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Preface to ”Challenges and Research Trends of

Renewable Energy Power System”

Renewable energy sources (RESs) like solar and wind integrated power systems are becoming

increasingly important in addressing global energy challenges. However, there are still several

challenges that need to be addressed to maximize the potential of RESs.

One of the main challenges is the intermittent nature of these energy sources, which means that

they are not available at all times and also offers less or no inertia support to the system. This creates

difficulties in matching energy supply and demand, and in maintaining the stability and reliability

of the power grid. This challenge is being addressed through the development of energy storage

technologies that can store surplus energy during periods of high production and release it during

times of low production.

Another challenge is the need for new infrastructure and grid modernization to integrate RESs

into the power grid. This requires significant investments in transmission lines, substations, and

other equipments to connect RESs to the grid. In modern power systems, the liberalization of energy

markets, revised incentives and technology upgrading policies are required to create competition

among generation companies to the advantage of consumers.

Research in renewable energy is also focusing on increasing the efficiency and cost-effectiveness

of renewable energy technologies, such as the development of more efficient solar cells and wind

turbines. Overall, the challenges and research trends in renewable energy power systems are focused

on increasing the efficiency, reliability, and cost-effectiveness of RESs, while also enhancing the

integration of renewable energy into the existing power grids.

The chapters in this book demonstrate the importance of RESs penetrated power systems

designing, working and properly monitoring in order to ensure continued good performance.

Out of various timely topics few of the chapters are about the: Review of operational issues of

contemporary distribution systems, Frequency regulation problem solution of renewable interlinked

power system, Fuzzy-PSO-PID controller with UPFC-RFB for LFC of an interlinked hydropower

system, Coordinated control of wind energy conversion system during unsymmetrical fault at the

grid, Super-twisting algorithm-based virtual synchronous generator in inverter interfaced distributed

generation, Real-time peak valley pricing based multi-objective optimal scheduling of a virtual power

plant considering renewable resources, Day-ahead load demand forecasting in urban community

cluster microgrids using machine learning, and Real-time validation technique-based offset hysteresis

band current controller for grid-tied photovoltaic system.

Yogendra Arya

Editor
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Unintentional Passive Islanding Detection and Prevention
Method with Reduced Non-Detection Zones
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Department of Electrical and Electronics Engineering, SASTRA Deemed to be University,
Thanjavur 613401, India; sowmya2621994@gmail.com
* Correspondence: narayanan.mnit@gmail.com (N.K.); prabaharan.nataraj@gmail.com (N.P.)

Abstract: Islanding detection and prevention are involved in tandem with the rise of large- and
small-scale distribution grids. To detect islanded buses, either the voltage or the frequency variation
has been considered in the literature. A modified passive islanding detection strategy that coordinates
the V-F (voltage–frequency) index was developed to reduce the non-detection zones (NDZs), and
an islanding operation is proposed in this article. Voltage and frequency were measured at each
bus to check the violation limits by implementing the proposed strategy. The power mismatch was
alleviated in the identified islands by installing a battery and a diesel generator, which prevented
islanding events. The proposed strategy was studied on the three distinct IEEE radial bus distribution
systems, namely, 33-, 69-, and 118-bus systems. The results obtained in the above-mentioned IEEE bus
systems were promising when the proposed strategy was implemented. The results of the proposed
strategy were compared with those of methods developed in the recent literature. As a result, the
detection time and number of islanded buses are reduced.

Keywords: distributed generation (DG); backward and forward sweep (BFS) method; passive
islanding detection; islanding detection time; islanding prevention; V-F (voltage–frequency) index;
non-detection zone (NDZ)

1. Introduction

Nowadays, engineers incorporate renewable energy resources into distribution sys-
tems to bring down the usage of fossil fuels and to sustainably reduce greenhouse gas
emissions. In addition, renewable energy resources are used to meet the power demand and
to decrease the losses in distribution networks. On the other hand, the increasing penetra-
tion of DG imposes challenges in terms of islanding issues. The existing methods of passive
islanding detection, such as artificial neural networks (ANNs) and intelligence-based and
signal-transferring techniques, have more non-detection zones (NDZs), and the detection
of islanding is much slower than with the proposed modified passive islanding detection
strategy. The existing prevention methods are implemented with relays, which lead to
fewer difficulties during the loading and generation mismatch than with the proposed
prevention method.

1.1. Literature Review

In [1], the use of multiple distributed generation (DG) units in a radial system im-
proved the voltage profile, increased flexibility, and reduced power losses in the system.
The undeniable problem in the integration of distributed generation units is the islanding,
even though there are numerous advantages [2]. In [3], as specified in IEEE 1547-2008, in a
DG system, islanding was examined with a delay of a minimum of two seconds. Local
methods and remote methods were used to detect islanding. The problem encountered by
the local and remote methods was that of non-detection zone (NDZs); failure to identify
islanding leads to non-detection zones (NDZs) [4].

Energies 2022, 15, 3038. https://doi.org/10.3390/en15093038 https://www.mdpi.com/journal/energies1



Energies 2022, 15, 3038

In remote methods, communication-based islanding occurs where information is
transferred between a utility and distributed generation units, thereby eliminating NDZs.
The costs for the execution of these methodologies are high when compared to those of
local islanding detection techniques, but identification of islanding by using this technique
can be more effective and reliable than with other methods [5].

The electrical variables, such as frequency, voltage, current, etc., in a DG region are
measured by using active methods and passive methods that are categorized as local
methods [6]. A passive method sets threshold limits to detect islanding, and the power
flow is maintained by managing the frequency and voltage. A protective relay is operated
to isolate the DG connection when a bus system goes beyond the threshold limits [7].
Since passive methods have a minimal effect on the quality of power and reduce NDZs,
they are considered to be the better methods. The different kinds of passive techniques
for the detection of islanding include over-current (I), over-voltage (V), over frequency,
under-current (I), under-voltage (V), under-frequency, etc. [8].

Artificial-intelligence-based techniques have been introduced to identify islanding
in systems where passive detection methods are used. Artificial neural networks [9] and
intelligence-based [10] and signal-transferring techniques [11] have been introduced to
detect islanding events with passive detection techniques.

NDZs can be eliminated with active methods, but the system suffers from the de-
terioration of power quality; an active islanding detection strategy is briefly explained
in [12]. In the case of the presence of multiple renewable energy resources or DG units,
the operation of islanding is performed through the evaluation of the voltage for enormous
power fluctuations at the foremost bus to disconnect various loads [13].

In order to prevent the occurrence of islanding, a logical regression classifier was
used to accurately simulate DGs in a radial system in a MATLAB environment. This
model contained numerous conditions of occurrence based on DG energy supplies, a
low monitorable area, and multiple islanding states during operation [14]. Since the
communication speeds of directional over-current relays and frequency relays are fast and
their operation is reliable, they can be used in small-scale micro-grids [15]. Islanding can be
prevented by under-voltage and under-current relays and over-voltage and over-current
relays, which do not require communication-based preventive devices [16].

In a pole transformer, the nonlinear magnetizing property was developed for the
prevention of islanding in a PV system [17,18]. Rotating-machine-based DGs were used
for the prevention of islanding with reduced non-detection zones [19]. All of the methods
mentioned above had various shortcomings in the detection and prevention of islanding,
other than the passive islanding detection methods. The brief explanation of literature
review is shown in Table 1.

1.2. Research Gap and Motivation

The work proposed here is a novel modified passive islanding detection strategy
for detecting and preventing islanding with load-flow analysis using the backward and
forward sweep (BFS) method [20], which is associated with passive islanding detection.
In this work, the proposed strategy for the detection and prevention of islanding was
validated in the presence of various DGs in a radial system. The V-F measurements were
carried out for various IEEE radial bus distribution systems, such as 33-, 69- and 118-
bus systems, with predefined threshold limits in order to identify the islanding in these
distribution systems. A diesel generator and the battery were installed in the buses, which
were islanded based upon their generation and load values, thus preventing their operation
during the islanding of the system.
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1.3. Contribution and Organization of the Paper

The main attributes proposed in this work are:

• An unintentional passive islanding detection method using the V-F index is proposed
to detect islanding events.

• With the proposed strategy, the number of buses islanded and time taken for the
detection of islanding are minimized when compared to those of the existing methods.

This paper is organized as follows:

• Section 2 describes the model description of the DGs.
• The detection strategy for the proposed method is described in Section 3.
• The prevention strategy for the proposed method is described in Section 4.
• The results obtained for various bus systems and their discussions are provided in

Section 5.
• Finally, in Section 6, the conclusion of this work is described.

2. Model Description

The DGs were installed for 33-, 69-, and 118-bus systems [27,28] by referring to existing
papers. The modeling equations for different DGs from existing papers were discussed in
order to identify how the DGs were modeled and installed in particular buses.

2.1. PV Modeling

Solar energy is converted into electric current through what is referred as the photo-
voltaic (PV) effect. The solar panels receive sunlight, which is an abundant and sustainable
form of energy. The cost is high in the first stage of usage and is slowly reduced with
increasing efficiency [29,30]. The power generation depends on the rating of the module,
the atmospheric temperature, and the solar insolation. Solar insolation is indicated as
follows [31]:

BF(s) = s(σ−1) × Γ(σ + μ)

Γ(σ)Γ(μ)
× (1 − s)(μ−1) 0 ≤ s ≤ 1 (1)

μ =
(ν(1 + ν))

ζ2 × (1 − ν)− 1 (2)

σ =
νμ

1 − ν
(3)

s, BF(s), and Γ are the solar insolation (kW/m2), beta distribution function (BDF), and
gamma function of solar power, respectively. σ is measured as 0.999 and μ is measured as
0.055 from Equations (2) and (3).

The parameters of the BDF are given as Γ(σ + μ); ν and ζ are the mean and standard
deviation, which are taken from actual data. The PV’s power output Pout(s) is obtained as
follows [31]:

Pout(s) = Np × FF × Vyi × Iyi (4)

The I (current) and V (voltage) characteristics of a cell are evaluated as follows:

FF( f ill f actor) =
VMT × IMT

Vopt × IS
(5)

Vyi = Vopt − Kvc × TCYI (6)

Iyi = SI[IS + Kic(TCYI − 25)] (7)

TCYI = TAT + SI[(NOT − 20)/0.8] (8)

Coefficient of voltage (Kvc) = 14.40 mV/ ◦C and the current (Kic) is 1.22 mA/◦C; NOT
is calculated as 43 ◦C, representing the optimal temperature of a PV cell; the open-circuit
voltage (Vopt) is 21.98 V and the short-circuit current (IS) is 5.32 A; the maximum power

4
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point tracking (MPPT) (IMT) current is 4.76 A; and the maximum power point tracking
(VMT) voltage is 17.32 V.The solar insolation (SI), fill factor (FF), the temperature at a specific
cell (TCYI), and the ambient temperature (TAT) are calculated with 1 kV as the value of
Vyi [31]. The above-mentioned values are substituted into Equations (4)–(8) to calculate the
output power of the PV Pout(s) [31].

2.2. Wind Modeling

A wind turbine produces power that is not constant and varies from second to second
because the turbine’s speed is not constant. Therefore, the units of the wind power gen-
eration profile are affected due to the intermittency of the wind speed. The modeling of
the wind speed is framed by the Weibull probability distribution function (PDF), and the
power output concerning speed is given below [31]:

PW
is =

⎧⎪⎪⎨
⎪⎪⎩

0, vc
ins ≥ v or vcp

out ≤ v
v − vc

ins
vrated− vc

ins
PW

i,rat, vc
ins ≤ v ≤ vrated

PW
i,rat, else

(9)

PW
i,rat = 0.5 MW (rated power), vc

ins = 3 m/s (cut-in speed), PW
is = 10 MW (generated

power), vcp
out = 25 m/s (cut-out speed), and vrated = 13 m/s (rated speed of the turbine).

2.3. Hydro-Energy Modeling

The generation of hydro-energy requires a large area for installation and has low
emissions. The conversion of a kinetic source into an electrical source of energy is executed
in a hydro-energy system. This is considered as a dispatchable generation unit, and the
hydropower output is calculated as [32]:

P = Υtotal × κ × ga × hp (10)

The output power is P, hydraulic efficiency (Υtotal) is 75.1%, water density (κ) is
1000 kg/m3, pressure head (hp) is 2.25 m, and (ga) = 9.81 m/s2 (acceleration due to gravity).

3. Proposed Passive Method for Islanding Detection

The method proposed here is a passive method in which an islanded bus is identified
in the presence of DG units in a distribution system with different ratings. The power
flow is executed by using the BFS algorithm, and the DG is placed according to the results
obtained from this algorithm. The islanding is detected by considering the frequency and
voltage values.

The voltage index was used to detect islanding in [13]. Beginning with a load discon-
nection strategy, the generalization of the foremost bus was initiated with the line current
(IGrms) at each DG bus. The sampling frequency under consideration was 1.66 kHz, and
the time was 2 s. The product of the sampling frequency and time provided 3333 samples
per cycle with a 60 Hz base frequency [13].

KV1 = |vba − vsy| × aav (11)

K0 = N × Δvo × Vav (12)

The values determined by the equations given above [13] are KV1 = 0.35, which is the
voltage index, K0 = 0.17, which is the threshold index, and ‘N’ = 3333 samples/cycle. The av-
erage voltage Vav is calculated with respect to the change in the system frequency, which is
0.12 p.u. The average accumulative voltage (aav) is the mean voltage variation/cycle with
respect to time [13].

In [33], the islanding was determined in different phases; in phase I, islanding was
suspected due to changes in voltage or frequency. In the subsequent phase, islanding was
detected with a change in voltage (reactive power) and change in frequency (active power).

5
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The proposed strategy is expressed mathematically as

X1 =
3353

∑
1

Vmag sinNsa ωt =
3353

∑
1

vmag sin2π f Nsat (13)

Since ω = 2π f ,

X2 =
3353

∑
1
(1/Nsa × abs(X1)) (14)

Vope(new) = Vba − Vope (15)

ΔVo = Vba − Vope(new) × X2 (16)

Δ f = 60 − fd (17)

Kconstant =
∫ nb

0
(Δ f × 2π)/60 (18)

fd = 1 + f × [Pload(nb)
/Pactual load(nb)

]× (Vba/Vope)] (19)

Δcs = (Δ f /60)× nb (20)

K1 = X2/Vba and K2 = Kconstant × ΔVo (21)

Table 2 shows the values of specific parameters of single buses used in the pro-
posed V-F index method for 33-, 69-, and 118-bus systems, which were evaluated with
Equations (13)–(21). The K1 and K2 values were evaluated using the frequency, base volt-
age, change in voltage, number of samples, voltage magnitude, and frequency variation at
an individual bus with respect to the nominal frequency.

Table 2. Ratings of the proposed method.

Variables
Ratings (Bus System)

33 69 118

K1—V-F index and
K2—threshold limits

represented in Equation (21)
0.09684 and 0.10504 0.09884 and 0.1504 0.099924 and 0.2432

X1 and X2—The phase
voltage related to the time,

frequency, and voltage
represented in

Equations (13) and (14)

1.5925 and 1.226 1.7925 and 1.326 1.6251 and 0.2432

Pload(nb)—The real power
value of one bus with respect

to the next bus used in
Equation (19)

7.2 kW 8.7 kW 9.3 kW

Pactual load(nb)—The actual
load used in Equation (19) 20 kW 22 kW 23 kW

Nsa—The number of samples
used in

Equations (13) and (14)
3353 3353 3353

Vope(new)—The new operating
voltage calculated using

Equation (15)
11.66 kV 12.1 kV 9.2 kV

Vope—The system operating
voltage used in Equation (19) 0.995 kV 0.998 kV 0.996 kV
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Table 2. Cont.

Variables
Ratings (Bus System)

33 69 118

Vba—The base voltage used in
Equations (15), (16), (19), and (21) 12.66 kV 12.66 kV 11 kV

Δ f —The violated frequency
represented in Equation (17) 0.36 Hz 0.38 Hz 0.39 Hz

ΔVo—The change in voltage
represented in Equation (16) 1.226 kV 1.226 kV 1.120 kV

fd—The determined
frequency represented in

Equation (19)
59.64 Hz 59.65 Hz 59.61 Hz

The frequency variation at an individual bus with respect to the nominal frequency is
evaluated with Equation (18). Followed by the number of samples, the phase voltage in
the network is associated with the time, frequency, and magnitude of the voltage, which
are calculated by using X1 and X2 from Equations (13) and (14). The number of samples
(3353) is calculated with the product of the sampling frequency (1.676 kHz) and the time
of 2 s. For each bus in the considered distribution systems, the above values should be
calculated. The loads of all of the buses vary for each hour, according to which the samples
are also changed for each bus and frequency value that is measured in the radial distribution
network. An islanded bus is detected with Equation (21). If K1 > K2, islanding has occurred.
K1 and K2 are unique and, hence, are calculated at each step for individual buses.

4. Proposed Strategy for Islanding Prevention

A battery or diesel generator is installed in an islanded bus based on the load and
generation. If the generation is less than the load, a diesel generator is installed to overcome
the power deficiency. If the generation is greater than the load at the islanded bus, a battery
is installed to absorb the excess power. So, installing a battery or diesel generator at an
islanded bus provides a power balance. Once the power is balanced, islanding in an
appropriate bus can be prevented with stable voltage values.

The diesel generator is modeled as

PGen < PLoad, |PGen − PLoad| = PDiesel . (22)

The battery is modeled as

PGen > PLoad, |PGen − PLoad| = PB(ch) (23)

or
Pj + (Xij × Qj)− (ΔV × Vi)/Rij = PB(dch) (24)

ΔV = (Vi−1 − Vi) (25)

For PV power alone, PGen = PPV ; for wind power alone, PGen = PWind; for hy-
dropower alone, PGen = PHydro. For the combination of PV–hydro, PGen = PPV + PHydro;
for the combination of PV–wind, PGen = PPV + PWind; for the combination of wind–hydro,
PGen = PWind + PHydro. PPV , PWind, PHydro, and PDiesel are the power generation by the
photovoltaic, wind, hydro, and diesel generation units. PGen is the power generation and
PLoad is the load at the islanded bus. PB(ch) is the charging battery power and PB(dch) is
the discharging battery power. ΔV represents changes in voltage, and Xij and Rij are the
resistance and reactance of the bus. Pj is the real power, and Qj is the reactive power. Vi−1 is
the voltage magnitude of the previous iteration; Vi is the voltage magnitude of a particular
bus of the current iteration.

7
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The size of the diesel generator is fixed by finding the difference between the genera-
tion and load values of an islanded bus. If the generation value is 200 kW and the load is
400 kW, the difference is 200 kW. Here, the load is greater than the generation, so the diesel
generator is given the rating of 200 kW to balance the load and generation at the islanded
bus. Likewise, the size of the battery is fixed by finding the difference between the load
and generation values of an islanded bus. If the generation value is 800 kW and the load
is 200 kW, the difference is 600 kW. Here, the generation is greater than the load, so the
battery is given the rating of 600 kW to absorb the generated and to balance the load and
generation at the islanded bus.

The operations of detection and prevention are presented in Figure 1 and can be
explained as follows:

• Initially, the load-flow method is carried out. By using Equation (21), the values of
K1 and K2 are calculated. When K1 is greater than K2, islanding occurs; otherwise,
islanding does not occur in a particular bus, and the buses in the network are treated
as islanded buses when there are ±2% changes in the frequency and voltage values
with respect to the nominal frequency and voltage.

• After the occurrence of islanding, the condition between the load and generation
is checked. If the load is less than the generation, a battery is installed to prevent
islanding, and if the generation is less than the load, a diesel generator is installed to
prevent islanding.

• Here, the diesel generators are installed as dispatchable DG units in order to support
the network in such conditions where non-dispatchable DG units do not provide the
power.

• Since a battery is a storage device, it can charge or discharge power, and it cannot
generate power by itself. However, a diesel generator can generate power and support
the grid as well. Hence, a diesel generator is also used to prevent islanding.

• After the placement, the system is rejoined with the grid, and the islanding detection
method is performed as described in Section 3. Now, no buses are islanded due to the
power balance, and the result of K1 < K2 is provided.

Figure 1. Flowchart for passive islanding detection.

5. Results and Discussion

The BFS load-flow method gave the results by which changes in the V-F index were
determined through the placement of several DG units by referring to existing papers on all
distribution systems, and it was simulated in MATLAB [34]. A number of DGs were used
to enhance the stability of the system and reduce the losses in the system. The loads were
varied linearly with respect to time to detect islanding for all DG combinations. The loads
in all DG combinations were not varied until 0.5 s, and after 0.5 s, the loads were steadily
increased in steps of 10% of the system’s base load. While increasing the load, there was a
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distortion in voltage and frequency values for different time durations for the various DG
combinations in all of the bus systems.

5.1. Islanding Detection and Prevention for the 33-Bus System

Islanding detection with deviations in voltage (v) and frequency (f) was performed
with PV, hydro, and wind placement. The 33-bus system with DG units under consideration
is shown in Figure 2. PV units were placed at buses 14, 24, and 29, and these buses had
ratings of 691, 986.1, and 1277.3 kW, respectively [35]; the wind unit had ratings of 722.56 kW
at the 14th bus and 813.89 kW at the 30th bus [27]. At the 13th bus, 24th bus, and 30th bus.
a hydro units were placed with ratings of 537.8, 1058.9, and 967.7 kW, respectively [35].

Figure 2. The structure of the 33-bus system.

Table 3 shows the results of exiting techniques with the proposed strategy for different
DG units. The time of detection was measured with the changes in voltage and frequency
at islanded buses. The loads in all DG combinations were not varied until 0.5 s, and after
0.5 s, the loads were constantly increased in steps of 10% of the system’s base load. While
increasing the load, there were variations in voltage and frequency at 1.02 s (PV), 0.75 s
(wind), 0.60 s (hydro), 0.75 s (PV–hydro), 0.58 s (PV–wind), and 0.75 s (wind–hydro).

In the presence of PV, hydro, the combination of PV and hydro, and the combination
of hydro and wind, the method using the V-F index identified islanding at the 24th bus.
Using the (proposed) V-F index method, islanding was noticed at 117.6% of the system’s
base load for PV, 108.6% of the system’s base load for hydro, 110.3% of the system’s
base load for DG with PV and hydro together, and 110.22% of the system’s base load
for DG with hydro and wind together. Using existing methods [13,33], islanding was
noticed at 122.1% and 123.3% of the system’s base load for PV, 110.3% and 114.2% of
the system’s base load for hydro, 123.23% and 112.7% of the system’s base load for DG
with PV and hydro together, and 117.3% and 119.2% of the system’s base load for DG
with hydro and wind together. In the presence of wind and the combination of PV and
wind, the proposed method identified islanding at the 14th bus. Using the proposed (V-F
index) method, islanding was determined at 119.6% of the system’s base load for wind and
111.22% of the system’s base load for DG with PV and wind together. However, when using
existing methods [13,33], islanding was determined at 121.1% and 125.3% of the system’s
base load for wind and 121.23% and 120.7% of the system’s base load for DG with PV and
wind together.

In the proposed strategy, when the PV unit was placed, islanding was detected at
the 24th bus at 1.02 s, and the detection time using voltage variation [33] was 1.29 s; that
when using frequency variation [13] was 1.95 s. Islanding occurred at the 24th bus because
the load was greater than the generation. In the 24th bus, the load was 840 kW and
the generation was 986.1 kW. When placing a battery with a rating of 146.1 kW at bus
24, islanding was prevented. By using the proposed strategy, accuracy was achieved in
detection; the time taken for the detection of islanding was also reduced by 0.27 s compared
to voltage variation [33] and by 0.93 s compared to frequency variation [13].
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When a wind unit was placed, the detection time using voltage variation [33] was
0.99 s and that using frequency variation [13] was 0.98 s. When the proposed strategy
was used, islanding was detected at the 14th bus in 0.75 s. The load at the 14th bus was
990 kW and the generation at the 14th bus was 722.56 kW. Thus, the islanding occurred
because the load was higher than the generation. To prevent this, a diesel generator with a
rating of 267.44 kW was placed at that particular bus. The detection time was reduced by
0.24 s when compared to voltage variation [33] and by 0.23 s when compared to frequency
variation [13].

When a hydro unit was placed, islanding occurred in 0.60 s at the 24th bus in the
proposed strategy; it occurred with the generation of 1058.9 kW and load of 840 kW.
The islanding was detected with the voltage variation [33] in 0.82 s, and it was detected
with the frequency variation [13] in 0.65 s. At the 24th bus, the generation was 1058.9 kW
and the load was 840 kW, which resulted in islanding. Here, the generation was greater
than the load, so placing a battery with a rating of 218.9 kW prevented islanding. The time
taken for the detection of islanding was reduced by 0.22 s when compared with the voltage
variation [33] and by 0.05 s when compared with the frequency variation [13].

When the PV–hydro combination was used, islanding was detected in 0.75 s at the
24th bus by the proposed strategy. The time taken for the detection of islanding for the
photovoltaic–wind combination was 0.58 s at bus 14. The generation and load at the 24th
bus were 2045 and 1485 kW, respectively, for the PV–hydro combination, and at the 14th
bus, they were 1413.56 and 1146.12 kW, respectively, for the PV–wind combination, which
led to islanding. For the PV–hydro combination, the voltage variation method [33] detected
the islanded buses in 1.054 s, and the method of frequency variation [13] detected the
islanded buses in 1.032 s. For the PV–wind combination, the voltage variation method [33]
detected the islanded buses in 0.62 s, and the frequency variation method [13] detected the
islanded buses in 0.88 s. Placing a battery with a rating of 560 kW at the 24th bus prevented
islanding with the PV–hydro combination, and placing a diesel generator with a rating of
267.44 kW at the 14th bus prevented islanding with the PV–wind combination.

For the PV–hydro combination, the detection time was reduced by 0.304 s when
compared with that of voltage variation [33] and by 0.252 s when compared with that of
frequency variation [13]. For the PV–wind combination, the detection time was reduced by
0.04 s when compared with that of voltage variation [33] and by 0.3 s when compared with
that of frequency variation [13].

In the placement of the wind–hydro combination, islanding was detected in 0.75 s at
the 24th bus with the proposed strategy. Here, at the 24th bus, the generation was 1058.9 kW
and the load was 840 kW, which led to islanding. The voltage variation method [33] detected
the islanded buses in 1.98 s, and the frequency variation method [13] detected the islanded
buses in 0.75 s. By placing a battery with a rating of 218.9 kW at the 24th bus, islanding was
prevented by maintaining the frequency and voltage. By placing a battery with a rating
of 218.9 kW at the 24th bus, islanding was prevented. The detection time of the proposed
strategy was reduced by 1.23 s when compared with that of voltage variation [33] and by
1.24 s when compared with that of frequency variation [13].

The NDZs were reduced by the proposed method in the presence of PV units, hydro
units, the combination of PV–hydro, and the combination of wind–hydro in comparison
with the results of existing methods. This is because the number of buses connected to the
24th bus (the islanded bus) was only two buses, unlike in existing methods. Likewise, in
the presence of wind units and the combination of PV–wind, the NDZs were reduced by
the proposed method. This is because the number of buses connected to the 14th bus was
only five, unlike in existing methods. The proposed V-F index method is also suitable for
low-power mismatches. In the 33-bus system, the islanded bus was identified at the load of
146 kW.

With the V-F index method, the voltage and frequency are continuously monitored
(passive islanding), and K1 and K2 are calculated for different cases from Equation (21).
The occurrence of islanding was mostly at the 24th bus because K1 was greater than K2.
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For PV alone, the K2 and K1 values were calculated as 0.8532 and 0.98652. For hydro, the
K2 and K1 values were 0.9235 and 0.93568. For PV–hydro and wind–hydro, the K2 and K1
values were 0.95362 and 0.9632 or 0.99386 and 0.9982, respectively. Islanding was detected
at the 24th bus because K1 was greater than K2 for all of the cases. This was because of the
greater generation in the bus, leading to variations in the frequency limits. The frequency
changes led to voltage variations because the changes in the voltage (Δv) varied with the
frequency violations, as shown in Equation (16). Figures 3 and 4 show the voltage values
and frequency values of all of the buses. Buses in which the values deviated from the
fixed values of voltage (0.99 to 1.05 p.u.) and fixed values of frequency (±2% of the rated
frequency) were considered islanded buses.

Figure 5 has ones and zeros, which represent the non-islanded and islanded buses,
respectively, for various DG combinations, which were obtained using Equation (21).

Figure 3. Voltage values of the 33-bus system.

Figure 4. Frequency values of the 33-bus system.
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Figure 5. Detection of islanding.

Quantitative Analysis of the 33-Bus System

Reliability indices were calculated based on customer interruption (islanded buses).
To ensure the system’s performance, reliability indices were measured, as shown in Table 4.

Table 4. Reliability evaluation of the 33-bus system after reinforcement.

Cases

Voltage
Variation

[33]

Frequency
Variation

[13]

Proposed
V-F Index
Method

ENS AENS SAIDI SAIFI ASAI ENS AENS SAIDI SAIFI ASAI ENS AENS SAIDI SAIFI ASAI

PV 29,701.11 671.10 0.37 3.95 1.99 30,211.1 669.02 0.39 3.66 1.72 16,710.1 357.11 0.25 0.27 1.51

Wind 28,522.03 662.12 0.34 3.72 1.83 27,101.2 621.01 0.35 3.52 1.69 15,021.3 351.15 0.21 0.24 1.45

Hydro 26,210.01 572.10 0.31 2.57 1.79 26,101.2 602.1 0.32 3.37 1.63 13,101.6 272.16 0.19 0.21 1.32

PV–Hydro 24,311.11 525.12 0.29 2.42 1.71 24,001.7 597.4 0.29 3.02 1.58 9347.02 202.10 0.15 0.19 1.29

PV–Wind 21,010.12 511.03 0.25 2.25 1.45 21,295.2 531.8 0.25 2.92 1.52 7142.07 189.02 0.12 0.13 1.21

Wind–Hydro 17,821.51 502.12 0.21 1.99 1.41 15,150.5 521.9 0.19 2.82 1.47 5215.01 169.70 0.09 0.08 1.16

After installing the battery or diesel generator, the reliability values are improved by
around 30% to 97% for various reliability indices, and the values of K1 (V-F index values)
are less than the values of K2 (threshold limits).

5.2. Islanding Detection and Prevention for the 69-Bus System

Islanding detection with the deviation in voltage (v) and frequency (f) was performed
with the placement of PV, hydro, and wind units. The 69-bus system with the DG units
under consideration is shown in Figure 6. At buses 11, 18, and 61, PV units were placed,
and these buses had ratings of 501.2, 482.2, and 1770.4 kW, respectively [35]. A wind unit
with a rating of 409.6 kW was placed at the 18th bus, and one with a rating of 1338.73 kW
was placed at the 61st bus [27]. At the 11th bus, 21st bus, and 61st bus, hydro units were
placed with ratings of 707.1, 256, and 1875.2 kW, respectively [35].
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Figure 6. The structure of the 69-bus system.

Table 5 shows the results of the exiting techniques with the proposed strategy for
different DG units. The time taken for the detection of islanding was measured with
the variation in voltage (v) and frequency (f) at the islanded buses. The loads in all DG
combinations were not varied until 0.5 s, and after 0.5 s, the loads were constantly increased
in steps of 10% of the system’s base load. While increasing the load, there was a deviation
in the voltage and frequency at 1.35 s (PV), 1.55 s (wind), 0.62 s (hydro), 0.65 s (PV–hydro),
0.57 s (PV–wind) and 0.57 s (wind–hydro).

In the presence of PV, hydro, wind, the combination of PV and hydro, the combination
of PV and wind, and the combination of hydro and wind, the method of the V-F index
identified islanding at the 61st bus. Using the (proposed) V-F index method, islanding
was noticed at 119.6% of the system’s base load for PV, 110.6% of the system’s base load
for hydro, 112.4% of the system’s base load for wind, 111.3% of the system’s base load for
DG with PV and hydro together, 110.26% of the system’s base load for DG with PV and
wind together, and 111.25% of the system’s base load for DG with hydro and wind together.
However, when using existing methods [13,33], the islanding is determined at 125.1% and
129.3% of the system’s base load for PV, 112.3% and 116.2% of the system’s base load for
hydro, 127.3% and 112.2% of the system’s base load for wind, 125.3% and 112.7% of the
system’s base load for DG with PV and hydro together, 117.3% and 119.2% of the system’s
base load for DG with PV and wind together, and 115.3% and 113.2% of the system’s base
load for DG with hydro and wind together.

Table 5. Results of islanding detection and prevention for the 69-bus system.

Type of DG DG Buses

Novel Passive
Islanding Detection

Islanding Prevention at the
Identified Bus for the Proposed

V-F Index Method

Voltage Variation
[33]

Frequency variation
[13]

Proposed V-F
Index Method

Diesel Generator (kW) Battery (kW)
Islanded

Buses
Detection
Time [s]

Islanded
Buses

Detection
Time [s]

Islanded
Bus

Detection
Time [s]

PV 11, 18, 61 11, 61 1.56 18, 61 1.72 61 1.35 - 526.4
Wind 18, 61 18, 61 1.92 18, 61 1.92 61 1.55 - 144.73
Hydro 11, 21, 61 21, 61 1.75 11, 61 1.56 61 0.62 - 631.2

PV–Hydro 11, 18, 21, 61 18, 61 0.96 21, 61 0.75 61 0.65 54.4 -
PV–Wind 11, 18, 61 11, 61 0.92 11, 61 0.66 61 0.57 40.87 -

Wind–Hydro 11, 18, 21, 61 18, 61 0.75 21, 61 0.63 61 0.57 - 218.9

In the proposed strategy, when a PV unit was placed, the islanding was detected at
the 61st bus in 1.35 s. The detection time when using voltage variation [33] was 1.56 s,
and that when using frequency variation [13] was 1.72 s. The islanding occurred at the
61st bus because the load was less than the generation. There was a 1244 kW load, and
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the generation was 1770.4 kW. Placing a battery with a rating of 526.4 kW at the 61st
bus prevented islanding. By using the proposed strategy, accuracy was achieved in the
detection; in addition, the time taken for the detection of islanding was reduced by 0.21 s
compared to that of the voltage variation [33] and 0.37 s compared to that of the frequency
variation [13].

With the presence of wind, hydro, PV–hydro, PV–wind, and wind–hydro, islanding oc-
curred at the 61st bus according to the proposed strategy. The voltage variation method [33]
detected islanded buses in 1.92 s for wind, 1.75 s for hydro, 0.96 s for PV–hydro, 0.92 s
for PV–wind, and 0.75 s for wind–hydro. The frequency variation method [13] detected
islanded buses in 1.92 s for wind, 1.56 s for hydro, 0.75 s for PV–hydro, 0.66 s for PV–wind,
and 0.63 s for wind–hydro. Islanding was detected by the proposed strategy at the 61st bus
in 1.55 s for wind alone, 0.62 s for hydro alone, 0.65 s for PV–hydro, 0.57 s for PV–wind,
and 0.57 s for wind–hydro.

Islanding occurred at the 61st bus due to a mismatch between the generation and load.
Placement of wind units provided a load of 1194 kW and generation of 1338.73 kW, which
led to islanding. The hydro placement led to islanding because the generation was greater
than the load, with a load of 1244 kW and generation of 1875.2 kW. For the wind–hydro
placement, islanding occurred at the same bus because the generation was greater than
the load, with a load of 2995.03 kW and generation of 3213.93 kW. Placing a battery with
a rating of 144.73, 631.2, or 218.9 kW at the 61st bus for wind, hydro, or wind–hydro,
respectively, prevented islanding. By using the proposed strategy, accuracy was achieved
in detection; in addition, the time taken for the detection of islanding for wind, hydro, and
wind–hydro was reduced by 0.37, 1.13, and 0.18 s, respectively, in comparison with that of
the voltage variation [33]. The time time taken for the detection of detection of islanding
for wind, hydro, and wind–hydro was reduced by 0.37, 0.94, and 0.06 s, respectively, in
comparison with that of the frequency variation [13].

For the PV–hydro and PV–wind placements, islanding occurred at the 61st bus because
the load was greater than the generation, with loads of 3700 and 3150 kW and generation of
3645.6 and 3109.13 kW. Placing a diesel generator with a rating of 54.4 or 40.87 kW prevents
islanding at the 61st bus. The detection times when using voltage variation [33] were 0.96
and 0.92 s, and those found when using frequency variation [13] were 0.75 and 0.66 s. The
proposed strategy detected islanding in 0.65 and 0.57 s. By using the proposed strategy,
accuracy was achieved in detection; in addition, the time taken for the detection of islanding
for PV–hydro and PV–wind was reduced by 0.31 and 0.35 s in comparison with that of
voltage variation [33]. The time taken for the detection of islanding for PV–hydro and
PV–wind was reduced by 0.1 and 0.09 s in comparison with that of frequency variation [13].

The NDZs were reduced by the proposed method for all cases of DG units in compar-
ison with the existing methods. This was because the number of buses connected to the
61st bus (the islanded bus) was only five, unlike in the existing methods. The proposed
V-F index method was also suitable for low-power mismatches. In the 69-bus system, the
islanded bus was identified at the load of 40 kW.

In the V-F index method, the voltage and frequency are continuously monitored
(passive islanding), and K1 and K2 are calculated for different cases by using Equation (21).
The occurrence of islanding was mostly at the 61st bus, as the K2 and K1 values for PV were
0.9532 and 0.97652, the K2 and K1 values for wind were 0.9235 and 0.93568, the K2 and K1
values for hydro were 0.9335 and 0.96568, the K2 and K1 values for PV–hydro were 0.95362
and 0.97386, the K2 and K1 values for PV–wind were 0.9432 and 0.9682, and the K2 and
K1 values for wind–hydro were 0.9632 and 0.9782, respectively. Islanding was detected at
the 61st bus for the above cases because K1 was greater than K2. This was due to greater
generation or load in the bus, leading to a violation of the frequency limits. Frequency
violations led to voltage variations because the change in the voltage (Δv) varied with the
frequency violations, as shown in Equation (16). Figures 7 and 8 show the voltage values
and frequency values of all of the buses. Buses in which the values deviated from the
fixed values of voltage (0.99 to 1.05 p.u.) and fixed values of frequency (±2% of the rated
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frequency) were considered as islanded buses. Figure 9 has ones and zeros that represent
non-islanded buses and islanded buses, respectively, for various DG combinations, which
were obtained by using Equation (21).

Figure 7. Voltage values of the 69-bus system.

Figure 8. Frequency values of the 69-bus system.
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Figure 9. Detection of islanding.

Quantitative Analysis of the 69-Bus System

Reliability indices were calculated based on customer interruption (islanded buses).
To ensure the system’s performance, reliability indices were measured, as shown in Table 6.

Table 6. Reliability evaluation of the 69-bus system after reinforcement.

Cases
Voltage Variation [33] Frequency Variation [13] Proposed V-F Index Method

ENS AENS SAIDI SAIFI ASAI ENS AENS SAIDI SAIFI ASAI ENS AENS SAIDI SAIFI ASAI

PV 28,741.9 597.36 0.35 3.42 1.72 27,881.3 599.5 0.27 3.35 1.84 16,757.14 249.64 0.20 0.16 1.35

Wind 27,422.03 594.33 0.32 3.39 1.70 26,122.3 596.3 0.25 3.29 1.75 16,527.3 225.97 0.15 0.13 1.32

Hydro 26,122.13 570.21 0.31 2.57 1.68 24,325.1 570.3 0.22 2.99 1.71 7002.11 200.677 0.12 0.11 1.27

PV–Hydro 24,012.01 555.01 0.29 2.46 1.65 23,210.1 477.2 0.20 2.95 1.67 6950.21 179.544 0.10 0.07 1.24

PV–Wind 20,911.10 549.01 0.25 2.32 1.59 20,195.2 460.2 0.17 2.75 1.62 4709.12 168.422 0.07 0.05 1.14

Wind–Hydro 19,810.51 519.23 0.21 1.97 1.55 20,050.5 435.2 0.15 2.32 1.45 3790.02 150.011 0.05 0.02 1.12

After installing the battery or diesel generator, the reliability values are improved
by around 20% to 99% for the various reliability indices, and the values of K1 (V-F index
values) are less than the values of K2 (threshold limits).

5.3. Islanding Detection and Prevention for the 118-Bus System

Islanding detection with the deviation in voltage (v) and frequency (f) was performed
with the placement of PV, hydro, and wind units. The 118-bus system with DG under
consideration is shown in Figure 10. At buses 20, 30, 47, 73, 80, 90, and 110, PV units i with
ratings of 2.0856, 3.3381, 2.1249, 2.794, 2.0369, 2.6069, and 3.1877 MW, respectively, were
placed [36]. Wind units were placed at the second bus with a rating of 2.10000 MW, at the
fifth bus with a rating of 1.70000 MW, at the 12th bus with a rating of 1.65000 MW, at the
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44th bus with a rating of 2.00000 MW, at the 53rd bus with a rating of 1.55000 MW, at the
82nd bus with a rating of 1.85000 MW, and at the 86th bus with a rating of 1.95000 MW [28].
Hydro units were placed at various buses, such as at the 20th bus with a rating of 2.0187
MW, the 39th bus with a rating of 3.2905 MW, the 47th bus with a rating of 2.0615 MW, the
74th bus with a rating of 2.4092 MW, the 85th bus with a rating of 1.7437 MW, the 90th bus
with a rating of 2.5473 MW, and the 110th bus with a rating of 3.1775 MW [36].

Figure 10. The structure of the 118-bus system.

Table 7 shows the results of the exiting techniques with the proposed strategy for
different DG units. The time taken for the detection of islanding was measured with the
variations in voltage (v) and frequency (f) at the islanded buses. The loads in all DG
combinations were not varied until 0.5 s, and after 0.5 s, the loads were steadily increased
in steps of 10% of the system’s base load. While increasing the load, there were deviations
in the voltage and frequency values at 1.25 s for PV, 1.30 s for wind, 1.50 s for hydro, 1.79 s
for the combination of PV–hydro, 0.55 s for the combination of PV–wind, and 0.93 s for the
combination of wind–hydro.

Table 7. Results of islanding detection and prevention for the 118-bus system.

Type of DG DG Buses

Novel Passive
Islanding Detection

Islanding Prevention at the
Identified Bus for the Proposed

V-F Index Method

Voltage Variation
[33]

Frequency Variation
[13]

Proposed V-F
Index Method

Diesel Generator (kW) Battery (kW)
Islanded

Buses
Detection
Time [s]

Islanded
Buses

Detection
Time [s]

Islanded
Bus

Detection
Time [s]

PV 20, 39, 47,
73, 80, 90, 110 47, 80 1.39 80, 110 1.59 110 1.25 - 0.8078

Wind 5, 82, 86 5, 82, 86 1.75 5, 86 1.32 5 1.30 - 0.11
Hydro 39, 47, 110 39, 47, 110 1.55 39, 110 1.55 110 1.50 1.052 -

PV–Hydro 20, 80, 90, 110 80, 110 1.92 80, 110 1.99 110 1.79 - 0.1767

PV–Wind 5, 39, 44,
47, 82 5, 39, 82 0.59 5, 82 0.75 5 0.55 - 0.01

Wind–Hydro 74, 82, 86, 110 86, 110 1.99 86, 110 0.99 110 0.93 1.4 -

In the presence of PV and hydropower generators, the method of the V-F index
identified islanding at the 110th bus. Using the (proposed) V-F index method, the islanding
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was noticed at 114.9% of the base load for PV and 120.3% of the system’s base load for
hydro. However, with the existing methods [13,33], the islanding was detected at 120.9%
of the system’s base load and 123.5% of the system’s base load for PV and 128.3% of the
system’s base load and 114.7% of the system’s base load for hydro. In the presence of wind
and DG with hydro and wind together, the proposed method detected islanding at the fifth
bus. With the proposed method, the islanding was detected at 112.5% of the base load for
wind and 113.6% of the system’s base load for DG with hydro and wind together. However,
with the existing methods [13,33], the islanding was detected at 128.3% of the base load
and 114.7% of the system’s base load for wind and 130% of the system’s base load and
124.3% of the base load for the combination of hydro and wind. In the presence of DG
with PV and hydro together and DG with hydro and wind together, the proposed method
detected islanding at the 110th bus. With the proposed method, the islanding was detected
at 128.7% of the system’s base load for DG with PV and hydro together and 111.3% of
the system’s base load for DG with hydro and wind together. However, with the existing
methods [13,33], the islanding was detected at 129.5% of the system’s base load and 130%
of the system’s base load for DG with PV and hydro together and at 112% of the system’s
base load and 113.4% of the system’s base load for DG with hydro and wind together.

With the proposed strategy, when the PV unit was placed, the islanding was detected
at the 110th bus in 1.25 s. The voltage variation method [33] detected the islanded bus
in 1.39 s, and the frequency variation method [13] detected the islanded bus in 1.59 s.
Islanding occurred at this bus because the generation was less than the load; the 110th bus
had a load of 3.9955 MW, and the generation was 3.1877 MW. Islanding was prevented
by installing a diesel generator with a rating of 0.8078 MW at the 110th bus. By using
the proposed strategy, accuracy was achieved in the detection; in addition, the time taken
for the detection of islanding was reduced by 0.14 s in comparison with that of voltage
variation [33] and by 0.3 s in comparison with that of frequency variation [13].

With the proposed strategy, when the wind unit was placed, the islanding was detected
at the fifth bus in 1.30 s. The voltage variation method [33] detected the islanded bus in
1.75 s, and the frequency variation method [13] detected the islanded bus in 1.32 s. Islanding
occurred at this bus because the load was less than the generation. The fifth bus had a
load of 1.59 MW and the generation was 1.700 MW, which led to islanding. A battery
with a rating of 0.11 MW is installed to prevent islanding. By using the proposed strategy,
accuracy was achieved in the detection; in addition, the time taken for the detection of
islanding was reduced by 0.45 s in comparison with that of voltage variation [33] and by
0.02 s in comparison with that of frequency variation [13].

With the proposed strategy, when the hydro unit was placed, the islanding occurred at
the 110th bus in 1.50 s. The voltage variation method [33] detected the islanded bus in 1.55 s,
and the frequency variation method [13] detected the islanded bus in 1.55 s. Islanding
occurred at this bus because the generation was less than the load. The 110th bus had
the generation of 3.1775 MW and a load of 4.230 MW, which led to islanding. Installing a
diesel generator with a rating of 1.0525 MW prevented islanding at this bus. By using the
proposed strategy, accuracy was achieved in the detection and prevention; in addition, the
time taken for the detection of islanding was reduced by 0.05 s in comparison with that of
voltage variation [33] and by 0.05 s in comparison with that of frequency variation [13].

When PV–hydro and wind–hydro were placed, islanding occurred at bus 110. The is-
landing detection times for the combinations of PV–hydro and wind–hydro were 1.79 and
0.93 s at the 110th bus. At the 110th bus, the generation was 6.3652 MW and the load was
6.18850 MW for the PV–hydro combination, and the generation was 3.1775 MW and the
load was 4.58 MW for the wind–hydro combination. The voltage variation method [33]
detected the islanded bus in 1.92 s and the frequency variation method [13] detected the
islanded bus in 1.99 s for the combination of PV–hydro. For the wind–hydro combination,
the voltage variation method [33] detected the islanded bus in 1.99 s and the frequency
variation method [13] detected the islanded bus in 0.99 s. By using the proposed strat-
egy, accuracy was achieved in the detection; in addition, the time taken for the detection of
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islanding was reduced by 0.13 and 1.06 s in comparison with that of voltage variation [33]
for the PV–hydro combination and wind–hydro combination, and the time taken for the
detection of islanding was reduced by 0.2 and 0.06 s in comparison with that of frequency
variation [13] for the PV–hydro combination and wind–hydro combination. Installing a
battery with a rating of 0.1767 MW at the 110th bus prevented islanding for the PV–hydro
combination. Installing a diesel generator with a rating of 1.4 MW prevented islanding at
the 110th bus for the wind–hydro combination.

When the PV–wind combination was placed, islanding occurred in 0.93 s at the
fifth bus with the proposed strategy. Bus 5 had the generation of 1.700 MW and a load
of 1.69 MW, which led to islanding. The method of voltage variation [33] detected the
islanded bus in 1.99 s, and the frequency variation method [13] detected the islanded bus
in 0.99 s. Installing a battery with a rating of 0.01 MW at the fifth bus prevented islanding.
By using the proposed strategy, accuracy was achieved in the detection; in addition, the
time taken for the detection of islanding was reduced by 0.04 s in comparison with that of
voltage variation [33] and by 0.2 s in comparison with that of frequency variation [13].

The NDZs were reduced by the proposed method in the presence of PV, hydro, the
combination of PV–hydro, and the combination of wind–hydro in comparison with those
of existing methods. This was because the number of buses connected to the 110th bus (the
islanded bus) was only four, unlike in the existing methods. Likewise, in the presence of
wind and the combination of PV–wind, the NDZs were reduced by the proposed method.
This was because the number of buses connected to the fifth bus was only five, unlike
in the existing methods. The proposed V-F index method is also suitable for low-power
mismatches. In the 118-bus system, the islanded bus was identified at a load of 10 kW.

In the V-F index method, the voltage and frequency are continuously monitored
(passive islanding), and K1 and K2 are calculated for different cases by using Equation (21).
The occurrence of islanding was mostly in the 110th bus, as the K2 and K1 values for PV
were 0.9632 and 0.98652; for hydro, the K2 and K1 values were 0.9635 and 0.98568; for PV–
hydro, the K2 and K1 values were 0.97362 and 0.99386; for wind–hydro, the K2 and K1
values were 0.9535 and 0.9782. Islanding was mostly detected at the 110th bus for the above
cases because K1 was greater than K2. This was due to the greater generation or load in the
bus, leading to the violation of the frequency limits. Frequency violations led to voltage
variations because the changes in the voltage (Δv) varied with the frequency violations,
as shown in Equation (16). Figures 11 and 12 show the voltage values and frequency
values of all of the buses. Buses in which the values deviated from the fixed values of
voltage (0.99 to 1.05 p.u.) and fixed values of frequency (±2% of the rated frequency) were
considered as islanded buses. Figure 13 has ones and zeros that represent the non-islanded
and islanded buses, respectively, for various DG combinations, which were obtained by
using Equation (21).
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Figure 11. Voltage values of the 118-bus system.

Figure 12. Frequency values of the 118-bus system.
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Figure 13. Detection of islanding.

Quantitative Analysis of the 118-Bus System

Reliability indices were calculated based on customer interruption (islanded buses).
To ensure the system’s performance, reliability indices were measured, as shown in Table 8.

Table 8. Reliability evaluation of the 118-bus system after reinforcement.

