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Pingyu Jiang 1,*, Gang Xiong 2, Timo R. Nyberg 3, Zhen Shen 2, Maolin Yang 1 and Guangyu Xiong 4

1 State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China;
maolin@mail.xjtu.edu.cn

2 The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation,
Chinese Academy of Sciences, 95 Zhongguancun East Road, Beijing 100190, China;
gang.xiong@ia.ac.cn (G.X.); zhen.shen@ia.ac.cn (Z.S.)

3 Aalto Advisors, FI-02150 Espoo, Finland; timo.nyberg@aaltoadvisors.com
4 Laboratory-Operations Development, Ningbo Intelligent Manufacturing Institute, Ningbo 315151, China;

xiongguangyu@hotmail.com
* Correspondence: pjiang@mail.xjtu.edu.cn

The fast development of the industrial internet is boosting the evolution of the man-
ufacturing industry to a new stage of socialization, servitization, universal interaction
and connection, and platformization. Under such a background, social manufacturing
has emerged as a new kind of manufacturing paradigm characterized by self-driven, self-
organization, self-adaptive, and cyber–physical–social interaction among huge numbers
of socialized manufacturing resource providers. The most prominent advantage of social
manufacturing is its capability of completing production/service orders with the limited
internal manufacturing resource of an enterprise by utilizing socialized manufacturing
resources from the outside, and this can be applied in both large and small enterprises and
trigger value co-creation for both resource providers and demanders. In this regard, this
Special Issue is established to explore how exactly the newly emerged social manufacturing
paradigm influences the trends of mass customization and the configuration/operation pat-
terns during order delivering, and how advanced information technologies such as industrial
internet, cloud computing, blockchain, etc., can boost the development and application of
social manufacturing. In total, 14 papers, including 2 review articles, have been collected in
this Special Issue, and the key topics explored in these papers are briefly introduced below.

The paper in [1] introduced the issue of product customization under the context of
social manufacturing. It introduced a framework that utilizes advanced deep learning
models and cloud computing technologies to transfer the text/image data generated
during manufacturing process into customized 3D contents that can be directly used for
3D printing. Supported by the framework, more effective product customization and more
efficient social manufacturing operation and optimization can be realized.

The papers in [2–5] provided insights from the perspective of production configuration
under the context of social manufacturing. Specifically, a graph convolutional network-
based method for socialized designer team configuration was proposed in [2]. By utilizing
the graph convolution network embedded with the graph matching algorithm, it can
identify the socialized designers with the suitable design resources for a certain socialized
design project, and thus provide decision making support for designer team configura-
tion. In [3], a fast manufacturing system configuration model was established under the
context of industrial 4.0 and social manufacturing, and the model could be particularly
useful for small enterprises to improve their existing manufacturing system to meet the
new requirements of wider customized product varieties, a shorter response time to new
orders, a faster manufacturing system configuration process, etc., from the new market
environment. Aiming at the situation that one large 3D printing order could be collab-
oratively carried out by multiple factories under the context of social manufacturing, a
multi-part production planning system particularly for 3D printing orders was established

Machines 2023, 11, 383. https://doi.org/10.3390/machines11030383 https://www.mdpi.com/journal/machines1
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in [4]. The system utilizes multiple types of intelligent algorithms to support printing
order separation, printing part orientation, and nesting during order collaboration. A novel
method for configurating the data acquisition network for socialized intelligent factory
was proposed in [5]. The data acquisition network can realize real-time data collection
and pre-processing for energy consumption analysis, and thus support further intelligent
optimization on energy consumption.

The papers in [6–9] provided ideas from the perspective of supporting production
operations with advanced techniques such as industrial internet, cloud-edge collaboration
technologies, etc., which are fundamental for enabling the social manufacturing paradigm.
For example, production data management and application during cloud manufacturing
is considered in [6]. In this paper, a kind of cloud manufacturing system enhanced with
an industrial internet of things and cloud-edge collaboration was established. The system
can describe the characteristics of heterogeneous manufacturing resources, the operational
data of the resources, and their relations with the service-oriented manufacturing system.
In addition, a middleware and AI edge gate way model was established, and it utilizes
real-time sensor data to realize the remote monitoring and controlling of cloud manufactur-
ing resources. Supported by the system, companies can better utilize the distributed cloud
manufacturing resources and improve their response speed to personalized orders. In [7],
a kind of equipment asset management model was established based on industrial internet
platform techniques and a fuzzy DEMATEL-TOPSIS algorithm under the general frame-
work of system engineering. By collecting the required data for asset management from
the industrial internet platform established for the target industrial, the fuzzy DEMATEL-
TOPSIS algorithm is then applied to identify the relations among the requirements from
customers and the characteristics of the assets registered in the platform. In this way,
the model helps to establish the solutions for asset management for the entire product
lifecycle. The one review article in [8] reviewed the related research on utilizing advanced
information technologies (e.g., edge/cloud/fog computing, big data collecting and processing,
artificial intelligence, digital twin, etc.) for equipment or production line maintenance. The
other review paper in [9] established a blockchain-based method to support a trustworthy
operation environment for manufacturing activities under the context of industrial 5.0 and
social manufacturing. By applying an industrial Internet of Things network enhanced with
blockchain networks, the method can protect the confidential and private data of stakeholders,
and thus support the realization of resilient and trustworthy manufacturing operation.

The papers in [10–13] provided technical road maps from the perspective of a few
fundamental information and data techniques that can support social and intelligent
manufacturing realization. For example, a kind of high precision synchronous control
method for a fieldbus control system is established in [10], and it can improve the control
accuracy of multi-axis collaborative machining tasks. A novel method for liquid crystal
display module alignment and particle detection in anisotropic conductive film bonding
was established in [11]. By applying only one camera instead of multiple to obtain images
of multiple locations, the method can realize the transformation from image space to world
coordinates. Compared with the traditional methods which apply multiple cameras, the
method can accurately identify the rotation center, the position, and angle deviation of
the target object with a relatively lower economic and time cost. A kind of deep learning-
driven defect image generation method was established in [12]. The method was for solving
data enhancement problems in industrial defect detection. By applying a masked defect
image generation adversarial network, the method can solve the problems of a loss of
background information, an insufficient consideration of complex defects, and a lack of
accurate annotation image data which usually occurred during data-driven defect detection.
A kind of online dimensional error prediction method to predict the errors occurred during
grinding process was proposed in [13]. The method was driven by principal component
analysis, extreme learning machine, genetic algorithm, and ensemble strategy (bagging
algorithm). By applying the method, grinding errors can be detected in a real-time manner
with our extra devices and space occupation.
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Finally, a case study of social manufacturing from the entry point of the value chain
was proposed in [14]. First, a kind of value chain model under the context of the social
manufacturing paradigm was established; it then utilized the cases from the crane industry
to demonstrate the advantages of the established model.

All the papers above provide a reference for academic research and the industrial
application of social manufacturing. However, as a newly emerged research topic, there
are still unexplored issues for more optimal interaction/configuration/operation under
the context of social manufacturing such as the implementation of collective and social 3D
printing factories, realizing collective intelligence during social manufacturing operation,
applying advanced cross-modal data processing techniques for extracting and utilizing
production data for social manufacturing optimization, etc.
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Abstract: With improvements in social productivity and technology, along with the popularity of
the Internet, consumer demands are becoming increasingly personalized and diversified, promoting
the transformation from mass customization to social manufacturing (SM). How to achieve efficient
product customization remains a challenge. Massive multi-modal data, such as text and images, are
generated during the manufacturing process. Based on the data, we can use large-scale pre-trained
deep learning models and neural radiation field (NeRF) techniques to generate user-friendly 3D
contents for 3D Printing. Furthermore, by the cloud computing technology, we can achieve more
efficient SM operations. In this paper, we propose an efficient product-customization framework that
can provide new ideas for the design, implementation, and optimization of collaborative production,
and can provide insights for the upgrading of manufacturing industries.

Keywords: social manufacturing; multimodal data; product customization; 3D content generation;
blockchain; cloud manufacturing

1. Introduction

With the rapid development of social computing and social manufacturing (SM),
traditional manufacturing mode is transforming to customization, small batch, digital
production [1]. The cost of rapid prototyping equipment, represented by 3D printers, is
decreasing, and the technology is becoming increasingly popular. Desktop and industrial-
grade 3D printers make it possible for individuals to produce products independently.
Users can personalize and manufacture physical objects in small batches without relying
on complex factories as long as they have valid 3D model data (or have other types of
manufacturing instructions). Each 3D printer is an independent manufacturing node
with a naturally distributed, decentralized character. Anyone with an idea for a product
design, even if they do not have the knowledge of 3D modeling, can design a digital model
by relying on AI technology, and then realize it with manufacturing facilities. With a
well-developed design platform, innovative ideas can be realized on the Internet. Using
distributed manufacturing tools such as 3D printers, personalized and customized products
can be provided to users worldwide.

Industry 4.0 utilizes the cyber-physical system (CPS) in combination with additive
manufacturing, the Internet of things, machine learning, and artificial intelligence technolo-
gies to a realize and smarten manufacturing [2]. It aims to improve the intelligence level
of the manufacturing industry and establish a smart manufacturing model with adapt-
ability and resource efficiency. Cyber-physical-social systems (CPSS) further enhance the
integration of Internet information and social manufacturing systems and fully integrate
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industry with the human society [3]. In the CPSS industrial environment, social manufac-
turing seamlessly connects the Internet of Things with 3D printers. The public can fully
participate in the entire lifecycle of the product manufacturing process, to achieve real-time,
personalized, large-scale innovation, and “agile mobile intelligence”.

Social manufacturing is a paradigm that uses 3D printing to involve the community in
the process of producing products. During the 3D printing process, the first step is to obtain
a 3D model. Currently, most 3D models are generated by computer-aided design (CAD),
but the time and human resources costs are high. It is essential to design a user-friendly
end-to-end 3D content generation model so that users can personalize the 3D model using
text representation. Futhermore, a cloud platform can be built and put it into practical use.

The rest of the paper is organized as follows. In Section 2, we present the literature
review of SM. Section 3 introduces the theoretical concepts. Section 4 reviews the current
difficulties in product customization. Finally, in Section 5, the multimodal data-based
product customization manufacturing framework is proposed and illustrated with practical
application examples, followed by concluding remarks in Section 6.

2. Literature Review

Utilizing SM is a practical way to achieve intelligent, social, and personalized manu-
facturing. SM allows for the active participation of all facets of social customization and the
intense personalization of every component of every product. The term SM was proposed
by Professor Fei-Yue Wang at the “Workshop on Social Computing and Computational
Social Studies” in 2010 [3], and its formal definition is given in his article in 2012 [4]: “The
social manufacturing refers to the personalized, real-time and economic production and
consumption mode for which a consumer can fully participate in the whole lifetime of man-
ufacturing in a crowdsourcing fashion by utilizing the technologies, such as 3D printing,
network, and social media.” Thus, it is noted that SM is inspired by the social computing
concept that has been hailed as a cutting-edge manufacturing solution for the coming era
of personalized customization. In the same way that the social computing [5] enables
everyone in the society to obtain computing capacity, the SM enables everyone to obtain
innovation and manufacturing capacity.

In the context of the SM, the critical feature is that everyone participates in product
design, manufacturing and consumption in social production. Everyone can turn their ideas
into reality. SM is a further the development and continuation of the existing crowdsourcing
model. Xiong et al. [6] summarize this feature as “from mind to product”. Based on this
concept, Shang et al. [7–9] provided a vision of connected manufacturing services that are
smart and engaging online. Mohajeri et al. [10–12] argued for using social computing and
other Internet technologies to realize personalized, real-time, and socialized production.
Jiang et al. [13–16] focused on the mechanisms for crowdsourcing and outsourcing services
throughout the entire lifespan of individualized production. As for the SM service mode,
Xiong et al. [17] presented a social value chain system that applies the SM mode to the
entire value chain and makes a contribution to bringing more potential to value-adding for
all involved participants while reducing waste. Cao et al. [18] provided a manufacturing-
capability estimation model for the SM mode’s service level that is based on the ontology,
the semantic web, the rough set theory, and a neural network. It includes models for
production service capability and machining service capability. In the evaluation system
proposed by Xiong et al. [19], the best supplier is selected by using the hierarchical
analysis method (AHP) and fuzzy comprehensive method. The suggested techniques can
assist prosumers in assessing their suitability for a certain manufacturing requirement.
Additionally, it can assist prosumers in their search and ability matching. Ming et al. [20]
proposed a data-driven view in the context of SM. Xiong et al. [21] summarized the five
layers that make up an SM system architecture, and a detailed discussion of each of the
layers is presented next.

(1) Resource Layer: The production and service resources found in this layer can be
combined to form a social resource network. A few of the resources include 3D printers,
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sophisticated logistics networks, information networks using 3D intelligent terminals, and
heterogeneous operating systems. In this layer, 3D intelligent terminals can offer interac-
tion and perception capabilities, and a modern logistics network can offer the logistical
capability. Along with a range of physical links, the logistics network offers transparent
information transmission options. For terminal perception, information communication,
and production and product logistics, this layer is essential.

(2) Support Layer: Service module encapsulation, service discovery, service registra-
tion, service management, service data management, and middleware management are all
part of this layer. Enterprise information can be transferred reliably, efficiently, and safely in
accordance with user needs using the service registration and service discovery modules.

(3) Environment Layer: This layer includes the computer environment, information
analysis environment and monitoring management environment that works in coordi-
nated operation.

(4) Application Layer: This layer includes 3D modeling, operational monitoring tools,
a platform for collaborative manufacturing management, a data collection and analysis
platform, an optimization tool for allocating socialized manufacturing resources (SMRs),
an assessment mechanism for system management, real-time monitoring, and resource
scheduling.

(5) User Layer: This layer is composed of manufacturers, prosumers, and SMRs.
Crowdsourcing is used to connect manufacturers and prosumers, and SMRs can be tailored
for production.

3. Concepts

3.1. 3D Modeling

Additive manufacturing (AM) is a fabrication method that uses a digital prototype file
as the foundation for constructing objects by printing layer by layer using material, such
as powdered metal or plastic. Without the need for traditional tools, fixtures, or multiple
machining processes, this technology enables the rapid and precise manufacturing of parts
with a complex shape in a single machine, thereby allowing “free-form” manufacturing.
Moreover, the more complex the structure of the product, the more significant the accel-
erating effect of its manufacturing. Currently, AM technology has many applications in
the aerospace, medicine, transportation and energy, civil engineering, and other fields.
With the development of AM technology and the popularity of 3D printers, there is an
increasing demand for 3D modeling. The traditional modeling approach uses forward
modeling software—3DMax, AutoCAD, etc. [22]—which is highly technical. It takes a long
time to design a model, making it difficult to build complex, arbitrarily shaped objects.
Roberts et al. [23] proposed a method to obtain 3D information from 2D images, known as
reverse modeling. Since then, vision-based 3D reconstruction developed rapidly, and many
new methods have emerged. Image-based rendering (IBR) methods could be divided into
two categories depending on whether they rely on a geometric prior or not. Those methods
that rely on geometric priors generally require a multi-view stereo (MVS) algorithm first
to calculate the geometric information of the scene, and then to guide the input image for
view composition. The methods that do not rely on geometric priors can generate new
views directly from the input images. In 2018, Yao proposed an unstructured multi-view
3D reconstruction network (MVSNet) [24], an end-to-end framework using deep neural
networks (DNNs). IBR methods that rely on geometric a priori information perform better
when geometric information is abundant and accurate. Still, when the geometry is missing
or incorrect, it produces artifacts and degrades the quality of the view. The light field is
the main area of research that does not rely on geometric a priori methods. Traditional
methods for drawing light fields require dense and regular image captures, making them
difficult to apply in practice. In recent years, with the development of DNN, researchers
have discovered that it is possible to synthesize new views by fitting a neural network to
a light sample of the scene, thereby implicitly encoding the light field of the input image.
Compared to traditional light fields, the neural reflectance field (NeRF) [25] method can be
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used for handheld captures with a small number of input images, greatly extending the
applicability. The main advantages and disadvantages of the mainstream 3D modeling
approach are shown in Table 1. As shown in Figure 1, NeRF can be briefly summarized as
using a multi-layer preceptron (MLP) neural network that learns a static 3D scene implicitly.
While the input is the spatial coordinates, the view direction output is the bulk density of
the spatial location under that view direction and the view-related camera light radiation
field. In its basic form, a NeRF model represents scenes as a radiance field approximated
by a neural network. The radiance field describes color and volume density for every point
and for every viewing direction in the scene. This is written as,

F(x, θ, φ) → (c, σ) (1)

where x = (x, y, z) are the in-scene coordinates, (θ, φ) represent the azimuthal and polar
viewing angles, c = (r, g, b) represents color, and σ represents the volume density. This 5D
function is approximated by one or more MLP, sometimes denoted as F. The two viewing
angles (θ, φ) are often represented by d = (dx, dy, dz), a 3D Cartesian unit vector. This
neural network representation is constrained to be multi-view consistent by restricting
the prediction of σ, the volume density (i.e., the content of the scene), to be independent
of viewing direction, whereas the color c is allowed to depend on both viewing direction
and in-scene coordinates. NeRF utilizes a neural network as an implicit representation
of a 3D scene instead of the traditional explicit modeling of point clouds, meshes, voxels,
etc. Through such a network, it is possible to directly render a projection image from
any angle at any location. For this purpose, NeRF introduces the concept of radiation
field, which is a very important concept in graphics, and here we give the definition of the
rendering equation,

Lo(x, d) = Le(x, d) +
∫

Ω
fr(x, d, ωi)Li(x, ωi) cos θdωi (2)

The neural radiation field represents the scene as volumetric density and directional
radiation brightness at any point in space. Using the principles of classical stereoscopic
rendering, we can render the color of any ray passing through the scene. The bulk density
σ(x) can be interpreted as the derivable probability that the ray stays at position X for
an infinitesimal particle. Under the conditions of the nearest boundaries tn and farthest
boundaries t f , the color C(r) of the camera light is:

C(r) =
∫ t f

tn
T(t)σ(r(t))c(r(t), d)dt, where T(t) = exp

(
−

∫ t

tn
σ(r(s))ds

)
(3)

In practical applications, a fully automated, full-flow 3D reconstruction tool chain
is urgently needed in many areas across industries, which also opens up many ideas
and opportunities for our 3D reconstruction research. There are two key issues in this
process that deserve our consideration. The first is that in the construction process of a
3D reconstruction system, the traditional geometric vision has clear interpretability, so
how can we integrate an end-to-end deep learning method? Whether it is an end-to-end
replacement or one embedded in our current process seems to be inconclusive and needs
further exploration. The second is, from this practicality, how can we combine the reverse
reconstruction in computer vision with the forward reconstruction in graphics so as to truly
realize the highly structured and highly semantic 3D model required by industry from
massive images. Generation is also an essential trend in the future. Only by solving these
problems can we indeed use our image 3D reconstruction system to effectively support
various business requirements in practical application settings, such as digital city planning,
VR content production, and high-precision mapping.
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Figure 1. An overview of NeRF model presented by Ben Mildenhall et al. [25]. We create images
using the sampling of 5D coordinates (location and viewing direction) along camera rays (a), feeding
those locations into an MLP to create a color and volume density (b), and then utilizing volume
rendering algorithms to merge these values into an image (c). Because of the differentiability of this
rendering function, we can improve the scene representation by decreasing the difference between
the synthetic and actual ground truth observed images (d).

Table 1. Advantages and disadvantages of the mainstream 3D modeling approach.

Methods Advantages Disadvantages

Forward Modeling (CAD) Ideal for showing details of objects Complicated and challenging to
parameterize accurately

MVS 3D Reconstruction Better performance when geometric
information is abundant and accurate

Missing or incorrect geometry reduces
the quality of the view.

NeRF-based 3D Reconstruction Higher quality models Long training time and poor
generalization.

3.2. Cloud Manufacturing

Cloud manufacturing is an intelligent, efficient, and service-oriented new manufac-
turing model proposed in recent years. We aim to organically combine the 3D content
generation model and cloud manufacturing mode so that this technology can be success-
fully implemented and applied to actual production. Cloud manufacturing is a cutting-
edge manufacturing model that combines cloud computing, big data, and the Internet of
Things to enable service-oriented, networked, and intelligent manufacturing. It provides a
customized approach to production based on the use of widely distributed, on-demand
manufacturing services to meet dynamic and diverse individualized needs and to sup-
port socialized production [26–29]. Cloud manufacturing emphasizes the embedding of
computing resources, capabilities, and knowledge into networks and environments, allow-
ing the center of attention of manufacturing companies to shift or return to users’ needs
themselves. Cloud manufacturing is committed to building a communal manufacturing
environment where manufacturing companies, customers, intermediaries, and others can
fully communicate. In the cloud manufacturing model, user involvement is not limited
to the traditional user requirement formulation and user evaluation but permeates every
aspect of the entire manufacturing lifecycle. In the cloud manufacturing model, the identity
of the customer or user is not unique, i.e., a user is a consumer of cloud services but also
a provider or developer of cloud services, reflecting a kind of user participation in manu-
facturing [30]. The advanced 3D-printing cloud model integrates 3D printing technology
with the cloud manufacturing paradigm. Furthermore, the advanced 3D-printing cloud-
model-based 3D-printing cloud platform has a service-oriented architecture, personalized
customization technology, and a scalable service platform [31]. The 3D-printing cloud
platform is not a standalone information-sharing platform, but rather an open, shared,
and scalable platform that offers both 3D printing and other types of high-value-added
knowledge services. The 3D-printing cloud platform can power a 3D printing commu-
nity based on collaborative innovation and promote the growth of 3D-printing-related
industries. Manufacturing resources (such as 3D printers and robots) from various re-
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gions and enterprises are encapsulated into various types of manufacturing services in the
cloud platform, with the goal of providing service demanders with on-demand service
compositions. Yang et al. [32] provided a cloud-edge cooperation mechanism for cloud
manufacturing to offer customers on-demand manufacturing services, greatly enhancing
the usage of distributed manufacturing resources and the responsiveness to the needs
of customized products. Tamir et al. [33] proposed a new robot-assisted AM and control
system framework which effectively combines 3D printing and robotic arm control to better
support cloud printing tasks.

4. The Difficulties in Product Customization

Offering products with their colors, components, and features changed to suit con-
sumers’ preferences is known as product customization. The practical implementations of
NeRF-based product customization currently face several difficulties due to the limitations
of technology and resources. This section evaluates the research and divides the challenges
into three groups,

(1) The accuracy of 3D modeling: We need to understand and render 3D scenes,
because we human beings already live in such a 3D world, and we need to interact with
others. When making a virtual scene, we hope to reconstruct the object from different
perspectives and then analyze and observe the object. In the medical field, we hope to
reconstruct the parts of each person and then guide the doctor’s decisions. At the same
time, we hope to have a seamless interaction with this virtual world, hoping to get realistic
enjoyment in the virtual world. For the next generation of artificial intelligence, we hope
that it can understand 3D scenes so that it can better serve humans. Hopefully, we can
make artificial intelligence have the ability to interact. This will form a pipeline. After
reconstructing the 3D representation from the 2D world, a realistic rendering can be made.
On top of this, it is hoped that a 3D scene could be generated so that the generated model
could be used to learn the entire process. However, there are specific difficulties in realizing
this. In fact, the generation of 3D scenes is a very complicated process. Take NeRF as
an example, it requires multi-view images. However, after all, the amount of data in
multi-view images is far from enough. This kind of data is actually a lot of this single-view
images on the Internet, which lacks perspective information. We hope to use the existing
pre-trained model to provide prior knowledge.

(2) Security and supervision: AM files can be easily transferred from the AM design
stage to the shop floor during final production. Digital supply networks and chains can be
created thanks to the ease with which parts and products can be shared and communicated
thanks to AM’s digital nature. In addition, these digital advantages come with a few
drawbacks. A digital design-and-manufacturing process increases the likelihood of data
theft or tampering without a robust data protection framework. Data leakage and identity
theft will pose significant security risks as the scale of the SM production system grows, and
the participation of dishonest and malicious nodes will put the interests of honest nodes
in jeopardy. At the same time, when physical products are transported via product data,
it is essential to secure, store, and share data containing all important information. The
digital thread for AM, also known as DTAM, creates a single, seamless data link between
initial design concepts and finished products in order to mitigate risks. The integration of
multiple printers and printing technologies and a number of distinct and disjointed physical
manufacturing facilities is the primary obstacle in this challenge. Additionally, because
parts must be inspected throughout the process rather than just at the end, businesses can
need help to keep track of events that take place during the additive process. This may be
necessary for part certification and qualification.

(3) Production efficiency: The uneven distribution of manufacturing resources in the
manufacturing industry and the low utilization rate of resources have seriously affected
the development of the manufacturing industry. To effectively integrate scattered man-
ufacturing resources and improve the utilization rate of manufacturing resources, cloud
manufacturing, a manufacturing model that uses information technology for services,
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appears in everyone’s vision. As one of the key research issues of the cloud manufacturing
platform, the scheduling of manufacturing resources in the cloud manufacturing environ-
ment will affect the overall operational efficiency of the cloud manufacturing platform. In
both academia and industry, cloud computing resource scheduling problems are consid-
ered to be as difficult as non-deterministic polynomial optimization problems, that is, NP
problems. Therefore, algorithms that solve relatively conventional scheduling problems
may suffer from dimensional damage when the scale of the problem increases. With the
development of cloud computing and the increase in complexity, this problem has become
more challenging.

5. The Efficient Product Customization Framework

Considering that the characteristics of NeRF and other artificial intelligence technology
have great potential for solving the difficulties of SM, a customization production frame-
work of 3D printing using NeRF and ultra-large-scale pre-trained multimodal models as
the baseline is proposed in this paper. As shown in Figure 2, the framework is constructed
in the order of the multimodal data-based customization production process and value
flow, specifically, from the bottom to the top, it is divided into three parts: 3D modeling
service, blockChain encryption service, and cloud management service.

5.1. 3D Modeling Service

3D content customization is a very challenging task as it is a 3D representation. The
existing stylized methods are 2D, so we can use the 2D stylized form to provide a kind
of supervision. Still, this kind of supervision does not have 3D information, so we need
to use the mutual learning between 2D and 3D. Two-dimensional neural networks can
provide a stylized reference. More importantly, we offer this 3D-based spatial consistency
information to 3D NeRF and finally stylize NeRF. Therefore, we can convert the scenes
taken by mobile phones into this 3D stereo-stylized effect.

To solve the difficulties in 3D modeling, as shown in Figure 3, the service includes
two modules: image-based 3D digital-asset reconstruction and text-based 3D digital-
asset generation. In the image-based module, the end-to-end model can automatically
generate a 3D geometric model without human intervention by taking multiple 2D pictures
of the object from different angles with a device such as a mobile phone. The entire
model is implemented in the following steps. First, a 360° surrounding image needs
to be captured at a fixed focal length. After that, we use this tool for pose estimation.
After recovering the poses of the photographed objects, the poses obtained from the
sparse reconstruction are converted into local light field fusion (LLFF)-format data and
then rendered by NeRF. The NeRF combines light-field sampling theory with neural
networks, using an MLP to implicitly learn the scene in the sampling of all light, and it
achieves good view synthesis results. In addition, NeRF uses the images themselves for
self-supervised learning, which is applicable to a wide range of datasets, from synthetic to
real-world. Finally, the corresponding mesh model is exported. To make NeRF practical
for 3D modeling in AM, we build it based on instant neural graphics primitives (Instant-
NGP) [34], a fast variant of NeRF. In addition, in order to achieve the realization of the
reconstruction process, only the target object is modeled. We use image segmentation
algorithms in the pre-processing process, which focuses on the accurate extraction of
the reconstructed target and can reduce redundant information in the image during the
reconstruction process.
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Figure 2. The Efficient Product Customization Framework.

The process of 3D reconstruction based on sequenced images is rather complex. In
order to further enhance the convenience and versatility of product customization, we
propose a text-guided 3D digital-asset generation module. Recent breakthroughs in text-to-
image synthesis have been driven by multimodal models trained on billions of image-to-
text pairs. The CLIP multimodal pre-training model is called contrastive language-image
pre-training [35], i.e., a pre-training method based on contrasting text-image pairs. CLIP
uses text as a supervised signal to train the visual model, which results in a very good
zero-shot effect and good generalization of the final model. The training process is as
follows: The input of CLIP is a pair of picture–text pairs. The text and images are output
with corresponding features by the text encoder and image encoder, respectively. The text
features and image features are then compared and learned on these outputs. If the input to
the model is n pairs of image–text pairs, then this pair of mutually paired image–text pairs
are positive samples (the parts marked in blue on the diagonal of the output feature matrix
in the Figure 4), and the other pairs are negative samples. The training process of the model
is thus to maximize the similarity of the positive samples and minimize the similarity of the
negative samples. However, applying this approach to 3D synthesis requires large-scale
datasets of labeled 3D assets and efficient methods for denoising 3D data.
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Figure 3. The pipeline of 3D content generation service.

The traditional NeRF scheme for generating 3D scenes requires multiple 3D pho-
tographs to achieve 360° visual reconstruction. In contrast, the Dreamfields [36] algorithm
used in this paper does not require photos to generate 3D models and can generate entirely
new 3D content. In fact, the algorithm is guided by a deep neural network (DNN) that
can display geometric and color information based on the user’s textual description of
the 3D object and some simple adjustments. When training the algorithm, a multi-angle
2D photo is required as a supervised signal, and once trained, a 3D model is generated
and a new view is synthesized. The role of the CLIP multimodal pre-training model is to
evaluate the accuracy of the text-generated images. After the text is fed into the network,
the untrained NeRF model generates random views from a single perspective, and then
the CLIP model is used to evaluate the accuracy of the generated images. In other words,
as shown in Figure 3, NeRF renders the image from a random position, and finally uses
CLIP as a measure the similarity between the text description and the composite image
of given parameters θ and position s orientation p. This process is repeated 20,000 times
from different views until a 3D model is generated that matches the text description. The
corresponding loss function for this training process is:

LCLIP (θ, pose p, caption y) = −g(I(θ, p))Th(y) (4)

LT = −min(τ, mean(T(θ, p))) (5)

Ltotal = LCLIP + λLT (6)

where g(·) is the image encoder and h(·) is the text encoder. The Lclip objective is to
maximize the cosine similarity of the rendered image embedding to the text embedding,
and the Lt objective is to maximize the average transmittance. Inspired by Dreamfields
algorithm, this paper leverages a priori knowledge from large pre-trained models to
generate 3D digital assets better. Using Dreamfields as the baseline, the images are encoded
by a CLIP image encoder and compared with the text input encoded by a CLIP text encoder.
To implement support for Chinese prompts, we replaced CLIP with Taiyi-CLIP [37], a
visual-language model using Chinese-Roberta-wwm [38] as the language encoder, and
applied the vision transformer (ViT) [39] in CLIP as the vision encoder. They froze the vision
encoder and tuned the language encoder to speed up and stabilize the pre-training process,
and applied Noah-Wukong [40] and Zero-Corpus [41] as the pre-training datasets. There
are two main limitations of existing dataset collection methods. Specifically, a dataset can
contain 100 million image pairs collected from the web. The Wukong dataset was compiled
from a query list of 200,000 words in order to cover a sufficiently diverse set of visual
concepts. Furthermore, the CLIP model transforms this encoded text input into an image
embedding, the output of which is also used for a loss function. In addition, this encoded
text input is transformed into an image embedding by the CLIP model. This output is
also used for a loss function. The specific operation of the model for each input uses a text
prompt. It is necessary to retrain a NeRF model, which will require multi-angle 2D photos,
and after completing the training can generate a 3D model, and thus, synthesis of the new
perspective. The role of CLIP is still to evaluate the accuracy of text-generated images.
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Figure 4. The schematic diagram of the principle of CLIP model.

5.2. Blockchain Encryption Service

3D Printing has gone through these stages: from concept to CAD file to generating
design (if available) to actual 3D Printing. All these steps represent a loophole where
3D Printing could be compromised or even stolen, putting the company’s intellectual
property at risk. All projects, from start to finish, can be done in a blockchain, from the
communication of the project to the production and transfer of data, and 3D printing and
delivery. Everything could be accessible in the chain, and each party would have all the
data. Off-chain, cross-chain, off-chain management, and off-chain certification facilities
are primarily referred to as “blockchain infrastructure” in this context. They serve as the
foundation for communication between blockchains [42]. As shown in Figure 5, firstly, the
3D-printing files are encrypted using a hashing algorithm. Based on the content of the file,
the encryption algorithm generates a fingerprint of a unique hash value. The blockchain
stores a hash value that verifies the authenticity of the file rather than the file itself. At the
second step, we upload the hash value generated after encryption, which is the so-called
digital fingerprint, to the blockchain. Finally, if someone wants to print the 3D content,
the service will upload the key printing information, such as operator, and location, to the
blockchain. Then the blockchain transaction ID is generated, which can further trace the
source of the 3D content operation. Trusted printers can communicate with the blockchain
by installing so-called Secure Elements [43] onto AM machines.

Figure 5. Process of blockchain encryption of 3D contents.

The characteristics and their relevance to AM are shown in Table 2. The most significant
advantage of applying blockchain technology to AM is the development of trust. The
designer would no longer need to be concerned about his designs being used illegally
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and could instead focus on getting better at making models. The individual user could
also choose to print the files in a variety of ways, either by the number of times they are
printed or by gaining access to the files and downloading them directly, both of which are
now available at a relatively lower price and with full disclosure regarding the models’
origin. On-demand production is also environmentally friendly and carbon neutral, and
manufacturers could produce locally, close to their customers, thereby reducing storage
and transportation costs. In addition to the actual goods, brand manufacturers could offer
their customers printable files for customization, accessories, and replacement parts. In
short, the blockchain for 3D printing will make it possible to trade 3D printing in the form
of “tokens” and promote 3D printing as a technology to a greater extent.

Table 2. Blockchain characteristics and their relevance to AM.

Blockchain Characteristic Relevance to AM

Distributed data maintained within and
among stakeholders

Helps in the management of activity in distributed
supply chain expected to be found with AM

Near real time-settlement and exchange are
nearly instant

Changes to a design are made instantly, which fa-
cilitates efficient AM processes

Trustless environment—cryptographic vali-
dation of transactions

Designed to protect against risks of unauthorized
data access

Irreversibility the transaction history is
append-only

Helps with cyber risk and lP protection as it is in-
tended to provide an indelible and traceable record
of changes

5.3. Cloud Management Service

Theoretically, 3D printing is the ideal method of production for cloud manufacturing.
Digital files can be printed anywhere with just a 3D printer and suitable materials, thanks
to their ease of transfer and no geographic restrictions. The cloud-based 3D printing
product personalization service platform uses a browser/server model that allows users
to use a browser to access the platform. The Internet serves as the medium between the
browser and the server, enabling the cloud service platform to provide a variety of cloud
3D-Printing services. This cloud platform’s architecture consists primary of three layers [30]:
the virtual resources layer, the 3D-printing-resource layer, and the technology support
layer. The foundation for the cloud services platform is the primary technical support
layer. The cloud administration stage must include the framework as a management of the
executives model, which intends to provide consistent and smooth specialized assistance
for the cloud-producing administration stage’s activity. The primary function of the virtual
resources layer is to abstract and simplify cloud service platform-connected 3D-printing
resources: The cloud service platform’s cloud computing technology is used to describe the
various physical 3D-printing resources as virtual resources [31], resulting in virtual data
resources. A virtual cloud pool is created when virtual data resources are encapsulated
and published to the cloud platform’s resource service center module. Users can select
the printing resources they require from the cloud. For the personalized service platform,
the 3D-printing resource layer provides software, material, and equipment resources. The
purpose of the user interface layer is to provide the cloud service platform with user-friendly
application interfaces, allowing users to invoke various cloud services freely.

6. Case Study

Recreational equipment manufacturing is selected as the practice object to verify
the effectiveness of the product customization framework proposed in this paper. The
toy manufacturing industry is an integral part of the traditional manufacturing industry.
It has a high demand for labor and a large export volume of products. Surveys show
that the 2020 toy and game market is projected to be US $135 billion [44]. 3D Printing
allows the creation of physical objects from geometric representations by continuously
adding material. It can effectively respond to customers’ needs and help achieve service-

15



Machines 2023, 11, 170

oriented manufacturing. In China, the traditional toy market has interactive electronic toys
with high-technology content, high-tech intelligent toys, and educational toys. They can
foster children’s imagination, creativity, and hands-on skills. These toys are mainstream.
The traditional peak season for the toy industry is June to October each year. Thanks
to government measures to promote consumption, and urban consumption upgrades,
China’s toy and retail scale have maintained steady growth. The main export markets
are the United States, the United Kingdom, Japan, and other countries, of which exports
to the United States amounted to US $8.57 billion in 2021, an increase in 6.8% over the
previous year, accounting for 25.6% of China’s total exports. According to the research
study of Made-in-China, China’s Toys Export in November Amounted to US $ 2.44 Billion,
up by 21.18%.

In this paper, the pictures used in the production of datasets were obtained by taking
video with mobile phones and then drawing frames. The dataset consists of 86 different
scenes, which are mainly composed of scenes with four rotations and scans at 90-degree
intervals, thereby realizing a 360-degree model. The production of the dataset can be
summarized in three steps. First, do feature matching of pictures to obtain the camera pose.
Second, convert the matching pose into LLFF format. Finally, upload the required files
to the corresponding folder of NeRF and set up the configuration file. LLFF-format data
can be the corresponding picture parameters. Camera position and camera parameters
can be stored in a simple and effective file to facilitate Python reading. And the NeRF
model’s source code has the necessary configuration and modules for direct training on
LLFF-format datasets, making it easy for researchers to use. COLMAP is a universal
motion structure (SfM) and multi-view stereo (MVS) processing tool with graphical and
command-line interfaces. It provides a wide range of functions for the reconstruction of
ordered and disordered image collections. We used this tool to estimate the photo position.
Through the sparse reconstruction of COLMAP, the position and posture of the photo are
restored. The next step is to generate the data format used for NeRF training and select the
data in LLFF format. The whole process is end-to-end trainable using the dataset as input.
The trained NeRF-based model is used to build an end-to-end module. Users can provide
multiple photos at different angles for the same object. For example, take one image at each
angle, and provide 3–4 angled pictures. If you need to generate a position that cannot be
photographed, such as the bottom, you need to provide further pictures of the model lying
on its side. When moving around an object, adjacent photos must overlap by at least 70%.
It is recommended to take at least 30 photos to provide more pictures, which is helpful in
generating higher-quality 3D models.

As for the text-to-3D module, we use a Pytorch implementation of an original Dream-
fields algorithm as baseline. We mainly changes the back end of the original Dreamfields
from the original NeRF to our model and replaces the origin CLIP encoder with the Taiyi-
CLIP [37] encoder. In addition, to improve the performance of the generated content, we
apply R-Drop [45] for regularization in the forward propagation of the CLIP pre-trained
model; these methods enhance the expressiveness and generalization ability of our model.
We used search engines to crawl about 10,000 image–text pairs of data related to the toy
manufacturing industry to form fine-tuned datasets. Each image has up to five descriptions
associated with it. The input for the model is a batch of subtitles and a batch of images
passed through the CLIP text encoder and image encoder, respectively. The training process
uses contrast learning to learn joint embedded representations of images and subtitles.
In this embedded space, the images are very close to their respective descriptions, as are
similar images and similar descriptions. Conversely, images and descriptions of different
images may be pushed further. In order to standardize our dataset and prevent overfitting
due to the size of the dataset, we used both image and text enhancement. Image enhance-
ment was done online using the built-in conversion in the Pytorch Torchvision package.
The transformations used were random cropping, random resizing and cropping, color
jitter, and random horizontal and vertical flipping.
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As shown in Tables 3 and 4, we have performed some experiments to test the print
time, quality, and the corresponding actual printing time of the generated models with
different inputs, and we can see that the models generated within this framework are
reliable in terms of efficiency and quality. Some results are shown in Figure 6.

Table 3. Some examples of 3D content generation based on Surrounding photos.

Product Name (Numbers of Photos) Generate Time Print Time

“Gundam (74)” 17 min 58 s 2 h 38 min 30 s
“Plane (102)” 13 min 12 s 1 h 5 min 22 s

“Princess (194)” 40 min 23 s 3 h 43 min 28 s
“Doll Cow (140)” 21 min 25 s 4 h 48 min 52 s

Table 4. Some examples of 3D content generation based on text prompt.

Text Prompt Generate Time Print Time

“An unlighted candle.” 45 min 37 s 1 h 55 min 26 s
“A science fiction style gear” 41 min 35 s 3 h 48 min 4 s

“A chair” 28 min 47 s 3 h 58 min 11 s
“A plush toy of a corgi” 33 min 12 s 3 h 50 min 37 s

Figure 6. 3D content generation examples.

The resource scheduling interface of the cloud platform adopts the development mode
of separating the front and back ends. Springboot, Mybatis, and Springcloud frameworks
were applied to develop the back-end of the cloud platforms. The persistent operation
of data storage uses MongoDB and MySQL databases. The cloud platform is equipped
with a cloud server with 16 G memory and 8 NVIDIA V100 GPUs graphics cards. We
deployed the pre-trained large model described above on TF-Serving’s server. TF-Serving
will automatically deploy it according to the incoming port and model path. The server
where the model is located does not need a Python environment (take Python training as
an example). And then the application service directly launches a service call to the server
where the model is located. The call can be made through grpc.

The 3D models of the 3D model file library come from the uploads of various designers
on the cloud platform. The designers of the 3D printing cloud platform designed 3D models
with a certain market value according to their own capabilities and market needs and then
uploaded them to the cloud platform. The cloud platform is responsible for optimizing
and managing these model files. Users can quickly search for suitable 3D model files. The
management of the 3D model file library mainly includes the removing repeat, classification,
evaluation, and security management of model files.

The cloud platform’s overall framework is shown in Figure 7. It supports data pro-
cessing in the 3D printing process, including data format conversion, support design, slice
calculation, print path planning, structural analysis, model optimization, etc. These steps
depend on each other and affect each other, and together determine the the efficiency
of printing and the quality of the finished product. In addition, in order to improve the
computational efficiency of the support-generation process in the 3D-printing process,
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the parallelized slicing method, the model placement pointing optimization and its paral-
lelization method [46], and GPU-based parallelized support generation were successfully
applied to this platform.

Figure 7. The product customization framework built on a cloud platform.

7. Conclusions

In SM, providing a user-friendly approach to product customization has been the
focus of research. As an early attempt to apply NeRF and large pre-trained vision-language
models such as CLIP, we propose an efficient product customization framework in the SM
paradigm. It provides a new method of collaborative product design, which can efficiently
solve the problems existing in current manufacturing systems, such as the accuracy of 3D
modeling, security, supervision, anti-counterfeiting, and efficient allocation of resources.
However, the key technologies used in this paper, such as neural-volume rendering and
multimodal data processing technology, still need to be further studied and improved. The
main limitations can be summarized as follows. Firstly, choosing a suitable resolution is
very important for printing a high-quality model. A too low resolution will inevitably
affect the quality of the finished print. A low resolution results in a non-smooth surface
for the finished 3D printing. It is currently difficult to obtain high-resolution geometry or
textures for 3D models with the model presented in this paper. To address this issue, a
coarse-to-fine optimization approach could be proposed, in which multiple diffusion priors
at different resolutions would optimize the 3D representation, which would result in view-
consistent geometry and high-resolution details. Secondly, in the current implementation
of the 3D model generation algorithm, a NeRF network needs to be retrained for each
text prompt, which results in low efficiency of model generation and requires a large
amount of GPU resources. In the future, we can consider loading the existing generic
mesh model and then iteratively modifying the 3D model by text prompts to generate an
ideal 3D model. A priori forward-looking production framework for future integration
would be instructive. Accordingly, this work is proved to be a revolutionary break through
for solving the core problems of 3D modeling in SM.
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Abstract: In order to find a suitable designer team for the collaborative design crowdsourcing task
of a product, we consider the matching problem between collaborative design crowdsourcing task
network graph and the designer network graph. Due to the difference in the nodes and edges of
the two types of graphs, we propose a graph matching model based on a similar structure. The
model first uses the Graph Convolutional Network to extract features of the graph structure to obtain
the node-level embeddings. Secondly, an attention mechanism considering the differences in the
importance of different nodes in the graph assigns different weights to different nodes to aggregate
node-level embeddings into graph-level embeddings. Finally, the graph-level embeddings of the
two graphs to be matched are input into a multi-layer fully connected neural network to obtain the
similarity score of the graph pair after they are obtained from the concat operation. We compare
our model with the basic model based on four evaluation metrics in two datasets. The experimental
results show that our model can more accurately find graph pairs based on a similar structure.
The crankshaft linkage mechanism produced by the enterprise is taken as an example to verify the
practicality and applicability of our model and method.

Keywords: graph matching; Graph Convolutional Network (GCN); attention mechanism; fully
connected neural network

1. Introduction

The traditional method of product innovation is to conduct market research first, then
design new products according to market feedback, and finally produce new products
according to market demand. However, this mode is high-cost and low-reward. With
the continuous innovation of science and technology, the diversified development of
market demand, and the increasing complexity of products, more and more companies are
aware of the need to use social resources for the innovative development of new products
in social manufacturing. Crowdsourcing mode [1] emerges as the times require. This
kind of open product design mode can make full use of social manpower, software and
hardware resources, shorten the product development cycle, and improve product design
quality. Crowdsourcing tasks are generally selected and completed by individuals based on
crowdsourcing platforms, but as the complexity of product design increases, multi-person
collaborative design is needed, so as to achieve design results that are both partially and
overall satisfactory. Therefore, how to find a suitable designer team has become a key
problem that needs to be resolved.

To solve this problem, we describe the product design task under the crowdsourcing
mode as a graph, which is called the collaborative design crowdsourcing task network
graph. The nodes represent the tasks in the crowdsourcing design, and the edges represent
the relationships between the tasks. The designer team is also described as a graph, called
the designer network graph. The nodes represent the designers, and the edges represent
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the connections between the designers. Therefore, we can consider the matching problem
between the collaborative design crowdsourcing task network graph and the designer
network graph to find a suitable designer team. However, due to the difference in the
nodes and edges of the two types of graphs, we can only consider graph matching based on
graph structure similarity. The problem to be studied is transformed into a graph similarity
matching problem [2,3]. Graph similarity matching takes similarity of the query graph as
the query criterion. In the target graph dataset, all graphs or subgraphs that are similar to
the query graph are searched.

On the basis of viewpoints mentioned above, we propose a graph matching model
based on graph structure similarity to calculate the similarity score between the collabo-
rative design crowdsourcing task network graph and the designer network graph in this
paper. The model first uses the Graph Convolutional Network (GCN) to extract features of
the graph structure to obtain the node-level embeddings. Secondly, an attention mecha-
nism considering the differences in the importance of different nodes in the graph assigns
different weights to different nodes to aggregate node-level embeddings into graph-level
embeddings. Finally, the two graph vectors are input into a multilayer fully connected
neural network for feature extraction after they are obtained from the concat operation, and
the binary cross-entropy loss function is used to predict the similarity score of the graph
pair. The main contributions of this paper are summarized as follows:

• We regard the graph similarity calculation problem as a learning problem, i.e., to learn
a function based on GNN. When the structure of the two graphs is input, the function
outputs the similarity score (between 0~1) of the two graphs;

• We construct sample labels to train the model. The construction method of the sample
label is innovative;

• The improved model and the basic model in this paper are compared and tested based
on the accuracy ratio, precision ratio, recall ratio, and AUC index on two real graph
datasets to verify the effectiveness of the improved model;

• We conduct a case study to prove the practical application of the improved model.

The sections of this paper are organized as follows. Section 2 is the related work that
introduces the literature review. Section 3 is related materials and methods to describe
in detail the graph matching model based on the graph structure similarity proposed in
this paper. In Section 4, we compare the improved model and the basic model based on
four evaluation metrics in two graph datasets to perform experiments. Section 5 is the case
study. Section 6 gives the conclusions.

2. Related Work

Graph similarity calculation is a calculation method to predict the similarity score be-
tween one pair of graphs, including classification and clustering of graphs [4], social group
network similarity recognition [5], object recognition in computer vision [6], biomolec-
ular similarity search [7,8], etc. In graph deep learning, the models for graph similarity
calculation can generally be divided into two categories. These two types of models use
the GCN to learn embeddings and use embeddings to calculate the similarity score of the
graph pairs [9]. One is the graph embedding model. This type of model mainly encodes
each graph directly into a vector representation and then calculates the similarity score be-
tween one pair of graphs by calculating the similarity of the vectors, avoiding the difficulty
of direct calculation on the graph. For example, Ktena et al. used a GCN to learn graph
embedding, input the obtained graph embedding into a fully connected layer, and trained
the fully connected layer to calculate the similarity score of the graph pairs [10]. Although
this method has high time efficiency for graph similarity calculation, it is easy to ignore
a lot of node information in the graph, which makes the results less accurate. The other
one is the graph matching model. This type of model encodes each node in the graph as a
vector representation, which contains not only the state information of the node itself, but
also the state information of neighboring nodes, and uses different interaction strategies to
calculate the similarity score of the graph pairs. For example, Riba et al. used a GCN to
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obtain node-level embeddings for the graph and calculated the similarity score of the graph
pairs by calculating the similarity of the node-level embeddings [11]. This method is more
suitable for graph similarity calculation on small graphs. Since this method considers each
node in the graph, it still has the problem of low time efficiency for the similarity calcula-
tion on large graphs. It only uses node-level embeddings for graph similarity calculation,
making the results less comprehensive.

In addition, there are methods that combine graph embedding models and graph
matching models to calculate the similarity scores of the graph pairs. Xu et al. first divided
two graphs to be matched into a set of smaller subgraphs, used a network model that
combined an attention mechanism with a Graph Neural Network (GNN) [12,13] to learn
the node-level embeddings and graph-level embeddings of these subgraphs, and cal-
culated the similarity score of the graph pairs by comprehensively considering node-
level embedding similarity and graph-level embedding similarity between subgraphs [14].
Although this method comprehensively considers node-level embeddings and graph-level
embeddings for graph similarity calculation, it performs well only on small graphs, and
it is too complicated with a low time efficiency for large graphs. Li et al. first interacted
the nodes in the two graphs with each other by introducing a cross-graph attention layer
and then calculated the similarity of the graph pairs by calculating the similarity of the
graph embeddings [15]. Compared with the methods mentioned above, although this
method improves the performance of graph similarity calculation on large graphs, it still
has the problem of a high computation cost. That is, since each cross-graph matching step
requires the computation of the full attention matrices, this is expensive for large graphs.
As the matching model operates on graph pairs, it cannot be directly used for indexing and
searching through large graph databases. Bai et al. first used a GCN to obtain node-level
embeddings and proposed a new attention mechanism to aggregate node-level embed-
dings into graph-level embeddings. Secondly, a Neural Tensor Network (NTN) [16] was
used to calculate the similarity of two graph-level embeddings. When bypassing the NTN
module, the node-level similarity could be directly calculated. That is, the similarity score
of the graph pairs was calculated by comprehensively considering graph-level embedding
similarity and node-level embedding similarity [17,18]. This method not only considers
node-level embeddings and graph-level embeddings for graph similarity computation, but
an attention mechanism is also added for node aggregation, making it perform better on
large graphs compared to the methods mentioned above. In addition, it can handle graphs
with node types but cannot process edge features. There are also methods that combine a
GCN with traditional neural networks to calculate the similarity scores of the graph pair.
For example, Xiu et al. used the Earth Mover Distance (EMD) to obtain the one-to-one
mapping between nodes of two graphs at each stage and obtained the correlation matrix
according to the node-level embeddings in the two graphs, and the correlation matrices
of all stages were input into a convolutional neural network, and the similarity score of
the graph pairs was predicted by minimizing the mean squared error [19]. Although this
method does not have high time efficiency for graph similarity calculation on large graphs,
it improves the accuracy of the calculation by using a small increase in complexity, so as to
achieve a reasonable trade-off between accuracy and efficiency. Bai et al. used a GCN with
different layers to construct multiple correlation matrices between nodes of two graphs and
used the correlation matrices based on a convolutional neural network to predict the similar-
ity scores of the graph pairs [20]. This method achieved the state-of-the-art performance on
four real-world graph datasets compared to existing popular methods for graph similarity
calculation, but it still has high computational complexity problems on large graphs.

3. Materials and Methods

Referring to the literature review and the proposed idea of problem-solving in this pa-
per, we define an undirected and unweighted graph G = (V, E), where V =

{
v1, · · · , v|V|

}
is a set of nodes and E =

{
e1, · · · , e|E|

}
is a set of edges. H ∈ R

N×d represents the features
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of nodes, where N is the number of nodes in graph G (or N = |V|) and d is the dimension
of the node feature vectors. Our goal is to learn a function based on a GNN that takes the
structure of two graphs as input and outputs the similarity score of the two graphs.

3.1. Materials

In this section, we introduce the related materials of our graph matching model based
on graph structure similarity.

3.1.1. Graph Convolutional Network (GCN)

We use a GCN to obtain the node representations of the graphs. Traditional Convo-
lutional Neural Networks (CNNs) [21] can only process Euclidean spatial data, such as
images, text, and speech. As non-Euclidean spatial data, graph data do not satisfy translation
invariance and cannot be studied using traditional CNNs. The GCN is a variant proposed on
the basis of a CNN and graph embedding [22]. The main idea of the GCN is to generate the
node representation in the graph by aggregating the characteristics of the node itself and the
characteristics of its neighboring nodes and to use a fixed number of layers (each layer has a
different weight value) to deal with cyclic interdependence in the architecture.

The GCN mainly includes two categories, one is frequency domain convolution [23],
which mainly uses Fourier transform to achieve convolution. The Fourier transform can not
only be used to separate noise points from normal points but also to speed up convolution.
The other one is spatial convolution [23]; the core is to aggregate neighbor node information.
The general framework is the Message Passing Neural Network (MPNN) [11]. The MPNN
mainly includes two phases: a message passing phase and a readout phase. In the message
passing phase, the state information of the node is aggregated and updated. In the readout
phase, the feature vector of the whole graph is read out.

3.1.2. Graph Embedding

The GCN is usually used to map the graph data, i.e., convert a high-dimensional
dense matrix into a low-dimensional dense vector. This process is usually called graph
embedding. It is also called network embedding or graph representation learning. It can
solve the problem that graph data are difficult to efficiently input into machine learning
algorithms. Graph embedding mainly includes node-level embeddings and graph-level
embeddings. Node-level embedding means that each node in the graph is encoded as
a vector. In the graph similarity matching problem, node-level embedding is suitable
for calculating node similarity. Graph-level embedding means that the whole graph is
encoded as a vector and is often used to predict, compare, or visualize the whole graph at
the graph level. In the graph similarity matching problem, graph-level embeddings are
suitable for the similarity calculation of graph pairs. Figure 1 is the process of graph data
being represented as graph embedding. Graph data are represented as |V| vectors, and
the dimension of each vector is d. Therefore, the graph embedding is a |V| × d vector, and
each row of the graph embedding is a node-level embedding, which represents the state
information of the node in the graph.

Figure 1. Graph embedding process.
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For node-level embedding learning, there are currently several types of methods,
including matrix factorization-based methods (NetMF [24]), skip-gram-based methods
(DeepWalk [25], Node2Vec [26], LINE [27]), autoencoder-based methods (SDNE [28]), and
neighbor aggregation-based methods (GCN, GraphSAGE [29]). Among them, the most
popular method is based on neighbor aggregation. In this method, the GCN is the most
widely used.

For graph-level embedding learning, the classic methods such as Graph2vec [30],
which also use the skip-gram idea [31], encode the whole graph into a vector representation.
In addition, methods such as Patchy-san [32], sub2vec (embed subgraphs) [33], and Deep
WL kernels are also commonly used for learning graph-level embeddings.

Node-level embeddings can be transformed into graph-level embeddings through
aggregation. The aggregation method is usually simple average aggregation, weighted
average aggregation, and maximum aggregation, where the simple average and weighted
average aggregation methods are also called “sum-based” methods [10].

The current method of aggregating nodes is either “sum-based” methods or maximum
aggregation. Although these aggregation methods consider the importance of nodes, they
do not consider the differences in the importance of different nodes in a graph, for example,
the GMN model [15]. Aiming at this problem, we propose an attention mechanism that
assigns different weights to different nodes in aggregate node-level embeddings.

3.1.3. Graph Edit Distance (GED)

The Maximum Common Subgraph (MCS) [34] and the GED [35] are usually the criteria
for measuring the similarity of graph structure, and the MCS is equivalent to the GED
under the same cost function. Therefore, in this paper, we use the GED to measure the
structural similarity between two graphs.

The GED that measures the similarity between two graphs is defined as the smallest
editing operation for mutual transformation between two graphs. The GED is the operation
required to transform graph G1 into graph G2 including an edge insertion or deletion in
the graph, an isolated node insertion or deletion in the graph, and the label modification of
the node or edge. However, the calculation of the GED is usually regarded as an NP-Hard
problem, so we cannot calculate the exact value of the GED every time. Sometimes we can
only use some heuristic algorithms to calculate the approximate value of the GED.

3.2. Methods

We establish a graph matching model based on graph structure similarity. Aiming
at the problem that the basic model (gcn-pool) does not consider the difference of the
importance of different nodes, we propose an attention mechanism to aggregate nodes to
improve the basic model, called gcn-attention (gcn-attn). Gcn-attn is mainly composed of
3 parts: (1) The GCN obtains the feature vector of the graph structure, i.e., GCN extracts
node-level embeddings based on the graph structure; (2) An attention mechanism aggre-
gates node-level embeddings into graph-level embeddings; (3) The two graph vectors are
input into the multilayer fully connected neural network for feature extraction to predict
the similarity score. The framework of the graph matching model is shown in Figure 2.

The difference between the basic model and the improved model is the process of
aggregating node-level embeddings into graph-level embeddings. The aggregation method
is average aggregation or maximum aggregation in the basic model. The aggregation
method is to use the attention mechanism for aggregation in the improved model. The
detailed formula description of each part is as follows.
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Figure 2. The framework of the graph matching model.

3.2.1. Node Embedding

We use 2 identical GCNs to obtain the node representations of the two graphs inde-
pendently and in parallel, and the model parameters of each layer are not shared. The GCN
updates the node state of the whole graph referring to Equation (1):

H(l+1) = δ
(

D− 1
2 ÃD− 1

2 H(l)W(l)
1

)
(1)

where δ(·) is the activation function such as ReLU(x) = max(0, x), A ∈ R
N×N is the

adjacency matrix of graph G. Ã = A + IN denotes the adjacency matrix with an inserted

self-loop. The degree matrix D is a diagonal matrix, D(i, i) =
N
∑

j=1
A(i, j). D− 1

2 ÃD− 1
2 is the

normalized adjacency matrix. H(l)W(l)
1 is equivalent to a linear transformation for all node

embeddings in the l layer. Each node is left multiplied by the adjacency matrix to show that
the features of the nodes are the result of adding the feature of the neighbor node, where
W(l)

1 ∈ R
dl×dl+1

is a learnable mapping matrix, and dl+1 is the dimension of the embedding
for H(l+1).

