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Preface to “Complex Dynamic System Modelling,
Identification and Control”

Systems are naturally or purposely formed with functional components and connection
structures. Their complicities are induced by nonlinearity, dynamics, time delay, uncertainties,
disturbances, irreversible processes, and those characteristics that are generally explained in other
literature. Modeling represents the innate tendency of humans to find rules or mechanisms that
govern phenomena (a process/plant in a human-made system or a natural system, such as the
Earth’s global climate, organisms, and the human brain). This is generally consistent with the
journal titled Entropy, as the idea of entropy provides a mathematical way to encode/model the
intuitive notion of which processes are obviously complex due to their irreversible characteristics,
even though they would not violate the fundamental law of the conservation of energy. There
are two predominant approaches to establishing models: principle-based (e.g., information theory,
statistic physics, statistical mechanics, etc.) analytical equations and data (measured and simulated)
driven input/output fitted sets of regression numerical polynomials (most commonly called
identification). Control is a way to improve a system’s behavior/performance by adding additional
functional components and revising the system structure to form a closed-loop framework with
adaptation and robustness against uncertainties. Accordingly, modeling, identification, and control
(MIC) is a cross-discipline from all engineering (human-made) systems to all natural scientific
research discoveries. This reprint encourages those emerging insights and approaches to provide
concise/ effective solutions in complex dynamic system modeling, identification, and control. The
philosophy embedded in the SI is to seek simplicity (solutions) from complicity (problems). This
reprint is a forum for presenting new and improved insight, methodologies, and techniques of MIC
for complex systems that are challenging for research and (potentially) significant for a wide range
of applications in real-world natural and engineering domains. Fundamentally, the papers should
justify why the works have not been undertaken by other colleagues and what the bottleneck issues
have been for such research progression and applications.

As the editors, we hope that the chapters in this reprint will stimulate further research in complex
system modeling and utilize them in real-world applications. We hope that this reprint, covering so
many different aspects, will be of value to all readers.

We would like to also thank the reviewers for their diligence in reviewing the chapters.

Quanmin Zhu, Giuseppe Fusco, Jing Na, Weicun Zhang, and Ahmad Taher Azar
Editors
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1. Introduction

Systems are naturally or purposely formed with functional components and con-
nection structures. The complicities could be induced from nonlinearity, dynamics, time
delay, uncertainties, disturbances, irreversible processes, and those characteristics generally
explained in other literature.

Modeling represents an innate intuition for humans to find rules or mechanisms that
govern phenomena (a process/plant in a human-made system or a natural system, such
as earth’s global climate, organisms, and the human brain). This is generally consistent
with the journal titled Entropy, as the idea of entropy provides a mathematical way to
encode/model the intuitive notion of which processes are obviously complex due to
their irreversible characteristics, even though they would not violate the fundamental
law of the conservation of energy. There are two predominant approaches to establish
models, principle-based (e.g., information theory, statistic physics, statistical mechanics,
etc.) analytical equations and data (measured and simulated) driven input/output fitted
sets of regression numerical polynomials (most commonly called identification). Control
is a way to improve a system behavior/performance by adding additional functional
components and revising the system structure to form a closed-loop framework with
adaptation and robustness to the uncertainties. Accordingly, modeling, identification, and
control (MIC) is a cross-discipline from all engineering (human-made) systems to all natural
scientific research discoveries.

This Special Issue (SI) encourages those emerging insights and approaches to provide
concise/ effective solutions in complex dynamic system modeling, identification, and con-
trol. The philosophy embedded in the Sl is to seek simplicity (solutions) from complicity
(problems). This Special Issue is a forum for presenting new and improved insight, method-
ologies, and techniques of MIC for complex systems that are challenging for research
and (potentially) significant for a wide range of applications in real-world natural and
engineering domains. Fundamentally, the papers should justify why the works have not
been undertaken by the other colleagues and what the bottleneck issues have been for such
research progression and applications.

2. The Expanded SI Publication List

This SI accepted/published 18 papers. Here, a brief summary is presented as an
expanded content list for quick view of the SI.
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Li et al. [1] propose a U-model-based two-degree-of-freedom internal model control
(UTDEF-IMC) structure with strength in nonlinear dynamic inversion and the separation
of tracking design and robustness design. This approach can effectively accommodate
modeling error and disturbance while removing those widely used linearization techniques
for nonlinear plants/processes. To assure the expansion and applications, it analyses the
key properties associated with the UTDF-IMC. For initial benchmark testing, computational
experiments are conducted using MATLAB/Simulink for two mismatched linear and non-
linear plants. Further tests consider an industrial system, in which the IMC of a permanent
magnet synchronous motor (PMSM) is simulated to demonstrate the effectiveness of the
design procedure for potential industrial applications.

Kang et al. [2] consider the situations: Android devices are currently widely used in
many fields, such as automatic control, embedded systems, the Internet of Things, and
so on. At the same time, Android applications (apps) always use multiple permissions,
and permissions can be abused by malicious apps that disclose users’ privacy or breach
the secure storage of information. FlowDroid has been extensively studied as a novel and
highly precise static taint analysis for Android applications. Aiming to resolve the problem
of complex detection and false alarms in FlowDroid, an improved static detection method
based on feature permission and risk rating is proposed. Firstly, the Chi-square test is used
to extract correlated permissions related to malicious apps, and mutual information is used
to cluster the permissions to generate feature permission clusters. Secondly, risk calculation
method based on permissions and combinations of permissions are proposed to identify
dangerous data flows. Experiments show that this method can significantly improve
detection efficiency while maintaining the accuracy of dangerous data flow detection.

Jin et al. [3] consider trend prediction based on sensor data in a multi-sensor system as
an important topic. As the number of sensors increases, we can measure and store more
and more data. However, the increase in data has not effectively improved prediction
performance. This paper focuses on this problem and presents a distributed predictor
that can overcome unrelated data and sensor noise: First, the causality entropy is defined
to calculate the measurement’s causality. Then, the series causality coefficient (SCC) is
proposed to select the high causal measurement as the input data. To overcome the
traditional deep learning network’s over-fitting to the sensor noise, the Bayesian method
is used to obtain the weight distribution characteristics of the sub-predictor network.
A multi-layer perceptron (MLP) is constructed as the fusion layer to fuse the results from
different sub-predictors. The experiments were implemented to verify the effectiveness
of the proposed method by meteorological data from Beijing. The results show that the
proposed predictor can effectively model the multi-sensor system’s big measurement data
to improve prediction performance.

Liang et al. [4] proposed a mechanistic kinetic model of cobalt-hydrogen electro-
chemical competition for the cobalt removal process in zinc hydrometallurgy. In addition,
to overcome the parameter estimation difficulties arising from the model nonlinearities
and the lack of information on the possible value ranges of parameters to be estimated,
a constrained guided parameter estimation scheme was derived based on model equations
and experimental data. The proposed model and the parameter estimation scheme have
two advantages: (i) The model reflected for the first time the mechanism of the electro-
chemical competition between cobalt and hydrogen ions in the process of cobalt removal
in zinc hydrometallurgy. (ii) The proposed constrained parameter estimation scheme did
not depend on the information of the possible value ranges of parameters to be estimated.
(iii) The constraint conditions provided in that scheme directly linked the experimental
phenomenon metrics to the model parameters, thereby providing deeper insights into the
model parameters for model users. Numerical experiments showed that the proposed con-
strained parameter estimation algorithm significantly improved the estimation efficiency.
Meanwhile, the proposed cobalt-hydrogen electrochemical competition model allowed
for accurate simulation of the impact of hydrogen ions on cobalt removal rate as well as
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simulation of the trend of hydrogen ion concentration, which would be helpful for the
actual cobalt removal process in zinc hydrometallurgy.

Luan et al. [5] consider that an industrial process, namely the estimation of feeding
composition, is important for analyzing production status and making control decisions.
However, random errors or even gross ones inevitably contaminate the actual measure-
ments. Feeding composition is conventionally obtained via discrete and low-rate artificial
testing. To address these problems, a feeding composition estimation approach based on a
data reconciliation procedure is developed. To improve the variable accuracy, a novel robust
M-estimator is first proposed. Then, an iterative robust hierarchical data reconciliation and
estimation strategy is applied to estimate the feeding composition. The feasibility and effec-
tiveness of the estimation approach are verified on a fluidized bed roaster. The proposed
M-estimator showed better overall performance.

Pan et al. [6] propose a data-driven fault diagnosis method using the deep convo-
lutional neural network (DCNN). The DCNN is used to deal with sensor and actuator
faults of robot joints, such as gain error, offset error, and malfunction for both sensors
and actuators, and different fault types are diagnosed using the trained neural network.
In order to achieve the above goal, the fused data of sensors and actuators are used, where
both types of fault are described in one formulation. Then, the deep convolutional neural
network is applied to learn characteristic features from the merged data to try to find
discriminative information for each kind of fault. After that, the fully connected layer
performs prediction work based on learned features. In order to verify the effectiveness of
the proposed deep convolutional neural network model, different fault diagnosis methods,
including support vector machine (SVM)), artificial neural network (ANN), conventional
neural network (CNN) using the LeNet-5 method, and long-term memory network (LTMN),
are investigated and compared with the DCNN method. The results show that the DCNN
fault diagnosis method can realize high fault recognition accuracy while needing less model
training time.

Li et al. [7] investigates a critical hazard identification method for railway accident
prevention. A new accident causation network is proposed to model the interaction
between hazards and accidents. To realize consistency between the most likely and shortest
causation paths in terms of hazards for accidents, a method for measuring the length
between adjacent nodes is proposed, and the most likely causation path problem is first
transformed to the shortest causation path problem. To identify critical hazard factors that
should be alleviated for accident prevention, a novel critical hazard identification model is
proposed based on a controllability analysis of hazards. Five critical hazard identification
methods are proposed to select critical hazard nodes in an accident causality network.
A comparison of results shows that the combination of an integer programming-based
critical hazard identification method and the proposed weighted direction accident causality
network considering length has the best performance in terms of accident prevention.

Han et al. [8] propose a new active fault tolerant control scheme based on active
fault diagnosis to address the component/actuator faults for systems with state and input
constraints. Firstly, the active fault diagnosis is composed of diagnostic observers, constant
auxiliary signals, and separation hyperplanes, all of which are designed offline. In online
applications, only a single diagnostic observer is activated to achieve fault detection and
isolation. Compared with the traditional multi-observer parallel diagnosis methods, such
a design is beneficial to improve the diagnostic efficiency. Secondly, the active fault toler-
ant control is composed of outer fault tolerant control, inner fault tolerant control, and a
linear-programming-based interpolation control algorithm. The inner fault tolerant control
is determined offline and satisfies the prescribed optimal control performance requirement.
The outer fault tolerant control is used to enlarge the feasible region, and it needs to be
determined online together with the interpolation optimization. In online applications,
the updated state estimates trigger the adjustment of the interpolation algorithm, which in
turn enables control reconfiguration by implicitly optimizing the dynamic convex combi-
nation of outer fault tolerant control and inner fault tolerant control. This control scheme
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contributes to further reducing the computational effort of traditional constrained predic-
tive fault tolerant control methods. In addition, each pair of inner fault tolerant control and
diagnostic observer is designed in an integrated manner to suppress the robust interaction
of influences between estimation error and control error. The soft constraint method is
further integrated to handle some cases that lead to constraint violations. The effectiveness
of these designs is finally validated by a case study of a wastewater treatment plant model.

Zhang et al. [9] consider that spacecraft with large flexible appendages are character-
ized by multiple system modes. They suffer from inherent low-frequency disturbances
in the operating environment that consequently result in considerable interference in the
operational performance of the system. It is required that the control design ensures
the system’s high pointing precision, and it is also necessary to suppress low-frequency
resonant interference as well as take into account multiple performance criteria, such as
attitude stability and bandwidth constraints. Aiming to address the comprehensive control
problem of this kind of flexible spacecraft, a control strategy is proposed using a structured
H-infinity controller with low complexity that was designed to meet multiple performance
requirements, so as to reduce the project cost and implementation difficulty. According
to the specific resonant mode of the system, the design strategy of adding an internal
mode controller, a trap filter, and a series PID controller to the structured controller is
proposed, so as to achieve the comprehensive control goals through cooperative control
of multiple control modules. A spacecraft with flexible appendages (solar array) is pre-
sented as an illustrative example in which a weighted function was designed for each
performance requirement of the system (namely robustness, stability, bandwidth limit, etc.),
and a structured comprehensive performance matrix with multiple performance weights
and decoupled outputs was constructed. A structured H-infinity controller meeting the
comprehensive performance requirements is given, which provides a structured integrated
control method with low complexity for large flexible systems that is convenient for en-
gineering practice and provides a theoretical basis and reference examples for structured
H-infinity control. The simulation results show that the proposed controller gives better
control performance compared with the traditional H-infinity one and can successfully
suppress the vibration of large flexible appendages at 0.12 Hz and 0.66 Hz.

Li et al. [10] examine the adaptive control of high-order nonlinear systems with
strict-feedback form. An adaptive fixed-time control scheme is designed for nonlinear
systems with unknown uncertainties. In the design process of a backstepping controller,
the Lyapunov function, an effective controller, and adaptive law are constructed. Combined
with the fixed-time Lyapunov stability criterion, it is proven that the proposed control
scheme can ensure the stability of the error system in finite time, and the convergence time
is independent of the initial condition. Finally, simulation results verify the effectiveness of
the proposed control strategy.

Luo et al. [11] investigate the cluster-delay mean square consensus problem of a
class of first-order nonlinear stochastic multi-agent systems with impulse time windows.
Specifically, on the one hand, a discrete control mechanism (i.e., impulsive control) was
applied in the system instead of a continuous one, which has the advantages of low
control cost and high convergence speed. On the other hand, the existence of impulse
time windows was considered when modeling the system, i.e., a single impulse appears
randomly within a time window rather than an ideal fixed position. In addition, this paper
also considers the influence of stochastic disturbances caused by fluctuations in the external
environment. Then, based on algebraic graph theory and Lyapunov stability theory, some
sufficiency conditions that the system must meet to reach the consensus state are given.
Finally, we designed a simulation example to verify the feasibility of the obtained results.

Pang et al. [12] consider that the continuous development of spacecraft with large
flexible structures has resulted in an increase in the mass and aspect ratio of launch vehicles,
while the wide application of lightweight materials in the aerospace field has increased
the flexible modes of launch vehicles. In order to solve the problem of deviation from
the nominal control or even destabilization of the system caused by uncertainties, such as
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unknown or unmodelled dynamics, frequency perturbation of the flexible mode, changes
in its own parameters, and external environmental disturbances during the flight of such
large-scale flexible launch vehicles with simultaneous structural deformation, rigid-elastic
coupling and multimodal vibrations, an improved adaptive augmentation control method
based on model reference adaption, and spectral damping are proposed in this paper,
including a basic PD controller, a reference model, and an adaptive gain adjustment based
on spectral damping. The baseline PD controller was used for flight attitude control in
the nominal state. In the non-nominal state, the spectral dampers in the adaptive gain
adjustment law extracted and processed the high-frequency signal from the tracking error
and control-command error between the reference model and the actual system to generate
the adaptive gain. The adjustment gain was multiplied by the baseline controller gain to
increase/decrease the overall gain of the system to improve the system’s performance and
robust stability, so that the system had the ability to return to the nominal state when it was
affected by various uncertainties and deviated from the nominal state or even destabilized.

Zhang et al. [13] address the problem of local fault (unknown input) reconstruction
for interconnected systems. This contribution consists of a geometric method which solves
the fault reconstruction (FR) problem based on observations and a differential algebraic
concept. The fault diagnosis (FD) problem is tackled using the concept of the differential
transcendence degree of a differential field extension and the algebraic observability. The
goal is to examine whether the fault occurring in the low-level subsystem can be recon-
structed correctly by the output at the high-level subsystem under given initial states.
By introducing the fault as an additional state of the low subsystem, an observer based
approached is proposed to estimate this new state. Particularly, the output of the lower
subsystem is assumed unknown, and is considered as auxiliary output. Then, the auxiliary
outputs are estimated by a sliding mode observer, which is generated by using global
outputs and inverse techniques. After this, the estimated auxiliary outputs are employed
as virtual sensors of the system to generate a reduced-order observer, which is capable
of estimating the fault variable asymptotically. Thus, the purpose of multi-level fault
reconstruction is achieved. Numerical simulations on an intensified heat exchanger are
presented to illustrate the effectiveness of the proposed approach.

Azar et al. [14], an all-guest editor involved work, presents the robust stabilization
and synchronization of a novel chaotic system. First, a novel chaotic system is presented,
which is realized by implementing a sigmoidal function to generate the chaotic behavior.
A bifurcation analysis is provided in which by varying three parameters of this chaotic
system, the respective bifurcations plots are generated and evinced to analyze and verify
when this system is in the stability region or in a chaotic regimen. Then, a robust controller
is designed to drive the system variables from the chaotic regimen to stability so that these
variables reach the equilibrium point in finite time. The robust controller is obtained by
selecting an appropriate robust control Lyapunov function to obtain the resulting control
law. For synchronization purposes, the novel chaotic system designed in this study is
used as a drive and response system, considering that the error variable is implemented
in a robust control Lyapunov function to drive this error variable to zero in finite time.
In the control law design for stabilization and synchronization purposes, an extra state
is provided to ensure that the saturated input sector condition must be mathematically
tractable. A numerical experiment and simulation results are evinced, along with the
respective discussion and conclusion.

Wang et al. [15] propose comprehensive fault diagnosis method of rolling bearing
about noise interference, fault feature extraction, and identification. Based on complete
ensemble empirical mode decomposition with adaptive noise (CEEMDAN), detrended
fluctuation analysis (DFA), and improved wavelet thresholding, a denoising method of
CEEMDAN-DFA-improved wavelet threshold function was presented to reduce the distor-
tion of the noised signal. Based on quantum-behaved particle swarm optimization (QPSO),
multiscale permutation entropy (MPE), and support vector machine (SVM), the QPSO-
MPE-SVM method was presented to construct the fault-features sets and realize fault iden-
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tification. Simulation and experimental platform verification showed that the proposed
comprehensive diagnosis method can not only better remove the noise interference and
maintain the original characteristics of the signal by CEEMDAN-DFA-improved wavelet
threshold function, but also overcome overlapping MPE values by the QPSO-optimizing
MPE parameters to separate the features of different fault types. The experimental results
showed that the fault identification accuracy of the fault diagnosis can reach 95%, which is
a great improvement compared with the existing methods.

Li et al. [16] propose a novel, adaptive, fixed-time neural network tracking control
scheme for nonlinear interconnected systems. An adaptive backstepping technique is used
to address unknown system uncertainties in the fixed-time settings. Neural networks are
used to identify the unknown uncertainties. The study shows that, under the proposed
control scheme, all states in the system can converge into small regions near zero with fixed-
time convergence time via Lyapunov stability analysis. Finally, the simulation example
is presented to demonstrate the effectiveness of the proposed approach. A step-by-step
procedure for engineers in industry process applications is proposed.

Chen et al. [17] consider that the coupling between variables in the multi-input multi-
output (MIMO) systems brings difficulties to the design of the controller. Aiming to
address this problem, this paper combines the particle swarm optimization (PSO) with the
coefficient diagram method (CDM) and proposes a robust controller design strategy for the
MIMO systems. The decoupling problem is transformed into a compensator parameter
optimization problem, and PSO optimizes the compensator parameters to reduce the
coupling effect in the MIMO systems. For the MIMO system with measurement noise, the
effectiveness of CDM in processing measurement noise is analyzed. This paper gives the
control design steps of the MIMO systems. Finally, simulation experiments of four typical
MIMO systems demonstrate the effectiveness of the proposed method.

Liu et al. [18] consider that pulsars, especially X-ray pulsars detectable for small-size
detectors, are highly accurate natural clocks, suggesting potential applications, such as
interplanetary navigation control. Due to various complex cosmic background noise, the
original pulsar signals, namely photon sequences, observed by detectors have low signal-
to-noise ratios (SNRs) that obstruct practical use. This paper presents a pulsar denoising
strategy developed based on the variational mode decomposition (VMD) approach. This is
in fact the initial work of the authors’ interplanetary navigation control research. The orig-
inal pulsar signals are decomposed into intrinsic mode functions (IMFs) via VMD, by
which the Gaussian noise contaminating the pulsar signals can be attenuated because of the
filtering effect during signal decomposition and reconstruction. Comparison experiments
based on both simulation and HEASARC-archived X-ray pulsar signals are carried out to
validate the effectiveness of the proposed pulsar denoising strategy.

3. Conclusions

In conclusion, the SI has witnessed and promoted great interest in <Complex Dynamic
System Modelling, Identification and Control>. As always, the research topics associated
with this SI are quite widely demanded, from academic research to real applications,
particularly in those manmade systems (e.g., engineering products). Therefore, the guest
editors hope that the readers can benefit from these published articles, the meaningful
concepts and insights presented, emerging techniques, and inspiration for their future
research and publications.

Once again, the guest editors wish to show their heartfelt gratitude to all the support
and passion devoted to the SI from the authors, the publisher, and many others.
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Abstract: In this paper, the robust stabilization and synchronization of a novel chaotic system are
presented. First, a novel chaotic system is presented in which this system is realized by implementing
a sigmoidal function to generate the chaotic behavior of this analyzed system. A bifurcation analysis
is provided in which by varying three parameters of this chaotic system, the respective bifurcations
plots are generated and evinced to analyze and verify when this system is in the stability region or
in a chaotic regimen. Then, a robust controller is designed to drive the system variables from the
chaotic regimen to stability so that these variables reach the equilibrium point in finite time. The
robust controller is obtained by selecting an appropriate robust control Lyapunov function to obtain
the resulting control law. For synchronization purposes, the novel chaotic system designed in this
study is used as a drive and response system, considering that the error variable is implemented in
a robust control Lyapunov function to drive this error variable to zero in finite time. In the control
law design for stabilization and synchronization purposes, an extra state is provided to ensure that
the saturated input sector condition must be mathematically tractable. A numerical experiment and
simulation results are evinced, along with the respective discussion and conclusion.

Keywords: chaos theory; bifurcation; stabilization; chaos synchronization; robust control

1. Introduction

Chaotic systems were studied several decades ago, as these types of systems are found
in nature and other physical systems. Because of their wide range of applications, chaotic
dynamical systems have received much attention over the last three decades. As the discov-
ery of new physical systems in engineering and exact sciences is increasing, it is critical to
suppress chaotic behavior because this phenomenon generates unwanted behavior when
implementing this type of system. Furthermore, in recent years, the synchronization of
chaotic systems has become critical in the synchronization of coupled chaotic systems,
as found in applications such as like optics and other implementations in physics.
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There are many results found in the literature related to different types of chaotic
systems. This research study will mainly focus on self-excited attractors in their integer
and fractional order. For example, the authors of [1] presented hidden and self-excited
attractors for an oligopoly model by showing the respective bifurcation analysis. Another
example is found in papers like that in [2], in which a describing function is implemented
in a Chua circuit to find a hidden attractor. Then, in [3], a hidden chaotic attractor is
found in a Lorenz system. In [4], the digital signal processing (DSP) implementation of
fractional-order chaotic hidden and self-excited attractors is proposed.

Saturation is one of the constraints found in the input of many complex dynamic
systems, something that can generate instability if a standard controller or synchronizer is
implemented. There are a vast amount of research studies found in the literature which
refer to this input nonlinearity. For example, in [5], a neural network control law is
implemented for the stabilization and synchronization of a chaotic system with input
saturation. Then, in [6], an adaptive controller is designed and presented for the control
of a Lorenz chaotic system with input saturation. Other studies found in the literature
are not necessarily related to the control and synchronization of chaotic systems where
the design of appropriate controllers with input saturation is evinced. For example, in [7],
the robust attitude control for a 3-DOF helicopter is shown when input saturation is
presented in the system. Then, in [8], the saturation control of a switched system is given.
In [9], the saturation control of a chain of integrators system is proposed. In [10], a robust
controller for a class of nonlinear saturation system is studied.

Different control strategies for the stabilization and chaos suppression in this kind
of system are essential considering that these control approaches provide a very efficient
method when uncertainties or disturbances are found in a complex dynamic system [11].
The control of chaotic systems is crucial considering the physical applications in which this
control strategy is needed. For example, in [12], a sliding mode controller and synchroniza-
tion strategy for a chaotic system is designed based on a cubic reaching law. Then, in [13],
a Duffing oscillator is controlled and stabilized by an active controller. Other examples are
found in [14] in which an internal model principle does the robust control of a Chua circuit.
Another example can be found in [15], where a robust controller is designed for a Lorenz
system subjected to mismatched uncertainties. There are many control strategies found
in the literature related to the control of many physical systems, such as in [16], in which
a H-infinity controller is designed for a piezo electric actuator. Then, in [17], a robust
controller for a permanent magnet synchronous motor is presented in which uncertainties
are found in the system. Then, in [18], the suppression of chaos in a permanent magnet
synchronous motor is achieved by a robust adaptive dynamic surface control.

The synchronization of a chaotic system is essential when two chaotic systems
must be synchronized. Chaotic synchronization can be categorized as identical and
non-identical [19-25]. There are plenty of papers in the literature in which this kind
of synchronization controller strategy is evinced. Thus, for example, in [26], the inverse
synchronization of two chaotic coupled systems with time delays are presented. Then
in [27], the synchronization of a Chua system is achieved for a master—slave piecewise
linear system. Finally, in [28], a Lorenz system is synchronized with an application to
image encryption.

Other interesting results related to chaos stabilization are found in the litertaure shch
as [29-33]. The studies like that in [34], in which a controller and stabilizer of magneto-
elastic chaos found in a beam system, represented by the Duffing equation, is achieved by
a delayed feedback control method. Then, in [35], the stabilization and synchronization
of fractional-order discrete-time system is evinced. Another research study that reports
interesting results is found in [36], in which a nonlinear dynamic inversion stabilizer
and controller is obtained for a chaotic system. Then other results are found in studies
like [37,38], in which in the first paper, period-doubling bifurcations are stabilized imple-
menting smooth feedback, and in the second paper, a feedback controller to stabilize chaos
synchronization is presented.

10
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Moreover, there are significant research studies found in the literature related to
chaos synchronization [39-42]. Therefore, for example, in [43], the synchronization and
circuit design of an antimonotonic hyperjerk system is proposed in which reverse period-
doubling bifurcation is used as a control parameter. Then, in [44], the synchronization of
two Josephson junctions in series is presented. Another study related to synchronization
is found in [45], where a complete synchronization is implemented for a system with
non-inertial coupling. Finally, in [46,47], an output feedback controller for the chaos
synchronization of stochastic reaction-diffusion time-delayed neural network and the
chaos synchronization by optical feedback are presented, respectively.

In this paper, the stabilization and synchronization of a novel chaotic system are
achieved by a robust controller. First, a novel chaotic system is presented to generate
chaos by implementing a sigmoidal function. A dynamic analysis is done in which the
equilibrium points, bifurcation analysis, and phase portraits are evinced to analyze the
system’s chaotic behavior to show the domain of attraction, the system orbits, and the
bifurcations of this novel chaotic system. The robust stabilization is done by selecting an
appropriate robust control Lyapunov functional by adding an auxiliary system to find two
control laws for chaos suppression purposes. The synchronization control law is obtained
similarly by defining the system’s error variable. In this case, drive and response systems
are defined, and then by selecting an appropriate robust control Lyapunov function and
adding an additional system, two synchronization control laws are found. This research
study presents two numerical experiments to validate the obtained theoretical results along
with the respective discussion and conclusion. The self-excited attractor obtained in this
research study provides a novel chaotic system that posses stability and chaotic region,
as evinced in the bifurcation diagram, by estimating the parameters the chaotic regime is
reached to generate an unstable equilibrium point.

One of the novelties of this new chaotic system is the use of a sigmoidal function
which allows finding the chaotic regimen and behavior by approaching the equilibrium
points as the domain of attraction. The sigmoid function nonlinearity can be switched such
that the unstable limit cycle reaches the equilibrium points. It is important to mention that
this novel’s chaotic system is probably extended to multi-wing, multi scroll, or even to a
complex variable chaotic dynamic system, which could attract many researchers’ attention
in chaos theory. Besides, the stabilization and synchronization in engineering-related
physical systems can be achieved appropriately using several control techniques such as
robust control, sliding mode control, and backstepping control. The control techniques for
this kind of novel chaotic system can be implemented where the chaos is suppressed, or two
identical systems are synchronized successfully even in the presence of nonlinearities.

As explained before, the contributions of this research study are that a novel chaotic
system is provided for research purposes and modeling of many kinds of physical phe-
nomena and other types of engineering-related systems, taking into consideration the
dynamic behavior of this novel chaotic system. The input saturation in chaotic dynamic
systems yields unwanted performance or even instability in this kind of chaotic system,
so that a robust control is implemented for stabilization and synchronization of the novel
chaotic system when saturation is found in the system inputs, so by a Lyapunov approach
and by the use of the appropriate theoretical background, a robust and reliable control
synchronization strategy is found.

The paper starts by evincing first the novel chaotic system. A sigmoidal function is
used as a nonlinearity to drive the domain of attraction to the equilibrium points. Then,
a bifurcation analysis reveals that this novel chaotic system becomes stable to chaotic by
varying some system parameters, something essential to observe that a period-doubling
occurs when the system enters a chaotic regime. Then, the robust stabilization of this novel
chaotic system with input saturation is achieved by deriving a robust control Lyapunov
function to find the appropriate control law that annihilates chaos and drives the system
variables of this novel chaotic attractor their equilibrium points. A novel robust control
synchronization law is found by obtaining the error of the system dynamic variables
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to obtain the synchronization law by designing the robust control Lyapunov function
necessary to stabilize the error dynamics of the proposed novel chaotic system.

This research study aims to provide a novel fundamental theoretical background for
chaos theory and its respective synchronization, anti-synchronization, and stabilization
of any chaotic system. This work can be extended to other types of variations of chaotic
systems, such as hyperchaotic systems, complex variable hyperchaotic systems, multi-wing,
and multi-scroll chaotic system stabilization, synchronization, and anti-synchronization.
The robust control strategy for synchronization and stabilization purposes provides a new
theoretical framework useful for input saturated nonlinear dynamic systems. The selected
robust Lyapunov function considers the system variables for stabilization purposes to reach
the equilibrium points in finite time. The sector condition considers the saturated input to
deal with this nonlinearity found in this chaotic system. An essential contribution of this
research study is that synchronization of the two identical proposed systems is achieved
by considering that the system input of the response system is saturated.

This paper is divided into the following sections. In Section 2, the related work to this
study is presented, then in Section 3, the novel chaotic attractor is evinced. In Section 4, the main
results of this study are shown. In Section 5, two numerical experiments are presented. Finally,
in Sections 6 and 7, the respective discussion and conclusion of this research study are presented.

2. Related Work

The dissipation properties of chaotic systems are one of the most important issues
to consider in the dynamic analysis of chaotic systems. As shown in [48], the dissipation
properties of a chaotic system’s convergence region or domain of attraction are contracted.
As is well known, the divergence of a chaotic system’s vector field is given by [48]

@

Meanwhile, for a chaotic system described by the following dynamic model %{ = f(X, 1),
it is critical that this dynamic system meets the Lipschitz continuity property, which has been
demonstrated in numerous papers in the literature, including in [49]:

1f (X, 8) = f (X, )| < [IL(Xs = X) | @

for a positive constant L. After considering the chaotic systems’ characteristics and proper-
ties, it is necessary to mention some research studies on chaos stabilization. As stated in
the preceding section, it is critical to remember that the stabilization and control of various
types of chaotic systems are critical, especially given that chaos suppression is one of the
primary strategies that must be implemented to avoid this undesirable phenomenon. There
are different research studies related to chaos stabilization, such as that in [50], in which a
simple polynomial function of the system states is done by implementing adaptive feedback
control for a chaotic system. Then, in [51], the control and anti-synchronization of a novel
fractional-order chaotic system and its analysis are proposed. Another example is found
in [52], where the chaos control of a fractional-order neural network with electromagnetic
radiation is presented. Then, in [53], the chaos control of a piezoelectric auto parametric
vibration system is shown.