Cases
Voltage Variation [33] Frequency Variation [13] Proposed V-F Index Method

ENS AENS SAIDI SAIFI ASAI ENS AENS SAIDI SAIFI ASAI ENS AENS SAIDI SAIFI ASAI

PV 30,541.03 695.21 0.39 3.57 1.97 28,881.3 670.32 0.31 3.47 1.89 19,957.14 269.52 0.23 0.19 1.35

Wind 29,422.03 624.33 0.35 3.49 1.70 27,122.3 656.3 0.29 3.37 1.85 17,527.3 245.97 0.21 0.15 1.33

Hydro 26,122.13 590.21 0.32 2.27 1.68 26,325.1 590.3 0.26 3.31 1.80 8952.11 230.677 0.20 0.13 1.29

PV–Hydro 25,312.01 575.01 0.30 2.21 1.65 25,210.1 577.2 0.23 2.99 1.75 6545.21 189.544 0.17 0.10 1.25

PV–Wind 20,911.10 569.01 0.29 2.19 1.59 21,195.2 540.2 0.22 2.87 1.72 5950.12 178.422 0.12 0.07 1.19

Wind–Hydro 17,810.51 549.23 0.25 1.99 1.55 20,150.5 495.2 0.19 2.52 1.50 4990.02 155.011 0.09 0.04 1.11

After installing the battery or diesel generator, the reliability values are improved
by around 21% to 98% for the various reliability indices, and the values of K1 (V-F index
values) are less than the values of K2 (threshold limits).

The separate measurement of the deviations of frequency and voltage led to NDZs in
the existing methods. The changes in frequency and voltage were simultaneously measured
to reduce the NDZs in the proposed method. In addition, the proposed method helped
in determining the exact islanded bus with various DG types. The effect of islanding was
reduced by installing either a diesel generator or a battery unit, depending upon the power
balance in the identified islands. The research findings from the three different bus systems
can be summarized as follows:
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• In the 33-bus system, the vulnerable bus identified was bus 24 because of the value
of K1 (V-F index values) was greater than that of K2 (threshold limits) for PV, hydro,
and PV–hydro and wind–hydro combinations. With the proposed V-F index method,
the detection time for impending islanding was 23.37% faster than that of the voltage
variation method and 62.62% faster than that of the frequency variation method in the
presence of PV. The proposed method was 30.98% faster than the voltage variation
method and 28% faster than the frequency variation method in the presence of hydro.
The proposed method was 33.33% faster than the voltage variation method and 31.46%
faster than the frequency variation method in the presence of PV–hydro. The proposed
method was 90% faster than the voltage variation method and 90.51% faster than the
frequency variation method in the presence of wind–hydro. Likewise, bus 14 was the
vulnerable bus for wind and the PV–wind combination. With the proposed V-F index
method, the detection time for impending islanding was 27.58% faster than that of
the voltage variation method and 26.58% faster than that of the frequency variation
method in the presence of wind. The proposed method was 6.66% faster than the
voltage variation method and 41.09% faster than the frequency variation method in
the presence of PV–wind. The generation was greater than the load for PV, hydro,
and the PV–hydro and wind–hydro combinations. So, a battery was installed for
power balance at the 24th bus. The generation was less than the load for wind and the
PV–wind combination. So, a diesel generator was installed for power balance at the
14th bus for wind and the PV–wind combination.

• In the 69-bus system, the vulnerable bus identified was bus 61 because of the value
of K1 (V-F index values) was greater than that of K2 (threshold limits) for PV, wind,
hydro, PV–hydro, PV–wind, and wind–hydro. With the proposed V-F index method,
the detection time for impending islanding was 14.43% faster than that of the voltage
variation method and 24.10% faster than that of the frequency variation method in the
presence of PV. The proposed method was 21.32% faster than the voltage variation
method and 21.32% faster than the frequency variation method in the presence of
wind. The proposed method was 95.35% faster than the voltage variation method
and 86.23% faster than the frequency variation method in the presence of hydro.
The proposed method was 38.50% faster than the voltage variation method and 14.28%
faster than the frequency variation method in the presence of PV–hydro. The proposed
method was 46.97% faster than the voltage variation method and 14.63% faster than
the frequency variation method in the presence of PV–wind. The proposed method
was 27.77% faster than the voltage variation method and 10% faster than the frequency
variation method in the presence of wind–hydro. The generation was greater than
the load for PV, wind, hydro, and the wind–hydro combination. So, a battery was
installed for power balance at the 61st bus. The generation was less than the load for
PV–hydro and the combination of PV–wind. So, a diesel generator was installed for
power balance at the 61st bus for PV–hydro and the combination of PV–wind.

• In the 118-bus system, the vulnerable bus identified was bus 110 because the value
of K1 (V-F index values) was greater than that of K2 (threshold limits) for PV, hydro,
PV–hydro, and wind–hydro. With the proposed V-F index method, the detection time
for impending islanding was 10.60% faster than that of the voltage variation method
and 23.94% faster than that of the frequency variation method in the presence of PV.
The proposed method was 3.27% faster than the voltage variation method and 3.27%
faster than the frequency variation method in the presence of hydro. The proposed
method was 7% faster than the voltage variation method and 10.58% faster than the
frequency variation method in the presence of PV–hydro. The proposed method was
72.67% faster than the voltage variation method and 6.2% faster than the frequency
variation method in the presence of wind–hydro. Likewise, bus 5 was the vulnerable
bus for wind and the PV–wind combination. With the proposed V-F index method,
the detection time for impending islanding was 27.58% faster than that of the voltage
variation method and 1.52% faster than that of the frequency variation method in the
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presence of wind. The proposed method was 7% faster than the voltage variation
method and 30.76% faster than the frequency variation method in the presence of
PV–wind. The generation was greater than the load for PV, wind, PV–hydro, and
PV–wind. So, a battery was installed for power balance at the 110th bus for PV and
the combination of PV–hydro, as well as at the fifth bus for wind and the combination
of PV–wind. For hydro and the combination of wind–hydro, the generation was less
than the load. So, a diesel generator was installed for power balance at the 110th bus
for hydro and the combination of wind–hydro.

6. Conclusions

A modified method for the passive detection of islanding was proposed in this work,
along with a prevention strategy that uses dispatchable and non-dispatchable DG units.
Identification of islanded buses is performed by increasing the load in steps of 10% of the
base load. The placement of a diesel generator or battery depends on the power balance
in the identified island. The proposed islanding detection time is fast, and the number
of islanded buses is less than that of the existing methods. The proposed method detects
islanding for even smaller load variations than with the existing methods. The NDZs
are reduced through the simultaneous measurement of voltage and frequency variations.
The effectiveness of the proposed strategy was tested on IEEE 33-, 69-, and 118-bus systems.

In the 33-bus system, the generation was greater than the load for PV, hydro, and the
PV–hydro and wind–hydro combinations. So, a battery was installed at the 24th bus. The
generation was less than the load for wind and the PV–wind combination. So, a diesel
generator was installed at the 14th bus. In the 69-bus system, the generation was greater
than the load for PV, wind, hydro, and the wind–hydro combination. So, a battery was
installed at the 61st bus. The generation was less than the load for the PV–hydro and
PV–wind combinations. So, a diesel generator was installed at the 61st bus. In the 118-
bus system, the generation was greater than the load for PV, wind, and the PV–hydro
and PV–wind combinations. So, a battery was installed at the 110th bus for PV and the
combination of PV–hydro and at the fifth bus for wind and the combination of PV–wind.
The generation was less than the load for hydro and the combination of wind–hydro. So,
a diesel generator was installed at the 110th bus for hydro and the combination of wind–
hydro. In the future, various corrective methods can be implemented to reduce power
imbalances. The main disadvantage is that passive methods of islanding detection require
the inverter to be slightly out of time with the grid. This requires further research and
investigation.
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Abstract: The requirement for clean energy has increased drastically over the years due to the
emission of CO2 and the degrading of the environment by introducing Renewable Energy Systems
(RES) into the existing power grid. While these systems are a positive change, they come at a cost,
with some issues relating to the stability of the grid and feasibility. Hence, this research paper closely
investigates the modeling and interlinking of photovoltaic (PV)-based solar power and Double-Fed
Induction Generator (DFIG)-based wind turbines with the conventional power systems. RES has
been known to contribute to a highly non-linear system and complexity. To return the power systems
to their original state after a load disturbance, a novel control technique based on the fractional-order
Type-2 Fuzzy logic system, well developed via particle swarm optimization (PSO), has been utilized
for solving the frequency control problem of a renewable interlinked power system. The efficacy of
the proposed technique is validated for various possible operating conditions and the system results
are compared with some of the recent methods with and without including non-linearity, and the
performance of the controllers is superimposed on frequency/time graphs for ease of understanding
to show the benefits of the proposed research work.

Keywords: Renewable Energy Systems (RES); solar PV; wind power; Double-Fed Induction Generators
(DFIG); Area Control Error (ACE); Fuzzy Type-2 (FT2); Fractional Order PID (FOPID)

1. Introduction

In recent years, the implementation of clean energy into the power system has been
the focus of the modern era. Multiple applications, such as hydro, wind, and solar power,
are being interconnected with the existing power system to help curb some of the negative
environmental effects. These methods are highly sought after but have negative effects
when increasing the system frequency disturbances and financial costs [1]. Renewable
energy has been known for its highly non-linear contribution to the grid. For instance, PV-
based solar energy makes use of the unlimited light energy from the sun called irradiance.
The energy output is dependent on the amount of irradiance that can be produced. This
contributes to a highly variable system due to the fluctuations of sunlight that are available
in a particular area. Further, wind energy has been shown to have a similar effect, with
the wind becoming highly unpredictable with its constant wind speeds. Even though this
is the case, the temperature of the world has been rising every year, which makes solar
energy a good alternative for energy generation. Similarly, studies have shown that wind
levels are bound to increase in the future.
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DFIG wind-based energy schemes have been shown to assist with system stability
after a fault has occurred but rely on the type of control method option. One of the
phenomena experienced by series-compensated wind power systems is sub-synchronous
resonance. Dynamic reactive power reference signals at the point of common coupling are
required to ensure that the reactive power supply is upheld [2,3]. DFIG shares properties
of inductive and synchronous generators, which further contribute to the power system
stability. Without interfering with voltage control, the damping of power variations in the
power system can be improved through effective control. One of the control methods that
researchers use is diode rectifiers for wind power systems, which contributes to stability
error reduction while the output active power increases. With active and reactive power
playing an important role, information gathered from scholars states that wind turbines
with varying wind speed over time decrease voltage fluctuations [4–7]. The governors of
thermal power units do not have the necessary measures to reduce frequency deviations,
with its stagnant response and lack of control.

The PV-based solar system incorporates an inverter within its system, which reduces
system inertia and makes the system more susceptible to disturbances. While disturbances
pose a problem to the power grid, the efficiency of wind and solar systems is very low and
they are proposed, depending on the application, to be used as a coupled generation system.
Maximum Power Point Tracking (MPPT) control for the renewable system is an effective
way to maximize the low efficiency given while being connected to the power grid [8–15].
This system inertia was responsible, in conventional power systems, for suppressing the
small frequency excursions in the wake of unexpected load alterations.

One of the frequency control methods used is fractional-order PID (FOPID). This type
of controller has been shown to positively abolish steady-state error, transient disturbance
reduction, system non-linearities, and uncertainties. With its multiple parameters that are
required, which are difficult to determine, manual tuning or algorithms are used to decipher
the appropriate gains. The system’s robustness and dynamic characteristics improve to a
certain extent.

Performance criteria are used to prove this by calculating the area of the control. One
such method is used is Integral Time Absolute Error (ITAE), which can be tabulated to
evaluate the system with ease of understanding [16–19]. It is important that, if fluctuations
occur, the system must return to its nominal value. In a two-area power system, these
controllers are required in both areas to maintain the power interchange at scheduled
values, as well as to minimize the frequency deviations for unexpected load alterations. PID
controllers have the disadvantage of noise occurring in the derivative area of the equation.
They also are linear and symmetric, which makes the performance of the controller vary.
Therefore, the additional parameters for FOPID are input into the formula to help mitigate
these [20].

Further enhancement and optimization, such as artificial intelligence (AI) techniques,
i.e., fuzzy logic (FL), have been integrated and tested successfully for applications that
require control. An extension and advancement to conventional FL is the Fuzzy Type-2
system, which includes an NT-type reduction process that converts type-2 to type-1 and
then obtains the final defuzzification result. The Fuzzy Type-2 system is much more suitable
for highly non-linear systems such as renewable interlinked power systems. Fuzzy Type-2
has been shown to have better performance than Fuzzy Type-1 and PI controller methods
in multi-area power systems.

Optimization techniques applied, such as particle swarm optimization, are proven to
positively affect results, further enhancing them. Artificial intelligence, used for optimiza-
tion, has been shown to utilize multiple methods structured from the behavioral patterns
of living organisms to successfully solve uncertainties in the power system. The tuning
of adaptive parameters by performing an input delay has also been illustrated to produce
positive results for the load frequency of a two-area power system.
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By utilizing a PID controller with a Type-2 Fuzzy system, the output scaling factor
has increased system performance and maintained stability, with an input delay and
uncertainties. By adjusting or including an increased number of rules for the interference
mechanism, the controller’s performance can be increased in fuzzy logic systems, according
to some researchers. The control algorithm has been shown to be highly effective and
contributes to a significant performance increase regarding settling times, overshoots, and
other performance criteria [21–26].

Given the above discussion, this work sets out to achieve the following:

• To model a two-area interlinked power system with coal-based generation and with
an equal capacity for each area. These systems’ areas are connected via an AC tie-line.

• To model the solar PV model in the transfer function domain and to interlink it in the
coal-based power system. To model the wind system with DFIG and to use this model
to assist in frequency excursion of the power system.

• To interlink the concept of Fuzzy Type-2 with fractional-order PID and result in a
Fuzzy Type-2 FOPID for a renewable integrating power system. The proposed design
is tested for various cases, including and without including non-linearity, and the
application results are shown graphically to demonstrate the benefits of the proposed
research work.

This research paper is divided into five sections. Section 1 is the introduction, with a
literature review of the problem. Section 2 discusses the model of the conventional system
with PV and DFIG. The concept and model of Fuzzy Type-2 with FOPID are formulated in
Section 3. Section 4 shows the detailed explanation of results, with conclusions in Section 5.

2. Modeling of Renewable Interlinked Power System

2.1. Interlinked Power System with Wind and Solar Energy Systems

An interlinked thermal power system with a solar farm and wind farm connected to
each area is shown in Figure 1, with an electrical representation in Figure 2. These areas
are interconnected via an AC tie-line. Both areas have a thermal power system, which
consists of a governor, turbine, and generator model that has the relevant parameters for
gains and time constants. The non-linearities present, such as Governor Dead Band (GDB)
and Generation Rate Constant (GRC), have been included to consider the ramp rate
constraints and upper to lower bound constraints. The signal from both areas connects to
the synchronizing coefficient via the tie-line and provides the relevant inputs and outputs
for the rest of the interconnection power system. The interconnected system integrates
with primary control action, which is well known as the speed governor mechanism,
and the proposed Fuzzy Type-2 FOPID. This controller uses multiple parameters for
fine-tuning to reduce the uncertainties and disturbances in the system. The change
in power demand is present in both Area 1 and Area 2 for analysis of the controller
performance to bring the system back to steady-state condition, i.e., frequency and
tie-power deviations.
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Figure 1. System model.

Figure 2. Single-line electrical diagram of interconnected system using ETAP software.
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2.2. Solar PV System

A PV system consists of the PV panel, Maximum Power Point Tracking (MPPT),
Sinusoidal Pulse Width Modulation Inverter (SPWM), and filter. A solar cell panel is made
up of semiconductors that have been doped to contribute to the deficit of free electrons
on the reverse side and surplus on the front side. This panel works with the photovoltaic
process, where photons are absorbed in the solar cells. The solar cell can produce an output
voltage of 0.3–0.6 V. This is dependent on the temperature and irradiance [8–10]. The solar
equivalent circuit is shown in Figure 3. An equation for the solar panel can be derived from
Equations (1) and (2) and is shown below:

I = I1 − I0

(
e
(V−IRS)

AkT − 1
)
− V − IRS

RSH
(1)

where

I = Output current of PV array;
I1 = Array current generated by the incident sunlight;
I0 = Reverse saturation current of the PV array;
V = Output voltage of the PV array;
RS = Equivalent series resistance of the array;
RSH = Equivalent parallel resistance of the array;
A = Diode quality factor (ranging 0–2);
k = Boltzmann constant (1.380649 × 10−23 m2 kg s−2 K−1);
T = Temperature (◦C or K).

I1 =

(
λ

1000

)
[ISC + k1(T − 25)] (2)

where

λ = Irradiance (0–2500 W/m2);
ISC = Short-circuit current.

Figure 3. Solar cell equivalent circuit.

To harness the maximum power from a solar panel, a method called Maximum
Power Point Tracking (MPPT) is utilized to provide input voltage regulation and improve
efficiency. The voltage can be regulated through a booster DC/DC converter to deliver
maximum power to the load. This type of converter can provide a higher output voltage
than input voltage, which is discovered with the duty cycle of the gate pulse to the MOSFET
switch [10]. Boost converters have two modes, which are the ON and OFF states, as shown in
Equations (3) and (4), respectively. The ON and OFF state operation is shown in Figures 4 and 5.

ON STATE
{

L
di1
dt

= VPV , C
dV0

dt
+

V0

R
= 0 (3)
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where

L = Inductance (H);
C = Capacitance (F);
R = Resistance (Ω);
V0 = Output voltage (V);
VPV = Photovoltaic voltage (V).

OFF STATE
{

L
di2
dt

+ V0 = VPV , i2 − C
dV0

dt
+

V0

R
= 0 (4)

where

i2 = Current in the inductor (A).

Figure 4. ON state operation.

 

Figure 5. OFF state operation.

For the conversion of DC to AC power, an inverter is utilized in this application.
The Sinusoidal Pulse Width Modulation inverter is used to maintain a constant voltage.
Finally, a filter is used to remove disturbances within the output power signal. From these
components, a transfer function equation is derived, which can be seen in [8], and finally,
the structure of the equation can be seen in Figure 6.

Figure 6. Model of photovoltaic panel transfer function.
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2.3. Wind Turbine System

DFIG can contribute to frequency regulation, but the frequency changes of the wind
turbine are ignored previously due to the separate inertia. The operations are controlled
via electronic controllers for communication between the grids. Power reserve control
through speed and pitch control can assist with frequency control in the power system.
The DFIG releases kinetic energy to support system inertia due to the additional inertia
control loop that is frequency-sensitive to the system. Governor setting and system inertial
response are researched for the frequency control of DFIG. Extracting the kinetic energy
of the turbine blades from DFIG-based wind turbines contributes to the reduction of the
rotor speed, which responds to the deviation in frequency to improve the frequency of the
power system [3–5]. As the only form of tracking of non-conventional machine equivalent
controllers, the inertial control adds a signal to the power reference output in Equation (5)
according to [5]. The frequency behind a high-pass filter is represented as Δ f , the constant
weighting the frequency deviation derivative is Kd f and the frequency deviation is Kp f .
When the frequency transient is over, the equivalent non-conventional machine moves back
to the optimal speeds. By forcing the speed to track the desired speed reference, a power
reference in Equation (6) is devised. The PI controller is utilized with design constants of KP
and KI . This controller is used for fast recovery speeds and transient speed variations. For
non-conventional generators, from Equations (5) and (6), the total active power reference
for non-conventional generators is given in Equation (7). In a short period, frequency
transients generally occur. A slow PI controller is provided by p∗ω. There are no dynamics
in the power reference p∗f and non-conventional total power injection if the power pNC is
regulated by high-speed power electronics. The equation can be seen in (8). The injected
power before the frequency transient is shown as p0

NC. The inertial control affects the power
system. The system damping is provided by Kp f and system inertia is regulated by Kd f . The
non-conventional generating machine contributes to system inertia, and in conventional
inertial control, the system inertia converts to H∗, as shown in Equation (9). The modified
inertial control for a DFIG is given in Equation (10). We use a washout filter for the change
in frequency having a time constant Tω . The reference point is given in Equation (11). The
frequency change measured where the wind turbine connects to the network is ΔX2, and R
is the speed regulation. Using the stored kinetic energy, the change in frequency during
load disturbance is detected by the DFIG. The proposed controller provides fast active
power injection control. During any disturbance, active power is injected by the wind
turbine, which is ΔPNC. By maintaining the reference rotor speed where maximum output
power is obtained, the power injected by a wind turbine is differentiated with ΔPNC,re f .
The wind turbine’s mechanical power is shown in Equation (12). The model of the DFIG
system is shown in Figure 7. The wind model is made up of frequency measurement, a
washout filter, droop, a speed controller, mechanical inertia, and finally the wind turbine.

P∗
f = −Kd f

dΔ f
dt

− Kp f Δ f (5)

P∗
ω = KP(ω

∗
e − ωe) + KI

∫
(ω∗

e − ωe)dt (6)

P∗
f ω =

[
−Kd f

dΔ f
dt

− Kp f Δ f
]
−
[

KP(ω
∗
e − ωe) + KI

∫
(ω∗

e − ωe)dt
]

(7)

PNC =

[
−Kd f

dΔ f
dt

− Kp f Δ f
]
− P0

NC (8)

(
2H + Kd f

)dΔ f
dt

= Pf − DΔ f = PG + PNC + PT − PL −
(

Kp f + D
)

Δ f (9)

2H
f

dΔ f
dt

= Pf − DΔ f = PG + PNC + PT − PL − DΔ f (10)
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P∗
f =

1
R
(ΔX2) (11)

Pmech =

(
1
2 (ρAr)

Sn
Cp.opt

)
ω3

s (12)

Figure 7. Model of DFIG-based wind turbines with inertia control.

3. Modeling of Fuzzy Type-2 FOPID Controller

The controller consists of a FOPID together with fuzzy action due to its positive
advantages in solving disturbances and stability applications. The tuning of FOPID consists
of five parameters, which are KP, KI, KD, λ, and μ. These parameters are highly variable
according to the output and are complex; they must be tuned via well-known Particle
Swarm Optimization (PSO). The chosen variables are selected to provide the best possible
outcome for the controller. Further, various optimization techniques can be utilized but
are not guaranteed to provide the optimal outputs. Through fractional calculus, more
adjustable parameters can be provided, which assist with tuning the controllers. The
flexibility, stability, and control effect are improved with FOPID, which acts as a filter for an
infinite dimension. The FOPID has a memory function that is related to the entire history in
the fractional differentiation. The far and close errors have small and larger response factors,
respectively. The future and present information is influenced through this. Therefore, this
provides good applications for boiler–turbine systems. The arrangement of the controller
can be seen below in Figure 8.
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Figure 8. Fractional-order fuzzy logic controller.

The Fuzzy Type-2 controller consists of five elements. These elements are the fuzzifier,
fuzzy interference, fuzzy rules, type reducer, and defuzzifier. Each process plays an
important role in the output of data. The input of data is fuzzified through the introduction
of membership functions for ease of understanding and classification. The data are changed
to a fuzzified input by the use of fuzzy applications into membership functions to establish
a rule strength. The Mamdani fuzzy interference system is used due to its advantages
of intuitiveness, widespread acceptance, and interpretable rule base. Combining the rule
strength and the output membership function to find the consequence of the rule, Mamdani
FIS is used. The structure of a Fuzzy Type-2 system is similar to that of a Fuzzy Type-1
system, with the only difference being the type reduction process function, which allows the
controller to better handle system uncertainties because it can model them and minimize
their effect. If all uncertainties disappear, the Type-2 Fuzzy sets convert to Type-1, which
thereafter leads to the final defuzzification result (Figure 9).

Figure 9. Fuzzy Type-2 logic system block diagram [26].
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For this research, the Nie–Tan reduction method (NT) was utilized with no iterative
process, which improves the type reduction efficiency. A Fuzzy Type-2 system has more de-
sign degrees of freedom than a Fuzzy Type-1 system, because Type-2 has more parameters
than Type-1. As random uncertainties flow through a system and their effects can be evalu-
ated using the mean and the variance, linguistic and random uncertainties flow through a
Fuzzy Type-2 system, and their effects can be evaluated using the defuzzified output and
the type-reduced output of the system. Often used in intervals, the variance provides a
measure of dispersion about the mean. The defuzzified output, which provides a measure
of dispersion, is the interpretation of the type-reduced output. The type-reduced set also
increases as linguistic or random uncertainties increase, because the variance increases as
the random uncertainty increases. A Fuzzy Type-1 system is comparable to a probabilistic
system through the first moment, whereas a Fuzzy Type-2 system is comparable through
the first and second moments. The rules are based on the individual’s application of the
information data. The fuzzy yield is made up of 49 laws from seven triangular membership
functions on information and yield data. The logic statements “if” and “then” are used to
determine the yield at this point. These rules have been utilized for FT2-FOPID, which can
be seen in Tables 1 and 2. The output distribution is defuzzified to produce crisp outputs.
The membership functions are generally used from negative one to positive one and the
design membership functions for error and error deviation are shown in Figure 10.

Table 1. Fuzzy Type-2 FOPID rule base.

ACE/dACE NB NM NS ZE PS PM PB

NB NB NB NB NB NM NS ZE

NM NB NB NB NM NS ZE PS

NS NB NB NM NS ZE PS PM

ZE NL NM NS ZE PS PM PB

PS NM NS ZE PS PM PB PB

PM NS ZE PS PM PB PB PB

PB ZE PS PM PB PB PB PB

Table 2. Rule base statements.

Rule Statement

1 If ACE is A and dACE is A, then dACE is NB
2 If ACE is B and dACE is A, then dACE is NM
3 If ACE is C and dACE is A, then dACE is NS
4 If ACE is D and dACE is A, then dACE is ZE
5 If ACE is E and dACE is A, then dACE is PS
6 If ACE is F and dACE is A, then dACE is PM
7 If ACE is G and dACE is A, then dACE is PB

The rules are based on a Boolean system of true or false statements to provide valuable
flexibility for reasoning, thereby considering the inaccuracies and uncertainties in the
system. In a fuzzy logic system, there is no absolute true or false, but it is partially true
or false. The rule base contains if and then conditions to govern the decision-making
system, which is very important for the output results. The rules are input into the
interference system, which matches the current fuzzy inputs with each rule statement,
which then produces the required outputs to perform control actions. This helps to remove
uncertainties and disturbance to an acceptable level. Some of the rule base statements
are shown in Table 2, where the two inputs are checked against the interference system
consisting of the set of rules and the output is given to the type reducer.
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Figure 10. Fuzzy Type-2 primary membership function of error and error deviation.

The input values of a Fuzzy Type-2 system have membership functions ranging from
upper membership functions to lower membership functions. This provides two fuzzy
values for each Type-2 membership function. With the rules discussed previously, the fuzzy
operator is applied to the fuzzified values of the membership functions. The minimum and
maximum output value for the fuzzy set of each rule is the result of the fuzzy operator to
the fuzzy values of upper and lower membership functions.

4. Simulation and Analysis of Results

The research work displayed shows the analysis of the thermal power system inte-
grated with PV and wind-based power generation in each area, which is connected via
an AC tie-line that contributes to the role of balancing supply and demand loads. The
frequency of the designed interconnected system is analyzed and studied for the behavior
of the signal. The investigation is meant to demonstrate the integration of clean energy
through renewable energy sources effectively within existing thermal power systems while
assisting with variable load changes within the grid. Each control area action is limited
by using the GDB and GRC non-linearities as it makes the action of secondary controllers
more practical and realizable.

For this work, the controller FT2-FOPID is showcased. While the Fuzzy Type-2 system
can be coupled with either PI, PD or PID, the FOPID has been proven to provide favorable
results in control problems due to the two additional freedom adjustable parameters.
FOPID and FT1-FOPID have been shown to have difficulty in dealing with the uncertainty
of systems; therefore, FOPID with Type-2 Fuzzy was applied. The controllers aim to restore
the frequency and power deviations over tie-lines to their original state within the least
amount of time while producing less settling time, low overshoot, and no oscillations. The
different types of controller configurations are used for comparison of the outputs. The
ACE and dACE are inputs of the fuzzy system.

The output of the fuzzy system is composed of seven areas: NB, NM, NS, ZE, PS, PM,
and PB. These are used within the triangular uncertainty member function class for ease of
understanding. The reduced rule base with non-linear membership functions for Fuzzy
Type-2 is shown in Table 1 and Figure 10. The output of the fuzzy logic is defuzzified as
Type-1 reduced sets, which produce real values from crisp values. The input of the FOPID
is derived from the output signal of the fuzzy logic system. The parameter gains for the
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FOPID, i.e., KP, KI, KD, λ, and μ, are calculated through PSO with 50 iterations to produce
the best results.

The simulated results are quantitatively given using the performance index Integral of
Time Absolute Error (ITAE) and Integral Absolute Error (IAE). These indices can calculate
the area of the error, which assists with higher accuracy for the analysis of the controller
performance, especially in graphical representations. The comparison of performance was
carried out using the output values given in Tables 3–6.

Table 3. ITAE results obtained for various controllers for demand change of 1% in Area 1.

Controllers ITAE

PID with no RES 0.9433

PID with RES 2.269

FOPID with RES 0.02066

FT1-FOPID with RES 0.01362

FT2-FOPID with RES 0.009286

Table 4. IAE results obtained for various controllers for demand change of 1% in Area 1.

Controllers IAE

PID with no RES 0.05726

PID with RES 0.08157

FOPID with RES 0.007249

FT1-FOPID with RES 0.001953

FT2-FOPID with RES 0.001161

Table 5. ITAE results obtained for various controllers for demand change of 1% in Area 1 and 2% in
Area 2.

Controllers ITAE

PID with no RES 2.093

PID with RES 4.057

FOPID with RES 0.06176

FT1-FOPID with RES 0.0401

FT2-FOPID with RES 0.02749

Table 6. IAE results obtained for various controllers for demand change of 1% in Area 1 and 2% in
Area 2.

Controllers IAE

PID with no RES 0.1139

PID with RES 0.1638

FOPID with RES 0.02205

FT1-FOPID with RES 0.005757

FT2-FOPID with RES 0.00347
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The integrated power system is simulated using a 1% load demand change in Area 1
for analysis purposes. The results of all the areas can be seen and are arranged in a way that
is easy to analyze in Figures 11–13, especially with the ITAE and IAE values. It can be easily
seen that the penetration of RES affects the system negatively by providing high oscillations
and making the system extremely non-linear in all three graphs. When comparing the
results in Area 1, it can be seen that the FOPID has better results than traditional PID
controllers, even though there are slight oscillations present. PID with RES has displayed
higher overshoots than the rest of the controller configurations, with an ITAE performance
of 2.269. PID has been shown to produce multiple larger oscillations in all three depictions
and cannot overcome the fluctuations from the high penetration of renewable energy
systems. Therefore, this type of controller is not suitable for these applications. In Area 1
and Area 2, and for tie-line deviations, the fuzzy integrated systems have shown good
results, with the lowest settling time ranging from 0 to 5 s and returning to steady state,
with little to no oscillations and minimum overshoot of these controllers. The controllers,
including fuzzy, do not exceed 0.015, as displayed in the stand-alone FOPID and PID
controllers for the area of error using ITAE. The stand-alone FOPID controller does return
to the initial state but takes a long time, which is around 8–10 s, with an error of 0.02066
using ITAE. The FT2-FOPID has been shown to have the best results using IAE, with the
smallest error of 0.001161. Therefore, the response time and performance of the FT2-FOPID
are far superior to the traditional frequency controllers and Fuzzy Type-1 logic systems.

 

Figure 11. Results for 1% load alteration in Area 1.
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Figure 12. Results for 1% load alteration in Area 2.

 
Figure 13. Results for 1% load alteration in tie-line.
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Figures 14–16 are graphically presented to show the load disturbance of both areas
in the power system using 1% and 2%, respectively. The results displayed are similar
to the previous depictions showing load disturbance in a single area. It is still evident
that the inclusion of the RES in both areas contributes to a highly non-linear system,
which negatively impacts the power system, as shown in Tables 2 and 4 for PID with RES.
However, comparing the tie-line representations in Figures 13 and 16, Figure 16 showcases
fewer oscillations for the inclusion of RES compared to no RES. The system balances itself
with the load demands and supply for the areas that contribute to this. However, it still has
oscillations present and does not return to a steady state. The FOPID has displayed better
performance than the PID controller with the inclusion of the additional fractional-order
parameters. Proof of this is shown in Table 4; for comparison, the error is simulated as
0.06176 for FOPID with RES and 4.057 for PID with RES. This can be confirmed with the
second performance criterion in Table 6, with 0.02205 for FOPID with RES and 0.1638
for PID with RES. The controller brings the system to normal conditions with a lower
wavelength and quicker response time. There are still minimal oscillations present but
much less than the PID controller. The overshoot in Area 2 is shown to be very high due
to the 2% load disturbance present, which contributes to the negative results displayed.
In the graphs presented, the settling time has an average value of 5–10 s for FOPID. The
integration of fuzzy logic in the system has drastically improved the performance of the
controllers with the additional iterations of the logical system processes. With the fastest
response time, least overshoot, best settling time, and no oscillations, the fuzzy logic
controllers have the best performance with the lowest error for the two areas and the
tie-line region.

 

Figure 14. Results for 1% and 2% load alteration in Area 1.
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Figure 15. Results for 1% and 2% load alteration in Area 2.

 
Figure 16. Results for 1% and 2% load alteration in Tie Line.

The Fuzzy Type-2 system has superior performance to Type-1, which is evident in
the depictions and the ITAE/IAE error values. With the NT-type reduction in Type-2, the
results are further fine-tuned to provide optimal performance. The wind and solar power
have made the system highly non-linear due to the changing of the wind rotor speeds and
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the irradiance from the solar panels, shading of panels, and also inverters. The individual
RES does have components and mechanisms in place to help curb these disturbances,
but does not fully reduce them to zero. Therefore, a secondary controller is required for
additional assistance to mitigate these disturbances. Even though RES provides clean
and renewable energy to the system, the higher the RES capacity, the greater the control
required for interconnected systems to work together. From all the results displayed, the
FT2-FOPID has the greatest performance compared to the rest of the controllers, with a
slightly better edge than the fuzzy Type-1, which does not exceed ±0.005 Hz. The error
between the Type-1 and Type-2 Fuzzy systems has a difference of approximately 0.02 for a
change in demand for Area 1 and Area 2. The results illustrated on the above graph and
the ITAE/IAE values clearly show that RES creates disturbances when coupled with the
power system. With the introduction of PID, the results had some control but did not come
to steady-state conditions. FOPID with RES has been shown to provide better results than
PID with or without RES; therefore, FOPID was used as the coupling controller for the
fuzzy logic systems. The FT2-FOPID has proven itself to have lower overshoot and almost
non-existent oscillations present. Even with the penetration of RES, the Fuzzy Type-2
controller can handle the non-linearity that could harm the power system. The applications
of artificial intelligence can assist with control methods and solve unprecedented problems.
With more processes being introduced, the controller can obtain better outputs and help
the power system to overcome the disturbances as soon as possible.

5. Conclusions

This paper presents an attempt to model and integrate renewable energy sources such
as wind and solar power within a thermal power system. The thermal power system is
interconnected via an AC tie-line to other areas having thermal power generation and
resulting in an interconnected system. This system is controlled with the assistance of a
Type-2 Fuzzy logic controller together with FOPID. Multiple configurations of controllers
have been simulated, compared, and analyzed to produce the most efficient output. The
controller’s main objective is to highlight the best performance in the overshoot, oscillations,
and settling time of the frequency and power interchange over tie-lines while experiencing
a sudden change in load demand. The addition of DFIG-based wind turbines assists with
the stability of the power system, while the PV-based solar system introduces fluctuations
in the system due to its inverter, contributing to the slight disturbances even after the
signal has been filtered. The system when interconnected with clean energy systems
can still become stable through the introduction of auxiliary control methods utilizing
Type-2 Fuzzy logic with FOPID, well developed via PSO. The results guarantee that the
proposed design is well suited for a renewable interlinked power system in comparison
to results obtained via other control techniques. Further, the non-linearities’ inclusion has
shown a negative impact on all controllers’ output; nonetheless, Type-2 Fuzzy logic with
FOPID is effective in providing acceptable results for the power system. As an increase in
renewable energy generation is becoming highly desirable, this research paper can assist
as the foundation for the gradually increasing penetration of clean energy within various
countries’ fossil-fuel-driven power systems.
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25. Çam, E.; Kocaarslan, İ. Load frequency control in two area power systems using fuzzy logic controller. Energy Convers. Manag.
2005, 46, 233–243. [CrossRef]

26. Rasi, D.; Deepa, S. Energy optimization of internet of things in wireless sensor network models using type-2 fuzzy neural systems.
Int. J. Commun. Syst. 2021, 34, e4967. [CrossRef]

45





Citation: Gautam, A.; Ibraheem;

Sharma, G.; Bokoro, P.N.; Ahmer, M.F.

Available Transfer Capability

Enhancement in Deregulated Power

System through TLBO Optimised

TCSC. Energies 2022, 15, 4448.

https://doi.org/10.3390/en15124448

Academic Editor: Abu-Siada

Ahmed

Received: 9 May 2022

Accepted: 1 June 2022

Published: 18 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Available Transfer Capability Enhancement in Deregulated
Power System through TLBO Optimised TCSC

Anurag Gautam 1, Ibraheem 1, Gulshan Sharma 2,*, Pitshou N. Bokoro 2 and Mohammad F. Ahmer 3

1 Electrical Engineering Department, Jamia Millia Islamia, New Delhi 110025, India;
anuragjmi13@gmail.com (A.G.); ibraheem@jmi.ac.in (I.)

2 Department of Electrical Engineering Technology, University of Johannesburg,
Johannesburg 2006, South Africa; pitshoub@uj.ac.za

3 Department of Electrical and Electronics Engineering, Mewat Engineering College, Nuh 122107, India;
farazahmer007@gmail.com

* Correspondence: gulshans@uj.ac.za

Abstract: Rapid industrial development and innovations in technology bring about the menace of
congestion in deregulated power systems (DPS). The transmission lines are continuously working
under a stressed condition with reduced power transfer capacity. In this situation, the power losses
and voltage deviations at the load buses are increased and hence reduce the system stability. To
mitigate congestion, improving available transfer capability (ATC) of the transmission system is one
of the most feasible and practical solution. This paper focuses on the implementation of Thyristor
Controlled Series capacitor (TCSC) to mitigate congestion by enhancing ATC and via reducing
power losses. AC Power Transfer Distribution Factor (ACPTDF) is applied to calculate ATC and to
find the location of TCSC. To optimize the TCSC parameter (reactance), a Teaching Learning Based
Optimization (TLBO) is proposed in the present work. The proposed optimization is validated on
the IEEE 30 Bus system. The results are validated by matching with the results obtained through
standard grey wolf optimization (GWO) and particle swarm optimization (PSO) techniques. The
results show that despite two antagonistic objectives of ATC enhancement and power loss reduction,
TLBO outperformed the other optimization techniques under different contingency conditions. The
overall ATC of the IEEE 30 Bus system for the bilateral transactions is enhanced by 11.86%. Further
active and reactive power losses are reduced by 16.7% and 29.6% for DPS.

Keywords: available transfer capacity; deregulated power system; TCSC; teaching learning based
optimization; congestion; ac power transfer distribution factor

1. Introduction

Initially, the vertically integrated power system worked as a monopoly under the
local public sector energy authorities. A single entity was controlling all the operations
of generation, transmission, and distribution. With the advancement of technology in
developing countries, the demand for power increased manifolds, making power manage-
ment very difficult with the monopolized arrangement. This necessitated amendments
in the regulated industry to deregulate the power system, hence a deregulated power
system (DPS) came into existence. Thus, the DPS was adopted by a number of countries
to meet growing power demand, maintain voltage profile at buses, reduction in power
losses, enhance the security margin and to make tariff policies as per the requirement of the
customers. In a deregulated environment, the power system is unbundled into generation
companies (GENCOS), transmission companies (TRANSCOS), and distribution companies
(DISCOS). These separate entities are further segregated under two power market mod-
els: the independent system operator (ISO) model, where the GENCOS and DISCOS are
governed and controlled by ISO by encouraging healthy competition between different
market players. The second model is the transmission system operator (TSO) model, which

Energies 2022, 15, 4448. https://doi.org/10.3390/en15124448 https://www.mdpi.com/journal/energies47



Energies 2022, 15, 4448

ensures unbiased open access right to entitled market players to use the power transmission
network [1]. The deregulated power system has numerous advantages such as the freedom
for the consumer to select the most economic generator for their needs. However, in this
system, the power generation and demands have very complex patterns. Heavy power
transactions in the competitive markets resulted in the overloading of the transmission
lines. To supply the demanded power, the transmission lines are working near or at their
thermal stability limits. This creates congestion in the system [2]. To avoid this congestion,
the power transfer capability of the lines must be known before any transaction is made. To
manage a safe and economical transaction, the Available Transfer Capability (ATC) of the
system must be calculated at regular periods. ATC can be defined as the capability of a line
to transfer power securely above the base case power for its utilization in other commercial
activities [3]. The effective transmission to the demanded power can be ensured if ATC is
calculated at regular intervals and the documented data for the same is made available all
the time to the market players. Precisely calculated ATC helps in accurately forecasting the
future up-gradation of the system. As up-gradation of the power system involves huge
capital, so to make the system economically reasonable ATC enhancement is a feasible
option market is left with. When ATC is over-valued, the system become unstable and if
the ATC is undervalued there is an economical loss due to underutilization of the power
resources [4]. ATC evaluation and enhancement is very crucial when system stability and
security is concerned.

2. Literature Survey

Previously, to enhance ATC of a power system, the infrastructure expansion was sug-
gested, which included addition of parallel transmission lines to the estimated overloaded
lines. These methods have now become obsolete due to geographical constraints and
the invention of new semiconductor technologies such as FACTS devices [5,6]. Different
FACTS devices are implemented for the objective of ATC enhancement [7]. The influence
of different series and shunt FACTS devices on ATC enhancement under N-1 contingency
condition has been validated on the standard power systems. The effective enhancement
of ATC not only depends on the type of FACTS devices used, but also on the location
of these devices. The FACTS devices are very expensive. To make their implementation
economically viable, these must be optimized for location together with their respective
parameters. The FACTS devices may either be located on the basis of the system condition
or may be located on the basis of certain optimization techniques with an aim to maximize
ATC [8]. Static Var Compensator (SVC) and TCSC are implemented to enhance ATC by
applying cat swarm optimization (CSO). The ATC value is calculated using the continuous
power flow (CPF) method in [9]. ATC enhancement is proposed by implementing SSSC
with the proposed multi-agent system (MAS). MAS together with power controllers is used
as a smart system for enhancing ATC. Various FACTS devices are located to implement
Power Transfer Distribution Factors (PTDFs) for enhancing the ATC of the system [10]. The
effect on the ATC value of the system has been proposed by employing Static Synchronous
Compensator (STATCOM) in the system [11]; however, this method is less economical
due to high cost of STATCOM. Other FACTS devices, Unified Power Flow Controller
(UPFC), SSSC, and STATCOM are suggested to effectively enhance ATC in the system and
to replace the costly method to lay down the new transmission lines. The parameters of
these devices have been optimized by applying Particle Swarm Optimization (PSO) [12].
The improvement of ATC is not only proposed by a single FACTS device, but also by a
combination of two or more FACTS devices. Implementing multiple FACTS devices is very
costly and is suitable for very large and complex systems only. Series FACTS controller,
TCPAR FACTS Controller, and TCSR FACTS Controller are employed in IEEE 5 Bus system
to mitigate congestion. The TCSR FACTS Controller was found most effective in mitigating
congestion [13]. A generalized unified power flow controller (GUPFC) and interline power
flow controller (IPFC) are implemented for N-1 contingency case applying constant P, Q
load model, and ZIP load model for the power system [14]. A Hybrid Mutation Particle
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Swarm Optimization (HMPSO) is proposed to improve the ATC in the system by suitably
locating and optimizing TCSC and SVC parameters [15]. In a multi-objective function
including ATC enhancement, voltage deviation minimization, and active power loss reduc-
tion, the weighting factors are calculated employing fuzzy logic. To achieve the objective, a
self-adaptive PSO is applied to optimize the location and parameter setting of TCSC [16].
A flower pollination algorithm is proposed to optimize TCSC parameters with the aim to
enhance the ATC of the system. The location of the device is optimized using ACPTDF as a
sensitivity factor in [17].

In the view of the above discussion, this paper contributes a method to determine
the optimized location and size of TCSC with a prime objective of enhancement of ATC
in DPS. Two completely antagonistic objectives of ATC maximization and active power
loss minimization are solved in this research work. TLBO algorithm is applied first time
to optimize the objective function under base case and N-1 contingency conditions. The
proposed algorithm is validated on IEEE 30 Bus system. A comparison of results is done
with those obtained by applying GWO and PSO techniques and the application outcomes
are shown to verify the effectiveness of the proposed work over GWO and PSO. This
research further contributes in mitigating congestion without changing the operational
costs of the system, which in turn results in social welfare of both the generators and the
consumers. As ATC is enhanced, the lines are transmitting power very near to the thermal
and voltage limits without effecting the security of the system.

3. Method and Materials

3.1. ATC Calculation

ATC of a system depends upon a number of parameters such as total transfer capability
(TTC), transmission reliability margin (TRM), capacity benefit margin (CBM), and existing
transmission commitments (ETC). ATC of a system can be mathematically represented
as [18,19]:

ATC = TTC − ∑(ETC, TRM, CBM) (1)

TTC is the major power that can be transferred between the seller and the buyer
without the violation of security constraints during normal and contingency conditions
also. ETC is calculated by the traditional power flow calculations. TRM is considered to be
10% of the TTC value and the value of CBM is taken as zero for simplicity in calculations [15].
There are different methods to calculate ATC in a system. Basically, three methods are
implemented to calculate ATC.

1. Repeated Power Flow (RPF) method;
2. Calculation based on optimization method;
3. Linear sensitivity factor based method.

In this paper, linear sensitivity factor-based method is applied to calculate ATC [20].
These factors are Power Transfer Distribution Factors. These can be calculated either by
applying AC load flow analysis or DC load flow analysis. Depending on the outcome
required AC or DC load flow analysis is done. In DC load flow analysis, transmission
power losses are neglected. The voltage is considered constant and angle variations are
considered negligible. This method takes a very small time for the calculations but the
outcome is not very accurate. On the other hand, AC load flow-based ATC calculation is
time-consuming, and complex but gives nearly accurate results.

This paper applies AC load flow analysis. The PTDFs thus calculated are called
ACPTDF. In the interconnected power system, let us consider a bus p and bus n. These
two buses are connected directly and also through indirect paths. Whenever there is a
power transaction between sending bus p and receiving bus n, the power flow is affected in
other transmission lines as well. Let us consider such an indirect path between buses l and
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k. The ratio of the change in power flow between buses l and k due to a power transaction
between buses p and n is termed ACPTDF.

ACPTDF =
ΔPlk

ΔPpn (2)

ACPTDF can be calculated in the following steps:

1. Considering m node test system with 1, . . . ., g are PV buses and g + 1, . . . ., m are
2. PQ buses.

The value of ΔPlk (change in power flow in any random line lk) is calculated by NR
load flow analysis. [

Δδ

Δ|V|
]
=

[
JA JB
JC JD

]−1

×
[

ΔP
ΔQ

]
(3)

The elements of the Jacobian matrix in Equation (3) are determined in the follows:

JA = ∂Plk
∂δlk

= VlVkYlk sin(θlk + δk − δl)

JB = ∂Plk
∂δlk

= −VlVkYlk sin(θlk + δk − δl)

Jc = ∂Plk
∂Vl

= VkYlk cos(θlk + δk − δl)− 2VkYlkcos θlk

JD = ∂Plk
∂Vk

= VlYlk cos(θlk + δk − δl)
}

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4)

From Equations (3) and (4):

ΔPlk =

[
∂Plk
∂δ2

..
∂Plk
∂δn

∂Plk
∂Vg+1

..
∂Plk
∂Vn

]
⎡
⎢⎢⎢⎢⎢⎢⎣

Δδ2
:

Δδn
Δ
∣∣Vg+1

∣∣
:

Δ|Vn|

⎤
⎥⎥⎥⎥⎥⎥⎦

(5)

Now the transacted power between buses l and k is, ΔPl = +Pt and ΔPk = −Pt.
Hence, Equation (5) can be rewritten as:

ΔPlk =

[
∂Plk
∂δ2

..
∂Plk
∂δn

∂Plk
∂Vg+1

..
∂Plk
∂Vn

]
J−1

⎡
⎢⎢⎢⎢⎢⎢⎣

Δδ2
:

Δδn
Δ
∣∣Vg+1

∣∣
:

Δ|Vn|

⎤
⎥⎥⎥⎥⎥⎥⎦
= ACPTDF × Pt (6)

If Plk is the real power flow in line l − k; TLmax
lk is the maximum transaction limit of

line l − k; Pm
lk−pn is the maximum constrained power transaction between p-n; Ns is the

total number of load buses in system.
Then,

Pm
lk−pn =

⎧⎪⎪⎨
⎪⎪⎩

TLmax
lk −Plk

ACPTDFlk,pn
∀ ACPTDFlk,pn > 0

∞ ∀ ACPTDFlk,pn = 0
−TLmax

lk −Plk
ACPTDFlk,pn

∀ ACPTDFlk,pn < 0

(7)

and
ATCpn = min

{
Pm

lk−pn∀ lk ∈ Ns

}
(8)

3.2. Reactance Model of TCSC under Consideration

TCSC is one of the very versatile reactance-based-series FACTS devices with variable
inductive or capacitive reactance, jXTCSC. The capability of TCSC to promptly manipulate
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the line reactance makes it a suitable device to be implemented for mitigating congestion.
Here, the transmission line is modelled with lumped parameters as a classical π model.
A TCSC connected between bus p and n is shown in Figure 1.

Figure 1. Schematic of TCSC model.

Equation (9) determines the change in magnitude of line admittance, Δypn:

Δypn = y′
pn−ypn (9)

y′
pn =

(
gpn + jbpn

)′
(10)

ypn = (gpn + jbpn) (11)

Δypn is the change in admittance of line p–n; y′
pn is the new admittance of the line p–n after

implementation of TCSC; ypn is the original admittance of the line p–n before implementa-
tion of TCSC.

In Equations (10) and (11);

gpn =
rpn

r2
pn+x2

pn

bpn = − xpn

r2
pn+x2

pn

g′
pn =

rpn

r2
pn+(xpn+xTCSC)

2

b′
pn = − xpn+xTCSC

r2
pn+(xpn+xTCSC)

2

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(12)

g′
pn and b′

pn represents modified conductance and susceptance, respectively, of the line p–n.
Thus, with the application of TCSC, the system admittance matrix is manipulated, which
in turn modifies the quantities in the NR load flow.

3.3. Objective Function

(1) The major objective is to maximize ATC of the test system.

ATCmax = min
{

Pm
lk−pn∀ lk ∈ Ns

}
(13)

(2) The second objective is to minimize active power loss:

Min PL =
NL

∑
i=1

g′
i

{(
(Vp − Vn

)2
+ VpVn

(
θp − θn

)2
}

(14)

The multi-objective function can now be formed as:

f = w1 ∗ (ATCmax) + w2 ∗ (Min PL) (15)
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w1 and w2 are the weight factors. When the value of ATC is enhanced, the value of active
power loss increases automatically. Thus, the objective function is solved for two cases:

• For ATC maximization;
• For Power loss minimization.