The node-level embeddings in the graph can be described as Equation (2):

h(l+1)
i = δ(

1
n(i) ∑

k∈n(i)
W(l)

1 h(l)k + b(l)) (2)

where the node-level embedding hi ∈ R
d of node i is equivalent to the i row in the

whole graph embedding H ∈ R
N×d. k ∈ n(i) represents the neighbor node k of node i.

n(i) represents the number of neighbor nodes of node i. b(l) ∈ R
dl+1

represents bias. Intuitively,
the graph convolution operation aggregates the first-order neighbor features of the node.

3.2.2. Attention Mechanism

In the step of aggregating nodes, we consider the differences in the importance of
different nodes and propose an attention mechanism. The principle of the attention mecha-
nism is briefly described as follows: the average value of the states of all nodes in the graph
is calculated, and the inner product of the average value and the state of each node in the
graph is used as the attention weight. The attention weight is used to aggregate node-level
embeddings into graph-level embeddings.

Firstly, the averaging method is used to obtain the representation characteristics of the
information of the whole graph referring to Equation (3):

c = tanh(
1
N

W2

N

∑
i=1

hi) (3)

where W2 ∈ R
d×d is a learnable weight matrix.
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Secondly, the result of the inner product of the whole graph information and the node
information is used as the attention coefficient of each node referring to Equation (4):

αi = σ
(

hT
i c

)
(4)

where σ(·) is a sigmoid activation function, σ(x) = 1
1+exp(−x) ensures that the attention

coefficient is between 0 and 1.
Finally, after obtaining the attention weight of each node, the graph-level embedding

is described as Equation (5):

hG =
N

∑
i=1

αihi (5)

where hG ∈ R
d represents the graph-level vector of the whole graph.

3.2.3. Loss Function

After obtaining the graph-level embeddings, the two graph-level embeddings are
input into a multilayer fully connected neural network to obtain the similarity score of
the graph pairs after performing the concat operation. In order to enable the model to
accurately calculate the similarity score of the graph pairs, we need to train the model. We
construct sample labels for training, and the specific construction method is as follows:
we randomly split 80% and 20% of all graphs in the dataset as training set and testing
set, respectively. The data are generated by sampling and are controlled by the sample
parameter. For example, sample = 50 means that 50 graphs are randomly selected to match
each graph in the training set to form a training sample.

In order to train the model, firstly, the GED function in the Pytorch framework is used
to calculate the GED of the graph pairs in the training samples of the dataset. Secondly, the
median function in the framework is directly called to obtain the median of the GED of the
graph pairs, and the median is used as the threshold for classification. If the GED is greater
than the threshold, it is classified as 0, which means that the two graphs are not similar; if
the GED is less than the threshold, it is classified as 1, which means that the two graphs are
similar. Therefore, it can be regarded as a binary classification problem.

We use the binary cross-entropy loss function BCELoss to predict the similarity score
of the graph pairs. This function is used to calculate the binary cross entropy loss between
the output value (predicted value) of the graph matching model and the true value. It can
be used directly by calling the F.binary_cross_entropy in the Pytorch framework, and the
function form is simplified referring to Equation (6):

Loss = −2(y · log(ŷ) + (1 − y) · log(1 − ŷ)) (6)

where ŷ is the probability that the model predicts that the two graphs are similar and the
value of ŷ is between 0 and 1. y is the constructed sample label. If the two graphs are
similar in the training sample, the value of y is 1, otherwise the value of y is 0.

3.2.4. The Complexity Analysis

The model proposed in this paper is used to predict whether graph pairs are similar.
The analysis of time complexity mainly includes two parts: (1) node-level embedding and
graph-level embedding calculation steps; (2) graph-pair similarity score calculation steps.

In the simplest case, we only visit each edge once and perform two calculation opera-
tions on the two nodes it connects for the embedding model, so that the time complexity of
the process of forming local topological features is usually O(E′), where E′ is the number
of edges in the larger graph in the two graphs [14]. For the node-level embedding and
graph-level embedding calculation steps, the time complexity is O(E′). For calculating the
graph pair similarity score, since the two graph-level vectors are input into a multilayer
fully connected neural network after the concat operation, no time complexity analysis is
performed in this step. Only the vector dimension changes from d to 2d. To sum up, the
time complexity of the whole model is O(E′).
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4. Experiments

In this section, we mainly compare the basic model (gcn-pool) and the improved
model (gcn-attn) based on four evaluation metrics on two graph datasets to verify the
advancement and effectiveness of the improved model.

4.1. Datasets

We perform experiments on two real graph datasets. These two datasets have been
applied to the graph similarity matching problem many times to verify the effectiveness of
the method. The specific information is shown in Table 1.

Table 1. Introduction to datasets.

Dataset Graph Meaning #Graph #Pairs Avg#Nodes Avg#Edges

AIDS Chemical Compounds 700 490 K 8.90 8.80
LINUX Program Dependency Graphs 1000 1 M 7.58 6.94

AIDS [14]: This dataset is an anti-HIV dataset containing a large number of sparse undirected graphs. The number
of nodes ranges from 4 to 245. Each graph represents the topological structure of the compound and contains
node labels and edge labels. We select 700 graphs, each of which has at least 10 nodes. LINUX [14]: The Program
Dependency Graph (PDG) dataset generated by the Linux kernel contains 48,747 graphs. Each graph represents a
function, where a node represents a statement and an edge represents the dependency between the two statements.
The nodes are unlabeled. We select 1000 graphs, each of which has at least 10 nodes.

4.2. Parameter Settings

For the model construction, we set the number of GCN layers to 3, and use the ReLU
as the activation function. For the initial node representations, we adopt a one-hot encoding
strategy for the AIDS dataset to reflect the node type and a constant encoding strategy for
the LINUX dataset because the nodes in the LINUX dataset have no labels. The output
dimensions of the first layer, second layer, and third layer of the GCN are set to 64, 32,
and 16, respectively. We use five fully connected layers to build a fully connected neural
network, which are a linear combination layer with 96 inputs and 256 outputs; a nonlinear
activation layer with ReLU as the activation function; a linear combination layer with 256
inputs and 256 outputs; a linear combination layer with 256 inputs and 16 outputs; and a
linear combination layer with 16 inputs and 1 output to predict the graph pair similarity
score. The details are shown in Table 2.

Table 2. Construction of the graph matching model.

Graph Matching(

(convolution_1): GCNConv (29, 64)
(convolution_2): GCNConv (64, 32)
(convolution_3): GCNConv (32, 16)
(tensor_network): Sequential (

(0): Linear (in_features = 96, out_features = 256, bias = True)
(1): ReLU (inplace = True)
(2): Linear (in_features = 256, out_features = 256, bias = True)

)
(fully_connected_first): Linear (in_features = 256, out_features = 16, bias = True)
(scoring_layer): Linear (in_features = 16, out_features = 1, bias = True)

)

According to Table 2, firstly, the graph node feature extraction is performed based
on the graph structure through the three-layer GCN. Secondly, each node in the graph
is aggregated into a composite vector of the graph. Finally, the torch.nn.Sequential class
in Pytorch is used to build a fully connected neural network. The graph vectors of the
two graphs are input into the fully connected neural network after the concat operation to
calculate the similarity score of the graph pairs.

All experiments are run on a PC, using Nvidia GeForce GTX 1660 Super GPU, 16 G,
RAM. The excellent Pytorch Geometric framework to implement our model in Python is
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used. As for training, we set the batch size to 64, dropout to 0.2, use the Adam algorithm
for optimization, and set the initial learning rate to 0.01. We set the number of iterations to
100 and select the best model based on the lowest validation loss.

4.3. Evaluation Metrics

For the binary classification problem, the commonly used evaluation metrics include
the accuracy ratio, precision ratio, recall ratio, and AUC index. Before introducing these
metrics, some definitions are described. The prediction results of the binary classification
problem include four categories according to the situation: True Positive (TP): the predicted
value is 1, the true value is 1; False Positive (FP): the predicted value is 1, the true value
is 0; True Negative (TN): the predicted value is 0, the true value is 0; False Negative (FN):
the predicted value is 0, the true value is 1. Thus the total number of positive samples
T = TP + FN, and the total number of negative samples F = FP + TN, as shown in Table 3.

Table 3. Prediction results of the binary classification problem.

Classification
The True Value: 1

(Positive Samples)
The True Value: 0

(Negative Samples)

The predicted value: 1 TP (True Positive) FP (False Positive)
The predicted value: 0 FN (False Negative) TN (True Negative)

The accuracy ratio is the ratio of the number of samples that the predicted value of the
model is the same as the true value to the total number of samples, referring to Equation (7):

acc =
TP + TN

T + F
(7)

There is a problem with using the accuracy ratio to evaluate algorithms, i.e., when
there are extremely biased data in the dataset, the accuracy ratio cannot objectively evaluate
the pros and cons of the algorithm.

The precision ratio is the ratio of the number of true positive samples of the model to
the number of true samples, referring to Equation (8):

pre =
TP

TP + FP
(8)

The recall ratio is the ratio of the number of true positive samples to the total number
of all positive samples, referring to Equation (9):

rec =
TP

TP + FN
=

TP
T

(9)

The precision ratio and the recall ratio are trade-offs, i.e., the higher the precision ratio,
the lower the recall ratio. In some cases, these two metrics need to be taken into account at
the same time, so the AUC index is proposed.

The AUC index represents the area enclosed by the ROC (Receiver Operating Charac-
teristic) curve, which is used to comprehensively evaluate the accuracy ratio and the recall
ratio. The reason for using the AUC value as the evaluation standard is that in many cases
the ROC curve cannot clearly indicate which classifier performs better, and the AUC value
range is generally between 0.5~1, and the classification effect corresponding to a larger
AUC value is better.

4.4. Results

We run the basic model (gcn-pool) and the improved model (gcn-attn) 100 times based
on the accuracy ratio, precision ratio, recall ratio as well as the AUC index on the AIDS
and LINUX datasets. The results of 100 calculations for each metric are averaged to obtain
a comparison of the average results of each metric of the two models on the AIDS and
LINUX datasets, as shown in Tables 4 and 5.
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Table 4. Average results of four evaluation metrics based on the AIDS dataset.

Model Accuracy Ratio Precision Ratio Recall Ratio AUC Index

gcn-pool 0.722 0.637 0.640 0.686
gcn-attn 0.799 0.749 0.694 0.765

Table 5. Average results of four evaluation metrics based on the LINUX dataset.

Model Accuracy Ratio Precision Ratio Recall Ratio AUC Index

gcn-pool 0.833 0.807 0.839 0.797
gcn-attn 0.907 0.913 0.901 0.889

It can be seen from the experimental data that in the AIDS dataset, compared to the
basic model (gcn-pool), the accuracy ratio of the improved model (gcn-attn) has increased
by 10.7%, the precision ratio has increased by 17.6%, the recall ratio has increased by 8.4%,
and the AUC index has increased by 11.5%.

In the LINUX dataset, compared to the basic model (gcn-pool), the accuracy ratio of
the improved model (gcn-attn) has increased by 8.9%, the precision ratio has increased by
13.1%, the recall ratio has increased by 7.4%, and the AUC index has increased by 11.5%.

In order to more intuitively see the comparison effect of the two models based on the
four evaluation metrics, a curve comparison chart is shown in Figure 3.

 
(a)  

 
(c)  

(b)  

(d)  

Figure 3. The curve comparison chart of the two models based on four evaluation metrics for the
AIDS and LINUX datasets. (a) Accuracy ratio, (b) Precision ratio, (c) Recall ratio, (d) AUC index.

It can be seen from the curve comparison chart that the accuracy ratio, the precision
ratio, the recall ratio, and the AUC index of the improved model (gcn-attn) are higher than
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those of the basic model (gcn-pool) for both the AIDS dataset and the LINUX dataset. The
larger these evaluation metrics, the better the effect of the model.

Therefore, it can be concluded that the gcn-attn model is more advanced and effective
than the gcn-pool model regarding the graph matching problem based on graph structure
similarity, i.e., the improved model is able to more accurately find graph pairs based on a
similar structure.

5. Case Study

In order to verify that the model proposed in this paper can be accurately applied
to the matching problem between the collaborative design crowdsourcing task network
graph and the designer network graph, we conduct a case study. At the same time, the
Pytorch-Geometric framework is used for visualization.

5.1. Case Description

We take the crankshaft linkage mechanism produced by one enterprise as an example,
where the mechanical analysis of the crankshaft linkage mechanism requires a design
team. We first use a graph to describe the tasks involved in the mechanical analysis of the
crankshaft linkage mechanism, then establish a designer community candidate set with
several designer teams, and finally use the method proposed in this paper to find the most
suitable designer team.

5.2. Use of Method Proposed

The mechanical analysis of the crankshaft linkage mechanism includes force anal-
ysis (including stress, bearing force, and crankshaft torque analyses), material analysis
(including toughness and strength analyses), and motion analysis [36]. After the nine tasks
are numbered, the collaborative design crowdsourcing task network graph is constructed
according to their dependencies, as shown in Figure 4.

Figure 4. The collaborative design crowdsourcing task network graph.

In order to construct the designer community candidate set, five WeChat groups
are studied. The members of these five WeChat groups are all designers who joined the
crowdsourcing design. By collecting the conversational communication data within the
WeChat group as the analysis text and numbering the designers, the data are preprocessed
into a network structure, so as to construct the designer community candidate set that
includes five designer network graphs, as shown in Figure 5.
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(e)  

Figure 5. The designer community candidate set. (a) Designer network graph 1, (b) Designer network
graph 2, (c) Designer network graph 3, (d) Designer network graph 4, (e) Designer network graph 5.

As shown in the framework of the graph matching model in Figure 2, we take the
collaborative design crowdsourcing task network graph in Figure 4 is as G1. Five designer
network graphs in Figure 5 are successively taken as G2. G1 and G2 are input into the graph
matching model independently and in parallel. Since the graph matching model has been
trained, it already has the best model parameters for calculating the similarity score of
the graph pairs. Therefore, after G1 and G2 are input into the model, two identical GCNs
first extract the node-level embeddings of G1 and G2 based on graph structure in parallel.
Secondly, the node-level embedding are aggregated into graph-level embedding by the
attention mechanism proposed in this paper. Finally, the similarity score between G1 and
G2 is output through the calculation of the multi-layer fully connected neural network after
the two graph-level embeddings are obtained using concat operation.

In summary, we take the collaborative design crowdsourcing task network graph in
Figure 4 as the query graph, the designer community candidate set in Figure 5 as the target
graph set, and use the improved graph matching model in this paper to find the target
graph most similar in structure to the query graph from the target graph set.
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5.3. Case Results and Discussion

It can be seen that the value above each graph in the designer community candidate set
represents the matching similarity score between the collaborative design crowdsourcing
task network graph in Figure 4 and the designer network graph in Figure 5. The larger the
value, the more similar the two graphs are based on the graph structure. The matching
similarity scores between the designer network graph and the collaborative design crowd-
sourcing task network graph are 0.97, 0.68, 0.01, 0.12, and 0.00. Therefore, the designer
network graph 1 has the highest similarity to the collaborative design crowdsourcing
network graph, so we have found the most suitable designer team for the collaborative
design crowdsourcing task.

The case study describes the mechanical analysis of the crankshaft linkage mechanism
as a collaborative design crowdsourcing task network graph and uses this graph as a
query graph to find the designer network graph based on similar graph structure, which
is actually a graph similarity matching problem. The traditional acceleration strategies
of graph similarity algorithms are all at the cost of increased memory consumption, i.e.,
space is exchanged for time, and the efficiency is low. Therefore, the graph matching model
combined with GNN proposed in this paper is more innovative. The experimental data
and case results also reflect the rationality and practicality of the method and model in this
paper. On the basis of finding a suitable designer team, the relevant indicators of tasks
and designers can be considered for task assignment in the future, thus making up for the
problem of node similarity not considered in graph matching in this paper.

6. Conclusions

Graph structures are widely used in various fields to describe complex relationships
between things, such as the World Wide Web, social networks, protein interaction networks,
chemical molecular structures, power grids, and road networks. With the development
of these fields and the increase in data, the size and number of graphs are also increasing.
How to perform efficient graph matching operations on a large number of accumulated
graphs has become a new research goal of academia and industry. As a research method of
artificial intelligence, deep learning is changing the world at an unprecedented speed, and
it plays an important role in the field of education, image recognition, speech technology,
and unmanned driving.

The increase in the scale and complexity of product design often involves tasks that
require multiple people to design collaboratively, so it is necessary to find a suitable
designer team. Aiming at this problem, we propose a graph similarity matching method
to find a designer team suitable for the collaborative design crowdsourcing task of the
product. Compared with the traditional method, this paper introduces the matching
problem between the collaborative design crowdsourcing task and the designer team into
the field of graph theory research and combines deep learning knowledge to make the
research method more innovative and researchable. The model and method in this paper
are suitable for matching between undirected and unweighted network graphs based
on a similar graph structure, such as social relationship query, social security analysis,
recommendation system, network attack detection, and biological data analysis.

Although the model and method proposed in this paper are feasible and practical,
there are still some shortcomings. The experiments in Section 3 are performed on the public
AIDS dataset and the LINUX dataset, and the graph data in these two datasets are small
in scale. The graph matching model proposed in this paper performs well on small-scale
graph data, but still does not perform well on large-scale graph data. The improved graph
matching model in this paper is simple. In the future, we will design a more complex graph
matching model for large-scale graph matching.
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Abstract: More extensive personalized product requirements and shorter product life cycles have
put forward higher requirements for the rapid establishment, commissioning, and operation of
corresponding manufacturing systems. However, the traditional manufacturing system develop-
ment process is complicated, resulting in a longer delivery time. Many manufacturing enterprises,
especially small and micro enterprises, may not have the necessary manufacturing knowledge or
capabilities to meet these requirements. Therefore, it is essential to promote the construction of
turnkey projects under the paradigm of Industry 4.0, parallelizing and integrating the existing manu-
facturing system development process based on mass manufacturing equipment to quickly provide
turnkey solutions for manufacturing systems’ configuration and implementation for these enterprises.
This paper aims to extract and refine the configuration and operation key views of the Industry
4.0-oriented Turnkey Project (I4TP) from Reference Architecture Model Industrie 4.0 (RAMI4.0) and
use it to guide the development of key functional processes of turnkey projects to achieve rapid
configuration and efficient operation management of manufacturing systems. The turnkey project
platform in the Advanced Manufacturing Technology Center (AMTC) is taken as a demonstration
case to provide a reference idea for the rapid configuration and intelligent operation of the turnkey
manufacturing system.

Keywords: industry 4.0; turnkey project; manufacturing system configuration; manufacturing system
operation; key enabling tools

1. Introduction

In the context of Industry 4.0, as people’s demands for personalized products increase
and the acceleration of consumer demands changes, the speed of product upgrades is
accelerating, and product life cycles are becoming shorter and shorter. What’s more, the
batch size of a single product is also corresponding to decreases [1,2]. Manufacturing
companies are required to reduce the time of product development and manufacturing
systems from set-up to operation as much as possible, realize the rapid reconfiguration of
the manufacturing systems according to orders to adapt to new production tasks, and save
costs. However, new manufacturing systems’ traditional sequential development processes
make the delivery time longer and they cannot catch up with current market changes.
With the continuous development of globalization, manufacturing equipment has become
abundant, and the development of manufacturing systems has gradually transformed into
selecting manufacturing equipment and combining them to form a manufacturing system.

The continuously evolving computer-aided technologies, as well as the emerging
ICTs (Information and Communications Technologies), such as the Internet of Things
(IoT), cloud computing, mobile internet, Artificial Intelligence (AI), and so on, provide
technical support for intelligent manufacturing to a large extent, including efficient product
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engineering and manufacturing [3]. Although engineers can use these technologies to
address the challenges of the rapid development of products and the quick response
of manufacturing systems, how to effectively integrate these technologies to realize the
application in actual production is a problem faced by many manufacturing companies. At
the same time, many manufacturing companies, especially small and micro enterprises,
have certain product innovation and development capabilities but may lack the necessary
knowledge or ability to plan and integrate appropriate manufacturing systems to respond
to market demands [4].

Therefore, it is essential to build a turnkey project to provide turnkey services in re-
sponse to market changes and manufacturing companies’ turnkey needs for manufacturing
systems. ICTs are comprehensively used to parallel and integrate manufacturing system
development processes. Under various constraints such as cost, quality, delivery time, and
batch size, a manufacturing system that quickly meets the product needs of the market is
developed based on the existing manufacturing equipment, and the intelligent operation
management of the manufacturing system is realized. It provides manufacturers with
a turnkey solution and enables them to quickly establish or adjust manufacturing systems
and successfully put them into operation according to product orders.

The construction of the Industry 4.0-oriented Turnkey Project (I4TP) involves nu-
merous factors, such as business, assets, information, and functions under the Industry
4.0 paradigm. In the theoretical research aspect, the Reference Architecture Model Industrie
4.0 (RAMI4.0) [5] aims to create digital description rules for technical objects throughout
their life cycle and related value changes and defines detailed concepts, standards, and
interactions. However, there is no detailed description of the implementation and applica-
tion process for specific fields, including turnkey projects [6], and there is no subdivision
architecture based on RAMI4.0 to guide the formation, commissioning, and operation of
manufacturing systems. Regarding the application aspect, the rapidly emerging smart fac-
tories around the world, such as Fast Radius’ Cloud Manufacturing Platform [7], Phoenix
Contact’s Digital Factory [8], Rold’s SMARTFAB [9], and some other cases [10,11], have
the capability of autonomous overall management, able to carry out systematic coordina-
tion, reorganization, and expansion to provide specific solutions for product production.
Although the smart factory can provide various support for the turnkey project and even
expand the business service scope, it still cannot fully satisfy the core functional require-
ments in the whole process of the turnkey project from product to manufacturing system
configuration and operation.

To cope with the above problems, the views of two core functional processes are
proposed in this paper focused on the set-up, commissioning, and operation process to
guide the construction of I4TP. The I4TP’s characteristics, transforming the development of
manufacturing systems into configuration processes and carrying out the efficient intelli-
gent operation management to the manufacturing system, are considered in these views.
The specific implementation of the turnkey project is explained with a demonstration case.
The main contributions of this paper are as follows:

• In response to the growing demand for turnkey services of manufacturing systems
under the trend of personalized manufacturing, key research on the configuration
and operation of manufacturing systems is carried out around the construction and
implementation of I4TP;

• Through the introduction of the I4TP, the core functional process of it is summarized
into the configuration and the operation management of manufacturing systems,
and the configuration view and the operation view are extracted and established,
respectively, from RAMI4.0 to conceptually describe these two aspects;

• Guided by the configuration and operation views, a turnkey project platform is estab-
lished in the Advanced Manufacturing Technology Center (AMTC), and the design,
development, and application of key enabling tools for the configuration and operation
of I4TP are introduced in detail through this platform case;
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• The key function process of configuration and operation of the turnkey project platform
is verified through product cases, which shows the feasibility of the platform and the
good application prospects of the I4TP.

The rest of this paper is arranged as follows. Section 2 reviews the current research
status of the two key issues of configuration and operation in I4TP. Section 3 briefly
introduces the concept of I4TP, and proposes the configuration view and the operation view.
Section 4 details the design and development of key enabling tools for the configuration
and operation of the turnkey project platform in AMTC. Section 5 verifies the turnkey
project platform through the configuration and operation cases of three product-oriented
manufacturing systems. Section 6 summarizes the full text.

2. Related Work

The two key issues involved in I4TP are the rapid configuration and digital operation
management of manufacturing systems. This section will briefly introduce the related
works in these two aspects.

• Manufacturing system configuration

With the rise of concepts such as flexible manufacturing systems (FMSs) and reconfig-
urable manufacturing systems (RMSs), the research on the configuration of manufacturing
systems has gradually become a hotspot. Especially RMSs, with their core features such
as modularity, integrability, customization, convertibility, and scalability [12,13], make
the configuration of manufacturing systems one of the key issues in the application of
RMSs. In the I4TP, the RMS is also the best paradigm for its turnkey manufacturing sys-
tem solution at present, which can support the manufacturing system to quickly adapt
to production needs [14]. The factors involved in the configuration of the manufacturing
system mainly include product modules, manufacturing processes, processing equipment,
equipment layout, buffer allocation, etc. [15–18] Sabioni et al. [19] proposed a 0–1 nonlinear
integer programming model for mass customization to, in parallel, optimize the configu-
ration of modular products, processing equipment, and equipment layouts, and, based
on the Genetic Algorithm (GA), to solve it. Under the social manufacturing environment,
Zhang et al. [20] proposed a flexible configuration method for distributed Manufacturing
Resources (MRs) based on the Non-dominated Sorting Genetic Algorithm-III (NSGA-III)
algorithm and Louvain algorithm. This method can complete high-quality service compo-
sition and manufacturing communities’ allocation of complex manufacturing tasks under
multiple objectives, such as time, cost, and quality, and enable dynamic reconfiguration of
MRs under abnormal disturbances. Khettabi et al. [21] established an environment-oriented
multi-objective RMS design method, using Nonlinear Multi-objective Integer Program-
ming (NL-MOIP) and four improved evolutionary algorithms to complete the selection
of reconfigurable machines and tools. Liu et al. [22] further provided a quad-play CMCO
(i.e., Configuration design-Motion planning-Control development-Optimization decou-
pling) design architecture based on the Digital Twin (DT). A prototype system of the DT
manufacturing system design platform is developed and used for the design of flow-type
smart manufacturing systems to promote customization of intelligent manufacturing in
dimensions such as manufacturing equipment, operation, control, and execution.

• Manufacturing system operation

For the operation management of the manufacturing system, it is first necessary to
realize the digitalization and informatization integration of the manufacturing system
through technologies such as the Industrial Internet of Things (IIoT) and DT. Further,
the real-time monitoring, Predictive Maintenance (PdM), and other health management
functions of the manufacturing system are realized by developing data-driven models, and
even the deep collaboration and integration of the virtual model and the real system are
realized in order to carry out the virtual debugging of newly established manufacturing
system [23–25]. Wang et al. [26] proposed a DT-based Big Data Virtual-real Fusion (DT-
BDVRL) reference framework for intelligent manufacturing supported by the Industrial
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Internet. The method and process for building a Big Data Learning and Analysis (BDLA)
model are introduced, and the digital thread in DT-BDVRL’s virtual and real fusion analysis,
iteration, and closed-loop feedback in the product life cycle process is described. To ensure
the reliable operation of machine tools, Luo et al. [27] studied a hybrid method based on the
DT model and DT data-driven for PdM and conducted a case study on tool life prediction.
Liu et al. [28] proposed a new DT-enabled collaborative data management framework for
metal Additive Manufacturing (AM) systems to monitor and analyze the entire production
process and presented a typical application scenario for defect analysis of metal AM layers
with cloud computing and deep learning. With the continuous deepening and expansion
of research on IIoT and DT technologies, the operation management of manufacturing
systems can be increasingly supported by digitalization and intelligence.

From the above introduction, it can be identified that the following gaps between the
existing related works and the I4TP:

The above research solves the theoretical and technical problems such as the manu-
facturing system configuration algorithm in a limited range, the data-driven production
system design method, and the virtual-real collaboration and integration of the manufac-
turing system and its components. However, there is still a lack of discussion on I4TP.
Compared with the existing research on the multi-factor configuration of manufacturing
systems and data-driven manufacturing system operation management, the I4TP empha-
sizes the rapid acquisition of manufacturing system configuration and operation solutions
and provides manufacturers with turnkey services for new product-oriented manufac-
turing systems. Although there have been some achievements for reference on the basic
supporting technologies involved, there is still a lack of theoretical and technical guidance
for the development of key functional processes of turnkey projects and reference cases for
key enabling tools.

This paper aims to fill these gaps, provides key views of the configuration and opera-
tion of I4TP, and provides a design and development case of a turnkey project platform to
provide theoretical and technical references for the construction and implementation of
turnkey projects.

3. Industry 4.0-Oriented Turnkey Project and Its Configuration View and
Operation View

3.1. Introduction of the Industry 4.0-Oriented Turnkey Project

While the concepts of Industry 4.0 and turnkey projects have long been around, they
are usually discussed separately. For the I4TP, it is necessary to be located under the
Industry 4.0 paradigm. At present, turnkey projects usually refer to projects that meet
the needs of a single customer, including the delivery of a complete system [29,30], and
there is no clear and unified definition. The I4TP considered in this paper sees providing
manufacturing enterprises with turnkey services of manufacturing systems as the main
goal, quickly building a product-oriented manufacturing system and running it stably, and
efficiently completing the production of new products, including personalized products.
Therefore, the definition of I4TP is proposed here: in the context of Industry 4.0, a project
that a turnkey service provider uses ICTs and other technologies to quickly form manufac-
turing systems that satisfy the production needs of customers (manufacturing companies
mainly) and implement it into manufacturing verification in order to provide customers
with turnkey solutions of manufacturing systems.

As shown in Figure 1, the basic process of generating a turnkey solution is set-up, com-
missioning, and operation [4,31]. The customer (manufacturer) proposes the product to be
processed. After being handled by the feature extractor, turnkey configurator, and turnkey
builder, a new manufacturing system comes out and is put into operation under turnkey
management. The prerequisite for achieving the rapid formation of the manufacturing
system implementation scheme is to have a standardized business process, good synergy
among stakeholders and functional modules, and bountiful functional modules that enable
efficient automatic and intelligent operation. As for realizing the rapid establishment or
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reconstruction of the manufacturing system, it is obligatory to integrate and package all
kinds of software and hardware in standard modularization and connect each other with
a unified interface and data format to fulfill plug-and-play. In addition, with the degrada-
tion of production equipment performance, changes in market demands, and innovation
of technologies, manufacturing companies need to develop or bring in new equipment
and applications, so turnkey projects are also required to have good compatibility and
scalability. Therefore, the I4TP should meet the following items:

• Standardized turnkey service business process;
• Good coordination ability;
• Rapid information exchange capability;
• A mass of functional modules for automatic and intelligent operation;
• Standard modular functional components;
• Strong compatibility and scalability.

Figure 1. The basic process for generating a turnkey solution [4,31].

Thus, it can be determined that the construction goal of the I4TP is based on the
existing manufacturing equipment from different suppliers and through standardized and
normalized verification, to make full use of ICTs and the potential for the collaborative
process from the web-based approach to carry out the needful parallelization, integration,
and automated and intelligent upgrade of the existing manufacturing system develop-
ment processes, and realize the information interaction with the assets, then under the
various constraints, such as cost, quality, delivery time, and operation objectives, quickly
establish and form manufacturing systems that adapt to the product needs of the market,
and implement it into production verification, providing manufacturing companies with
turnkey solutions.

Compared with the existing manufacturing system development process, the biggest
feature of the turnkey project is to make full use of ICTs to transform the development
process into the configuration process, and to realize the intelligent management of the
manufacturing system. Therefore, under the paradigm of Industry 4.0, rapid configuration
and intelligent operation of manufacturing systems are two key elements in turnkey
projects. To facilitate the participation of all stakeholders involved in the turnkey service,
the cloud-based turnkey engineering platform will be the core of the turnkey project. It
enables the turnkey project to configure an optimized manufacturing system for a given
product and to realize automatic debugging through the plug-and-play scheme. At the same
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time, the unified standard of the interoperability scheme is met to realize the cooperation
between different platform architectures.

3.2. Configuration View and Operation View of the Turnkey Project

A turnkey project is a systematic project involving rich content, such as business,
assets, information, and functions. Therefore, a systematic theoretical framework should
be used as a guide, especially concerning the construction method of the two key contents
of the manufacturing system’s rapid configuration and intelligent operation in the I4TP.

The basic purpose of Industry 4.0 is to promote cooperation and collaboration be-
tween technical objects, while RAMI4.0 is a structured description of the basic ideas of
Industry 4.0, creating digital description rules for technical objects throughout their life
cycle and related value changes [5,32–34]. RAMI4.0 is a hierarchical three-dimensional
model, including three dimensions: Life cycle & value stream, Hierarchy levels, and Layers.
At the same time, an Industry 4.0 Component (I4.0C) reference model, namely the Asset
Administration Shell (AAS), is also proposed to provide digital applications corresponding
to RAMI4.0 [35–38]. In RAMI4.0 and its derived series of research reports or technical
standards and other materials, there are also plug-and-play (or named plug-and-produce)
use cases for field devices [39], industry 4.0 asset identification standards [40], Security
access control of Industry 4.0 components [41] and other aspects are defined or introduced.
In general, RAMI4.0 is committed to the top-down specification and standardization of
the information interaction and service application of Industry 4.0 assets, which can pro-
vide technical asset frameworks support for various application fields under the Industry
4.0 paradigm. However, RAMI 4.0 has not systematically explored how to construct and
apply engineering functional programs, and cannot provide clear guidance for the con-
struction of I4TP, especially the development of functional processes. Therefore, this section
proposes a configuration view and an operation view for the two key functional processes
of manufacturing system configuration and operation management in turnkey projects,
and the concepts and characteristics of these two key functional processes are described.

• Configuration view

The configuration view of the turnkey project is shown in Figure 2. The configuration
view covers basic processes such as feature extractor and turnkey configurator. The turnkey
project is a project that provides manufacturers with turnkey services for manufacturing
systems. The levels it faces are from the manufacturing system to the cooperation between
enterprises. In RAMI4.0, it corresponds to the station to the connected world. Of course, the
configuration of the system still needs to be based on products, equipment, etc. Through the
configuration process, what is obtained is the configuration scheme of the manufacturing
system, that is, the prototype of the manufacturing system, so it corresponds to the “Type”
stage of the Life Cycle & Value Stream in RAMI4.0. The stakeholders involved in the
configuration of the manufacturing system include manufacturers, platform operators,
equipment/component suppliers, etc. As the service object of the turnkey project, the man-
ufacturer can designate equipment/component suppliers, etc. It is up to the manufacturer
to request a turnkey manufacturing system and to provide data about the product which is
to be produced. Production equipment and turnkey platform-compliant equipment data
are provided by equipment/component suppliers and stored in or accessible through the
equipment database. As the operator of the turnkey project, the platform operator provides
core configuration services. Through the mutual matching relationship between products,
processes, and equipment, under the constraints or configuration goals of feasibility, secu-
rity, and economy, and comprehensive considering the layout, scheduling, simulation, and
other aspects, a manufacturing system configuration scheme that meets the manufacturer’s
needs is given. It is worth mentioning that the same enterprise can play different roles
in the configuration process at the same time. For example, the manufacturer itself can
also act as an equipment/component supplier to provide its existing equipment for the
configuration of the manufacturing system.
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Figure 2. Configuration view.

The entire configuration process is described in detail in the form of a mathematical
model. First, it is necessary to extract the processing features based on the information p of
the product to be processed by using a feature recognition algorithm or tool (denoted as
q). The processing features, optional processes, and optional equipment of the product are
represented by x, y, and z, respectively, where

x = q(p) (1)

In the configuration function of the turnkey project platform, the applicable processing
feature range, process database, and equipment database are represented by X, Y, and Z,
respectively. Then, the set of possible device configuration schemes can be expressed as

F =
{

f (x, y, z)
∣∣αx ⊆ αy, βy ⊆ βz, γx ⊆ γz, x ⊆ X, y ⊆ Y, z ⊆ Z

}
(2)

where f (x, y, z) is the matching algorithm model. αi, βi, and γi all represent a specific at-
tribute set in the set i. After further constraints and optimization of feasibility, security, and
economy (represented by A, B, C, respectively), the near-optimal equipment configuration
scheme F∗ can be screened out.

F∗ = k∗ ∈ F|A(k∗) = 1, B(k∗) = 1, C(k∗) = min(C(k)|k ∈ F ) (3)

According to the equipment configuration scheme F∗ and workshop environment I,
through the layout design method or generation algorithm (denoted as g), the set of optional
layout schemes L is obtained. Then, through the process of simulation or mathematical
model calculation (denoted as h), the corresponding scheduling scheme set S is obtained.
The final manufacturing system configuration scheme R can be obtained by selecting the
best combination (L∗, S∗) from L and S according to specific objectives. The configuration
scheme R is the unique near-optimal solution given by the whole configuration process
model for customer (manufacturer) needs, including equipment configuration, workshop
layout, system scheduling, and other aspects.

L = {g(F∗, I)} (4)

S = {h(F∗, l)|l ∈ L} (5)
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R = (F∗, L∗, S∗) (6)

Of course, due to the close interaction among equipment configuration, work-
shop layout, and production scheduling, the above algorithm models can be further
integrated to form multiple collaborative optimization models to improve overall
configuration performance.

R = J(q, f , A, B, C, g, h) (7)

Through the above analysis, the key development process of manufacturing sys-
tem configuration, a turnkey service-enabling tool, is shown in Figure 3. After develop-
ing standardized modular databases that provide basic support, developing algorithm
models for key functions, integrating functions, and packaging software and hardware,
a manufacturing system configuration enabling tool is ultimately formed.

Figure 3. The key development process of the manufacturing system configuration service-
enabling tool.

• Operation view

The operation view of the turnkey project is shown in Figure 4. The operation view
of the turnkey project involves the construction and management of the manufacturing
system, which, similarly to the configuration view, corresponds to the hierarchy level
range from station to connected word in RAMI 4.0. In the turnkey project, the operation
process of the manufacturing system is the instantiation of the configuration result and
the intelligent management after instantiation, so it belongs to the “Instance” stage of the
Life Cycle & Value Stream. The stakeholders involved in the operation of the manufac-
turing system mainly include manufacturers, platform operators, equipment/component
suppliers, material/parts suppliers, and IoT suppliers. Similarly, manufacturers can select
suppliers. The production equipment is provided by equipment/component suppliers,
and the production equipment is integrated into the workshop in a standard modular form
as much as possible and has advanced functions such as plug-and-play and automatic
debugging, to ensure the rapid construction of the manufacturing system. Raw materials
for producing products are provided by material/parts suppliers. IoT suppliers provide
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equipment interconnection services to achieve reliability data acquisition in the workshop.
The platform operator obtains real-time data on physical assets from the IIoT platform
connected to the equipment and integrates it. According to the hierarchical relationship
of the “component-equipment-manufacturing system”, real-time monitoring, fault diag-
nosis, Remaining Useful Life (RUL) prediction, PdM, and other various operation and
maintenance functions are realized layer by layer. These functions are integrated upward,
and the intelligent operation and health management of the entire manufacturing system
are finally realized. Once the whole system has been confirmed to be operating normally
and smoothly, the complete turnkey solution can be delivered to the manufacturer. When
manufacturers have new production requirements, the manufacturing system can be recon-
figured, and the functional structures in the IIoT platform and turnkey project platform are
also updated.

Figure 4. Operation view.

To facilitate analysis and discussion, a mathematical description of the operation
process is further established. First, we integrate the real-time data obtained by us-
ing the IIoT platform to facilitate the realization of subsequent operation and health
management functions.

DO = DP1 ⊕ DP2 ⊕ · · · ⊕ DPm (8)

where DPi represents the collection of real-time data from the supplier i. Using these real-
time data, the functional set of each level of the “component-equipment-manufacturing
system” can be implemented and integrated layer by layer according to the configuration
scheme R of the manufacturing system. The operation and health management function
sets of parts, equipment, and manufacturing systems are, respectively, denoted as MF,
MD, MS, and the functional models of which are, respectively, denoted as ui, vi, wi, and
the function sets at each level of “component-equipment-manufacturing system” can be
expressed as

MF = {u1(DF1|DF1 ⊆ DO), · · · , un(DFn|DFn ⊆ DO)|R} (9)

MD = {v1(MF1, DD1|MF1 ⊆ MF, DD1 ⊆ DO), · · · , vr(MFr, DDr|MFr ⊆ MF, DDr ⊆ DO)|R} (10)

MS = {w1(MD1, DS1|MD1 ⊆ MD, DS1 ⊆ DO), · · · , wt(MDr, DSr|MDr ⊆ MD, DSr ⊆ DO)|R} (11)

Among them, DFi, DDi, and DSi represents the data subset of DO related to the func-
tional model ui, vi, and wi. MFi represents a set of the operation and health management
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function set of a device’s components that are related to the functional model vi of the
device level, and is integrated through the model vi. MDi represents a set of the operation
and health management function of a manufacturing system’s devices that are related to
the functional model wi of the manufacturing system level, and is integrated through the
model wi.

Once the manufacturing system is operational, the turnkey solution TKS = (R, MF, MD, MS),
i.e., the near-optimal set of configuration and operation solutions can be delivered to the
manufacturer. When a manufacturer needs to produce a new product, they can realize
the conversion of the turnkey solution according to a certain reconstruction and update
method (denoted as T) based on the existing turnkey solution.

TKS′ = (R′, M′
F, M′

D, M′
S) = T(R, MF, MD, MS) (12)

The key development process of the service-enabling tool for manufacturing system
operation is shown in Figure 5. Based on the reliability data acquisition of components,
equipment, and manufacturing systems and the standardized real-time database formed
by integration, develop various levels of operation and health management models and
reconfiguration and update algorithm models. Finally, we integrate these basic supports
and various key functions and packaged them on software and hardware to form a manu-
facturing system operation service-enabling tool.

Figure 5. The key development process of manufacturing system operation service-enabling tool.

4. Design and Development of Key Enabling Tools for Manufacturing System
Configuration and Operation: Taking AMTC as an Example

Under the configuration view and the operation view, different specific construction
plans will be formed according to different manufacturing industries and different ac-
tual needs. Here, the mapping between key views of the turnkey project and specific
applications is shown by taking the development of AMTC’s turnkey project platform as
an example.

4.1. Development Background of the Turnkey Project Platform in AMTC

To create an environment for the research, demonstration, and teaching of intelligent
manufacturing-related technologies, and to provide technical services for related enter-
prises, AMTC needs to build turnkey projects to meet the processing needs of diversified
products. As a research base and demonstration center of advanced manufacturing technol-
ogy, AMTC has abundant equipment and technical resources to support the construction
of turnkey projects.
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• Equipment supports

As the basic support for the turnkey project, the main equipment in the AMTC work-
shop currently is shown in Figure 6. The left part is mainly large and medium-sized
equipment assets. These assets can meet the needs of turnkey projects through network
transformation and integration and packaging. These devices are not easy to move, so
the layout usually remains unchanged during actual processing, but configuration and
reconfiguration can still be achieved in terms of scheduling. The right part is a modular
production unit based on the i5Blocks intelligent manufacturing demonstration line, it can
be automatically combined to form a new production line according to the configuration
results, and has the advantage of quick replacement, which will give full play to the advan-
tages of turnkey projects. In addition, when serving manufacturers, i.e., configuring and
building manufacturing systems, the optional assets from the corresponding manufacturers
and suppliers will also be included in the asset category of the turnkey project.

Figure 6. Devices in the AMTC workshop.

• Machine communication supports

In terms of machine communication, the communication from the physical layer to
the information layer is composed of three solutions, as shown in Figure 7, provided by
iSESOL, Microcyber, and HUAWEI, respectively. Among them, the solution provided by
iSESOL uses the iPORT protocol to communicate between devices and the cloud. It has
a strong compatibility with various common industrial communication protocols. The
main machine tools in the AMTC workshop are connected to collect internal data through
this solution, including the DMU65 machining center, the M1.4 Machining center, etc.,
and a vibration sensor is installed on the spindle of the M1.4 machining center to collect
its vibration data. Microcyber is more focused on the security of the workshop’s local
area network and adopts the data security encryption technology based on the multi-key
distribution mechanism and Modbus security communication technology based on the
national cryptographic algorithm and security protocol, etc. Microcyber provides vibration
and temperature sensors, machine tool access points, and other equipment, which can be
used for data acquisition inside and outside the machine tool and workshop environment
data. Currently, this solution is mainly used for equipment vibration and temperature
data acquisition in the AMTC workshop. The solution provided by HUWEI focuses on the
industrial application of 5G technology, supports the most commonly used top 7 industrial
communication protocols, and establishes application scenarios on the TS2 conveyor in
the AMTC workshop for material transfer locations monitoring. In addition, the iSESOL
cloud also provides the OpenAPI open service interface, which can be interconnected with
other industrial cloud platforms or functional applications to jointly complete real-time
monitoring and digital management of the entire workshop.
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Figure 7. Machine communication solutions.

4.2. The Overall Functional Design of the Turnkey Project Platform

Based on the aforementioned analysis and the basic environment of AMTC, this
section combines DT technology, artificial intelligence technology, and actual needs to
design the overall function of the turnkey project platform. The functional structure of
the obtained turnkey project platform is shown in Figure 8. It is mainly composed of
two sub-platforms: the system configuration platform and the operation management
platform. The two sub-platforms correspond to the two key functional processes of the
manufacturing system configuration and operation management of the turnkey project, that
is, the enabling tools for these two key functional processes. The turnkey project platform
is mainly oriented to the production of designed products and takes information, such as
product models, materials, drawings, and production indicators, as input. Then, the steps
of processing feature extraction, manufacturing process matching, system configuration,
workshop layout generation, scheduling simulation and optimization are completed in
the system configuration platform. The configuration results are handed over to the
workshop staff to complete the system construction or reconstruction. The operation
management platform realizes real-time production monitoring, analyzes the operation
status of equipment/components, and formulates PdM strategies by collecting real-time
operation data of workshop equipment/components.

4.3. Design and Development of the System Configuration Platform

The detailed functional structure design of the system configuration platform is shown
in Figure 9. MongoDB is used as the database for storing various data involved in the
manufacturing system configuration process. First, the platform user imports the informa-
tion of the product to be processed, and after the import is completed, a feature extraction
instruction is issued to the backend server. The server identifies the product features and
the relationship between the features based on the STEP file of the product and outputs
a list of processing features. Then, the process matching instruction is issued, and the server
performs the identification and modeling of the interdependence between the parameters
of the product, processing features, etc. At the same time, it analyzes its impact and risk
and performs process matching based on the interdependence between the processing
features and the process, and the corresponding process list is outputted. Next, the user sets
various requirements for product production within the allowable range of the platform,
including configuration optimization goals such as the lowest production cost and highest
production efficiency. After that, the user issues system configuration instructions, and
the server according to equipment, tools, and other configuration resources and product
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requirements, configures the manufacturing system based on GA and outputs the config-
uration result. Finally, the user issues a workshop layout generation instruction, and the
server generates the workshop layout scheme based on GA, according to the configura-
tion result and equipment information. Plant Simulation is used to carry out scheduling
simulation and optimization of the layout scheme to output the final workshop layout and
scheduling scheme.

Figure 8. The functional structure of the turnkey project platform.

Figure 9. The detailed functional structure design of the system configuration platform.
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The User Interface (UI) of the system configuration platform developed according to
the design scheme is shown in Figure 10. Considering the convenience of the application,
the development method adopted is a web-based method, which belongs to a website
application project and is a Browser/Server (B/S) application structure. Apache is used to
host web services and the XAMPP package is applied for the configuration management
of Apache. The main structure of the backend server is developed with Python3, and
the frontend browser pages are written with Hyper Text Mark-up Language 5 (HTML5),
Cascading Style Sheets (CSS), and JavaScript.

Figure 10. The UI of the system configuration platform.

During the entire system configuration process, the system configuration platform
integrates feature extraction, process matching, equipment configuration, layout generation,
scheduling simulation and optimization into the backend server. Platform users can
quickly obtain manufacturing system configuration schemes with simple operations instead
of tedious and time-consuming manufacturing system design processes. What’s more,
manufacturers who need to build new manufacturing systems can use the services provided
by this platform to obtain solutions that meet their needs without extensive expertise in
manufacturing system design.

4.4. Design and Development of the Operation Management Platform

The detailed functional structure design of the operation management platform is
shown in Figure 11, and the concept of AAS [5,33,35,37] is introduced for description. In
the operation management platform, according to the structural level of the manufacturing
system, several machine communication solutions introduced in Figure 7 are used to
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realize the information interaction between the key components-equipment-system and the
server in the workshop. Corresponding to the different levels of components-equipment-
system in the server, a management module (i.e., AAS) is constructed to manage each key
asset at each level. Compared with the current common way of independent monitoring
of key equipment/components, the hierarchical operation management scheme is more
conducive to the assessment and prediction of production status from the perspective of
the overall manufacturing system in the production process. Thereby, the operation and
maintenance decisions can be made or adjusted promptly. Combined with the actual needs
of AMTC workshops, different management strategies are adopted for different assets.
Taking the DMU65 machining center as an example, the RUL prediction of the bearings in
its spindle and feeding system is based on the Support Vector Machine (SVM). The spindle
and feeding system use different methods to realize fault diagnosis and PdM functions
based on the RUL prediction results of the bearings. On this basis, data from other sources
in the DMU65 machining center is also integrated to realize real-time monitoring, fault
diagnosis, and PdM of the entire machine at the equipment level. Management measures
such as real-time monitoring are also implemented for other equipment, such as robots and
conveyors. By integrating the data of the underlying equipment with the results of fault
diagnosis, PdM, and other functions, the real-time monitoring, fault diagnosis, and PdM of
the manufacturing system can be further realized. The real-time operation data of assets
at all levels and the analysis results of various health management functions are stored in
the database and displayed to users in real time. Users can intuitively view the operating
status of the manufacturing system and its equipment and components through the UI,
and conduct inspection, maintenance, repair, replacement, etc. based on the analysis results
of various health management functions. When the manufacturing system needs to be
reconstructed, the communication relationship between the AASs in the server will also be
updated synchronously.

Combining the characteristics and advantages of the three machine communication
solutions in Figure 7, as well as their currently connected device assets, the developed
operation management platform is shown in Figure 12, consisting of four parts. The first
part adopts the machine communication solution provided by iSESOL, which connects
the main equipment in the workshop and uploads the data to the cloud for real-time
monitoring. The monitored equipment operation data includes spindle speed, spindle load,
feed speed, number of processed workpieces, running time, etc. The second part also uses
the solution provided by iSESOL to connect equipment, and then develop local functions
in the iSESOL BOX, including RUL prediction of the bearing, fault diagnosis of the spindle,
feeding system, and machine tool, and PdM of the spindle, feeding system, and machine
tool. The third part adopts the solution provided by Microcyber to realize the temperature
and vibration monitoring of the machine tool and workshop environment. The fourth
part adopts the solution provided by HUAWEI, uses the 5G network to communicate, and
monitors the position of the workpiece on the conveyor.

In the operation management platform shown in Figure 12, the web-based UI of the
first part is provided by iSESOL directly, and the UIs of the rest parts are also developed
in a web-based way. In the first part, the device operation data is collected and uploaded
to the cloud, which can be accessed by remote users, providing cloud services. The rest
are connected through the local area wireless networks of the workshop, and the local
equipment in the workshop is used to provide computing support for various functions,
and all provided are edge services. The entire operation management platform adopts
a distributed management strategy combining cloud and edge, which can fully guarantee
the flexibility of the manufacturing system and facilitate subsequent system reconstruction.
Of course, current edge services can also be integrated into the cloud as needed. In addition,
in the future, users can obtain these functional applications by downloading Applications
(APPs) on mobile clients connected to the cloud.

After completing the construction or reconstruction of the manufacturing system
according to the configuration scheme and starting the trial operation, the whole process
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of digital management of the workshop production is carried out through the operation
management platform. It can quickly verify the feasibility and reliability of the new
manufacturing system to ensure that it can be put into operation smoothly. Meanwhile,
it also provides manufacturers with a complete set of turnkey manufacturing system
solutions, including follow-up operation management, so that manufacturers can directly
operate the manufacturing system without the need for separate system operation testing
and network design transformation.

Figure 11. The detailed functional structure design of the operation management platform.
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Figure 12. The devices’ connection and UIs of the operation management platform.

5. Product-Oriented Manufacturing System Configuration and Operation Cases

To verify the developed turnkey project platform, three products, the hydraulic valve
block, the gripper base, and the automotive fuel cell (model), are used as verification cases.

This platform has properly simplified the evaluation of production efficiency and
production cost in the configuration process. The efficiency and cost indexes are obtained by
weighting the sum of several key parameters, and the efficiency-cost comprehensive index
is further constructed by weighting the efficiency and cost indexes. This comprehensive
index is used for scheme comparison. The factors considered in the calculation of the
production efficiency index include the spindle speed, the feeding speed, the power, the
average tool change duration, the tool change times of the equipment, etc. While the
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factors considered in the calculation of the production cost index include the tool price, the
equipment price, the average processing cost of the equipment to complete a single process
step, etc. The weight of each parameter is obtained by the analytic hierarchy process. The
smaller the efficiency-cost comprehensive index, the better the solution.

• Hydraulic valve block

The manufacturing system configuration and operation verification results of the
hydraulic valve block case are shown in Figure 13. The material of the hydraulic valve block
is cast iron, and its blank is a casting, which needs to complete the processing of multiple
planes, smooth holes, threaded holes, and stepped surfaces. Through the functional process
of the system configuration platform, the manufacturing system configuration scheme
under two different optimization objectives of production efficiency priority and production
cost priority is obtained. Compared with the original manufacturing system scheme,
when considering efficiency first, the comprehensive index of the system configuration
scheme given by the platform is 0.24, which is much better than the 0.81 of the original
system. When considering cost first, the system configuration scheme can also perform
better. According to the equipment configuration results and layout generation results, the
Plant Simulation software is further used for simulation and optimization. The number
next to the equipment model represents the optimized buffer capacity matched with the
equipment. The configuration scheme that prioritizes production efficiency is selected for
implementation. The operation management part in Figure 13 shows the operation of the
new manufacturing system and the operation management platform at a certain time. It
can be seen that the turnkey project platform can configure the equipment required for
the production of new products and generate a reasonable workshop layout according to
different user needs. Optimization results such as buffer capacity are given after simulation
and digital management is executed when new manufacturing systems are put into service.

Figure 13. Configuration and operation of the hydraulic valve block manufacturing system.

• Gripper base

The configuration and operation of the manufacturing system for the gripper base case
are shown in Figure 14. The material of the gripper base is aluminum alloy, and its blank is
an aluminum alloy block. Multiple planes, slots, and holes are some of the features to be
machined. The manufacturing system configuration scheme can be quickly obtained by
using the system configuration platform. According to the efficiency-cost comprehensive
index of different solutions, compared with the original manufacturing system solution,
the system configuration platform can provide a better solution in the two optimization
directions of efficiency first and cost first. The efficiency-first scheme is adopted for product
production, and the operation management platform effectively guarantees the safety and
stability of the production process.
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Figure 14. Configuration and operation of the gripper base manufacturing system.

• Automotive fuel cell (model)

The production of automobile fuel cells is divided into two main processes, 3D printing
of air intake grilles and assembly of air intake grilles and ready-made battery stacks. To
simulate this process in order to verify its feasibility and save costs, the Polylactic Acid
(PLA) material is used to replace the original material to establish an imitated production
scene. The manufacturing system in this case is built for the first time. The configuration
scheme obtained by the system configuration platform and the on-site processing situation
are shown in Figure 15, and the equipment used is modular units. The currently used
modular units have not been connected to the operation management platform, but the
potential of the turnkey project platform can still be reflected through the generation of
configuration schemes by the system configuration platform and the on-site processing.

Figure 15. Configuration and field situation of the fuel cell (model) manufacturing system.

To save verification costs, only a small number of finished products have been pro-
duced for each product in practice, and all of them meet the product design requirements.
This shows that the turnkey solutions for the three products are feasible.

At present, the turnkey project platform has completed the development, integration,
and encapsulation of many key functional models under the guidance of the configuration
and operation views, forming two key enabling tools, the system configuration platform
and the operation management platform. The above three cases further prove the feasibility
and effectiveness of the turnkey project platform, as well as the huge application potential
of the I4TP. The I4TP makes it possible to rapidly configure and operate the new manufac-

55



Machines 2022, 10, 983

turing system. Although the above cases are only the application of the turnkey project
platform in the same workshop, with the continuous enrichment of built-in functions of
the platform, it will be fully able to adapt to emerging manufacturing modes such as social
manufacturing. It can provide a platform for various manufacturers, suppliers, and other
stakeholders to jointly participate in the task allocation, docking, and communication of
the product production.

6. Conclusions and Summary

In response to wider personalization and transforming market demands, manufac-
turing enterprises need to respond more quickly to realize the rapid establishment and
operation of related manufacturing systems. However, numerous enterprises, especially
small and micro enterprises, cannot cope with the rapid updating of product-oriented
manufacturing system configurations alone. Therefore, it is very necessary to make full use
of the existing ICTs to carry out the construction of turnkey projects and provide these enter-
prises with turnkey services of manufacturing systems. Focusing on the generation process
of the turnkey project, this paper proposes a configuration view and an operation view for
the two key contents of the system configuration and operation in the turnkey project, to
provide a theoretical basis for the development of the key function process of the turnkey
project. To a certain extent, it makes up for the defect that the existing reference architecture
cannot provide specific guidance for the construction of turnkey projects. At the same
time, the turnkey project platform in AMTC is used as a demonstration case to provide
a reference for the development and application of key enabling tools for configuration
and operation. The research results are summarized as follows:

• According to the basic process of generating the turnkey scheme and the characteristics
of the turnkey project, the configuration view and the operation view of the turnkey
project are proposed based on RAMI4.0. The configuration and operation processes
are described in the form of mathematical models, and the key function development
processes of configuration and operation enabling tools are given;

• Guided by the configuration and operation views, relying on AMTC’s equipment and
machine communication network support, the overall functional design of the turnkey
project platform is carried out according to actual needs. The functional structure
design and application development of the system configuration platform and the
operation management platform are focused on. Various functions of configuration
and operation are integrated into the servers, and simple and easy-to-use UIs are
provided. This provides users with turnkey services for the rapid configuration of
manufacturing systems and intelligent operation management;

• The developed turnkey project platform is verified by taking three products as case
studies. The results show that the system configuration and operation management
functions of the turnkey project platform can operate normally, and they have achieved
good application results, which can meet the rapid configuration and efficient opera-
tion management requirements of the manufacturing system.

In general, the developed turnkey project platform has the following advantages.
(1) This platform makes it possible to quickly obtain turnkey solutions for manufacturing
systems that are difficult to achieve with traditional methods. (2) It can optimize the
production efficiency, production cost, and other objectives of the manufacturing system
in the rapid configuration process. (3) It can provide a hierarchical health and operation
management scheme for the manufacturing system, and compared with the independent
monitoring mechanism between equipment/components, it is more conducive to ensuring
the secure and stable operation of the manufacturing system.

At present, the turnkey project platform in AMTC provides only research examples.
The construction of turnkey projects from functional development to practical application
still requires a lot of research work, including rapid product development, processing fea-
ture extraction, process matching, manufacturing system configuration, workshop layout
generation and optimization, modular production equipment design and implementation,
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real-time monitoring and intelligent control of production, coordination mechanism be-
tween manufacturers and suppliers, etc., all need to be developed, improved and promoted.
These factors require further organic integration in the future.