The synchronization problem consists in following the drive system trajectory in time
by the response system in order to drive the error variable to zero in finite time as appears

in [28]:
e= /Y. [Ypi — Yil? ®)
Vi=1

where Yp € R* represents the discretized drive response in time and Yz € R* represents
the discretized response system evolution in time. This root mean square error (RMSE)
describes the accuracy of the control synchronizing strategy in order to make sure that
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the control synchronization will be the minimum and zero in finite time. Other results
in the literature related to synchronization control of chaotic systems can be found in
papers such as that in [54], which achieves chaos synchronization in the frequency domain.
Then, in [55], a novel control approach does the synchronization of two non-identical 4-D
hyperchaotic systems. Finally, in [56,57], the synchronization of two novel hyperchaotic
system with unknown parameters and the circuit realization, control and synchronization
of a novel hyperchaotic system are presented, respectively.

This study considers the discovery of a novel chaotic system, as well as the homoclinic
and heteroclinic chaotic properties of this type of system. For example, in papers such
as that in [58], it is demonstrated how some co-dimensions two bifurcations originate
regions of chaotic and simple dynamics, and bifurcation structures such as Bykov T-
points spirals are evinced. In papers such as that in [59], it is demonstrated how multiple
chaos can arise from single parametric perturbations of a degenerated homoclinic orbit.
The system under consideration in this paper is a periodical perturbed differential equation
in which a Former’s perturbation is used to find the homoclinic orbits. Apart from the
paper in [60], homoclinic chaos in piecewise smooth oscillators is demonstrated by using
small parametric perturbations in this type of oscillator. In this paper, the Melnikov
approach is used first to find that homoclinic chaos exists in a system without small
perturbations, and then the same approach is used to find sufficient conditions to find
the control parameters. Then, in [61], the homoclinic bifurcation and control of chaotic
MEMS are presented. The Melnikov function is used as an analytical methodology for
homoclinic chaos, which is expressed as an inequality in terms of system parameters.
Another intriguing study can be found in [62], which shows novel bifurcation diagrams
for piecewise smooth systems in which the transversability of homoclinic points does not
imply chaos. Four scenarios are presented in this research study in which the systems
are assumed to be subject to small non-autonomous perturbations, yielding four new
bifurcation diagrams. Then, in [63], minimal topological chaos is discovered with respect
to finite sets of homoclinic and periodic orbits.

Another important topic to mention is heteroclinic chaos, which is demonstrated in
this paper through the design of a new chaotic attractor. There are numerous research
studies in the literature that deserve to be mentioned in this research paper. In papers such
as that in [64], for example, it is demonstrated that heteroclinic cycles connecting repellers
and saddles in locally compact metric space induce chaos. The results presented in this
paper are critical because they are based on a topological analysis in which the maps in the
criteria are shown to have positive topological entropy and to be chaotic in the Li-Yorke
sense. Then, in [65], another topological analysis is presented, in which chaos generated
by heteroclinic curves connects repellers in complete metric spaces. This paper includes
two classifications of heteroclinic cycles: regular and singular, as well as degenerated
and nondegenerated. Other findings can be found in papers such as that in [66], which
demonstrates a design methodology and algorithm for implementing geometric features
with focus-saddle and center node equilibrium points.

Because entropy issues in novel chaotic systems are important in the theoretical
development of this research study, it is worth mentioning some articles found in the
literature on the entropy of novel chaotic systems. As an example, in papers such as
that in [67], the enhancing of chaos complexity of a plasma model is demonstrated. It is
demonstrated in this paper that by increasing the power input, the system can change from
monostable to multistable without the addition of any input terms. It is also demonstrated
that there is a transition, in terms of system complexity, from transient chaos to steady
periodic behavior. Then, in [68], a novel measure inspired by Lyapunov exponents is
demonstrated. In this paper, a network measure for characterizing state-transition networks
is implemented. Another interesting study about chaotic system entropy found in the
literature is that in [69], which shows evidence of strange attractors found in a C-Class
amplifier with a bipolar transistor. The nonlinear bilateral behavior is shown in this paper
to be a necessary but not sufficient condition for finding a complex behavior when the

13



Entropy 2021, 23, 1110

transistor is modeled as a two port admittance parameter. Meanwhile, the study in [70]
demonstrates an important research study related to entropy in which the origin and
fundamentals of entropy are presented, explaining how the entropy concept is used in
physics, information theory, chaos theory, and data mining, and providing researchers with
important issues that can be selected to choose the right variant of entropy for their research
study. In addition, the study in [71] shows a chaotic time delay signature suppression
by frequency band extracting is investigated the time delay signature and entropy grow
enhancement in a chaotic optical feedback semiconductor laser. Then, in [72], a two-
parameter bifurcation diagram for the computational analysis of Ca?* oscillatory biosignals
is presented. This paper explains how those types of diagrams provide different types of
information about the analyzed autonomous system and how they complement one another.
Aside from robust control, which is the strategy for stabilization and synchronization used
in this research study, some research studies found in the literature related to the stability
and chaos synchronization of various types of chaotic systems are worth mentioning.
For example, in papers such as that in [73], the synchronization patterns in Kuramoto
oscillators are demonstrated, in which phase locked states with constant phase shifts
between these oscillators are studied. The synchronization estimation for complex time
series using cross sample entropy measure is then demonstrated in papers such as that
in [74]. Other papers with interesting results include that in [75], in which a modified
Chua’s circuit is used with a five segment piecewise linear Chua’s diode. This paper
demonstrates that the attractors have small basins of attraction. Finally, in [76], it is shown
that a tuned pendulum absorber can reduce vibration and, at the same time to harvest
energy. Then, in [77], it is shown how Lagrangian descriptors can be implemented to
characterize invariant tori of generic systems. Finally, in [78], the magnetic confinement of
a neutral atom is presented. In this paper, a neutral atom inside a double-wire waveguide
in the presence of two uniform bias fields is presented.

It is important to remember that, in contrast to other research studies found in the
literature, such as those in [72-74,76], the stabilization is done using techniques that do
not guarantee stability and performance when saturation input is found in the respective
chaotic systems shown in these papers. Note that although these control strategies do
not take saturation into account, the high nonlinearity and complexity exhibited in these
research papers make them ideal candidates for implementing robust control and synchro-
nization strategies, but it is worth noting that there is sometimes a trade-off between the
complexity of the designed controllers exhibited in these papers, so the authors consider.
As previously stated, the obtained novel chaotic system shown in this paper can be used
in engineering implementations as well as other exact science implementations such as
metheorology, astrophysics, and astrochemistry.

Because of the high performance of the robust control synchronization law provided
in this research study, the synchronization control law, as explained in previous sections,
is achieved faster. Unfortunately, the literature on the implementation of robust control
or other controller techniques such as sliding mode control and backstepping control for
controller for chaotic system with input saturation is limited. Therefore, given the high
nonlinearity of this novel chaotic system as a sigmoidal function, a roust control strategy
is proposed to minimize the convergence error between the drive and response system
variables until it reaches the origin and, as previously stated, faster than other types of
control strategies that take into account the novel chaotic system’s high complexity.

Unfortunately, due to the lack of similar research studies found in the literature,
a comparative analysis was not possible in the numerical experiment section, but as
explained later in this paper, it is not necessary to do a comparative analysis taking into
account that the stabilized and synchronized systems are novel chaotic systems, as observed
in the numerical experiments.
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3. Definition of the Novel Chaotic System

This section presents the definition of a novel chaotic attractor as well as a bifurcation
analysis. The new chaotic attractor is made up of a sigmoidal function that causes the
system to enter a chaotic state. The bifurcation analysis demonstrates how the system
transitions to a chaotic regime and the period-doubling exhibited by the respective bifurca-
tions. The applications of this novel chaotic system is very wide an can be implemented for
the mathematical modeling of phenomenons found in meteorology [79], astrophysics [80],
fluid dynamics [81], and in other engineering related systems such as electrical and power,
mechanical, mechatronics, and chemical systems. The reason of the applicability of this
novel chaotic system is that by estimating the right parameters and considering some
topological aspects such as the limit set related to the unstable limit cycle and the domain
of attraction this chaotic system can be implemented in the mathematical modeling of
different types of phenomena.

3.1. Definition of the Novel Chaotic System

Consider the following novel chaotic attractor with sigmoidal functions:

X1 = asigmoid(z1)xq — z%

yl = bZl + x1y1

Z1 = csigmoid(x1) + dx1y; 4)
in which sigmoid is the sigmoidal function sigmoid(x) = 1/(1 + e~ *). The equilibrium
point of this system is [x1,y1,2z1]T = [~2.3,0.78,1.21]T for a system with initial conditions
[x1(0),y1(0),21(0)]T = [-2.4,0.8,1.2]T. The equilibrium points were obtained by the

numerical nonlinear algebraic equation solver of GNU Octave fsolve of GNU Octave
version 4.2.2. The set of nonlinear algebraic equations is done by considering the vector
field f(x1,y1,21) = 0so by solving this equation the equilibrium points are found efficiently.
The values of the parameters used for this novel chaotic system are as follows: 2 = —1,
b =49 c =13 and d = 1 in order that the system reach the chaotic regimen using
this parameters in all the numerical experiments of this paper. The Lyapunov exponents
of this chaotic system are L1 = —0.00195243, L, = 0.00852359, and L3 = —0.00394307
verifying that only the Lyapunov exponent L, has a positive real component so the system
is considered as chaotic. It is important to remark that by changing the parameters of this
novel chaotic system the system solution can be varied from a quasiperiodic orbit to a

chaotic orbit. The divergence of the system (4) is obtained in the following way:
V.E(x1,y1,71) = 7o+ ®)
The range of a in which the proposed novel chaotic system is dissipative is shown

as follows:

—max(x1(14+e 7)) <a < —min(xy(1+e 1)) (6)

In this range of the constant 4, the energy of the system dissipates until the equilibrium
point reach the equilibrium points, so in this way, the periodic orbits of the novel chaotic
attractor reach the equilibrium points. By this dissipation proof, it is verified and validated
that the the dissipation characteristics for the novel chaotic system are found by establishing
the range of the constant 2 in which this property is found.

The phase portraits in different planes are evinced in Figure 1 which corroborates
the chaotic behavior of the novel chaotic system. It is possible to observe the orbit of
this chaotic system, which follows a helicoidal trajectory around the domain of attraction,
which is the equilibrium point. A vortex is formed around the domain of attraction, which
is desirable in order to model certain natural systems. It is important to notice that the
sigmoidal nonlinearities found in this novel chaotic systems yields the trajectory of the
orbits of this proposed system to the equilibrium point in finite time. As verified later, in the
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bifurcation diagrams, the unstable limit cycle generated by chaos is obtained by selecting
the appropriate parameters values in order to obtain the chaotic orbit. Due to the appropri-
ate selection of the parameter values, the novel chaotic system enters in chaotic regimen
considering that the initial conditions are crucial to find other domains of attractions in
other equilibrium points. Because the domain of attraction in different equilibrium points
of the novel chaotic systems is sensitive to the initial conditions, the initial conditions were
chosen as long as they are close to the first encountered equilibrium point by determining
that the inner product of two vector fields over the inner product of the initial condition
and the equilibrium points is equal to infinity [82].

05

(b) Phase portrait in the y — z plane (c) Phase portraits in x, y and z

Figure 1. Phase portrait of the novel chaotic attractor (4).

3.2. Bifurcation Analysis

The bifurcation diagrams while varying the constants 4, b, and d in (4) are shown in
Figure 2 in which it can be shown how the system states are driven from the stable region
to the chaotic regimen by varying the parameters 4, b, and d, as shown in the three figures.
It is also demonstrated that, despite the fact that this is a novel chaotic system, the system
exhibits chaotic behavior because period doubling occurs in the bifurcation diagram until
the limit cycles appear in the novel chaotic system proposed in this paper.
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Figure 2. Bifurcation diagrams of the novel chaotic system (4).

The resulting diagrams demonstrate that the parameters a, b, and d can influence
chaotic behavior; however, as explained later, there is one parameter that influences the
system variables even more than the others in order to drive the system variables from
the stable region to the chaotic regime. It is important to remark that while varying the
parameter 4, specifically when this parameter increases, the tendency of the variable x is to
increase. This occurs because the parameter a is the only parameter that has to do with
the divergence of this novel chaotic system as explained in (5) with the range (6), so the
variable increases when it is outside the limits of the parameter a.

In Figure 2a, it can be seen how the bifurcation diagram is stable until it reaches
the chaotic regimen in approximately 2 = 0.3, and it can be seen that this parameter
affects the transition between the stable region and the chaotic regimen the most. For the
bifurcation diagrams shown in Figure 2b,d the bifurcations in chaotic regimen can be seen
until stability is reached around b = 1.3 and d = 0.8. Meanwhile in Figure 2c it can be
noticed the transition from the chaotic regimen to stability in the interval —10 < ¢ < 0
while stability is found in the rest of the regions as noticed in the bifurcation diagram.

It can be seen in these bifurcation diagrams that the density of these diagrams evinces
how the chaotic regimen is reached as well as the effects of sigmoidal nonlinearity. One of
the most important conclusions is that the novel chaotic system generates chaos, which is
significant when considering not only the phase portrait diagrams, but also the bifurcation
diagrams when the parameters of the novel chaotic system are varied.

As a result of this section, it is possible to confirm the existence of a novel chaotic
system. It is worth noting that the presented nonlinear dynamic system employs sigmoidal
nonlinearity to generate chaos. This designed novel chaotic system is very important
because new phenomena are discovered in nature every day, so it is critical to provide
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new chaotic systems in order to model novel complex physical systems discovered in exact
sciences and engineering.

Another significant contribution of the novel chaotic systems is that it can be extended
to other types of chaotic-related systems, such as hyperchaotic, multi-wing, or multi-scroll
chaotic systems, in the latest kinds of chaotic system is important because the sigmoidal
nonlinearity can extend this results to the kind of desired chaotic system by following an
approach similar to that seen in the chaotic oscillator hidden attractor found in [82].

The design methodology of the robust control and synchronization laws that are used
to synchronize this novel chaotic attractor is explained in the following section. It is critical
to consider the saturation input nonlinearity as explained in this section in order to perform
the stabilization and synchronization so as to provide a theoretical framework for applied
sciences such as physics, chemistry, and biology, as well as engineering applications that
require the stabilization, chaos suppression, and synchronization of chaotic systems.

This paper demonstrates that, regardless of the complexity of the input nonlinearity
found in chaotic systems, it can be efficiently addressed by selecting the appropriate
mathematical framework to stabilize and synchronize the proposed chaotic systems. Finally,
it is validated how the designed controller and synchronizer stabilizes this novel chaotic
system in the equilibrium points, as discovered and explained in this section, by providing
the respective numerical experiment and simulation framework.

4. Main Results

The robust control laws for the stabilization and synchronization of the novel chaotic
system presented in this study are deduced in this section. The control laws are deduced
into two theorems, and the following drive (7) and response systems (8) are taken into
account for stabilization and synchronization. In this section, it is demonstrated how
the control strategy for stabilization purposes is designed while taking into account the
saturation input nonlinearities, which can cause instability and deteriorated performance.
When this occurs in a chaotic system, the consequences can be significant.

Note that the robust control strategy was chosen with the complexity of the sigmoidal
function nonlinearity in mind, which is part of the novel chaotic system explained and
demonstrated in this research study. The stabilization of this novel chaotic system is an
important contribution because the findings can be applied to hyperchaotic, multi-wing,
and multi-scroll chaotic systems. Note that in the synchronization case, only the identical
case is considered for the purposes of this paper, and the results obtained and presented in
this paper can later be extended to the non-identical case.

A robust control Lyapunov function is designed for the stabilization case in order
to find the control law that stabilizes the system at the equilibrium points. Note that if
the chaotic system presented in this paper needs to be stabilized in a different domain of
attraction or at a different equilibrium point, a regulator is required to drive the system
variables to the desired final value. Note that in the case of the synchronization of the novel
two identical chaotic systems, these results can be extended to non-identical systems and
other types of coupled chaotic systems.

X1 = asigmoid(z1)xq — z“;’

yo= bz+xn

z1 = csigmoid(x1) + dx1y 7)
Xy = asigmoid(zy)xy — z5 + ¢p(uq) + ay
Yo = bzy+xy0+¢(un) +ay
Zy = csigmoid(xp) + dxays + ¢(u3) + a3 (8)
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in which the function ¢(.) is the saturation nonlinearity. For the derivation of the controller
and the stabilization and synchronization purposes, the following extra system is needed:

15é1 = 01
(5(2 = 02
b3 = U3 )

so the following vectors are considered X7 = [x1, 1, zl]T, Xo = [x2,V2, ZQ}T, U = [uy, u, u3]T

and & = [a1, a0, a3]T. Rearranging (7) and (8) yields

asigmoid(zq)xq — Z%
X, = E(X;)= bzi + x1y1 (10)
csigmoid(x1) + dx1y;

X, = Gi(X2) +o(U) +a (11)
. asigmoid(zz)xa — 23 ¢ (u1) aq
X, = bz, + X212 + (P(Mz) + | a
csigmoid(xy) + dxay $(u3) a3
h\/d
G1(X2) ¢(U) «

For the saturation nonlinearity, consider the following sector condition property:

Property 1. Considering a saturation nonlinearity ¢(U) and the deadzone nonlinearity D,(U)
with system input U, the following sector condition is met:

u'[u—D.(U)] >0 (12)

with:
D.(U) =U-¢(U) (13)

with these definitions the robust control laws for stabilization and synchronization purposes can
be defined.

In the two theorems of this paper, it does not matter the values of the saturation
because the sector condition ensures that for any value of the saturation the stability of the
stabilizer and synchronizer in ensured in the presence of saturation input, as explained in
this paper. The saturation function used in the whole paper is given by

—dy IF x < —I
p(x) = x IF - <x<l (14)
d2 IF X 2 lz

4.1. Robust Stabilization of the Novel Chaotic System

The closed loop stabilization system’s block diagram is shown in Figure 3 where
the robust controller and stabilizator are located in the feedback loop, connected to the
saturation nonlinearity and receiving the vector field G;. It is necessary to design the
appropriate robust control Lyapunov function in order to obtain the respective control law
that drives the system states to the equilibrium points in finite time in order to design the
stabilization control law for this novel chaotic system. The robust control law obtained
in this section includes a switching component, but no chattering is observed as a result
of this. Consider the following theorem for the derivation of the robust control law for
stabilization purposes.
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Saturation o(U) Chaotic Output y
) > System >
y &
Input U Robust
Controller —

Figure 3. Block diagram of the closed loop stabilization controller.

Theorem 1. Consider the controlled system (11) and the extra system (9), so the following control
laws stabilizes the novel chaotic system:

u = -Xx
—K
v = szTGl(Xz)—Xz (15)

By selecting an appropriate robust control Lyapunov function.

Proof. Consider the following robust control Lyapunov function:

1 1
V==-XIX,+ -al 1
> 2+szrx (16)

Now, by taking the time derivative of (16), the following results are obtained:

V o= XIX +ala
Vo= X3Gi(X2) + Xgp(U) + XJa+alo
V = XIGi(Xp) - UTU—-D(U)] +XTa+alo (17)

Then, by substituting the control laws (15) in (17) and by using the sector condition
which appears in Property 1 the following result is obtained:

V=-Uu"lu-D.(U)] <0 (18)

Therefore, with this conclusion the novel chaotic system is stabilized and the proof of
the theorem is completed. O

As demonstrated in the previous theorem, it is possible to design a robust control law
for the stabilization of the novel chaotic system.

4.2. Robust Synchronization of the Novel Chaotic System

The closed-loop synchronization controller for the novel chaotic drive and response
system is shown in Figure 4. As can be seen, the system error, which is the difference
between the state variables of the drive and response system, is used as input for the
robust controller, and the additional state variable is also used for the synchronizer to
drive the state error to zero in finite time. This input is applied to the input saturation
function along with the input U to prevent saturation effects from causing instability or
other undesirable effects. The robust control law for synchronization is then obtained
by selecting an appropriate Lyapunov robust control law and then obtaining the first
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derivative of this Lyapunov function to obtain the synchronization control law. When
the saturation nonlinearity is found in the response system input, the sector condition,
as shown in Property 1 is critical in order to find the required stability conditions. As stated
in the introduction section, the theoretical results presented in this paper are based on the
identical chaotic system synchronization of the novel chaotic system described in Section 3.
The most important results are evinced in the following theorem in this subsection, in order
to provide the theoretical framework for these types of systems. Consider the following
theorem for the Robust synchronization of this identical novel chaotic system.

Saturation o(U Response Output y
(D -l System >
Input U G, v T (8
Drive ) Error e Robust
System ’Q—> Controller
T OF
>

Figure 4. Block diagram of the control synchronization closed loop system.
Theorem 2. Considering the following error variable and its derivative:

e = Xz—Xl
¢ = Gi(X2) +¢(U) +a—F(X1) (19)

so the following robust synchronization laws are obtained for systems (10) and (11):

u = -—e

v = e'[G1(Xz) — F(Xy)] —e (20)

&
e[|
By selecting an appropriate robust control Lyapunov function.

Proof. Consider the following robust control Lyapunov function:

1 1
V=_ele+zal 21
28 e+ sz o (21)
Now, by taking the time derivative of ( 21) yields

V = ele+ali
Vo= €'Gi(X2) = F(Xy)] + e’ [U = D:(U)] +e"a+aTo (22)

so by substituting (20) into (22) and by using Property 1 the following result is obtained:
V=-U"lu-D.(U)] <0 (23)

so the robust synchronization stability is achieved and the proof is completed. [
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This proof demonstrates how the closed-loop stability of the error variable dynamics is
ensured in order for the state variables of the response system to reach the state variables of
the drive system. A very accurate and fast robust control synchronization is achieved with
the obtained control law and by the implementation of an extra variable that aids in the
closed loop stability. As a result, it is important to remember that, similar to the stabilization
case, the error system dynamics reach zero in finite time faster despite the presence of an
input saturation nonlinearity in the system. Before concluding this section, note that the
theoretical proofs evinced in two theorems allow for faster and more accurate stability
of the closed-loop system in the stabilization and synchronization case. In the following
section, two numerical experiments demonstrate how both of these control strategies,
for stabilization and synchronization purposes, provide accurate results as demonstrated
theoretically in this section.

5. Numerical Experiments

Two numerical experiments are presented in this section: the first for the stabilization
of the novel chaotic system and the second for the control synchronization of two identical
novel controllers. The novel chaotic system is robustly stabilized in the first experiment by
selecting specific initial conditions with saturation input nonlinearity. In this manner, the ro-
bust controller used for stabilization is validated. In the case of robust synchronization,
two novel chaotic systems are synchronized by a robust control law so that the response
system variables follow the evolution of the drive system variables in time. This goal must
be met despite the fact that the response system’s input is saturated nonlinear. In these
numerical experiments, it is verified and validated that the robust control synchronization
law successfully synchronizes both systems in order to reduce the synchronization error
to zero.

5.1. Experiment 1: Robust Stabilization of the Novel Chaotic System

This experiment involves the robust stabilization of a novel chaotic system. Be-
cause the saturation nonlinearity is in the system’s input, the robust controller is used
to overcome or outperform the performance of the closed loop system in the presence
of this nonlinearity. This numerical example effectively validates the proposed control
strategy. The response of the novel chaotic system variable is stabilized while eliminating or
suppressing the chaotic behavior in this novel chaotic system, allowing the state variables
to be driven to the equilibrium points in finite time without exhibiting chattering or other
undesirable phenomena in this type of robust controller.

Note that if the initial conditions are close to another domain of attraction, the system
variables will be stabilized in different equilibrium points. As shown in the block diagram in
Figure 3, the vector field G; must be calculated in order to obtain the required control input
action, implying that some kind of compensation is required to deal with the saturation
input, as shown in the theoretical results obtained in this research study. The results
of this numerical experiment are as follows: first, the evolution of the state variables
over time, then the evolution of the input variables over time, and finally the respective
phase portraits.

For the robust stabilization of the novel chaotic controller with input saturation (8),
the following initial condition is considered X, = [—2.4,0.8,1.2]T with the saturation function:

-10 IF  x<-15
p(x)={ x IF -15<x<15 (24)
10 IF x>15

This saturation nonlinearity is found in the system input, as shown in Figure 3. It
can be demonstrated that the theoretical derivation of the stabilization controller for this
novel chaotic system ensures the overall system’s stability, given that due to a rigorous
theoretical derivation, independent of the saturation parameters, the stabilization of the
variables of this novel chaotic system is achieved in order for these state variables to reach
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the eigenvalues. The robust control law suppresses the instability by assuming that the
overall closed-loop system is stabilized by an efficient Lyapunov design. In this numerical
experiment section, it is demonstrated that the saturation nonlinearity found in the input of
this novel chaotic system has no effect on the overall performance of the closed loop chaotic
system, regardless of the saturation parameters. Because of an efficient controller design,
the robust controller effectively overcomes saturation nonlinearity in order to stabilize the
novel chaotic system in the equilibrium points. Note that in this numerical experiment,
the stabilization occurs quickly and precisely, with no oscillations or chattering.

The stabilized state variables x, i, and z are shown in Figure 5, and it is noted that these
variables reach equilibrium in finite time without the presence of unwanted oscillation.
It has been demonstrated that the robust stabilization controller completely suppresses
the chaos behavior, demonstrating that the main purpose of this proposed controller has
been met. As previously stated, the state variable evolution reaches the equilibrium points;
however, by varying the initial conditions close to other domains of attraction, other
equilibrium points can be reached using the same robust control law; this is due to the
robust control law’s robustness. The Lyapunov functional design is independent of the
equilibrium points, because the controller is designed in such a way that the domain of
attraction related to the equilibrium point is close to the robust controller performance.
The stabilized phase portrait is shown in Figure 6, and as can be seen, chaos suppression is
used to eliminate all unwanted oscillations. The limit cycle vanishes when equilibrium is
reached. In comparison to the phase portrait shown in Figure 1, it is demonstrated that this
variable is stabilized along a smooth trajectory rather than the chaotic trajectory shown in
the previous figure. As a result, the robust controller action eliminates the chaotic behavior
satisfactorily, and the system variables shown in this phase portrait are efficiently driven to
the equilibrium point.
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Figure 5. Evolution in time of the stabilized state variables of the novel chaotic attractor.
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0 2.5

Figure 6. Stabilized phase portrait of the novel chaotic system.

The input variables U and v are depicted in Figures 7 and 8, respectively. It is
possible to see how these variables arrive at a final value until the trajectory or orbit
of the novel chaotic system depicted in this paper reaches equilibrium. Note that these
input variables provide a low control effort and chattering ausence, which demonstrates
the high performance of the proposed robust controller for the stabilization of the novel
chaotic system. Another important consideration is that the controller action would be
significantly small control effort in the case that this robust control strategy is implemented
in a real physical system, given that the saturation input nonlinearity yields instability and
poor performance that can avoid chaos suppression in an efficient manner.
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Figure 7. Input variable U of the novel chaotic system by the implementation of the proposed
robust controller.
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Figure 8. Input variable v of the novel chaotic system with the proposed robust controller.

Finally, as shown in Figure 9, the evolution in time of the auxiliary variable « for
stabilization purposes is evinced in which is the extra state variable with input v as shown
in Figure 8. When saturation is detected in this novel chaotic system, this provides adequate
input for stabilization.
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Figure 9. Evolution in time of the variable « for stabilization purposes.

5.2. Experiment 2: Robust Synchronization of the Novel Chaotic System

The synchronization of two identical chaotic systems is demonstrated in this numerical
experiment. This experiment’s chaotic system is a novel chaotic system shown in this
paper. One system serves as a drive system, while the other serves as a response system.
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The saturation nonlinearity is found in the input of the response, as explained in the block
diagram shown in Figure 4, so it is important to note that this kind of nonlinearity in
the input of the novel chaotic system is not commonly found in the literature, but in real
physical systems this phenomenon is commonly found considering the type of application.
It is also worth noting that the vector fields F and G; must be calculated because, similar to
the stabilization case, they act as a compensator to overcome the saturation nonlinearity
regardless of its characteristics. The following initial conditions are implemented in this
numerical experiment for the synchronization of two identical novel chaotic systems,
where (10) is the drive system and (11) is the response system: X; = [—2.4,0.8, 1.2]T and
Xp = [~29,0.4,1.7]T with the saturation input shown in (24).

The evolution in time of the synchronized state variables, as well as their respective
error variables, is depicted in Figures 10 and 11. As can be seen, the response variables x, v,
and z reach the drive variable’s trajectory in finite time, whereas the error reaches the origin
or zero value faster. Note in these figures that the robust controller performs optimally by
rapidly and precisely driving the error variables to zero. Note that the proposed robust
control synchronization strategy provides a fast and accurate system response even in the
presence of saturation nonlinearity, regardless of the characteristics of this phenomenon
found in the drive system’s input. It should be noted that this robust controller is only
suitable for the synchronization of identical chaotic systems; for the synchronization of non-
identical chaotic systems, this synchronization robust control strategy must be modified in
order to achieve the required closed loop system performance.

-1

15 == Response variable g
2 = " Drive variable H
<2 VYV
-3 -1
-3.5 -

4 1 1 1 1 1
0 5 10 15 20 25 30

Time (s)

= Response variable

= = Drive variable

Time (s)

= Response variable
= = Drive variable

kL

0 5 10 15 20 25 30
Time (s)

Figure 10. Evolution in time of the synchronized state variables of the drive and response novel
chaotic system.
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Figure 11. Evolution in time of the synchronization error variables.

The derivative of the error variable is shown in Figure 12. The velocity of error
convergence is shown in this figure, indicating that the error variable reaches the origin
in finite time faster due to the action of the robust control strategy even in the presence
of saturation input nonlinearity. The peaks of the error variable derivative are thought
to be small, which is related to the acceleration with which the error dynamics reach the
origin in finite time, which is desirable when the proposed robust control synchronization
strategy is implemented in real physical systems.

The evolution of the synchronization input variables U and v in time is depicted in
Figures 13 and 14. As with the stabilization case, these input variables reach their final
values in finite time until the drive and response variables are synchronized. Note that,
despite the discontinuity in the robust controller part, the proposed control synchronization
law does not produce chattering.

In these figures, the control variable U provides a non-oscillatory control action and a
low control effort, which is important when this synchronization strategy is used in a variety
of physical systems such as those found in physics, chemistry, biology, and engineering.
Meanwhile, the time evolution of the virtual input variable v is shown, demonstrating that
this error variable contributes only a minor control effort, implying that the overall control
action must be as small as possible even in the presence of saturation input nonlinearity.
Note that the control law design can be implemented in specific cases where the novel
chaotic system must be synchronized in a real physical system or implemented in the form
of a circuit or mechanical chaotic system.

Finally, in Figure 15 the evolution in time of the variable « for stabilization purposes is
depicted, with the variable reaching equilibrium when synchronization is completed. This
variable, like the extra state variable in the control technique for stabilization purposes, is
basically the extra state variable with input v, as shown in Figure 14. Note that this auxiliary
variable aids in the stability of the novel chaotic system in the presence of input saturation
nonlinearity, which is significant given that this variable is appropriate for implementation
in real physical systems in order to synchronize two identical systems, which in this case
are essentially the novel chaotic system presented in this paper.
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5.3. Experimental Results Analysis

The experimental results for stabilization and control purposes, as explained in this
section, numerically corroborate the results obtained in this study. It is possible to see how
the variables reach equilibrium while suppressing chaotic behavior in the stabilization
experiment. The three variables x, y, and z of the stabilized chaotic system are shown in
Figure 5 how these variables reach the equilibrium point in a fast and accurate way in
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approximately 1 s despite the input saturation that is found in the chaotic system input
providing a stable response in finite time. This is an important consideration, especially
if this controller is used in a real-world physical system. It is demonstrated in Figure 1
how the proposed controller drives the state variable to a stable equilibrium rather than,
as shown in Figure 1, to a chaotic region of attraction suppressing the limit cycle. The time
evolution of the input variable U, as shown in Figure 7 depicts how a small control effort
is generated in order to avoid input saturation of the stabilized chaotic system, which
is important because input saturation suppresses some phenomena such as instability
or chattering.

