
exactly the same proof, since the assumptions ensure that all derivatives are evaluated on local
absolute continuous functions.
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Remark 5. Notice that, when R is replaced by a bounded interval, the identities (27), (28), (33) and
(34) require an additional correction term, taking into account of boundary values (see (52) and (53)
in Theorem 1), whereas (31) and (32) remain true (see (136), (137)).

Symmetries of even or odd functions are inherited neither by fractional integrals, nor
by fractional derivatives. Nevertheless, the next lemma holds true.

Lemma 6. For every s∈ (0, 1), 0< a≤+∞ and v ∈ L1(−a, a), by setting

v̌(x) = v(−x) , (35)

we obtain
Is
+[v̌](x) = Is

−[v](−x) on (−a, a) , (36)

Ds
+[v̌](x) = −Ds

−[v](−x) on (−a, a) . (37)

For every s∈ (0, 1), 0< a≤+∞ and every even function v ∈ L1(−a, a), we get

Is
+[v](x) = Is

+[v̌](x) = Is
−[v](−x) on (−a, a) , (38)

Ds
+[v](x) = Ds

+[v̌](x) = −Ds
−[v](−x) on (−a, a) , (39)

For every s ∈ (0, 1) and every odd function v ∈ L1(−a, a), we obtain

Is
+[v](x) = − Is

+[v̌](x) = − Is
−[v](−x) on (−a, a) , (40)

Ds
+[v](x) = −Ds

+[v̌](x) = Ds
−[v](−x) on (−a, a) , (41)

Proof.

Is
+[v̌](x) =

1
Γ(s)

∫ x

−a

v(−t)
(x− t)1−s dt =

1
Γ(s)

∫ x

−a

v(−t)(
− t− (−x)

)1−s dt s=−t
=

= − 1
Γ(s)

∫ −x

a

v(s)(
s− (−x)

)1−s ds =
1

Γ(s)

∫ a

−x

v(s)(
s− (−x)

)1−s ds = Is
−[v](−x).

By inserting 1− s in place of s in (36), if v is even we obtain (37) via

Ds
+[v̌](x) = Dx I1−s

+ [v̌](x) = Dx I1−s
− [v](−x) = −Ds

−[v](−x) .

Even v entails v(x) = v(−x), v = v̌, Is
+[v](x) = Is

+[v̌](x) and Ds
+[v](x) = Ds

+[v̌](x);
hence, (36) and (37) entail, respectively, (38) and (39).

Odd v entails v(x) = −v(−x), v = −v̌, Is
+[v](x) = −Is

+[v̌](x) and
Ds
+[v](x) = −Ds

+[v̌](x); hence, (36), (37) entail, respectively, (40), (41).

Results listed above (mainly Lemmas 3 and 4 proved in [1]) lead to the natural defi-
nition of the operators representing the bilateral version of Riemann–Liouville fractional
derivatives and integrals, as stated below. Results similar to the ones in Lemma 6 can be
found also in [33].

Definition 5. (Bilateral Riemann–Liouville fractional integral of order s)

Is[u] =
1

cos(s π/2)
Is
e [u] =

1
2 Γ(s) cos(sπ/2)

(Is
+[u] + Is

−[u]) .

Definition 6. (Bilateral Riemann–Liouville fractional derivative of order s)

Ds[u] =
1

cos(s π/2)
Ds

o[u] =
1

2 Γ(s) cos(sπ/2)
(Ds

+[u] − Ds
−[u]) .
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3. The Bilateral Fractional Sobolev Space

From now on, we consider only functions defined on a bounded interval (a, b).
As already mentioned in [25], possible naïve definitions of bilateral fractional Sobolev

spaces could be set by Us,1 = Us,1
+ ∩Us,1

− , where s ∈ (0, 1) and

Us,1
+ = {u ∈ L1(a, b) | (d/dx)s

+ u ∈ L1(a, b)} ,

Us,1
− = {u ∈ L1(a, b) | (d/dx)s

− u ∈ L1(a, b)} ,

for example, a definition which refers to L1-functions whose classical Riemann–Liouville
fractional derivative of prescribed order s ∈ (0, 1) exists finitely almost everywhere and
belongs to L1(a, b).

Actually, if the classical Riemann–Liouville fractional derivative (d/dx)s
+ [u](x) of

u exists a.e. for x for some s ∈ (0, 1), then I1−s
a+ [u] is differentiable almost everywhere,

referring to the same s; nevertheless, such an a.e. derivative does not provide complete
information about the distributional derivative of the fractional integral I1−s

a+ [u], when
I1−s
a+ [u] is not an absolutely continuous function. Thus, the differential properties are not

completely described by the pointwise fractional derivative, though existing almost ev-
erywhere in (a, b). This shows that the previous definitions Us,1

+ and Us,1
− are not suitable

to obtain an integration by parts formula, whereas the appropriate ones refer to distribu-
tional Riemann–Liouville fractional derivative Ds

+ [u](x) in Definition 3, namely, they are
given by

Us,1
+ = {u ∈ L1(a, b) | Ds

+u ∈ L1(a, b)} , (42)

Us,1
− = {u ∈ L1(a, b) | Ds

−u ∈ L1(a, b)} , (43)

Therefore, to develop a satisfactory theory of fractional Sobolev spaces, we introduced
a more effective function space in [25], by defining the fractional Sobolev spaces related to
one-sided fractional derivatives, which are recalled in subsequent Definition 7, where we
confine to the case p = 1.

Definition 7. We recall the definitions of Riemann–Liouville fractional Sobolev spaces related
to one-sided fractional derivatives, as introduced in [25]:

Ws,1
+ (a, b) := {u ∈ L1(a, b) | I1−s

+ [u] ∈ W1,1
G (a, b) } = Us,1

+ , (44)

Ws,1
− (a, b) := {u ∈ L1(a, b) | I1−s

− [u] ∈ W1,1
G (a, b) } = Us,1

− . (45)

Explicitly, the properties u ∈ Ws,1
± (a, b) entail, respectively, that the distributional

derivatives D
[

I1−s
± [u]

]
belong to L1(a, b), thus Ws,1

+ (a, b) = Us,1
+ and Ws,1

− (a, b) = Us,1
− .

Here, we introduce also the “even” and “odd” fractional Sobolev spaces.

Definition 8. The even/odd Riemann–Liouville fractional Sobolev spaces are

Ws,1
e (a, b) := {u ∈ L1(a, b) | I1−s

e [u] ∈ W1,1
G (a, b) } , (46)

Ws,1
o (a, b) := {u ∈ L1(a, b) | I1−s

o [u] ∈ W1,1
G (a, b) } . (47)

Eventually, we define the bilateral Riemann–Liouville fractional Sobolev spaces, with
the aim to achieve a symmetric framework.

Definition 9. The (Bilateral) Riemann–Liouville Fractional Sobolev spaces.
For every s ∈ (0, 1), we set Ws,1(a, b) = Ws,1

+ (a, b) ∩Ws,1
− (a, b), that is,

Ws,1(a, b) := {u ∈ L1(a, b) | I1−s
+ [u] ∈ W1,1

G (a, b) and I1−s
− [u] ∈ W1,1

G (a, b)}. (48)
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Notice that, concerning Definition 9, by exploiting (12) and (13), we get also

Ws,1(a, b) = Ws,1
+ (a, b) ∩Ws,1

− (a, b) = Ws,1
o (a, b) ∩Ws,1

e (a, b) . (49)

Theorem 1. Assume 0 < s < 1 and (a, b) is bounded. Then, the (bilateral) Riemann–Liouville
fractional Sobolev space Ws,1(a, b) (Definition 9) is a normed space when endowed with the
natural norm

‖u‖Ws,1 := ‖u‖L1(a,b) + ‖Ds
a+[u] ‖L1(a,b) + ‖Ds

b−[u] ‖L1(a,b) . (50)

The set Ws,1(a, b) is a Banach space and, for every q ∈ [1, 1/(1− s)) there is C = C(s, q, a, b)
such that

‖u‖Lq(a,b) ≤ C(s, q, a, b) ‖u‖Ws,1(a,b) . (51)

Every u ∈ Ws,1(a, b) can be represented by both

u(x) = Is
a+
[
Ds

a+[u]
]
(x) +

I1−s
a+ [u](a)

Γ(s)
(x− a)s−1 a.e x ∈ (a, b), (52)

and

u(x) = Is
b−
[
Ds

b−[u]
]
(x) +

I1−s
b− [u](b)

Γ(s)
(b− x)s−1 a.e x ∈ (a, b). (53)

Proof. The map u �→ ‖u‖Ws,1 is a norm on Ws,1(a, b), indeed,
‖u‖L1(a,b) + ‖Ds

a+[u]‖L1(a,b) is equivalent to the norm ‖I1−s
a+ [u]‖W1,1

G (a,b) since I1−s
a+ [u]

belongs to W1,1
G , Ds

a+[u] = d
dx I1−s

a+ [u] = DI1−s
a+ [u] and ‖I1−s

a+ [u]‖L1(a,b) ≤ C‖u‖L1(a,b) ;

analogously ‖u‖L1(a,b) + ‖Ds
b−[u]‖L1(a,b) is a norm for I1−s

b− [u], due to I1−s
b− [u] ∈ W1,1

G ,

Ds
b−[u] =

d
dx I1−s

b− [u] = DI1−s
b− [u] and ‖I1−s

a+ [u]‖L1(a,b) ≤ C‖u‖L1(a,b) .
The completeness of Ws,1(a, b) with respect to such a norm when (a, b) is bounded,

follows by the completeness of L1 and W1,1
G together with the fact that uk is a Cauchy

sequence in the norm Ws,1(a, b) if and only if uk is a Cauchy sequence in L1(a, b) and
I1−s
± [uk] are Cauchy sequences in W1,1,

G .
Estimate (51) and representations (52) and (53) follow by (129), (130) and (135) of

Proposition 12, which is shown in Section 5.

Remark 6. Thanks to ‖I1−s
a+ [u]‖L1(a,b) ≤ ‖u‖L1(a,b), ‖I1−s

b− [u]‖L1(a,b) ≤ ‖u‖L1(a,b), we have

replaced the terms ‖I1−s
± [u]‖W1,1(a,b) in the norm (50) by ‖D

[
I1−s
± [u]

]
‖L1(a,b), where D denotes

the distributional derivative.
Obviously, the terms ‖Ds

+[u]‖L1(a,b) and ‖Ds
−[u]‖L1(a,b) in the norm (50) could be alterna-

tively replaced by ‖Ds
e [u]‖L1(R) and ‖Ds

o[u]‖L1(R), referring to (8), (16) and (17), still achieving
an equivalent norm on Ws,1(a, b).

Example 2. For every s ∈ (0, 1), the constant functions and v(x) = x(1 − x) both belong
to the space Ws,1(a, b). Spaces C∞

0 (a, b), test functions on (a, b), and C1([a, b]), continuously
differentiable functions, are contained in Ws,1(a, b).

Example 3. For every 0 < s < 1, the discontinuous piecewise constant H(x) belongs to
Ws,1(−1, 1)\W1,1

G (−1, 1).

Indeed, both I1−s
+ [H](x) = H(x) |x|

1−s

Γ(2−s) and I1−s
− [H](x) = H(x)(1−x)1−s+H(−x)(|1−x|1−s−|x|1−s)

Γ(2−s)

belong to W1,1
G (−1, 1).

Example 4. For every s∈ (0, 1) and β≥ 0, the function xβ belongs to Ws,1(0, 1). This claim is
straightforward for β = 0 and β ≥ 1; we refer to (97) and (98) for 0 < β < 1.
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Example 5. Function x−α with α > 0 belongs to Ws,1(0, 1) if and only if 0 < α < 1− s.
Indeed, I1−s

+ [x−α](x) = Γ(1−α)
Γ(2−s−α)

x1−s−α ∈ W1,1
G (0, 1) if −s− α > −1, while I1−s

+ [xs−1]

(x) = 1
Γ(1−s) ∈ W1,1

G (0, 1), summarizing x−α belongs to Ws,1
+ (0, 1) for α ≤ 1− s; on the other

hand, I1−s
− [x−α] belongs to L1(a, b) for α < 1 and is bounded on (0, 1) if and only if α < 1− s,

due to

I1−s
− [ x−α ](x) =

1
Γ(1− s)

∫ 1

x
t−α(t− x)−s dt

t=xy
=

=
x1−s−α

Γ(1− s)

∫ 1/x

1
y−α(y− 1)−s dy .

Summarizing, and taking into account Example 4 for α ≤ 0,

x−α ∈ Ws,1
+ (0, 1)∩Ws,1

− (0, 1) if and only if α < 1− s . (54)

In the particular case α = 1− s, we recover

xs−1∈Ws,1
+ (0, 1)\Ws,1

− (0, 1) (55)

with I1−s
+ [xs−1](x)=Γ(s) and I1−s

− [xs−1](x) unbounded in a right neighborhood of x = 0.

Theorem 2. (Integration by parts in Ws,1(a, b))
Next, identities hold true for 0< s< 1, −∞< a<b< +∞ :⎧⎪⎨⎪⎩

∫ b

a
u(x) Ds

+[v](x) dx = −
∫ b

a

d
dx

u(x) I1−s
+ [v](x) dx + u(b) I1−s

+ [v](b)

∀ v ∈ Ws,1
+ (a, b), ∀ u ∈ W1,1,

G (a, b) ,
(56)

⎧⎪⎨⎪⎩
∫ b

a
u(x) Ds

−[v](x) dx = +
∫ b

a

d
dx

u(x) I1−s
− [v](x) dx + u(a) I1−s

− [v](a)

∀ v ∈ Ws,1
− (a, b), ∀ u ∈ W1,1,

G (a, b) ,
(57)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∫ b

a
u(x) Ds

e [v](x) dx =

−
∫ b

a

d
dx

u(x) I1−s
e [v](x) dx +

1
2

(
u(b) I1−s

+ [v](b)− u(a) I1−s
− [v](a)

)
∀ v ∈ Ws,1(a, b), ∀ u ∈ W1,1,

G (a, b) ,

(58)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∫ b

a
u(x) Ds

o[v](x) dx =

−
∫ b

a

d
dx

u(x) I1−s
0 [v](x) dx +

1
2

(
u(b) I1−s

+ [v](b) + u(a) I1−s
− [v](a)

)
∀ v ∈ Ws,1(a, b), ∀ u ∈ W1,1,

G (a, b) ,

(59)

Proof. Identity (56) follows by (2), (5) and

∫ b

a
u(x) Ds

+[v](x) dx =
1

Γ(1− s)

∫ b

a
u(x)

( d
dx

∫ x

a

v(t)
(x− t)s dt

)
dx =

= − 1
Γ(1− s)

∫ b

a

d
dx

u(x)
( ∫ x

a

v(t)
(x− t)s dt

)
dx + u(b)

1
Γ(1− s)

∫ b

a

v(t)
(x− t)s dt .

Identity (57) follows by (3), (4) and similar computations.
Identities (58) and (59) follow by the subtraction and sum of (56) and (57).
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Remark 7. Notice that when u is representable, e.g., under a slightly stronger condition, then we
find a more symmetric formulation. For instance, (59) translates into⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∫ b

a
I1−s
o [w](x) Ds

o[v](x) dx =

−
∫ b

a
Ds

o[w](x) I1−s
o [v](x) dx +

1
2

(
I1−s
o [w](b) I1−s

+ [v](b) + I1−s
o [w](a) I1−s

− [v](a)
)

∀ v, w ∈ Ws,1(a, b) .

(60)

Lemma 7. The strict embedding

W1,1
G (a, b) ⊂

�=
Ws,1(a, b) 0 < s < 1 (61)

holds true with the related uniform estimate: there is a constant K = K(s, a, b) such that

‖v‖Ws,1(a,b) ≤ K ‖v‖W1,1
G (a,b) (62)

Proof. By computations in Example 3, we know that the Heaviside function belongs to
Ws,1(−1, 1)\W1,1

G (−1, 1); thus if the embedding holds true, then it is strict.
Recalling the definition ([34]) of right Caputo fractional derivative CDs

+[u] and its
relationship with the right Riemann–Liouville fractional derivative

CDs
+[u](x) := I1−s

+ [u′](x) =
1

Γ(1− s)

∫ x

a

u′(t)
(x− t)s dt ∀u ∈ W1,1

G (a, b) ,

RLDs
+[u](x) = CDss+[u](x) +

u(a)
Γ(1− s)

(x− a)−s =

= I1−s
+ [u′](x) +

u(a)
Γ(1− s)

(x− a)−s ∀u ∈ W1,1
G (a, b) ,

and taking into account

‖I1−s
+ [u′]‖L1(a,b) ≤ K1 ‖u′‖L1(a,b) ≤ K1 ‖u‖W1,1

G (a,b) , |u(a)| ≤ K2 ‖u‖W1,1
G (a,b) ,

we get (7) and (62).

Theorem 3. [Compactness in Ws,1(a, b)]

Assume that the interval (a, b) is bounded, the parameter s fulfills 0< s<1, and

‖un‖Ws,1(a,b) ≤ C . (63)

Then there exist u ∈ Lq(a, b), ∀q ∈ [1, 1/(1− s)), and a subsequence such that, without
relabeling,⎧⎪⎪⎨⎪⎪⎩

(i) un ⇀ u weakly in Lq(a, b)) ∀q ∈ [1, 1/(1− s)) ,

(ii) I1−s
+ [un]→ I1−s

+ [u] strongly in Lp(a, b) , ∀p ∈ [1,+∞) ,

(iii) I1−s
− [un]→ I1−s

− [u] strongly in Lp(a, b) , ∀p ∈ [1,+∞) ,

I1−s
+ [un] ⇀ I1−s

+ [u] , I1−s
− [un] ⇀ I1−s

− [u] weakly in BV(a, b). (64)

Proof. Claim (i) follows by (51) and (63) and reflexivity of Lq(a, b) for any fixed
1 < qk < 1/(1− s); thus, by choosing a sequence qk → 1/(1− s) and extracting a di-
agonal sequence, we get the claim for a unique subsequence and unique u valid for every
q fulfilling 1 < q < 1/(1− s). Moreover, such u belongs to L1(a, b). Eventually, for q = 1
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there is a measure μ such that un ⇀ μ in M(a, b), but such μ must be equal to u, then
un ⇀ u in L1(a, b).

The compact embedding W1,1
G (a, b) ↪→ Lp(a, b) valid for any p ∈ [1,+∞) (Rellich

Theorem) entails the existence of z+ and z− in Lp(a, b) fulfilling, up to subsequences,

I1−s
+ [un]→ z+ strongly in Lp(a, b) , ∀p ∈ [ 1,+∞ ) , (65)

I1−s
− [un]→ z− strongly in Lp(a, b) , ∀p ∈ [ 1,+∞ ) , (66)

I1−s
e [un]→

1
2
(z+ + z−) strongly in Lp(a, b) , ∀p ∈ [ 1,+∞ ) , (67)

I1−s
o [un]→

1
2
(z+ − z−) strongly in Lp(a, b) , ∀p ∈ [ 1,+∞ ) . (68)

By (i) and the Mazur Theorem, there is a sequence of convex combinations yn, which
is strongly converging: precisely, yn → u strongly in Lq(a, b) for every q ∈ [1, 1/(1− s))
with yn = ∑n

j=1 cn,juj, cn,j ≥ 0, ∑n
j=1 cn,j = 1. Hence, by (63),

‖yn‖Ws,1 ≤
n

∑
j=1

cn,j‖uj‖Ws,1 ≤ C . (69)

I1−s is a continuous map from Lq to Lr, q∈
[
1, 1/(1− s)) and r∈ [1, q/

(
1− (1− s)sq

))
,

hence, we obtain

I1−s
± [yn]→ I1−s

± [u] strongly in Lr(a, b), r ∈ [1, q/
(
1− (1− s)sq

))
(70)

and hence, in D′(a, b). Moreover, by (69), I1−s[yn] is bounded in W1,1
G (a, b); then, there

exists w± ∈ BV(a, b) such that, possibly up to subsequences,

I1−s
+ [yn] ⇀ w+, I1−s

− [yn] ⇀ w− weakly in BV(a, b). (71)

Taking into account (70), (71) and the uniqueness of limit in D′(a, b), we obtain

w+ = I1−s
+ [u] ∈ BV(a, b), w− = I1−s

− [u] ∈ BV(a, b), I1−s
± [yn] ⇀ I1−s

± [u] in BV(a, b). (72)

Taking into account un ∈Ws,1(a, b), we set fn = I1−s[un], so un solves Abel integral
equation I1−s[un]= fn. By the semigroup property, Is

+[ fn](x)= Is[I1−s
+ [un]

]
(x)= I1

+[un]=∫ x
a un(t) dt; hence, Is

+[ fn](a) = 0. Therefore (by Proposition 2), the Abel integral equations
have a unique solution in L1(a, b), given by un = D1−s

+ [ fn] = D1−s
+

[
I1−s
+ [un]

]
, n ∈ N.

Set f = I1−s[u] ∈ BV(a, b). u ∈ L1(a, b). So u solves the Abel equation I1−s[u] = f .
Moreover, by the semigroup property, Is

+[ f ](x) = Is[I1−s
+ [u]

]
(x) = I1

+[u] =
∫ x

a u(t) dt;
hence, Is

+[ f ](a+) = 0. Therefore (Proposition 3), the Abel equation has a unique solution in
L1(a, b), given by u = D1−s

+ [ f ] = D1−s
+

[
I1−s
+ [u]

]
.

By (i), un → u strongly in Lq, hence,

fn = I1−s
+ [un]→ I1−s

+ [u] = f strongly in Lq, q ∈
[
1, 1/(1− s)).

Then, by (65), I1−s[u] = f = z+ . Hence we have shown claims (ii) and (iii) .
Moreover, the convergence is also in the sense of distributions and the sequence is

bounded in W1,1
G ; therefore, I1−s

+ [u] belongs to BV(a, b) and, again up to subsequences,

fn = I1−s
+ [un] ⇀ I1−s

+ [u] = f weakly in BV(a, b).

We can deal with z− by the same argument, exploiting Corollary 1 for the backward
Abel integral equation I1−s

− [un] = gn, leading to I1−s[u] = g = z−.
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Remark 8. The boundedness of (a, b) is an essential assumption in the previous compactness
theorem, not only to exploit the Rellich theorem, but also to avoid slow non-integrable decay at
infinity of the fractional integral: indeed, even for an integrable compactly supported u, we may
have I1−s

+ [u](x) ∼ (x− a)−s at +∞, e.g., if u = χ[a,b].

Remark 9. We emphasize that in Theorem 3, we cannot improve (64), since I1−s
+ [u] may belong to

BV(a, b) \W1,1
G (a, b).

Indeed, we can choose f (x) = sign(x) if −1 < x < 1, fn(x) = −1 if −1 < x < −1/n,
fn(x) = n x if −1/n< x < 1/n and fn(x) = 1 if 1/n< x < 1. Thus, f belongs to BV(−1, 1)\
W1,1(−1, 1) and ‖ fn‖W1,1

G (−1,1) is uniformly bounded. Solving the Abel equations I1−s
+ [un] = fn

and I1−s
+ [u] = f with Propositions 2 and 3 provides u = Ds

+[ f ] ∈ M(−1, 1)\L1(−1, 1), whereas
un = Ds

+[ fn] is uniformly bounded in L1; hence, un is uniformly bounded in Ws,1(−1, 1), due to
Lemma 7.

We recall a well-known result [9] (Theorem 2.1) concerning the L1-representability
of functions.

Theorem 4. [L1-representability] Given f ∈ L1(a, b), then
f ∈ Is

+(L1(a, b)) for some s ∈ (0, 1) if and only if

I1−s
+ [ f ] ∈ W1,1(a, b) and I1−s

+ [ f ](a) = 0 .

f ∈ Is
−(L1(a, b)) for some s ∈ (0, 1) if and only if

I1−s
− [ f ] ∈ W1,1(a, b) and I1−s

− [ f ](b) = 0 .

Moreover, in the affirmative case, say, when there exists u ∈ L1(a, b) such that f = Is
+[u]

(resp. f = Is
−[u]), we obtain

u = Ds
+ f (respectively u = Ds

− f ) . (73)

In Section 5, we provide a self-contained proof of the above result together with
a discussion of the related forward and backward Abel equation in the distributional
framework, even in the cases when I1−s

+ [ f ](a) �= 0 or I1−s
− [ f ](b) �= 0 (see Propositions 2

and 3 and Corollaries 1 and 2).
Here, we show that the representability result has a natural extension to the bilateral case.

Theorem 5. Assume 0 < s < 1. Then

f ∈ L1(a, b) and f ∈ Is
+(L1(a, b)) ∩ Is

−(L1(a, b))

if and only if

f ∈ Ws,1(a, b), 2I1−s[ f ](a)− I1−s
− [ f ](a) = 0 = 2I1−s[ f ](b)− I1−s

+ [ f ](b) ,

if and only if

f ∈ Ws,1(a, b), 2I1−s
+ [ f ](b)− I1−s

− [ f ](a) = 0 = 2I1−s
− [ f ](a)− I1−s

+ [ f ](b) .

Proof. Since
I1−s[ f ](a) =

1
2Γ(1− s)

∫ b

a

f (t)
(t− a)s dt = I1−s

+ [ f ](b) ,

I1−s[ f ](b) =
1

2Γ(1− s)

∫ b

a

f (t)
(b− t)s dt = I1−s

− [ f ](a) ,

I1−s
+ [ f ](a) = 2 I1−s[ f ](a) − I1−s

− [ f ](a) = 2 I1−s
+ [ f ](b) − I1−s

− [ f ](a) ,
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I1−s
− [ f ](b) = 2 I1−s[ f ](b) − I1−s

+ [ f ](b) = 2 I1−s
− [ f ](a) − I1−s

+ [ f ](b) ,

the claim follows by Definition 9, Theorem 4, Proposition 1 (semigroup property of frac-
tional integral), Propositions 2 and 3 and Corollaries 1 and 2.

Next, we make explicit some embedding relationship between Ws,1
± and Us,1

± .

Theorem 6. The following strict embeddings hold true:

Ws,1 ⊂
�=

Ws,1
+ ⊂

�=
Us,1
+ , Ws,1 ⊂

�=
Ws,1
− ⊂

�=
Us,1
− ∀s ∈ (0, 1) , (74)

where we refer to Definitions 7–9 about Ws,1(a, b), shortly denoted Ws,1 here, versus the naïve
definition Us,1

± at the beginning of the present Section 3.

Proof. Without loss of generality, we assume (a, b) = (0, 1).
Strict embeddings of Ws,1 in Ws,1

+ and of Ws,1 in Ws,1
− are shown respectively by xs−1

and (1− x)s−1: see (55) in Example 5.
Therefore, in order to show (74), it is sufficient to show an example for the strict

embedding Ws,1
+ ⊂

�=
Us,1
+ : indeed, the proof of Ws,1

− ⊂
�=

Us,1
− is achieved by replacing the

variable t with (1 − t) in the counterexample showing the other strict embedding by
exploiting the symmetry with respect to x = 1/2, analogous to the one with respect to
x = 0 in (36) and (37).

We first note that Ws,1
+ ⊂ Us,1

+ follows by definition (4): the existence of a weak deriva-
tive in L1 of I1−s

± [u] entails the existence of the fractional derivative Ds
±[u], coincident with

the almost everywhere defined fractional derivative (d/dx)s
±[u](x).

The strict embeddings Ws,1
+ ⊂

�=
Us,1
+ , and Ws,1

− ⊂
�=

Us,1
− follows by the subsequent argu-

ment, which, for any fixed s∈ (0, 1), provides the existence of a function in Us,1
+ \Ws,1

+ and a
function in Us,1

− \Ws,1
− .

Given s ∈ (0, ln 2/ln 3), we show a function z in Us,1
+ such that z �∈ Ws,1

+ .
Precisely, by denoting V the Cantor–Vitali function on [0, 1] ([21]), we claim that

z := D1−s
+ [V] ∈ Us,1

+ \Ws,1
+ s ∈ (α, 1) .

Indeed V is α-Hölder continuous with α := ln 2/ln 3. So Is
+[V] belongs to C1(a, b) for

every s ∈ (1− α, 1) by Theorem 3.1 in [9] and the fact that V(0) = 0. Therefore Is
+[V] ∈ W1,1

G
(hence V∈W1−s,1

+ (0, 1)) for s ∈ (1− α, 1). Moreover, Is
+[V](0)=0 for s∈ (0, 1): indeed, due

to continuity of V in [0, 1], Is
+[V] is continuous in [0, 1] and we obtain

Γ(s)Is
+[V](0) = lim

x→0

∫ x

0

V(t)
(x− t)1−s dt = lim

x→0

(∫ x

0

V(t)−V(x)
(x− t)1−s dt +

xsV(x)
s

)
.

By Hölder continuity (V ∈ C0,α(a, b) ), we obtain |V(t)−V(x)| ≤ C|x− t|α. Then∣∣∣∣∫ x

0

V(t)
(x− t)1−s dt

∣∣∣∣ ≤ C
∫ x

0
(x− t)α+s−1dt +

xsV(x)
s

=
Cxs+α

s + α
+

xsV(x)
s

.

Therefore, the limit above is equal to 0, as x → 0+, thus proving the claim Is
+[V](0) = 0.

Summarizing, V ∈ BV(0, 1), Is
+[V](0) = 0 and Is

+[V] ∈ W1,1(0, 1), for s ∈ (1− α, 1).
Therefore we can consider the Abel integral equation in the distributional setting

find z ∈ L1(0, 1) : I1−s
+ [z] = V on (0, 1), (75)

and solve it; by Proposition 3, the unique solution is given by z = D1−s
+ [V] = D Is

+[V],
and fulfils V = I1−s

+ [z]. Moreover (d/dx)s
+[z] = (d/dx)I1−s

+ [z] = (d/dx)V = 0 a.e. on
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(0, 1), whereas Ds
+[z] = D I1−s

+ [z] = DV, which is a nontrivial bounded measure. Explicitly
z = D1−s

+ [V] fulfills z ∈ Us,1
+ \Ws,1

+ . So far, we have proved the first embedding chain in (74)
for s ∈ (1− α, 1) = ( 1− ln 2/ln 3, 1).

In the sequel, we show that, given any σ ∈ (0, 1), we can adapt the Cantor–Vitali
function in such a way that it is s-Hölder continuous for any s ∈ (0, σ]; hence, we recover
the strict embedding for any s in (1− σ, 1), and hence, for any s in (0, 1), due to the generic
choice of σ.