3.4. Constraints

The function is subjected to the following constraints:

(a) Equality constraints:

PGi − ∑Nb
j=1 ViVjYij cos(δi − δj − θij) = PDi (16)

QGi − ∑Nb
j=1 ViVjYij sin(δi − δj − θij) = QDi (17)

here, PGi and QGi are the real and reactive power generations at ith bus, respectively; PDi
and QDi are the real and reactive power demands at ith bus, respectively; Vi, δi, and Vj, δj
are voltage magnitudes and their corresponding angles at ith and jth buses, respectively;
Yij, θij is the admittance of line between ith and jth bus and its corresponding angle; Nb is
the number of buses.

(b) Inequality constraints:

Pmin
Gi ≤ PGi ≤ Pmax

Gi ∀ i = 1, 2, . . . .., ng (18)

Qmin
Gi ≤ QGi ≤ Qmax

Gi ∀ i = 1, 2, . . . .., ng (19)

Vmin
b ≤ Vb ≤ Vmax

b ∀ i = 1, 2, . . . .., nb (20)

(c) Practical constraints of the TCSC [21]:

− 0.8Xpn(p.u.) ≤ XTCSC ≤ 0.2 Xpn(p.u.) (21)

3.5. TLBO Algorithm

Teaching Learning based Optimization is based on the teacher–student relation in a
class for imparting knowledge to the student. Hence, TLBO comprises two main factors, the
‘Teachers Phase’ and the ‘Learners Phase’. Here, the class room size denotes the space for
search. The teacher plays part of ‘Influencer’ to influence students for obtaining ‘Effective’
learning output from them [22]. The algorithm operates in two phases:

3.5.1. Teacher Phase

In this phase, for enhancing the average output of the class of learners, teacher delivers
information to the class (learners). Therefore, this phase deals with imparting learning
through the teacher only. Here, it is assumed that the teacher is more knowledgeable (better
fitness) as compared to the learner. At the end of the simulation, the teacher will be replaced
by the best learner. This can be mathematically explained as:

Dm = rand[Xteacher − Tf(Xm)] (22)

In Equation (22), Dm is difference between teachers’ best result (Xteacher) and the
existing mean result of the learner (Xm). Tf represents the teaching factor. Specific value of
Tf is not mentioned in literature but more accurate results are obtained if value is considered
between (1, 2). Tf can be calculated as in Equation (23):

Tf = round {1 + rand[0, 1](2 − 1)} (23)
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rand is any random value in (0, 1). Next, the solution is updated through Equation (24) as:

Xupdated = Xexisting + Dm (24)

The updated value obtained here is substituted to calculate new fitness function value.
For current fitness better than the former, the new solution is memorized. These updated
values act as the input for the next phase, i.e., learner phase.

3.5.2. Learner Phase

This phase includes the learners who only interact among themselves with their
randomly selected partner. In this phase, the learner has two inputs from the teacher and
from the randomly selected partner. A learner will improve his/her information if the
randomly selected partner is more knowledgeable then him/her. Consider two learners,
X1 and X2 .

The fitness functions for X1 and X2 are evaluated and compared. Updated values for
minimization function are evaluated by Equation (25).

Xupdated = Xcurrent + rand(X1 − X2)
Xupdated = Xcurrent + rand(X2 − X1)

}
(25)

Here, Xupdated is the updated value of the results of learner for minimizing the
fitness function.

The steps involved in application of TLBO are given in Figure 2.

Figure 2. Operations of TLBO algorithm.
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4. Steps Involved in the Implementation of Algorithm in Objective Function

The method applied is carried out in two parts:

4.1. For ATC Maximization

1. TLBO driven optimal power flow (OPF) is carried out.
2. Considering prime objective of ATC maximization, TCSC is optimized for suitable

location and size by using ACPTDF and TLBO.
3. Line flows are obtained by NR with OPF.
4. A bilateral transaction between seller bus and buyer bus is created and NR is applied

to calculate new line flows.
5. Change in active power flow (ΔPlk) is calculated.
6. ACPTDF values are obtained by using Equation (2).
7. ATC is then calculated by applying Equation (8) for nearby and farthest bus connected

to the common generator bus (sending bus).

4.2. For Power Loss Minimization

For this case also, the same steps are involved as in case of ATC maximization with
a difference in weight factor (w2) as given in Equation (15) for minimization of active
power loss.

The proposed algorithm is validated on standard IEEE 30 Bus system as shown in
Figure 3.

Figure 3. IEEE 30 BUS System [23].

This system comprises of 30 buses, 41 interconnected lines and 6 generators. Out
of 30 buses, 24 buses are load buses. Bus number 1 is considered as slack bus. Bilateral
transactions between the generator buses, i.e., 2, 5, 8, 11, and 13 and the load buses situated
nearest and farthest to these buses is carried out. The generator buses are considered as
sender/seller buses while the load buses are considered as receiver/buyer buses.

The ATC values calculated for base case without the application of TCSC by consid-
ering effects of generator at particular bus are shown in Figures 4–8. It is observed that
the ATC value for nearby bus is higher as compared to the ATC for line connected at the
farthest bus.
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Figure 4. ATC values for all transactions with respect to generator at bus 2.

Figure 5. ATC values for all transactions with respect to generator at bus 5.

Figure 6. ATC values for all transactions with respect to generator at bus 8.
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Figure 7. ATC values for all transactions with respect to generator at bus 11.

Figure 8. ATC values for all transactions with respect to generator at bus 13.

5. Result Analysis

The proposed TLBO algorithm is validated on IEEE 30 Bus test system for two cases.

5.1. For ATC Maximization

Figure 9 elaborates the enhanced ATC values when TCSC is optimized with the
TLBO technique. From the results, it is observed that the ATC value for different bilateral
transactions is enhanced. For transaction between 2–5, the ATC value is increased from the
base case value of 116.5 MW to 125.13 MW and for the transaction 2–26, the ATC value is
increased from 12.18 MW in base case to 14.53 MW with TLBO optimized TCSC. Similarly,
significant ATC enhancement is achieved for both nearby bus and far away bus for each
bilateral transaction. The ATC value for distant situated lines is increased significantly and
can be concluded from Table 1. The proposed algorithm not only has increased the ATC
value for nearby situated lines, but also for distant situated lines and hence enhance the
overall ATC of the test system. With the enhancement of ATC, the active power losses also
increase due to increased power flow through the lines during bilateral transactions.
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Figure 9. ATC enhancement using TLBO with and without TCSC.

Table 1. Consolidated results for ATC maximization.

Bilateral Transactions
ATC (MW) Active Power Loss (MW)

OPF
OPF with TCSC

OPF
OPF with TCSC

Seller Buyer GWO PSO TLBO GWO PSO TLBO

2
5 116.65 120.75 121 125.13 7.01 7.13 7.25 7.3
26 12.18 13.18 12.25 14.53 7.01 7.13 7.45 7.32

5
2 184.56 198.04 211.3 215.13 7.03 7.45 7.14 7.23
26 12.26 13.45 12.75 14.45 7.09 7.19 7.22 7.29

8
12 70.41 69.57 67.9 75.07 7.04 7.17 7.17 7.25
26 12.18 14.23 13.05 16.57 7.08 7.21 7.24 7.32

11
16 37.65 38.8 37.3 39.58 7.11 7.24 7.2 7.3
26 6.09 6.45 6.35 8.01 7.01 7.78 7.25 7.32

13
7 48.5 36.89 47.5 50.23 7.05 7.69 7.24 7.23
26 9.26 9.46 10.24 11.46 7.08 7.97 7.26 7.29

Figure 10 compares the percentage increment of ATC for both nearby and distant
lines. It can be seen that maximum ATC enhancement obtained by the proposed TLBO
algorithm is 36% for the bilateral transaction between buses 8–26, which is a line at the
distant location. For the same transaction, the percentage enhancement of ATC by GWO
and PSO is 16.83% and 7.14%, respectively. Additionally, for transaction between 2–26,
5–26, 11–26, and 13–26 (transactions for faraway lines) are enhanced by 19%, 16.56% 31.52%,
and 23.75%, respectively, by the proposed algorithm. Total ATC in base case for the bilateral
transactions considered is 509.74 MW in base case. This increases to 520.84 MW with
GWO, 539.64 MW with PSO, and 570.16 MW with the TLBO optimized TCSC. Here, an
approximate enhancement of ATC with proposed TLBO algorithm is 11.853%.

The reactive power losses are also calculated here and given in Figure 11. The results
show that with the enhancement of ATC, the active power losses are increased, but the
reactive power losses are decreased. Figure 11 presents the comparative analysis of reactive
power losses reduction by the proposed TLBO, GWO and PSO algorithms. It is observed
that maximum reduction in reactive power loss is obtained with the application of TLBO
optimized TCSC. The average power loss in base case for all the transactions considered is
30.481 MVAr. With the application of TLBO, GWO, and PSO, the average reactive power
loss is reduced to 21.44 MVAr, 28.556 MVAr, and 28.593 MVAr, respectively. This means
that the reactive power losses are reduced by 29.65%, 6.28%, and 6.19% by the application
of TCSC optimized by TLBO, GWO, and PSO, respectively, and hence the results of TLBO
are better than GWO and PSO.
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Figure 10. Comparative percentage increment in ATC by GWO, PSO and TLBO.

Figure 11. Comparative decrement in reactive power loss by TLBO, GWO, and PSO.

5.2. For Active Power Loss Minimization

Figure 12 shows the variation of active power loss in the test system for the bilateral
transactions. It is observed that as compared to the base case without TCSC, the active
power loss is reduced significantly. When the weight factor (w2) in Equation (15) is changed,
the active power losses are reduced. This also results in the reduction of ATC of the system.
The maximum power loss reduction is obtained in the transaction 5–26 where the active
power loss is reduced from the base case value of 7.09 MW to 4.97 MW. Similarly, in
the transaction 13–7, the active power loss is reduced from base case value of 7.05 MW
to 4.80 MW. In all the transactions considered, the average base case active power loss
is 7.05 MW, which is reduced to an average of 5.25 MW after TLBO optimized TCSC is
implemented in the system. This reduction is approximately 25%, which is quite significant
when system efficiency is concerned. Reduced power losses mitigate the congestion in
the lines.
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Figure 12. Active power loss minimization by applying TLBO with and without TCSC.

A detailed comparative analysis between the results obtained by GWO, PSO, and
TLBO algorithm is presented in Table 2. From Table 2, it is observed that with the objective
to reduce active power losses, the ATC of the system is also reduced.

Table 2. Consolidated results for active power loss minimization.

Bilateral Transactions
ATC (MW) Active Power Loss (MW)

OPF
OPF with TCSC

OPF
OPF with TCSC

Seller Buyer GWO PSO TLBO GWO PSO TLBO

2
5 116.65 98.99 90.67 100.23 7.01 6.000 6.06 5.34
26 12.18 10.33 8.34 10.85 7.01 6.000 6.78 5.37

5
2 184.56 156.61 165.67 164.83 7.03 6.017 5.89 5.22
26 12.26 10.4 9.45 10.64 7.09 6.069 5.63 4.97

8
12 70.41 59.75 45.89 60.87 7.04 6.026 5.32 5.25
26 12.18 10.33 7.54 10.58 7.08 6.060 5.98 5.48

11
16 37.65 31.95 32.78 32.56 7.11 6.086 5.56 5.36
26 6.09 5.16 6.03 5.04 7.01 6.000 6.04 5.36

13
7 48.5 41.15 32.43 45.92 7.05 6.034 5.67 5.32
26 9.26 7.85 9.54 8.13 7.08 6.060 6.87 5.37

Taking example of transaction between 2–5, the base case ATC is 116.65 MW. With
the power loss minimization objective, the ATC value is reduced to 98.99 MW in GWO,
90.67 MW in PSO, and it reduces to 100.23 MW in case of TLBO application. Hence, it
can be depicted that TLBO optimized TCSC in the system results in less reduction of ATC
as compared to GWO and PSO. The total ATC of the system for the bilateral transactions
considered is 509.74 MW. This reduces to 432 MW in case of GWO, 408.3 MW in case of
PSO, and 453.65 MW in case of TLBO.

Figure 13 indicates the percentage reduction in active power loss achieve with the im-
plementation of TCSC optimized by GWO, PSO and TLBO for all the bilateral transactions
considered. It can be depicted from Figure 13, that overall active power reduction for the
bilateral transactions under consideration is 3.15% in case of GWO, 3.822% in case of PSO,
and it is 16.76% when TLBO is applied to locate and optimize the size of TCSC.
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Figure 13. Comparative percentage decrement in PL by GWO, PSO and TLBO.

Table 3 shows the results of line number and size of TCSC well optimize through
TLBO technique for ATC enhancement and power losses minimization.

Table 3. Consolidated results for TCSC location and size.

Bilateral Transactions ATC Enhancement Power Loss Minimization

Seller Buyer TCSC Loc. TCSC Size TCSC Loc. TCSC Size

2
5 15 −0.7574 6 −0.60243
26 20 0.1896 9 0.1024

5
2 2 0.1270 36 0.2000
26 9 −0.776 19 0.1069

8
12 16 −0.0708 21 −0.0986
26 36 −0.0789 36 −0.6704

11
16 6 0.1025 6 0.1069
26 20 0.0754 36 0.1128

13
7 35 −0.7348 26 −0.7658
26 5 0.200 5 0.1869

The results as presented in Table 1 clearly indicates that as compared to PSO and GWO
the ATC value obtained by proposed TLBO algorithm is higher. ATC is not only enhanced
for the near bus, but also is increased significantly for the far bus. Similarly, Table 2 validates
the effectiveness of TLBO in reducing system active power loss significantly as compared
to the two other algorithms presented in the paper. This proves effectiveness of TLBO to
mitigate congestion by reducing power loss and enhancing ATC over PSO and GWO for
IEEE 30 bus system.

6. Conclusions

This paper proposes a novel method to enhance ATC of the DPS using the application
of TLBO and TCSC. The problem is formulated and processed with the help of MATLAB
software. The method is implemented using ACPTDF as the sensitivity factor to calculate
ATC. The algorithm is applied effectively to significantly enhance the ATC of DPS and to re-
duce active power losses by a significant value of 11.86% and 16.7%. With the enhancement
of ATC, the congestion in the line is reduced, which in turn increased the efficiency and
overall stability of the power system. As the need to lay down alternate parallel lines in the
system is eliminated, the system becomes more economically viable. The results obtained
strongly suggest and prove that TLBO has outperformed the GWO and PSO for various
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considered cases. Moreover, the implementation of TCSC well optimize through TLBO
resulted in ATC reduction when active power loss minimization is the main objective of
the work. The ATC values for far away lines are also enhanced in comparison to the base
case and through those obtained from GWO and PSO techniques. A detailed investigations
and comparative analysis strongly suggest the application of TLBO for deregulated and
modern power system.
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Nomenclature

DPS Deregulated power system
GENCOS Generation companies
TRANSCOS Transmission companies
DISCO Distribution company
ISO Independent system operator
FACTS Flexible Alternating Current transmission system
TCSC Thyristor controlled series capacitor
TLBO Teaching learning based algorithm
PSO Particle swarm optimization
GWO Grey wolf optimization
ATC Available transfer capability
TTC Total transfer capability
ETC Existing transmission commitments
TRM Transmission reliability margin
CBM Capacity benefit margin
PTDF Power transmission distribution factor
CPF Continuous power flow
NR Newton Raphson
OPF Optimal power flow
PGi and QGi real and reactive power generations at ith bus, respectively
PDi and QDi real and reactive power demands at ith bus, respectively
Vi, δi voltage magnitude and corresponding angle of ith bus, respectively
Yij, θij admittance of line between ith and jth bus and its corresponding angle
Nb number of buses
Xpu per unit reactance
PL Active power loss
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Abstract: An LFC plays a vital part in passing on quality electric energy to energy consumers.
Furthermore, with cutting-edge designs to move to modern and pollution-free energy generation,
it may be conceivable to have a major hydropower in the future. Hydro plants are not suitable for
continuous load alteration due to the large response time of hydroturbines. Hence, this paper shows
a novel control design for an LFC of a hydro-hydro interlinked system based on joint actions of
fuzzy logic with PID effectively optimized through particle swarm optimization (PSO) resulting in a
Fuzzy-PSO-PID. The outcome of Fuzzy-PSO-PID is evaluated for step load variation in one of the
regions of hydropower, and the outcomes of Fuzzy-PSO-PID are compared with a recently published
LFC with respect to integral time absolute error (ITAE) value, values of PID, and graphical outcomes
to show the impact of the proposed LFC action. The numerical results show that the ITAE value
(0.002725) obtained through the proposed design is minimum in comparison to error values achieved
through other LFC actions, and the pickup values obtained on these error values are considered
to achieve the desired LFC. However, there is still scope for LFC enhancement as responses of
hydropower are sluggish with higher oscillations; hence the UPFC and RFB are integrated into the
interlinked hydro-hydro system, and the application outcomes are evaluated again considering the
non-linearity, standard load alteration, random load pattern, and in view of parametric alterations. It
is seen that the ITAE value reduces to 0.002471 from 0.002725 when UPFC is connected to the tie-line,
and it further reduces to 0.001103 when a UPFC-RFB combination is used with Fuzzy-PSO-PID for a
hydro leading system. The positive impact of the UPFC-RFB for hydropower is also seen from the
application results.

Keywords: LFC; ACE; fuzzy logic; PSO; FACTS; RFB; UPFC

1. Introduction

The electrical time and demand network is currently developing, giving cost-effective
power generation with superior electrical energy delivery to the demand system despite
the diverse working constraints of the network. To make this network more reliable,
secure, and economical, the electrical system operates in an interconnected model. This
illustrates that tie-lines connect power generation zones. By extension, these control ranges
have power interchange as characterized by the transmission network operator. As a
result, every control zone can meet its own load demand to maintain the fixed power
interchange via the AC tie-line. The mismatch between electrical energy generation and
demand causes the framework frequency and the AC tie-line power to deviate from
the predefined system value, affecting power delivery to various customers. The LFC
strategy controls this change in frequency and tie-power. The adjustment of the indirect
structure of these amounts is well-defined as the Area Control Error (ACE) in LFC [1,2].
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The LFC controllers’ role is to connect electrical power generated with electrical energy
consumption to maintain or specific ACE deviations to zero. A primary action during
this part would be to set up an LFC described as a conventional control hypothesis [3–5].
In either circumstance, the gain of a standard LFC controller’s action is limited for a
specific situation and incapable of supplying the desired control movement under arranged
working circumstances. Subsequently, the investigators and researchers are working hard
and exploring the various controller design and plans such as optimal control, control
based on few states, variable structure control, decentralized control, etc. to ensure a
productive LFC for the electrical generation system [6–10]. In [6], the authors have shown
the design of a variable structure LFC for an interlinked hydrothermal with a variable
structure LFC for a multi-area system in [7]. A Dual mode controller with the impact
of non-linearity was well covered in [8]. In [9,10], the impact of merging wind turbines
and their assessments for LFC using all states and few states for the LFC were shown.
The artificial-intelligence-based LFC [11] designs, especially artificial neural networks and
fuzzy logic, are increasing day by day to solve the LFC problem in a two-area or multi-area
power system considering various types of power generation in view of the regulated or
deregulated power system. From the above two techniques, the fuzzy logic technique is
much more popular these days due to its better capability to deal with differing types of
instabilities and system non-linearities and hence may prove to be beneficial concerning
variable loading conditions of power systems [12–16]. The LFC technique based on hybrid
evolutionary fuzzy PI is discussed in [12]. The effective Takagi–Sugeno base controller
for LFC is demonstrated in [13] such that, the created fuzzy framework runs perfectly for
non-linearity as well as parametric changes. The fuzzy methodology for interconnected an
LFC is presented in [14]. The type-2 fuzzy-based research considering GRC non-linearity is
demonstrated in [15]. In [16], a fuzzy gain scheduling control for an LFC using a genetic
algorithm (GA) has already been presented. Some limitations in GA, such as convergence
issues and trapping in local minima while finding optimal results of the problem, have
been observed by researchers. The change in the optimization method, namely PSO, has
significantly reduced the issues associated with the application of GA. PSO has fewer
chances of becoming trapped in local minima for the same degree of execution, and it also
takes very little calculation time [17]. Furthermore, the majority of control methodologies
are based on thermal–thermal control models or hydrothermal LFC models. Hydroturbines
have a much longer response time than thermal turbines; the LFC composition lacks an
appropriate and guide control arrangement for hydropower systems. As a result, the
LFC yield of the hydro-overseeing framework is slow and has persistent motions [18–20].
Furthermore, modern and developing society is approaching cleaner and renewable energy
sources; hence hydropower may generate bulk electrical power or limited power, i.e.,
micro-hydro. As a result, the interconnected power framework may become more complex,
with hydro-leading control regions included.

The cutting-edge and rapid advancement of power electronics industries has prompted
the advancement of the Flexible Alternating Current Transmission System (FACTS) to pro-
vide a solution to various technical limitations of the power system. FACTS has the ability
to regulate (i.e., active and reactive) power and hence can improve the output of the power
system such as frequency and tie-line responses to a great extent. A redox flow battery
(RFB) is additionally within the framework of FACTS and may well be a fast-acting useful
capacity mechanism that can give the capacity in development to the dynamic essentialness
of generator rotors. This can effectively dampen the electromechanical oscillations of the
system by sharing the unexpected changes within the power demand [21,22]. At any
point, there is a sudden rise within the control area (i.e, area-1). The power in an RFB
is immediately discharged via the control conversion mechanism which consists of an
inverter/rectifier. Basically, it adapts to the system through the quick delivery of loads.
But it is not conceivable to put an RFB in each area or region of interlinked regions due
to financial reasons, and subsequently unified power flow control (UPFC) may prove to
be a viable solution. It is very cheap and can be presented in a course of action with a
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tie-line in position to progress the execution of the electrical system [23,24]. In this way,
the simulated performance of an RFB and UPFC is used to improve the output of an LFC
for hydro-leading system in a more cost-effective and quicker manner. Given the above
discussion, the current research work is set to;

• Create a linear design of the hydro-leading system using an interconnected approach
for LFC studies. The hydro framework is divided into hydro zones and connected via
an AC tie-line.

• Develop a fuzzy logic control with two inputs for a hydro-leading system and then
use the fuzzy outputs as PID inputs.

• Determine the PID gains using PSO by selecting the appropriate error definition,
i.e., Integral Time Multiplied Absolute Error (ITAE). The performance of the PSO
is evaluated by performing it for 100 iterations and using the outcome of the 100th
iteration to obtain the final control action, which is Fuzzy-PSO-PID.

• Validate the Fuzzy-PSO-PID result for regular load variation from one of the control
zones, and the result is compared with a recently published LFC to pick up the value
of PID, ITAE, and through a graphical LFC.

• The results of Fuzzy-PSO-PID are good with regard to earlier published LFC outcomes.
However, it still needs enhancement; hence the UPFC and the RFB are added to the
hydro model, and the output is observed again considering load alteration, random
load pattern, and parametric alterations from the original values.

• At last, all results are concluded to show the benefits of Fuzzy-PSO-PID, UPFC and
RFB integration with regard to the present research work.

2. Model Details of the Hydro System

This is an interlinked system that uses hydroturbines in each area or region linked
through an AC tie-line. Figure 1 shows the model of a hydro-hydro system. In Appendix A,
all necessary system values are listed. For workspace programmers using SIMULINK
modeling, MATLAB software edition (R2022a) was utilized to study the output of an LFC
for the considered system. Two hydro plants with mechanical governors are utilized to
increase or decrease the power generation as per the requirement of each area. To make
frequency domain calculations easier, each element is represented using transfer function
blocks. The next sections discuss the transfer functions of each region for a two-area
hydro-hydro system. Figure 2 shows the transfer function model used for simulation and
investigations for an LFC.

Figure 1. An AC tie-line connects area-1 with area-2 with each area generated power via a
hydropower plant.
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Figure 2. LFC model with hydropower in area-1 interlinked via an AC tie-line to another
hydropower plant.

3. Modelling of Fuzzy-PSO-PID

The design and implementation of advanced control activity is a fuzzy sequence
including PID. In addition, the pickup of PID is determined with results of an optimization
technique identified as Particle Swarm Optimization (PSO) resulting in a Fuzzy-PSO-PID.
The performance of the Fuzzy-PSO-PID depends on the value of KP, KI, and KD. Hence,
in arranging an absolute LFC activity, KP, KI, and KD pickup must be taken suitably
to attain extra beneficial active performance for the framework of the closed-loop. In
this investigation, a new tuning methodology called PSO is used to actuate the foremost
promising result of screen pickups to remove better dynamic accomplishment of the Fuzzy-
PSO-PID screen LFC. The numerical description of PID is:

K(s) = KP +
KI
s

+ KD (1)

where KP = proportional gain, KI = integral gain, and KD = derivative gain.
KP, KI, and KD are the pickups of the control activity, and the LFC output exceedingly

depends upon this amount. These amounts are chosen for the PSO optimization handle
detailed in this article. On the other hand, the FLC is composed of four leading components:
the fuzzification, the fuzzy acceptance model, the run showing up the range, and the
defuzzification. The Fuzzy-PSO-PID has two input signals, an area control error (ACE) and
a derivative of (ACE), and one output signal. The developed structure of the Fuzzy-PSO-
PID is given in Figure 3.

Figure 3. A schematic diagram of the fuzzy tuning.

66



Energies 2022, 15, 4847

3.1. Fuzzification

Fuzzification is the component by which a crisp value of the results changes over trans-
form fuzzy value by utilizing points of interest within the information base. Different sorts
of bends are present in various broadly utilized regions within the fuzzification strategy
within the history as Gaussian, triangle, and trapezoidal membership functions (MFs). In
any case, in the present investigation, triangle MFs are preferred due to effortlessness and
balance. The Fuzzy-PSO-PID maintains two information signals namely, (1) area control
error (ACE) and (2) derivative of (ACE), and one creation yield. Each information and
output becomes five contributions (every one MF is triangular). The step middle way of
MFs is likely applied, i.e., [–1 to 1].

3.2. Fuzzy Inference System

The input MFs, the fuzzy in the case of next etymological laws, and the output MF are
formed of the fuzzy inference design (fis). The fis regulation is completed in four stages. A
fundamental level is now to fuzzify the appropriate data crisp factors that further are in
here as ACE as well as a subsidiary of ACE. It defines the degree to which that necessary
information can reach the specific basic fuzzy locations by MFs. The specific action is how
the evaluation or inference is displayed. The fuzzified information data are achieved on the
heralds of the fuzzy laws. The fuzzy law includes the formation of a rule base to achieve
the desired output. The rules are formed on an IF-THEN condition to reach a decision on
the basis of the level of inputs with expert knowledge. The decision is taken on the basis of
the min–max concept in the inference engine, and finally, the output need to be converted
back to real values before applying to the plant from crisp values. A fourth stage is the
defuzzification of the accumulated individual fuzzy location, which is performed with the
help of the center of gravity method.

3.3. Allocation of Region of Inputs

The feature of the control laws might be a little more challenging than MFs, based upon
the responsibility and approaching the required action. The laws are included for them to
be used in the composition of KP, KI, and KD. Shifting inputs and outputs individually has
5 MFs and 25 rules to obtain a fuzzy output. If-then laws are used in the following way: If
ACE is NB-1 and a dACE is NB-1, the output is NB-1.

Table 1 contains the entire rule framework.

Table 1. Rule structure for the Fuzzy-PSO PID.

ACE
dACE NB−1 NS−1 Z0 PS1 PB1

NB−1 NB−1 NB−1 NS−1 NS−1 Z0
NS−1 NB−1 NS−1 NS−1 Z0 PS1

Z0 NB−1 NS−1 Z0 PS1 PB1
PS1 NS−1 Z0 PS1 PS1 PB1
PB1 Z0 PS1 PS1 PB1 PB1

3.4. Defuzzfying the Output Value

The crisp amount is defuzzified by the well-popular technique called the centroid.

3.5. Objective Function

The proper selection of the objective function within the technique of a modern
heuristic optimization technique-based controller plays a significant role in achieving the
required target with the minimum of effort. The error definitions available and well tested
in the history of LFC are Integral of Absolute Error (IAE), Integral of Squared Error (ISE),
Integral of Time Absolute Error (ITAE) and Integral of Time multiplied Squared Error (ITSE).
The ITAE degree decreases the settling duration, which IAE and ISE-based tuning do not
achieve. The ITAE type also reduces the maximum overshoot. ITSE-based control provides
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a sweeping control product for an instantaneous variation into state problem which is not
useful in case the control determines the condition of seeing. It necessitates that ITAE may
perform a major supportive accurate work in an LFC point by point. Concurrently, ITAE
is used as an error definition in this work to optimize the measured value and calculate
the pickups of Fuzzy-PSO-PID [19]. Expression for the ITAE objective work is depicted in
Equation (2).

J = ITAE =

tsim∫
0

(|ΔF1|) + (|ΔF2|) + (|ΔPtie12|)·tdt (2)

where ΔF1 and ΔF2 = the framework frequencies of region 1 and region 2, ΔPtie12 = the
incremental alteration in tie-line power regions 1 and 2, and tsim = the simulation period.

The issue objectives continue these PID component boundaries. In this system, the
organized problem is capable to be established such as catching subsequent optimization
problems. Depending upon the performance record, the J optimization problem can be
signified as: Reduction J restrained to:

Kmin
P ≤ KP ≤ Kmax

P (3)

Kmin
I ≤ KI ≤ Kmax

I (4)

Kmin
D ≤ KD ≤ Kmax

D (5)

where Kmin
P and Kmax

P = proportional gain with minimum and maximum limit, Kmin
I and

Kmax
I = integral gain with minimum and maximum limit, and Kmin

D and Kmax
D = derivative

gain with minimum and maximum limit.

3.6. PSO Algorithm

This advanced approach highlights various goals of interest; it is fundamental, quick,
and can be coded in a few lines. Other than that, this research has several advantages over
human evolution and genetic algorithms. Each particle recalls its best course of action
(adjacent best) as well as the bunch’s best organization (around the world best). Some other
benefit of PSO is that the beginning population of a PSO is kept up; there is no need for
utilizing supervisors toward the state, and it is a time and memory-storage-consuming
designation. In extension, PSO is based upon “helpful cooperation” connecting particles,
differentiating from the genetic algorithms, which are based on “the survival of the fittest”.

PSO begins with a population of self-assertive organizations referred to as “particles”
in a D-dimensional interior. The ith particle is described by Xi = (xi1, xi2, . . . , xiD). Various
particles maintain a record of their hyperspace organization, which also is related to the
most appropriate organization they have obtained so distantly. The standard of eligibility
for particles (pbest) is also saved as Pi = (pi1, pi2, . . . ,piD). PSO keeps a record of the common
best standard (gbest), and its region, received in this way distant by any particle inside
the populace. PSO covers for every step by varying the speed with which every particle
approaches its pbest and gbest. The speed of particles is talked to as Vi = (vi1, vi2, . . . , viD).
Ramping up is weighted by such a variable term, and confined subjective numbers are
generated for increasing speed forward into pbest and gbest. The balanced speed and place
of every particle can really be calculated using the actual speed as well as separations from
pbestj,g to gbestg as shown in the following conditions [17]:

v(t+1)
j,g = w × v(t)j,g + c1 × r1()× (pbestj,g − x(t)j,g ) + c2 × r2()× (gbestg − x(t)j,g ) (6)

x(t+1)
j,g = X(t)

j,g + v(t+1)
j,g (7)

As for j = 1, 2, . . . , n and g = 1, 2, . . . , m. Where n = value of particles inside the swarm,
m = number of elements for the vectors vj and xj, t = value of times (generations), v(t)j,g =

the gth element of the velocity of particle j at iteration t, vmin
g ≤ v(t)j,g ≤ vmax

g , w = inertia
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weight calculate, c1; c2 = cognitive and communicative speeding up factors independently,
r1; r2 = irregular values reliably passed on inside the run (0, 1), x(t)j,g = the gth component of
the position of particle j at cycle t, pbestj = pbest of particle j, and gbest = gbest of the particle.

The execution steps of PSO are given in Figure 4.

Figure 4. The execution steps of PSO.

3.7. UPFC Modeling

The settling time of the LFC system responses for hydropower is longer than 20 s. This
is because hydroturbines have a faster response time, and as a result, UPFC is set up in
series with the tie-line. Figure 2 depicts a point-by-point design of UPFC interconnected
between two interconnected hydro regions, with a schematic model of UPFC in Figure 5
and its corresponding linear transfer function block in Figure 6.
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Figure 5. Model of UPFC integration in interlinked hydro systems.

In [21], the numerical calculations of UPFC are developed, and the combined power
(i.e., complex power) at the receiving end of the line is calculated as:

Preal − jQreactive = V∗
r Iline = V∗

r
{(

Vs + Vse − Vr
)
/j(X)

}
(8)

and,
Vse = |Vse|∠(δs − φse) (9)

In the equation, the Vse implies the voltage magnitude in series, and φse is the series
phase angle. By assembling Equation (8), the real value can be written as:

Preal =
|Vs||Vr|

X
sin δ +

|Vs||Vse|
X

sin(δ − φse)= P0(δ) + Pse(δ, φse) (10)

In the above equation, in case Vse = 0, it means that real power is uncompensated, and
the UPFC series voltage can regulate between 0 and Vse to its maximum value. Finally, the
phase angle can be varied from 0◦ to 360◦. In an LFC, the UPFC operation can be written in
the form of single order gain and time constant with frequency deviation of area-1 as input
and altered power from the UPFC as [21];

Figure 6. UPFC transfer function.

ΔPUPFC(s) =
{

1
1 + sTUPFC

}
ΔF1(s) (11)

TUPFC = UPFC time constant.

3.8. RFB Modeling

The RFB is a rechargeable battery whose life is not affected if it is charged more than
once or released frequently, and it has a quick response time for unexpected load variations.
When it comes to load leveling, the RFB is more valuable for the performance of the LFC,
and it also helps to maintain power quality. The RFB operation time is fast enough to be
considered zero secs through LFC research. The model of the RFB for an LFC is as taken
after [22] and given by Figure 7:
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Figure 7. Transfer function of RFB.

ΔPRFB(s) =
{

KRBF
1 + sTRFB

}
ΔF2(s) (12)

4. Simulation of Fuzzy-PSO-PID and Its Analysis

The present work is set to study and investigate the two-area interlinked power system
with hydroturbines in each area or region and interlinked via an AC tie-line. The idea is
to analyze the performance for such a type of power system to illustrate and propose a
convincing arrangement of Fuzzy-PSO-PID to determine the execution of control for an LFC
under different system working conditions. Researchers are avoiding the hydro-leading
system model as the time taken by hydroturbines to reply for load alteration is significantly
higher than other types of turbines and hence affect the frequency and power deviations
with higher overshoot, more settling time, and a larger steady state error.

The Fuzzy-PSO-PID controller is presented in each area or region, and the obtained
output (u) is fed to each area or region so that power can be up or down per its requirement
and hence achieve the required LFC. Furthermore, GRC non-linearity is also considered in
each area to see the impact of this non-linearity on LFC output as it it is seen in the past
literature that LFC output is limited by considering the GRC non-linearity. At first, the
fuzzy logic action is designed for the hydro system, and the ACE and the rate of change of
ACE are taken as input to the fuzzy logic system. The two inputs of the fuzzy system are
scaled with the help of the membership function to convert original values into crisp values.
The rule base of the fuzzy logic system for two input and one control output, i.e., ‘u’ having
a total of 25 rules, is given in Table 1. The output is defuzzified to get back the original value
from the crisp value and fed as input to PID. The best pickup value of PID is obtained by
running the PSO technique. The ITAE is selected to achieve the best pickup value for PID,
and these values are selected by achieving the ITAE minimum value. The pickup values
of PID are selected through the PSO concerning minimum and maximum constraints as
set in the optimization technique. The PSO technique is executed for 100 iterations and
the best solution achieved after 100 iterations concerning the minimum value of ITAE
and corresponding pickup values of PID are mentioned in Table 2 and used to check LFC
standards. The Fuzzy-PSO-PID result is evaluated for standard load deviation (0.01 p.u.)
in area-1, and the application outcomes are compared with recent LFC studies [19].

Table 2. Numerical outcomes of the Fuzzy-PSO PID.

Methods KP KI KD ITAE

Classical PID [19] −0.12 −0.091603 0.0393 41.1935015
Pessen PID [19] −0.14 −0.050381 0.05502 46.5603916
Some overshoot PID [19] −0.066 0.050381 0.05764 38.0953828
No overshoot PID [19] −0.04 −0.030533 0.034933 31.388228
Fuzzy-PSO-PID −1.0684 −0.0591 −0.1305 0.002725

Table 3. Numerical outcomes of Fuzzy-PSO PID+UPFC+RFB.

Models KP KI KD ITAE

Fuzzy-PSO PID −1.0684 −0.0591 −0.1305 0.002725
Fuzzy-PSO PID+UPFC −1.0684 −0.0591 −0.1305 0.002471
Fuzzy-PSO PID+UPFC+RFB −1.0684 −0.0591 −0.1305 0.001103
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Table 4. Comparison performance overshoot, undershoot, and settling time shown in Figure 8a–c.

Overshoot (Hz) Undershoot (Hz) Settling Time (S)

ΔF1 ΔF2 Ptie12 ΔF1 ΔF2 Ptie12 ΔF1 ΔF2 Ptie12

Fuzzy PSO 0.02136 0.02293 0.00343 −0.04975 −0.0498 −0.00992 33.10 34.48 49.99
Fuzzy-PSO-PID+UPFC 0.02345 0.02395 0.001803 −0.04748 −0.0457 −0.00754 32.42 33.90 49.55
Fuzzy-PSO-PID+UC+RFB 0.009904 0.009585 0.001562 −0.02248 −0.01495 −0.00450 30.91 25.99 49.24

(a) 

(b) 

(c) 

Figure 8. (a–c) LFC results in 1% load alteration in region-1.
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Figure 9. (a–c) LFC results for 1% load alteration in region-1.
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(a) 

(b) 

(c) 

Figure 10. Cont.
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(d) 

Figure 10. (a–d) LFC results for continuous load alteration for 50 s.

(a) 

(b) 

Figure 11. Cont.
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(c) 

Figure 11. (a–c) LFC results for sensitivity analysis.

From Table 2 results, it is observed that ITAE is reduced to the best value, i.e., 0.002725,
which shows the financial aspects of the LFC strategy implementation. It is also observed
that the value of ITAE is quite less in comparison to Classical PID (41.1935015), Pessen
PID (46.5603916), Some overshoot PID (38.0953828), and No overshoot PID (31.388228).
The graphical LFC outcomes are given in Figure 8a–c, and it is shown that frequency and
tie-power deviations have a minimum value of the first peak and settle back to the original
value very quickly after load alteration. The same outcome or near to Fuzzy-PSO-PID
outcomes for an LFC are not achieved through other LFC techniques which are Classical
PID, Pessen PID, Some overshoot PID, and No overshoot PID. It is also discovered that
LFC outcomes are completely free of oscillations, which is not conceivable with the other
LFC behavior for the hydro-leading system.

Still, there is a scope for further enhancement, particularly UPFC links with a tie-line
in series connection and an RFB connected in region-2. Now the studies are extended to see
the impact of these FACTS in an LFC for the hydro-hydro system. The pickup value of the
Fuzzy-PSO-PID and the value of the ITAE are matched with the Fuzzy-PSO-PID with the
UPFC and the Fuzzy-PSO-PID with the UPFC-RFB. These results are tabulated in Table 3. It
is seen that UPFC integration has resulted in a reduction of ITAE (i.e., 0.002471) and further
reduction seen with joint efforts from UPFC-RFB (i.e., 0.001103). Figure 9a–c shows the
LFC results when UPFC only as well as UPFC with an RFB is connected in the hydropower
sytem at suitable location and the performance of the Fuzzy-PSO-PID is evaluated again
for load change in region-1, and it is observed that combination of the Fuzzy-PSO-PID
with the UPFC and an RFB outperforms other LFC results in view of reduced overshoot,
better settling time, and oscillation free system results. LFC results are also matched by
considering the overshoot, undershoot, and settling time for frequency deviations of each
area and for tie-power deviations. Numerical results are listed in Table 4, and it is seen that
results obtained via the Fuzzy-PSO-PID with UPFC-RFB is best when compared with other
investigated LFC results.

The random load pattern is applied to hydro power system for 50 s, and the LFC
results are revealed in Figure 10a–d. It is realized that the Fuzzy-PSO-PID with UPFC and
an RFB culminates in taking after the random load pattern continuously and reducing
the frequency and tie-power deviations successfully to zero value continuously over the
period of 50 s.

In addition, the affectability examination of the Fuzzy-PSO PID with UPFC and an
RFB control surveyed by changing the original parameters (i.e., T12 coefficient of tie-line
synchronizing), and Tg (governor’s response time) over the extensive run from standard
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parameters, and the results are shown in Figure 11a–c. From the results of Figure 11a–c, it
is clearly seen that the changing system parameters from standard parameters. whether
positive or negative change from the original value, hardly affect the system output. and
all LFC results are reaching back to nominal value after load alteration. Hence, it can be
said that the Fuzzy-PSO-PID with UPFC and an RFB combination is robust and promising
in reaching the LFC standards for a hydro-leading power system.

5. Conclusions

This research paper proposes a novel strategy of linking the fuzzy logic technique
with PID, effectively evaluated through PSO resulting in an advanced and robust design
known as the Fuzzy-PSO-PID for an LFC of the hydro-leading system. The proposed
Fuzzy-PSO-PID arrangement is attempted for standard load variation in one of the regions
of the hydro-leading system, and the positive outcomes are shown over other LFC actions.
The following conclusions are drawn from the research work carried out:

• Fuzzy-PSO-PID is agreeably sufficient to meet the LFC guidelines of hydropower
systems with regards to ITAE value, pickups of PID, and LFC responses in comparison
to other LFC actions. Still, it needs change and enhancement to have superior LFC
designs for such systems.

• The synchronization of UPFC with an AC tie-line as well as an RFB in region-2 of a
hydro-leading system with the Fuzzy-PSO-PID has very well covered the frequency
and tie-line power variations of the hydro system to an extraordinary degree also in
the presence of non-linearity.

• The reduction in ITAE achieved via the Fuzzy-PSO-PID with UPFC and an RFB demon-
strates the importance and regulates the reasonability of the current research work.

• The sensitivity analysis and random load pattern for the Fuzzy-PSO-PID with UPFC-
RFB shows that the Fuzzy-PSO-PID design is reasonably good, clear, and capable of
supporting the LFC output of a hydro-leading system.

• In the present research work, triangular MFs are used for FL. However, diverse MFs
can affect the LFC output, and it needs to be explored further. The Type-2 FL can be a
better solution for an LFC of a hydro-leading system.

• The research work can be extended to multi-areas with a hydro-leading system in a
regulated and deregulated environment. Furthermore, the design of a proposed LFC
can further improve by using other and advanced optimization techniques.

• The energy storage devices will play a major role in improving the LFC action further.
• The output of the Fuzzy-PSO-PID can be evaluated again using OPAL-RT and other

real-time software in comparison to standard MATLAB software.
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Abbreviations

ΔFi Alteration in frequency of area i (i = 1, 2)
ΔPtie12 Alteration in Tie-line power (p.u. MW)
2ΠT12 Tie-line power synchronizing coefficient (p.u.MW/Hz)
ΔPgi Power generation alteration (p.u. MW)
ΔPdi Load alteration (p.u. MW/Hz)
ΔPci Alteration in speed changer position
Ri Speed regulation factor (Hz/p.u. MW)
Kghi Governor gain
Tghi Governor time constant (s)
Thi Time constant associated with hydro governor
Twi Hydro turbine time constant (s)
Kpsi Gain of power system
Tpsi Time constant of power system (s)
a12 Area size ratio co-efficient
Bi Frequency bias constant (p.u. MW/Hz)
ACEi Area Control Error
ΔPUPFC Power alteration of UPFC
KUPFC UPFC gain
TUPFC UPFC time constant (s)
ΔPRFB RFB power alteration
KRFB RFB gain
TRFB RFB replying time (s)
n Dimension of search space
C1, C2, R1, R2 PSO random parameters
pbest Positions best
gbest Global best

Appendix A

Area-1 Area-2 Data\Value

B1 B2 0.425
R1 R2 3.0

Kgh1 Kgh2 1
Tgh1 Tgh2 0.6
Th1 Th2 5
Th3 Th4 32
Tw1 Tw2 1
Kps1 Kps2 20
Tps1 Tps2 3.76

2ΠT12 0.545
a12 a12 1

RFB Device

KRFB 0.67
TRFB 0

UPFC Device

TUPFC 0.01

PSO Parameter Name Value

Max Generation 100
Population in Swarm 50

c1, c2 1.5, 0.12
wmax, wmin 0.9, 0.4
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Abstract: High penetration of wind power into the grid necessitates the coordinated action of wind
energy conversion systems and the grid. A suitable generation control is required to fulfill the
grid integration requirements, especially during faults. A system using a pair of voltage source
converters with a squirrel cage induction generator coupled to a wind turbine is proposed to provide
fault ride-through during grid faults. A threefold action is used for providing the effective fault
ride-through via coordinated action of the machine side and the grid side converter. The entire wind
energy conversion system is controlled such that the wind turbine remains connected even during
the faults. To implement the threefold action: (i) A decoupled current controller is placed in the grid
side converter, which separately controls the positive and negative sequence currents arising during
faults. The grid side converter controller is capable of eliminating the double frequency oscillations at
the dc-link voltage and, hence, real power, which arises during the unsymmetrical faults; (ii) Reactive
power injection is additionally provided by the grid side converter for better grid support; and
(iii) The vector control technique is used in machine side converter along with the droop control to
adjust the generator speed and the torque resulting in actuation of the pitch control mechanism to
limit power generation without shutdown of the turbine.

Keywords: induction generator; wind energy; inverters; stationary reference frame; synchronous
reference frame; pitch angle; converters; grid; STATCOM

1. Introduction

Keeping the wind energy conversion systems (WECS) connected to the grid during
short-term faults has been a major requirement from the grid operators, especially in the
wake of higher penetration of wind into the grid. The WECS are now expected to behave
as an equal partner to conventional power generating plants and provide the enhanced
control of wind turbines (WT) that keeps the grid afloat even during disturbances. Fault
ride-through (FRT) has now become an important requirement for the power providers
to manage diverse grid conditions, which may include a terminal voltage limit and ac-
tive/reactive power recovery. The requirements listed under wind farm transmission grid
codes for different countries have been described in [1]. These grid codes include the
importance of fault ride-through during severe grid faults.

Among the variable and fixed speed WECS, variable speed WECS are preferred, be-
cause of their various advantages, viz., efficient operation at various wind speeds, decreased
mechanical stress, and the possibility of being used as direct (gearless) drive systems [2].
In variable speed, the WECS configured with a squirrel cage induction generator (SCIG)
uses a set of two full-rated converters (FRC) that provide the interface between generator
and grid. SCIG’s ease of availability at low cost, ability to operate in harsh environments,
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and decreasing cost of power electronics make it a lucrative option to be used for WECS [3].
In [4,5], it is established that STATCOM, dynamic voltage restorers (DVRs), and the static
VAR compensators are capable of improving the FRT potential of WECS. In [6], a non-linear
controller is incorporated with the grid side converter (GSC) controller that limits the
current rise within the safe value and also the power transfer to the grid. In [7], the use of
a controlled, but static, braking resistor is presented. The braking resistor is placed in the dc-
link, which dissipates the extra energy produced during lower voltages, in a PMSG-based
WECS. Paper [8] has presented an effective strategy using a DVR, in series between the
generator and the grid. During grid faults, the dc-link voltage is controlled by the energy
storage system while the grid side converter is used as STATCOM. Paper [9] gives a review
of conventional and state-of-the-art methods for analyzing the dynamic stability of WECS.
Different transient models are simulated for various WT generator configurations, under
different grid conditions. In [10], a voltage source converter with sinusoidal PWM of the
STATCOM is used to provide the ride through of faults occurring at the point of common
coupling, between the generator and the grid. The use of external devices such as STAT-
COM, static VAR compensators, DVR, etc., adds to the complexity, and raises the overall
expense of the system [11].

A study, in [12], explains a variable speed wind system that uses a different type of
power electronic converter (PEC) at the machine side and the grid side, for providing
grid synchronization, maintaining power quality, and operation at a unity power factor.
Khan et al. [13] have described the LVRT of WECS by suppressing the overvoltage appear-
ing at the dc-link and the active power limitation during an unbalanced fault. The authors,
however, did not discuss the oscillations occurring during the unsymmetrical faults. A gen-
eralized discussion about the control of WECS is provided for operation under unbalanced
network conditions. Sánchez et al. [14] discussed the maximum power point tracking of
the WECS. The technique described is a tip speed ratio, which is used for the smaller rating
turbine. The correct measurement of wind speed is required to implement an efficient
control in the practical scenario. Nasiri et al. [15] have used the sliding mode controllers in
the machine side converter (MSC). The authors have used GSC for controlling the dc-link
voltage and providing the optimal operation, respectively. An energy shaping controller is
described in [16], to alleviate the sub-synchronous control interaction (SSCI) incidents that
happen during the asymmetrical exchange of power between the grid and the wind farm.
To ensure the asymptotical stability, the insertion of damping in the controller dynamics is
proposed. A non-linear controller, which is based on the feedback linearization technique
and sliding mode control, is proposed in [17], to mitigate the SSCI in wind farms based on
a doubly fed induction generator. A self-regulating control of active plus reactive power, in
a distributed generating system, has been presented using the current control of GSC [18].
During the severe voltage drop conditions, the coordinated control becomes active and
fixes the rotor speed at its upper limit, so that the input power of MSC is reduced. The
surplus power is taken by the super capacitor energy storage system. Ahuja et. al. [19]
have presented a coordinated control strategy for both real and reactive powers during
grid faults. Considerable research has been carried out in innovating different strategies to
enhance the FRT capabilities of WECS. The majority of FRT strategies deal with the fault
conditions on the grid by adding extra hardware, which adds to the cost and complexity of
the system. Though such strategies are designed to deal with the faults on the grid, they
are not able to address the issues related to unbalanced grid conditions effectively. During
grid faults, there occurs a difference between power generated and power consumed. It
is because the grid is not able to send away the power generated. The voltage at dc-link,
therefore, rises due to this imbalance. The situation becomes more complicated when the
fault is unsymmetrical, resulting in the appearance of dual-frequency oscillations at the
dc-link. The WECS needs to have comprehensive control of the active power as well as the
reactive power handling.