Meanwhile, the evolution in time of the extra additional input variable v and the
state variable « can be seen in Figures 8 and 9 demonstrating that these variables reach
their respective equilibrium until the chaotic system variables are stabilized. In the case
of synchronization, it can be seen how the response system follows the drive variable in
finite time, reducing the error to zero, as shown in Figures 10 and 11, respectively, given
that it is difficult to drive the synchronization error variable in the presence of saturation
while avoiding chattering or instability. It is also important to note in Figure 13 that the
synchronization input variable provides an anti chattering response and a small control
effort in a very short time until the proposed control synchronization law achieves ideal
synchronization. Finally, as in the stabilization case, the variables v and &, as shown in
Figures 14 and 15 depict the time evolution of the auxiliary variables, indicating how these
variables reach the equilibrium.

6. Discussion

Taking into account the theoretical results, note that a novel chaotic system is created
by combining two sigmoidal functions. It can be seen that a chaotic attractor is designed
in which, as confirmed, the domain of attraction of this chaotic system is the equilibrium
point, resulting in this chaotic system being a self-excited chaotic system. The proposed
novel chaotic system is well suited to modeling many chaotic behaviors observed in nature
and physical systems. The bifurcation diagrams demonstrate the chaotic behavior of this
system as it transitions from a stable to a chaotic regime, and vice versa.

The robust controller is implemented appropriately for stabilization purposes by se-
lecting an appropriate Lyapunov functional. The addition of an additional system provides
the required inputs, which are considered dynamic inputs and include the discontinuity as
part of the overall system input with saturation. The saturation is modeled by implement-
ing the sector condition while accounting for the deadzone nonlinearity and taking into
account the dynamic characteristics of this input nonlinearity. The conditions for obtaining
an appropriate control law are provided by an anti-chattering stabilization control law and
a state feedback input. A similar axiomatic methodology is used to find the robust control
synchronization law by first defining the errors in the system dynamics and then selecting
the appropriate robust control Lyapunov function.

In the case of the novel chaotic system’s robust stabilization, the state feedback con-
troller part moves the eigenvalues of the linearized novel chaotic system to a point where
the state variables reach equilibrium in finite time, while the robust controller part switches
this input variable to obtain a fast, accurate, and reliable response. Something similar hap-
pens with this novel chaotic system’s robust control synchronization law. The linearized
error system’s eigenvalues are moved to an appropriate position in order to drive this error
variable to zero in finite time. A state feedback controller is implemented to reach the zero
value of the state variable while avoiding the input system chattering.

Meanwhile, in the experimental results section, it is possible to see how the robust
controller drives the state variables of the stabilized system to the equilibrium point in
finite time, with small peaks, and without chattering. When input saturation is detected
in the system input, the small control effort generated by the variables U and v is crucial.
Despite the fact that the input saturates at very low values, the system variables reach the
equilibrium point in finite time, avoiding instability and, more importantly, poor perfor-
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mance. As seen in the synchronization case of this drive and response novel chaotic system,
the drive and response variables are synchronized more quickly, accurately reaching the
zero error between these variables. In the case of synchronization, saturation has no ef-
fect on synchronization performance, avoiding instability or poor performance, which is
desirable given that saturation is almost unavoidable in most physical systems.

Given the vast number of physical systems in which the chaos phenomenon can
be found, the results presented in this study can be implemented without difficulty in
any of these physical systems represented or modeled as dynamic systems. One of the
main advantages is that the chaos suppression robust control strategy for stabilization
effectively eliminates nonlinear saturation effects on this novel chaotic system, such as
instability of degraded performance, while also efficiently stabilizing the novel chaotic
system’s equilibrium points.

Apart from whether this control strategy is implemented in any type of physical
system, the results provided in this research study can be extended to various types
of physical systems in which the chaotic phenomenon is found, such as the physical
systems mentioned previously in this research study. These results can be modified so
that the robust controller can be implemented in other systems where hyperchaos or other
phenomena are present. Note that the results obtained in this study can be extended
for chaos synchronization in various types of systems in which not only two systems
are synchronized, because it can be extended to chaos synchronization for multi-coupled
chaotic systems. Furthermore, the results obtained in this study can be easily extended
to complex chaotic networks, where it is important to note that robust control is always
necessary given the vast number of physical systems in which chaotic synchronization
is required.

7. Conclusions

This paper presents a novel chaotic attractor, as well as its robust control stabilization
and synchronization with input saturation. First, the novel attractor is presented, in which
two sigmoidal functions are implemented to generate chaotic dynamics, followed by a
bifurcation analysis in which the stability and chaotic regimen regions for the novel chaotic
attractor’s parameters 4, b, and d are presented. The phase portraits plot confirms that
this chaotic attractor reaches the domain of attraction at the equilibrium point, despite the
fact that it is self-excited. The control laws are obtained by using an extra system after a
robust controller for stabilization purposes is derived by considering the sector condition
property of the saturation input and implementing a robust control Lyapunov function.
To obtain the synchronization control law, a similar methodology is used, but this time
the synchronization error variable is established. Finally, two numerical experiments are
carried out in conjunction with the research study’s respective discussions and conclusions.
The results presented in this numerical experiment section demonstrate that, in the sta-
bilization case, the novel chaotic system can be driven to the equilibrium points in finite
time with very little control effort and no oscillation or chattering. Note that the resulting
control stabilization law can be efficiently implemented even in many different types of
physical systems, such as electrical mechanical or other systems found in exact sciences.
As in the stabilization case, it is demonstrated that in the synchronization case, an efficient
robust control synchronization law is used, even in the presence of an input saturation
nonlinearity in the response system, and that synchronization between the drive and re-
sponse systems is achieved faster and more accurately. A gain matrix will be included in
the stabilization and control laws in the future to be tuned by linear matrix inequalities.
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Abstract: This paper proposes a U-Model-Based Two-Degree-of-Freedom Internal Model Control
(UTDEF-IMC) structure with strength in nonlinear dynamic inversion, and separation of tracking
design and robustness design. This approach can effectively accommodate modeling error and distur-
bance while removing those widely used linearization techniques for nonlinear plants/processes. To
assure the expansion and applications, it analyses the key properties associated with the UTDF-IMC.
For initial benchmark testing, computational experiments are conducted using MATLAB/Simulink
for two mismatched linear and nonlinear plants. Further tests consider an industrial system, in
which the IMC of a Permanent Magnet Synchronous Motor (PMSM) is simulated to demonstrate the
effectiveness of the design procedure for potential industrial applications.

Keywords: Internal Model Control (IMC); U-model; U-model-based control (U-control); Two-Degree-
of-Freedom IMC (TDF-IMC); dynamic inversion; invariance entropy

1. Introduction

With the development of science and technology, the scale of industrial production in
almost all fields, such as petrochemical, metallurgy, electric power, machinery, aerospace,
etc. continues to expand, and the corresponding operational systems have had a demand for
high quality and better quantity [1], which is inevitably at the cost of bringing complexity
to the control system design. These challenges have motivated academic research and
industrial development.

The classical Proportional Integral Derivative (PID) control and its integrations with
various control strategies such as fuzzy PID [2], and neural PID [3] have been widely used
in industrial systems. Although these control strategies can cope with complexities such
as uncertainty, nonlinear dynamics, and large time delays, it is still worthwhile seeking
other effective control system design methodologies to further upgrade control system
performance while improving the design effectiveness. For example, a commonly observed
practical situation, is that the success of tuning PID controller parameters often depends on
a combination of the applicant’s engineering experience and tedious effort on trial and error.
Although this is workable, this unsystematically experienced approach often causes largely
inefficient use of human resource and equipment to obtain satisfactory tuning results.

For this paper’s interest, model validity is a fundamental basis for model-based con-
trol system design. A better model makes control system design and tuning easier/more
efficient. However, for most engineering systems, there can be difficulties in obtaining
accurate plant/process models, primarily due to equipment diversity and environment
complexity; such as internal uncertainties and external disturbances. Even though a mathe-
matical model can be established from physical principles (such as energy conservation
law) and/or data driven (identification), it is usually taken as nominal reference (nominal
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model is an approximate description to accurate model). There are two main streams in
dealing with such model uncertainties, i.e., adaptive control and robust control. This paper
will follow the route of robust control.

The other practical topic is digital control, which has been used in almost all modern
control engineering systems. To deal with a digital channel between the sensor and the
controller, entropy [4], the concepts, terminologies, and techniques, has been adopted
in digital control systems. The invariance entropy [5] has been used to determine the
smallest average rate of information transmission to guarantee a considered subset of the
state-space invariant to achieve the integrated control system performance. Accordingly
control system design in connection to online applications, with potential contribution to
this field, is probably making the controllers more efficient in online computation, so that
reduces the burden to the communication capacity or at least does not increase significantly
the information processing complexity.

Internal Model Control (IMC) [6,7] has been widely accepted as an efficient robust
control approach. IMC selects the model inverse as the controller and integrates a robust
filter to control an explicit plant/process model. The IMC structure is characterized with (1)
capable robustness to overcome model uncertainties and system disturbances, (2) effective
procedures for designing and tuning, (3) successful application across different indus-
tries [8-10]. However, the control performance of classical IMC is not desirable, because the
adjustable parameters only exist in the filter. At the same time, higher robustness demand
could degrade tracking performance [11], which must compromise with some of the other
performances. Although a Two-Degree-of-Freedom IMC (TDF-IMC) structure can solve
the aforementioned problems with the classical IMC structure, its control performance still
cannot be separately designed [12-14].

When a linear model is completely reversible, the design of linear IMC is straightfor-
ward to take the controller as the inverse of the model and select a suitable filter. Even
though when the model is not completely reversible, the model can be decomposed into
reversible parts and irreversible parts, in which the inverse of the reversible part is taken
as the controller. Appropriate filter selection can then also ensure that the control system
has the smallest output variance for both stabilization and tracking control. However, for
controlling nonlinear plants/processes, these approaches are not applicable, and effective
algorithms for nonlinear dynamic inversion are very limited [15].

To deal with nonlinear control plants/processes, the approaches used by most of
the IMC structures can be divided into (1) linearizing the controlled plants/processes
and using linear method to invert [16]; (2) using PID [17], neural network [18,19] and
fuzzy control-based [20,21] dynamic inversion; (3) using some numerical tools, such as
the Newton-Raphson method [22]. However, the linearized and the other approximating
modeling methods could lose accurate representation of input-output relationship and
degrade the performance of the designed systems. Therefore, deriving the nonlinear model
inversion and enabling the two performance indicators (i.e., tracking and robustness) of
the IMC structure to be independently designed are the main challenges and focuses in
this paper. Accordingly, this study proposes a framework of U-Model-Based Two-Degree-
of-Freedom Internal Model Control (U-TDF-IMC) of nonlinear dynamic systems

U-model is a derived control-oriented model set to map almost all classical models
into their U-model realization, and converts classical models into controller output u-based
with time-varying parameters [23] expressions. U-model establishes a platform for solution
of dynamic inversion by solving roots of polynomial equations, which is more generally
attractive compared to the other ad hoc approaches/algorithms [24]. U-model-based
control [25] (denoted as ‘U-control’ thereafter), takes advantages of U-model in dynamic
inversion with the following characteristics:

1.  Design control systems in a universal procedure, separate two dynamic inversions,
invariant controller implementation by inversing specified system performance in a
feedback configuration and plant utilization by plant inversion. These two designs
are parallel and separable;
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2. The difference in U-control between linear models and nonlinear models is the so-
lution with the first-order or higher-order polynomial root-solving. The difference
in U-control between polynomial models and state-space models is the one-layer or
multi-layer polynomial root-solving;

3. U-control is seamlessly supplemented to the other exist control schemes, for example
U-Pole Placement Control (UPPC) [26], U-General Predictive Control (UGPC) [27],
U-Neuro-Control (UNC) [28], U-Total Nonlinear Control (UNLC) [23], and U-Internal
Model Control (UIMC) [29].

This paper is aimed at using U-control, an enhanced tool supplemented to classi-
cal approaches, to integrate the strengths exhibited in U-control and IMC to provide an
enhanced version of IMC with strength in system configuration and nonlinear dynamic
inversion. To further improve TDF-IMC, this study expands the previous IMC work [29,30]
by effectively introducing U-model-based dynamic inversion within a revised system
structure configuration. By doing so, the new framework presents a new U-model-based
Two-Degree-of-Freedom IMC (UTDEF-IMC) structure to achieve the completely indepen-
dent design in rejecting disturbance and tracking operational set-point. Compared with
the classical IMC and TDF-IMC, this proposed structure has better control performance
and more convenient tuning methods without introducing additional design work and
maintaining the same hardware configuration. Accordingly, the major impacts of this paper
are outlined below:

1.  Propose a general U-model-based Two-Degree-of-Freedom IMC (UTDF-IMC) struc-
ture for controlling a class of open-loop stable polynomial/state-space modeled linear
and nonlinear dynamic plants. The new control system structure accommodates both
linear and nonlinear plants consistently and separate the tracking control filter design
from robust control filter design.

2. Tailor the UM-dynamic inversion platform [31] in conjunction with IMC, which
removes the necessity of either linearizing the nonlinear model, or converting it to
a quasi-linear parameter-varying (quasi-LPV) model in advance. This UM-dynamic
inversion platform directly provides algorithms dealing with all types of inversions
in IMC structured systems.

3.  Analyze the designed UTDF-IMC control system properties to provide a valid refer-
ence for future study expansions and applications.

4. Verify the control system performance through benchmark tests of simulated case
studies and illustrate application procedure from an industrial case demonstration.

For the remainder of the paper, Section 2 presents the basis of using IMC and U-
control for the next step development of the new UTDF-IMC system structure. Section 3
elaborates on the principle of TDF-IMC structure and establishes the U-model-based TDEF-
IMC (UTDF-IMC) framework; consequently, it analyses the control system properties.
Section 4 showcases two computational investigations to benchmark test/demonstrate the
proposed UTDEF-IMC system performance. Then an industrial backgrounded permanent
magnet synchronous motors (PMSM) system is added to demonstrate the application
procedure and the comparative studies. Section 5 concludes this study with key findings
and observations.

2. Preliminaries
2.1. Internal Model Control (IMC)

A classical IMC control scheme [7] is shown in Figure 1a, in which the plants/process
P is approximated by model Py (specifically known as internal model) and the controller
Q. Figure 1b shows the equivalently rearranged IMC structure, which the controller is
expressed in the inner loop
Q

CZl*QPO

)
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-----------------------------

(@)

Figure 1. IMC method structure (a) Internal model control structure; (b) Equivalent IMC structure.

For a given set-point reference r, the control system is designed to keep the output y

following a pre-specified output response y,; (Figure 1a) with the desired transient and
steady-state performance. With reference to Figure 1a,

Plant output: b X ;
y:1+Q((2P—P0)r+1+Q_(I?—OPo) @
Error output:
e:1+Q(;—Po)(rd) ©
Controller output:
=g ¥
Remark 1. (2) can also be rewritten as:
y=uar+pd 5)
where & = % specifies tracking performance and p = % denotes the contribution

to robustness. These two weights meet the condition of « + p = 1.

The main features of IMC [7] include:

Dual stability: For P = Py and d = 0, and y = y;,, the feedback error signal e is
obviously zero. IMC system becomes an open-loop structure and both controller Q
and plant P stable.

Perfect control: This requests plant P = Py minimum-phase and invertible and
controller as the model inverse Q = Py~!. Accordingly (2) becomes:

Py 1P 1—Py 1P
= r+
1+P0_1P7P0_1P0 1+P0_1(P7P0)

y d=r,anda=1,=0 6)

Augmented robust IMC is shown in Figure 2. It decomposes model and dynamic
inversion by factorizing Py into Py4 and Py_, namely: Py = Py Py, where Py, is
the part containing pure delay and uncertain zero, and Py_ is the minimum-phase
part. There are certain factorization techniques, such as simple factorization, all-pass
factorization [32]. Hence, the controller is kept as the inverse of the plant/process
model with invertible portion, i.e.,

Q1 =+5— (7)
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Figure 2. Robust IMC structure.

Filter: When designing the IMC controller, it should add a low-pass filter for the
inverse of the factorized minimum-phase model to ensure the controller be proper and
robust to against the model mismatching and disturbance. Define the IMC controller and
the filter as:

Q=/fQ ®)

1
f:m )

where p is the order of the filter, normally assigned with a large value to ensure Q1 be
proper or semi-proper; A is the time constant, the sole design parameter of the controller
and is inversely proportional to the closed-loop response speed. Therefore, A is a trade-off
between the performances.

Remark 2. Substituting (7) and (8) into (2) obtains the plant output:

P - PO%PO PO%P 1— Py

1+

d= r+ d (10)

r+
Pog-Po  1+gP—g =P (1= fRo)+ =P (1= fPo)+¢-P

To track the reference signal with a faster speed and effectively reject the modeling
errors and system disturbance, it requires output (10) satisfying fPy; = 1 necessarily,
which is achieved by selecting A in the filter.

2.2. U-Model-Based Control (U-Control)
2.2.1. U-Models

A general U-polynomial-model of Gp [33], with a triplet of (y(¢), u(t),a(t)), y(t) € R,
u(t) € Ra(t) € R for the output, input, and time-varying parameter vector respectively
at time t € R, is defined for Single-Input and Single-Output (SISO) dynamic processes as

/ j
(1;4) :ATL{:Ea]-f]( W ),MzN (11)
j=0
where (Z;/I) and (I;]> are the Mth and Nth order derivatives of the plant output y and

the plant input u respectively. The time-varying parameter «; € R™ absorbing all other out-

put terms such as (myl) ey ] GRMandinputterms [ (n;l) e € RN,

j
Function fj(x) is associated with the input ( (IL\Z) ) AT = [ay ,..., a; ] and
U= fo ,..., fj ] aretheoperators mapping the underlying input, output, and param-

eters into the condensed vector expressions. To illustrate the U-representation of classical
models, consider a general polynomial model:

= (1= )g+ (1+9?) sin(u) + (143 )u2 +y+ (y+ 37 ) (12)
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Its U-model is transformed with the U-mappings of A and U

§ = aofo(u) +arfi(u) + aafo(u)? + azfa(u)’
- (1 - e*M)y—&-y, fo(u) =1
wy =1+y%, fi(u) = sin(u) (13)
ay =1 +y2, fo(u?) = u?
as=y+i’, (1) =1

X0

Remark 3. For representation to classical linear models, assign degree | = 1 and function
fo(u) =1, fi(u) = u, then the linear U-model is expressed with

(];/I) =g+ a7 (IL\Z) , M>N (14)

Remark 4. For U-stats space-models, expand the single layer U-polynomial model (11) into
multi-layer systems of polynomials [31].

2.2.2. UM-Dynamic Inversion

For determining the output u of G, !, a general UM-dynamic inversion algorithm

is developed [19] to determine one of the solutions of (IL\Z) from solving the following
general polynomial equation
| )
-1, (N) _ (M) (N _
Gpre 1 €y —];Ja]-f]- , )=0OM=N (15)

For the solution exist, the systems must be Bounded Input and Bounded Output
(BIBO) stable and no unstable zero dynamic (nonminimum phase). The solution platform
has been expanded including the root-solving algorithms for continuous/discrete time,
linear/nonlinear, polynomial/state-space models [31]. For online root-solving, Zhu [34]
has proposed Newton—-Raphson iterative algorithm.

2.2.3. U-Control

Let G, be a general representation of both polynomial and state-space-based linear
and nonlinear models for dynamic plants. In assumption, the plant has most properties as
those requested in the other classical works [35]. Consequently,

a. Model of G, is invertible, i.e., G;l exists

b.  Meet the continuity of Lipschitz, G, and its inverse G, are globally unified and
diffeomorphic in R", i.e.,

1Gp(x1) = P(x2)[| < 11Gpllx1 — x2l, Vx1,x2 € RM|Gp (x1) — Gp' (x2) | < 72 Gpll|x1 — x|, Vg, x2 € R® - (16)

where x1, x are the states while G, in the expression of state-space equation, 1 and
are the Lipschitz coefficients. This study takes SISO (input u € R! and output y € R})
prototype in consideration. U-control system framework [25] is shown in Figure 3, in
which F is for U-control system structure, G is a linear invariant controller to be designed,
and Gljl is the inverter of the controlled plant Gp to be designed as well. It is noted that
U-control framework is applicable to various plants/processes when the dynamic inverse
G;l exist.
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p

Figure 3. U-control system framework.

The U-control system is structured

Y= (£.¢(6a,Gr").Gp) & ¥ = (F,Ga, Gyp) (17)

where C(x) is a set to be designed and G;, = G;le.

In general, the design of U-control system can be divided into two separate designs:
1.  Designed dynamic inverter G1§1 to achieve G1§1Gp = 1. This gives }_ = (F, G1)
2. Design invariant controller G.1, which is a typically linear controller. Let the specified

closed-loop performance in transfer function G, in form of G = 1fg -, which can be
c

comfortably assigned using damping ratio { and undamped natural frequency wy, for
linear system dynamic/steady-state response.

3. U-Model-Based Two-Degree-of-Freedom IMC (UTDF-IMC)
3.1. Classical Two-Degree-of-Freedom IMC (TDF-IMC) Structure

Figure 4 shows a TDF-IMC structure to be incorporated with U-control, which com-
prises feedback controller F added in the external loop within the classical IMC structure.
Clearly, if the feedback filter F is a unit constant, this structure is the same as that in
Figure 1a.

d
r e u l y
PO Ym
| ve
F

Figure 4. IMC structure with the feedback filter.
From Figure 4, the system output y = y,; + y.. Therefore,
y=(r—yeF)QPy+ye = rQPy + y.(1 — FQP) (18)

In the TDF-IMC system, if the controlled plant is a minimum-phase system, then the
controller Q(s) = f(s)/Py(s). The output of (18) can be re-organised as:

y=rf+ye(1-Ef) (19)
The explicit input/output relationships from Figure 4 can be written as follows:
Q
_ _ 2
W= - yro 4F) (20)
QP 1— QFPy

r—+ d (21)
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If the controlled system does not contain uncertain parameters or control disturbance,
then y, = 0, otherwise, |y.| > 0. From (19), rf determines the system tracking performance,
while y.(1 — F) f determines the system robustness.

To achieve desired control performance, a condition must hold true below:

. . -1
lim f(t) =1, im £77(F(s)f(s)) = 1 (22)
where £71(x) is the inverse Laplace transform operator, F(s) and f(s) are the Laplace
functions of filters F and f respectively. Thus, output y equals to the reference r eventually,
and the system disturbance and modeling errors will be eliminated. The performance of
the IMC control system will depend on these two filters F and f. The setting time and rise
time of these two filters should be as short as possible. However, response speed which are

too fast will cause the amplitude of the controller output signal to increase sharply.
From Figure 4, the controller Q(s) output u is:

u=(r—y.F)Q (23)

From (20), when controller Q is determined, the faster the response of the filter F,
the larger value the initial controller output u. In general, this can be observed from (19)
that the tracking ability and robustness of IMC system cannot be separately designed, as
well as its design flexibility is relatively limited. Therefore, this is one of paper aims, to
separate IMC’s designing of tracking ability control and robustness and improve its design
effectiveness without affecting its desired control performance.

3.2. U-Model-Based Two-Degree-of-Freedom IMC (UTDF-IMC) Structure

Based on the IMC problem stated in introduction and TDF-IMC analysis in Section 3.1,
this paper changes the classical TDF-IMC structure in Figure 4 to a UTDF-IMC structure as
shown in Figure 5.

S d
r e | o u l y

y m

Ye

Figure 5. U-model-based Two-Degree-of-Freedom IMC structure.

In Figure 5, the original controller Q in classical TDF-IMC shown in Figure 4 has been
split into two parts: the feedforward filter f and the inversion P, ! of the U-realization
controlled plant model P, where the original IMC'’s controller Q = f Py~ L. In contrast
to the classical IMC structure, feedforward filter f appears outside the system feedback
loop. However, generally the plant model inversion Py ! cannot exist alone because of its
irrationality and unrealizable property. For polynomial-based modeling of the controlled
plant expressed by Laplace transfer function, its inversion will make the order of the
numerator higher than the order of the denominator, which cannot be achieved in the
actual control system. Therefore, this paper introduces UM-dynamic inversion algorithm
to design the plant’s inversion part in UTDF-IMC structure.

From Figure 5, the system output y = y,; + y.. Therefore,

y=(rf —yeF)P, 'Py+ye = rf +y.(1 - Ff) (24)
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3.3. UTDF-IMC Design Procedures

Figure 5 presents the U-model-based Two-Degree-of-Freedom IMC system framework,

where f and F are the designed feedforward and feedback filters, respectively. P is the
controlled plant or process, which is allowed to be linear or nonlinear. P, is U-model-based
approximation to the controlled plant P. P, ! is the inverter designed by the U-model-
based root-solving algorithm. From (15), the parameters absorbed by «; can be obtained
from the output signal y,, of the plant model P, (s) and controller output u. In general,
similar to the classical IMC design, UTDE-IMC system design has the following two steps:

1.

Assume the controlled plant or process P is stable and bounded, and its inverse P~
exists. Use U-model to describe P or convert the plant model P, into its U-realization
P,. The specific U-modeling process can refer to Section 2.1. In contrast to the classical
IMC or classical TDF-IMC, U-realization of the original model Py can comfortably
cover nonlinear dynamics, therefore, remove linearization restrictions.

Design filters f and F according to system control performance requirements, then
re-optimize the parameters of the filters according to the controller output limit. The
feedforward filter determines the system’s set-point tracking ability (response time)
while the feedback filter determines the system’s robustness. Because the control
system performance is completely designed according to the two filters independently,
designers can select the appropriate filters according to performance requirements,
hardware limitations, controller output limitations, etc.

3.4. Property Analysis

1.

Property 1 (Dual stability): Assume the plant model is perfectly matched (P, = P)
and system disturbance is absent d = 0, then from Table 1, the closed-loop stability is
characterized by the stability of the plant P(P~!) and the feedforward filter f. In this
case, the system output signal will be: y = rf.

Property 2 (Perfect control): Assume that the dynamic inverter P, ! is satisfied with
P, = P and P stable, then the closed-loop system is stable and perfectly controlled.
In this case, the system outputis y = rf + (1 — F)d. The faster the response speed of
feedback filter F, the better the system robustness.

Property 3 (Zero offset): Assume that the steady-state gain of the controller equals to
steady-state gain of the inverse model, and this closed-loop system is input-output
stable with this controller, then offset free control is obtained asymptotically to step
or ramp type inputs and disturbances.

Property 4: Separability of designing the tracking filter and the robust filter: This is
shown in the tables, which UTDE-IMC has no product of the two filters Ff.

Table 1. Input/output comparison of IMC, TDF-IMC, and UTDF-IMC against disturbance.

Controller Output u System Output y
— 1 (pf_ — fP P(1-f)
MC U= pr-myr 7 —4f) Y= mr-myr’ T POFO{%P}%W
— 1 ,
TDF-IMC U= POJF(PEPO)Ff(rf—de) y= P0+(P—P0)Ffr+ Po+O(P7Po)Ff
UTDF-IMC U= prp-pyr(7f — dF) Y = porher T rtoryrd

where P, is the U-realization of P,

Comparison with IMC and TDF-IMC, Tables 1 and 2 list the three IMC types of

control system configurations against disturbance and model mismatching, respectively.
For UTDF-IMC the typical properties are analyzed below.
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Table 2. Output comparison of IMC, TDF-IMC, and UTDF-IMC against model mismatching.

System Output y

IMC y=rf—=0=f)ye
TDF-IMC y=rf—1—=Ff)ye
UTDF-IMC y=rf+1—-F)y.

From Table 1, the factor associated with d is called the disturbance rejection designed.
It is clear that this rejection part only depends on the feedforward filter f in IMC, depends
on two filters F and f in TDF-IMC but only depends on the feedback filter F in UTDF-IMC
structure. In case of model mismatch, it can also use the output error signal y, to analyze
the system performance in Table 2:

From Table 2, regarding UTDF-IMC, the function associated with y, is robustness
designed, where y,. absorbs all whole modeling error and system disturbance; the function
associated with signal r is for tracking designed. Obviously, when the controller equals
to plant model inversion, all the tracking design only depends on the feedforward filter f
and robustness designed is the same as previously discussed. In summary, compared with
the classical IMC and TDF-IMC structure, the main differences of UTDF-IMC structure are
as follows:

1. Classical TDF-IMC structure can make tracking ability and robustness be designed
separately but not wholly independent due to the product of Ff in robustness spec-
ification. The UTDF-IMC overcomes this shortcoming without resorting to a more
complex structure. Therefore, when the robustness performance of the system is
determined, UTDF-IMC structure will have a faster response speed than the classical
TDF-IMC structure.

2. U-model is used to facilitate control system design, which can be easily to form
an inversion of the plants to cancel both dynamic and nonlinearities. Accordingly,
it converts the nonlinear control system into a linear model-based control with a
nonlinear dynamic inverter.

3. UM-dynamic inversion algorithm is used to design the inversion part in UTDF-IMC
structure, which has a faster convergence speed and allows the inversion part exists
alone properly without the feedforward filter.

4.  This structure where feedforward filter f from outside the control loop allows the
tracking ability and robustness performance to be completely independently de-
signed.

5. The improved control performance is not complicating the system structure and/or
increasing the additional computation burden throughout the design process.

4. Simulation Demonstrations

This simulation demonstration selects three plants to test the proposed U-model-based
TDF-IMC structure. Both plants will be controlled by IMC, TDF-IMC, and UTDF-IMC structure.

4.1. Linear Internal Model (Also Called Nominal Model in the Study)

wnz 1

T A2 wns +wnl P +35+1
This is characterized with the damping ratio { = 1.5 and the undamped natural
frequency w;, = 1.
For designing the UTDEF-IMC system:

1. Convert plant model (25) into its corresponding U-model:

Py(s)

(25)

Pu(s): y=u—3y—y=uapfo(u)+ayf1(u)
xg = =3y — %, fo(u’) =1 (26)
N = 1, f1(u) =Uu
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2. Design the inverter of the plant model P, (s):
. .11
u:y+3yg —|—ys—2 (27)

3. Design feedforward filter f(s) and feedback filter F(s)

In this paper, based on the UTDF-IMC system design procedure in Section 3.2,

to make the system achieve a fast response speed and no overshoot, f(s) = 0 2:“)2

and F(s) = (0.1:“)2. To compare control performance fairly, TDF-IMC system uses the

same filters as UTDF-IMC. To ensure the same robustness, the classical IMC system uses
(o) — 1
fils) = (0.1s+1)
To test the performance of the designed control system, assume the plant a 2nd order
dynamic with { = 1 and w, = 0.5, and an external disturbance added at the system
output, i.e.,

1
P(s) = ————
)= et
The system disturbance is a band-limit white noise with changing rate of 1hz, system
signal-noise ratio (SNR) of 26.9db. The noise sequence is shown in Figure 6.

+D(s) (28)

Figure 6. System disturbance noise.

Figure 7 shows the simulation results under the three different IMC schemes. From
Figure 7a,b, UTDF-IMC and IMC have better robustness performance in rejection of system
disturbance and modeling error. IMC system has a faster tracking speed because of
its fast respond-speed filter; however due to modeling errors, stronger tracking ability
brings larger overshoot. The simulation results also demonstrate the analysis in Section 3.4.
From Figure 7c, UTDF-IMC structure does not increase the maximum peak output of the
controller compared with TDF-IMC structure. However, fast tracking speed also brings
a large controller output peak in the IMC system, which may cause the controller to
overload in real-time applications. Consider the control performance and controller load,
in case of selecting the same filters (control parameters), UTDF-IMC system shows better
control performance.
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Figure 7. Simulation results of plantl (a) System outputs; (b) Tracking errors; (c) Controller outputs.

4.2. Nonlinear Internal Model

Po: = ail” + bii” — cit — ky + ¢ (29)
where the coefficientsa = b =c =1, k = 0.5, then Py(s) = i 4t — i — 0.5y + e*.
For designing the UTDF-IMC system,

1.  Convert plant model (29) into its corresponding U-model:

P, (S) : y = lx()fo(il) +a1f1 (u) +axfr (Ll) + 063f3(il)
ag = —05yL + e, f (uo) -1

v =1 fi(u) =—u (30)
w =1, fi(i*) =i

.3 -3
az3=1, filu )=u

2. Design the inverter of the plant model P, (s):

u = root (ao fo (it) + ay f1 (it) + aofo (i) + azfs (1) —y = 0) (31)
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It should be noted that because Equation (32) is a cubic equation of one variable about
1, to ensure that the controller output is rational, the real root of Equation (32) is selected
as the output of the controller.