Author Contributions: Conceptualization, S.X., W.Z., J.F. and C.E.; methodology, S.X. and W.Z.;
software, S.X. and Y.L.; validation, S.X. and F.X.; formal analysis, S.X.; investigation, S.X. & D.L.;
resources, S.X. and W.Z.; data curation, S.X.; writing—original draft preparation, S.X.; writing—
review & editing, F.X. and D.L.; visualization, S.X.; supervision, F.X. and D.L.; project administration,
W.Z.; funding acquisition, W.Z. and J.F. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the National Key R & D Program of China [grant number
2022YFE0114100], the National Key R & D Program of China [grant number 2017YFE0101400], and
the German Federal Ministry of Education and Research (BMBF) [grant number 02P17X000 ff].

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Mehrabi, M.G.; Ulsoy, A.G.; Koren, Y.; Heytler, P. Trends and perspectives in flexible and reconfigurable manufacturing systems.
J. Intell. Manuf. 2002, 13, 135–146. [CrossRef]

2. Bortolini, M.; Galizia, F.G.; Mora, C. Reconfigurable manufacturing systems: Literature review and research trend. J. Manuf. Syst.
2018, 49, 93–106. [CrossRef]

3. Tao, F.; Qi, Q.; Liu, A.; Kusiak, A. Data-driven smart manufacturing. J. Manuf. Syst. 2018, 48, 157–169. [CrossRef]
4. Gönnheimer, P.; Kimmig, A.; Mandel, C.; Stürmlinger, T.; Yang, S.; Schade, F.; Ehrmann, C.; Klee, B.; Behrendt, M.; Schlechtendahlc,

J.; et al. Methodical approach for the development of a platform for the configuration and operation of turnkey production
systems. Procedia CIRP 2019, 84, 880–885. [CrossRef]

5. DIN SPEC 91345:2016-04; Reference Architecture Model Industrie 4.0 (RAMI4.0). Beuth: Berlin, Germany, 2016.
6. Pisching, M.A.; Pessoa, M.A.; Junqueira, F.; dos Santos Filho, D.J.; Miyagi, P.E. An architecture based on RAMI 4.0 to discover

equipment to process operations required by products. Comput. Ind. Eng. 2018, 125, 574–591. [CrossRef]
7. Fast Radius. The Biggest Revolution in Manufacturing since the Assembly Line. Available online: https://www.fastradius.com/

capabilities/cloud-manufacturing/ (accessed on 27 September 2022).
8. Phoenixcontact. Digital Factory Now. Available online: https://www.phoenixcontact.com/zh-cn/industries/digital-factory

(accessed on 27 September 2022).
9. Rold. Discover Smartfab. Available online: https://www.rold.com/rold-smartfab-bring-company-4-0-universe/ (accessed on

27 September 2022).
10. Instrumentation Technology and Economy Institute, PR. China. Intelligent Manufacturing Comprehensive Test Platform.

Available online: http://www.itei.cn/imct.html (accessed on 27 September 2022).
11. Schneider Electric. EcoStruxure Platform. Available online: https://www.se.com/ww/en/work/campaign/innovation/

platform.jsp (accessed on 27 September 2022).
12. Pal Singh, P.; Madan, J.; Singh, H. Composite performance metric for product flow configuration selection of reconfigurable

manufacturing system (RMS). Int. J. Prod. Res. 2020, 59, 3996–4016. [CrossRef]
13. Sabioni, R.C.; Daaboul, J.; Le Duigou, J. Concurrent optimisation of modular product and Reconfigurable Manufacturing System

configuration: A customer-oriented offer for mass customisation. Int. J. Prod. Res. 2022, 60, 2275–2291. [CrossRef]
14. Eynaud, A.B.D.; Klement, N.; Roucoules, L.; Gibaru, O.; Durville, L. Framework for the design and evaluation of a reconfigurable

production system based on movable robot integration. Int. J. Adv. Manuf. Technol. 2022, 118, 2373–2389. [CrossRef]
15. Khan, A.S.; Homri, L.; Dantan, J.Y.; Siadat, A. An analysis of the theoretical and implementation aspects of process planning in

a reconfigurable manufacturing system. Int. J. Adv. Manuf. Technol. 2022, 119, 5615–5646. [CrossRef]
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Abstract: Additive manufacturing (AM) systems are currently evolving into network-based mod-
els, where the distributed manufacturing resources from multiple enterprises are coordinated to
complete product orders. The layer-by-layer approach of AM technologies gives manufacturers
unprecedented freedom to create complex parts tailored to customer needs, but this comes at slow
build rates. Consequently, for AM to become mainstream in the industry, challenges in production
planning remain to be addressed to increase AM system productivity. This paper considers two
practical problems encountered in AM systems, namely, production planning and part-to-printer
assignment, and a series of heuristic algorithms are proposed to solve these problems. In particular,
an approach for automatically determining part orientation, part-to-printer allocation, and nesting
of multiple parts for a distributed network of fused filament fabrication three-dimensional printers
is described to reduce the total production cost and time regarding the context of social manufac-
turing. The proposed method is implemented through a web application. The case study, using
real-world parts and comparative analysis findings, indicated that the proposed method produces
high-performance results.

Keywords: social manufacturing; additive manufacturing; production planning; distributed
manufacturing systems; heuristic algorithms

1. Introduction

Additive manufacturing (AM), regularly referred to as three-dimensional (3D) printing,
is a set of technologies that manufacture objects from digital 3D models by layering material
rather than subtracting it [1]. As a result, it enables the creation of customized and highly
complex component geometries that can be difficult to manufacture using conventional
processes. While the possibilities from a design perspective are endless, the production
throughput speed of AM systems is slow, limiting their use for mass production [2]. In this
regard, AM is still considered a niche technology for the rapid prototyping and production
of small-batch products. Therefore, today’s AM challenges revolve around enhancing
productivity to meet industry demands for mass personalization.

Meanwhile, the latest advancements in AM combined with social networks are
opening up a new world of possibilities for the manufacturing industry and fostering
the development of new collaborative business models, such as social manufacturing
(SocialMfg) [3,4]. A key factor behind the growth of SocialMfg is the ability of AM technolo-
gies to enable on-demand production and rapid innovation for small and medium-sized
enterprises (SMEs), and even individual entrepreneurs [5,6]. In a nutshell, in SocialMfg,
heterogeneous orders from multiple customers are coordinated to be completed by a dis-
tributed network of AM machines from several SMEs that interact and collaborate on a
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peer-to-peer (p2p) basis, as shown in Figure 1. In this setting, it becomes critical to inves-
tigate production planning approaches for a network of AM machines in which several
3D printers are shared to allow on-demand production for flexible and geographically
distributed production units.

Figure 1. Concept model for AM production planning in SocialMfg.

In AM, production planning includes selecting part orientation, packing or nesting
multiple parts together, setting process parameters, slicing, and assigning parts to machines.
Each of these tasks requires a high degree of manual intervention, which affects the overall
efficiency of the 3D printing process. Indeed, selecting the build orientation of a part
remains a manual operation and relies on the knowledge and experience of the process
planner. Furthermore, parts with similar production requirements are usually grouped
by batch to meet order due dates [7]. Several parts must be nested in a build plate for
each batch and printed simultaneously in a single run to reduce the production time and
operating costs [8,9]. Manually arranging the placement of a group of parts with complex
geometries is, however, time-consuming and can become a difficult task [10,11]. As a
result, the automation of production planning looks highly promising to stimulate the
productivity of AM systems, especially for a network-based organization involving shared
3D printers.

This study investigates the feasibility of an automated multi-part production planning
system in the context of SocialMfg. The paper addresses, in particular, three research
questions: how to optimally orient a part, how to allocate parts to AM machines, and
how to optimally place multiple parts in build plates. A further question is whether this
automated production planning system can quickly assign parts, using the few possible
build plates, while ensuring part quality. Although these questions have been substantially
investigated in the literature, no study has yielded an integrated solution. However, it is
necessary to consider part orientation selection, part-to-printer assignment, and nesting, as
a whole, to increase AM production rates and lower operating costs.

In this work, we focus on a prominent material extrusion technology called fused
filament fabrication (FFF), one of the most widely used AM techniques. Initially adopted
for rapid prototyping, FFF is gradually used for industrial applications to deliver rapid
tooling and spare parts. This paper aims to enhance the FFF process via an industrial-like
production logic by providing a realistic solution to production planning and scheduling
problems. First, efficient heuristic algorithms are presented for optimizing part build
orientation, part-to-printer assignment, and the nesting of parts. In fact, in the field of
combinatorial optimization, heuristic algorithms have proven to be effective. Compared to
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other methods, they allow for satisfactory results with less computational effort. A web
application (web app) is also developed in which the parts’ stereolithography (STL) files
are entered, and the packing result is returned. Lastly, the effectiveness and operability of
the developed system are investigated using a case study with real-world components and
comparative analysis.

The contribution of this work is threefold:

• As part of the SocialMfg, this is one of the first works in AM production planning and
scheduling that includes part orientation selection, part-to-printer assignment, and
two-dimensional nesting;

• Orientation-dependent factors that affect the part quality and printing time are consid-
ered, and the two-dimensional (2D) packing is solved using a rasterization technique
and quadtree representation. Moreover, the proposed 2D nesting algorithm outper-
forms the top existing methods in terms of packing density and computational time;

• A real-world case study to evaluate the proposed method confirms the effectiveness
of considering part orientation and nesting in AM machine scheduling.

The balance of this paper is arranged as follows: Section 2 summarizes the related
work and indicates research gaps. Section 3 describes the scenario considered and details
the proposed methodology. The prototype web app and a case study are reported in
Section 4. In Section 5, the performance of the proposed method is discussed. Finally,
Section 6 provides the conclusion to this investigation.

2. Literature Review

This section summarizes existing studies regarding orientation selection in AM and
provides an overview of the most prevalent approaches for AM production planning
and scheduling.

2.1. Part Orientation in AM

The problem of part orientation in AM has been thoroughly investigated [12]. Some
researchers presented a one-step approach. Notably, they proposed a customized algo-
rithm [13–15] or applied an existing optimization algorithm, most commonly an evolution-
ary algorithm, such as a genetic algorithm [16,17], to directly search an orientation, allowing
several considered factors to be optimal from a large number of alternative orientations.
The challenge with this one-step approach is to define the suitable rotation angle or step size.
A large rotation angle reduces the number of computations and raises the risk of missing
the real optimal build orientation. Contrarily, the risk is reduced when the rotation angle is
slight, but the number of computations will increase considerably. This situation attracted
several researchers to investigate the part orientation problem from other perspectives and
propose a two-step approach. The initial phase is to generate some practical alternative
orientations among all possible orientations. The second phase consists of identifying the
best orientation among the generated options. A multi-criteria decision-making (MCDM)
technique is usually used to select the best orientation [13,18,19].

Despite decades of research, automatic determination of optimal build orientation
remains an open issue in AM. Compared to the vat photopolymerization (VPP) process,
few attempts have been made to identify optimal part build orientation for the FFF process,
where the staircase effect affects the surface quality more severely. Selecting the optimal
build orientation should improve the print quality, regardless of the intended purpose of
the part. Considering this background, this research proposed a two-step strategy and new
orientation-dependent factors, inexpensive in computation, to address the optimal build
orientation determination problem for the FFF technique.

2.2. Planning and Scheduling of AM Production

In the context of scheduling a set of unrelated parallel machines with non-identical
job sizes, Li et al. [20] proposed heuristics based on best-fit and longest processing time
(LPT) to reduce the makespan. Similarly, Arroyo and Leung [21] introduced several
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heuristics that allow the realization of varied-sized jobs with unrelated parallel machines,
while minimizing the makespan and grouping jobs into batches. Ransikanbum et al. [22]
adjusted the workload balance between FFF 3D printers to lower the parts’ total cost and
completion time. Moreover, Li et al. [23] investigated several techniques to manufacture
multiple components in an industrial setting. They examined the costs and reaction times
of centralized and decentralized manufacturing methods. Zhang et al. [24] addressed
the part-to-printer assignment and part placement problems for the VPP process. They
also developed a heuristic and genetic algorithm that can be used for the FFF technique.
Cadiou et al. [25] recently suggested a framework based on reasoning algorithms to solve
the on-demand production planning of non-identical AM parts in Fab labs made up of
unrelated parallel FFF 3D printers.

In addition, several studies investigated the 3D nesting problem [8,26] to enhance AM
machine utilization by reducing the overall build time and cost per machine. However, the
literature review here focuses on prior research that has explored the 2D nesting problem.
Indeed, this study focuses on the FFF process, where parts are placed in a single layer
rather than stacked [10]. Approaches for nesting can be categorized as parallel or serial [27].
In parallel nesting, all parts are arranged simultaneously in the build plate, and the packing
result is evaluated. Such approaches are described in [10,27]. However, in serial nesting,
the parts are arranged one at a time, emulating how a human operator can place parts in a
print bed. This strategy has been implemented in most earlier works [28–31] because it can
decrease the computational cost while still providing satisfactory results.

A decisive step of the nesting process is the need to develop a geometric tool for
handling the complexity of the parts to be packed. The simplest method uses the bounding
box [28,29,32] of part projections on the printer bed. Using a bounding box to replace
a part’s actual shape can waste the workspaces of an AM machine when packing parts,
although such an approach eases the problem of detecting collision between parts. There
are several other solutions for part representation using polygons [10,27,30]. However, in
the AM nesting process, the input is not polygons, but a set of triangular facets (i.e., STL
files). The polygon union of all these facets can be computed using the no-fit-polygon (NFP)
algorithm, or direct trigonometric method, to represent the shape of the parts. Nevertheless,
as the number of facets in the STL model increases drastically, such an operation becomes
computationally complex and time-consuming [30].

Furthermore, a critical problem with NFP is that as the number of parts to place
increases, or as pieces rotate, the NFP computation becomes too large to be practical.
Another possible solution for dealing with the geometry of parts in 2D nesting problems
is the pixel/raster method [31]. This technique can generate a nearly exact part shape,
regardless of its geometrical complexity, in a short time. Although the computation cost can
increase rapidly with increasing resolutions to obtain a more accurate raster representation
of the STL files, high resolution is not usually required [31,33].

Another methodological concern of nesting for AM is the rotation of parts in the
print bed to find the best possible position. In many previous works, no rotation of the
parts is allowed [26,29,30]. On the other hand, some studies considered the rotation of
parts on the XY plane by 90 degrees increment [8,28]. In such an approach, the part is
rotated before placement to find an optimal positioning. It should also be emphasized that
most current nesting methods rely on genetic algorithms to optimize the part placement
strategy. Although this algorithm can achieve reasonably good solutions, it has a high
computational burden.

In synthesis, in the past, methods and techniques for planning and scheduling AM
production primarily focused on the part-to-printer assignment, or the nesting of several
components in a single printing run. Concerning the nesting problem, despite the consid-
erable number of solutions that have been proposed, a closer inspection of the literature
reveals several gaps and shortcomings. On the one hand, little attention has been given to
2D nesting for the FFF process. Previous studies have almost exclusively focused on the
VPP and laser powder bed fusion (LPBF) processes. Without considering the characteris-
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tics and constraints of the FFF technique, generating part layout based on part geometry
is ineffective.

On the other hand, approaches based on genetic algorithms used to determine part
layout are practical, but they appear to be computationally expensive [31]. Moreover, many
studies are simplified using bounding boxes or rectangular shapes in the packing process,
resulting in a waste of workspace of AM machines. Consequently, this study proposes
a new nesting approach based on pixel/raster representation of the STL models, which
considers the FFF constraints.

3. Methods

In SocialMfg, orders from several customers can be allocated to a network of AM
machines. Each order can include multiple parts. After receiving the orders, planners
compose batches of parts to be assigned to AM machines, according to customer specifica-
tions and different planning objectives (e.g., reducing operating cost and processing time).
Concerning a particular printer, multiple parts composing a batch need to be optimally
placed to use the printer efficiently. However, when placing several parts in a print bed,
the space utilization ratio must be maximized to lower the production time and cost, and
the quality of the parts must be guaranteed [10,27]. In addition, with the FFF process,
producing multiple parts in a single run does not necessarily improve productivity if part
orientation is not optimal. Part orientation, nesting, and part-to-printer assignment are
all significant considerations in this situation. As a result, the methodology presented
here begins with a group of heterogeneous parts assigned to one or more FFF 3D printers.
First, the optimal build orientation of each part is identified. Afterward, the optimally
oriented parts are taken as an input set and are assigned to the FFF 3D printers. Finally,
parts are optimally placed in build plates according to two objectives: to maximize the
print bed utilization and ensure the quality of the parts. Figure 2 shows a graphic depiction
of this approach.

Figure 2. The framework of the proposed approach.

The following assumptions have been formulated to limit the production planning
problems to our research objectives.

• The parts to be oriented and nested are assigned to a FFF 3D printer and have iden-
tical manufacturing requirements. In other words, the service provider and service
demander agreed on the parts’ materials, production deadline, and characteristics.

• The optimal build orientation of each part is selected before the nesting process.
Nevertheless, the rotation of the parts along the vertical axis is allowed because of its
relatively small impact on the quality of printed parts [22,30].

It is essential to clarify that AM service providers receive diverse printing tasks
from multiple customers. Thus, some parts can be pre-oriented adequately by customers.
Accordingly, this paper explores the optimal build orientation determination for a single
part instead of orientation optimization for several parts in a build, as in the work of [10,27].
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The optimization strategy adopted here can be segmented into three consecutive
stages. The first stage involves optimizing each part’s build orientation separately to
improve the production quality. Then, the second stage aims to assign the parts to FFF 3D
printers to minimize the makespan, ensure load balance among the printers, and efficiently
use the manufacturing resources. The last stage involves placing the parts on build plates
in the most compact way to achieve higher productivity with the FFF 3D printers. The
following paragraphs of this section detail the heuristic algorithms proposed to solve these
combinatorial optimization problems.

3.1. Heuristic Algorithm-Based Part Orientation Selection

In theory, a part can be built in many possible orientations. By orienting the part in
different directions, there is a significant difference in part quality. Therefore, optimizing
part orientation is crucial in AM. For many industrial applications, the surface quality of
the part is critical. Good surface quality is more appealing and gives greater dimensional
accuracy necessary for the correct functioning of assembly parts. In actual experiments,
it is found that the key to achieving good quality printed parts with the FFF process is to
prevent overhangs. Indeed, the overhanging surfaces of an STL model are difficult to print;
they usually require additional support structures and print poorly.

Nevertheless, there are admissible overhangs. These are typically overhanging sur-
faces with angles between the normal vector and the build direction lower than 135◦.
Therefore, it is preferable to differentiate the support contact area [34,35] (i.e., the overhang
that requires support structures) from other tolerable overhanging surfaces. Intuitively,
minimizing the support contact area would reduce the need for support structures, thus
leading to better surface quality and decreasing the post-processing time. As a result, build
orientation optimization is the determination of a desirable orientation that minimizes the
support contact area. It involves generating a set of alternative build orientations (ABOs)
and determining the best build orientation from the ABOs generated.

Another way to enhance the surface quality of the parts is to maximize the area of
the non-stepped surfaces [36,37]. It is possible to achieve this by maximizing the bottom
surface area (i.e., the area of the part in contact with the build plate). There are at least two
reasons to consider optimizing this criterion. First, surfaces horizontal to the build plate do
not have a stair-stepping effect, guaranteeing a good surface quality. Second, using a large
area as the bottom face can drastically decrease the number of layers and the build time. It
is also necessary to consider the perimeter of this bottom face because for STL models with
a spherical shape, for example, the bottom face could be a circle without any resulting area.
Accordingly, in the present work, three orientation-dependent factors are considered when
searching for the optimal build orientation: support contact area, bottom surface area, and
bottom surface perimeter. These can be directly computed using geometrical analysis of
the STL model [34–36]. These factors are weighted and summed to calculate the degree
quality for each ABO.

The optimal build orientation determination procedure is formalized with pseudocode,
as shown in Algorithm 1. The algorithm requires an STL file as input and produces an STL
file optimally oriented as output. The appropriate weights to assign to each orientation-
dependent factor must be found because the optimal build orientation depends strongly
on the chosen weight values.
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Algorithm 1: Pseudocode for the orientation optimization algorithm

Input: Unoriented STL file
Output: Optimally oriented STL file
1: Generate the alternative build orientations of the part (Oi)
2: Compute the orientation-dependent factors (Fj) of the i-th alternative orientation
3: for each value of the j-th factor of the i-th alternative orientation (xij) do

4: Convert each orientation-dependent factor value into a number in [0, 1] as follows:
αi,j =

xij√
∑m

i=1 xij
2

5: Normalize the converted results using

Xi,j =

{
αi,j if Fj is a positive factor
1 − αi,j if Fj is a positive factor

6: end for

7: Assign the weights to the considered factors
8: Compute a summary value of factors for each alternative orientation
9: Determine the optimal build orientation for the part
10: return the optimally oriented STL file

3.2. Heuristic Algorithm-Based Part-to-Printer Assignment

As stated in Section 1, this paper investigates the production planning of a network of
dispersed AM machines to meet the low-quantity needs of multiple customers. The network
of AM machines can be made up of unrelated parallel machines that can accomplish the
same task but have different capacities. The entire available build volume determines the
capacity of an AM machine. The problem is allocating parts from multiple customers to a
network of AM machines, with varying operating costs and speed characteristics, while
minimizing the total production cost and time.

According to the customer orders, there is a set of parts with various sizes, heights, and
geometries. The orders are allocated to AM machines on a part-by-part basis, considering
the part sizes and heights, and then divided into batches or printing jobs. In fact, due to the
limited build volume of AM machines, some parts may not be able to be manufactured on
all available machines. For example, a part higher than the maximum height supported by
a machine cannot be assigned to that machine.

When given a set of parts, each with a different build time and several available AM
machines, the part-to-printer assignment involves allocating all parts to machines with
the goal of optimizing the workloads. As the SocialMfg can receive multiple print jobs
from several customers and a network of various AM machines, production scheduling
decisions must be relatively quick to effectively schedule these jobs for all the distributed
3D printers. Therefore, this study proposes an optimized LPT algorithm [38] to solve
the part-to-printer assignment due to its simplicity and practical effectiveness. Indeed,
LPT has good adaptability to a variety of scheduling tasks. This algorithm sorts parts in
non-ascending order of their build time and then assigns them to the machine with the
earliest end time. In particular, it entails attributing the parts one at a time to the FFF 3D
printers to minimize the processing times of the machines. The LPT rule schedules the
longest tasks first so that no large task overruns at the end of the schedule, significantly
extending the execution time of the last job. The total manufacturing times of all the parts
assigned to a machine is its completion time. The printing time is estimated after the parts
are oriented in their optimal build direction. The heuristic procedure for part-to-printer
assignment is realized through Algorithm 2.
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Algorithm 2: Heuristic procedure for the part-to-printer assignment

Input: Set of AM machines M, set of oriented parts to be printed P
Output: Batch of parts allocated to each machine
1: Estimate the build time of all the parts
2: Sort the parts in decreasing order of build time
3: while P is not empty do

4: Let Pk be the next part in the sorted order
5: if Pk can be scheduled then

6: Assign the part to the machine which has the minimum total processing time
7: Remove the assigned part from the list of parts
8: end if

9: end while

10: return parts allocated to AM machines

3.3. Heuristic Algorithm-Based Nesting

The FFF technique allows the printing of multiple parts simultaneously when they fit
the build plate. Nesting optimizes the process of laying out parts on the print bed of an
AM machine. The gain is the reduction in the total processing time to build and arrange
the parts. Manually finding the position of multiple STL files on the print bed can take
exponential time. However, the nesting or part packing in AM should be relatively fast
because, unlike in subtractive manufacturing, the only gain is production time (i.e., no waste
or material). Thus, the time spent nesting parts becomes proportional to the build time.

The proposed nesting method considers the rotation of the parts along the vertical axis
(i.e., build direction), in 90◦ increments, to find a better positioning, which can improve
the packing solution in terms of compactness. Figure 3 shows the flowchart of the nesting
procedure. First, data are initialized to specify the spacing between each part and the
printing space dimensions. Next, a rasterization algorithm transforms the STL models into
raster images. The main iteration of the nesting strategy repeats until all parts have been
placed. Within the space available in the print bed, parts are sequentially placed as far as
feasible to the bottom, then, as far as possible to the left. The available space dimensions
must be larger than part dimensions in order to arrange a part within the packing area.
It follows that if this requirement is not met, the current packing area is abandoned, and
another is tried until all available spaces have been explored. When the placement of the
part is feasible, the selected slot is removed from the list of available space, and the part is
removed from the part list. The next part is chosen once the previous one has been placed,
and the same packing procedure is repeated. When all the parts in the input list are placed,
the optimized part layout is generated as an STL file. The rasterization procedure and
placement strategy are further discussed in the following subsections.

3.3.1. Raster Method

Here, the rasterization is the task of converting the STL file into a 2D bitmap. The
simplest form of a bitmap, a black and white image, is used; all white pixels are represented
as 0, meaning void space, and all black pixels are represented as 1, which means the
presence of a part. Rasterization aims to divide the irregular shapes of STL files into
discrete areas, which thus reduces the geometric information. The basic idea is that a blank
scene whose size corresponds to the print bed is created at the beginning. The facets of
the STL model are projected onto the scene as 2D triangles. Once a part has been placed
in the scene, it is updated. In the first step of the rasterization process, each triangular
facet in the STL model is transformed from 3D to 2D space using projection matrices. The
second step is to fill all the pixels in the region covered by the triangles. These two steps
are illustrated in Figure 4. Finding out which pixels are covered by the resulting projected
profiles, i.e., which pixel should be 0 or 1, is realized using the D-function [33].

66



Machines 2022, 10, 605

Figure 3. Flowchart of the 2D nesting algorithm.

Figure 4. Two-step procedure of the raster method.

Part projection profiles are represented as region quadtrees [39] to reduce the complex-
ity and computation time. Moreover, 2D pixel dilation is used to handle the part spacing.
This is an operation to enlarge the boundaries of the pixels. The raster method provides a
simplistic and relatively inexpensive approach for processing the geometric representation
of the STL files. In addition, it makes the test of possible placement trivial because we must
simply check that all the pixels are located where the part will be placed.
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3.3.2. Improved Bottom-Left-Fill Algorithm

In this paper, the proposed placement heuristic, called improved bottom-left-fill (I-
BLF), follows the BLF strategy [40], with a slight variation, using the lowest gravity center
of the part. The algorithm will prefer the orientation where the center of mass of the part
is as close as possible to the lower left of the build plate. For several parts, experiments
have shown that placing the center of mass as close as possible to the lower-left leaves
a maximum amount of space on the top right. The parts are placed using an exhaustive
search, as the algorithm tries every possible orientation (relative to the vertical axis) for the
parts. The center of mass of the part is calculated using the average of the coordinates of the
pixels covered by the raster image. The placement algorithm is described in Algorithm 3.
The sequence order of the parts is significant and can affect the solution obtained because
the algorithm is greedy. Sorting parts from the largest to the smallest is the best approach;
from the authors’ knowledge, it always leads to better results than sorting the smallest to
the largest area.

The packing strategy begins with a print bed of fixed dimensions and a set of STL
files. The part is placed according to the I-BLF strategy for each STL file. The packing
position of the chosen part will be checked to see if it is viable. The algorithm performs
two checks: first, it ensures that the part does not penetrate the boundary of the print bed.
Last, it is verified that the part does not overlap with previously packed parts. If part i fits
in position j, the part position is set as j, and the void space of the layout is updated by
deleting position j. If part i cannot be packed into all j-th positions of the current packing
area, the next available packing area is considered. The packing operation ends once all
the parts on the list have been placed, and an STL file representing the nesting layout
is generated.

Algorithm 3: Pseudocode for the improved-BLF packing algorithm

Input: Set of STL files
Output: STL file (s) of the placement layout
1: Initialize print bed size and part spacing
2: repeat

3: for each part (Pi) of the set do

4: Place the part according to the BLF policy
5: Rotate the part to find the lowest gravity center
6: for the j-th position of the part Pi do

7: if the part can be packed into j-th position then

8: Set position j as the packed position of part Pi
9: Delete part Pi from the part list
10: Update the available space in the layout
11: end if

12: end for

13: end for

14: until the part list is empty
15: return placement layout as STL file

4. Prototype Implementation and Case Study

In this section, the proposed approach is encapsulated into a web app to illustrate its
effectiveness in solving the AM production planning and scheduling problems of multiple
parts with a network of FFF 3D printers, and a case study is conducted.

4.1. Prototype Implementation

The web app is based on a browser/server architecture and consists of three main
modules: a user interface embedded in a web browser, an autorotation module to find the
best build orientation of the parts, and a nesting module to find out the optimal part layout.
HTML, JavaScript, CSS, and other programming languages are used to build the web app.
In particular, the orientation algorithm introduced in our previous work [41] is adopted, as
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its reasoning capabilities align with the technique described in Section 3.1. The LPT rule
presented in Algorithm 2 has been implemented in Python language. Lastly, the 2D nesting
algorithm detailed in Figure 3 has been coded in C++. All the algorithms were tested on a
computer with a 3 GHz Intel Core i5-9500 processor and 8 GB RAM.

The web app operation is as follows. First, the operator/user imports a set of STL files.
The user interface serves as a visualization environment for manipulating STL models and
an interface to the production planning and scheduling services. Second, if necessary, the
user can invoke the autorotation function to orient the parts in optimal build orientation.
The optimally oriented STL model is returned to the user. Then, the STL files can be
assigned to the available FFF 3D printers following the LPT rule. Finally, the user can
invoke the nesting algorithm to generate an optimal layout from the STL files. For this last
step, the user needs to input the quantity of each part and the print bed size. Each build
plate generated by the algorithm is returned to the user as an STL file.

4.2. Case Study

The operability and overall workflow of the web app are illustrated through a case
study. A set of 19 non-identical parts (named 1 to 19 in Figure 5), whose shapes reflect
actual part geometries, are introduced. Table 1 sums up the information of these parts. The
aim is to optimize the STL files in terms of print direction before assigning them to FFF 3D
printers and to compactly place them in build plates for fabrication. We assume that all the
parts have similar manufacturing requirements and priorities.

Regarding the FFF 3D printers, we used a JG Aurora Z-603S-C and a JG Aurora Z-603S
(hereafter Machine 1 and Machine 2, respectively) available in our lab; the first machine
has a build volume of 300 mm × 200 mm × 200 mm, while the second has a build area
of 280 mm × 180 mm and 180 mm in height. However, in most desktop FFF 3D printers,
the parts cannot occupy the entire print bed area. In practice, the extruder cannot travel to
the edges of the build plate to precisely deposit a layer. Therefore, to ensure an efficient
printing process, we have defined a packing area of 280 mm × 180 mm for Machine 1,
and 260 mm × 160 mm for Machine 2, instead of the full print-bed size. Furthermore, the
spacing between each part is fixed at 1.5 mm to avoid overlapping due to the accuracy
error of the 3D printer and to prevent stringing caused by excess filament oozing from
the nozzle.

Figure 5. Group of parts considered for production planning. The numbers 1 to 19 represent the
part IDs.
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Table 1. Sample data related to the parts used for the case study.

ID Part Name Build Time (h) Length (mm) Width (mm) Height (mm)
Projection

Area (mm2)

1 EBAmk_001_base 5.25 80 85.968 71.18 5726.149
2 EBAmk_002_mainarm 3.75 36.792 160.996 33 5171.117
3 EBAmk_003_varm 0.78 78 29.991 16 1673.323
4 EBAmk_004_link135 0.62 12.998 148 10.50 1351.975
5 EBAmk_005_link135angled 0.68 27.5 150 5.50 1623.272
6 EBAmk_006_horarm 3.63 28 214.224 40.854 4565.190
7 EBAmk_007_trialink 1.06 83.994 40.260 20 2025.812
8 EBAmk_008_link147_new 0.65 12.998 160 10.50 1459.943
9 EBAmk_009_trialinkfront 0.88 40.888 22 45.692 839.428
10 EBAmk_010_gearservo 0.43 40.474 40.394 5 1074.972
11 EBAmk_011_gearmast_full 1.77 77.910 77.991 11 4349.470
12 EBAmk_012_mainbase 6.82 160.187 89.525 55 3690.305
13 EBAmk_013_lower_base 2.1 85.8 81.567 8 5524.398
14 EBAmk_014_claw_base 0.62 54 25 25 1002.040
15 EBAmk_015_claw_finger_dx 0.18 57.576 14 9 417.015
16 EBAmk_016_claw_gear_drive 0.08 17.371 18 5 125.522
17 EBAmk_017_claw_finger_sx 0.2 58.271 21.511 9 418.462
18 EBAmk_018_claw_gear_driven 0.13 25.310 20.959 7 293.427
19 EBAmk_019_drive_cover 0.85 76.277 78.062 8 2609.353

The web app operation for the case study example is shown in Figure 6. First, the
parts are uploaded to the web app user interface. The visualization window allows for
the displaying of the selected STL file. Then, the parts are oriented in their optimal build
orientation using the autorotation function. The web app provides an estimated build time
for each STL file, which is necessary for the part-to-printer assignment step. The dimensions
of the parts supplied in Table 1 show that none of the parts is higher than the maximum
height capacity of Machine 1 and Machine 2. As a result, all the parts can be assigned to
both machines. The parts are selected individually and assigned to AM machines following
the LPT rule in Section 3.2. Table 2 lists the results of the part-to-printer assignment.

The packing area of each printer is specified to generate the optimal layout for printing
the parts. The batch of parts allocated to Machines 1 and Machine 2 can be produced in a
single run, as shown in Figure 7. In particular, the nesting result of Machine 1 (see Figure 7a)
exhibits the advantage of the I-BLF strategy, which allows small parts to fill up the void
area left by the previously placed large parts. In addition, the large parts are present in the
two machines; this helps to balance the workload and reduce the total processing time. As
all components have the same priority, printing operations must be completed concurrently
to minimize production delays and maintain consistent operating costs.

Table 2. Allocation of the parts.

Machine Scheduled Part Total Build Time (h)

Machine 1 12, 2, 13, 7, 19, 5, 4, 10, 15 14.58
Machine 2 1, 6, 11, 9, 3, 8, 14, 17, 18, 16 14.25
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Figure 6. A snapshot of the web app operation.
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Figure 7. Results of the part-to-printer assignment with nesting: (a) Machine 1; (b) Machine 2.

4.3. Performance Analysis

The ratio of the total projection area of all nested parts to the area of the print bed,
called printing area covered (PAC) [30], must be as great as possible.

PAC =

n
∑

i=1
Projection_Area_of_the_ith_part

Printing_Area

Since the parts in AM have irregular shapes and freeform surfaces, it is challenging to
guarantee a high PAC value. The defined spacing between the parts also reduces the overall
PAC value. Therefore, the performance of the nesting algorithm may vary in different
situations and is heavily influenced by the geometry of the parts. As the objective of this
paper is to investigate the feasibility of an automated production planning system, the
benchmark criteria for evaluating the efficiency of the proposed method are the number of
build plates generated and the computation time. The nesting results for the case study
example are calculated in tens of seconds, as shown in Table 3, indicating that the proposed
method exhibits satisfactory performance. The computation time includes rasterization
and part placement.

Table 3. Computation results of the case study.

Machine No. of Parts Computation Time Number of Build Plate

Machine 1 9 4.65 s 1
Machine 2 10 2.47 s 1

5. Discussion

5.1. Comparison of the Proposed Nesting Approach to Existing Methods

A comparative study is conducted to illustrate and validate the efficacy of the proposed
nesting method with other existing methods reported by the authors of [30,31], and the
results are listed in Tables 4 and 5, respectively.

Table 4. Comparison between the LBDB and NFP method in the study in [30] and the proposed approach.

LBDB and NFP in [30] Proposed Method

No. of parts packed 19 20
Printing area covered (%) 78 83.4
Total computation time (s) 2600 12.77

72



Machines 2022, 10, 605

Table 5. Packing density comparison between the method in the study in [31] and the pro-
posed method.

Printing Space
No. of Parts

Packed in [31]
Printing Area

Covered in [31]
No. of Parts Packed Using

the Proposed Method
Printing Area Covered Using

the Proposed Method

1 20 81.2% 25 97.5%
2 13 65.2% 8 46%

When the packing results of the approaches detailed in [30,31] and the proposed
method are compared, the proposed method outperforms the others in terms of packing
efficiency and computing time. Table 4 shows that better nesting results for the test case
in [30] are obtained using the method proposed in this paper. All the models to be nested
are present in the generated nesting layout (see Figure 8), unlike the layout arrangement
obtained using the left-border-down-border (LBDB) heuristic and NFP placement strategy
detailed in [30], where a part was not present. Moreover, as shown in Table 5, approximately
97.5% of the first print bed is used compared to 81.2% in the scene-driven method [31],
resulting in a 16.3% increase in PAC value. The proposed method packed 25 parts (see
Figure 9), while the approach reported in [31] only packed 20 parts in the same printing
area. These performances are mainly due to the ability of the I-BLF algorithm to fill the
void spaces surrounded by parts already placed, which allows for increased compactness.

Comparing this study with two existing methods has demonstrated that the proposed
method can provide viable nesting solutions, with maximum print bed utilization ratio
and high compactness, considerably quickly. Thus, the process planner can benefit from
the time saved, to a certain extent. In the SocialMfg environment, this advantage makes it
possible to process many parts quickly. In addition, with such a system, service providers
can quickly and easily adjust production plans when additional parts are introduced into
the initial batch.

Figure 8. Nesting layouts for the test case data from [30] using the proposed method.
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Figure 9. Nesting layouts for the dataset from [31] using the proposed method: (a) The first batch;
(b) the second batch.

5.2. Multi-Parts Production in SocialMfg Scenario

Recently, SocialMfg has gained significant interest from researchers and manufacturers.
It provides a network-based production approach in which distributed service consumers
and providers can interact and share resources. In the SocialMfg environment, several print
jobs from multiple customers may need to be assigned to a network of FFF 3D printers. In
such a scenario, there is a need for software solutions to allocate parts to printers rapidly.
The work presented in this paper corresponds in this direction. Indeed, the proposed
approach can improve the production rates of FFF 3D printers by packing multiple parts
into a single print bed to ensure the efficient use of AM resources.

Some of the assumptions made in this study must be discussed to provide new
prospects. In particular, negotiation, order allocation, and resource sharing techniques
between multiple service providers have not been studied. However, investigating these
mechanisms will respond to major scientific concerns, which will help advance the So-
cialMfg paradigm. Indeed, in a network of FFF 3D printers, order splitting, and resource
sharing might be considered to be a strategic measure to balance production and meet
production deadlines. Transferring some workloads from one service provider to another
may reduce the maximum processing time. Nevertheless, it should be noted that decom-
posing a print job into sub-jobs to balance production in AM may not lead to a considerable
advantage. Indeed, splitting a job entails dividing the part into numerous bodies, each of
which will require an assembly afterward.

6. Conclusions

This paper introduced a multi-part production planning system for a distributed
network of FFF 3D printers. Part orientation selection, part-to-printer assignment, and
nesting of the parts are carried out successively to minimize the total production time
and cost while ensuring part quality. A comparative study verified the performance of
the proposed method, and a real-world case study demonstrated its feasibility and added
value. The findings of this study indicate that the proposed nesting algorithm, which is
based on a rasterization technique and an I-BLF algorithm, exhibits good performance in
most cases. Furthermore, with its robustness and relatively low computation time, the
proposed method can be employed in a SocialMfg context where multiple parts must be
efficiently assigned to distributed AM machines.

Despite its effectiveness, the proposed approach can still be extended in many ways.
For instance, this study only considers 2D nesting because of the FFF process, while many
AM technologies allow pieces to be stacked vertically. As a result, future investigations
could be conducted to provide effective packing solutions for LPBF processes where
parts can be stacked on top of each other. Besides, as heuristic algorithms for scheduling
can lack generality, future studies could overcome this issue by training a reinforcement
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learning model or a neural network capable of generating highly efficient AM machine
scheduling solutions.
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Abstract: To achieve energy-saving production, one critical step is to calculate and analyze the
energy consumption and energy efficiency of machining processes. However, considering the
complexity and uncertainty of discrete manufacturing job shops, it is a significant challenge to conduct
data acquisition and energy consumption data processing of manufacturing systems. Meanwhile,
under the growing trend of personalization, social manufacturing is an emerging technical practice
that allows prosumers to build individualized services with their partners, which produces new
requirements for energy data processing. Thus, a real-time energy consumption characteristic analysis
method in intelligent workshops for social manufacturing is established to realize data processing and
energy efficiency evaluation automatically. First, an energy-conservation production architecture for
intelligent manufacturing processes is introduced, and the configuration of a data acquisition network
is described to create a ubiquitous manufacturing environment. Then, an energy consumption
characteristic analysis method is proposed based on the process time window. Finally, a case study of
coupling-part manufacturing verifies the feasibility and applicability of the proposed method. This
method realizes a combination of social manufacturing and real-time energy characteristic analysis.
Meanwhile, the energy consumption characteristics provide a decision basis for the energy-saving
control of intelligent manufacturing workshops.

Keywords: data acquisition network; real-time energy consumption; characteristic analysis; intelligent
workshops; social manufacturing

1. Introduction

Nowadays, the increasing emissions of carbon dioxide have made a crucial contri-
bution to global warming, especially in industrial fields. With the improvements made
around the awareness of saving energy and the enhancement of environmental concerns,
energy-efficient and low-carbon emissions should be considered as key factors in many
fields, such as transportation facilities [1], manufacturing management [2] and disassembly
sequencing [3]. Owing to the explosive demand for energy worldwide, energy efficiency
in manufacturing processes has become a challenging goal. In the last few years, the
reduction in energy consumption has attracted many researchers. A survey on electric
energy consumption showed that up to 54% of electric energy is used in production pro-
cesses, or more accurately, production machines. Therefore, the energy conservation of
machine tools can significantly reduce carbon emissions in manufacturing. To realize the
energy conservation of machine tools and environmentally friendly production, researchers
have conducted many theoretical and practical studies, which mainly include machining
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parameter optimization [4], the state control of machine tools [5], process planning [6] and
production scheduling [7].

Meanwhile, under the growing trend of personalization and socialization, social man-
ufacturing (SM) is an emerging technical and business practice that allows prosumers to
build personalized products and individualized services with their partners [8]. SM can
realize a customer’s requirements “from mind to products”, and fulfill tangible and intangi-
ble needs of a prosumer, i.e., a producer and consumer at the same time [9]. By establishing
a cyber–physical–social connection via decentralized social media, various communities
can be formed as complex, dynamic, autonomous systems to cocreate customized and
personalized products and services [10]. From the principle of SM, the consumers are acting
as prosumers and participate in the energy production and consumption process over the
Internet [11]. For a manufacturing workshop, its operation state will be focused on by
several prosumers, such as equipment providers, manufacturers and consumers [12]. How
to solve these different demands is a new problem. With the development of the Internet of
Things (IoT) technology, many kinds of data are generated in a manufacturing workshop,
and these data present some characteristics of big data, such as large volume, high variety
and velocity. Thus, it becomes a research focus to acquire and process these data, and
various data analysis methods have been proposed, including fog computing [13], deep-
learning approaches [14] and big-data analytics [2]. Meanwhile, many energy-conservation
models and algorithms have been proposed for single-machine tools [15] or closed-loop
flow-shop plants [16]. However, there are still two research gaps in the recent research.
First, many models and algorithms for data acquisition and analysis have been proposed
to mine knowledge and guide the production process. Most of these studies neglect the
adaptability of manufacturing data network on the shop floor. Since discrete manufacturing
is a manufacturing process that does not follow sequential steps or formulas to develop
products, the production process in discrete manufacturing job shops has stochasticity. The
data of energy and processes that need to be acquired are dynamic and diverse, and so is
the energy data acquisition network. Second, although there are many studies on energy
data analysis and evaluation from different perspectives, most of them focus on the study
of theoretical models. Scant sustainability research has been conducted on SM [17]. It is
still an application difficulty to combine this production information with real-time energy
consumption data in an intelligent workshop for SM.

Considering these two research gaps, a real-time energy consumption characteristic
analysis method for intelligent manufacturing (IM) workshops is established, which in-
volves the manufacturing data acquisition network configuration and energy consumption
characteristic analysis of machining processes. The contributions of the paper include
two aspects. First, the configuration of a data acquisition network is described to create a
ubiquitous manufacturing environment, which can deal with the complexity of discrete
manufacturing processes. Second, an energy consumption characteristic analysis method
is proposed based on the process time window. This method realizes the combination of
production information with real-time energy consumption data. The remainder of this
paper is organized as follows. A literature survey on the data acquisition of IM workshops
and energy consumption data evaluation is reviewed in Section 2. Section 3 introduces an
energy-conservation production architecture for IM processes, and the configuration of a
data acquisition network is described to create a ubiquitous manufacturing environment.
Then, an energy consumption characteristic analysis method is established based on the
process time window in Section 4. A case study on coupling-part manufacturing is pre-
sented to verify the feasibility and applicability of the proposed methods in Section 5. We
conclude with the main contributions and future research directions in Section 6.

2. Literature Review

2.1. Data Acquisition and Analysis of IM Workshops

With the development of sensor network technology, the industry is increasingly
moving towards digitally enabled “smart factories” that utilize the IoT to realize IM [18]. A
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large amount of data is gathered in a manufacturing workshop, and these data, including
on energy consumption, present some characteristics of big data, such as large volume, high
variety and velocity [19]. Thus, the acquisition and processing of these data are research
focuses. With the beginning of the era of big data, an enormous amount of real-time data
was used for the risk analysis of various industrial applications, and Ding et al. proposed a
real-time big-data-gathering algorithm based on an indoor wireless sensor network for the
risk analysis of industrial operations [20]. In this algorithm, sensor nodes can screen the
data collected from the environment and equipment according to the requirements of the
risk analysis. As managing industrial big data has become a challenging task for factories,
designing a generic architecture for implementing cyber–physical systems in manufacturing
is necessary. Thus, Lee et al. proposed a systematic architecture for applying cyber–physical
systems in manufacturing to automate and centralize data processing, health assessments
and prognostics [21].

In addition to data acquisition, an increasing number of researchers have focused on
data analysis and data mining in various applications. Industrial big-data integration and
sharing (IBDIS) is of great significance in managing and providing data for big-data analy-
sis in manufacturing systems; thus, Wang et al. proposed a novel fog-computing-based
IBDIS approach to integrate and share industrial big data with high raw-data security and
low network-traffic loads by moving the integration task from the cloud to the edge of
networks [13]. A deep-learning approach for anomaly detection with industrial time-series
data in a refrigerator manufacturing enterprise was proposed, and was designed to be de-
ployed in a decision support system to assist human operators [14]. Zhong et al. extended
the physical Internet concept to manufacturing shop floors where typical logistics resources
were converted into smart manufacturing objects by using the IoT and wireless technolo-
gies [22]. This study introduced big-data analytics for radio frequency identification device
(RFID) logistics data by defining different behaviors of smart manufacturing objects. Since
current task scheduling is mainly concerned with the availability of machining resources
rather than the potential errors after scheduling, Ji and Wang presented a fault prediction
approach based on big-data analytics for shop-floor scheduling to minimize such errors
in advance [23]. An innovative, big-data-enabled, intelligent immune system has been
developed to monitor, analyze and optimize machining processes over lifecycles in order
to achieve energy-efficient manufacturing [2]. The novelty of this study is that big-data an-
alytics and intelligent immune mechanisms have been integrated systematically to achieve
condition monitoring, analysis and energy-efficient optimization over manufacturing exe-
cution lifecycles. According to the literature, big-data analytics and smart manufacturing
have been individually researched in academia and industry [24]. To provide theoretical
foundations for the research community to further develop scientific insights into apply-
ing big-data analytics to smart manufacturing, a comprehensive overview of big data in
smart manufacturing was conducted, and a conceptual framework was proposed from the
perspective of the product lifecycle. A review of the literature suggests that production
research enabled by data has shifted from analytical models to data-driven models [25].
Ghahramani et al. proposed a dynamic algorithm for gaining useful insights about semi-
conductor manufacturing processes and to address various challenges [26]. White et al.
developed a fault diagnosis tool, which can robustly detect, locate and isolate occurred
faults in an Industry 4.0 context [27]. Ding and Jiang provided an RFID-based production
data analysis method for production control in IoT-enabled smart job shops [28]. Yuan et al.
established an integrated, deep-learning, continuous time network structure that consists
of a sequential encoder, a state decoder and a derivative module to learn the deterministic
state-space model from thickening systems [29].

Based on the current research, data acquisition and data analysis have become re-
search hotspots, and many models and algorithms have been proposed to mine knowledge
and guide production processes in turn. However, this research mainly focused on data
processing and data analysis, especially big-data analysis, and data acquisition network con-
figuration was rarely studied. Meanwhile, the theory research about data mining in an ideal
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manufacturing environment was very deep, which neglected the complexity and dynamics
of an actual production environment. Considering the complexity of manufacturing pro-
cesses, it is still difficult for operators to configure the data acquisition network, especially
when the production processes experience frequent adjustments. Thus, a configuration
method of the sensor network is proposed for dynamic manufacturing tasks.

2.2. Energy consumption Data Processing and Evaluation

After the production data acquisition, energy data processing and evaluation needs to
be conducted to obtain the characteristics and energy efficiency of manufacturing processes.
Many manufacturing energy data processing and evaluation methods have been proposed.
For example, considering that the energy consumption evaluation and analysis of a prod-
uct’s entire life cycle is a key issue for realizing green and sustainable manufacturing, an IoT
and cloud-based novel approach for product energy consumption evaluation and analysis
was proposed, in which the IoT technologies were employed for real-time and dynamic
collection of energy consumption-related data [30]. For a machine process, its energy con-
sumption can be decomposed into two parts: energy consumption of the steady state and
energy consumption of the transient state. Jia et al. proposed a finite-state, machine-based
energy consumption modeling method for the machining transient state [31]. Cai et al.
proposed the use of energy benchmarking to strengthen the evaluation of energy demand
and achieve efficiency improvements for machining systems, in which drivers for energy
benchmarking and their characteristics were analyzed first [32]. Finkbeiner et al. explored
the current status of a life-cycle sustainability assessment for products and processes [33].
Saxena et al. considered the sustainability metrics in tandem with other traditional manu-
facturing metrics such as time, flexibility and quality, and presented a novel framework that
integrates information and requirements from computer-aided technology systems [34].
Swarnakar et al. identified and prioritized experts’ consensus on the structured set of
triple-bottom-line indicators through an open-ended questionnaire [35]. However, these
evaluation methods cannot realize the real-time evaluation of manufacturing processes,
and they neglect data acquisition and the processing process. Wang et al. presented a
real-time energy efficiency optimization method for energy-intensive manufacturing enter-
prises [36]. In this study, a multilevel event model and complex event processing were used
to obtain real-time, energy-related, key performance indicators that extend the production
performance indicators to the energy efficiency area. Owing to the complicated energy flow
and dynamic energy changes of the machining workshop, Chen et al. proposed an energy
efficiency monitoring and management system with the support of the newly emerging
IoT technology, in which the energy characteristics and energy efficiency indicators of
the machining workshop were analyzed and defined [37]. To improve the generalization
ability, Xiao et al. combined the machining parameters and configuration parameters into
energy efficiency models, for which machine-learning algorithms were used to consider
the lack of theoretical formulas [38]. Considering the complexity of discrete manufacturing
workshops, a big-data-analysis approach for the real-time carbon efficiency evaluation
of discrete manufacturing workshops was proposed in an IoT-enabled ubiquitous envi-
ronment [39]. Based on advanced technologies such as cloud manufacturing, IoT, and
cyber–physical systems, an energy–cyber–physical-system-enabled green manufacturing
model for future smart factories was proposed, in which qualitative and quantitative syn-
ergetic models based on an energy–cyber–physical system were developed for cleaner
manufacturing [40]. Along with the advent of globalization in the industrial sector, the
distributed manufacturing systems became an important production process since they
enable the efficient collaboration of multiple factories; thus, the stochastic, multiobjective
modeling and optimization of an energy-conscious distributed-permutation flow-shop
scheduling problem was proposed [41]. To ensure the fastest production and least energy
consumption of steelmaking-continuous casting, a mixed-integer mathematical program-
ming model was presented with the objectives of minimizing the maximum completion
time, idle time penalties, and energy consumption penalties related to waiting time [42].
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Li et al. proposed a modified dynamic programming algorithm for the optimization of
total energy consumption in flexible manufacturing systems [43]. In addition, Diaz et al.
outlined and discussed most of the resent research regarding the technologies and strategies
to improve energy efficiency in manufacturing systems [44].

From these studies, it can be seen that there are many studies on energy data analysis
and evaluation from different perspectives. However, most of them mainly focused on the
study of theoretical models, and neglected the correlation between energy consumption
data and manufacturing processes. Since the ultimate realization of energy savings and
emission reductions is closely related to manufacturing processes, the practical application
value of the current studies is limited. It is still difficult to combine production information
with real-time energy consumption data in IM workshops.

3. Energy-Conservation Production Architecture and Data Acquisition
Network Configuration

3.1. Energy-Conservation Production Architecture for IM Processes

To implement energy-aware production, an energy-conservation production architec-
ture in an intelligent workshop for SM is established, as shown in Figure 1. The architecture
provides a step-by-step guide for controlling computer numerical control (CNC) machine
tools and discrete manufacturing processes. The architecture is established mainly from
the perspective of data processing, that is, data acquisition, data filtering, data integration,
data conversion, data reduction and knowledge analysis. It consists of three modules: the
data acquisition network module, energy characteristic analysis and energy-conservation
control module, and energy consumption service module. Since the data of different man-
ufacturing processes are disparate, the data acquisition network module is carried out
on the basis of discrete manufacturing processes. Then, the gathered data from the data
sensor network can be analyzed through the data mining and analysis module, which
cannot be divorced from manufacturing processes. The energy-saving strategies gener-
ated by the energy-conservation control module must be finally implemented in discrete
manufacturing processes.

Figure 1. Energy-conservation production architecture in intelligent workshops for SM.

3.1.1. Data Acquisition Network Module

As the basic layer of the architecture, discrete manufacturing processes reflect the
physical resource configuration of a workshop, including facility layout, selection of ma-
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chine and tools, setting of processing parameters and process planning. In the process
flow, there are three types of flows: energy flow, raw material flow and operation flow.
The inputs of the process flow are raw materials, energy and supporting materials. The
outputs are semifinished or end products, and waste materials or effluent. In each step of
the process flow, the emissions from the energy and supporting materials occur at all times.
Based on manufacturing processes, an energy-acquisition sensor network is established to
gather the relative data for realizing energy-saving production, for example, on the energy
consumption of machine tools, the state of the work-in-process (WIP) and machine tools.
Initially, each machine may be configured with different sensors that contain energy sensors,
position sensors and testing sensors. However, for different production tasks, disparate
sensors are integrated into a sensor network involved in real production. Therefore, the
data acquisition network varies constantly from time to time, as discussed in Section 3.2.

3.1.2. Energy Characteristic Analysis and Energy-Conservation Control Module

For the gathered data from the data sensor network, data processing needs to be
implemented first, which includes data filtering, data integration, data conversion and
data interaction [45]. As the first step, the data filter needs to be adopted to remove useless
data because many data are continuous and abundant. Then, data integration needs to be
used to deal with each single data point for comparison and analysis. Data conversion and
interaction must be adopted for the entire manufacturing system. Then, the data need to
be converted into information on the state of machine tools and WIPs. Using the above
information, the energy characteristics can be analyzed, which will be used to support the
energy-conservation control of CNC machine tools.

To realize energy-aware production, the energy-conservation control model is based on
an artificial intelligence algorithm. The input of this model is the above energy characteristic
values (that can reflect the machining state and energy efficiency), and the output is the
selection of energy-conservation strategies.

3.1.3. Energy Consumption Service Module

Through the above energy consumption analysis, energy characteristics of different
layers in a workshop can be obtained, which include the machine tool layer, workshop
layer and workpiece layer. Different SM participants can put forward the personalized
manufacturing and service needs through the social network. Meanwhile, different data
and services will be provided to them.

3.2. Configuration of Manufacturing Data Acquisition Network

Here, the manufacturing data acquisition network is aimed at energy-conservation
manufacturing, and the acquired data include energy consumption, state of the machine
tools, and WIPs. Considering the real production processes, the configuration of the sensor
network contains two parts: the static and the dynamic network constructions. The static
network configuration is realized after the design of a manufacturing system, which is a
part of the physical configuration process of the manufacturing system. On the other hand,
the dynamic sensor network is mainly applied to one or several certain production tasks
after production planning and scheduling. After the dynamic network construction, the
required data can be acquired and the usage effectiveness of the sensors will be improved.

3.2.1. The Static Sensor Network Configuration

This configuration process uses a rule-based inference engine to realize the intelligent
configuration of the data acquisition network of machine tools, as shown in Figure 2. The
configuration process consists of three parts: establishment of a configuration knowledge
base, construction of rules and the case base, and realization of the reasoning engine.

The configuration knowledge base is the extraction and description of the related
knowledge based on ontology, including feature description information, precision in-
formation, key parameters, etc. The rule and instance base is a configuration case that
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contains expert experience and the actual case, and the ontology rule base is generated
based on this case. The reasoning engine is a combination of case-based reasoning and
ontology-based reasoning approaches. First, case-based reasoning is performed based on
similarity matching. If the configuration does not meet the requirements, ontology rules are
used to determine a new configuration scheme. The process of ontology rule matching is
an iterative process that may not meet the requirements one time. The new data acquisition
network configuration plan will be stored in the instance library for later use. The input of
the configuration process includes the demand information of the machining features, and
the output is a viable data acquisition network for the machine tool.

Figure 2. Intelligent configuration of manufacturing data acquisition network.

3.2.2. Dynamic Network Construction for a Certain Production Task

To improve the efficiency of configuration reasoning, case-based reasoning (CBR) is
used to configure the data acquisition subnetwork, which is used to search for similar
cases based on the matching of the above-mentioned processing-task attributes. The
matching steps of CBR are described as follows: (1) define the processing task, including its
characteristics or attributes; (2) search the instance database and find the highest similarity
instance in the sample database according to the processing task’s characteristic data;
(3) constitute a data acquisition network configuration scheme for the processing tasks to
serve as a new paradigm; and (4) save the valuable new configuration examples obtained in
the instance database for future energy data acquisition subnetwork configuration reference.
Owing to the different attribute categories of machining tasks, the machining type is text
data, the machining size is continuous numerical data and the machining accuracy is
discrete numerical data. Therefore, the similarity (SIMi,j) calculation is an integration of
the similarities of different types of data as follows:

SIMi,j = ∏a Sima
i,j·∑b wb·Simb

i,j (1)
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∑b wb = 1 (4)

where SIMi,j denotes the total similarity of the ith and jth manufacturing tasks. Sima
i,j

and Simb
i,j represent the similarity of the text-type property and the value-type property,

respectively, and a and b represent the indexes of these two similarities. mtaa
i and mtaa

j
represent the ath text-type property of the ith and jth manufacturing tasks, respectively.
mtab

i and mtab
j represent the bth value-type property of the ith and jth manufacturing tasks,

respectively. wb denotes the weight of the bth value-type property.