Indeed, given τ ∈ (0, 1), we can replace the construction of Cantor 1/3 - middle set C (say,
a set whose Hausdorff dimension is ln 2/ ln 3 , which leads to the α = α(1/3) = ln 2/ ln 3
Hölder continuous Cantor–Vitali function V1/3 := V) with the Cantor-like τ - middle set
Cτ , with Hausdorff dimension dim(Cτ) = ln 2/

(
ln 2− ln(1− τ)

)
, which leads to the α(τ)

Hölder continuous Cantor–Vitali generalized function V = Vτ , where

α(τ) = dim(Cτ) = ln 2/
(

ln 2− ln(1− τ)
)

.

Notice that α(τ) → 1− as τ → 0+ and α(τ) → 0+ as τ → 1−, so that α(τ) spans the
interval (0, 1) as τ runs over (0, 1). Moreover, Vτ ∈ (BV ∩ C0)\W1,1 for τ∈ (0, 1).

Again by Proposition 3, we get that Vτ is representable, say there exists (unique)
zτ ∈ L1(0, 1) s.t. zτ = D1−s

+ [Vτ ] s.t. Vτ = I1−s
+ [zτ ] for s ∈ (1− α(τ), 1), and we claim that

Vτ(0) = 0, Is
+[Vτ ](0) = 0, zτ ∈ Us,1

+ \Ws,1
+ for s ∈ (1− α(τ), 1): indeed these claims about

the generalized Cantor–Vitali function Vτ can be proved by the same procedure dealing
with the definition of V = V1/3, as it is sketched below.

The function Vτ is of bounded variations since is monotone, as it is the uniform limit
of a sequence of monotone nondecreasing functions.

Continuity of Vτ follows from uniform convergence of standard iterative approxima-
tions by piecewise linear functions. The absolutely continuous part of the distributional
derivative D Vτ is identically 0 since Vτ is locally constant on an open set of Lebesgue
measure 1: indeed, it is a union of open intervals, which is iteratively obtained by ap-
proximation with finite unions An whose measure �n fulfills the recursive scheme: �1 = τ,
�n+1 = �n + 2nτ 1−�n

2n , so that �n = 1− (1− τ)n → 1 as n → ∞.
The worst case for differential quotients of n-th approximations of Vτ is provided by

(1/2)n/
(
(1− �n)/2n) = 1/(1− τ)n, so that α(τ) is the biggest real α s.t.

(1/2)n/
(
(1− �n)/2n)α

= 2n(α−1)/(1− τ)nα

is uniformly bounded for n ∈ N, say

0 < α ≤ α(τ) = ln 2/
(

ln 2− ln(1− τ)
)

.

So Is
+[Vτ ] belongs to C1(a, b) for every s ∈ (1− α(τ), 1) by Theorem 3.1 of [9] and

taking into account that Vτ(0) = 0. Therefore, I1−s
+ [Vτ ] ∈ W1,1 that is Vτ ∈ Ws,1

+ (0, 1) for
s ∈ (0, α(τ)).

Moreover, I1−s
+ [Vτ ](0) = 0. Indeed, by continuity of Vτ in [0, 1], we obtain

Γ(s) Is
+[Vτ ](0) = lim

x→0

∫ x

0

Vτ(t)
(x− t)1−s dt = lim

x→0

(∫ x

0

Vτ(t)−Vτ(x)
(x− t)1−s dt +

xsVτ(x)
s

)
.

Since Vτ ∈ C0,α(τ)(a, b), we get |Vτ(t)−Vτ(x)| ≤ C|x− t|α(τ). Thus∣∣∣∣∫ x

0

Vτ(t)
(x− t)1−s dt

∣∣∣∣ ≤ C
∫ x

0
(x− t)α(τ)+s−1dt +

xsVτ(x)
s

=
Cxs+α(τ)

s + α(τ)
+

xsVτ(x)
s

.

Summarizing, if Vτ is the generalized Cantor–Vitali function and Uτ(x) = Vτ(1− x),

zτ := D1−s
+ [Vτ ] ∈ Us,1

+ \Ws,1
+ s ∈ (1− α(τ), 1) , (76)
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since Ds
+[zτ ] = D Vτ is a nontrivial Cantor measure with no atomic part, whereas

(d/dx)s
+[zτ ] = 0 a.e.; moreover,

uτ := D1−s
− [Uτ ] ∈ Us,1

− \Ws,1
− s ∈ (1− α(τ), 1) , (77)

where, to achieve (77), we exploit Proposition 2 to solve the backward Abel integral equation
in the distributional framework I1−s[uτ ] = Uτ ; indeed, Uτ ∈ BV(0, 1), Is

−[Uτ ](1) = 0,
then the unique solution v ∈ L1(0, 1) of I1−s

− [v] = Uτ is v = uτ = D1−s
− [Uτ ], which fulfills

I1−s
− [uτ ] = Uτ. Hence, by evaluating the distributional derivative D, we get Ds

−[uτ ] = −D Uτ

which is a nontrivial Cantor measure with no atomic part, whereas (d/dx)s
−[uτ ] = 0 a.e.

We list some properties concerning the comparison of bilateral Riemann–Liouville
fractional Sobolev spaces Ws,1 with classical spaces: Gagliardo fractional Sobolev spaces
Ws,1

G , functions of bounded variation BV(0, 1) and SBV(0, 1), De Giorgi’s space of special
bounded variation functions, whose derivatives have no Cantor part ([21,35] for example).

Theorem 7. Let be s, r ∈ (0, 1) such that r > s. Then

Wr,1
G (0, 1) ∩ Is

+(L1(a, b)) ∩ Is
−(L1(a, b)) ⊂ Ws,1(0, 1)

with continuous injection, say ∀u ∈ Wr,1
G (0, 1) ∩ Is

+(L1(a, b)) ∩ Is
−(L1(a, b))

‖u‖Ws,1 := ‖u‖L1(a,b) + ‖I1−s
+ u‖W1,1(0,1) + ‖I1−s

− u‖W1,1(0,1) ≤ C‖u‖Wr,1
G (0,1) ,

Proof. Straightforward consequence of Theorem 3.2 of [25] and Definition 9.

In [25], we have compared Ws,1
+ (0, 1) and Ws,1

− (0, 1) with SBV(0, 1), and proved

SBV(0, 1) ⊂
⋂

s∈(0,1)

Ws,1(0, 1).

This inclusion was refined by a recent result (Theorem 3.4 in [2]) showing

BV(a, b) ⊂
⋂

s∈(0,1)

Ws,1(a, b). (78)

On the other hand, for every s ∈ (0, 1), Ws,1(a, b) is contained neither in W1,1
G (a, b) nor

in BV(a, b), due to remarkable examples of Weierstrass-type functions. Indeed a Weierstrass
function w can be defined ([36]) so that w belongs to Ws,1, but w does not belong to BV(0, 1)
since it is nowhere differentiable. Fix q > 1 and set

w(x) =
∞

∑
n=0

q−n( exp(iqnx)− exp(iqna)
)

. (79)

Notice that the the constant subtraction entails w(a) = 0, thus preventing a singularity
of Ds

a+[w](x) at x = a.

Theorem 8. Let s, r ∈ (0, 1) be such that r > s. Then

Wr,1
G (0, 1) ∩ Is

+(L1(a, b)) ∩ Is
−(L1(a, b)) ⊂ Ws,1(0, 1)

with continuous injection. Precisely,

‖u‖Ws,1 := ‖u‖L1(a,b) + ‖I1−s
+ u‖W1,1(0,1) + ‖I1−s

− u‖W1,1(0,1) ≤ C‖u‖Wr,1
G (0,1) ,

∀u ∈ Wr,1
G (0, 1) ∩ Is

+(L1(a, b)) ∩ Is
−(L1(a, b)).
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We emphasize that in the case of an unbounded interval (a, b), there is no chance for
a compactness statement analogous to Theorem 3 in Ws,1(a,b), since the Rellich theorem
cannot be applied.

On the other hand, the property u ∈ Ws,1(R) entails a stronger qualitative condition
on u than in the case of u ∈ Ws,1(a, b) with a boundedness of (a, b), as clarified by the
next remark.

Remark 10. If u ∈ Ws,1(R), 0 < s < 1, then
∫
R u(t) dt = 0 and |ξ|s−1û(ξ) is bounded in a

neighborhood of ξ=0. Property
∫ b

a u(t) dt=0 may fail for u ∈ Ws,1(a, b) if (a, b) �= R.
Indeed, (a, b)=R entails û ∈ C0∩L∞(R), hence u∈L1(R), u∈Ws,1(R)⊂Ws,1

e (R), hence

I1−s
e [u] = u ∗ 1

2 Γ(1− s) |t|s ∈ W1,1
G (R) ⊂ L1(R) ,

then, exploiting the Fourier transform F , |ξ|s−1û(ξ) ∈ C0 ∩ L∞(R), hence |ξ|s−1û(ξ) is bounded
and

∫
R u(t)dt = û(0) = 0.
If (a, b) �= R, then, referring to (8) and (10), neither I1−s

e [u] nor I1−s
o [u] belong to L1(R) (or

even to Lp(R) with 1 < p ≤ 2, when s > 1/2), moreover the summability of I1−s
o may fail at

infinity due to a decay of order |x|−s, therefore û may be unbounded around ξ = 0.

Remark 11. Notwithstanding Remark 10 (excluding nontrivial constant functions from the space
Ws,1(R)), if we restrict to bounded intervals, a constant function u ≡ K belongs to Ws,1(a, b), for
every bounded interval (a, b) and every value of K. Indeed,

I1−s
+ [K](x) =

K
Γ(2− s)

(x− a)1−s ∈ L1(a, b) ,

Ds
+[K](x) = Dx

[
I1−s
+ [K]

]
(x) =

d
dx

I1−s
+ [K](x) =

K
Γ(1− s)

(x− a)−s ∈ L1(a, b) .

4. Bilateral Fractional Bounded Variation Space

Possible naïve definitions could be provided, for s ∈ (0, 1), by

As
+ =

{
u ∈ L1(a, b) |

(
d

dx

)s

+
u is a bounded measure

}
,

As
− =

{
u ∈ L1(a, b) |

(
d

dx

)s

−
u is a bounded measure

}
,

As = As
+ ∩ As

−,

which refer to L1-functions whose classical pointwise-defined Riemann–Liouville fractional
derivative of prescribed order s ∈ (0, 1) is a bounded measure.

Actually, if the Riemann–Liouville fractional derivative Ds[u](x) of u exists for a.e. x
for some s ∈ (0, 1), then Is

a+[u] is differentiable almost everywhere, referring to the same
s; nevertheless, we have no information on the distributional derivative of the fractional
integral Is

a+[u].
These differential properties are not completely described by the point-wise derivative,

though it exists almost everywhere. This shows that the previous definitions of As, As
+ and

As
− are not suitable to obtain an integration by the parts formula. Therefore, to develop a

satisfactory theory of fractional bounded variation spaces, as we did for fractional Sobolev
spaces in [25], we introduce a more suitable function space: the bilateral fractional bounded
variation space BVs, as defined in the sequel.

Remark 12. We recall that, as long as these classical fractional derivatives are evaluated on
absolutely continuous functions, as it was done in all previous section, using the operators of the
classical Definition 2 provides the same results as the distributional Definition 3: for this reason,
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we keep the usual classical notations (RLDs
a+, RLDs

b− and the corresponding short forms Ds
+,

Ds
−). However, in the present section, we evaluate fractional derivatives on functions of bounded

variations, a setting where the two definitions provide different evaluations.

Next, inspired by [2], where the nonsymmetric spaces are studied also in the case of
higher order derivatives, we introduce the bilateral Riemann–Liouville bounded variation
space, with the aim to achieve a symmetric framework.

Definition 10. The (bilateral) Riemann–Liouville fractional bounded variation spaces. For
every s ∈ (0, 1), we set

BVs = BVs
+ ∩ BVs

− (80)

where, referring to Definition 3,

BVs
+ = {u ∈ L1(a, b) | I1−s

+ [u] ∈ BV(a, b)} = {u ∈ L1(a, b) | Ds
+[u] ∈ M(a, b)} ,

BVs
− = {u ∈ L1(a, b) | I1−s

− [u] ∈ BV(a, b)} = {u ∈ L1(a, b) | Ds
−[u] ∈ M(a, b)} .

Theorem 9. Assume that the interval (a, b) is bounded and the parameter s fulfills 0< s<1.
Then, the space BVs(a, b) is a normed space endowed with the norm

‖u‖BVs := ‖u‖L1(a,b) + ‖Ds
a+[u] ‖M(a,b) + ‖Ds

b−[u] ‖M(a,b) . (81)

Contribution ‖Ds
+[u]‖M(a,b) + ‖Ds

−[u]‖M(a,b) in the norm (81) can be replaced by
‖Ds

e [u]‖M(a,b)+ ‖Ds
o[u]‖M(a,b) .

Moreover, BVs(a, b) is a Banach space and for every q ∈ [1, 1/(1 − s)), there is
C = C(s, q, a, b), such that

‖u‖Lq(a,b) ≤ C(s, q, a, b) ‖u‖BVs(a,b), (82)

Every u ∈ BVs(a, b) can be represented by both

u(x) = Is
a+
[
Ds

a+[u]
]
(x) +

I1−s
a+ [u](a+)

Γ(s)
(x− a)s−1 a.e x ∈ (a, b), (83)

and

u(x) = Is
b−
[
Ds

b−[u]
]
(x) +

I1−s
b− [u](b−)

Γ(s)
(b− x)s−1 a.e x ∈ (a, b). (84)

Proof. We emphasize that here I1−s
a+ [u](a+) and I1−s

b− [u](b−) replace, respectively, I1−s
a+ [u](a)

and I1−s
b− [u](b) which were in representations (52) and (53) of Ws,1 functions, since in the

present BV setting, there are not pointwise defined values, though there are well-defined
finite right and left limits at every point in (a, b).

The map u �→ ‖u‖BVs is a norm on Ws,1(a, b), indeed,
‖u‖L1(a,b) + ‖Ds

a+[u]‖M(a,b) is equivalent to the norm ‖I1−s
a+ [u]‖BVs,1(a,b), since I1−s

a+ [u]
belongs to BV, Ds

a+[u] = DI1−s
a+ [u] and ‖I1−s

a+ [u]‖L1(a,b) ≤ C‖u‖L1(a,b) ; analogously ‖u‖L1(a,b)

+‖Ds
b−[u]‖M(a,b) is a norm for I1−s

b− [u], due to I1−s
b− [u] ∈ BV, Ds

b−[u] = DI1−s
b− [u] and

‖I1−s
a+ [u]‖L1(a,b) ≤ C‖u‖L1(a,b) . Therefore, terms ‖I1−s

± [u]‖BVs(a,b) can be replaced, respec-

tively, by ‖D
[

I1−s
± [u]

]
‖M(a,b) in the natural norm

‖u‖BVs := ‖u‖L1(a,b) + ‖I1−s
+ [u]‖BVs(a,b) + ‖I1−s

− [u]‖BVs(a,b) .

The other claims follow by the same proof of Theorem 1 for the fractional Sobolev
setting, where actually only the Proposition 2 and Corollary 1 about Abel forward and
backward integral equation must be suitably tuned as stated in Remark 17.
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Example 6. The constant functions and v(x) = x(1 − x) belong to the space BVs(0, 1). In
general, the space C∞

0 (a, b) of test function on (a, b) is contained in BVs(a, b).

Example 7. Heaviside function H belongs to BVs(−1, 1), thanks to Example 3.

Example 8. Function H(x)|x|s−1 belongs to BVs
+(−1, 1)\Ws,1

+ (−1, 1) if 0 < s < 1, since
I1−s
+ [H(x) |x|s−1]=Γ(s)H(x) ∈ BVs

+(−1, 1) due to Example 1.
Due to the unboundedness of I1−s

− [ H(x) |x|s−1 ](x) in a right neighborhood of x = 0 (due to
Example 5), we obtain that H(x) |x|s−1 does not belong to BVs

−(−1, 1).
In general, for 0< s<1, H(x) |x|−α belongs to BVs

+(−1, 1)\BVs
−(−1, 1) if 0 < α < 1− s.

Theorem 10. (integration by parts in BV s(a, b))
Next, identities hold true for 0< s< 1, −∞< a<b< +∞ :⎧⎪⎨⎪⎩

∫ b

a
u(x) d Ds

+[v](x) = −
∫ b

a
Dxu(x) I1−s

+ [v](x) dx + u(b) I1−s
+ [v](b)

∀ v ∈ BVs
+(a, b), ∀ u ∈ W1,1,

G (a, b) ,
(85)

⎧⎪⎨⎪⎩
∫ b

a
u(x) d Ds

−[v](x) = +
∫ b

a
Dxu(x) I1−s

− [v](x) dx + u(a) I1−s
− [v](a)

∀ v ∈ BVs
−(a, b), ∀ u ∈ W1,1,

G (a, b) ,
(86)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∫ b

a
u(x) d Ds

e [v](x) =

−
∫ b

a
Dxu(x) I1−s

e [v](x) dx +
1
2

(
u(b) I1−s

+ [v](b)− u(a) I1−s
− [v](a)

)
∀ v ∈ BVs(a, b), ∀ u ∈ W1,1,

G (a, b) ,

(87)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∫ b

a
u(x) d Ds

o[v](x) =

−
∫ b

a
Dxu(x) I1−s

0 [v](x) dx +
1
2

(
u(b) I1−s

+ [v](b) + u(a) I1−s
− [v](a)

)
∀ v ∈ BVs(a, b), ∀ u ∈ W1,1,

G (a, b) ,

(88)

Proof. Exactly the same proof of Theorem 2, but the facts that, here, the distributional
derivatives Dx in BV replaces the almost everywhere pointwise derivative d/dx in W1,1

G
and the integrals at the left-hand side are evaluated with respect to the measures Ds

+[v],
Ds
−[v], Ds

e [v] and Ds
o[v], in place of Lebesgue measure.

Theorem 11. [Compactness in BV s(a, b)]

Assume that 0< s<1, the interval (a, b) is bounded and

‖un‖BVs(a,b) ≤ C . (89)

Then, there exist u ∈ L1(a, b) and a subsequence such that, without relabeling,⎧⎪⎪⎨⎪⎪⎩
(i) un ⇀ u weakly in Lq(a, b)) ∀q ∈ [1, 1/(1− s)) ,

(ii) I1−s
+ [un]→ I1−s

+ [u] strongly in Lp(a, b) , ∀p < +∞ ,

(iii) I1−s
− [un]→ I1−s

− [u] strongly in Lp(a, b) , ∀p < +∞ .

I1−s
+ [un] ⇀ I1−s

+ [u] , I1−s
− [un] ⇀ I1−s

− [u] weakly in BV(a, b). (90)

Proof. The proof can be achieved by exactly the same argument used in the proof of
compactness in Ws,1(a, b) (Theorem 3).
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Remark 13. We emphasize that

BV(a, b)⊂
�=

BVs(a, b) ∀s ∈ (0, 1), (91)

since BV⊂
�=

Ws,1 and Ws,1 ⊂ BVs.

Moreover,

BV(a, b) ⊂
�=

⋂
σ∈(0,1)

Wσ,1(a, b) ⊂
�=

Ws,1(a, b) ⊂
�=

BVs
+(a, b) ∀s ∈ (0, 1). (92)

Indeed, the first embedding follows by (78) and is strict due to (79); the second embedding is
obviously strict, about the third embedding notice that H(x)|x|s−1 ∈ BVs

+(−1, 1)\Ws,1
+ (−1, 1)

(see Example 8).
In addition, we can rewrite (74) as follows

Ws,1(a, b)⊂
�=

BVs
+(a, b) , Ws,1(a, b)⊂

�=
BVs

−(a, b) , ∀s ∈ (0, 1). (93)

since, referring to notations (76) and (77) in the proof of Theorem 6,

∃ zτ ∈ BVs
+(−1, 1)\Ws,1(−1, 1) , s ∈

(
1− ln 2/

(
ln 2− ln(1− τ)

)
, 1
)

, (94)

∃ uτ ∈ BVs
−(−1, 1)\Ws,1(−1, 1) , s ∈

(
1− ln 2/

(
ln 2− ln(1− τ)

)
, 1
)

(95)

5. Abel Equation in D′(R) and Some Useful Relationships

Here, for the reader’s convenience, first, we recall some basic algebra of fractional
differential calculus, then we extend to the distributional setting some classical results about
Abel integral equations: these suitably tuned claims are exploited in Sections 3 and 4 to
prove the main properties of Wα,1(a, b) and BVα(a, b), with α ∈ (0, 1):
Theorems 1, 3, 5, 6, 9 and 11.

All the results stated in this section are independent of the ones of previous sections.
To avoid confusion with the standard notation of variable s in the Laplace transform,

here, we label by α, instead of s, the index of fractional integral, fractional derivative and
fractional Sobolev space.

All along this section: the Laplace transformable function refers to a measurable
function v on R with support contained in [0,+∞) such that there exists λ ∈ R for which
e−λxv(x) is a Lebesgue-integrable function; the Laplace transformable distribution refers
to a distribution v on R with support contained in [0,+∞) such that there exists λ ∈ R for
which e−λxv(x) is a tempered distribution; and in all cases, V = L{v} denotes the Laplace
transform of v.

First we recall some relationships concerning fractional integral of powers of x in (0, 1):

I1−α
0+ [xβ] =

Γ(1 + β)

Γ(2 + β− α)
x1+β−α α ∈ (0, 1) , β > −1 , (96)

Iα
0+[x

β] =
Γ(1 + β)

Γ(1 + β + α)
xβ+α α ∈ (0, 1) , β > −1 , (97)

I1−α
1− [xβ] =

(
Γ(α− β− 1)

Γ(−β)
− B(x, α− β− 1, 1− α)

Γ(1− α)

)
x1+β−α α, β∈ (0, 1), (98)

where B=B(x, μ, ν) is the incomplete Beta function: B(x, ν, μ)=
∫ x

0 yν−1(1− y)μ−1dy.
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Hence, since both conditions I1−α
0+ [xβ] ∈ W1,1

G (0, 1) and I1−α
0+ [xβ](0) = 0 hold true

when β > α− 1, one obtains the fractional derivative of power functions of x in (0, 1):

Dα
0+ [x

β] = Dx I1−α
0+ [xβ] =

d
dx

I1−α
0+ [xβ] (99)

=
Γ(1 + β)

(1 + β− α)Γ(1 + β− α)

d
dx

x1+β−α

=
Γ(1 + β)

Γ(1 + β− α)
xβ−α α ∈ (0, 1) , β > α− 1 .

Moreover,

I1−α
0+ [xα−1] =

1
Γ(1− α)

∫ x

0

tα−1dt
(x− t)α

=
1

Γ(1− α)

∫ 1

0

dy
y1−α(1− y)α

=
B(α, 1− α)

Γ(1− α)
= Γ(α)

entails
Dα

0+ [x
α−1] ≡ 0 , α ∈ (0, 1) . (100)

In the particular case α = 1/2 we obtain

I1/2
0+ [x−1/2](x) =

√
π and D1/2

0+ [x−1/2] ≡ 0 . (101)

Thus D1/2 has a nontrivial kernel, as it is the case of the linear operators Dα.
More in general, by (100), we know that

Dα
a+ [ H(x− a)(x− a)α−1 ] ≡ 0 ∀ α ∈ (0, 1), ∀ a ∈ R , x ∈ R. (102)

The converse holds too (see Proposition 8).

Proposition 1. (Semigroup property of fractional integral Iα
a+ )

For every 0<α<1, v ∈ L1(R), spt v ⊂ [a,+∞) with a∈R, we have

I1−α
a+

[
Iα
a+[v]

]
(x) = I1

a+[v] =
∫ x

a
v(t) dt x∈R , (103)

D1−α
a+

[
Dα

a+[v]
]
= Dx[v] in D′(R) . (104)

In general, if −∞< a < b≤+∞, α, β∈ (0, 1), α + β<1, v ∈ L1(a, b), then

Iα
a+
[
Iβ
a+[v]

]
(x) = I α+β

a+ [v](x) x∈R , (105)

Dα
a+
[
Dβ

a+[v]
]
(x) = Dα+β

a+ [v] D′(R) . (106)

if −∞≤ a < b<+∞, α, β∈ (0, 1), α + β<1, v ∈ L1(a, b), then

Iα
b−
[
Iβ
b−[v]

]
(x) = I α+β

b− [v](x) x∈R , (107)

Dα
b−
[
Dβ

b−[v]
]
(x) = Dα+β

b− [v] D′(R) . (108)

Proof. Consider the trivial extension of v and the standard extension of related subsequent
fractional integrals as defined by

Iα
a+[v] = v ∗ 1

Γ(α)
H(x)
|x|1−α

x ∈ R .
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We assume first a = 0. By denoting V, the Laplace transform of v and taking into
account of L{H(x) xβ} = Γ(β + 1)/sβ+1 and (97), we obtain, for Re s>0,

L
{

I1−α
0+

[
Iα
0+[v]

]
(x)

}
=

1
Γ(1− α)

1
Γ(α)

L
{

v ∗ H(x)
|x|α ∗ H(x)

|x|1−α

}
=

1
s

V(s) = L
{∫ x

−∞
v(t)dt

}
= L

{∫ x

0
v(t)dt

}
,

hence, claim (103) follows by the injectivity of the Laplace transform.

L
{

D1−α
0+

[
Dα

0+[v]
]
(x)

}
=

1
Γ(α)

1
Γ(1− α)

L
{

Dx

(
H(x)
|x|1−α

∗ Dx

( H(x)
|x|α ∗ v

))}
=

1
Γ(α)

1
Γ(1− α)

s
Γ(α)

sα
s

Γ(1− α)

s1−α
V(s) = s V(s) = L{Dx v} ,

hence, claim (104) follows by the injectivity of the Laplace transform.
In general, we obtain, for Re s>0,

L
{

Iα
0+
[
Iβ
0+[v]

]
(x)

}
=

1
Γ(α)

1
Γ(β)

L
{

v ∗ H(x)
|x|1−α

∗ H(x)
|x|1−β

}
=

1
sα+β

V(s) =
1

Γ(α + β)
L
{

v ∗ H(x)
|x|1−(α+β)

}
= L

{
Iα+β
0+ [v](x)

}
,

which proves (105). Identity (106) is achieved in the same way. The case of general a ∈ R

is achieved by translation. Moreover, given v ∈ L1(a, b) with −∞ < a < b ≤ +∞, by
considering the trivial extension of v on R, we obtain

Iα
b−
[
Iβ
b−[v]

] (35)
=

(
Iα
a+

[(
Iβ
b−[v]

)̌ ])̌
=

(
Iα
a+

[((
Iβ
a+[v̌]

)̌)̌ ])̌
=
(

Iα
a+[I

β
a+[v̌]]

)̌
=

(105)
=

(
Iα+β
a+ [v̌]

)̌ (35)
=

((
Iα+β
b− [v]

)̌)̌
= Iα+β

b− [v] .

hence, (107) is proved. Identity (108) is achieved in the same way.

Proposition 2. Assume α ∈ (0, 1), −∞ < a < b ≤ +∞, I1−α
a+ [ f ](a) = 0 and f belongs to

Wα,1
+ (a, b) :=

{
v ∈ L1(a, b)| I1−α

a+ [v] ∈ W1,1
G (a, b)

}
.

Then the Abel integral equation

Iα
a+[u](x) = f (x) for a.e. x in the interval (a, b) (109)

admits the solution u given by

u(x) = Dα
a+[ f ](x) for a.e. x in the interval (a, b). (110)

which is unique among Laplace-transformable functions evaluated with translated variable x− a.

Proof. Whenever necessary, we consider the trivial extension (namely, 0 valued) on (−∞, a)
of every function and if necessary on (b,+∞), without relabeling the function name. Thus,
every related fractional integral set as a function defined over (a, b) has a trivial extension,
which coincides on (a, b) with the same fractional integral of the trivial extension, namely,
it has support contained on [a,+∞).

First, we assume a = 0. In such a case, f is a Laplace-transformable function: we
denote by F(s) = L{ f }(s) and U(s) = L{u}(s) their Laplace transform evaluated at the
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variable s. If a Laplace transformable solution u exists, then its Laplace transform U must
fulfill the transformed equation. We have

Iα
0+[u](x) =

1
Γ(α)

∫ x

0

u(t) dt
(x− t)1−α

=
1

Γ(α)

(
H(x) xα−1

)
∗ u

Iα
0+[u](x) = f (x)

1
Γ(α)

Γ(α)
sα

U(s) = F(s)

U(s) = sαF(s) = s
F(s)
s1−α

We evaluate u = L−1U: reminding that L{Dxw(x)} = sL{w}, where w is any L-
transformable distribution, and here, Dx and d/dx denote respectively the distributional
derivative on the open set R and on (a,+∞). By taking into account that I1−α

+ [ f ] belongs
to W1,1

G (0, b) ⊂ L∞(0, b) ∩ C0[0, b], we know that I1−α
+ [ f ](0+) is a well-defined real value.

Thus, by formula s G(s) = L{Dxg} = L{(d/dx)g}+ g(0+) applied to g = I1−α
a+ [ f ] under

the assumption I1−α
a+ [ f ](0) = 0, we obtain

u(x) = L−1{U(s)} = L−1
{

s
F(s)
s1−α

}
(111)

= Dx

(
f ∗ 1

Γ(1− α) xα

)
= Dx

(
I1−α
+ [ f ](x)

)
=

d
dx

(
I1−α
+ [ f ](x)

)
=

1
Γ(1− α)

d
dx

∫ x

0

f (t) dt
(x− t)α

= Dα
+[ f ](x) ,

where the four last equalities are understood in the sense a.e. on (−∞, b), coherently
with the fact that u ∈ L1(−∞, b) because it coincides with the derivative of the function
I1−α
+ [ f ] ∈ W1,1

G (0, b) and vanishes on (−∞, 0). Moreover u is unique due to the injectivity
of the Laplace transform. Then (110) is proved when a = 0.

If a �= 0, we can exploit the solution Formula (111) proved in case a = 0: assume
Iα
a+[u] = f on (a, b) and set u(t) = v(t− a); then t �→ v(t) = u(t + a) and t �→ f (t + a)

have support on [0,+∞) and, hence, are Laplace transformable functions.