3. Design feedforward filter f(s) and feedback filter F(s)

Same as previous work, to make the system achieve a fast response speed and no

overshoot, this paper chooses f(s) = 0 1sl+1)2 and F(s) = 0 251“)2 for the plant 2. To

compare control performance fairly, TDF-IMC system uses the same filters as UTDF-IMC.

To ensure the same tracking speed, the classical IMC system uses f'(s) = 0 2514_1)2 .

To demonstrate the performance of the designed control system, assume plant with
the same structure as the IM, but ¢ = 1.4 and k = 0.8, and an external noise added at the
system output, i.e.,

P(s): y=1 +14i> —ii— 08y +e"+d (32)

The system noise is a band-limit white noise with changing rate of 1 hz and SNR of
20.9 db. The noise sequence is shown in Figure 8.

0.25} { { { { { } } ! <
0.2

I

r

|
0.15

|

|

|

|

| SO WA WS M

T
W P RIS " |

Figure 8. System noise.

Figure 9a—c show the simulation results under the three IMC schemes, Figure 9d shows
the tracking reference signal. From Figure 9a,b, UTDF-IMC both has a better robustness
performance in rejection of system disturbance and modeling error and faster tracking
speed. When the reference signal suddenly jumps sharply, the response of TDE-IMC system
also shakes sharply although it has the same filters as UTDF-IMC’s. These simulation
results demonstrate the analysis in Section 3.4. From Figure 9c, UTDF-IMC structure does
not increase the burden on the controller, although it has a better control performance. The
outputs of controller show that the UTDF-IMC is not overloaded. Once again, consider
the control performance and controller load, in case of selecting the same filters (control
parameters), UTDF-IMC system shows better control performance.

4.3. Control of PMISM System

In the past few decades, Permanent Magnet Synchronous Motors (PMSM) have been
widely used in industry because of their high-power density, high efficiency, and large
torque inertia ratio. PMSM is essentially a nonlinear Multiple-Input-Multiple-Output
(MIMO) system, so parameter uncertainty and interference acting on torque will make
it difficult for PMSM control systems to obtain higher control performance [36]. Most
advanced control strategies [37-39] for PMSM servo system position control ignore the
nonlinear term in the speed equation, assuming that A=B and load torque disturbance
does not change. Therefore, it is still a challenge to provide an efficient set-point value
tracking control strategy for a general PMSM system affected by time-varying system
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disturbance and uncertain parameters. Therefore, this section applies the proposed UTDF-
IMC structure combined with the U-modeling of the PMSM system to achieve high-
precision set-point robust tracking control of the PMSM operation.

+ UTDF-IMC/1
TOF-MC/1

| — — —iMcrt
5 : % L | Reference |+ . g

— — — Reference
8 I
|
s 1 L
; |
; [
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i
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\
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Figure 9. Simulation results of plant2 (a) System outputs; (b) Tracking errors; (c) Controller outputs;
(d) Tracking reference.

4.3.1. Modeling of PMSM System

It should be noted that the permanent magnets used in the PMSM are a type of
modern rare-earth varieties with high resistivity, so the induced current in the rotor can be
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negligible. The model of the PMSM is based on s number of equations in the d-q reference
frame [40].
The electric torque of the PMSM is:

Te = 3p[@oig + (La — Lg)igig] /2 (33)
And its motor dynamics can be modeling as:

T, = Ty + Bw; + JAwy (34)

The relationship between voltages and currents in motor are:

Vil | Re+LiA —perq iy 0

[ v, ] = [ pwrLy  Re+Ld || iy | | pw,, (35)
The rotor flux rotates at rotor speed w; and is positioned by the rotor angular position:
6 = [ wt (36)

Therefore, the PMSM in the rotating d-g reference frame can be modeled in the follow-
ing state-space equation [41],

a0 _ o,
dw, __ 3pPy - : B 1
dtr — 2] lq + 27 (Ld Lq)ldlq — TCU;/ — TTL (37)
‘fiif—f—zd+ qlqwr+L Vy
di R L D,
— PLq4 PLo 1
@ = Lyl T wr — o wr t Vg

where

A: differential operator (%)

6, and w;: the rotor angular position and rotor speed

ig, ig and V, Vj: stator currents and voltages in d-q reference frame

Ly and L, : axes inductances in d-q reference frame

Tr: load torque, ®y:rotor flux, J: inertia, Rs: stator resistance, B: viscous friction
coefficient and p: number of pole pairs.

The design aim is controlling voltages V; and V; in (37) to make rotor position 0, track a
desired constant reference position 8; and the current i; is regulated to zero asymptotically,
concretely, this PMSM control system is two-input two-output with u = [u3 us] = [V, V]

and y = [y1 y2] = [0 i4). The same as used [41], the commonly used nonlinear load torque
disturbance to test the system performance is generated by the following disturbance
dynamic model:
7}1 = 0y
{ 0y = —av; + b(1 — 0120, (38)

where v; = T is the solution of this Van der Pol oscillator.
Let
X1 = Gr,xz = Wy, X3 =14,X4 =g
3pd,
a = g] ,ﬂz = z] (Ld Lg), a3 = %04 =7 (39)
bl ld/ b2 ﬂ/ b3 = =

R
1= f;/CZ = Tqrc3 - I ,C
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Then system (37) can be rewritten into standard state-space equation of:

5c1:x2
X9 = A1X4 + ArX3X4 — A3X7 — 40 =x1+d
2= 1%y 2X3X4 3X2 401 4 | 1 (40)
x3 = —b1x3 + baxzxy + b3uy Y2 = X3
X4 = —C1X4 — CpX3Xp — C3Xp + C4lp

where d is the system disturbance. Linearize system (40) gives:

¥=AX+ B, 7=Cx+d (41)
0 1 0 0 0 0
_ 0 —a3 a 0 B 0 0

where A = 0 by by 0 , B = by 0 and
0 0 0 —C1 0 C3

1 0 0 O
C= [ 00 10
4.3.2. Simulation Test

In this section, the following three controllers are compared with simulation tests.

[ —

a. IMC: The filter time parameter shown in equation (9) is chosen as A = 0.01, use
linearization to approximate the inverse of PMSM.

b.  TDF-IMC: Based on the structure in Figure 4, the feedforward filter and feedback
filter are chosen as f = (1+01.1s)” F= (1+0.1015)
the inverse of PMSM.

C. UTPE-IMC: To test the performance of UTDF-IMC fairly, based on the structure

in Figure 5, the feed forward filter and feedback filter are chosen as f = a +01.1s)7 ,
F p—

+, use UM-dynamic inversion to design

m, use UM-dynamic inversion to design the inverse of PMSM.

Comparison test of controller a and controller c is to demonstrate the superiority of
UM-dynamic inversion algorithm for modeling nonlinear controlled plants/processed
and inversion calculation, and comparison test of controller b and controller ¢ is to
show the efficiency of the proposed UTPF-IMC structure under the same modeling
and calculation accuracy. The nominal values of PMSM parameters [41] for the sim-
ulations are p = 3, Ry = 1.2 Q, &, = 0.18 Vs/rad, L; = 0.011 H, L, = 0.015 H,
B = 0.0001 Nms/rad ] = 0.006 kng. Choose a =9, b = 1. The initial values are chosen
as follows: 6,(0) = O rad, w,(0) = Orad/s, i3(0) = 0 A, i,(0) = 0 A.

4.3.3. Matched Model with System Disturbance

To test the property 2 in Section 3.4 while the process model is perfectly matched, i.e.,
Py = P, assign the step reference signal with tracking positions 0; = 7 rad and current
iy = 0, plus a squared disturbance shown in Figure 10 is added.

0 1 2 3 4 5 6 7 8 9 10

Figure 10. System disturbance.
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Figure 11 shows the simulation results. Clearly, all the controllers can track the desired
set-point and reject the system disturbance but the robustness of TDF-IMC system is worse
than others. IMC system has a faster response speed; however, it has overshoot due to
linearization error. From Figure 11b, when 6, reaches the designated angular position,
rotor speed w; is stabilized at zero. From Figure 11c, all control systems current i; can stay
at 0, but its peak value in IMC system is much larger than the others obviously. These
simulation results demonstrate properties justified in Section 3.4. From Figure 11d,e, the
controller outputs have large peak values at initial phase in the IMC system, especially
output voltage V;.
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Figure 11. Cont.
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Figure 11. Simulation results with only system disturbance (a) Output angular position 6;; (b) Output
rotor speed wy; (c) Output current i4; (d) Controller output voltage V;; (e) Controller output voltage Vj.

4.3.4. Mismatched Model with System Disturbance

In this part, three controllers under a more actual situation (with modeling error)
will be tested to investigate property 3 in Section 3.4. The parameters of PMSM become:
L; =05L,, Ly = 1.3L_q, B = 1.45B, | = 0.75]. The load torque disturbance generated by
(38) with initial values of v1(0) = 0 and v,(0) = 0.1 is also added in PMSM system, which
is shown in Figure 12. System disturbance is the same as previous experiment shown in
Figures 10a and 13 shows the comparative simulation results.
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Figure 12. Load torque disturbance.
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Figure 13. Simulation results with modeling error and disturbance (a) Output angular position 6,;
(b) Output rotor speed wy; (c) Output current iy; (d) Controller output voltage V;; (e) Controller
output voltage V.

From Figure 13a, IMC system has tracking error due to the accuracy limitation of
linearization, which makes IMC unable to reject strong nonlinear load torque disturbance.
Both TDF-IMC and UTDF-IMC systems can achieve the prescribed set-point tracking
performance because UM-dynamic inversion does not lose any nonlinear features. UTDEF-
IMC system has better robustness than TDF-IMC system due to the difference in their
structures. From Figure 13b, when 6, reaches the designated angular position, rotor speed
wy in UTDF-IMC and TDF-IMC systems is stabilized at zero; however, the rotor revolves
slightly in IMC system. From Figure 13c, all current i; staying at zero but its peak value
with IMC is larger than the others, this is because of the cost of faster response speed in
IMC system. From Figure 13d,e, the controller outputs also have large peak values at initial
phase in the IMC system, especially output voltage V;.

In summary, from all simulation results, the control system using the linearization
method does degrade the control performance while there is a strong nonlinear disturbance.
Additionally, by using UM-dynamic inversion, UTDF-IMC and TDE-IMC systems can
achieve reasonably good set-point tracking performance, and UTDF-IMC system has better
robustness than classical TDF-IMC system with the same parameters chosen in the filters.

5. Conclusions

This paper introduces an effective U-model-based Two-Degree-of-Freedom IMC frame-
work. Consistently with the simulation test results of linear and nonlinear controlled plants,
the proposed UTDF-IMC framework shows its strong robustness and effectiveness in con-
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trol system design compared with the classical IMC and TDF-IMC approaches. It is believed
that UTDF-IMC, enhanced with nonlinear dynamic inverter, could be applied more ef-
fectively to a wide range of industrial control system design. Therefore, this study has
established a platform for possible further expansion, for example controlling Multi-Input
and Multi-Output (MIMO) systems, which involves solution challenges with nonlinear set
equation in case of under, full, and over actuated control system design. Another research
direction is to expand the UTDF-IMC to deal with nonminimum phase/unstable zero
dynamic systems.
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Abstract: This paper examines the adaptive control of high-order nonlinear systems with strict-
feedback form. An adaptive fixed-time control scheme is designed for nonlinear systems with
unknown uncertainties. In the design process of a backstepping controller, the Lyapunov function,
an effective controller, and adaptive law are constructed. Combined with the fixed-time Lyapunov
stability criterion, it is proved that the proposed control scheme can ensure the stability of the error
system in finite time, and the convergence time is independent of the initial condition. Finally,
simulation results verify the effectiveness of the proposed control strategy.

Keywords: adaptive fixed-time control; neural network control; strict-feedback high-order nonlin-
ear systems

1. Introduction

Recently, the adaptive trajectory tracking control of uncertain nonlinear systems has
made a significant breakthrough [1-3]. In addition, neural network adaptive control
has become a popular method in the past decades [4-6]. Many remarkable results have
extended to strict-feedback systems, pure-feedback systems, and Brunovsky systems,
and neural networks are combined with various techniques, such as the backstepping
technique, the adaptive technique, and the sliding mode control method [7-9]. The neural
network is used to identify the nonlinear term of the uncertain system, which combines
the advantages of adaptive control. Many excellent articles and monographs have been
published. In the design of these control systems, the neural network is used as a general
approximator to the uncertain nonlinear term of the systems [10-12]. In these systems, the
unknown nonlinear systems are approximate by neural networks, which are valid only
within a compact set, and the neural network controller is designed. Based on Lyapunov
uniformly bounded (UUB) theory, the closed-loop error systems are bounded [13-15].
In order to overcome the problem of uncertainty or disturbance that does not meet the
specific matching conditions, the adaptive controller is usually constructed by combining
backstepping control technology with the adaptive neural network. The high-order system
is divided into multiple subsystems. The virtual controller of the low-order subsystem
is designed first. Then, the recursive design is used until the final design of the neural
network adaptive controller to achieve stability of the system, allowing it to possess the
desired performance indicators.

In practical engineering applications, the research of high-order nonlinear systems has
attracted much attention, and their application is also extensive, for example, as financial
systems, communication systems, biological systems, and machine systems [16-18]. Some
results regarding high-order system control have been obtained following the development
of adding a power integrator [19]. The problems studied in recent years involve robust
control [20,21], adaptive global stabilization [17], global asymptotic stabilization [22],
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output feedback stabilization [23], and state feedback output tracking [16]. Many methods
have been proposed, such as backstepping technology, adaptive technology, sliding mode
control, neural network control, and fuzzy control. However, the above results need to
be precise with some unknown coefficients in the system model. In [20], the unknown
function in the system is described by the mathematical model of an online neural network.
In addition to this pioneering result, high-order system control based on neural networks
has been widely developed and applied [24-26].

In the actual industrial process, such as in missile systems, aircraft attitude control sys-
tems, robot control systems and other industrial control systems, the purpose of controller
design is to achieve stability of the controlled system and maintain it for a limited time.
However, the control method without considering the convergence time cannot achieve
this objective. Compared with the traditional Lyapunov stability theory, the finite-time
Lyapunov stability theory has attracted the attention of many researchers because it can
make the controlled system stable near the equilibrium state in finite time [27-29].

Many researchers combine finite-time control with neural network adaptive control
for nonlinear systems with nonlinear functions and dynamic uncertainties based on back-
stepping and propose many related adaptive finite-time control schemes [30-32]. However,
there are still many problems to be solved in these existing control strategies. For finite-time
control, the convergence time is dependent on the initial condition. However, the ideal
weights of NNs are unknown, and it is difficult to obtain a convergence time. Therefore, to
solve this issue, fixed-time neural network control is an appropriate selection of the control
method.

The high-order systems’ neural network control problem is discussed in the articles [33-35].
The fixed-time neural network adaptive controller is present for nonlinear high-order
systems. Based on the fixed-time adaptive technology, the strict-feedback high-order
system has fixed-time Lyapunov stability based on Lyapunov stability theory [36-38]. The
convergence time of the system can be accurately calculated, and the settling time does not
rely on the initial situation. The main contributions of this article are as follows:

(1) The combination of the neural network adaptive control with fixed-time Lyapunov
stability theory for high-order nonlinear system control problems.

(2) The design of the fixed-time adaptive law of the error systems for neural networks.
The parameters of neural networks are iteratively in fixed time based on the Lyapunov
fixed-time stability theorem.

(3) The convergence time set by control parameters and adaptive law gain parameters
without initial conditions to ensure the control performance.

This article consists of the following sections: in Section 2, a strict-feedback high-order
nonlinear mathematical description of the problem is presented; in Section 3, the adaptive
fixed-time neural network control scheme for the strict-feedback high-order nonlinear
system is designed; in Section 4, simulation results show the effectiveness of the proposed
control strategy; in Section 5, the conclusion of the article is presented.

2. Problem Formation and Preliminaries

Consider the following strict-feedback high-order nonlinear system:

% = gix}iy + fi(%i)

Xp = gnM”” +fn(yn) (1)
y=x
where x; € R is the state of the system; X; = [x1,..., xi]T € R is the state vector of the

system; f;(X;) : R' — R is the unknown smooth function; y € R is the output of the system;
u € Ris the corresponding control input of the system; 7; is the order of the system; g; is
the unknown control gain parameter and satisfies 0 < S < gi < g;, where 8y g; are known
parameters; and the desired trajectory y; and its derivative are continuous and bounded.
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Lemma 1. For positive real numbers p,q,p € (0,1),q9 € (1, 00) with a denominator and nu-
merator, both are odd numbers and positive real numbers p, 0, p1, 02,01, 02; then, the following
inequalities hold:

—p00P < —p 6P+ 4 po 0Pt

_ o 1 @
—0009 < —107T1 + 00T
where p1, p2,01, 02 are determined by p, q, p, o [39].
Lemma 2. For any constant where x,y € R and p, q are odd, the following inequality holds:
-y <yl (¥ ) < gyl ()T T 3)
where & = %andq >p>1,0=¢(22+2).
Proof. Assuming x > y, for any constant, the following equation holds:
Y
Sl A chfl 4)
r—y
where c is an existent constant and satisfies y < ¢ < x; therefore,
-yt =gt (x —y) -
<& x -y
because y < ¢ < x, then ¢¢~! < max{x‘:_l,yg_1} < %671 4y~ therefore,
K=yt <yl (x4 6)
On the other hand, based on & > 1, for x°~1, (x — y)g_l,y‘:_l, we have
el 8
+yo,1<E<2
R I Ch)
’ —{ 22((x -y 4y, 522 7
then, we choose
< (2224 1) (e —y) T ) ®)
therefore,
Ty < (224 2) (- )T Y )
Then,
gl —yl (¥ + ) < gl -yl (e -yt ) (10)

where { = (2672 +2). 0

3. Main Results

In this section, for the strict-feedback high-order nonlinear system, the neural network
is used to identify the nonlinear system, and an adaptive algorithm is used to adjust the
weight coefficient of the neural network. Based on fixed-time Lyapunov stability theory,
a neural network adaptive tracker based on backstepping control strategy is designed so
that the system state can track the preset trajectory. Theoretical proof and a numerical
simulation are given.

The design block diagram of the closed-loop system is shown in Figure 1. For high-
order nonlinear systems with strict-feedback form, a neural network adaptive controller is
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designed to make the system track a given target signal in finite time. The convergence

time is independent of the initial condition to achieve fixed-time Lyapunov stability of the

closed-loop error system. The controller design can be divided into the following N steps:
Step 1: First, for the system, the following variables are selected:

Z1=X1— Y4 (11)

the dynamics of z; can be obtained as

2 =135 + filx) =iy (12)
Moreover, we have
filen) = W¥(Zy) +e1(Z4) (13)
where |e1(x1)| < €1, we have
z1fi(x1) < O1[z1[[[¥(Z1)[ + |z1]es (14)
61 = ||W;]| is defined, and the Lyapunov candidate functional is chosen as
1 1
Vi =225+ 62 1
1=57+ 2 (15)

where 1 > 0 is positive constant, and 51 =0, — 6. Differentiating V; with respect to time
t yields

. . 1~ 5
Vi < gizing' + 0z |[¥(Z1)| + |z fer — 219 + m9191 (16)
The virtual control signal «; is selected as

1

ay = —g;ﬂ <5i8”(21)@1|‘¥(21)|| +

|
=

218%

— 0 4sion(z)|y,] + k2P + 2! 17
|Zl|€1+771 8 (1)|yd| 149 1 1) ( )

Then, based on Lemma 2, we have

Vi <agyln| (‘Zgl

-1 ~ 1~ 1 1
R R AR R URE A IEAS )

where
Zyp = Xp — K1 (19)

then the adaptive law design as
é] = y1<|21]|‘1’1| —pléf —0’1@?) (20)
based on Equation (18), we have

o P )
Vi < @yl (|2 + 2223 7) = [21BUPE (20 4 01+ Brf ][] o1

) n.A +1 +1
—p1616f - (71619;7 — Klzf - llzll]

based on Lemma 1, we have

—010107 < —i 8 u0l ! )
—(Tlglég < —(Ulé?Jrl + l919?+1
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then
vV, < 18,121 (‘zgl ‘ + |22\xg1_1> + 41 — glng + ulef“ - wlggﬂ + 1919?1 Klszrl tlz;”l (23)
Step i: the tracking error can be described as
Zi = Xi — &1 (24)

Based on dynamics and tracking error, the dynamics of z; can be obtained as

g = gixiiy + fi(xi) — & (25)
Moreover, we have
fi(xi) — &y = WIY(Z) +i(Z:) (26)
where |¢;(x;)| < ¢;; we have
zi(fi(%i) — ai—1) < 0|zl ¥ (Zi) || + |zilei (27)

6; = ||W;|| is defined, and the Lyapunov candidate functional is chosen as

1,
= — 28
Vi = 57 +2y19 (28)

where y; > 0 is positive constant and 51 =0, -6, Differentiating V; with respect to time ¢,
yields

. 0: 1 ~x
Vi < gizixj' g + 0ilzil [[Y(Z) || + |zilei + ;9191‘ (29)
1

The virtual control signal «; is designed as

. — i—1—1 i1—1 . A
1 Ciflslg”(zi>gi71|zi71|(Z? A )+szgn(zi)9,»||‘1’(zi)||
n; = —gi i (30)
+\z,|e ﬂ; —I—Kzz —|—lZ

then, based on Lemma 2, we have

' _ 11 _ , —1
Vi < —ciaZilzia | (|27 + 271 + el Z?-ZH‘ + [z i)

. (31)
~ ~ 1 1
— [zl (Z) | +7i + = 0:0; — izl T — 2]
where
Zi41 = Xit1 — & (32)
Then, the adaptive law design as
éi = Ui (|Zi| |1Pz| — plélp — Uié?) (33)
based on Equation (31), we have
Vi < —ci gzl ([0 [+l + cigalzil ([l + a5 1) = 208120 ) + -
02| [¥i] — 008 — 08,07 — izl T — 2T
based on Lemma 1, we have
—0i0,6" < —c,8" ! v
(35)

1
—Uﬁ@? < —w; 9q+1 +9; Gqﬂ
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then
Vi < i@ lzical (|27 + |z x;]';lfl +eigilzil (|24 | + |2ia X7i71 +4i - Qigzﬁl + “iefﬂ
g|9 1\ ( | l )+ el (|20 + o) 6)
Step n: the time derivative of z, can be described as
Zn = Xp — Kp_1 (37)
Based on dynamics and tracking error, the dynamics of z,, can be obtained as
zn = gnt"™" + fu(Xn) — an-1 (38)
Moreover, we have
fu(%n) — dty1 = W, ¥(Zn) + €n(Zn) (39)
where |¢,(x,)] < e, we have
2 (fa (%) = dn1) < Onlzal ¥ (Zn) | + I2nlen (40)
6, = ||[Wy|| is defined, and the Lyapunov candidate functional is chosen as
Vo = %zi + 2:%5% (41)

where 1, > 0 is positive constant and §n =0, —0,. Differentiating V), with respect to time
t yields

. 1~ &
Vi < gnznug” + 9n|Zn|||T(Zn)H + |Zn|€n + ;Gnen (42)
n

The actual control is designed as

1

. _ 0,_1—1 6,11 , A i
o cnasign(za)g,lzaal (z0 1 ) +sign(za) 0l ¥ (Za)| )

u = —gi'/T” 2
T\ A+ Kz + 1z
(43)
then, based on Lemma 2, we have
) B - 1 ~
Vi < —cw 1|zl (|20 + all ™) ) = zal@aI¥(Za) | + 10
. (44)
~ A 1 1
—i—%BnGn — anﬁJr — anZ+
then, the adaptive law design as
On = Hn (|Zn||‘¥n| - Pnég - Unég) (45)
based on Equation (20), we have
Vi < —n18p1)zn1| ((’22”’1 + Iznle“*l» g — ez — 12— 0,6,608 — 0,0,60 (46)
based on Lemma 1, we have
*Pnanérrz) < *Qngﬁ_'_l + Un91;17+1
(47)

_Ungnéjl < _wngrqz+1 + l9n0?l+1
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then

-1 1 1
ZZ” ‘ + 6y — anz—i— - an‘Zz+

Vn < _Cnflgn—1|zn*1|
~p+1 1 ~g+1 1 (48)
_€n9r€+ + Un95+ - wn9g1+ + l9n91z+

Fixed-time adaptive law 9 Neural network

Reference
trajectory

Ya

T lal,az,...,an

Error system _
—> Fixed-time —»| Nonlinear system
ZyyZygeees Z

n

backstepping control
Figure 1. Block diagram of the closed-loop system.
Theorem 1. For the strict-feedback high-order nonlinear system with unknown nonlinearity (1),
based on the feasible virtual control signal (17), (30), actual controller (43), and adaptive function

(20) (33), the error system is fixed-time Lyapunov stable, and the convergence time is independent
of the initial condition.

Proof. Based on Lyapunov candidate functional (15), (28), (41), the Lyapunov candidate
functional is chosen.

V=YV, 9)
=1

The virtual control signal is chosen as (17), (30), and the fixed-time adaptive function is
chosen as (20), (33); the controller is designed as (43) according to the fixed-time Lyapunov
stability theory. Based on fixed-time adaptive neural network control and backstepping
technology, and taking the trajectory along the system, we have

. n n n n

_ P+l At pptl g9+

V< 'Z KjZ; ‘Z Lz; 'Z g]9]. ‘Z w]()].
j=1 j=1 j=1 j=1

n n n
+ Y nj + ¥ U]'QPJrl + Y l9j97+1 (50)
= =

1 1
< v v 1

where

. 19 |
mm{KjEN,g]'eN} ' b= (Zn)Tmm{tjeN, w]-e]\l,}
ptlv 7+

(i f) (me{ i }) © (51)

n n n
c=Yy o+ yuelt + ¢ oot
== =1/

a =

Therefore, according to the lemma in [39], all closed-loop signals possess fixed-time Lya-
punov stability. []

The design details are summarized in Figure 2 to show the procedure of the con-
trol process.
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|

| L
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Figure 2. Design procedure.

4. Numerical Examples

In this paper, the feasibility and effectiveness of the algorithm are verified by numerical
simulation. A strict-feedback high-order system is considered as follows:

f = g%y + fi(x1)
X = gou + fr(x1,x2) (52)
y=x1
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where the function f1(x1) = x1(f) +sin(0.1x1(t)), fa(x1,x2) = x2(t), 51 =1, g2 = 1,
= %, Ny = %, and the control input under the adaptive law is designed

0,

A2 A1
0.01 <|21 |[¥q] —0.167 — 0.19;) (53)

A N} A1
6, = 0.01 <|zz| |¥2| —0.105 — 0.195) (54)

the control input is designed as

N

~5sign(za(t)) * [21(1)| + (|22(8)] + [x2(8)|3) + sign(za())2¥2(Z2)

0.01
+W +522(t)3 +522(t)

u(t) = (55)

Q=
[SS]S}

The desired reference signal is y; = sin(t). The initial condition is selected as x1(0) = 1,
x2(0) = 1,0;(0) = 1,6,(0) = 1. The neural network consists of seven nodes, centers
c=1[-3,-2,-1,0,1,2,3], and widths b = 1.

Figure 3 shows that under the action of the neural network adaptive controller, the
state of the controlled system state can track the preset trajectory in finite time. Figure 4
shows the state trajectory of the error system. It can be seen from the figure that under
the action of the controller, the error system achieves fixed-time Lyapunov stability. The
adaptive function curve is shown in Figure 5. For fixed-time control, «; is designed by
f1(x1), which is approximated by NNs, but its derivative is not easy to approximate;
therefore, f»(X2) — ay is not easy to approximate, and the amplitude is inevitable. Figure 6
shows that the system’s controllers are bounded. It can be seen from the figures that the
designed method is effective.

0.5 [y

. .
0 5 10 15 20 25 30
Time (sec)

Figure 3. Trajectories of x1 and y; of a strict-feedback high-order nonlinear system.
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Figure 4. Trajectories of error states of a strict-feedback high-order nonlinear system.

T

25

5 10 15 20 25 30
Time (sec)

Figure 5. Trajectories of adaptive functions of a strict-feedback high-order nonlinear system.
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Figure 6. Trajectories of system input of a strict-feedback high-order nonlinear system.
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5. Conclusions

In this paper, based on backstepping adaptive control technology, a neural network
is used to approximate some unknown signals in a system. Combined with Lyapunov
stability theorem and fixed time stability, an effective adaptive control scheme is designed.
A class of strict-feedback high-order systems is further studied. The main contributions
of this paper are as follows: the fixed-time control problem of strict-feedback high-order
nonlinear systems is solved; the Lyapunov function is designed for each subsystem; at the
same time, combined with adaptive backstepping technology, an adaptive neural network
fixed-time controller is designed. The tracking error converges in finite time through
stability analysis, and the convergence time does not relay on the initial condition. The
most popular controller is designed in a linear control strategy, which controls the state’s
exponential stability. At present, the adaptive neural network control method based on
backstepping has some limitations, and many problems need to be further studied and
solved. In the finite-time adaptive control method for the multi-agent system, the finite
time obtained by most finite-time control strategies often depends on the initial conditions
of the system. Therefore, a finite-time control scheme independent of the initial value for a
multi-agent system must be designed.
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Abstract: Spacecraft with large flexible appendages are characterized by multiple system modes.
They suffer from inherent low-frequency disturbances in the operating environment that consequently
result in considerable interference in the operational performance of the system. It is required that
the control design ensures the system’s high pointing precision, and it is also necessary to suppress
low-frequency resonant interference as well as take into account multiple performance criteria such
as attitude stability and bandwidth constraints. Aiming at the comprehensive control problem of
this kind of flexible spacecraft, we propose a control strategy using a structured H-infinity controller
with low complexity that was designed to meet the multiple performance requirements, so as to
reduce the project cost and implementation difficulty. According to the specific resonant mode of
the system, the design strategy of adding an internal mode controller, a trap filter, and a series PID
controller to the structured controller is proposed, so as to achieve the comprehensive control goals
through cooperative control of multiple control modules. A spacecraft with flexible appendages
(solar array) is presented as an illustrative example in which a weighted function was designed for
each performance requirement of the system (namely robustness, stability, bandwidth limit, etc.), and
a structured comprehensive performance matrix with multiple performance weights and decoupled
outputs was constructed. A structured H-infinity controller meeting the comprehensive performance
requirements is given, which provides a structured integrated control method with low complexity
for large flexible systems that is convenient for engineering practice, and provides a theoretical
basis and reference examples for structured H-infinity control. The simulation results show that the
proposed controller gives better control performance compared with the traditional H-infinity one,
and can successfully suppress the vibration of large flexible appendages at 0.12 Hz and 0.66 Hz.

Keywords: structured control; flexible spacecraft; prevent oscillations

1. Introduction

With the rapid development of the aerospace industry and of composite material
technology, along with its broad application in aerospace, the structure of spacecrafts is
becoming larger and more flexible, featuring multi-system modalities. The resonant mode
of a flexible system of this type leads to tremendous changes in amplitude features. Mean-
while, the inherent low-frequency interference caused by the complex launch environment
and the high-altitude environment during orbit operation, as well as the flexible mode
of the system, greatly limit the choice of bandwidths, i.e., robust stability. The flexible
modes and low-frequency disturbances inherent in the high-altitude environment impair
the stability and performance of the spacecraft, which will cause performance degradation
and failure to meet mission requirements, or result in unstable control or even failure of
the spacecraft.

With the increasing diversification of spacecraft missions, the requirements for point-
ing accuracy of large spacecraft have become increasingly stringent, which makes control
research more complicated and difficult to delve into. The difficulties of the control design
of such large flexible systems are as follows: to suppress the external interference caused
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by the complex space environment and the inherent low-frequency resonance interference
of flexible spacecraft; to meet “high-precision” performance requirements; and to ensure
attitude stability and bandwidth amount (robustness requirement).