This paper proposes a coordinated control strategy for a variable speed SCIG-based
WECS with back-to-back connected VSCs between SCIG and grid. The novel features of
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the proposed strategy include: (i) droop control through MSC, to handle the imbalance
in power; (ii) active power control through reconfigurable reference current selection;
(iii) injection of reactive power to support the grid during faults; and (iv) removal of dual-
frequency oscillations arising in the dc-link voltage as well as the active power via GSC.
A dual current controller based on positive and negative components is designed for GSC.
This controller is also capable of dealing with unsymmetrical faults. The results achieved
through MATLAB/SIMULINK simulations for the proposed control strategy are presented,
and compared with the conventional method, to analyze the effectiveness of the control.
Aspects of machine modeling and vector control are extracted from textbooks [20–24].
The proposed control strategy is employed on a 1.5 MW WECS using an SCIG, which
exhibits effective control during balanced and unbalanced grid conditions, for different
wind speeds.

2. Traditional Control Configuration of SCIG-Based WECS

The control implementation of SCIG-based WECS is focused on the MSC and GSC
control, as well as the WT control for MPPT, as depicted in Figure 1.

Figure 1. Schematic Diagram of variable speed SCIG-based WECS.

2.1. Wind Turbine Control and Maximum Power Extraction in WECS

A variable speed WT operates at an optimized speed, derived with respect to the wind
speed, so that optimal power is captured. Various optimal control algorithms are available.
Under nominal speed control range, the WT generally provides MPPT using the power
signal feedback control algorithm as it is considered to be one of the effective methods
of WT optimal operation [25]. When the wind speed increases beyond a particular value
(safe limit), the power is limited to its nominal value. The WT is controlled such that the
pitch control is activated during high wind speed conditions and grid disturbances, thereby
preventing the over-speeding of WT. The entire control of WT is achieved through MSC
control during normal operation and the pitch control during abnormal conditions. The
MSC only provides the reference values for WT control.

2.2. Machine Side Converter Control

The technique used for MSC control is based on the vector control, oriented with rotor
flux. The rotor flux-oriented control is applied on current-controlled VSI as it provides
a faster current control. The controller block diagram is presented in Figure 2.

83



Energies 2022, 15, 4898

Figure 2. Schematic of the Machine Side Converter control.

The electromechanical torque produced by the generator is stated in terms of rotor
flux linkage [26].

Te =
3
2

P
Lm

Lr
(ψrdisq − ψrqisd) (1)

In Equation (1), the direct and quadrature axis rotor flux linkages are represented by
ψrd and ψrq respectively. Lm and Lr represent the magnetizing inductance and the rotor
self-inductance, respectively, and P represents the number of poles. isd and isq represent the
stator currents on the direct and quadrature axis (on a special reference frame), respectively.

The space phasor of rotor flux linkage is aligned with the direct axis making ψrq = 0.
By substituting the same in (1), the torque expression becomes modified as

Te =
3
2

P
Lm

Lr
ψrdisq =

3
2

P
L2

m
Lr

isdisq (2)

|−ψrψr

∣∣∣= ψrd = Lm|−imr

∣∣∣= Lmisd (3)

It is seen from Equations (2) and (3) that the torque and flux control can be decoupled
by controlling the current components isd and isq. This is the basis of the vector control,
where isd controls the flux inside the machine and isq controls the torque produced. Ref-
erence d axis current (isdref) is decided by the flux controller, while q axis current (isqref) is
generated by the torque controller. is,abc,ref, the three-phase reference current(s), are gener-
ated by dq to abc transformation [22]. θr is the rotor flux angle required for transforming
dq currents to 3-phase currents, estimated by a flux model.

2.3. Grid Side Converter Control

Under usual working conditions, the GSC maintains a constant voltage at the dc-link
and also maintains the needed power factor at the grid, by suitably controlling the active
and reactive power. A widely used control structure for GSC control is derived from [27–31]
and the control configuration is as depicted in Figure 3. In Figure 3, Vbus and Vbus* represent
the dc-link voltage and its reference value, respectively, whereas θgrid represents the phase
angle extracted from the grid voltages using a phase-locked loop. The rest of the symbols
used for current, voltage, and power are standard.
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Figure 3. Schematic of the Grid Side Converter control.

A vector-controlled, double closed loop structure, associated with the PI controllers,
is used in GSC as it provides a satisfactory operation while regulating the DC variables.
The vector control technique is based on the grid voltage, and is applied using park
transformation, as presented in Figure 3. The DC link voltage is controlled by the outer
loop, whereas the inner loop controls the current. The reactive power reference is generally
set to provide the unity power factor operation.

3. The Coordinated Control Strategy and the Proposed Controller

A WECS includes three main stages of power conversion, viz., Aerodynamic Control
for high winds, Generator Control for optimal operation, and Grid converter control for
power conditioning and grid synchronization. These control stages also provide control
during abnormal conditions. For a WECS to be capable of providing an effective FRT, these
three stages of power conversion should work simultaneously and in coordination. As
described in Section 2, the traditional systems provide the optimal operation through MSC
and the active and reactive power control through GSC. The GSC also provides the grid
synchronization and ride-through of faults at the grid side, particularly the symmetrical
faults. The traditional GSC controller is only capable of providing the positive sequence
control during faults and fails to suppress the oscillations that arise during unsymmetrical
faults. The traditional GSC controller does not have separate control over positive and
negative sequences of currents that arise during the unsymmetrical faults.

To improve the performance during FRT of unsymmetrical faults, a positive–negative
sequence-based controller is used in GSC. This controller separates out the two sequences
and generates the active and reactive power references depending on the severity of the
fault. The references are selected such that active power reference is reduced as per the
capacity of the grid to absorb power, and reactive power reference is enhanced to support
the grid voltage from going further down. In addition, the oscillations arising in the active
power and the dc-link are suppressed by the individual control of positive and nega-
tive sequences.

The coordinated control strategy is further implemented by sensing the dc-link by
MSC, which is not featured in traditional systems. This dc-link voltage, at MSC, initiates
the action of the droop controller as described in the following sub-section. When the
control targets assigned to MSC and GSC are met and the fault is still persistent, the pitch
mechanism is actuated by sensing the speed of the generator.
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3.1. The Droop Control Action of the Machine Side Converter

In addition to the traditional MSC control described in Section 2, a de-loading droop
as illustrated and highlighted in Figure 4 is used. This de-loading droop provides the
coordinated control and is used to adjust the torque to shed power during the fault con-
ditions at the grid side. During grid faults, it is observed that an imbalance occurs in the
power generated (Pgen) and supplied to the grid (Pgrid). This happens because the grid is
not capable of taking power, while the WT keeps on generating the power. Due to this
imbalance of power, the voltage at the dc-link rises. The rate of rise in the dc-link voltage
depends on the difference between the power generated by WT, and the power supplied to
the grid via GSC. To prevent the excessive dc-link voltage, droop control is used to reduce
the WT power so that Pgen becomes equal to Pgrid [32]. The droop controller facilitates
the rapid decrease in power through de-loading of the generator by reducing the torque
linearly. The torque is reduced until the Pgen becomes equal to Pgrid. The rate of decrease
in torque will depend upon the severity of the fault and the difference in power between
the grid and the generator. The generator speed sensing is constantly performed to send
a signal to Pitch actuators of the WT during an increase in speed beyond a defined value of
1.2 in the proposed work.

 
Figure 4. Schematic of Proposed MSC control embedded with a De-Loading Droop.

3.2. The Proposed GSC Controller

When the fault occurs at the grid, the GSC controller controls the active power based
on a reconfigurable reference current selector and instantly injects the reactive power for
better grid support. In the event of grid unbalancing, the controller also eliminates the
dual-frequency oscillations that appear in the active power and the dc-link voltage.

The active power (P) and reactive power (Q), delivered to the grid, are expressed in
terms of d-q components of voltages (Vd and Vq) and currents (Id and Iq) [33] as given below:

P = 1.5 (Vd ∗ Id + Vq ∗ Iq) = 1.5 Vd ∗ Id (4)

Q = 1.5 (−Vd ∗ Iq + Vq ∗ Id) = −1.5 Vd ∗ Iq (5)

To eliminate Vq in the above equations, the d-axis of the reference frame is aligned
with the stator voltage phasor. The constant supply voltage (or constant Vd) makes P and
Q proportional to Id and Iq, respectively, in (4) and (5).

The controller has to deal with the positive sequence currents only during the sym-
metrical faults. However, during unsymmetrical faults, the negative sequence components
of the current appear. The interaction of positive and negative components leads to the
development of dual-frequency oscillations in P and Q, which navigate to the entire sys-
tem. The oscillation in active power produces ripples in the dc-link voltage, leading to
the malfunctioning of the PLL in providing the right estimation of phase angle (θ). This
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‘θ’ is required for abc-dq transformation. This erroneous estimation of ‘θ’ results in in-
correct transformation, due to which the synchronization of VSI output with the grid is
badly affected. These oscillations further affect the control of GSC by the generation of
non-sinusoidal current references. These non-sinusoidal references deteriorate the power
quality and pilot the tripping of over-current protection. To accurately estimate θ, a low
pass notch filter-based PLL is used.

The control scheme proposed in this work mainly derives from the source current
references. These reference currents are required by the PWM controller. The control is
developed by using a decoupled-dual synchronous reference frame current controller, facil-
itating the unbalanced current injection. The dual current controller provides decoupled
control of positive sequence currents and negative sequence currents. In this proposed
work, the required positive and negative sequence components are detected by a positive
and negative-sequence control (PNSC) strategy based on a second-order generalized in-
tegrator (SOGI) [34]. This system offers the best solution for grid synchronization even
during grid faults.

With the unbalanced voltages at the input side, the P and Q can be written as [35]

P = Po + Pc2cos (2ωt) + Ps2sin(2ωt) (6)

Q = Qo + Qc2 cos (2ωt) + Qs2sin(2ωt) (7)

where Po and Qo are the average values of instantaneous active and reactive power asso-
ciated with the MSC. Pc2, Ps2, Qc2, and Qs2 are the active and reactive power oscillation
terms caused by the voltage unbalance. The amplitude of these powers is calculated as

Po = 1.5 (V+
d I+d + V+

q I+q + V−
d I−d + V−

q I−q
)

(8)

Pc2 = 1.5 (V+
d I−d + V+

q I−q + V−
d I+d + V−

q I+q
)

(9)

Ps2 = 1.5 (V−
q I+d − V−

d I+q − V+
q I−d + V+

d I−q
)

(10)

Qo = 1.5 (V+
q I+d − V+

d I+q + V−
q I−d − V−

d I−q
)

(11)

Qc2 = 1.5
(

V+
q I−d − V+

d I−q + V−
q I+d − V−

d I+q
)

(12)

Qs2 = 1.5 (V+
d I−d + V+

q I−q − V−
d I+d − V−

q I+q
)

(13)

Here, the direct and quadrature axis voltages, and the currents are denoted positive
by using superscript “+”, and negative using superscript “−”. As four degrees of freedom
exist in the currents (+ and − of Id and Iq) to be injected by the GSC, only four of the total
six power magnitudes defined by the above equations can be controlled for the given grid
voltages (+ and − of Vd and Vq). The four power coefficients, neglecting the higher-order
reactive power oscillation terms, are therefore considered. The voltage at the dc link is
determined by the real power balance, power received, and delivered to the grid. If the
active power varies with time, then Pc2 and Ps2 in Equations (9) and (10) will not be equal
to zero; therefore, the dc-link voltage will fluctuate and a dual-frequency ripple will appear.
The coefficients Pc2 and Ps2 must therefore be nullified to keep the dc level constant. After
nullifying the higher-order active power coefficients and dropping the higher-order reactive
power coefficients, the current references may be deduced as⎡

⎢⎢⎣
I+∗
d

I+∗
q

I−∗
d

I−∗
q

⎤
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3

⎡
⎢⎢⎣
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0
0

⎤
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2Po

3D
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d
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Under the usual operating conditions at the grid, and when its voltage has dropped
to no more than 20% of its nominal value, Qo is maintained as zero and the active power
component Po is calculated as

Po = Kp(V∗
dc − Vdc) + KI

∫
(V∗

dc − Vdc) (15)

where Vdc represents the dc-link voltage while V∗
dc represents the reference dc-link voltage,

Kp and Ki are the proportional and integral controller gains, respectively. The power is
transferred to the grid at the unity power factor (UPF). For limiting the converter current to
a safer value, the maximum value of ‘Po’ is made equal to 3V+IN. Here ‘IN’ represents the
rms current of the grid side converter. For the grid voltages ranging 15–80% of its nominal
value, the maximum limit of Po is set to

Po =

√
(3V+ IN)

2 − (Q0)
2 (16)

where Qo is calculated as

Qo = 3V+ IN

[
1 − V+

VN

]
(17)

The control scheme of GSC, considering the above mathematical modeling, is illus-
trated in Figure 5. When the voltage at the grid falls below 15%, the Po is brought to zero,
and Qo is set as 3V+IN. The current limitation, as implemented above, causes an imbalance
of power on the dc-link during fault conditions and, therefore, the dc-link voltage tends
to rise. In such a case, the de-loading mechanism of MSC is activated, which controls
the generated power as explained in Section 3.1. Figure 5 depicts the structure of the
proposed controller placed as the GSC. Separate and decoupled controllers for the positive
and negative sequences are used. The positive and negative sequences are controlled in
positive and negative controllers, respectively.

 
Figure 5. Schematic of Grid Side Converter using Dual Current Controller.
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4. Fault Ride-Through Results

The WECS using an SCIG is simulated in MATLAB/Sim Power Systems. A 1.5 MW,
3-phase generator of 690 V is connected to the 11 kV, 50 Hz grid through a transformer. The
SCIG parameters considered are as follows:

Rs (Resistance of the stator winding) = 0.007 pu,
Rr (Resistance of the rotor winding) = 0.0072 pu,
Ls (Self Inductance of the stator winding) = 0.18 pu,
Lr (Self Inductance of the stator winding) = 0.16 pu, and
Lm (Mutual Inductance) = 3.2 pu.
The WECS is analyzed for a 3-phase line-to-line (LLL) fault and double line-to-ground

(LL-G) fault at the grid (refer to Figure 1) for a duration of half a second. The circuit breaker
operation time, located close to the fault, may vary from a half cycle to 25 cycles in the case
of a 50 Hz system. Hence, the fault duration of maximum 0.5 s (25 cycles) is considered to
observe the absolute response and analyze the effectiveness of the proposed controller.

In this section, the simulation results of WECS during the fault, and the pre and
post-conditions of faults are presented for a conventional controller, i.e., without FRT and
with the proposed controller. The analysis is carried out for comparing the performance
of the proposed control strategy with the conventional strategy at 8.5 m/s and 10.5 m/s
wind speeds.

The two wind speeds are specifically chosen to present the issues arising at rated
and lower wind speeds. Figures 6 and 7 shows the fault behavior of the system during
a symmetrical (LLL) fault, with the proposed and the conventional controller for the above-
mentioned two wind speeds. Before the occurrence of a fault, the voltage and current at
the point of generator-grid interconnection (GGI), dc-link voltage, generator speed, and the
active power delivered to the grid are observed approximately to 1 pu.

A symmetrical (LLL) fault was initiated at 1.5 s for a duration of 0.5 s, i.e., till 2.0 s.
During the fault, the voltage at GGI is reduced below 0.1 pu (refer to Figure 6a) indicating
the severity of the stress on the grid. Figure 6b illustrates that the generator current
during a symmetrical (LLL) fault, without FRT, increases to around 3 pu, which is highly
detrimental for the power converters. The currents are increased due to the inability of
the grid to absorb the generated power. This increase in current is associated with the
accumulation of power at the DC link. During the dip in voltage at the grid, the active
power transferred to the grid is reduced in proportion to the dip in voltage, as observed in
Figure 7b.

The generated power, however, remains the same; therefore, an imbalance in active
power is seen as the rise in dc-link voltage. The SCIG speed remains more or less the same,
as seen in Figure 6d. The voltage at the dc-link rises approximately to 1.85 and 1.55 pu for
the wind speeds, 10.5 m/s and 8.5 m/s, respectively, as depicted in Figure 7a.

This abnormal rise in dc-link voltage indicates a power insertion in the dc-link capaci-
tor, and this power is not able to evacuate to the grid. In some conventional systems, this
rise is provided using a crow-bar to dissipate the excess power, which is highly criticized
in the literature.

Referring to Figure 7a, the dc-link voltage starts rising during the three-phase (LLL)
fault. The proposed controller incorporates a de-loading controller that becomes actuated
during the fault and reduces the generator torque, causing the generator speed to rise,
as seen in Figure 6d. The rise in speed activates the pitch control mechanism to limit
the generator speed to its bounded value of 1.2 pu (Figure 6d). The pitch control of WT
increases the pitch angle to shed the power. The reduction in torque, through the droop
controller, regulates the generator power, which causes a reduction in current. For a wind
speed of 10.5 m/s, as shown in Figure 6c, converter current is controlled within the safe
limit to nearly 1.5 pu. The dc-link voltage is maintained at a constant of 1.2 pu by activating
the de-loading droop within 0.06 s. The combined effect of the droop controller in MSC
and the pitch control of WT ensures a power balance between the WECS and the grid.
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6. Behavior of WECS during symmetrical fault, with and without FRT control for 8.5 m/s and
10.5 m/s wind speeds: (a) Voltage at point of GGI; (b) Current through the point of GGI—without
FRT control at 10.5 m/s; (c) Current through the point of GGI—with proposed strategy at 10.5 m/s;
(d) Generator Speed.
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(a) 

 
(b) 

 
(c) 

Figure 7. Behavior of WECS during symmetrical fault, with and without FRT control for 8.5 m/s and
10.5 m/s wind speeds: (a) dc-link Voltage, (b) Active Power supplied, (c) Reactive Power supplied
by Generator.

The effect of the fault on active and reactive powers is illustrated in Figure 7b,c.
Figure 7b exemplifies that the active power during the LLL fault drops to nearly zero, as the
grid is not capable of accepting power. It could be seen from Figure 7c that reactive power
remains zero during the fault and the system takes more than 0.5 s to regain after fault
clearance without FRT. With FRT, active power is further reduced, and required reactive
power is supplied to the grid during the fault. The injected reactive power supports the
grid voltage and helps the grid to regain a faster stability (approx. 0.2 s). The reactive power
injection during the fault shows that the GSC works in STATCOM mode during faults.

This section further thrashes out the behavior of SCIG-based WECS under an LL-G
fault, with conventional controls as well as a proposed control. During unsymmetrical
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faults, the presence of negative sequence components and a drop in grid voltage causes
the current magnitude at the grid to rise significantly. The de-loading droop and pitch
mechanism acts to control the current magnitude as in previous cases, while delivering
nearly the same amount of average power in this case.

The results in Figures 8 and 9 demonstrate the generator speed, voltage at the dc-link,
active and reactive power during the fault, pre-fault, and after applying the unsymmetrical
(LL-G) fault. The results are illustrated for both the wind speeds (8.5 m/s and 10.5 m/s),
with the conventional as well as the proposed controls. The double frequency oscillations
are observed in the dc-link voltage, active power, and reactive power during unsymmetrical
faults, as revealed in Figures 8b and 9a,b. The major problems observed during the
symmetrical fault include the increase in dc-link voltage and the converter current. A long
time to regain system stability is also observed. Double frequency oscillations in the dc-
link voltage and power (both P and Q) are observed as the major issues in the case of an
unsymmetrical (LL-G) fault.

 
(a) 

 
(b) 

Figure 8. Behavior of WECS during unsymmetrical fault, with and without FRT control for 8.5 m/s
and 10.5 m/s wind speeds: (a) Generator Speed (b) dc-link Voltage.
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(a) 

(b) 

Figure 9. Behavior of WECS during unsymmetrical fault, with and without FRT control for 8.5 m/s
and 10.5 m/s wind speed: (a) Active power supplied, (b) Reactive power supplied by the generator.

De-loading control provided through MSC effectively limits the dc-link voltage to
1.2 pu. VA of the converter is limited to 1.5 pu, thereby limiting the active and reactive
powers. When the generator speed rises, the pitch control mechanism is activated, thereby
limiting the generator speed within a safer value, which is set as 1.2 pu.

As observed in Figure 9a,b, during unsymmetrical faults, the second harmonic oscil-
lations in active power and the dc-link voltage are totally suppressed by the decoupled
control of positive and negative sequence components of currents. With the proposed
control scheme, the double frequency oscillations in active power have been completely
eliminated (Figure 9a). Though the oscillations are observed in reactive power during the
fault, the system is seen regaining faster with FRT being implemented (Figure 9b). The
ripples in dc-link voltage have also been eliminated along with active power, as shown in
Figure 8b.

Overall, a system with a double current control scheme is suggested, which uses
two synchronous reference frames rotating at 50 Hz, but in opposite directions. As the
negative and positive sequences appear as dc in their own frames, each can be measured
separately by using a 100-Hz notch filter. The currents of negative sequence and positive
sequences are controlled independently. The independent control of the sequences regulates
the active power completely and helps to achieve a constant dc-link voltage.
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5. Conclusions

The performance analysis of a WECS using an SCIG is presented in this paper, con-
sidering the normal as well as fault conditions at the grid side. A coordinated fault
ride-through strategy is proposed for WECS, providing an effective solution for alleviating
diverse problems arising during grid disturbances. Conventional control, as well as the
proposed control strategies for the SCIG-based WECS, was conceived, designed, modeled,
and simulated. It is realized that with the use of a conventional controller, the grid fault
raises the dc-link voltage. This raised voltage can be highly detrimental to the power
devices in the converter. Additionally, the dual-frequency oscillations are produced in the
dc-link voltage and the power due to the occurrence of negative sequence components in
the system during unbalanced grid conditions. This deteriorates the power quality of the
system, particularly at the grid interface. The novel control strategy, based on unbalanced
current injection, effectively controls the negative and positive sequence components sep-
arately. The dual-frequency oscillations in power and dc-link voltage arising during the
unsymmetrical faults are also completely corrected along with providing the flow of active
and reactive power. The reactive power support during the fault enables the WECS to
regain a faster stability. Moreover, the de-loading of the generator during fault conditions
prevents excessive voltage rise at the dc-link. The pitch control mechanism manages the
generator speed when it goes beyond the maximum allowed. The proposed control strategy
provides a better performance in mitigating the unsymmetrical fault, as compared to the
conventional system.
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Abstract: The significant proliferation of renewable resources, primarily inverter interfaced dis-
tributed generation (IIDG) in the utility grid, leads to a dearth of overall inertia. Subsequently, the
system illustrates more frequency nadir and a steeper frequency response. This may degrade the
dynamic frequency stability of the overall system. Further, virtual inertia has been synthetically
developed in IIDG, which is known as a virtual synchronous generator (VSG). In this work, a novel
STO-STC-based controller has been developed, which offers flexible inertia following system distur-
bance. The controller is based on the super-twisting algorithm (STA), which is a further advancement
in the conventional sliding mode control (SMC), and has been incorporated in the control loop of the
VSG. In this scheme, two steps have been implemented, where the first one is to categorize all states
of the system using a super-twisting observer (STO) and further, it is required to converge essential
states very quickly, exploiting a super-twisting controller (STC). Thus, the STO-STC controller reveals
a finite-time convergence to the numerous frequency disturbances, based on various case studies. The
performance of the controller has been examined in the MATLAB environment with time–domain
results that corroborate the satisfactory performance of the STO-STC scheme and that illustrate
eminence over the state of the art.

Keywords: virtual inertia emulation; virtual synchronous generator (VSG); inverter interfaced
distributed generation (IIDG); sliding mode control (SMC); super-twisting algorithm (STALG);
super-twisting control (STC)

1. Introduction

The increasing penetration of renewable energy sources, mainly IIDG, has endangered
frequency stability concerns in the low inertia system, due to the unavailability of the
rotating mass [1]. Thus, inertia emulation is urgently required in IIDG to assist with
frequency regulation [2]. Commonly, synchronous machine (SM) droop characteristics
have been developed virtually in IIDG, which is popularly known as a virtual synchronous
generator (VSG). Therefore, VSG-IIDG is essentially required in frequency regulation. A
VSG control scheme has been presented in [3,4], in which the swing equation of an actual SM
has been utilized. Moreover, in recent years, several VSG control schemes were presented,
in which the active power extracted from IIDG has been exploited to regulate the frequency
deviation, the rate of change of frequency (RoCoF), and the settling time. Nevertheless,
IIDG has some active power constraints that mainly depend upon maximum power point
tracking (MPPT). Further, various control schemes have been developed that are based on
droop control [5,6], in which the droop characteristics are employed to regulate a fraction
of the active power in accordance with the frequency deviation. In addition, the various
parameters (inertia constant, damping constant, and droop slope) required to regulate the
active power supplied through IIDG have been optimized through a number of presented
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schemes [7,8]. Nonetheless, for simplicity, there has been barely two parameters (inertia
and damping) that have been incorporated in the basic design of VSG. In addition, there is
an inherent trade-off between a selection of various parameters and the accomplishment
of the required aspect viz. RoCoF, the settling time, the frequency regulation, and the
minimization of the frequency nadir. Further, there will be no alternative approach to
regulating all of the discussed aspects simultaneously, depending upon the selection of the
parameters. Lastly, it is quite problematic to tune the various parameters of VSG to achieve
all of the requirements at the same time, since a variation to any of them can negatively
affect another performance.

1.1. Motivation of Work

In recent years, VSG control schemes have been extensively studied and investigated,
especially for IIDG, considering both the grid-connected and islanded modes. VSG-IIDG
has been designed to support the frequency dynamics, and to minimize the output power
and frequency oscillations. Several control techniques have been developed to suppress
the frequency and power oscillations [9]. The proper selection of the inertia and damp-
ing constants can effectively reduce both of these oscillations. Further, to have a proper
acquaintance with VSG design, small-signal modeling has been discussed in several pa-
pers [8,10] that provide more precise parameters for the emulated inertia. Further, a VSG
based on an adaptive linear quadratic regulator has been proposed in [11]. A VSG scheme
discussed in the literature has considered only a few IIDGs in the proposed test system,
which lacks authenticity; thus, reliability is still an open problem. Secondly, the effective-
ness of previously presented schemes in both standalone and grid-connected modes still
requires intense study. The grid-connected IIDG has been recognized to be more sensitive
to voltage sag/swell and exposure to unbalanced conditions. The VSG design should be
well-operated in both the modes, and lastly, the controller performance is required to be
more robust, as per the variation of various parameters.

1.2. Literature Survey on Recent State of Art

A self-tuning algorithm (STALG) in VSG has been proposed in [2]. Further work in
self-tuning was given in [12], which was developed based on a RoCoF, and it provides the
optimal virtual inertia (VI) via the proper selection of the inertia and damping constants.
Since IIDG is a non-linear system, owing to the power–voltage characteristics, many control
schemes were therefore developed based on the linearized model with proportional-integral
viz. PI controller for inertia emulation. Subsequently, linearized feedback non-linear control
schemes have been discussed in the literature, which provide enhanced performance
over linear control design. Nonetheless, the non-linear design performs well on optimal
parameter selection and an accurate operating point, which is slightly difficult to design.
Furthermore, an AI-based VSG has been presented in [13], and further, a neural-fuzzy
VSG (N-F-VSG) was designed in [14], which is a more reliable structure for enhancing the
frequency dynamics. Recently, a model predictive control (MPC) has been portrayed in the
literature, which has been proven to be an excellent VSG design [15,16]. The fuzzy-based
VSG (Fuzzy-VSG), which computes the correction factor required to alter the governor
output during a sudden disturbance, was discussed in [17]. The improved MPC scheme
has been suggested in [18], which was a superior design for emulating the virtual inertia.

1.3. Contribution

As per Table 1, several eminent controllers have been organized, where M. A. Torres [2]
suggested a self-tuning virtual synchronous machine that tunes the inertia constant as per
the severity of disturbance. Further, J. Alipoor demonstrated the concept of alternating
the moment of inertia in [3]; however, it only tunes the constants (inertia and damping)
with a slothful response. M. H. Ravanji et al. suggested a swing equation-based virtual
inertia, in which the DFIG wind turbines participate in frequency regulation, although
it addresses only frequency oscillations and RoCoF. In [13], a fuzzy-based controller has
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been suggested, but it exhibits a sluggish response after the disturbance. A. Karimi et al.
in [17] presents a fuzzy-based controller and computes the correction term needed to adjust
the governor output power during a disturbance; however, as in [13], the same controller
suffers from a sluggish response. As per the power voltage characteristics, renewable
generation is a non-linear system, and consequently, non-linear controllers have been
introduced in the literature. In addition to this, artificial intelligence (AI)-based VSG is
projected in [13]; however, non-linear controllers need accurate parameter identification
for a superior performance; therefore, a model prediction controller [18] has been further
explored to determine the optimal power requirement by RES during the disturbance. It
determines the real power for IIDG in real-time, using a predictive framework. However,
the performance evaluation of the suggested MPC suffers in the identification of the
optimal real power set point. Primarily, the proposed work focuses on a comparison
with the eminent state of the art, as discussed above, and reveals the performance of the
proposed controller. Conventional constant parameter (CP-VSG) and zero VI have also been
taken into consideration in numerous case studies. A time–domain analysis obtained on an
IEEE 14 bus test system developed in MATLAB, and the simulation results, corroborate the
superiority of a proposed STO-based STC over the current state of the art. Time–domain
specifications such as settling time, DC voltage variation, and generator-1 settling time
have been exploited for numerous popular schemes viz. fuzzy-based VSG, AI-based VSG,
and MPC schemes subjected to three phase faults on bus-12. These comparisons have
been compiled in later sections. Furthermore, the normalized power supplied during the
disturbance has also been plotted for various schemes, as discussed above, and compared
with this STO-STC scheme. The super-twisting observer can work in the presence of any
kind of bounded disturbances and converge in finite time. Further, if one state of the system
is known, then also it can track all the information of the system in finite time. Thus, it
reduces the required number of sensors in the system.

Table 1. Comparison of current work eminence and state of the art.

Existing State of the Art Controller Description Attributes

M. A. Torres et al., 2014 [2] Self-tuning virtual synchronous machine Energy storage system for inertia emulation

J. Alipoor et al., 2015 [3] Alternating inertia-based virtual SG Tunes inertia and damping constants

M. H. Ravanji et al., 2017 [4] Swing equation-based virtual inertia DFIG-based wind turbines

C. A. B Karim et al., 2018 [13] VSG based on fuzzy controller Distributed generation in microgrid

S. Wang et al., 2019 [15] Advanced control solutions Enhanced resilience in distribution system

A. Karimi et al., 2020 [17] Fuzzy-based VSM Regulated governor output and correction term

A. A-Idowu et al., 2021 [16] MPC (model predictive control) Optimal power set points

Proposed work STC based on STO
Enhance frequency dynamics in

multi-machine system

The key outcomes of this work have been given below:

1. Super-twisting is a novel scheme to identify all the states in finite time t < T0 with the
minimum number of required sensors.

2. The super-twisting controller converges very quickly and provides the accurate real
power required for inertia emulation under finite disturbance d1.

3. This novel controller efficiently improves the frequency dynamics.
4. The suggested controller illustrates a superior performance over the recent popular

controllers viz. model prediction, fuzzy, or self-tuning controllers.
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2. Mathematical Modeling of Proposed VSG Dynamics

In this section, the VSG-IIDG dynamic equation has been developed in the d-q refer-
ence frame [19], which is based on two control loops corresponding to the active power
and reactive power exchange.

2.1. Non-Linear Dynamics of VSG-IIDG

The 3-Φ active power is basically computed as [20,21], which is given below:

Pe = vdid + vqiq (1)

whereas vd, vq, id, iq are voltages and currents in inverter terminals on the d-q reference
frame. The transformation from a-b-c to d-q requires the phase angle θ, which is com-
puted from the second-order generalized integrator, SOGI PLL [22]. In a conventional
synchronous machine (SM), a well-known inertia equation viz. swing equation of rotor
dynamics has been given as follows.

Jωm
.

ωm = Pm − Pe − D(ω0 − ωm) (2)

where, ω0 is the nominal angular frequency of VSG-IIDG, ωm is the measured angular
frequency obtained through SOGI-PLL, J is the moment of inertia, and D is the damping
coefficient [23]. Further, a high value of D brings the measured frequency more quickly to
the nominal value. Pm is the governor output power. Further, as with conventional SM, the
governor model is included in this modeling, as given in Equation (3):

Pm = P0 + Kg(ω0 − ω′) (3)

where, P0 is the set active power and Kg is the governor droop coefficient. ω′ is the angular
frequency generated by the swing equation. Furthermore, one more loop corresponds to
the reactive power Qe for voltage droop control. The reactive power on the d-q coordinates
are given as [20,21]:

Qe = vdiq − vqid (4)

The output voltage of the VSG-IIDG is governed by the following dynamics:

V = (KP +
KI
s
)(Q∗ − Qe) (5)

Kp, KI are PI (proportional and integral gains). Q* is the reactive power reference.
In addition, the voltage droop generates reference Q*, which is given by:

Q∗ = Q0 + Kq(V0 − Vr) (6)

where Kq is the droop coefficient and Q0 is the set reactive power. Further, Vr is the rms
value of the inverter side voltage (PCC), and V0 is the reference voltage. Now, upon
differentiating Equation (5), we get:

.
V = KP

.
Q∗ + KI Q∗ − KP

.
Qe − KI Qe

Thus,
.

V = KP
.

Q∗ + KI Q∗ − KP
.

Qe − KI Qe (7)
.

Q∗ can be neglected with respect to the frequency dynamics; therefore:

.
V = −KP

.
Qe + KI(Q∗ − Qe) (8)

Now, Equations (2) to (8) illustrate the non-linear behavior of VSG-IIDG. Therefore, a
non-linear controller such as the sliding mode control (SMC) is required to handle these
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non-linearities, which enhances the performance of VSG-IIDG, as shown in Figure 1. In
this paper, the super-twisting viz. ST algorithm has been developed and incorporated to
improve the inertial response in both the grid-connected and autonomous modes. The
designed ST algorithm produces a correction factor, as shown in Figure 1, which is the final
modification in the governor output power or input power to the swing; Equation (2). The
input variables to the ST algorithm are ωm,

.
ωm.

 

Figure 1. Super-twisting algorithm-based VSG-IIDG.

2.2. VSG-IIDG Scheme

To design the super-twisting control (STC), we need the information for both ωm,
.

ωm
in finite time under the finite disturbance. The super-twisting observer (STO) has been
required for this purpose. The initial knowledge regarding this control has been taken
from [19] and [24].

2.3. STC Based on STO

Consider the mathematical modeling of the dynamic system:

.
x1 = x2.
x2 = u + d1

}
(9)

The output of the system is given as σ = x1, and d1 is a finite external disturbance. The
design of STC is based on the other states of the system, rather than the output information.
STO has been proven to be the best observer [25], which can compensate for time- varying
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(TV) disturbances within finite time t < T0. STO is based on a high-order SMC (HOSMC).
The STO dynamics [26,27] for the estimation of the system states (a copy of the dynamic
system) have been evaluated as:

.
x̂1 = ξ1 + x̂2.
x̂2 = ξ2 + u

}
(10)

In STO design, we neglected the unknown d1; further, ξ1, ξ2 are correction terms. The
error variables are defined as e1 = x1 − x̂1 and e2 = x2 − x̂2.

Our objective is to estimate x1, x2 in finite time, t < T0. Furthermore,

x =

[
x1
x2

]
=

[
ωm.
ωm

]
(11)

Now, the derivative of the error,
.

e1 =
.

x1 −
.

x̂1 = x2 − x̂2 − ξ1 = e2 − ξ1

Similarly,
.

e2 =
.

x2 −
.

x̂2 = u + d1 − u − ξ2 = d1 − ξ2
Selecting ξ1, ξ2 in such a way that e1, e2 → 0 ∀ t ≤ T0 ; thus, as per [25], the correction

terms will be as given as ξ1 = k1|e1|
1
2 sign(e1) and ξ2 = k2sign(e1). In these equations, e2

is missing due to the lack of information regarding this error variable, and further, the
correction factors are based on e1 only. Now, STA based on e1, e2 is given as follows:

.
e1 = −k1|e1|

1
2 sign(e1) + e2.

e2 = −k2sign(e1) + d1

}
(12)

It has been assumed that the finite disturbance |d1| < δ0. Now, based on the literature
available [19,25], if we choose k1 = 1.5

√
δ0 and k2 = 1.1δ0, which have assured convergence,

e1, e2 → 0 ∀ t ≤ T0 , and finally:

x1 = x̂1
x2 = x̂2

}
∀ t ≤ T0 (13)

Therefore, in a second-order system, using a higher-order sliding mode observer viz.
STO, one can estimate numerous states of the system in finite. This observer exposes an
acceptable performance in terms of finite time robust estimation. Now, the next section
discusses the controller design.

2.4. ST Control Algorithm and Design

For the controller design, a relative degree of two is required. However, STC would
be applicable for a relative degree of one only. Accordingly, the sliding manifold has been
modified to obtain a required relative degree of one.

S = cx1 + x2.
S = c

.
x1 + x2 = cx2 + u + d1

}
(14)

Let the controller be given as u = −cx2 + ψ(t) as shown in Figure 2, where, according
to the ST algorithm, ψ(t) is defined as:

ψ(t) = −λ1|S| 1
2 sign(S)− λ2

t∫
0

sign(S)dτ (15)
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where λ1 = 1.5
√

δ0 and λ2 = 1.1
√

δ0. Further, Δ is defined on the finite disturbance as
δ0 ≥

.
|d1|. After the control input, we get:

.
x1 = S − cx1 + e2

S = ce2 −−λ1|S| 1
2 sign(S)− λ2

t∫
0

sign(S)dτ + k2sign(e1)

⎫⎪⎬
⎪⎭ (16)

 

Figure 2. Sliding mode observer-based sliding mode controller.

Furthermore, the Lyapunov stability of the suggested STO-based STC has been depen-
dent upon the error dynamics e1, e2. Since the correction factors are based on e1 only, the
Lyapunov function has been chosen for σ. For STC, the scaled function has been taken as
.
σ = −k1|σ| 1

2 sign(σ). Now, assuming the Lyapunov function as follows:

‖V‖ =
1
2

σ2, σ ∈ � (17)

V is continuous and positively defined (V > 0). However, it is non-differentiable
at V(0) = 0. The error dynamics should be globally asymptotically stable, based on the
selected ST gains.

Now,
‖V‖ = σ

.
σ = −k1|σ| 1

2 σsign(σ) = −k1|σ| 3
2 < 0 (18)

where σsign(σ) = |σ|. Thus, it has been concluded that the error dynamics converge to
zero in finite time t ≤ T0. To obtain the effectiveness of the STO-based STC controller,
here, we tried to observe and explore the attributes of the suggested controller. Consider a
very simple physical system that is a moving car system driven by some controlled input
(u). The system state space can be written based on Newton’s law, and the displacement
vector is given as x1 and the velocity vector

.
x1 = x2. Further, at the equilibrium point,

.
x1 = x2 = 0. This simple system has been examined with the proposed controller, where
the disturbance is d1 = 0.5 sin ωt with ω = 1 rad/s. The sliding surface has been chosen as
S = x1 +

1
357.56 x2. For simulation purposes, the controller gains have been given as follows.

- STO gains: k1 = 2.1, k2 = 2.2;

- STC gains: λ1 = 2.1, λ2 = 1.55;

- Constant c = 1, sampling time (MATLAB) = 1 ms.
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The twisting observer and controller algorithm have been written in a MATLAB
function, and the prime objective of the controller is to bring the vehicle to the desired
position, starting from the zero position. The simulation results have been portrayed in
Figure 3. As per the results obtained in Figure 3, the suggested controller works well with
a good precision of 10−3.

 

 

 

Figure 3. (a) Position vector x1 evolution, (b) estimated state vector x2 evolution, (c) control input (u)
evolution, (d) sliding surface (S) evolution, (e) observer error (e1) of state x1, (f) observer error (e2) of
state x2.
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Furthermore, the same controller has been utilized for virtual inertia emulation on
the IEEE 14 bus test system, with the output σ = ΔP, where ΔP is the additional power
required for the virtual inertia emulation, as per the frequency deviation Δωm and the rate
of change of frequency

.
ωm.

In this paper, a sudden load change has been taken as 2 pu. Therefore, δ0 = 2 has been
selected. The STO and STC gains have been estimated earlier in this section.

3. Test System Configuration and Setup

In this paper, the IEEE 14 bus system has been taken [23] as a test system. A 415 V
photovoltaic system (IIDG) 0.5 MW has been incorporated at bus-12 through a 15 MVA
transformer. Several synchronous generators are connected at various buses in isolation, or
with some local demands.

Furthermore, various static and dynamic loads have been connected at different buses,
as shown in Figure 4. At bus-9, the static Var compensator of 10 MVAR has been coupled.
A 50 MW wind turbine generator (WTG) is connected at bus-14 to further supply a high
demand at bus-13. In the test system, to obtain sufficient information on the voltage,
power flow and angle, power flow analysis has been conducted, and the whole test system
has been designed and developed on a MATLAB/Simulink MathWorks® platform. The
open-circuit voltage of PV generation is 800 V, with a 600 A short circuit current. The
fuses are usually incorporated to protect the PV generation, as shown in Figure 4, and are
incorporated at various places. Now, for the inertia emulation, MPPT (maximum power
point tracking) does not play a significant role, and it is omitted in the development of
the MATLAB detailed model of a test system. The case study has been executed based
on various factors, viz. sudden load change and intentional islanding. Further, during
simulation, the temperature or irradiance variation have been omitted for simplicity, and
a detailed model has been simulated based on ode 23tb, with a maximum step size of
1 ms. The voltage source inverter is an IGBT-based 2 level bridge inverter, which is
efficiently regulated through pulse modulation. In this work, STO-based STC accurately
measures ΔP based on the nominal frequency deviation and the rate of change of frequency
(ωm,

.
ωm), owing to the sudden bounded disturbance d1. The super-twisting observer and

the controller algorithm have been already given in Equations (9)–(18), and consequently,
the code is written in a MATLAB function. The efficacy of the proposed controller has been
verified by numerous simulation results. The system parameters used in building the test
system in MATLAB have been organized in Table 2.

Table 2. Test system parameters.

System Parameters Values

DC-link voltage (VDC) 800 V
Nominal frequency (fn) 50 Hz
Output inverter voltage 450 V

Inertia constant (H) 4, 7, 10 s
Maximum irradiance 1000 W/m2

Temperature (T) 38 ◦C
Parallel strings 76
Series modules 23

Open circuit voltage (Voc) 36.3 V/Module
Short circuit current (Isc) 7.84 A/Module

Nominal voltage 835 V(DC)
Nominal current 598 A(DC)

Max power/module 213.15 W
Speed regulation of governor (R) 0.05 pu

Inertia of synchronous generator (H) 4 s
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Figure 4. IEEE 14 bus test system (bus voltages in pu after power flow analysis).

4. Simulation Results and Performance Evaluation

As per the available literature [23–25], four main consecutive control steps have been
utilized to restore the deviated frequency to the nominal value. 1. Inertial control 2. Primary
control 3. Secondary control 4. Tertiary control. The fastest control is generally exhibited by
SG, which instantaneously responds to supply–demand disturbance before the primary
controller is activated. However, in recent years, SGs have been replaced by IIDGs to a
large extent, and thus, the overall system damping and inertia are reduced significantly.
Therefore, during load throw-off or numerous kinds of faults, primary control is not an
effective solution to many problems, due to their sluggish response, which in the worst
conditions causes blackouts or a complete failure of the system. The above discussion is
shown in Figure 5.

4.1. Sudden Load Variation in Grid-Connected VSG

In this scenario, the capability of the proposed STO-based STC has been investigated.
The load changes at bus-12 from 500 kW (for simulation purposes, the load connected at
bus-12 was taken to 500 kW instead of 6.306 MVA for simplicity in designing the MATLAB
model) to 650 kW at t = 2 s, and subsequently, the frequency droop has been observed
from the nominal value fn; consequently, a load has been decreased by up to 100 kW at
bus-12 at t = 15 s (a sudden load variation through variable AC resistors in MATLAB) and
a frequency overshoot, along with RoCoF, has been investigated for the selected state of
the arts.

The frequency dynamic for different control schemes has been portrayed in Figure 6.
An IIDG with zero or negligible inertia suffers from an impulsive overshoot; nonetheless,
the oscillating time has been drastically reduced, as compared to the constant parameter,
viz. the CP-VSG scheme (a constant inertia fixed up to H = 4.5 s).
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Figure 5. Frequency dynamics over time with various control steps.

The obvious disadvantages of a fixed high-inertia system viz. CP-VSG are sustained
periodic oscillations and a subsequently inferior dynamic performance. Furthermore, fuzzy-
based VSG illustrates a superior inertia emulation during the disturbances, but the settling
time of oscillation is high, as compared to the proposed STO-based STC. The proposed
STO-based STC demonstrates RoCoF = −0.25 Hz/s at t = 2 s, and 0.75 Hz/s at t = 15 s,
with a 49.9 Hz frequency nadir and a 50.5 Hz frequency overshoot. The investigated
results recommend a superior dynamic performance of STO-based STC over numerous
control schemes, as shown in Figure 6. The inertia emulation for various schemes has been
examined, based on the swing equation [23], and is given as:

J =
ΔPm − ΔPe − D(ωm − ω0)

.
ωm

(19)

Now, the inertia J, and consequently, the inertia constant H(s) adaptively increased
during the disturbances. STO-based STC efficiently emulates and regulates the inertia
during disturbance, which is constant in the CP-VSM scheme. An encapsulation of the
time–domain performance evaluation of popular controllers and STO-based STC on sudden
load variation has been compiled in Table 3.

Table 3. Performance evaluation and comparison on sudden load change.

Attributes
Control Scheme No VI CP-VSG STO-Based STC

Frequency nadir [Hz] 49.2 (Violates IEEE 1574) 49.4 49.8
Frequency overshoot [Hz] 52 (Violates IEEE 1574) 51.9 50.9

RoCoF [Hz/s] −0.8 −0.7 −0.3
Steady state error (%) 1.45 0.7 0.13

Settling time [ts/s] 5 10 3
Inertia H [s] 0 4.5 Adaptive (4.4–4.9)

Attributes
Control Scheme Fuzzy-Based VSG STALG MPC Scheme

Frequency nadir [Hz] 49.8 49.7 49.6
RoCoF [Hz/s] −0.4 −0.5 −0.3

Settling time [ts] 4 3.7 4.2
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Figure 6. Grid-connected mode. (a) Active power variation, (b–d) dynamic frequency re-
sponse of various control schemes, (e–h) rate of frequency variation for various control schemes,
(i–l) inertia emulation.

4.2. Inertia Response on AC Fault

A 3−Φ fault has been simulated and created at 1 s, and subsequently cleared at 1.5 s at
bus-13. Further, the bus-12 voltage falls as per fault impedance, which has been portrayed
in Figure 7a. Subsequently, the bus-12 frequency has been estimated after the occurrence of
the 3 − Φ fault, and the frequency plots for zero inertia, CP-VSG, and STO-STC have been
shown in Figure 7b. The frequency response illustrated the superior damping capability
of STO-STC, with a settling time of below 5 s after fault clearance. No VI exhibited an
impulsive frequency rise, due to zero inertia emulation, and consequently, no variation in
the DC-link voltage, as shown in Figure 7c. Furthermore, to observe the off-shore power
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fluctuation owing to fault occurrence at the same location, the bus-13 and SG-1 (bus-1)
power oscillations have been examined, as shown in Figure 7d. This characterizes superior
damping for the STO-STC-based IIDG at bus-12. Other schemes have also been compared
and compiled in Tables 4 and 5, respectively.

Figure 7. (a) Bus-12 voltage sag during fault (pu), (b) bus-12 frequency overshoot (Hz), (c) DC-link
variation on fault (V), (d) off-shore SG power fluctuation (pu): comparison for various schemes.

Table 4. Time–domain specifications on a three phase fault (bus-12).

Attribute Fuzzy Based VSG STO-STC MPC Scheme

Settling time (s) 6 6.3 oscillatory
responses 5.8

DC link variation (V) 5 7 13
Bus-1, Gen.1 settling

time (s) 12 9 8

Table 5. Time–domain specifications with off-shore performance assessment.

Attribute No VI CP-VSG AI Based VSG

Settling time (s) Unspecified 20 oscillatory
responses 6.5

DC link variation (V) No variation 5 9
Bus-1, Gen.1 settling

time (s) 20 14 8

4.3. Normalized Active Power Response under Sudden Load Variation

Figure 8 exhibits normalized power extracted from IIDG on a sudden load change
(ΔPL = 50 kW) on bus-13, next to bus-12. Numerous controllers have been taken to ex-
amine the power response at bus-12 required to mitigate the frequency variation and the
frequency nadir.

It has been found that the virtual inertia response is impulsive and instantly injects
active power to improve the dynamic frequency stability. Initially, IIDG was operating
at 0.2 pu. Further, the injected active power dies out soon as the frequency normalizes to
nominal values. Primarily, IIDG at bus-12 was delivering 0.2 normalized power, and at
t = 2 s, sudden load changes to 50 kW and power responses have been captured in MATLAB,
as shown in Figure 8. Further, in Figure 8 is a performance evaluation and comparison of
various schemes on injected normalized power during a sudden load change (pu): Initially
IIDG was operating at 0.2 pu.
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Figure 8. Performance evaluation and comparison of various schemes on injected normalized power
during a sudden load change (pu).

STO-based STC estimates an accurate ΔP which is required based on the nominal
frequency deviation and RoCoF (ωm,

.
ωm) owing to the sudden load change ΔPL, which

is the bounded disturbance d1. Further, unlike fuzzy-based VSG, STO-STC exhibits an
instantaneous power response and sustains supplementary injected power until the de-
viated frequency has not reached the nominal frequency. The time–domain simulation
results illustrate the superior performance of the STO-STC scheme over recent popular
controllers viz. model prediction, fuzzy-based VSG, CP-VSG, or self-tuning controllers. It is
noteworthy that the emulated inertia by the STO-STC scheme increased adaptively during
the disturbance, as shown in Figure 6l. Furthermore, optimal real power ΔP has been eval-
uated and injected during a sudden load change, as discussed in Figure 8. The proposed
STO-STC scheme observes the various states using STO, and regulates the real power flow
using STC during the disturbance. This will further enhance the overall dynamic frequency
stability of the system.