Iα
a+[u](x) =

1
Γ(α)

∫ x

a

u(t)dt
(x− t)1−α

=
1

Γ(α)

∫ x

a

v(t− a) dt(
(x− a)− (a + t)

)1−α

=
1

Γ(α)

∫ x−a

0

v(τ) dτ(
(x− a)− τ

)1−α
= Iα

0+[v](x− a) = Iα
0+[u(t + a)](x− a)

Thus we have the Abel equation Iα
0+[u(t + a)](x− a) = f (x), that is

Iα
0+[u(t + a)](x) = f (x + a) .

By (111), we get u(x + a) = v(x) = Dα
0+[ f (x + a)](x + a), that is

u(x) = Dα
a+[ f ](x) . (112)

Remark 14. At a first glance, both technical assumptions in Proposition 2, namely f ∈Wα,1
+ (a, b)

and I1−α
a+ [ f ](a) = 0, may look strange or unnatural.
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However, they cannot be circumvented: actually, they are both necessary conditions for the
existence of a solution u∈L1(a, b) of Equation (109).

Let us check this claim: if such a solution as u∈ L1(a, b) exists, then f = Iα
a+[u] belongs to

L1(a, b); moreover, due to the semigroup property of fractional integrals (see Proposition 1),

I1−α
a+ [ f ](x) = I1−α

a+ [Iα
+[u]](x) = I1

a+[[u]](x) =
∫ x

a
u(t) dt , (113)

hence, I1−α
a+ [ f ] is the primitive of an L1(a, b) function; thus I1−α

a+ [ f ] belongs to W1,1
G (a, b) and

I1−α
a+ [ f ](a) = 0.

Remark 15. Condition I1−α
+ [ f ](a) = 0 may be not easy to check. However, it can be replaced

by stronger conditions, which are much easier to check. Indeed, if either there exists a finite value
f (a+) := lim

x→a+
f (x) or f is bounded in a neighborhood of 0, then I1−α

+ [ f ](a) = 0.

Remark 16. For the unnormalized Abel equation , Γ(α) Iα
a+[u] = f , namely

∫ x

a

u(t)
(x− t)1−α

dt = f (x) for x in the interval (a, b), (114)

as a straightforward consequence of Proposition 2 and Euler reflection formula, Γ(z)Γ(1− z) =
π/ sin(πz) ∀z ∈ C\Z, under the assumption f ∈ Ws,1(a, b), we recover the next formula for the
unique solution u in L1(a, b):

u(x) =
1

Γ(α)
Dα

a+[ f ](x) =
1

Γ(α)Γ(1− α)

d
dx

∫ x

a

f (t) dt
(x− t)1−α

=
sin(απ)

π

d
dx

∫ x

a

f (t) dt
(x− t)1−α

(115)

still under the requirement that necessary conditions f ∈Wα,1
+ (a, b) and I1−α

+ [ f ](a) = 0 hold true.

Now, we remove the assumption I1−α
a+ [v](a) = 0 and look for solutions in D′(R).

Proposition 3. Assume that α ∈ (0, 1), −∞ < a < b ≤ +∞ and f belongs to the space
BVα

+(a, b) :=
{

v ∈ L1(a, b)| I1−α
a+ [v] ∈ BV(a, b)

}
.

Then, the Abel integral equation in the distributional framework

Iα
a+[u] = f in D′(R), (116)

admits a unique solution u among Laplace transformable distributions evaluated at x− a (variable
translation), which is the bounded measure on R with support contained in [a,+∞) given by

u(x) = Dα
a+[ f ](x) + I1−α

a+ [ f ](a+) δ(x− a) in D′(R). (117)

In (116), actually u denotes the trivial extension outside (a, b), and

Iα
a+[u] = u ∗ 1

Γ(α)
H(x)
|x|1−α

represents the distributional convolution whose evaluation, namely f , is identically 0 on (−∞, a)
and possibly non-zero on [b,+∞).

Proof. Same proof of Proposition 2. Only the step in (111) with a = 0 has to be slightly

modified: denoting by ˜̃Dx and D̃x the distributional derivative respectively in D′(R\{0})
and D′(0,+∞), setting F(s) = L{ f }, g(x) = I1−α

a+ [ f ](x), G(s) = L{g} = F(s)/s1−α,
L{Dxg} = sG(s) and

Dx g = ˜̃Dx g + g(0+) δ(x) = D̃x g + g(0+) δ(x) ,
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we exploit the fact that I1−α
+ [ f ](0+) is a finite well-defined value (since f ∈BVα

+(0, b) entails
I1−α
+ [ f ]∈BV(0, b)), and we replace (111) by

u(x) = L−1{U(s)} = L−1
{

s
F(s)
s1−α

}
= L−1{ s G(s) }

= Dx g =
d

dx
g + g(0+) δ(x)

=
d

dx

(
f ∗ 1

Γ(1− α) xα

)
+ I1−α

a+ [ f ](0+) δ(x)

=
d

dx

(
I1−α
+ [ f ](x)

)
+ I1−α

a+ [ f ](0+) δ(x)

= Dα
+[ f ](x) + I1−α

a+ [ f ](0+) δ(x) .

Corollary 1. Assume α ∈ (0, 1), −∞ ≤ a < b < +∞, the value f (b−) := limx→b− f (x)
exists and is finite (possibly substituted by weaker condition I1−α

b−
[ f ](b) = 0 ) and f belongs to

Wα,1
− (a, b) :=

{
v ∈ L1(a, b)| I1−α

b− [v] ∈ W1,1
G (a, b)

}
.

Then, the backward Abel integral equation

Iα
b−[u](x) = f (x) for a.e. x in the interval (a, b) (118)

admits a solution u, unique among Laplace transformable functions evaluated at b− x (sign change
and translation), which is given by

u(x) = Dα
b−[ f ](x) for a.e. x in the interval (a, b). (119)

Proof. Taking into account that b ∈ R, set v(t) = ǔ(t) := u(−t), and hence, u : (a, b)→ R,
v : (−b,−a)→ R, and choose x ∈ (a, b). Then

f (x) = Iα
b−[u](x) =

1
Γ(α)

∫ b

x

u(τ) dτ

(τ − x)1−α

=
1

Γ(α)

∫ 0

x−b

u(t + b) dt(
(b + t)− x

)1−α
=

1
Γ(α)

∫ 0

x−b

v(−(b + t)) dt(
− x + (b + t)

)1−α

=
−1

Γ(α)

∫ x−b

0

v(−(b + t)) dt(
− x + (b + t)

)1−α
=

1
Γ(α)

∫ −x

−b

v(y) dy(
− x− y)

)1−α
= Iα

(−b)+[v](−x)

Therefore, we can apply Proposition 2 to an Abel equation on (−b,−a):

Iα
(−b)+[v](x) = f (−x)

Iα
(−b)+[ǔ](x) = f̌ (x)

ǔ(x) = Dα
(−b)+[ f̌ ](x)

u(−x) =
1

Γ(1− α)

d
dx

∫ x

−b

f (−t) dt
(x− t)α

=
−1

Γ(1− α)

d
dx

∫ −x

b

f (τ) dτ

(x + τ)α

=
1

Γ(1− α)

d
dx

∫ b

−x

f (τ) dτ

(x + τ)α
=

d
dx

(
I1−α
b− [ f ](−x)

) chain-rule
=

= − d
dx

(
I1−α
b− [ f ]

)
(−x) = Dα

b−[ f ](−x) x ∈ (−b,−a) .
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u(x) = Dα
b−[ f ](x) x ∈ (a, b)

Corollary 2. Assume that α ∈ (0, 1), −∞ < a < b ≤ +∞ and f belongs to the space
BVα

−(a, b) :=
{

v ∈ L1(a, b)| I1−α
b− [v] ∈ BV(a, b)

}
.

Then the backward Abel integral equation in the distributional framework

Iα
b−[u](x) = f (x) in D′(R), (120)

admits a unique solution u among Laplace transformable distributions evaluated at b− x (say with
sign change and translation), which is the bounded measure with support contained in (−∞, b]
given by

u(x) = Dα
b−[ f ](x) + I1−α

b− [ f ](b−) δ(x− b) in D′(R). (121)

In (120), actually u denotes the trivial extension outside (a, b), and

Iα
b−[u] = u ∗ 1

Γ(α)
H(−x)
|x|1−α

.

represents the distributional convolution whose evaluation, namely f , is identically 0 on [b,+∞)
and possibly non-zero on (−∞, a).

Proof. Same proof of Corollary 1, but exploiting Proposition 3 instead of Proposition 2.
Notice that the trivial extension of a function in L1(a, b) has compact support and can be
dealt with as a Laplace transformable distribution evaluated at the variable (b− x).

Example 9. We mention some basic examples of solution u for Abel integral equation Iα
0+ [u] = f on

(0, b) with 0 < b ≤ +∞ and, more in general for distributional Abel integral equation Iα
a+ [u] = f

and Iα
b− [u] = f with support condition.

1. If f = xα, then u = Dα
a+[t

α](x) = Γ(α + 1) H(x), for α ∈ (0, 1), due to Proposition 2.

2. If f = H(x), then u = Dα
a+[H](x) =

x−α

Γ(1− α)
, for α ∈ (0, 1), due to Proposition 2.

3. If f = xβ, then u =
Γ(β + 1)

Γ(1 + β− α)
xβ−α, for α ∈ (0, 1), β > α− 1, due to Proposition 2.

These relationships are deduced by Proposition 2: in the first and second item, notice that
f ∈ L∞(a, b) entails I1−α

0+ [u](0) = 0 (see Remark 15), while in third item β > α− 1 entails

both I1−α
+ [xβ](x) = Γ(1+β)

Γ(2+β−α)
x1+β−α ∈ W1,1

G (0, 1) and I1−α
0+ [xβ](0) = 0. Thus, we get the

three claims above by applying the relationships

Dα
0+ [x

β] =
Γ(1 + β)

Γ(1 + β− α)
xβ−α , (1− α) �= α ∈ (0, 1), β > α− 1 , (122)

Dα
0+ [x

α−1] = 0 , α ∈ (0, 1) . (123)

4. If f (x)=(x− a)α−1, x∈ (a, b), α∈ (0, 1), then the solution u with support on [a,+∞) to dis-
tributional backward Abel equation Iα

a+[u] = (x − a)α−1H(x − a) is given by
u(x) = Γ(α) δ(x− a).
Indeed I1−α

a+ [(t − a)α−1](x) = Γ(α), Dα
a+[t

α−1](x) = Dx I1−α
a+ [tα−1](x) ≡ 0 thus, by

Proposition 3, u=Dα
a+[(t− a)α−1](x)+ I1−α

a+ [(t−a)1−α](a+)δ(x− a)=Γ(α)δ(x−a).
Then, u solves the Abel equation since, by representation (14), we obtain

Iα
a+[Γ(α) δ(x− a)] = Γ(α) δ(x− a) ∗ H(x) (x)α−1

Γ(α)
= H(x− a) (x− a)α−1 in D′(R).
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5. If f (x) = x2(1 − x), x ∈ (0, 1), α ∈ (0, 1), then the solution u to backward Abel equa-

tion Iα
1−[u] = f (x) is given by u(x) = Dα

1− f (x) =
(1−x)1−α(6x2−4αx+(α−1)α)

Γ(4−α)
, due to

Corollary 1 since I1−α
b− [ f ](b−) = 0.

6. If f (x)= (b− x)α−1, x∈ (a, b), α∈ (0, 1), then the solution u with support on (−∞, b] to
backward distributional Abel equation Iα

b−[u] = (b − x)α−1H(b − x) is given by
u(x) = Γ(α) δ(x− b). Indeed

I1−α
b− [(b− t)α−1](x) =

1
Γ(1− α)

∫ b

x

1
(b− t)1−α(t− x)α

dt
y = (b− t)x/(b− x)

=

=
1

Γ(1− α)

∫ x

0

1
y1−α(1− y)α

dy =
B(α, 1− α)

Γ(1− α)
= Γ(α) ,

so I1−α
b− [(b− t)α−1](x)=Γ(α), Dα

b−[t
α−1](x)=−Dx I1−α

b− [tα−1](x)≡0 so, by Corollary 2,
u = Dα

b−[(b− t)α−1](x)+ I1−α
b− [(b− t)α−1](b−) δ(b− x) = Γ(α) δ(b− x).

Then, such u solves the Abel equation since, by representation (14),

Iα
−[Γ(α) δ(b− x)] = Γ(α) δ(b− x) ∗ H(−x) (x)α−1

Γ(α)
= H(b− x) (b− x)α−1 in D′(R).

Lemma 8. Fix a value α ∈ (0, 1).
If a Laplace transformable function u fulfils Dα

0+[u] ≡ 0 on the half-line (0,+∞), then
u(x) = C xα−1, for a suitable constant C.

If a function u ∈ L1(a, b), with −∞ < a < b < +∞, fulfils Dα
a+[u] ≡ 0 on (a, b), then

u(x) = C (x− a)α−1, for a suitable constant K.
If a function u ∈ L1(a, b), with −∞ < a < b < +∞, fulfils Dα

b−[u] ≡ 0 on (a, b), then
u(x) = C (b− x)α−1, for a suitable constant C.

Proof. The property
Dx I1−α

a+ [u] = Dα
a+[u] ≡ 0

entails I1−α
a+ [u] is constant. Thus, for a suitable constant function K, we have that u fulfills

the Abel integral equation: I1−α
a+ [u] = K , moreover Iα

a+[K](a) = 0 since K ∈ L∞(a, b), and
due to (96) and the boundedness of (a, b)

Iα
a+[K] = K

(x− a)α

α Γ(α)
∈ W1,1

G (a, b) ∀ α ∈ (0, 1).

Then, by Proposition 2, the solution u of the Abel equation I1−α
a+ [u] = K is

u(x) = D1−α
+ [K] = Dx Iα

a+[K] =
K

Γ(α)
d

dx
(x− a)α

α
=

K
Γ(α)

(x− a)α−1 .

This proves the first and second claim, since an L-transformable function is an L1

function on every bounded interval. The third one follows in the same way, by applying
Corollary 1 to the backward Abel equation I1−α

b− [u] = K.

Lemma 8 provides the inverse of (100). Hence, summarizing

u ∈ L1(a, b) fulfils Dα
a+[u] ≡ 0 on (a, b) iff u(x) = C(x− a)α−1 . (124)

Lemma 9. Assume that the interval (a, b) is bounded, 0<α<1, v∈L1(a, b), I1−α
a+ [v] belongs to

W1,1
G (a, b) and I1−α

a+ [v](a+) = 0.
Then

∃ unique V ∈ L1(a, b) : v = Iα
a+[V ] ; and V(x) = Dα

a+[v] = Dx I1−α
a+ [v] , (125)
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and v∈Lq(a, b) for every q∈
[
0, 1/(1− α)

)
; moreover, there is C = C(q) such that

‖v‖Lq(a,b)≤ C(q)
(
‖v‖L1(a,b) + ‖I1−α

a+ [v]‖W1,1,
G (a,b)

)
. (126)

The same claims hold true when Iα
a+[v], I1−α

a+ [v] and Dα
a+[v] are replaced, respectively, by

Iα
b−[v], I1−α

b− [v] and Dα
b−[v] in the assumptions and the claims.

Proof. By considering V as the unknown in the Abel integral equation

Iα
a+[V ] = v on (a, b) (127)

we know by Proposition 2 that there is a solution V ∈ L1(a, b) fulfilling the integral equation:
such V is the unique solution in L1(a, b) and fulfills

V(x) = Dα
a+[v] = Dx

(
I1−α
a+ [v]

)
. (128)

Thus V(x) ∈ L1(a, b). Moreover, by (127), I1−α
a+ [v](a) = 0 and the semigroup property

of s �→ Is
a+ (Proposition 1),

I1−α
a+ [v](x) = I1−α

a+ [Iα
a+[V ]] = I1

a+[V ] =
∫ x

a
V(t) dt .

Summing up V ∈ L1(a, b), I1−α
a+ [V ](a+) = 0, I1−α

a+ [v](a+) = 0, I1−α
a+ [v− Iα

a+[V ]](a+)≡ 0;
then v = Iα

a+[V ], v ∈ Iα
a+
(

L1(a, b)
)

and (125), (126) follow by standard embedding of
fractional integrals.

If we remove the assumption I1−α
a+ [v](a+) = 0 in Lemma 9, then we must add suitable

corrections to both v and V , as stated by the next theorem.

Theorem 12. Assume that (a, b) bounded, 0<α<1, v∈L1(a, b), I1−α
a+ [v] belongs to BV(a, b).

Then

∃ V ∈M(R), sptV ⊂ [a,+∞), ∃K∈R : v = Iα
a+[V ] +

K

Γ(α)
(x− a)α−1; Dα

a+[v] = V(x) , (129)

and v∈Lq(a, b) for every q∈
[
1, 1/(1− α)

)
; moreover, there is B = B(q,K, α) such that

‖v‖Lq(a,b)≤ B(q,K, α)
(
‖v‖L1(a,b) + ‖I1−α

a+ [v]‖W1,1,
G (a,b)

)
. (130)

Explicitly, for every given α ∈ (0, 1), we have

v = Iα
a+[D

α
a+[v]] +

I1−α
a+ [v](a+)

Γ(α)
(x− a)α−1, a.e. x∈ (a, b), ∀v∈L1(a, b) : I1−α

a+ [v]∈BV(a, b). (131)

The same claims hold true when Iα
a+[v], I1−α

a+ [v] and Dα
a+[v] are replaced respectively by

Iα
b−[v], I1−α

b− [v] and Dα
b−[v] in the assumptions and the claims.

Proof. Since I1−α
a+ [v] belongs to BV(a, b), it has a finite right value I1−α

a+ [v](a+) at x = a,
labeled by K , say K := I1−α

a+ [v](a+). By (97), I1−α
a+ [(x− a)]α−1 ≡ Γ(α), 0<α<1. We set

w(x) = v(x)− K

Γ(α)
(x− a)α−1

then w∈L1(a, b), I1−α
a+ [w] ∈ BV(a, b) and I1−α

a+ [w](a+) = 0. We know by Proposition 3 that
there is a solutionW ∈M(R) with sptW⊂ [a,+∞) fulfilling the integral equation

v = Iα
a+[V ] in D′(R), (132)

suchW is the unique solution with support on [a,+∞) and fulfills

W(x) = Dα
a+[w](x) (133)
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ThusW(x) ∈ M. By (132), I1−α
a+ [w](a+) = 0 and the semigroup property of s �→ Is

a+

I1−α
a+ [w](x) = I1−α

a+ [Iα
a+[W ]] = I1

a+[W ] =
∫ x

a
W(t) dt .

Hence, by setting V = W + I1−α
a+ [v](a+) δ(x − a) and taking into account (99),

we obtain

v(x) = w(x) +
K

Γ(α)
(x− a)α−1 = Iα

a+[V ](x) +
K

Γ(α)
(x− a)α−1 . (134)

Dα
a+[v] = Dα

a+[w] + Dα
a+

[
K

Γ(α)
(x− a)α−1

]
= Dx I1−α

a+ [v] = V(x) = Dα
a+[w]. (135)

Thus V ∈ L1(a, b), I1−α
a+ [V ](a+) = 0, I1−α

a+ [v](a+) = 0, I1−α
a+ [v − Iα

a+[V ]](a+) ≡ 0; then
v = Iα

a+[V ], v ∈ Iα
a+
(

L1(a, b)
)
. The function (x − a)α−1 belongs to Lq(a, b) for every

q ∈
[
1, 1/(1− α)

)
, due to the boundedness of the interval. By standard embedding of

fractional integrals, the function w = Iα
a+(V) belongs to Lq(a, b) for every q∈

[
1, 1/(1− α)

)
.

Summarizing, v∈Lq(a, b) for every q∈
[
1, 1/(1− α)

)
and (129) and (130) hold true.

Remark 17. We emphasize that in Theorem 12 the fractional integrals and derivatives I1−α
a+ , I1−α

b− ,
Dα

a+ and Dα
b− are understood in the distributional sense provided by Definitions 1 and 3. Referring

to Definition 10, with (a, b) bounded, (131) reads as follows

v(x) = Iα
a+[D

α
a+[v]](x) +

I1−α
a+ [v](a+)

Γ(α)
(x− a)α−1 a.e. x∈ (a, b), ∀v∈BVs

+(a, b), α∈ (0, 1). (136)

Moreover, in a bounded interval (a, b) we have

v = Dα
a+[I

α
a+[v]] a.e. on ∈ (a, b), ∀v∈L1(a, b), ∀α∈ (0, 1), (137)

since Dα
a+[I

α
a+[v]] = Dx[I1−α

a+ [Iα
a+[v]]] = Dx[[I1

a+[v]] = Dx[
∫ x

a v] = v ; whereas

v = Dα
a+[I

α
a+[v]] + C δ(x− a) on D′(R), ∀v∈M(R), spt v ⊂ [a, b], ∀α∈ (0, 1), (138)

where C= limx→a+ I1[v](x), indeed by Lemma 8 the kernel of Dα
a+ is made by functions of the kind

K(x− a)α−1, which all belong to BVs
+(a, b) and fulfill on R

C Γ(α)H(x− a)(x− a)α−1= C Γ(α) δ(x− a) ∗ 1
Γ(α)

H(x)
xα−1 = Iα

a+[C Γ(α) δ(x− a)] .

6. Conclusions

We establish some properties of the bilateral Riemann–Liouville fractional deriva-
tive Ds.

We set the notation and study the associated Sobolev spaces of fractional order s,
denoted by Ws,1(a, b), and the fractional bounded variation spaces of fractional order s,
denoted by BVs(a, b). The basic properties of these spaces are proved: weak compactness
properties, and comparison embeddings and strict embeddings with several related spaces,
namely,

BV(a, b) ⊂
�=

⋂
σ∈(0,1)

Wσ,1(a, b) ⊂
�=

Ws,1(a, b) ⊂
�=

BVs
+(a, b) ∀s ∈ (0, 1),

Ws,1(a, b)⊂
�=

BVs
+(a, b) , Ws,1(a, b)⊂

�=
BVs

−(a, b) , ∀s ∈ (0, 1).

Spaces Ws,1 and BVs are the natural setting for data of Abel integral equations in order
to make them well-posed problems in the distributional framework too.

223



Axioms 2022, 11, 30

Author Contributions: Conceptualization, A.L. and F.T.; methodology, A.L. and F.T.; formal analysis,
A.L. and F.T.; writing—original draft preparation, A.L. and F.T.; writing—review and editing, A.L.
and F.T. All authors have read and agreed to the published version of the manuscript.

Funding: The authors are members of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità
e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). This
research was partially funded by Italian M.U.R. PRIN: grant number 2017BTM7SN “Variational
Methods for stationary and evolution problems with singularities and interfaces”.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We thank Maïtine Bergounioux for many helpful discussions.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Leaci, A.; Tomarelli, F. Bilateral Riemann-Liouville Fractional Sobolev spaces. Note Mat. 2021, 41, 61–84.
2. Carbotti, A.; Comi, G.E. A note on Riemann-Liouville fractional Sobolev spaces. Commun. Pure Appl. Anal. 2021, 20, 17–54.

[CrossRef]
3. Comi, G.E.; Spector, D.; Stefani, G. The fractional variation and the precise representative of BVα,p functions. arXiv 2021,

arXiv:2109.15263.
4. Comi, G.E.; Stefani, G. A distributional approach to fractional Sobolev spaces and fractional variation: Existence of blow-up. J.

Funct. Anal. 2019, 277, 3373–3435. [CrossRef]
5. Comi, G.E.; Stefani, G. A distributional approach to fractional Sobolev spaces and fractional variation: Asymptotics I. arXiv 2019,

arXiv:1910.13419.
6. Shieh, T.-T.; Spector, D. On a new class of fractional partial differential equations. Adv. Calc. Var. 2015, 8, 321–336. [CrossRef]
7. Shieh, T.-T.; Spector, D. On a new class of fractional partial differential equations II. Adv. Calc. Var. 2018, 11, 289–307. [CrossRef]
8. Spector, D. A Noninequality for the Fractional Gradient. Port. Math. 2019, 76, 153–168. [CrossRef]
9. Samko, S.G.; Kilbas, A.; Marichev, O. Fractional Integrals and Derivatives-Theory and Applications, Gordon and Breach; CRC Press:

Boca Raton, FL, USA, 1993.
10. Aubert, G.; Kornprobst, P. Mathematical problems in image processing, Partial Differential Equations and the Calculus of

Variations. In Applied Mathematical Sciences, 2nd ed.; Springer: New York, NY, USA, 2006.
11. Bergounioux, M.; Trélat, E. A variational method using fractional order Hilbert spaces for tomographic reconstruction of blurred

and noised binary images. J. Funct. Anal. 2010, 259, 2296–2332. [CrossRef]
12. Carriero, M.; Leaci, A.; Tomarelli, F. A candidate local minimizer of Blake & Zisserman functional. J. Math. Pures Appl. 2011, 96,

58–87. [CrossRef]
13. Carriero, M.; Leaci, A.; Tomarelli, F. Image inpainting via variational approximation of a Dirichlet problem with free discontinuity.

Adv. Calc.Var. 2014, 7, 267–295. [CrossRef]
14. Carriero, M.; Leaci, A.; Tomarelli, F. A Survey on the Blake–Zisserman Functional. Milan J. Math. 2015, 83, 397–420. [CrossRef]
15. Carriero, M.; Leaci, A.; Tomarelli, F. Euler equations for Blake & Zisserman functional. Calc. Var. Partial. Differ. Equations 2008, 32,

81–110. [CrossRef]
16. Carriero, M.; Leaci, A.; Tomarelli, F. Segmentation and Inpainting of Color Images. J. Convex Anal. 2018, 25, 435–458.
17. Valdinoci, E. A Fractional Framework for Perimeters and Phase Transitions. Milan J. Math. 2013, 81, 1–23. [CrossRef]
18. Leaci, A.; Tomarelli, F. Symmetrized fractional total variation models for image analysis. article in preparation.
19. Kukushkin, M.V. On Solvability of the Sonin-Abel Equation in the Weighted Lebesgue Space. Fractal Fract. 2021, 5, 77. [CrossRef]
20. Royden, H.L. Real Analysis, 2nd ed.; Macmillan: New York, NY, USA, 1968.
21. Ambrosio, L.; Fusco, N.; Pallara, D. Functions of Bounded Variation and Free Discontinuity Problems; Oxford Mathematical

Monographs; Oxford University Press: Oxford, UK, 2000.
22. Di Nezza, E.; Palatucci, G.; Valdinoci, E. Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 2012, 136, 521–573.

[CrossRef]
23. Oldham, K.; Myl, J.; Spanier, J. An Atlas of Functions, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2009.
24. Anastassiou, G. Fractional Differentiation Inequalities; Springer: New York, NY, USA, 2009.
25. Bergounioux, M.; Leaci, A.; Nardi, G.; Tomarelli, F. Fractional Sobolev spaces and functions of bounded variation of one variable.

Fract. Calc. Appl. Anal. 2017, 20, 936–962. [CrossRef]
26. Herrmann, R. Fractional Calculus: An Introduction for Physicists, 2nd ed.; World Scientific: Singapore, 2014.
27. Malinowska, A.B.; Torres, D.F.M. Introduction to the Fractional Calculus of Variations; World Scientific: Singapore, 2012.
28. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The

Netherlands, 2006.

224



Axioms 2022, 11, 30

29. Povstenko, Y. Linear Fractional Diffusion-Wave Equation for Scientists and Engineers; Birkhäuser: New York, NY, USA, 2015.
30. Uchaikin, V.V. Fractional Derivatives for Physicists and Engineers; Springer: Berlin, Germany, 2013.
31. Bourdin, L.; Idczak, D. A fractional fundamental lemma and a fractional integration by parts formula- Application to critical

points of Bolza functionals and to linear boundary value problems. Adv. Diff. Eq. 2015, 20, 213–232.
32. Almeida, R.; Martins, N. A Generalization of a Fractional Variational Problem with Dependence on the Boundaries and a Real

Parameter. Fractal Fract. 2021, 5, 24. [CrossRef]
33. Kukushkin, M.V. Riemann-Liouville operator in weighted Lp spaces via the Jacoby series expansion. Axioms 2019, 8, 75. [CrossRef]
34. Caputo, M. Linear Models of Dissipation Whose Q is Almost Frequency Independent. Geophys. J. Int. 1967, 13, 529–539. [CrossRef]
35. De Giorgi, E.; Ambrosio, L. Un nuovo tipo di funzionale del calcolo delle variazioni. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat.

Natur. 1988, 82, 199–210.
36. Ross, B.; Samko, S.G.; Love, R.E. Functions that have no first order derivative might have fractional derivatives of all orders less

that one. Real Anal. Exch. 1994, 2, 140–157. [CrossRef]

225





axioms

Article

Hybrid Method for Simulation of a Fractional COVID-19
Model with Real Case Application

Anwarud Din 1, Amir Khan 2, Anwar Zeb 3, Moulay Rchid Sidi Ammi 4,*, Mouhcine Tilioua 4

and Delfim F. M. Torres 5

Citation: Din, A.; Khan, A.; Zeb, A.;

Sidi Ammi, M.R.; Tilioua, M.;

Torres, D.F.M. Hybrid Method for

Simulation of a Fractional COVID-19

Model with Real Case Application.

Axioms 2021, 10, 290. https://

doi.org/10.3390/axioms10040290

Academic Editors: Stevan Pilipović
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Abstract: In this research, we provide a mathematical analysis for the novel coronavirus responsible
for COVID-19, which continues to be a big source of threat for humanity. Our fractional-order analysis
is carried out using a non-singular kernel type operator known as the Atangana-Baleanu-Caputo
(ABC) derivative. We parametrize the model adopting available information of the disease from
Pakistan in the period 9 April to 2 June 2020. We obtain the required solution with the help of a
hybrid method, which is a combination of the decomposition method and the Laplace transform.
Furthermore, a sensitivity analysis is carried out to evaluate the parameters that are more sensitive to
the basic reproduction number of the model. Our results are compared with the real data of Pakistan
and numerical plots are presented at various fractional orders.