4. Energy Consumption Characteristic Analysis Based on Process Time Window

4.1. Data Modeling of Discrete Manufacturing Processes

Different kinds of data can be obtained after the manufacturing data acquisition
network configuration. To realize data processing and data storage, date modeling is
conducted first. The discrete manufacturing processes mainly include three types of data
related to energy conservation: process data, energy consumption data and supporting-
material data.

Process data model:
The process data involve the information of each machining process, for example, the

process name, machine tool and process time. Because all the manufacturing activities are
carried out according to process planning, process data are the core data for the discrete
manufacturing workshop. The process data are modeled in Equation (5), and these data
can be obtained from process planning and the WIP state.

PD = < PDID, WID, PID, PName, MID, STime, ETime > (5)

where PDID is the index of the process data, and WID, PID and MID are the indexes of
the workpiece, process and machine tool, respectively. PName denotes the process name.
STime and ETime represent the starting and ending time of the process, respectively.

Energy consumption data model:
For a manufacturing workshop, the energy consumption mainly comes from machine

tools; thus, the energy consumption data can be modeled by Equation (6).

ECD = < ECDID, MID, EData, T > (6)

where ECDID is the index of the energy consumption data, and EData represents the
real-time power of a machine tool at time T.

Supporting-material data model
In addition to the energy consumption, a machining process also consumes some

supporting materials that may be related to energy consumption, such as compressed air
and cooling liquid. Thus, the supporting-material data can be expressed by Equation (7).

SMD = < SMDID, MID, SType, SMData, T > (7)

where SMDID is the index of the supporting-material data, and SType represents the type
of supporting material. SMData is the real-time usage amount of the supporting material.

4.2. Energy Consumption Data-Partition Method Based on Process Time Window

For a manufacturing process, the process data are discrete, whereas the data on energy
consumption are continuous. To relate the energy consumption data with process data, the
former needs to be divided according to machining processes or feeds. Thus, an energy
consumption data-partition method is proposed based on the process time window. The
time window method can divide time series into segments, and has been used in many
applications [46]. Because the traditional time window moves forward in succession over a
fixed or variable time, it is not suitable for discrete manufacturing processes. The concept of
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the process time window is defined, which means that the interval time of the time window
is determined on the basis of the processing stages, as shown in Figure 3.

For a single process, the time window can be obtained from the enterprise resource
planning system, that is, the starting and ending times of the process. However, this process
may contain several steps. For example, a turning process may include cylindrical turning,
face cutting and internal cylindrical turning. Meanwhile, a step contains different states,
such as standby, idle, air cutting and cutting, as shown in Figure 3. The power of different
processes and states shows a high variation due to different cutting parameters [47,48].

Figure 3. Energy consumption data partition based on process time window.

To analyze the energy characteristics of different steps or cutting states, the continuous
energy data belonging to different steps are divided based on the process time window. The
power of the air-cutting state is used to judge whether a machine tool is in a cutting state,
and the power of the cutting state is for identifying different processes or cutting steps.
Here, ten real-time energy data are analyzed every time, that is, Pt =

{
pt

i
}

, i = 1 . . . 10.
Then, the maximum and minimum values of these data are deleted to exclude the influence
of chance factors. The average value of the remaining data Pt′ =

{
pt′

i

}
, i = 1 . . . 8 is used

as the judgment standard, as denoted in Equation (8).

MeanCEt =
1
8 ∑8

i=1 pt’
i (8)

The algorithm flow of the entire energy data-partition method based on the process
time window is shown in Algorithm 1.

4.3. Real-Time Energy Consumption Characteristic Analysis

For a machining process, the original energy consumption data cannot be directly
used to evaluate or optimize the machining processes. Important characteristic values
must be derived. In this study, these characteristic values mainly fall into two categories:
instantaneous and cumulative.

The instantaneous characteristics mainly reflect the variation law of cutting power,
such as the maximum, minimum and mean power of a process or feed, as follows:

MaxPi = max
t∈[si ,ei ]

pt (9)

MinPi = min
t∈[si ,ei ]

pt (10)

MeanPi =
1
Ni

∑t∈[si ,ei ]
pt (11)
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where pt denotes the power at time t, and MaxPi, MinPi and MeanPi represent the maxi-
mum, minimum and mean of the energy consumption values, respectively. si and ei denote
the starting and ending times of a process time window, respectively. Ni is the number of
cutting-power data points during the process time window.

Algorithm 1: Energy Data Partition Method

Input: the power of air cutting Paricutting
Output: the time window node of each steps si,j and ei,j
Algorithm flow:
1. According to process planning, obtain the starting time si and ending time ei
2. For each process
3. For each energy data of this process
4. The starting time of the first step is si, obtain the mean value MeanCEt =

1
8 ∑8

i=1 pt′
i

5. If
MeanCEt−Paricutting

Paricutting
> 0.05

6. The step is in cutting state, and obtain the mean power value P1
cutting

7. Else

8. Obtain the time point ei,1
9. End if

10. If

∣∣∣P2
cutting−P1

cutting

∣∣∣
P1

cutting
> 0.05

11. This is the next step, and the above ei,1 is the starting time of the next step si,2
12. End if

13. End For

14. End For

15. Return si,j and ei,j

These instantaneous characteristics can reflect the operating state of a manufacturing
system and have been used to detect recessive production anomalies [49].

On the other hand, the cumulative characteristics mainly show the overall energy
consumption and energy efficiency of a process. These characteristics can be obtained
as follows:

TotalEi = ∑t∈[si ,ei ]
pt ∗ Δt (12)

EnergyE f fi =
∑t∈[si ,ei ]∩[msi ,mei ]

pt ∗ Δt
TotalEi

(13)

ProcessE f fi =
Vi

TotalEi
(14)

where TotalEi denotes the total energy consumption during the process time window.
Δt is the energy consumption data-sampling interval. EnergyE f fi denotes the energy
efficiency, which is the ratio of the material-removal energy consumption to the total energy
consumption during the process time window. ProcessE f fi is the material-removal volume
of each energy consumption. Vi denotes the material-removal volume during this process
time window. msi and mei mean the starting time and ending time of the material-removal
process.

The cumulative characteristic values can reveal the energy consumption feature at the
process level, which can support process improvement and parameter optimization.

5. Case Study

5.1. Case Description

To verify the proposed method, a case of a discrete manufacturing workshop that
mainly produces coupling parts for different customers is studied. This workshop contains
three types of machine tools from different equipment providers: a CNC lathe, milling
center and drilling machine. There are four machining processes for a coupling part:
cylindrical lathe cutting, milling flat, drilling hole and tapping. The relationship between
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the machining processes and machine tools is presented in Table 1. The power of the
air-cutting state of each machine tool is also listed in the table.

Table 1. The machining processes of a coupling part.

No. Processes Machine Tool Machine No. Power of Air Cutting (W)

1 Cylindrical lathe cutting CNC lathe M1 2411
2 Milling flat Milling center M2 29413 Drilling hole
4 Tapping Drilling machine M3 2182

To realize the monitoring of machining states, a static data acquisition network is
first configured for each machining system in the manufacturing workshop, as shown in
Figure 4a. The processing characteristics, accuracy, optional sensing-equipment set and
measuring-equipment set of the machining system are input to build the rule-reasoning
library. A feasible sensing-equipment recommended list is obtained according to the specific
process system information. Then, the appropriate configuration instances for a specific
processing task are retrieved from the instance database through similarity calculation.
According to a specific instance, the operator selects and modifies sensing devices from the
static data acquisition network, and then a dynamic data acquisition subnetwork is formed
for the current task, as shown in Figure 4b.

Figure 4. Configuration of manufacturing data acquisition network; (a) static data acquisition
network configuration; (b) dynamic data acquisition network configuration.

5.2. Energy Consumption Monitoring and Characteristic Analysis

Based on the above data acquisition network, the machining state and energy con-
sumption data are obtained. Meanwhile, a prototype system of energy consumption
monitoring and characteristic analysis is developed, as shown in Figure 5. This system is
designed based on the browser/server (B/S) architecture. On the server side, the Java web-
programming language is adopted, whereas HTML5/CSS/JavaScript is used to develop
the browser side. This system can be conveniently visited by networked computers or
remote handheld terminals. The prototype system mainly contains two functions: energy
consumption monitoring and energy characteristic analysis. Figure 5a shows the real-time
energy consumption monitoring module, which contains the machine tool, the current
process and real-time energy. Figure 5b shows the energy consumption characteristic
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analysis module, which includes the mean energy consumption value, energy efficiency
and material-removal volume of each energy consumption.

Figure 5. A prototype system of energy consumption monitoring and characteristic analysis; (a) real-
time energy consumption monitoring; (b) energy consumption characteristic analysis.

To analyze the accuracy of the proposed energy data-partition method, three tests with
different machining times and sample sizes are chosen for comparison, as shown in Table 2.
The sample sizes are 2700, 5400 and 8100. The partition accuracy is calculated by the ratio
of properly segmented data and total energy consumption data. The results show that the
partition accuracies of these three tests are all more than 98%, and it reaches 99.5% for Test
No. 1. Moreover, clustering approaches were often used in the data-partition process [50].
In order to evaluate the validity of the proposed method, the clustering approach is used
as a contrast in Table 2. The results show that the accuracy of the clustering approach
for Test No. 1 is 98.7%, and the results for the other two tests are 97.8% and 97.1%. In
summary, the proposed method has a high partition precision for manufacturing energy
consumption data. The partitioned energy consumption data can then be used to analyze
the characteristics of energy efficiency.
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Table 2. The accuracy of the energy data-partition method.

Test No. 1 2 3

Machining time (min) 15 30 45
Sample size 2700 5400 8100

Partition accuracy (%) 99.5 98.6 98.4
Accuracy of clustering approach (%) 98.7 97.8 97.1

According to the proposed energy analysis method, some energy characteristic values
of each process and machine tool can be obtained. The instantaneous energy characteristics
of different processes are shown in Figure 6. It can be seen that the total energy of the
four processes is descending, and the cylindrical lathe-cutting process consumes the most
energy, which reaches 2.41 kWh. Therefore, this lathe process needs more attention, and
some adjustment strategies can be implemented by equipment providers to realize energy
conservation, such as process route modification or process parameter optimization. More-
over, the maximum power and mean power of the cutting state of the different processes
are consistent. The power of the drilling hole on M2 is the highest, which is 4097 kW.
The differentiation of mean power over time can be used to detect abnormal production
conditions, for example, machine tool performance degradation and cutting tool wear.
Additionally, the whole energy consumption of coupling parts can be obtained, which can
be used by customers to optimize their product design.

Figure 6. The energy characteristic analysis of different processes.

The energy characteristic values of different machine tools are shown in Figure 7. This
shows that the energy efficiency of M3 is the highest, reaching 0.62, which means that
most of the energy consumption of M3 is used to conduct the material-removal process.
That of M2 is the lowest, and more energy is wasted in standby or air-cutting states. For
this problem, the NC code on M2 can be improved to increase its energy efficiency. For
the process efficiency, M1 is the best, whereas M3 has the lowest process efficiency. This
characteristic value can be used by manufacturers to select the appropriate machine tool
with the highest processing efficiency, especially for roughing processes.
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Figure 7. The energy characteristic analysis of different machine tools.

6. Conclusions and Future Work

To realize energy conservation and carbon emission reduction of manufacturing pro-
cesses, one important step is to calculate and analyze the energy consumption and energy
efficiency of machining processes. In this paper, a real-time energy consumption charac-
teristic analysis method for IM workshops is established. First, an energy-conservation
production architecture for IM processes is introduced, and the configuration of the data ac-
quisition network is described to create a ubiquitous manufacturing environment. After the
dynamic network construction, the required data can be acquired and the usage effective-
ness of the sensor network can be improved. Then, an energy consumption data-partition
and characteristic analysis method is proposed based on the process time window. The
results show that the partition accuracies of these three tests are all more than 98%. Thus,
the proposed method has a high partition precision for manufacturing energy consumption
data. The energy characteristic values of different processes and machine tools can be
obtained, which can be used by manufacturers to select the appropriate machine tool
with the highest processing efficiency. The obtained energy characteristics can be used by
different SM participants. This method realizes a combination of SM and real-time energy
characteristic analysis.

In addition, there are also some limitations in the proposed methods which need to
be researched in future works. First, in this study, only the energy consumption data of
machine tools are analyzed, and many other important production data are neglected,
such as energy consumption data of logistic processes and the workshop environment,
the production capacity, and the utilization rate of equipment. Thus, more aggregative
indicators are necessary for the overall assessment of manufacturing processes. Second,
the actual manufacturing processes may be more complex, and include machine fault and
cutting tool wear. Manufacturing data are dynamic and present uncertainties, and an
intelligent processing method for complex data is required. Third, an energy consumption
characteristic analysis cannot directly reduce the energy consumption of manufacturing
systems. It is necessary to combine the energy characteristic analysis with some energy-
saving strategies, such as multicriteria decision making about the selection of appropriate
machine tools, process planning and production scheduling.
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Abstract: The cloud manufacturing system can provide consumers with on-demand manufacturing
services, which significantly improve the utilization rate of distributed manufacturing resources
and the response speed of personalized product needs. In the cloud manufacturing platform, the
successful implementation of various industrial applications relies on the uploading and streaming
of related field-level manufacturing data. For example, the realization of manufacturing service
composition application should match the manufacturing tasks with distributed manufacturing
resources according to their working state data and performance measurement data. Therefore, this
paper proposes a data integration and analysis framework of a cloud manufacturing system based on
cloud–edge collaboration and the Industrial Internet of Things (IIoT). A service-oriented information
model is established to uniformly describe the related operational data and functional attributes of
heterogeneous manufacturing resources. Secondly, a real-time transmission and integration method
of high-volume operational field and sensor data based on message middleware is proposed to
realize the remote monitoring of distributed manufacturing resources and efficient distribution of
related data. Finally, a cloud–edge collaboration mechanism is put forward to train and update the
parameters of various artificial intelligence models deployed at edge gateways. In the experiment,
taking the computer numerical control (CNC) lathe as an example, the effectiveness of the proposed
manufacturing resource access method is verified. Taking the fault diagnosis model of the CNC
lathe as an example, the efficiency of the proposed cloud–edge collaboration mechanism for model
updating is verified.

Keywords: cloud manufacturing; Industrial Internet of Things; data acquisition; cloud–edge
collaboration; resource virtualization; gateway

1. Introduction

Cloud manufacturing is a service-oriented manufacturing paradigm in which all of
the distributed manufacturing resources involved in the whole life cycle of product produc-
tion are encapsulated as various manufacturing services [1]. It then provides on-demand
manufacturing services for personalized manufacturing tasks submitted by consumers, so
as to finally improve the response speed to meet the personalized requirements for cus-
tomers and the utilization rate of manufacturing resources for manufacturers. At present,
most researchers focus on these scientific issues, including virtualization and servitization
encapsulation of manufacturing resources, manufacturing service selection, matching and
combination. The successful implementation of service matching and composition needs
to determine the current production capacity of manufacturing resources according to their
real-time running status and load conditions, and then select and optimize the service
combination based on this. However, the working state and workload of manufacturing
resources can only be obtained by analyzing and processing the corresponding field opera-
tional data of manufacturing equipment. The operational and status data of manufacturing
resources provide basic informational support for the industrial applications of the cloud
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platform (such as matching, selection and combination of manufacturing services, equip-
ment fault diagnosis), and are used to drive the stable operation of business. That is to say,
the efficient acquisition, transmission and integration of the working state data and related
sensor data of distributed manufacturing resources have become the key research issue
in cloud manufacturing. However, there is little research on how to upload and transmit
the operational data and production status of distributed manufacturing resources to the
cloud platform.

Up to now, the existing literature studies have fulfilled the cloud-based access opera-
tion of physical equipment data through supervisory control and data acquisition (SCADA),
open platform communications unified architecture (OPC UA), ISA-95, etc. All the above
methods are used to store, transmit and query the equipment data from the physical
workshop to the cloud in a centralized process. It is not only difficult to guarantee the
real-time data query requirements of cloud applications (i.e., order completion time pre-
diction [2] and equipment fault diagnosis [3]), but also to avoid the serious overload of
the cloud platform computing workload. This will lead to the slow response speeds of
cloud applications in order to deal with unpredictable events, such as poor performance of
task scheduling and difficulty in quickly rescheduling manufacturing resources when the
pre-established service composition is abnormal. Therefore, the efficient and low-delay net-
work transmission of field equipment data is the basic and key technology of all networked
and service-oriented manufacturing systems.

With the continuous development of edge computing theory, the edge gateway [4]
has become a new tool to establish information communication and data transmission
between physical manufacturing resources and the cloud platform. It undertakes a part of
the computing workload of the cloud platform to ensure the real-time performance of data
analysis applications. The edge gateway is a development platform that integrates the core
capabilities of network, computing, storage, and application at the edge of the network close
to the data source, and provides edge intelligence services to meet the key requirements
of digital factories in agile connections, real-time business intelligence, data analysis, and
intelligent decision making. With the help of the edge gateway, it is not necessary to
upload all of the generated data of the workshop to the cloud directly. The edge gateway
preprocesses the operational data and sensor data of physical manufacturing resources,
and analyzes the local data to a certain extent. Then, the preprocessed data and key data
are uploaded to the cloud, and the cloud platform mainly focuses on big data processing
and the execution of industrial applications with large amounts of computation. To sum up,
cloud–edge collaboration not only greatly improves the real-time response speed of cloud
applications, but also reduces the computing load of the cloud platform, which shows great
potential for the development and application of the cloud manufacturing system.

The structure of the paper is organized as follows: Firstly, the background for, and key
issues of, cloud manufacturing and cloud–edge collaboration is presented in the “Introduc-
tion”. An overview of the relevant literature in terms of the service-oriented manufacturing
paradigm and the Industrial Internet of Things is discussed in the “Literature Review”. The
section entitled “Research Methodology” elaborates the framework of the cloud manufac-
turing system, service-oriented informatization model, data transmission and integration
method and the cloud–edge collaboration mechanism for training the artificial intelligence
(AI) model. A prototype cloud manufacturing system with the functions of distributed
manufacturing resources for cloud access and AI model training is designed, and two
types of experiments are applied to verify the effectiveness and superiority of the above-
proposed method in the “Case study”. Finally, the “Conclusions” section summarizes the
key technologies and achievements demonstrated in this paper.
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2. Literature Review

2.1. Service-Oriented and Networked Manufacturing Paradigm

In order to effectively adapt to the fierce market competition and rapidly changing
business environment, several service-oriented and networked manufacturing paradigms
have been put forward by scholars, including cloud manufacturing [5], social manufac-
turing [6] and shared manufacturing [7]. The common purpose of the above-mentioned
manufacturing modes is to integrate and gather massive manufacturing resources in differ-
ent regions and different enterprises to form a manufacturing service pool, and to quickly
respond to personalized product requirements through the efficient configuration and
scheduling of manufacturing services. In the industrial and academic fields, cloud manu-
facturing is one of the most popular manufacturing modes, and its main research contents
include the virtualization and servitization of heterogeneous manufacturing resources, and
manufacturing service matching and composition.

The virtualization and servitization of manufacturing resources is the premise and
foundation for the efficient access of distributed manufacturing resources to the cloud plat-
form. Manufacturing resources are encapsulated into various manufacturing services with
different functions, and aggregated into a service pool of the cloud platform, so as to facili-
tate the efficient usage and management of manufacturing resources. Zhang [8] proposed a
general modeling method for heterogeneous manufacturing resources, and used ontology
technology to establish a service-oriented packaging model for additive manufacturing
and subtractive manufacturing resources, realizing that multiple types of manufacturing
resources are connected to the collaborative manufacturing platform in a unified form, and
facilitate the access and invocation of distributed manufacturing resources.

Manufacturing service matching and composition is the most popular research issue
in cloud manufacturing. The matching process of manufacturing services is to select the
appropriate services from the manufacturing service pool to establish a candidate set of
services for multi-granularity manufacturing tasks through ontology technology. The man-
ufacturing service composition selects high-quality service aggregates from the candidate
sets of manufacturing resources based on logistics and time factors, and provides a complete
manufacturing service scheduling scheme for personalized product requirements. Li [9]
established a universal framework to describe the machine tools and their requirements
in cloud manufacturing in detail, and proposed a machine tool matching method based
on Markov decision processes and cross-entropy for dealing with a single manufacturing
task with complex machine tool application requirements. Yang [10] proposed an event-
driven and IoT-enabled dynamic service selection paradigm, using a service reservation
mechanism based on AHP and simple additive weighting to evaluate whether the expected
manufacturing service should be retained, so as to avoid the situation where there are no
qualified services available and ensure that the high-QoS manufacturing service is pro-
vided to customers in a dynamic business environment. Zhang [11] put forward a flexible
configuration method of distributed manufacturing resources, and adopted the NSGA-III
algorithm to fulfill the manufacturing service composition that meets multi-objective opti-
mization. Secondly, a manufacturing community with specific capability was detected and
established from the manufacturing resource collaborative network based on the Louvain
algorithm, and was applied to quickly respond to personalized order requirements and
abnormal production situations.

2.2. Industrial Internet of Things

With the development of the new generation of information and communication
technology, the concept of the Industrial Internet of Things (IIoT) is rapidly heating up in
the industrial field, and was first articulated by General Electric (GE) [12]. The emergence
of the IIoT allows the ubiquitous manufacturing resources to achieve effective connectivity,
which enables information sharing and communication between manufacturing equipment
from different geographical locations and enterprises, as well as between manufacturing
equipment and the cloud platform, breaking the limitations and boundaries of physical
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space. With the help of IIoT, the field-level operational data generated by manufacturing
equipment can be transmitted or pushed to the cloud platform or other edge nodes for
analysis in real time. The collected industrial big data provide informational support for
various value-added microservices deployed in the cloud platform [13], enabling the cloud
platform to monitor, optimize, and control the distributed manufacturing process [14,15].

Liu [16] proposed an IIoT-supported general system architecture for the cloud manu-
facturing system, and developed a service-oriented data schema and the plug-and-play
IIoT gateway solution, which realized efficient storage and querying of field-level manufac-
turing equipment data for the usage of cloud applications. Zhang [17] put forward a data
collection and integration architecture of distributed manufacturing resources based on the
IIoT, and designed a real-time manufacturing information integration service, which real-
ized seamless two-way connectivity and interoperability between heterogeneous enterprise
information systems. Wang [18] proposed an interoperable and flat IIoT architecture for
low-latency data collection based on OPC UA and software-defined networking (SDN). The
proposed edge gateway realized the adaptation of heterogeneous devices by providing a
unified semantic information model and a standard data access interface. Lu [19] developed
a general system architecture of cloud-based manufacturing equipment based on cyber-
physical systems and big data analysis, which allows manufacturing equipment to connect
to the cloud, and can be used to provide on-demand manufacturing services. It successfully
handles the issue of Internet unavailability in machine monitoring and unpredictable big
data processing challenges. Gonzalez [20] proposed an innovative six-layer IIoT archi-
tecture to organize the heterogeneous elements into microgrids for energy automation,
information sharing and monitoring with the aid of the Modbus TCP network. Samer [21]
introduced two scenarios to build the IIoT environment. In the first scenario, Modbus
TCP is used for synchronous polling communication. This solution conforms to most
industrial control systems and SCADA-like applications. In the second scenario, message
queuing telemetry transport (MQTT) was applied to supplement the function of Modbus
TCP to meet the requirements of asynchronous event-based communications. Through
the structural analysis of the existing IIoT reference architectures, their classifications and
target concerns, Bader [22] provided the consistency of shared concepts, and presented
the structural mapping of concerns in each part of their respective reference architectures.
Wollschlaeger [23] summarized the impact of the Internet of Things and cyber-physical
systems on industrial automation from the perspective of Industry 4.0, investigated the
working status of time-sensitive networking (TSN), and clarified the role of fifth generation
(5G) technology in automation.

The IIoT technology has brought the possibility of cloud–edge collaboration. The focus
of the edge node is to realize data analysis applications with high real-time performance,
while that of the cloud platform is to realize data analysis applications with high computa-
tional load. Network and communication connections could be established between the
edge node and cloud platform through message middleware, and business cooperations
between them (i.e., AI model training and complex task scheduling) can be performed and
realized based on their data analysis results. For example, the manufacture of a complex
product needs the cooperation of multiple manufacturing enterprises in cloud manufactur-
ing. The edge node is responsible for analyzing and monitoring the production progress of
the corresponding manufacturing enterprise, and regularly reporting the analysis results to
the cloud platform with the help of IIoT. Then, the cloud platform configures and schedules
resources according to the production status of the manufacturing enterprise.

Zhang [24] proposed a multi-agent manufacturing system integrating a self-organization
mechanism and self-learning strategy. Based on the historical scheduling data and cloud–
edge collaboration mechanism, the production scheduling model inside the machine agent
was periodically trained and optimized by the proximal policy optimization algorithm. Fi-
nally, the self-organization production for personalized order and adaptive decision under
dynamic disturbance was realized. Wang [25] proposed a knowledge sharing mechanism
between manufacturing resources based on cloud–edge collaboration. In this mechanism,
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the ontology model is applied to encode the manufacturing process knowledge, and the
existing primitive knowledge contained in the knowledge base deployed on the cloud plat-
form and edge nodes is effectively screened, matched, and combined to realize the learning
process between manufacturing resources. Yang [26] proposed a microservice-enabled
condition monitoring platform for smart manufacturing systems, which effectively inte-
grates the powerful computing and storage capabilities of the cloud layer and the real-time
data analysis of the edge layer, and introduces the cloud–edge collaborative mechanism to
realize real-time equipment fault diagnosis and improve its prediction accuracy. In addition,
the microservice management system is applied to construct lightweight edge and cloud
services, realizing the flexible deployment, and upgrading of manufacturing services.

2.3. Research Gaps

From the literature review, most of the studies focus on the virtualization and serviti-
zation of heterogeneous manufacturing resources, manufacturing service matching and
composition, and the architecture design of the IIoT-enabled cloud manufacturing system.
However, there are still the following issues to be studied to promote the further application
of the cloud manufacturing system in the practical industrial field.

(1) There is a lack of an efficient method to transmit and distribute the generated massive
operational data and sensor data from the physical resource to the cloud platform
or edge nodes, and the corresponding storage mechanism of massive data. The
collection, transmission, storage, and distribution of field-level equipment data is
fundamental for the stable operation of various value-added manufacturing services
and cloud applications.

(2) There is a lack of flexible deployment and remote upgrade technology in AI models.
Most studies in the literature focus on the network structure design of AI models and
their parameter optimization. In addition, the execution of manufacturing services
depends on the high-level decision making ability of the cloud platform, which leads
to its lack of real-time data and significantly increases the workload of the cloud
platform. In this paper, a cloud–edge collaboration mechanism is proposed to realize
the flexible deployment of various AI models (i.e., diagnostic and prediction models)
to the edges in a plug-and-play manner, and the MQTT-supported remote updating
of model parameters after training in the cloud platform.

3. Research Methodology

3.1. The Overall Framework of the Cloud Manufacturing System Based on Edge Intelligence

Inspired by the edge computing theory, a three-layer IoT framework (including phys-
ical resources, edge computing node, and the cloud platform) is developed to meet the
requirements of real-time local data analysis and application, as well as the efficient training
of AI models and big data analysis. The physical resources are the executors of production
activities and the sources of mass manufacturing data. The edge computing node is re-
sponsible for real-time processing, analysis, and application of the collected local data. The
cloud platform is responsible for analyzing the stored mass manufacturing data, driving
the stable operation of industrial applications and the efficient training of the AI model.

The overall framework of the cloud manufacturing system consists of three parts:
the cloud manufacturing platform layer, edge gateway layer, and physical resource layer.
The cloud manufacturing platform is equipped with powerful computing, data storage,
data processing, and data analysis capabilities. Industrial applications with various func-
tional types are deployed and ran in the cloud platform, including task decomposition,
service matching, selection and composition, model training and remote monitoring of
workshop execution processes. Among them, service matching and composition are the
key components, which organize and configure manufacturing services efficiently to meet
changing product requirements. In addition, with the support of strong computing power,
machine learning models, including the equipment fault diagnosis model, remaining life
prediction model, order completion time prediction model, etc., could be trained and opti-
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mized periodically by the cloud platform so that the optimized machine learning model
can be downloaded and deployed in the edge gateway. The concept of “Edge” refers to the
physical workshop, which is composed of a great deal of manufacturing equipment, and
has the ability to provide the part-level production services.

The edge gateway is a bridge for information communication and business cooperation
between the physical manufacturing resources and the cloud platform. It is connected to the
manufacturing resources through Ethernet, serial port, and radio frequency identification
(RFID), and is connected to the cloud platform based on MQTT protocol. The edge gateway
can not only capture equipment operational data and sensor data, but also send control
instructions to equipment or workshop systems based on the data analysis results of its
edge application. The physical resource layer refers to all manufacturing entities involved
in the whole life cycle of product manufacturing, and is the core executor of production
activities, which mainly include CNC machine tools, machining centers, 3D printers, robots,
and logistics equipment, etc. In addition, programmable logic controllers (PLCs), as the
most popular type of controller in the real-world industry, should also be placed in the
physical resource layer.

The running logic of the cloud manufacturing system is shown in Figure 1. Firstly,
heterogeneous physical manufacturing resources are encapsulated into various manufac-
turing services according to their functions, characteristics, and performance parameters,
and are shared and configured in the cloud platform. Secondly, the connection between
the cloud platform and physical workshop is established through the edge gateway. The
edge gateway captures the real-time data of equipment workload, spindle vibration, motor
temperature, operational process, and workpiece processing progress from the physical
equipment. The collected data are subsequently preprocessed, including data standardiza-
tion, data cleaning and feature extraction. The preprocessed data are input into various
edge applications for data analysis, such as equipment fault diagnosis and remaining life
prediction based on spindle vibration information, and production scheduling based on
the workload of equipment and process attributes of work in progress (WIP). Based on
the data analysis results, control instructions will be released to physical manufacturing
resources to guide them to complete the corresponding production actions.

Figure 1. The framework of the cloud manufacturing system based on cloud–edge collaboration.

In addition, the equipment-related, sensor-related, and product-related operational
process data will be uploaded to the cloud platform after preprocessing, and stored in the
cloud database. These data are distributed to various industrial application interfaces of the
cloud platform in a publish–subscribe system. On the one hand, the collected industrial big
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data are analyzed and processed by the cloud platform, and are streamed to the industrial
application data items they intend to stream to the cloud (i.e., remote monitoring, task
scheduling, manufacturing service matching and composition). For example, the orders
submitted by consumers are decomposed into the part-level manufacturing tasks, and then
various manufacturing services are matched and combined based on the working status
and performance indicators of shared manufacturing resources in the resource pool of the
cloud platform to form a service scheduling scheme. Finally, part-level manufacturing tasks
are distributed to the edge server of the corresponding workshop based on the scheduling
scheme. On the other hand, the cloud intelligence application will periodically read and
query the historical data of the execution process of the equipment/workshop stored in
the database, which will be applied to train and optimize the parameters of the machine
learning models deployed on the edge gateway (i.e., the equipment fault diagnosis model,
the remaining completion time prediction model, and the production scheduling model).
Finally, the updated machine learning model is deployed and downloaded to the edge
gateway in a cloud–edge collaborative process. It is beneficial to enhance and upgrade the
analysis ability of edge applications. Finally, the physical manufacturing resources carry
out production activities according to the control instructions issued by the corresponding
edge gateway.

3.2. Service-Oriented Informatization Model for Manufacturing Equipment

In the cloud platform, manufacturing resources (i.e., CNC machine tools, 3D printers,
and robots) from different regions and different enterprises are encapsulated into various
types of manufacturing services, aiming at providing service demanders with on-demand
service compositions. How to describe heterogeneous manufacturing services has become
a research issue. In this paper, a service-oriented manufacturing resource informatization
model is established to describe manufacturing resources with different structures and
functions in a unified way, and provide informational support for subsequent service
matching, composition, and scheduling, and other applications.

As shown in Figure 2, the information model of manufacturing services consists of
the following parts: basic information, service capability, service quality, and working
status. The basic information shows the ID, name, geographical location, granularity, and
working hours of manufacturing services. Service granularity is divided into three levels,
the process-level, part-level, and product-level, which correspond to the granularity of
manufacturing tasks when performing service matching operations. Geographical location
refers to the geographical location of the manufacturing services, which is used to deter-
mine the logistics costs of products transferred between manufacturing resources when
performing service composition operations. Working hours refers to the daily working
hours of the manufacturing service, and the unit of its value is min/d. Service capabil-
ities mainly describes the static function and dynamic performance of manufacturing
resources, including service type, available material information, production efficiency,
service cost per unit time, and service performance. Service types include machining,
3D printing, etc. The available material information indicates the materials that can be
processed by the manufacturing service. Production efficiency refers to the speed at which
manufacturing services complete each task, and the range of its values provided by service
providers according to the experience of operators. In the case of machining service, the
service performance indicates the machining size of the part, the machining accuracy of
the process and the achievable surface roughness. In the case of 3D printing service, the
service performance indicates the printing size, printing accuracy, and printing shape.
Service quality is determined by the following aspects: product qualification rate, delivery
cycle, cost performance, response speed, and service reputation. The qualification rate
indicates the comprehensive qualification rate of the manufacturing service to complete
all manufacturing tasks to date. The response speed indicates the time from receiving
the task request sent by the platform to confirming the receipt of the manufacturing task.
Service reputation reflects the evaluation of service demanders to service providers after
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the completion of manufacturing tasks, and is periodically maintained and updated by
the platform manger. Service performance and service quality are used as indicators to
guide the matching of manufacturing services with manufacturing tasks. Working status
shows the current workload status, task progress, running state, and health condition of
manufacturing services. Among them, workload status consists of idle, light load, and
full load. Running state indicates the operation status of key components or the whole
instrument, including surface temperature, vibration, working current, spindle speed, etc.

Figure 2. Service-oriented informatization model for manufacturing equipment.

3.3. Data Transmission and Integration Method Based on Message Middleware

The operational data and sensor data of field-level manufacturing equipment are
the bases supporting the stable operation of various industrial applications in the cloud
platform. Therefore, how to acquire, transmit, and store the real-time data of massive and
heterogeneous manufacturing equipment from different regions and different enterprises
have become some of the key technological factors for the successful implementation of the
cloud manufacturing system. Various types of manufacturing equipment are connected
with edge gateways (i.e., Raspberry Pi and industrial personal computers) through Ethernet
ports. The acquisition of operational data and the release of control instructions are
realized with the support of the connection between the edge gateway and manufacturing
equipment. The overall data transmission and integration process is shown in Figure 3.

Figure 3. Data acquisition and transmission method for distributed manufacturing resources.
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Firstly, the intelligent gateway deployed at the edge of the workshop is applied to
acquire the operational data and sensor data of manufacturing equipment with different
communication interfaces and industrial protocols (i.e., Modbus, Modbus TCP, OPC UA,
and Focas) through its protocol analysis module. The acquired data mainly include the
operational data related to manufacturing equipment (i.e., machining progress, working
status, and remaining workload), the relevant sensor data (i.e., spindle vibration, motor
temperature, and working current), and the execution process data of the workshop. The
operational data of manufacturing equipment include spindle speed, operation status of
machine, remaining tasks to be processed in the buffer, operation information of current jobs,
machining progress of production tasks, total number of processed workpieces, working
status, and alarm information. The execution process data of the workshop include job
scheduling scheme, product qualification rate, machine utilization rate, and workload
distribution of various machines. The sensor data mainly include the vibration signal and
acoustic emission signal of the spindle motor, the working current of the equipment, and
the surface temperature of its key components.

According to the characteristics of the data, the collected equipment data are divided
into time series data and relational data. The time series data mainly refer to the sensor
data collected from the equipment, and exhibit the characteristics of time dependence, high
frequency, and high volume. The time series data are conducive to the deep learning model
to evaluate the state and performance of manufacturing equipment. For example, the fault
diagnosis model analyzes the fault cause of the machine tool based on the vibration data of
the spindle motor. The relational data mainly refer to the working status of manufacturing
equipment or workshop system, and possess the characteristics of state dependence, low
frequency, and low volume. The relational data are used to assist the service matching and
composition module application in the cloud platform to make the task allocation decisions
and manufacturing resource configurations, and are also applied to support the model
training application in the cloud platform to optimize the scheduling strategy of workshop
production activities.

Secondly, both of the above two types of equipment data are encapsulated in a
JavaScript Object Notation (JSON) format. The JSON format has the characteristics of
simple structure, easy reading and writing capacity, low bandwidth occupation, and is
compatible with various programming languages (i.e., Python, Java, and JavaScript). The
JSON file format of time series data is shown in Table 1, which consists of various necessary
attributes such as measurement, tag, field, and timestamp. The measurement indicates
the identification of the shared equipment. The tag data indicate the basic information of
the shared equipment with index (i.e., ownership, location), and are stored in the form
of key–value pairs. The field data indicate the real-time sensor data without indices (i.e.,
temperature, voltage, vibration, and spindle speed), and are stored in the form of key–value
pairs. The timestamp indicates the time point of data collection. Among them, the attribute
names of measurement, timestamp, and tag need to be specified in a data collector called
Telegraf. However, it is not necessary to specify the attribute names of the field data. The
JSON file of relational data contain attributes such as equipment identification, device
working status, and task execution progress. The transmission and storage procedures of
the time series data are shown in the Figure 4.
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Table 1. The JSON format of time series data uploaded to the cloud platform.

Data Format Attributes Description

{
“measurement”: “CM001”, Measurement Identification of the equipment
“host”: “NUAA”, Tag: host The stored basic information

with indices (i.e., ownership,
location)

“location”: “Beijing”, Tag: location
“surface temperature”: 50, Field: temperature The stored sensor data without

indices (i.e., temperature,
voltage, vibration, and spindle

speed)

“working voltage”: 220 Field: voltage
“spindle vibration”: 3 Field: vibration
“spindle speed”: 1500 Field: spindle_speed
. . . Field

“timestamp”: 1633590165557, Timestamp Time point of data collection
}

Figure 4. Transmission and storage procedures of time series data.

The JSON-format data are then published via MQTT Broker (i.e., EMQ X) in the form
of MQTT topics through MQTT client on the edge gateway. MQTT Broker is a message
server oriented to MQTT protocol, which acts as a message middleware system, and is
applied to transmit and distribute the collected data related to physical equipment instantly.
Telegraf is a data collection tool for InfluxDB, developed by InfluxData Company. It
is applied to monitor and subscribe the topics of MQTT messages, analyze the content
of subscribed topics, and store these data corresponding to the topics in the time series
database InfluxDB. The storage location of the data is determined by the measurement
and tags in the JSON data schema. The topics of the relational data are subscribed to the
message middleware through NodeJS service, and the corresponding data are stored in the
relational database MySQL.

Finally, industrial applications (i.e., equipment status monitoring, predictive mainte-
nance, service composition, and equipment fault diagnosis) exchange information with
InfluxDB and MySQL databases through the predesigned query interfaces to obtain real-
time running data of distributed equipment, thus establishing a technical foundation
for driving the equipment remote monitoring module, real-time detection of processing
progress, and fault diagnosis of high-end equipment.

3.4. Cloud–Edge Collaboration Mechanism

Edge intelligence is a new technical scheme combining edge computing with artificial
intelligence. On the one hand, with the development of the Internet of Things, the generated
data from physical manufacturing equipment need to be analyzed by intelligent algorithms
to realize intelligent data application and provide higher data usability. The intelligent
algorithms represented by deep learning can extract implicit and effective information
from equipment data to improve the efficiency and accuracy of decision making. On the
other hand, edge computing can provide more real-time data and application scenarios for
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intelligent algorithms. Generally speaking, artificial intelligence (AI) and big data analysis
applications are deployed and ran in cloud servers and big data centers, while edge
computing nodes can directly obtain massive operational data from physical equipment
and realize intelligent calculation and analysis, which will strongly promote the further
popularization and development of AI applications, especially IIoT-enabled applications.
The proposed cloud–edge collaboration mechanism is shown in Figure 5.

Figure 5. Cloud–edge collaboration mechanism.

In the workshop, the edge gateway establishes communication connection with manu-
facturing equipment, robots, and logistics equipment. The functional modules of gateway
are composed of protocol analysis, data storage, and edge application. The industrial
protocols carried out by different equipment are inconsistent (i.e., OPC UA, OPC DA,
Modbus, Modbus RTU, and MT Connect). The edge gateway carries out information
extraction, data format conversion, and data preprocessing on real-time and heterogeneous
equipment data collected from the bottom layer through the protocol analysis module. The
preprocessed industrial process data are then stored in the edge server in a standardized
format, and the data access interface is provided to the edge application. The edge gateway
is responsible for the localized analysis and processing of real-time equipment data and
workshop operational data, which improves the security of industrial process data analysis
and real-time data processing. For example, the equipment fault diagnosis application
deployed on the edge gateway can analyze and judge the fault causes of machine tools
through the collected spindle vibration data and motor surface temperature. In addition,
the production scheduling application schedules tasks and resources according to the
working state of equipment, and the process attribute information of WIP. Based on the
analysis results of edge applications, the edge gateway sends task requirements and control
instructions to the corresponding equipment to guide them to complete the production
activities. Information communication between gateways is based on a unified information
model, which can realize task division, cooperation, and information sharing.
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In addition, the artificial intelligence model of edge application is constantly being
updated and optimized with the help of the cloud–edge collaboration mechanism. The re-
source access module in the cloud platform subscribes to related topics of messages through
MQTT protocol, and receives the preprocessed industrial process data from the edge. These
data will be stored and managed in the cloud database for other industrial applications
to call. For example, the big data analysis module calls historical data about equipment
operation or workshop operation, and extracts useful characteristic information behind
the data. With the powerful computing performance of the cloud platform, the model
optimization module trains and optimizes the artificial intelligence models (i.e., equipment
fault diagnosis model, production scheduling model, logistics scheduling model) by feed-
ing into the platform labeled historical sample data, the extracted feature information, and
various optimizers (i.e., Adam, RMSProp, and SGD). Then, the neural network parameters
of the trained artificial intelligence models are generated into Hierarchical Data Format
Version 5 (HDF5) files. These HDF5 files are then transmitted, deployed, and updated at
the edge gateway through TCP/IP protocols, which are applied to upgrade the parameters
of machine learning models in edge applications.

The efficient training and flexible deployment mechanism of the artificial intelligence
model based on cloud–edge collaboration will provide a large number of modular, plug-
and-play, intelligent data analysis tools, and edge applications for manufacturers in the
discrete manufacturing field, and continuously improve the intelligent manufacturing ca-
pacity of factories. At the same time, it takes advantage of the real-time performance of edge
intelligence and the powerful computing and analysis capabilities of the cloud platform.

4. Case Study

4.1. Cloud Access and Remote Monitoring of Distributed Manufacturing Resources

In this paper, the computer numerical control (CNC) lathe is selected as the experimen-
tal object to verify the effectiveness of the cloud access and remote monitoring methods
proposed in this paper. As shown in Figure 6, the temperature sensor, vibration sensor,
and hall current sensor are installed to sense the surface temperature, motor vibration,
and working current of the spindle motor of the CNC lathe. The data acquisition card is
used to collect the output analog signals (i.e., 5–20 mA) of the sensors, and then convert
them into digital signals (i.e., binary value). Then, the digital signal data are transmitted
by the data acquisition card to the industrial personal computer (IPC) via RS485 protocol.
The operational data of the equipment (i.e., task progress, cumulative workload, and job
schedule) can be obtained from the equipment interface through Ethernet. The working
status of PLC is acquired by the IPC through the equipment interface. The IPC is applied as
the edge gateway to upload and transmit the collected operational data and sensor data of
the CNC lathe. The uploaded data are stored in the cloud database and provide the query
application program interfaces (APIs) for the usage of cloud applications.

Tables 2 and 3 show the relational data structure and time series data schema of the
CNC lathe. In Table 2, the basic information, manufacturing capacity, and service quality
of the CNC lathe are elaborated in detail based on the service-oriented information model
proposed in Section 3.2. Among them, basic information and manufacturing capability
information are mostly static data, which are stored in the system by manual input. Part
of the information on manufacturing capability is in the form of dynamic data, which can
be obtained from the edge gateway and CNC system. The service quality information is
calculated by the cloud platform according to the historical operational data. In Table 3,
the basic information, working status, and task progress of the CNC lathe are elaborated
in detail. Its basic information is in the form of static data, which is stored in the system
by manual input. Work status and task progress information are dynamic data, which is
mainly obtained from the data acquisition card and CNC system.
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Figure 6. Digital transformation of the CNC lathe.

Table 2. Relational data schema of the CNC lathe.

Category Column Value Data Source

Basic information

ID (Primary key) CM001 Manual input
Host NUAA Manual input

Location Nanjing Manual input
Granularity Part-level Manual input

Service hours 8 (h) Manual input

Capability

Service type Machining Manual input
Available materials Steel Manual input

Production efficiency 50 (min/PC) Manual input
Service cost 11 ($/h) Manual input

Service performance Machining size: 80 × 80 × 300 (mm)
Repeat accuracy: 0.02 (mm) Manual input

Current workload 68 (min) CNC system
Job schedule Task queue Edge gateway

Health condition Normal Edge gateway

Quality

Qualified rate 0.96 Cloud platform
Lead time 2 (day) Cloud platform

Cost performance Good, normal, or bad Cloud platform
Response speed <1 (h) Cloud platform

Service reputation 85 Cloud platform

The process of data transmission and application is demonstrated in Figure 7. Firstly,
the field sensor data and operational data of CNC lathe are acquired and collected by RS485
and Modbus TCP. Secondly, the edge gateway preprocesses the collected data (i.e., outlier
elimination and value conversion) and converts this data into JSON format, and the JSON
files are sent to the message middleware through MQTT client. Then, the related MQTT
topics are monitored and received by the cloud platform, and these data are stored in the
cloud database. Finally, cloud applications use flux and SQL language to query data.
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Table 3. Time series data schema of CNC lathe.

Measurement Tag and Field Value Data Source

Basic information
Equipment ID CM001 Manual input

Host NUAA Manual input
Location Nanjing Manual input

Working status

Equipment ID CM001 Manual input
Motor surface temperature (°C) 36 Data acquisition card

Spindle vibration (Hz) 4.5 Data acquisition card
Spindle speed (r/min) 1500 CNC system
Feed speed (mm/min) 70 CNC system

X, Y, and Z axis coordinates (110.8, 22.6, 10.0) CNC system
Working current (A) 4.3 Data acquisition card
Working voltage (V) 220 Data acquisition card

Task progress

Equipment ID CM001 Manual input
Task progress (%) 70 CNC system

Current machining time (min) 21 CNC system
Remaining machining time

(min) 9 CNC system

As shown in Figure 8, the prototype system of the cloud platform is divided into home-
page module, manufacturing resource module, manufacturing task module, equipment
monitoring, and health management module. The manufacturing resource provider can log
into the system and view the relevant information (i.e., name, type, and description) and
current status (i.e., normal operation, idle, and fault) of the shared manufacturing resources
in the cloud manufacturing system. In the homepage module, manufacturers can view
the overall working status of manufacturing resources, including product qualification
rate, number of tasks, revenue, enterprise reputation, equipment workload, and health
status. The manufacturing resource provider submits the attribute information of the
manufacturing resources to be shared in the manufacturing resource module, and checks
the task progress and accepts new tasks in the manufacturing task module. The equipment
monitoring and health management module queries the values of relevant parameters (i.e.,
spindle speed, task completion rate, processing progress, and motor surface temperature)
by accessing the database API, and dynamically displays them on the monitoring page in
the form of data curves and tables.

The traditional method of industrial data transmission and integration generally
adopts the data storage scheme based on MySQL, while this paper proposes a hybrid
data storage scheme based on InfluxDB and MySQL. In this scheme, MySQL is used to
store relational data, and InfluxDB is used to store time series data. In order to verify
the superiority of the proposed method, the above two schemes are used to write and
store the collected data, and their performance is compared in terms of write time and
storage space. The results of the data writing experiments of the two schemes are shown
in Figure 9. Under the condition that the proposed data storage method is limited by the
hardware of the test computer, the data write speed can reach up to 90,000 row/s. If the
hardware configuration of the test computer is upgraded, the write speed can be further
improved. However, the writing speed of the traditional data storage method is maintained
at about 40,000 row/s. The experiment result proves that the writing speed of the proposed
method is more than twice that of the traditional method. The storage space experiment
results of the two data integration schemes are shown in Figure 10. The proposed method
can compress the collected time series data, but the traditional method cannot. When the
amount of data transmitted is 1.0*108 rows, the storage space occupied by the proposed
method is 235 MB, while the storage space occupied by the traditional method is 562 MB. In
other words, the storage space occupied by the proposed method is obviously less than that
of the traditional method, which is nearly two times larger. In summary, the proposed data
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acquisition and transmission method is significantly better than the traditional method in
terms of writing speed and storage space.

Figure 7. Data transmission and application process of the edge gateway for the CNC lathe.

Figure 8. Remote monitoring of equipment working status.
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Figure 9. Write speed comparison.

Figure 10. Storage performance comparison.

4.2. Cloud–Edge Collaborative Updating of Artificial Intelligence Model

In Figure 11, the user interface of the equipment monitoring and health management
module in the cloud platform is shown in detail. For this interface, the results of the
time–frequency domain analysis of vibration data are shown in Figure 11a. The AI model
updating, parameter settings, and structure of the convolutional neural network, equipment
identification, and fault cause analysis are depicted in Figure 11b.

Figure 11. Remote upgrade of fault diagnosis model: (a) preliminary analysis of vibration data;
(b) application and upgrade of fault diagnosis model.
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The equipment monitoring and health management interface of the cloud platform
adopts the frontend and backend separation development mode. The Springboot, Mybatis,
and Springcloud frameworks are applied to develop the backend of the cloud platform.
The InfluxDB and MySQL databases are used for the persistent operation of data storage.
We also apply the progressive JavaScript framework (i.e., Vue) to design and build the view
layer of the monitoring interface, and use an open-source JavaScript visualization library
(i.e., Apache Echarts) to dynamically display temperature and vibration changes in the
form of charts. The edge gateway is an industrial personal computer with 4G memory and
i5-6200U CPU. The cloud platform is equipped with a cloud server with 16G memory and
NVIDIA V100 GPU. Python 3.6 is used to write the code of the fault diagnosis model, and
TensorFlow 1.14 is applied to build the neural network structure of fault diagnosis model.

The convolutional neural networks were applied to build the fault diagnosis model
in this experiment, and this fault diagnosis model includes three convolution layers and
three full connection layers. Among them, the first convolution layer adopts a convolution
kernel with a size of 3 × 3, the moving step of the convolution kernel is 1, the shape of the
input data is 64 × 64, the padding mode is the same, and maximum pooling is applied to
compress the data. The second convolution layer adopts a convolution kernel with a size of
3 × 3, the moving step of the convolution kernel is 1, the shape of the input data is 32 × 32,
the padding mode is the same, and maximum pooling is applied to compress the data.
The third convolution layer adopts the same convolution kernel, moving step, padding
mode, and pooling mode. The shape of its input data is 16 × 16. The fully connected layer
is a three-layer neural network with 485,300,100 neurons in each layer, and the activation
function is ReLU. Finally, the fault diagnosis model outputs the prediction results of five
labels through the Softmax layer. The training parameters of the model are set as follows:
learning rate is 0.001, batch size is 64, and the loss function is root mean square error
(RMSE). The parameter updating of the fault diagnosis model will be completed after the
button “model update” is clicked. The fault diagnosis model analyzes the vibration signal
of the spindle motor to identify the cause of the equipment fault. In this paper, the factors
leading to machine failure mainly include the inner race, outer race, ball, and holder.

The underlying feature engineering process includes two parts: outlier elimination
and data enhancement. In order to prevent abnormal data from causing error in the fault
diagnosis results, the feature engineering process shall first eliminate abnormal data points.
The standard deviation of the sample data is calculated, taking three times the standard
deviation as the limit, and then the sample data points that exceed the limit are removed
and classified as abnormal data. In the actual industry, the sample data of machine failures
are very precious and rare. Therefore, data enhancement is often used to enrich the number
of samples for machine failures. In this paper, the technique of overlapping sampling is
applied to increase the number of samples for machine failures. As shown in Figure 12,
when the training samples are collected from the original signal, there is an overlapping
area between a signal segment and the subsequent signal segment, and the sampling step
is set to 1/3 of the sample length (i.e., 1024). Using this method, the number of training
samples can be increased to nearly three times that of the original.

Figure 12. Overlapping sampling method.
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In order to better demonstrate the effectiveness of our findings, the proposed cloud–
edge collaborative fault diagnosis method is compared with the edge-based method and
cloud-based method in terms of three indicators (i.e., execution time, training time, and
prediction accuracy). The edge-based fault diagnosis method processes and analyzes the
acquired vibration data locally, and the training and updating of the fault diagnosis model
are also carried out on the local server. The cloud-based fault diagnosis method uploads
all of the collected vibration data to the cloud platform, then processes and analyzes these
sample data through cloud applications, as well as conducts model training, and finally
feeds back the prediction results of the sample data to the workshop. The proposed cloud–
edge collaborative fault diagnosis method directly processes and analyzes the collected
vibration data through edge applications, and uploads the preprocessed sample data to
the cloud platform. The saved sample data are applied to train the fault diagnosis model
and optimize the parameters by the model optimization application in the cloud platform.
The parameters of the trained fault diagnosis model are periodically transmitted and
sent to the edge gateway in the form of HDF5 files through the cloud–edge collaboration
mechanism. The edge gateway updates and deploys the parameters of the fault diagnosis
model based on HDF5 files. In this experiment, a total of 100 sample data points (including
20% fault samples and 80% normal samples) were tested for fault diagnosis, and the
overall accuracies of the predicted results were taken as the evaluation indicator of model
performance. In addition, the training time of the fault diagnosis model is used as another
evaluation indicator.

The traditional AI model training method (i.e., edge-based) optimizes and updates the
model through the terminal equipment at the edge, while the proposed method is to train
the model on the cloud platform, and deploy and apply the trained model at the edge. The
experimental results are shown in Table 4. Due to the powerful GPU computing capability
of the cloud platform, the proposed and cloud-based methods only take 11 min to complete
the model training process. However, the traditional method (i.e., edge-based) is limited by
the computing capacity of the edge server, and takes 56 min. In other words, the model
training speed of the proposed and cloud-based methods is much faster than that of the
traditional method. In addition, the fault prediction accuracy of the proposed method
and the cloud-based method is 96%, while that of the traditional method is only 91%. The
proposed and cloud-based methods only take a short time to complete the training of the AI
model; therefore, the fault prediction accuracy of the AI model optimized by the proposed
and cloud-based methods is higher than that of the traditional method in the same training
period. The execution time represents the time consumed by the fault diagnosis model from
data generation to fault prediction completion. The shorter the execution time, the better
the real-time analysis performance of industrial applications. In Table 4, the execution
time of the edge-based or the proposed method is 0.8 s, while the cloud-based method
consumes 4.6 s. The reason for this result is that the cloud-based method needs to transmit
the generated vibration data from the equipment to the cloud platform, and then generate
the prediction results through the cloud application system and feed them back to the
workshop. This data transmission process consumes a lot of time.

Table 4. Performance comparison of fault diagnosis models after upgrading.

Method Execution Time (s) Training Time (min) Prediction Accuracy

Only edge 0.8 56 91%
Cloud-based 4.6 11 96%
Cloud–edge
collaborative 0.8 11 96%

5. Conclusions

In cloud manufacturing, the data acquisition, data transmission, and cloud access of
distributed manufacturing resources are the crucial research factors that provide support
for the stable operation of various machine control software and industrial applications
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(i.e., service matching and composition, AI model training, and remote monitoring) in the
cloud platform.

With the support of the IIoT, this paper proposes a cloud–edge framework of the
cloud manufacturing system, which realizes the cloud access of distributed manufacturing
resources, the efficient acquisition of equipment data available at any time, and real-time
data analysis and processing. Firstly, a service-oriented information model for heteroge-
neous manufacturing equipment is proposed, which can unify the collected heterogeneous
equipment operational data and sensor data. Secondly, based on the message middleware,
the running status data and related sensor data of physical equipment are transmitted and
pushed from the workshop to the cloud platform, which realizes the efficient storage and
ordered distribution of time series data and relational data. Finally, the training, upgrading,
and deployment of the edge AI model is proposed based on cloud–edge collaboration
mechanism. With the support of powerful computing ability of the cloud platform, the
training speed of the AI model is greatly accelerated, and its prediction accuracy increases
subsequently. With the help of the real-time data processing capability of multiple edge
nodes, the response speed of the AI model deployed on the edge getaway is greatly im-
proved. Taking a numerical control machine tool as an example, the experimental results
verify the effectiveness of cloud access of distributed manufacturing resources proposed in
this paper. Taking the updating of fault diagnosis AI model as an example, it is verified that
the cloud–edge collaboration mechanism proposed in this paper realizes the high efficiency
of the AI model training and updating methods.

In this paper, the management of edge applications lacks some flexibility, and it is
impossible to directly download the complete industrial intelligence applications from
the cloud, or uninstall edge applications. In the future research, the edge application
management method based on microservices deserves more attention
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Abstract: In any industry, Equipment Asset Management (EAM) is at the core of the production activ-
ities. With the rapid development of Industrial Internet technologies and platforms, the EAM based
on the Industrial Internet has become an important development trend. Meanwhile, the paradigm
of EAM is changing, from a single machine to integrated systems, from the phase of using them to
the end of their lifecycle, from breakdown maintenance to predictive maintenance, and from local
decision-making to collaborative optimization. However, because of the lack of a unified understand-
ing of the Industrial Internet platforms (IIPs) and the lack of a comprehensive reference architecture
and detailed implementation framework, the implementation of EAM projects will face greater risks
according to special needs in different industries. Based on the method of system engineering, this
study proposes a general reference model and a reference architecture of implementation for the
Industrial Internet Solution for Industrial Equipment Asset Management (I3EAM). Further, to help
enterprise to evaluate and select their best-fit I3EAM scheme and platform partner, we proposed a set
of performance indicators of I3EAM schemes and a quantitative decision-making method based on
fuzzy DEMATEL-TOPSIS. Finally, a case study for an I3EAM in automated container terminals was
conducted. In the multi-criteria decision environment with complex uncertainty, the project group
identified the I3EAM metrics priorities and social digitalization platforms that were more in line
with the actual needs of the automated container terminal and firms. The complexity and time of the
decision-making process were dramatically reduced. In terms of feasibility and validity, the decision
result was positively verified by the feedback from the enterprise implementation. The given model,
architecture, and method in this study can create a certain reference value for various industrial
enterprises to carry out the analysis and top-level planning of their I3EAM needs and choose the
partner for co-implementation. In addition, the research results of this study have the potential to
support the construction of standard systems and the planning and optimization of the cross-domain
social platform, etc.