Previous studies show that in terms of a synthesis control over these spacecraft with
multi-performance requirements, it is difficult to apply classic analysis methods to balance
the requirements. Traditional control design schemes, in general, fail to simultaneously
meet the requirements of pointing accuracy and robustness [1-5]. All of them [6-8] used
some fuzzy/neural control scheme to deal with at least two of these undesirable aspects:
presence of inertia uncertainties, misalignment, unknown or external disturbance, vibra-
tion, actuator saturation, and faults, to ensure spacecraft stability. Hoo control theory is
a comprehensive control theory that can take multiple performance requirements into
consideration in the design and is suitable for such comprehensive control problems with
multiple performance requirements. Currently, robust adaptive control, robust Hoo control,
and p synthesis control are mainly adopted to realize vibration control during the stable
operation of flexible spacecraft [9-13].

Despite its synthesis advantages, Hoo design has engineering application limita-
tions [14] mainly due to its high-order and complicated controller. Apart from high costs, it
is a tremendous challenge to decompose a high-order and complicated controller into multi-
ple low-complexity control structures based on experience in engineering practices [15,16],
thus leading to a low feasibility of the practical use of traditional Heo controllers. A new
Hoo control method combining the advantages of the traditional Hoeo control [15-17] was
proposed by Apkarian in recent years, which factors into system performances in all aspects
and overcomes the infeasibility of engineering applications of traditional Heo controllers
due to non-transparency and high complexity. The new method has attracted much atten-
tion and been widely applied since it was proposed [18-20]. The logic of the new structured
Hoo control method is as follows: the structure of a controller is first designed according
to actual needs and control objectives; on this basis, appropriate weighting functions are
selected as per the specific performance requirements of the control object in order to form
an Hoeo performance matrix with multi-dimensional performance output; and finally, the
structured Hoo controller with optimal parameters can be obtained through parameter
optimization of the controller with a fixed structure [21-23].

In view of problems in integrated control of spacecraft with large flexible solar panels,
based on the structured Hoo control design strategy and the specific resonance mode of
the system, this paper proposes incorporating into the controller structure an internal
mode controller, a notch filter, and a serial PID controller, which can achieve integrated
control through multi-control module collaboration. A control solution that satisfies the
comprehensive performance requirements is provided, thus reducing the project cost
and implementation difficulty. Apart from the introduction, this paper deals with system
modeling in the second part, structured Hoo controller design in the third part, performance
simulation and analysis in the fourth part, and conclusions in the last part.

2. System Model Case and Control Analysis

The spacecraft with large flexible appendages is shown in Figure 1. It mainly comprises
solar arrays that provide energy, velocity gyroscopes, precision guidance sensors, and
star trackers that provide spacecraft attitude data, as well as a reaction wheel and an
electromagnetic torque device for momentum management, and a digital computer.
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Figure 1. Spacecraft with large flexible appendages.

Only the pitch axis model that is most jitter-prone and the most important in the entire
system is considered when constructing the simulation model. Official data show that
the flexible spacecraft’s pitch axis model is composed of a rigid body model and several
flexible modules, as shown in the following formula:

K;/1

f(s) 1
u(s) IS2 +Z.; 2 4 20w;s + w?

)

In the formula, 6 is the angular error of the pitch axis affected by the jitter of solar
arrays; u is the given input of the pitch axis torque; s is the Laplace operator; I is the
spacecraft pitch inertia constant with the value of 77,076 kg-m?; & = 0.005 is the passive
damping ratio constant of the system; Ki is the flexibility gain of the flexible module; and
w; is the flexible frequency of the flexible module. The data are shown in Table 1.

Table 1. Flexible spacecraft system model parameters.

K,/kg X m? (Ui/HZ
0.018 0.110
0.012 0.432
0.057 0.912
0.024 10.834
0.155 12.133

—1.341 13.201
—1.387 14.068
—0.806 14.285
—0.134 15.264

The Bode plot of the system without a controller is shown in Figure 2. The Bode plot
shows that the cut-off frequency w; is only 0.16 Hz and the bandwidths of the system are
very small, indicating poor interference suppression.
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Figure 2. Bode plot without a control system.

Since they were put into operation, flexible spacecraft, as high-precision spacecraft,
have never produced an output error of pitch axis exceeding 0.007 arcsec, which requires
good control performance of the system. An effective controller should be good at distur-
bance suppression of solar panels and inherent flexibility suppression of the system, with a
certain number of bandwidths.

The control redesign requirements can be stated as follows [24]:

1.  Maintain at least 5 dB gain margin and 20 deg phase margin.

2. Provide at least 6 dB gain suppression (roll off) of the high-frequency spacecraft
structural modes at 14 Hz.

3. Provide at least 20 dB additional disturbance attenuation at both 0.12 Hz and 0.66 Hz
with respect to the original design.

4. Maintain the bandwidth (the open-loop gain crossover frequency) close to 1.5 Hz.

3. Design of Structured Hoo Control

In general, the complete design of structured control is divided into three steps: firstly,
to design a structured controller according to design requirements and control objectives;
secondly, to select and design proper weighting functions based on control objectives and
performance requirements; and finally, to obtain a desired structured controller according
to performance requirements and selected weighting functions.

In Section 3.1, the author briefly analyzes the control objectives and performance require-
ments in the control design of the large flexible spacecraft in this case and presents controller
structure design in terms of the flexible modes and disturbance model of the system.

3.1. Structured Controller Setting

The main problems confronted in the control of large flexible spacecraft are as follows:
first, the multiple low-frequency resonance modes of the system result in huge changes in
amplitude characteristics; second, the inherent low-frequency interference caused by the
complex launch environment and the high-altitude environment during orbit operation,
as well as the flexible mode of the system, greatly limit the choice of bandwidths. The
controller is designed to suppress the inherent low-frequency resonance disturbance of the
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system and achieve high pointing accuracy, while ensuring the bandwidth amount of the
flexible system (robustness) and stability.

To meet the above control target, based on the flexible mode and inherent disturbance
frequency of the system in this case, the authors design a structured integrated controller
as shown in Figure 3.

Is*
K /1

T+ 2Aos+ o

Z0H

2

S+ 0s+a
& 8 &

Figure 3. Control system block diagram.

The dotted line in Figure 3 shows the structured controller of the system. The red
modules are for adjustable parameters, and the blue modules are fixed parameters.

The structured Hoo controller consists of three parts. The first part is an internal mode
controller S(s) designed for the system’s resonance modes to suppress resonance disturbance.

@

Its frequency characteristics are shown in Figure 4 and its purpose is to reduce system
vibration by increasing the damping of the system for system vibration at 14 Hz.
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Figure 4. Internal mode controller 5(s).
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The second part is a notch filter R(s) set by the disturbance characteristics of the space
environment to ensure sufficient suppression of the disturbance of solar panels at 0.12 Hz
and 0.66 Hz on the premise of not affecting the stability of the frequency band in the system.
The Bode plot is shown in Figure 5.

2 2
{(oﬁw) +%288752+1} {(3.82336) +3982453%S6+1}
2 2
[(0.75536) +1} [(ﬁ) +1}

The third part is an adjustable parameter PID controller set to ensure the stability of
the system, whose rate path is supplemented with an FIR filter to provide gain suppression.
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Figure 5. Notch filter R(s).

3.2. Selection of Performance Weighting Functions

The following indicators need to be factored into the selection of weighting functions:
the requirement of pointing accuracy; the stability and sensitivity of the system after
the internal model controller of disturbance suppression is added; and the bandwidth
limitations (robustness) of the flexible system.

By setting T; as the transfer function of r — e, the stability of the system is the distance
from the transfer function T to the critical operating point, which is also the upper limit of
the gain of tracking performance, requiring:

W1(s)Ta(8)lleo <7 )

where 7 is the norm index, and W (s) is the weighting function. The upper limit of the
design stability marginis 1, Wy (s) = 1.

T, is set as the transfer function from d to 6, which is the robust stability requirement
of the system:

Wa(s)Ta(s)lleo <7 ®)
where the weighting function W,(s) = 0.8.
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By setting T3 as the transfer function from r to 6, the bandwidth requirement of the
system is:
W3(s)T5(s)[leo < ¥ ©6)

In order to limit the bandwidth of the system, the weighting function W3(s) can be
selected in the high-pass filter form as follows: The Bode diagram for Wj3(s) is shown in
Figure 6.

W3<S) = s-ETSZO ?)
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Figure 6. Bode plot of Ws(s).

3.3. Parameter Optimization of Structured Controller

Based on comprehensive considerations of the performance requirements of the
system and the implementation cost of the controller, the controller was designed as
shown in Formula (8).

K(s) = Kp(1+ K;/s + Kps) x R(s) x S(s) 8

Kp, K1, Kp is the to-be-optimized parameter.

Given the above analysis, and for the structured H, optimization of the designed con-
troller structure and the weighting function, the control performance requirements of the
flexible system was considered comprehensively, and the minimum Kp, Kj, Kp, and the mini-
mum value satisfying Formula (9) can be obtained by optimizing the adjustable parameters.

[Hlloo < v )

In formula H = diag( W;T; W,T, W;T3 ), the adjustable parameter yielded is the
optimal one for the system controller.

When seeking the optimal parameter of the structured controller He,, the linear frac-
tional transformation (LFT) [18-24] was employed with Ty, T, and T3 in Formulas (4)-(6),
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and the structured controller C with parameters was extracted and expressed in the follow-
ing linear fraction forms to optimize the parameters:

T\=F(P C)
T=F (P C) (10)
T;=F( P C)

In this case, the optimal parameters of the structured controller in Figure 1 yielded
through repeated iterative calculations are as follows:

Kp=8,K; =0.5,Kp =0.95
The final controller is:
K(s) =8(140.5/s+0.95s) x R(s) x 5(s) (11)

4. Simulation Performance Analysis

Figure 7 shows the Bode plot of the unified open-loop frequency domain. According
to Figure 7, the gain margin of the system is 5.17 dB; the phase margin is 22.5°; and the
cut-off frequency is approximately 1.8 Hz, exceeding the required cut-off frequency of
1.5 Hz, which indicates that the stability and bandwidth requirements of the system have
been met. For the system flexibility at 13 to 14 Hz, the controller provides about —15 to
—55 dB gain suppression, which basically meets the suppression requirements for the
inherent flexibility of the system.

Bode Diagram
Gm =5.17 dB (at 0.891 Hz) , Pm = 22.5 deg (at 0.894 Hz)
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Figure 7. Open-loop Bode plot of the system.

Figure 8 is a closed-loop Bode plot of the system. Figure 9 is the time-domain response
of the system. The figure shows that the proposed controller provides gain attenuation
far higher than 20 dB for the jitter at 0.12 Hz or 0.66 Hz, which is also proved by the
time-domain response of the system shown in Figure 7.
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Figure 9. System time-domain response.

With the same weight function, the obtained H-inf controller is as follows:

3492 x 107 x (s + 0.6402)(s* + 0.002009s + 1.609 x 10~°) (s> + 0.0003605s + 0.002128)

(12)

(s + 0.01)(s2 4 0.00022s + 0.002118) (52 + 33575 4 3.763 x 10-°)

The open-loop Bode plot of the H-inf controller is shown in Figure 10.
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Figure 10. Open-loop Bode plot of H-inf controller.

The frequency domain response shown in Figure 11 shows that the structured inte-
grated controller is excellent in vibration suppression for the flexible structure at 0.12 Hz
and 0.66 Hz. The time-domain response shown in Figure 12 shows that under the same
weight function, both controllers (structured integrated controller and H-inf controller)
can completely suppress solar panel disturbance within a certain period, meet the control
requirements, and present stability. For the structured integrated controller, the overshoot
of the system is 2.101%; the peak time is 0.711 s; and the adjustment time is 13.562 s. For
the traditional H-inf controller, the overshoot is 2.31%; the peak time is 0.876 s; and the
adjustment time is 14.227 s. The data clearly show that the structured integrated controller
has significantly better dynamic performance than the H-inf controller and the structured
integrated controller has a lower order.
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Figure 11. Open-loop simulation comparison between the structured integrated controller and
traditional H-inf controller.
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Figure 12. Simulation comparison of time-domain response between the structured integrated
controller and traditional H-inf controller.

5. Conclusions

To solve the comprehensive control problems of spacecraft with large flexible ap-
pendages such as insufficient bandwidths, low system directivity accuracy, and flexible
structure vibration, this paper proposes a structured integrated controller that satisfies
control requirements by selecting appropriate weight functions. The simulation results
indicate that the proposed controller can effectively suppress the vibration of large flexible
appendages at 0.12 Hz and 0.66 Hz. While ensuring high pointing accuracy, the structured
integrated controller can meet the requirements of attitude stability and bandwidths. Com-
pared with the traditional H-inf controller, the proposed controller has the advantages of
lower complexity and system order as well as lower engineering costs and implementation
difficulty, with better control performance.
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Abstract: The continuous development of spacecraft with large flexible structures has resulted in an
increase in the mass and aspect ratio of launch vehicles, while the wide application of lightweight
materials in the aerospace field has increased the flexible modes of launch vehicles. In order to solve
the problem of deviation from the nominal control or even destabilization of the system caused by
uncertainties such as unknown or unmodelled dynamics, frequency perturbation of the flexible mode,
changes in its own parameters, and external environmental disturbances during the flight of such
large-scale flexible launch vehicles with simultaneous structural deformation, rigid-elastic coupling
and multimodal vibrations, an improved adaptive augmentation control method based on model
reference adaption, and spectral damping is proposed in this paper, including a basic PD controller,
a reference model, and an adaptive gain adjustment based on spectral damping. The baseline PD
controller was used for flight attitude control in the nominal state. In the non-nominal state, the
spectral dampers in the adaptive gain adjustment law extracted and processed the high-frequency
signal from the tracking error and control-command error between the reference model and the actual
system to generate the adaptive gain. The adjustment gain was multiplied by the baseline controller
gain to increase/decrease the overall gain of the system to improve the system’s performance and
robust stability, so that the system had the ability to return to the nominal state when it was affected
by various uncertainties and deviated from the nominal state, or even destabilized.

Keywords: multiplicative adaptation; gain adjustment; spectral damping; robust stability

1. Introduction

As the exploration of the space environment progresses, the missions of spacecraft
exploration become more and more diversified, and as the application of polymer materials
in the space field progresses, the structure of spacecraft is gradually developing towards
large and flexible structures. In order to carry these large and flexible-structure spacecraft,
launch vehicles with a large carrying capacity have become an inevitable requirement of
space-development strategies [1]. At the same time, the lightweight polymer material used
in the body of launch vehicles has increased the flexible mode of the vehicles, leading to
the presence of structural deformation, rigid body-elastic vibration coupling, multi-modal
vibration, and other characteristics of the body at the same time. These factors make the
attitude control of launch vehicles subject to oscillations and difficult to attenuate, or even
lead to system instability, which poses a new challenge to the reliability and robustness of
launch vehicles [2].

For high-risk aerospace applications, both government and industry rely heavily on
classical control theory, and gain-scheduling PID control is still the mainstream control
method for current launch vehicles, due to the advantages of its simple structure, good
anti-interference, and ease of analysis in the time domain (or frequency domain). Typical
applications include the Saturn V and Space Shuttle of the United States, the Ariane of
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Europe, and the Long March series of launch vehicles of China [1]. The application of
classical control theory in launch vehicles has matured, and is well verified with few failures.
Although the classical control methods can usually meet the flight requirements, the
traditional gain-scheduling PID control is no longer able to meet the control requirements
of launch vehicles due to their increasing mass and aspect ratio, the increase in the flexible
structure of their components, and the obvious influence of the flexible mode and elastic
vibration of large launch vehicles, and is unable to cope with the control instability problems
caused by the excessive interference and modal uncertainty during the flight. Due to the
unknown and unmodeled dynamics, external perturbations of the flight environment,
and changes in its own parameters, the attitude of a large flexible launch vehicle will
inevitably generate errors during flight [3]. Traditional controllers are usually designed
with high gain to suppress attitude errors, but excessive gain during full flight will easily
cause the control commands to vibrate, and the flexible mode will also generate a series of
vibration signals, which will affect the control effect. There are two main solutions to the
problem of elastic-vibration suppression in the design of launch vehicle control systems:
one is to design controllers for different characteristics using robust control theory, and the
second is to suppress the elastic vibration signal by designing a notch filter. Unlike the
robust controller design, the notch filter does not require significant changes to the original
rocket control system to deal with elastic vibration. The zero point of the notch filter is
used to eliminate the high-frequency pole of the elastic rocket system and determine the
frequency center according to the system requirements of the filter. The method of using
a notch filter to suppress the elastic vibration of a projectile is widely used in the design
of the launcher attitude-control system. The determination of the parameters of the notch
filter is the key to the design, and the location of the zero point of the notch filter; i.e.,
the frequency center, can be determined after the transfer function of the elastic launch
vehicle is determined with sufficient accuracy in the model [4,5]. In order to solve the
low-frequency, dense-frequency elastic vibration modes appearing in the launch vehicle,
some scholars adopted the method of attitude control of the flexible launch vehicle by
adaptive control of the adaptive notch, and the adaptive controller of the adaptive notch
filter successfully stabilized the uncertain and time-varying equations of the launch vehicle
model dynamics through thrust vector control [6]. Another scholar designed a bending
mode filter for the whole system, which had a better filtering function for low-frequency,
dense-frequency modes, and achieved good control results [7].

In response to the limitations of the classical approach, in order to increase the robust
stability of the launch vehicle attitude-control system, many scholars began to work on
advanced control methods, and since 1990, NASA has developed a variety of launch vehi-
cle control techniques in the Advanced Guidance Control program, including trajectory
linearization control methods, neural network adaptive control methods, and higher-order
sliding-mode control methods; the development of such advanced controls has the potential
to improve system performance and increase robustness [8-10]. Classical adaptive-control
concepts were proposed for attitude-control systems applied to rockets [11-13]. How-
ever, many adaptive-control concepts are not feasible when applied to high-risk aerospace
systems due to the stringent flight environment. In addition, many adaptive techniques
appearing in the literature are not applicable to conditionally stable systems with com-
plex flexible dynamics. Therefore, researchers have optimized model-referenced adaptive
control for these situations and proposed an Adaptive Augmentation Control (AAC) [14],
widely used in launch-vehicle and missile-longitudinal control in recent years. AAC a
gain-adjustment method based on a model-referenced adaptive-control design that gen-
erates adaptively adjusted gain from the generalized error between the reference model
and the actual system as a supplement to the nominal controller. Orr et al. introduced a
scheme for adaptive control of multiplicity applicable to rockets [3], and then improved
the adaptive-control scheme [15] to improve the performance of the original method with
higher sensitivity to external inputs. The method was developed by the NASA Marshall
Space Center (MSFC) and became a major part of the U.S. Space Launch System (SLS) to
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adapt to unpredictable external environmental disturbances and a variety of flight dynam-
ics characteristics (elastic vibration of flexible modes, control structure coupling, servo
delay, etc.) and to reduce the probability of flight destabilization [15,16]. NASA included
the method in the development of the flight control system for the SLS program in early
2013, and tested the designed method in the F/18-A to verify the resilience of the control
system in adverse flight conditions [17,18]. Brinda et al. performed an adaptive gain-
adjustment controller design for the longitudinal channel of a two-stage launch vehicle
using a Chebyshev high-pass filter to improve the problem of insufficient amplitude of the
low-frequency part of the control signal in the original adaptive gain-adjustment structure
of the low-order high-pass filter [19,20]; however, there were equal-amplitude ripples in
the passband of the Chebyshev filter. Zhang applied a fault-tolerant control method and
adaptive vibration frequency recognition method to AAC, and designed a corresponding
correction network based on an SMM algorithm to identify each order vibration frequency
to improve system control performance and stability [21]. Cui Naigang et al. applied
an interference compensation control loop and active load reduction control loop based
on the dilated state observer to the adaptive gain adjustment structure, and performed a
simulation analysis of the pitch channel control [22]. To enhance the robustness to changes
in elastic modal parameters, Domenico Trotta integrated the AAC control architecture with
adaptive notch filters and proposed two novel and effective tuning methods for adaptively
enhanced control systems, which were optimized by robust design and solved by genetic
algorithms to achieve continuous improvement in the performance and robustness of
standard launch vehicle single-axis attitude controllers in atmospheric flight [6,23]. Diego
Navarro designed two adaptive augmentation control laws using a robust control design
(structured Hoo control) as a baseline controller to improve the robust performance of AAC
control, while analyzing the effect of the adaptive action on the classical stability mar-
gin, and validated this analysis using nonlinear time-domain stability margin evaluation
techniques [24]. However, if the expansion state observer is not properly selected, the
observer is easily affected by the noise signal, or even diverges when there is additional
measurement noise caused by elastic vibration and other additional dynamics. However,
advanced nonlinear stabilization techniques to reduce the error by increasing the control
gain are not feasible for aerospace systems with high complexity; meanwhile, the above-
mentioned adaptive gain-adjustment control scheme features complicated algorithms,
costly computation, and challenging implementation, which introduce unknown risks to
the actual system.

In this paper, we aim to establish a rigid-bullet coupling model of a large flexible
spacecraft with second-order vibration signals and design an improved adaptive augmen-
tation control method based on the reference model adaptive control method to address
additional dynamics issues such as increased attitude-tracking errors and flexible-mode
elastic vibrations caused by uncertainty (modeling uncertainty, frequency perturbation of
the flexible mode) and external environmental interference during ascent of a large launch
vehicle with a flexible mode. The scheme first determines the adjustment threshold of
forward gain on the basis of the baseline PD controller, and takes the tracking error and
control command error signals as the input of the two channels of the adaptive control
law. The spectral dampers in the two channels (tracking error and control command elastic
vibration) process the error signals (the high-pass filter extracts the high-frequency signal
of a specific frequency from the error signal, and the low-frequency filter lowers the fre-
quency to reduce the influence of the high-frequency signal on the actuator) to produce the
corresponding suppression gain (error-suppression gain and elastic-suppression gain) to
form the overall gain of the AAC, and increase or decrease the forward gain of the system
to improve the control performance of the system. The AAC controller will not affect the
PD controller when the basic PD controller is able to handle the control tasks better [3,15],
whereas the AAC controller will adjust the adaptive gain to achieve the overall gain of the
system when the impact of external perturbations and uncertainties is significant, so as to
recover the system performance when the system deviates severely from the nominal state

85



Entropy 2021, 23, 1058

and meet the performance requirements of attitude control and robust stability of the large
flexible launch vehicle in the flight process.

This paper is organized as follows. Section 2 introduces the rigid-bullet coupling
model of a large flexible launch vehicle with a second-order elastic vibration signal.
Section 3, on controller design, details the improved adaptive augmented control scheme:
(1) based on the rigid-bullet coupling model of a large flexible launch vehicle, the base-line
PD controller is given and the maximum critical value of the forward gain tunable is
determined after analyzing the flexible mode of the system in the frequency domain; (2)
Two error signals are selected between the reference model and the actual system as input
signals for the two channels of the adaptive control law, thereby increasing/decreasing the
overall forward gain of the system; and (3) we introduce the role of the spectrum damper
and parameter selection (mainly the extraction of high-frequency signal and low-frequency
output for the error input signal of two channels). Section 4 presents a simulation analysis
of the improved adaptive augmentation control designed in this paper, and the simulation
results of several launch vehicle runaway scenarios are presented and discussed. By com-
paring the traditional PD control with the adaptive augmentation controller containing the
baseline PD controller, we observed that the adaptive augmentation control improved the
performance and robust stability of the large flexible launch vehicle during flight.

2. Mathematical Model of the Launch Vehicle with Second-Order Vibration Modes

The coupling problem between the rigid body motion and elastic vibration of large
launch vehicles is more prominent than that of medium-sized and small launch vehicles.
The motion process is more complicated due to the large mass of large launch vehicles, the
increase in the aspect ratio, and the complex interference and uncertainty during flight, so
the elastic vibration mode cannot be neglected. The rigid-bullet coupling mathematical
model of the launch vehicle was established based on the forces (gravity, aerodynamic,
thrust, control, etc.), moments, and vibration factors during the ascent of the launch vehicle.

In the velocity coordinate system, the translational and rotational motion of the launch
vehicle around the centroid (pitch channel) can be expressed as (1) and (2). Considering
the plane bending vibration and torsional elastic vibration of the arrow body, the general
elastic vibration equation can be obtained by using the modal superposition method and
the orthogonality of the vibration pattern, as shown in (3).
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The identification and meaning of the parameters in the above formula are shown in
Table 1.
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Table 1. Parameters and identification.

Notation Identification
m Mass of the launch vehicle
g Gravitational acceleration
P Total engine thrust
Vv Arrow speed
& Lifting coefficient
q Motive pressure
Sm Characteristic area of arrows
0 Trajectory inclination
« Attack angle
o Heading (angle of course)
2 Moment of inertia
w; Pitch velocity
me Pitch damping torque factor
Oy Pitch channel motor pendulum
XR Distance from thrust point to arrow tip
Xz Distance from mass centre to tip of arrow body
X4 Distance from pneumatic core to arrow tip
) Arrow length
mg Quality of each engine
Ir Distance from engine pendulum to pivot
Wx Radial apparent acceleration of rocket
Ey Interference
M, Interference torque
Uiy Micro-displacement of plane bending vibration
Ry Micro-element corner of distortion elastic vibration
iy The ith-order oscillation pattern of the pitch channel
w; The ith-order oscillation angle frequency
Ci The ith-order oscillation damping ratio

The nominal controller of the control system of the large flexible launch vehicle
designed in this paper was based on a small perturbation linearization model, so the
mathematical model of the rigid-bullet coupling of the large flexible launch vehicle was
simplified to a small perturbation linearization model, as in (4) [25,26]:

. . n n —
A = c1Ax + A0 +c30y + 3"y + L c1i9; + L c2iqi + Fy
i=1 i=1

. n 1 _
A@ +b1Ag + by A+ b3dy + b3" 0 + ,21 brig; + .21 baiqi = M @
i= i=

Ap = A0+ Aa

- ) ) . n ) n

q,»y + 2§iwiqiy + w;?‘qiy = DliAq) + Dy Ax + D3i5(P + Dgi”5¢ + '21 Diquy + '21 D,]q]y
= =

In addition, the period of the arrow body centroid motion is much longer than the
period of the pitch attitude angle motion, so the impact of the arrow body centroid motion
can be ignored in the study of the arrow body attitude angle motion, and when also
ignoring the influence of each oscillation pattern in the elastic vibration equation, then (4)
can be further simplified as follows:

. . n . n —
A¢ +b1A¢ +brA¢ + b3dy + ‘21 buiq; + ‘21 baigi = M
1= 1=
Ap = Aa B ©)
Giy + 28iwiq;, + w?qiy = D1iA@ + DayiAg + D3idy + Qyy

where Ql-y is the generalized disturbance force on the elastic vibration of the ith order.
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When the attitude angle and angular rate signals of the arrow body are obtained
through the attitude measuring element, there is an additional elastic vibration signal in
the obtained measurement signal influenced by the elastic vibration of the arrow body, and
the actual measurement signal is as follows (6):

Apr = Ap — L W'i(x7)g;
. L . 6
Apor = Ap — L W'i(xgr)9; ©

where W’;(x7) is the slope of the ith-order oscillation pattern of the attitude angular
measuring element at the mounting position x5, and W’;(x,r) is the slope of the ith order
vibration pattern at the installation of the attitude angular rate measurement element.

In this paper, we considered the design of a nominal controller for a second-order
elastic vibration model of a launch vehicle, with the input, state variable, and output
defined as:

. 1T . . . T
u=6bpy=[Ap Ap ], x=[0p Ap 1 G0 G G, ]

Here we first ignore the effect of external perturbations and build the standard state
space model. External perturbations will be added to the control input signal and explained
in Section 4. The state space of the system is described by (7):

x = Ax+ Bu
y=Cx+ Du @

where the matrix A, B, C, D is given by (1)—(5),

0 1 0 0 0 0 0
—by —by —by —bp —bn —b12 —b3
0 0 0 0 1 0 0
A=l 0 0 o 0 0 1 B=1 19
Dyy Din —w} 0 —2%5w 0 D3
Dy Dip 0 -} 0 —28ws D3,
c_[1 0 —Wi(Xp) —Wi(xq) 0 0 ]D _ [ 0 }
0 1 0 0 W (Xer)  —Wa(Xer) 0

The data selected in this paper are shown in Table 2.

Table 2. Parameters and values.

Parameters Values Parameters Values Parameters Values
by 0.6348 Dy 0.6407 w1 3.5906
by —0.0286 D1y —27.2466 wy 7.6941
b3 1.1530 Dy —1.6713 ¢1 0.005
b1 —3.2693 x 1075 I —3.6153 & 0.005
by 0.0015 D3y —3.5752 Wy (Xr) —0.015
by 7.2608 x 10~ D3> —142.71 Wo!(Xr) 2 x 1074
by 0.0029 Wy (Xng) 0.01 W,/ (Xng) 0.004

3. Adaptive Augmentation Controller Design

The adaptive augmentation controller combines the adaptive controller with a clas-
sically designed linear control system using a multiplicative forward gain that enhances
the system by adjusting the total loop gain in real time based on the error between the
actual output and the output of the reference model. When the baseline controller performs
well, the adaptive augmentation controller produces little enhancement. When the base-
line controller is unable to effectively meet the performance requirements, the adaptive
augmentation controller adjusts the total gain of the system by increasing/decreasing the

88



Entropy 2021, 23, 1058

adaptive gain to improve the performance of the control system; when the system is in a
high degree of uncertainty or deviates from the nominal system, the adaptive controller
can compensate the PD baseline controller to a greater extent to avoid system instability.

Figure 1 shows the adaptive augmentation control block diagram, which mainly con-
sists of two parts: the PD-based baseline controller and the adaptive controller composed
of the reference model and the adaptive law.

Reference |”*%: —
Model | 4
0 kT
Adaptive
) s Law 0.6
¢c’¢c LaunCh ’
»9_ » PD X u > Vehicle >
Bending filter |«

Figure 1. The adaptive augmentation control system.

3.1. Reference Model

The reference model was used to simulate the controlled motion of the rigid body
of the launch vehicle in the nominal state, which produced the nominal response to the
guidance instruction by adjusting the control parameters, and then the gap with the actual
response of the launch vehicle was used as the input of the adaptive control law to adjust
the gain of the PD controller. In adaptive gain control, a typical second-order system is
used as the reference model [27], and the reference model used in this paper was obtained
by neglecting the elastic vibrations in (5); the model’s state space is given in (8):

Xy = Apxr + Bruy

Yr = Crxy + Dyuy ®

whereAr—[ Ob 1b },B,_[o —bg}T,Cr—[
—bp, —h

1 0 0
o1 )o=10]
3.2. Baseline PD Controller

In the stability of elastic vibration, there is a difference between amplitude stability
and phase stability. The so-called amplitude stability refers to the amplitude Gain(w) < 0,
when the phase-frequency curve crosses & (2n + 1)7; the so-called phase stability refers to
the amplitude Gain(w) > 0, when the phase-frequency curve does not cross (2n + 1)
The magnitude of stability of the essence of the engine oscillation control force generated
by the excitation is less than the elastic vibration in the inherent damping under the role
of attenuation, so the magnitude of stability depends on the inherent damping of elastic
vibration and control system on the elastic vibration signal of the sufficient attenuation.
The essence of phase stability is to take the elastic vibration signal as part of the control
signal through the correction network to obtain the correct phase; for the elastic vibration
to produce additional damping to achieve the purpose of stability, the phase stability
does not depend on the inherent damping of elastic vibration, but the phase-frequency
characteristics of the correction network put forward strict requirements.