Keywords: coronavirus disease 2019 (COVID-19); ABC derivative; hybrid method; existence analysis;
semi-analytical solution

MSC: 34C60; 26A33; 92D30

1. Introduction

The novel coronavirus SARS-CoV-2, responsible for COVID-19, which is member of
the family of Severe Acute Respiratory Syndrome (SARS) viruses, has been recognized as
the most dangerous virus of this decade [1]. This virus has become the new novel strain of
the SARS family, which was not recognized in humans before [2]. COVID-19 has not just
affected humans, but also a number of animals have been infected by the virus. The SARS-
CoV-2 virus has been transmitted from human to human and similarly in animals, but its
origin is still a controversy [3]. Infected humans and different species of various animals
are recognized as active causes of spreading of the virus [1]. In the past, some similar
viruses, like the Middle East Respiratory Syndrome Coronavirus (MERS-CoV), were spread
out from camels to human population, and for SARS-CoV-1 the civet was recognized as
the source of spreading into humans. For COVID-19, the main source or the major reason
of spreading is human-to-human interaction, where the virus transmission is easily made
by an infected person to a susceptible one. Currently, thousands of research studies have
been proposed and many predictions have been given on COVID-19 dynamics, see in [4–8]
and references therein. Our paper is, however, different from those in the literature. In [4],
special focus is given to the transmissibility of the so-called superspreaders, with numerical
simulations being given for data of Galicia, Spain, and Portugal. It turns out that, for each
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region, the order of the Caputo derivative takes a different value, always different from one,
showing the relevance of considering fractional-order models to investigate COVID-19.
The work in [5] studies the COVID-19 pandemic in Portugal until the end of the three states
of emergency, describing well what has happen in Portugal with respect to the evolution
of active infected and hospitalized individuals. In [6,7], a non-fractional but stochastic
time-delayed model for COVID-19 is given, with the aim to study the situation of Morocco.
In [8], the authors provide a S-E-I-P-A-H-R-F model while here we propose a much
simpler P-I-Q model (our model has only three state variables while the model in [8] is
much more complex, with eight state variables). In [8], the authors use the classical operator
of Caputo; differently, here we use the more recent ABC derivatives that, in contrast, use
non-singular kernels that allow us to consider a much simpler model. While the main
result in [8] is the proof of the global stability of the disease free equilibrium; in contrast,
here we prove Ulam–Hyers stability. We also construct a practical algorithm to compute
numerically the solution of the model (see Section 5), while such algorithmic approach is
not addressed in [8]. Moreover, we do a sensitivity analysis to the parameters of the model.
Such sensitivity analysis is also not addressed in [8]. In contrast with the work in [8], that
investigates the realities of Wuhan, Spain, and Portugal, we study the case of Pakistan.

COVID-19 generally transfers by interaction with humans in close contact for a par-
ticular time period, with most common symptoms of sneezing and coughing. The virus
droplets stay on the layer of matters and when they come to the contact with any susceptible
human, then the virus symptoms easily transfer to the individuals. Such infected humans
can pass the infection to others by touching their mouth, eyes, or nose. This virus has the
strength to be alive on different surfaces, like cardboard and copper, for many hours up to
some days. As the time passes, the amount of the virus symptoms decreases over a time
span and might not be alive in sufficient amount for spreading the infection. It has been
recorded that the symptoms appearance and COVID-19 infection initial stage lies between
1 to 14 days [1]. Several countries have prepared and implemented a COVID-19 vaccine
program and are trying to protect their populations. However, to date, there is yet no treat-
ment available. At present, the most effect way to protect ourselves from the virus remains
the quarantine or isolation, effective use of mask, following the guidelines that have been
passed by governments of all countries along with the World Health Organization (WHO).

Modeling of infectious diseases has a rich literature and a number of research articles
have been developed, both using classical dynamical systems as well as fractional mod-
els [4,8]. Fractional-order derivatives can be useful and helpful as compared to classical
derivatives, because the dynamics of real phenomena can be comprehensively under-
stood by fractional-order derivatives due to its special properties, i.e., hereditary and
memory [9–16]. For a comparison between classical (integer-order) and fractional-order
models, see in [4,8]. Roughly speaking, ordinary derivatives cannot distinguish the phe-
nomenon at two distinct closed points. To sort out this problem of ordinary derivatives,
generalized derivatives have been introduced in the framework of fractional calculus [17].
The first concept of fractional-order derivative was given by Leibniz and L’Hôpital in 1695.
Aiming quantitative analysis, optimization, and numerical estimations, many number of
attempts have been made by employing fractional differential equations (FDEs) [1,2,18–38].
The growing interest in the modeling of complex real-world issues with the use of FDEs
is due to its numerous properties that can not be found in the ordinary sense. These
characteristics allow FDEs to model effectively not only non-Markovian processes but
also non-Gaussian phenomena [39]. Different non-classical fractional-order derivatives
and different kinds of FDEs were proposed [40–42]. Among them, one has the Atangana-
Baleanu-Caputo (ABC) derivative, which is a nonlocal fractional derivative with a non-
singular kernel, connected with various applications. For a discussion of the ABC and
related operators see in [43,44], and for their use on contemporary modeling we refer the
interested reader to the works in [45–48].

The famous method of decomposition was developed from the 1970s to the 1990s
by George Adomian, to analytically handle nonlinear problems. After that, the Adomian
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decomposition method became a powerful tool to simulate analytical or approximate
solutions for various problems of an applied nature. Many mathematical models have
been studied by the applications of homotopy, Laplace Adomian Decomposition Method
(LADM), and variational methods [49–51]. To the best of our knowledge, no one has studied
a variable order epidemic model with ABC derivatives by the LADM. Motivated by this
fact, here we study a fractional-order COVID-19 epidemic model with ABC derivatives
by the Laplace Adomian decomposition algorithm. In particular, we use Banach and
Krassnoselskii fixed point theorems to define some sufficient conditions to prove existence
and uniqueness of solution. As stability is important for the estimated solution, we consider
Ulam type stability through nonlinear functional analysis. The aforementioned stability is
investigated for ordinary fractional derivatives in many research papers, see, e.g., in [52–54],
but research on Ulam type stability regarding ABC derivatives is a rarity. At the end of
the paper, our results are illustrated with real data based on Pakistan COVID-19 cases in
March 2020.

The paper is organized as follows. Section 2 is devoted to the model formulation.
Section 3 is concerned with some preliminary results on fractional differential equations.
Existence and uniqueness are carried out in Section 4. Section 5 deals with the solution
of the COVID-19 model using the LADM. Some plots are given in Section 6, showing the
simplicity and reliability of the proposed algorithm. In Section 7, a sensitivity analysis is
given to find the most sensitive parameter with respect to the basic reproduction number.
We end with Section 8 of conclusions, including some possible future directions of research.

2. Model Formulation

Mathematical modeling plays a major role in investigating and thus controlling the
dynamics of a disease, particularly in the vaccination privation or at the initial phases
of the epidemic. Several mathematical models can be found in [12–15]. We formulated
a fractional COVID-19 epidemic model, similar to other diseases [49,50], and predict its
future behavior. Inspired by FDEs using the ABC derivative, we aim to simulate the
COVID-19 transmission in the form of⎧⎪⎪⎨⎪⎪⎩

ABCDθ
t P(t) = λ− γP(t)I(t)− d0P(t),

ABCDθ
t I(t) = γP(t)I(t)− (d0 + h + η)I(t) + σQ(t),

ABCDθ
t Q(t) = η I(t)− (d0 + μ + σ)Q(t),

(1)

along with initial conditions

P(0) = P0, I(0) = I0, Q(0) = Q0, (2)

where ABCDθ
t is the ABC fractional derivative of order 0 < θ ≤ 1 (see Definition 1 in

Section 3). In this model, P(t) represents the amount of susceptible humans, I(t) stands
for the population of infected humans, and Q(t) represents the population of quarantined
humans at time t. The meaning of the parameters of Model (1) are given in Table 1. We
take the below assumptions to the given system:

A1. All the variables and parameters of the system are non-negative.
A2. The susceptible people transfer to the infectious compartment with a constant suscep-

tible inflow into population.
A3. Originally infectious or susceptible persons transfer to the quarantined class while

reported cases return to the infected class from quarantined classes.

The basic reproduction number R0, which represents the secondary cases for the
Model (1), is easily demonstrated to be given by

R0 =
γλ(d0 + μ + σ)

d0(d0 + μ + σ)(d0 + h) + η(d0 + μ)
. (3)
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Table 1. Parameters description defined in the given Model (1).

Notation Description

λ Rate of recruitment
γ Transmission rate of disease
d0 Natural death rate
η Transmission rate of infected to quarantine
μ Deaths in quarantined zone
σ Transmission flow of quarantined to become infectious
h Rate of deaths in infected zone

In addition, I(t) + P(t) + Q(t) = N(t), where N represents the total population.

3. Preliminary Results

For completeness, here we recall necessary definitions and results from the literature.

Definition 1 (See [11,48]). If x is an absolutely continuous function and 0 < θ ≤ 1, then the
ABC derivative is given by

ABCDθ
t φ(t) =

ABC(θ)
1− θ

∫ t

0

d
dy

x(ω)Mθ

[ −θ

1− θ
(t−ω)θ

]
, (4)

where ABC(θ) is a normalization function such that 1 = ABC(1) = ABC(0) and Mθ is a
special Mittag–Leffler function.

Remark 1. By replacingMθ

[
−θ

1−θ

(
t−ω

)θ]
withM1 = exp

[
−θ

1−θ

(
t−ω

)]
one obtains the

so-called Caputo–Fabrizio derivative. Additionally, we have

ABCDθ
0[constant] = 0.

Remark 2. Let x(t) be a function having fractional ABC derivative. Then, the Laplace transform
of ABCDθ

0x(t) is given by

L
[
ABCDθ

0x(t)
]
=

ABC(θ)
[sθ(1− θ) + θ]

[
sθL [x(t)]− sθ−1x(0)

]
.

Lemma 1 (See [52]). The solution to

ABCDθ
0x(t) = z(t), t ∈ [0, T],

x(0) = x0,

1 > θ > 0, is given by

x(t) = x0 +
(1− θ)

ABC(θ) z(t) +
θ

ABC(θ)Γ(θ)
∫ t

0
(t−ω)θ−1z(ω)dω.

Theorem 1 (See [54]). Let X = C[0, T] and consider the Banach space defined by Z = X× X× X

with the norm-function ‖A‖ = ‖(P, I, Q)‖ = maxt∈[0,T][|P(t) + |I(t)|+ |Q(t)|]. Consider B

to be a convex subset of Z and F, and G be operators such that

1. Fu + Gu ∈ B ∀ u ∈ B,
2. F is a contraction, and
3. G is compact and continuous.

Then, Fu + Gu = u possesses at least one solution.
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4. Qualitative Analysis of the Proposed Model

Here, we rewrite the right-hand sides of (1) as

f1(t, P(t), I(t), Q(t)) = −γI(t)P(t) + λ− d0P(t),

f2(t, P(t), I(t), Q(t)) = γI(t)P(t)− (d0 + h + η)I(t) + σQ(t),

f3(t, P(t), I(t), Q(t)) = η I(t)− (d0 + σ + μ)Q(t).

(5)

By using (5), we have

ABCDθ
+0A(t) = Φ(t,A(t)), t ∈ [0, τ], 0 < θ ≤ 1,

A(0) = A0.
(6)

In view of Lemma 1, (6) yields

A(t) = A0(t) + [Φ(t,A(t))−Φ0(t)]
(1− θ)

ABC(θ)

+
θ

Γ(θ)ABC(θ)
∫ t

0
(t−ω)θ−1Φ(ω,A(ω))dω, (7)

where

A(t) =

⎧⎪⎨⎪⎩
P(t)

I(t)

Q(t)

, A0(t) =

⎧⎪⎨⎪⎩
P0

I0

Q0

,

Φ(t,A(t)) =

⎧⎪⎨⎪⎩
f1(t, P, I, Q)

f2(t, P, I, Q)

f3(t, P, I, Q).

, Φ0(t) =

⎧⎪⎨⎪⎩
f1(0, P0, I0, Q0)

f2(0, P0, I0, Q0)

f3(0, P0, I0, Q0).

(8)

Using (7) and (8), we define the two operators F and G as follows:

F(A) = A0(t) + [Φ(t,A(t))−Φ0(t)]
(1− θ)

ABC(θ) ,

G(A) =
θ

Γ(θ)ABC(θ)
∫ t

0
(t−ω)θ−1Φ(ω,A(ω))dω.

(9)

For existence and uniqueness, we assume some basic axioms and a Lipschitz hypothe-
sis:

(H1) there is CΦ and DΦ such that

|Φ(t,A(t))| ≤ CΦ‖A‖+ DΦ;

(H2) there is LΦ > 0 such that ∀ A, Ā ∈ Z one has

|Φ(t,A)−Φ(t, Ā)| ≤ LΦ[‖A‖ − ‖Ā‖].

Theorem 2. Under hypotheses (H1) and (H2), Equation (7) possesses at least one solution, which
implies that (1) possesses an equal number of solutions if (1−θ)

ABC(θ) LΦ < 1.

Proof. The theorem is proved in two steps, with the help of Theorem 1. (i) Consider Ā ∈ B,
where B = {A ∈ Z : ‖A‖ ≤ ρ, ρ > 0} is a closed and convex set. Then, for F in (9),
we have
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‖F(A)− F(Ā)‖ = (1− θ)

ABC(θ) max
t∈[0,τ]

∣∣Φ(t,A(t))−Φ(t, Ā(t))
∣∣

≤ (1− θ)

ABC(θ) LΦ‖A− Ā‖.
(10)

Therefore, F is a contraction. (ii) We want G to be relatively compact. For that it suffices
that G is equicontinuous and bounded. Obviously, G is continuous as Φ is continuous and
for all A ∈ B one has

‖G(A)‖ = max
t∈[0,τ]

∣∣∣∣ θ

Γ(θ)ABC(θ)
∫ t

0
(t−ω)θ−1Φ(ω,A(ω))dω

∣∣∣∣
≤ θ

Γ(θ)ABC(θ)
∫ τ

0
(τ −ω)θ−1|Φ(ω,A(ω))|dω

≤ τθ

ABC(θ)Γ(θ) [CΦρ + DΦ].

(11)

Thus, (11) shows the boundedness of G. For equi-continuity, we assume t1 > t2 ∈
[0, τ], so that

|G(A(t1))−G(A(t2))|

=
θ

ABC(θ)Γ(θ)

∣∣∣∣∫ t1

0
(t1 −ω)θ−1Φ(ω,A(ω))dω−

∫ t2

0
(t2 −ω)θ−1Φ(ω,A(ω))dω

∣∣∣∣
≤ [CΦρ + DΦ]

ABC(θ)Γ(θ) |t
θ
1 − tθ

2|.

(12)

The right-hand side in (12) goes to zero at t1 → t2. Remembering that G is continuous,

|G(A(t1))−G(A(t2))| → 0 as t1 → t2.

Having the boundedness and continuity of G, we conclude that G is uniformly
continuous and bounded. According to the theorem of Arzelá–Ascoli, G is relatively
compact and therefore entirely continuous. It follows from Theorem 1 that the integral
Equation (7) has at least one solution.

Now, we show uniqueness.

Theorem 3. Under hypotheses (H1) and (H2), Equation (7) possesses a unique solution and this
implies that (1) possesses also a unique solution if (1−θ)LΦ

ABC(θ) + τθ LΦ
ABC(θ)Γ(θ) < 1.

Proof. Let the operator T : Z → Z be defined by

TA(t) = A0(t) +
[

Φ(t,A(t))−Φ0(t)
]
(1− θ)

ABC(θ)

+
θ

ABC(θ)Γ(θ)
∫ t

0
(t−ω)θ−1Φ(ω,A(ω))dω, t ∈ [0, τ]. (13)
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Let A, Ā ∈ Z. Then, one can take

‖TA− TĀ‖ ≤ (1− θ)

ABC(θ) max
t∈[0,τ]

∣∣Φ(t,A(t))−Φ(t, Ā(t))
∣∣

+
θ

Γ(θ)ABC(θ) max
t∈[0,τ]

∣∣∣∣ ∫ t

0
(t−ω)θ−1Φ(ω,A(ω))dω

−
∫ t

0
(t−ω)θ−1Φ(ω, Ā(ω))dω

∣∣∣∣
≤ Ξ‖A− Ā‖,

(14)

where

Ξ =
(1− θ)LΦ

ABC(θ) +
τθ LΦ

Γ(θ)ABC(θ) . (15)

Thus, T is a contraction from (14). Therefore, (7) possesses a unique solution.

Next, in order to investigate the stability of our problem, we consider a small distur-
bance φ ∈ C[0, T], with φ(0) = 0, that depends only on the solution.

Lemma 2. Let φ ∈ C[0, T] with φ(0) = 0 such that |φ(t)| ≤ ε for ε > 0 and consider the problem

ABCDθ
+0A(t) = Φ(t,A(t)) + φ(t),

A(0) = A0.
(16)

The solution of (16) satisfies the following relation:∣∣∣∣A(t)−
(
A0(t) +

[
Φ(t,A(t))−Φ0(t)

]
(1− θ)

ABC(θ)

+
θ

ABC(θ)Γ(θ)
∫ t

0
(t−ω)θ−1Φ(ω,A(ω))dω

)∣∣∣∣
≤ Γ(θ) + τθ

Γ(θ)ABC(θ) ε = Ωτ,θ .

(17)

Proof. The proof is standard and is omitted here.

Theorem 4. Consider hypotheses (H1) and (H2) along with (17) of Lemma 2. Then, the solution
to Equation (7) is Ulam–Hyers stable if Ξ < 1, where Ξ is defined by (15).

Proof. Assume A ∈ Z and let Ā ∈ Z be the unique solution of (7). Then,

‖A− Ā‖ = max
t∈[0,T]

∣∣∣∣A(t)−
(
A0(t) +

[
Φ(t, Ā(t))−Φ0(t)

]
(1− θ)

ABC(θ)

+
θ

Γ(θ)ABC(θ)
∫ t

0
(t−ω)θ−1Φ(ω, Ā(ω))dω

)∣∣∣∣
≤ max

t∈[0,T]

∣∣∣∣A(t)−
(
A0(t) +

[
Φ(t,A(t))−Φ0(t)

]
(1− θ)

ABC(θ)

+
θ

Γ(θ)ABC(θ)
∫ t

0
(t−ω)θ−1Φ(ω,A(ω))dω

)∣∣∣∣
+

∣∣∣∣(A0(t) +
[

Φ(t,A(t))−Φ0(t)
]
(1− θ)

ABC(θ)

+
θ

Γ(θ)ABC(θ)
∫ t

0
(t−ω)θ−1Φ(ω,A(ω))dω

)
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−
(
A0(t) +

[
Φ(t, Ā(t))−Φ0(t)

]
(1− θ)

ABC(θ)

+
θ

Γ(θ)ABC(θ)
∫ t

0
(t−ω)θ−1Φ(ω, Ā(ω))dω

)∣∣∣∣
≤ Ωτ,θ +

(1− θ)LΦ

ABC(θ) ‖A− Ā‖+
τθ LΦ

Γ(θ)ABC(θ)‖A− Ā‖

≤ Ωτ,θ + Ξ‖A− Ā‖. (18)

From (18), we can write that

‖A− Ā‖ ≤ Ωτ,θ

1− Ξ
∥∥A− Ā∥∥. (19)

The proof is complete.

5. Construction of an Algorithm for Deriving the Solution of the Model

Herein, we derive a general series-type solution for the proposed system with ABC
derivatives. Taking the Laplace transform in Model (1), we transform both sides of each
equation and we use the initial conditions to obtain that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

L [P(t)] =
P0

s
+

[sθ(1− θ) + θ]

sθABC(θ) L [λ− γP(t)I(t)− d0P(t)],

L [I(t)] =
I0

s
+

[sθ(1− θ) + θ]

sθABC(θ) L [γI(t)P(t)− I(t)(d0 + h + η) + σQ(t)],

L [Q(t)] =
Q0

s
+

[sθ(1− θ) + θ]

sθABC(θ) L [η I(t)− (d0 + μ + σ)Q(t)].

(20)

Now, considering each solution in the form of series,

P(t) =
∞

∑
n=0

Pn(t), I(t) =
∞

∑
n=0

In(t), Q(t) =
∞

∑
n=0

Qn(t), (21)

we separate the nonlinear term P(t)I(t) in terms of Adomian polynomials as

P(t)I(t) =
∞

∑
n=0

Hn(t), where Hn(t) =
1
n!

dn

dλn

[
n

∑
k=0

λkPk(t)
n

∑
k=0

λk Ik(t)

]∣∣∣∣
λ=0

. (22)

Therefore, from (21) and (22), we obtain from (20) that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L

[
∞

∑
n=0

Pn(t)

]
=

P0

s
+

[sθ(1− θ) + θ]

sθABC(θ) L

[
λ− γ

∞

∑
n=0

Hn(t)− d0

∞

∑
n=0

Pn(t)

]
,

L

[
∞

∑
n=0

In(t)

]
=

I0

s

+
[sθ(1− θ) + θ]

sθABC(θ) L

[
γ

∞

∑
n=0

Hn(t)− (d0 + h + η)
∞

∑
n=0

In(t) + σ
∞

∑
n=0

Qn(t)

]
,

L

[
∞

∑
n=0

Qn(t)

]
=

Q0

s
+

[sθ(1− θ) + θ]

sθABC(θ) L

[
η

∞

∑
n=0

In(t)− (d0 + μ + σ)
∞

∑
n=0

Qn(t)

]
.

(23)
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Now, comparing the terms on both sides of (23), one has⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L [P0(t)] =
P0

s
, L [I0(t)] =

I0

s
, L [Q0(t)] =

Q0

s
,

L [P1(t)] =
[sθ(1− θ) + θ]

sθABC(θ) L [λ− γH0(t)− d0P0(t)],

L [I1(t)] =
[sθ(1− θ) + θ]

sθABC(θ) L [γH0(t)− (d0 + h + η)I0(t) + σQ0(t)],

L [Q1(t)] =
[sθ(1− θ) + θ]

sθABC(θ) L [η I0(t)− (d0 + μ + σ)Q0(t)],

L [P2(t)] =
[sθ(1− θ) + θ]

sθABC(θ) L

[
λ− γH1(t)− d0P1(t)

]
,

L [I2(t)] =
[sθ(1− θ) + θ]

sθABC(θ) L [γH1(t)− (d0 + h + η)I1(t) + σQ1(t)],

L [Q2(t)] =
[sθ(1− θ) + θ]

sθABC(θ) L [η I1(t)− (d0 + μ + σ)Q1(t)],

...

L [Pn+1(t)] =
[sθ(1− θ) + θ]

sθABC(θ) L [λ− γHn(t)− d0Pn(t)], n ≥ 0,

L [In+1(t)] =
[sθ(1− θ) + θ]

sθABC(θ) L [γHn(t)− (d0 + h + η)In(t) + σQn(t)], n ≥ 0,

L [Qn+1(t)] =
[sθ(1− θ) + θ]

sθABC(θ) L [η In(t)− (d0 + μ + σ)Qn(t)], n ≥ 0.

(24)

Applying the inverse Laplace transform to (24), we obtain that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P0(t) = P0, I0(t) = I0, Q0(t) = Q0,

P1(t) = L −1
[
[sθ(1− θ) + θ]

sθABC(θ) L [λ− γH0(t)− d0P0(t)]
]

,

I1(t) = L −1
[
[sθ(1− θ) + θ]

sθABC(θ) L [γH0(t)− (d0 + h + η)I0(t) + σQ0(t)]
]

,

Q1(t) = L −1
[
[sθ(1− θ) + θ]

sθABC(θ) L [η I0(t)− (d0 + μ + σ)Q0(t)]
]

,

P2(t) = L −1
[
[sθ(1− θ) + θ]

sθABC(θ) L [λ− γH1(t)− d0P1(t)]
]

,

I2(t) = L −1
[
[sθ(1− θ) + θ]

sθABC(θ) L [γH1(t)− (d0 + h + η)I1(t) + σQ1(t)]
]

,

Q2(t) = L −1
[
[sθ(1− θ) + θ]

srABC(θ) L [η I1(t)− (d0 + μ + σ)Q1(t)]
]

,

...

Pn+1(t) = L −1
[
[sθ(1− θ) + θ]

sθABC(θ) L [λ− γHn(t)− d0Pn(t)]
]

, n ≥ 0,

In+1(t) = L −1
[
[sθ(1− θ) + θ]

sθABC(θ) L [γHn(t)− (d0 + h + η)In(t) + σQn(t)]
]

, n ≥ 0,

Qn+1(t) = L −1
[
[sθ(1− θ) + θ]

sθABC(θ) L [η In(t)− (d0 + μ + σ)Qn(t)]
]

, n ≥ 0.

(25)

235



Axioms 2021, 10, 290

6. Numerical Interpretation and Discussion

To illustrate the dynamical structure of our infectious disease model, we now consider
a practical case study under various numerical observations and given parameter values.
The concrete parameter values we have used are shown in Table 2.

Table 2. Numerical values for the parameters of Model (1).

Notation Parameters Description Numerical Value

λ Rate of recruitment 0.003
γ Transmission rate of disease 0.009
d0 Natural death rate 0.009
η Transmission rate of infected to quarantine 0.004
μ Death rate in quarantine 0.004
σ Transmission flow of quarantined to infectious 0.003
h Rate of death for infected 0.007
P0 Initial population of susceptible 10 millions
I0 Initially infected population 0.01 millions
Q0 Quarantined population at t = 0 0.0011 millions

We assume that the initial susceptible, infected, and isolated populations are 10, 0.01,
and 0.0011 million, respectively. Among the 21,000 selected population, the density of
susceptible population is about 0.6 percent, the infected population is 0.2 percent, and the
isolated population is 0.2 percent.

By using the parameter values in Table 2, we computed the first three terms of the
general series solution (25) with ABC(θ) = 1 as

P(t) = 0.6 + 1.99712
[

1− θ +
θtθ

Γ(θ)

]
− 0.00681

[
(1− θ)2t +

θ2t2θ

Γ(2θ + 1)
+

2θ(1− θ)tθ+1

Γ(θ + 2)

]
+ · · · ,

I(t) = 0.2− 0.5976
[

1− θ +
θtθ

Γ(θ)

]
− 0.003096

[
(1− θ)2t +

2θ(1− θ)tθ

Γ(θ)
+

θ2t2θ

Γ(2θ + 1)

]
+ · · · ,

Q(t) = 0.2 + 0.14
[

1− θ +
θtθ

Γ(θ)

]
− 0.004058

[
(1− θ)2t +

2θ(1− θ)tθ

Γ(θ)
+

θ2t2θ

Γ(2θ + 1)

]
+ · · · .

(26)

We have utilized the numeric computing environment MATLAB, version 2016, and plot-
ted the solution (25) in Figure 1 by considering the first fifteen terms of the series (21).

Figure 1 shows the dynamics of each one of the state variables in the classical sense
when θ = 1 (green curves). Similarly, by considering the model in ABC sense, that is,
for θ ∈ (0, 1), we plot in Figure 1 each of the state variables to analyze the changes in
comparison with the classical case. From Figure 1a, we see that as we increase the order θ
of the fractional ABC derivative, the susceptibility increases. Further, all fractional order
derivatives shows no effect after about 60 days, i.e., the susceptible population stabilizes.
Figure 1b shows that infected individuals tend to increase, with different rates, when we
decrease the fractional-order: the smaller the fractional order θ, faster the increase rate,
and vice versa. All obtained curves for infected individuals, for different values of the
fractional order derivatives, approach towards a non-zero steady state, which shows that
the disease will persist in the community if not properly managed. On the other hand,
Figure 1c shows that during the first month the disease progress with more and more
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people getting quarantined, irrespective of the order of the derivative. However, after that,
the quarantined population tends to decline and, at the end, there will be no quarantined
individuals in the community.

In Section 6.1, we show that the fractional Model (1) with ABC derivatives has the abil-
ity to describe effectively the dynamics of transmission of the current COVID-19 outbreak.
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Figure 1. Dynamical nature of susceptible, infected and quarantined individuals of the fractional
ABC Model (1) for different values of the fractional-order θ. (a) P(t)—susceptible individuals along
time t; (b) I(t)—infected individuals along time t; (c) Q(t)—quarantined individuals along time t.

6.1. Case Study with Real Data: Khyber Pakhtunkhawa (Pakistan)

The Khyber Pakhtunkhawa Province, like other provinces of Pakistan and the rest of
the world, is also being affected by COVID-19. We decided to calibrate our model with
real data of COVID-19 from Khyber Pakhtunkhawa, Pakistan, from 9 April to 2 June 2020.
For that, we have used the minimization method of MATLAB taking the initial weights

P(0) = 35,525,047, I(0) = 10,485, Q(0) = 18,000,

determined from the work in [55], and θ = 1, from which we arrived to the values of the
parameters shown in Table 3.

Figure 2 shows the total number of individuals infected by COVID-19 as registered
from 9 April to the 2nd in June 2020, which corresponds to the period of one month and
24 days used to calibrate our model.

Figure 3 compares the actual/real data of COVID-19 with the curve of infected given
by Model (1), clearly showing the appropriateness of our model to describe the COVID-
19 outbreak.
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Table 3. Parameter values for the case of Khyber Pakhtunkhawa, Pakistan.

Notation Value Reference

λ 0.028 [55]
γ 0.2 Estimated
d0 0.011 [55]
μ 0.2 Estimated
h 0.06 [55]
σ 0.04 Estimated
η 0.3 Estimated
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Figure 2. Real data of infected individuals by COVID-19 from Khyber Pakhtunkhwa, Pakistan,
from 9 April to 2 June 2020.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Time(Months)

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

In
fe

ct
ed

 h
um

an

Figure 3. Comparison of infected individuals by COVID-19: Model (1) output (in blue) versus real
data of Khyber Pakhtunkhawa, Pakistan, from 9 April to 2 June 2020 (in red).

Figure 4 projects the long-term behavior of the COVID-19 outbreak during a period of
eight months. We can see the data matches during the first 1.8 months and, additionally,
we observe that the long-term behavior consists on a rise of infected individuals with time.
This means that if the government did not apply proper strategies, the incidence could
increase drastically in the coming months.

238



Axioms 2021, 10, 290

0 1 2 3 4 5 6 7 8
Time(Months)

0

1

2

3

4

5

6

7

8

9

10

In
fe

ct
ed

 h
um

an

Figure 4. Real data of infected individuals by COVID-19 in Khyber Pakhtunkhwa, Pakistan (first
1.8 months, in red) and prediction from Model (1) during a period of 8 months (in blue).