Keywords: industrial internet; equipment asset management; digitalization; social digitalization
platform; system engineering; fuzzy DEMATEL-TOPSIS

1. Introduction

Smart manufacturing represents the development trend of the global industry, and
the integration, construction, and application of smart factories based on cyber-physical
systems are leading the change in the manufacturing paradigm. Equipment Asset Man-
agement (EAM) plays an important role in a smart factory, and it becomes a necessary
guarantee of achieving reliable and efficient production [1]. With the development of Indus-
trial Internet technologies, equipment operation and maintenance (O and M) businesses
have shifted from traditional regular inspection and contingent maintenance to data-driven
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equipment lifecycle management and predictive maintenance [2–4]. In China, nearly 40%
of the Industrial Internet platforms focus on applications and solutions for equipment
management. Through the interconnection of machines, processes, and people, the effi-
ciency of equipment maintenance has been improved, and the networked collaborative
evolution of various production factors and business processes closely related to equipment
assets has been further realized [5,6]. Since complex equipment usually has high added
value, the initial ecosystem for the operation and maintenance services will gradually
form around the value chain of equipment [7,8], involving the equipment owners (facto-
ries/enterprises), equipment manufacturers, module suppliers, material suppliers, service
providers, etc. In addition, based on Industrial Internet platforms and technologies, many
outstanding solution providers for equipment operation and maintenance have emerged,
such as Siemens MindSphere, GE Predix, SANY ROOTCLOUD, etc. Third-party Industrial
Internet Platforms (IIPs) have become a common option for enterprises to achieve digital-
ization. Industrial enterprises leverage the platform’s technical capabilities and ecosystem
to accelerate business–IT alignment in different scenarios, including the EAM scenario.

However, the industry still lacks a unified understanding of the IIP [9], and only a
few studies have focused on the detailed implementation framework and path for special
industrial needs [10]. It is difficult for industrial enterprises to comprehensively and
precisely identify the implementation needs and choose their best-fit IIP. All of the above
factors will lead to them incurring the risk of EAM projects. In addition, according to our
previous work [11], a systematic model and reference architecture are necessary for the
collaboration platforms with various industrial enterprises across different fields. This
study also conducted a comprehensive status review of the studies on the Industrial
Internet-based EAM (Section 2). To our best knowledge and industrial investigations
across a wide range, the current research mainly focuses on the explicit technologies of
EAM schemes, while relatively few studies have focused on the comprehensive top-level
framework and implementation path. It hinders the application and synergy of Industrial
Internet technologies and platforms in the field of industrial EAM.

The research motivation and objective of this paper is to improve the capability of
complex system awareness and decision-making for EAM projects with Industrial Internet
technologies and to provide a reference for the top-level planning and effective implemen-
tation of different industrial enterprises. This study proposes a general reference model
and a reference architecture of implementation for the Industrial Internet Solution for
Industrial Equipment Asset Management (I3EAM). In addition, this study also develops a
set of performance indicators of I3EAM and a scheme selection method by using fuzzy the
DEMATEL-TOPSIS approach. A case study of its practice in an automated container termi-
nal project demonstrates the feasibility and efficiency of the proposed model, architecture,
and approach. In addition, the research results of this study have the potential to support
the construction of standard systems, and the planning and optimization of cross-domain
social platforms, etc.

The organization structure of this paper is arranged as follows. Section 2 conducts
a status review of the studies on Industrial Internet for EAM. Section 3 introduces the
main research methodology for a system analysis of I3EAM. In Sections 4 and 5, a general
reference model and a reference architecture of I3EAM in the social digitalization platform
are proposed and clarified, respectively. Section 6 introduces an effective method for
the evaluation and selection of the I3EAM schemes. In Section 7, a real industry case
study is conducted to validate the proposed model, architecture, and method. Finally, the
discussion, conclusions and future works of this study are given in Section 8.

2. Status Review for Industrial Internet and EAM

2.1. Related Concepts
2.1.1. Industrial Internet

In 2012, GE first introduced the concept of “Industrial Internet”. The Industrial
Internet was defined as the third wave in the development of the technological revolution.
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They defined the Industrial Internet as “the convergence of the global industrial system
with the power of advanced computing, analytics, low-cost sensing and new levels of
connectivity permitted by the internet”. Subsequently, GE, along with Cisco, Intel, AT&T,
IBM, and other companies, formed the Industrial Internet Consortium (IIC) [9]. The
IIC proposed the Industrial Internet of Things (IIoT) system and defined it as “a system
that connects and integrates industrial control systems with enterprise systems, business
processes and analytics” [12]. From the IIC’s reference architecture [12], the Industrial
Internet will serve multiple industrial sectors, covering the manufacturing, transportation,
energy, health care ones, and more. In China, in 2010, the Internet Society of China
proposed that they were “to take into account both consumer and production-oriented
Internet”. The Alliance of Industrial Internet (AII) regards the Industrial Internet as a new
industrial ecology, a key infrastructure, and a new application model. The AII proposed
that the core connotation of Industrial Internet is to realize the comprehensive connection
of the whole element, the whole industrial chain and the whole value chain through the
comprehensive interconnection of people, machines, and things. Industrial Internet System
Architecture 2.0 (China) [13], together with IIRA (USA) [12], RAMI4.0 (Germany) [14] and
IVRA (Japan) [15] have become the main reference architecture worldwide that are used to
guide the exploration and practice of Industrial Internet applications.

2.1.2. Equipment Asset Management (EAM)

Manufacturing companies are highly dependent on the proper operation of their equip-
ment assets to ensure good business operations [1,5,8]. The purpose of Equipment Asset
Management is to reduce the asset’s maintenance and repair costs, extend the asset’s life,
and improve the asset’s utilization [1]. Asset management is defined as “a set of strategic,
integrated and comprehensive processes (finance, management, engineering, operations and
maintenance) to obtain maximum lifecycle efficiency, utilization and return from physical
assets (production and operating equipment and structures)” [16]. An AM system can be
defined as “a system that plans and controls asset-related activities and their relationships to
ensure that asset performance meets the organization’s intended competitive strategy” [17]. In
practice, engineering asset management systems are increasingly focused on the full lifecycle
of the engineering assets [8,18–20]. The Asset Life Cycle Management (ALCM) approach was
proposed, which originated as a design philosophy and management principle in the U.S.
Department of Defense’s weapons and equipment acquisition process. The ALCM is used
to address the tension between reducing the lifecycle cost of the assets and improving the
asset’s utilization [19]. In general, the whole lifecycle of the equipment refers to the entire
process of designing and developing, producing, using, and safeguarding the equipment until
decommissioning it, and the material recovery stage [4,8,18,20]. El-Akruti et al. developed a
typical representation of the major asset-related activities in an organization, which provides
a comprehensive framework for fully defining the asset management system activities and
the relationships between the activities [1,17].

2.1.3. Smart Product Service System (SPSS)

Product service system (PSS) is a system of products, services, collaborative networks
of the stakeholders, and supporting infrastructure, which are jointly capable of creating
diverse functional and non-functional value economically and sustainably for the customers
(based on [21–23]). Tukker categorizes PSSs into three modes, i.e., product-oriented PSS,
use-oriented PSS, and result-oriented PSS [22]. After three industrial technology upgrades
have taken place: mechanization, electrification, and information technology, the era of
intelligence will soon come [24,25]. The products become Smart Connected Products (SCPs)
through advanced sensing and IoT technologies [25], such as smart machines. Based on the
concept of SCPs, Valencia et al. first proposed and defined the Smart Product Service System,
which is “a bundle of SCP and the generated smart services by leveraging SCP as the media
and tool, which is delivered to market for satisfying personalized needs of customers as
well as providing more environmental and social benefits” [26]. With a data and knowledge-
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driven approach, the SPSS is able to provide more powerful and flexible capabilities than
a traditional PSS can, including smart sensing, smart connectivity, smart analytics, and
smart delivery [27,28]. In response to the trend of the convergence of smart machines and
digital platforms, the German Academy of Engineering has proposed the concept of “smart
services and its ecologization” as one of the key strategic directions of Industry 4.0 [29].
Zheng defined the Smart Product Service Ecosystem (SPSE), from the system of systems
perspective, whereby the SPSE consists of six components, including relationship, user
experience, smart technologies, marketing, business models, and connections [30].

2.1.4. Social Digitalization Platform (SDP)

A digitalization platform is often used to describe a centralized system to help enter-
prises to become digital and improve the way organizations deliver value to the customers
and remain competitive [31]. Technology architecture upgrades are making digitaliza-
tion platforms a standalone business model that helps application companies to achieve
business–IT alignment by providing IaaS (infrastructure as a service), PaaS (platform as
a service), and SaaS (software as a service) solutions [31,32]. Based on the definition of
platform leverage logic (PLL) defined by Tian et al. [33] and the study of the typology of
“platform” in the literature [34–36], we extended the leverage rationale of digitalization
platforms to include production rationale, transaction rationale, customization rationale,
and innovation rationale. The difference between the customization rationale and the
innovation rationale is whether the platform is licensed for data sharing and utilization
when one is providing digitalization solutions [32,37]. In this paper, we focus on those
large, cross-industry, third-party digitalization platforms, and we refer to them as social
digitalization platforms (SDPs) [38]. SDPs are third-party Industrial Internet platforms
that can develop and deliver enterprise digitalization solutions for different industries
or domains [32]. SDPs have stronger technical resource pools, actor connectivity, and
system integration capabilities [36,37,39], while the PLL of the SDPs can be defined as being
“focused on building platform ecosystem based on the innovation leverage rationale, bring-
ing together solution suppliers, developers and users around digital servitization”. For
example, the “cross-industry and cross-region” Industrial Internet platforms in China [40],
e.g., Siemens MindSphere, GE Predix, etc., are typical SDPs.

2.1.5. The Relationship between Industrial Internet, EAM, SPSS, and SDP

(1) The relationship between industrial internet and EAM

Industrial Internet technologies can support various digitalization needs, including
Equipment Asset Management (EAM) [41]. EAM is a typical application scenario of In-
dustrial Internet that is used by manufacturing companies to improve their organizational
performance by establishing synergy links with the reliability of the equipment assets, key
business, and stakeholders [5]. Digitalization solutions based on Industrial Internet can
facilitate enterprise integration, industry chain collaboration and value chain extension
around complex equipment objects and EAM-related activities [4,5,41,42]. In this paper,
“Industrial Internet solution for industrial equipment asset management” is the core com-
prehensive concept which is used to represent a digital service solution for the EAM needs
of a specific enterprise (corresponding to the “digitalization service instance” in Figure 1).
For convenience, it is referred to as “I3EAM”.

(2) The relationship between Industrial Internet, EAM, and SPSS

A Smart Product Service System (SPSS) is regarded as a bundle of the business model and
a delivery system of I3EAM [30,43]. Diverse SPSSs will be developed for specific EAM-related
application scenarios, such as remote maintenance [43], service network configuration [44],
and design optimization [42], etc. The SPSS will include smart equipment, EAM-related digital
services, stakeholder collaboration networks, and supporting infrastructure [23,45]. Multiple
SPSSs will gradually form a smart product service ecosystem and create organizational benefits
by generating complex relationships and synergies [46].
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Figure 1. The relationship between Industrial Internet, EAM, SPSS, and SDP.

(3) The relationship between Industrial Internet, EAM, SPSS, and SDP

The digitalization platform uses Industrial Internet technologies to help companies to
realize their vision of digital servitization [36,47]. The Industrial Internet technology system
provides an open architecture for social digital platforms to build their platform ecosystem [34],
and it expands the organizational boundaries of platform-based enterprises [38]. Social
digitalization platforms (SDPs) focus on building their own Industrial Internet technology
platforms and provide customized EAM technical solutions and SPSSs for enterprises in
different industries through the use of business models such as IaaS, PaaS, and SaaS. At
the same time, SDPs will utilize interaction mechanisms (such as data sharing), external
innovation resource pools, strong system integration capabilities, and platform ecosystem
orchestration and governance to achieve better product/service innovation [32,37,46,47].

(4) What are the benefits of SDP for EAM?

The value of SDPs is reflected in four aspects, (1) reducing the cost of enterprise
digitalization and reducing repetitive and inefficient R&D; (2) facilitating data sharing and
utilization and enhancing cross-domain knowledge transfer to cope with a wide variety of
complex equipment and EAM business scenarios; (3) accelerating manufacturing enterprise,
industry chain and value chain integration and collaboration on the basis of reliability of
equipment assets and systems; (4) focusing on gathering solution providers, developers
and users to activate the innovation capability of the platform ecosystem.

2.2. Status of Key Technologies for EAM

As shown in Table 1, the advanced Industrial Internet technologies for EAM include
ten main aspects, including the key technologies for PHM such as data acquisition, signal
processing, fault diagnosis, health assessment, maintenance decision-making, and remote
monitoring, and co-maintenance. In data acquisition, sensing technology usually involves
13 types including the vibration, temperature, current, pressure, infrared, gas, sound, strain,
position, torque, image, video, and laser types, etc. Wireless transmission, large-scale
low-cost access, and intelligent edge acquisition are the main technical difficulties of the
current data acquisition processes. For signal processing, its main work is to improve
the signal-to-noise ratio through conducting data pre-processing, thus facilitating the ex-
traction and highlighting of fault characteristics. Around the vibration signal, a more
comprehensive vibration feature parameter library has been formed, including the time
domain, frequency domain, and time-frequency domain features of the vibration signal.
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The interpretable physical linkage between the signal processing and the feature extraction
is the key technology that is used to breaking through the machine condition monitoring.
For fault diagnosis, the solutions include historical data-based decision making, physical
model-based decision making, and data-driven decision making. On the one hand, the
threshold and physical model approaches are suitable for edge measurement time-sensitive
intelligent diagnostic operations. On the other hand, a wide variety of deep and shallow
neural networks are used for online fault diagnoses to explore more robust learning meth-
ods for nonlinear mapping relationships between the data and the anomalous patterns.
Thus, the physics, the data, and the expert experience are moving toward convergence,
together serving the accurate identification of an early fault diagnosis and generalized
migration across the devices. The core objectives in health assessment mainly include the
performance degradation assessment, health index (HI) construction, and residual useful
life (RUL) prediction of the machines. Monitoring the initial failure time and constructing
health indices by multi-sensing signal fusion are the main research directions. In addition,
the difficulty of obtaining full lifecycle data of complex equipment is a key challenge in
practice, and so scaling models and migration learning will be used in some application
scenarios. For maintenance decision making, fixed and empirical maintenance resource
management strategies need to be optimized in conjunction with new equipment condition
monitoring tools, such as optimized maintenance strategies based on equipment health
indices, reliability-based preventive maintenance strategies, etc. Other maintenance re-
source allocation strategies should also be considered, including the scientific spare parts
management, multi-skilled staffing, and overhaul of critical equipment allocation. For
remote monitoring and co-maintenance, new Industrial Internet technologies have been
applied to equipment operation and maintenance, such as cloud-edge collaboration, digital
twins, and AR, and VR.

Table 1. Literature review of advanced Industrial Internet technologies for EAM.

Category The State-of-the-Art Technologies Future Direction

Data acquisition

• Sensing technologies (13 types usually): vibration, temperature,
current, pressure, infrared, gas, sound, strain, position, torque,
image, video, laser, etc., [48];

• Informative sensor identification technologies [49];
• Multi-sensor fusion technologies [50,51].

Wireless transmission,
large-scale low-cost access,

intelligent edge acquisition, and
multi-modal information fusion

Signal processing

• Feature extraction methods: many signal features have been
proposed, especially for the vibration signal for critical
structural components (such as gear and bearing) [52],
including the time domain, frequency domain, and
time-frequency domain features [53,54];

• Main technologies: including methods for data of redundancy
[55], sparsity [56,57], and deficiency [58].

Interpretable physical linkage
of signal processing and

feature extraction [56]

Fault diagnosis

• Main research flow: fault diagnosis based on the historical data,
fault diagnosis based on the physical model, and data-driven
fault diagnosis;

• Main technologies: the threshold and physical model
approaches for time-sensitive scenarios [56,57], and a wide
variety of deep and shallow neural networks for more robust
learning and higher accuracy [59,60], including the CNN [61],
DNN [62], GAN [63], transfer learning [64], deep echo state
network [65], and GNN ones [66], etc.

Convergence of physics, data,
and expert experience for
higher accuracy of pattern

recognition [60,66]
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Table 1. Cont.

Category The State-of-the-Art Technologies Future Direction

Health assessment

• Main research flow: performance degradation assessment,
health index (HI) construction, and residual useful life (RUL)
prediction of machines;

• Main technologies: monitoring initial failure time [56] and
constructing health indices by multi-sensing signal fusion
[50,67], residual useful life (RUL) prediction based on physical
models [68], machine learning, deep learning (DBN [69], GRU
[70], TCN [71], and GNN [72], etc.), and fusion models [73], and
transfer learning for RUL prediction with data from similar
objects [74], simulation [75], or scaling models.

Powerful public data sets [76],
cross-scenario adaptive learning
methods, and health assessment
with consideration of multiple

maintenance influences [77]

Maintenance
decision-making

• Main maintenance modes: condition-based maintenance,
preventive maintenance, predictive maintenance,
cognitive maintenance;

• Main maintenance decision-making problems: the main
research problems include ageing probabilistic risk/safety
assessment [78,79], cost estimation [80], maintenance policy
selection and optimization [81–83], maintenance outsourcing
and leased manufacturing [84,85], spare parts management [86],
multi-skilled staffing and scheduling (resource dynamic
allocation) [87], overhaul and retrofitting decision-making for
critical, complex equipment [88], etc.;

• Main methods and technologies: stochastic model, Markov
process modelling, Bayesian network, probabilistic relational
model, multi-criteria decision-making (MCDM) methods,
mathematical programming model, D-S theory, evolutionary
algorithms for NP-hard problems.

Joint optimization for effective
equipment maintenance in the
integrated environment with

multi-component systems [86],
multi-state systems, and
multi-layer systems [78]

Remote monitoring
and co-maintenance

• Edge-cloud collaboration technologies: task offloading for
time-sensitive PHM scenarios [89], online PHM with
incremental learning [90];

• Digital-twin-based technologies: digital-twin-driven PHM
approach [91], digital twin-driven cooperative awareness and
interconnection framework for total factors of maintenance
decision-making environment [6], DT-based equipment
lifecycle management [4], DT-based maintenance cost joint
optimization [92];

• AR/VR-based technologies: smart asset management functions
(monitoring, recognition, positioning, classification, instruction,
prognosis, optimization, and their combinations) and
human–machine collaboration [93,94].

Real-time synchronization,
multi-discipline, multi-scale,

faithful mapping, and
high-fidelity modelling for

complex equipment and
maintenance decision-making

environment [6]

Service network
setting

and optimization

• Maintenance network design and planning [95];
• Service network modelling [44];
• Robustness of maintenance service networks and adaptive

mechanisms [96].
Technology-driven business
model innovation for data
sharing and utilization [97]Knowledge sharing

and privacy
preservation

• Maintenance decision making oriented cross-organization
knowledge sharing blockchain network [46];

• Privacy-preserving PHM framework [97].
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Table 1. Cont.

Category The State-of-the-Art Technologies Future Direction

Equipment
optimization

driven by
reliability data

• Reliability data for equipment lifecycle [42], equipment design
[98,99], and others [100].

Joint optimization model and
algorithm design which is

driven by various collaborative
scenarios, missions and

utility goals [101]Business optimization
driven by

reliability data

• Uncertainty modelling and business optimization [102];
• Mission reliability-driven functional healthy

state modelling [101];
• Social network of collaborating industrial assets [103];
• Collaborative prognostics in social asset networks [104].

As shown in Table 1, there are also some other important research streams in key
technologies, including service network setting and optimization, knowledge sharing
and privacy preservation, equipment optimization that is driven by reliability data, and
business optimization that is driven by reliability data.

2.3. Status of Industrial Application for EAM

In the terms of the application object, Industrial Internet technologies have been widely
used in numerous industrial fields and industrial equipment types, including the bearings and
gears of general rotating machinery [6,62,63,71,72], CNC machining centers [84,89], aircraft gas
turbine engines [51,105], aircraft turbofan engine [68,70,73], sea port equipment [77], complex
electromechanical systems [79], train bogies [80], and wind turbines [91], etc. Aiming at
the functional requirements of EAM, different industries and equipment objects show large
differences, including differences in data acquisition, signal processing, fault diagnosis, health
management, maintenance decisions, and collaborative operations. Therefore, it is essential to
customize the technical solution according to the actual needs.

In the term of the decision support system for PHM (Prognostics and Health Manage-
ment), the typical EAM technical solution suppliers include MindSphere, Predix, ROOT-
CLOUD, Thingswise iDOS, and so on. Currently, most Industrial Internet platforms have
established their EAM-related services and solutions. Table 2 provides a brief overview
of the typical Industrial Internet platforms, as well as their EAM technical solutions and
industrial applications. In addition, several scholars have provided systematic insights for
the development of decision support systems for PHM. Lee et al. proposed a PHM system
design and implementation methodology that includes the Streamline, Smart Processing,
Synchronize and See, Standardize and Sustain stages [2]. Meanwhile, the data, predictive
techniques, information management with visualization tools, standards, and closed-loop
management systems are considered to be key elements of the decision support systems
for equipment operation and maintenance [2]. Tao et al. introduced digital twin (DT)
technology for the PHM of complex equipment [91]. Based on five dimensions: physical
entities, virtual models, service activities, data, and connectivity, a componentized PHM
system has been designed and performed for unified management and on-demand use [91].
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Table 2. A brief overview of typical Industrial Internet solutions and applications for EAM.

Name of the Industrial
Internet Platform

Technical Framework and Its Characters Industrial Application

Siemens MindSphere

• Cloud-based Open IoT Architecture: including three main
layers: MindConnect, MindCloud, and MindApps;

• Edge-cloud collaboration, digital twin, and low-code
industrial service development capabilities;

• Abundant common application components for Equipment
Asset Management.

Aerospace and defense,
automotive and transportation,
electronics and semiconductors,

heavy equipment, and
industrial machinery, etc.

GE Predix

• Asset Performance Management (APM) Software: featuring
Digital Twin analytics, work process automation and built-in
GE industry expertise.

Energy, paper and pulp,
chemical, mining and

metallurgy, and fertilizer, etc.

Microsoft Azure

• Secured reliable computing and industrial IoT solutions (from
chip to cloud);

• Powerful machine learning capabilities, edge intelligence
solutions, and software ecosystems.

Transportation and logistics,
industrial robot, casting,

elevator, and food and drink
industry, etc.

SANY ROOTCLOUD

• Powerful connectivity (supporting 1100+ common industrial
protocols and protocols customization);

• Powerful modelling capacity (multi-level nested models for
equipment: abstract thing model, thing model, basic elements
of thing model, thing instances);

• Mature business model of product service system.

Industrial machinery, discrete
manufacturing, steel and

non-ferrous metal, chemical,
and mining industry, etc.

CASICCloud INDICS

• INDCIS + CMSS: Industrial Internet social platform + Cloud
manufacturing support systems;

• Supporting 21 types of scenarios of equipment data collection,
including machining, welding, and simulation, etc.;

• Safe, autonomous and controllable.

Aerospace, electronics,
machinery, and automotive

industry, etc.

You-Ye Thingswise iDOS

• A unified and loosely coupled system architecture and reuse
of general technology components;

• Powerful industrial mechanism modeling capacity.

Process manufacturing
industries including energy,

metallurgy, and material
processing, etc.

3. Research Methodology

3.1. Method of System Engineering Analysis

In this paper, each particular Industrial Internet Solution for Industrial Equipment
Asset Management (I3EAM) is considered as a complex artificial system that helps the
companies to achieve business–IT alignment in the EAM domain. The development of a
generic system model and customized implementation path for I3EAM is the research goal
of this paper. The I3EAM functions for a specific enterprise’s needs will be the functional
subset of the generic system model, while the social digitalization platform will provide
the Industrial Internet technology system support for the customized I3EAM. The system
engineering analysis method can deal with the complexity and integrity of the system,
involving the system’s elements, input, output, hierarchical structure, information inter-
action, and self-feedback mechanism, etc. To provide a multi-faceted and comprehensive
description of the I3EAM system, three dimensions is defined from the Industrial Internet
element (II), Industry (I), and EAM activities. The system engineering analysis was used to
explore the customization-oriented implementation path.
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The general steps of the systems engineering analysis approach include clearing the
questions, selecting the objectives, system synthesis, system analysis, scheme establishment,
making a decision, and putting it into practice. Complex systems can be built successfully
by using the system engineering processes of definition, planning, assessment, implementa-
tion, and feedback in accordance with the fictitious visions and actual needs. In this paper,
the seven specific steps of system engineering analysis are shown below.

(1) Step 1: Clear the questions (from trends and visions to demands)

EAM has become an important application scenario for Industrial Internet applications
and the digitalization of manufacturing companies. From a technical perspective, new
decision theories and technologies around Equipment Asset Management are constantly
being developed. However, there is still a lack of system framework models around EAM
in the existing literature, which hinders the precise matching of the academic research
results to the industrial application needs. In terms of the service scenarios, the value of
asset management extends to the full lifecycle of the equipment and business decisions
of the enterprise organization. Equipment interconnection, deeper multi-level system
integration, and business model innovation are promoting the creation of diverse scenarios
and product service systems. From an industrial application perspective, the demand for
EAM in SMEs is very active, but the backward digitalization level of the SMEs cannot
support the realization of the business–IT alignment. Common models and implementation
paths need to develop for supporting the customization of solution, and they will facilitate
the functional improvement and synergy of the Industrial Internet platforms.

(2) Step 2: Select the objectives (from demands to goals and measurement criteria)

The objective of this paper is to develop a generic reference model and implementation
architecture for the customization of I3EAM in social digitalization platforms by using the
technical architecture of Industrial Internet. Our goals are focused on exploring a systematic
technical solution that meets the current state and application needs of EAM, involving
break throughs in the connection of heterogeneous equipment, industrial cloud platform,
industrial big data engine, industrial modelling and simulation methods, information
models for collaborative, and service system planning and development.

(3) Step 3: System synthesis (from goals to investigations and plans in detail)

In order to achieve the selected objective above, we needed to investigate, review, and
refine the target system’s status quo and plan in a comprehensive manner. This process is
similar to the classical approach of Business Process Reengineering, where the investigation
of the current situation is considered as the process of acquiring the “as-is” of the system,
while the development of the detailed plan is considered as the process of acquiring the
“to-be” of the system. Our research path is presented as a combination of scientific research,
industrial practice, and a case study, and it consists of four phases.

1. The first stage was to summarize and analyze the existing literature on Industrial Internet-
based technologies and solutions for Equipment Asset Management (Sections 2.2 and 2.3)
and deduce the application status of I3EAM in different industries.

2. The second stage was to perform a detailed on-site investigation of the digitalization plat-
forms and enterprises in different industries and analyze the industrial demand of I3EAM
to obtain its constituent elements, functional modules, and their interaction relations.

3. The third stage was to plan and design the general model and the reference archi-
tecture of co-implementation path, which leverage the research results of the system
architecture of Industrial Internet. This stage is the most crucial stage, which is divided
into six sub-steps as follows:

• Sub-step 1: Planning for the resource and edge layer of I3EAM;
• Sub-step 2: Planning for the infrastructure and platform layer of I3EAM;
• Sub-step 3: Planning for the big data engine layer of I3EAM;
• Sub-step 4: Planning of the modelling and simulation layer of I3EAM;
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• Sub-step 5: Planning of the information model for integration and collaboration
layer of I3EAM;

• Sub-step 6: Planning of the organization, business, and service layer of I3EAM.

4. The fourth stage was to select the representative enterprises in typical areas as a case
study and verify the reference model and detailed implementation steps of I3EAM, while
helping those enterprises with the digitalization solution to achieve a top-level design
and platform partner selection. Finally, the customized I3EAM usually can achieve
industrial profit from operation cost reductions or the expansion of service capacities.

(4) Step 4: System analysis (from designed system to performance metrics)

The planning and design work derives a sophisticated system and a methodology for
system implementation, including (1) a general reference model (Section 4) and (2) a refer-
ence architecture for the implementation path (Section 5). The system and methodology
provide a comprehensive, multi-perspective overview of and guidance on the implemen-
tation of I3EAM in different industries. In addition, a set of performance metrics were
established in order to evaluate the performance of the system implementation (Section 6.1).

(5) Step 5: Scheme collection (to collect and compare the I3EAM based on different SDPs
according to the needs of the special enterprise)

I3EAMs based on specific enterprise needs are the subsets of the function and instances
of the general system model. SDPs differ significantly in terms of technology, service,
ecosystem, and industrial application (Section 2.3). Therefore, there are multiple potential
I3EAM schemes that can meet the needs of the enterprises, but they differ in terms of
their performance, cost, etc. This step focused on collecting feasible solutions from these
potential digital service providers and evaluating the solutions according to the metrics
framework that is presented earlier in this paper.

(6) Step 6: Make a decision (to select an SDP partner for co-implementation with a group
decision-making process)

In the set of feasible solutions, the optimal feasible solution is selected based on the
special needs, decision preferences, and decision constraints of the enterprise. A group
decision-making process was performed for solution evaluation and partner selection, and as
well as this, the methods of fuzzy DEMATEL and TOPSIS were used to analyze the correlation
between the performance metrics and to find the ideal approximate solution (Section 6).

(7) Step 7: Put it into practice (to customize and co-implement the I3EAM, and to build feed-
back mechanisms between the industrial practices and the reference model/architecture)
According to the results of the above decision, the plan was implemented, including:

1. A reference model of I3EAM in the marine engineering equipment industry
(Section 7.1);

2. A reference architecture of implementation path for I3EAM in marine engineer-
ing (Section 7.2);

3. The selection of the SDP partner for I3EAM co-implementation in marine engi-
neering (Section 7.3).

3.2. The System Model for the Research of I3EAM

As shown in Figure 2, a system model is put forward, and it was used to conduct
research of I3EAM with the support of the social digitalization platform. According to the
method of system engineering above, the system model consists of the input, the system
environment, the system structure, the output, and the system function.
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Figure 2. The system model for the research of I3EAM.

Firstly, as the input of the whole system, the I3EAM unit is proposed with three
dimensions, which are basic and independent, namely, the Industrial Internet element (II),
Industry (I), and the EAM-related activities (EAM), respectively. On the basis of the
Industrial Internet elements, I3EAM is designed for achieving the digitalization of the
EAM-related activities following the special needs in different industries.

Secondly, the system environment I3EAM is the digitalization platform because Indus-
trial Internet platform (IIP) provides the implementation foundation for I3EAM. Referring
to Industrial Internet System Architecture 2.0 [13], the hierarchy of the IIP includes the
resource and edge layer, the infrastructure and platform layer, the big data engine layer,
the modelling and simulation layer, the information model layer, and the organization,
business, and service layer.

Thirdly, the I3EAM unit and system environment jointly induce the system structure
of I3EAM, which is mediated by a digital twin-based metamodel for complex equipment.
The system metamodel is comprised of the physical entity, the virtual object, the digital
twin data, the interaction, and the service. Meanwhile, the hierarchy of the Industrial
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Internet platform embodies the system support for five types of elements (corresponding
to the system metamodel) and a unified cloud platform environment.

Next, as the output of the whole system, an overall framework of I3EAM implemen-
tation is given in a detailed manner after the system synthesis. The framework involves
two parts, a general reference model for I3EAM and a general reference architecture of the
implementation path for I3EAM.

Lastly, the overall framework above produces the targeted system function, to achieve
the growth of the capacity of the social digitalization platforms for the customization of
I3EAM and to accelerate the business–IT alignment for the special EAM-related needs
in various industries. Additionally, based on a set of performance metrics, the system
model can help different enterprises to select their digitalization platform partner for the
co-implementation of I3EAM.t

4. A General Reference Model of I3EAM in Social Digitalization Platform

Based on the I3EAM unit, the general system model of I3EAM is defined in three
dimensions: the Industrial Internet element (II), the Industry (I), and the EAM-related
activities (EAM). The three dimensions have good independence and avoid the ambiguity
of description. Meanwhile, the three dimensions cover the core concerns of I3EAM, in-
cluding the core content of the model (corresponding to the Industrial Internet element (II)
dimension), the object served by the model (corresponding to the Industry (I) dimension),
and the scenario-based value of the model (corresponding to the EAM-related activities
(EAM) dimension). As shown in Figure 3, we made full use of the existing architectural
research results to refine and elaborate the three dimensions.

 

Figure 3. A general reference model of I3EAM in social digitalization platform.

(1) Dimension 1: Industrial Internet element (II) dimension

The Industrial Internet element (II) dimension defines the system metamodel for
I3EAM, including the physical entity, the virtual object, the digital twin data, the interac-
tion, and the service. This dimension is a reference to the digital twin general model of
complex equipment [91], while we expand on the details of the metamodel. The essence of
digitalization is to create parallel control systems for specific systems, including sensing,
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modelling, and managing physical entities, information flows, and social relationships [106].
The physical entity metamodel consists of the function/mission model, the functional sub-
systems, the sensory systems, and the environmental systems. The virtual object metamodel
consists of the geometry model, the physics model, the behavior model, and the rule model.
The digital twin data model includes the data from the physical entities, the virtual objects,
and the services, while the domain knowledge and fused data are also the parts of the data
model. The service metamodel comprises the function model, the context model, the I/O
model, the QoS (quality of service) model, and the state model, etc. Finally, the interaction
model builds the bridges among the different models. As described in Section 5, this
dimension helps the general reference model to establish a direct mapping to the Industrial
Internet architecture [13].

(2) Dimension 2: Industry (I) dimension

The research objective of this paper is to develop a general reference model that used is
across various industry sectors for I3EAM customization in social digitalization platforms.
The Industry (I) dimension includes, and is not restricted to, electric power equipment, avi-
ation and aerospace, marine engineering and ship, advanced rail transportation equipment,
agricultural machinery equipment, automobile, high-end CNC machine tools and robots,
biomedical equipment, and other industries.

(3) Dimension 3: EAM-related activities (EAM) dimension

Digitalization needs to rely on explicit business activities in order to generate a
scenario-based value. In this paper, we propose a comprehensive EAM-related activ-
ity model for the system structure analysis of I3EAM to support the modular design of
model and service functions. The EAM functional requirements of a specific enterprise are
a functional subset of the EAM-related activity model. The EAM-related activities (EAM)
dimension is divided into three types of activity, including the equipment asset lifecycle
management activities [8], the business collaboration activities [5,6], and the supporting
activities [1,17]. The equipment asset lifecycle management activities are further split into
the activities in the phases of R&D, manufacturing, using, safeguarding, decommissioning,
and material recovery [4,8,18,20,42]. Business collaboration activities are derived from the
hierarchy of system integration [5,14], including the station, the work center, the production
line, the enterprise, and the connected collaborative network [78,103,104]. According to the
literature [17], the supporting activities for EAM consist of various EAM-related planning
and control activities in the level of strategy, integration, and operation. The analysis of
the activity will help to effectively locate and identify the tangible and intangible system
elements with interpretable links to organizational performance and business goals [5].

5. An Implementation Path of I3EAM in Social Digitalization Platform

5.1. Overall Planning: A General Reference Architecture of Implementation Path

Six layers of I3EAM were derived from the metamodel, corresponding to the five
dimensions of the DT model and the generic cloud computing architecture. As illustrated
in Figure 4, each layer is considered to be necessary and harmonious, serving to provide
common solutions for building digital twins and parallel management systems for complex
equipment. The industrial edge layer enables the sensing and control of the physical entities
of complex equipment and their environments. The industrial cloud platform will facilitate
the flexible matching of heterogeneous computing resources and needs, as well as establish
connectivity between the edge devices and the industrial services. Industrial big data and
prior knowledge will support the creation of “life-like virtual objects or digital models” of
complex engineering systems. Meanwhile, complex coupling optimization mechanisms
for the equipment and its environment will be better identified and presented in the cycle
of data collection, modeling, simulation, and collaborative interaction. In the context of
evolving business goals and organizational performance, data-driven services will support
the generation of better planning and control strategies and solutions, dynamically. Each
layer will be clarified in detail in Section 5.2 through Section 5.6.
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Figure 4. A general reference architecture of the implementation path for I3EAM in SPD.

5.2. Step 1: Planning and Designing of Industrial Resource and Edge Layer

As shown in Figure 5, industrial equipment usually consists of three main categories
based on predefined functions or missions: product equipment, production equipment,
and non-production equipment. The equipment needs to be maintained in a reasonable
interval of physical state during its operation to ensure the reliability of mission execution.
The monitoring of the equipment status needs to be based on an understanding of the func-
tional subsystems and a reasonable arrangement of sensing control schemes. For specific
scenarios, non-physical signals as well as time-sensitive requirements are incorporated into
edge solutions. There are tens of thousands of industrial buses or protocols with private
controllers for automation devices around the world, with less than 15% of the general pur-
pose PLCs and more than 60% of the “dumb” devices. Therefore, the edge solutions should
provide “plug-and-play” capabilities with technology options for sensing and networking.
The industrial edge layer includes low-cost sensor solutions for different system levels
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and signal types, as well as smart gateways that support a variety of industrial protocols.
The industrial protocols include three categories: (1) General communication protocols:
4G, 5G, TCP/IP, Wi-Fi, NB-IoT, ZigBee, Bluetooth, Wired Network, etc.; (2) Mainstream
industrial protocols: OPC-UA, IEC10x, IEC61850, Modbus, LT645, DNP3.0, CDT, Open
Protocol, MQTT, CoAP, DataExchange, etc.; (3) Other specialized or custom protocols. In
addition, edge computing solutions are introduced in the cloud-edge collaboration solution
of the industrial cloud platform in the next section.

 

Figure 5. Industrial resource and edge layer.

The industrial cloud platform system provides all of the necessary computer system
resources for I3EAM. Due to the scalability of cloud-based computing resources, the
platform that is here is not a single software system. The industrial cloud platform may
involve multiple subjects and multiple layers of computer resources, including the edge
computing systems, the enterprises’ local OT/IT systems, the enterprise-level Industrial
Internet platforms, and the cross-industry third-party service providers. The industrial
cloud platform consists of a cloud-edge collaboration layer, an IaaS (Infrastructure as a
service) layer, a PaaS (Platform as a service) layer, and a SaaS (Software as a service) layer.

The cloud-edge collaboration layer will utilize the time-sensitive response capability
of the edge side (e.g., real-time equipment monitoring) and the powerful back-end comput-
ing (e.g., big data analysis), and unified configuration capability (e.g., computer resource
allocation) is measured by the cloud platform. The core of cloud-edge collaboration lies in
selecting reasonable distributed resource and function configurations according to the appli-
cation scenarios and establishing a collaborative link among the cloud, edge, and end points.
The cloud-edge collaboration includes resource collaboration, service collaboration, and
application collaboration. Through the abstraction of hardware resources such as underly-
ing devices, it realizes the convenient deployment, communication, operation, and whole
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lifecycle management of the infrastructure resources, service components, and application
software on both sides of the cloud and the edge. As shown in Figure 6, the cloud-edge
collaboration layer includes edge data collection strategies and edge computing schema.

 

Figure 6. Industrial cloud platform layer.

5.3. Step 2: Planning and Designing of Industrial Cloud Platform Layer

The IaaS layer provides infrastructure involving computing, storage, networking,
and virtualization. The PaaS layer offers the technical architecture of the industrial cloud
platform and the common capabilities for platform resource deployment and management,
and it supports the integration of industrial big data systems and microservice component
libraries. To establish the digital platform for the group-type company or cross-industry
service provider, a strong PaaS layer is required to provide infrastructure services for wider
access to the edge devices and industrial services. A flexible service-oriented technology
architecture is created by combining containers and microservices. Simultaneously, in order
to better handle the diverse computer system resources and microservice requirements, the
platform offers a number of common services such as resource management, environment
management, configuration management, load balancing, and an API gateway. In a larger
range of application scenarios, service grids are used to control the service communication
crisis that is caused by the increased business complexity. Finally, as described subsequently
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in Sections 5.2 and 5.7, the SaaS components or industrial APPs will create direct value for
business scenarios and users. The industrial cloud platform will promote the formation of
industrial APP ecosystems with the toolchain of industrial APP development and operation
and business model innovation.

5.4. Step 3: Planning and Designing of Industrial Big Data Engine Layer

The remote sensing data of equipment through I3EAM has the characteristics of multi-
source, massive and heterogeneous. On the one hand, the platform must construct a data
management and governance system, to realize the effective and real-time management
of the equipment data and to provide unified, complete, standardized, and visible data
resources for various data application projects and data analysts. On the other hand, the
platform must provide rich data service functions to improve the efficiency of the users’
access to data and the level of the data that they are using. As illustrated in Figure 7, the
industrial big data system provides data sources, edge connections, data collection, data
processing, data services, and portals. Different data sources should use appropriate edge
access solutions, data collection strategies, and data quality standards in accordance with
the data volume, data characteristics, and real-time requirements. Different databases are
interconnected through the middleware, and ETL (Extract–Transform–Load) formation is
developed to support data processing and integration. Based on microservices and industrial
APPs, the platform should provide the users with self-service and convenient data services
and support the users’ secondary development activities based on the data resources.

 

Figure 7. Industrial big data government and service layer.

5.5. Step 4: Planning and Designing of Industrial Modeling and Simulation Layer

Constructing a digital twin and parallel management system for complex equipment
requires data insights and prior knowledge. The mechanistic models and common methods
that have already been developed in the PHM field serve as the foundation for model
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encapsulation and the development of microservice libraries. As shown in Figure 8, I3EAM
should build modeling and simulation systems related to Equipment Asset Management
(EAM) in the Industrial Internet platform environment to reduce the time and cost of
building the models for complex equipment with different properties and behaviors. The
proposed modeling layer contains five types of analytical models: the descriptive, diagnos-
tic, predictive, prescriptive, and cognitive analysis models. From the functional perspective
of the models, I3EAM needs to consider other decision issues related to human factors and
reliability of integrated systems in addition to the models in the PHM domain.

 

Figure 8. Industrial modeling and simulation layer.

Simulation has great potential for application in the area of equipment operation and
maintenance, but it is limited by the cost of constructing high-fidelity digital models and the
acquisition of rare fault data. Digital twin technology is facilitating the convergence of physical
models, data models, and prior knowledge. The interaction between the physical entities
and the virtual mirrors will be rolled up and optimized through generalized autoregressive
models, and this will improve the effectiveness of equipment operation and maintenance
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decisions based on collaborative computing and consistency checks. The I3EAM simulation
layer contains the equipment configuration, the physical simulation, the hybrid simulation,
the digital twin-based simulation, and the CPSS-based simulation. Social factors such as the
business’ processes, the human factors, and the organization, likewise, need to be defined
by the software and integrated with the physical dimension of the model. For example, the
impact of the manual operation of maintenance on the condition and residual useful life (RUL)
of the equipment is ignored in most of the equipment PHM work.

5.6. Step 5: Planning and Designing of Industrial Information Model Layer

Here is an example from the steel industry to illustrate the objective and function of the
industrial information model and collaboration layer. The inability to cooperatively optimize
the equipment and accessories is caused by the lack of equipment operation and maintenance
(O and M) data for the key steel production equipment that is owned by the steel mill
(the equipment owner) and the outsourced equipment O and M vendors. The equipment
manufacturers and lubricant companies want to obtain these data, but the equipment owners
lack the motivation to collect and share it. Likewise, due to the intellectual property, it might
be challenging to exchange the equipment design data and lubricant formulation data with
the manufacturers or other stakeholders to improve the equipment maintenance models. The
main purpose of the information model layer is to build safe and interoperative industrial
information integration models, technology solutions, and collaborative systems in order
to lower the barriers of knowledge transfer and collaboration to meet the challenges of new
equipment, conditions, and scenarios. Federal learning and the blockchain are considered to
be potential integration technology directions. In addition, information model mapping for
heterogeneous devices and information systems in the cloud-edge collaboration framework
is necessary. For example, the OPC-UA’s information modeling framework supports the
integration of information models and protocols, allowing the direct modeling and transfer of
semantic data through user-specified data formats. Based on the correspondence between the
ontology model and the information model, the information is obtained from the device/edge
node by semantic reasoning, and then, the device information model is exposed to the
network through the OPC-UA server.

5.7. Step 6: Planning and Designing of Industrial Organization, Business, and Service Layer

Equipment assets are particularly important in industrial companies, and they are
closely linked to production activities and profit generation. Industrial Internet technologies
support Equipment Asset Management solutions for an increasing number of industrial
enterprises. As shown in Figure 9, the service logic of I3EAM based on the Industrial
Internet platform is first expressed using a simple concept diagram. The equipment
reliability is associated with business goals and organizational performance in different
dimensions and at different levels. Therefore, the service function requirements and
the development of industrial APPs will be closely focused on the planning and control
activities related to Equipment Asset Management. In the previous studies of decision
support systems, the meta-model of service scenarios is missing or one-sided. In this
paper, a service catalogue is given to cover the planning and control activities related to
Equipment Asset Management at the strategic, integration, and operational levels based
on the proposed AM framework in the literature [17]. Meanwhile, the EAM APP catalog
of I3EAM is expected to be consistent with the service catalogue to provide a systematic
solution for Equipment Asset Management in industrial enterprises.
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Figure 9. Industrial organization, business, and service layer.

6. Evaluation and Selection of I3EAM Schemes Based on Fuzzy DEMATEL-TOPSIS

6.1. The Establishment of Performance Metric Set for I3EAM Scheme

The core objective of this paper is to help enterprises to customize I3EAM using social
digital platforms. The generic model and reference architecture provide effective guidance
for identifying the requirements of I3EAM and planning the implementation path of I3EAM.
However, there may be multiple social digitalization platforms to choose from around
the specific needs of enterprises, and the I3EAM solutions that they offer have various
characteristics. Therefore, based on the systematic synthesis, a set of performance metrics
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need to be constructed to help the enterprises to evaluate different solutions according to
their preferences. The company will finally obtain an optimal solution, and the selected
social digital platform will become the digital partner of the company to implement I3EAM
together. The I3EAM evaluation system is crucial for EAM business–IT alignment for all of
the types of enterprises, but it has not yet been studied and proposed.

The construction of I3EAM is a complex system-engineering project. The generic
model and reference architecture focus on the identification of functional instances and
architectural design, but they cannot completely reflect the performance of I3EAM in terms
of its feasibility, capability, and ecology. Establishing an evaluation system for I3EAM
will help identify the weak connections between the requirements, the solutions, and the
platform partners more accurately and comprehensively, and increase the value created
by the joint implementation of I3EAM. When designing and building the performance
metric set for an I3EAM scheme, multiple factors and platform leverage logics need to be
taken into account, such as the scheme’s feasibility, the requirement coverage level, the
technical capability, the application benefits, and the potential value in the medium and
long term. Based on the research of the system model and enterprise requirements, this
study proposes a performance metric assessment framework for the I3EAM scheme and
its corresponding social digitalization platform. The framework was designed from three
dimensions, including the basic platform service attribute, the technical capacity for I3EAM,
and the value of the platform application and ecology synergy, as well as fifteen specific
second grade indicators which are presented, as shown in Table 3.

Table 3. Performance metric set for I3EAM scheme.

First-Grade
Indicator

Second-Grade
Indicator

Explanation of the Indicator

Basic
platform
service

attribute
(B)

B1: Talent guarantee

Whether the platform constructor has the necessary industry technology and
IT technology capabilities;

The number of professionals engaged in the platform
construction and operation;

The coverage of the professionals’ fields (knowledge and skills for ICT, specific
industrial fields, and platform ecology construction &and operation).

B2: System
Security guarantee

Whether a management system of information security has been built, and
whether the hidden dangers can be controlled;

Whether effective countermeasures of information security
have been constructed;

The adoption of technologies for networking security, data security, and
industrial access security, etc.

B3: Cost of
digitalization service The level of the total cost for the implementation of I3EAM.

Technical
capability
for I3EAM

(T)

T1: IT resource
management capability

The comprehensive performance of IT infrastructure resources (including
computing, storage, and network), and the capabilities of cloud-based

management and scheduling of IT resources.

T2: Industrial equipment
adaptation capability

The capability of connection of heterogenous equipment asset resources
(including type, sensing scheme, gateway, protocol, and cloud-edge

collaboration scheme).

T3: Industrial big data
engine performance

The comprehensive performance of industrial big data engine (including data
acquisition, data processing, and data service and portal).

T4: Industrial modeling and
simulation service

capability

The capability of modeling and simulation for Equipment Asset Management
(including intelligent algorithms, industrial mechanism models, industrial

domain knowledge, digital twins schemes, and human–machine interactions).
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Table 3. Cont.

First-Grade
Indicator

Second-Grade
Indicator

Explanation of the Indicator

T5: Microservice development
and government capability

The application level of microservice technical architecture, including
capability maturity for microservice development and governance,

the number and type of the EAM-related microservice, and the coverage of the
needs of I3EAM.

T6: Development
environment supporting

The potential for custom development, secondary development and ongoing
development of the microservices and industrial APPs (including cost of
learning, low-code scheme, the friendliness level of user interfaces, and

development toolchain).

T7: Scheme
technical

architecture
performance

The comprehensive performance of the technical architecture for I3EAM,
namely the combination and integration scheme of the platform basic services,

EAM-related microservices and industrial APPs.

T8: System
integration and

collaboration
capability

The level of compatibility and interoperability with enterprise information
systems, the degree of standardization of information models, and the

capability of middleware services.

Value of
platform

application
and

ecology
synergy

(A)

A1: Platform scale and activity
The platform scale and activity, including the user scale, user activity,

developer scale, developer activity, service provider scale, service provider
category, and service provider capability level.

A2: Platform application value
The application level of the platform (including the number and type of

long-term served industries, and the number and type of long-term served
industrial scenarios related to EAM).

A3: Open and
sharing mechanism

Whether the platform has the mechanisms and tools for data and knowledge
sharing and utilization across the various users and fields.

A4: Platform ecology value
The ecology synergy effect of the platform (including the synergy

effect in group company, global company, value chain, industry chain,
and platform ecosystem).

The dimension of the basic platform service attribute includes three aspects, namely,
(1) the talent guarantee, (2) the system security guarantee, and (3) the cost of the digital-
ization service, which are used in order to evaluate the feasibility of the implementation
scheme and the basic service capability of the digitalization platform. The dimension of the
technical capability for I3EAM is comprised of eight aspects, including (1) the IT resource
management capability, (2) the industrial equipment adaptation capability, (3) the industrial
big data engine capability, (4) the industrial modeling and simulation service capability,
(5) the microservice development and government capability, (6) the development environ-
ment supporting, (7) the scheme technical architecture performance, and (8) the system
integration and collaboration capability. The performance of technical capability is the core
part of the assessment metric, and its objective is to provide a quantitative evaluation of
I3EAM on the basis of the previously mentioned general model and reference architecture.
The dimension of value of platform application and ecology synergy involves four aspects,
namely, (1) the platform scale and activity, (2) the platform application value, (3) the open
and sharing mechanism, and (4) the platform ecology value. This dimension is proposed for
assessing the application benefits and potential value of the chosen digitalization platform
in the medium-to-long term.

In addition, for the sake of conciseness in the subsequent expressions, we assigned
tags to each indicator, i.e., B1–B3 for the dimension of a basic platform service attribute,
T1–T8 for the dimension of a technical capability for I3EAM, and A1–A4 for the dimension
of a value of platform application and ecology synergy.
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6.2. The Approach to Evaluate and Select I3EAM Schemes Based on Different SDPs

In this section, a hybrid approach combining fuzzy DEMATEL and fuzzy TOPSIS
is proposed for evaluating the I3EAM schemes based on different social digitalization
platforms and the selection of the best scheme and co-implementation partner (the SDP
which provides the best I3EAM scheme). The computational steps of our hybrid approach
are clarified as follows:

(1) Step 1. Establishing fuzzy number and determining the linguistic variables

According to the fuzzy set theory, it is indicated that the elements have a degree
of membership in a fuzzy set. A triangular fuzzy number (TFN) is defined as a fuzzy
number whose membership function fã(x) : R → [0, 1] is equal to following Equation (1).
Additionally, the TFN can be denoted as ã = (l, m, u), where l ≤ m ≤ u.

fã(x) =

⎧⎪⎨⎪⎩
0, x< l or x >u

x−l
m−l , l ≤ x ≤ m
u−x
u−m , m ≤ x ≤ u

(1)

In order to design the questionnaire for collecting the decision makers’ judgements, the
linguistic terms and its variables were defined. In this paper, the computational technique
is based on the following membership function of linguistic scale which has been defined
in the literature [107] (as shown in Table 4). We used this kind of expression to evaluate
the dependent influence between each two performance indicators, which are given in
Section 6.1. The linguistic terms include: “No influence (N)”, ”Very low influence (VL)”,
“Low influence (L)”, “High influence (H)”, “Very high influence (VH)”, and “Extremely
high influence (EH)”, as well as their corresponding TFNs separately, which are (0,0,0),
(0.5,0.5,1), (0.5,1,1.5), (1.5,2,2.5), (2.5,3,3.5), and (3.5,4,4), respectively.

(2) Step 2. Constructing dependence matrices of performance indicators and group fuzzy
initial direct-relation matrix

Table 4. Membership function of linguistic scale.

Fuzzy Number Linguistic (Abbreviation) Scale of Fuzzy Number

4 Extremely high influence (EH) (3.5,4,4)
3 Very high influence (VH) (2.5,3,3.5)
2 High influence (H) (1.5,2,2.5)
1 Low influence (L) (0.5,1,1.5)

0.5 Very low influence (VL) (0.5,0.5,1)
0 No influence (N) (0,0,0)

According to the previous research and industry investigations, we believe that the
interaction between the performance indicators will produce a positive influence on the
decision making about the importance of them (the weight of each indicator). This study used
the method of group fuzzy DEMATEL for revealing the interaction relationships between
every two indicator sets. For the I3EAM, such a complex system, the method is applicable to
analyze and segment complex factors by group decision in an uncertain environment.

The experts were invited to make pair-wise comparisons in terms of crisp scores for
the performance indicator interactions (No influence (N) = 0, Very low influence (VL) = 0.5,
Low influence (L) = 1, High influence (H) = 2, Very high influence (VH) = 3, and Extremely
high influence (EH) = 4). The experts were from multiple disciplines, including CIOs,
procurement managers, project managers, technical staff, and financial experts. Based on
the scoring system, the group judgements on the relationships between n performance
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indicators were collected from q decision-makers. The kth decision maker’s initial direct-
relation matrix Mk is as follows:

Mk =

⎡⎢⎢⎢⎢⎣
0 sk

12
sk

21 0
· · ·
· · ·

sk
1n

sk
2n

...
...

. . .
...

sk
n1 sk

n2 · · · 0

⎤⎥⎥⎥⎥⎦ k = 1, 2, . . . , q (2)

where sk
ij is the kth decision maker’s judgement with crisp score for the ith I3EAM perfor-

mance indicator’s influence on the jth indicator, q is the number of experts, and n is the
number of I3EAM performance indicators.

Then, through the use of Formula (1) and the membership function in Table 4, the
Mk can be fuzzified, and it was converted to a triangular fuzzy direct-relation matrix M̃k.
The elements of M̃k are triangular fuzzy numbers s̃k

ij = (lk
ij, mk

ij, uk
ij). Thus, the group fuzzy

initial direct-relation matrix S̃ can be obtained as follows:

S̃ =

⎡⎢⎢⎢⎢⎣
0̂ ŝ12

ŝ21 0̂
· · ·
· · ·

ŝ1n
ŝ2n

...
...

. . .
...

ŝn1 ŝn2 · · · 0̂

⎤⎥⎥⎥⎥⎦ (3)

where ŝij = (l̂ij, m̂ij, ûij), l̂ij =
{

l1
ij, . . . , lk

ij . . . , lq
ij

}
, m̂ij =

{
m1

ij, . . . , mk
ij . . . , mq

ij

}
, and ûij ={

u1
ij, . . . , uk

ij . . . , uq
ij

}
. Then, by calculating the average value of each element in ŝij, the

group fuzzy direct-relation matrix S̃A, which was aggregated, could be obtained.

(3) Step 3. Acquiring the fuzzy normalized direct-relation matrix and fuzzy total-relation
matrix

After the process of aggregation, the fuzzy normalized direct-relation matrix ÑS
A
=[

n̂sA
ij

]
n×n

can be acquired through dividing each element in S̃A by a crisp number NF(u).

The NF(u) can be calculated by using Equation (4). Through Equation (5), the matrix S̃A

was converted to the fuzzy normalized direct-relation matrix ÑS
A
=

[
n̂sA

ij

]
n×n

, which is

denoted as Equation (6). The element in ÑS
A

is denoted as Equation (7).

NF(u) = max
n

∑
j=1

uA
ij (4)

where uA
ij =

1
q ∑

q
k=1 uk

ij.

n̂sA
ij =

ŝA
ij

NF(u)
=

ŝA
ij

max ∑n
j=1 uA

ij
(5)

where ŝA
ij = (lA

ij , mA
ij , uA

ij ) = ( 1
q ∑

q
k=1 lk

ij,
1
q ∑

q
k=1 mk

ij,
1
q ∑

q
k=1 uk

ij).

ÑS
A
=

[
n̂sA

ij

]
n×n

=

⎡⎢⎢⎢⎢⎣
0̂ n̂sA

12
n̂sA

21 0̂
· · ·
· · ·

n̂sA
1n

n̂sA
2n

...
...

. . .
...

n̂sA
n1 n̂sA

n2 · · · 0̂

⎤⎥⎥⎥⎥⎦ (6)

n̂sA
ij =

[
lA
ij

max ∑n
j=1 uA

ij
,

mA
ij

max ∑n
j=1 uA

ij
,

uA
ij

max ∑n
j=1 uA

ij

]
(7)
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Next, the fuzzy total-relation matrix T̃S was acquired as follows:

T̃S = lim
k→∞

((ÑS
A
)

1
+ (ÑS

A
)

2
+ · · ·+ (ÑS

A
)

k
)= ÑS

A × (E − ÑS
A
)
−1

(8)

T̃S =
[
t̂sij

]
n×n =

⎡⎢⎢⎢⎢⎣
0̂ t̂s12

t̂s21 0̂
· · ·
· · ·

t̂s1n
t̂s2n

...
...

. . .
...

t̂sn1 t̂sn2 · · · 0̂

⎤⎥⎥⎥⎥⎦, t̂sij = (t̂sl
ij, t̂sm

ij , t̂su
ij) (9)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[
t̂sl

ij

]
= n̂sl

ij × (E − n̂sl
ij)

−1[
t̂sm

ij

]
= n̂sm

ij × (E − n̂sm
ij )

−1[
t̂su

ij

]
= n̂su

ij × (E − n̂su
ij)

−1

(10)

(4) Step 4. Defuzzifying the fuzzy total-relation matrix

In order to acquire a crisp total-relation matrix, it was necessary to defuzzify the
element of the fuzzy total-relation matrix above. In this study, the calculation operator for
the process of defuzzifying used the operator in the literature [108].

t̂sij =
t̂sl

ij + 4t̂sm
ij + t̂su

ij

6
(11)

(5) Step 5. Determining the weight of performance indicators of I3EAM

After obtaining the crisp total-relation matrix, the sum of the rows and the sum of the
columns are separately denoted as Xi and Yj, respectively, within the crisp total-relation
matrix through the following formulas:

Xi = [xi] =

[
n

∑
j=1

t̂sij

]
, Yj =

[
yj
]
=

[
n

∑
i=1

t̂sij

]
(12)

Next, based on the crisp total-relation matrix, xi and yj were used to calculate the
“Prominence” and “Relation”, respectively. In the approach of DEMATEL, the “Prominence”
represents the strength of the influences that were both dispatched and received, and
the “Relation” was used to determine the difference between the dispatched ones and
the received ones. The vector pi named “Prominence” was obtained by adding xi to yj.
Similarly, the vector ri named “Relation” was obtained by subtracting xi to yj. The vector
pi reveals how much importance the criterion has, and the vector ri divides the criteria into
groups of the cause and the effect.

pi = xi + yj, ri = xi − yj, i = j (13)

Then, the importance of the ith I3EAM performance indicator ωi was calculated using
Equation (14) as follows.