5. Conclusions

In this work, a novel STO-tuned STC scheme has been efficiently explored and verified
using time–domain simulation results. Firstly, the inertial response has been examined
in grid-connected IIDG. The virtual inertia emulation has been proven to be the most
promising scheme to enhance the dynamic frequency responses of low-inertia systems.
Based on the mathematical modeling of VSG, it exhibits a non-linear behavior of VSG.
Therefore, a non-linear controller such as sliding mode control (SMC) is required to handle
these non-linearities, which enhances the performance of VSG-IIDG. Further, STO is based
on high-order SMC (HOSMC). For STC design, STO evaluates numerous system states
in finite time t < T0. The proposed STO-STC scheme evaluates the exact corrective active
power ΔP, based on the optimal selection of system inertia, which reduces the frequency
pulsations. The STO-STC scheme exhibits superior damping in a multi-machine system
as compared to the popular schemes viz. the self-tuning STALG scheme, CP-VSG, fuzzy-
based VSG, and the MPC scheme. This is accomplished by the optimal selection of inertia
and corrective power ΔP, which regulate both the frequency and power variations. This
scheme also works well in fault occurrence, which has been revealed through numerous
case studies.
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Abstract: In the era of aiming toward reaching a sustainable ecosystem, the primary focus is to curb
the emissions generated by non-conventional resources. One way to achieve this goal is to find an
alternative to traditional power plants (TPP) by integrating various distributed energy resources
(DERs) via a Virtual Power Plant (VPP) in modern power systems. Apart from reducing emissions, a
VPP enhances the monetary benefits to all its participants, including the DER owners, participants,
and utility personnel. In this paper, the multi-objective optimal scheduling of the VPP problem
considering multiple renewable energy resources has been solved using the multi-objective black
widow optimization (MOBWO) algorithm. Renewable resources consist of solar PV modules, wind
turbines, fuel cells, electric loads, heat-only units, and CHP units. The weighting factor method
was adopted to handle the multi-objective optimal scheduling (MOOS) problem by simultaneously
maximizing profit and minimizing emission while satisfying the related constraints. In this research,
a peak valley power pricing strategy is introduced and the optimal scheduling of the VPP is attained
by performing a multi-objective scheduling strategy (MOSS), which is day-ahead (on an hourly basis)
and 15-min based (for a one-day profile), to observe the behavior of the anticipated system with a
better constraint handling method. This algorithm is capable of dealing with a complex problem in
a reduced computational time, ensuring the attainment of the considered objective functions. The
numerical results obtained by the MOBWO algorithm after 100 independent trials were compared
with the latest published work showing the effectiveness and suitability of the developed system.

Keywords: virtual power plant; renewable energy resources; black widow optimization; multi-objective
optimal scheduling; peak valley pricing

1. Introduction

A virtual power plant (VPP) is an assembly of energy resources that are owned by a
private entity and can be interconnected for combined operation. The essence of a VPP is
that it is owned and operated independently, it can be controlled centrally and monitored
with the help of advanced software. This helps the distributed resources which are coming
from disparate locations to respond quickly to the energy supply and demand Refs. [1–4].
The goal of the VPP is to handle the energy demand of consumers communally and to
resolve the future failure of networks. A VPP consists of remote software that helps to
standardize specific energy use by linking, organizing, and controlling decentralized and
controlled charging generators.

A VPP acts as an energy hub and is capable of becoming the future of power systems.
It offers variable generation at reduced inertia levels and at the same time provides ancillary
services, including controlling the voltage imbalances, frequency regulation, and congestion
management and helps in the black start. The VPP also resolves some of the most prominent
grid-related issues, viz., improved forecasting, real-time mitigation of power quality-related
concerns, and proper balancing of the demand and supply gap. Apart from offering
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technical services, a virtual power plant offers commercial services by participating in
wholesale and energy reserve markets. By enhancing the visibility of small, distributed
energy resources (DERs), they are capable of offering pecuniary services by managing spot
pricing (SP) and time of use (TOU) pricing schemes. The simple characterization of DER is
any energy resource that is connected to the grid at the distribution level, viz., fuel cells,
captive power plants, natural gas turbines, electric vehicles (EVs), and energy storage (ES).

Virtual power plants can certainly be a supporting system for implementing 5-min
bidding and can respond to various rapid and fast-moving markets through various DERs.
Some of the diverse challenges which can be answered by a VPP are listed below.

(a) A VPP diminishes the need for the conventional generation to provide the provision
of dynamic ancillary services.

(b) It controls a cluster of heterogeneous renewable energy resources (RERs).
(c) The intermittency and uncertainty caused by renewables such as solar and wind

power, which are highly weather dependent, can be reduced to a certain extent.
(d) It maintains favorable grid conditions for real-time management and supervision

in emergencies.

There are various other requirements to make the operation of VPPs more robust,
including ensuring cyber security which is a very important concern due to the involvement
of highly advanced software. Information and communication technologies (ICTs) are also
a prerequisite for reliable communication. Integrated resource planning (IRP), peer-to-peer
(P2P) transactions, net-metering policy (NM), and behind the meter (BTM) technology
are some of the regulatory mechanisms which play a key role in deciding the future of
this technology.

A case study was carried out by P. Pal et al., Ref. [5] in which a PV panel, fuel cell,
wind turbine, micro-turbine, and battery-connected energy storage system were connected
to analyze the optimal scheduling of a VPP. The setup was made in such a way that three
kinds of scenarios were considered using a beetle search antenna algorithm for optimal
dispatching. The authors compared the performance of this method with algorithms such
as particle swarm optimization (PSO) and genetic algorithm (GA). Some of the important
parameters such as load analysis on an hourly basis and dynamic pricing of the grid
were utilized and implemented for the day-ahead market strategy. S. Han et al., Ref. [6]
highlighted the benefits of a VPP considering incentive prices and load data on an annual
basis to assess the revenue generated. The profit evaluation of a VPP involves load filling
as well as load shaving. A VPP requires the lowest investment cost to achieve the same
load shaving effect when compared to gas power, coal power, pumped storage, and energy
storage as well. The operating cost for the demand response (DR) is very low compared to
an old-style power plant. The overall feasibility of the development of VPPs is verified by
conducting simulation studies from the perspective of the power grid. P. Lombardi et al.,
Ref. [7] presented an article in which a synchronized measurement was implemented in the
state estimation algorithm which could turn out to be a solution of equations strictly related
to state estimation. They selected a CHP, photovoltaic plant, and wind park to supply
energy and therefore can be called energy suppliers. An external boiler was also included in
the analysis to manage the surplus electricity. A CHP unit was included in the study as it is
a useful source by which the power load can be managed efficiently. To ensure the optimal
operation of the VPP, forecasting errors that arise due to the intermittent nature of RERs and
unpredictable weather need to be reduced as much as possible. S. M. M. Saabit et al., Ref. [8]
explored why the concept of Vehicle-to-Home (V2H) has been given more emphasis instead
of V2G and G2V. Three approaches were well-thought-out and include the grid-connected
PV with battery storage system (BSS), grid-connected battery storage systems without PV,
and just a battery storage system. The intention was to highlight the capabilities of batteries
when they are installed at retail sites and eventually set up a VPP. Two types of load profiles
were analyzed: are flat consumption and varying load profile. The Perturb and Observe
technique was employed to track the maximum power point. The settlement period of the
proposed system was estimated to be 9 years to overcome the installation cost. A hybrid
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energy generation system was used to resolve the problem of optimal scheduling which
consisted of battery-connected solar PV modules, wind farms, and thermal generators in
S. S. Reddy et al., Ref. [9]. A two-point estimation system and genetic algorithm were used
to test the efficacy of their proposed strategy. Based on the simulation studies carried out, it
could be observed that there was a marginal enhancement in the generation scheduling of
the day-ahead strategy. In Ref. [10], Y. Zhang et al., attempted to propose the scheduling
strategies of a VPP that can accommodate various development phases in the electricity
market. A bi-directional context was proposed in the paper so the VPP participates in the
electricity markets and acts only as a price-taker. Apart from raising the overall revenue,
it also focused on the objective of social welfare which can be achieved by the effective
allocation of resources.

To solve the unbalancing problem, T. Zhang et al., Ref. [11] proposed a VPP optimal
scheduling model. They studied the energy cost model of the VPP and developed an
optimal dispatch strategy in which the uncertainty of the energy prices and variable output
of RESs were included. The VPP structure comprised small-scale wind power plants,
solar PV systems, and gas turbine power plants along with energy storage systems. Few
types of VPPs, when participating in the electricity market, are briefly discussed, namely
the Joint-Venture model, Bi-lateral Transaction model, and medium-long term contract
model. They considered the overall power balance without any network constraints. A
small-scale VPP model was comprised of two DG sources and two controllable loads, and
the same was verified in MATLAB/ Simulink by Naina et al., Ref. [12]. An algorithm of an
energy management system that acts as a centralized controller operates in three modes,
i.e., grid import (operated in an off-peak hour), grid export (operated in peak hours),
and no power exchange mode (power exchange does not take place between the grid
and VPP). Three different models were included in this analysis, the main grid, dynamic
load, and distribution generation model. In this study, consecutive energy management
(CEM) is proposed to make the regular energy management system more economic by
satisfying the electric constraints of the power system. The control objective was to develop
a framework so that the VPP can contribute to the energy market and at the same time
cater to ancillary services.

A. Zahedmanesh et al., Ref. [13] discussed two hierarchies; i.e., the first involves a
daily scheduling approach while the second is reactive power compensation which is
a very crucial requirement of a power system. As per the claim, both voltage quality
and energy cost were improved by employing CEM in the analysis without violating any
electric constraints. The power of the conventional generators relies on the quantity of
energy produced by renewable energy sources. The storage facility plays a prominent
role in case the load shaving factor increases. The optimal design of the storage facility is
highly recommended by Lombardi P. et al., Ref. [14] so that the system can balance the
intermittent generation. The total demand for analysis is taken as 1 MW which is fulfilled
by conventional generators and partially by renewable energy resources such as solar and
wind. It was observed that the shaving factor has a very minimal impact on the optimum
storage capacity only if the quantity of energy generated by the RERs is high.

S. Mishra et al., Ref. [15] offered an innovative business model in which consumers
could be given full control over how much power they require, giving them the liberty
to utilize power per their requirements and needs, and is known as energy-as-a-service
(EAAS). This model is empowered by peer-to-peer (P2P) energy exchange especially de-
signed for the local power markets. They also proposed a novel computation strategy in
which a comparison was made between profit-based ordering and random selection to
conclude the most preferred strategies for an energy-related transaction. A design that is
termed a smart contract was discussed which allows a particular system to be independent
and reliable for handling exchanges when multiple sectors are involved. This study aims
at a multi-stage PSO method to improve energy penetration along with small-scale signal
stability by T. K. Renuka et al., Ref. [16].
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The proposed technique was tested on the IEEE 14-bus system and the results were
validated. This bus system contained three synchronous generators and turbine gover-
nors. Real-time coordination, as well as a controller for the active supervision of real and
reactive power in all the grids, are necessary for addressing the intermittency issues and
increased penetration of renewable energy. It has been emphasized that realistic control
strategies can be obtained by optimization studies to perform an integrated operation.
O. H. Mohammed et al., Ref. [17] defined an economic problem that consists of the optimal
sizing of the system, state of charge (SOC) of the battery, and high reliability of the system.
The characteristics and advantages of the PSO are highlighted over various conventional
algorithms. The objective function consists of the total net present cost with the sole inten-
tion to optimize the generated power of a hybridized renewable energy system comprised
of PV modules, batteries, tidal, and wind turbines. The important aspects of the batteries
such as the floating charge voltage and their maintenance are considered to achieve the
desired optimization. The problem that is being explored in this study is more economical
and converted into a multi-objective problem in which the purpose is to minimize the cost
of energy and the total net present cost (TNPC) of the system without compromising the
flexibility and versatility of the hybrid energy system.

Pio Lombardi Ref. [18] optimized a multi-criterion-based VPP that was autonomous.
This study involved three main criteria, i.e., service reliability, the cost associated with
the system, and the quantity of pollution. In the desired load management program, the
VPP comprised a wind farm, PV plant, and CHP in which the prime movers were a gas
turbine, active consumers, and a battery switch station. In addition, the authors performed
a sensitivity analysis to verify that the optimal solution is robust. The autonomous VPP
is economically competitive as the total cost generation is less than that compared to
traditional power systems. M. F. Dehghanniri et al., Ref. [19] examined the involvement of
a VPP in the real-time market, day-ahead market, and reserves. The sources considered
were wind turbines, combined heat and power, diesel generators, and electric vehicles, with
electrical and thermal as their two storages. To maximize the profit, two-stage planning
was used. In the first stage, optimization of DA and reserves was accomplished, followed
by optimizing the real-time market. The simulation was carried out on an IEEE 21 bus
network to assess the performance evaluation of the VPP. They emphasized two important
parameters, namely, the inclusion of EVs and the price sensitivity of the load. An artificial
neural network was used for forecasting the data and planning the required number of EVs
required for day-ahead scheduling.

M. Khandelwal et al., Ref. [20] dealt with the impact of locational marginal prices on a
VPP in terms of resource allocation by satisfying the constraints related to network flow
within the limits. To enhance the profit by a considerable margin, technical and market
aspects were discussed. The problem formulation of profit was created in such a way
that it was the difference between the cost of energy and revenue from market trading.
To analyze the impact of aggregation, 24-h scheduling was considered. M. Gough et al.,
Ref. [21] focused on the technical and grid-related constraints. They developed a VPP that
dealt with technical details rather than commercial or financial outcomes. The impact of
voltage profile, power losses, and network congestion was analyzed along with the thermal
relief of the consumers. The obtained profit was split into two parts, namely, revenue
from the electricity sold to commercial clients and the cost of functioning the technical
VPP in consideration of both economic and technical constraints. S. Hadayeghparast et al.,
Ref. [22] projected a typical model for optimizing a VPP’s day-ahead scheduling, consisting
of power dispatching and unit commitment (UC). The multi-objective approach deals with
capitalizing on the day-ahead net daily turnover of the VPP and curtailing the pollutants
and daily emissions. In this study, the VPP was assumed to control all resources in the local
network, including loads and DERs. The scenario-based approach was used for modeling
the uncertainty of the market price, solar radiation, and electrical load.

Based on the critical review carried out in the literature survey, it was found that
the problem statement requires an advanced meta-heuristic technique that can handle
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the objective function in a simpler yet efficient way by reducing the complexities which
are unavoidable due to the non-linear nature of the problem when solved by established
techniques such as PSO, GA, etc. The below-mentioned points are anticipated as research
gaps that were not given the attention they require in the explored literature.

• To ensure efficient management of the grid, sources such as fuel cells and CHP can be
considered for optimal scheduling to reduce the cost of power generation along with
emissions in a VPP system.

• To handle a non-convex problem such as VPP efficiently, advanced, and recently de-
veloped soft computing (SC) techniques can be implemented or modified by choosing
related constraints.

• To incentivize the participants, peak-valley pricing mechanisms with the incorporation
of (15 min) interval scheduling is introduced and compared with day-ahead scheduling.

In Table 1, various control methods, mostly used in the work reported in the literature,
to carry out optimization are listed. MOBWO is the only technique, to the best of our
knowledge, that is not being employed to carry out the intended VPP problem. The control
method is mentioned for the existing studies along with its characteristics and the nature
of the problem. The limitations of the existing work and advantages of the anticipated
MOBWO algorithm, along with the improvements, are highlighted over other techniques.

Table 1. Control methods employed for optimal scheduling purposes.

Refs. No. Nature of Problem Control Method Features of Control Method

[22,23] Heuristic PSO/MOPSO
Fewer parameters.

Ease of implementation.
Local entrapment.

[24,25] Stochastic ABC Poor in exploitation stage.
Limited population diversity.

[26,27] Computational ANN More precise predictions.
Good computational efficiency.

[28,29] Heuristic GA Can determine multiple
solutions simultaneously.

[30,31] Meta-heuristic ACO Can discover good
solutions rapidly.

[32,33] Mathematical Fuzzy Logic Improved prediction accuracy.
Use of Fuzzy sets.

[34,35] Mathematical Game Theory Computational load increases as
the no. of participants increases.

This paper Meta-heuristic BWO/MOBWO

High searching accuracy.
Better updating strategy.

Converge to the global optimum in
lesser iterations.

Virtual power plants are gaining interest very rapidly in the new era of energy manage-
ment to have better management of the associated resources in modern electrical systems.
Even though a lot of researchers are showing interest in exploring the domain of VPPs to
know their feasibility and economic viability, all the studies related to optimal scheduling,
which were carried out previously, were only day-ahead types, and emission was not given
the kind of attention it requires, especially in today’s scenario in which a considerable
reduction in emissions is needed to contribute towards sustainable living. This study deals
specifically with the optimal scheduling of a VPP considering both day-ahead scheduling
and 15 min scheduling which shows close resemblance to the real-time scenario.

In this article, an attempt has been made to carry out multi-objective optimal schedul-
ing and the key features of this research work are highlighted below:

• One centrally controlled VPP system comprised of multiple resources including solar
PV modules, WT, fuel cells, electric loads, heat-only units, and CHP units has been
attempted to solve the multi-objective optimal scheduling problem.
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• The multi-objective optimal scheduling of the VPP considering renewable resources
has been solved using the weighting factor method to simultaneously maximize profit
and minimize emissions.

• Peak valley’s power pricing strategy is introduced in the multi-objective optimal
scheduling of the VPP problem.

• The new price-based multi-objective black widow optimization (MOBWO) is presented
and implemented by considering constraint handling.

• Statistical analysis was performed for both single and multi-objective optimal schedul-
ing of the VPP problems and quality solution sets were obtained from the MOBWO
algorithm after 100 different independent trials.

• Pareto optimal solutions were obtained specifically for multi-objective optimal schedul-
ing of the VPP problem for the maximization of profit along with simultaneously
minimizing the emissions for both scenarios I and II, respectively.

• Results obtained by the proposed MOBWO algorithm were also compared with the
latest published works.

The organization of this research article is as follows:
Section 2 deals with the basic concepts, challenges, and framework of VPP. Section 3

presents problem formulation which comprises the objective function, followed by the
constraint handling. The optimization algorithm-related explanation is then discussed in
Section 4. The implementation part of the case studies along with simulation outcomes is
presented in Section 5, and, lastly, concluding notes followed by future work highlights are
given in Section 6.

2. VPP Concept

A VPP facilitates the synchronization of power generation and uses more efficiently.
It provides a sustainable supply and demand adjustment mechanism with a high level of
precision and encourages the storage of electricity that generates the capacity for the usage
of renewable energy in the power division. As a result, there is a significant potential for
the VPP to link operating technologies with communications infrastructure and external
data properties, thus collecting the forecasting data from scattered entities. In addition, the
VPP can provide deep insights into the results by offering smoother and quicker decision-
making and taking real-time action to enhance performance. The framework of the VPP
followed is depicted in Figure 1.

Dual way Data flow

Fuel Price

  Climate Data

External entities

Electricity
Market

Infrastructure

  VPP
Domain

DERs LoadsUncertainties

Figure 1. The Framework of a VPP.

Several challenges involved when considering a VPP can be categorized in terms of
technical, commercial, and regulatory restrictions, followed by environmental concerns
which are often ignored and not given the importance that it deserves. In Figure 2 some of
the most prominent challenges of the VPP are highlighted.
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Challenges associated with VPP
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Figure 2. Different aspects of VPP.

The crux of a VPP is that it is not restricted geographically, unlike a Microgrid. A VPP
is more concerned with flexible resources and indulges in power trading in the energy
market and their mode of interconnection is always grid-connected Ref. [36].

Methodology

The process flow followed is demonstrated in Figure 3 in which the detailed organi-
zation is sequenced to make it easy for the readers looking for optimum operation and
scheduling of a virtual power plant considering multi-objective profit maximization and
emission minimization. The optimization is carried out with respect to the constraints
handling which also includes the technical constraints of the associated resources. The
methodology starts with the selection of resources, i.e., solar PV, wind, and combined heat
and power, which comprise heat-only units, followed by the fuel cell. The next step after
selecting appropriate resources for the optimal scheduling of the virtual power plant is the
collection of data in which raw data are obtained for renewable sources such as wind and
solar power and a few secondary data taken from the literature. The next step is to set up
the computational framework in which a suitable selection of an advanced meta-heuristic
technique is performed, keeping the requirements into consideration. In the next stage, a
scheduling strategy is adopted in which two scenarios are considered.

In scenario I, day-ahead scheduling, i.e., 24 h, is performed followed by a 15-min inter-
val which is scenario II. The multi-objective case is performed for both scenarios I and II.
Based on the optimization algorithm, a detailed statistical analysis has been accomplished
and highlighted in tabular form and the same is compared with another optimization
technique. The superiority and effectiveness of the same are evident in the form of numeri-
cal results. The convergence characteristics are displayed for all three cases, respectively,
and the two scenarios are followed by the Pareto graph which helps the VPP operator in
deciding the best available trade-off in terms of monetary advantages as well as emission
considerations that helps in achieving the sustainable development goals which is one of
the sole purposes of a VPP.
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Figure 3. Methodology and process flow of the proposed strategy.

In Figure 4, a pictorial representation of the envisioned system under study is rep-
resented in which renewables and co-generation units are considered. The resources
associated with the current VPP system under study are solar photovoltaics (PV), wind
turbine (WT), fuel cell (FC), combined heat and power (CHP), and electric load (EL), fol-
lowed by connecting the energy market (EM) and electricity price (peak valley) to the VPP
operator. These resources are used to supply the electricity to the consumers of VPP based
on the transactions between the energy market and the VPP operator. The energy market,
which is indeed an integral feature of the VPP, is also associated to make the delivery of
peak valley electricity pricing when applicable.
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Figure 4. The proposed VPP system under study.

3. Problem Formulation

3.1. Objective Function

The objective function is segmented into two categories. The first deals with the
maximization of the net profit and is followed by the minimization of total emissions
generated by the associated resources, specifically with CHP and heat-only units.

3.1.1. Net Profit

The running costs of the system consists of power acquisition costs from the main
grid, power selling costs to the main grid, and costs associated with wind generators, solar
power, and fuel cells. The installation cost of the wind turbine and the photovoltaic array
is not considered. The objective function is categorized into two segments, i.e., the main
objective function deals with the maximization of net profit followed by the other objective
function which is emission minimization.

Net Profit =

maximization
Ns

∑
s=1

πs × Σt
t=1

{
−

Np
Σ

p=1

{
cchp + chou

}{
ρem × cph + cse

} Np
Σ

p=1

{
(1 × cph) + (1 × phou)− cens

}}
(1)

where:

p and s are set of plants and scenarios, t is time ranges from 1 to 24 in Day-ahead
scheduling, followed by 1 to 96 in 15-min scheduling.

cph and cse are the tariffs for purchasing and selling power from the grid system.
πs is the probability of scenarios.
p

em is the energy market price; cens is the cost of energy not served.
cchp and chou are the cost function of CHP and heat-only units.
p

hou is the price of heat-only units.
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3.1.2. Emission

Along with the main objective function of net profit represented in the above
Equation (1), the emission is also considered as a supportive objective function in which
minimization of the day-ahead emission is carried out to see the effect of the statistical
analysis performed in Section 5.

Emission = minimization
Ns

∑
s=1

πs × Σt
t=1

{
Np
Σ

p=1

{
echp + ehou

}
×
{

eph + ese

}}
(2)

where:

echp and ehou are the emissions by CHP and heat-only units, respectively.
eph and ese are the emissions by the grid system.

The total emissions by CHP and heat-only units, and the purchase and selling
power coming from the main grid system can be evaluated by the below-mentioned
Equations (3)–(5).

e_chp = (NOchp
x + SOchp

2 + COchp
2 )× Pchp

t,p (3)

e_hou = (NOhou
x + SOhou

2 + COhou
2 )× Hhou

t,p (4)

e_ph + e_se = (NOph+se
x + SOph+se

2 + COph+se
2 )× max{−Pph+se

t,p , 0} (5)

In the aforementioned Equation (5), the measure of emissions related to the grid
system is considered only when the electricity is purchased from the power market.

3.1.3. Multi-Objective Framework

The objective function of the multi-objective optimal scheduling of the VPP problem
is to handle objectives, namely, the maximization of profit and simultaneous minimization
of the emission in such a way as to obtain the best compromise solution. Multi-objective
optimal scheduling of the VPP problem is solved by using the weighting factor method
and the mathematical expression is given by:

Fitness = w × Net Pro f it + (1 − w)× Emission (6)

where:

w is considered as 0.5 for giving equal weightage to both objectives.

3.2. Constraints Handling
3.2.1. Power Balancing

The electrical power balance is represented in Equation (7) in which Peqv
s,t,p depicts the

equivalent electrical output power of each plant.

Peqv
s,t,p = Pi

ex + Pi
f l + Pi

wt + Pi
pv − Pi

el (7)

where:

Peqv
s,t,p is equivalent to power scenario s, time t, and plant p.

Pi
ex is the exchanging power between the main grid and the CHP system at interval

i (MW).
Pi

f l is the power of the fuel cell at interval i (MW).

Pi
wt is the power of the wind turbine at interval i (MW).

Pi
pv is the power of the solar photovoltaic at interval i (MW).

Pi
el is the electrical load at interval i (MW).

122



Energies 2022, 15, 5970

3.2.2. Heat Balancing

Constrictions related to the heat balancing equation must satisfy the waste heat and
gas boiler.

Pi
f l ∗ ri

f l ∗ ηhr_bl + Pi
gb − Pi

th = 0 (8)

where:

ri
f l is the ratio of heat to the electricity of the fuel cell at interval i (MW).

ηhr_bl is the efficiency of the heat rate boiler (MW).
Pi

gb is the power of a gas boiler at interval i (MW).

Pi
th is thermal power balance at interval i (MW).

3.3. Power Switching between Main Grid and CHP Units

The operational constraints between the CHP and main grid are expressed in the
following equation. The switching power which takings place between these two is within
the permitted limits.

Pmin
ex ≤

∣∣∣Pi
ex

∣∣∣ ≤ Pmax
ex (9)

where:

Pmin
ex is the minimum exchange of power between the main grid and the CHP system.

Pmax
ex is the maximum exchange of power between the main grid and the CHP system.

3.4. Constraints of Waste Heat and Gas Boiler

The waste heat and gas boiler are able to generate power in their precise
electrical capacity.

Pmin
bl ≤ Pi

f l ∗ ri
f l ∗ ηhr_bl ≤ Pmax

bl (10)

Pmin
gb ≤ Pi

gb ≤ Pmax
gb (11)

where:

Pmin
bl is the minimum limit of the waste heat boiler.

Pmax
bl is the maximum limit of the waste heat boiler.

Pmin
gb is the minimum limit of the gas boiler.

Pmax
gb is the maximum limit of the gas boiler.

3.5. Fuel Cells

The efficacy of fuel cells can be expressed in the part-load ratio (PLR). The modeling
is adapted from Ref. [37]. The mathematical formulations associated with the function of
PLR are defined in Equations (12)–(14). The fuel cell units are capable of supplying part of
the demand load in the form of electrical energy.

When PLR_i < 0.05
ηi

f l = 0.2716; ri
f l = 0.6816 (12)

When PLR_i ≥ 0.05

ηi
f l = 0.9033PLR5

i − 2.9996PLR4
i + 3.6503PLR3

i − 2.0704PLR2
i + 0.4623PLR1

i + 0.37 (13)

ri
f l = 1.0785PLR4

i − 1.9739PLR3
i + 1.5005PLR2

i − 0.2817PLR1
i + 0.6838 (14)

where:

ηi
f l is the fuel cell efficiency at interval i (p.u.) and

ri
f l is the ratio of heat to the electricity of the fuel cell at interval i (MW).
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Ramp Rate Limit of Fuel Cell

The power generated by the Pi
f l unit is not allowed to exceed the power generated in

the previous interval Pi−1
f l by more than a specific amount.

ΔPf l_down.T ≤ Pi
f l − Pi−1

f l ≤ ΔPf l_up.T (15)

where:

ΔPf lup T is the up-ramp limit and ΔPf l_down is the down-ramp limit of the fuel cell.
Pi

f l is the power generated by the fuel cell at interval i (kW).

Pi−1
f l is the power generated by the fuel cell at the previous interval (kW).

3.6. CHP Units

To achieve optimal scheduling, two categories of CHP units having diverse feasible
regions of operation (FOR) have been considered Ref. [38]. Equations (16) and (17) represent
the maximum electric and thermal output power constrictions of the CHP unit.

0 ≤ Pchp
t,p ≤ Pchp

p,A × Vchp
t,p (16)

0 ≤ Hchp
t,p ≤ Pchp

p,B × Vchp
t,p (17)

where:

Pchp
t,p is the electrical output power of the CHP and

Vchp
t,p is the commitment status of the CHP.

The feasible regions of operation (FOR) are shown in Figure 5. In the Type 1 CHP unit,
FOR is a convex type which is followed by a non-convex FOR as shown in Type 2.

FOR
FOR

Sec i Sec ii

Power
(MW)

Power
(MW)

Heat
(MWth)

Heat
(MWth)

A

B

D
C

A B

C

D

G

F E

(a) (b)

Figure 5. Feasible operating region (a) Type 1, (b) Type 2.

3.7. Solar PV Modules

The output of the photovoltaic modules is affected largely by solar radiation, charac-
teristic of the module, followed by the ambient temperature of the specific location Ref. [39].
The availability of solar power is plentiful in the daytime, which can be seen in Figure 6,
in which the peak ranges from 11 a.m. to 3 p.m. Usually, it follows the beta probability
distribution function (PDF).

Certain parameters influence the output power of PV modules. The fill factor (FF) is
the measure of the efficiency of a photovoltaic module. The ideal FF of a solar cell is around
0.7. It is defined as the maximum power obtainable from the solar module to the actual
power obtained and it is expressed in Equation (18).

FF =
VMPP × IMPP

VOC × ISC
(18)
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Figure 6. Forecasting curve of solar PV modules.

The characteristics of the module are represented below:

Ppv
s,t,p(sors,t) = Npv

p × FF × Vs,t × Is,t (19)

Vs,t = VOC − KV × TCs,t (20)

Is,t = sors,t × [Isc + Ki × (TCs,t − 25)] (21)

where:

Ppv
s,t,p is output power, Npv

p is the number of PV modules, and sors,t is the solar
radiation (KW/m2).

VOC is the open-circuit voltage and Isc is the short circuit current.
Ki is the current temperature and KV is the voltage temperature coefficient.
TCs,t is the solar cell temperature and FF denotes the Fill Factor of the PV module.

3.8. Wind Turbine

Wind power follows the Weibull PDF due to its ability to represent the variation in
wind speeds. The forecasting curve of wind power generation with respect to time is shown
in Figure 7. The primary problem with wind power is the rapid fluctuation due to varying
climate conditions.

Figure 7. The forecasting curve of wind power generation.
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The power from the wind turbine is calculated from Equations (22)–(25). The modeling
of the wind turbine is referred to from Ref. [40].

Pwt
s,t,p(vs,t) = Nwt

p × {0, vs,t < vc
in}{0, vs,t > vc

out} (22)

Pwt
s,t,p(vs,t) = Nwt

p ×
{

Pwt
rated ×

(
vs,t − vc

in
vrated − vc

in

)3
}

(23)

Pwt
s,t,p(vs,t) = Nwt

p × {vc
in ≤ vs,t ≤ vrated} (24)

Pwt
s,t,p(vs,t) = Nwt

p × {vrated ≤ vs,t ≤ vc
out} (25)

where:

Pwt
s,t,p is the output power of the wind turbine (MW).

Pwt
rated is the nominal power of the wind turbine (MW).

Nwt
p is the number of wind turbines.

The crucial parameters considered to evaluate the intended objective function are
listed in Tables 2–6 and referred from [22,40–43].

Table 2. Emission factors related to SO2, NOX, and CO2.

Emissions Heat-Only Unit CHP Unit

SO2 0.0027 0.0036
NOX
CO2

0.3145
401.43

0.1995
723.94

Table 3. Parameters for the wind turbine.

Pwt
rated (MW) vc

in (m/s) vc
out (m/s) vrated (m/s) Nwt

p

150 3.5 25 13.5 3

Table 4. Parameters for solar PV.

VOC (V) ISC (A) Ki (I/◦C) KV (V/◦C) NOT (◦C) IMPPT (A) VMPPT (V) Npv
p

21.98 5.32 0.003 0.0144 43 4.76 17.32 2240

Table 5. Parameters for heat-only units.

Hhou
max,p (MWth) ap ($/MWth2) bp ($/MWth) cp ($)

1.2 0.052 3.0651 4.8
Where ap, bp, cp are the cost coefficients of heat-only units.

Table 6. Parameters of the CHP unit.

gp ($/MW2) hp ($/MW) ip ($) jp ($/MWth2) kp ($/MWth) ip ($/MW.MWth) Csu
p ($) Csd

p ($)

0.0345 44.5 26.5 0.03 4.2 0.031 20 20

Where gp, hp, ip, jp, kp, ip are the cost coefficients of CHP units and Csu
p and Csd

p are the startup and
shutdown costs.

The complete procedure adopted for solving the optimization problem is mentioned
in Figure 8. All the mathematical equations involved in this study are highlighted in
the flowchart.
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Technical constraint handling for Multi-objective
framework Eqn. 6,7,8,9

 Optimization module of MOBWO
from Eqn. 26,27,28

Results presenting module
{Net Profit and Emission}

Eqn. 10,11 Eqn.
22,23,24,25

Eqn.
18,19,20,21Eqn. 16,17Eqn.

12,13,14,15

 Hourly average and
standard deviation of
uncertain parameters

Gas Boiler Fuel Cell CHP
   Solar
Radiation Wind

Speed

 Output power computing module from
Multi-objective Function Eqn. 1,2,3,4,5

Figure 8. Process flow for the adopted methodology.

There are uncertain factors that affect the stability of the VPP system due to the uncer-
tain nature of renewable energy generation, fluctuation in market prices, and varying load
demand. These three aspects are crucial in overcoming the barrier caused by these uncer-
tainties and can be managed by incorporating methods, viz., the Monte Carlo simulation
(MCS), robust optimization (RO), and auto-regressive integrated moving average (ARIMA)
probabilistic and possibilistic methods to name a few Ref. [44]. The focus on carrying out
the uncertainty aspect is out of scope for the current work, and it is left for future work.

4. Optimization Algorithm

The nature-inspired algorithms are the best way to solve the selected non-convex
type problems that come with lesser mathematical complexities and an efficient way to
ensure the reachability of a global optimum value. To carry out the intended optimization,
the MOBWO was selected over other algorithms due to its unique ability to overcome
the local optima trap. It offers numerous search agents to estimate the global optimum,
which is remarkable in this recently developed highly advanced optimization technique.
The two most important aspects of every optimization are exploration and exploitation.
Producing numerous offspring enhances the exploration of search space, followed by
omitting the unfeasible solutions to move toward the best possible solution. The resulting
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early convergence is certainly a trait of selected optimization which is missing in most of
the well-established nature-inspired techniques such as PSO and GA.

The system is initialized with a population of random spiders and searches for global
optima by updating the population. The BWO algorithm attempts to solve an objective
function by generating a mutation population (mute pop) and mutation variables (mute
vars) Ref. [45]. The BWO concept consists of terminologies in which the search agents in
the form of the widow are assumed to solve any specific problem in the same way that
the crossover and mutation operator does in GA, followed by the population of particles
in PSO.

4.1. Population Initialization

The array of the search agent is 1 × Mvar and the dimensional value is Mvar in the
optimization problem expressed in Equation (26).

Searchagents = [k1, k2, k3 . . . kM var] (26)

where:

k1, k2 . . . km are the floating numbers in the form of variables.

A fitness search agent in the form of the widow is determined using the fitness function
M expressed in Equation (27).

Fitness = f (Searchagents) (27)

4.2. Procreation, Cannibalism, Mutation

The BWO algorithm starts with selecting the parents which is known as the procreate
stage. This step is very much necessary to start the exploration in the search area to avoid
the local optima trap. To reproduce in BWO algorithms, the array referred to α is created
and consists of random numbers which contain the offspring produced by Equation (28) in
which x1, x2 denote parents and O1, O2 refer to the offspring.

O1 = α × x1 + (1 − α)× x2 and O2 = α × x2 + (1 − α)× x1 (28)

where:
O1 and O2 are the offspring.
x1 and x2 are the parents.
α is the array matrix.
The process is repeated for MVar two times, in which duplication should be avoided to

enhance the accuracy of the fitness value among the pairs. The next step is the cannibalism
rate which ensures better performance for the exploitation and guarantees faster conver-
gence at the same time for BWO. Every operator corresponds to a contender solution to
the given problem. The mutation stage is considered to bring the balance between both
exploration and exploitation.

The performance of a BWO depends on its parameters such as reproduction rate (RP),
cannibalism rate (CR), mutation rate (MR), and, of course, the lower bound (LB) and upper
bound (UB). Appropriate selection of the controlling parameter, which is the cannibalism
operator, may ensure superior performance of the exploitation stage by disregarding the
unfitting individuals from the population, resulting in a lesser number of iterations to reach
the optimum solution. The flowchart of the proposed MOBWO algorithm is shown in
Figure 9 and an effort has been made to simplify the process of obtaining the optimum
value by minimizing the complications associated with this algorithm. The MOBWO is
carefully chosen to carry out the numerical analysis in this research as it is a recently
developed meta-heuristic technique with a unique ability to handle the multi-objective
problem with reduced complications, improved convergence characteristics, and better
computational efficiency. Every possible effort has been made while developing the code
to avoid local entrapment to reach the global optimum reasonably.
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Start

Initialize the black widow population which is
random in nature from Eqn. 26

Define the parameter i.e., RP, CR, MR, UB
and LB, etc..

Procreate

For mating select random male and female
spiders from Eqn. 28

Stopping criteria
satisfied?

Stagnation criteria?

End

Apply reproduction and mutation
operator.

Determine fitness for new black widow
population from Eqn. 27

Yes

Yes
No

No

Updating the new population.

Cannibalism
among siblings

Mutation

Figure 9. Flowchart of the proposed MOBWO algorithm.

5. Results

During the off-peak periods, the VPP obtains power from the energy market as a
purchaser when electricity prices are on the lower side; when prices are high, the VPP
trades electricity to the energy market. When electricity costs are cheaper, buying energy
from the wholesale market is more profitable than making electricity which is also an
attractive feature of CHP units. By enabling these units, the demand and supply gap can
be balanced with great ease, especially when the power from solar and wind units cannot
be extracted at night-time.

In this study, three cases have been considered to evaluate the feasibility of the virtual
power plant.

1. Case I: Single-objective scheduling for profit maximization.
2. Case II: Single-objective scheduling for emission minimization.
3. Case III: Multi-objective scheduling for profit/emission, i.e., maximization followed

by minimization.

To ensure security and continuity of power supply, the balance between load and
power generation must be synchronized. The large presence of renewables, especially
intermittent and highly volatile sources, i.e., solar and wind energy, makes this more
complex. The surplus power in the network can be utilized in peak times when the
electricity price is higher. This excess power can be stored in energy storage systems (ESSs),
viz., battery storage or electric vehicles, and can be made available as and when needed
through the VPP operator at a higher price that opens the option of attaining a higher
economic benefit, which is beneficial to all the participants involved in the VPP system.
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In the case of day-ahead scheduling, the electrical power balance for both Cases I and
II are presented on an hourly basis and shown in Figures 10 and 11. Power is represented on
the primary Y-axis which is on the left-hand side expressed in MW. To reduce the complexity,
the electricity price is plotted on the secondary Y-axis which is on the right-hand side and
is expressed in ($/MWhr).

Figure 10. Case I Electrical power balance in the VPP network for 24 h.

Figure 11. Case II Electrical power balance in the VPP network for 24 h.

When the prices of electricity are low, the CHP units can be changed to a not committed
(NC) status as the acquisition of electricity from the electricity market is considered more
cost-effective and the VPP buys the electricity from the trading market. On the other hand,
when the electricity prices are high, it is not economical to purchase the power from the
wholesale market and in those instances, the VPP similarly trades power similar to any
other conventional power plant.

5.1. Scenario Generation

Two scenarios have been considered to examine the performance of the projected
technique. Scenario I is considered for day-ahead scheduling, followed by scenario II which
is 15-min scheduling. All the results obtained in Scenario I are based on hourly scheduling
and the performance is quite satisfactory and improved when compared with the other
different techniques.
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The numerical studies were carried out by using the multi-objective black widow
optimization (MOBWO) algorithm with a code developed with utmost care and keeping
in mind that the computation time should be as low as possible. In the BWO algorithm,
the number of search agents and iterations is assumed to be 100 and 200, respectively. The
behavior of the algorithm seems to be quite satisfactory, and it is capable of avoiding any
premature convergence as well as local entrapment which is one of the most unfortunate
traits of any nature-inspired algorithm. Along with BWO, other popular techniques, i.e.,
artificial bee colony (ABC) and ant colony optimization (ACO), are also selected to see their
performance and the obtained results are discussed in the subsequent section. The case
studies and scenario generation are executed and carried out in MATLAB software on a
DELL laptop with a processor having an Intel(R) Core (TM) i7-6600U CPU @ 2.60 GHz.

5.1.1. Scenario I (Day-ahead Scheduling)

For demonstration purposes, the program was developed for day-ahead scheduling
(DA), i.e., a 24-h period. The obtained results of the convergence for profit and emission
by the proposed method are discussed and displayed in Case I and Case II, respectively,
and compared with published results. In this paper, two scenarios are considered, i.e., day-
ahead (hourly-based scheduling), followed by a 15 min-based scheduling. All the numerical
results obtained from the proposed MOBWO algorithm in scenario I are compared with the
existing published results in which the MOPSO technique is used. For the selected problem
statement of the proposed system, only one relevant paper is reported in the literature, i.e.,
Ref. [22], to the best of our knowledge. Another comparison has been made, i.e., Ref. [46],
and the obtained value of net profit from the proposed technique was higher. Similarly, the
emission value was compared with Ref. [47] and found that the obtained values of both
net profit and emission in a single objective, as well as multi-objective optimal day-ahead
scheduling, are better in addition to the reduced computational time of the proposed
MOBWO algorithm over all the other control methods as evident in Tables 7 and 8 for each
case, respectively.

Table 7. Comparison of net profit with different techniques for Case I.

Output Ref. [46] MOPSO [22] ABC ACO
Proposed
MOBWO

Maximum Profit ($) 19,737 23,302.8271 24,191.8221 24,950.7372 27,785.6723
Minimum Profit ($) - 22,600.1679 19,636.7483 20,190.8183 21,400.3254

Mean Profit ($) - 22,955.3462 21,914.2852 22,570.7776 24,592.9985

Computational time (Seconds) - 148.095
(For 20 runs)

139.3737
(For 100 runs)

135.4932
(For 100 runs)

123.058
(For 100 runs)

Table 8. Comparison of emissions with different techniques for Case II.

Output Ref. [47] MOPSO [22] ABC ACO
Proposed
MOBWO

Minimum Emission (Kg) 56,270 64,432.3217 62,467.8291 61,346.4838 57,532.2738
Maximum Emission (Kg) 77,430 67,077.3937 72,383.7292 71.463.2612 67,342.3798

Mean Emission (Kg) - 66,070.1682 67,425.7792 66,404.8725 62,437.3268

Computational Time (Sec) - 171.4826
(For 20 runs)

153.4826
(For 100 runs)

131.3633
(For 100 runs)

81.3745
(For 100 runs)

Case I: The statistical results obtained after 100 independent runs from MOBWO
converge to an optimum value of 27,785.6723 $ which outperforms the existing value of
23,302.8271 $ obtained from multi-objective particle swarm optimization (MOPSO) Ref. [22].
Additionally, the numerical results for other techniques are mentioned in Table 7.

In Case I, the computational time for the proposed MOBWO of 123.0548 (for 100 runs)
is less when compared with the multi-objective particle swarm optimization (MOPSO)
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of 148.0945 (for 20 runs). The convergence curve of the proposed algorithm for Case
I is presented in Figure 12 and it is evident that the proposed technique produces the
optimum value.

Figure 12. Convergence curve of MOBWO algorithm for Case I.

Case II: On the other hand, in Case II, the purpose is to reduce emissions and the level
of emission is reduced significantly by a considerable margin. The unit of the emission is in
Kg and it is the combination of three emission factors, namely, NOX, CO2, and SO2. The
statistical results obtained after 100 independent runs from MOBWO are shown in Table 8
as converging to an optimum value of 57,532.2738 Kg which outperforms the existing value
of 64,432.3217 Kg obtained from MOPSO Ref. [22]. In Case II, the computational time for
the proposed MOBWO is 81.3745 (for 100 runs), much less when compared with 171.4826
(for 20 runs) from MOPSO. In addition, the convergence characteristics of the proposed
algorithm for Case II are shown in Figure 13.

Figure 13. Convergence characteristics of the MOBWO algorithm for Case II.

Computation time plays a significant role in selecting a suitable optimization technique
which is usually problem specific. Cumulative factors are involved in solving real-world
problems, i.e., selection of parameters, constraints handling, computation time, etc. Based
on any particular optimization technique, these factors vary to some extent and the best
trade-off is selected for the chosen technique. The nature-inspired algorithms are the
best way to solve these non-convex type problems and come with lesser mathematical
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complexities and an efficient way to reach a global optimum value. Black widow opti-
mization (BWO) is selected to carry out the numerical analysis in this research as it is
a recently developed meta-heuristic technique and it has a unique ability to handle the
multi-objective problem with reduced complications, improved convergence characteristics,
and better computational efficiency. The cases which have been considered for single, as
well as multi-objective, are compared with PSO and the resulting computation time is better
with BWO.

Case III: The multi-objective optimal scheduling is carried out and the convergence of
both objectives is displayed together in Figure 14, followed by Figures 15 and 16 with other
techniques. It is worth mentioning that including emission as an objective function has
an immense effect on the overall working of the system since the CHP unit is considered
one of the resources. Here, the peak valley electricity pricing is considered which is very
essential in the peak load shifting to enhance the economic benefit. For every time period,
the sale and purchase prices are given in Table 9. The effect of this pricing scheme on the
operating costs has been given proper consideration in this paper.

 
Figure 14. Convergence characteristics of the ABC algorithm for Case III.

 
Figure 15. Convergence characteristics of the ACO algorithm for Case III.
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Figure 16. Convergence characteristics of the MOBWO algorithm for Case III.

Table 9. Comparison of emissions with different techniques.

Period Detail Time (Hr.)
Purchase Price

($/MWh)
Sale Price
($/MWh)

Peak 9,12,17,22 0.0079 0.0044
Intermediate 13,16 0.0070 0.0035

Valley 1,8,23,24 0.0062 0.0026

A comparison of the statistical analysis is also presented in Table 10 and obtained after
100 independent runs. It can be observed that by adopting the peak valley power pricing
concept in this paper, better compromise solutions are given which show enhancement in
the performance and behavior of the price-based-MOBWO algorithm.

Table 10. Comparison of multi-objective with published and proposed techniques.

Objective
Functions

Profit ($) Emissions (Kg)

Parameters MOPSO [22] ABC ACO MOBWO MOPSO [22] ABC ACO MOBWO

MaxFprofit 23,302.83 24,286.82 25,183.74 26,167.78 122,963.46 119,789.29 119,432.37 116,400.85
MinFemission 9883.69 10,320.38 11,723.47 11,808.47 64,432.32 62,467.83 61,346.48 58,785.34

The main purpose of obtaining the Pareto graph is to provide the VPP operator a
chance to select a trade-off solution that is in line with the environmental restrictions
and satisfies the economic constraints at the same time. To this end, Case III has been
implemented with multi-objective scheduling and obtaining the Pareto optimal solutions,
respectively, as shown in Figure 17.

In the existing program, a pricing strategy was also incorporated to see the behavior
of the convergence obtained from the proposed MOBWO. The code was developed very
carefully, and the program was run for multiple trials. All the displayed results were
obtained after running the program for 100 trials to ensure the precision of the algorithm.
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Figure 17. Pareto optimal solutions for Case III of Scenario I (proposed MOBWO technique).

5.1.2. Scenario II (15-min Interval Scheduling)

For further analysis, scenario II is presented in which the type of scheduling is trans-
formed to a 15-min basis and the available data are extrapolated for carrying out the
real-time analysis. The overall power balance in the case of a 15 min schedule for a one-day
profile, is represented in Figures 18 and 19, and the unit of time is taken in hours. All the
associated resources are represented in a vertical bar and the electricity price is projected
on the right-hand side of the secondary Y-axis.

Figure 18. Case I power balance (electrical) in the VPP system for 15-min.
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Figure 19. Case II power balance (electrical) in the VPP network for 15-min.

Likewise, in scenario II, i.e., 15-min scheduling, the proposed scenario has no compari-
son available in the existing literature. The pay-off table is mentioned below, and it can be
observed that the results are quite reasonable in real-time scheduling, especially in terms of
profit as compared to the day-ahead scheduling which can be seen in Table 11, followed by
Figures 20–22 obtained by ABC, ACO, and MOBWO after 100 independent trials.

Table 11. The pay-off table for the proposed MOBWO (15-min scheduling).

Objective
Functions

Profit ($) Emissions (Kg)

Parameters ABC ACO MOBWO ABC ACO MOBWO

MaxFprofit 27,392.5631 26,312.3523 28,415.3525 120,913.4532 120,325.463 119,843.4532
MinFemission 10,404.7262 11,123.4253 11,929.7262 56,402.4216 57,342.4235 59,921.3248

Figure 20. Convergence curve of the ABC algorithm.
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Figure 21. Convergence curve of the ACO algorithm.

 

Figure 22. Convergence curve of the proposed MOBWO algorithm.

Figure 23 shows the Pareto graph for scenario II, the 15-min scheduling. In generating
the graph, the operator of the VPP can select an appropriate solution that deals with the
possibilities of both technical constraints as well as the related economical limitations.

Figure 23. Pareto optimal solutions for Case III of Scenario II (proposed MOBWO technique).
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Marcos Tostado-Veliz et al. Ref. [48] proposed a MILP optimization framework that is
segmented into two parts, i.e., based on historical consumption, the most suitable tariff is
determined followed by the optimal hours which are referred to as ‘Happy hours’ tariff
plans. Three different tariffs are discussed, viz., the fixed tariff, time-variable tariff, and
happy hours tariff. The Spanish retail market is considered for the developed framework
case study in which the price of selling electricity is set to zero during the happy hours time
to avert any unrealistic transactions among the home and utility grid. In a deregulated
electricity market, a framework for the decision for tariff selection is presented along with
some useful results in which the Happy hours, i.e., 7:00–8:00 a.m., are stressed.

To balance the price volatility, scheduling strategies play a vital role. They are catego-
rized as day-ahead scheduling, for a 24 h profile, and 15 min schedule. Merits of day-ahead
scheduling are highlighted:

(a) Buying and selling of electricity one day before the following day.
(b) The VPP acts as a price taker in the day-ahead market.
(c) Ease of unit commitment and power dispatching.

The advantages of the 15-minute scheduling are mentioned below:

(a) This scheduling helps to determine the imbalance in settlement prices.
(b) Offers the purchase and selling of electricity during the functioning day.
(c) Real-time scheduling stabilizes the differences between day-ahead and real-time

demand and production of electricity.
(d) Operating systems that work in real-time can execute quickly without any delay,

resulting in a nearly immediate output.

For a practical case, real-time scheduling (a few seconds to 5-min intervals) is prefer-
able due to its inherent characteristics of reliability and performance-orientation, and the
requirement of only minimal, latest, and most relevant data followed by a rapid response
for given circumstances.

The proposed approach is more suitable for advancing the existing system by adding
a few more resources that can act as a spinning reserve, i.e., an energy storage system,
and ensure the continuity of electricity supply in case of any power deficit. The capacity
of the power supply system considered in the current VPP system is 10.48 MW. Since
the main concept of a VPP is that it is not restricted by any geographical location, it is
always connected to the grid which is not the case when discussing a Microgrid that can be
islanded and constrained in a confined region of operation. The selected VPP system under
study is assumed to be a national power system.