7. Sensitivity Analysis

Here, we conduct a sensitivity analysis to evaluate the parameters that are sensitive
in minimizing the propagation of the ailment. Although its computation is tedious for
complex biological models, forward sensitivity analysis is recorded as an important compo-
nent of epidemic modeling: the ecologist and epidemiologist gain a lot of insight from the
sensitivity study of the basic reproduction number R0 [56]. In Definition 2, we assume that
the basic reproduction number R0 is differentiable with respect to parameter ω. Given (3),
this means that Definition 2 makes sense for ω ∈ {γ, λ, d0, μ, σ, h, η}.

Definition 2. The normalized forward sensitivity index of R0 with respect to parameter ω is
defined by

Sω =
ω

R0

∂R0

∂ω
. (27)

As we have an analytical form for the basic reproduction number, recall (3), we apply
the direct differentiation process given in (27). Not only do the sensitivity indexes show
us the impact of various factors associated with the spread of the infectious disease, but
they also provide us with valuable details on the comparative change between R0 and the
parameters. Moreover, they also assist in the production of control strategies [57].

Table 4 demonstrates that γ, h, and σ parameters have a positive effect on the basic
reproduction number R0, which means that the growth or decay of these parameters
by 10% would increase or decrease the reproduction number by 10%, 6.36%, and 0.31%,
respectively. On the other hand, d0-, μ-, and η-sensitive indexes indicate that increasing
their values by 10% would decrease the basic reproduction number R0 by 14.89%, 0.09%,
and 1.68%, respectively.

Table 4. Sensitivity indexes of the basic reproduction number R0 (3) (see Definition 2) for relevant
parameters of Model (1).

Parameters Sensitivity Value Parameters Sensitivity Value

γ Sγ 1.00000000 h Sh 0.63636363

d0 Sd0 −1.48944805 μ Sμ −0.00974026

σ Sσ 0.03165584 η Sη −0.16883117
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The sensitivity of the basic reproduction number R0 is also seen graphically in Figure 5.
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Figure 5. Sensitivity of the basic reproduction number R0 (3) for relevant parameters of Model (1).
(a) R0 versus γ and d; (b) R0 versus γ and μ; (c) R0 versus γ and η; (d) R0 versus h and d; (e) R0

versus h and μ; (f) R0 versus h and η; (g) R0 versus d and σ; (h) R0 versus d and η.
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8. Conclusions and Future Work

In this manuscript, we studied a COVID-19 disease model providing a detailed
qualitative analysis and showed its usefulness with a case study of Khyber Pakhtunkhawa,
Pakistan. Our sensitivity analysis shows that the transmission rate γ has a huge effect
on the model as compared to other parameters: the basic reproduction number varies
directly with the transmission rate γ. The sensitivity analysis also showed that the death
rate parameter μ has no effect on spreading the infection, which seems biologically correct.
The transmission rate will be small by keeping a social distancing and self-quarantine
situation that causes a decrease in the infection. In this way, one can control COVID-19
infection from rapid spreading in the community. In the future, we plan to analyze optimal
control techniques to reduce the population of infected individuals by adopting a number
of control measures. A modification of the given model is also possible by introducing
more parameters for analyzing the early outbreaks of COVID-19 and then transmission
and treatment aspects can be recalled. The given system can be also simulated by adding
exposed and hospitalized classes and taking a stochastic fractional derivative. Here, we
have provided a case study with real data from Pakistan, but other case studies can also
be done.
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1. Introduction

The studies of quantum calculus with integer order were presented in the last three
decades, and many researchers extensively studied calculus without a limit that deals
with a set of nondifferentiable functions, the so-called quantum calculus. Many types of
quantum difference operators are employed in several applications of mathematical areas,
such as the calculus of variations, particle physics, quantum mechanics, and theory of
relativity. The q-calculus, one type of quantum initiated by Jackson [1–5], was employed in
several fields of applied sciences and engineering such as physical problems, dynamical
system, control theory, electrical networks, economics, and so on [6–14].

For fractional quantum calculus, Agarwal [15] and Al-Salam [16] proposed fractional
q-calculus, and Díaz and Osler [17] proposed fractional difference calculus. In 2017, Brik-
shavana and Sitthiwirattham [18] introduced fractional Hahn difference calculus. In 2019,
Patanarapeelert and Sitthiwirattham [19] studied fractional symmetric Hahn difference calculus.

Later, the motivation of quantum calculus based on two parameters (p, q)-integer
was presented. The (p, q)-calculus (postquantum calculus) was introduced by Chakrabarti
and Jagannathan [20]. This calculus was used in many fields such as special functions,
approximation theory, physical sciences, Lie group, hypergeometric series, Bézier curves,
and surfaces. For some recent papers about (p, q)-differenceequations, we refer to [21–33]
and the references therein. For example, the fundamental theorems of (p, q)-calculus and
some (p, q)-Taylor formulas were studied in [21]. In [32], the (p, q)-Melin transform and its
applications were studied. The Picard and Gauss–Weierstrass singular integral in (p, q)-
calculus were introduced in [33]. For the boundary value problem for (p, q)-difference
equations were studied in [34–36]. For example, the nonlocal boundary value problems
for first-order (p, q)-difference equations were studied in [34]. The second-order (p, q)-
difference equations with separated boundary conditions were studied in [35]. In [36], the
authors studied the first-order and second-order (p, q)-difference equations with impulse.

Recently, Soontharanon and Sitthiwirattham [37] introduced the fractional (p, q)-
difference operators and its properties. Now, this calculus was used in the inequali-
ties [38,39] and the boundary value problems [40–42]. However, the study of the boundary
value problems for fractional (p, q)-difference equation in the beginning, there are a few liter-
ature on this knowledge. In [40], the existence results of a fractional (p, q)-integrodifference
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equation with Robin boundary condition were studied in 2020. In 2021 [41], the authors in-
vestigated the boundary value problem of a class of fractional (p, q)-difference Schrödinger
equations. In the same year, the existence results of solution and positive solution for the
boundary value problem of a class of fractional (p, q)-difference equations involving the
Riemann–Liouville fractional derivative [42] were studied.

Motivated by the above papers, we seek to enrich the contributions in this new research
area. In this paper, we introduce and study the boundary value problem involving function
F, which depends on fractional (p, q)-integral and fractional (p, q)-difference, and the
boundary condition is nonlocal. Our problem is sequential fractional (p, q)-integrodifference
equation with periodic fractional (p, q)-integral boundary conditions of the form

Dα
p,qDβ

p,qu(t) = F
[
t, u(t), Ψγ

p,qu(t), Dν
p,qu(t)

]
, t ∈ IT

p,q,

u(0) = u
(

T
p

)
(1)

Iθ
p,qg(η)u(η) = ϕ(u), η ∈ IT

p,q − {0, T},

where IT
p,q :=

{(
q
p

)k T
p : k ∈ N0

}
∪ {0}; 0 < q < p ≤ 1; α, β, γ, ν, θ ∈ (0, 1]; F ∈ C

(
IT
p,q ×

R×R×R,R
)
, g ∈

(
IT
p,q,R+

)
are given functions; ϕ : C

(
IT
p,q,R

)
→ R is given functional;

and for φ ∈ C
(

IT
p,q × IT

p,q, [0, ∞)
)
, we define an operator of the (p, q)-integral of the product

of functions φ and u as

Ψγ
p,qu(t) :=

(
Iγ

p,qφ u
)
(t) =

1

p(
γ
2)Γp,q(γ)

∫ t

0
(t− qs)

γ−1
p,q φ

(
t,

s
pγ−1

)
u
(

s
pγ−1

)
dp,qs.

We aim to show the existence results to the problem (1). Firstly, we convert the given
nonlinear problem (1) into a fixed point problem related to (1), by considering a linear
variant of the problem at hand. Once the fixed point operator is available, we make use the
classical Banach’s and Schauder’s fixed point theorems to establish existence results.

The paper is organized as follows: Section 2 contains some preliminary concepts
related to our problem. We present the existence and uniqueness result in Section 2, and
the existence of at least one solution in Section 4. To illustrate our results, we provide some
examples in Section 5. Finally, Section 6 discusses our conclusions.

2. Preliminaries

In this section, we provide some basic definitions, notations, and lemmas as follows.
For 0 < q < p ≤ 1, we define

[k]q :=

⎧⎪⎨⎪⎩
1− qk

1− q
, k ∈ N

1, k = 0,

[k]p,q :=

⎧⎪⎨⎪⎩
pk − qk

p− q
= pk−1[k] q

p
, k ∈ N

1, k = 0,

[k]p,q! :=

⎧⎪⎨⎪⎩[k]p,q[k− 1]p,q · · · [1]p,q =
k

∏
i=1

pi − qi

p− q
, k ∈ N

1, k = 0.

The (p, q)-forward jump and the (p, q)-backward jump operators are defined as

σk
p,q(t) :=

(
q
p

)k
t and ρk

p,q(t) :=
(

p
q

)k
t, for k ∈ N, respectively.

The q-analogue of the power function (a− b)n
q with n ∈ N0 := {0, 1, 2, . . .} is given by
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(a− b)0
q := 1, (a− b)n

q :=
n−1

∏
i=0

(a− bqi), a, b ∈ R.

The (p, q)-analogue of the power function (a− b)n
p,q with n ∈ N0 is given by

(a− b)0
p,q := 1, (a− b)n

p,q :=
n−1

∏
k=0

(apk − bqk), a, b ∈ R.

Generally, for α ∈ R, we define

(a− b)α
q = aα

∞

∏
i=0

1−
(

b
a

)
qi

1−
(

b
a

)
qα+i

, a �= 0.

(a− b)α
p,q = p(

α
2)(a− b)α

q
p
= aα

∞

∏
i=0

1
pα

⎡⎢⎣ 1− b
a

(
q
p

)i

1− b
a

(
q
p

)i+α

⎤⎥⎦, a �= 0.

In particular, aα
q = aα, aα

p,q =
(

a
p

)α
and (0)α

q = (0)α
p,q = 0 for α > 0.

The (p, q)-gamma and (p, q)-beta functions are defined by

Γp,q(x) :=

⎧⎪⎪⎨⎪⎪⎩
(p−q)x−1

p,q
(p−q)x−1 =

(
1− q

p

)x−1

p,q(
1− q

p

)x−1 , x ∈ R \ {0,−1,−2, . . .}

[x− 1]p,q!, x ∈ N,

Bp,q(x, y) :=
∫ 1

0
tx−1(1− qt)

y−1
p,q dp,qt = p

1
2 (y−1)(2x+y−2) Γp,q(x)Γq p, q(y)

Γp,q(x + y)
,

respectively.

Definition 1. For 0 < q < p ≤ 1 and f : [0, T]→ R, we define the (p, q)-difference of f as

Dp,q f (t) :=

⎧⎨⎩
f (pt)− f (qt)
(p− q)(t)

, for t �= 0

f ′(0), for t = 0

provided that f is differentiable at 0 and f is called (p, q)-differentiable on IT
p,q if Dp,q f (t) exists for

all t ∈ IT
p,q.

Observe that the function g(t) = Dp,q f (t) is defined on [0, T/p].

Definition 2. Let I be any closed interval of R containing a, b and 0. Assuming that f : I → R

is a given function, we define (p, q)-integral of f from a to b by

∫ b

a
f (t)dp,qt :=

∫ b

0
f (t)dp,qt−

∫ a

0
f (t)dp,qt,

where

Ip,q f (x) =
∫ x

0
f (t)dp,qt = (p− q)x

∞

∑
k=0

qk

pk+1 f

(
qk

pk+1 x

)
, x ∈ I,
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provided that the series converges at x = a and x = b and f is called (p, q)-integrable on [a, b] if it
is (p, q)-integrable on [a, b] for all a, b ∈ I.

An operator IN
p,q is defined as

I0
p,q f (x) = f (x) and IN

p,q f (x) = Ip,qIN−1
p,q f (x), N ∈ N.

The relations between (p, q)-difference and (p, q)-integral operators are given by

Dp,qIp,q f (x) = f (x) and Ip,qDp,q f (x) = f (x)− f (0).

Fractional (p, q)-integral and fractional (p, q)-difference of Riemann–Liouville type are
defined as follows.

Definition 3. For α > 0, 0 < q < p ≤ 1 and f defined on IT
p,q, the fractional (p, q)-integral is

defined by

Iα
p,q f (t) :=

1

p(
α
2)Γp,q(α)

∫ t

0
(t− qs)α−1

p,q f
(

s
pα−1

)
dp,qs

=
(p− q)t

p(
α
2)Γp,q(α)

∞

∑
k=0

qk

pk+1

(
t−

(
q
p

)k+1
t

)α−1

p,q

f

(
qk

pk+α
t

)
,

and (I0
p,q f )(t) = f (t).

Definition 4. For α > 0, 0 < q < p ≤ 1 and f defined on IT
p,q, the fractional (p, q)-difference

operator of Riemann–Liouville type of order α is defined by

Dα
p,q f (t) := DN

p,qIN−α
p,q f (t)

=
1

p(
−α
2 )Γp,q(−α)

∫ t

0
(t− qs)−α−1

p,q f
(

s
p−α−1

)
dp,qs,

and D0
p,q f (t) = f (t), where N − 1 < α < N, N ∈ N.

Lemma 1 ([37]). Let α ∈ (N − 1, N), N ∈ N, 0 < q < p ≤ 1 and f : IT
p,q → R. Then,

Iα
p,qDα

p,q f (t) = f (t) + C1tα−1 + C2tα−2 + · · ·+ CNtα−N

for some Ci ∈ R, i = 1, 2, . . . , N.

Lemma 2 ([37]). Let 0 < q < p ≤ 1 and f : IT
p,q → R be continuous at 0. Then,

∫ x

0

∫ s

0
f (τ) dp,qτ dp,qs =

∫ x
p

0

∫ x

pqτ
f (τ) dp,qs dp,qτ.

Lemma 3 ([37]). Let α, β > 0, 0 < q < p ≤ 1. Then,

(a)
∫ t

0
(t− qs)α−1

p,q sβ dp,qs = tα+βBp,q(β + 1, α),

(b)
∫ t

0

∫ x

0
(t− qx)α−1

p,q (x− qs)
β−1
p,q dp,qs dp,qx =

Bp,q(β + 1, α)

[β]p,q
tα+β.

Lemma 4 ([40]). Let α, β > 0, 0 < q < p ≤ 1 and n ∈ Z. Then,
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(a)
∫ t

0
(t− qs)α−1

p,q dp,qs = p(
α
2)

Γp,q(α)

Γp,q(α + 1)
tα,

(b)
∫ t

0

∫ x
p−β−1

0
(t− qx)

−β−1
p,q

(
x

p−β−1 − qs
)α−1

p,q
dp,qs dp,qx = p(

α
2)+(−β

2 ) Γp,q(α)

Γp,q(α + 1)
tα+β,

(c)
∫ t

0
(t− qs)

−β−1
p,q

(
s

p−β−1

)α−n
dp,qs = p(

−β
2 ) Γp,q(α− n + 1)Γp,q(−β)

Γp,q(α− β− n + 1)
tα−β−n.

Lemma 5. Let α, β, θ > 0, 0 < q < p ≤ 1 and n ∈ Z. Then,

(a)
∫ t

0

∫ x
pθ−1

0
(t− qx)θ−1

p,q

(
x

pθ−1 − qs
)β−1

p,q

(
s

pα−1

)α−n

p,q
dp,qs dp,qx

= p(
β
2)+(θ

2)
Γp,q(α− n + 1)Γp,q(β)Γp,q(θ)

Γp,q(α + β + θ − n + 1)
tα+β+θ−n,

(b)
∫ t

0

∫ y
pθ−1

0

∫ x
pβ−1

0
(t− qy)θ−1

p,q

(
y

pθ−1 − qx
)β−1

p,q

(
x

pβ−1 − qs
)α−1

p,q
dp,qs dp,qx dp,qy

= p(
α
2)+(β

2)+(θ
2)

Γp,q(α)Γp,q(β)Γp,q(θ)

Γp,q(α + β + θ + 1)
tα+β+θ .

Proof. By Lemmas 2, 3 and 4 and definition of the (p, q)-beta function, we have

(a)
∫ t

0

∫ x
pθ−1

0
(t− qx)θ−1

p,q

(
x

pθ−1 − qs
)β−1

p,q

(
s

pα−1

)α−n

p,q
dp,qs dp,qx

=
∫ t

0
(t− qx)θ−1

p,q

[∫ x
pθ−1

0

(
x

pθ−1 − qs
)β−1

p,q

(
s

pα−1

)α−n

p,q
dp,qs

]
dp,qx

=
p(

β
2)

p(θ−1)(α+β−n)
· Γp,q(α− n + 1)Γp,q(β)

Γp,q(α + β− n + 1)

∫ t

0
(t− qx)θ−1

p,q xα+β−n dp,qx

= p(
β
2)+(θ

2)
Γp,q(α− n + 1)Γp,q(β)Γp,q(θ)

Γp,q(α + β + θ − n + 1)
tα+β+θ−n,

(b)
∫ t

0

∫ y
pθ−1

0

∫ x
pβ−1

0
(t− qy)θ−1

p,q

(
y

pθ−1 − qx
)β−1

p,q

(
x

pβ−1 − qs
)α−1

p,q
dp,qs dp,qx dp,qy

=
∫ t

0

∫ y
pθ−1

0
(t− qy)θ−1

p,q

(
y

pθ−1 − qx
)β−1

p,q

[∫ x
pβ−1

0

(
x

pβ−1 − qs
)α−1

p,q
dp,qs

]
dp,qx dp,qy

= p(
α
2)

Γp,q(α)

Γp,q(α + 1)

∫ t

0

∫ y
pθ−1

0
(t− qy)θ−1

p,q

(
y

pθ−1 − qx
)β−1

p,q

(
xα

pβ−1

)
dp,qx dp,qy

= p(
α
2)+(β

2)+(θ
2)

Γp,q(α)Γp,q(β)Γp,q(θ)

Γp,q(α + β + θ + 1)
tα+β+θ .

The proof is complete.

The following lemma, dealing with a linear variant of problem (1), plays an important
role in the forthcoming analysis.

Lemma 6. Let Ω �= 0, α, β, θ ∈ (0, 1], 0 < q < p ≤ 1, h ∈ C
(

IT
p,q,R

)
and g ∈ C

(
IT
p,q,R+

)
be

given functions, ϕ : C
(

IT
p,q,R

)
→ R be given functional. Then, the problem
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Dα
p,qDβ

p,qu(t) = h(t), t ∈ IT
p,q, (2)

u(0) = u
(

T
p

)
(3)

Iθ
p,qg(η)u(η) = ϕ(u), η ∈ IT

p,q −
{

0,
T
p

}
(4)

has the unique solution:

u(t) =
1

p(
α
2)+(β

2)Γp,q(α)Γp,q(β)

∫ t

0

∫ x
pβ−1

0
(t− qx)

β−1
p,q

(
x

pβ−1 − qs
)α−1

p,q
h
(

s
pα−1

)
dp,qs dp,qx

− tβ−1

Ω

{
BηP[h] + AT

(
ϕ(u)−Q[h]

)}
+

tα+β−1

ΩΓp,q(α + β)

{
AηP[h] +

(
T
p

)β−1(
ϕ(u)−Q[h]

)}
(5)

where the functionals P[h] and Q[h] are defined by

P[h] :=
1

p(
α
2)+(β

2)Γp,q(α)Γp,q(β)

∫ T
p

0

∫ x
pβ−1

0

(
T
p
− qx

)β−1

p,q

(
x

pβ−1 − qs
)α−1

p,q
×

h
(

s
pα−1

)
dp,qs dp,qx (6)

Q[h] :=
1

p(
α
2)+(β

2)+(θ
2)Γp,q(α)Γp,q(β)Γp,q(θ)

∫ η

0

∫ y
pθ−1

0

∫ x
pβ−1

0
(η − qy)θ−1

p,q ×

(
y

pθ−1 − qx
)β−1

p,q

(
x

pβ−1 − qs
)α−1

p,q
g
(

y
pθ−1

)
h
(

s
pα−1

)
dp,qs dp,qx dp,qy (7)

and the constants AT , Aη , Bη and Ω are defined by

AT :=
1

p(
β
2)Γp,q(β)

∫ T
p

0

(
T
p
− qs

)β−1

p,q

(
s

pθ−1

)α−1
dp,qs =

(
T
p

)α+β−1

Γp,q(α + β)
(8)

Aη :=
1

p(
θ
2)Γp,q(θ)

∫ η

0
(η − qs)θ−1

p,q g
(

s
pθ−1

)(
s

pθ−1

)β−1
dp,qs (9)

Bη :=
1

p(
β
2)+(θ

2)Γp,q(β)Γp,q(θ)

∫ η

0

∫ x
pθ−1

0
(η − qx)θ−1

p,q

(
x

pθ−1 − qs
)β−1

p,q
g
(

x
pθ−1

)
×

(
s

pα−1

)α−1
dp,qs dp,qx (10)

Ω :=
(

T
p

)β−1
Bη −ATAη . (11)

Proof. Taking fractional (p, q)-integral of order α for (2) and using Lemma 1, we then have

Dβ
p,qu(t) = C1tα−1 + Iα

p,qh(t)

= C1tα−1 +
1

p(
α
2)Γp,q(α)

∫ t

0
(t− qs)α−1

p,q h
(

s
pα−1

)
dp,qs. (12)

Next, taking fractional (p, q)-difference of order β for (12), we have
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u(t) =C0tβ−1 + C1
tα+β−1

Γp,q(α + β)
+

1

p(
α
2)+(β

2)Γp,q(α)Γp,q(β)
×

∫ t

0

∫ x
pβ−1

0
(t− qx)

β−1
p,q

(
x

pβ−1 − qs
)α−1

p,q
h
(

s
pα−1

)
dp,qs dp,qx. (13)

Substituting t = 0, T
p into (13) and employing the condition (3), we have

C0

(
T
p

)β−1
+ C1AT = −P[h]. (14)

By taking fractional (p, q)-integral of order θ for (13), we have

Iθ
p,qu(t) = C0

tβ+θ−1

Γp,q(β + θ)
+

C1

p(
β
2)+(θ

2)Γp,q(β)Γp,q(θ)
×

∫ t

0

∫ x
pθ−1

0
(t− qx)θ−1

p,q

(
x

pθ−1 − qs
)β−1

p,q

(
s

pα−1

)α−1
dp,qs dp,qx

+
1

p(
α
2)+(β

2)+(θ
2)Γp,q(α)Γp,q(β)Γp,q(θ)

∫ t

0

∫ y
pθ−1

0

∫ x
pβ−1

0
(t− qy)θ−1

p,q ×

(
y

pθ−1 − qx
)β−1

p,q

(
x

pβ−1 − qs
)α−1

p,q
h
(

s
pα−1

)
dp,qs dp,qx dp,qy. (15)

From the condition (4) we have

C0Aη + C1Bη = ϕ(u)−Q[h] (16)

Solving the system of linear Equations (14) and (16),we obtain

C0 =
−BηP[h]−AT

(
ϕ(u)−Q[h]

)
Ω

and C1 =

(
T
p

)β−1(
ϕ(u)−Q[h]

)
+ AηP[h]

Ω
,

where P[h],Q[h], AT , Aη , Bη and Ω are defined by (6)–(11), respectively.
After substituting C0, C1 into (13), we obtain (5). We can prove the converse by direct

computation. The proof is complete.

3. Existence and Uniqueness Result

In this section, we prove the existence and uniqueness result for problem (1) by using
Banach fixed point theorem as follows.

Lemma 7 ([43] Banach fixed point theorem). Let a nonempty closed subset C of a Banach space
X, then there is a unique fixed point for any contraction mapping P of C into itself.

Let C = C
(

IT
p,q,R

)
be a Banach space of all function u with the norm defined by

‖u‖C = max
{
‖u‖,

∥∥∥Dν
p,qu

∥∥∥},

where ‖u‖ = max
t∈IT

p,q

{
|u(t)|

}
and ‖Dν

p,qu‖C = max
t∈IT

p,q

{∣∣∣Dν
p,qu(t)

∣∣∣}.

By Lemma 6, replacing h(t) by F
[
t, u(t), Ψγ

p,qu(t), Dν
p,qu(t)

]
, we define an operator

A : C → C by
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(Au)(t) :=
ϕ(u)

Ω

[
( T

p )
β−1

Γp,q(α + β)
tα+β−1 −ATtβ−1

]

+
Q∗[Fu]

Ω

[
ATtβ−1 −

( T
p )

β−1

Γp,q(α + β)
tα+β−1

]

+
P∗[Fu]

Ω

[
Aη

tα+β−1

Γp,q(α + β)
− Bηtβ−1

]
+

1

p(
α
2)+(β

2)Γp,q(α)Γp,q(β)

∫ t

0

∫ x
pβ−1

0
(t− qx)

β−1
p,q

(
x

pβ−1 − qs
)α−1

p,q
×

F
[

s
pα−1 , u

(
s

pα−1

)
, Ψγ

p,qu
(

s
pα−1

)
, Dν

p,qu
(

s
pα−1

)]
dp,qs dp,qx (17)

where the functionals P∗[Fu] and Q∗[Fu] are defined by

P∗[Fu] :=
1

p(
α
2)+(β

2)Γp,q(α)Γp,q(β)

∫ T
p

0

∫ x
pβ−1

0

(
T
p
− qx

)β−1

p,q

(
x

pβ−1 − qs
)α−1

p,q
×

F
[

s
pα−1 , u

(
s

pα−1

)
, Ψγ

p,qu
(

s
pα−1

)
, Dν

p,qu
(

s
pα−1

)]
dp,qs dp,qx (18)

Q∗[Fu] :=
1

p(
α
2)+(β

2)+(θ
2)Γp,q(α)Γp,q(β)Γp,q(θ)

×

∫ η

0

∫ y
pθ−1

0

∫ x
pβ−1

0
(η − qy)θ−1

p,q

(
y

pθ−1 − qx
)β−1

p,q

(
x

pβ−1 − qs
)α−1

p,q
g
(

y
pθ−1

)
×

F
[

s
pα−1 , u

(
s

pα−1

)
, Ψγ

p,qu
(

s
pα−1

)
, Dν

p,qu
(

s
pα−1

)]
dp,qs dp,qx dp,qy (19)

and the constants AT , Aη , Bη and Ω are defined by (8)–(11), respectively.
We see that the problem (1) has solution if and only if the operator A has fixed point.

Theorem 1. Assume that F : IT
p,q × R× R× R → R is continuous, φ : IT

p,q × IT
p,q → [0, ∞)

is continuous with φ0 = max
{

φ(t, s) : (t, s) ∈ IT
p,q × IT

p,q

}
, and ϕ : C

(
IT
p,q,R

)
→ R is given

functional. Suppose that the following conditions hold:

(H1)There exist positive constants L1, L2, L3 such that for each t ∈ IT
p,q and ui, vi ∈ R, i = 1, 2, 3,∣∣∣F[t, u1, u2, u3]− F[t, v1, v2, v3]

∣∣∣ ≤ L1
∣∣u1 − v1

∣∣+ L2
∣∣u2 − v2

∣∣+ L3
∣∣u3 − v3

∣∣.
(H2)There exists a positive constant ω such that for each u, v ∈ C,

|ϕ(u)− ϕ(v)| ≤ ω‖u− v‖C .

(H3)For each t ∈ IT
p,q, 0 < g < g(t) < G.

(H4)X := ωOT + (L+ L3)Θ ≤ 1,

where
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L := L1 + L2
φ0(

T
p )

γ

Γp,q(γ + 1)
, (20)

Θ :=
OTGηα+β+θ

Γp,q(α + β + θ − 1)
+

( T
p )

α+β

Γp,q(α + β + 1)
(
Oη + 1

)
, (21)

OT :=

⎡⎢⎣
(

T
p

)α+β−1

Γp,q(α + β)
+ AT

⎤⎥⎦
(

T
p

)β−1

min |Ω| , (22)

Oη :=

⎡⎢⎣
(

T
p

)α

Γp,q(α + β)
max Aη + max Bη

⎤⎥⎦
(

T
p

)β−1

min |Ω| . (23)

Then, problem (1) has a unique solution in IT
p,q.

Proof. For each t ∈ IT
p,q and u, v ∈ C,

∣∣∣Ψγ
p,qu(t)−Ψγ

p,qv(t)
∣∣∣ ≤ φ0

p(
γ
2)Γp,q(γ)

∫ t

0
(t− qs)

γ−1
p,q

∣∣∣∣u( s
pγ−1

)
− v

(
s

pγ−1

)∣∣∣∣ dp,qs

≤ φ0

p(
γ
2)Γp,q(γ)

∥∥u− v
∥∥ ∫ T

p

0

(
T
p
− qs

)γ−1

p,q
dp,qs

=
φ0

(
T
p

)γ

Γp,q(γ + 1)

∥∥u− v
∥∥.