Figure 2 shows an open-loop Nichols plot of the pitch channel, in which the open-loop
frequency response of the angle (Phi) satisfies the amplitude-stability and phase-stability
conditions, while the angle rate (Omega) does not satisfy the amplitude-stability condition
(amplitude Gain(w) > 0 when the phase frequency curve traverses the 180° curve) or the
phase-stability condition (the phase frequency curve traverses the 180° line at frequency
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7.694 rad/s, while amplitude Gain(w) > 0). In adaptive augmentation control, the PD
controller provides the basic control gain for the launch vehicle and is the basic controller
in the AAC control framework. In this paper, we directly selected the PD controller
parameters K, = —9.2 and K; = —3.8. For the rigid—flexible coupling model at the 30 s
moment, the following notch filter was established as in (9):

Wis) = (2% 0.005 X 7.695 + 7.69° 2 /$2 42 % 0.005 x 7.695 + 7.69%\ * ©)
N $24+2x 0.6 x 95+ 92 s2 +2%0.6 X 6.85 + 6.82

Nichols Chart
40 ‘
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—
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)
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oy 40
9]
S | —
:
S 31.4 dB
20
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2 o Lo >/\
o /'{ Phase 126 deg
Phase 93.2deg 0.874 rads
=20 —gsatEws \
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-40
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Figure 2. The open-loop frequency characteristics of the system.

In a classical PID feedback control system, a higher forward gain can improve the
performance and robustness of the system with a fixed ratio of proportional and differential
gain. However, due to the special performance requirements and stability requirements
of large flexible launch vehicles (presence of high uncertainty, elastic vibration), forward
gain must be limited to a small range to provide better performance and robustness for the
baseline controller, and the design requirements usually limit the allowable forward gain
to a range not less than 6 dB from the critical stability value to improve the system’s ability
to cope with uncertainty. The closed-loop spectral characteristics of the system can be
reflected to some extent by the open-loop margin of the system, and when the adaptive gain
kT reaches a certain critical value, the closed-loop system exhibits resonance phenomena
at certain frequencies (open-loop characteristics cross the jw axis in the complex plane),
while for any kt + ¢, the closed-loop system exhibits dispersion phenomena. The spectral
characteristics of the closed-loop system at different forward gain Kr are shown in Figure 3.
From this, the critical value of the octave forward gain in the adaptive augmentation control
can be determined.
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Figure 3. The adjustable range of forward gain.

3.3. Multiplicative Adaptive Control Law Based on Spectral Damping

For large launch vehicle elastic vibration, the first-order elastic vibration mode has a
low frequency and small phase deviation, and is usually stabilized by the phase-stabilization
method, while the second-order and higher-frequency elastic vibration modes have large
phase deviations, and are usually stabilized by the amplitude-stabilization method. In
general, the first-order vibration mode can be phase-stabilized by selecting the mounting
position of the rate gyro, the second-order vibration mode requires amplitude stabilization,
and the higher-order vibration mode is amplitude-stabilized by high-frequency filtering
of the correction network. Figure 4 shows a block diagram of the improved adaptive
broadening control system designed in this paper, where the control command error signal
ey and tracking error e y between the reference model and the actual model were used as
inputs to the adaptive control method, and the adaptive gain k7 was calculated through
the two channels of oscillation suppression and error suppression, respectively, to adjust
the baseline PD controller gain. The control command error, tracking error, and adjustment
gain of adaptive augmentation control are shown below:

ey =1uUp—1u (10)
e, =05ep+e, =05(¢r — )+ (¢, — ¢) (11)
kT = Sat,’zg‘ax{kfyf — ksys —+ 1} (12)

where kmax is the upper bounds of the adjustment gain, kg is the lower bounds of the
adjustment gain, k, is the adjustment gain of tracking error term, v, is the output signal of
the tracking error signal through the high- and low-pass filters, ks is the adjustment gain
of control command error term, and ys is the output signal of the control command error
signal through the spectrum dampener.
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Figure 4. The adaptive control algorithm.

3.4. Spectrum Dampers

The adjustment gains k. and ks of the two spectrum dampers adjust the spectrum
output signals 1, and y;s of the two channels, which are formed by the tracking error signal
and the controller command error signal, as follows:

2
Ye = Erer(s)<Erer(s)e(P,¢> (13)

ys = SDLp(s)(SDHp(s)e,)? (14)

In general, the DC gain of the designed high-pass filter should be as small as possible
(the passband gain is usually set to 1), while the transition band should be as steep as
possible (limited to 1.5 rad/s) The forms of the high- and low-pass filters are shown in (15)
and (16):

2
S
Hp(s) = 15
P(S) 52+2§hpwhp5+whp2 (15)
2
wi
Lp(s) . (16)

82+ Zglpwlps + wlpz

where Wy, Wiy are the cutoff frequencies of the high- and low-pass filters; and Chp, Gip are
the damping ratios, with values ranging from 0.5 to 0.8.

In the tracking error channel, the high- and low-pass filters successively process the
error signal, and the AAC gain kr is to be enhanced by increasing the error suppression gain
ke, thus improving the overall forward gain of the system to reduce the system tracking
error and improve system performance. In this channel, we set the control frequency
near the shear frequency of the rigid-body system (0.87 rad/s), considering the need to
compensate the control of the system tracking error and improve the overall gain of the
system [5,28]. The shear frequency of the low-pass filter is near this frequency, and the
shear frequency of the high-pass filter is one octave above this frequency, so the transfer
function of the high and low-pass filters is given accordingly as follows:

2
S
ErrHp(s) = 17
() = 3 08 X 875 1 8.7 (17)
1.22
ErrLp(s) (18)

TS24 2x06x125+1.22

In the control command error channel, the spectrum damper is mainly used to process
the elastic vibration signal in the control command and reduce the AAC gain kt by setting
a specific frequency to adjust the elastic rejection gain ks, thus reducing the overall gain
(excessive gain) of the system to suppress the elastic vibration of the system and reduce
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its instability. The input of the high- and low-pass filters is the additional instruction
error generated by the rigid-body controller instruction and the elastic vibration excitation,
where the high-pass filter is used to obtain the elastic vibration signal from the control
instruction. The analysis in the previous section showed that the system was prone to
modal vibration at 7.69 rad/s, so we designed the control frequency at this frequency
point. The cut-off frequency wy,, of the high-pass filter should be taken slightly higher than
this frequency. The low-pass filter is used to eliminate the high-frequency components of
the signal, which is squared before entering the low-pass filter, so the value of the cut-off
frequency wy,, of the low-pass filter should be taken near this frequency. The corresponding
parameters of the spectrum dampers in the elastic rejection channel are as follows:

2
S
DHp(s) = 1
SDHp(S) = 5 08 x 2435 1 2437 (19)
7.69%
SDLp(s) 69 (20)

T 242%06 % 7.69 +7.692

4. Simulation Results and Analysis

In order to illustrate the role of the improved AAC control scheme in the launch
vehicle system, the tracking curves and adaptive control gains of the nominal system and
two different failure scenarios were presented and analysed in the simulation to verify the
effectiveness of the designed algorithm. Assuming at 10 s after the launch vehicle takes off,
the angle and rate commands of pitch were given as shown in Figure 5. The gain saturation
function of the AAC controller in this example was taken as Kmax = 2 and Ky = 0.5.
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Figure 5. The pitch and angle rate commands.

If the system was in the normal state, the output of the system under PD control
and AAC was consistent with the rigid-body nominal system, as shown in Figure 6a.
The control commands and control rates of PD and AAC are shown in Figure 6b; there
was almost no difference in the visible output curves. At the same time, the adjusted
gain k. and kg of two channels in the AAC were close to 0, as shown in Figure 6c, and
the overall adaptive gain was always kept at a stable value kr = 1, which meant that the
AAC did not produce any effect in the normal state. This was in line with our original
design requirement that the AAC not be involved in control activities when the baseline
PD controller was able to achieve a good performance output.
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Figure 6. Performance in the nominal state: (a) pitching attitude; (b) control commands; (c) gain adjustment for the tracking
error and control command error; (d) total gain of adaptive augmentation control.

We assumed that there was a baseline controller gain loading error during operation
(the gain of the PD controller was not sufficient to meet the system requirements; in this
case, K, = —1 and K; = —0.8); meanwhile, the control commands of the system were
perturbed by a square wave with an amplitude of 0.5 and a duration of 5s. As shown in
Figure 7a, the system was able to track the input commands better, but then there was a
certain steady-state error (about 2°) in the baseline PD control compared to the nominal
system, and in contrast, the steady-state error was reduced to half (less than 1°) under the
AAC control adjustment. In addition, in Figure 7b there is a corresponding reduction in the
control command error, while the control command error rate only fluctuated significantly
when it was just perturbed. Among the two channels, the adjusting gain ks produced
elastic suppression due to the disturbance in 25 s, and then the gain for suppressing elastic
vibration fell back to 0; while ke produced error suppression mainly after 60 s due to the
tracking error. The overall gain kt of the AAC control was less than 1 at 25 s in the elastic
suppression channel ks, and then gradually increased (>1) due to the error suppression
gain k. generated, and the overall AAC gain was always maintained at a saturated value
due to the long-term presence of steady-state errors.
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Figure 7. Performance in a state in which the baseline controller gain was misloaded and suffered external perturbations at

t = 25 s: (a) pitching attitude; (b) control commands; (c) gain adjustment for the tracking error and control command error;

(d) total gain of adaptive augmentation control.

Assuming that there was uncertainty in establishing the rigid spring coupling model,
the elastic vibration frequency of the model was reduced by 40% while the same perturba-
tion signals described above existed. The pitch angle and pitch angle rate signals at this
time are shown Figure 8a. The system was able to follow the control commands to some
extent in the early stages when the adaptive channel was closed (i.e., only the baseline
PD controller was in action), but with the passage of time and accumulation, the system
ended up in a divergent state. When the model parameters were changed substantially, the
model was fundamentally changed, and the controlled object deviated from the nominal
state. The original PD controller parameters were not suitable for this model, and the
excessive forward gain aggravated the elastic vibration of the system. At the same time,
the PD controller parameters were not reduced accordingly, which intensified the system
oscillation and eventually could not be suppressed, leading to system dispersion. However,
with the AAC controller, the system was able to suppress the system oscillation caused by
the elastic modal perturbation and could track the reference input. At the same time, as
shown in Figure 8b, for the control command and rate output, we can see that the control
command of the baseline PD controller began to oscillate and could not be inhibited at
the same time by the perturbation signal, while the AAC could well inhibit the oscillation
of the control command (the control command error was less than 0.5, and the control
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command error rate was less than 1), which was beneficial for the actuator in the actual
system, and had a good input signal.
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Figure 8. Performance at an elastic vibration frequency of 40% perturbation and external perturbation at t = 25 s: (a) pitching

attitude; (b) control commands; (c) gain adjustment for the tracking error and control command error; (d) total gain of

adaptive augmentation control.

The adjusted gain of the two channels ke, ks and the overall gain kr of the AAC control
are shown in Figure 8c,d. We observed that in the case in which the AAC was involved
in the control, the baseline PD controller was not able to achieve a good tracking effect
due to the ingress of the elastic mode, then the AAC controller generated a corresponding
gain value k; (in this case mainly for the suppression of elastic vibration), and then set the
AAC gain to less than 1 to reduce the overall gain of the system and meet the requirements.
When the baseline controller can achieve the tracking effect better, then the value of AAC
gain KT will fall back to 1. It is obvious from the above analysis that the adaptive control
designed in this paper had a good robust stability to the ingress of the elastic mode, and
under the adjustment of the AAC control, the launch vehicle could adjust the control gain
online and in real time to set the engine swing angle of the servo to keep the rocket stable.

5. Conclusions

Adaptive augmentation control has important research significance and development
potential for the control of large flexible launch vehicles, and can increase the robustness of
the system, avoid oscillations and even destabilization problems caused by the estimation
errors of the flexible mode, and improve the safety and reliability of rocket operation. The
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improved AAC control scheme designed in this paper had good performance, and the
simulation showed that during the nominal state of the system, the AAC control did not
affect the baseline PD controller. When the system was subjected to external disturbances
or PD controller errors (the controller parameters were loaded at values less than the set
value), the AAC control could generate a multiplicative gain greater than 1 to boost the
system forward gain and reduce the steady-state error of the system to half of the PD
control (<1°). With large regression of the flexible modal vibration frequency, the PD
controller could cause the system to become unstable (uncontrollable). The AAC control
could reduce the system forward gain by generating a multiplicative gain of less than 1
and limiting the control input signal to 0.5° to keep the system in a stable operation.

The simulation results of the above scenarios showed that the enhancement provided
by the improved AAC control designed in this paper matched the expected goals and
requirements, while the scheme had the same verifiability for the poorer control due to un-
certainties caused by large-scale variations in thrust, mass, and atmospheric characteristics.
The current simulation results showed suppression of up to 40% of the effect of flexible
mode ingress, which greatly improved the robustness of the system. Future work on this
program may consider sensor measurement noise and the nonlinear environment of closed-
loop guidance [29], which would assist in fine-tuning and improving the extraction and
calculation of error signals for use in conjunction with other load-shedding/fault-tolerant
controls in the future development of large flexible launch vehicles.
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Abstract: The coupling between variables in the multi-input multi-output (MIMO) systems brings
difficulties to the design of the controller. Aiming at this problem, this paper combines the particle
swarm optimization (PSO) with the coefficient diagram method (CDM) and proposes a robust
controller design strategy for the MIMO systems. The decoupling problem is transformed into a
compensator parameter optimization problem, and PSO optimizes the compensator parameters to
reduce the coupling effect in the MIMO systems. For the MIMO system with measurement noise,
the effectiveness of CDM in processing measurement noise is analyzed. This paper gives the control
design steps of the MIMO systems. Finally, simulation experiments of four typical MIMO systems
demonstrate the effectiveness of the proposed method.

Keywords: MIMO; coupling; PSO; CDM; measurement noise; robust controller

1. Introduction

Multi-input multi-output (MIMO) systems, defined as systems with multiple control
inputs and outputs, are widely used in industrial systems. Many common industrial
control systems can be modeled as MIMO systems, such as chemical reactors, distillers,
generators, and automobile transmission systems [1-5]. A consensus is that the control
of the MIMO systems is more complex than the control of the single-input single-output
(SISO) systems. In the MIMO systems, the outputs are affected by each input. In other
words, there is a coupled interaction between the input and output variables of the MIMO
systems. Due to the interaction in the MIMO systems, it is not easy to directly apply the
advanced control methods based on the SISO systems.

Currently, the control strategies of the MIMO systems are mainly based on the methods
of decoupling. Decoupling strategies can be divided into static decoupling and dynamic
decoupling. The former achieves decoupling based on steady-state gain, which can effec-
tively reduce the impact of model uncertainty, but the high-frequency response of MIMO
systems is often not ideal [6]. The dynamic decoupling can achieve a trade-off between
complexity and decoupling performance. In recent years, various dynamic decoupling
strategies have been developed, such as ideal decoupling, simplified decoupling, and
reverse decoupling. The ideal decoupler can provide a simple decoupling system, but the
ideal decoupler is difficult to realize in practical applications. The opposite is simplified
decoupling. Although simplified decoupling can obtain simple decoupling and decoupling,
the decoupling system will be very complicated. In [7], Hagglund T proposed a decoupling
method that approximates the sum of elements to reduce the system’s complexity after
decoupling. Reverse decoupling takes into account the advantages of ideal decoupling and
simplified decoupling. However, when there is a time-delay element in the MIMO systems,
reverse decoupling cannot guarantee the system’s stability. In addition, researchers have
used intelligent algorithms for MIMO systems and proposed various intelligent decou-
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pling algorithms [8-12]. However, because the design of this kind of method is difficult to
understand and the controller is complicated, it is difficult for engineers to adopt.

As an algebraic design method, the CDM proposed by S. Manabe is simple and
easy to implement [13]. Compared with other control methods, CDM only requires the
designer to define one parameter: the equivalent time constant [14]. At the same time, all
algebraic equations in the CDM are expressed in the form of polynomials, which facilitates
the elimination of poles and zeros in the design and analysis of the control systems.
CDM has been proven to be a method to ensure the robustness of the control system, and
its effectiveness has been proven through a series of experiments [15-17]. Therefore, with
the continuous improvement of CDM, CDM has been continuously applied to existing
control systems. Mohamed T. H. combined CDM with ecological optimization technology
(ECO) for load frequency design in multi-regional power systems in [18]. Experimental
results show that the proposed method is robust in the presence of disturbance uncertainty.
Because CDM is simple, effective and robust, it is also applied in MIMO system control [19].
CDM was be used to design a PI controller with two cone-shaped official position research
objects in [20]. The simulation results prove the effectiveness of CDM on disturbance
suppression. In [21], CDM was used to solve the controller gain to suppress the vibration
in the flexible robot system.

The first problem to be solved in the controller design of the MIMO system is how
to achieve decoupling. Compared with other existing results, this article transforms the
decoupling problem into the parameter optimization problem and gives an interaction
measurement to evaluate the decoupling degree of the MIMO systems. The PSO algorithm
is used to optimize the parameters of the compensator to achieve decoupling. After
decoupling, the systems tend to have high order. The CDM considers the robustness and
interference suppression performance of the system and the simplicity of design. Therefore,
motivated by the advantages of CDM, this paper applies the CDM to the field of controller
design for MIMO systems. At the same time, considering measurement noise can generate
undesired control activity resulting in wear of actuators and reduced performance, this
article analyzes the controller’s suppression effect on measurement noise based on the
CDM. To verify the effectiveness and universality of the proposed method, this paper gives
four typical design examples of MIMO systems in the hope of providing engineers and
technicians a reference.

The main innovations of this paper are as follows:

(1) Converts the compensator design problem used for decoupling into parameter opti-
mization problems to reduce the difficulty of decoupling.

(2) Gives an interaction measurement to quantify the interaction of coupled systems.

(3) Analyzes the controller’s suppression effect on measurement noise based on the CDM.

(4) Research on the application of CDM methods to MIMO systems needs to be promoted.
In order to make up for the shortcomings of existing research, this paper presents a
design strategy of a robust controller based on CDM, which provides a reference for
the design of the MIMO system controller in other articles.

The rest of this article is organized as follows: Section 2 gives an interaction measure-
ment of the coupling interaction and uses the PSO algorithm to design the compensator
to achieve decoupling; Section 3 summarizes the design process of the CDM controller
and analyzes the controller’s suppression effect on measurement noise based on the CDM.
Section 4 outlines a set of controller design procedures for MIMO systems; four unique
objects are simulated to verify the effectiveness of the proposed method in Section 5. Finally,
a conclusion is given.

2. Decoupling Design

At present, there are two solutions to the interaction of MIMO systems. One is to use
modern control theory, and the other is to limit the interaction to a certain extent and treat
MIMO systems as multiple SISO systems, which is called decoupling control. Generally
speaking, decoupling control is simple to operate, so it is often used. This article designs a
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compensator in the frequency domain to decouple. At the same time, in order to verify
whether the designed compensator achieves the expected decoupling effect, this section
provides the MIMO system interaction measurement.

2.1. Compensator Design

The schematic diagram of the decoupling design of the n x m MIMO system is shown
in Figure 1.

...................................

Compensator ~ MIMO System

G, G,(s)

mxn nxm

Figure 1. Schematic diagram of the decoupling design of the n x m MIMO system.

where the model of the MIMO system is represented by the transfer function G,(s) € R"*",
which is Equation (1).

g1(s) - Sim(s)
Gp(s) = S I (1)
gm(s) -+ gum(s)

where g;i(s),i =1,2,--+ ,n;j =1,2,-- - ,mis the transfer function element in G, (s). Design
the compensator G¢(s) € R"*" as shown in Equation (2).

hi(s) -+ hia(s)
Ge(s) = S 2)
hpi(s) - hun(s)

where hi]-(s)(i =12,---,mj=1,2,---,n) is the transfer function element in G(s).
In order to reduce the difficulty of the designed compensator G.(s), set G.(s) as a constant
matrix. When the compensator G, acts on the MIMO system Gy (s), the decoupling system
Q(s) € R™ " is obtained as Equation (3).

Q(s) = Gp(s)Ge
g1(s) - gm(s) hin -

gn1(s) ..o gnum(s) L B 3)
fuls) -+ fin(s)
fur(s) -+ fun(s)

The purpose of designing the compensator is to make the decoupling system Q(s)
diagonal in all frequency domains, which means non-diagonal elements f,(s) = 0
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(I#rl1=1,2,---n,r=1, 2, ---n). In this way, the interaction is minimized, and the
decoupling effect is the best. However, it is not easy to find such an ideal compensator.
Therefore, this paper selects a specific frequency s = jwy to design the compensator.
What needs to be explained is that the selection of a specific frequency s = jwy depends
on the control object and requires the designer to use design experience to verify it
through repeated experiments.

Use s = jwy to denote the element in the 7(r = 1, 2, - --n) column of Q(s) = G,(s)G,
we can get

fir(jwo) = g1(jwo)e= (a)+jp)hy  1=1,2, ---m, 4)

where g;(jwp) is the Gp(jwp) row vector of I, /i, is the G¢ column column vector of r,
a; = Re{g(jwo)}, and p; = Im{g;(jwo)}-

In order to achieve Q(jwy) diagonalization, we make the absolute value square of the
off-diagonal elements in the #(r = 1, 2, - - - n) column of Q(jwy) equal to zero, which is

| fir Gewo) [P = ] (o™ + BBV =0 1. ®)

Under Equation (5), the optimal solution /1, can be obtained, thereby obtaining the
compensator G, and the decoupling system Q(s). However, the decoupling system Q(s)
may not meet the decoupling design requirements. One reason is that under the condition
of a certain frequency s = jwy, Equation (5) can only guarantee that the absolute value
square of the off-diagonal elements of Q(jwy) is equal to zero, but the absolute value square
of diagonal elements | f, (jwo) |2(l = r) is not equal to zero or does not tend to zero. Suppose
the designed compensator G, cannot guarantee that Q(s) at a certain frequency s = jwy
achieves diagonalization. In that case, there is no guarantee that Q(s) can be decoupled in
the entire frequency domain. The other reason is that the /1,(r = 1,2, - - - n) may be a trivial
solution, so the compensator designed is meaningless. To effectively illustrate the above
description, we give a concrete example next.

Example 1. Consider the two-input two-output one-order inertial system, The transfer function is:

2 —-3.6
| 6s+1 4s+1
Cp = 0.4 4 ' ©)
9s+1 42s+1

we select the frequency wo = 1, and under Equation (5), use PSO to obtain the compensator as equation:

[ —1.2499 x 10716 3.2508 x 1022 @)
°7 | 17313x107Y7 1.0364 x 1072 |

It can be seen from Equation (7) that without any restrictions, the calculated
G, is meaningless. Therefore, taking into account the above deficiencies, we make
the following additions based on the constraint condition of Equation (5): Firstly,
we select the square |fi, (jwo)|* (I = r) of the absolute value of diagonal elements of
Q(jwo)r(r =1, 2, ---n) column as the objective function to obtain its maximum value.
Secondly, in order to prevent the trivial solution of the obtained h,, we add the Equation
(8) as the constraint condition:

hlh, =1. ®)

In summary, the decoupling problem of MIMO systems is transformed into the
optimization problem as follows:
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max f(fy) =hl (o)™ + BB My 1=7,
st b (o™ + BB ) =0 1#7, ©)
hTh, = 1.

2.2. Interaction Measurement

The design process of the compensator has been given in Section 2.1. Since the
magnitude of the interaction between the variables of the decoupling system Q(s) does not
have a specific numerical measurement, it is not clear whether the designed compensator
can achieve the desired decoupling effect. Therefore, this section presents an interaction
measurement for the MIMO system to evaluate the impact of the decoupling degree of the
compensator. The equation is established on the basis that the diagonal elements of the
diagonal matrix are equal to the reciprocal of the diagonal elements of its inverse.

Assuming that the controlled variable of the decoupling system Q(s) is
Y =y, y2 - ,yn]T, the manipulated variable is U = [uy,u, - - -, un]T, andu; (i=1---n)
controls y;. For the i-th channel of Q(s), the open-loop gain of the channel is obtained when
all other manipulated variables are zero, that is, equality (10). The open-loop gain of the
channel is obtained when all other controlled variables are zero, that is, equality (11).

other loops are open: (3]/1> = fii. (10)
u; Uy, =0,n#i
( 9vi _ 7
other loops are closed: | =— = fii. (11)
aui ynzoln#i

Here, measurement for Q(s) interaction in MIMO systems is given:

no|f. _ f.
E:ZLHM i=1~n. (12)
= il
When the decoupling system Q(s) is diagonalized, E = 0. Therefore, when Equation (12)
is equal to zero or close to zero, it shows that other channels have no or minimal relationship
with the channel, and the decoupling effect is good.

Remark 1. Equations (10) and (11) are based on the steady-state of the MIMO system, but this
situation is usually not maintained at other frequencies. Therefore, it can only be used as the
measurement of the interaction size of the MIMO system and cannot be used as the judgment of
whether the MIMO systems are decoupled.

2.3. Parameter Tuning of Compensator

In this paper, particle swarm optimization (PSO) is used to optimize the objective
function. Firstly, the fitness function is compiled. In order to facilitate programming,

—|f1( jcuo)|2 (I = r) is taken as the objective function to obtain its minimum value.
The fitness function can be obtained as follows:

Fit(f (hy)] = ~| fir (jwo) P= — A (g™ + BB Ry 1= (13)

Secondly, through the above fitness function and constraints in the frequency domain,
hy (r=1, 2, ---n) can be obtained through PSO debugging, and thus the compensator
G, can be obtained. Figure 2 shows the flowchart of PSO.
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A

Initialization

A

> The calculation of fitness

A

Update the best fitness and position of the individual

h 4

Update the best fitness and position of the population

A 4

Update the velocity of the individual

A 4

Update the position of the individual

Meet the times of iterations

Figure 2. The flowchart of PSO.

PSO is essentially a stochastic algorithm, which has the function of self-organization,
evolution, and memory and the strong searching ability and fast optimizing speed.
In order to demonstrate the superiority of PSO to other evolutionary algorithms, we
execute a number of comparisons between PSO and other evolutionary algorithms, such
as Genetic Algorithm (GA), Shuffled Frog Leaping Algorithm (SFLA) and Cuck Search
(CS). GA originates from Darwin’s idea of natural evolution and follows the natural law of
competition and survival of the fittest. GA is characterized by fast search speed, strong
randomness, simple process, and robust flexibility. Still, it is easy to fall into the local
optimum due to the reduction of population diversity in the evolution process. CSis a
new swarm intelligence algorithm based on simulating cuckoo’s nesting behavior. The
algorithm has been successfully applied to solve various optimization problems due to
its fewer parameters and easy realization. A significant feature of the CS is that it uses
Levy flight to generate new solutions. The high randomness of Levy flight is that it can
make the search process throughout the whole search space so that the global search ability
of the algorithm is strong. However, the Levy flight height’s randomness causes the CS
algorithm’s poor ability to perform a refined search in the local area and the slow conver-
gence of the algorithm. SFLA simulates the communication and cooperation behaviors of
frog populations in the process of foraging in nature, which has the advantages of fewer
control parameters, simple operation, and easy realization. The specific parameter settings
of different evolutionary algorithms are proposed in Table 1. The population size of each
algorithm is 50, and the times of iterations are 100. The crossover probability and mutation
probability of GA are 0.9 and 0.1, respectively. SFLA’s moving maximum distance is 0.02,

104



Entropy 2021, 23, 1180

CS’s maximum discovery probability is 0.05. The weight of inertia, the self-learning factor
and the population-learning factor of PSO are 0.35, 1.5 and 2.5. respectively.

In order to facilitate a comparison, we randomly select G,(s)=[0.2,0.5; —0.3,0.6], set
Gc=[h1, hy; h3, hy], and only obtain the first column hy : by and hs of G.. Each algorithm
is implemented independently 30 times. Table 2 presents the statistical results of each
algorithm, including the maximum, minimum, average, standard deviation values of the
objective function, and the average computational time. According to Table 2, we can see
that PSO has an evident advantage of minimum, average, standard deviation values and
average computational time over other algorithms. Figure 3 is the convergence graph of
the optimization algorithms. It can be seen that PSO has a fast convergence speed and a
good effect in finding the optimal global solution.

Table 1. The parameter settings of different evolutionary algorithms.

Evolutionary Algorithms Parameter Settings

Genetic Algorithm (GA) Population size = 50
The times of iterations = 100
Crossover probability = 0.9
Mutation probability = 0.1
Sthfggfi tiﬁg(ésﬁgl;l & Population size = 50
The times of iterations = 100
Moving maximum distance = 0.02
Cuck Search (CS) Population size = 50
The times of iterations = 100
Maximum discovery probability = 0.05
Particle Swezll')rg (g;ptlmlzatlon Population size = 50
The times of iterations = 100
The weight of inertia = 0.35
The self-learning factor = 1.5
The population-learning factor=2.5

Table 2. Statistical results of different algorithms.

Fmax Fmin Fave Fstd Time (s)
GA 0.8885 —0.2030 0.0859 0.2911 0.2099
SFLA 3.9953 —0.2095 0.5383 1.1147 0.2389
CS 0.1941 —0.2124 —0.1844 0.0845 0.1347
PSO —0.1908 —0.2128 —-0.2117 0.0039 0.0756
| T
o ——PSO
0.8 —GA
....... SFLA
0.6 H =S
04t
ol
‘ ----------------------------‘
02 BN
0.4 : : : : : : : : :
0 10 20 30 40 50 60 70 &80 90 100

iterations

Figure 3. Convergence graphs of the optimization algorithms.
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Furthermore, according to the research works with respect to the non-parametric
statistical tests for different algorithms [22], some statistical tests have been adopted to
compare the performance of GA, SFLA, CS and PSO. Table 3 proposes ranks achieved
by Friedman, Friedman aligned and Quade tests for the objective function obtained by
different algorithms. It is noticeable from Table 3 that PSO performs best in all statistical
tests. Consequently, PSO has the superiority over other evolutionary algorithms in solving
unknown parameters of compensator G.

Table 3. The ranks achieved by Friedman, Friedman aligned and Quade tests.

Friedman Ranks Friedman Aligned Ranks Quade Ranks
GA 1.9 7.32 1.81
SFLA 2.5 10.7 2.41
CSs 12 5.6 1.38
PSO 1.1 4.5 1.10

3. CDM Controller Design and Measurement Noise Rejection

In Section 2, the decoupling design can obtain the decoupling system Q(s) with min-
imized interaction, but its open-loop transfer function is complex, and the order is high.
Therefore, when stability, response characteristics, and robustness are considered simulta-
neously, the designed controller will become more complicated. CDM can effectively solve
such problems.

3.1. CDM Controller Design

For the SISO linear systems, the standard block diagram designed by CDM is shown
in Figure 4. The CDM control system consists of two parts: the controlled object and the
CDM controller.

Plant

(1)

Controller

Figure 4. CDM control system standard block diagram.

where 7(t), u(t), y(t) and d(t) are reference signal, control quantity, output quantity and
disturbance quantity, respectively. The control function of the controller u(t) may be
interfered by the interference signal d. N(s) and D(s) are the numerator and denominator
polynomials of the controlled object, respectively, defined as follows:

N(s) = bus™ + by 15" 4 - + bys + by,

(14)
D(s) = dns" 4 dy 18" + - - + dys + do,

where by, by, 1+ - by and dy,d,,_1 - - - dy are real coefficients and m < n. A(s) and B(s)
are the denominator and numerator polynomial of the controller, respectively, defined
as follows:

A(s) = ilisi, B(s) = ikisi, (15)
i=0 i=0

where [; and k; are unknown coefficients of the controller and i < n. There are many
criteria for the selection of A(s) and B(s) polynomials. Disturbance is one of the selection
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criteria. When Iy = 0, the influence of disturbance signal can be well suppressed. F(s) is
the reference numerator of the controller, which can ensure that the steady-state error in the
performance of the closed-loop system is reduced to zero. The definition form is as follows:

F5) = (0 oo 6

where P(s) is the characteristic polynomial of the closed-loop system. From Figure 4, we
can obtained

P(s) =D(s)A(s) + N(s)B(s) = io a;s',a; >0, (17)

where g; is the real coefficient. The design parameters of CDM-related characteristic
polynomials are equivalent to the time constant T and stability index ;, defined as follows:

_m
aol
aiz .
Yi=———, i=1~n-1,
ajy1ai—1 (18)
’)/0 - 'Yn - OO,
1 1
*
Jl + ,
i Yirl Vi1

where ;" denotes the stability limit, which is used to constrain the value of the stability
index ;, and 7;* is mainly used to ensure that it meets the Lyapunov stability conditions
in the actual design process. The equivalent time constant 7 is closely related to the setting
time and bandwidth, which determines the rapid response of the system. If the setting
time is represented by ¢;, according to the Manabe standard form [13], its relationship with
the equivalent time constant t; is T = £, /(2.5 ~ 3).