ωi =
√

pi
2 + ri

2 (14)

The importance of any I3EAM performance indicator can be normalized with Equation (15)
as follows:

Wi =
ωi

∑1≤i≤n ωi
(15)

(6) Step 6. Constructing the group fuzzy initial decision matrix with determining the
appropriate linguistic variables

138



Machines 2022, 10, 1137

Assuming that there are p social digitalization platforms (SDPs) being evaluated by q
decision makers (DMs) with respect to n performance indicators, the kth decision maker’s
linguistic initial decision matrix Nk is as follows:

Nk =

SDP1

SDP2

...

SDPp

⎡⎢⎢⎢⎢⎢⎣
dk

11 dk
12

dk
21 dk

22

· · ·
· · ·

dk
1n

dk
2n

...
...

. . .
...

dk
p1 dk

p2 · · · dk
pn

⎤⎥⎥⎥⎥⎥⎦ k = 1, 2, . . . , q (16)

where dk
ij is the kth decision maker’s judgement with a linguistic variable for the ith SDP

under the jth I3EAM performance indicator, q is the number of experts, and n is the number
of I3EAM performance indicator.

Aiming to evaluate the alternatives concerning the performance indicators, the lin-
guistic terms include: “Very poor (VP)”, ”Poor (P)”, “Fair (F)”, “Good (G)”, and “Very good
(VG)”, as well as their corresponding TFNs, which are (0,0,0.25), (0,0.25,0.5), (0.25,0.5,0.75),
(0.5,0.75,1), and (0.75,1,1), respectively. Similarly, the group fuzzy initial decision matrix D̃
can be obtained as follows:

D̃ =

⎡⎢⎢⎢⎢⎣
d̂11 d̂12
d̂21 d̂22

· · ·
· · ·

d̂1n
d̂2n

...
...

. . .
...

d̂p1 d̂p2 · · · d̂pn

⎤⎥⎥⎥⎥⎦ (17)

where d̂ij = (l̂d
ij, m̂d

ij, ûd
ij), l̂d

ij =
{

ld1
ij , . . . , ldk

ij . . . , ldq
ij

}
, m̂d

ij =
{

md1
ij , . . . , mdk

ij . . . , mdq
ij

}
, and

ûd
ij =

{
ud1

ij , . . . , udk
ij . . . , udq

ij

}
. Then, by calculating the average value of each element in d̂ij,

the group fuzzy decision matrix D̃A, which was aggregated, can be obtained.

(7) Step 7. Acquiring the weighted fuzzy decision matrix

The weighted fuzzy decision matrix D̃∗ was obtained as follows:

D̃∗ =
[
d̂∗ij

]
n×n

, i = 1, 2, . . . , p; j = 1, 2, . . . , n (18)

where d̂∗ij = Ŵj ⊗ d̂A
ij , Ŵj is the weight of the jth performance indicator calculated by

Equation (15), and d̂A
ij = (ldA

ij , mdA
ij , udA

ij ) = ( 1
q ∑

q
k=1 ldk

ij , 1
q ∑

q
k=1 mdk

ij , 1
q ∑

q
k=1 udk

ij ).

(8) Step 8. Determining the fuzzy positive-ideal solution (FPIS) and fuzzy negative-ideal
solution (FNIS)

The FPIS and FNIS were identified from the weighted fuzzy decision matrix by
calculating Equations (19) and (20), respectively. The d̂∗+j and d̂∗−j separately represent the
FPIS and FNIS, respectively.

d̂∗+j = max
i

(d̂∗ij) where d̂∗+u
j = max

i
(d̂∗u

ij ) (19)

d̂∗−j = min
i
(d̂∗ij) where d̂∗−l

j = min
i
(d̂∗l

ij ) (20)

(9) Step 9. Calculating the distance of each SDP alternative from FPIS and FNIS
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The distances (D+
i and D−

i ) of each alternative from d̂∗+j and d̂∗−j can calculated by
using the following equations.

D+
i =

√√√√1
3

n

∑
j=1

[
(d̂∗l

ij − d̂∗+l
ij )

2
+ (d̂∗m

ij − d̂∗+m
ij )

2
+ (d̂∗u

ij − d̂∗+u
ij )

2
]

(21)

D−
i =

√√√√1
3

n

∑
j=1

[
(d̂∗l

ij − d̂∗−l
ij )

2
+ (d̂∗m

ij − d̂∗−m
ij )

2
+ (d̂∗u

ij − d̂∗−u
ij )

2
]

(22)

(10) Step 10. Acquiring the closeness coefficients and the priority of alternatives

The closeness coefficients CCi represents the relative gaps–degree of each SPD alterna-
tive, and CCi can be obtained through calculating Equation (23). On the basis of CCi, we
can also acquire the priority of all of the SDP alternatives (digitalization service provider
for the co-implementation of I3EAM).

CCi =
D−

i
D+

i + D−
i

(23)

7. Case Study

7.1. Reference Model of I3EAM Schemes in Automated Container Terminals

In this section, a case study of building an I3EAM solution in an Automated Container
Terminal (ACT) application scenario will be presented. The case was also taken as an
example to demonstrate the application of the proposed general model and reference
architecture. The context of the study is the digital transformation needs of the ports,
which require the use of Industrial Internet technologies and platforms to build a parallel
management system for container terminal equipment assets. We invited several industry
experts, marine equipment companies, and port terminal companies to discuss and use
the general reference model to collect and qualitatively analyze the requirements for the
I3EAM solution for automated container terminals. Figure 10 shows the reference model of
I3EAM schemes in automated container terminals (ACTs).

 

Figure 10. Reference model of I3EAM schemes in automated container terminals.
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(1) Dimension 1: Industrial Internet element (II) dimension

The Equipment Asset Management of automated container terminals presents com-
prehensive requirements for the Industrial Internet elements, including the physical entity,
the virtual object, the digital twin data, the interaction, and the service. In this study, the
physical entity models in the ACTs include lifting equipment, crane equipment, storage
yard equipment, port heavy AGV, the container truck and its sensory systems and environ-
mental systems. To build the ACT simulation and emulation systems, the construction and
management of virtual object models is considered to be necessary to realize the sensing,
modeling, and management of the physical entities, the information flows, and the social
relationships. Multiple sources of heterogeneous data were required to be integrated and
managed, including the data from the physical entities, virtual objects, and services, the
domain knowledge, and the fused data. The service model is comprised of real-time moni-
toring, state assessment, fault diagnosis, intelligent maintenance, and intelligent decision
making (i.e., production scheduling, etc.). The interaction models built the connections
among the different models.

(2) Dimension 2: Industry (I) dimension

Container terminals are closely related to marine engineering and shipping, transporta-
tion and other industries. From the perspective of equipment assets, they should belong
to the marine engineering and shipping industry, which will inherit the characteristics of
the industry and adapt to the development needs of the industry. Due to various reasons
such as efficiency, costs, and epidemics, the container terminals and unmanned terminals
have become the trend of industry development, and there is an urgent need to improve
the level of terminal digitalization, networking, and intelligence.

(3) Dimension 3: EAM-related activities (EAM) dimension

In Section 4, the comprehensive EAM-related activity model is introduced, and it
was used for analyzing and recognizing the scenario-based value in automated container
terminals. From the perspective of the equipment’s lifecycle, using and safeguarding them
is regarded as the main application scenario in automated container terminals. From the
perspective of business collaboration, automated container terminals constitute a complex
organic system, which includes the level of equipment health that will affect different levels
of the integrated systems (including the station, the work center, the production line, and
the enterprise). From the perspective of system support, the entire ACT system will also be
affected by random factors such as the arrival of the cargo vessel, and so the system usually
requires dynamic response and scheduling. Therefore, the necessary planning and control
activities need to be provided at the levels of both integration and operation.

7.2. Reference Architecture for the Implementation of I3EAM in Automated Container Terminals

Referring to the architecture that is proposed in Section 5, the implementation path
of I3EAM in the automated container terminals is composed of six common steps and
special elements about the automated container terminal corresponding to the enterprise
needs. Figure 11 shows the whole picture of the reference architecture for the I3EAM
implementation in automated container terminals.

(1) Step 1: Industrial resource and edge layer in ACTs

For automated container terminals, the main equipment includes the lifting equip-
ment, the crane equipment, the storage yard equipment, the port heavy AGV, and the
container truck. The focused sub-systems in the EAM business include the reduction
gearbox, the pressure pump, the steel structure, the rotating mechanical parts, the electrical
control system, the AGV battery, the AGV motor, and the motor synergy system. For
connection and communication, the sensory systems should provide the data perception
capacities about the various physical signals involving the vibration, temperature, current,
pressure, position, torque, image, video, and laser ones. Additionally, many RFID-based
systems and smart terminals are used for non-physical signals. With the consideration of
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the heterogenous equipment and edge sensors, the intelligent gateway and configurable
protocol pool were planned and developed.

 

Figure 11. Reference architecture for the I3EAM implementation in automated container terminals.
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(2) Step 2: Cloud-based Industrial Internet platform layer in ACTs

The cloud environment is necessary for the open, flexible, and dynamic business
regarding automated container terminals. The designed platform of I3EAM in the ACTs
is divided into four basic layers, including the cloud-edge collaboration layer, the IaaS
layer, the PaaS layer, and the SaaS layer. Between the heterogenous integrated equipment
and the remote control platform, it was necessary to establish a time-sensitive pipeline for
the data/service/resource collaboration. In addition, intelligent reasoning for the edge
sides and flexible data acquisition strategies were also required. The platform should
be based on the microservice technical architecture. Meanwhile, the general enabling
functions for resource virtualization, resource management, and service development
and deployment were selected from the reference architecture, including the Resource
Management, Environment Management, Deployment and Scheduling, and Configuration
Management ones, etc. The APP DevOps toolchain and ecosystem are also important for
the whole I3EAM scheme. Based on the protocol adaptor, secure connector, and distributed
message engine, the various source data were collected in the form of streaming data or
batch data.

(3) Step 3: Industrial big data engine layer in ACTs

The third step was to plan and construct the big data engine for the common require-
ments in the perspective of the data source and the edge connection, the data acquisition,
the data processing, and the data service and portal. In the data warehouse, the subject data
which were to be collected for the automated container terminals included the equipment
source data, the operation source data, the maintenance source data, and the maritime
source data. The system should have a data extraction capability and it should use ETL
(Extract-Transform-Load) tools to realize data import and fusion into the database. Through
the data rule engine, the data quality management and its standardization, and the standard
data, which are scattered, fragmented, and non-uniform, should be loaded and integrated
into the data warehouse. In addition, data processing functions in the online and offline
modes were needed, including machine learning (ML) tools, stream analytics, an OLAP
analysis, and an interactive analysis. To satisfy different data service requirements, the
tools for the full data lifecycle will be encapsulated as microservices and invoked through
the APIs to support various business intelligence (BI) processes and to provide access to
the users’ data.

(4) Step 4: Industrial modelling and simulation (M and S) layer in ACTs

Through the demand analysis of predictive maintenance for automated terminals,
the system decision strategy will use a combination of online and offline, stand-alone and
system, equipment and process, local diagnosis, local diagnosis and remote diagnosis,
wired communication and wireless communication systems. The I3EAM solution requires
multi-level and multi-faceted condition monitoring, fault diagnosis, and intelligent main-
tenance for the automated terminals to fully ensure the stable and reliable operation of
the terminal production and operation. Modeling and model libraries play an important
role in the process of the intellectualization of the container terminals, including intelligent
perception, intelligent control, and intelligent decision making. In the environment of
rich data sources, multiple layers of analyses need to be developed, including descriptive,
diagnostic, predictive, prescriptive, and cognitive analyses.

The descriptive analysis model contains the models of data pre-processing, feature anal-
ysis and extraction (such as the RQA method, etc.), feature selection and fusion (such as
Wrapper, etc.), and the special physical models such as the steel structure damage mechanism
models such as the modified M-C formula, etc. The diagnostic analysis model contains
the single-machine fault diagnosis, the multi-machine abnormality identification, the bat-
tery abnormal diagnosis, the motor fault diagnosis, and the multi-sensor or multimodal
information-based models. The predictive analysis model contains the health assessment and
residual useful life (RUL) prediction models, and the degradation mechanisms and health
index for the various ACT equipment and the key components. Additionally, the prescriptive
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and cognitive analyses need to pay more attention to causal-based decision making, including
the predictive maintenance decision-making models and the optimization algorithms, the
maintenance network configuration, and the explainable cause–effect models.

In addition, the simulation layer was needed, and as well as this, the equipment con-
figuration and physical simulations were considered. Combining the domain knowledge of
complex equipment and equipment performance, the visual integration of the automated
container terminals was realized based on 3D models. Through equipment configuration
management and imitation learning based on scaling models and accelerated tests, a more
realistic simulation was carried out to optimize and improve it, and better targeting was
achieved from multiple perspectives, such as single machine equipment performance and
system control.

(5) Step 5: Industrial information model and collaboration layer in ACTs

The industrial information model is an essential agreement that is shared by the partic-
ipants and components in any networked and integrated system, facilitating compatibility
and interoperability. Under the application scenario of the ACTs, different Industrial In-
ternet elements (the physical entity, the virtual object, the data, and the service) in I3EAM
are evolving and generating new interaction and collaboration requirements. The system
needs to support the high level of interoperability, customized development, and the flexi-
ble configuration of the industrial information models. During the implementation, the
different elements and their interactions were delicately and unambiguously named and
assigned according to the conceptual, declarative, and programmatic representations.

(6) Step 6: Industrial organization, business, and service layer in ACTs

Based on the EAM dimensions in the reference model and the service activity meta-
model given in Section 5.7, the scenario-based service requirements of the automated
container terminals were identified. The automated container terminals are the application
scenario of the offshore equipment such as cranes, which mainly consider the use and
protection phase of the equipment. According to the level of system integration, the status
performance of single machine equipment needed to be linked with the parts (spare parts),
workstations, terminal areas, enterprises, and service networks. The identified service
scenarios will be transformed into industrial APP development requirements.

In the I3EAM of the targeted automated container terminal, three types of industrial
APPs needed to be developed as follows:

• The Equipment Asset Management APPs of using and safeguarding: information fusion
APPs, remote monitoring APPs, fault diagnosis APPs, maintenance decision APPs, and
health assessment APPs for the mechanical structure, transmission system, drive motor,
power battery, electrical systems of the marine engineering equipment in the ACTs.

• The EAM-related business collaboration service APPs: spare parts management APPs
(such as spare parts importance assessment, safety stock quotas, and procurement
decision-making), reliability-driven container terminal scheduling APPs (such as
crane/yard/AGV/container truck scheduling), maintenance network design and
configuration, and collaborative maintenance of maintenance centers for multiple
container terminals, etc.

• The EAM-related support service APPs: remote operation platform, semi-automatic
control configuration rules management APPs, asset information management APPs,
monitoring large screen and dashboard, multi-dimensional data statistics APPs, re-
porting APPs, and fault knowledge-based APPs.

7.3. Evaluation and Selection of I3EAM Schemes in Automated Container Terminals

(1) I3EAM scheme alternative profile

The case background is a new automated container terminal construction project in a
coastal city in China. In order to enhance the digitalization and intelligence of the container
terminal, there was an urgent need to develop a new Equipment Asset Management
solution to help the terminal improve its operational capabilities. Social digitalization
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platforms have become the enabler and the accelerator for transformation in traditional
industries. Aiming at the I3EAM in the automated container terminal, there were four
SDP alternatives for the co-implementation of I3EAM, including MindSphere (Siemens),
Azure (Microsoft), ROOTCLOUD (SANY), INDICS (CASICCloud), at the start of the project.
According to the implementation requirements that were analyzed previously, the four
SDPs submitted their technical solutions. The project team applied the proposed framework
and approach to decide for the best scheme and platform partner. Due to confidentiality
reasons, the schemes are randomly named as P1–P4.

(2) Expert-based evaluation data collection

The project team consists of eight decision makers, including industry experts, marine
equipment companies, and port terminal companies, all of whom have an average of more
than 10 years of experience in terminal construction or digital transformation. Similarly,
the decision makers’ profiles and the order of the decision making are not declared here,
but they are randomly labelled as DM1–DM8.

The performance metric set and the evaluation and selection approach in Section 6
were used to help select the best alternative of I3EAM scheme and its social digitalization
platform for the automated container terminals. To determine the weight of the performance
indicators and the priority of the alternatives, each member of the decision group provided
two initial evaluation matrices, including the dependence matrix of performance indicators,
and the decision matrix of I3EAM schemes with its SDPs. The original data are provided
in Appendix A (Tables A1–A3). There is one table containing the brief information of the
decision makers, and there are two tables for the two groups of fuzzy initial matrices.

(3) Performance indicator weight analysis by fuzzy DEMATEL

In this study, the computational tool and environment for the fuzzy DEMATEL method
was Matlab2022a. The process of the weighting analysis is outlined as follows. Through cal-
culating Formula (1) and using the membership function in Table 4, the initial dependence
matrix of performance indicators was converted to the triangular fuzzy direct-relation
matrix. Next, by using Equations (4)–(10), the fuzzy normalized direct-relation matrix
and fuzzy total-relation matrix were obtained. Then, the fuzzy total-relation matrix was
defuzzified through Equation (11). Finally, based on the crisp total-relation matrix, the
normalized weights can be obtained by calculating Equations (12)–(15). As shown in
Table 5, the computation results were obtained.

Table 5. The importance and normalized weights of performance indicators of I3EAM.

Indicators ωi Wi

B1 2.4254 0.0746
B2 1.0255 0.0315
B3 2.8756 0.0884
T1 1.8564 0.0571
T2 1.8314 0.0563
T3 3.5128 0.1080
T4 3.8550 0.1185
T5 1.5719 0.0483
T6 2.4328 0.0748
T7 2.5513 0.0784
T8 2.9460 0.0906
A1 1.6440 0.0505
A2 1.9866 0.0611
A3 0.9139 0.0281
A4 1.1009 0.0338
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In our case, the T4 (Industrial modeling and simulation service capability), T3 (Indus-
trial big data engine performance), T8 (System integration and collaboration capability),
B3 (Cost of digitalization service), T7 (Scheme technical architecture performance), T6
(Development environment supporting), and B1 (Talent guarantee) emerge as the top six
performance indicators of I3EAM in the automated container terminals.

(4) I3EAM scheme sorting and selection by fuzzy TOPSIS

Similarly, the computational tool and environment for the fuzzy TOPSIS method
was Matlab2022a. By applying Equation (18) and combining the normalized weights, the
weighted fuzzy decision matrix was obtained. Then, through Equations (19) and (20), both
the fuzzy positive-ideal solution (FPIS) and the fuzzy negative-ideal solution (FNIS) were
calculated, and they are listed in Table 6.

Table 6. The fuzzy positive-ideal solution (FPIS) and fuzzy negative-ideal solution (FNIS).

Indicators FPIS FNIS

B1 (0.0443, 0.0629, 0.0722) (0.0117, 0.0280, 0.0466)
B2 (0.0099, 0.0177, 0.0246) (0.0039, 0.0118, 0.0197)
B3 (0.0497, 0.0718, 0.0884) (0.0000, 0.0221, 0.0442)
T1 (0.0428, 0.0571, 0.0571) (0.0161, 0.0303, 0.0446)
T2 (0.0281, 0.0422, 0.0563) (0.0088, 0.0229, 0.0369)
T3 (0.0776, 0.1046, 0.1080) (0.0337, 0.0607, 0.0877)
T4 (0.0741, 0.1037, 0.1185) (0.0222, 0.0518, 0.0815)
T5 (0.0076, 0.0196, 0.0317) (0.0015, 0.0060, 0.0181)
T6 (0.0374, 0.0561, 0.0678) (0.0000, 0.0187, 0.0374)
T7 (0.0515, 0.0711, 0.0784) (0.0147, 0.0343, 0.0539)
T8 (0.0566, 0.0792, 0.0906) (0.0255, 0.0481, 0.0708)
A1 (0.0221, 0.0347, 0.0474) (0.0063, 0.0190, 0.0316)
A2 (0.0382, 0.0534, 0.0611) (0.0057, 0.0210, 0.0363)
A3 (0.0114, 0.0184, 0.0255) (0.0000, 0.0061, 0.0132)
A4 (0.0212, 0.0296, 0.0338) (0.0000, 0.0042, 0.0127)

Using Equations (21)–(23), the distance to the ideal solutions, closeness coefficient,
and priority of each alternative can be calculated, as shown in Table 7. Meanwhile, the
sorting of I3EAM scheme alternatives was obtained as follows: P3 (CC3 = 0.6802) >
P2 (CC2 = 0.4574) > P4 (CC4 = 0.4553) > P1 (CC1 = 0.3376). Therefore, the P3 was the
selected alternative.

Table 7. The closeness coefficients and the priority of alternatives.

Alternatives D+
i D−

i CCi Sorting

P1 0.0494 0.0969 0.3376 4
P2 0.0668 0.0792 0.4574 2
P3 0.0941 0.0442 0.6802 1
P4 0.0700 0.0837 0.4553 3

7.4. The Results

In the case study above, the I3EAM’s system model and reference architecture pro-
vided the knowledge structure and systematic decision-making approach for the digitaliza-
tion of the targeted global port. In our case, the applicational results of our model will be
tested and examined in two main aspects: (1) whether it supports the correct implemen-
tation of the automated container terminal EAM system, and (2) whether it reduces the
complexity and uncertainty of decision making.
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For the first question, we examined the deviations of the implementation results of the
ACT from the planning. The results show that the requirements and system architecture
planning that were analyzed by I3EAM cover the list of functions of the ACT in the review
phase. Around the three core equipment assets of the ACT, the project finally established
capabilities such as structure resolution, edge connectivity, platform aggregation, big data
engine, the model repository and ACT simulation tools, and the APP service pool. The
operational status of the equipment assets can be transmitted back to the remote monitoring
cloud platform through multi-channel and multi-type sensors in real time, and the joint
diagnosis can be performed based on remote experts and online models. The cargo vessel
demands and equipment status were incorporated into a joint scheduling model, while
the swarm intelligence approaches are used to coordinate multiple equipment clusters.
The overall port throughput performance meets the expected design target of 4 million
containers per year. At the same time, the ACT’s flexible architecture enables a scalability
up to a forward throughput of 6.3 million containers per year.

For the second question, we went back to five of the decision makers of the project
team and several other project members. They represented the port group, the equipment
manufacturer, the terminal operator, and the external experts. The performance of the pro-
posed decision-making model and process was validated via 12 semi-structure interviews
and the backtracking of documents. All of the respondents indicated that our knowledge
structure had a significant impact during the project planning phase, especially as the
Industrial Internet standards were being developed at that time. In addition, they believe
that the reference architecture generalizes the multi-view knowledge well and provides
analytical tools to help implement EAM systems in different domains. The respondents
agreed that the research result provided a logical, understandable, and step-by-step guide
for the EAM projects. The model facilitates the project teams’ systematic understanding of
the Industrial Internet and EAM, collaboration across organizations, and the identification
of the best platform partner.

8. Discussion

8.1. Caparisions among the Existing Research and the Research in This Paper for EAM

In the part of the status review (see Section 2), a comprehensive survey and comparison
of the existing studies about the Industrial Internet-based EAM were made, including
the related concepts, key technologies, application fields, decision support systems, and
technical solutions, etc. The existing research mainly focus on the explicit technologies of
EAM and their local applications, and only a few works give a comprehensive view of EAM
implementation under the Industrial Internet-based environment. In China, the Alliance
of Industrial Internet (AII) has released “Industrial Internet System Architecture (IISA)
version 2.0” [13], which means the reference architecture of the Industrial Internet Platform
(IIP) has been standardized. From the perspective of the future consideration of the IIP,
China’s IIP needs to emphasize the scenario-driven architecture design and implementation
to adapt to our national conditions [9]. However, as an important applicational scenario,
the EAM domain still lacks a clear implementation path based on Industrial Internet for
the actual projects. In this paper, the authors proposed a general system model, a reference
architecture, and an evaluation system with the metric set and decision-making approach
in order to establish the mapping with EAM application requirements and the IIP system
architecture. The model of I3EAM is based on the IISA 2.0 and digital twin metamodel, and
it provides more powerful high-level abstractions, and as well as this, the structured model
can be developed and integrated quickly. The paradigm of Design Science Research (DSR)
has been introduced into the study along fusion path between EAM and Industrial Internet.
This is a valuable addition to existing research. Meanwhile, the system architecture research
provides support for the horizontal collaboration of the existing research.
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8.2. Caparisions between Traditional Information System and Social Digitalization Platform

Platform-based digitalization is emphasized here, particularly to leverage the abilities
of social digitalization platforms. The traditional process of business–IT alignment focuses
on the implementation of information systems, such as SCADA, ERP, MES, etc. The
information system is seen as a system of records to assist staff in the local monitoring
and managing of the operational status of the equipment assets. Social digitalization
platforms based on the Industrial Internet are more focused on how to support the wider
interaction and collaboration in heterogeneous environments. For example, two types
of information systems have been developed by separate entities, and they support the
operation of container terminals. One type is the product service system that is provided by
the equipment manufacturers, i.e., the condition monitoring software for structures, motors,
and transmissions. One type is the shipping data system of the port group company,
which collects the vessel and cargo information. In the traditional model, there is no
integration between the two information systems. However, the EAM model recognizes
that automated container terminals require the integration of demanding information,
equipment reliability, and O and M planning to enable rapid resource scheduling. Therefore,
when one is evaluating different I3EAM solutions using a structured model, the modelling
of heterogeneous data integration and collaborative scheduling issues were highlighted to
be the highest priority. Meanwhile, the eventual winner (P3 in Table 7), which shows the
accumulation of its shipping data analysis capabilities and general technologies, obtained
the favor of the decision makers. This implicit phenomenon reflects the unique ecosystem
advantage of the social digitalization platforms over the traditional IT service providers.

8.3. Caparisions between Traditional Process and Proposed Process for Decision Making

In the past, information systems development has been implemented during the
phase of assets operation. However, digitalization is merging asset development, business
innovation, and IT support. In our case, the Yangshan automated container terminal was
regarded as a whole complex system, and the project emphasized the importance of overall
planning in system implementation. The digital capabilities for EAM are the basic needs
of system planning and design. The results in this paper offer the foundation and system
engineering approaches to find the whole picture of the ACT’s EAM system. Complex
engineered systems usually involve many stakeholders. Traditional decision-making
processes adopt the strategy of face-to-face meetings and step-by-step implementation.
Nonetheless, the stakeholders involved often have inconsistent knowledge structures and
value propositions about the target system, which leads to inefficiencies in their decision
making and negotiation processes. Our research provides decision support for both of
the two-aspect challenges. First, the multi-layer architecture illustrates the different view
and structured knowledge of the I3EAM. Next, the performance indicators define the
core potential value propositions from different perspectives. Except for the models, the
proposed evaluation method based on fuzzy DEMATEL-TOPSIS simplifies the decision-
making processes and makes them clearer. On the basis of the model, work such as
more targeted information gathering and consultation were carried out. At the same time,
the value propositions of multiple relevant stakeholders are coordinated with a scientific
decision-making approach. The fuzzy method alleviates the uncertainty in the decision-
making process. As a rough estimate, the project time for early decision making and
negotiations were reduced by 30%. The project implementation met the expected system
functional requirements and retained extensible interfaces for high-level functions.

To sum up, our research results are feasible and effective. The given model, the
architecture, and the method in this study can create a certain reference value for both
the EAM-related business–IT alignment of various enterprises (especially SMEs) and the
development of IIPs (especially SDPs).
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9. Conclusions

The research motivation and the objective of this paper are to improve the capability
of complex system awareness and decision-making for I3EAM projects and to provide
reference knowledge for the top-level planning and the effective implementation of different
industrial enterprises. This study proposes a general reference model and a reference
architecture for the implementation of Industrial Internet Solution for Industrial Equipment
Asset Management (I3EAM). In addition, this study also developed a set of performance
indicators for I3EAM and a scheme selection method by using the fuzzy DEMATEL-
TOPSIS approach. A case study from the practice in an automated container terminal
project demonstrates the feasibility and efficiency of the proposed model, architecture, and
approach. Various industrial enterprises can carry out the analysis and top-level planning
of their I3EAM needs, and the evaluation and selection of a co-implementation platform
partner with our research results. Industrial Internet Platforms (IIPs) can carry out self-
evaluation and self-diagnosis continuously for their EAM technical solutions based on the
general model and reference architecture.

The scientific contribution of our study is remarkable, especially the exploratory work
of DSR (Design Science Research) for the combination of EAM and the Industrial Internet.
The structured knowledge and reference architecture models will reduce the complexity
and uncertainty of system development, directly. IISA 2.0 is the standardized reference
architecture model for the Industrial Internet in China, and this work is also the first
to establish a detailed IISA-based scenario application model. Our research provides a
useful and valuable addition to the existing academic literature and community such as
EAM, II, information system, and digital transformation, etc., and it promotes collaborative
evolution among these fields.

Due to the limited space, there are some follow-up works that need to be studied to
supplement these findings. The future works of this study mainly contain three aspects.

• Firstly, more detailed content should be studied and analyzed for the comprehen-
sive I3EAM reference model and technical architecture, including key technologies,
information models, governance mechanisms, and programmatic components.

• Secondly, more precise and refined performance metrics and group decision methods
should be used for the design of complex systems and system architecture.

• Thirdly, they should be further applied and verified in various industries and fields.
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Appendix A

Table A1. The detail information for the decision-makers.

Number of DM Type of DM Working Years of DM

1 Vice General Manager and
Project manager 15

2 Group IT Director 13
3 Group Chief Engineer 25

4 Vice Director of Manufacturer
Software Inc. 16

5 General manager of ACT 13
6 Director of Strategic Planning 15
7 Group Financial Director 20
8 External Expert (Professor) 23

Table A2. The group fuzzy initial direct-relation matrix.

DM1 B1 B2 B3 T1 T2 T3 T4 T5 T6 T7 T8 A1 A2 A3 A4

B1 0 2 3 1 1 0 4 3 0 3 3 0 0 0 0
B2 0 0 2 0 2 1 0 0 0 2 2 0 2 0 0
B3 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0
T1 0 0 0.5 0 0.5 3 4 3 0.5 4 0.5 2 0 0 0
T2 2 0 1 0 0 2 1 0 0 0 3 3 0 2 1
T3 2 0 3 0 1 0 4 2 3 3 2 2 0 2 1
T4 3 0 4 1 0 3 0 1 2 1 4 2 1 0 2
T5 0 0 2 3 0 2 2 0 2 2 2 1 0 0 0
T6 2 0 3 0 0 2 2 2 0 1 4 1 2 0 1
T7 0 0 2 0 0 2 2 0 0 0 2 0 0 0 0
T8 0 0 1 0 0 1 3 0 0 2 0 0 0 0 0
A1 2 0 0.5 0 1 2 2 0.5 1 0 1 0 0 0 3
A2 4 0 1 0 0 0 3 1 0 2 3 1 0 1 2
A3 0 2 0 0 1 0 1 0 0 0 3 0 0 0 3
A4 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

DM8 B1 B2 B3 T1 T2 T3 T4 T5 T6 T7 T8 A1 A2 A3 A4

B1 0 0 2 1 1 2 3 0 1 3 2 1 0 0 1
B2 0 0 2 0 1 3 1 0 0 0 1 0 0 2 0
B3 0 0 0 0 0 1 2 0 0.5 0 0 0 0 0 0
T1 0 0 3 0 1 2 2 0.5 0 3 2 1 0 0 0
T2 0 0 2 2 0 2 1 0 0 2 3 0 0 1 2
T3 2 0 4 0.5 3 0 4 1 1 3 3 2 0 1 0
T4 4 0 4 1 0.5 4 0 1 1 2 2 1 0 1 1
T5 0 0 1 1 0 1 1 0 1 1 2 0 0 0 0
T6 2 0 2 1 1 3 3 2 0 2 3 2 2 0 1
T7 0 0 3 0 2 3 3 1 1 0 3 1 0 0 0
T8 0 0 2 1 1 2 3 2 2 3 0 0 0 0 2
A1 2 0 1 0 1 2 2 0 2 0 1 0 1 1 2
A2 3 0 2 0 2 2 4 1 0 3 2 1 0 1 3
A3 0 1 1 0 0 0.5 2 0 0 0 2 1 0 0 2
A4 0 0 2 0 0 0 0 0 0 0 0 1 0 0 0
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Table A3. The group fuzzy initial direct decision matrix.

B1 B2 B3 T1 T2 T3 T4 T5 T6 T7 T8 A1 A2 A3 A4

DM1 P1 0.75 0.75 0.75 0.5 0.25 0.5 0.5 0.25 0.25 0.5 0.5 0.75 0.25 0.25 0.25

P2 0.5 0.25 0.25 0.5 1 0.5 0.5 0.25 0.75 1 0.75 0.5 0.5 0.5 0.5

P3 0.5 0.5 0.5 1 0.5 1 1 0.25 0.75 1 0.5 0.75 0.5 0.75 1

P4 1 0.5 1 0.25 0.75 0.5 0.25 0 0.25 0.75 0.5 0.5 1 0.25 0.5

DM2 P1 0.5 1 0.75 0.25 0.25 0.5 0.5 0.25 0.25 0.25 0.75 0.75 0.25 0 0

P2 0.5 0.5 0.25 0.5 1 0.75 0.5 0.5 0.5 0.75 1 0.75 0.5 0.25 0.75

P3 0.5 0.5 0.75 1 0.75 1 0.75 0.75 0.5 1 0.5 0.75 0.25 0.5 1

P4 0.75 0.5 0.75 0.25 0.75 0.5 0.5 0 0.25 0.5 0.5 0.25 0.75 0.25 0.5

DM3 P1 0.75 0.75 0.75 0.5 0.5 0.5 0.5 0.25 0.25 0.5 0.5 0.5 0.25 0.25 0.25

P2 0.75 0.25 0.25 0.75 1 0.75 0.25 0.25 0.75 0.75 0.75 0.75 0.5 0.5 0.5

P3 0.5 0.5 0.5 1 0.5 1 1 0.25 1 0.75 0.5 0.75 0.5 0.75 0.75

P4 1 0.5 0.75 0.5 0.75 0.75 0.5 0.25 0.25 0.25 0.5 0.25 0.75 0.25 0.75

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

DM8 P1 0.5 0.5 0.75 0.5 0.5 0.5 0.25 0.25 0.25 0.75 0.75 0.25 0.25 0 0

P2 0.5 0.25 0.25 0.75 1 0.5 0.5 0.25 0.5 0.75 1 0.75 0.75 0.5 0.5

P3 0.5 0.25 0.5 1 0.75 1 1 0.25 0.5 1 0.75 0.75 0.5 0.75 0.75

P4 1 0.5 0.75 0.75 0.75 0.5 0.25 0.25 0.25 0.75 0.75 0.25 1 0.25 0.75
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Abstract: Monitoring and maintaining equipment and production lines ensure stable production by
detecting and resolving abnormalities immediately. In the Industrial Internet, operational technology
and advanced information technology are fused to improve the digitalization and intelligence of
monitoring and maintenance. This paper provides a comprehensive survey of monitoring and
maintenance of equipment and production lines on the Industrial Internet. Firstly, a brief review
of its architecture is given, and a reference architecture is summarized accordingly, clarifying the
key enabling technologies involved. These key technologies are data collection technologies, edge
computing, advanced communication technologies, fog computing, big data, artificial intelligence,
and digital twins. For each of the key technologies, we provide a detailed literature review of their
state-of-the-art advances. Finally, we discuss the challenges that it currently faces and give some
suggestions for future research directions.

Keywords: remote monitoring; maintenance; Industrial Internet

1. Introduction

1.1. Background

Well-maintained equipment and production lines are the basis for regular production
in a factory. It is necessary to monitor and maintain the equipment and production lines
during the operation process effectively to avoid failures [1–3]. Traditionally, equipment
and production lines are manually inspected [4] and maintained after failures arise [5].
However, this strategy cannot avoid the negative impact of equipment downtime on
quality and capacity, which entails high costs [6]. With the development of wireless sensor
networks [7], advanced communication technologies [8–13], big data [14–16], artificial
intelligence [17,18], and digital twins [19], the Industrial Internet emerged, which brings
fresh impetus to the monitoring and maintenance of equipment and production lines.

There are several vital issues that should be addressed in the monitoring and main-
tenance of equipment and production lines on the Industrial Internet. It is a challenge
to acquire various types of data from different devices from diverse manufacturers in a
factory, as they have different communication protocols that are not compatible with each
other. After collecting a vast volume of raw data, it is also a difficult task to store, transfer,
and process this data. It is also essential to extract valuable information from these data
to determine the health of the equipment and display it to humans to facilitate proper
decision-making. Therefore, we present a comprehensive survey of the monitoring and
maintenance of equipment and production lines on the Industrial Internet.

1.2. Research Methodology for Literature Review

This paper provides a comprehensive investigation of some studies completed on the
monitoring and maintenance of equipment and production lines on the Industrial Internet
and discusses some research questions and challenges. We started with a brief review of
the Industrial Internet’s architecture, sorting out the associated key enabling technologies.
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Addressing these key technologies, we discuss their latest advances—including data col-
lection technologies, edge computing, communication technologies, fog computing, big
data, artificial intelligence, digital twins, data analytics, operation and maintenance (O&M)
optimization, and sustainability—enabling researchers to keep up with the pioneers quickly.
Then some industrial application examples were demonstrated. We also discussed some of
the technical challenges and provided a few suggestions for future research directions.

2. Architecture

Architecture is a higher level of abstraction description that helps identify issues and
challenges for the monitoring and maintenance of equipment and production lines on the
Industrial Internet. There various architectures have been proposed in the recent literature.

Wang et al. [20] proposed a cloud-assisted platform for large-scale continuous con-
dition monitoring based on the Industrial Internet of Things. The platform is a three-tier
architecture comprising an edge layer, a platform layer, and an enterprise layer. The edge
tier is where data are collected, aggregated, and transmitted. The data are transmitted
through the edge gateway to the platform tier for data storage, workflow processing, and
other applications. At the enterprise tier, data analysis and mining are applied to support
enterprise planning and decision-making. Yang et al. [21] proposed a monitoring platform
with a three-layer architecture based on cloud manufacturing, comprising an edge layer, a
fog layer, and a cloud layer. At the edge layer, raw data are acquired and preprocessed. The
fog layer is devoted to the interconnection of devices and the transmission of data on the
one hand and the deployment of trained models on the other. In the cloud, engineers moni-
tor production status, make decisions remotely via screens, and train models for diagnosis
and prediction. Li et al. [22] proposed a two-layer Industry 4.0 platform for equipment
monitoring and maintaining, consisting of a machine layer and an application layer. The
data are collected at the machine layer and then used at the application layer to monitor the
equipment conditions, production processes, and product quality. Yang et al. [23] designed
an integrated monitoring and maintenance framework for the grinding and polishing robot.
The framework is divided into four layers: a physical layer, a key enabling technology
layer, a business logic layer, and a data collection and processing layer. The physical
layer contains all the devices and sensors. The key enabling technology layer describes
the models and algorithms for monitoring and maintenance. The entire business logic is
described in the business logic layer. The data collection and processing layer depicts the
devices and their corresponding interaction logic for collecting and processing the working
condition data in the production line.

From the above literature review, we summarize a reference architecture for mon-
itoring and maintenance of equipment and production lines on the Industrial Internet,
as shown in Figure 1. This architecture consists of three layers: the physical layer, the
transport layer, and the application layer. The physical layer includes the equipment, sen-
sors, actuators, controller, and data acquisition unit. This layer focuses on data collection
and preprocessing, and the key technologies involved in this layer are data collection
technology and edge computing. The transport layer contains network transport devices,
computing devices, and databases. The main task of the transport layer is data transmis-
sion, aggregation, and forwarding, which also involves some data processing. The key
enabling technologies in this layer are communication technologies and fog computing.
The application layer consists of computing servers, databases, and application servers,
whose main functions are data storage, model training, algorithm operation, etc. The key
enabling technologies in this layer are artificial intelligence, big data, digital twins, data
analytics, O&M optimization, and sustainability. A comprehensive overview of the key
enabling technologies in each layer will be presented in the next section.
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Figure 1. Reference architecture.

3. Key Enable Technologies

In the age of the Industrial Internet, traditional remote monitoring and maintenance
technologies for equipment and production lines are becoming digital and intelligent as
they are combined with rapidly evolving information technologies. This section focuses on
the key enabling technologies in the above three layers: data collection technologies, edge
computing, communication technologies, fog computing, big data, artificial intelligence,
digital twins, data analytics, O&M optimization, and sustainability.

3.1. Physical Layer

The physical layer includes equipment and data acquisition devices. Its function
mainly collects data from the actuators and sensors and processes the acquired data.
Therefore, this subsection provides an overview of data acquisition technologies and
edge computing.

3.1.1. Data Acquisition Technologies

The data acquisition unit collects data during the production process, including the
data collected by sensors and the control data of actuators. From the perspective of physical
connectivity, there are two data acquisition modes: wired and wireless.

A. Wired Data Acquisition Technologies

The wired data acquisition method is widely used in the industry. Short and Twid-
dle [24] developed a real-time condition monitoring and fault diagnosis system for large-
scale rotating equipment in the water industry. The data acquisition unit of the system
contains several temperatures and speed sensors. An ADC converter (AD7856) is used
to convert the analog signals from the sensors to digital signals, a C167 microcontroller
is used to process the digital signals, and a non-volatile memory chip (EEPROM) is used
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for data storage. It communicates with the outside through the RS-232 standard interface.
Xia et al. [25] presented an intelligent fault diagnosis system for industrial robot bearings
under varying conditions. The vibration from a sensor was collected by a signal acquisition
board card (PXIe-4497) and sent to a PXI controller (NI PXIe-8840) together with the joint
angle data from the robot controller.

As is shown in Figure 2, wired data acquisition devices usually consist of a data
acquisition card, processor, memory, and transceiver. The control data of the equipment
can be obtained directly from the controller. Low-frequency sensing data can generally
be collected by the controller, but high-frequency sensor data needs to be collected with
a dedicated data acquisition card. In general, the data will be processed at the edge, and
the processed data will be transmitted to the next layer through the transceiver. The data
acquisition card, processor, memory, and transceiver are always integrated into a single
device as a data acquisition unit.

 

Figure 2. Wired data acquisition devices.

B. Wireless Data Acquisition Technologies

At present, wireless data collection methods are developing rapidly [26]. Li et al. [27]
proposed a flexible strain sensor based on an aluminum nitride film. Its flexible substrate
can stick well to bearings to detect micro-strain, therefore making it suitable for condition
monitoring and failure prevention. Sancho et al. [28] proposed a wireless LC sensor to
monitor the continuous wear in abradable blades in a paper mill, addressing the issue of
wear monitoring in a distributed harsh industrial environment. Ahmed et al. [29] developed
an optical camera communication-enabled wireless sensor network to monitor the state
of industrial valves. The device consists of an AM2302 sensor to collect the temperature,
an ATMEL 1430 TINY85 20SU microcontroller to process the sensor data and modulate
the LED, and a transmitter to transfer the data. Walker et al. [30] proposed a method for
real-time in-process monitoring of core motion in metal castings. A group of wireless
Bluetooth inertial measurement sensors was integrated into the additive manufacturing
sand cores to measure the acceleration and rotation during the casting. Lei and Wu [31]
designed a wireless device to acquire mechanical vibration signals. The device consists
of a high-precision MEMS acceleration sensor, a 16-bit resolution ADC acquisition chip, a
high-performance control center (STM32), and a wireless transceiver core (Si4463), which
enables high-frequency, high-precision acquisition of vibration signals. Patil et al. [32]
proposed an architecture for wireless sensor nodes, arguing that the basic components of a
wireless sensor node are a sensor, process unit, memory, transceiver, and battery.

The architecture of the wireless data acquisition devices can be summarized from the
above literature, as shown in Figure 3, including sensors, a processor, memory, a wireless
transceiver, and a battery. These components are integrated into a single device, commonly
referred to as a wireless sensor node.
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Figure 3. Wireless data acquisition devices.

There are numerous advantages of the wireless data acquisition device. It is easy to
deploy without any pre-existing infrastructure [33]; the wireless sensor network is capable
of covering a pervasive area [34]; the wireless sensor node is convenient to move [7]. Most
importantly, wireless sensors can help us collect data in environments where wiring is
impossible [35]. Therefore, the application of wireless data acquisition devices in equipment
monitoring and maintenance has become a research hotspot.

However, there are several shortcomings in applying wireless sensor data collection
methods in equipment and production lines. The wireless sensor node usually requires
batteries for power and therefore requires periodic battery replacement, resulting in moni-
toring interruptions [36]. Even though some self-powered sensors have been developed,
they can only be used in specific environments [37]. The real-time performance and ef-
ficiency of data transmission remain to be improved [38]. The data are susceptible to
interference from the external environment during wireless transmission [39]. These de-
ficiencies limit the application of wireless data acquisition methods in production lines,
which require a high degree of reliability and stability of data in real time. It will be the
emphasis of future research to address these issues.

3.1.2. Edge Computing

A large body of data is collected in production lines. The response time will be too
long if all the data are sent to the cloud for processing. Hence, data can be processed
at the edge, which reduces response times, increases processing efficiency, and reduces
network stress [40–42]. Edge refers to resources and devices near the endpoint along the
path between data sources and cloud data centers [43].

Edge computing has already been applied in the remote monitoring and maintenance
of equipment and production lines [44]. Zhang et al. [45] developed a cyber-physical
machine tool based on edge computing techniques to realize real-time monitoring of the
machine tool. The edge devices were deployed on various manufacturing units to process
the collected data. The processed data are graphed in real-time with digital twin technology
to monitor the process and status of the machine. Edge computing techniques improve the
accuracy and capability of virtual machine tools and reduce the mapping latency between
physical and digital models. Wen et al. [46] designed a remote monitoring and intelligent
maintenance platform for a sewage treatment plant based on edge computing instrumen-
tation. The edge is composed of intelligent instruments and edge servers. Intelligent
algorithms and processing units are integrated into intelligent instruments for real-time
data collection. The data are sent to an edge server for data quality control, preprocess-
ing, data aggregation, real-time data analysis, decision-making, and data cloud upload.
The preprocessed data are used for digital twin modeling and predictive maintenance in
the cloud.

The convergence of edge computing and artificial intelligence—called edge intelli-
gence, is becoming a top research priority [18,47]—but there are still many challenges [48].
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In the above reviews, the edge was only used for preprocessing of the raw data, and the
training and inference of the model were conducted in the cloud. However, with limited
bandwidth connectivity between the edge and the cloud, it is almost impossible to achieve
real-time local decision-making [49], which is fatal in some hazardous production facili-
ties [50]. Deploying machine learning at the edge is also significantly challenged by the
limited computing capacity of edge devices. We discovered that some studies are working
on these issues.

Lee et al. [51] presented a predictive maintenance system based on edge computing to
maintain and manage motor equipment. The system collects audio data from the motor
with an embedded acoustic recognition sensor and then preprocesses the raw data with a
preprocessor server. The preprocessed data are transferred to an inference server, which
classifies the health of the motor by using a trained model. Both the preprocessing server
and the inference server are deployed at the edge. Bowden et al. [52] proposed a hybrid
cloud-edge computing-based framework called SERENA for predictive maintenance. A
machine-learning model was built, trained in the cloud, and then pushed to the edge
device. In the edge device, the statistical characteristics of the raw data from the sensors
are calculated first, and then machine learning models are used to diagnose the failures
of machines.

From the above studies, a general edge intelligence architecture can be summarized,
as shown in Figure 4. The raw data are preprocessed at the edge, and the results are sent to
the cloud. In the cloud, the preprocessed data can be applied directly to remote monitoring
and maintenance of equipment, as it can also be used to train machine learning models.
The trained model can be deployed at the edge for inference of anomalies and consequently
signaling an alarm.

 

Figure 4. General edge intelligence architecture.

3.2. Transport Layer

The transport layer is mainly responsible for data transmission, aggregation, and
forwarding. Hence, a review of communication technologies is necessary. As the volume
of data increases, there is an additional need to store and compute data at this layer. Thus,
an overview of fog computing is provided in the following paragraphs.

3.2.1. Communication Technologies

There are also two modes of data transmission: wired and wireless. This section
reviews both wired and wireless communication protocols. In addition, because the Open
Platform Communication Unified Architecture (OPC UA) enables the interconnection of
devices under different protocols, it is also reviewed in this section
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A. Wired Communication Technologies

Wired communication is the most universal and widely used mode. Wired com-
munication protocols comprise Fieldbus and industrial Ethernet. Figure 5 illustrates the
classification of the wired communication protocols.

 

Figure 5. Wired communication technologies.

Fieldbus technology has been applied in industrial automation since the 1970s with
a long history [53]. Because different companies developed their own products, nu-
merous standards were created. The most frequently implemented Fieldbus protocols
are Modbus [54], Controller Area Network (CAN) [55], Highway Addressable Remote
Transducer (HART) [56], INTERBUS [57], PROFIBUS [58], Foundation Fieldbus (FF) [59],
Control & Communication Link (CC-Link) [60], etc. Fieldbus technology is being phased
out in the Industrial Internet age because devices with different protocols cannot communi-
cate with each other.

With the development of Ethernet technology, Industrial Ethernet is gradually replac-
ing the Fieldbus as the solution for the interconnection of equipment [61]. Protocols for
Industrial Ethernet include EtherNet/IP [62], Modbus-TCP [63], Powerlink [64], Ether-
CAT [65], PROFINET [66], et al. Compared to Fieldbus technology, Industrial Ethernet has
the advantages of fast transmission rates, long transmission distances, better interoperabil-
ity, flexible topology, and easy integration [67]. However, the Industrial Ethernet does not
solve the problem of interconnection between devices of different protocols either.

B. Wireless Communication Technologies

Although wired communication has the advantage of high reliability and low latency
in the industry, there is still a place for wireless communication methods. Wireless commu-
nication methods are often used in environments where wiring is extremely hard, such as
hazardous areas, moving equipment, etc. [68]. Figure 6 demonstrates the popular wireless
communication protocols.

Figure 6. Wireless communication technologies.
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A wireless wide area network (WWAN) is a telecommunications network that ex-
tends over a large geographic area. One approach to implementing WWAN is mobile
telecommunication cellular network technologies, sometimes called Mobile Broadband.
Technologies that can be used in the Industrial Internet include 4G [69] and 5G [70]. One of
the drawbacks of the cellular network is its high power consumption. Hence the low-power
wide area network (LPWAN) was proposed, which is a promising solution for remote
and low-power Internet of Things [71]. The major LPWAN technology solutions include
SigFox [13], LoRa [72], and Narrowband IoT (NB-IoT) [9]. A wireless local area network
(WLAN) is a telecommunications network that links two or more devices within a limited
area, such as a workshop or a production line [73]. The most widely used WLAN in the
Industrial Internet is often known as Wi-Fi, based on the IEEE 802.11 standard [74]. To solve
the problem of high power consumption of Wi-Fi, a low-power Wi-Fi called ‘passive Wi-Fi’
has been proposed recently [75]. A wireless personal area network (WPAN) is a telecom-
munications network within an individual’s workspace [76]. The most widely used WPAN
technology is Bluetooth [77] and Bluetooth Low Energy (Bluetooth LE) [78], based on the
IEEE 802.15.1 standard, which has been used in the industry for a long time. However, the
energy consumption of Bluetooth technology is relatively high, so the low-power, low-cost
has been proposed, called low-rate wireless personal area networks (LR-WPAN), is also
commonly used in industry [79]. The common LR-WPAN technologies are ZigBee [80],
WirelesHART [81], ISA100.11a [82], 6LoWPAN [83], and Z-Wave [84]. Radio-frequency
identification (RFID) [85] is a technology that automatically reads the information on a
tag with electromagnetic fields, and Near Field Communication (NFC) [86] technology is
developed based on it.

A qualitative and quantitative comparison between the wireless communication tech-
nologies is given in Table 1. In terms of the requirements of industrial applications, we
have compared the performance of various wireless communication technologies from
three perspectives: coverage range, power, and data rate. Cellular networks are suitable for
the transmission of large amounts of data over long distances but require a stable energy
supply. LPWAN is ideal for transmitting small amounts of data over long distances and
benefits from low energy consumption. Wi-Fi is appropriate for transferring large amounts
of data over short distances but consumes more energy. While passive Wi-Fi reduces
energy consumption, it also reduces data transfer rates. Bluetooth and LP-WPAN are used
for low-rate data transmission over short distances. Bluetooth Classic is slightly faster
but consumes more energy; Bluetooth LE has lower power consumption but also lower
speed. RFID and NFC require reading information from a tag at a short range, so they
are commonly used for identifying and tracking objects. Every wireless communication
technology has its own characteristics, and it is necessary to choose the right technology
for application according to real industrial scenarios [87].

C. Open Platform Communication Unified Architecture

As can be seen from the previous review, there are different communication proto-
cols in industrial applications, and devices with different protocols cannot interconnect
with each other. However, in real production scenarios, a company’s equipment always
comes from various manufacturers and supports different communication protocols. The
interconnection and interoperability of different devices must be achieved in the Industrial
Internet [88]. The advent of Open Platform Communication Unified Architecture (OPC UA)
provides a solution to this problem [89].

OPC UA is a cross-platform, open-source IEC 62,541 standard developed by the OPC
Foundation that is used for the reliable, secure, and interoperable transfer of data [90]. The
IEC 62,541 standard consists of the following parts: part 1—Overview and Concepts; part
2—Security Model; part 3—Address Space Model; part 4—Services; part 5—Information
Model; part 6—Mappings; part 7—Profiles; part 8—Data Access; part 9—Alarms and
Conditions; part 10—Programs; part 11—Historical Access; part 12—Discovery and Global
Services; part 13—Aggregates; part 14—PubSub. Parts 1 to 7 specify the core functions of
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OPC UA that define the modeling approach in the address space and the services associated
with it. Parts 8 to 13 are the access type specifications of OPC UA. Part 14 enables OPC UA
to support the Publish/Subscribe communication mode, improving the scalability of the
system. There has been a lot of research on OPC UA.

Table 1. Comparison between wireless communication technologies.

Technology Cover Range Data Rate Power

WWAN

Cellular Network
4G Long-Range

10 km
High

100 Mbps High

5G Long-Range
1 km

High
10 Gbps High

LPWAN

SigFox Long-Range
10 km (urban), 40 km (rural)

Low
100 bps Low

LoRa Long-Range
5 km (urban), 20 km (rural)

Low
50 kbps Low

NB-IoT Long-Range
1 km (urban), 10 km (rural)

Low
200 kpbs Low

WLAN
Wi-Fi Short-Range

50 m
High

1 Gbps High

Passive Wi-Fi Short-Range
30 m

Low
11 Mbps Low

WPAN

Bluetooth
Bluetooth Classic Short-Range

100 m
Low

3 Mbps Moderate

Bluetooth LE Short-Range
100 m

Low
2 Mbps Low

LR-WPAN

ZigBee Short-Range
100 m

Low
250 kbps Low

WirelessHART Short-Range
200 m

Low
250 kbps Low

ISA100.11a Short-Range
600 m

Low
250 kbps Low

6LoWPAN Short-Range
100 m

Low
250 kbps Low

Z-wave Short-Range
100 m

Low
100 kbps Low

RFID
RFID Short-Range

100 m
Low

400 kbps Moderate

NFC Short-Range
0.04 m

Low
400 kbps Low

Liu et al. [91] proposed a cyber-physical machine tools (CPMT) platform based on
OPC UA and MTConnect. The authors developed an MTConnect to OPC UA interface to
solve the interoperability problem between OPC UA and MTConnect, which converts the
MTConnect information model and data into OPC UA counterparts. This platform has
enabled standardized, interoperable, and efficient data communication between machine
tools and various software applications. Kim and Sung [92] designed an OPC UA wrapper
that allows UA clients to access legacy servers with OPC Classic interfaces seamlessly. The
OPC UA wrapper consists of a UA server and a classic client that interact with each other
through shared memory and semaphore. Martinov et al. [93] presented an OPC UA system
to monitor the working process of CAN servo drives. The system consists of servo drives,
a motion controller, a CNC kernel, and an OPC UA Server. Servo drives are connected to
the motion controller via the CAN bus. The CNC kernel collects the whole data from the
motion controller and sends it to the OPC UA server. The OPC UA server will convert
this data into a uniform format via the information model so that the OPC UA client can
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monitor the servo drive remotely. Wang et al. [94] proposed a tool condition monitoring
methodology considering tool life prediction based on the Industrial Internet. The OPC
UA server collects data from the machine via a private protocol and then converts the
data via the information model internally. The converted data are used for tool condition
monitoring and life prediction.

A generic OPC UA-based device data acquisition framework can be summarized from
the literature review above, as shown in Figure 7. With the implementation of the OPC
UA server, sensors under different protocols can communicate with cloud applications.
First, the data from the sensor is transferred to the OPC UA server. The information model
of the corresponding sensor is created in the OPC UA server. Data are encoded into the
standardized message through the information model. Finally, the cloud applications can
process these standardized messages in the OPC UA client to enable remote monitoring
and maintenance of the equipment.

 

Figure 7. OPC UA-based data acquisition framework.

3.2.2. Fog Computing

Because of the insufficient computing capability of the devices at the edge, it is im-
possible to perform complex calculations on the data at the edge while guaranteeing the
real-time performance of the transmission [95]. However, with the application of artificial
intelligence technology in the field of equipment maintenance becoming more advanced,
higher demands are placed on the computing capability of the system [96]. Transmitting
all the raw data to the cloud for calculation again suffers from the problem of excessive
data volume [97]. Therefore, processing the data at the transport layer becomes a solution
for these issues.

Fog computing was considered an implementation of edge computing in previous
studies [98]. However, fog computing has evolved into a new computing paradigm.
It incorporates the concept of edge computing and provides a structured middle layer
between the edge and the cloud, bridging the gap between the Internet of Things and cloud
computing [99]. The fog node is not necessarily directly connected to the end device; it can
be located anywhere between the end device and the cloud [100]. In the Industrial Internet,
fog computing and federated learning are usually used in a fusion, as fog computing
provides greater computational capacity for artificial intelligence applications.