Denote that

F|u− v|(t) :=
∣∣∣F[t, u(t), Ψγ

p,qu(t), Dν
p,qu(t)

]
− F

[
t, v(t), Ψγ

p,qv(t), Dν
p,qv(t)

]∣∣∣.
By using Lemma 5(a), we obtain∣∣∣P∗[Fu]− P∗[Fv]

∣∣∣
≤ 1

p(
α
2)+(β

2)Γp,q(α)Γp,q(β)

∫ T
p

0

∫ x
pβ−1

0

(
T
p
− qx

)β−1

p,q

(
x

pβ−1 − qs
)α−1

p,q
×

F|u− v|
(

s
pα−1

)
dp,qs dp,qx

≤

[
L1|u− v|+ L2

∣∣∣Ψγ
p,qu−Ψγ

p,qv
∣∣∣+ L3

∣∣Dν
p,qu− Dν

p,qv
∣∣]

p(
α
2)+(β

2)Γp,q(α)Γp,q(β)

∫ T
p

0

∫ x
pβ−1

0

(
T
p
− qx

)β−1

p,q
×

(
x

pβ−1 − qs
)α−1

p,q

(
s

pα−1

)
dp,qs dp,qx

≤

⎛⎜⎝
⎡⎢⎣L1 + L2φ0

(
T
p

)γ

Γp,q(γ + 1)

⎤⎥⎦|u− v|+ L3
∣∣Dν

p,qu− Dν
p,qv

∣∣
⎞⎟⎠

(
T
p

)α+β

Γp,q(α + β + 1)

≤
(
L+ L3

)( T
p

)α+β

Γp,q(α + β + 1)
‖u− v‖C , (24)

and by using Lemma 5(b), we have
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∣∣∣Q∗[Fu]−Q∗[Fv]
∣∣∣

≤ G

p(
α
2)+(β

2)+(θ
2)Γp,q(α)Γp,q(β)Γp,q(θ)

∫ η

0

∫ y
pθ−1

0

∫ x
pβ−1

0
(η − qy)θ−1

p,q

(
y

pθ−1 − qx
)β−1

p,q
×

(
x

pβ−1 − qs
)α−1

p,q
F|u− v|

(
s

pα−1

)
dp,qs dp,qx dp,qy

≤
G
[

L1|u− v|+ L2

∣∣∣Ψγ
p,qu−Ψγ

p,qv
∣∣∣+ L3

∣∣Dν
p,qu− Dν

p,qv
∣∣]

p(
α
2)+(β

2)+(θ
2)Γp,q(α)Γp,q(β)Γp,q(θ)

×

∫ η

0

∫ y
pθ−1

0

∫ x
pβ−1

0
(η − qy)θ−1

p,q

(
y

pθ−1 − qx
)β−1

p,q

(
x

pβ−1 − qs
)α−1

p,q
dp,qs dp,qx dp,qy

≤

⎡⎢⎣
⎛⎜⎝L1 + L2

φ0

(
T
p

)γ

Γp,q(γ + 1)

⎞⎟⎠|u− v|+ L3
∣∣Dν

p,qu− Dν
p,qv

∣∣
⎤⎥⎦ Gηα+β+θ

Γp,q(α + β + θ + 1)

≤ G(L+ L3)η
α+β+θ

Γp,q(α + β + θ + 1)
‖u− v‖C . (25)

Then,

∣∣(Au)(t)− (Av)(t)
∣∣

≤
ω‖u− v‖C

(
T
p

)β−1

|Ω|

⎡⎢⎣
(

T
p

)α+β−1

Γp,q(α + β)
+ AT

⎤⎥⎦
+ (L+ L3)‖u− v‖C

G ηα+β+θ

|Ω|Γp,q(α + β + θ − 1)
.
(

T
p

)β−1
⎡⎢⎣
(

T
p

)α+β−1

Γp,q(α + β)
+ AT

⎤⎥⎦
+ (L+ L3)‖u− v‖C

(
T
p

)α+β

|Ω|Γp,q(α + β + 1)
.
(

T
p

)β−1
⎡⎢⎣

(
T
p

)α

Γp,q(α + β)
Aη + Bη

⎤⎥⎦
+

(L+ L3)‖u− v‖C
p(

α
2)+(β

2)Γp,q(α)Γp,q(β)

∫ T
p

0

∫ x
pβ−1

0

(
T
p
− qx

)β−1

p,q

(
x

pβ−1 − qs
)α−1

p,q
dp,qs dp,qx

≤
{

OT

[
ω + (L+ L3)

G ηα+β+θ

Γp,q(α + β + θ − 1)

]

+ Oη

⎡⎢⎣(L+ L3)

(
T
p

)α+β

Γp,q(α + β + 1)

⎤⎥⎦+ (L+ L3)

(
T
p

)α+β

Γp,q(α + β + 1)

}
‖u− v‖C

= X‖u− v‖C . (26)

Taking fractional (p, q)-difference of order ν for (17), we get
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(Dν
p,qAu)(t)

=
ϕ(u)

Ω

[
( T

p )
β−1Γp,q(α + β)

Γp,q(α + β)Γp,q(α + β− ν)
tα+β−ν−1 −AT

Γp,q(β)

Γp,q(β− ν)
tβ−ν−1

]

+
Q∗[Fu]

Ω

[
AT

Γp,q(β)

Γp,q(β− ν)
tβ−ν−1 −

( T
p )

β−1Γp,q(α + β)

Γp,q(α + β)Γp,q(α + β− ν)
tα+β−ν−1

]

+
P∗[Fu]

Ω

[
Aη

Γp,q(α + β)

Γp,q(α + β− ν)Γp,q(α + β)
tα+β−ν−1 − Bη

Γp,q(β)

Γp,q(β− ν)
tβ−ν−1

]
+

1

p(
α
2)+(β

2)+(−ν
2 )Γp,q(α)Γp,q(β)Γp,q(−ν)

×

∫ t

0

∫ y
p−ν−1

0

∫ x
pβ−1

0
(t− qy)−ν−1

p,q

(
y

p−ν−1 − qx
)β−1

p,q

(
x

pβ−1 − qs
)α−1

p,q
×

F
[

s
pα−1 , u

(
s

pα−1

)
, Ψγ

p,qu
(

s
pα−1

)
, Dν

p,qu
(

s
pα−1

)]
dp,qs dp,qx dp,qy. (27)

Thus,∣∣(Dν
p,qAu)(t)− (Dν

p,qAv)(t)
∣∣

≤ ω‖u− v‖C
(

T
p

)−ν Γp,q(α + β)

Γp,q(α + β− ν)
OT

≤ (L+ L3)‖u− v‖C
G ηα+β+θ

Γp,q(α + β + θ − 1)
.
(

T
p

)−ν Γp,q(α + β)

Γp,q(α + β− ν)
OT

+ (L+ L3)‖u− v‖C

(
T
p

)α+β

Γp,q(α + β + 1)
.
(

T
p

)−ν Γp,q(α + β)

Γp,q(α + β− ν)
Oη

+ (L+ L3)‖u− v‖C
( T

p )
α+β−ν

Γp,q(α + β− ν + 1)

≤
{

OT

[
ω + (L+ L3)

G ηα+β+θ

Γp,q(α + β + θ − 1)

]( T
p

)−ν
Γp,q(α + β)

Γp,q(α + β− ν)

+ Oη

⎡⎢⎣(L+ L3)

(
T
p

)α+β

Γp,q(α + β + 1)

⎤⎥⎦
(

T
p

)−ν
Γp,q(α + β)

Γp,q(α + β− ν)

+ (L+ L3)

(
T
p

)α+β−ν

Γp,q(α + β− ν + 1)

}
‖u− v‖C

< X‖u− v‖C . (28)

From (26) and (28), we have

‖Au−Av‖C ≤ X‖u− v‖C .

By (H4), we can conclude that A is a contraction. Thus, by using Banach fixed
point theorem in lemma 7, A has a fixed point, which is a unique solution of problem (1)
on IT

p,q.
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4. Existence of at Least One Solution

In this section, we prove the existence of at least one solution to (1). The following
lemmas reviewing the Schauder’s fixed point theorem are also provided.

Lemma 8 ([43] Arzelá-Ascoli theorem). A collection of functions in C[a, b] with the sup norm,
is relatively compact if and only if it is uniformly bounded and equicontinuous on [a, b].

Lemma 9 ([43]). If a set is closed and relatively compact, then it is compact.

Lemma 10 ([44] Schauder’s fixed point theorem). Let (D, d) be a complete metric space, U be
a closed convex subset of D, and T : D → D be the map such that the set Tu : u ∈ U is relatively
compact in D. Then, the operator T has at least one fixed point u∗ ∈ U: Tu∗ = u∗.

Theorem 2. Assume that F : IT
p,q ×R×R×R→ R is continuous, and ϕ : C

(
IT
p,q,R

)
→ R is

given functional. Suppose that the following conditions hold:

(H5)There exists a positive constant M such that for each t ∈ IT
p,q and ui ∈ R, i = 1, 2, 3,∣∣∣F[t, u1, u2, u3]

∣∣∣ ≤ M.

(H6)There exists a positive constant N such that for each u ∈ C,

|ϕ(u)| ≤ N.

Then, problem (1) has at least one solution on IT
p,q.

Proof. To prove this theorem, we proceed as follows.
Step I. Verify A maps bounded sets into bounded sets in BR = {u ∈ C : ‖u‖C ≤ R}.

Let us prove that for any R > 0, there exists a positive constant L such that for each x ∈ BR,
we have ‖Au‖C ≤ L. By using Lemma 5, for each t ∈ IT

p,q and u ∈ BR, we have∣∣∣P∗[Fu]
∣∣∣

≤ M

p(
α
2)+(β

2)Γp,q(α)Γp,q(β)

∫ T
p

0

∫ x
pβ−1

0

(
T
p
− qx

)β−1

p,q

(
x

pβ−1 − qs
)α−1

p,q
dp,qs dp,qx

≤
M
(

T
p

)α+β

Γp,q(α + β + 1)
, (29)∣∣∣Q∗[Fu]

∣∣∣
≤ GM

p(
α
2)+(β

2)+(θ
2)Γp,q(α)Γp,q(β)Γp,q(θ)

∫ η

0

∫ y
pθ−1

0

∫ x
pβ−1

0
(η − qy)θ−1

p,q

(
y

pθ−1 − qx
)β−1

p,q
×

(
x

pβ−1 − qs
)α−1

p,q
dp,qs dp,qx dp,qy

≤ GMηα+β+θ

Γp,q(α + β + θ + 1)
. (30)

From (29) and (30), we have
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∣∣(Au)(t)
∣∣ ≤ NOT +

GMηα+β+θ

Γp,q(α + β + θ − 1)
OT

+
M
(

T
p

)α+β

Γp,q(α + β + 1)
Oη

+
M

p(
α
2)+(β

2)Γp,q(α)Γp,q(β)

∫ T
p

0

∫ x
pβ−1

0

(
T
p
− qx

)β−1

p,q

(
x

pβ−1 − qs
)α−1

p,q
dp,qs dp,qx

≤ NOT + M

⎡⎢⎣ OT Gηα+β+θ

Γp,q(α + β + θ − 1)
+

(
T
p

)α+β

Γp,q(α + β + 1)
(Oη + 1)

⎤⎥⎦
≤ NOT + MΘ := L. (31)

We find that

∣∣(Dν
p,qAu

)
(t)
∣∣ ≤ NOT

(
T
p

)−ν Γp,q(α + β)

Γp,q(α + β− ν)

+ M

[
OT Gηα+β+θ

Γp,q(α + β + θ − 1)

(
T
p

)−ν Γp,q(α + β)

Γp,q(α + β− ν)

+

(
T
p

)α+β

Γp,q(α + β + 1)
(Oη + 1)

(
T
p

)−ν Γp,q(α + β)

Γp,q(α + β− ν)

]
< L. (32)

Thus, ‖(Au)‖C ≤ L, which implies that A is uniformly bounded.
Step II. Since F is continuous, we can conclude that the operator A is continuous

on BR.
Step III. For any t1, t2 ∈ IT

p,q with t1 < t2, we find that

∣∣(Au)(t1)− (Au)(t2)
∣∣ ≤

∣∣∣tβ−1
2 − tβ−1

1

∣∣∣
|Ω|

[
AT(N +Q∗[Fu]) + BηP

∗[Fu]
]

+

∣∣∣tα+β−1
2 − tα+β−1

1

∣∣∣
|Ω|Γp,q(α + β)

[(
T
p

)β−1
(N +Q∗[Fu]) + AηP

∗[Fu]

]

+
M

Γp,q(α + β)

∣∣∣tα+β
2 − tα+β

1

∣∣∣, (33)

and∣∣(Dp,q
νAu)(t2)− (Dν

p,qAu)(t1)
∣∣

≤

∣∣∣tα+β
2 − tα+β

1

∣∣∣
|Ω|Γp,q(β− ν)

[
AT(N +Q∗[Fu]) + BηP

∗[Fu]
]
+

∣∣∣tα+β−ν−1
2 − tα+β−ν−1

1

∣∣∣
|Ω|Γp,q(α + β− ν)

×[(
T
p

)β−1
(N +Q∗[Fu]) + AηP

∗[Fu]

]
+

M
Γp,q(α + β− ν + 1)

∣∣∣tα+β−ν
2 − tα+β−ν

1

∣∣∣. (34)

We see that the right-hand side of (33) and (34) tends to be zero when |t2 − t1| → 0.
Thus, A is relatively compact on BR. This implies that A(BR) is an equicontinuous set. By
Arzelá-Ascoli theorem in Lemma 8, Lemma 9, and the above steps, we see that A : C → C
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is completely continuous. Hence, we can conclude from Schauder fixed point theorem in
Lemma 10 that problem (1) has at least one solution.

5. Examples

In this section, to illustrate our results, we consider some examples.

Example 1. Consider the following fractional (p, q)-integrodifference equation as

D
3
4
2
3 , 1

2
D

1
2
2
3 , 1

2
u(t) =

1
(100e2 + t3)(1 + |u(t)|)

[
e−3t

(
u2 + 2|u|

)
+ e−(π+sin2 πt)

∣∣∣∣Ψ 1
3
2
3 , 1

2
u(t)

∣∣∣∣
+e−(2π+cos2 πt)

∣∣∣∣D 1
4
2
3 , 1

2
u(t)

∣∣∣∣
]

, t ∈ I10
2
3 , 1

2
=

⎧⎪⎨⎪⎩
10
(

1
2

)k

( 2
3
)k+1 : k ∈ N0

⎫⎪⎬⎪⎭ ∪ {0} (35)

with periodic fractional (p, q)-integral boundary condition

u(0) = u(15)

I
2
3
2
3 , 1

2

(
2e + sin

(
1215
256

))2
u
(

1215
256

)
=

∞

∑
i=0

Ci|u(ti)|
1 + |u(ti)|

, ti = σi
2
3 , 1

2
(10), (36)

where Ci is given constants with 1
1000 ≤ ∑∞

i=0 Ci ≤ e
1000 and φ(t, s) = e−|t−s|

(t+e)3 .

Letting α = 3
4 , β = 1

2 , γ = 1
3 , ν = 1

4 , θ = 2
3 , p = 2

3 , q = 1
2 , T = 10, η = σ4

2
3 , 1

2
(10) =

1215
256 , g(t) = (20e + sin t)2 and F

[
t, u(t), Ψγ

p,qu(t), Dν
p,qu(t)

]
= 1

(100e2+t3)(1+|u(t)|)×[
e−3t(u2 + 2|u|

)
+ e−(π+sin2 πt)

∣∣∣∣Ψ 1
3
2
3 , 1

2
u(t)

∣∣∣∣+ e−(2π+cos2 πt)
∣∣∣∣D 1

4
2
3 , 1

2
u(t)

∣∣∣∣
]

.

Using above values, we find that

φ0 = 0.0498, |AT | = 2.06344, |Aη | ≤ 264.588, |Bη | ≤ 196.777 and |Ω| ≥ 283.525.

For all t ∈ I10
2
3 , 1

2
and u, v ∈ R, we find that

∣∣∣F[t, u, Ψγ
p,qu, Dν

p,qu
]
− F

[
t, v, Ψγ

p,qv, Dν
p,qv

]∣∣∣
≤ 1

100e2 |u− v|+ 1
1000e2+π

∣∣Ψγ
p,qu−Ψγ

p,qv
∣∣+ 1

100e2+2π

∣∣∣Dν
p,qu− Dν

p,qv
∣∣∣.

Thus, (H1) holds with L1 = 0.001353, L2 = 5.848× 10−5 and L3 = 2.5273× 10−6. So
L = 0.00136.

For all u, v ∈ C,

|ϕ(u)− ϕ(v)| ≤ e
1000

‖u− v‖C .

Thus, (H2) holds with ω = 0.002718.
In addition, (H3) holds with g = 19.6831, G = 41.42935.
Since

OT = 0.001885 Oη = 2.10484 and Θ = 89.5277,

therefore, (H4) holds with
X = 0.121989 < 1.

Hence, by Theorem 1 this problem has a unique solution.
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Example 2. Consider the following fractional (p, q)-integrodifference equation as

D
3
4
2
3 , 1

2
D

1
2
2
3 , 1

2
u(t) =

1
10

(
t +

1
3

)
e
−(t+ 1

10 )

[
u(t)+

∣∣∣∣∣Ψ 1
3
2
3 , 1

2
u(t)

∣∣∣∣∣+
∣∣∣∣∣D 1

4
2
3 , 1

2
u(t)

∣∣∣∣∣
]

, t ∈ I10
2
3 , 1

2
(37)

with periodic fractional (p, q)-integral boundary condition

u(0) = u(15)

I
2
3
2
3 , 1

2

(
2e + sin

(
1215
256

))2
u
(

1215
256

)
=

∞

∑
i=0

Cie−|u(ti)|, ti = σi
2
3 , 1

2
(10), (38)

where Di is given constants with 1
500 ≤ ∑∞

i=0 Di ≤ e
500 .

Letting α = 3
4 , β = 1

2 , γ = 1
3 , ν = 1

4 , θ = 2
3 , p = 2

3 , q = 1
2 , T = 10, η = 1215

256 . It is

clear that
∣∣∣F[t, u, Ψγ

p,qu, Dν
p,qu

]∣∣∣ ≤ 23
15 = M for t ∈ I10

2
3 , 1

2
, and |ϕ(u)| ≤ e

500 = N for u ∈ C.

Thus, we can conclude from Theorem 2 that our problem has at least one solution.

6. Conclusions

A fractional (p, q)-integrodifference equation with periodic fractional (p, q)-integral
boundary condition (1) is studied. Our problem contains three fractional (p, q)-difference
operators, and two fractional (p, q)-integral operators. We establish the conditions for
the existence and uniqueness of solution for problem (1) by using the Banach fixed point
theorem, and this result is shown in Theorem 1. We also established the conditions of at
least one solution by using the Schauder’s fixed point theorem, and this result is shown
in Theorem 2. The choice to use of Theorems 1 or 2 depends on the conditions of the
assumptions. The main results are illustrated by a numerical example. Some properties of
fractional (p, q)-integral needed in our study are also discussed. The results of the paper
are new and enrich the subject of boundary value problems for fractional (p, q)-difference
equations. In the future work, we may extend this work by considering new boundary
value problems.
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Abstract: In this paper, we present a new result that allows for studying the global stability of the
disease-free equilibrium point when the basic reproduction number is less than 1, in the fractional
calculus context. The method only involves basic linear algebra and can be easily applied to study
global asymptotic stability. After proving some auxiliary lemmas involving the Mittag–Leffler
function, we present the main result of the paper. Under some assumptions, we prove that the
disease-free equilibrium point of a fractional differential system is globally asymptotically stable.
We then exemplify the procedure with some epidemiological models: a fractional-order SEIR model
with classical incidence function, a fractional-order SIRS model with a general incidence function,
and a fractional-order model for HIV/AIDS.

Keywords: epidemiology; mathematical modeling; fractional calculus; equilibrium; stability

1. Introduction

Fractional differential equations play an important role in modeling real-life phe-
nomena. By replacing an integer-order derivative with a real-order fractional derivative,
often we can fit the system of equations to the real data more efficiently because many
dynamical systems cannot be completely described by ODEs. To mention a few of them,
we refer applications to bioengineering [1,2], biology [3], Lévy motion [4], harmonic os-
cillators with damping [5], economy [6,7], and engineering [8,9]. In this work, we are
particularly interested in applications of fractional calculus in epidemiological models.
This topic has been intensively studied in the recent past, from the well formulation of the
problem, the existence of equilibrium points, modeling, and forecasting of epidemiological
systems. For example, Refs. [10–12] proposed fractional epidemiological models to study
the spread of COVID-19 in different countries, Refs. [13,14] investigated the HIV infection,
in Ref. [15], a varicella outbreak in China was considered, the spread of dengue fever out-
break in the Cape Verde islands was studied in [16], and in [17] a fractional measles model
was proposed. Stability studies were given in e.g., [13,18–21] and numerical methods in
e.g., [22–24]. We also refer to [25] where a review of several fractional epidemiological
models was carried out.

An important problem is the study of the global stability of the equilibrium points,
in order to better understand the evolution of the disease over time. That is, the system will
evolve to the equilibrium point, independently of the starting points. The study of local
stability is a relatively simple matter, as it usually involves finding the eigenvalues of the
Jacobian matrix and studying their sign. However, the question of global stability is not,
in many cases, simple to answer as it usually involves constructing suitable Lyapunov-like
functions and there is no routine on how to find them. We emphasize here the fact that
the use of the Lyapunov stability theory to establish the global asymptotic stability for
fractional differential equations is more complicated than for the ODEs (see, e.g., [26–29]).
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This was the motivation to investigate a new method to study global asymptotic stability
for dynamical systems described by fractional differential equations. In [30], a novel
method was presented. By writing the system in a matricial form and analyzing the
matrices involved is such procedure, under some simple assumptions, we can ensure that
the equilibrium point is globally stable if the basic reproduction number R0 is less than
1. The aim of this work is to generalize the main result of [30] to the fractional setting.
To our knowledge, this is the first work on global stability following this last approach to
the problem.

The paper is organized as follows. In Section 2, we present some concepts and known
results needed for this work. Section 3 presents the new contributions of this paper.
After deducing some auxiliary lemmas, we prove the main result of this work, Theorem 2.
Under some assumptions that can be easily verified for a wide range of epidemiological
models given by fractional differential systems, we prove that, if the basic reproduction
number is less than 1, then the equilibrium point is globally asymptotically stable. Lastly,
in Section 4, we present three examples to show the utility of our research.

2. Preliminaries

We begin this section with some basic definitions and results of the fractional calculus
needed in this work. For more details, we refer the reader to [31,32].

Throughout the text, α ∈]0, 1[ and Γ(z) =
∫ ∞

0 tz−1et dt, z > 0, is the Gamma function.

Definition 1. Let f : R+
0 → R be an integrable function. The (left-sided) Riemann–Liouville

fractional integral of function f of order α is given by

Iα
0+ f (t) :=

1
Γ(α)

∫ t

0
(t− τ)α−1 f (τ)dτ, t > 0.

Definition 2. The (left-sided) Caputo fractional derivative of order α of function f ∈ C1(R+
0 ,R)

is defined by
CDα

0+ f (t) :=
1

Γ(1− α)

∫ t

0
(t− τ)−α f ′(τ) dτ, t > 0.

Next, we recall the definition of the generalized Mittag–Leffler function, which is a
special function that generalizes the standard exponential function. The Mittag–Leffler
function is of great importance in fractional calculus because it arises naturally in the
solution of fractional-order differential and integral equations.

Definition 3. The Mittag–Leffler function with two parameters is defined by

Eα,β(t) :=
∞

∑
k=0

tk

Γ(αk + β)
, t ∈ C,

with α, β ≥ 0. When β = 1, we define the one parameter Mittag–Leffler function Eα(t) := Eα,1(t).

To understand the theory of fractional differential equations, one needs to know
properties of these special functions. Its main properties and applications can be found,
for example, in [33]. We emphasize here the fact that Eα,β(t) can take negative values
(cf. [34]).

Recently, we have observed an increasing interest in the Mittag–Leffler function for
matrix arguments, since the solution of many systems of differential equations of noninteger
order can be expressed using this matrix function. For theoretical properties and a survey
on numerical approximation of the matrix Mittag–Leffler function, we recommend the
recent paper [35] and the references cited therein.
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Definition 4. Given A ∈ Cn×n, the matrix Mittag–Leffler function with two parameters is defined
through the convergent series

Eα,β(A) :=
∞

∑
k=0

Ak

Γ(αk + β)

where α, β ≥ 0. If β = 1, we define the one parameter matrix Mittag–Leffler function Eα(A) :=
Eα,1(A).

Remark 1. For α = β = 1, the matrix Mittag–Leffler function is the matrix exponential, that is,
E1,1(A) = exp(A) = ∑∞

k=0
Ak

k! . Unfortunately, as noticed in [36], there are several works where
some properties of the matrix exponential were incorrectly extended to the matrix Mittag–Leffler
function and then used to solve certain linear matrix fractional differential equations. One of the
properties that cannot be extended to the matrix Mittag–Leffler function is the semigroup property:
for given commutating matrices A and B, in general, we have Eα(A + B) �= Eα(A) · Eα(B). We
note, however, that, if matrices A and B commute and α ≈ 1, then Eα(A + B) ≈ Eα(A) · Eα(B).

We recall now two properties of the matrix Mittag–Leffler function that are useful in
the present work (see [35]):

1. if A = diag(a11, . . . , ann), then Eα,β(A) = diag(Eα,β(a11), . . . , Eα,β(ann));
2. if there exists a non-singular matrix P such that A = PDP−1, then Eα,β(A) =

PEα,β(D)P−1.

To finalize this section, we review some concepts on matrix theory.

Definition 5. We say that a square matrix A is an M-matrix if the off-diagonal entries are
nonpositive and the real parts of all eigenvalues are nonnegative.

Given a square matrix A, the set of eigenvalues of A is denoted by σ(A). The spectral
bound of matrix A is defined as m(A) = max{Re(λ) : λ ∈ σ(A)}, where Re(λ) denotes
the real part of λ, and the spectral radius of A is defined as ρ(A) = max{|λ| : λ ∈ σ(A)}.

The following result is a fundamental tool in the proof of Lemma 4.

Lemma 1 ([36]). Let A =

[
a b
c d

]
be a diagonalizable matrix of order 2 with eigenvalues

λ1 = (a+d)−Ω
2 and λ2 = (a+d)+Ω

2 where Ω :=
√
(a− d)2 + 4bc. Let e1 := Eα,β(λ1) and

e2 := Eα,β(λ2). If Ω and c are not zero, the matrix Mittag–Leffler function of matrix A is

Eα,β(A) =
1

2Ω

[
(d− a)(e1 − e2) + Ω(e1 + e2) −2b(e1 − e2)

−2c(e1 − e2) −(d− a)(e1 − e2) + Ω(e1 + e2)

]
.

We remark that, in Lemma 1, if Ω = 0 or c = 0, a simple formula for the Mittag–Leffler
function of a diagonalizable matrix of order 2 can be easily obtained.

Theorem 1 (cf. [37]). Let A ∈ Rn×n. If the spectrum of A satisfies the relation

σ(A) ⊆
{

λ ∈ C \ {0} : | arg(λ)| > απ

2

}
,

then limt→∞ ‖Eα(Atα)‖ = 0.
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3. Main Results

Suppose that the epidemiological model under study is described by the fractional
differential system ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

CDα
0+X(t) = F(X, I)

CDα
0+ I(t) = G(X, I)

G(X, 0) = 0

(1)

with nonnegative initial conditions X(0) = X0 ∈ Rm and I(0) = I0 ∈ Rn, where the
components of the vector X denote the number of uninfected individuals (e.g., susceptible,
recovered, vaccinated, etc.) and the components of I denote the number of the infected and
infectious (the ones that can transmit the disease, such as the asymptomatic but infectious
and active infected). In addition, we assume that function F is continuous, G is of class C1,
and the fractional differential system (1) with initial conditions X(0) = X0 and I(0) = I0
admits a unique solution.

Throughout this paper, we denote by U0 = (X�, 0) ∈ Rm+n the disease-free equilib-
rium (DFE) point of the system (1), that is, F(X�, 0) = G(X�, 0) = 0.

Let A := ∂G
∂I (X�, 0) and assume that matrix A can be written in the form A = M− D,

where M, D are two square matrices with M ≥ 0 (all entries are nonnegative), and D > 0
is a diagonal matrix. The following result was proven in [38]:

m(A) < 0 if and only if ρ(MD−1) < 1,

or
m(A) > 0 if and only if ρ(MD−1) > 1.

The value
R0 := ρ(MD−1)

plays an important role in epidemiological models, and it is known as the basic reproduc-
tion number. This number gives the average number of secondary cases produced by one
infected individual in a population where all individuals are susceptible to the infection.

The following result is well known in the literature. For the convenience of the reader,
we present here one possible proof that follows from the fact that the scalar Mittag–Leffler
function is completely monotonic ([39,40]).

Lemma 2. For 0 < α < 1, Eα,α(t) ≥ 0, for all t ∈ R.

Proof. Clearly, Eα,α(t) ≥ 0, for all t ≥ 0. To prove that Eα,α(−t) ≥ 0, for all t > 0, we use
the fact that the scalar Mittag–Leffler function Eα(−t), t ≥ 0, is completely monotonic,
that is,

(−1)m dm

dtm Eα(−t) ≥ 0, ∀m ∈ N. (2)

Since
α

d
dt

Eα(−t) = −Eα,α(−t), t ≥ 0,

it follows from (2) that
Eα,α(−t) ≥ 0, t ≥ 0.

This completes the proof.

The following result is also useful in this work.

Lemma 3. For 0 < α < 1, Eα,α : R→ R is an increasing function.
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Proof. It is clear that Eα,α is an increasing function on R+
0 . Now, we prove that d

dt Eα,α(t) ≥ 0,
for all t ∈ R−0 . Since

d
dt

Eα,α(t) = α
d2

dt2 Eα(t) =
∞

∑
k=1

ktk−1

Γ(kα + α)
,

from (2), we conclude that d
dt Eα,α(t) ≥ 0, proving the desired result.

Now, we prove the following lemma that shows the applicability of our main result
(Theorem 2).

Lemma 4. Let A ∈ R2×2 be a matrix and 0 < α < 1. If matrix A is diagonalizable and −A is an
M-matrix, then Eα,α(A) ≥ 0.

Proof. With our assumptions and using the notations from Lemma 1, we have that b, c, Ω ∈
R+

0 , λ1, λ2 ∈ R−0 , and λ2 ≥ λ1. First, suppose that Ω �= 0 and c �= 0. Hence, from
Lemmas 2 and 3, we conclude that e2 := Eα,α(λ2) ≥ e1 := Eα,α(λ1) ≥ 0. It remains to be
proved that

Ω(e1 + e2) ≥ −(d− a)(e1 − e2) and Ω(e1 + e2) ≥ (d− a)(e1 − e2).

Suppose that d ≥ a (the other case is similar). Then, we just need to prove the first
inequality. Since both sides of the inequality are nonnegative, we have that

[(a− d)2 + 4bc](e1 + e2)
2 ≥ (d− a)2(e1 − e2)

2,

which is equivalent to

(a− d)2e2
1 + (a− d)2e2

2 + 2(a− d)2e1e2 + 4bc(e1 + e2)
2

≥ (a− d)2e2
1 + (a− d)2e2

2 − 2(a− d)2e1e2

proving the desired. Now, we suppose that c = 0 and a �= d. If a < d, then we get

Eα,β(A) =

[
e1

b
a−d (e1 − e2)

0 e2

]
≥ 0,

and, if a > d, then

Eα,β(A) =

[
e2

b
a−d (e2 − e1)

0 e1

]
≥ 0.

If c = 0 and a = d, then

Eα,β(A) =

[
e1 0
0 e1

]
≥ 0

since b = 0 (otherwise, A is not diagonalizable). If Ω = 0, the proof is trivial since in this
case A is diagonalizable iff a = d and c = d = 0.