The multi-objective optimal scheduling of VPP considering various renewable re-
sources has been solved using the weighting factor method to simultaneously maximize
profit and minimize emission. Peak valley’s power pricing (PVPP) strategy is introduced in
the multi-objective optimal scheduling of the VPP problem. Moreover, a new price based
MOBWO is presented and implemented, satisfying all the related constraints. For both
scenarios I and II, Pareto optimal solutions are obtained specifically for the multi-objective
optimal scheduling of the VPP problem for maximization of profit along with minimization
of emissions. The statistical results for all three cases show the effectiveness and suitability
of the proposed approach and are compared with various other techniques along with the
published results.

6. Conclusions

The optimal scheduling of a VPP consisting of various resources is carried out and
the performance of the BWO algorithm shows superiority in terms of the numerical results
obtained. It can be inferred that taking emission as an objective function leads to a con-
siderable reduction in the amount of day-ahead emission. In scenario I, the net profit for
hourly-based scheduling leads to 26,167.7823 ($), followed by the daily emission which
is 116,400.8473 (Kg). Although, when the same process is followed for scenario II, which
is a 15-min interval, the numerical results are reasonably better, i.e., net profit leads to
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28,415.3525 ($). However, in the case of emission, there is no significant improvement as
the obtained value is 119,843.4532 (Kg). The single objective scheduling is performed for
both net profits along with emission as an objective function, followed by multi-objective
scheduling; Pareto optimal solutions are presented for both scenarios. Statistical analysis
was performed for both single and multi-objective scheduling of the VPP problem. Optimal
scheduling of the selected VPP problem was performed with three different techniques,
i.e., ABC, ACO, and MOBWO, and it was observed that the developed MOBWO algorithm
performance was superior in terms of reduction in computation time as well as the ability
to escape from local entrapment by reaching a global optimum.

In the future, more resources such as hydro, thermal, or a combination of hydro-
thermal will be incorporated into the VPP system. It will be very interesting to see how the
performance of the system and the aspect of the reliability index will be explored. Similarly,
adding some specific pricing and bidding strategies along with exploring the impact of
market constraints on effective analysis is anticipated in a forthcoming study.
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Nomenclature

All the abbreviations used in the manuscript are listed:

TPP Traditional power plant
DERs Distributed energy resources
VPP Virtual power plant
MOBWO Multi-objective black widow optimization
MOOS Multi-objective optimal scheduling
MOSS Multi-objective scheduling strategy
SP Spot pricing
TOU Time of use
EVs Electric vehicles
ES Energy storage
RERs Renewable energy resources
ICT Information communication technology
IRP Integrated resource planning
P2P Peer to peer
NM Net metering
BTM Behind the meter
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PSO Particle swarm optimization
GA Genetic algorithm
DR Demand response
V2H Vehicle to home
BSS Battery storage system
CEM Consecutive energy management
SOC State of charge
TNPC Total net present cost
UC Unit commitment
SC Soft computing
PV Photovoltaics
WT Wind turbine
FC Fuel cells
CHP Combined heat and power
EL Electric load
EM Energy market
PLR Part load ratios
FOR Feasible regions of operation
PDF Probability distribution function
FF Fill factor
ACO Ant colony optimization
ABC Artificial bee colony
ANN Artificial neural network
CR Cannibalism rate
MR Mutation rate
RP Reproduction rate
PVPP Peak valley power pricing
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Abstract: The modern-day urban energy sector possesses the integrated operation of various micro-
grids located in a vicinity, named cluster microgrids, which helps to reduce the utility grid burden.
However, these cluster microgrids require a precise electric load projection to manage the operations,
as the integrated operation of multiple microgrids leads to dynamic load demand. Thus, load fore-
casting is a complicated operation that requires more than statistical methods. There are different
machine learning methods available in the literature that are applied to single microgrid cases. In
this line, the cluster microgrids concept is a new application, which is very limitedly discussed in
the literature. Thus, to identify the best load forecasting method in cluster microgrids, this article
implements a variety of machine learning algorithms, including linear regression (quadratic), sup-
port vector machines, long short-term memory, and artificial neural networks (ANN) to forecast
the load demand in the short term. The effectiveness of these methods is analyzed by computing
various factors such as root mean square error, R-square, mean square error, mean absolute error,
mean absolute percentage error, and time of computation. From this, it is observed that the ANN
provides effective forecasting results. In addition, three distinct optimization techniques are used to
find the optimum ANN training algorithm: Levenberg–Marquardt, Bayesian Regularization, and
Scaled Conjugate Gradient. The effectiveness of these optimization algorithms is verified in terms of
training, test, validation, and error analysis. The proposed system simulation is carried out using the
MATLAB/Simulink-2021a® software. From the results, it is found that the Levenberg–Marquardt
optimization algorithm-based ANN model gives the best electrical load forecasting results.

Keywords: ANN training algorithms; cluster microgrids; load demand forecasting; machine learning
methods; urban energy community

1. Introduction

Electricity is a need and a strategic asset for national economies. As a result, electric
utilities strive to balance power generation and demand to provide a decent service at a
reasonable cost. The microgrid is the integration of several renewable energy sources with
adjustable or nonadjustable loads and storage systems, such as batteries/fly-wheels [1].
With more penetration of distribution generation (DG) sources, it is a big challenge for the
service provider to supply reliable and consistent power to the customer premises due to
time-varying weather conditions. Similarly, energy consumption also varies according to
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seasonal variations and human behavior [2]. As a result, reliable forecasting of generators
and load needs is required to solve the unit commitment problem and schedule the energy
sources and storage devices in a microgrid [3,4]. To obtain the total power of utilization
from the energy sources, we first need to obtain how much power is extracted from the
green energy sources with the use of forecasting methods. Due to the inconsistency of
solar and wind power, it is very difficult to predict load demand accurately. This type
of load prediction-based weather prediction leads to inaccuracy in the results. So, it is
better to use historical data related to power instead of the numerical prediction of weather
in a microgrid to develop short-term load forecasting. The basic goal of short-term load
demand forecasting is to plan the electricity schedule to meet seasonal and periodical load
demands. Energy demand consumption is influenced by so many factors, such as weather,
special activities, and seasonal variations. In microgrid wind and solar energy, sources
are driven by weather. Thus, the development of forecasting technologies to forecast
the generations and load demands is significant to maintaining the power balance in a
microgrid. Depending on the requirement of energy management, there are four types
of forecasting methods available, such as extremely short, short, medium, and long-term
forecasting. The following is the literature survey carried out so far for short-term (ST) load
demand forecasting.

With the use of neural networks and the particle swarm optimization (PSO) algorithm,
Reference [5] presents a method for assessing short-term electrical load. This study es-
tablishes a proper learning rate and the number of hidden layers in neural networks for
forecasting the electrical load demand using the PSO algorithm. Using these altered pa-
rameters, the neural network is then utilized to forecast the short-term load demands. This
methodology used a three-layer feed-forward neural network with back propagation and
an updated global best PSO algorithm. However, beyond the simple and min-max scaling
approaches, Reference [6] proposes two novel data pre-processing techniques for short-
term load forecasting utilizing artificial neural networks. The two main pre-processing
methodologies proposed to focus on the importance of specific neural network input vari-
ables in connection to output variables, yielding better prediction results than previous
methods. This strategy offers better results in terms of “Mean Squared Error (MSE)”,
“Mean Absolute Error (MAE)”, and “Mean Absolute Percentage Error” when compared to
previous studies using data from the interconnected system in Greek. Later in [7], the use
of an artificial neural network for load forecasting is discussed. Due to changes in the load
profile on weekdays and weekends, neural network training for weekdays and weekends
was performed independently for better forecasting performance. As a result, forecasting
for weekdays and weekends is performed independently. However, in [8], an open-loop
environment with actual load and weather data is used for training the ANN and then
deployed in a closed-loop environment with the projected load as the feedback input to
create a forecast. Unlike other artificial neural network-based forecasting methods, the own
output of the proposed method is used as an input to increase the accuracy, essentially
creating a load feedback loop and lowering the reliance on external inputs. A new approach
for short-term load demand forecasting is proposed in [9]. For improved accuracy, this
method was built by integrating a memory network with a convolutional neural network.
Later in [10], the application, benefits, and limitations in power consumption of short-term
forecasting approaches and electric energy consumption in microgrids are discussed. Two
strategies are used to obtain the short-term load forecasts: artificial neural networks and a
data management based group method are proposed. To predict short-term load demand in
microgrids, Reference [11] suggested a dragonfly algorithm-based support vector machine
technique. Empirical mode decomposition, particle swarm optimization (PSO), and adap-
tive network-based fuzzy inference systems are used in a hybrid approach for short-term
load forecasting in microgrids. The proposed method decomposes the difficult load data
series into a set of many intrinsic mode functions and a residue using the empirical mode
decomposition algorithm and PSO algorithm to optimize an adaptive neuro-fuzzy inference
system (ANFIS) model for each intrinsic mode function component and the residue [12].
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A hybrid methodology for forecasting very short-term loads in microgrids, genetic
algorithms, particle swarm optimization, and adaptive neural fuzzy inference systems are
all used in the suggested method [13]. Later in [14], the authors used an adaptive fuzzy
model to tackle the problem of short-term load forecasting for a day ahead to transfer
information between different locations. The suggested solution divides daily load profile
predictions into smaller, easier sub-problems, each of which is handled separately using a
Takagi-Sugeno fuzzy model. This choice is made in order to solve smaller sub-problems
more effectively, resulting in enhanced forecasting accuracy. A novel methodology is
proposed in [15] for identifying and measuring the impact of important components in the
energy demand forecasting model on the Mean Absolute Percentage Error (MAPE) criterion
and error performance. The support vector machine approach, the random forest regression
method, and the long short-term memory neural network method are three commonly used
machine-learning methods for load forecasting discussed in [16], as well as their features
and uses. These approaches’ properties and applicability are studied and compared. A
fusion forecasting strategy and a data preprocessing technique are proposed for improving
forecasting accuracy by combining the advantages of these methods. On a building-by-
building basis, eight techniques for day-ahead electrical load estimations at the grocery
store, school, and home are compared in [17]. Machine learning and statistics were utilized
to compare these methods, and a median ensemble was employed to combine the different
forecasts. Reference [18] describes a short-term load forecasting system that employs a
comparable day strategy to predict power demand 24 h in advance, as well as long short-
term memory and wavelet transform to improve forecasting accuracy. A short-term power
load forecasting approach based on the modified exponential smoothing grey model is
presented in [19] to increase the prediction accuracy. Using grey correlation analysis first
determines the major component affecting the power load. Second, the smoothed sequence
is used to create a grey prediction model that agrees with the exponential trend and has
an optimal background value. Later in [20], the load is divided into seven time periods
using a regional load characteristic law, and a time-segment Back Propagation (BP) neural
network model is developed. Moreover, in [21], a thorough examination of forecasting
models is performed to determine which model is best suited for a specific instance or
scenario. The comparison was based on 113 separate case studies described in 41 academic
journals. Timeframe, inputs, outputs, scale, data sample size, error kind, and value have
all been considered as comparison criteria. In [22], the mathematical model is constructed
using a machine learning neural network intelligence algorithm in this study, and the
optimization is enhanced from the perspectives of data preparation, network structure
selection, and learning algorithm. Furthermore, short term load forecasting in a microgrid
(MG) is performed using hybrid machine learning methods [23]. The suggested model
combines Support Vector Regression (SVR) and Long Short-Term Memory (LSTM). The
proposed method is applied to data from a rural MG in Africa to forecast the load demand.
The input variables are factors that influence the MG load, such as varied household kinds
and commercial entities, whereas the target variables are load profiles. To anticipate electric
loads, an SVR model with an immunity algorithm (IA) is presented in [24] and the SVR
model parameters are determined using the immunity algorithm. Later, different state-
of-the-art ML techniques have been applied in [25] to examine their performance. These
include logistic regression (LR), support vector machines (SVM), naïve Bayes (NB), decision
tree classifier (DTC), K-nearest neighbor (KNN), and neural networks (NNs). The primary
goal of this work is to provide a comparison of machine learning methods for short-term
load forecasting (STLF) in terms of accuracy and forecast error. However, authors in [26]
proposed the prophet model, which uses both linear and non-linear data to predict original
load data, although there are still some residuals that are considered non-linear data.
These residuals (non-linear data) are then trained using long short-term memory (LSTM),
and both the Prophet predicted data and LSTM are then trained using Back Propagation
Neural Network (BPNN) to improve prediction accuracy. Later, to predict daily energy
consumption, Reference [27] investigates the performance of three machine learning models
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(SVR, Random Forest, and Extreme Gradient Boosting (XGBoost)), three deep learning
models (Recurrent Neural Networks (RNNs), Long Short-Term Memory (LSTM), and
Gated Recurrent Unit (GRU)), and a classical time series model (Autoregressive Integrated
Moving Average (ARIMA)).

In the above-discussed literature, the researchers used different machine learning
forecasting methods to forecast the load demands limited to single microgrid cases. At the
same time, many researchers suggested that machine learning algorithms are preferable for
short-term and very short-term load forecasting. So, this article forecasts a 24-h day-ahead
load demand using several machine learning methods, such as linear regression, support
vector machines, long short-term memory, and artificial neural networks (ANN). To test the
effectiveness of these methodologies in predicting short-term load demands in a microgrid
cluster, several measures such as “root mean square error”, “R-squared”, “mean square
error”, “mean absolute error”, “mean absolute percentage error”, and calculation time are
computed. The following are some key contributions of this article:

1. Cluster microgrids are proposed by interconnecting neighborhood microgrids.
2. Linear regression (quadratic), support vector machine, long short-term memory, and

artificial neural networks machine learning algorithms are implemented for day-ahead
load demand forecasting in cluster microgrids.

3. Levenberg–Marquardt optimization algorithm-based ANN model is proposed for
effective load day-ahead load demand forecasting in the cluster microgrids.

Based on the objective discussed above, the rest of the article is structured as follows.
Section 2 presents the layout of cluster microgrids, Section 3 provides various machine
learning algorithms, Section 4 summarizes the results and findings, and Section 5 concludes
with the article outcomes.

2. Description of the Proposed Cluster Microgrids

The cluster microgrids is also known as the interconnected microgrid system and is
formed by interconnecting four neighborhood microgrids, as shown in Figure 1. It shows
the layout of the “Cluster Microgrid” system considered for the study.

Figure 1. The architecture of cluster microgrid (single line diagram).

The proposed system is separated into two areas: area-1 and area-2, both of which
are deemed interoperable inside the cluster. Area-1 is formed by connecting Microgrid-
1 (Residential Building) and Microgrid-2 (Software Building) and area-2 is formed by
connecting Microgrid-3 (Academic Institute Building) and Microgrid-4 (Manufacturing
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Industry Building) in the selected location. These interconnected and interoperable areas
are further integrated into the conventional grid through the Common Coupling Point.
Each area in the cluster microgrids is equipped with renewable sources which are available
freely in that location and also consists of two microgrids with local agent controllers of
that building and an intelligent forecaster with a Real-Time Data (RTD) measurement block.
The interrelated cluster microgrid is considered in such a way that it has to operate in both
self-standing modes and also in grid-related modes. The RTD block collects the real-time
information on solar temperature, irradiance, speed of the wind turbine, and predicted load
demand from the selected location. The output data from the RTD block is applied to the
corresponding intelligent predictor for forecasting. Forecasted load demand information
of the cluster microgrid is applied as an input for the energy management system to
function effectively. Correspondingly, the energy management system produces the control
signals to the circuit breaker to import or export based upon the energy needs. The energy
management system in this architecture is designed to make the energy transactions during
excess/deficit power conditions to/from the neighborhood area or utility grid. However,
the complete modelling of all renewable sources and constituents is given in [28]. Table 1
contains the information on various parameters considered for the simulation of the cluster
microgrid system.

Table 1. Typical values of components used in the proposed system [29].

Parameter Typical Ratings Units

Electric Charge 1.6 × 10−19 Coulomb
Boltzmann’s Constant 1.3805 × 10−23 Joule/Kelvin
Energy Gap 1.11 eV
Base power wind turbine 1100 VA
Rotor Efficiency 0.45 –
Battery voltage 90 volt
Battery capacity 7.5 Ampere hour
Battery state of charge 100% –
Battery response time 50 sec
Temperature of fuel cell stack 342 kelvin
Faradays Constant 96,484,600 –
Gas Constant 8314.656 –
EMF of fuel cell (No load) 0.85 volt
No. of Cells in fuel cell stack 85 –
Utilization factor 0.85 –
H2-O2 flow ratio 1.268 –
Duty cycle of dc/dc converter 0.74 –
Inductor value of dc/dc converter 205 μH
Capacitor value of dc/dc converter 20 μF
Initial voltage across capacitor 220 volts
Switching frequency 75 kHz
Cutoff frequency of LPF 500 Hz
Damping factor of LPF 0.707 –
Length of transmission line 10 km
Power of a transformer 300 kVA
Frequency 50 Hz
Primary winding voltage (Line-Line) 420 volts
Resistance connected in primary winding 0.016 Ω
Secondary winding voltage (Line-Line) 420 volts
Resistance connected in secondary winding 0.016 Ω
Voltage of conventional grid 11,000 volts
Frequency of conventional grid 50 Hz
Source resistance of conventional grid 0.8929 Ω
Source Inductance of conventional grid 16.58 mH

Energy Management System (EMS)

An energy management system (EMS) is an information system on a software platform
that supports the functionality of generating, transmitting, and distributing electrical energy
at a low cost, according to the international standard IEC 61970. Energy management
in microgrids is a computer-based control method that ensures the best functioning of
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the system. In a variety of ways, a microgrid must optimize the usage of renewable
energy sources.

Machine interfaces and supervisory control and data acquisition systems (SCADA)
are two EMS components that carry out decision-making procedures [28,29]. This EMS is
implemented in the proposed cluster microgrid system to manage the resources connected
to all microgrids. This ensures that energy transactions are seamless and that grid frequency
is maintained under dynamic load conditions. The flowchart for implementing the EMS is
shown in Figure 2.

Figure 2. Flowchart of energy management system developed for cluster microgrids.

The economic benefit to the consumer can be enhanced by utilizing on-site distributed
generators and lowering reliance on the main grid. The EMS consists of a central controller
with direct commands to each distributed energy resource in each microgrid, data acquisi-
tion of microgrid operation characteristics and parameters, and information acquisition
from the forecasting system, all of which are used to optimize appropriate unit commitment
and resource dispatch in relation to the preset objectives. Three layers are incorporated into
the cluster microgrid system, namely an external layer that is dedicated to data collection
(live weather data, electricity consumption data, etc.), a prediction layer that is used to
predict weather conditions and local demand, and an operational layer that consists of
energy management algorithms, which are implemented to dynamically regulate energy
flow among the devices based on prediction data. The goals of this centralized control
algorithm are to forecast energy and electricity load, govern dynamic energy management,
and send commands to physical equipment to respond appropriately.

3. Machine Learning Techniques

3.1. Linear Regression (Quadratic)

The model is called linear regression, which optimizes the fit of functions to training
data by utilizing the squared Euclidean distance metric. In the simplest model y = λ1x+λ0,
a straight line with gradient λ1 is fitted to the data, and the intercept of y is λ0. The depiction
of a linear regression model is given in Equation (1) [30].
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To map the relationship between terms xi and xj, interaction terms xixj might be
used. If the effect xi on y is dependent on the other factors xj,j =i, this produces better
results than a simple linear regression given in Equation (2). In a quadratic model, a
quadratic function is fitted to the data and optimized using least squares. As a result, as
shown in Equation (3), the model has an intercept, linear terms, interactions, and squared
terms. Figure 3 shows the flowchart for implementing the linear regression model in the
MATLAB/Simulink environment.

y = λ0 + λ1x1 + λ2x2 + . . . + λnxn (1)

y = λ0 + λ1x1 + λ2x2 + . . . + λnxn + λ12x1x2 + . . . + λ1nx1xn + . . . + λ(k−1)kxk−1xk (2)

y = λ0 + λ1x1 + λ2x2 + . . . + λnxn + λ12x1x2 + . . .
+λ1nx1xn + . . . + λ(k−1)kxk−1xk + λ11x2

1 + . . . + λkkx2
k

}
(3)

Figure 3. Flowchart for implementing linear regression (quadratic) method.

3.2. Support Vector Machine

Machine learning approaches for data classification and regression, such as support
vector regression (SVR) and support vector machines (SVMs), have been used to forecast the
electric load demand. Vapnik proposed the support vector machines (SVMs) in 1995. The
SVR’s main premise is to map the original data “α” nonlinearly into a higher dimensional
feature space. Hence, the training dataset is given as {(αn, βn)}k

n=1, in which the input
vector is αn; the target vector is βn, and k is the total number of data patterns of the training
data. The target of SVM is to generate a decision function of SVM in Equation (4) by
minimizing the risk function given in Equation (5) [31].

μ = τ(α) = ω·ρ(α) + θ (4)

RR =
M
k

k

∑
i=1

L(βi, τ(α)) + 0.5‖ω‖2 (5)
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Therefore, the function value,

L(βi, τ(α)) =

{|βi − τ(α)| − ε; i f |βi − τ(α)| ≥ ε
0 i f |βi − τ(α)| < ε

.

The following is the terminology used in Equations (4) and (5):
ω—Weight vector used to control the model smoothness;
θ—“Bias” parameter;
ρ(α)—High-dimensional space which is mapped nonlinearly into input space α;

M
k

k
∑

i=1
L(βi, τ(α))—Empirical risk function;

0.5‖ω‖2—Regularization term used to determine function complexity;
ε—Tube size (user determined);
M—Regularized constant (user determined).
Two positive slack variables, namely φ, φ∗, are incorporated to signify the distance

between original values and the ε-associated tube’s edge values; then, Equation (5) is
converted to the form given in Equation (6).

min(RR) = M·
k

∑
i=1

(φi + φ∗
i ) + 0.5‖ω‖2 (6)

Subjected to the constraints

βi − ωαi − θ ≤ ε + φi; i = 1, 2, 3 . . . k
ωαi + θ − βi ≤ ε + φ∗

i ; i = 1, 2, 3 . . . k
φiφ

∗
i ≥ 0, i = 1, 2, 3 . . . k

Using primal Lagrangian, the dual optimization problem of the above primal one is
obtained as follows [31,32].

L
(
ω, θ, φi, φ∗

i , μi, μ∗
i , Ωi, Ω∗

i
)

= 0.5‖ω‖2 + M
(

k
∑

i=1

(
φi + φ∗

i
))

− k
∑

i=1
Ωi[ε + φi + ωρ(αi) + θ − βi]

− k
∑

i=1
Ω∗

i
[
βi + ε + φ∗

i − ωρ(αi)− θ
]

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(7)

The above Equation (7) is minimized by using variables ω, θ, φi, φ∗
i and is maximized

with respect to μi, μ∗
i , Ωi, Ω∗

i ; so, the following Equations (8)–(11) will be obtained.

∂L
∂ω

= ω −
k

∑
i=1

ρ(αi)(φi − φ∗
i ) = 0 (8)

∂L
∂θ

=
k

∑
i=1

(Ωi − Ω∗
i ) = 0 (9)

∂L
∂φi

= M − Ωi − μi = 0 (10)

∂L
∂φ∗

i
= M − Ω∗

i − μ∗
i = 0 (11)

Applying Kuhn–Tucker conditions to regression and Equation (6) gives dual La-
grangian by substituting Equations (8)–(11) into Equation (7). The following Equation
(12) is the dual Lagrangian function obtained by considering the kernel function as
K(αi, βi) = ρ(αi)ρ(αj)

150



Energies 2022, 15, 6124

ψ(Ωi, Ω∗
i ) =

k

∑
i=1

βi(Ωi − Ω∗
i )− ε

k

∑
i=1

(Ωi + Ω∗
i )− 0.5

k

∑
i=1

k

∑
j=1

(Ωi − Ω∗
i )
(

Ωj − Ω∗
j

)
K
(
αiαj

)
(12)

Subjected to the constraints
k

∑
i=1

(Ωi − Ω∗
i ) = 0; where

0 ≤ Ωi ≤ M; i = 1, 2, 3 . . . k
0 ≤ Ω∗

i ≤ M; i = 1, 2, 3 . . . k

The Lagrangian multipliers defined in Equation (12) must satisfy the equality con-
straint ΩiΩ∗

i = 0. Hence, the regression function is obtained as given in Equation (13).

τ(α, Ω, Ω∗) =
m

∑
i=1

(Ωi − Ω∗
i )K(α, αi) + θ (13)

Figure 4 shows the sequence of steps to be considered for implementing the support
vector machine model in the MATLAB/Simulink environment.

Figure 4. Flowchart for implementing support vector machine model.

3.3. Artificial Neural Networks (ANN)

In this article, as an application of artificial intelligence (AI), an artificial neural network
(ANN) is employed as an intelligent predictor. The concept of ANN was introduced several
years ago for different applications because of its capacity to forecast the data and also
to control the system response effectively. It has been demonstrated that ANN is one
of the effective solutions for all forms of real-time nonlinear issues. An artificial neural
network (ANN) is designed based on the interconnection of processing elements that carries
information. McCulloch et al. first introduced various neural network architectures, such
as single layer and multilayer feed-forward networks, which are explained as follows [33].
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3.3.1. Single Layer Feed Forward Network

In this schematic view, the network has two layers, namely the input and output
layers. The primary function of the input layer is to transmit signals to other neurons. The
neurons in the input layer receive the input signals in the input layer, and the output layer
neurons send output signals. In this type of structure, the signals are transferred from the
input layer to the output layer but vice versa is not possible, so it is named a feed-forward
network. The general architecture is as shown in Figure 5a, where x1, x2, x3 . . . xn are the
input layer elements and y1, y2, y3 . . . ym are the output layer elements, and wji are the
weights associated between the input and output layer.

Figure 5. Schematic view of (a) Single-Layer Feed Forward (FF)-ANN, (b) Multi-Layer FF-ANN [33].

3.3.2. Multi-Layer Feed Forward Network

This network consists of one input layer, one output layer, and single or multi hidden
layers. The processing elements for the hidden layer are hidden neurons only. Before
sending the inputs to the output layer, computation is performed by hidden neurons in
the hidden layer. The general schematic is shown in Figure 5b. Here, wji is the weight that
links input and hidden layers and wkj is the weight that links hidden and output layers.

Figure 6 depicts the flowchart of the intelligent predictor, i.e., artificial neural network
(ANN), which is to be implemented in the Simulink environment. ANN is very flexible
and can be easily adaptable to all complex nonlinear problems. The following are the steps
to be taken for training the ANN with different weight updating algorithms:

• Select the input data, such as temperature, Diffuse Horizontal Irradiance (DHI), wind,
and loads from selected locations;

• Select the number of hidden layers;
• Select proper active function for hidden and output layers.

For all feed-forward (FF) networks, the relationship between inputs, hidden, and
output samples are obtained from Equations (14) and (15).
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Figure 6. Flowchart for implementing artificial neural networks.

ψk = ζn

(
h

∑
j=0

ω(n)θ j.ρj

)
(14)

where, ρj = ζn−1

(
N

∑
i=0

ω(n−1)jiμi

)
(15)

Here, N is the input layer dimension, h- is a hidden layer dimension, k is the output
layer dimension, ω(n)θ j is the output layer weight, ω(n−1)ji is the hidden layer weight, and
ζn is the activation function used for the feed-forward neural network.

4. Results’ Validation and Discussion

4.1. Day-Ahead Load Demand Forecasting Using Linear Regression, Support Vector Machine, and
Artificial Neural Networks

The goal of this work is to determine the best day-ahead load demand forecasting
solution in cluster microgrids. We gathered data on solar and wind factors from Vijayawada
city in the state of A.P., India, with a “location ID” of 44665, a latitude of −16.65◦, and a
longitude of −80.65◦ [34,35]. Figure 7a–d shows the characteristics of the actual dataset,
such as solar irradiance, temperature, wind speed, and the electric load consumption in
a specified location for one month from 1 January 2019 to 31 January 2019. Test data are
considered for the period from 10 January 2019 to 16 January 2019. Our job is to calculate
daily, weekly, and monthly electricity usage by predicting consumption for each hour of
the day. Machine learning algorithms anticipate the future value of a time series data
collection by discovering correlations between historical data attributes and using the
revealed associations to forecast the future value.

Pre-processing is essential for improving data quality and the effectiveness of ma-
chine learning algorithms. In each machine learning (ML) model, normalization and data
transformation are two common pre-processing procedures. The variables in a cluster
microgrid dataset are spread across various ranges, resulting in a bias favoring values with
greater weights, lowering the effectiveness of the framework. A zero-mean normalization
technique is employed in the study for data normalization on the load and temperature
variables because attribute normalization improves the convergence rate and numerical
stability of NN training.
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Figure 7. Characteristics of data considered in the specified location: (a) solar irradiance, (b) solar
temperature, (c) wind speed, and (d) actual values of power.

Data must be quantifiable because machines process them using mathematical calcu-
lations. Data encryption is performed during data pre-processing, which converts quasi
inputs to numeric inputs before giving them to ML frameworks because the majority of the
dataset contains both category and numerical information. The data are then separated into
training and testing datasets. The training dataset is used to create the machine learning
algorithms, which are then tested against a new dataset to see how well they perform.
In this study, 30% of the dataset is used to evaluate the performance of the developed
ML algorithms, whereas 70% is used to comprehend the ML algorithms [25]. The “MAT-
LAB/Simulink software 2021a” is used to model the proposed cluster microgrid and also
to execute the machine learning algorithms.

In this work, we have obtained the real-time information of solar temperature, irradi-
ance, and wind speed in the two interoperable areas at the abovementioned location and
then obtained the loads in area1 and 2 concerning the real-time values, which are then
applied as four inputs to the intelligent predictor to forecast the load demand in the next
30 days; then, the total estimated forecasted power at the PCC of the cluster microgrid is
given to the EMS of the system. The EMS then generates control signals to export/import
power to/from the central utility grid.

The stress on the electrical grid is lowered as a result of providing consumers with
more reliable and efficient power. Figure 8 shows the performance plots of various machine
learning algorithms used in this work for day-ahead load demand forecasting for the
aforesaid period considered for the study. The plot is drawn by taking 120 data samples on
the x-axis and the predicted load on the y-axis.
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Figure 8. Performance plots showing the accuracy of predicted values with (a) Linear Regression
(quadratic), (b) Support Vector Machine, and (c) Artificial Neural Network models.

The actual and predicted values are shown in the plot and also error values are marked
with dashed lines. From the plot, it is observed that the performance of the neural network
regression model gives more accurate load demand forecasted values when making the
comparison with the remaining LR (quadratic) and SVM models. A residual measures how
far a point is vertically from the regression line. To visually confirm the correctness of the
machine learning model, we must use residual plots. Plotting all residual values across
all independent variables can be tricky, so we can either make separate plots or use other
validation statistics, such as adjusted R2 or MAPE scores.

So, Figure 9 shows the typical residual plots of all the machine learning methods
used. Curve fitting is described as the model that provides the greatest fit to the specific
curves in one’s dataset in regression analysis. Linear connections are easier to fit and
interpret than curved variable relationships. We use root mean square error (RMSE),
R-squared, mean square error (MSE), mean absolute error (MAE), mean absolute percentage
error (MAPE), and time of computation metrics to assess the prediction accuracy of each
machine learning model in all cases. The forecasting error metrics are obtained as given in
Equations (16)–(20).

RMSE =

√√√√√ m
∑

τ=1

(
λτ − λ̂τ

)2

m
(16)
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MSE =
1
m

m

∑
τ=1

(
λτ − λ̂τ

)2

(17)

MAE =
1
m

m

∑
τ=1

∣∣λτ − λ̂τ

∣∣ (18)

MAPE =
1
m

m

∑
τ=1

∣∣λτ − λ̂τ

∣∣
λτ

(19)

R2 = 1 − ∑
(
λτ − λ̂τ

)2

∑
(
λτ − λτ

)2 (20)

where m is the number of data points, λτ are the actual values, λ̂τ are the forecasted values,
and λτ are the mean values.

Figure 9. Residual plots of (a) Linear Regression (quadratic), (b) Support Vector Machine, and
(c) Artificial Neural Network models.

Figure 10 shows how the data are fitted for perfect load forecasting using machine
learning algorithms. In this, we observed how well the ANN is trained to give the best
accurate results. Table 2 gives the comparison of different metrics obtained during the
day-ahead load demand forecasting with the use of machine learning algorithms, such
as linear regression [30], support vector machine [25,31,32], and artificial neural networks.
Later, these results are compared and verified with the time series long short term memory
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(LSTM) forecasting method [36]. Design parameters of the LSTM method are given in
Appendix A. The results show that the artificial neural network regression model effectively
forecasts day-ahead load demands in cluster microgrids. So, we propose the ANN is the
best machine learning technique for forecasting the day-ahead load demands in cluster
microgrids. The performance of various machine learning algorithms considered for the
study can be viewed Figures 8–10 by considering performance metrics. However, the
forecasted values are shown in Figure 11a, which are obtained with respect to the actual
values. Similarly, the area plot is given in Figure 11b.

Figure 10. Plot fitting of predicted data and observations with (a) Linear Regression (quadratic),
(b) Support Vector Machine, and (c) Artificial Neural Network models.

Table 2. Comparison of performance metrics computed for LR (quadratic), SVM, ANN, and LSTM.

Parameter LR (Quadratic) [30] SVM [25,31,32] LSTM [36] ANN (Proposed)

RMSE 736.68 438.54 1456.3 426.04
R-squared 0.37 0.78 0.85 0.79
MSE 5.427 × 105 1.9232 × 105 2.1208 × 106 1.8151 × 105

MAE 621.19 235.97 182.94 131.72
MAPE 26.34% 21.52% 42.35% 13.92%
Computation Time (s) 1.8124 0.9999 25 2.829
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(a)

(b)

Figure 11. Cluster microgrid load profile plots. (a) Actual vs. forecasted load demands with LR
(quadratic), SVM, ANN and LSTM. (b) Area plot with LR (quadratic), SVM, ANN, and LSTM.

4.2. Identification of Best Optimization Algorithm of Neural Networks for Effective Forecasting

The discussion in the previous Section 4.1 shows that the artificial neural network
gives fruitful results in day-ahead load demand forecasting. Hence, in this section, we
identified the best optimization algorithm to propose for neural networks for effective
functioning. The three optimization algorithms, viz. (1) Levenberg–Marquardt (LM)
algorithm, (2) Bayesian Regulation (BR) algorithm, and (3) Scaled Conjugate Gradient
algorithm are considered for training the neural networks.

4.2.1. Levenberg–Marquardt (LM) Algorithm

The alternative name for the Levenberg–Marquardt (LM) algorithm is the “Damped
Least Square” method. It is particularly designed to work based on the loss function,
which is expressed as the sum of squared errors. The approximated hessian matrix is
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obtained by using the Jacobean matrix and gradient vectors, which are obtained using the
following Equations (21) and (22). Jacobean matrix is obtained with the loss function and is
given by [33].

Jmn =
∂Em

∂Wn
(21)

where m = 1, 2, 3, . . . , i; n = 1, 2, 3, . . . , j; the number of instances in the dataset is “i” and
the number of parameters in the network is “j”. The gradient vector is obtained as follows,

Hf ≈ 2JT ·J + λI (22)

The further approximated Hessian matrix is obtained from Equation (23),

W(r+1) = W(r) −
(

J(r)T ·J(r) + λ(r)·I
)−1·

(
2·J(r)T ·E(r)

)
; r = 0, 1, 2, 3 . . . (23)

4.2.2. Bayesian Regulation (BR) Algorithm

The Bayesian Regulation (BR) technique is more efficient than typical backpropagation
methods and is based on Bayes’ theorem. The nonlinear regression relations are translated
to second-order linear regression-based mathematical equations during the BR process. The
most difficult part is deciding on absolute fitting values for the function parameters. The BR
framework in ANN works by interpreting provided network parameters probabilistically,
which differs from typical training approaches. This chooses a set of weights based on the
error function minimization. However, in the BR method, a performance function given in
Equation (24) is utilized to find the error, or the difference between real and anticipated
data, throughout the training phase. Regularization adds an extra term and function to
a BR method to achieve smooth mapping, which uses a gradient-based optimization to
minimize the objective and performance function as provided in Equation (25). To address
the additional noise present in the targets, the posterior distribution of weights of the neural
network will be modified as needed after the data are taken for training [33].

fn = μt(τ|ω, a) +
1
n

p

∑
x=1

(αx − βx)
2 (24)

fn = Ω·μt(τ|ω, a) + Ψμm(ω/a) (25)

Here, fn is performance function, μt is network error values (sum of squares), τ is
training set of input and output targets, a is an architecture of neural network which consists
of information about the number of layers and their units, μm is network weights (sum of
squares), Ψμm(ω/a) is weight decay, and Ψ is a rate of decay.

4.2.3. Scaled Conjugate Gradient (SCG) Algorithm

M. Hestenes and Eduard S. created scaled conjugate techniques. These are primarily
used to solve linear equations. In conjugate gradient methods, there are numerous sub
methods. One of these sub methods is the SCG algorithm. Constrained optimization, curve
fitting, and more uses of the SCG algorithm can be found. It uses feed-forward artificial
neural networks. These approaches solve when all errors are inside the range of anticipated
values. The calculation of the direction of the weights, which is practically difficult, is the
most important component of the conjugate methods. Equations (26) and (27), respectively,
are the training data and the parameter vector functions. The main drawback of the SCG
technique is that it does not supply any data for calculating and inverting the Hessian
matrix [33].

Sr+1 = Gr+1 + Sr·αx (26)

Wr+1 = Wr+1 + Sr·βx; r = 1, 2, 3 . . . (27)

where α is SCG parameter, β is the training rate, So is initial direction vector, and Wo is the
initial parameter vector. The performance in terms of best validation of the ANN connected
in cluster microgrid is attained at epoch 53 with the LM algorithm, at epoch 259 with the BR
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algorithm, and at epoch 29 with the SCG algorithm, as shown in Figure 12. After training a
feed-forward neural network, the error histogram is a histogram of errors between target
and predicted values. These error figures can be negative because they represent how
expected values depart from target values. The number of vertical bars that appear on the
graph is referred to as bins. Here, the entire error range is broken down into 20 smaller
bins. The number of samples from your dataset that fall into each category is shown on the
Y-axis. The error histogram and also the training states of all optimization algorithms used
to train ANN are shown in Figures 13 and 14.

Figure 12. Performance plots of ANN with (a) Levenberg–Marquardt (LM) algorithm, (b) Bayesian
Regulation (BR) algorithm, and (c) Scaled Conjugate Gradient (SCG) algorithm.

160



Energies 2022, 15, 6124

Figure 13. Error histogram plots of ANN with (a) Levenberg–Marquardt (LM) algorithm, (b) Bayesian
Regulation (BR) algorithm, and (c) Scaled Conjugate Gradient (SCG) algorithm.
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Figure 14. Training state plots of ANN with (a) Levenberg–Marquardt (LM) algorithm, (b) Bayesian
Regulation (BR) algorithm, and (c) Scaled Conjugate Gradient (SCG) algorithm.
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In terms of data training, validation, and testing the values generated by regression
demonstrates the relationship between target samples and output samples. If R = 1 on the
regression Figure 15, the line is angled at 45 degrees to the x-axis, suggesting that the target
and output are the same. When the output sample and the target values are closely related,
the value of “R” may be one. If the ANN regression values for all examples are greater
than 0.95, the curve fitting is considered to be reasonably valid. From Table 3, it is observed
that in all the cases of regression analysis, Levenberg–Marquardt optimization algorithm
plays a dominant role. Hence, we proposed LM-based ANN for forecasting day-ahead load
demands in cluster microgrids. Actual and forecasted values of day-ahead load demand
in the cluster microgrid with different optimization algorithms based on ANN are shown
in Figure 16. From the results, it is observed that ANN with the Levenberg–Marquardt
optimization algorithm gives fruitful results; hence, we proposed LM algorithm-based
ANN for day-ahead load demand forecasting.

Figure 15. Regression plots of ANN with (a) Levenberg–Marquardt (LM) algorithm, (b) Bayesian
Regulation (BR) algorithm, and (c) Scaled Conjugate Gradient (SCG) algorithm.
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Table 3. Quantitative regression analysis of various optimization algorithms of ANN.

Name of the Algorithm Training Validation Test All MSE

Levenberg–Marquardt 0.95834 0.9918 0.991 0.96858 68,722
Bayesian Regulation 0.95618 – 0.94258 0.95386 75,811

Scaled Conjugated Gradient 0.82647 0.89995 0.82067 0.83899 238,292

Figure 16. Forecasted load demand plots of ANN with Levenberg–Marquardt (LM) algorithm,
Bayesian Regulation (BR) algorithm, and Scaled Conjugate Gradient (SCG) algorithm.

In terms of data training, validation, and testing, the values generated by regression
demonstrate the relationship between target samples and output samples. If R = 1 on the
regression in Figure 15, the line is angled at 45 degrees to the x-axis, suggesting that the
target and output are the same. When the output sample and the target values are closely
related, the value of “R” may be one. If the ANN regression values for all examples are
greater than 0.95, the curve fitting is considered to be reasonably valid. From Table 3, it is
observed that in all the cases of regression analysis, the Levenberg–Marquardt optimization
algorithm plays a dominant role. Hence, we proposed LM-based ANN for forecasting
day-ahead load demands in cluster microgrids. Actual and forecasted values of day-
ahead load demand in the cluster microgrid with different optimization algorithms based
on ANN are shown in Figure 16. From the results, it is observed that ANN with the
Levenberg–Marquardt optimization algorithm gives fruitful results. Hence, we proposed
LM algorithm-based ANN for day-ahead load demand forecasting.

5. Conclusions

With the rise of the smart grid, load forecasting is becoming more crucial. As a result,
predicting the electrical load with high precision is a difficult assignment. The non-linearity
and volatility of real-time energy consumption make it challenging to forecast load demand
and consumption. To address this issue, multiple machine learning approaches, such as
linear regression (LR), support vector machine (SVM), Long Short-Term Memory (LSTM),
and artificial neural networks (ANN) are implemented in this article to estimate electric
load demand forecasting in the cluster microgrid context. This work discovered the best
models to perform day-ahead load demands by reviewing the validation results for the
provided models. This encompasses both the accuracy of their forecasts and the low
computational effort required to fit the models and make the predictions. The following
are the salient outcomes of the proposed work in this article:
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� All machine learning algorithms are compared in terms of performance by computing
several factors, such as root mean square error (RMSE), mean square error (MSE),
mean absolute error (MAE), and calculation time.

– Based on the findings, it was identified that artificial neural networks are the best
forecasting technique for day-ahead load demand forecasting. It outperforms
SVM and LR in terms of RMSE (426.04), MAPE (0.79), MSE (1.815 × 105), and
MAE (131.72), although the computation is high.

� Further, the ANN has also been evaluated using various optimization techniques,
including Levenberg–Marquardt, Bayesian Regularization, and Scaled Conjugate
Gradient algorithms, in order to determine the optimum algorithm for training ANN.

– According to the findings, the Levenberg–Marquardt algorithm produces good
results in terms of training, testing, validation, and error analysis.

Thus, this article concludes that the proposed ANN with the Levenberg–Marquardt al-
gorithm is an optimum choice for forecasting day-ahead load demand in cluster microgrids.
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Appendix A

Table A1. Parameters considered for time series long short term memory (LSTM) Forecasting Method.

Parameter Value

Maximum Epochs 200
Hidden Units 100
Gradient Threshold 1
Initial Learn rate 0.005
Learn rate Droop period 125
Learn rate Droop factor 0.2
No. of Records 120
Samples considered for training 96 (80%)
Samples considered for testing 24 (20%)
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Abstract: In this paper, we explain the design and implementation of an intelligent irrigation control
system based on fuzzy logic for the automatic control of water pumps used in farms and greenhouses.
This system enables its user to save water and electricity and prevent over-watering and under-
watering of the crop by taking into account the climatic parameters and soil moisture. The irrigation
system works without human intervention. The climate sensors are packaged using electronic
circuits, and the whole is interfaced with an Arduino and a Simulink model. These sensors provide
information that is used by the Simulink model to control the water pump speed; the speed of the
water pump is controlled to increase or decrease the amount of water that needs to be pushed by
the pump. The Simulink model contains the fuzzy control logic that manages the data read by the
Arduino through sensors and sends the command to change the pump speed to the Arduino by
considering all the sensor data. The need for human intervention is eliminated by using this system
and a more successful crop is produced by supplying the right amount of water to the crop when it
is needed. The water supply is stopped when a sufficient amount of moisture is present in the soil
and it is started as soon as the soil moisture levels drops below certain levels, depending upon the
environmental factors.

Keywords: intelligent control; irrigation system; fuzzy logic; automatic irrigation control system

1. Introduction

Agriculture plays an important role in the economy and is considered the backbone of
the economic systems of emerging countries. Agriculture has been linked to the production
of staple food crops for decades. To produce a successful crop, one must take into account
the process of irrigation and the amount of water that is being used. The amount of water
should only be that which is needed by the plants. Since water is one of the most precious
resources we have, we should use it wisely. In this paper, we discuss the implementation
of an intelligent control system based on fuzzy logic that, after considering the climatic
conditions, decides how much water should be given to the crop, and a successful crop is
produced if the right amount of water is supplied—not too much and not too little [1,2].

The fuzzy control system developed considers four input variables: soil moisture, solar
irradiance, air temperature, and air humidity—as all these factors affect the evaporation
rate of water from the soil [3–5]. By controlling the output variable of the fuzzy logic control
system [1,3], i.e., the pump voltage of the water pump using a pulse-width modulation
technique [6], we control the speed of the pump, which in turn results in the change in the
rate of water supply. This makes the system different from previous work as more input
variables are employed and a direct rule base is created based upon the relationship of each
input variable with the output variable [1,7–12].
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2. Fuzzy Logic Control System

A fuzzy logic control system is developed with the help of four blocks. The first is
fuzzification, which converts a crisp input value into a fuzzy value by assigning a degree
of membership to the input. Then, the second block is an inference engine that deduces the
fuzzy result from fuzzified inputs on the basis of the if–then rules block. The if–then rules
is the rule base that contains all the relevant combinations of inputs and outputs that are
designed by the user to denote a mathematical relationship between them [1,3–5,13]. On
the basis of membership functions, the fuzzified inputs and outputs are distributed into
different sets. The controller provides a crisp output that is derived from the fuzzy output
that the inference engine generated. This conversion of inference engine output from fuzzy
to crisp is done by the defuzzification process. Figure 1 shows a general fuzzy-logic-based
control system in the form of a block diagram.

Figure 1. Block diagram of a fuzzy logic control system.

Figure 2 shows the fuzzy inference system developed in MATLAB. Our fuzzy inference
system is designed using the MAMDANI approach of fuzzy inference. As a result, the
AND operator is realized by calculating the minimum, whereas the OR operator is achieved
by calculating the maximum [3,13–15]. Considering the four input variables, soil moisture,
solar irradiance, air temperature, and air humidity, the output variable, pump voltage, is
controlled based on the fuzzy rules defined in the MATLAB fuzzy rule base.

 

Figure 2. Fuzzy inference system.

We chose pump voltage as the output variable because the quantity of water required
in the soil can be varied by varying the DC pump’s terminal voltage since the pump speed
is directly related to the pump input voltage. To prove that by changing the DC pump’s
terminal voltage, the rate of flow of water can be changed; we conducted an experiment
in which the pump input voltage is changed manually, and at each voltage value the time
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needed to fill an empty mug is noted. The experimental data of pump voltage vs. pump
water output are shown in Table 1.

Table 1. Pump voltage vs. time taken to fill 500 mL.

S. No. Pump Voltage (Volts)
Time Taken to Push

500 mL (s)

1 2.0 106
2 2.5 78
3 3.2 54
4 4.0 41
5 5.0 33
6 6.0 29
7 7.0 24
8 8.0 22
9 9.0 20
10 10.0 18

2.1. Membership Functions

Each of the input variables is designed with three membership functions and the
output variable with five membership functions [1,16]. All input and output variables are
defined with the help of trapezoidal and triangular membership functions and linguistic
variables [17,18]. The triangular membership function and the trapezoidal membership
function were implemented solely for the sake of simplicity and for achieving good quality
control. According to Lotfi A. Zadeh, the simplest methods work the best because they are
intuitively clear and we can easily make use of our intuition and the mathematical formulas
together, but if we use complex functions, we can only rely on the formulas as they are
difficult to intuitively understand. This explanation is reasonable on the qualitative level
and the quantitative explanation is provided in the research [3,19].

2.1.1. Soil Moisture

The soil moisture input variable is defined with the help of three linguistic variables,
namely low, normal, and high, as shown in Figure 3. It ranges from 0 to 100 to denote
the percentage of moisture content in the soil. The membership function parameters are
given below:

• Low—trapezoidal membership function with params [−36 −4 20 35]
• Normal—triangular membership function with params [20 40 60]
• High—trapezoidal membership function with params [45 60 104 136]

Figure 3. Soil moisture membership function plot.

2.1.2. Solar Irradiance

The solar irradiance input variable is defined with the help of three linguistic variables,
namely dim, normal, and bright, as shown in Figure 4. It ranges from 0 to 1000 to denote
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the amount of solar irradiance incident on the soil w.r.t. watts per square meter. The
membership function parameters are given below:

• Dim—trapezoidal membership function with params [−360 −40 350 500]
• Normal—triangular membership function with params [350 500 675]
• Bright—trapezoidal membership function with params [500 675 1040 1360]

 

Figure 4. Solar irradiance membership function plot.

2.1.3. Air Temperature

The air temperature input variable is defined with the help of three linguistic variables,
namely cold, normal, and hot, as shown in Figure 5. It ranges from 0 to 50 to denote
the temperature of the air in degrees Celsius. The membership function parameters are
given below:

• Cold—trapezoidal membership function with params [−18 −2 17.5 22.5]
• Normal—triangular membership function with params [17.5 22.5 27.5]
• Hot—trapezoidal membership function with params [22.5 27.5 52 68]

 

Figure 5. Air temperature membership function plot.

2.1.4. Air Humidity

The air humidity input variable is defined with the help of three linguistic variables,
namely low, normal, and high, as shown in Figure 6. It ranges from 0 to 100 to denote
the percentage of moisture content in the air. The membership function parameters are
given below:

• Low—trapezoidal membership function with params [−36 −4 35 50]
• Normal—triangular membership function with params [35 50 70]
• High—trapezoidal membership function with params [52.5 70 104 136]
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Figure 6. Air humidity membership function plot.

2.1.5. Pump Voltage

The pump voltage output variable is defined with the help of five linguistic variables,
namely very low, low, normal, high, and very high, as shown in Figure 7. It ranges from
0 to 13 to denote the pump voltage in volts. The membership function parameters are
given below:

• Very low—trapezoidal membership function with params [−2.43 −0.271 2 3.3]
• Low—triangular membership function with params [2 3.3 5]
• Normal—triangular membership function with params [3.3 5 7]
• High—triangular membership function with params [5 7 10]
• Very high—trapezoidal membership function with params [7 10 11.1 13.2]

 

Figure 7. Pump voltage membership function plot.