The selection of the stability index <; determines the stability and time domain
response characteristics of the system. Robustness is different from the system’s stability,
mainly considering the influence of system parameters on the speed of pole change.
Control systems with other structures may have different robustness even if they have
the same characteristic equation. The robustness of the system can only be determined
when the open-loop system structure is determined. An essential feature of CDM in
the application is that the controller structure and the characteristic polynomial can be
designed simultaneously, and the robustness of the system can be guaranteed by setting
the controller structure.

If Equation (17) of the corresponding system is a third-order system, according to the
Routh stability criterion, the stability condition is a,a; > azag. According to the expression
in formula (18), this is equivalent to requiring the stability index to satisfy y172 > 1.
Similarly, the stability conditions of the fourth-order system are ay > (a1/a3)as + (az/a1)ag
and y2 > 72" . For the fifth-order and above systems, Lyapunov gives several sufficient
conditions for different forms of stability and instability, among which the conditions
suitable for the CDM are as follows [23]: if all the fourth-order polynomials of the system
are stable and have a margin of 1.12 times, the system is stable. If some third-order
polynomials in the system are unstable, the system is unstable. The stability conditions of
the system can be described as :

a; > 1.12(%;1 Ajpo + Ait1 a;_»),
ai+1 ai—1 (19)
yi > 112y, i=2~(n-1).

Manabe has proved that the system can obtain better stability and response character-
istics when ; > 1.127;* and 7;” values are between 1 and 4. If the stability index is selected
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according to 7; > 1.57;%, the system’s robustness is improved by sacrificing stability and
response characteristics [23]. With the help of some design experience, designers can con-
sider stability, response characteristics and robustness by reasonably selecting the structure
and parameters of the controller.

In this article, we use the stability index -; values in the Manabe standard form.
According to the Manabe standard form, the stability index ; is defined as:

11=25 Y=rn=00, ¥, =2; i=2~(n—1). (20)

Using the equivalent time constant T and the stability index 7;, the characteristic
polynomial P(s) can be obtained as follows:

P(s) = ag Hiiz <;H1 7?}) (TS)i} +71s+1

By comparing the coefficients of the characteristic polynomial Equations (17) and (21),
the CDM controller parameters can be obtained.

. (1)

3.2. Measurement Noise Rejection

To meet with the design needs of real-life, we analyze the output effect of the measure-
ment noise in the controlled variable u in Section 3.2. Usually the block diagram presented
in Figure 4 is extended by including measuring noise. Measurement noise may have a
different character, but it is typically dominated by high frequencies, and low-frequency
noise would correspond to drift. High-frequency noise can be suppressed by limiting the
bandwidth of the closed-loop system. CDM can restrain the influence of high-frequency
noise by selecting the equivalent time constant 7 to limit the bandwidth of the closed-loop
system. The reason is that the rapid response of the closed-loop system is proportional to
the bandwidth, The equivalent time constant T is closely related to the setting time and
bandwidth, which determines the rapid response of the system. Here, we give the analysis
of low-frequency noise suppression. Those signals are represented in Figure 5.

Controller

Figure 5. Basic structure of a CDM controller.

The newly added signal n(t) denoting the measurement noise. We assume n(t) is
bounded with |n(t)| < u - h(t), where u and h(t) are a positive constant and a step-type
signal, respectively [24]. In order to analyze the output effect of the measurement noise
in the controlled variable u(t), the reference signal r(t) and disturbance signal d(t) is set
to zero. This leads to a relationship between n(t) and u(t), n(t) and y(t) given by the
following differential equation:

—n(s)-B(s) - D(s) = (A(s) - D(s) + N(s) - B(s)) - U(s),

—n(s) - B(s) - N(s) = (A(s) - D(s) + N(s) - B(s)) - Y(s), 22

where n(s) is the Laplace transforms of n(t), U(s) is the Laplace transforms of u(t), Y(s) is
the Laplace transform of y(t).
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Let us impose b; # 0 fori =0,--- ,m ,d; # 0fori = 0,--- ,n in Equation (14). The
product B(s) - N(s) is a g + m order polynomial and the product B(s) - D(s) is a g + n order
polynomial, respectively. The polynomials will be denoted by C(s) and E(s) defined as:

q+m . q+n .
Cls) = X gi-s', E(s)= L 8" (23)

Assuming r(t) = 0,d(t) = 0, this steady-state system behaviour will be easily han-
dled in the Laplace domain. By applying the final value theorem, the following equality
should hold:

li f) =lims-Y 24
Lim y(f) = lims - Y(s), (24)

However, in order to satisfy this equality, all the Y(s) poles must have negative real
parts and no more than one pole can be at the origin [25].

Assuming causality and zero initial conditions, the application of Laplace transform
to (22) leads to,

_ —E(s)
O = 261 D6 + ¢ - B6) "
_cs) (25)
YO = A6 De) + co) B "
Applying the final value theorem to the above expression then,
lims- —C(s)-n(s) =0 (26)

s—0

1
Due to |n(t)| < u-h(t) and h(t), the Laplace transform is > and we use % replace

n(s), thus expression (26) takes the following format:

. H
lims- —C(s) - = = —4 - go. (27)
Since gp is equal to the product of by and k¢ and since by # 0 then, in order for
g0 to be zero, the controller coefficient ky must be equal to zero. Similarly, when the
controller coefficient ky is equal to 0, the measurement noise has no effect on the control
u(t). Therefore, when the controller coefficient kg is equal to zero, the measurement noise
does not affect performance.

4. Overall Design Ideas

This paper designs a compensator G, and a centralized CDM controller for the n x m
MIMO system in Figure 6. Systematic design ideas ensure the feasibility of decoupling
design methods in large and small systems. At the same time, when the MIMO system
interaction is minimized with high accuracy, the controller can achieve good control effects
due to the robustness of the CDM. The most considerable advantages of CDM can be listed
as follows:

1. A characteristic polynomial and controller are simultaneously designed. The charac-
teristic polynomial specifies stability and response. The structure of the controller
guarantees robustness. Thus, a simple controller, which satisfies the stability, re-
sponse, and robustness requirements, can be designed with ease.

2. Compared with PID control that needed to develop different tuning methods for
the process with various properties, it is sufficient to use a single design procedure
in the CDM technique. This is an outstanding advantage.

The decoupling control and CDM controller design for the MIMO system can be
summarized as the following steps.
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Figure 6. MIMO system control block diagram.

Figure 7 shows the design steps for MIMO systems, where the design process of CDM
controllers is shown as the following:

1. Set the SISO controller parameters A(s) and B(s). ko = 0 is a good choice for measure-
ment noise suppression.

2. Select CDM design parameters. The stability index 7; in this paper is in the Manabe
standard form of Equation (20). As long as the value of the equivalent time constant
T is determined, the controller parameters can be obtained. The T value mainly
determines the response time of the system. Generally, the T value is determined
according to the design requirements of the system setting time and bandwidth.

3. Solve the SISO controller parameters. A(s), B(s) can be obtained by Equations (17)
and (21). F(s) can be obtained by Equation (16).

( Start )
Y
/ Initialization /

y
Design compensator according
Section 2

A 4

Treat the MIMO system as n SISO systems

4
Design CDM controllers for each SISO systems according
Section 3

A 4

MIMO controller simulation

\ 4
End

Figure 7. MIMO system control block diagram.

Remark 2. The necessary condition for designing CDM controllers is that both denominators
and molecules of the transfer function of the controlled object need to be expressed by rational
polynomials. If there is a delay element in the transfer function of the controlled object, the improved
Padé approximation method in reference [26] is used to deal with the delay element. According to
the results of [26], the third-order improved Padé approximation is:
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oL 60 — 24sL + 3(sL)*
- LD N (28)
60 + 36sL +9(sL)” + (sL)

e

where L is delay time.

5. Simulation Experiment

This section conducts simulation experiments on four unique control targets to prove
the effectiveness of this method. The experiments are evaluated with a step response
of 1. The state variable is set to x;(i = 1, 2, 3,...,n), and the system output is set to
yi(i =1, 2, 3,...,m). Use the compensator for decoupling. When the interaction of
the MIMO system is minimized, treat it as n SISO systems, and set each SISO system as

Ai=(=1,23,...,m).

Example 2. Consider the two-input two-output second-order inertial system (sugar factory model)
in [27]. The transfer function is:

0.28 -0.33
| 21s2+10s+1  30s2+11s+1
Cr = 0.4 0.5 ‘ @9)

270s2 +39s +1 43252 +425+1

Without the decoupling design, the step response curve is shown in Figure 8.
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Figure 8. Step response curve of the original system (29) without decoupling design. (a) x; # 0;
(b) xp # 0.

It can be seen from Figure 8a that x; # 0. As shown in Figure 8b, x; # 0.
The two loops are obviously related, so the system (29) is a related system to the in-
teraction. Therefore a decoupling design method is used to eliminate the interaction of the

original system.
Select the angular frequency wp = 0.13, and obtain the compensator as Equation (30).

0.7807 0.7606
Ge=1 _06256 0.6507 |" (30)

111



Entropy 2021, 23, 1180

Apply the compensator (30) to the original system (29), then the decoupling system
Q(s) is obtained. Figure 9 draws the step response curve of the original system (29) after
the decoupling design. As can be seen from Figure 9, the interaction of Q(s) is effectively
suppressed, especially in the static response part of the system. However, there is still a
weak interaction in the dynamic response part. Overall, the decoupling effect is good.

Controlled  Variables
T T T T T

Controlled Variables
T T T T T

-
-

0.25

Amplitude
-
2

Amplitude
o
N

015

I I I I I I I I I I I I
80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
Time(s)

0,05 I I I
0 20 40 60
Time(s)
(b)

@)
Figure 9. Step response curve of the original system (29) with decoupling design. (a) Ay; (b) A».

The two SISO systems after decoupling are set to A1 and A,. For A; and Aj, use
the stability index v; and equivalent time constant T in Table 4 to calculate CDM control

polynomial parameters. Table 4 shows the equivalent time constant T and CDM control

polynomial parameter values.

Table 4. The equivalent time constant T and CDM control polynomial parameter values.

System A; System A,
T 11.2 16
E(s) 1.6811 0.8358
A(s) 0.0313s2 + 0.0855s 0.0921s2 + 0.0928s
B(s) 6.932252 4 6.1273s + 1.681 25.3384s2 + 7.9861s + 0.83576

Using the CDM control polynomial parameters in Table 4 to control A; and A,, the

results are shown in Figure 10.

Figure 10. CDM controls A; and Aj step response
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Figure 11 shows the result of inserting the compensator (30) in front of the controlled
object (29) and using the CDM parameters in Table 4 for control. Affected by the interaction

of the dynamic response part, the system overshoot increases.

Controlled Variables
T

Figure 11. Use this method to control the MIMO system (29) step response.
Here, the compensator (31) designed in [27] is compared with the method in this

paper. Table 5 summarizes the results of evaluating the compensators (30) and (31) using
formula (12). Table 5 shows that the decoupling effect of the compensator designed by the

method in this paper is better.
0.174 0.479
Ce = —0.219 0.503 | S
Table 5. Comparison of evaluation.
Ref. [27] Proposed Method
0.048587 0.0000067

evaluating value

In [27], Masaya et al. designed a PID controller according to Shunji’s optimization
method. We also use the design method proposed in [27] to design the controller for
the decoupling system Q(s), which uses the compensator (30), and Figure 12 shows the
results of the Masaya-PID controller and the CDM controller in this paper to control the
decoupling system Q(s). From this figure and the performance values appearing in Table 6,
it is seen that the CDM controller has a more successful time-domain performance.

Controlled Variable x1 Controlled Variable x2
1.2 T T T T T T T T ( a) (b)l.z T T T T
N —CDM —CDM
N PID || e PID
AN
1H 1 —
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08 i 081 ',l
§
= 3 /
] ] !
06 Z06 i
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J
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i
i
i
!
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Time(s)

Figure 12. Use the PID controller in [27] and CDM controller to control the decoupling system Q(s) step response. (a) controlled

variable x1; (b) controlled variable xp.
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Table 6. Performance values of the time response curves shown in Figure 12.

Settling Time Max Overshoot %
Masaya-y; 43 15
CDM-y4 41 13
Masaya-y» 172 1.5
CDM-y, 26 0

In order to verify the robustness of the method in this paper, the system with distur-
bances and modeling errors is simulated. When there is a step disturbance in the original
system, the control result is shown in Figure 13. According to Figure 13, the influence of the
disturbance signal subsides in a short time. Suppose that the correct system model is repre-
sented by Equation (32), and the system model with errors is represented by Equation (29).
The changes in the parameter of Equation (29) are in the interval +15%. The compensator
(30) is applied to the correct system model (32), and the CDM controller is used to control.
The experimental results are shown in Figure 14. From the results in Figure 14, it can be
seen that when the model has measurement errors, the control effect of the method in this
paper is good. Figures 13 and 14 show that the method proposed in this paper is robust.

Controlled Variables
T

1.2 T T

L1 L1

1.05 1.05 —

s
LAERS AN

1 s 1

095 0.95 -
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0.9 0.9
190 200 210 220 230 240 390 400 410 420 430

1 1 1 1
0
0 50 100 150 200 250 300 350 400 450 500

Time(s)

Figure 13. Use the method in this paper to control the step response of the original system (29) with

the step disturbance.
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Figure 14. Use the method of this article to control the step response of the system (32).
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0.238 ~0.3795
B 21s2410s+1 30s2+11s+1
Gp = 0.34 0.575 (32)

270s2 +39s+1 43252 +42s5+1

Example 3. The multivariable four-tank system has a tunable transmission of zero [28,29]. With
appropriate "tuning”, this system will exhibit nonminimum-phase characteristics. Applying the
nominal operating parameters given in [28,29] yields the four-tank system model:

0.1987 —0.3779
65s + 1 (655 +1)(34s + 1)
Gp = 0.4637 0.16194 : (33)
(54s +1)(45.35 + 1) 54s + 1

For the four-tank system of the controlled object (33), the frequency wy = 0.34 is
selected, and the precompensator is obtained.

—0.3262  0.8884
Ge = 0.9455 —0.4597 | 34

Use the evaluation formula (12) to evaluate the decoupling system Q(s) after the
compensator formula (34) acts on the controlled object formula (33), and the result is
0.000013. It shows that after the decoupling design, the interaction of the controlled object
(33) is weak, and the decoupling effect is well.

The two SISO systems after decoupling are set to A; and A;. In order to suppress
measurement noise, we select the controller coefficient kg = 0. Then, use the stability
index 7; and equivalent time constant T in Table 7 to calculate CDM control polynomial
parameters. Table 7 shows the equivalent time constant T and CDM control polynomial
parameter values.

Table 7. The equivalent time constant T and CDM control polynomial parameter values.

System A, System A,
T 120 100
F(s) 3.0833 2.8187
A(s) 69.2884s% + 4.15725 + 0.9019  75.3466s> + 3.8905s + 0.9513
B(s) —3231.15% — 109.6204s —3056.75% — 88.0734s

Use the CDM controller in Table 7 to control A; and A, the result is shown in Figure 15.

Contrlled Variables
T

T
—xi
----- x2

I I I I I I I L I
0 50 100 150 200 250 300 350 400 450 500

Figure 15. CDM controller controls A; and A; step response.
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Figure 16 shows the result of inserting the compensator (34) in front of the controlled
object (33) and using the CDM parameters in Table 7 for control. It can be seen that the
system overshoot is slightly increased due to the interaction.

Controlled Variables
T T T

0.85 &
100 15 200 250 300

L I I I L
0 50 100 150 200 250 300 350 400 450 500
Time(s)

Figure 16. Use this method to control the MIMO system (33) step response.

Figure 17 shows the result of the controlled MIMO system (33) under the measurement
noise whose magnitude is limited within [—0.0016, 0.0016]. It can be seen that the system
response has not changed, and the measurement noise does not affect performance.

Controlled Variables
T

Amplitude

L L L L L L L L
0 50 100 150 200 250 300 350 400 450 500
Time(s)

Figure 17. Controlled MIMO system (33) under the measurement noise.

Example 4. The controlled object (29) increases the delay link to become the accused object (35).

Gp — 212 +10s + 1 30s2 +11s + 1
p= (35)
0.4 o059 0.5 o—0.685
270s2 +39s + 1 43252 + 425+ 1

Using the method in this paper, select the angular frequency wy = 0.28 and obtain
the compensator.

0.7809 0.7625
Ce = —0.6247 0.6470 |’ (36)

Use Equation (12) to evaluate the effect of the compensator (Equation (36)) on the
controlled object (Equation (35)) to obtain the decoupling system Q(s), and the result is
0.000000057. It shows that the system interaction effect of using compensator decoupling is
minimal, and the decoupling effect is good.
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The two SISO systems after decoupling are set to A; and A;. For A; and Aj, the
delay link is approximated by the improved Padé approximation method in [26]. Then use
the stability index -; and Table 8 equivalent time constant T to calculate the CDM control
polynomial parameters. Table 8 shows the equivalent time constant T and CDM control
polynomial parameter values.

Table 8. The equivalent time constant T and CDM control polynomial parameter values.

System A, System A,
T 76 64
F(s) 0.0017 0.00028
A(s) 0.3665s% — 0.0016s 0.0015s2 + 0.000555s
B(s) 0.2464s% + 0.1321s + 0.0017 0.0728s% + 0.0102s + 0.0002773

Using the CDM control polynomial parameters in Table 8 to control A; and A,, the
results are shown in Figure 18.

Figure 18. CDM control A; and A; step response.

Figure 19 is the result of inserting the compensator (36) before the controlled object (35)
and using the CDM parameters in Table 8 for control. Figure 18 is the same as Figure 19,
which proves that the decoupling effect is well.

Controlled Variables
T T

oo~ | i

1 1 1 1 1 1 1 1
0
0 100 200 300 100 500 600 700 800 900 1000

Figure 19. Use this method to control the MIMO system (33) step response.

Example 5. The controlled object (29) adds a line of input and a column output to become the
controlled object (37).

0.28 —0.33 0.38
2152410541 30s2+11s+1 4552412541
_ 0.4 0.5 0.6
GP - 270s24+39s5+1  432s24+425+1  543s24+68s+1 |- (37)
0.9 0.45 1

500s24+30s+1  440s2+45s4+1  600s2+89s+1
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Using the method in this paper, select the angular frequency wp = 0.13, and obtain
the compensator:

0.6251 —0.7607  0.8234
G, = 0.3317  0.0941 0.0350 . (38)
—0.7061 0.6423 —0.5667

Use the evaluation (12) to evaluate the decoupling system Q(s) after the compensator
formula (38) acts on the controlled object formula (37), and the result is 0.0005411. The two
SISO systems after decoupling are set to A1, Ay and Ajz. For A1, Ay and A3z, use the stability
index ; and Table 9 equivalent time constant T to calculate the CDM control polynomial
parameters. Table 9 shows the equivalent time constant T and CDM control polynomial
parameter values.

Table 9. The equivalent time constant T and CDM control polynomial parameter values.

System A System A, System Aj
T 38.67 100 68
F(s) —5.4186 3.6895 0.5582
A(s)  0.0011s* + 0.0169s 0.0253s% + 0.08397s% +12.9567s  0.0027s2 + 0.0055s
B(s) —25.925% — 19.0082s 41568.98s3 + 8205.155> 9.8979s2 + 3.4319s
—5.4186 +447.8735s + 3.6895 +0.5582

Using the CDM control polynomial parameters in Table 9 to control A;, Ay and A3,
the results are shown in Figure 20.

Controlled _Variables

02 |

Figure 20. CDM control A1, Ap and A3 step response.

Figure 21 is the result of inserting the compensator (38) before the controlled object
(37) and using the CDM parameters in Table 9 for control.

Figure 21. Use this method to control the MIMO system (37) step response.

6. Conclusions

This paper proposes a multivariable system controller design method based on the
CDM and analyzes the controller’s suppression effect on measurement noise based on the
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CDM. The decoupling design is realized by designing the compensator in the frequency
domain, and the compensator parameters are optimized through PSO. At the same time,
use statistical tests to compare four evolutionary algorithms, including PSO, GA, SFLA,
CS, to prove the advantages of PSO. After decoupling, the open-loop transfer function of
the system is complex. Therefore, the controller structure design and parameter tuning
are based on CDM. Finally, simulation experiments are carried out for four unique control
targets. The results show that the decoupling effect of the MIMO system is good, and the
designed system can take into account stability, response characteristics, and robustness at
the same time, which confirms the effectiveness of the method.
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Abstract: The problem of local fault (unknown input) reconstruction for interconnected systems is
addressed in this paper. This contribution consists of a geometric method which solves the fault
reconstruction (FR) problem via observer based and a differential algebraic concept. The fault
diagnosis (FD) problem is tackled using the concept of the differential transcendence degree of a
differential field extension and the algebraic observability. The goal is to examine whether the fault
occurring in the low-level subsystem can be reconstructed correctly by the output at the high-level
subsystem under given initial states. By introducing the fault as an additional state of the low
subsystem, an observer based approached is proposed to estimate this new state. Particularly, the
output of the lower subsystem is assumed unknown, and is considered as auxiliary outputs. Then,
the auxiliary outputs are estimated by a sliding mode observer which is generated by using global
outputs and inverse techniques. After this, the estimated auxiliary outputs are employed as virtual
sensors of the system to generate a reduced-order observer, which is caplable of estimating the fault
variable asymptotically. Thus, the purpose of multi-level fault reconstruction is achieved. Numerical
simulations on an intensified heat exchanger are presented to illustrate the effectiveness of the
proposed approach.

Keywords: local unknown input; interconnected system; local reconstrucability; global reconstruca-
bility; reduce-order uncertain observer

1. Introduction

Increasing developments in modern technologies have led to a high complexity of
control systems. Thus, either due to physical or analytical purpose, modern control systems
are frequently tackled as interconnected systems. Potential faults in interconnected systems
have also become inevitable and increasingly complex since faults of the interconnected
system can be represented at either the local subsystem level, or at the global system level
with the whole system in view, considering faults such as unknown external disturbance,
or parameter variations. Faults at either level may not only cause the decline of the
performance of both the global system or the local subsystem, but also may trigger a
series of fault subsystems. Compared with residual fault diagnosis methodologies, fault
reconstruction is capable of identifying the size, location, and dynamics of the fault. In
addition, the fault can usually be regarded as an unknown input to the system. The
problem of reconstructing the inaccessible inputs from the available measurements is
therefore motivated and has attracted remarkable interest in the last decades. Particularly,
reconstruction of unknown or inaccessible inputs from noise or indirect measures is very
common in many real industrial situations.

In the case of fault diagnosis and unknown input reconstruction for interconnected
systems, centralized structure-based fault reconstruction approaches are well investigated,
e.g., in Refs. [1-19]. A significant approach of FD and FR for dynamic systems are the
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observer based methodologies [1-7], with differential geometry-based techniques also
representing another attractive method [8-13]. Investigations aimed at solving problems
of FD and FR of nonlinear dynamic systems via algebraic and differential techniques can
be found in studies such as Refs. [12-17]. These approaches are normally applications of
dynamic inversion to achieve the purpose of FD and FR, just as the familiar idea of dynamic
inversion is used in the control problem of dynamic systems. Basic notions of this kind of
analysis method include the concepts of input reconfigurability [12], left invertibility of
dynamic system [9], relative degree of dynamic system and zero dynamics [16].

However, the application of individual system-based methodologies is mainly limited.
First, the identification of internal dynamics at local level is incomplete; second, it lacks the
dynamics information of the global system. In real applications, it is rather difficult to utilize
a centralized scheme to solve the problem of fault reconfiguration in interconnected systems.
Luckily, due to advances in computing and communications, it is becoming increasingly
popular to directly adopt hierarchical, decentralized, and distributed schemes to deal with
fault reconfiguration [20]. In fact, naturally, the architecture of the underlying subsystem is
decentralized or distributed, which means that it is necessary to develop distributed FD
and FR frameworks. In other words, local fault diagnosis and reconstruction should be
performed [21-39]. However, since the interconnected systems are becoming increasingly
complex, the problem of system fault reconstruction has also become increasingly difficult,
especially problems related to fault propagation, due to the fact that faults occurring in
one subsystem influence adjacent subsystems. Therefore, in order to better understand
the fault propagation problems, there is research concerning both local and global systems
such as in Refs. [20-37]. An important method is to propose a local observer for individual
subsystems using its own input and output measurements. All local observers work
together to achieve the purpose of estimation and diagnosis of the global system. In this
way, the intensive traditional observer design method, based on a single dynamic system,
can be employed, such as the high gain observer in Ref. [24], sliding mode observer in
Ref. [32], adaptive observer in Ref. [23], etc.

However, the operation of distributed FD and FR approaches greatly relies on reliable
information about the full measurement of all subsystems. Such a dependence makes
theses methodologies much more challenging, since online measurements available for
each subsystem are either difficult to obtain or are inaccurate and or expensive. The
matching conditions may be truly too harsh to be satisfied for many physical systems,
which makes these methods for unknown input reconstruction not available.

Therefore, it is of great importance to solve the above-mentioned difficulties when
analyzing the interconnected systems, which has also motivated us to carry out this
research. In this work, system inversion and observer design techniques are combined and
extended, aimed at tackling multi-level faults (unknown input) reconstruction problems
of the interconnected system. A distributed fault reconstruction scheme is developed
and the propagation of the fault effects among interconnected subsystems is investigated.
The initial objective is to recognize unknown inputs at the low-level subsystem by using
information provided at the global level. A remarkable benefit is that it is capable of
reconstructing the system state and local fault signals simultaneously, including incipient
faults, for which the fault is considered as an unknown input uncertainty. By introducing
the fault as an additional state of the low subsystem, an extended reduced-order observer
is developed to produce an estimation of this state. In particular, the output of the lower
subsystem is assumed unknown, and is considered as auxiliary output. An inverse-
based high order sliding mode observer is developed, aimed at estimating the auxiliary
output and its derivatives via measurements of global system. By using this estimation
information of auxiliary output, an extended reduced-order observer is generated, aimed at
reconstructing the unknown inputs locally. The applicable system categories of this method
include systems that depend on polynomial input and its time derivatives. Encouraging
numerical simulation results confirm the effectiveness of the proposed multi-level fault
reconstruction approach.
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The rest of this article is organized as follows: in Section 2, condition of fault re-
constructability both locally and globally is given, while in Section 3, a multi-level fault
reconstruction scheme for an interconnected system is proposed. First, at the local level, by
introducing an auxiliary output to replace its inaccessible output, an extended reduce-order
observer is designed to estimate both the states and the fault signals. Second, in order to
give an estimation of the auxiliary output and its derivatives, a high order sliding mode
observer is introduced. Finally, by gathering all the estimates from both observers, the local
fault reconstruction via global information is achieved. In Section 4, the effectiveness of the
proposed approach is illustrated by numerical simulations implemented on an intensified
heat exchanger. Conclusions and further works are discussed in Section 5.

2. Model Description and Problem Formulation

Analytically, the system can be decomposed into several subsystems, and different
control or supervision algorithms can then be developed from both local and global
viewpoints, as shown in Figure 1.

0)1 ®
U(t)_—’ Zan let —y’(t)

Figure 1. Interconnected system structure.

The important aspect is to develop models of individual subsystems that can describe
cause w»(t) and effect y(t) relationships between the 1st and 2nd subsystems. In this case,
estimation technologies on states and parameters are capable.

It is supposed that the 1st subsystem can be described with the following state affine
form by (1):

Y { x; = fi(xq) + g (x1)wm (1)

e y = hi(x,m)

where x; € R" € M s the state of the 1st subsystem, u; € R™ is the input of 1st subsystem,
which represents elements such as the control input, reference signal, etc., and is also
the output of the 2nd subsystem; y € RP is output of the 1st subsystem, as well as the
overall system. f, g, are smooth vector fields on M. x1(tg) = Xjg is the initial condition.
In addition, it is assumed that u; is inaccessible and can be recovered through available
measures of the global system.

Consider the following nonlinear systems for the 2nd subsystem subject to either
actuator or sensor faults w; by (2):

5 :{ xy = fa(xo,u, wn) @)

ond u; = hZ(XZ/u/ w2>

where the state is represented by x, € R™; u € R! is the input of the 2nd subsystem,
as well as the overall system; is the output; wy = (wyy, Wy, ..., wy) € Rk represents
the either actuator or sensor faults of the system. f;, hy are assumed to be analytical
vector functions. Specifically, each fault is related to the variables of a specific device and
subcomponent. Each of these faults implies an abnormal physical change, such as sticking,
leakage or actuator blockage.

In this way, the studied interconnected system is composed of the two local sub-
systems ) 1 and ) .q; for the global system, the vector u and y represent its input and
output, respectively.
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For the interconnected systems described by (1) and (2), the main purpose of the
study is to reconstruct fault vector w; at the local level using information at the global
level; meanwhile, performance supervision of the global system, as well as individual
subsystems, is obliged. A significant objective is to examine whether the unknown inputs
w; at local 2nd subsystem can be reconstructed uniquely by output of the 1st subsystem
at a global level, given initial states. The initial task is to propose conditions under which
both the unknown input and initial state of a known model can be determined from
output measurements. For that, the concept of the differential transcendence degree of
a differential field extension and the algebraic observability concept of the variable are
employed. An interconnected observer based scheme is then developed and analyzed
to perform local fault variables reconstruction. A reduced-order uncertainty observer
combined with a high order sliding mode observer is developed to achieve this purpose.
Finally, the performance of a traditional distributed UIO approach and the proposed
multi-level FR approach are compared in detail through numerical simulations, which are
presented in an intensified heat exchanger.

3. On Condition of Fault Reconstructability Locally and Globally

In this section, the assumptions and main results on condition of fault reconstructabil-
ity locally and globally are discussed. An initial task is to prove that the fault vector w,
at local level and output vector y at the global are implicitly causal. Moreover, it is also
necessary to provide condition to guarantee that local fault impacts on global information
are distinguishable. Basic notions are introduced first, and related concepts can be found
in Refs. [16,30].

3.1. Fault Reconstructability Condition

To cope with the problem, faults are regarded as local unknown inputs of the inter-
connected system. Thus, local faults’ reconstructability can be treated equivalent with the
capability of reconstructing unknown inputs at the local level. In solving the problem of
input reconstruction, the primary task is to evaluate the observability of input, so as to
distinguish whether the change of input of dynamic systems can be reflected in the change
of the output. In order to ensure that the local unknown input can be reconstructed from
the global outputs by means of a finite number of ordinary differential equations, there are
conditions involving observability and reconstructionability to be met.

From Ref. [30], if any unknown variable x in a dynamic satisfies a differential algebraic
equation, the coefficients k of the equation are greater than in the components of u and y,
and the number of its derivatives is finite, then the x is algebraically observable with respect
to k(uy, wy). Any dynamic with output y is said to be algebraically observable if, and
only if, any variable has this property. In addition, a fault (unknown input) is defined as a
transcendent element over k(u), in which case a faulty system can be viewed as extension
of differential transcendence with both fault (unknown input) and its time derivatives.
Motivated by this, fault observability of an interconnected system can be defined from
multi-level viewpoints:

Definition 1. (Local Algebraic observability). For subsystem (2), a fault element wy €
(U, wy) is said to be locally algebraically observable if wy satisfies a differential algebraic equation
with coefficients over x(u, uy, wy).

Definition 2. (Global Algebraic observability). For interconnected systems depicted by (1)
and (2), a fault element wy € x(u,ws) is said to be globally algebraically observable if w, satisfies
a differential algebraic equation with coefficients over «(u, y, w).

Typically, the problem of observability and left invertibility of dynamic system can
be equivalently tackled, while the property of left over invertibility usually means a
recontructability of the system input from the output. From Refs. [16,30], if invertibility
of the interconnected system, denoted by (1) and (2), can be insured, then it is capable of
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obtaining the fault element wy;i(i = 1,...,k) globally from information of overall system
output y. Equivalently, if subsystems depicted by (1) and (2) are invertible, respectively,
then their inputs and unknown inputs vectors u; and w; can be expressed locally by their
corresponding local measured outputs y and u;. To accomplish the aims, the central issue
is to provide conditions which can guarantee invertibility of both individual systems and
the interconnected system. Luckily, this has been discussed in previous paper in Ref. [30].
It can be seen that a differential output rank is defined to determine invertibility of single
dynamic system, while invertibility of all the subsystems are the necessary and sufficient
condition for ensuring invertibility of the interconnected system.