The following result is a fundamental tool in the proof of Theorem 2.

Lemma 5. Let B ∈ Rn×n be an invertible matrix and H : Rm+n → Rn be a continuous function.
Suppose that the fractional differential equation

CDα
0+ I(t) = B · I(t)− H(X(t), I(t))
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with initial condition I(0) = I0 ∈ Rn, has a unique solution. Then, the solution of this initial value
problem satisfies

I(t) = Eα(Btα) · I0 −
∫ t

0
B−1 · d

ds
Eα(Bsα) · H(X(t− s), I(t− s)) ds.

Proof. The proof follows the ideas from [41] (Theorem 7.2). First, observe that

CDα
0+(Eα(Btα) · I0) = B · Eα(Btα) · I0.

To compute

CDα
0+

(∫ t

0
B−1 · d

ds
Eα(Bsα) · H(X(t− s), I(t− s)) ds

)
,

let

y(t) =
∫ t

0
B−1 · d

ds
Eα(Bsα) · H(X(t− s), I(t− s)) ds.

Since

B−1 · d
ds

Eα(Bsα) = αsα−1E′α(Bsα) = αsα−1
∞

∑
k=1

k(Bsα)k−1

Γ(kα + 1)
=

∞

∑
k=1

Bk−1sαk−1

Γ(kα)
,

we get the following:

y(t) =
∞

∑
k=1

Bk−1

Γ(kα)

∫ t

0
sαk−1 H(X(t− s), I(t− s)) ds

=
∞

∑
k=1

Bk−1

Γ(kα)

∫ t

0
(t− τ)αk−1 H(X(τ), I(τ)) dτ

=
∞

∑
k=1

Bk−1 · Iαk
0+H(X(t), I(t)).

Thus,

CDα
0+y(t) =

∞

∑
k=1

Bk−1 · CDα
0+I

αk
0+H(X(t), I(t)) =

∞

∑
k=1

Bk−1 · Iα(k−1)
0+ H(X(t), I(t))

=
∞

∑
k=0

Bk · Iαk
0+H(X(t), I(t)) = H(X(t), I(t)) +

∞

∑
k=1

Bk · Iαk
0+H(X(t), I(t))

= H(X(t), I(t)) + B · y(t).

Hence, we may conclude that

CDα
0+ I(t) = B · Eα(Btα) · I0 − H(X(t), I(t))− B · y(t)

= B ·
(

Eα(Btα) · I0 − y(t)
)
− H(X(t), I(t))

= B · I(t)− H(X(t), I(t)),

proving the desired result.

We are now in conditions to present a new global stability condition for the DFE of
system (1) when R0 < 1. Knowing that an equilibrium point is globally asymptotically
stable with respect to the system that describes the evolution of the uninfected individuals,
and with some extra assumptions related to the matrices involved in the system associated
with infected and infectious individuals, we can conclude that the equilibrium point is
in fact globally asymptotically stable with respect to the complete system. Although the
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result imposes some restrictions in order to be applied, for many epidemiological models,
it can be easily used, as we will illustrate in Section 4.

Theorem 2. Suppose that

1. For CDα
0+X(t) = F(X, 0), the vector X� is globally asymptotically stable;

2. Function G can be written as G(X, I) = A · I − Ĝ(X, I), where Ĝ(X, I) ≥ 0 for all (X, I),
and A = ∂G

∂I (X�, 0) can be written as A = M− D, where M ≥ 0 and D > 0 is a diagonal
matrix;

3. Matrix A is diagonalizable, the real parts of the eigenvalues of A are nonpositive, and Eα,α(A) ≥
0;

4. I(t) ≥ 0 for all t > 0 (nonnegativity of solutions).

IfR0 < 1, then the DFE, U0 = (X�, 0), is a globally asymptotically stable equilibrium of system
(1), for all 0 < α < 1.

Proof. First, observe that, since R0 < 1, then m(A) < 0 (see [38]), and so matrix A is
invertible. Since

CDα
0+ I(t) = G(X(t), I(t)) = A · I(t)− Ĝ(X(t), I(t)),

then, by Lemma 5, we get

0 ≤ I(t) = Eα(Atα) · I0 −
∫ t

0
A−1 d

ds
Eα(Asα) · Ĝ(X(t− s), I(t− s)) ds ≤ Eα(Atα) · I0,

since
A−1 d

ds
Eα(Asα) = αsα−1E′α(Asα) = sα−1Eα,α(Asα) ≥ 0.

Since the real parts of the eigenvalues of matrix A are negative, from Theorem 1, we
get

lim
t→∞

‖Eα(Atα)‖ = 0,

and hence
lim
t→∞

I(t) = 0.

Since X� is globally asymptotically stable with respect to CDα
0+X(t) = F(X, 0), which

in turn is the limiting system of CDα
0+X(t) = F(X, I), then we get

lim
t→∞

X(t) = X�(t),

which completes the proof.

Remark 2. Note that the assumption Eα,α(A) ≥ 0 in Theorem 2 is trivially satisfied if matrix A
has dimensions 1 or 2 (by Lemmas 2 and 4, respectively). In addition, if α ≈ 1, since Eα,α(A) ≈
exp(A), the above condition also holds for any matrix A ∈ Rn×n.

4. Examples

In this section, we illustrate our main result, Theorem 2, by considering three Caputo
fractional-order compartmental models and show that the disease free equilibrium is
globally stable in all the cases, wheneverR0 < 1. We stress that usually (see e.g., [21]) the
global stability of the disease free equilibrium is proved by considering an appropriate
Lyapunov function and LaSalle’s invariance principle [42], which are often difficult to
apply especially when the model has a considerable number of variables and parameters.
Our main result allows us to prove the global stability of the disease free equilibrium in an
easier and simpler way. For the numerical implementation of the fractional derivatives, we
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have used the Adams–Bashforth–Moulton scheme, which has been implemented in the
Matlab code fde12 by Garrappa [43].

The code implements the predictor–corrector PECE method of Adams–Bashforth–
Moulton type described in [44]. We fixed a time step size of h = 2−6 and consider,
without loss of generality, the fractional-order derivatives α ∈ {0.8, 0.85, 0.9, 0.95, 1.0}.

4.1. A Fractional SEIR Model with Traditional Incidence Rate

We start by considering a Caputo fractional-order version of the classical SEIR model
that has been applied to describe the transmission dynamics of infectious diseases where
there exists a significant latency period during which the individuals are infected but not
yet infectious. During this period, the individual is in the so-called exposed compartment E,
see e.g., [45]. The other compartments of the model are susceptible S, infected I, and recovered
R, and each of them denotes a fraction of the total population. The following assumptions
are considered: the birth and death rates are assumed to be equal, and denoted by μ; the
incidence rate is the traditional one, given by βSI, where β represents the transmission
rate; the latent period is denoted by ε; infected individuals recover at a rate γ and remain
recovered with permanent immunity. All parameters are assumed to be positive. The model
is given by the following system:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

CDα
0+S(t) = μ− μS(t)− βS(t)I(t),

CDα
0+E(t) = −(ε + μ)E(t) + βS(t)I(t),

CDα
0+ I(t) = εE(t)− (γ + μ)I(t),

CDα
0+R(t) = γI(t)− μR(t).

(3)

The disease-free equilibrium of the model (3) is given by

Σ0 =
(

S0, E0, I0, R0
)
= (1, 0, 0, 0) .

Following the notation from Section 3, we have

A =

[ −ε− μ β

ε −γ− μ

]
.

The matrix A can be written as A = M− D with

M =

[
0 β

ε 0

]

and

D =

[
ε + μ 0

0 γ + μ

]
.

The point X� = (1, 0) is globally asymptotically stable for the system of uninfected in-
dividuals: ⎧⎨⎩

CDα
0+S(t) = μ− μS(t),

CDα
0+R(t) = −μR(t).

(4)

It is easy to verify that the function

R(t) = R0 Eα(−μtα)
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satisfies the second equation of (4). From [41] (Theorem 7.2), the solution of the first
equation of (4) is the function

S(t) = S0 Eα(−μtα) +
∫ t

0
μsα−1Eα,α(−μsα) ds.

Simple computations lead to

S(t) = S0 Eα(−μtα)− Eα(−μtα) + 1.

Thus,
(S(t), R(t))→ (1, 0) as t → ∞.

In addition, by Lemma 4, Eα,α(A) is nonnegative and so, by Theorem 2, the disease-free
equilibrium of the model (9) is globally asymptotically stable.

Consider the following parameter values: μ = 1/80, β = 0.05 and γ = 1, ε = 1. Then,
the eigenvalues of the matrix A are −0.7888 and −1.2361; therefore, m(A) < 0. Moreover,
we confirm thatR0 := ρ(MD−1) = 0.2893 < 1.

Through adequate numerical simulations, we illustrate the global stability of the
disease free equilibrium, whenever R0 < 1, considering different values of α and initial
conditions. In Figure 1, we consider different values for α and the initial condition x0
from (5).
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Figure 1. Stability of the disease free equilibrium Σ0 = (1, 0, 0, 0), for the SEIR fractional model (3),
considering different values of α ∈ {0.8, 0.85, 0.9, 0.95, 1.0}. On the left: S. On the right: E + I + R.

The global stability of the disease free equilibrium Σ0 = (1, 0, 0, 0) is illustrated in
Figure 2, considering different initial conditions xi, i = 0, . . . , 7, given by (5):

x0 = (S0,0, E0,0, I0,0, R0,0) = (0.3, 0.5, 0.1, 0.1) ,
x1 = (S0,1, E0,1, I0,1, R0,1) = (0.4, 0.1, 0.3, 0.2) ,
x2 = (S0,2, E0,2, I0,2, R0,2) = (0.5, 0.05, 0.4, 0.05) ,
x3 = (S0,3, E0,3, I0,3, R0,3) = (0.6, 0.1, 0.2, 0.1) ,
x4 = (S0,4, E0,4, I0,4, R0,4) = (0.7, 0.05, 0.1, 0.15) ,
x5 = (S0,5, E0,5, I0,5, R0,5) = (0.8, 0.1, 0.1, 0.0) ,
x6 = (S0,6, E0,6, I0,6, R0,6) = (0.85, 0.05, 0.1, 0.0) ,
x7 = (S0,7, E0,7, I0,7, R0,7) = (0.95, 0.025, 0.025, 0.0) .

(5)
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Figure 2. Global stability of the disease free equilibrium Σ0 = (1, 0, 0, 0), for the fractional model (3),
considering α = 0.9 and different initial conditions xi, i = 0, . . . , 7, from (5). On the left S and on the
right E + I + R.

4.2. A Fractional SIRS Model with General Incidence Rate

In the second example, we consider the Caputo fractional-order version of the classical
SIRS model from [21], given by the following system:⎧⎪⎪⎨⎪⎪⎩

CDα
0+S(t) = Λ− μS(t)− βI(t)S(t)

1+k1S(t)+k2 I(t)+k3S(t)I(t) + λR(t),
CDα

0+ I(t) = βI(t)S(t)
1+k1S(t)+k2 I(t)+k3S(t)I(t) − (μ + r)I(t),

CDα
0+R(t) = rI(t)− (μ + λ)R(t).

(6)

The model considers a homogeneous population divided into three subgroups: sus-
ceptible individuals S(t), infected and infectious individuals I(t), and recovered R(t),
individuals at time t. The parameters Λ, β, μ, and r, represent the recruitment rate of the
population, the infection rate, the natural death rate, and the recovery rate of the infected
individuals, respectively. The rate that recovered individuals lose immunity and return
to the susceptible class is represented by λ. While contacting with infected individuals,
the susceptible become infected at the incidence rate

βSI
1 + k1S + k2 I + k3SI

,

where k1, k2, and k3 are nonnegative constants [21]. We remark that system (6) admits a
unique positive solution (see [21] (Theorem 7)).

The disease-free equilibrium of the model (6) is given by

Σ0 =
(

S0, I0, R0
)
=

(
Λ
μ

, 0, 0
)

.

In this case, following the notation from Section 3,

A = M− D =
[ Λβ

Λk1 + μ
− μ− r

]
with

M =
[ Λβ

Λk1 + μ

]
and D = [μ + r].

Hence,

R0 = ρ(MD−1) =
Λβ

(μ + r)(Λk1 + μ)
.

We easily conclude that A < 0 wheneverR0 < 1.
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In what follows, we prove that the first condition of Theorem 2 holds, that is, X� =
(Λ/μ, 0) is globally asymptotically stable for the system of uninfected individuals:{

CDα
0+S(t) = Λ− μS(t) + λR(t),

CDα
0+R(t) = −(μ + λ)R(t).

(7)

The solution of the fractional differential equations (7) is the functions

R(t) = R0 Eα(−(μ + λ)tα)

and

S(t) = S0 Eα(−μtα) +
∫ t

0

[
Λ + λR0 Eα(−(μ + λ)(t− s)α)

]
sα−1Eα,α(−μsα) ds.

Obviously R(t)→ 0, as t goes to infinity. Now, we prove that S(t)→ Λ/μ, as t → ∞.
First, observe that∫ t

0
sα−1 Eα,α(−μsα) ds =

∞

∑
k=0

(−μ)k

Γ(kα + α)

∫ t

0
skα+α−1 ds =

∞

∑
k=0

(−μ)k

Γ(kα + α + 1)
tkα+α

= − 1
μ

∞

∑
k=0

(−μ)k+1

Γ((k + 1)α + 1)
t(k+1)α = − 1

μ
(Eα(−μtα)− 1).

For the other term inside the integral, we get

∫ t

0
Eα(−(μ + λ)(t− s)α)sα−1Eα,α(−μsα) ds

=
∞

∑
m=0

∞

∑
k=0

(−(μ + λ))m(−μ)k

Γ(mα + 1)Γ(kα + α)

∫ t

0
(t− s)mαskα+α−1 ds.

To evaluate this integral, we use the known formula involving the Beta function:

B(x, y) =
Γ(x)Γ(y)
Γ(x + y)

, x, y > 0.

With the change of variable u = s/t, we get

∫ t

0
(t− s)mαskα+α−1 ds = tmα

∫ t

0
(1− s/t)mαskα+α−1 ds = tmα+kα+α

∫ 1

0
(1− u)mαukα+α−1 du

= tmα+kα+αB(kα + α, mα + 1) = tmα+kα+α Γ(kα + α)Γ(mα + 1)
Γ(mα + kα + α + 1)

.

Thus, we prove that the solution S(·) is given by

S(t) = S0 Eα(−μtα) +
Λ
μ
(1− Eα(−μtα)) + λR0

∞

∑
m=0

∞

∑
k=0

(−(μ + λ))m(−μ)k

Γ(mα + kα + α + 1)
tmα+kα+α.

Observe that, as t goes to infinity,

S0 Eα(−μtα)→ 0 and
Λ
μ
(1− Eα(−μtα))→ Λ

μ
.
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To sum up, it remains to prove that the double sum converges to zero. For that
purpose, we recall the concept of the Mittag–Leffler function of two variables (cf. [46])
Eα,β(x, y, ·). With such notation, we can write

∞

∑
m=0

∞

∑
k=0

(−(μ + λ))m(−μ)k

Γ(mα + kα + α + 1)
tmα+kα+α = tαEα,α(−(μ + λ)tα,−μtα, α + 1)

which converges to zero, as t goes to infinity, by [46] (Theorem 3.1). This proves the
desired conclusion. We also remark that, by Lemma 2, Eα,α(A) is nonnegative. Therefore,
by Theorem 2, the disease-free equilibrium of the model (6) is globally asymptotically stable.

Considering the parameter values from [21], Λ = 0.8, μ = 0.1, λ = 0.5, β = 0.1,
r = 0.5, k1 = 0.1, k2 = 0.02, and k3 = 0.003, we have R0 = 0.7407 < 1. For initial
conditions, we consider the following ones and without any specific criteria:

y0 = (S0,0, I0,0, R0,0) = (10, 1, 1) , y1 = (S0,1, I0,1, R0,1) = (100, 10, 5) ,

y2 = (S0,2, I0,2, R0,2) = (200, 20, 10) , y3 = (S0,3, I0,3, R0,3) = (300, 30, 20) ,

y4 = (S0,4, I0,4, C0,4, A0,5) = (400, 40, 50) .

(8)

The stability of the disease free equilibrium for model (6) is illustrated in Figure 3.
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Figure 3. Stability of the disease free equilibrium Σ0 = (Λ
μ = 8, 0, 0), for the SIRS fractional model

(6). In the left: I + R, considering different values of α ∈ {0.8, 0.85, 0.9, 0.95, 1.0} and initial condition
y1 from (8). On the right: S and I + R, considering the initial conditions yi, i = 0, . . . , 4 from (8) and
fixed α = 0.9.

4.3. A Modified Fractional SICA Model for HIV/AIDS

In this example, we consider a modified Caputo fractional-order model for HIV/AIDS,
based on the model proposed in [14,47]. We show that this fractional model satisfies the
conditions of Theorem 2 and, through some numerical simulations, we illustrate the global
stability of the disease free equilibrium, whenR0 < 1.

In this model, the total population is assumed to be homogeneous and divided
into four mutually-exclusive compartments: susceptible individuals (S); HIV-infected
individuals with no clinical symptoms of AIDS but able to transmit HIV to other individuals
(I); HIV-infected individuals under antiretroviral (ART) treatment (the so called chronic
stage) with a viral load remaining low (C); and HIV-infected individuals with AIDS clinical
symptoms (A). Analogously to the assumption made in [47], we consider that individuals
in the chronic stage C have a very low viral load and do not transmit HIV infection [48],
but, differently from [47], we assume that individuals with AIDS A, due to their higher
viral load, may transmit HIV virus, at a rate ηA β with ηA > 1. Therefore, effective contact
with people infected with HIV is at a rate λ, given by

λ = β(I + ηA A),
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where β is the effective contact rate for HIV transmission. We assume that the recruitment
rate is equal to the natural death rate and is denoted by μ. The following assumptions
are the same as in [14]. HIV-infected individuals with no AIDS symptoms I progress
to the class of individuals with HIV infection under ART treatment C, at a rate φ, and
HIV-infected individuals with AIDS symptoms are treated for HIV at rate γ. Individuals in
the class C leave for the class I, at a rate ω. HIV-infected individuals with AIDS symptoms
A that start treatment move to the class of HIV-infected individuals I, moving to the
chronic class C only if the treatment is maintained. HIV-infected individuals with no
AIDS symptoms I that do not take ART treatment progress to the AIDS class A, at rate
ρ. Only HIV-infected individuals with AIDS symptoms A suffer from an AIDS induced
death, at a rate d. The total population at time t, denoted by N(t), is given by N(t) =
S(t) + I(t) + C(t) + A(t). The Caputo fractional-order system that describes the previous
assumptions is given by⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

CDα
0+S(t) = μ− β(I(t) + ηA A(t))S(t)− μS(t),

CDα
0+ I(t) = β(I(t) + ηA A(t))S(t)− (ρ + φ + μ)I(t) + ωC(t) + γA(t),

CDα
0+C(t) = φI(t)− (ω + μ)C(t),

CDα
0+A(t) = ρ I(t)− (γ + μ + d)A(t) .

(9)

The disease free equilibrium of system (9) is given by

Σ0 =
(

S0, I0, C0, A0
)
= (1, 0, 0, 0). (10)

Using the notation from Section 3, we have

A =

[
β− ρ− φ− μ βηA + γ

ρ −γ− μ− d

]
.

The matrix A can be written as A = M− D with

M =

[
β β ηA + γ

ρ 0

]

and

D =

[
ρ + φ + μ 0

0 γ + μ + d

]
.

In this case, we will prove that X� = (1, 0) is globally asymptotically stable for the
system of uninfected individuals:⎧⎨⎩

CDα
0+S(t) = μ− μS(t),

CDα
0+C(t) = −(ω + μ)C(t).

(11)

The solution of (11) is
C(t) = C0 Eα(−(ω + μ)tα)

and

S(t) = S0 Eα(−μtα) +
∫ t

0
μsα−1Eα,α(−μsα) ds.

Similarly to Section 4.1, we can prove that the disease-free equilibrium of the model
(9) is globally asymptotically stable.

Let us consider the parameter values from Table 1.
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Table 1. Parameter values of model (9) corresponding toR0 = 0.1863 < 1.

Symbol Description Value

μ Recruitment rate/natural death rate 1/69.54
β HIV transmission rate 0.05

ηA Modification parameter 1.3
φ HIV treatment rate for I individuals 1
ρ Default treatment rate for I individuals 0.1
γ AIDS treatment rate 0.33
ω Default treatment rate for C individuals 0.09
d AIDS induced death rate 1

Then, the eigenvalues of the matrix A are −0.9612 and −1.4474; therefore, m(A) < 0.
Moreover, we confirm thatR0 := ρ(MD−1) = 0.1863 < 1.

We now show, using numerical simulations, that for different values of α and initial
conditions, the global stability of the disease free equilibrium holds, wheneverR0 < 1.

In Figure 4, we consider different values for α and the initial conditions x0 from (12).
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Figure 4. Stability of the disease free equilibrium Σ0 = (1, 0, 0, 0), for the SICA fractional model (9),
considering different values of α ∈ {0.8, 0.85, 0.9, 0.95, 1.0}. On the left: S. On the right: I + C + A.

The global stability of the disease free equilibrium (10) is illustrated in Figure 5,
considering different initial conditions xi, i = 0, . . . , 7, given by (12).

x0 = (S0,0, I0,0, C0,0, A0,0) = (0.8, 0.1, 0.1, 0) ,
x1 = (S0,1, I0,1, C0,1, A0,1) = (0.4, 0.2, 0.2, 0.2) ,
x2 = (S0,2, I0,2, C0,2, A0,2) = (0.7, 0.1, 0.1, 0.1) ,
x3 = (S0,3, I0,3, C0,3, A0,3) = (0.5, 0.1, 0.2, 0.2) ,
x4 = (S0,4, I0,4, C0,4, A0,4) = (0.9, 0.05, 0.05, 0) ,
x5 = (S0,5, I0,5, C0,5, A0,5) = (0.6, 0.2, 0.1, 0.1) ,
x6 = (S0,6, I0,6, C0,6, A0,6) = (0.55, 0.25, 0.1, 0.1) ,
x7 = (S0,7, I0,7, C0,7, A0,7) = (0.75, 0.1, 0.1, 0.05) .

(12)

274



Axioms 2021, 10, 238

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 5. Global stability of the disease free equilibrium Σ0 = (1, 0, 0, 0), for the fractional model (9),
considering α = 0.9 and different initial conditions xi, i = 0, . . . , 7, from (12), on the x-axis S and on
the y-axis I + C + A.

5. Conclusions

A new and simple result for the global stability for the disease-free equilibrium of
fractional epidemiological models is presented. We highlight here the fact that the approach
available in the literature so far involves the determination of an appropriate Lyapunov
function, very laborious computations and, in the end, the application of LaSalle’s invari-
ance principle. Our new method uses only basic results from matrix theory and some
well-known results from fractional-order differential equations.

We also remark that the applicability of our main result, Theorem 2, is only possible
if the matrix A satisfies the condition Eα,α(A) ≥ 0. We proved that, under the assump-
tions of Theorem 2, this condition holds if matrix A has dimensions 1 or 2. It would
be interesting to check under what conditions we can guarantee that Eα,α(A) ≥ 0 if the
matrix A has dimensions greater than 2. Since many epidemiological models divide the
population into subpopulations of epidemiological significance where the number of the
infectious compartments are at most 2, our main result can be applied to a wide variety of
epidemiological models.
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Abstract: The calculus of variations is a field of mathematical analysis born in 1687 with Newton’s
problem of minimal resistance, which is concerned with the maxima or minima of integral functionals.
Finding the solution of such problems leads to solving the associated Euler–Lagrange equations. The
subject has found many applications over the centuries, e.g., in physics, economics, engineering and
biology. Up to this moment, however, the theory of the calculus of variations has been confined to
Newton’s approach to calculus. As in many applications negative values of admissible functions are
not physically plausible, we propose here to develop an alternative calculus of variations based on
the non-Newtonian approach first introduced by Grossman and Katz in the period between 1967
and 1970, which provides a calculus defined, from the very beginning, for positive real numbers
only, and it is based on a (non-Newtonian) derivative that permits one to compare relative changes
between a dependent positive variable and an independent variable that is also positive. In this
way, the non-Newtonian calculus of variations we introduce here provides a natural framework
for problems involving functions with positive images. Our main result is a first-order optimality
condition of Euler–Lagrange type. The new calculus of variations complements the standard one in a
nontrivial/multiplicative way, guaranteeing that the solution remains in the physically admissible
positive range. An illustrative example is given.

Keywords: calculus of variations; non-Newtonian calculus; multiplicative integral functionals;
multiplicative Euler–Lagrange equations; admissible positive functions

MSC: 26A24; 49K05

1. Introduction

A popular method of creating a new mathematical system is to vary the axioms of a
known one. Non-Newtonian calculi provide alternative approaches to the usual calculus
of Newton (1643–1727) and Leibniz (1646–1716), which were first introduced by Grossman
and Katz (1933–2010) in the period between 1967 and 1970 [1]. The two most popular
non-Newtonian calculi are the multiplicative and bigeometric calculi, which in fact are
modifications of each other: in these calculi, the addition and subtraction are changed to
multiplication and division [2]. Since such multiplicative calculi are variations on the usual
calculus, the traditional one is sometimes called the additive calculus [3].

Recently, it has been shown that non-Newtonian/multiplicative calculi are more suit-
able than the ordinary Newtonian/additive calculus for some problems, e.g., in actuarial
science, finance, economics, biology, demography, pattern recognition in images, signal
processing, thermostatistics and quantum information theory [3–7]. This is explained by
the fact that while the basis for the standard/additive calculus is the representation of a
function as locally linear, the basis of a multiplicative calculus is the representation of a func-
tion as locally exponential [1,3,7]. In fact, the usefulness of product integration goes back
to Volterra (1860–1940), who introduced in 1887 the notion of a product integral and used
it to study solutions of differential equations [8,9]. For readers not familiar with product
integrals, we refer to the book [10], which contains short biographical sketches of Volterra,
Schlesinger and other mathematicians involved in the development of product integrals,
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and an extensive list of references, offering a gentle opportunity to become acquainted with
the subject of non-Newtonian integration. For our purposes, it is enough to understand
that a non-Newtonian calculus is a methodology that allows one to have a different look at
problems that can be investigated via calculus: it provides differentiation and integration
tools, based on multiplication instead of addition, and in some cases—mainly problems
of price elasticity, multiplicative growth, etc.—the use of such multiplicative calculi is
preferable to the traditional Newtonian calculus [11–14]. Moreover, a non-Newtonian
calculus is a self-contained system, independent of any other system of calculus [15].

The main aim of our work was to obtain, for the first time in the literature, a non-
Newtonian calculus of variations that involves the minimization of a functional defined by a
non-Newtonian integral with an integrand/Lagrangian depending on the non-Newtonian
derivative. The calculus of variations is a field of mathematical analysis that uses, as the
name indicates, variations, which are small changes in functions, to find maxima and
minima of the considered functionals: mappings from a set of functions to the real numbers.
In the non-Newtonian framework, instead of the classical variations of the form y(⋅) + εh(⋅),
proposed by Lagrange (1736–1813) and still used nowadays in all recent formulations of the
calculus of variations [16–18], for example, in the fractional calculus of variations [19,20],
quantum variational calculus [21,22] and the calculus of variations on time scales [23,24],
we propose here to use “multiplicative variations”. More precisely, in contrast with the
calculi of variations found in the literature, we show here, for the first time, how to
consider variations of the form y(⋅) ⋅ εln h(⋅). The functionals of the calculus of variations
are expressed as definite integrals, here in a non-Newtonian sense, involving functions
and their derivatives, in a non-Newtonian sense here. The functions that maximize or
minimize the functionals of the calculus of variations are found using the Euler–Lagrange
equation, which we prove here in the non-Newtonian setting. Given the importance of the
calculus of variations in applications, for example, in physics [25,26], economics [27,28]
and biology [29,30], and the importance that non-Newtonian calculus already has in these
areas, we trust that the calculus of variations initiated here will call attention to the research
community. We give credit to the citation found in the 1972 book of Grossman and Katz [1]:
“for each successive class of phenomena, a new calculus or a new geometry”.

2. Materials and Methods

From 1967 till 1970, Grossman and Katz gave definitions of new kinds of derivatives
and integrals, converting the roles of subtraction and addition into division and multi-
plication, respectively, and established a new family of calculi, called non-Newtonian
calculi [1,31,32], which are akin to the classical calculus developed by Newton and Leibniz
three centuries ago. Non-Newtonian calculi use different types of arithmetic and their
generators. Let α be a bijection between subsets X and Y of the set of real numbers R, and
endow Y, with the induced operations sum and multiplication and the ordering given
by the inverse map α−1. Then the α-arithmetic is a field with the order topology [33].
In concrete, given a bijection α ∶ X → Y ⊆ R, called a generator [15], we say that α defines an
arithmetic if the following four operations are defined:

x⊕ y = α(α−1(x) + α−1(y)),
x⊖ y = α(α−1(x) − α−1(y)),
x⊙ y = α(α−1(x) ⋅ α−1(y)),
x⊘ y = α(α−1(x)/α−1(y)).

(1)

If α is chosen to be the identity function and X = R, then (1) reduces to the four oper-
ators studied in school; i.e., one gets the standard arithmetic, from which the traditional
(Newton–Leibniz) calculus is developed. For other choices of α and X, we can get an infini-
tude of other arithmetics from which Grossman and Katz produced a series of non-Newton
calculi, compiled in the seminal book of 1972 [1]. Among all such non-Newton calculi,
recently great interest has been focused on the Grossman–Katz calculus obtained when we
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fix α(x) = ex, α−1(x) = ln(x) and X = R+ for the set of real numbers strictly greater than
zero [7,12,14,15]. We shall concentrate here on one option, originally called by Grossman
and Katz the geometric/exponential/bigeometric calculus [1,2,13,34–37], but from which
other different terminology and small variations of the original calculus have grown up
in the literature, in particular, the multiplicative calculus [3–5,8,12,15,36,38–40], and more
recently, the proportional calculus [7,11,14,41], which is essentially the bigeometric calculus
of [35]. Here we follow closely this last approach—in particular, the exposition of the
non-Newton calculus as found in [7,14,35], because it is appealing to scientists who seek
ways to express laws in a scale-free form.