2.2. Fuzzy Rules

Fuzzy rules are defined by taking into consideration how each of the input variables
affects the amount of water that the plant needs. First, we check the soil moisture starting
from high to low, then solar irradiance is checked starting from dim to bright, then air
temperature from cold to hot, and finally air humidity from high to low, as in this sequence
we can deduce that if soil moisture is high and solar irradiance is dim and air temperature
is cold and air humidity is high then, the need to supply more water to the soil is minimal,
and by permuting all the input variables in this order we can say that the water need is
increasing, as this is the lowest case. The total count of fuzzy rules that need to be designed
can be determined from the general formula for calculating the number of fuzzy rules,
which is by multiplying the number of membership functions for each input variable,
i.e., 3 × 3 × 3 × 3 = 81 [1,13].

We can verify that the rules defined by the user are correct by viewing the surface
graphs automatically generated by the MATLAB software after inputting all the rules, as
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per the deduction that the amount of water needed by the plant increases directly with
solar irradiance and air temperature, while it decreases with increases in soil moisture and
air humidity [13].

We can see that the pump voltage increases with an increase in solar irradiance and
air temperature, as shown in Figure 8, and the pump voltage decreases with an increase in
soil moisture and air humidity, as shown in Figure 9.

 

Figure 8. Surface graph of air temperature and solar irradiance vs. pump voltage.

 

Figure 9. Surface graph of soil moisture and air humidity vs. pump voltage.

3. Verification of Fuzzy Controller

To test the fuzzy controller, we designed a prototype model in Simulink that can be
used to test the fuzzy controller for a large set of input values for each input variable.
Figure 10 shows the model used for testing the fuzzy logic controller in Simulink. For each
input variable, a sine wave function block is used with different parameters to permute
every possibility as defined in the fuzzy rule base. For soil moisture, a sine wave with
50 amplitude and 50 bias is used to get a range of 0–100 as soil moisture will always be in
percentage. Solar irradiance is simulated as a sine wave of 500 amplitude and 500 bias to
get a range of 0–1000 as solar irradiance can range from 0–1000 watts per meter square.
Air temperature is simulated with the help of a sine wave with an amplitude equal to
25 and a bias of 25 to get a range of 0–50, which will be in degrees Celsius, and, finally, the
air humidity is the same as soil moisture as it will also be in percent. Each of the waves is
specified to engulf each other in all possible ways to get all the permutations of all input
variable values. Figure 10 shows the testing model of the system designed in Simulink
with the above specifications, Figure 11a shows the changing values of input variables
throughout the simulation, and the pump voltage result is shown in Figure 11b.
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Figure 10. Simulink model for testing fuzzy controller.

 
Figure 11. (a) Solar irradiance, air temperature, air humidity, and soil moisture input graph;
(b) voltage output graph.
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Test Results

According to Figure 11b for voltage output (simulation time is represented on the x-
axis and the value of the respective variable w.r.t. to its unit of measurement is represented
on the y-axis), the following observations were made:

• While moving from 20 to 30 on the x-axis, we can see that the voltage is decreasing and
this happens when solar irradiance is decreasing while soil moisture and air humidity
is increasing through the same value. Since soil moisture was almost at the peak and
solar irradiance was decreasing, the need for more water was eliminated and pump
voltage decreased to minimum.

• From 45–60 on the x-axis, we see that the voltage is increasing; this happens while the
solar irradiance is also increasing and soil moisture is decreasing. This also suggests
that more water is needed when soil moisture is low and solar irradiance is high.

• From 75–77, the voltage drops suddenly to around 6.7 volts; as solar irradiance
decreases below 400 watts per meter square, soil moisture starts increasing above 0
and air humidity is also increasing. Since there is little sunlight and air humidity is
high, the need for water is decreased.

• From 90–95, the voltage decreases as soil moisture increases.

From the above observations and Figure 11, we can clearly see the effect of each input
variable on the pump voltage. The pump voltage graph mostly resembles the soil moisture
graph but appears inverted, meaning that the soil moisture has the highest impact on the
pump voltage, followed by solar irradiance, then air temperature, and lastly air humidity.

4. Analysis of Fuzzy Controller

The fuzzy logic controller was designed with respect to controlling the soil moisture
content based on the instantaneous values of the pre-defined input variables that are soil
moisture, solar irradiance, air temperature, and air humidity. The pump voltage was
chosen as the output variable of the fuzzy controller because of the relationship between
pump voltage and the flow rate of water, controlling which is the main purpose of our
controller. Since the DC pump that was taken could be easily controlled by changing the
terminal voltage and thus changing its speed. Using the observations from the experiment
described above and in Table 1, the following mathematical equations can be written. Since
an increase in input voltage results in less time needed to fill the mug completely, we
can say that input voltage is inversely proportional to the time needed to fill the mug
completely and can be written in mathematical form as:

Input voltage ∝ 1/time taken to fill 500 mL (1)

and the rate of flow of water can be defined by:
Rate of flow of water = change in volume/time taken to fill 500 mL = (500 − 0)/time

taken to fill 500 mL,
The above equation can be rewritten as:

Rate of flow of water ∝ 1/time taken to fill 500 mL (2)

From Equations (1) and (2), we can say that the rate of flow of water is directly
proportional to the input voltage of the DC water pump.

Rate of flow of water ∝ Input voltage (3)

Mathematically, the relationship between the input variables that are soil moisture,
solar irradiance, air temperature, and air humidity and the pump voltage output variable
can be defined by:

Soil Moisture ∝ 1/Pump Voltage (4)

Solar Irradiance ∝ Pump Voltage (5)
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Air Temperature ∝ Pump Voltage (6)

Air Humidity ∝ 1/Pump Voltage (7)

These four equations can be proved by considering the effect of each input variable on
the soil moisture content:

1. Equation (4) is a general equation considering that increasing soil moisture content
indicates less need for water and, thus, the inverse relationship between the variable
soil moisture and pump voltage;

2. When the value of the solar irradiance increases, it increases the rate of evaporation,
and, thus, to maintain the moisture content of the soil, the rate of flow of water from
the pump needs to be increased, and, thus, the pump voltage is increased;

3. Air temperature acts similarly as solar irradiance acts upon the moisture content of
the soil and, thus, the direct relationship is formed;

4. Air humidity is defined by the inverse relationship because when the moisture content
of the air is low the evaporation rate of water in the soil is increased as the dry air
tends to absorb the moisture from the surface.

From Equations (4)–(7):

Pump Voltage ∝ Solar Irradiance × Air Temperature)/(Soil Moisture × Air Humidity) (8)

Equation (8) represents the mathematical model of the system.

4.1. System Response w.r.t Each Input Variable

The response of the fuzzy controller with respect to each input variable is analyzed in
the same way the above results are found. A test model is designed for each input variable
such as soil moisture, solar irradiance, air temperature, and air humidity. Each model is
run three times by considering the values of the remaining variables as:

1. Minimum water needed;
2. Maximum water needed;
3. At standard operating conditions.

4.1.1. Soil Moisture

According to Equation (4), the effect of soil moisture on the pump voltage should be
inversely proportional, and with an increase in the soil moisture value, the pump voltage
should be decreased. This can be validated by the following graphs. Figure 12a,b show the
graphs of soil moisture vs. time and voltage vs. time when all the other variables’ need
for water is at a minimum, respectively. When soil moisture is 0–20, we can see that the
pump voltage is constant (around 7.3 V). As the soil moisture value increases from 21 to
60, the pump voltage is decreased simultaneously to somewhere around 1 V and then is
maintained there as the soil moisture increases further to 100 and back to 60.

As soon as the soil moisture starts decreasing below 60, the pump voltage is increased
gradually to 7.3 V. The pump’s voltage is not increased above 7.3 V because the need for
water is at minimum by the other variables such as solar irradiance and air temperature
being set to minimum and the air humidity being set to maximum, signifying no effect
of these variables on the evaporation rate of water from the soil. This is with respect to
the fuzzy controller only and when the hardware model is connected to it the output will
change significantly as the minimum voltage our system can work on is 3.3 V. So, as soon
as the fuzzy controller outputs a value below 3.3, the actual value becomes 0 and the DC
pump is shut down.
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Figure 12. (a) Soil moisture vs. time; (b) voltage vs. time at minimum water need; (c) voltage vs. time
at maximum water need; (d) voltage vs. time at standard operating conditions.

Similarly, considering that the need for water is at maximum w.r.t. to the other
variables, the effect of soil moisture on the pump voltage is defined by the graph shown
in Figure 12c, Considering the soil moisture value from Figure 12a. We can see that the
range of pump voltage has shifted from 1–7.3 V to 3.2–9.5 V, but it is still in accordance
with our Equation (7) as the voltage is increased when soil moisture decreases from 60–20
and vice versa. The range of pump voltage has changed slightly from 3.2–9.5 V to 2.2–9.2 V
at standard operating conditions, according to Figure 12d considering soil moisture value
from Figure 12a. To get the graph at standard operating conditions, we manually set solar
irradiance to 600.00 W/m2, air temperature to 25 ◦C, and air humidity to 50%. This slight
decrease in the range is due to a decrease in the solar irradiance value from 1000.00 W/m2

at max to 600.00 W/m2, while the graph is almost identical.

4.1.2. Solar Irradiance

According to Equation (5), the effect of solar irradiance on the pump voltage should
be directly proportional, and with an increase in the soil moisture value the pump volt-
age should also be increased [8]. This can be validated by the following graphs shown
in Figure 13.

Figure 13a,b show the graphs of solar irradiance vs. time and voltage vs. time, re-
spectively, when all the other variables’ need for water is at a minimum. When solar
irradiance is 0 to 400.00 W/m2, we can see that the pump voltage is constant (around
1.35 V). As the solar irradiance value increases from 400.00 W/m2 to 700.00 W/m2, the pump
voltage is increased simultaneously to somewhere around 3.4 V and then is maintained
there as the solar irradiance increases further to 1000.00 W/m2 and back to 700.00 W/m2.
As soon as the solar irradiance starts decreasing below 700.00 W/m2, the pump voltage is
decreased gradually to 1.35 V. The pump’s voltage is not increased above 3.4 V because
the need for water is at minimum by the other variables such as air temperature being set
to minimum and the air humidity and soil moisture being set to maximum, signifying no
effect of these variables on the evaporation rate of water from the soil.
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Figure 13. (a) Solar irradiance vs. time; (b) voltage vs. time at minimum water need; (c) voltage vs.
time at maximum water need; (d) voltage vs. time at standard operating conditions.

Similarly, considering that the need for water is at maximum w.r.t. to the other
variables, the effect of solar irradiance on the pump voltage is defined by the graph shown
in Figure 13c, Considering solar irradiance value from Figure 13a. We can see that the range
of the pump voltage has shifted from 1.35–3.4 V to 7.25–9.5 V, and it is still in accordance
with our Equation (5), as the voltage is increased when solar irradiance increases from
300.00–500.00 W/m2 and vice versa. The range of the pump voltage is changed slightly
from 7.25–9.5 V to 3.5–6.25 V at standard operating conditions, according to Figure 13d,
Considering the solar irradiance value from Figure 13a. To get the graph at standard
operating conditions, we manually set soil moisture to 50%, air temperature to 25 ◦C, and
air humidity to 50%. This slight decrease in the range is due to a decrease in solar irradiance
value from 1000.00 W/m2 at max to 600.00 W/m2, while the graph is almost identical.

4.1.3. Air Temperature

According to Equation (6), the effect of air temperature on the pump voltage should
be directly proportional, and with an increase in the air temperature value the pump
voltage should also be increased [8]. This can be validated by the following graphs shown
in Figure 14.

In Figure 14b, when the need for water is minimum because of other factors, then the
effect of air temperature can be neglected as the value of pump voltage is below 3.3 V and
the Arduino microcontroller will set the voltage to 0 V when below this level. Similarly,
considering that the need for water is at maximum w.r.t. to the other variables, the effect of
air temperature on the pump voltage is still negligible, as shown by the graph in Figure 14c.

From Figure 14d, we can see that the pump voltage changes according to Equation (6).
The effect of air temperature is observed in standard conditions. To get the graph at
the standard operating conditions we manually set solar irradiance to 600.00 W/m2, soil
moisture to 50 ◦C, and air humidity to 50%. The graph depicts a range of 3.6–6.1 V, while
between the range, the pump voltage is seen to be increasing when the air temperature
increases above 15 degrees Celsius and hits the maximum when the air temperature reaches
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27 degrees Celsius. Since between the range, the pump voltage increases with an increase
in air temperature, and Equation (6) is validated.

 

Figure 14. (a) Air temperature vs. time; (b) voltage vs. time at minimum water need; (c) voltage vs.
time at maximum water need; (d) voltage vs. time at standard operating conditions.

4.1.4. Air Humidity

According to Equation (7), the effect of air humidity on the pump voltage should be
inversely proportional, and with an increase in the air humidity value the pump voltage
should be decreased [8]. This can be validated by the following graphs shown in Figure 15.

Figure 15a,b show the graphs of air humidity vs. time and voltage vs. time, respec-
tively, when all the other variables’ need for water is at a minimum. This graph can be
neglected as the maximum voltage observed is less than 3.3 V. Similarly, considering that
the need for water is at maximum w.r.t. to the other variables, the effect of air humidity
on the pump voltage is defined by the graph shown in Figure 15c. This graph also does
not provide enough information as the range observed is only 0.4 V and, based on our
hardware resolution, it will be rounded off. From Figure 15d, we again observed that the
graph lies between an overall range of 0.3 V and the actual output will be rounded off. This
concludes that the effect of air humidity is negligible on the pump voltage.

The highest range observed from the above graphs was the effect of soil moisture on
pump voltage and the second highest was solar irradiance. The effect of air temperature and
air humidity is found to be negligible, while the graph of air temperature under standard
conditions showed some response. We can conclude that the highest priority was given to
soil moisture as it is also the control variable that we need to monitor, and then the second
is solar irradiance as it is the largest factor that affects the amount of water needed by the
soil, and the third and fourth are air temperature and air humidity, respectively. We can say
that the system is highly sensitive to change in soil moisture and then moderately sensitive
to change in solar irradiance, less sensitive to change in air temperature, and minutely
sensitive to change in air humidity.
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Figure 15. (a) Air humidity vs. time; (b) voltage vs. time at minimum water need; (c) voltage vs. time
at maximum water need; (d) voltage vs. time at standard operating conditions.

5. Proposed Model

For data acquisition, the Arduino microcontroller is used with different types of
sensors to collect the real-time readings of all the input variables. Arduino Nano is used for
the base of our system. Serial communication is established between Arduino and Simulink
to get all the input values and the output is then sent back to Arduino, which also controls
the input voltage of the pump [2,20–24]. Figure 16 shows all the relevant components and
their connectivity in the proposed model in the form of a block diagram.

Soil moisture is taken in by soil moisture sensor RC-A-4079, which comprises a probe
with two electrodes and one eight-pin integrated circuit. The two electrodes on the probe
act as a resistor with variable resistance (just like a potentiometer). The resistance of these
two electrodes changes relative to the quantity of water in the soil. The sensor determines
the soil moisture level by applying a voltage to the resistance and measuring the voltage
drop from the source [2,23,25–27]. Solar irradiance is calculated by using solar panel
characteristics as described in [28]; short-circuit current and solar panel temperature are
substituted in the formula:

GIsc = (GSTC/ISCstc) (ISC − μIsc(TC − TCstc)) (9)

where

GIsc = the solar irradiance calculated using the short-circuit current,
GSTC = the solar radiation in standard operating conditions = 1000 W/m2,
ISCstc = the short-circuit current in standard conditions (Appendix A),
ISC = the short-circuit current read from the sensor,
μIsc = the temperature coefficient for the short-circuit current (Appendix A),
TC = the measured temperature of the solar panel,
TCstc = the temperature of the solar panel at STC (298.15 K).

The short-circuit current of the solar panel is measured by short-circuiting the solar
panel terminals using a 5 V DC relay and then taking the current value from an INA219 cur-
rent sensor and the panel temperature from a thermistor attached to the solar panel [29–34].
Air temperature and air humidity are taken from a DHT11 sensor [23,26].

181



Energies 2022, 15, 7199

 
Figure 16. Block diagram of the control system.

All the values from the sensors are taken in by the Arduino and then sent to the
Simulink model (block parameters can be found in Appendix A), as shown in Figure 17,
with a serial receive block; solar irradiance is calculated by passing the panel temperature
and short-circuit current through a subsystem block, which comprises the logic to find
the solar irradiance value, as shown in Figure 18; input variables are passed to the fuzzy
controller block and the output is then sent to the Arduino using the serial send block. The
Arduino then changes the input voltage of the DC water pump using the PWM technique
and motor driver [6,35]. After changing the voltage of the DC water pump, a delay is
programmed into the Arduino to wait for 10 minutes and start again. All of these steps can
be summarized by the flow chart defined in Figure 19. The flow chart does not have a stop
block because the algorithm is designed to work recursively and keeps on repeating the
process of gathering sensor data and changing the speed of the water pump based on them.
The algorithm and the system were developed after extensive research to work efficiently
based on all the input factors and sensor modules [7,10–12,24,27,36]. The final working
model of the system is shown in Figure 20.

Figure 17. Simulink model.

182



Energies 2022, 15, 7199

Figure 18. Subsystem to find solar irradiance value.

Figure 19. Flow chart of the control algorithm.
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Figure 20. Working model of the system.

6. Results

The automatic irrigation control system is operated at different times during the day
from sunrise to before sunset on different days to obtain different input values from various
sensors to observe the change in output voltage and the pump’s water flow rate. The results
obtained are shown in Table 2.

Table 2. Results.

S.No.

Sensor Readings

Solar
Irradiance

(W/m2)

Fuzzy
ControllerOutput

(Volts)

Actual
Pump

Voltage
(Volts)

Soil
Moisture

(%)

Panel
Temperature

(K)

Short
Circuit
Current

(A)

Air
Temperature

(◦C)

Air
Humidity

(%)

1 0 294.18 0.500 22.70 57 662.61 9.36 9.4

2 85 294.70 0.496 23.00 56 628.72 2.73 0

3 22 297.29 0.326 29.74 37 330.76 7.24 7.2

4 34 293.76 0.247 30.20 57 469.03 5.65 5.7

5 89 297.29 0.897 26.00 49 821.53 3.44 3.5

6 100 294.80 0.504 22.79 58 629.98 2.70 0

7 55 295.22 0.498 22.10 59 600.49 4.12 4.1

8 84 293.13 0.273 21.10 60 528.21 1.85 0

9 4 293.45 0.314 21.79 57 545.68 8.93 9.0

10 90 297.71 0.753 26.79 50 673.42 3.40 3.4

According to Table 2, we observed that the input voltage of the water pump in-
creases based on the environmental values measured from the various sensors. We can
see that when soil moisture is measured to be 0% and 4%, the solar intensity ranges
from 545.68 W/m2 to 662.61 W/m2, the air temperature is approximately equal, which is
22.7 degrees Celsius, and the air humidity is 57%. This results in the fuzzy logic controller
giving the output of 9.36 V and 8.93 V, both of them being near 9 V, which is in the max-
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imum range of our system, providing the most water to the plant. As the soil moisture
value increases to 22% and there is a significant solar intensity of 330.76 W/m2 and the
air temperature increases to 29.74 degrees Celsius and the air humidity is decreased to
37%, then the fuzzy controller gives the output of 7.24 V, reducing the pump’s voltage from
before when there was no moisture in the soil.

We saw that the minimum voltage observed during the day was 1.85 V when soil
moisture was around 84% with a solar intensity of around 528.21 W/m2 and the air
temperature being 21.1 degrees Celsius and air humidity equaling 60%, Our system cannot
modulate the voltage to below 3.3 V, so it turns the pump off at this range indicating 0 V. At
soil moisture of 84% and 85%, we can see the solar irradiance values at 528.21 W/m2 and
628.72 W/m2, respectively. We can ignore the changes in air temperature and humidity as
they are much less. We saw that the fuzzy controller output changed from 1.85 V to 2.73 V
because of the increase in the value of solar irradiance. Now, when the soil moisture is
further increased to 90%, the value of solar irradiance is 673.42 W/m2, while comparing
this with the values of other variables at a soil moisture level of 85%, we saw a further
increase in the solar irradiance value, a 3.79-degree increase in air temperature, and a 6%
decrease in air humidity—all variables indicating more need for water. Thus, the fuzzy
controller output can be seen increasing to 3.4 V and the actual pump is switched ON.
The circuit diagram, the Arduino program and other supplementary materials can be
downloaded from github (link to github repository is mentioned in the supplementary
materials section below).

7. Conclusions

The automatic control system was developed using the fuzzy logic controller, which is
able to handle different values and to run and control the DC water pump’s input voltage
based on environmental factors like soil moisture, solar irradiance, air temperature, and
air humidity. By controlling the water flow rate, thereby controlling the soil moisture and
taking it as an input parameter, a closed-loop control system that is getting continuous
feedback is formed. This, in turn, saves water when sufficient moisture is present in the
soil and it is not required; also, the plant/crop is not overwatered and is provided with
only the sufficient amount of water that is required for optimal growth. The sufficient
amount required by the plant/crop is always dependent on the type of plant/crop and the
type of soil, and thus the pump voltage membership function values needs to be tweaked
for different types of plant/crop and soil. By automating the irrigation process, we also
achieved the prevention of under-watering of the plant/crop since the system would
automatically provide water to the plant/crop when it senses the need depending upon the
soil moisture and the various environmental factors incorporated in the system through
different sensors. In addition, our system uses solar panel characteristics to measure the
solar irradiance instead of using a pyranometer, which is expensive, or using commonly
available radiation sensors, which are not suitable to capture the radiation for the whole
spectrum. This solar irradiance measurement not only provides us with a better precision
while measuring solar irradiance but also reduces the cost of the system.

Supplementary Materials: The supplementary materials, such as the Arduino program (MAIN.ino);
the circuit diagram (Schematic_main_2022-01-08); the fuzzy inference system file for MATLAB
(Fuzzy_Controller.fis); the Simulink model (MASTER.slx). This can be downloaded at the follow-
ing link: https://github.com/TabTQ/Intelligent-Control-of-Irrigation-System-using-Fuzzy-Logic-
Controller.git (accessed on 16 August 2022).
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Appendix A

Solar panel specifications

ISCstc 1.163 A

μIsc 0.0681 AK−1

Simulink serial configuration block parameters

Baud rate 9600 bps

Data bits 8

Parity None

Stop bits 1

Byte order little-endian

Flow control None

Timeout 10

Simulink serial receive block parameters

Terminator CR/LF

Data size [1 5]

Data type Single

Block sample time 0.01

Simulink serial send block parameters

Terminator CR/LF
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Abstract: Renewable energy sources have power quality and stability issues despite having vast
benefits when integrated with the utility grid. High currents and voltages are introduced during
the disconnection or injection from or into the power system. Due to excessive inverter switching
frequencies, distorted voltage waveforms and high distortions in the output current may be observed.
Hence, advancing intelligent and robust optimization techniques along with advanced controllers is
the need of the hour. Therefore, this article presents an improved arithmetic optimization algorithm
and an offset hysteresis band current controller. Conventional hysteresis band current controllers
(CHCCs) offer substantial advantages such as fast dynamic response, over-current, and robustness
in response to impedance variations, but they suffer from variable switching frequency. The offset
hysteresis band current controller utilizes the zero-crossing time of the current error for calculating
the lower/upper hysteresis bands after the measurement of half of the error current period. The
duty cycle and hysteresis bands are considered as design variables and are optimally designed by
minimizing the current error and the switching frequency. It is observed that the proposed controller
yields a minimum average switching frequency of 2.33 kHz and minimum average switching losses of
9.07 W in comparison to other suggested controllers. Results are validated using MATLAB/Simulink
environment followed by real-time simulator OPAL-RT 4510.

Keywords: arithmetic optimization algorithm (AOA); conventional hysteresis band current controller
(CHCC); improved arithmetic optimization algorithm (IAOA); offset hysteresis band current controller
(OFHCC); particle swarm optimization (PSO)

1. Introduction

Global warming and climate issues are considerably increased due to the unfeasible
energy consumption of fossil fuel resources. By 2050, the global temperature is expected to
increase around 20 Celsius because of the emissions by non-renewable energy sources [1,2].
Economical and renewable energy sources (RESs) must be explored to reduce the worse
environmental impacts through effective actions. Various research works have been carried
out on RES methods in the last few decades to improve overall efficiency. According to the
International Renewable Energy Agency (IRENA) report, the cost of energy from renew-
ables has gradually decreased in the previous few years [3]. Many countries are installing
RESs in their power systems due to reduced power energy costs. The increase in urbaniza-
tion and growth of world industry has made power generation by RESs widespread.

The solar energy available for trapping changes throughout the day. The weather
parameters play a crucial part in the reliability of solar energy trapping [4]. The reliability
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of renewable energy technologies, reduction in carbon emissions, reduction in costs of
energy generation, and competitive nature of the market are the different reasons to adopt
the RESs in large proportions. The yearly consumption of natural gas and oil used in power
production will double by 2050 if world consumption increases linearly [5–7]. In 2017,
approximately 77% of new installations were based on the extraction of electric energy from
wind and solar energies [8]. In the period between 2010 and 2017, the cost of energy from
PVs was reduced by three-quarters due to technological advancement [9]. The cost of wind
energy generation has decreased by about half due to the reduction in wind turbine prices.

The advancement of PV technology throughout the globe is represented in two stages:
improvement in research and development and growth of PV projects [10]. The contribution
of research papers has increased considerably relating to the optimization techniques in PV
systems in the last few years. PV installation has improved due to the evolution of scientific
research articles. Thus, optimization techniques have a crucial role in the effectiveness and
reliability of photovoltaic systems.

Wind speed, solar radiation, and ambient temperature are the weather factors strongly
related to the PV optimization technique. Various mathematical models of PV technologies
are illustrated in [11]. The PSO technique is the most reliable and efficient algorithm for
trapping maximum PV performance and higher power outputs [12]. In terms of speed and
ability, the PSO algorithm reached positive impressions in the optimization method [13].
The key points of optimization of photovoltaic systems are varying convergence rates,
optimal scheduling operations, computational complexity, and accurate performance. Com-
pared to the conventional technique, the intelligent technique has proven more accurate
and robust because of precise convergence speed and calculation and the exploitation and
exploration to reach the global optimal solutions [14].

The deployment of different optimization techniques in photovoltaic systems and wind
turbines has increased the production capacity of RESs to meet the rise in energy demand in
the world market. In 2020, the total power-delivering capacity increased by 9% compared
to 2016 [15]. Since 2017, the renewable energy power production cost has significantly
decreased [16]. However, the deployment and development of RES technologies need
additional investment and policies that must be examined thoroughly [17]. In addition,
more awareness must be created about the quality and efficiency of using renewable energy.
Renewable energy is estimated as 70% of the whole world’s power generation capacity as
per the Global Report of 2019. A huge investment is being made worldwide for research
and development to improve the efficiency of PV systems. The intermittent nature of
renewable energy sources is the main drawback, but renewable energy proves more reliable
in operational parameters [18].

Metaheuristic optimization algorithms (MOAs) have been very popular in engineer-
ing applications. The reasons for this increasing demand are (i) avoidance of local op-
tima, (ii) simple and effective hardware implementation, (iii) derivation-free mechanisms,
(iv) flexible and simple structure and concepts, etc. The optimization problems are solved
by nature-inspired MOAs simulating physical or biological phenomena [19]. For the
achievement of the global optimum solution, various nature-inspired algorithms such as
particle swarm optimization (PSO) [20], grey wolf optimizer (GWO) [21], gravitational
search algorithm (GSA), teaching–learning-based optimization (TLBO) [22], and artificial
bee colony (ABC) algorithm [23] are applied in different areas of research. A mathematics-
based model known as the arithmetic optimization algorithm (AOA) technique [24] was
recently proposed to solve optimization problems. In some cases, the original AOA tech-
nique has some drawbacks such as local optima and premature coverage. The main goal of
this paper is to find the optimal values of the hysteresis bands and duty cycle. A hybrid
algorithm technique, i.e., an improved arithmetic optimization algorithm (IAOA) technique,
is proposed by combining the arithmetic optimization algorithm with particle swarm opti-
mization in this article. The drawbacks such as being trapped in fast convergence and local
optima of the traditional AOA technique are addressed by IAOA. Thus, IAOA may be used
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to improve the performance of AOA. In this article, some popular benchmark functions are
considered to prove the efficacy of the proposed IAOA technique over the AOA technique.

There are different current control techniques proposed for grid-tied inverter sys-
tems. Still, the hysteresis band current controller is easy to implement and has faster
current controllability compared to other current control methods. The interval between
the two consecutive switching actions varies within the power frequency cycle in most
PWM applications. Therefore, the switching frequency varies in time with conditions
and operation points. The increasing switching frequency causes an increase in switching
losses, EMF-related problems, and audible noise. An extra offset hysteresis band is added
over the existing two-level hysteresis band to develop an offset hysteresis band current
controller, which reduces the switching frequency to a lower value. The stress on inverter
switching is reduced, as this strategy uses the zero switching condition of the inverter. Con-
ventional hysteresis band current controllers do not consider the inverter zero switching
condition [25]. The merits of the OFHCC over the conventional HCC are shown in Figure 1.
The performance characteristics of grid-tied inverters basically depend on the controller
strategy [26]. The methods proposed in [27] are centered on the current control strategies
which include linear and nonlinear controllers. The linear controllers include repetitive
current (RC), proportional-integral (PI), and proportional-resonant (PR) controllers. On
the other hand, the nonlinear techniques include hysteresis current controllers, predictive
controllers, and dead-beat (DB) controllers [28].

Figure 1. Advantages of offset hysteresis band current controller (OFHCC).

The contributions and key highlights of the paper are as follows:

1. Design of a novel IAOA optimization technique for a microgrid-connected PV system.
2. Application of conventional and offset hysteresis band current controller in a PV-

based microgrid.
3. Realization of enhanced performance with an IAOA-based offset hysteresis band

current controller.
4. Establishment of the effectiveness of the proposed control algorithm in mitigating

harmonics from the grid current.
5. Comparative analysis of novel metaheuristic algorithm-based conventional and offset

hysteresis band current controllers with MATLAB/Simulink and OPAL-RT simulator
with linear and nonlinear loads.
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The architecture of the article is as follows: Section 2 describes the system modeling
i.e., PV module, single-phase PWM-VSI, proposed methodology, and reference current
technique. An analysis of different hysteresis current controllers is presented in Section 3.
Common benchmark functions are depicted in Section 4. A detailed analysis of the al-
gorithms along with respective pseudocodes is presented in Section 5. Finally, Section 6
demonstrates the features and validity of the proposed methodology through simulation
and experimental results.

2. System Modelling

2.1. PV Module Model

Various I-V characteristics are obtained for photovoltaic panels under fluctuating
solar irradiance and temperature. PV cells are generally modeled using the single and
double-diode models [29,30]. Due to its wide applicability and simplicity, the single diode
is used in various PV cell modeling applications [31]. The development of simulation
strategies requires precise details of power generation and behavior. The five unknown
parameters IPH, α, RP, RS, and IS can be illustrated as I = f(V, I) as shown in Equation (1).
PV cell modeling follows the circuit-based depiction of the PV module [32].

The quality of current flow in the PV panel is as follows:

IPV = IPH − IS

[
eq(VPV + IPVRS

∝KT ) − 1
]
−
(

VPV + IPV RS

RP

)
(1)

where IPV = output current of PV module (a), IPH = irradiance produced current (a),
IS = reverse saturation current (a), VPV = output of PV module (V), RS = series resistance
(Ω), RP = parallel resistance (Ω), q = charge of electron, K = Boltzmann constant,
T = operating temperature of PV module (K), and α = diode ideality parameter.

2.2. Modeling of Single-Phase PWM-VSI

Distributed power generation based on PV energy systems and wind mostly uses
grid-integrated VSIs as a fragment of conversion systems. The performance evaluation
of power electronic devices can be performed by analyzing the total harmonic distortion
(THD), switching losses, transient response, and energy efficiency. In addition, power
electronic devices are used to convert DC into AC form [33–38].

Wavelet analysis is utilized to calculate the high distortions in the output voltage [39].
THD estimates the static load variations of the output voltage. The desired quality of
VSI output voltage is challenging to obtain in the present scenario. For dynamic load
variations, advanced controllers such as CHCCs and OFHCCs reduce the output voltage
distortions [40].

VDC = Lf
dio
dt

+ Vg (2)

io − iref = ie (3)

VDC = Lf
d(iref + ie)

dt
+ Vg (4)

Taking into account the dynamic conditions of the system,

VDC − Vg = Lf
die
dt

(5)

die
dt

=
VDC − Vg

Lf
(6)

where io is the actual current of the inverter, ie is the error current, and iref is the reference current.
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2.3. Proposed Methodology

The proposed methodology is the integration of IAOA-OFHCC and IAOA-CHCC
with a grid PV system. There are basically seven components: (1) PV array, (2) boost
converter with optimized duty cycle, (3) algorithms for optimization of hysteresis bands
and duty cycle, (4) conventional hysteresis band current controller, (5) offset hysteresis band
current controller, (6) utility grid, and (7) reference current technique. Figure 2 presents the
schematic diagram of the grid-tied PV system. The voltage of PV is increased to a higher
level through the optimized duty cycle of the boost converter. The boost converter’s output
is fed to a single-phase inverter where DC power is converted into AC power, making it
suitable with reduced current rippling for feeding to the utility grid. CHCC and OFHCC
control the single-phase inverter’s switching. The error current is passed through both the
controllers between the optimized bands. The proposed schemes are compared with the
PSO-CHCC, FBI-CHCC, AOA-CHCC, PSO-OFHCC, FBI-OFHCC, and AOA-OFHCC.

Figure 2. System block diagram.

2.4. Reference Current Technique

The reference current method in [41] is implemented in this paper. After the measure-
ment of the grid voltage, the manipulation is carried out to calculate the reference current.
The scaling factor (α) is regularly updated with the load variation. The grid-connected
reference current technique is shown in Figure 3.
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Figure 3. Reference current technique algorithm.
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3. Analysis of Advanced Controllers

3.1. Conventional Hysteresis Band Current Controller (CHCC)

The conventional hysteresis current controller is very well regarded due to its uncon-
ditioned stability and excellent transient response for grid-connected inverters [42–46]. The
actual output of the inverter is compared with the current reference to generate the current
error. The current error generated by the actual and reference current difference is restricted
within the optimized hysteresis bands. When the current error reaches the lower band, the
inverter switches S2 and S3 are turned on, and inverter switches S1 and S4 are turned on
when the error touches the upper band. The switching signals of the IGBTs are generated
by restricting the error current within the fixed hysteresis bands. The bandwidth of the
hysteresis current controller is calculated in [42]. With decreased hysteresis bandwidth,
the error is minimized, but the average switching frequency will increase, resulting in
increased average switching losses in the system [47]. The operation of the conventional
hysteresis band current controller is explained in Figure 4.

Figure 4. Analysis of conventional hysteresis band current controller [48].

3.2. Offset Hysteresis Band Current Controller (OFHCC)

The conventional hysteresis band current controller does not utilize the zero output
condition of the inverter, which leads to a high average switching frequency deviation.
The offset hysteresis band current controller is implemented by using an extra hysteresis
band and considering the inverter zero output condition which results in a reduction in
current error, average switching frequency, and average switching losses. An optimized
hysteresis band is proposed which overlaps the existing upper and lower hysteresis bands.
When the error current reaches the inner hysteresis band, the inverter output is set to zero
condition. Similarly, reversal of the error current occurs when the error current passes an
outer hysteresis band, making the inverter output either positively or negatively active.
The error current will continue through the inner band to the next outer band, and the error
current will reverse. The operating strategy of OFHCC is depicted in Figure 5.

Figure 5. Analysis of offset hysteresis band current controller [48].
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A new inverter switching process introduces the output current with either positive or
negative DC offset error depending on the active output voltage. The error current is re-
stricted between the upper–outer and lower–inner hysteresis bands for a negative inverter
output, and the error current is restricted between the lower–outer and upper–inner hys-
teresis bands for a positive inverter output, as shown in Figures 6 and 7, respectively [49].

Figure 6. Analysis of offset hysteresis band current controller with negative inverter output [48].

Figure 7. Analysis of offset hysteresis band current controller with positive inverter output [48].

In an offset hysteresis band current controller, the average switching frequency is
reduced by a factor of 4.4, and thus the switching losses are reduced by a factor of 4.4 com-
pared to those of a conventional hysteresis band current controller. Thus, the performance
of the OFHCC is improved.

The switching cycle of the offset hysteresis band current controller is as follows:
0 → t1 → T

2 .
For Cycle 0 → t1 ,

ΔI= −1.1HB , VDC = 0 , Δt = t1

and thus,

t1 = TON =
1.1Lf HB

Vg
(7)

For Cycle t1 → T
2 ,

ΔI= 1.1HB, VDC = +VDC , Δt =
T
2
− t1

and thus,
T
2
− t1= TOFF=

1.1Lf HB
VDC − Vg

(8)
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The summation of Equations (7) and (8) gives the average switching frequency of the
OFHCC:

T=
2.2 VDC Lf HB
Vg
(
VDC − Vg

) (9)

fOFHCC
s,av =

1
T
=

Vg
(
VDC − Vg

)
4.4VDCLf HB

(10)

The switching strategy is illustrated in Figure 8.

Figure 8. Switching strategy of offset hysteresis band current controller [48].

The average switching frequency is time-varying and is a function of the inductor (Lf)
and hysteresis band (HB), which can be observed from Equation (10). The selection of the
inductor (Lf) value is made in such a way that it compromises between the ripple current
and the average switching frequency. The reasonable harmonics and average switching
frequency are achieved by choosing an optimum value for the hysteresis band.

4. Common Benchmark Functions Used in the Study

This article analyzes six benchmark functions, namely Beale, Powell, Matyas, Griewank,
Eggholder, and Shubert, to show the superiority of the IAOA over the traditional AOA [50].
For each function, the expression, the range of search space, and the dimension are pre-
sented in Table 1. IAOA and AOA were coded in MATLAB and run 30 times by taking
the maximum number of population and number of iterations as 100. The performance
parameters, such as mean, maximum, minimum, and standard deviation, are presented in
Table 2 to prove the supremacy of the IAOA technique. Table 2 shows that mean, maximum,
minimum, and standard deviation values are less for IAOA than for AOA. The number
of iterations needed for convergence to the global optimum value is lower for the IAOA
technique, but due to the inclusion of an additional update phase, the computation time is
slightly longer in the case of the IAOA algorithm. Figure 9 depicts the convergence plots of
different benchmark functions.
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Table 1. Description of benchmark functions used in the study.

Function Function’s Expression Dimension Range

Beale (F1) f(x) = (1.5 − x1 + x1x2)
2 +

(
2.25 − x1 + x1x2

2)2
+
(
2.625 − x1 + x1x2

3)2 2 [−4.5, 4.5]

Powell (F2) f(x) =
d/4

∑
i=1

[
(x4i−3 + 10x4i−2)

2 + 5(x4i−1 + x4i)
2 + (x4i−2 − 2x4i−1)

4 + 10(x4i−3 − x4i)
4
]

10 [−4, 5]

Matyas (F3) f(x) = 0.26
(
x2

1 + x2
2
)− 0.48x1x2 2 [−10, 10]

Griewank (F4) f(x) =
d
∑

i=1

x2
i

4000 − d
∏
i=1

cos
(

xi√
i

)
+ 1 30 [−600, 600]

Eggholder (F5) f(x) = −(x2 + 47) sin
(√∣∣x2 +

x1
2 + 47

∣∣)− x1 sin
(√|x1 − (x2 + 47)|

)
2 [−512, 512]

Shubert (F6) f(x) =
(

5
∑

i=1
i cos((i + 1)x1 + i)

)(
5
∑

i=1
i cos((i + 1)x2 + i)

)
2 [−5.12, 5.12]

Table 2. Performance analysis for AOA and IAOA algorithms.

Algorithm Function Optimum Value Minimum Maximum Mean Standard
Deviation

Computational
Time (s)

IAOA F1 0 3.5828 × 10−16 1.9598 × 10−13 4.2215 × 10−14 4.9633 × 10−14 0.0834
AOA 1.0785 × 10−15 7.7380 × 10−13 8.6741 × 10−14 1.7924 × 10−13 0.0595

IAOA F2 0 0 2.6215 × 10−20 8.7385 × 10−22 4.7863 × 10−21 0.0766
AOA 0 6.5352 × 10−18 2.2641 × 10−19 1.1925 × 10−18 0.0563

IAOA F3 0 0 1.1962 × 10−63 3.9877 × 10−65 2.1840 × 10−64 0.0542
AOA 0 5.6773 × 10−63 1.8930 × 10−64 1.0365 × 10−63 0.0423

IAOA F4 0 0 0 0 0 0.6315
AOA 0 0 0 0 0.5263

IAOA F5 −959.640 −959.4607 −959.4607 −959.4607 1.0283 × 10−12 0.0457
AOA −959.4607 −959.4607 −959.4607 2.0283 × 10−12 0.0133

IAOA F6 −186.731 −186.7309 −186.7309 −186.7301 1.4597 × 10−9 0.0958
AOA −186.7309 −186.7305 −186.7309 8.2884 × 10−4 0.0757

Figure 9. Cont.
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Figure 9. Convergence plots of benchmark functions. (a) Convergence characteristics of Beale func-
tion. (b) Convergence characteristics of Powell function. (c) Convergence characteristics of Matyas
function. (d) Convergence characteristics of Griewank function. (e) Convergence characteristics of
Eggholder function. (f) Convergence characteristics of Shubert function.

5. Analysis of Algorithms

The performance of any metaheuristic algorithm mainly depends on the balance
between two phases: exploitation and exploration. In the exploration phase, the algorithm
finds new areas of solution time, and the exploitation phase extracts valuable information
related to neighborhood regions of the search space [51]. Initially, in this work, PSO, FBI,
and AOA techniques are used to determine the optimal values of the design parameters of
the grid-tied PV system. However, some of the optimization algorithms fail to converge
to global minima as they tend to become stuck in local minima. Algorithms are modified
or hybridized and tested on many benchmark functions [52]. In this work, an IAOA
optimization technique, where the PSO algorithm is implemented to find the values of
some parameters of AOA optimally, is presented and tested on six popular benchmark
functions. Finally, the IAOA technique is implemented to design the same parameters to
obtain better results.

5.1. Forensic-Based Investigation (FBI) Algorithm

Chou and Nguyen proposed a metaheuristic optimization technique known as the
forensic-based investigation algorithm (FBI) [53]. Location, suspected investigation, and
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stalking are the important ideas of the FBI. Opening the case, analysis of discoveries,
examination of directions, actions, and trials are the five steps involved in a large-scale
forensic investigation process [54]. In the beginning, the facts about the crime are gathered
by the police team, and then this evidence helps the police team to begin the investigation.
The inquiry team analyzes the crime position, probable suspects, target, and data about the
crime. The team interprets the knowledge and correlates it with the impressions gained
during the investigation to assess the probable suspects [55].

The steps involved in the FBI algorithm are as follows:
Step A1: Interpretation of findings:

X′
Aij

=XAij +
rand∗

(
∑a1

1 XAaj

)
a1

(11)

X′
Aij

= XAij + rand∗
XAij −

(
XAkj + XAhj

)
2

(12)

Step A2: Direction of inquiry:

Prob
(

XAij

)
=
(

pAi
− pmin

)
/(pmax − pmin ) (13)

X′
Aij

= Xmin +
a2

∑
1
α ∗ XAbj (14)

X′
Aij

= Xmin + XAdj + rand∗
(

XAkj − XAhj

)
(15)

Step B1: Action taken after receiving the reports:

X′
Bij

= rand1∗XBij + rand2∗
(

Xmin − XBij

)
(16)

Step B2: Extension of process of action:

X′
Bij

= XBrj + rand3∗
(

XBrj − XBij

)
+ rand4∗

(
Xmin − XBrj

)
(17)

X′
Bij

= XBij + rand3∗
(

XBij − XBrj

)
+ rand4∗

(
Xmin − XBij

)
(18)

where,
α = effectiveness coefficient, i.e., [−1, 1]; pmax = lowest possibility value corresponding to the

worst objective value;
j = 1, 2, . . . , D, and D is the number of dimensions; pmin = highest possibility position corresponding to

the best objective value;
a1 and a2 are the numbers of individuals that affect the

movement of XAij assumed to be 2 and 3;
pAi

= possibility that the suspect is at location XAi ;

d, k, h, and i are four suspected locations; {d, k, h, i} ε
{1, 2, . . . , NP}; d, k, and h are chosen randomly; and
NP is the number of suspected locations;

Xmin = highest possibility position corresponding to
the best solution;

XAij = suspected location; rand is a random number in the range [−1, 1];
X′

Aij
= new suspected location; rand1, rand2, rand3, and rand4 are random numbers

in the range [0, 1].

5.2. Particle Swarm Optimization (PSO) Algorithm

Eberhart and Kennedy proposed a stochastic optimization algorithm based on swarm-
ing in 1995. The social behavior of animals such as birds, fishes, and insects is simulated in
the PSO algorithm. Each member in the swarm changes its search pattern and confirms a
cooperative pattern to find food under the gained experiences of other members and its
own experience. PSO mainly operates on two basic ideas: one is based on artificial life,
which provides the artificial structures with life features, and the other is the swarm mode,
in which the swarm searches for the prey in a large section in the solution space of the
optimized objective functions [56].
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PSO involves the following steps:

1. Initialization: Within the specific search range, the initial population and initial size
velocity [NP × D] are generated. Here, ‘D’ is the dimension of the problem and ‘NP’
is the number of the population.

2. Velocity update: Equation (19) is utilized to update the velocity in this step.

Vnew = w × vold + C1 × rand1 ×
(
pbest − x

)
+C2 × rand2 ×

(
gbest − x

)
(19)

where ‘C1′ and ‘C2′ are acceleration constants generally taken as 2.05; pbest is the local
best, i.e., the best solution so far achieved by a particle; gbest is the global best i.e.,
the best solution in the population; rand1 and rand2 are random numbers within the
range [0, 1]; and ‘w’ is called the inertia weight, which is decreased from 0.9 to 0.4
with iterations.

3. Position update: The newly generated velocity is combined with the initial population
to update the initial population.

xnew = xold + vnew (20)

5.3. Arithmetic Optimization Algorithm (AOA)

Abualigah et al. developed a new mathematical optimization technique known as
the arithmetic optimization algorithm (AOA) based on addition, subtraction, multiplica-
tion, and division. Two essential phases for achieving global optimum solutions are the
exploitation and exploration stages.

The exploitation phase achieves a nearer optimal solution as it provides low dispersion
in search space utilizing the addition and subtraction operators.

In the exploration stage, the search space is explored in various regions and trends to
achieve a better optimal solution using the multiplication and division operators [24].

The various stages in the AOA technique are as follows:

1. Initialization: The initial population size [NP × D] is developed randomly within the pre-
defined search space. Equation (21) evaluates the math optimizer acceleration (MOA).

MOA = mina + iter ×
(

maxa − mina

itermax

)
(21)

where ‘iter’ and ‘itermax’ are the iteration count and the maximum number of itera-
tions; ‘mina’ and ‘maxa’ are the minimum and maximum values of the acceleration
function taken as 0.2 and 0.9, respectively.

2. Update phase: Using Equation (22), the math optimizer probability (MOP) is generated.

MOP = 1 − (iter)
1
α

(itermax)
1
α

(22)

where the solution is updated by generating three random numbers, r1, r2, and r3,
and ‘α’ is taken as 5.
if r1 < MOA

if r2 > 0.5
xnew =

gbest
MOP + ε

× ((Ul − Ll)× μ+ Ll) (23)

else
xnew = gbest × MOP × ((Ul − Ll)× μ+ Ll) (24)

end
else
if r3 < 0.5

xnew = gbest − MOP × ((Ul − Ll)× μ+ Ll) (25)
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else
xnew = gbest + MOP × ((Ul − Ll)× μ+ Ll) (26)

end
where ‘Ul’ and ‘Ll’are the upper and lower limits of the variables to be designed and
‘μ’ is taken as 0.5.

5.4. Improved Arithmetic Optimization Algorithm (IAOA)

The traditional AOA technique attracts attention due to the exploration of search
spaces. Conversely, in the non-optimal solutions, the traditional AOA technique suffers
from premature stagnation. The poor exploration capability of the traditional AOA tech-
nique in the early stages causes the quick loss of population diversity. The exploration
and exploitation stages are clearly shown in the previous section. In order to overcome the
inadequacy of the traditional AOA, an improved variant of traditional AOA known as the
improved arithmetic optimization algorithm (IAOA) is proposed and then employed for
the optimization of the hysteresis band and duty cycle for the PV microgrid system. The
robustness and efficiency of the improved arithmetic optimization algorithm technique are
investigated through six standard benchmark functions.

In the suggested IAOA technique, two important parameters ‘α andμ’ of the AOA
technique are optimally designed with the help of the PSO algorithm. The upper and lower
limits of ‘α andμ’ are 5.0 and 0.5, respectively. Figure 10 depicts the intuitive and detailed
process of the IAOA technique. The IAOA pseudocode is elaborated as follows:

1. Generate the initial population for design variables and the constants ‘α andμ’ of the
AOA technique.

2. Evaluate the objective function and identify the best-performing solution (gbest).
3. Update the solution with the AOA technique using Equations (21)–(26).
4. Update the values of ‘α andμ’ with the PSO algorithm using Equations (19) and (20).
5. Repeat the previous two steps until the stopping criterion is met.

The switching frequency and current error are multiplied with suitable weighing
factors and combined as a single objective function that is to be optimized with different
optimization techniques. The objective function expression is given as follows:

f = w1 × ei + w2 × fs (27)

The average switching losses are calculated in [57] as shown in Equation (28):

Psl= fs∗mean (Eon + Eoff) (28)

where fs is the switching frequency; ei is the current error; and w1 and w2 are the weighting
factors taken as 0.85 and 0.15. respectively.
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Figure 10. Flowchart of IAOA.

6. Results and Discussion

The lower and upper bands of the CHCC and OFHCC and the duty cycle of the con-
verter were optimally tuned using the PSO, FBI, AOA, and IAOA techniques to improve the
dynamic performance of the grid-tied PV system. Various parameters of the grid-tied sys-
tem are presented in Table 3. Comparative performance analysis of different controllers was
performed by taking various performance indicators such as average switching frequency
(AvgSF), average switching losses (AvgSFL), maximum switching frequency (MaxSF), mini-
mum switching frequency (MinSF), zero-crossing switching frequency (ZSF), and %THD.
Optimal hysteresis bands, duty cycles, and various performance indicators are indicated
in Table 4. The optimized values of hysteresis bands and duty cycles obtained from the
MATLAB/Simulink environment were input into the OPAL-RT 4510 real-time simulator
for experimental verification of power quality profiles. The obtained results are compared
with different hysteresis band current controller techniques for rooftop microgrid systems
at a constant hysteresis band of 0.5, as reported in [58].
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Table 3. System parameters.