Definition 3. (Local reconstructability). For system (2), it is said to be locally reconstructable
if the system is invertible. In this way, it is capable of estimating the unknown input w, from local
system information u and u.

For the concept of algebraic observability, it is required that each fault component can
be written as the solution of the polynomial equation in w»; and the finite number of time
derivatives of u and u; with coefficients in k.

H(wZi,u,li,...,ul,lil,...) =0 (3)

Definition 4. (Global reconstructability). For the interconnected nonlinear system described
by (1) and (2), it is said to be globally reconstructable if the interconnected system is invertible, in
this way, it is capable of estimating the unknown input w, from global system information u and y.

In other words, it is required that the local unknown input vector can be expressed as
a solution of a polynomial equation in wy; and the finite number of time derivatives of u
and y with coefficients in k.

H(woy,u,0,...,y,y,...) =0 @)

As mentioned before, requirements of health measurement of all the subsystems
increases the difficulty the procedure. In this work, u; is supposed to be inaccessible.
Therefore, it is also critical for estimating a reliable u; and to ensure that reconstructed u;
has a one-to-one relationship with fault vector wy;. If it can prove that the reconstructed 1y
is converged to u; with acceptable accuracy, then by substituting u; as its estimates @; in
(3), the fault vector (wy;,i = 1,...,k)is capable of obtaining by a solution of a polynomial
equation in wp; and the finite number of time derivatives of u and i, with coefficients in k.

H(wZi,u,u,...,ﬁl,ﬁl,...) =0 (5)

In summary, if wy is algebraically observable with respect to u and y, then wj is said
to be reconstructable. If, and only if, the interconnected system is invertible both locally
and globally, the task of reconstruction of the local unknown input vector w; from global
measures, y can be achieved. That is, if the overall interconnected system is invertible, then
the impacts of the unknown input w, on the global system, output y is distinguished.

3.2. Minimum Number of Measurements and Reconstructable Unknown Inputs

In this work, accessible measurements are of great importance when implementing
the proposed FR method. Therefore, the minimum number of measurements is an essential
prerequisite for determining whether a fault in the dynamic system is reconstructable or
not. This problem is also related to the problem of invertibility of the dynamic system.
According to [16], in order to insure invertibility of the system, the differential output rank
of the system should equal to the number of the fault candidates. The differential output
rank is also defined as the maximum number of outputs associated with differential poly-
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nomial equations with coefficients over K (independent of x). It means that the available
measurable outputs of the system must be greater than or equal to the possible faults.

Remark 1. For a subsystem described by (1), invertibility cannot be guaranteed if the available
outputs are less than the inputs. Conversely, if there are more outputs than inputs, then the
redundant outputs are unneeded.

Remark 2. For subsystem in failure mode depicted in (2), invertibility of the system cannot be
guaranteed if the available outputs is less than the possible faults.

Proposition 1. From remarks 1 and 2, the simultaneous reconstructable failure number (wy;, i =
1,...,k) depends on the number of the measurable outputs.

Remark 3. For interconnected system depicted in (1) and (2), the minimum number of available
measurements predetermined the reconstructable unknown inputs, thus, equal dimensions of both
subsystems and the whole interconnected system is more meaningful.

4. Observer Design for Unknown Input Reconstruction

As mentioned before, existing observers for fault reconstruction are mainly focused
on individual systems. Although there is some research concerning both local and global
subsystems, the associated match criteria are usually overly strict to be satisfied in real
industrial applications. In order to cope with this difficulty, this work is concerned with the
challenges by deriving a fault reconstruction method based on some auxiliary outputs. The
architecture of the proposed multi-level fault reconstruction method is shown in Figure 2.

¥ interconnected system

W
u
u > 'y y >
>
Zan let
u { . q-
Reduce-order |, W Inverse &Sliding
)l
observer mode observer

Figure 2. Structure of the proposed local unknown input reconstructor.

The main idea is based on distributed observer design, since distribution resources
of dynamic systems are said to be particularly effective for estimation of interconnected
systems, due to the fact that they can update internal states using local measurement
outputs. However, the significant challenge here is the inaccessible of the interconnection,
which is the input of the first subsystem and the output of second subsystem. To cope with
this difficulty, first, in order to reconstruct local unknown fault of the first subsystem, the
interconnection is extended as an additional state of the first subsystem, an asymptotic
reduced-order observer is proposed for the first subsystem, using local input and output
measurement information. Then, it is considered the problem that local output is not
available directly. An inverse and sliding mode observer based estimator for the second
subsystem is then designed to generate an estimation of the local output, and the estimated
auxiliary output is applied to the reduced-order observer to replace its measured output.
A kind of multi-level fault reconstruction is achieved by gathering estimation of these
two observers.
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4.1. Asymptotic Reduced-Order Observer Design with Auxiliary Output

Considered system (2), the unknown fault vector wy(t) is assimilated as an extra
state of the system with uncertain dynamics. It is expressed according to the states, the
unknown inputs (faults) and the known inputs of the system. The dynamics of this new
state are unknown. The original system is then converted into an extended system where
the dynamics of the extra state are unknown, and it is assumed to be bounded. The original
problem is then an observation problem, where the aim is to observe this extra state of
the system.

The new extended system is given by:

>:<2 = fr(xo,u, wn)
Wy = P(xp,u,wy) (6)
u; = hy(xp,u,wy)

where (X, u, w;) is a bounded uncertain function, w;(t) is algebraically observable
over k(u,uy). It should be noted that a typical structure observer, similarly to a classic
Luenberger observer, is not available in the literature because the term (xp,u, wy) is
unknown. Therefore, in order to estimate the unknown input variable w,, a proportional
reduced-order uncertainty observer using differential algebraic techniques is applied to
the fault estimation is constructed to overcome the above problem.

An asymptotic reduced-order observer with a corresponding quadratic-type Lyapunov
function can be constructed for system (6):

Wy = Kj(wy —dni), 1 <i<e 7)

where @, denotes the estimate of the unknown input vector w;(t) and the convergence of
the observer is determined by K;.

Normally, time derivatives of the output are included in the algebraic equation of the
unknown input vector, which may enhance computation burden and cause significant com-
putation error even under minor measurement noise, then it is practical and worthwhile to
employ an auxiliary variable rather than the computations of the time derivatives.

If the unknown fault vector is algebraically observable and can be written in the
following form:

wyi = oqup + Bi(u,ug) 8)

where o is a constant vector and ;(u, up) is a bounded function.
If a C! real-valued function y exists, such that a proportional asymptotic reduced-order
unknown input observer exists, for system (6) it can be written as:

Theorem 1. Supposed that the auxiliary output vector uy is available for measurement, then
the system
{ Vi = —Kiyi +KiBi(u,w) — Kfoaguy )

Wy = ;i + Kixiwg

is a proportional asymptotic reduced-order unknown input observer for system (6).

The observer (9) can be implemented under assumption that u; is measured. However,
in our design u; is assumed to be unavailable, it is therefore obliged to produce an estimate
of the auxiliary output to substitute the measured one.

Remark 4. By optimizing the observer gain, the optimum tradeoff between the speed of state
reconstruction and the robustness to model uncertainty is realized. In this way, the designed
observer is not only capable of recovering the system state but also of minimizing the impacts of the
measurement noise.
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Remark 5. It is worth noting that better robustness can be achieved by adding integral action to the
proportional asymptotically reduced-order fault observer during the implementation of the observer.

4.2. Auxiliary Output Estimation

The premise of implementation of Theorem 1 is that the auxiliary output u; is measur-
able. It is therefore first required to reconstruct a smooth function of this auxiliary output
together with its derivatives from the output data records. To deal with the actual situa-
tion, a system inverse-based high order sliding mode observer is considered to accurately
estimate the auxiliary output vector u; and the derivative in the subsystem (1). If this
estimation can be well achieved, then the estimated u; in (9) and its derivatives can be
utilized to substitute u; in (1) to complete the purpose of unknown input reconstruction.
In order to achieve this purpose, we first need to construct a dynamic system, which is
indeed the realization of the inverse of the original system.

Specifically, for an invertible nonlinear system with the form of (1), a finite relative
degree of the output 1;, i = 1,...,m s first defined as the smallest integer as follows:

Lg, L 'hi(xa) = [LgHLg1 hi(x1)Lg, Lf ~'hi(x1) .. Lg, LY hi(xl)} £10,0,...,0]
Then, by calculating expressions for their derivatives, one gets:

Lﬂ_lhn (x1)

1m

I —
Lf1h11(X1) LgllLE 1h11 (Xl) e Lg
: ce. ... ... uy (10)
'm—1 m—1
Lgnhlm (x1) Lg), LE him(x1) ... LglmLL hym (x1)

Although the algebraic polynomial (10) is based on a system inversion, and has already
been able to compute uj, the requirements of calculating of the successive derivative of
the output may burden the reconstruction process. In practical applications especially, the
measurements often subject to noise, it may result in large overshoot, even failure. An
inverse-based high order sliding mode observer is then generated to tackle this problem.

Define the following change of the coordinates:

& = [53, £, ...,airir: [c[)il(xl), 2 (x1), ...,¢§i(x1)f: {hn(xl),Lﬂhh(x),__',Lgflhh(x)}T C1m

Next, to construct:

. Vi = 51151251“;1 <j<r-—-1
&' = Lihn(® 1 (Em+E Ly, L ha (@71 (&) uyi j =

The expression of input vector uy is then issued:

o a§“) Lithyy (@71(&,m)
w = A(CIfl(E,n)) : - : (11)
gm) Ly, (@ 1(E,m)

The inversed based sliding mode observer can then be designed as follows:

X 13 s 1/2_ (o :

Vi = &&= 511 + N9 — il Zsgn(9 -y 1 <j<ri—1 (12)
AT _— 1 ~ .

& =N[3; —yil’sgn(§i —y1)ij =

Finally, estimation of &; is achieved finitely:
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4.3. Reconstruction of the Unknown Inputs by Asymptotic Reduced-Order Observer with
Auxiliary Output

Now that the estimation of auxiliary output vector u; and its derivatives has been
achieved, then the unknown input can be reconstructed by this information. The G is
the exact estimate of the auxiliary output vector u; in a finite time obtained from the high
order sliding mode observer.

Proposition 2. If it can be insured that reconstructed 111 is correctly converged, the conclusion can
be obtained that the fault vector wo and iy has one-to-one correspondence.

Since estimation of the auxiliary output vector is now possible with acceptable accu-
racy, observer (7) can then be extended in the following form in (14).

Theorem 2. Supposed that the auxiliary output vector 1y is obtained, then an asymptotical
reduced-order observer in accordance with the original system (2) can be generated as follows:

Yi = —K{Yi + Ki[-)’i (u' ﬁl) - Kizaiﬁl
) (14)
Wi = vi + Kjxily

system (14) is capable of asymptotically reconstructing local unknown input vector finitely.

Proof. Subtracting the first equation of (14) from the first one of original system (2), error
dynamic of the observer can be reached. [

While it has been proven that the estimated (i is the accurate estimation of the
auxiliary output vector u; in a finite time, the convergence of (14) is straightforward
because the error dynamic system is not corrupted.

5. Numerical Simulation Implementation on a Pilot Intensified Heat Exchanger

In this section, the effectiveness of our proposed methods is illustrated on a pilot
intensified heat exchanger which can be found in Ref. [31] for physical details. Here, the
heat exchanger system is regarded as an interconnected system, in which the heat exchanger
itself is a subsystem, and the actuator is regarded as the other subsystem cascaded with the
heat exchanger. The purpose of the simulation is to prove that the unknown local internal
signals of the actuator, like unknown air pressure change, can be recovered by measuring
the outlet temperature of the heat exchanger.

5.1. Interconnected System Modelling

Define measured outlet temperatures Ty, Ty of both fluids as two states xq1, x12 of the
heat exchanger subsystem, flow rates Fj,, F, of the two fluids are defined as two inputs
uy1, ugp, which are also the interconnection of the interconnected system, outputs y,,y, are
specified as x11,X12,

The state space form of heat exchanger subsystem can then be written as:

. hy A
X11 = %(Tpi —xq1) + m(xlz —X11)

. (15)
x2 = P2(Te —x12) + pu}éﬁvu (x11 —x12)

The actuators in this process are two pneumatic control valves, it is to define the stem dis-
placement X;, Xp and their derivatives C%], % as four states x;T = [ X1 X2 Xp3 Xy ]
of the actuator subsystem, two local inputs vI = [ v; v, | are defined as the pneumatic
pressure of two valves wl = [ Fi, F ], two fluid flow rate F; F, are outputs of the
subsystem, which correspond to inputs Fp, Fy in the heat exchanger subsystem, and are

assumed unmeasured in this subsystem.
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The state space form of actuator subsystem can then be written as:

A

o 1 0 0 A 0
. R 0 0 0 0 Wo1
— m m
X2 o o o 1 [T A VEl oo (16)
0 0 % f% 0 0 W
ulz[cv B0y /AR O}Xz

wy; wpyy are defined as two local fault variables. Each one of these faults represents
a variation in the respective control valve gain, which can be originated by an electronic
component malfunction, leakage, or an obstruction in the control valve.

5.2. Observer Design for Unknown Input Reconstruction
5.2.1. Reduce-Order Observer Design

By calculating output differential rank, it is obvious that both subsystem and the
overall system are invertible. Then, it is necessary to verify the condition provided by 3.1
and to construct an algebraic equation for each component of the unknown inputs with
coefficients in T1(v,uy).

By obtaining a second time derivative of ug, it is possible to obtain a differential
algebraic polynomial for the unknown inputs whose coefficients are in IT(v,uy).

_ o5 k A
wWo1 = X2 + 1X22 + huqyp — Vi (17)
: k A
Wy = Xog + T2xos + Fupp — 22

Obviously, the time derivates of outputs and the states appear in the algebraic equation
of the unknown input, then, according to (13), an auxiliary variable is used to avoid
using them.

5.2.2. System Inversion Based Interconnection Reconstruction

The input of the first subsystem can also be represented by means of the output and
its derivatives.
Differential all two outputs in (15), and one can obtain:

. hp,A
Y1 = m(}h - Yl) % (Tpi - yl)
— h,

+
. (18)
Y2 = Wf:\/u()ﬁ —v2) + ¥ (Tui — y2)

Denoted estimates of the two inputs of the heat exchanger subsystem as

a; = [ u;; Up }, the following expression can be achieved by using above results:
-V, ( _ hyA hpA )
Ut = 1oy (V17 5,G Ve Y2 T 5TV Y1 19)

Vu o huA huA
Tui7YZ y2 puCPUvU yl + puCPuVuy2

up =

Obviously, successive derivatives of outputs y; and y, are required to develop
an inversed based second order sliding mode observer to produce exact estimates of
them finitely.

Construct new ordinates as:

yi =Tp =&y, =Ty = & (20)

The sliding observer of Formula (10) is obtained. Then, the estimated 1171 anduy; can
be used to obtain observer of (21).
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By construction:

{ Y1 = @ +Kixn (21)
Y2 = Q24 +Koxy
The following reduce-order observer are obtained:
Y1 = —Kiyg + Ky (Bxg + By — 2vy ) —Kixg @)
; ko ~ Aa 2
Y2 = —Kovy + Ko B2xp4 + 2012 — 22v2 ) — Kixo

Then, an asymptotic observer is constituted.

5.3. Simulation Results and Discussion

Aimed at illustrating the effectiveness of the proposed multi-level fault reconstruction
method, two numerical simulations are carried out in this section. Two kinds of faults are
considered, containing sudden changes and incipient variations. In addition, a simulation
comparison between the well-known UIO proposed in [30] and the proposed FR is also
provided. Detailed values of the variables used for the simulation can be found in [30].

Case 1. Abrupt fault situation.

In this simulation, the fault variables are considered to be abrupt ones. The simulation
is implemented with initial conditions y; = vy, = 0, and the observer gains are given by
K; = Ky = 5. Two unknown inputs wp1, wy; are considered. Dynamics of wj; remains
zero from the beginning, and at t = 50 s, it changes to 10 and never comes back. The value
of wyy jump to 60 at 120 s and drops back down at 160 s. Simulation results are reported in
Figures 3-8.

Output of process fluid Temperature Tp

[<2] ~ oo
o o o
T

temperature [°C]
(&)}
o

[SS I
o o
/I

24.812

2481
T 24.808 -

24.806

24.804

1 I 1 I 1 Il 7

40

24.802

80 100 120 140 160 180 200
Time [s]

24.8 1

0 20 40 60 80 100 120 140 160 180

Figure 3. Measured global output: process fluid temperature Tp.
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Figure 4. Measured global output: utility fluid temperature Ty,.
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Figure 6. Auxiliary output: utility fluid flowrate F.
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The measured global outputs, temperature of both fluid T, and Ty, are shown in
Figures 3 and 4. It can be seen that both temperature curves change abruptly at 50 s, 120 s
and 160 s. Interestingly, these changes coincide with the changes of two unknown inputs.
The measured information is fed to the inverse-based sliding mode observer to correctly
estimate the interconnection of the two subsystems, which are also the auxiliary outputs of
the low subsystem.

As shown in Figures 5 and 6, the computed fluid flowrates are denoted by the black
solid lines, and the dash green lines represent the estimated values. The two figures verify
the tracking capacities of designed sliding mode observer. It can be seen that after a short
transient time, the estimated curves converge to the computed lines with ready accuracy.
From Figure 5, at t = 50 s, the process fluid flowrate F;, increases suddenly and stables at a
new level after a short transient time again, which is in accordance with the assumption.
Figure 6 shows the computed and estimated result of utility fluid flow rate F,. It is obvious
that the value of computed F,, and its estimated value F, converged adequately after a
relatively short transient period. Then, at 120 s, it jumps abruptly and drops to the original
value at 160 s, and the estimated dash line tracks the computed solid line again after
about 2 s. These variations are influenced by variation of unknown input wy;,. Since both
estimated fluid flowrates give accurate estimation values to the computed values, they can
be used as auxiliary outputs to reduce-order observer to recover the local fault variables.

Dynamics of the fault (unknown inputs) are shown in Figures 7 and 8. The real
simulated values are denoted by the black solid lines, and the dash lines and dash-dot lines
represent the reconstructed values by a traditional unknown UIO and the proposed FR,
respectively, where local measures are available for UIO. From Figures 7 and 8, it is clear
that both reconstructed unknown inputs follow closely their corresponding true values.
After a short transient time, the reconstructed unknown inputs wy; and wy; in both dash
lines and dash-dot lines give accurate estimation values to the simulated real values in
solid line. From Figure 7, at 50 s, the estimated wy; unexpectedly increase, and finally
it stabilizes at a new level, and an increase of 10 is observed. These changes satisfy the
assumption of the unknown inputs wjy; correctly. It is also obvious that the traditional
UIO method converges quickly than the proposed FR. The similar result is obtained in the
estimated wyp of unknown input in Figure 8. At time 120 s, as expected, both simulated
and reconstructed curves of the unknown inputs wy; jump with corresponding to the
assumption, an increase of 60 is observed, then another drop happens at t = 160 s and
it returns to zero with a —60 reduction. It also proves that the reconstructed value in
dash line and dash-dot line track well the real simulated value in the solid line. Again,
they demonstrate that traditional UIO has better rapidity for fault reconstruction than
the proposed FR, and they have the same accuracy as fault reconstruction. However,
the proposed FR is more suitable for real engineering world since it does not need local
output measures.

The simulation curves indicate that the proposed observer is proper for reconstruct-
ing the dynamics of the local unknown inputs with acceptable accuracy, using global
measurements.

Case 2. Incipient fault situation.

The safe and reliable operation of dynamic systems through the early detection of a
small fault before it becomes a serious failure is a crucial component of the overall system’s
performance and sustainability. In this case, an incipient variation is considered on individ-
ual unknown inputs. The simulation is implemented with initial conditionsy; = vy, = 0,
and the observer gains are given by K; = 10, K, = 5. Two unknown inputs wj1, wpp
are considered. The dynamics of wy; is generated by 10[1 + sin(0.2te*%t)]. Dynamics of
wyy is generated by 3[1 + sin (0.5te~*1*)]. Simulation results are reported in Figures 9-14.
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The measured global outputs, temperature of both fluid T, and Ty, are shown in
Figures 9 and 10. It can be seen that both temperature curves change irregularly and
incipiently, with these changes coinciding with the changes of two unknown inputs. This
measured information are fed to the sliding mode observer to estimate the interconnection
of the two subsystems, which are also the auxiliary outputs of the low subsystem.

As shown in Figures 11 and 12, the computed fluid flowrates are denoted by the black
solid lines, and the dash lines represent the estimated values. The two figures verify the
tracking capacities of designed sliding mode observer. It can be seen that after a short
transient time, the estimated curves converge to the computed lines with ready accuracy.
Both estimated fluid flowrates give accurate estimation values to the computed values, they
can be used as auxiliary outputs to reduce-order observer to recover the unknown inputs.

Dynamics of the unknown inputs are shown in Figures 13 and 14. The real simulated
values are denoted by the black solid lines, and the dash lines represent the reconstructed
values. From Figures 13 and 14, it is clear that the reconstructed unknown input follows
closely their corresponding true values. After a short transient period, the reconstructed
unknown inputs wy; and wy; in dash lines produce an accurate estimation value to the
simulated real values indicated by the solid line. It can also illustrate that the reconstructed
value in dash line tracks well the real simulated value as shown by the solid line.

The obtained results clearly put forward the following features. The results demon-
strate that traditional UIO has a faster speed of fault reconstruction than the proposed FR,
and both methods can obtain high accuracy in incipient fault reconstruction procedure.
Therefore, the proposed multi-level local fault (unknown input) reconstruction approach is
effective for an interconnected system with unmeasured information.

6. Conclusions and Discussion

This paper addresses the multi-level local fault (unknown input reconstruction) prob-
lem of interconnected nonlinear systems. By introducing the local fault as an additional
state and auxiliary outputs of the low subsystem, then the extended states, the auxiliary
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outputs and their derivatives are then accurately estimated by combining functions of
an asymptotical reduce-order observer and an inverse-based second order sliding mode
observer. Effectiveness of the proposed schemes is verified by using simulations on an
intensified heat exchanger system, and the satisfactory performances are validated by
good simulation results. However, large bias and computation errors are observed when
significant measured output noise is involved. The applicable system categories of this
method include systems that depend on polynomial input and its time derivatives. In
addition, the results of this work can easily explore the application scenarios, such as fault
detection and fault reconstruction.

In this paper, model uncertainty and external disturbances are not taken into consid-
eration during the FR designing process. Therefore, enhancing the robustness to model
uncertainty and external disturbance is a meaningful direction for further research, and
relevant investigation has already been started. Moreover, the reconstructed information
by the proposed FR could be used in active fault tolerant control of dynamic system for
better achieving its effectiveness, and could be another focus of further research.
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Abstract: This paper investigates the cluster-delay mean square consensus problem of a class of
first-order nonlinear stochastic multi-agent systems with impulse time windows. Specifically, on the
one hand, we have applied a discrete control mechanism (i.e., impulsive control) into the system
instead of a continuous one, which has the advantages of low control cost, high convergence speed;
on the other hand, we considered the existence of impulse time windows when modeling the system,
that is, a single impulse appears randomly within a time window rather than an ideal fixed position.
In addition, this paper also considers the influence of stochastic disturbances caused by fluctuations
in the external environment. Then, based on algebraic graph theory and Lyapunov stability theory,
some sufficiency conditions that the system must meet to reach the consensus state are given. Finally,
we designed a simulation example to verify the feasibility of the obtained results.

Keywords: cluster-delay mean square consensus; multi-agent systems; stochastic disturbances;
impulse time windows; impulsive control

1. Introduction

In today’s era, automation and intelligence are the mainstream directions of technolog-
ical development. As a typical representative among them, multi-agent systems (MASs) [1]
are widely used in epidemiology [2,3], sociology [4,5], engineering circles [6-8], and other
fields with their powerful distributed integration capabilities. In [9,10], a concept called
Holonic MAS was proposed, and subsequent researchers have achieved a series of mean-
ingful results on this basis. As a key subject in the field of distributed collaborative control,
the research on the consensus of MASs has also received increasingly more attention from
the academic community, including group or cluster consensus [11-13], leader-following
consensus [14-16], He consensus [17-19], finite-time or fixed-time consensus [20-22], etc.
In practical applications, MASs are required to simultaneously tend to multiple consensus
states according to different task requirements. Specifically, MASs is divided into multiple
clusters (i.e., subgroups) based on the degree of association between agents, and the states
of all individuals included in each cluster eventually tend to be the same.

In particular, if a virtual state is selected as the consensus state of a certain cluster,
and the remaining clusters’ consensus states are different delay states corresponding to the
virtual state, such a case is called cluster-delay consensus, and it is also a special case of
the group consensus. In [23], for a class first-order nonlinear MASs, the authors proposed
the cluster-delay consensus problem for the first time and studied it through a continuity
control strategy. Furthermore, in [24], a new type of pinning consensus protocol with
intermittent effect was designed to ensure that the system can achieve the cluster-delay
consensus. Moreover, by using the pinning leader-following approach, the cluster-delay
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consensus of first-order nonlinear MASs with aperiodic intermittent communication was
studied in [25]. On the basis of these research work, the cluster-delay consensus problem
with intermittent effects and layered intermittent communication was studied in [26]
through tracking approach. In [27], the authors extend the research work on the first-order
integrator system to more complex second-order system, and investigated the cluster-delay
consensus problem of a class of second-order nonlinear MASs.

However, the above-mentioned works are all based on the continuity control protocol,
which requires the agent to maintain continuous communication with its neighbors. First, it
has higher requirements for communication guarantee capability. Second, it also increases
the control cost. In applications, the agent may not be able to obtain the neighbor’s
information continuously, and the above research results will no longer be applicable.
At this time, it is conservative. Different from the traditional continuous control method,
impulsive control has the advantages of low control cost, high control efficiency, and strong
adaptability. Consequently, it is widely used in the research on leader-following consensus
or group consensus of MASs [28-30]. Therefore, it is necessary to study the cluster-delay
consensus of MASs via impulsive control [31]. In addition, there are some other interesting
control mechanisms, such as the fuzzy control-based on sampled data [32,33], which is
widely used in the consensus or synchronization problems research of MASs. Actually,
the impulsive controller may not accurately act on the system at an ideal fixed impulse
instant, it may be earlier or later. Therefore, the impulse appears randomly within a time
window that is defined as an impulse time window in [34], and the window must be known.
In order to obtain more general results, it is undoubtedly necessary to introduce the concept
of impulse time window into the study of cluster-delay consensus. In general, MASs is
also affected by stochastic disturbances caused by fluctuations in the external environment.
Therefore, it is also necessary to study the cluster-delay consensus of nonlinear stochastic
MASs (SMASs) [35].

Inspired by the above discussion, based on impulsive control strategy, we study
the cluster-delay consensus of a class of SMASs with impulse time windows. The main
contributions are as follows.

¢ In this paper, the cluster-delay consensus problem of MASs is studied based on the
concept of the impulse time window for the first time. From this perspective, our
contribution is mainly reflected in solving the problem of how to reasonably preset
the impulsive time sequence under the new application background. In other words,
setting the corresponding impulse time window layout according to our research
results can ensure that MASs achieve cluster-delay consensus under the action of
non-fixed position impulsive control signals.

®  This paper studies the cluster-delay mean square consensus problem of MASs based
on the uncertainty model for the first time, and gives a sufficient mean square consen-
sus criterion through the Ité formula, which deepens and expands the current research
jobs to a certain extent.

The organization of the rest of this paper is shown below. Section 2 introduces
the commonly used symbols and the content of algebraic graph theory. In Section 3,
the research problem is described and the corresponding system model is constructed.
In Section 4, the corresponding consensus criterion is derived through the analysis method.
Then, numerical simulation is given in Section 5 to verify the validity of the obtained
results. Section 6 summarizes the work of the full text.

2. Notation and Preliminaries

The symbols R, R"*" ‘and N denote the sets of real numbers, m x n matrices, and
natural numbers, respectively. R” denotes n-dimensional Euclidean space. N* denotes the
set of positive integers. Symbols |x| and || x|| represent the absolute value and the Euclidean
norm for x € R and x € R", respectively. The Kronecker product and the Kolmogorov
operator are denoted by ® and £, respectively. For ¢ € R"™*", (0)T and A,y (0) denote
the transpose and the maximal eigenvalue of the matrix g, respectively. E(-) denotes the
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mathematic expectation of corresponding variable. Let w(t) be the Wiener process with
m-dimensional, which defined on the complete probability space (Q, F, { % }+>0, P) with
filtration {F}}¢>o. diag(-) represents a diagonal matrix.

Consider a class of MASs of N agents, and the system’s communication topology can
be denoted by digraph G = (D, £, A) without self-circulation, where D = {Dy,..., Dy} is
the set of nodes, & = {(D;,D;) :i,j =1,...,N} C D x D is the set of edges, A = [a;;] is
the weighted adjacency matrix with order N x N. If D; receives the state information of D,
the weight of edge (Dj, D;) is greater than 0, for convenience, let a;j = 1. Otherwise, a;j = 0.
The degree matrix is denoted by D = diag(d;,i =1,...,N), where d; = Z]-I\ilr#i a;j. Then,
—aj, 1 # j
N i
MASs contains a leader Dy, then the connection matrix is denoted by C = diag(cy, ..., cn).
When agent i receives the leader’s information, for convenience, let the weight of edge
(Do, D;) be ¢; = 1. Otherwise, ¢; = 0. If all agents can receive the leader’s information, the
leader is called a globally reachable node (i.e., C is an N-dimensional identity matrix).

Similar to the work in [23], we give the explanation and description of the following
concepts in advance to facilitate the understanding of the cluster-delay consensus. If MASs
is divided into multiple clusters labeled by Dj,.. ., D, respectively, and let the index sets
onclustersbeﬁl ={12,--- ,ml},...,@;: {my+my+---+my_1+1,...,m +---+
m;_q +mz}, ..., @Q ={m+my+---+mg_1+1,...,N}, where N = m; +--- +my,
i€{1,2,---,Q}, Q€ NT, my € NT. If the i-th agent belongs to a certain cluster, let the
subscript of the index set of the cluster be i thatis, i € 15; andi=1,..., Q. As for why
these concepts are introduced, we will describe them in detail in the following part.

L = D — A = [l;j] denotes the Laplacian matrix, where ;; = { If

3. Problem Description and Model Construction

We consider a first-order nonlinear SMASs composed of N agents, the i-th agent’s
dynamic is defined by

dx;(t) =[f(t,xi(t)) + Axi(t) — p;(S;(t) = S1(t — 7)) 1)
+ui(t)]dt + §(E xi(t))dw(t),

where x;(t) € R" is the state vector (or displacement state vector in some physical systems),
A is a known constant matrix, f : R x R* — R" is a continuous nonlinear function,
u;(t) € R" is the control input, S:(t) € R" is the state vector of the virtual leader of the
cluster where the i-th agent belongs, S1 (f — T;) is the delay state of the virtual leader of the
first cluster, T; is the time delay, and 71 = 0, p; is the coupling strength, ¢ : R x R" — R"*"™
stands for the noisy intensity function.Besides, w(t) is an m-dimensional Wiener process
defined on the complete probability space (Q), F, { F; }+>0, P) with filtration { F; }>o which
satisfies the usual conditions (i.e., Fy contains all P-null sets and F; is right continuous),
and w;(t) and w;(t) are independent of each other when i # j.

Assumption 1. Each agent has a communication connection with the virtual leader of the cluster
to which it belongs, and the first cluster’s virtual leader has a communication connection with the
virtual leaders of all other clusters.

Different from continuous control strategy, the following impulsive controller is
designed.

+o00 N
ui(t) =k215(t — ) (K(a ;aij(xj(t) —Si(t)
= j=
= (xi(t) = S;(1))) — B(xi(t) — S<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>