Throughout the text, we fix α(x) = ex, α−1(x) = ln(x), and X = R+. Then we get from
(1) the following operations:

x⊕ y = x ⋅ y,

x⊖ y = x
y

,

x⊙ y = xln(y),

x⊘ y = x1/ ln(y), y ≠ 1.

(2)

Let a, b, c ∈ R+. In the non-Newtonian arithmetic given by (2), the following properties
of the ⊙ operation hold (cf. Proposition 2.1 of [14]):

(i) a⊙ b = b⊙ a (commutativity);
(ii) a⊙(b⊙ c) = (a⊙ b)⊙ c (associativity);
(iii) a⊙ e = a (Euler’s/Napier’s transcendent number e is the neutral element for ⊙);
(iv) if a ≠ 1 and we define a{−1} = e⊘ a, then a⊙ a{−1} = e (inverse element).

We see that in this non-Newtonian algebra, a = 1 is the traditional “zero” (in the
current arithmetic, 0 represents −∞). In fact, see Proposition 2.2 of [14], one has

(v) b⊙ a{−1} = b⊘ a;

(vi) (a{−1}){−1} = a;
(vii) ln(a⊙ b) = ln(a)⊕ ln(b);
(viii) (a⊙ b){−1} = a{−1} ⊙ b{−1}.

Based on the mentioned properties, one easily proves that (R+,⊕,⊙) is a field (see
Theorem 2.3 of [14]). In this field, the following calculus has been developed [7,14].

Definition 1 (absolute value). The absolute value of x ∈ R+, denoted by [[x]], is given by

[[x]] = ⎧⎪⎪⎨⎪⎪⎩
x if x ≥ 1,
1⊖ x if x ∈ (0, 1).

Let x, y, z be positive real numbers and define d ∶ R+ ×R+ → R+ as

d(x, y) = [[x⊖ y]].
The following properties are simple to prove:

• d(x, y) ≥ 1;
• d(x, y) = 1 if, and only if, x = y;
• d(x, y) = d(y, x);
• d(x, z) ≤ d(x, y) + d(y, z).

We can now introduce the notion of limit.

Definition 2 (limit). We write limx→x0 f (x) = L, L ∈ R+, as: if for all ε > 1 there exists δ > 1
such that if 1 < d(x, x0) < δ, then d( f (x), L) < ε.
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According with Definition 2, it is possible to specify the meaning of equality
limx→x0 f (x) = f (x0), and therefore, the notion of continuity in the non-Newtonian calculus.

Definition 3 (continuity). We say that f is continuous at x0 or

lim
x→x0

f (x) = f (x0),
if ∀ ε > 1, ∃ δ > 1 such that d(x, x0) < δ �⇒ d( f (x), f (x0)) < ε.

We proceed by reviewing the essentials on non-Newtonian differentiation and integration.

2.1. Derivatives

The derivative of a function is introduced in the following terms.

Definition 4 (derivative [7,14,35,41]). A positive function f is differentiable at x0 if

lim
x→x0
[( f (x)⊖ f (x0))⊘ (x⊖ x0)] = lim

h→1
[( f (x0 ⊕ h)⊖ f (x0))⊘ h]

exists. In this case, the limit is denoted by f̃ (x0) and receives the name of derivative of f at x0.
Moreover, we say that f is differentiable if f is differentiable at x0 for all x0 in the domain of f .

It is not difficult to prove that if f is differentiable at x0, then f is continuous at
x0. Define

x{0} = e,

x{n} = x⊙⋯⊙ x n times, n ∈ N.

We have
x̃{n} = (x{n−1})n = en ⊙ x{n−1}, n ∈ N. (3)

In particular, if n = 1 in (3), we get:

• If f (x) = x, then f̃ (x) = e.

More examples of derivatives of a function in the sense of Definition 4 follow:

• If f (x) = ex, then f̃ (x) = ex;
• If f (x) = ln(x), then f̃ (x) = e⊘ x;
• If cose(x) ∶= ecos(ln(x)) and sine(x) ∶= esin(ln(x)), then

̃cose(x) = 1⊖ sine(x) and s̃ine(x) = cose(x).
The basic rules of differentiation (keep recalling that 1 is the “zero” of the non-

Newtonian calculus) follow:

(a) If f (x) = c, and c is a positive constant, then f̃ (x) = 1 (derivative of a constant);
(b) f̃ ⊕ g = f̃ ⊕ g̃ (derivative of a sum);
(c) f̃ ⊖ g = f̃ ⊖ g̃ (derivative of a difference);

(d) f̃ ⊙ g = ( f̃ ⊙ g)⊕ ( f ⊙ g̃) (derivative of a product);

(e) f̃ ○ g = ( f̃ ○ g)⊙ g̃ (chain rule).

If f̃ (x) = 1 for all x ∈ (a, b), then f (x) = c for all x ∈ (a, b), where c is a constant.
Moreover, if f̃ (x) = g̃(x) for all x ∈ (a, b), then there exists a constant c such that f (x) = cg(x)
for all x ∈ (a, b); that is, f (x) = g(x)⊕ c.
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Higher-order derivatives are defined as usual:

f̃ (0)(x) = f (x),
f̃ (n)(x) = d̃

d̃x
[ f̃ (n−1)(x)], n ∈ N.

In the sequel, we use the following notation:

n

∑̃
i=0

ai = a0 ⊕⋯⊕ an.

Theorem 1 (Taylor’s theorem). Let f be a function such that f̃ (n+1)(x) exists for all x in a range
that contains the number a. Then,

f (x) = Pn(x)⊕ Rn(x)
for all x, where

Pn(x) =
n

∑̃
k=0

e
1
k! ⊙ f̃ (k)(a)⊙ (x⊖ a){k}

is the Taylor polynomial of degree n and

Rn(x) = e
1

(n+1)! ⊙ f̃ (n+1)(c)⊙ (x⊖ a){n+1}

is the remainder term in Lagrange form, for some number c between a and x.

Suppose f is a function that has derivatives of all orders over an interval centered on
a. If limn→+∞ Rn(x) = 1 for all x in the interval, then the Taylor series is convergent and
converges to f (x):

f (x) =
+∞
∑̃
k=0

e
1
k! ⊙ f̃ (k)(a)⊙ (x⊖ a){k}.

As examples of convergent series, one has:

ex =
+∞
∑̃
k=0

e
1
k! ⊙ x{k},

cose(x) =
+∞
∑̃
k=0

e
(−1)k

2k! ⊙ x{2k}.

The Taylor’s theorem given by Theorem 1 has a natural extension for functions of
several variables [6,42]. Here we proceed by briefly reviewing integration. For more
on the alpha-arithmetic, its topology and analysis, we refer the reader to the literature.
For example, mean value theorems can be found in the original book of Grossman and
Katz of 1972 [1]; for a recent reference with detailed proofs, see [43].

2.2. Integrals

The notion of integral for the non-Newtonian calculus under consideration is a type
of product integration [10]. As expected, the function F(x) is an antiderivative of function
f (x) on the interval I if F̃(x) = f (x) for all x ∈ I. The indefinite integral of f (x) is denoted by

⨏ f (x)d̃x = F(x)⊕ c,

where c is a constant. Examples are (see [7,14,35]):
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• If k is a positive constant, then ⨏ kd̃x = (k⊙ x) ⊕ c—in particular, if k = 1, then

⨏ 1d̃x = c;

• ⨏ end̃x = xn ⊕ c;

• ⨏ x{n}d̃x = e
1

n+1 ⊙ x{n+1} ⊕ c;

• ⨏ e⊘ x d̃x = ln(x)⊕ c;

• ⨏ ea⊙xd̃x = (a{−1} ⊙ ea⊙x)⊕ c;

• ⨏ erx2
d̃x = e

rx2
2 ⊕ c.

The definite integral of f on [a, b] is denoted by

⨏ b

a
f (x)d̃x.

If f is positive and continuous on [a, b], then f is integrable in [a, b]. The following
properties hold:

(i) ⨏ b

a
f (x)d̃x = ⨏ c

a
f (x)d̃x⊕⨏ b

c
f (x)d̃x;

(ii) ⨏ b

a
( f (x)⊕ g(x))d̃x = ⨏ b

a
f (x)d̃x⊕⨏ b

a
g(x)d̃x;

(iii) ⨏ b

a
( f (x)⊖ g(x))d̃x = ⨏ b

a
f (x)d̃x⊖⨏ b

a
g(x)d̃x;

(iv) ⨏ b

a
c⊙ f (x)d̃x = c⊙⨏ b

a
f (x)d̃x;

(v) If m ≤ f (x) ≤ M for all x ∈ [a, b], then m⊙(b⊖ a) ≤ ⨏ b

a
f (x)d̃x ≤ M⊙(b⊖ a);

(vi) If f (x) ≤ g(x) for all x ∈ [a, b], then ⨏ b

a
f (x)d̃x ≤ ⨏ b

a
g(x)d̃x.

If f is positive and integrable on [a, b], then F defined on [a, b] by

F(x) = ⨏ x

a
f (t)d̃t

is continuous over [a, b]. Moreover, the fundamental theorems of integral calculus hold: if
f is continuous in x ∈ [a, b], then F is differentiable at x with

F̃(x) = f (x);
if f = h̃ for some function h, then

⨏ b

a
f (x)d̃x = h(b)⊖ h(a).

For more on the α-arithmetic, its generalized real analysis, its fundamental topo-
logical properties related to non-Newtonian metric spaces and its calculus, including
non-Newtonian differential equations and its applications, see [7,33,44–48]. For gentle,
thorough and modern introduction to the subject of non-Newtonian calculi, we also refer
the reader to the recent book [49]. Now we proceed with our original results.

3. Results

In order to develop a non-Newtonian calculus of variations (dynamic optimization),
we begin by first proving some necessary results of static optimization.
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3.1. Static Optimization

Given ε > 1, let

B(x̄, ε) ∶= {x ∈ R+ ∶ d(x, x̄) ≤ ε} = {x ∈ R+ ∶ [[x⊖ x̄]] ≤ ε}.
Note that for a, b ∈ R+, one has

a = b⇔ a
b
= 1 (or

b
a
= 1)⇔ a⊖ b = 1 (or b⊖ a = 1).

Similarly for inequalities, for example,

a < b⇔ a
b
< 1⇔ a⊖ b < 1.

This means that B(x̄, ε) = {x ∈ R+ ∶ d(x, x̄)⊖ ε ≤ 1}.
Definition 5 (local minimizer). Let f ∶ (a, b) → R+ and consider the problem of minimizing
f (x), x ∈ (a, b). We say that x ∈ (a, b) is a (local) minimizer of f in (a, b) if there exists ε > 1 such
that f (x) ≤ f (y) (i.e., f (x)⊖ f (y) ≤ 1) for all y ∈ B(x, ε) ∩ (a, b). In this case, we say that f (x)
is a (local) minimum.

Another important concept in optimization is that of descent direction.

Definition 6 (descent direction). A d ∈ R+ is said to be a descent direction of f at x if
f (x⊕ ε⊙ d) < f (x) ∀ ε > 1 sufficiently close to 1, or equivalently, if f (x⊕ ε⊙ d) ⊖ f (x) < 1 for
all ε > 1 sufficiently close to 1.

Remark 1. From the chain rule and other properties of Section 2, it follows that

d̃
d̃x
[ f (x⊕ ε⊙ d)] = f̃ (x⊕ ε⊙ d)

and
d̃
d̃ε
[ f (x⊕ ε⊙ d)] = f̃ (x⊕ ε⊙ d)⊙ d. (4)

In particular, we get from (4) that

d̃
d̃ε
[ f (x⊕ ε⊙ d)]∣

ε=1
= f̃ (x)⊙ d.

Our first result allow us to identify a descent direction of f at x based on the derivative
of f at x.

Theorem 2. Let f be differentiable. If there exists d ∈ R+ such that f̃ (x) ⊙ d < 1, then d is a
descent direction of f at x.

Proof. We know from Taylor’s theorem (Theorem 1) that

f (x⊕ ε⊙ d) = f (x)⊕ ε⊙ f̃ (x)⊙ d⊕ R1(x⊕ ε⊙ d), (5)

where

R1(x⊕ ε⊙ d) = ( f̃ (2)(c)) 12 ⊙(ε⊙ d){2}
= ε{2} ⊙( f̃ (2)(c)) 12 ⊙ d{2}
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with c being in the interval between x and x⊕ ε⊙ d. The equality (5) can be written in the
following equivalent form:

f (x⊕ ε⊙ d)⊖ f (x) = ε⊙ f̃ (x)⊙ d⊕ R1(x⊕ ε⊙ d). (6)

Recalling that a⊙ b{−1} = a⊘ b, a⊙ a{−1} = e and ⊙ is distributive over ⊕, we get from
(6) that

( f (x⊕ ε⊙ d)⊖ f (x))⊘ ε = f̃ (x)⊙ d⊕ ε{−1} ⊙ R1(x⊕ ε⊙ d)
= f̃ (x)⊙ d⊕ ε⊙( f̃ (2)(c)) 12 ⊙ d{2}.

(7)

Now we note that as ε → 1, one has ε⊙( f̃ (2)(c)) 12 ⊙ d{2} → 1 so that the right-hand

side of (7) converges to f̃ (x) ⊙ d. From the hypothesis f̃ (x) ⊙ d < 1 of our theorem, this
means that, for ε > 1 sufficiently close to 1, the right-hand side of (7) is strictly less than one.
Thus, for ε > 1 sufficiently close to 1,

( f (x⊕ ε⊙ d)⊖ f (x))⊘ ε < 1. (8)

Recalling that a⊘ ε < 1⇔ a1/ ln(ε) < 1, we conclude from (8) that for ε sufficiently close
to 1 we have f (x⊕ ε⊙ d)⊖ f (x) < 1; that is, d is a descent direction of f at x.

As a corollary of Theorem 2, we obtain Fermat’s necessary optimality condition, which
gives us a method to find local minimizers (or maximizers) of differentiable functions on
open sets, by showing that every local extremizer of the function is a stationary point (the
non-Newtonian function’s derivative is one at that point).

Theorem 3 (Fermat’s theorem–stationary points). Let f ∶ (a, b) → R+ be differentiable. If x ∈(a, b) is a minimizer of f , then f̃ (x) = 1.

Proof. We want to prove that for a minimizer x we must have f̃ (x) = 1⇔ 1⊖ f̃ (x) = 1.
We do the proof by contradiction. Assume that f̃ (x) ≠ 1; that is, 1 ⊖ f̃ (x) ≠ 1. Let
d = 1⊖ f̃ (x). Then,

f̃ (x)⊙ d = f̃ (x)⊙ (1⊖ f̃ (x)) = 1⊖ f̃ (x){2}

= 1

f̃ (x)⊙ f̃ (x) = (
1

f̃ (x))
ln( f̃(x))

and since g(y) = ( 1y)ln(y) is a function with 0 < g(y) < 1 for all y ≠ 1, we conclude that

f̃ (x)⊙ d < 1. It follows from Theorem 2 that d is a descent direction of f at x, and therefore,
from the definition of descent direction, x is not a local minimizer.

In the next section, we make use of Theorem 3 to prove the non-Newtonian Euler–
Lagrange equation.

3.2. Dynamic Optimization

A central tool in dynamic optimization, both in the calculus of variations and optimal
control [16], is integration by parts. In what follows, we use the following notation:

ψ(x)∣ba = ψ(b)⊖ψ(a).
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Theorem 4 (integration by parts). Let f ∶ [a, b] → R+ and g ∶ [a, b] → R+ be differentiable.
The following formula of integration by parts holds:

⨏ b

a
f̃ (x)⊙ g(x)d̃x = f (x)⊙ g(x)∣ba ⊖⨏

b

a
f (x)⊙ g̃(x)d̃x. (9)

Proof. From the derivative of a product, we know that

d̃
d̃x
[ f (x)⊙ g(x)] = f̃ (x)⊙ g(x)⊕ f (x)⊙ g̃(x). (10)

On the other hand, the fundamental theorem of integral calculus tell us that

⨏ b

a

d̃
d̃x
[ f (x)⊙ g(x)]d̃x = f (x)⊙ g(x)∣ba.

Therefore, by integrating (10) from a to b, we conclude that

⨏ b

a
[ f̃ (x)⊙ g(x)]d̃x⊕⨏ b

a
[ f (x)⊙ g̃(x)]d̃x = f (x)⊙ g(x)∣ba ,

which is equivalent to (9).

We are now in a condition to formulate the fundamental problem of the calculus of
variations: to minimize the integral functional

F[y] = ⨏ b

a
L(x, y(x), ỹ(x))d̃x

over all smooth functions y on [a, b] with fixed end points y(a) = ya and y(b) = yb. The
central result of the calculus of variations and classical mechanics is the celebrated Euler–
Lagrange equation, whose solutions are stationary points of the given action functional. We
restrict ourselves here to the classical framework of the calculus of variations, where both
the Lagrangian L and admissible functions y are smooth enough: typically, one considers
L ∈ C2 and y ∈ C2, so that one can look to the Euler–Lagrange equation as a second-order
ordinary differential equation [17]. We adopt such assumptions here. We denote the
problem by (P).

Before proving the Euler–Lagrange equation (the necessary optimality condition for
problem (P)), we first need to prove a non-Newtonian analogue of the fundamental lemma
of the calculus of variations.

Lemma 1 (fundamental lemma of the calculus of variations). If f ∶ [a, b] → R+ is a positive
continuous function such that

⨏ b

a
f (x)⊙ h(x)d̃x = 1 (11)

for all functions h(x) that are continuous for a ≤ x ≤ b with h(a) = h(b) = 1, then f (x) = 1 for all
x ∈ [a, b].
Proof. We do the proof by contradiction. Suppose the function f is not one— f (x) > 1—at
some point x ∈ [a, b]. Then, by continuity, f (x) > 1 for all x in some interval [x1, x2] ⊂ [a, b].
If we set

h(x) = ⎧⎪⎪⎨⎪⎪⎩
(x⊖ x1)⊙ (x2 ⊖ x) if x ∈ [x1, x2],
1 if x ∈ [a, b] ∖ [x1, x2],
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then h(x) satisfies the assumptions of the lemma; i.e., h(x) is continuous for x ∈ [a, b] with
h(a) = 1 and h(b) = 1. We have

⨏ b

a
f (x)⊙ h(x)d̃x = ⨏ x1

a
1d̃x⊕⨏ x2

x1
f (x)⊙ (x⊖ x1)⊙ (x2 ⊖ x)d̃x⊕⨏ b

x2
1d̃x

= ⨏ x2

x1
f (x)⊙ (x⊖ x1)⊙ (x2 ⊖ x)d̃x.

(12)

Let us analyze the integrand β(x) of (12):

β(x) = f (x)⊙ [(x⊖ x1)⊙ (x2 ⊖ x)] = f (x)⊙ [ x
x1
⊙ x2

x
]

= f (x)⊙
⎡⎢⎢⎢⎢⎣
( x

x1
)ln(

x2
x )⎤⎥⎥⎥⎥⎦

.

Since f (x) > 1 and ( x
x1
)ln(

x2
x ) > 1 for any x ∈ (x1, x2), we also have that β(x) > 1 for

any x ∈ (x1, x2), with β(x) = 1 at x = x1 and x = x2. It follows that

⨏ b

a
f (x)⊙ h(x)d̃x = ⨏ x2

x1
β(x)d̃x > 1⊙(x2 ⊖ x1) = 1.

This contradicts (11) and proves the lemma.

Now we formulate and prove the analog of the Euler–Lagrange differential equation
for our problem (P).
Theorem 5 (Euler–Lagrange equation). If y(x), x ∈ [a, b], is a solution to the problem (P)

F[y] = ⨏ b

a
L(x, y(x), ỹ(x))d̃x A→ min

y∈Y(ya ;yb)

with

Y(ya; yb) ∶= {y ∈ C2([a, b];R+) ∶ y(a) = ya, y(b) = yb, y(x) > 0 ∀ x ∈ [a, b]},
then y(x) satisfies the Euler–Lagrange equation

L̃y(x, y(x), ỹ(x)) = d̃
d̃x

L̃ỹ(x, y(x), ỹ(x)) (13)

for all x ∈ [a, b].
Proof. Let y(x), x ∈ [a, b], be a minimizer of (5). Then, function (y⊕ ε⊙ h)(x), x ∈ [a, b],
belongs to Y(ya; yb) for any function h ∈ Y(1; 1) and for any ε in an open neighborhood of
1. Note that (y⊕ ε⊙ h)(x) = y(x) for ε = 1. This means that for any smooth function h(x),
x ∈ [a, b], satisfying h(a) = h(b) = 1, the function ϕ(ε) defined by

ϕ(ε) = F[y⊕ ε⊙ h] = ⨏ b

a
L(x, (y⊕ ε⊙ h)(x), ̃(y⊕ ε⊙ h)(x))d̃x

= ⨏ b

a
L(x, y(x)⊕ ε⊙ h(x), ỹ(x)⊕ ε⊙ h̃(x))d̃x

(14)

has a minimizer for ε = 1. It follows from Fermat’s theorem (Theorem 3) that

ϕ̃(1) = d̃
d̃ε

ϕ(ε)∣
ε=1
= 1.
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By differentiating (14) with respect to ε, and then putting ε = 1, we get from the chain
rule and relations

d̃
d̃ε
(y(x)⊕ ε⊙ h(x)) = h(x), d̃

d̃ε
(ỹ(x)⊕ ε⊙ h̃(x)) = h̃(x),

that

1 = ⨏ b

a
[L̃y(x, y(x), ỹ(x))⊙ h(x)⊕ L̃ỹ(x, y(x), ỹ(x))⊙ h̃(x)]d̃x. (15)

From integration by parts (Theorem 4), and the fact that h(a) = 1 and h(b) = 1, one has

⨏ b

a
L̃ỹ(x, y(x), ỹ(x))⊙ h̃(x)d̃x = h(x)⊙ L̃ỹ(x, y(x), ỹ(x))∣b

a

⊖⨏ b

a

d̃
d̃x
[L̃ỹ(x, y(x), ỹ(x))] ⊙ h(x)d̃x,

that is,

⨏ b

a
L̃ỹ(x, y(x), ỹ(x))⊙ h̃(x)d̃x = 1⊖⨏ b

a

d̃
d̃x
[L̃ỹ(x, y(x), ỹ(x))] ⊙ h(x)d̃x. (16)

Using equality (16) in the necessary condition (15), we get that

1 = ⨏ b

a
L̃y(x, y(x), ỹ(x))⊙ h(x)d̃x⊕ 1⊖⨏ b

a

d̃
d̃x
[L̃ỹ(x, y(x), ỹ(x))] ⊙ h(x)d̃x

⇔⨏ b

a
[L̃y(x, y(x), ỹ(x))⊖ d̃

d̃x
(L̃ỹ(x, y(x), ỹ(x)))]⊙ h(x)d̃x = 1. (17)

The result follows from the fundamental lemma of the calculus of variations (Lemma 1)
applied to (17): L̃y(x, y(x), ỹ(x))⊖ d̃

d̃x
(L̃ỹ(x, y(x), ỹ(x))) = 1 for all x ∈ [a, b].

To illustrate our main result, let us see an example. Consider the following problem of
the calculus of variations:

F[y] = √e⊙⨏ e2π

1
[ỹ{2}(x)⊖ y{2}(x)]d̃x A→min,

y(1) = e, y(e2π) = e−1.
(18)

Theorem 5 tell us that the solution of (18) must satisfy the Euler–Lagrange Equation (13).
In this example, the Lagrangian L is given by L(x, y, ỹ) = √e⊙(ỹ{2} ⊖ y{2}), so that

L̃y(x, y, ỹ) = √e⊙(1⊖ e2 ⊙ y),
L̃ỹ(x, y, ỹ) = √e⊙(e2 ⊙ ỹ⊖ 1) = √e⊙(e2 ⊙ ỹ). (19)

Noting that
√

e = e⊘ e2 = (e2){−1}
, the equalities (19) simplify to

L̃y(x, y, ỹ) = 1⊖ y, L̃ỹ(x, y, ỹ) = ỹ

and the Euler–Lagrange Equation (13) takes the form

1⊖ y(x) = ỹ(2)(x) ⇔ ỹ(2)(x)⊕ y(x) = 1. (20)

The second-order differential Equation (20) has solutions of the form

y(x) = c1 ⊙ cose(x)⊕ c2 ⊙ sine(x),
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where c1 and c2 are constants. Given the boundary conditions y(1) = e and y(e2π) = e−1,
we conclude that the Euler–Lagrange extremal for problem (18) is given by

y(x) = e⊙ cose(x)⊕ e2 ⊙ sine(x) ⇔ y(x) = e2 sin(ln(x))+cos(ln(x)).

4. Discussion

One can say that the calculus of variations began in 1687 with Newton’s minimal re-
sistance problem [25,50,51]. It immediately occupied the attention of Bernoulli (1655–1705),
but it was Euler (1707–1783) who first elaborated mathematically on the subject, beginning
in 1733. Lagrange (1736–1813) was influenced by Euler’s work and contributed signifi-
cantly to the theory, introducing a purely analytic approach to the subject based on additive
variations y + εh, whose essence we still follow today [17]. The calculus of variations is
concerned with the minimization of integral functionals:

∫ b

a
L(x, y(x), y′(x))dx A→min . (21)

However, as observed in [52], there are other interesting problems that arise in appli-
cations in which the functionals to be minimized are not of the form (21). For example,
the planning of a firm trying to program its production and investment policies to reach a
given production rate and to maximize its future market competitiveness at a given time
horizon, can be mathematically stated in the form

(∫ b

a
L1(x, y(x), y′(x))dx) ⋅ (∫ b

a
L2(x, y(x), y′(x))dx) A→min (22)

(see [52]). Another example, also given in [52], appears when dealing with the so called “slope
stability problem”, which is described mathematically as minimizing a quotient functional:

∫ b

a
L1(x, y(x), y′(x))dx

∫ b

a
L2(x, y(x), y′(x))dx

A→min . (23)

Such multiplicative integral minimization problems that arise in different applications
are nonstandard problems of the calculus of variations, but they can be naturally modeled
in the non-Newtonian calculus of variations, and then solved in a rather standard way,
using non-Newtonian Lagrange variations of the form y ⊕ ε ⊙ h, as we have proposed
here. Therefore, we claim that the non-Newtonian calculus of variations just introduced
may be useful for dealing with multiplicative functionals that arise in economics, physics
and biology.

In this paper we have restricted ourselves to the ideas and to the central results of
any calculus of variations: the celebrated Euler–Lagrange equation, which is a first-order
necessary optimality condition. Of course our results can be extended, for example, by re-
laxing the considered hypotheses and enlarging the space of admissible functions, which
we have considered here to be C2, or considering vector functions instead of scalar ones.
We leave such generalizations to the interested and curious reader. In fact, much remains
now to be done. As possible future research directions we can mention: obtaining natural
boundary conditions (sometimes also called transversality conditions) to be satisfied at a
boundary point a and/or b, when y(a) and/or y(b) are free or restricted to take values on a
given curve; obtaining second-order necessary conditions; obtaining sufficient conditions;
to investigate nonadditive isoperimetric problems; etc.

5. Conclusions

In this work, a new calculus of variations was proposed, based on the non-Newtonian
approach introduced by Grossman and Katz, thereby avoiding problems about nonnegativ-
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ity. A new relation was proved, the multiplicative Euler–Lagrange differential Equation (13),
which each solution of a non-Newtonian variational problem, with admissible functions
taking positive values only, must satisfy. An example was provided for illustration purposes.

Grossman and Katz have shown that infinitely many calculi can be constructed
independently [1]. Each of these calculi provide different perspectives for approaching
many problems in science and engineering [53]. Additionally, a mathematical problem,
which is difficult or impossible to solve in one calculus, can be easily revealed through
another calculus [14,39].

Since the pioneering work of Grossman and Katz, non-Newtonian calculi have been a
topic for new study areas in mathematics and its applications [15,54]. Particularly, Stan-
ley [55], Córdova-Lepe [11], Slavík [10], Pap [44] and Bashirov et al. [12], have called
the attention of mathematicians to the topic. More recently, non-Newtonian calculi have
become a hot topic in economic and finance [56], quantum calculus [54], complex anal-
ysis [57–59], numerical analysis [2,37,42], inequalities [40,60], biomathematics [7,61] and
mathematical education [14].

Here we adopted the non-Newtonian calculus as originally introduced by Grossman
and Katz [1,34,35] and recently developed by Córdova-Lepe [11,41] and collaborators [4]:
see the recent reviews in [7,14]. Roughly speaking, the key to understanding such calculus,
valid for positive functions, is a formal substitution, where one replaces addition and
subtraction with multiplication and division, respectively; multiplication in standard
calculus is replaced by exponentiation in the non-Newtonian case, and thus, division by
exponentiation with the reciprocal exponent. Our main contribution here was to develop,
for the first time in the literature, a suitable non-Newtonian calculus of variations that
minimizes a non-Newtonian integral functional with a Lagrangian that depends on the
non-Newtonian derivative. The main result is a first-order necessary optimality condition
of Euler–Lagrange type.

We trust that the present paper marks the beginning of a fruitful road for Non-
Newtonian (NN) mechanics, NN calculus of variations and NN optimal control, thereby
calling attention to and serving as inspiration for a new generation of researchers. Currently,
we are investigating the validity of Emmy Noether’s principle in the NN/multiplicative
calculus of variations here introduced.

Funding: This research was funded by The Center for Research and Development in Mathematics
and Applications (CIDMA) through the Portuguese Foundation for Science and Technology (FCT–
Fundação para a Ciência e a Tecnologia), grant number UIDB/04106/2020.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The author is grateful to Luna Shen, Managing Editor of Axioms, for proposing
a volume/special issue dedicated to his 50th anniversary, and to Natália Martins, Ricardo Almeida,
Cristiana J. Silva and M. Rchid Sidi Ammi, who kindly accepted the invitation of Axioms to lead
the project.

Conflicts of Interest: The author declares no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript or
in the decision to publish the results.

References

1. Grossman, M.; Katz, R. Non-Newtonian Calculus; Lee Press: Pigeon Cove, MA, USA, 1972.
2. Boruah, K.; Hazarika, B.; Bashirov, A.E. Solvability of bigeometric differential equations by numerical methods. Bol. Soc. Parana.

Mat. 2021, 39, 203–222. [CrossRef]
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