Parameter Numerical Value

Grid frequency 50 Hz

Line inductance 15 mH

Irradiance 500 W/m2

Eon 2.2 mJ

Eoff 1.7 mJ

Cell temperature 25 ◦C

Load variation 1000 W to 2000 W

Table 4. Performance analysis of various controllers.

Controller D HB1 HB2 HB3 HB4
MaxSF

(in kHz)
MinSF

(in kHz)
AvgSF

(in kHz)
AvgSFL
(in W)

ZSF
(in kHz)

%THD

PSO-CHCC 0.215 0.375 −0.572 - - 9.25 8.75 7.85 30.60 8.50 0.49

FBI-CHCC 0.319 0.462 −0.868 - - 8.75 6.25 7.58 29.56 8.00 0.54

AOA-CHCC 0.169 0.620 −0.587 - - 7.25 3.25 5.50 21.48 6.50 0.57

IAOA-CHCC 0.245 0.809 −0.932 - - 6.25 3.75 5.30 20.67 5.75 0.74

PSO-OFHCC 0.279 0.953 −0.874 0.874 −0.953 6 3.50 3.87 15.09 4.25 0.73

FBI-OFHCC 0.112 0.913 −0.827 0.827 −0.913 5.5 2.50 2.89 11.26 3.25 0.68

AOA-OFHCC 0.141 0.817 −0.645 0.645 −0.817 6 2.75 2.68 10.46 3.75 0.82

IAOA-OFHCC 0.117 0.964 −0.532 0.532 −0.964 6.25 2.75 2.33 9.07 3.50 1.45

SBHCC [58] - 0.5 −0.5 - - 20 - - - - 4.42

DBHCC−1 [58] - 0.5 −0.5 - - 10 - - - - 4.33

DBHCC−2 [58] - 0.5 −0.5 - - 20 - - - - 2.65

MDBHCC [58] - 0.5 −0.5 - - 5.5 - - - - 4.33

VBHCC [58] - 0.5 −0.5 - - 15 - - - - 4.17

The microgrid-connected dynamic simulation model was developed using real-time
simulation OPAL-RT 4510 with Xilinx Kintex-7 FPGA software. The real-time simulation
was realized in RT-LAB using the Simulink models on multi-core CPU computers. RT-LAB
builds the parallel tasks from the original models, and each task is assigned to one CPU to
enhance the overall simulation time. In addition, the RT-LAB toolbox and power system
solver were used to improve the accuracy and simulation time of the grid-connected system.
A snapshot of the proposed schemes, along with the other techniques in OPAL-RT 4510, is
shown in Figure 11.

Figure 11. Experimental set-up using OPAL-RT 4510.
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The reference current, actual current, and switching pulse simulations for one cycle
of IAOA-CHCC and IAOA-OFHCC are shown in Figure 12. The experimental results
for corresponding profiles are shown in Figures 13 and 14 for PSO-CHCC, FBI-CHCC,
AOA-CHCC, IAOA-CHCC, PSO-OFHCC, FBI-OFHCC, AOA-OFHCC, and IAOA-OFHCC.
The switching frequencies are calculated from the inverter switching pulses. The proposed
IAOA-OFHCC technique due to the optimum utilization of inverter switches has reduced
switching frequency and the lowest switching losses, resulting in high efficiency compared
to other techniques.

Figure 12. Simulation results showing Iref, Ia, and switching pulses for (a) IAOA-CHCC and
(b) IAOA-OFHCC.

Figure 13. Experimental results showing Iref, Ia, and switching pulses for (a) PSO-CHCC,
(b) FBI-CHCC, (c) AOA-CHCC, and (d) IAOA-CHCC.
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Figure 14. Experimental results showing Iref, Ia, and switching pulses for (a) PSO-OFHCC,
(b) FBI-OFHCC, (c) AOA-OFHCC, and (d) IAOA-OFHCC.

The simulation and experimental results for the dynamic state performance of Ia
and Iref under load change from 1000 W to 2000 W at 4.95 s to 5.05 s are shown in
Figures 15 and 16, respectively. The shape of the current waveform is not distorted during
the transient and maintains a sinusoidal shape, indicating that both the actual current and
reference current are in-phase. The proposed algorithm with controllers has a fast dynamic
response with variation in load. In addition, the proposed scheme has the lowest average
switching frequency, which makes the IGBT device operate under a safe operating range.

Figure 15. Simulation results showing Iref, Ia, and switching pulses under load change for (a) IAOA-
CHCC and (b) IAOA-OFHCC.
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Figure 16. Experimental results showing Iref, Ia, and switching pulses under load change for
(a) IAOA-CHCC and (b) IAOA-OFHCC.

The error current of the proposed algorithm with offset hysteresis band and other
algorithms and controllers are shown in Figures 17–20 with simulation and experimental
results. It can be observed that the error current remains within the hysteresis bands in both
cases. The inverter current spectrum for the grid-tied system is shown in Figures 21 and 22
for CHCC and OFHCC with respective algorithms for the PV microgrid. It can be observed
that PSO-CHCC has the lowest %THD of 0.49 but has the average switching frequency
and average switching losses of 7.85 kHz and 30.60 W, respectively, so the proposed IAOA-
OFHCC technique dominates all other control algorithms with minimum average switching
frequency and minimum average switching losses of 2.33 kHz and 9.07 W, respectively.

Figure 17. Simulation results showing current error for PSO-CHCC, FBI-CHCC, AOA-CHCC, and
IAOA-CHCC.
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Figure 18. Simulation results showing current error for PSO-OFHCC, FBI-OFHCC, AOA-OFHCC,
and IAOA-OFHCC.

Figure 19. Experimental results showing current error for PSO-CHCC, FBI-CHCC, AOA-CHCC, and
IAOA-CHCC.

Figure 20. Experimental results showing current error for PSO-OFHCC, FBI-OFHCC, AOA-OFHCC,
and IAOA-OFHCC.
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Figure 21. Harmonic spectra for (a) PSO-CHCC, (b) FBI-CHCC, (c) AOA-CHCC, and (d) IAOA-
CHCC.

Figure 22. Harmonic spectra for (a) PSO-OFHCC, (b) FBI-OFHCC, (c) AOA-OFHCC, and (d) IAOA-
OFHCC.
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Figure 23 represents the performance indices of different controllers. The proposed
IAOA-OFHCC technique addresses the problems of the high variations in average switch-
ing frequency and average switching losses. The proposed method’s low average switching
losses are indicative of a more efficient system. For step change in load feeding to the grid,
all the techniques dynamic and steady-state characteristics were experimentally verified
using the digital simulator OPAL-RT 4510. As a result, power can be delivered to the
microgrid at higher efficiency, mitigating the power quality problems.

Figure 23. Bar plot of various performance indices for different controllers.

Behavior of the Proposed Control Algorithm under Partial Shading Condition

During the day, it is crucial to extract the maximum quantity of power without a
change in irradiance level. However, due to the partial shading effect, the PV output
power is reduced, the cost increases, and thus the efficiency decreases. Many conventional
techniques fail to extract the maximum power point due to the formation of multiple hot
spots in PV strings. In order to handle this drawback, the proposed IAOA-based OFHCC
control algorithm has been studied. Initially, it is assumed that the PV module receives
an insolation of 800 W/m2. The system is then subjected to two different percentages of
partial shading, i.e., 30% and 50%. The load power is considered to be constant throughout
the partial shading operation. The variations in converter input voltage (Vpv), converter
output voltage (Vo), and converter output current (Io) due to partial shading are shown in
Figure 24. It can be clearly seen from Figure 24 that as the shading increases, it causes a
reduction in the PV array output voltage. The boost converter efficiently maintains the DC
voltage at 450 V, as shown in Figure 24.
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Figure 24. Experimental waveforms under partial shading of VPV, VO, and IO curves.

The grid voltage (VGrid), inverter current (IInv), load current (ILoad), and grid current
(IGrid) responses are shown in Figure 25. From Figure 25, it can be clearly noticed that
the inverter currents, grid currents, and load currents remain unaltered even after partial
shading. Due to the robustness of the proposed control algorithm, the boost converter
is capable of maintaining a constant DC voltage. The boost converter maintains a fairly
constant voltage at the DC side, which nullifies the effect of partial shading on the AC side
of the proposed system.

Figure 25. Experimental waveforms under partial shading of VGrid, IInv, ILoad, and IGrid curves.

7. Conclusions

In this article, experimental validation of IAOA-OFHCC and IAOA-CHCC inverter
control has been provided to achieve better power quality at reduced switching frequency
so that sinusoidal current is injected into the grid. Compared to the switching frequency
obtained by PSO, FBI, and AOA, the novel IAOA technique with an OFHCC controller
has reduced switching frequency which justifies the acceptance of grid-connected IAOA-
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OFHCC design. The offset hysteresis band current controller, in addition to preserving the
benefits of the conventional hysteresis band current controller, also delivers extra benefits
such as fast dynamic response, reduced average switching frequency and losses, and higher
accuracy and makes the microgrid robust. According to the mathematical presentation,
IAOA has a straightforward implementation for addressing new optimization difficulties
in microgrids. It does not need numerous constraints, only requiring a stopping criterion, a
population size, and the standard parameters for optimizing hysteresis bands and duty
cycles. The current fed from the inverter is sinusoidal with low total harmonic distortion
(THD) following the IEEE 519 standard. The single-phase inverter provides a reduced
ripple output using the proposed hybrid methodology. The performance of the novel
method was assessed under load variation and proved robust in reference current tracking.
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ruptible power supply systems. Przegląd Elektrotechniczny 2020, 96, 50–54. [CrossRef]

40. Rymarski, Z.; Bernacki, K. Different Features of Control Systems for Single-Phase Voltage Source Inverters. Energies 2020, 13, 4100.
[CrossRef]

41. Torrey, D.; Al-Zamel, A. Single-phase active power filters for multiple nonlinear loads. IEEE Trans. Power Electron. 1995, 10,
263–272. [CrossRef]

42. Abd Rahim, N.; Selvaraj, J. Implementation of hysteresis current control for single-phase grid connected inverter. In Proceedings of
the International Conference on Power Electronics and Drive Systems, Bangkok, Thailand, 27–30 November 2007; pp. 1097–1101.

43. Dahono, P.A. New hysteresis current controller for single-phase full-bridge inverters. IET Power Electron. 2009, 2, 585–594.
[CrossRef]

44. Yao, Z.; Xiao, L. Control of single-phase grid-connected inverters with nonlinear loads. IEEE Trans. Ind. Electron. 2011, 60,
1384–1389. [CrossRef]

45. Elsaharty, M.A.; Hamad, M.S.; Ashour, H.A. Digital hysteresis current control for grid-connected converters with LCL filter. In
Proceedings of the 37th Annual Conference of the IEEE Industrial Electronics Society, Melbourne, Australia, 7–10 November 2011;
pp. 4685–4690.

46. Ichikawa, R.; Funato, H.; Nemoto, K. Experimental verification of single phase utility interface inverter based on digital
hysteresis current controller. In Proceedings of the International Conference on Electrical Machines and Systems, Beijing, China,
20–23 August 2011; pp. 1–6.

47. Chatterjee, A.; Mohanty, K.B. Current control strategies for single phase grid integrated inverters for photovoltaic applications-a
review. Renew. Sustain. Energy Rev. 2018, 92, 554–569. [CrossRef]

48. Jena, S.; Mohapatra, B.; Panigrahi, C.K.; Mohanty, S.K. Power quality improvement of 1-ϕ grid integrated pulse width modulated
voltage source inverter using hysteresis Current Controller with offset band. In Proceedings of the 3rd International Conference
on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 22–23 January 2016; pp. 1–7. [CrossRef]

49. Karuppanan, P.; Ram, S.K.; Mahapatra, K. Three level hysteresis current controller based active power filter for harmonic
compensation. In Proceedings of the International Conference on Emerging Trends in Electrical and Computer Technology,
Nagercoil, India, 23–24 March 2011; pp. 407–412.

50. Yang, X.S. Nature-Inspired Optimization Algorithms; Academic Press: Cambridge, MA, USA, 2020.
51. Gupta, S.; Deep, K.; Mirjalili, S. An efficient equilibrium optimizer with mutation strategy for numerical optimization. Appl. Soft

Comput. 2020, 96, 106542. [CrossRef]
52. Chauhan, S.; Vashishtha, G. Mutation-based arithmetic optimization algorithm for global optimization. In Proceedings of the

International Conference on Intelligent Technologies (CONIT), Hubli, India, 25–27 June 2021; pp. 1–6.
53. Chou, J.S.; Nguyen, N.M. FBI inspired meta-optimization. Appl. Soft Comput. 2020, 93, 106339. [CrossRef]
54. Salet, R. Framing in criminal investigation: How police officers (re) construct a crime. Police J. 2017, 90, 128–142. [CrossRef]
55. Fathy, A.; Rezk, H.; Alanazi, T.M. Recent approach of forensic-based investigation algorithm for optimizing fractional order

PID-based MPPT with proton exchange membrane fuel cell. IEEE Access 2021, 9, 18974–18992. [CrossRef]
56. Wang, D.; Tan, D.; Liu, L. Particle swarm optimization algorithm: An overview. Soft Comput. 2018, 22, 387–408. [CrossRef]
57. Hasari, S.A.; Salemnia, A.; Hamzeh, M. Applicable method for average switching loss calculation in power electronic converters.

J. Power Electron. 2017, 17, 1097–1108.
58. Singh, J.K.; Behera, R.K. Hysteresis current controllers for grid connected inverter: Review and experimental implementation. In

Proceedings of the IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Chennai, India,
18–21 December 2018; pp. 1–6.

214



Citation: Loji, K.; Sharma, S.; Loji, N.;

Sharma, G.; Bokoro, P.N. Operational

Issues of Contemporary Distribution

Systems: A Review on Recent and

Emerging Concerns. Energies 2023, 16,

1732. https://doi.org/10.3390/

en16041732

Academic Editors: Tek Tjing Lie and

Yogendra Arya

Received: 22 October 2022

Revised: 28 January 2023

Accepted: 6 February 2023

Published: 9 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Review

Operational Issues of Contemporary Distribution Systems:
A Review on Recent and Emerging Concerns

Kabulo Loji 1,2, Sachin Sharma 3, Nomhle Loji 1, Gulshan Sharma 2,* and Pitshou N. Bokoro 2

1 Department of Electrical Power Engineering, Durban University of Technology, Durban 4001, South Africa
2 Department of Electrical Engineering Technology, University of Johannesburg,

Johannesburg 2006, South Africa
3 Department of Electrical Engineering, Graphic Era Deemed to be University, Dehradun 248002, India
* Correspondence: gulshans@uj.ac.za

Abstract: Distribution systems in traditional power systems (PS) constituted of passive elements and
the distribution issues were then limited to voltage and thermal constraints, harmonics, overloading
and unbalanced loading, reactive power compensation issues, faults and transients, loss minimization
and frequency stability problems, to name a few. Contemporary distribution systems are becoming
active distributed networks (ADNs) that integrate a substantially increasing amount of distributed
energy resources (DERs). DERS include distributed generation (DG) sources, energy storage resources
and demand side management (DSM) options. Despite their evidenced great benefits, the large-
scale deployment and integration of DERs remain a challenge as they subsequently lead to the
network operational and efficiency issues, hampering PS network reliability and stability. This paper
carries out a comprehensive literature survey based on the last decade’s research on operational
challenges reported and focusing on dispatchable and non-dispatchable DGs grid integration, on
various demand response (DR) mechanisms and, on battery energy storage system (BESS) charging
and discharging challenges, with the aim to pave the way to developing suitable optimization
techniques that will solve the coordination of multiple renewable sources, storage systems and DRs
to minimize distribution systems’ operational issues and thus improve stability and reliability. This
paper’s findings assist the researchers in the field to conduct further research and to help PS planners
and operators decide on appropriate relevant technologies that address challenges inherent to DG
grid integration.

Keywords: demand response strategies; demand side management; distributed energy resources;
battery energy storage systems; distribution generation; operational challenges; optimization techniques

1. Introduction

1.1. Traditional vs. Contemporary PS Networks

From the first built PS network, more than 100 years have seen a huge development of
the electricity generation and supply systems. Points of generation of electric power were
indeed situated several kilometres away from points of consumption as shown in Figure 1,
since for economic reasons and a secure supply of electrical power, long distance bulk
power transfer was essential [1]. Until the 1990s, the electric power industry was inclined
to have a vertical integration approach to generation and transmission, justified mostly
by economic reasons as mentioned above, rather than the improvement of the overall
efficiency/reliability of the system [2].

The quasi-increasing amount of diverse electrical nature’s loads over time resulted
in the change of the grid topology, prompting grid complexity growth as illustrated in
Figure 2, requiring much more attention on PS operational issues than ever. Current
transformations have been driven for the last two decades by the increasing integration
of renewable energy sources (RES), particularly solar and wind sources, known for their
intermittency and unpredictability, into national grids.

Energies 2023, 16, 1732. https://doi.org/10.3390/en16041732 https://www.mdpi.com/journal/energies215



Energies 2023, 16, 1732

 
Figure 1. Traditional PS network topology.

 
Figure 2. Contemporary network topology [3].

These transformations, commonly referred to as Smart Grid (SG), provide a com-
bination of electrical power infrastructure with modern distributed computing facilities
and communication networks [4]. Interest in RES grid integration has indeed developed
because of the exponentially increasing demand for power delivery, a more secure energy
future and energy policies adopted by governments in an effort to reduce CO2 and green-
house gas emissions [5–7]. Integration of renewable DGs, the most popular of them being
solar and wind, into PS has positive and negative impacts on both power utilities and
customers. Indeed, RES grid integration has evidenced substantial technical, environmental
and economic benefits but at the same time, their increasing penetration leads to technical
issues such as reverse energy flow from the customer end back into the transmission sys-
tem [4], with negligible or reduced reactive power contribution [8,9]. One essential criterion
for PS stability is to continuously balance power generation and consumption. Since for
various reasons, the demand is volatile, generation must be flexible to accommodate the
demand at any time [10]. The need to curtail consumers’ peak hours and fill the gap caused
by the mismatch between the amount of power generated and consumed at a specific time
has become a very challenging task [11] for PS network researchers and operators.

1.2. Wind and PV Solar Trends and Contribution to Global Energy

The wind and solar-based RES footprint has been growing rapidly as shown in Table 1.
Data extracted from the U.S. Energy Information Administration (EIA) indicate that from
2011 the global energy production increased by 28.59 % over a period of 10 years [12].
From a 2.36 % contribution to the global energy production in 2011, the combined solar
PV and wind energy production has reached 10.41 % contribution to the world electricity
generation in 2021.
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Table 1. Solar PV and wind electricity generation growth from 2011 to 2021.

Energy Source/Activity 2011 2016 2021

Total Generation [billion kWh] 21,226 23,971 27,295
Solar [billion kWh] 66 341 1035
Wind [billion kWh] 435 957 1808

According to the International Renewable Energy Agency (IRENA), it is projected that
in the next three decades, about 65% of the world energy will be produced from RES as
shown in Figure 3 [13]. Consequently, the complexity of distribution issues will continue to
grow with the increase of the number of DERs and micro grids (MG), especially because
of the fact that most solar is connected to the DS rather than to the transmission system.
PS networks will continue to encounter numerous variabilities, affecting fundamentally
the planning and the operation of the electric distribution system, both technically and
economically, prompting on one side the upgrade of the aging electricity infrastructure
and on the other side, a subsequent transformation of the PS into Smart Grid (SG) process
otherwise referred to as Grid modernisation. Uluski et al. in [14] project that the next
generation distribution management shall need to incorporate more intelligence and ad-
vanced functionality to support these changes in the operation, monitoring and control of
the distribution grid.

 
Figure 3. Renewable energy shares in the total final energy consumption [13].

1.3. DS Grid-Integration Challenges

DS Grid-integration challenges can be categorised into technical and non-technical.
Technical challenges can be subdivided into operational and non-operational challenges.
Operational challenges may be described as those pertaining to the hindrance of accomplish-
ing the PS’s main functions of secured and efficient generation, transmission and delivery of
quality and reliable power. These may include actions or/and decisions taken timeously by
PS operators to assure and maintain satisfactory PS operation. Non-operational challenges
may be termed as those related to particularly the planning and the design activities that
are initiated to minimize operational challenges. Non-technical challenges are essentially
socio-economic and environmental challenges. Only operational challenges will be consid-
ered in this review paper. Figure 4 provides a comprehensive and up to date categorization
of DG challenges.
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Figure 4. Categorization of DS grid integration challenges.

In order to approach those emerging challenges and address them efficiently, the
authors in Ref. [15] suggest that both evolutionary and revolutionary technological changes
would be required together with grid-integration technologies and techniques as well as
substantial financial resources and strategies. The severity impact of the challenges resides
mainly in:

• The difficulty to predict the system behaviour due to the fact that the optimal dis-
tribution network solutions must include the types of DG technologies, with their
associated intricacies such as climatic conditions dependency and power genera-
tion compatibility.

• Higher penetration and inappropriate accommodation of DGs can jeopardise the
system’s protection and coordination and ultimately lead to system instability and
excessive network losses [16,17].

• Energy storage capacity and location [18].
• Load demand scenarios and DR strategies for maximum possible utility and con-

sumers’ benefits.

2. Research Methodology and Organization of the Paper

2.1. Paper Methodology

Research data were collected using various search libraries with the major ones includ-
ing IEEE Xplore, MDPI, Science Direct, Springer Link and Wiley Online Library. Figure 5
presents the summary of the data collection distribution from various sources used with the
most relevant information coming from the IEEE Xplore. The category “others” included
Elsevier, the National Renewable Energy Laboratory (NREL), Research gate and Google
Scholar, particularly by searching up on pre-selected authors from the major libraries
mentioned above. Six keywords were used to search for the data, namely: “Distribution
systems issues”, “Distributed Energy resources: review”, “Review on operational issues
on DS”, “Renewable energy optimization techniques and objectives: review” and “Smart
Grids”. The search was conducted and finalized using a three-level filtering process for
each search library as follows:
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• Step 1: Relevance: using the above-mentioned keywords, run the search and ob-
tain journal and conference papers that match the searching keywords. A total of
168 articles deemed to be relevant were collected at this stage.

• Step 2: Year of publication: from previous filter level results, only research papers of the
last decade were selected, and 41 papers were excluded from step 1 selection. However,
due to their strong relevance and valuable contribution to the topic in discussion,
17 papers out of this selection, published between 1994 and 2011 were rescued from the
exclusion [1,2,6,19–28]. Figure 6 provides the collected data breakdown’s distribution
based on the year of publication.

• Step 3: Titles and abstracts: the last step was concerned with filtering using paper
titles and abstracts.

 

 

Figure 5. Distribution of collected data with reference to sources used.

Figure 6. Distribution of collected data based on the year of publication.

2.2. Contributions of the Paper

The prime drive of this paper is to discuss and summarize various reported concerns
on DS operational issues due to renewable energy grid integration and available remedies
thus far. The main contributions of this article are:

• The paper reviews and presents DG grid integration challenges with regards to techno-
economic aspects. The challenges addressed include intermittency and the no-dispatch-
ability of RES, network power quality, stability and reliability, electricity market
penetration and (de)regulation.

• Existing solutions and strategies are aggregated, packaged and presented in ready-to-
use formats that are simple to refer to. The discussed solutions include DR strategies,
charging and discharging techniques of battery energy storage, optimization tech-
niques used for DERs in smart grids, coordination of multiple renewable sources,
storage systems and DRs to minimize distribution systems’ operational issues.
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• The findings of this research paper will assist fellow PS renewable energy scholars and
researchers to undertake further investigations and development in the field.

The rest of the paper is structured as follows: Section 3 highlights technical aspects of
RE grid integration challenges with emphasis on DS grid integration operational challenges.
Section 4 discusses the current status of solution strategies to overcome these challenges
while identifying all possible gaps in the implementation of the strategies. Section 5 presents
and discusses the conclusions as well as some future research directions that are corollary
to the discussions.

3. Highlights of RES Grid-Integration Challenges

3.1. Review of Past Reviews on DS Issues

For more than a decade, DGs grid integration challenges have been the subjects of
research surveys from several authors with numerous operational issues substantially
reviewed. As earlier as 2009, Basso in Ref. [29] amongst others, documented and evalu-
ated through a National Renewable Energy Laboratory (NREL) report, system impacts
of DG penetration into transmission and distribution systems with a focus on renewable
distributed resources technologies. The objectives of the report were to identify: (1) critical
impact areas on transmission and distribution systems, (2) the best practices studies and
challenge mitigation techniques related to the resolution of the system impacts, as well as
(3) the then challenges and needs for further development to improve DG grid penetration.
In [29], the author suggests that system impacts be categorised under the following head-
ings: voltage regulation, power quality, voltage and system frequency stability, protection
coordination, grounding, unintentional DG islanding, special issues related to DGs on
secondary distribution network systems and special issues related to RES. Adding to the
above categories, Prakash and Darbari in Ref. [30] spotted the development of secured
and trusted system as a critical issue and identified the following security critical issues:
methodologies to assess the security level of any system and monitoring of the system se-
curity including the development of security matrices, implementation of novel techniques
for secure data communications, application of middle ware in DS security and applica-
tions of web services in security purposes. With solar and wind energy suppliers ramping
up their energy capacity, Palmintier et al. [15] identified and reported further emerging
challenges of concern, namely reverse power flow, increased duty on line regulators leading
to equipment wear and tear, variability due weather uncertainty and capacitor switching.
In the last past five years, research and the need for further development to improve DG
grid penetration have been focussing on system efficiency, optimal planning and optimal
integration. Researchers’ attention is being drawn particularly on the following concerns:
optimization techniques under various scenarios to enable higher penetration capacity,
DSM and DR [31], energy storage systems to improve reliability, communication protocols,
and cyber security. There is a general consensus that RES grid integration is an ongoing
field for investigation and to respond to the anticipated RER integration challenges high-
lighted above, PS researchers propose advanced technologies and solution methodologies
that will be discussed later in the paper.

The literature review conducted in this paper considered a number of relevant previous
review papers that cover specific areas of DS challenges associated with DG grid-integration
such as: reviews on DG penetration issues [15,32–38], flexibility issues in DS [10,39,40],
protection issues [16,17,41,42], voltage stability and voltage regulation [43–46], uncertainty
analysis and assessment [47,48], DR programs and DSM [31,49–53], unintentional island-
ing [54], cyber security issues [4,30], islanding [54], and vehicle grid system integration
and applications [55–57]. Table 2 provides a comprehensive summary of the review papers
samples used for the literature review of this paper.
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Table 2. Sample review papers considered in the literature review.

Review Aspect Paper Title Ref.

Penetration issues

On the Path to Sun Shot: Emerging issues and Challenges in
Integrating Solar with the Distribution System [15]

Integration of renewable distributed generators into the
distribution system: a review [32]

Integrating Variable Renewable Energy: Challenges and
Solutions [33]

Distributed generation: A review of factors that can contribute
most to achieve a scenario of DG units embedded in the new
distribution networks

[34]

On the Path to Sun Shot: Emerging issues and Challenges in
Integrating High Levels of Solar into the Electrical Generation
and Transmission System

[35]

A critical review of the integration of renewable energy sources
with various technologies, [36]

Photovoltaic penetration issues and impacts in distribution
network—A review [37]

Grid Integration Challenges and Solution Strategies for Solar
PV Systems: A Review [38]

Flexibility issues in DS

Research and Practice of Flexibility in Distribution Systems: A
Review [10]

A review of demand side flexibility potential in Northern
Europe [40]

Aggregation of Demand-Side Flexibilities: A Comparative
Study of Approximation Algorithms [39]

Wind and hybrid-systems operational issues

Solar–wind hybrid renewable energy system: A review [58]
Hybrid renewable energy systems for off-grid electric power:
Review of substantial issue [59]

Wind Resources and Future Energy Security: Environmental,
Social, and Economic Issues, [60]

Protection issues

Renewable Energy Integration Challenge on Power System
Protection and its Mitigation for Reliable Operation [16]

Renewable distributed generation: The hidden challenges—A
review from protection perspective [17]

A comprehensive review on issues, investigations, control and
protection trends, technical challenges and future directions for
Microgrid technology

[41]

A review of protection systems for distribution networks
embedded with renewable generation [42]

Voltage stability and voltage regulation

Voltage Stability Analysis with High Distributed Generation
(DG) Penetration, [43]

A comprehensive review of the voltage stability indices [44]
Impact of distributed generation on protection and voltage
regulation of distribution systems: A review [45]

Grid-connected photovoltaic system in Malaysia: A review on
voltage issues, [46]

DR programs and DSM strategies

Survey on Demand Response Programs in Smart Grids: Pricing
Methods and Optimization Algorithms [31]

Residential peak electricity demand response—Highlights of
some behavioural issues [49]

Particle Swarm Optimization in Residential Demand-Side
Management: A Review on Scheduling and Control Algorithms
for Demand Response Provision

[50]

Residential Sector Demand Side Management: A Review [51]
A Survey of Efficient Demand-Side Management Techniques for
the Residential Appliance Scheduling Problem in Smart Homes [52]

A review on price-driven residential demand response, [53]
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Table 2. Cont.

Review Aspect Paper Title Ref.

Vehicles grid system integration and
applications

Comprehensive review & impact analysis of integrating
projected electric vehicle charging load to the existing low
voltage distribution system

[56]

A comprehensive analysis of Vehicle to Grid (V2G) systems and
scholarly literature on the application of such systems, [55]

A review on the state-of-the-art technologies of electric vehicle,
its impacts and prospects [57]

Unintentional Islanding A review on islanding operation and control for distribution
network connected with small hydro power plant [54]

3.2. Impacts of Operational Challenges

The power output of most dominant DG resources is dependent on weather condi-
tions, making these resources characterized by a variable generation property [38,61] that
constitutes its own challenge. In traditional grids, operational uncertainties usually result
from the demand side only. Distributed energy sources (DES) grid integration introduces
new challenges, as the operational uncertainties emanate from both the demand and the
generation sides [38] and have consequently significant impact on optimal planning of
DGs [62]. Beside the technical considerations, Liu et. al. in Ref. [63] warn that these
uncertainties can influence electricity users’ economic benefits. Shafiullah et al. [38] note
that accurate prediction of PV power for instance, has become an essential task for safe and
stable PS operation and the prediction can focus on energy output or rate of change. The
prediction types depend on the tools and information available from the meteorological
stations. Ref. [38] also present the prediction models that were developed by [64,65]. Re-
cent reported models for the prediction of power output are based on machine learning
techniques as presented in Refs. [66–68].

The following challenges have been highlighted and dealt with by several researchers
worldwide:

• Design and sizing of the system [5,15,32,33,47,69–74];
• Power balancing and voltage stability [7,43,69,71,75–78];
• Optimal energy management [11,79–94];
• Optimal DG allocation and penetration level [8,9,16,34,38,69,71,90,95–98];
• System cost minimization [22,82,99];
• Energy storage: operation strategies, coordination, optimization;
• Optimal coordination of various DERs [62,80,92,100–103];
• Localized overloading due to electric vehicle chargers [55,56,104].

Table 3 provides some references addressing design and integration, power quality
and voltage stability, protection coordination, optimal distributed generation allocation,
level of penetration as well as energy storage issues.

Table 3. Sample of some references and issues that they are addressing.

Ref.
Design and

Integration of the
System

Power Quality and
Voltage Stability

Protection
Coordination

Optimal DG
Allocation

Penetration Energy Storage

[5]
[43]
[69]
[98]
[33]
[7]
[8]

[16]
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Table 3. Cont.

Ref.
Design and

Integration of the
System

Power Quality and
Voltage Stability

Protection
Coordination

Optimal DG
Allocation

Penetration Energy Storage

[38]
[45]
[71]

[105]
[106]

4. Solutions Strategies for DS Grid Integration

To overcome the above challenges, researchers are exploring solutions that will pro-
vide satisfactory results to the power system network as a whole, as well as to procure
benefits to both the utilities and the customers. The solutions that have been provided are
summarized below.

4.1. Optimal Integration and Planning of Renewable Distributed Generation

DG optimal integration can improve network performance [103]. The optimal inte-
gration of DGs can be achieved through several strategies, the most popular one being
through use of mathematical optimization models. Ehsan and Yang [62] have provided a
good account of analytical techniques that are used for optimal integration and planning
of renewable DG in the power distribution network. The strategies can, in a particular
context and environment, invariably be used to address most of the challenges that have
been mentioned in the previous section.

• The following, researched and presented by Georgilakis et al. in Ref. [107], are the
mathematical formulations components for optimization approaches: a general prob-
lem statement, problem objectives whether single or multi, number of DGs and type
of DG technology and a number of constraints to be considered.

• This is in the agreement that indeed, as mentioned by [32,94,95], the performance
benefits depend mainly on the optimal sizing and location of the DG units, the DS
configuration and the types of DG technologies used for conversion of energy. In
Ref. [76], Esmaili was one of the earliest researchers to propose a multi-objective
framework for placing and sizing DG units with the combination of the number of DGs,
voltage stability margin and minimization of power loss into one objective function.

• In Ref. [108], the authors reviewed probabilistic optimization techniques (POT) in
Smart Power Systems and noted that in order to account for uncertainties in optimiza-
tion processes, stochastic optimization is essential. From their review, probabilistic
optimization techniques were classified into stochastic optimization (SO), robust op-
timization (RO), distributionally robust optimization (DRO) and chance constraints
optimization (CCO), each of which having their own advantages and drawbacks over
the others, with the common drawback to all being their high computational require-
ments. Riaz et. al. [108] further proposed that the most advanced and less costly
technique is the robust optimization in which a deterministic, set-based uncertainty
model is used instead of a stochastic one. The authors suggest that POTs must be used
in combination in order to deal with new challenges to achieve prolific outcomes.

• The authors in [92,101–103,109–112] have worked on various aspects related to DG
grid integration optimization. The solutions proposed include the following benefits:
more energy savings, improvement of voltage profile, reduced purchased power from
the DGs, increased sold power to the distributed grid, decreased non-supply load,
reduced overall cost of smart grid and mitigation of fault severity.

• Fast dispatch is one of the techniques that helps manage the variability of renewable
generation because it reduces the need for regulating resources, improves efficiency
and provides access to a broader set of resources to balance the system [33].
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With regards to planning, to handle the high complexity of the investment planning
problem for instance, Ref. [102] used a bi-level optimization framework that maximizes the
net present value (NPV). Level-1 determines the optimal sizing of BESS in the presence of
high PV penetration with the aim of minimizing the net present cost (NPC). The optimal
BESS power dispatch in coordination with the DR aggregator is obtained in level-2, aiming
to minimize NPC for voltage deviation penalty and PS losses with the scheduling of
BESS and DR only [102]. In Ref. [61], a method to determine the optimal location, power
and energy capacity of storage by creating an independent objective function for the
voltage profile and power losses was proposed. The authors used the symbiotic organism
search algorithm (SOSA) to solve the optimization problem with the following objectives:
improvement of voltage profile, loss reduction, network reliability and minimization
of storage costs including investment, operation and maintenance costs. SOSA has the
advantage over other conventional algorithm (PSO and GA) of having specific adjusting
parameters allowing for the conversion rate increase.

4.2. DER Coordination

Sharma et al. in [80] investigated the coordination of multiple DERs to address the
techno-economic aspects of distribution network operation. The study aimed to find opti-
mal dispatches of BESS in coordination with DR for wind generation and shunt capacitor
with the target of minimizing distribution power loss. In [103], the authors developed a
bi-level optimization framework for impact analysis of DR on PV and BESS accommodation
in DS. The study was motivated by the undergoing intensive research on responsive loads
driven by dynamic pricing that have shown benefits for utilities and consumers by shifting
the demand peak to off-peak periods by utilizing renewable energy.

Achieving optimal integration of DGs is a complex problem involving many compo-
nents, variables and constraints, network status, load dynamics and faults events, protection
schemes, weather conditions and consumers’ behaviour. Optimal integration requires the
minimization as much as possible of operational issues. This is largely achievable through
the coordination of multiple DERs. The following types of coordination have been un-
der research with progressive results to achieve efficient, reliable and economical use of
grid-integrated renewable energy resources:

• Coordination of DGs, BESS and DR for multi optimization of distribution
networks [80,102];

• Energy scheduling with BESS cost [87];
• Energy management with electricity price;
• Accommodation of PV, DR and BESS [103];
• Solar PV with BESS under uncertain environment [112];
• Investment planning of DG resources with DR [102];
• DR analysis for optimal allocation of wind and solar [90];
• Optimal sizing of PV/wind and hybrid considering DSM [113];
• DR trends: users, network services, markets, and DERs [114];
• DR and intermittent RERs [115];
• Price-driven DR [53];
• Household appliances and DR [116];
• Joint allocation and operational management of DG and BESS in presence of DR [92];
• Pricing schemes, optimization objectives and solution methodologies of DSM [11];
• DR: Pricing, optimization and appliance scheduling [117];
• DSM model and optimization;
• Optimal planning and investment benefits of shared BESS;
• DGs, power losses and voltage stability.

4.3. Energy Storage Systems and Complementary Technologies

Kucur et al. [18] examined worldwide energy storage applications, their best location,
applied technologies, total energy and power capacity and quality. Pumped storage are
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the most common type of grid-scale energy storage, but lead acid and lithium ion batteries
are the most prominent for solar PV systems [18]. Although they have relatively high
capital costs as indicated amongst other drawbacks by Liu et al. in Ref. [72], energy storage
systems are essential technologies as they provide support to overcome the challenge of
balancing supply and demand [18] and to cope with the intermittent renewable generation
as well as to reduce the user’s electricity purchase cost [63].

Installing BESS at any location with any random and non-optimum size can lead
to high costs [61]. Using a storage device in the operation indices depends more on the
installation location than the storage capacity. The authors in Ref. [118] have assessed the
simultaneous impact of BESS, controllable load and network reconfiguration on contempo-
rary distribution networks under uncertainties. The multi-constraint complex optimization
problem was solved using an improved water evaporation optimization algorithm and the
authors found that the coordination strategy reduced network loss while improving the
voltage profile of the systems. The impact of multiple BESS strategies on energy loss of
ADNs was investigated by Sharma et al. in [110]. With regards to the function of regulating
the voltage on the utility side, Gamage et al. in Ref. [105] proposed an approach to integrate
BESS to curb grid voltage violations.

• Ref. [63] proposed an approach of optimal planning of shared energy storage based on
cost–benefit analysis to minimize the electricity procurement of retailers. They found
that ES can effectively reduce the cost of retailers and high matching degree can be
used as the selection criterion to obtain greater benefits from the shared ES [63].

• Ref. [72] proposed a comprehensive optimal allocation model of BESS considering
operation strategy with the optimal capacity problem solved by cost–benefit analysis
taking into account the reliability improvement benefits of BESS.

• The authors in Ref. [72] proposed system reliability improvements with BESS in
planning operation strategies. The optimal BESS capacity and sizing problem was
solved by cost–benefit analysis. The authors concluded that from an economic point of
view, the distributed mode is preferable to centralized modes and the benefits of BESS
can be improved by increasing the peak–valley difference of electricity price within a
certain range.

• Ref. [72] was one of the earlier studies that proposed a comprehensive optimal alloca-
tion model of BESS that considered reliability benefits.

Table 4 presents a useful summary of important contribution, challenges, methodolo-
gies used and potential solutions to DG.

Table 4. Summary of major contributions, challenges, methodologies and potential solutions.

Ref. Challenges or Issues
Solution

Methodology
Research Objectives

Constraints/Objective
Function

Paper Contribution

[90]

Optimal
accommodation
in coordination
with DR
Impact on
planning of
wind-based and
solar-based DGs
in DS

MISOCP
Energy savings
Improvement of
voltage profile

Energy losses
Minimum
voltage
Average voltage
deviation
DG penetration
level
Peak demand

Integrating DR
with planning of
DGs leads to more
energy savings and
improvement of
voltage profile

[16]

Secure protection
for DS network
Protection
blinding issue

Adaptive Over
Current Protection
(AOCP)

High DER
penetration
Grid connected
and islanded
modes

Provided an
alternative
protection scheme
working regardless
connection to grid
or islanding
condition,
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Table 4. Cont.

Ref. Challenges or Issues
Solution

Methodology
Research Objectives

Constraints/Objective
Function

Paper Contribution

[119]

PV boosting
development
LSPV modelling
and simulation
techniques
LSPV integration
impacts on grid
static and
dynamic
characteristics
Key techniques
for improving
LSPV
transmission and
consumption

RE integration
Large-scale PV
development in
China

Review of large
scale PV
integration (LSPV)
Recommendations
for further research
with regards to
modelling and
simulations,
system integration
and power
generation delivery
and co
consumption

[115]

Reduce overall
cost of smart grid
and maximize
reliability

PSO
Optimal size of
units for the
smart grid

Cooling and
heating
management
Impact on smart
grid cost

Power
consumption of
heating and
cooling systems
resulted in
decreasing the size
of DGs
Reduced the
purchase power
from the DGs
Increased the sold
power to
distributed grid
Decreased
non-supply loads
Reduced the
overall cost of
smart grids

[74]

Mitigation of
fault severity
brought by DG
penetration
Causes
protection
devices not to
operate properly

Fault at
various
locations
Balanced
three-phase
faults are used

Protection
planning and
coordination
without and in
the presence of
DGs

Voltage
constraint
Thermal limits

Addressed
challenges
associated with the
operation of DS in
both normal and
contingency
operation states

[86]
Optimal use of
DERs MPSO

Minimization of
operating cost of
a microgrid

Optimization
problem of a
community
micro-grid

Problem with
optimization of a
community
micro-grid
However, solutions
had significant
deviations due to
prediction errors

[87]
Overall Minigrid
cost reduction

PSO (for model
optimization)
and Rainflow
(for battery
degradation
cost)

Electricity cost
management
through efficient
control of BESS

Battery
degradation cost
Dynamic
electricity price

Proposed a
day-ahead energy
management for a
community micro
grid with
consideration of
battery
degradation costs
40% cost reduction
compared to the
baseline approach
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Table 4. Cont.

Ref. Challenges or Issues
Solution

Methodology
Research Objectives

Constraints/Objective
Function

Paper Contribution

[92]
Energy losses
Voltage deviation
(stability)

Mixed integer
second order
conic
programming
(MISOCP)

To propose
framework for
joint allocation
and operational
management of
wind DG and
BESS
Optimally
allocate wind-
based DG and
BESS

Power flow
Wind-based DG
constraints
BESS constraints
Demand
response
constraint

Simultaneous
allocation and
operation
management of
wind-based DG
and BESS in
distribution system
considering DR
Optimal sizing and
siting of wind DG
and BESS along
with DR
participation leads
to significant
energy savings and
improvement of
power quality
When DR
participation rate
increased, BESS
capacity decreased

[120]

Determination of
dynamic electric
energy retail
pricing tariffs

Statistical
analysis

Improve the
performance of
demand
response
techniques

Minimum power
demand
Load variation

Novel quantitative
measure of the load
profile that
accurately reflected
the overall
generation
expansion
planning and
utilization costs
Peak-to-average
ratio (PAR) did not
reflect the load
characteristics

[53]

Price-driven
demand
response (PDDR)
to affect
customers’
consumption
(including critical
peak pricing,
TOU pricing,
real-time pricing

Evaluation of
advantages and
disadvantages of
PDDR

Review of three
different PDDR
programs at
residential sector
TOU
CPP
RTP

[51]

Lack of informed
decision from
both the supplier
and the
consumer

DSM to redesign
the load profile
and to decrease
the peak load
demand

Review of DSM
strategies with both
DR and energy
efficiency policies

[110]
Generic
Algorithm
(GA)

Optimal
operation
strategies
Validation of
economic benefit

Node voltage
limit
Feeder current
limit
Nodal power
balance

Optimal operation
of BESS can reduce
energy loss and
increase economic
benefits of the DS
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Table 4. Cont.

Ref. Challenges or Issues
Solution

Methodology
Research Objectives

Constraints/Objective
Function

Paper Contribution

[103]
Optimal
integration of
emerging DERs

Bi-level GA
using Matlab

PV generation
limits
BESS constraints
Feeder thermal
limit constraints
Power balance
constraints

DGs were effective
in annual energy
loss reduction
BESSS facilitated
higher DG
penetration and
levelled the load
profile
DR bridged the gap
between peak and
valley demands
and therefore
distresses to the
system

[118]

Innovative
Water
Evaporation
(IWEO)
algorithm

Optimal
coordination of
controllable load
scheduling, BESS
and uncertain
wind power

Nodal power
balance
Feeder thermal
limits
Controllable load
management
Network
configuration

Two-stage
framework was
developed to
coordinate the
generation of DGs,
scheduling of
BESSs, optimal
management of
controllable load

[105]
Fluctuation of
grid voltage

Power flow
simulation

Incorporation of
BESS can mitigate
voltage violation
More effective in
rural distribution
feeder suggesting
when the line
impedance is high

[80]

Non-sorted
generic
algorithm
(NSGA-II)
Technique for
order of
preference by
similarity to
ideal solution
(TOPSIS)

Optimal
dispatches of
BESS
Minimize
distribution
power loss and
grid demand cost

Nodal voltage
limit
Power loss
minimization
Grid demand
cost
minimization
Nodal power
balance
Feeder thermal
limits

Optimal
coordination of
wind power, BESS,
SC and TOU-DR
significantly
reduced the
network losses and
grid demand
consumption cost

[76]

To place DG
units at more
efficient buses
rather than end
buses of radial
links usually
used for voltage
stability
improvement

Non-Linear
Programming
(NLP)
Fuzzification
applied to
objective
functions

Optimal sizing
and location of
DG units

Number of DGs
Power loss
minimization
Maximize
voltage stability
margin
Branch and
voltage limits

Modelled all types
of DGs
Employed adaptive
reactive limits
rather than fixed
limits
New technique to
formulate the
number of DGs
without converting
the NLP problem
into mixed-integer
NLP
Minimization of
the number of DG
units led to
placement of these
units at more
efficient buses
rather than end
buses of radial link
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Table 4. Cont.

Ref. Challenges or Issues
Solution

Methodology
Research Objectives

Constraints/Objective
Function

Paper Contribution

[102]

Simultaneous
consideration of
cost of energy
purchased from
the grid, energy
losses, emission
penalty cost,
demand
deviation penalty,
operation and
maintenance cost
for NPV benefits

Complex
mixed-integer,
non-linear and
non-convex
optimization
techniques
Bi-level
optimization
problem
(BLOP)

Multilayer DS
and BESS
investment
planning with
coordination of
DR
The coordination
aimed to
maximize Net
Present Value
(NPV) profit

PV generation
limits
BESS capacity
limits
Power dispatch
and SOC limits
DR constraints
Thermal feeder
limits
Power balance
constraints
Cost of energy
purchased from
the grid
Energy losses
Emission penalty
cost
Demand
deviation penalty
Operation and
maintenance cost

Impact of DR on
investment
planning of DG
and BESS
Simultaneous
consideration of
cost of energy
purchased from the
grid, energy losses,
emission penalty
cost, demand
deviation penalty,
operation and
maintenance cost
for NPV benefits
Higher NPV
benefits
Analysed impact of
DR on payback
period: payback
within 9 of 20 years
of planning was
significant
compared to
non-DR-based
investment
planning
Other technical
benefits

[32]

Optimal sizing,
siting and
configuration of
DGs

Review on
technical benefits
of renewable DG
Review current
status of REN

Significant roles
that renewable
DGs can play in
technical, economic
and environmental
operation

[72]

Intelligent
Single Particle
Optimiser
(ISPO)
Sequential
Monte Carlo
simulation
method

Operation
strategy of BESS
(power and time
periods of
charging and
discharging)
Reliability
improvement
benefits of BESS
Optimal
planning model
of BESS

Comprehensive
optimal allocation
model of BESS
considering
operation strategy
Numerical method
based on
expectation for the
calculation of
system reliability
improvement with
BESS in planning
was proposed
Optimal BESS
capacity and sizing
problems were
(simultaneously?)
solved by
cost–benefit
analyses

[62]

Optimal
planning of DGs
Power quality,
voltage stability,
power loss,
reliability and
profitability

Conventional and
metaheuristic
techniques
Metaheuristics
algorithms were
popular choice
because of their
flexibility in
multi-objective
planning problems
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Table 4. Cont.

Ref. Challenges or Issues
Solution

Methodology
Research Objectives

Constraints/Objective
Function

Paper Contribution

[106]
Determination of
optimal location
and sizes

Optimal DG
placement and
sizing
Models and
solutions
Classify current
and future
research trends
in this field

DG capacity
constraints
Operating
constraints
Investment
constraints

[63]

Cope with
intermittency
and reduce
customer
electricity
purchase cost

Fluctuation of
electricity prices
and the uncertainty
of RE resources’
output did not
influence users’
economic benefits
Shared energy
storage (ES) system
among multiple
electricity retailers
showed more
benefit rather than
the separately
configured ES

5. Further Research Priorities and Conclusions

5.1. Further Research Priorities

From this review study, the following concerns have not been appropriately and
exhaustively attended to and therefore still require researchers’ attention:

• All-in-One multi-objective DER optimal planning solutions that include the coordi-
nation of various variables such as the type of DG technologies, the types of energy
storage integration, DSM mechanisms and different DR strategies, for maximum
benefits both for the utility and consumers have not yet been sufficiently researched.

• Further investigations are needed in establishing optimization techniques using hybrid
techniques that combine analytical, metaheuristic and computational methods to
achieve better results.

• The use of optimization algorithms, ensemble methods and weather forecasting to
develop models that can predict renewable energy power output considering weather
conditions and seasonal variation still need attention and focus from researchers.

• Development of robust models to quantify the impact of uncertainties related to
intermittency of renewable DGs. There is a need to gather resources and tools for
weather condition predictions.

5.2. Conclusions

The transformation of PS around the world is effective and largely impacted by a
rapid growth of various renewable energy grid integration thus affecting the control and
operation of contemporary DS which are becoming more and more active network systems.
Supporting and remedial actions are required and should be planned accordingly. This
paper presents various operational and technical challenges associated with DG integration
into DS. It was shown that the challenges of different natures at different levels of the
PS are usually addressed individually, prompting that a holistic approach be considered
when addressing them. Power quality, voltage stability, PS reliability, loss minimization,
cost–benefits and so many other objectives can be achieved with optimal integration
and appropriate planning of DGs. The DG grid integration problem is a multi-objective
and hence needs advance multi-objective algorithms to address more than one challenge
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simultaneously. In order to reduce the variability and increase predictability, robust models
need to be designed to include accurate forecasting methods, reliable data collection and
safe communication to cater to RE technologies’ uncertainties and intermittent nature.
Further energy storage and demand side management can play a major role in supplying
quality and reliable power to the customers and at the same time reduce the burden on
DGs and their intricacies such as variability.
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