Liu et al. [101] proposed a wireless signal classification framework based on federated
learning. The raw data are processed by frequency reduction and sampling pretreatment,
and its intelligent representation is obtained. The intelligent representation is put into
the neural network in the node for training. The loss function of each node is sent to
the aggregator and aggregated. Then the result is fed back to each node and used for
gradient optimization to achieve global aggregation. It can solve the problem of reduced
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signal classification rates caused by different types of mixed signals in complex industrial
environments and protect the privacy of industrial information. Brik et al. [102] proposed a
disruption monitoring system based on fog computing and federated learning to monitor
production for interruptions. The system collects position and movement data from
manufacturing resources (workers, robots, equipment, etc.) via cameras and then transmits
the data to the fog nodes for calculation. Each fog node trains a local prediction model and
then transfers the model weights to the cloud server only. Federated averaging (FedAvg)
algorithm is used in the cloud server to aggregate all local models to generate a global model.
Global models are deployed to the fog nodes to predict the location of manufacturing
resources. Production is considered to be interrupted once the measured position is found
to be inconsistent with the predicted position. This failure information will be transmitted
to the cloud, where the production tasks will be rescheduled via a rescheduling algorithm.
The tasks after rescheduling are then transmitted to the manufacturing resources for
production adjustment.

A fog computing framework fusing federated learning can be summarized from the
above literature, as illustrated in Figure 8. The raw data are collected from the devices
at the edge, and the collected data can be preprocessed or transmitted directly to the fog
nodes. In the fog node, the initial global model is first downloaded and then trained locally.
The local model in each fog node will be transferred to the cloud after training. In the cloud,
the local models from each fog node will be aggregated to generate a new global model,
which can be deployed to the fog node for equipment maintenance.

 

Figure 8. Fog computing framework fusing federated learning.

3.3. Application Layer

The application layer runs in the cloud with powerful computing capabilities for the
final processing of the transmitted data. The results of the calculations can be presented
directly to the engineers to make the correct decisions. The following is an overview
of six perspectives: big data, artificial intelligence, digital twins, data analytics, O&M
optimization, and sustainability.

3.3.1. Big Data

In the Industrial Internet, massive amounts of data are generated by a large number
of sensors and controllers [103]. These data are characterized by their large volume, fast
transmission speed, and variety of types and are known as ‘big data’ [14,15]. Traditional
approaches to data storage and computation are unable to process such large volumes of
data. Hence a new computing paradigm is required.
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Yu et al. [104] presented a global manufacturing Big Data ecosystem for predictive
maintenance, which involves the acquisition, storage, processing, and visualization of
data. It is applied to detect abnormal patterns in the syngas reciprocating compressor.
The system continuously collects signals such as vibration, temperature, pressure, and
speed from the turbine syngas compressor through hundreds of sensors, averaging approx-
imately 57 million entries per day. After such a large amount of data has been collected, it
is replicated in triplicate and stored randomly on cloud nodes via an optimized Hadoop
Distributed File System (HDFS) to avoid data loss. During data analysis, the data are
first converted into DataFrame format and stored in the Apache Hive Central Data Ware-
house and MapR Binary Database, respectively. The data are then computed using the
MapReduce-based distributed PCA algorithm with Apache Spark as the data processing
engine to enable the identification of equipment failures. The identification results are pre-
sented to the engineers on a visualization screen. Wan et al. [105] proposed a Spark-based
parallel ant colony optimization (ACO)-K-means clustering algorithm for fault diagnosis
of large amounts of rolling bearing operating condition monitoring data. The collected
119.8 GB of raw bearing vibration data was stored in the HDFS. The data are clustered
on the Spark efficient computing platform with the ACO-K-means clustering algorithm
to obtain a fault diagnosis model. The results demonstrate that the big data computing
framework can improve the efficiency of model computation and fault diagnosis.

In the acquisition of big data, the high concurrency problem must be solved because
a large amount of data arrives at the database simultaneously, causing blocking. Park
and Chi [106] introduced a high throughput data ingestion system for machine logs in
the manufacturing industry. Machine log stream data from a group of milling machines
are first sent to a set of pre-assigned distributed buffers called Topic. Apache Kafka
manages these Topics so they can be stored in the database orderly. Sahal et al. [107]
studied a big-data-based predictive maintenance case in wind energy. Wind farms are
geographically distributed, and data from wind turbines need to be aggregated with a
standard data storage model. Therefore, RabbitMQ is well suited to solve this problem with
its federated queues. RabbitMQ is a distributed queuing management technology based
on the Advanced Message Queuing Protocol (AMQP), which can ensure receiving data
from sensors in the correct order. Under the AMQP protocol, the publisher’s messages are
transferred to the exchange. The exchange distributes the received messages to the bound
queues according to the routing rules. Finally, the AMQP agent delivers the messages to the
consumers who have subscribed to this queue. Consumers can also retrieve these messages
by themselves as needed. Liu et al. [108] employed the publish/subscribe communication
protocol Message Queuing Telemetry Transport (MQTT) to realize the data exchange
between different equipment. After the publisher’s message is transmitted to the MQTT
Broker, it is routed directly to the subscriber and is not stored in the queue. Therefore,
MQTT has low energy consumption and is perfect for small devices.

The collected industrial big data are massive, multi-source, and heterogeneous—
containing structured, semi-structured, and unstructured data—thus creating a huge chal-
lenge for data storage. Traditional relational databases are excellent for storing structured
data. However, with the explosive growth of data volume, Structured Query Language
(SQL)-based information query has become unable to meet the demand due to its inher-
ent limitations in terms of scalability and fault tolerance [109]. Hence, NoSQL databases
are gradually becoming the solution for storing big data. Martino et al. [110] compared
the performance of three popular NoSQL Database Management Systems—namely Cas-
sandra, MongoDB, and InfluxDB—in storing Industrial big data. The results show that
InfluxDB has the best performance because the data streams from industry devices can
be considered a collection of time series. In order to support Online Analytical Process-
ing (OLAP) of big data rather than just storing data, data warehouse has been proposed.
Silva et al. [111] demonstrated a logistics big data warehouse for the automotive indus-
try. The data warehouse stores current and historical logistics data to support real-time
monitoring of logistics status and online prediction of on-time delivery using machine
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learning algorithms. The data warehouse dramatically improves the efficiency of online
data analysis. Data lake is proposed to store heterogeneous data from different sources.
Munirathinam et al. [112] designed a semiconductor manufacturing data lake with Hadoop.
It stores all data from multiple business units, including batch data, process data, and
quality data from wafer production. The authors demonstrate a visual analysis of the
data with hive tables and tableau. Various organizations of the company—such as the
Manufacturing and Quality departments—use it to benchmark across different design IDs
and fabs, and set yield/quality ramp and maturity targets for newer product generation.
A data lake is a repository of data from disparate sources stored in their original format
and can contain everything from relational data to JSON documents to PDFs to audio files.
The data can be stored without conversion leading to highly efficient. Its flexible character
allows business analysts and data scientists to look for unexpected patterns and insights.
Data lakes are becoming the most advanced solution for big data storage.

The above literature shows that big data computing frameworks mainly address the
problem of distributed storage and computation of massive amounts of data, as shown
in Figure 9. The enormous amount of data collected from the equipment and production
lines will be stored. The dominant distributed storage system is HDFS. The data are then
processed on the computing cluster with Hadoop MapReduce, Spark, and other computing
engines. They employed machine learning, data analysis, and other approaches to monitor
equipment and production lines remotely.

 

Figure 9. Big data application framework.

3.3.2. Artificial Intelligence

Fault diagnosis and anomaly detection are the main applications of artificial intelli-
gence in equipment maintenance. Fault diagnosis can identify the reason for a fault to
occur. Anomaly detection can only determine the occurrence of a fault, but it has advan-
tages in terms of dataset generation. This subsection takes the literature review from these
two perspectives.

A. Fault Diagnosis

Pursuing the relationship between monitoring data and machine health states is
always a widespread concern in machine health management, and fault diagnosis plays
a significant role in solving such issues [113]. Machine learning-based fault diagnosis
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has been widely used in the monitoring and maintenance of equipment and production
lines [114].

Han and Li [115] developed a novel out-of-distribution (OOD) detection-assisted
trustworthy machinery fault diagnosis method. At first, a deep ensembled fault diagnosis
system is established by integrating multiple deep neural networks. Then, a trustworthiness
analysis is performed with an uncertainty-aware depth ensemble to detect OOD samples
and give warnings about potentially unreliable diagnoses. Lastly, the deep ensembles’
prediction and uncertainty are carefully considered to achieve trustworthy decisions. The
proposed method was validated with a wind turbine fault diagnosis case and a gearbox
fault diagnosis case. The wind turbine fault dataset consists of one set of normal data
and three sets of faults, each with 1000 samples. The gearbox fault dataset consists of
one set of normal data and four sets of fault data, each with 1000 samples. The result
demonstrates that it exhibits significant advantages in diagnosing OOD samples and
obtaining trustworthy fault diagnosis results. Liu et al. [116] proposed a deep feature-
enhanced generative adversarial network (GAN) for rolling bearing fault diagnosis. A
new generator objective function integrated with a pull-away function was designed to
avoid mode collapse phenomena and improve the stability of the GAN. A self-attention
mechanism is used in the GNN to enhance the learning of the features of the original
vibration signal. In order to guarantee the accuracy and diversity of the generated samples,
an automatic data filter was constructed. At last, a convolutional neural network is added
as a classifier for fault diagnosis. The method was validated on a rolling bearing vibration
signal dataset from an electric locomotive. The dataset contains one set of normal data
with a 126,000 sample size and five sets of fault data with a 12,600 sample size. The results
demonstrate the better performance of this method in unbalanced sample fault diagnosis.
Ferracuti et al. [117] proposed a fault diagnosis algorithm for rotating machinery based
on the Wasserstein distance. The authors extracted frequency- and time-based features
from the vibration signals and then considered the Wasserstein distance in the learning
phase to differentiate the different equipment operating conditions. The statistical distance-
based fault diagnosis technique permits obtaining an estimation of fault signature without
training a classifier. Therefore, it is very efficient and can be used for embedded hardware.
This algorithm can solve the problem of fault diagnosis for rotating machinery at low
signal-to-noise ratios and different operating conditions. It can also be applied to system
monitoring and prognostics, allowing for predictive maintenance of rotating machinery.
Ferracuti et al. [118] studied the problem of defect detection and diagnosis of induction
motors based on motor current signature analysis. The researchers estimate the probability
density functions of data related to healthy and faulty motors with a Clarke–Concordia
transformation and kernel density estimation. Kullback–Leibler divergence is used as
an index for the automatic identification of defects because it identifies the dissimilarity
between two probability distributions. Fast Gaussian transform improves kernel density
estimation. This method has a low computational cost and enables real-time quality control
at the end of the production line. The experiments show that the proposed method can
detect and diagnose different induction motor faults and defects.

As can be seen from the above reviews, fault diagnosis methods require the training
of machine learning models on labeled fault datasets. The trained model can identify
the occurrence of a fault and diagnose the type of fault according to the acquired data.
However, it is difficult to collect sufficient fault data in a real production scenario, so there
are limitations in the application of this method.

B. Anomaly Detection

Equipment failures are rare in real production scenarios, so we can only obtain a
tiny amount of equipment failure data. Therefore, it is impossible to acquire enough
fault data to train the machine learning models, which brings a huge challenge for the
application of machine learning techniques in predictive maintenance [119]. Anomaly
detection algorithms are an effective way to solve this problem [120].
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Zhao et al. [121] proposed a one-class classification model based on extreme learning
machine boundary (ELM-B) to detect bearing failures. The dataset is a NASA-bearing
dataset provided by the Center for Intelligent Maintenance Systems (IMS) at the University
of Cincinnati. The model is a single-layer feed-forward neural, with an input layer, a
hidden layer and an output layer. The researchers calculated the RMS, kurtosis, peak–peak,
crest factor, and skewness of the healthy bearing vibration signals in the dataset as inputs
to the model. The model is trained to produce 1 at the output. The vibration signals
of the bearings are collected by sensors and fed into the trained model. If the output is
not equal to 1, it is assumed that a fault has occurred. Tanuska et al. [122] proposed an
anomaly detection algorithm for detecting anomalies in conveyor carrier wheel bearings in
automotive assembly lines. The researchers collected 16,000 bearing temperature data, of
which there were only 18 abnormalities. They designed a multi-layer perceptron (MLP)
with 13 neurons in the input layer, 18 neurons in the hidden layer, and 2 neurons in the
output layer. The MLP can detect bearing anomalies based on the minimum and average
temperature of the bearing. Kähler et al. [123] presented an anomaly detection approach
based on a convolutional autoencoder (CAE) to detect surface defects in aircraft landing
gear components. The CAE consists of an encoder and a decoder. The encoder comprises an
input layer and a convolutional layer for compressing the image. The decoder reconstructs
the compressed representation of the input using transposed convolution and convolution
layers. The researchers collected 600 defect-free images and 300 defective images of aircraft
landing gear surfaces. From this sample, 500 of the defect-free images are randomly selected
for training, while the remaining 100 defect-free images and 300 defective images are used
for testing.

From the above literature, it can be concluded that anomaly detection approaches can
contribute to solving the problem of insufficient fault samples in the industry because the
method only requires normal data for the training. However, the shortcoming of anomaly
detection is that the exact cause of the fault cannot be identified.

3.3.3. Digital Twin

After the collected data has been processed, the results should be presented to the
engineers for monitoring. Traditional monitoring methods include simple charts, pictures,
two-dimensional electronic kanban or videos, etc. These methods suffer from poor visi-
bility, low interactivity, and limited scalability, making it difficult for engineers to have a
comprehensive understanding of the operating conditions of equipment and production
lines. Digital twin technology can solve these problems to a certain degree [124,125].

Fan et al. [126] proposed a generic architecture and implementation method for digital-
twin visualization. Data collected in the production line is encapsulated in Automation
Markup Language (AML), a digital twin data exchange format, and then cached, managed,
and transformed in real-time by Cyber Engine for visualization. Digital mock-up (DMU) en-
ables the physical data of a production line to be constructed as virtual 3D scenario motions
and state changes. The digital twin can present complete and visual information about
the production line to the engineers, improving their decision-making. Fera et al. [127]
proposed a novel digital twin framework to evaluate the production line performance. This
framework collects data on the body posture and working hours of workers in produc-
tion with a wearable sensor. The digital twin of the worker is created by binding human
motion data to the digital human model via a special interface. This human motion data
will be tied to a digital model of a human to generate a digital twin model of the worker.
The management team can evaluate the efficiency of the production line accordingly and
optimize the assignment of production tasks. Liu et al. [108] proposed a digital twin-based
cyber-physical production system (CPPS). Digital geometry models of 3D printing lines are
encapsulated using web technology. An ontology-based information model was designed
to bind the data to the geometry model for 3D visualization and remote control of the
production line.
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As shown in Figure 10, the digital twin is combined with data collection techniques,
artificial intelligence, and big data computing to map equipment and production lines
in the physical space to the digital space. It allows remote monitoring of equipment and
production lines, giving a comprehensive insight into the production scenario so that the
correct decisions can be made.

 

Figure 10. Digital twin.

3.3.4. Data Analytics

Data analytics is the process of collecting, managing, processing, analyzing, and visu-
alizing evolving data [128] which has a wide range of applications in the Industrial Internet.

Zuo et al. [129] proposed an Internet-of-Things (IoT) and cloud-based novel approach
for product energy consumption evaluation and analysis (ECEA). Data related to product
energy consumption is dynamically collected in real-time. The system analyzes the en-
ergy consumption of the products in the pre-production, production, and post-production
stages—including transportation energy consumption, processing energy consumption,
auxiliary energy consumption, usage energy consumption, etc. A design solution for a
bearing bracket in a toy aircraft was optimized with this method and gave a design solu-
tion with minimum energy consumption, qualified functional quality, and within-budget
cost. Zhong et al. [130,131] proposed a real-time big data analytics framework to monitor
intelligent manufacturing shop floors. Researchers tracked workpieces in production in
real-time with RFID. RFID-cuboids were introduced to represent logistics information, thus
mining trajectory knowledge and associated indexes for evaluating various manufactur-
ing objects such as workers and machines. The steps of knowledge mining include data
cleaning, compression, classification, and pattern recognition. This knowledge supports
differentiated decision-making, for example, logistics planning, production planning and
scheduling, as well as enterprise-oriented strategy.

The above literature shows that the collected data needs to be cleaned and compressed.
Data mining, statistical analysis, and other methods are applied to obtain useful knowledge
for production monitoring and optimization.

3.3.5. Operations and Maintenance Optimization

Operations and maintenance optimization is a significant application in industrial
production. There are several studies that have been conducted to address this issue.

Yang et al. [132] developed a weather-centered opportunistic O&M framework to
enable a flexible maintenance resource allocation for wind turbines. This framework quan-
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tifies the negative (delays caused by severe wind conditions) and positive (maintenance
opportunities) impacts of wind conditions on production and maintenance processes. The
advantage of this framework is the consideration of providing additional maintenance op-
portunities when wind velocities are too small to keep the turbines running. Maintenance
downtime and production losses are significantly reduced because these spare times are
fully utilized. The authors developed a renewal scenario for turbine components, built
a maintenance cost model, and derived the optimal maintenance age for minimizing the
maintenance cost of wind turbines with sufficient maintenance resources. An improved
performance-based contracting (PBC) model was established to capture the comprehensive
effect of both production and maintenance processes. This framework collects wind turbine
condition data and wind velocity data for real-time monitoring so that maintenance tasks
are optimized with the support of the PBC. A case study shows that this framework is more
flexible in resource allocation, significantly reducing maintenance costs and increasing
revenue. Hu et al. [133] proposed a joint decision-making strategy for job scheduling and
preventive maintenance (PM) planning for a two-machine flow shop with resumable jobs,
where both job-dependent operating conditions (OC) and imperfect maintenance (IM) are
considered. A hybrid processing time model is built to obtain the optimal sequence when
the failure rate of a machine is constant under a fixed OC. The authors presented a joint
optimization model for job scheduling and PM planning when the machine failure rate is
time-varying at a fixed OC and calculated it with a genetic algorithm. The advantage of
this method is that it considers the OC data collected during the production. The results
demonstrate that the approach is effective in reducing production completion time and
also in reducing the frequency of failures.

From the above review, it can be concluded that the current research for O&M opti-
mization not only considers the maintenance tasks and production tasks of the equipment
but also the operating conditions of the equipment. Real-time monitoring of working
conditions enables further optimization of production and maintenance task scheduling
issues, improving productivity and reducing maintenance costs.

3.3.6. Sustainability

Sustainability is an essential issue in the context of climate change, where industrial
production plays an important role. There are several applications for improving sustain-
ability in manufacturing with remote monitoring and maintenance on Industrial Internet.

Rojek et al. [134] proposed a digital twins system for manufacturing and maintenance
sustainability. The authors obtained real data from some companies engaged in eco-design,
process planning, and process supervision. Several artificial intelligence models were built
based on this data and fused into the digital twins. The digital twins monitor production
processes with artificial intelligence models for process parameter optimization, production
planning, and equipment maintenance to improve manufacturing and maintenance sus-
tainability. Caterino et al. [135] defined a new remanufacturing framework based on cloud
computing technology called cloud remanufacturing (CRMfg). The framework translates
remanufacturing resources and capabilities into services delivered via the Internet, allowing
for the mutually beneficial connection of remanufacturing service providers and customers
in different locations. The CRMfg can monitor registered remanufacturers and their equip-
ment, thus enabling the scheduling and real-time tracking of product remanufacturing
tasks. It can significantly improve the efficiency of remanufacturing, thus contributing
to achieving economic and environmental sustainability. Çınar et al. [136] introduced
the application of machine learning-based predictive maintenance in sustainable smart
manufacturing. The collected real production data are used to train machine learning
models for fault diagnosis, thus enabling predictive maintenance. Predictive maintenance
can significantly reduce hidden problems, failures, and accidents in production, result-
ing in less breakdown maintenance and lower maintenance costs, ultimately achieving
sustainable manufacturing.
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From the above literature, it can be seen that the sustainability of the manufacturing
process is improved after the introduction of modern technologies related to the Industrial
Internet. Remote monitoring of equipment and production lines optimizes process parame-
ters and reduces waste caused by suboptimal processes; optimizes production scheduling
and reduces economic consumption caused by waiting time; and minimizes the frequency
of failures and reduces damage caused by equipment downtime.

4. Industrial Application

Remote monitoring and maintenance technology has been widely implemented in the
industrial area. This section demonstrates several real industrial application cases.

Yang et al. [23] demonstrate a case of monitoring and maintenance for a grinding and
polishing robot. The robots are used for grinding and polishing prebaked carbon anodes, a
key consumable for aluminum electrolysis production. The proposed framework enables
data-driven maintenance, intelligent fault diagnosis and prediction, and knowledge-based
maintenance and fault diagnosis service for the robots. The authors developed a B/S-
architecture industrial internet service platform. The platform includes the following
functions: maintenance of equipment according to the manufacturer’s predefined mainte-
nance schedule; identification of process parameter anomalies; monitoring of machining
accuracy; and answering questions about equipment failures, process parameters, and
machining accuracy through knowledge graph Q&A technology.

Li et al. [22] developed an Industrial 4.0 platform for equipment monitoring and
maintenance in prebaked carbon anode production. This platform is applied for the
monitoring and maintaining the kneader, critical equipment for prebaked carbon anode
production. The platform can collect equipment working condition data, production
process data, and product quality data, enabling production planning, equipment failure
maintenance, process parameter optimization, and product quality control.

Scheuermann et al. [137] proposed an example of an Industrial 4.0 manufacturing
process called the Agile Factory. The Agile Factory is implemented in mass customization
production scenarios. The Agile Factory assembly line is component-based, combining
trackable mobile workstations with fixed workstations. Therefore, the products are trace-
able during the production process. A customer feedback loop was implemented to allow
for mass customization of products by permitting change requests during assembly time.

Bonci et al. [138] demonstrate a case study of the application of fault diagnosis tech-
nology in industrial packaging machinery. The collected current data of the equipment
is pre-processed with a demodulating technique by means of the analytic envelope. The
pre-processed signals are subjected to continuous wavelet transform and discrete wavelet
transform for fault diagnosis. A real industrial case demonstrates that the method can detect
belt failures in packaging machinery running continuously in non-stationary conditions.

As can be seen from the above cases, the main applications in the industry are equip-
ment maintenance, process optimization, product quality control, production planning,
troubleshooting, etc.

5. Challenges

Although a great effort has been dedicated to the monitoring and maintenance of
equipment and production lines on the Industrial Internet, there are still many challenges
that remain to be addressed. Key challenges stem from the requirements in real-time
performance, interoperability, security, and intelligence. These challenges will be discussed
in this section, as shown in Figure 11.
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Figure 11. Challenges.

5.1. Real-Time Performance

In order to enable remote monitoring and maintenance of equipment and production
lines in the Industrial Internet, sensors, actuators, machines, and other computing devices
need to cooperate with each other. Low latency and reliable data transmission must
therefore be ensured for the reliability and efficiency of the Industrial Internet. Real-time
performance is a significant issue for data transport in the Industrial Internet [139].

The emergence of time-sensitive networks (TSN) holds the promise of solving this
problem. Time-sensitive networking (TSN) is a set of standards under development by the
time-sensitive networking task group of the IEEE 802.1 working group [140,141]. It achieves
time synchronization, limited low latency, and high reliability over standard connection
technologies such as Ethernet that meet the requirements of time-sensitive applications in
industrial systems [142]. It has the potential to become the standard for the next generation
of industrial communication and automation [11,143].

The National Institute of Standards and Technology (NIST) has built a collaborative
robotic workcell testbed enabled by Wireless TSN technologies. The study shows that the
percentage of idle time experienced by the operator robot is lower when TSN is enabled
because the robot can receive commands from the controller more rapidly, which increases
the productivity of this collaborative robot in industrial environments [144]. Yang et al. [145]
proposed a TSN chain flow abstraction, TC-Flow, that solves the problem of coordinated
scheduling of multiple data streams in industrial applications such as control and security
applications. Nikhileswar et al. [146] present an industrial control system implemented by
5G and TSN and evaluate it. The results show that TSN can significantly reduce the latency
of the network. Pop et al. [147] proposed that using TSN as a deterministic transport for the
fog computing network layer in industrial automation can reduce the latency and improve
the stability of data transmission in the Industrial Internet.

Overall, TSN combined with edge computing and fog computing is expected to be a
way to improve the real-time performance of the Industrial Internet.

5.2. Interoperability

In the Industrial Internet, the interconnection of people, machines, and things is to be
realized. The transmission of real-time data from industrial equipment and information
from network applications such as operations management are separated in existing factory
intranets, with the former generally being routed through Fieldbus or industrial Ethernet
and the latter relying on conventional Ethernet. OPC UA has been able to interconnect
devices at the application layer but not at the data link layer in the Open Systems Intercon-
nection (OSI) model. TSN enables network interconnection and data interoperability at
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the data link layer. Therefore, the convergence of OPC UA and TSN promises a unified
Industrial Internet [8].

Pfrommer et al. [10] presented an approach that combines a non-real-time OPCUA
server with a real-time OPC UA Pub Sub, where both have accessibility to the shared infor-
mation model without dropping the real-time guarantee to the publisher. The publisher can
therefore run within hardware-triggered interrupts to guarantee low latency and less jitter.
Li et al. [12] present a two-layer manufacturing system communication architecture with
OPC UA and TSN technology in heterogeneous networks. The TSN network is used as the
communication backbone for realizing the real-time services of the industrial automation
system, which connects the heterogeneous industrial automation subsystems at the field
level with the upper-layer entities. OPC UA is used to realize the exchange of information
between the heterogeneous subsystems in the field layer and the entities in the upper layers.
The results prove that different types of devices can communicate with each other in this
system with excellent real-time performance.

From the above, it can be seen that OPC UA over TSN will be a promising way to
solve interoperability problems in the Industrial Internet.

5.3. Security

The main features of the Industrial Internet are openness, interconnection and sharing,
which pose serious security challenges. An attack on the network can lead to loss, leakage,
and tampering of industrial data. In the event of an attack on the control network, there
would be enormous financial damage and even a threat to the lives of the public. It seems
that blockchain holds the promise of alleviating these problems [148].

Gu et al. [149] implemented a functional safety and information security protection
mechanism based on blockchain technology in the CPS system. The equipment must be
authenticated Safety Integrity Level (STL) before accessing the CPS. A new equipment
block is created with a combination of asymmetric and symmetric key encryption meth-
ods, and the STL of the equipment will be stored in the block. The researchers propose
a fault threshold mechanism based on smart contract technology to ensure functional
safety and information security during equipment communication. Qu et al. [150] combine
blockchain and federated learning technologies to propose a blockchain-enabled federated
learning (FL-Block) model which enables decentralized privacy protection. FL-Block en-
ables decentralized privacy protection through hybrid identity generation, comprehensive
authentication, access control, and off-chain data storage and retrieval.

It can be concluded that blockchain technology is emerging as a prospective solution
to security issues in the Industrial Internet due to its decentralization, non-tamperability,
traceability, and high cryptographic security.

5.4. Intelligence

Artificial intelligence is already widely used in the maintenance of equipment and
production lines. The common approach is data-driven fault diagnosis, which can be
used to diagnose and isolate faults in specific devices. However, the implementation of
data-driven fault diagnosis requires careful design of physical models, signal patterns, and
machine learning algorithms to describe faults [17]. A knowledge-based fault diagnosis
approach is suitable for complex or multi-component systems/processes without detailed
mathematical models, which is becoming another direction of development [151,152].

Cao et al. [153] proposed a novel Knowledge-based System for Predictive Mainte-
nance in Industry 4.0 (KSPMI). KSPMI blends computational intelligence and symbolic
intelligence. Firstly, chronicle mining (a special type of sequential pattern mining approach)
is used to extract machine degradation models from industrial data. After that, domain
ontologies and Semantic Web Rule Language (SWRL) rule-based reasoning use the ex-
tracted chronicle patterns to query and reason on system input data with rich domain and
contextual knowledge. The system is able to predict future failures of equipment and the
time of occurrence. Wang et al. [154] presented a framework for the intelligent operation
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and maintenance of traction transformers based on knowledge graphs. The framework in-
tegrates multiple sources of heterogeneous data from traction transformers into structured
knowledge with a unified knowledge representation model. The researchers constructed
a knowledge entity graph, concept graph, fault treatment graph, and fault case graph to
achieve multi-source condition data fusion and correlation analysis, multi-dimensional
differentiated state evaluation, and intelligent assisted maintenance decision-making.

As can be seen, the combination of data-driven fault diagnosis and knowledge-driven
fault diagnosis may lead to further progress in the intelligent maintenance of equipment in
the future.

6. Conclusions

In this paper, a detailed overview of the monitoring and maintenance of equipment
and production lines on the Industrial Internet is proposed. At first, a brief review of its
architecture is presented, and a three-layer reference architecture is summarized, containing
the physical layer, the transport layer and the application layer. We then provide a detailed
literature review of the key enabling technologies involved in each layer, including data
acquisition technologies, edge computing, communication technologies, fog computing,
big data, artificial intelligence, digital twins, data analytics, O&M optimization, and sus-
tainability. Next, we demonstrate some industrial application cases. We also discuss the
challenges in terms of real-time performance, interoperability, security, and intelligence.
Overall, we have reviewed the most advanced research in this field and discussed the
direction of future research, which is expected to be a reference for researchers addressing
this area.

There are still some limitations in this review because remote monitoring and mainte-
nance for equipment and production lines on the Industrial Internet is a very wide field.
In the Industrial Internet, many nodes work simultaneously and are prone to failures.
Therefore, the fault tolerance of the system is a key issue in the face of various potential
failures. Numerous sensors and devices continuously consume large amounts of energy, so
research on an energy-efficient ‘green Industrial Internet’ is also necessary. There are also
some traditional industrial software systems in industrial applications, such as enterprise
resource planning (ERP), manufacturing execution systems (MES), etc. How to interoperate
with these systems to further improve the digitalization and intelligence of production is a
huge challenge. In the future, we will conduct special research on the above issues.
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Abstract: Resilient manufacturing is a vision in the Industry 5.0 blueprint for satisfying sustainable
development goals under pandemics or the rising individualized product needs. A resilient manufac-
turing strategy based on the Industrial Internet of Things (IIoT) networks plays an essential role in
facilitating production and supply chain recovery. IIoT contains confidential data and private infor-
mation, and many security issues arise through vulnerabilities in the infrastructure. The traditional
centralized IIoT framework is not only of high cost for system configuration but also vulnerable to
cyber-attacks and single-point failure, which is not suitable for achieving the resilient manufacturing
vision in Industry 5.0. Recently, researchers are seeking a secure solution of middleware based on
blockchain technology integration for decentralized IIoT, which can effectively protect the consistency,
integrity, and availability of IIoT data by utilizing the auditing and tamper-proof features of the
blockchain. This paper presented a review of secure blockchain middleware for decentralized IIoT
towards Industry 5.0. Firstly, the security issues of conventional IIoT solutions and the advantages of
blockchain middleware are analyzed. Secondly, an architecture of secure blockchain middleware for
decentralized IIoT is proposed. Finally, enabling technologies, challenges, and future directions are
reviewed. The innovation of this paper is to study and discuss the distributed blockchain middleware,
investigating its ability to eliminate the risk of a single point of failure via a distributed feature in the
context of resilient manufacturing in Industry 5.0 and to solve the security issues from traditional
centralized IIoT. Also, the four-layer architecture of blockchain middleware presented based on the
IIoT application framework is a novel aspect of this review. It is expected that the paper lays a solid
foundation for making IIoT blockchain middleware a new venue for Industry 5.0 research.

Keywords: decentralized Industrial Internet of Things; blockchain middleware; data security;
Industry 5.0; resilient manufacturing

1. Introduction

The pandemic of COVID-19 has expedited the reshaping of supply chain management.
Resilient Manufacturing (RM) is envisaged in the Industry 5.0 concept as a result of either
sustainable development goals under pandemics or the rising individualized product
needs [1,2]. It is described as a manufacturing system that can sustain possibly severe
disturbances and recover from an undesired condition to the desired state. As well, it
is considered to have the ability to mitigate the negative impacts of disruptions, such
as networking faults, machinery troubleshooting, and material supply breakdowns, and
swiftly recover to normal conditions.

Industry 4.0 is driven by technology. Its development has brought many cutting-edge
technologies, but it lacks robustness and high resilience when exposed to unknown factors.
Industry 5.0, based on the technology driven by Industry 4.0, is looking for common
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interests and values of workers from different countries, so as to transform into a value-
oriented era. Among them, achieving a high level of resilience is an essential capability
recognized by Industry 5.0. In the field of the Internet of Things (IoT) in Industry 4.0, the
technology-driven IoT has given rise to computers with powerful computing power and
cutting-edge data storage and processing technologies. Hence, most IoT architectures rely
on a centralized framework, which makes the IoT vulnerable to unknown disturbances
in the event of a single-point failure. In contrast, in the value-driven Industry 5.0, where
the ability to quickly resume manufacturing when faced with unknown disruptions is
a recognized fundamental feature. As well, the decentralized architecture of IIoT plays
an essential role in achieving the system resilience in the transition from Industry 4.0 to
Industry 5.0. Similarly, a resilient manufacturing strategy based on the Industrial Internet
of Things (IIoT) networks plays an essential role in facilitating production and supply chain
recovery. IIoT networks comprise billions of devices that generate enormous amounts
of data [3,4], which usually contain sensitive information about humans and machines
that could pose security issues. The vast majority of modern IIoT frameworks are built on
centralized architectures. Users must have faith in the security of these services to process
and store their data. Data processing, security, and privacy services are now provided
by existing centralized systems, which call for extremely powerful computers from other
parties. Data generated from equipment is collected and sent to a central cloud computing
center for intense data gathering and translation. It needs a middleware solution to provide
a development and execution environment that supports interoperability, distributed
decision making, and the effective integration of heterogeneous human-machine systems
and devices, which can also make the digital information transparent, immutable, traceable
to query, and auditability (in Figure 1). The absence of secure middleware with processing
and storage capabilities results in the high complexity of industrial networks. Therefore,
researchers are pursuing middleware methods to availably address the mentioned IIoT
security issues including integrity, consistency, and availability. However, the information
may be utilized inappropriately or disclosed to certain unauthorized parties. The use of
IIoT middleware will likely be severely constrained in the future due to the inadequacy
of traditional security measures (e.g., cryptographic techniques). A centralized system
may also make it difficult for the IIoT to be highly scalable and robust in the event of a
single-point failure, which is not suitable for achieving the resilient manufacturing vision
in Industry 5.0.

Decentralized techniques may be a preferable option to increase the security and
dependability of current IIoT systems [5]. In addition to preventing single points of failure,
the decentralized architecture of IIoT enables the long-term expansion of networks, in
which blockchain is an important enabler [6]. Blockchain is a distributed ledger [7] that
cannot be tampered with or cryptographically faked because of the chain topology that
joins data blocks progressively following the chronological order [8]. Blockchain has many
advantages to solve the dependability, interoperability, and security concerns of IIoT [9] by
supplying decentralized processes. Industrial processes and entities will be able to register
and confirm their products and services via the integration of blockchain with IIoT [5].
Establishing blockchain middleware for decentralized IIoT could provide dependable and
secure services for industries to store and trade data, addressing the issues mentioned
above (e.g., interoperability, heterogeneity, data security) and thus building trust among
the value chain’s participants [10]. Blockchain middleware can offer software or interface
for many platforms and applications to successfully integrate communication between
devices and the blockchain network. Through blockchain middleware, programmers with
insufficient knowledge of the blockchain can shield the complex and tedious blockchain
underlying principle to implement the interoperability between IIoT data and blockchain
network, and the deployment of smart contracts via its API interface. In this way, it can
promote the implementation of scalability, reliability, real-time, availability, security, and
privacy of decentralized IIoT applications towards Industry 5.0.
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Figure 1. Conventional middleware solution and security issues for IIoT.

Recently, researchers are pursuing a blockchain middleware method to availably
address the mentioned IIoT security issues. However, the current exploration of blockchain
middleware is still at its initial stage. Muller and Breque [1,2] both specifically discussed
the key role of resilience in industry 5.0, but they did not elaborate on the impact of
blockchain technology on industry 5.0 in terms of distributed information security from
the perspective of resilience. In terms of the IIoT, Xu et al. [3] summarized the application
status, enabling technologies, and future directions of the IoT in the industrial field in
detail, but the description of the application level of the IoT middleware and blockchain
technology is not comprehensive. Wang, Lian, Leng, and Zheng et al. [6–9] summarized the
application of blockchain technology in IoT and IIoT in detail. They emphasized that the
characteristics of blockchain technology (tamper-proofing, immutable, and decentralized),
data structure, and consensus mechanism play a key role in the security issues of IIoT.
However, their discussion on the application of IoT middleware is not comprehensive
enough, and the key enabling technologies and challenges of IoT middleware are not
mentioned in the classification. Latif et al. [5] reviewed the development and application
status of blockchain technology in IIoT. The integration of some middleware platforms
and blockchain technology were also studied from the perspective of IoT middleware, but
the key role of blockchain middleware in Industry 5.0 resilient manufacturing was not
analyzed in the paper. Current research findings on secure blockchain middleware are
relatively scarce and less systematic. A systematic introduction to blockchain middleware
for decentralized IIoT towards Industry 5.0 is absent. Motivated by this observation, this
paper tries to review secure blockchain middleware for decentralized IIoT towards Industry
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5.0. We searched the Web of Science databases for literature. A three-step process was used
to further analyze the articles that were found.

Using appropriate screening criteria, the initial step is to find high-quality articles.
To produce high-quality publications, working papers and commentary are not included.
Meanwhile, three keywords, namely, “Industrial Internet of Things”, “blockchain middle-
ware”, and “data security and privacy”, were identified for searching publications. This
inclusive search yielded 271 publications for further analysis (up to 31 July 2022).

Secondly, to emphasize the architecture and the role of blockchain middleware in IIoT,
articles on advanced technologies for IIoT security and blockchain middleware are also
included. More specifically, the selection criteria are shown as follows.

1. These studies highlight the security issues, including infrastructure security, data
security, and process trust, in IIoT, are selected. These studies highlight the concepts,
technologies, architecture, and application of blockchain middleware technology in
IIoT is selected.

2. Reviews/frameworks on IIoT blockchain middleware and enabling technologies
were evaluated to offer a comprehensive understanding of the trends, functions,
technologies, and challenges involved in Industry 5.0.

3. Studies containing concepts and issues related to digital transformation were taken
into consideration, including those that did not specifically include blockchain mid-
dleware in the title, keywords, or abstract. This makes it possible to identify potential
directions for future industrial innovations.

Research that is unrelated to (1) IIoT management or the blockchain domain; (2) studies
that were not authored in English; (3) brief papers that are fewer than four pages are
eventually excluded.

In the final step, 105 articles that fit the criteria for inclusion were included, and
21 more articles were found after the references were used as a source for literary analy-
sis. Additionally, 21 supplementary references were added to make the review concrete.
Therefore, this review consists of 126 articles in total.

Therefore, this review discusses the research status of blockchain middleware appli-
cations in decentralized IIoT. Firstly, the security issues of conventional IIoT solutions are
analyzed in Section 2. Secondly, the advantages of blockchain middleware and architecture
of secure blockchain middleware for decentralized IIoT are proposed in Section 3. Finally,
enabling technologies, challenges, and future directions are reviewed in Sections 4 and 5,
respectively. Finally, Section 6 presented the concluding remarks obtained from this review.

2. Security Issues in IIoT

2.1. The Characteristics of IIoT

Applications for the Internet of Things can influence many areas of daily life for
workers. IIoT devices, networking, and communication technologies vary to fit the goals
and requirements of diverse human-machine collaborative applications. Additionally, IIoT
refers to the application of specific IIoT technologies and various smart objects (such as
smart sensors, smart actuators, and smart manufacturing devices) in an industrial setting
for the advancement of goals specific to the industry. New research trends for industrial
applications are being introduced by IIoT [11,12]. It incorporates several cutting-edge
technologies, including digital twins, big data analytics, robots, artificial intelligence (AI),
smart sensors, actuators, and different communications protocols in traditional industrial
environments [3,4]. By streamlining the production process, lowering costs, and boosting
the productivity of smart businesses, IIoT aims to improve the performance of current
industrial operations. It is clear that IIoT has attracted both academic and industrial interest,
and as a result, it will significantly influence the design and development of next-generation
(Industry 5.0) industrial infrastructures. The following list of IIoT characteristics serves as
a summary.
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2.1.1. Mass and Jumbled Data

Big data from IIoT sensing has the following qualities: high volume, high velocity,
high veracity, and high diversity. Massive volumes of data can be produced in real-time
by sensor devices. In this case, the problem with manufacturing data is both inconsistent
and unreliable. This difficulty results from the variety of data types used in manufacturing,
each of which calls for a specific signal acquisition parameter [13].

Furthermore, results may be predicted using big data processing and machine learning
approaches. Due to the fast expansion of IIoT sensing, massive data are produced and
stored locally or in cloud-based data repositories. Fundamentally new approaches for
large-scale IIoT data management, information processing, and industrial process control
are necessary to fully realize the full potential of big data analytics for smart manufacturing.
For instance, the IIoT may use a large number of sensors to continually track the state
of a machine in real-time and subsequently send data to the cloud. IIoT data includes
both real-time data from in-situ monitoring of machines as well as signals gathered from
machining tools and units. Easy access to the data from the cloud platform allows for
parallel processing on distributed computers, which may be utilized to gather important
data and develop prediction-making algorithms. In the end, decision-making is encouraged
(e.g., production scheduling) [14].

2.1.2. Distributed Architecture

IIoT is moving towards distributed nature. Its distributed architecture is advantageous
to the deployment of edge computing. Data generated in the IIoT is growing exponentially
and much faster than that in traditional centralized cloud environments, where data is
stored. As well, data storage and transmission issues (such as latency and bandwidth) on
cloud devices make transmission speed a core issue. Therefore, a distributed architecture
facilitates the deployment of edge computing to effectively solve the problem of inefficient
transmission from IIoT to cloud architecture.

Rather than processing centrally in an internally deployed data center or public cloud,
the distributed edge architecture brings it closer to the humans and devices in use. Edge
computing is critical for manufacturing processes that use large amounts of data and
require fast response times while ensuring safety. From IIoT devices to data centers, the
cloud features (e.g., data, networking, storage, and computing) are distributed at all levels
of the overall edge computing node [15], transferring the storage and calculation to the
most efficient location for processing data. Then the key performance of IIoT application,
safety, and efficiency requirements can be realized.

2.1.3. Heterogeneity

1. Multiple devices and heterogeneous network communication

Heterogeneity is a key characteristic of the IIoT when acting as manufacturing ser-
vices [16]. The heterogeneity of the IIoT ranges from machines to humans and networks.
When it comes to communication between different devices encapsulated with heteroge-
neous networks, gateways play an indispensable role. The gateway of the IIoT is mainly
used for device access, data collection, and device monitoring. The main function of the
gateway is to convert the equipment with two different protocols into the corresponding
protocol for two-way data transmission. It is mainly aimed at networking heterogeneous
devices that cannot communicate directly. When implementing the IIoT, decisions about
how to transfer data are often complex. Currently, the three most common IIoT communica-
tion protocols are MQTT, AMQP, and COAP. The standardization of IIoT data connectivity
and advance in simulation tools make it easier to make more informed decisions on data
connectivity and integration.

Heterogeneous network integration is a promising emerging solution. For network
heterogeneity of IIoT in Industry 4.0, many researchers have presented some architectures
to integrate diverse networks. However, the presented solutions lack a consistent paradigm
for accessing diverse networks and are only partially employed to address the hetero-
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geneity of diverse constrained wireless communication networks [17]. Therefore, unified
governance of heterogeneous networks is necessary to enable communication between the
various networks. The use of network middleware, which gives clients a single applica-
tion call interface while hiding the heterogeneity of underlying networks, is one feasible
option [17]. Additionally, it is important to standardize the middleware’s interface as much
as possible so that the device producers can develop adaptive device connections with
heterogeneous networks.

2. Interaction of heterogeneous systems and software

With the exponentially-growing network size and heterogeneity in systems, the de-
velopment of IIoT security faces huge challenges. In such an environment, it is worth
considering how to integrate heterogeneous systems to achieve efficient and safe inter-
active operation. Currently, the middleware solution has become an effective tool for
researchers to achieve interoperability between systems. It allows for the on-demand
integration of systems and software components. Additionally, it aids in the abstraction of
availability and heterogeneity. To add new values for various systems, several middleware
platforms were created.

2.2. The Architecture of IIoT

In this section, we first examine the foundation of a fundamental IIoT architecture and
how these security concerns might work there before diving into a more in-depth examina-
tion of security issues. Several ideas provide different IIoT designs. These architectures are
often categorized according to layers. Notably, the IIoT architecture frequently overlaps
with these layers.

Sisinni et al. [18] proposed a three-layer design for the IIoT. The layers are sensors,
networks, and services. Xu et al. [19] presented another three-layer design for the IIoT. It
contains physical, communication, and application layers, unlike [18]. In [20], a four-layer
IIoT architecture that consists of layers for perception, network, support, and application
is proposed. The support layer can be viewed as a data layer conducting data analytics
functions. In [5], different from the support layer of the proposal IIoT architecture in [20],
another four-layer IIoT concept that is extensively used was introduced. The four-layer
in [5] contains the perception, network, middleware, and application layers. In this section,
each of these layers will be briefly discussed. A five-layer reference architecture is approved
by the International Telecommunication Union. It includes layers for sensing, gaining
access, networking, middleware, and applications.

An IIoT architecture in [5] is introduced. Notably, we choose a four-layer architec-
ture that may be applied to various IIoT systems. It can accommodate the fundamental
components of a three-layer IIoT architecture, while also readily expanding this four-layer
architecture with additional components to depict a five-layer IIoT architecture with finer
granularity. In addition, considering that the discussion focuses on the application of
blockchain middleware to IIoT security issues, the enterprise applications and cloud com-
puting services will not be discussed in this paper. That said, as shown in Figure 2, the IIoT
security issues we summarized fit into the discussion in a four-layer architecture.

2.2.1. Perception Layer

The perception layer, which includes a variety of sensors for collecting various kinds
of human-machine collaborative production context data, is thought to be the lowest
physical layer of the IIoT architecture [21]. The perception layer is made up of sensors and
actuators that acquire and interpret context data to carry out tasks (e.g., retrieve location
and acceleration) [22]. A variety of IIoT applications require the perception layer [23]. To
connect the physical and cyber worlds, a variety of end devices can be employed at the
perception layer. Near Field Communications (NFC), RFID, wireless sensors and actuators,
RFID, and some smart devices are examples of typical end devices. This layer also makes
use of many sensing technologies including GPS, WSN, RSN, and others. Multiple sensors
built within it collect information and recognize smart items in an industrial setting. With
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specific computational and energy needs, sensors, actuators, imaging devices, RFID tags,
and other technologies are the main technologies of this layer. After being transformed
into digital form, the data collected from the environment is sent to the network layer. For
instance, an RFID tag consists of a tiny microchip linked to an antenna. In a manufacturing
environment, things may be recognized, tracked, and monitored by applying RFID tags to
them. Additionally, this layer can be divided into perception nodes and networks [5].

Figure 2. The four-layer architecture of IIoT.

2.2.2. Network Layer

The network layer encapsulates large amounts of protocols (e.g., MQTT, COAP, Zig-
Bee, Ethernet). For the protocols of the IIoT, it can generally be divided into two categories,
namely communication protocol (e.g., Bluetooth and ZigBee) and transmission protocol
(e.g., High-Speed Ethernet (HSE), Modbus TCP/IP, and ProfiNet), performing secure infor-
mation sharing [24]. Cloud computing and the Internet are the fundamental components
of this layer [25]. Additionally, Internet gateway devices work in this tier by utilizing the
most recent communication technologies to deliver network-connected services.

2.2.3. Middleware Layer

This third-level layer, commonly called the support layer, is presented [26]. It offers
IIoT systems database and cloud services for the application layer to use further [27]. The
middleware layer employs advanced computational techniques to evaluate, process, and
store data. It can use cutting-edge technologies such as cloud computing and big data
analytics to automatically analyze and compute the information that has been acquired. As
described in the previous section. Middleware has become an effective tool for researchers
to achieve interoperability between systems [28]. Some middleware models were proposed
to provide added value for various industrial systems. The details will be described in
later sections.

2.2.4. Application Layer

The termination layer of the IIoT is another name for the application layer. By preserv-
ing data integrity, secrecy, and authentication, this layer performs as the bridge between
users and applications. This layer accesses the middleware layer’s data and offers multiple
services to the users. Additionally, it is integrated with commercial organizations to access
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smart applications [29,30]. Using internet-capable devices such as smartphones, tablets,
PCs, wearable technology, and many other smart gadgets, users can access the smart ser-
vices at this layer. To develop smart applications, the application layer incorporates the
IIoT network, such as smart factories, healthcare, and smart grid [31].

2.3. Security Issues in IIoT Architecture

The stable operation of IIoT brings significant improvement in automation level to
industry, and at the same time makes it challenging to impose more security issues within
it [32]. Several security issues must be solved to offer the client and users a flexible, scalable,
and reliable IIoT environment. Attacks on IIoT raise a serious security issue for the industry.
These attacks have the potential to seriously harm businesses and occasionally even put
lives in danger [33]. One of the most important challenges in an IIoT system, among others,
is data security. Usually, the characteristics of an IIoT system make it challenging when the
standard heavy-weight security designs cannot be directly used to meet such difficulties
(e.g., resource-constrained, heterogeneous, mobile). On the contrary, they need more
systems and frameworks that can satisfy the unique needs of an IIoT system. Therefore, a
platform for smooth data exchange between enterprises is required to transmit and analyze
multiple data sources efficiently, such as in a supply chain network [34]. Consequently,
organizational issues, such as cross-enterprise information sharing and cooperation (via
data interchange and transparency), are especially demanding in addition to technological
considerations. Due to the IIoT-linked network of heterogeneous communication protocols,
and various network platforms, a possible vulnerability in one area may cause a more
significant effect on the system’s entire performance [35].

In general, developing a comprehensive and cohesive system is challenging due to
the heterogeneity in the IIoT system. The security issues in IIoT have been compiled
and categorized in several surveys. For example, four primary categories of security at-
tacks in the IIoT were Physical Attacks, Network Attacks, Software Attacks, and Data
Attacks [31]. For IIoT, [31] has examined relevant studies on IIoT security challenges from
the two perspectives of defending/preventing attacks and authentication/authorization.
Jayalaxmi et al. [20] presented a security taxonomy for the IIoT system based on six distinct
security services: authentication, confidentiality, non-repudiation, availability, integrity,
and privacy. Pal and Jadidi [33] summarized the data confidentiality, they also considered
the communication, performance, and heterogeneity in users and devices. Further, dy-
namic infrastructure as one of the IIoT characteristics and cascading services are discussed.
Leng et al. [8] considered the combination of IIoT security issues and blockchain technology.
They proposed a PDI framework for surveying blockchain security.

In this paper, we considered the comprehensive survey on IIoT attacks proposed by
Jayasree Sengupta et al. [31] and introduced cyber-attacks from four layers in IIoT proposed
by Shahid Latif et al. [5]. Moreover, as shown in Table 1, based on the proposed attacks
categorized by Shahid Latif et al. [5], we further supplement the classification of these
security issues (including cyber-attacks, threats, and potential security [33]), and categorize
the attributes of them corresponding to the layer they are in. Especially, based on the
middleware layer mentioned by Shahid Latif et al. [5], we combined the analysis of security
issues in the support layer from Shantanu Pal et al. [33] and in the processing layer from
Jayasree Sengupta et al. [31] and supplement the security issues of the middleware layer. At
last, we reclassified the security issues into three categories (i.e., attacks on infrastructure,
data security, and process trust concern) based on the related works [31,33,36]. The details
are described as followed in Figure 3 and Table 1.
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Table 1. The overview of IIoT security issues.

Security Type Attack Name Description

Attacks on
infrastructure

Physical attacks

Tampering [37]

The act of physically modifying a device (e.g., RFID) or
communication link. Such a type of attack will lead to
the consequence of access to sensitive information and

gain access.

Attack device
performance [38,39]

The target of these attacks is mainly to affect or interrupt
system operation by affecting device performance, for

instance, a heatstroke attack, DoS/DDoS, and replay attacks.

Side channel attack [37]
Attackers collect the encryption keys by adopting

timing, power, and fault attack on devices to
encrypt/decrypt confidential data.

Permanent Denial of Service
(PDoS, phlashing) [31]

Attacks are launched by destroying firmware or
uploading a corrupted BIOS using malware.

RF interference/jamming [40]
Attackers create and send noise signals over the Radio
Frequency (RF)/WSN signals to initiate DoS attacks on

the tags/sensor nodes thereby jamming communications.

Network attacks

Injection attacks [40] Include malicious code injection and fake node injection.

Traffic analysis attacks [37] Confidential data flowing to and from the devices are
sniffed by the attackers.

DoS/DDoS [31]

Attackers make the network traffic unavailable to the
users, or multiple compromised nodes attack a specific

target by flooding messages to crash the
server/resources.

Control over communication
attacks [41,42]

Attackers target routing protocols and redirect the
routing path from the original receiver to an insecure
one by misconfiguring routers, gateways, and DNS
servers. Include blackhole, wormholes, Sybil, and

pharming attacks.

Data security

Integrity

Dynamic
Infrastructure [43–45]

The interactions in IIoT are dynamic. It requires better
security protections that could securely integrate a

real-time IIoT state in cyberspace into the physical space.

Data (resource)
security [43,46,47]

Attackers manipulate sensitive information and perform
unauthorized data access, breaching the trust

relationships between users.

Confidentiality

MITM attack [48]
Attackers join the network as legitimate users and gain

control over the nodes via the active attack path to
sniff information.

Data breach [31] The disclosure of personal, sensitive, or confidential
information in an unauthorized manner.

Phishing site [49]
Attackers obtain a user’s private information by sending

emails that contain a malicious link (e.g., malware
or spyware).

Sniffing attacks [48]
Attackers take control over a device through device

tracking or tag tracking and then attack devices that are
connected to them.

Availability

Data Inconsistency [31] Attack on data integrity results in the inconsistency of
data in transit or data stored in a central database.

Malware [50]
An adversary infects the system via malicious software

to achieve tamper with data or steal information, or
launch DoS.
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Table 1. Cont.

Security Type Attack Name Description

Process trust concern

RFID Unauthorized
Access [37]

An attacker can read, modify or delete data presented
on RFID nodes because of the lack of proper

authentication mechanisms.

Unauthorized Access [31]

Access control gives access to authorized users and
denies access to unauthorized users. With unauthorized

access, malicious users can gain data ownership or
access sensitive data.

Device impersonation [51–53] Using identity fabrication to disrupt the integrity of a
database by data forgery.

Service interruption [54,55]
The failure of cascading services and misuse of the
services by malicious actors lead to the failure of

interconnected services.

 

Figure 3. The framework of IIoT security issues.

3. Blockchain Middleware for Decentralized IIoT

This section discusses how blockchain is integrated into a middleware framework
for many IIoT security issues. Typically, distributed resources and services from many
technologies are used in smart manufacturing applications [56,57]. These resources and
services could come from a single huge manufacturing company or a group of linked
companies that work to support a targeted value chain. In this way, the distributed ledger
services can then be connected to the blockchain-based middleware to create verifiable
and immutable transaction logs. These transactions on the blockchain network can also be
authenticated. Reliable, traceable records and resources to ensure that these transactions
are accurate. The whole process will be supported by the blockchain services, which will
also replicate and distribute the finished transaction across the involved entities as well as
encrypt and append it to the chain. Finally, blockchain middleware for decentralized IIoT
provides the ability to mitigate the negative impacts of disruptions, such as networking
faults, machinery troubleshooting, and material supply breakdowns, and swiftly recover to
normal conditions.
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3.1. Advantages of Blockchain Middleware in IIoT

The resilient manufacturing vision in Industry 5.0 blueprint implies the ability to
mitigate the negative impacts of disruptions, such as networking faults, machinery trou-
bleshooting, and material supply breakdowns, and swiftly recover to normal conditions.
A resilient manufacturing strategy based on the IIoT networks plays an essential role in
facilitating production and supply chain recovery.

The advance of heterogeneous devices/technologies/applications of IIoT brings new
challenges to developing applications in the industrial environment [58]. In this case, a
middleware solution can integrate heterogeneous computing and communications de-
vices, facilitate interoperability between applications and services, and provide common
services for applications while simplifying application development [59,60]. As one of
the application branches of the IIoT, the development of the IIoT is closely related to the
development of Industry 5.0 [56]. Multiple functional types of devices or applications
should be coordinated to achieve a shared goal.

However, there are pressing issues (e.g., interoperability, heterogeneity, and data secu-
rity) that currently impede its effective development. Additionally, conventional security
measures such as cryptographic methods [61] alone are unable to maintain data integrity
on this massive scale. Furthermore, it is unrealistic to simply extend costly Internet security
methods into the IIoT [62–65]. On the one hand, IIoT services such as centralized cloud stor-
age could inherent insecurity from cyber-attacks, malicious code injection, and tampering
that have a great influence on data security issues [31,33]. In addition, the cloud services
storage is vulnerable to single-node failure [65–67]. On the other hand, in the context
of IIoT, things and resources are heterogeneous and require specific programming [68].
Furthermore, the deployed protocols, together with conversion mechanisms, need to in-
teroperate at different layers of the IIoT network safely [8]. In general, traditional IIoT
services cloud cannot ensure data security such as integrity, consistency, and availability. It
needs a middleware solution to provide a development and execution environment that
supports interoperability, decentralized decision-making, and the effective integration of
heterogeneous systems and devices, which can also make digital information transparent,
immutable, traceable to query, and auditability. Therefore, researchers are pursuing a
middleware method to availably address the mentioned IIoT security issues.

This distributed ledger cannot be tampered with or cryptographically faked because of
the chain structure that links data blocks sequentially following the chronological order [8].
Blockchain enables distributed (peer-to-peer) and trusted (software application) transmis-
sion and recording of transactions and events. By incorporating blockchain technology
into a middleware that combines various manufacturing processes with other value chain
elements, it is possible to protect applications and build trust amongst the participants in
the value chain [56,69]. This blockchain middleware approach enables addressing the issues
mentioned above (e.g., interoperability, heterogeneity, and data security) and promotes the
benefits of IIoT for achieving system resilience towards Industry 5.0.

As shown in Table 2, the metrics of blockchain middleware can be categorized in
several aspects as follows:

Table 2. Metrics for application of blockchain middleware in IIoT.

Type Metrics Instance

Digital identities

Access permissions management Develop distributed access control policies for the Internet [70]

Data Authentication and privacy protection [71]

Identities verification
No need to buy cryptocurrency or protect private keys [72]

Digital asset management [73]

195



Machines 2022, 10, 858

Table 2. Cont.

Type Metrics Instance

Distributed security
Privacy preservation

Point-to-point encrypted transmission and digital signature [74]

Authorization, communication, and subject matching
encryption [65]

Data security Data tamper-resisting [7,75]

Smart contracts
Autonomous application

Without the requirement for significant paperwork or
third-party registration [56]

Delegation of access permissions [76]

Trust support No need to verify whether participating on both sides is
trustworthy [71]

Micro-controls

Data transmission Enhance the data synchronization [77]

Data storage Reorganize the data from the database [78]

Data tracking Enrich the data query function based on the blockchain data
provenance [79,80]

3.1.1. Digital Identities

Blockchain provides a digital analog that can be utilized to identify various entities,
including corporations, in addition to machines [81]. Such characteristic makes it possible
to verify the identity of individuals and organizations taking part in industrial operations
through a public network. Hence, every entity participating in the manufacturing process,
including machines can be given a digital identity.

Blockchain middleware can utilize a digital Identity authentication mechanism to
realize. In the way of integrating a Networked smart object (NOS) (i.e., a flexible and
cross-domain middleware) with the blockchain network, Rizzardi et al. [70] presented a
secure and reliable distributed cross-domain access control. Genes-Duran et al. [72] pro-
posed a blockchain middleware, which allows users to purchase services. Tapas et al. [76]
proposed a model, which supports distributed resource access authorization and delegating
responsibilities through the combination of the Ethereum blockchain network, smart con-
tracts, and Stack4Things. Park et al. [71] proposed a framework. Based on digital identity
authentication, it supports automatic off-chain operation verification, data authentication,
and privacy protection. Hasan et al. [73] introduced a blockchain-based distributed digital
manufacturing asset platform.

3.1.2. Distributed Security

The capability of blockchain to use a distributed approach to preserve the data is
one of its fundamental success factors. Integrating IIoT middleware with blockchain
networks allows for the protection of individual transactions. For instance, Lian et al. [7]
proposed tamper-proof detection middleware. It ensured the integrity and consistency
of data and the security of confidential data recorded in the blockchain and relational
database. Tapas et al. [76] proposed a model. By integrating the middleware Stack4Things
with the Ethereum blockchain network, the model realizes a distributed resource access
authorization. Ochoa et al. [74] proposed a blockchain middleware called PriChain, which
leverages the Ethereum blockchain to achieve the decentralization of the UbiPri middleware.
Lv et al. [65] implemented distributed privacy protection for the publish/subscribe model,
this approach effectively avoids a centralized single point of failure. Additionally, it
becomes impossible for any of these organizations to subsequently dispute being engaged
or in agreement because each transaction is documented with complete consent from all
parties involved and relies on confirmed digital identities [75]. The method employed
enables greater trust in the accuracy of the recorded transactions as well as improved
transaction protection, and reduced exposure risks in the event of security breaches.
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3.1.3. Smart Contracts

The use of blockchained smart contracts can effectively empower manufacturing
industries and it might potentially boost several industrial sectors in diverse manners.
Automation of agreement procedures between businesses and their partners and consumers
is one of these improvements in the framework of Industry 4.0 [56]. Eliminating the need
for third-party registrations or extensive documentation, would greatly cut administrative
expenses and offer a more effective model for initiating, negotiating, and finalizing contracts.
Smart contracts can be used to undertake several agreements along the value chain for
smart manufacturing. Smart contracts can be completed more quickly and inexpensively
while maintaining the legitimacy and validity of standard contracts.

In the application of IIoT, many researchers have proposed blockchain middleware
driven by smart contracts. Tapas et al. [76] combined the functions of smart contracts to
enable resource access authorization and delegation responsibilities. Park et al. [71] enable
smart contracts to make the middleware support automate off-chain operation verification.
Ochoa et al. [74] integrated a smart contract with a distributed storage service IPFS, which
effectively ensured users’ privacy.

3.1.4. Micro-Controls

Allowing for fine-grained modifications is another way that blockchain capabilities
might benefit smart manufacturing [56]. The capacity to safely record activities without
external verifications and guarantees will enhance the quantity of data and activities that
are recorded and enable enterprises to create comprehensive ledgers of their operations. To
give quality controls at any degree of detail, they may be simply examined. Additionally, it
allows the generation of precise records that are simple to use as audit trails and assessment
criteria for a manufacturer’s operations [82]. This will make it possible for processes and
activities to be continuously recorded. For instance, blockchain enables the constant and
precise collection of data on situations involving safety. By doing this, the authenticity of
data, authenticity, and creation of an unchangeable record are all guaranteed. Following
that, data can be mined to examine any recorded information, including occurrences,
consequences, and reactions. As a result of the analysis, these accidents will be better
understood, patterns and the causes of issues will be found, and information will eventually
be used to improve operations and develop better safety procedures.

In recent years, researchers are also pursuing a middleware method that enhances
the data transmission and storage of the ledger data recorded in blockchain to facilitate
micro-control of industrial manufacturing. For instance, Wang et al. [77] use middleware
as an intermediary to facilitate the synchronization of database data to the blockchain.
Peng et al. [78] proposed a blockchain-based middleware layer, which can extract transac-
tions from the blockchain and efficiently reorganize them into the database. In addition, the
middleware also provides various query services for users. Zhou et al. [79] proposed a dis-
tributed ledger data query platform, it not only supports querying blocks and transactions
in a variety of ways but also provides a function to track its running history, which enables
users to query blockchain blocks and transactions by shielding underlying principles of
the blockchain. Hasan et al. [73] proposed a blockchain-based client middleware, in which
the customers can track the source of data generated based on blockchain architecture in
manufacturing systems. Liu et al. [80] proposed a blockchain-based middleware to process
and store heterogeneous data from multiple sources at different stages of the product lifecy-
cle. The research effectively addressed cross-enterprise access, processing, and analysis of
production information problems. In addition, the integrity and confidentiality of product
data are also considered. Based on the existing data storage middleware, Lu et al. [83]
realized a blockchain-based cloud data acquisition and processing system with a large flow,
high concurrency, and high availability.
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3.2. Architecture of Secure Blockchain Middleware for Decentralized IIoT

This paper proposed the architecture of the blockchain middleware for decentralized
IIoT towards Industry 5.0 as shown in Figure 4. In general, the IIoT middleware integrated
with the blockchain network is connected to the application layer. In Figure 4, there is
an interaction of four processes. In the process I, it shows the data transmission between
the database and the middleware layer. The middleware layer acts as an intermediary
between the blockchain network and the database. In the process II, for the connection
between the middleware layer and the blockchain network, the middleware layer can
utilize the service of blockchain, realizing data consistency, integrity, traceability, and
auditing in IIoT. In the process III, data for object identification, tracking, and monitoring
in a manufacturing environment can interact at the network layer through transport
protocols between different devices. The design, the manufacturing, the manufacturing
schedule, and other information of products can be packaged as a transaction recorded in
the blockchain layer. In the process IV, for the connection between the application layer and
the middleware layer. IIoT applications enable invoking related services of the middleware
layer, such as query service, message pub/sub, and authentication and authorization. At
the same time, the application layer in the upper can provide technical support for the
middleware layer. For example, deep learning can be used to select the storage strategy of
the middleware, and big data extraction and analysis technology is used to promote the
middleware to make the data reorganized and to be on-chain. Table 3 is the related work
on four processes in the architecture of blockchain middleware.

Figure 4. The architecture of the blockchain middleware for decentralized IIoT.

3.3. The Review of Blockchain Middleware

Based on the description of blockchain middleware in the previous section and the
contribution of blockchain middleware mentioned in 23 references, we summarize the
mentioned blockchain middleware in Table 4. By combining the architecture of blockchain
middleware proposed in the last section, we divide them into five categories according to
their functional type, including distributed data storage, data synchronism, security and
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privacy, function integration, and blockchain IIoT cloud platform. The details of the review
are described below.

Table 3. Related work on four processes in the architecture of blockchain middleware.

Process Related work References

Process I

Create a verifiable query layer to make transactions in
the underlying blockchain system efficient to extract

and reorganize.
[78]

Combining distributed storage services with IPFS data
transfer technology for data storage security and

IIoT performance.
[74]

Using the four-module model to facilitate the
synchronization between database and

blockchain system.
[77]

Using TDRB middleware to achieve the tamper-proof
monitoring of data transmission between blockchain

and relational database.
[7]

Process II

Combining middleware with the blockchain
Hyperledger Fabric to achieve data traceability

and queryable.
[79]

Using blockchain cryptography to protect
pub/sub-system from centralized single points

of failure.
[65]

Leveraging blockchain transaction validation
technology to achieve efficient and secure

heterogeneous networks.
[84]

Using cloud storage combined with blockchain
technology to ensure security and prevent

forking attacks.
[85]

Process III

Information (e.g., product design, manufacturing
progress, and data for tracking and monitoring) in the

manufacturing system is packaged into transaction
records via middleware between the perception layer

and the blockchain system.

[73]

The multi-source heterogeneous manufacturing data of
the product life cycle is packed on-chain through the

perception layer, and the manufacturing process
autonomy is completed by leveraging smart contracts.

[80]

Process IV

Using machine learning algorithms to implement
on-chain storage strategy selection. [64]

Leverage big data collection and storage technology to
achieve high throughput and concurrency of the system. [83]

Using a combination of service-oriented middleware
Stack4Things for distributed resource access
authorization and responsibilities delegation.

[76]

Using Byzantine consensus algorithm to achieve
distributed fault tolerance of pub/sub

system application.
[66]
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Table 4. Review of blockchain middleware in recent years.

Type Authors Functional Features Advantages

Distributed data
storage

Danish et al. [64] Make auditable, traceable, and immutable
cloud storage decisions

Data traceability, auditability,
accountability, integrity

Ochoa et al. [74] Decentralized implementation of UbiPri
middleware using the Ethereum blockchain Data integrity and privacy

Lu et al. [83]

Integrates with data processing technology
and distributed message queue technology to
implement data collection and storage of the

HBase system based on IIoT big
data architecture.

Data availability, integrity,
and stability

Data
Synchronism

Zhou et al. [79] Allows users to mask the underlying principles
of blockchain to query blocks and transactions Queryable and traceability

Peng et al. [78]
Extract transactions stored in the underlying
blockchain system and efficiently reorganize

them into a database

Provide efficient query
services for blockchain data

and make query data
results authentical

Wang et al. [77]
As an intermediary to facilitate the
synchronization of database data to

the blockchain

Improves throughput and
speed of transaction

synchronization and ensures
consistency between database

and blockchain

Lian et al. [7] Provide efficient tamper-proof detection for
relational database

Tamper-proof and ensures the
integrity, confidentiality, and

consistency of data

Function
integration

Zupan et al. [86] Decentralized pub/sub messaging for a
multi-federated, licensed environment

Security, validating, and
privacy-preserving messaging

Tapas et al. [76]

Distributed resource access authorization and
delegating responsibilities through the

Ethereum blockchain network, smart contracts,
and Stack4Things

Make the data trusted
and auditing

Ramachandran et al. [66] A distributed fault-tolerant pub/sub broker
with blockchain-based immutability

Avoiding a single point
of failure

Lv et al. [65]

A distributed publish/subscribe model for
privacy protection based on blockchain

technology to avoid a centralized single point
of failure

Confidentiality, privacy
preservation, and resistance to

DDOS attacks

Rizzardi et al. [70]
NOS integrated with blockchain to achieve

secure and reliable distributed access control
for IIoT resource

Integrity and Confidentiality
Resist DOS/DDOS attacks

Tamper-proof

Security and
privacy

Zou et al. [85] The lowest trust blockchain is used to ensure
the security of cloud storage services

Prevent forking attacks and
MITM attacks

Samaniego et al. [87] Mining is distributed to edge components and
is divided into levels

Eliminates the limitation of
low computing power

Sanwar et al. [84]
Provides a delay-sensitive, time-sensitive
transaction authentication technology and

security and privacy solutions

Minimizing the delay of the
transaction, ensuring security

and privacy

Genes et al. [72]
Users can access to easily create blockchain

transactions, securing the management of their
identity in IIoT

avoiding user impersonation

Park et al. [71]
Enable smart contracts to automatically

validate off-chain operations while supporting
data authentication and privacy protection

Provides authentication and
privacy preservation
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Table 4. Cont.

Type Authors Functional Features Advantages

Blockchain IIoT
cloud platform

Hasan et al. [73]
The resource of data generated based on
blockchain architecture in manufacturing

systems can be traced
Data privacy and security

Liu et al. [80]

Process multi-source heterogeneous data at
different stages of the product life cycle and

broadcast the processed data to the
blockchain network

Data integrity. Supports
cross-enterprise access,

processing, and analysis of
production information

3.3.1. Distributed Data Storage

To achieve high traffic and high concurrency, Lu et al. [83] proposed a middleware
framework, namely Hadoop. The middleware layer integrates with a data processing
technology (Storm) and a distributed message queue technology (Kafka) to implement
data collection and storage of the HBase system. Concerning distributed data storage,
Danish et al. [64] proposed a blockchain-based adaptive middleware for IIoT data storage
decision selection. In Danish architecture [64], the storage decision and cryptographic
hash of the IIoT data are stored on the blockchain network and allow the IIoT application
owners in the application layer to audit the decision and data integrity through the adaptive
middleware. At the same time, Machine Learning (ML) is applied to make decisions on the
storage methods. However, there was no emphasis on users’ security and privacy in [64].

3.3.2. Data Synchronism

The synchronization of information between the database and the blockchain is critical.
To solve this problem, Zhou et al. [79] proposed a data analysis middleware framework
called Ledgerdata Refiner to extract and synchronize transaction data from the blockchain
network directly and then parses data relationships to provide unified interfaces for users
in the application layer. This middleware, allows users to mask the underlying principles
of blockchain to query blocks and transactions. Based on the research of the data on-chain
process, Wang et al. [77] proposed a blockchain middleware model, which achieves the
efficiency of the IIoT transaction data synchronization. The four-phase model [77] ensures
synchronization consistency when the system fails. Peng et al. [78] proposed a Verifiable
Query Layer architecture that can effectively reorganize transactions that are recorded in
the underlying blockchain system to give application users a variety of query services.

3.3.3. Security and Privacy

A blockchain-based middleware named Amatista was presented by Samaniego et al. [87]
for managing the IIoT in a zero-trust mode. Amatista has no trust in the transactions or the
infrastructure. It validates both participant resources and the transactions they generate. As
a result, the data flow is not only a data-centric reading but also a resource-centric communi-
cation that enables access to controlled resources without the usual requirement for a central
authority. Furthermore, the hierarchical mining method is also given a context parameter
by Amatista. As well, the mining process in [87] is designed on two different levels. For the
research on data storage security, Zou et al. [85] proposed a blockchain middleware system
to enhance the security of cloud storage, called ChainFS. But there is no mention of hetero-
geneous device gateways security and low latency validation. While researching identity
authentication and access authorization, Genes et al. [72] proposed the Key Management
System (KMS) and combined it with Man4Ware [56] to address the identity management
problem. In [72], the middleware layer encapsulates APIs, communication protocols, and
key management technologies. The application layer can send requests to the middleware
through the APIs, and the middleware connects with the blockchain network to complete
the creation of a blockchain transaction. Park et al. [71] proposed a blockchain middleware
framework called Ziraffe, which can support authentication of origin for external data and
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protection of user privacy. The Ziraffe framework consists of four parts: users, Ziraffe in
the middleware layer, the blockchain network, and the data resource server. In Ziraffe,
programmers can utilize the framework to distribute smart contracts, users can acquire
privacy protection according to their credentials through the framework, and the server
of the data source supports a middleware-based signature. Users have access to external
data sources and are enabled to import values into the blockchain. Finally, when a user
downloads data from a data source, the server can confirm the external origin by signing
the issue.

3.3.4. Function Integration

Many researchers integrate blockchain technology and create the capabilities to enable
advanced services for the application layer of IIoT. Zupan et al. [86] implemented decentral-
ized message publishing/subscription in a multi-federal and permissioned environment.
In [86], the application layer communicates to Kafka (a distributed messaging model) of the
middleware layer via proxies. The operation performed by publishers and subscribers in
the application layer is received by a proxy. Moreover, to validate the operations sent from
Kafka, Zupan has modeled the pub/sub semantics using smart contracts in the blockchain
network. Lv et al. [65] proposed a blockchain-based privacy-preserving publish/subscribe
model. To protect the subscribers’ privacy, they used lightweight public key encryption to
encrypt topics.

In distributed authorization and business delegation. Tapas et al. [76] proposed
a blockchain middleware model that integrates a blockchain-based authorization and
delegation mechanism with a middleware, Stack4Things (S4T). In [76], the application
layer connects to the middleware layer that contains S4T middleware and its built-in
database, and the middleware layer interacts with the blockchain network that encapsulates
smart contracts with different functions. Eventually, access to the user is granted or not
depending on the result. The user’s request is sent to the middleware layer and waits
for validation. Then smart contracts on the blockchain network record the resulting data
on the chain. As well, the results are returned to the middleware layer and the user’s
access is confirmed. But in the face of the single point of collapse problem, Tapas does not
take it into account. Ramachandran et al. [66] implemented Byzantine fault tolerance on
distributed authorization and authentication. On cross-domain problems, integration of the
existing Network Smart Objects (NOS) platform with a blockchain network is proposed by
Rizzardi et al. [70] to allow decentralized or peer-to-peer operations. In [70], the application
layer sends a subscription request to the corresponding NOS unit via the broker. After the
processing of resource data and application layer data, the data of different NOSs units are
packaged as transactions into a blockchain network through a consensus mechanism. In
this way, NOSs can be deployed in an environment where members do not trust each other.

3.3.5. Blockchain IIoT Cloud Platform

Hasan et al. [73] introduced a client middleware of the CMaaS platform that enables
the client-side program to submit HTTP requests including model parameter modification,
and toolpath regeneration requests, directly to the CMaaS platform. Having considered
processing heterogeneous production information across different enterprises, Liu et al. [80]
proposed an IIoT blockchain middleware for PLM. The presented framework divides the
information flow into three stages, each of which includes different product-related activi-
ties such as product design, product production, and warehousing management, among
others. Users can conduct a search using the industrial blockchain-based middleware
before they need to access the appropriate design files. Then, using the specified appli-
cation programming interface, users can access additional huge design files. This can
boost group decision-making to complete collaborative design activities promptly and
accurately. Additionally, it promotes the traceability of particular documentation across
several companies.
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4. Enablers in Blockchain Middleware

This section focuses on some important enabling technologies for the integration of
IIoT middleware with the blockchain network. It is divided into four levels from the scope
of blockchain to industrial applications for discussion. According to the architecture of
the blockchain middleware mentioned in the previous sections, we put forward the level
enabling technical framework of the blockchain middleware, as shown in Figure 5.

Figure 5. Key enabling technologies in blockchain middleware for IIoT.

4.1. Enablers for the Application Layer
4.1.1. Distributed Machine Learning

The management and processing of increasing data are generating new challenges in
the industrial environment [88]. ML as the core of artificial intelligence (AI) technology,
can protect data security and data privacy in edge services of IIoT through the integration
with blockchain smart contracts [89]. The blockchain network is directly connected to
edge nodes as well as IIoT middleware and communicates through the smart contract,
which acts as a linkage between ML and blockchain network data interaction. Machine
learning algorithms classify off-chain data resources and then store them in the blockchain
network through blockchain middleware. In this way, it makes the middleware decision
efficiently by classifying raw data as important through a machine learning algorithm [64].
In addition, the efficiency of data processing is improved and the overhead is reduced.

In IIoT, the constant growth of smart devices leads to privacy leakage and insufficient
model accuracy of edge services. Another important factor that can have an impact on
latency and reliability in industries is quick and efficient computing. To compute and
evaluate the massive amounts of data acquired from the different network platforms the
IIoT needs strong tools, as mentioned in [90]. Deep Learning (DL), however, is a recent
study area in the field of ML. It is included in ML to go towards the original objective (i.e.,
AI). At the moment, DL-Enabled cloud/edge computing provides intelligent computing
infrastructure for IIoT platforms while performing quick and efficient calculations. The
utilization of edge-based computing infrastructure is acceptable due to the low power and
limited storage of the devices [90].

However, due to insecure access to insufficient or low-quality data, the DL algorithm
cannot fully meet the needs of IIoT. Thereby, Google proposed a decentralized DL model
named Federated Learning (FL) for secure computing on end-user devices in wireless
networks. FL in IIoT networks achieves a collaborative artificial intelligence training model

203



Machines 2022, 10, 858

based on the distributed devices’ massive data without moving them into the host server.
FL can coordinate distributed computational devices to train collaboratively on a shared
prediction/classification task. For instance, Hiessl et al. [91] proposed an FL model for
updating knowledge. Similarly, the case study in [92] uses FL to detect anomalies in IIoT.
Lu et al. [93] presented a secure data-sharing architecture, which can be combined with FL.
This distributed blockchain secure data sharing architecture can model the data sharing into
an ML problem. It enables the integration of FL into the permissioned blockchain during the
sharing process, which solves the security and privacy issues (e.g., data leakage) in wireless
networks and achieves a balance of accuracy, efficiency, and security of data management.

4.1.2. Secure Big Data Analytics

With the advent of 5G, the IIoT has developed rapidly [94]. The massive data generated
in smart industrial manufacturing needs to be mined and selected to enable producers to
check the process quality of products and workpiece or equipment defects earlier. However,
traditional data mining methods are inefficient and the validity of the data is insufficient.
From the perspective of ML, Mathias et al. [95] proposed a data mining method to analyze
limited samples of electrical signals. They developed an Open Platform Communication
(OPC UA)-based simulation IIoT application to monitor the data mining mechanism for
welding processes. Wang et al. [94] presented an online support vector machine-based data
cleaning approach in the data collection from mobile edge nodes, to maintain information
reliability/integrity while reducing the networking bandwidth and energy consumption
of industrial sensing data acquisition. In [83], streaming big data processing technology
(such as Storm) and big data storage technology (such as HBase) are used to make up the
distributed processing blockchain-based middleware.

Based on the existing middleware, integrating with big data processing and storage
technology can simplify the processing of off-chain data and reduce the cost of data
system maintenance.

4.2. Enablers for the Middleware Layer

Many of the blockchain middleware mentioned in previous sections are integrated
with the blockchain network by the IIoT middleware (e.g., Service-oriented middleware,
Message-oriented middleware, and Cross-domain middleware), which acts as the under-
lying technical support of the blockchain middleware. In previous sections, for example,
Kafka, a distributed message queue middleware, is integrated with a blockchain net-
work with smart contracts to allow users to audit and validate the consumed data in the
pub/sub-system, achieving distributed security. Network Smart Objects (NOS), a kind of
cross-domain middleware, integrates with blockchain networks to achieve point-to-point
operations across domains for applications in an environment where members do not
trust each other [70]. In [56], based on Man4Ware, a blockchain-enabled service-oriented
middleware is designed for protecting intelligent manufacturing applications and building
trust between the parties involved in the value chain.

In addition to the integration of IIoT middleware, some underlying technologies
can also support the integration of blockchain networks with IIoT middleware. They
are as shown in Table 5. For instance, some data storage and transmission technology
promote middleware to extract and process blockchain network data [74]. Some encryption
technology [7,65,71] ensures application data security and privacy and can also reduce
system maintenance costs. As well, there are also APIs open for middleware and blockchain
network interaction. All these underlying technologies can act as key technologies to
support efficient operation and functional integration of blockchain middleware.
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Table 5. Enabling technologies for the middleware layer.

Type Techniques Functional Features of Integration

Middleware

Service-oriented

Stack4Things [76] Focus on authentication, authorization, and
delegation mechanisms

Man4Ware [72]

Distributed ledgers created and maintained through
the Man4Ware service can be used as a trusted,

traceable record and source to verify the correctness
of transactions

UbiPri [74] User privacy centralized management middleware

Message-oriented Kafka [83,86]
Efficiently process data streams in real-time and
store them persistently in distributed replication

clusters while maintaining high throughput

Security and encryption

SHA-256 [7]
Protect the private data in blockchain middleware

and facilitate the retrieval of the data from the
blockchain network

zk-SNARK [71]

A zero-knowledge proof that can perform
computations after a validator with weak

computations outsources the computation to an
unreliable validator and feedback results with

evidence that results are correct in
off-chain computations.

PKEwET (Public Key
Encryption with Equality

Test) primitive [65]

A ciphertext equivalence test to determine whether
two ciphertexts encrypted by different public keys

are equal without decrypting the ciphertext,
effectively reducing user storage costs

SUNDR protocol [85] A remote file system to ensure fork consistency to
the client and prevent forking attacks

Data processing, storage, and management

Networked smart object
(NOS) [70]

Enabled to manage the data provided by
heterogeneous sources in a distributed manner and

evaluate, utilizing proper algorithms

Strom [96]
An open-source distributed, scalable, and

fault-tolerant real-time computing system to
simplify parallel real-time data processing

HBase [97]

A distributed database has good compatibility with
distributed storage, aggregated computing, and

random access to massive semi-structured or
unstructured data in real-time.

PostgreSQL [79]
A database can parse out information and

reorganize it as a third-party database to provide
multiple query functions

Data transmit technology
IPFS [74] A files system for distributed storage and P2P shared

files to implement other middleware modules

TiDB [77] Convert database data to key-value pairs for easy
storage in the blockchain

Others

SDN-Gateway [84]

Act as a linkage between LLN and blockchain,
provide networking control operations, and execute

different actions against vulnerabilities
and cyberattacks.

Trinity APIs [66]

Through the APIs, data can be sent to the blockchain
to initiate the consensus and block creation process
to complete the interaction with the middleware and

blockchain network
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4.3. Enablers for the Blockchain Network
4.3.1. Consensus Mechanism

Generally, blockchain is a distributed ledger system, and its key issue is consistency.
The consensus mechanism is widely used in the distributed system, which allows all the
nodes in the blockchain with an accounting problem to agree on an accounting. Unlike
the consensus mechanism form of the traditional blockchain (e.g., Bitcoin), in the IIoT
blockchain network, blocks are validated by decentralized nodes [98]. IIoT infrastructure
that is transformed into virtual digital assets by digital-twin technology can be recorded on
the blockchain network in the form of the cryptographic hash value. All manufacturing
processed events are registered by the machine tools onto the blockchain as transactions [99].
In this way, users can take the initiative in the blockchain through the token they hold. This
is different from the traditional consensus algorithm, like PoW. By contrast, it can reduce
the power cost of industrial computing equipment to a certain extent.

Furthermore, some IIoT middleware can also integrate certain consensus algorithms
like PBFT to achieve distributed fault tolerance, and realize distributed message distribu-
tion broker, avoiding a single point of collapse. Ramachandran et al. [66] implemented
Byzantine fault tolerance on distributed authorization and authentication to avoid central
points of failure. For the integration of the PBFT consensus algorithm, the distributed
middleware can expose a set of APIs to interact with a blockchain following the interface
architecture. As well, they can utilize the consensus mechanism of a blockchain network to
realize distributed fault-tolerances.

4.3.2. Smart Contracts

Smart contract in the blockchain is trackable, secure, and unalterable. It can be built
based on a distributed ledger to achieve authentication and access control without the third
party and be scripts stored in the blockchain [100]. The off-chain resource can interact with
blockchain network data through smart contracts [101]. Unlike the Bitcoin finance system,
smart contracts in IIoT deal with transactions of virtual digital assets converted by industrial
infrastructure entities. Once manufacturers deploy a smart contract, they are permitted
to store the hash of the latest industrial entity updating on the blockchain. Then they can
retrieve the industrial entity, and request interesting production information. In addition,
the blockchain network where cryptographic token for pay-as-you work paves the way for
a community of manufacturing and product services among IIoT devices. Furthermore, in
the onchain-off-chain interaction process, the authentication of the data feed is necessary.
For instance, Town Crier was one of the first works to look at authenticated linking smart
contracts to external off-chain HTTPS-enabled data resources [102].

4.3.3. Cryptography and Distributed Ledger

As the core technology of blockchain, cryptography and distributed ledger support
the data entry and storage of blockchain. The underlying data architecture is determined
by blockchain cryptography. The packaged data blocks are processed into a chain structure
using cryptography’s hash functions. Because the hash algorithm is unidirectional and
tamper-resistant, the data can not be tampered with and can be traced only in the blockchain
network. In addition, accounts in the blockchain network will be encrypted by asymmetric
encryption, thus ensuring the security of data. Distributed ledger builds the framework of
blockchain. It is essentially a distributed database. When a piece of data is generated, it
will be stored in this database after everyone processes it, so distributed ledger plays the
role of data storage in the blockchain.

Blockchain middleware can utilize cryptography and distributed ledger to achieve
traceability of historical data, auditing, and data security (in Figure 6). Commonly, in
the applications of the manufacturing sector, the distributed ledger includes a series of
transactions capturing manufacturing event data associated with machine tools. As well,
the set of all transactions can represent a chain of manufacturing events for a product.
The blockchain middleware utilizes encapsulated data extraction and data processing
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techniques to interact with transaction data from a distributed ledger database. At the same
time, blocks of data packaged using cryptography are recorded into the blockchain network
as key-value pairs, increasing the capacity of data storage and ensuring the security of IIoT
middleware.

Figure 6. Illustration of Blockchain data structure storage.

4.4. Digital Transformation for the Perception Layer

In IIoT, as for the record and synchronization of manufacturing data, the original raw
data are usually not stored directly in the blockchain, in which a digital twin system is built
to realize the transformation of industrial infrastructure from physical/digital data into
blockchained assets [103–105].

On the simplification of manufacturing information into data-tag of limited spaces,
Leng et al. adopted an abbreviation schema to accommodate this limitation [106]. Through
a mapping algorithm, the digital twin identification of the data tag on each IIoT entity is
linked to the corresponding blockchain transaction on the blockchain network, and it is the
anchor for obtaining the entity’s lifecycle activities [107]. In the interaction (synchronization)
process between the cyber and physical space of the IIoT, it illustrates a lifecycle digital twin
model of individualized products [108]. The data tag is a mapping to its associated digital
twin [109]. By collecting the transactions of workpieces/products’ related events, the digital
twin of products is therefore securitized for lifecycle tracking. Thus, users can interact with
a digital twin model on their demands via the middleware layer. When the users invoke
the blockchain middleware interface to send off manufacturing data, transactions reveal a
continuous trail of the products being fabricated.

5. Research Directions

Based on the discussion of enabling technologies in the previous section, we offer some
suggestions for research directions according to the four-layer architecture (in Figure 7). It
is expected that it lays a foundation for making IIoT blockchain middleware a new venue
for Industry 5.0 research innovation.
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Figure 7. Research direction framework of blockchain middleware for IIoT.

5.1. Directions for the Application Layer
5.1.1. A robust and Unified Data Format and Real-Time Data Fusion

Information is distributed among multiple devices and is difficult to aggregate due to
geographical or mapping barriers. A robust and cost-effective data format, as well as an
integration method, is desirable [110] for managing data to achieve resilient manufacturing
for Industry 5.0. The integration of Information Communication Technologies (ICT) into
the industrial Internet of Things framework is also a favorable development direction
for real-time data fusion [111], such as data preparation, crawl scheduling, multi-level
indexing, and human and machine query.

5.1.2. Efficient Deep Learning Models for Decentralized IIoT Middleware Frameworks

Concerning the overall complexity of management issues and the finite storage and
computation capabilities of the IIoT devices, existing implementations of distributed ma-
chine learning based on edge design uses additional optimization information to obtain
higher productivity, self-organization capabilities, lower running times, and energy con-
sumption [112,113]. For instance, federated learning (FL, also termed federated machine
learning) has been proposed to coordinate distributed computational devices to train col-
laboratively on a shared prediction/classification task. However, the implementation of the
FL in the smart industry is still not simple, and future research directions need to identify a
better way to manage distributed computing resources to meet the needs of complex IIoT
environments in Industry 5.0.

208



Machines 2022, 10, 858

5.2. Directions for the Middleware Layer
5.2.1. Lightweight Ontology for IIoT

In integrating a blockchain-based data sharing framework to preserve security and
privacy [114], IIoT interoperability affects its scalability and performance [115]. When a
large number of machines interact in industrial networks [116], provisioning interoperabil-
ity in IIoT from semantic conflicts, global heterogeneity, and new/unknown devices is of
significance for achieving resilience due to lacking standard architecture, in which ontology
methods are useful [117]. Existing ontology-based semantic approaches are cumbersome
for satisfying resource flexibility needs. Therefore, in the processing of distributed middle-
ware sensory data, designing a lightweight ontology for decentralized IIoT so that semantic
interoperability will save the processing and annotation time, which is in urgent need for
achieving resilient manufacturing towards Industry 5.0.

5.2.2. Embed Advanced Fault Detection Algorithms for Blockchain Middleware

As increasingly heterogeneous devices are involved in the decentralized IIoT, the
possibilities of failures and faults increase [118]. Blockchain middleware for decentralized
IIoT is supposed to be robust in not only detecting and withstanding failures but also
detecting faults promptly. Advanced self-configured fault detection algorithms should
be embedded into the blockchain middleware for efficiently and securely coordinating
different devices. Accuracy and timeliness in detecting faults will accelerate the industrial
process in achieving system resilience towards Industry 5.0.

5.2.3. Standardized Concise User Interface of Middleware

The user interface of the blockchain middleware is supposed to be as concise as possi-
ble so that engineers with different implementation fields are aware of the IIoT application
he/she is using [118]. In the distributed environment, engineers will be adopting or operat-
ing the industrial blockchain with limited knowledge of networking and communications.
Seamless integration of the decentralized IIoT with a user-friendly interface for blockchain
middleware will help its acceptance, facilitating users to do the work without the complex
underlying principles.

5.2.4. Adequate and Efficient Interfaces for Further Development

Developing efficient interfaces can not only enrich the functions of middleware but
also facilitate the development and deployment of middleware and reduce the coupling
between codes. For example, in ledger data analysis middleware, providing a sufficient
interface for further function development can promote searching blocks or transactions
efficiently. Design interfaces in databases or decentralized file sharing systems can solve
the low-quality data issues in smart manufacturing [119]. Design adequate API interfaces
to support more complicated SQL queries and integrate more diverse databases as well as
blockchain systems.

5.3. Directions for the Blockchain Network
5.3.1. Establish a Lightweight Blockchain Computing Network and Consensus Algorithm

Introducing blockchain into the decentralized IIoT suffers from two obvious disad-
vantages. First, time latency in industrial controls is at a microsecond level [120], while the
blockchain network usually cannot satisfy microsecond resolution demands in IIoT. Second,
controllers in current IIoT devices are generally of low performance and limited storage
spaces. Collecting massive industrial data into blockchain nodes hosting the IIoT devices
may result in the collapse of the entire network, and thereby is impossible under this
circumstance. Therefore, integrating blockchain with middleware should be lightweight to
solve the storage and performance issues.

Existing consensus methods usually rely on costly computing tasks and puzzles
to make the participants liberally add new blocks to a blockchain [121]. However, in
industrial applications, the need for crash fault tolerance is much higher than that for
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Byzantine fault tolerance. Innovations in storage structure and consensus mechanism for
industrial usage should be performed to improve the throughput [122,123]. Establishing
an effective lightweight consensus algorithm in IIoT systems for industrial applications
is a future direction for improving the efficiency of the IIoT blockchain network under
disruptions or disturbances.

5.3.2. Standardization of Blockchain-Enabled IIoT

Standardizing blockchain middleware for decentralized IIoT, as well as synchronizing
with existing standards, is still in its early stages. Without clear regulations, coordination
between different IIoT blockchain systems is challenging [124]. Blockchain middleware
standards are supposed to provide guidelines for either developers or engineering clients.
Furthermore, blockchained smart contracts are supposed to be legally enforceable for
eliminating conflicts between participants. Although the integration of IIoT middleware
with blockchain networks has inherent security features, there are still some exploitable
loopholes in smart contracts in blockchain networks.

5.4. Directions for the Perception Layer
5.4.1. Develop a Generic Paradigm for Building Digital Twin

A unified data model or a generic Digital Twin architecture is in great need for
digital asset/information conversion, concerning a lack of consensus on how to build
a Digital Twin system for heterogeneous systems in a distributed IIoT network [125].
Therefore, designing a new paradigm for establishing a Digital Twin is supposed to be a
generic paradigm of implementing a basic Digital Twin system more compatible with IIoT
blockchain middleware.

5.4.2. Metaverse

According to Dr. Yu Yuan’s definition, the Metaverse may refer to a kind of experience
in which the outside world is perceived by the users (human or non-human) as being a
universe that is built upon digital technologies as a different universe (“Virtual Reality”),
a digital extension of our current universe (“Augmented Reality” or “Mixed Reality”), or
a digital counterpart of our current universe (“Digital Twin”). Named after the universe,
a metaverse shall be persistent and should be massive, comprehensive, immersive, and
self-consistent. Described as “meta”, a metaverse should be ultra-realistic, accessible,
pervasive, and may be decentralized. In a narrow sense, metaverse may be simply defined
as Persistent Virtual Reality (PVR). In a broad sense, the metaverse is the advanced stage
and long-term vision of Digital Transformation.

Metaverse may be a promising research direction for the development of blockchain
middleware [126]. The biggest difference between Industry 4.0 and the era of steam engines,
electrification, and information technology is that the concept of Industry 4.0 places more
emphasis on intelligence and the use of digital technology to minimize human involvement
in the entire production process (i.e., the link between automated equipment and IT systems,
which originally required human involvement, can be completed automatically without
the need for human participation). In fact, under the concept of the digital twin. The
human is only responsible for building the virtual world and defining the way of data
collection, management and optimization, and then a continuous learning, optimization,
and intelligent interaction will be formed between the physical space and the virtual space,
and the role of the human is to supervise this association to keep it undefined and normal.
Therefore, the Metaverse may be a promising research direction for the development of
blockchain middleware for enhancing system resilience.

6. Concluding Remarks

This paper presented a review of secure blockchain middleware for decentralized IIoT
towards Industry 5.0. The security issues of conventional IIoT solutions and the advan-
tages of blockchain middleware are analyzed. Key enabling technologies in blockchain
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middleware are categorized respectively based on the corresponding layers, namely, the
perception layer, the blockchain network, the middleware layer, and the application layer.
The application of digital transformation in blockchain middleware is discussed. Future
research directions for blockchain middleware in IIoT are outlined. The purpose of this
paper is to research and analyze the abilities of distributed blockchain middleware to
minimize the threat of a single point of failure in the context of resilient manufacturing in
Industry 5.0. Compared with the traditional centralized IIoT, the distributed characteristics
of secure blockchain middleware are more resistant to various disturbances (e.g., security
issues) or other unknown factors in the industrial manufacturing environment, and can
play an essential role in Industry 5.0 resilient manufacturing. It is expected that the paper
lays a solid foundation for making IIoT blockchain middleware a new venue for Industry
5.0 research.
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Abstract: The synchronization control performance of the Fieldbus control system (FCS) is an impor-
tant guarantee for the completion of multi-axis collaborative machining tasks, and its synchronization
control accuracy is one of the decisive factors for the machining quality. To improve the synchro-
nization control accuracy of FCS, this paper first makes a comprehensive analysis of the factors
affecting synchronization in FCS. Secondly, by analyzing the communication model of linear Ethernet,
a distributed clock compensation method based on timestamps is proposed to solve the asynchronous
problem of communication data transmission in the linear ethernet bus topology. Then, based on
the CANopen application layer protocol, the FCS communication and device control task collabora-
tion method is proposed to ensure the synchronous control of multiple devices by FCS. Finally, an
experimental platform is built for functional verification and performance testing of the proposed
synchronization method. The results show that the proposed synchronization method can achieve a
communication synchronization accuracy of 50 ns and a device control synchronization accuracy of
150 ns.

Keywords: fieldbus control system; synchronization control; distributed clock; ethernet fieldbus;
CANopen

1. Introduction

With the development of Industry 4.0, intelligent, Fieldbus-based, and open industrial
automation control systems have become the development direction in industrial manufac-
turing [1]. The FCS adopts industrial ethernet Fieldbus and standardized communication
protocols, which can make the central controller (master), node controllers (slave), HMI,
and other devices from a control network through a single Fieldbus. It realizes various
functions such as industrial device control, data monitoring and acquisition, and open
interconnection and is widely used in CNC processing, industrial robotics, and automatic
production lines [2–4]. However, synchronization control of multiple devices in a Fieldbus
network without a uniform time reference becomes an important challenge for the devel-
opment of FCS [5]. In high-end equipment manufacturing industries such as numerical
control processing with nano-level interpolation requirements, processing tasks need to
be completed by multi-axis collaboration. The asynchronous control time of each axis will
cause the actual machining path to deviate from the set path, which is related to the success
or failure of the machining task [6,7]. Therefore, the synchronization accuracy of device
control is the core index that determines the system’s performance. Traditional industrial
control systems mostly use centralized multi-axis motion control cards with simultaneous
axis control and signal output in the same processor, thus ensuring the synchronization
accuracy of control [8,9]. This system architecture is not in line with the development
directions of standardization, openness, and interconnection of industrial control systems.

Establishing a uniform time reference is an effective means to improve the synchro-
nization control accuracy of the system [10]. Time synchronization methods can be broadly
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classified into three types according to the principle of action: high-precision clock sources,
satellite timing services, and network time synchronization [11]. The high-precision clock
source approach is to integrate high-precision crystal oscillation circuits in each slave
station to provide additional high-precision time information [12]. However, the system
will generate unacceptable cumulative errors over long periods of operation. The satel-
lite time service method uses the high-precision clock provided by GPS satellites as the
unified time reference for the system [13]. Although the time accuracy meets the indus-
trial control requirements, the cost is too high to be suitable for industrial production
applications. The network time synchronization method, represented by the precision
network time synchronization method, represented by the precision time protocol (PTP),
achieves time synchronization by continuously correcting and compensating the time of
each slave station in the network [14]. PTP is based on a real-time ethernet Fieldbus and
requires no additional hardware, making it an effective means of achieving high-precision
synchronous control of FCS. More and more researchers have adopted the PTP method
to improve the synchronous control performance of industrial control systems [15–17].
Lam D. et al. proposed a method to eliminate the frequency drift factor of the master clock
crystal oscillator based on the PTP method, which improved the time synchronization
accuracy of industrial ethernet by 30% [18]. Chen C. et al. designed the Modbus protocol
and PTP protocol together to solve the time synchronization problem of industrial wireless
sensor actuators [19]. Seo Y. et al. conducted an adaptive estimation of network noise
and clock drift interference in the PTP-based system, which improved the robustness of
the system synchronization clock [20]. This method of recording physical layer hardware
transceiver time can obtain 100 ns level synchronization accuracy and has been widely used
in major real-time Ethernet buses, such as PROFINET IRT [21], POWERLINK [22], and
EtherCAT [23]. In addition, some scholars have further improved the time synchronization
accuracy by using clock dynamic compensation. Buhr S. et al. proposed a timestamp
measurement method combining the PI controller and PHY chip clock phase relationship,
which can achieve sub-nanosecond synchronization accuracy [24]. Gong F. et al. used the
Kalman filtering method to model the clock offset variation characteristics, which can im-
prove synchronization accuracy in a temperature-variation environment [25]. Qing L. et al.
proposed a dynamic delay-corrected clock synchronization algorithm for the transmission
delay asymmetry between the system clock and the local clock of each slave station to
improve the clock synchronization accuracy [26]. The above time synchronization methods
can establish a uniform time reference and achieve high time synchronization accuracy.
However, the synchronized control of industrial equipment by FCS is also influenced by its
system architecture, especially the timing sequence between system communication and
control behavior. For this paper, based on analyzing the factors affecting the synchroniza-
tion of FCS device control, a time reference based on distributed clocks is established, and
a collaborative method of communication scheduling and device control is designed to
achieve high-precision synchronization control of devices.

This paper is organized as follows. In Section 2, the overall architecture and working
principle of FCS are analyzed, and the influencing factors of unsynchronized control of
system equipment are obtained. In Section 3, the mechanism of real-time Ethernet bus
communication transmission delay is analyzed, and a distributed clock synchronization
method based on timestamp compensation is proposed. In Section 4, the communication
scheduling and device control timing sequence in FCS is designed based on the CANopen
application layer protocol and forms the FCS device synchronization control method. In
Section 5, a typical FCS experimental platform is built to verify the distributed clock syn-
chronization accuracy and device synchronization control accuracy. Finally, Section 6
concludes this paper and points out follow-up work. The proposed FCS device synchro-
nization control method can achieve 50 ns communication transmission synchronization
accuracy and 150 ns device synchronization control accuracy. This method can improve the
multi-axis collaborative processing accuracy of the FCS system and also provide a reference
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for the design of the synchronization control function of a similar industrial automation
control system.

2. Analysis of Synchronization Factors in FCS

This section analyzes the overall system architecture and communication and data
transmission principles of FCS. Then, by analyzing the timing sequence of the system
control task execution, the influencing factors that lead to the desynchronization of device
control by FCS are summarized, which provides a theoretical basis for the synchronization
method proposed subsequently.

2.1. Basics of FCS

Typical FCS adopts an architecture that separates system logic control from device
control. The master executes the user program logic and sends the control instructions to
each slave through the real-time ethernet bus, and the slaves control their connected devices
according to the control instructions. Figure 1 illustrates the principle of FCS architecture.
The integrated development environment (IDE) is a comprehensive software platform for
users to configure system hardware, edit applications, compile code, download, debug, and
perform human-machine interaction. The master receives the logic code downloaded from
the IDE, compiles it as a program organization unit (POU), and runs it periodically in a real-
time thread of the operating system. The results of the POU operation are sent to the slaves
via the real-time Ethernet bus. The slave receives the command from the master, runs the
device control algorithm to control its peripherals and uploads the sensor data and its status
parameters to the master. In addition, for application scenarios with network expansion
requirements, the OPC-UA module of the master station can be interconnected with the
cloud through the OPC-UA gateway. It is worth noting that since the master integrates
all slave databases and the real-time ethernet bus adopts standardized communication
protocols, the system function implementation does not depend on the hardware, reflecting
the standardized characteristics of FCS. This paper focuses on the synchronization problem
of FCS for device control.

HMI

Application editHardware configuration

Compile, download, debug

Integrated development environment

Control task 
application OPC-UA module

Real-time Ethernet Fieldbus protocol

Master station

OPC-UA 
gateway

Download/HMI interface

Real-time Ethernet Fieldbus

Bus protocol

Device control 
algorithm 1

Slave station 1

Bus protocol

Device control 
algorithm 2

Bus protocol

Device control 
algorithm N

Slave station 2 Slave station N  
Figure 1. Schematic diagram of the FCS architecture.
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2.2. Communication and Control Principles of FCS

The control of various devices in the system by the FCS is essentially the process
of periodic data interaction between master and slave in a real-time ethernet field bus.
Ethernet buses can be divided into linear, tree, star, and other forms according to the
topology. Due to the simple structure and high real-time data transmission characteristics
of linear topology, this paper uses a linear ethernet architecture for synchronous analysis.

The communication structure and data transmission principle of FCS using linear
topology are shown in Figure 2. The FCS communication structure can be divided into a
physical layer, a data link layer, and an application layer. The functions and data transmis-
sion principles of each layer are as follows.

Master

PHY

Slave 1

PHY1

MAC Controller

PHY2

Slave 2 Slave N

TX
RX

MAC Module

PHY1 PHY2 PHY1 PHY2

Application layer 
Protocol stack 

Data dictionary(1)

Device control 
algorithm(1)

MAC Controller

Application layer 
Protocol stack 

Data dictionary(2)

Device control 
aLgorithm(2)

MAC Controller

Application layer 
Protocol stack 

Data dictionary(N)

Device control 
algorithm(N)

Application layer 
Protocol stack 

POU

Data dictionary(1~N)

Physical 
layer

Data link 
layer

Application 
layer

IDE Device(1) Device(2) Device(N)

Device controller Device controller Device controller Runtime

 
Figure 2. Schematic diagram of the communication structure of FCS.

• Physical layer: Provide physical media for ethernet data transmission between master
and slave, mainly including a PHY circuit, Category 5 cable (CAT-5), registered jack
45 (RJ45), etc. To ensure the independence of each slave in the linear topology, the
physical layer of the slave includes two independent network ports.

• Data link layer: primarily consists of a MAC controller that integrates a real-time data
transmission protocol. The real-time data transmission protocol processes physical
layer data and transmits it directly to the application layer, bypassing the network
layer and transport layer.

• Application layer: It mainly consists of the master runtime and the slave device
controller. Runtime consists mainly of POU, data dictionary, and an application layer
protocol stack. The POU runs the user application periodically and stores the operation
results in the master data dictionary. The application layer protocol stack updates each
slave data dictionary by sending ethernet frames according to the set communication
period, where the master data dictionary is essentially the sum of the data dictionaries
of all slaves. The slave device controller updates its own data dictionary by exchanging
communication data with the MAC controller and executes device control algorithms
to control its connected devices according to the data dictionary parameters.

According to the system communication architecture and data transmission principle,
the typical timing sequence of system control task execution is shown in Figure 3. When
the master enters cycle T, it sends one ethernet frame to obtain the status of each slave
and sensor data as the input condition for POU. Then, the application layer stack sends
the results of the POU to each slave. Each slave reads the data from the ethernet frame
and outputs the control signal to the device after processing the protocol and running the
control algorithm. The above process is repeated for each cycle until the system stops.
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Figure 3. Schematic diagram of a typical FCS task timing sequence.

2.3. Synchronization Error Analysis

Synchronous control mainly refers to the time consistency of the motion state of
the devices in the industry controlled by FCS under the same command, such as the
simultaneous action of switches and synchronous motion of motors. However, since the
response time of different hardware to the command varies, this paper only considers the
time synchronization of the control signal output from the slave. According to the task
timing sequence analysis in Figure 3, the main factors affecting system synchronization
control are as follows:

• Factor 1: Communication transmission delay. The master sends data frames containing
the control commands for this cycle to the slaves at tm2. Since the communication link
length of each slave is different, the time t1c~tnc for receiving ethernet frames from
slaves 1~N is different. This causes the start time of the slave control task to be out of
synchronization.

• Factor 2: Slave task processing time differences. After receiving the master data frame,
the slave station needs to perform data reading, protocol processing, and control
algorithm operation tasks. However, different functional types of slaves may receive
different lengths of data and experience differences in protocol processing times
and inconsistent levels of control algorithm complexity. This leads to different task
processing times (tsd1~tsdn) for slaves 1~N as well, which affects the synchronization
of the slave control signal output.

• Factor 3: Timeliness differences in slave feedback data. Due to the different sensor
sampling times of each slave, the feedback data of each slave read by the master at tm1
via Ethernet frame may not be consistent in time. This may lead to some deviation in
the POU operation results, causing the control logic to be out of synchronization.

By analyzing the above synchronization influencing factors, the main reason leading
to Factor 1 is that the communication data transmission is not synchronized, while Factor 2
and Factor 3 are mainly caused by the unreasonable coordination of system communication
and control tasks in time. Therefore, to eliminate the asynchronous factor of Factor 1~3, this
paper focuses on the synchronization of communication transmission and the coordination
of communication and device control.

3. Fieldbus Communication Synchronization Method Based on Distributed Clock

3.1. Analysis of Communication Transmission Delay

Figure 4 shows the communication delay principle between two adjacent slaves A
and B in a linear network consisting of one master and N slaves. During the forward
transmission, the Ethernet frame is received by the PHY0_rx port of slave A, then processed
by the MAC controller and sent out from the PHY1_tx port. The PHY0_rx port of slave B
receives the data sent from the PHY1_tx port of slave A and performs the same processing
as slave A. When the ethernet frame is transmitted to the slave N, it starts to be transmitted
in the reverse direction and finally returns to the master.

221



Machines 2023, 11, 98

MAC
controller

Device controller

PHY0_rx

PHY0_tx

Slave A

tdAB

tdA01
tdlAB

tdB10

tdBA

Master Slave  N

Forward direction 

Reverse direction

PHY1_tx

PHY1_rx

SYNC_A Data_A

MAC
controller

Device controller

PHY0_rx

PHY0_tx

Slave B
PHY1_tx

PHY1_rx

Data_B

tdlBA

SYNC_B

 
Figure 4. Schematic diagram of the communication transmission delay in a linear network.

During forward transmission, after the Ethernet frame arrives at slave A, the MAC
controller needs to perform data reading, feedback data uploading, and retransmission
operations. The time consumed in this process is called station processing delay, which
is represented by tdA01. The time consumed for the ethernet frame to travel between the
PHY_tx port of slave A and the PHY0_rx port of slave B is called the cable transmission
delay and is denoted by tdlAB. Therefore, the overall delay time tdAB for two adjacent slaves
A and B to receive Ethernet frames sent by the master can be expressed as follows.

tdAB = tdA01 + tdlAB (1)

Similarly, during reverse transmission, the transmission delay tdBA of slave stations A
and B can be expressed as follows:

tdBA = tdB10 + tdlBA (2)

The above analysis shows that communication frame transmission in a linear network
is mainly affected by cable transmission delay and station processing delay, resulting
in different times for each slave station to receive the same communication frame. The
phenomenon is objective and unavoidable. However, the communication data ultimately
serves the device controller. A SYNC output signal with adjustable output time is designed
in the MAC controller. The synchronization of SYNC signal generation is ensured by accu-
rately measuring the cable transmission delay and station processing delay of each slave
station and compensating for the time of the SYNC output signal. The device controller
of each slave station reads communication data from the MAC controller according to the
SYNC signal, which ensures synchronized communication.

3.2. Method of Communication Delay Measurement

Define the first slave connected to the master as the reference slave. The commu-
nication delay of each other slave is based on the reference slave. To analyze the time
consumption relationship of the communication transmission process more intuitively, a
linear network communication transmission model is established, as shown in Figure 5.
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Figure 5. Communication transmission delay model for the linear network.
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The model describes the time relationship of the communication frame transmitted in
the Fieldbus network consisting of 1 master and N slaves. The definition of each parameter
in Figure 5 is shown in Table 1.

Table 1. Parameter definition table for communication transmission delay model.

NO. Name Definition

1 tNR0 The time the data frame arrives at port R0 of slave N.
2 tNT1 The time the data frame leaves the T1 port of slave N.
3 tNR1 The time the data frame arrives at port R1 of slave N.
4 tNT0 The time the data frame leaves the T0 port of slave N.
5 tdNP Station processing delay of slave N during forward transmission.
6 tdNR Station processing delay of slave N during reverse transmission.
7 tdN Station processing delay of the last slave.
8 tdlAB Transmission delay of communication cables between slaves A and B.

According to the model analysis, the cable transmission delay and station processing
delay are calculated as follows.

1. Cable transmission delay calculation

The connection distance between slave stations in industrial applications is generally
short, and the transmission asymmetry time of CAT-5 is about 0.1 ns/m, which can be
considered symmetrical for cable transmission delay. Therefore, for the adjacent slaves i
and j, the following relationship is satisfied.

tdlij = tdlji (3)

Considering the different time bases of each slave, let the time deviation between slave
1 and slave 2 be toffset12, and then the cable transmission delay between slave 1 and slave 2
can be represented by Equation (4).{

tdl12 = (t2R0 + toffset12)− t1T1
tdl21 = t1R1 − (t2T0 + toffset12)

(4)

Substituting Equation (3) into Equation (4), the cable transmission delay between slave
1 and slave 2 can be obtained as:

tdl12 = tdl21 = [(t1R1 − t1T1)− (t2T0 − t2R0)]/2 (5)

The time deviation toffset12 in the result of Equation (5) is counteracted. Without loss
of generality, the cable transmission delay from slave i to the reference slave is the sum of
the cable transmission delays between all neighboring slave nodes in its forward link. The
calculation method is shown in Equation (6).

tdl1i =

⎧⎪⎨⎪⎩
j=i−1,k=i

∑
j=1,k=2

[(tjR1−tjT1)−(tkT0−tkR0)]
2 , i ≥ 2

0 , i = 1
(6)

2. Station processing delay calculation

The station processing delay reflects the time that the communication frame stays
inside the slave station. It is the total time from the moment when the read signal of the
PHY chip at the receiving port is valid to the moment when the write signal of the PHY
chip at the sending port is valid. Since all station processing occurs within the slave station,
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it can be recorded directly using local time. According to the model, the station processing
delay of slave station i can be calculated as follows:{

tdiP = tiT1 − tiR0
tdiR = tiT0 − tiR1

(7)

When communication frames are transmitted in the reverse direction, the slave stations
do not exchange data. Therefore, only tdiP is considered in the station delay compensation.
All station processing delays td1i from station i to the reference slave can be expressed by
Equation (8).

td1i =
j=i−1

∑
j=1

(tjT1 − tjR0) (8)

According to the calculation results of Equations (6) and (8), it is easy to obtain the
communication delay between slave station i and the reference slave station. The master
can write the cable transmission delay and station processing delay of each slave into each
MAC controller as important parameters for slave clock synchronization.

3.3. Distributed Clock Synchronization

In the Fieldbus network, the local clock of each slave station is affected by the power-on
time, environment temperature, crystal precision, and other conditions showing dynamic
change characteristics. The distributed clock makes the system time consistent by correcting
the time of each slave to match the moment of the reference slave. Figure 6 shows the
principle of distributed clock compensation.
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Figure 6. Schematic Diagram of Distributed Clock Compensation: (a) actual curve of local time and
reference time slave; (b) curve of local time and reference time after compensation.

In Figure 6a, the local and reference clocks exhibit dynamic changes with time. The
offset of the local and reference clocks at time t0 is Coffset. In addition, there may be a
difference between the change rate of the local clock k1 and the change rate of the reference
clock k2 at t0. The difference in the change rate of the clock will cause the clock curve to
drift and may cause Coffset to increase over time.

Although the clock curve is not an ideal straight line, it can be approximated as a
straight line over a short period, as shown in Figure 6b. Calculate the difference between the
offset value and the drift value of the local clock and the reference clock, and compensate
the local clock to synchronize the local clock with the reference clock.

1. Clock offset compensation
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The basic idea of clock offset compensation is to add the offset Coffset(t) of the local
clock and reference clock at time t to the local clock as the compensation value. The
expression of the local time Clocal of the slave station is as Equation (9).

Clocal(t) = kt + a (9)

where k is the initial value of the local time change rate, and a is the initial value of the
local time.

The ethernet frame containing the clock compensation message sent by the master
arrives at the reference slave at tref time. The reference slave local time, Cref(tref), is written
into the data frame as timestamp information. When the frame arrives at slave i at time
ti, the time deviation Coffset(ti) between slave i and the reference slave can be expressed as
Equation (10).

Coffset(ti) = Cref(ti)− Clocal(ti) (10)

The local time Cref(ti) of the reference slave at time ti cannot be directly obtained from
slave station i. However, Cref(ti) can be calculated using timestamp information, Cref(tref),
and Equations (6) and (8), as follows:

Cref(ti) = Cref(tref) + tdl1i + td1i (11)

where tdl1i and td1i are the cable transmission delay and station processing delay between
slave i and the reference slave, respectively.

According to Equations (9)–(11), the time deviation Coffset(ti) of slave i from the
reference slave at time ti can be obtained as follows:

Coffset(ti) = Cref(tref) + tdl1i + td1i − kti − a (12)

The value of Coffset(ti) was added to the initial value of local time and used as the new
initial synchronization time anew. In this way, the new local time can be formed as follows:

Clocal(t) = kt + a + Coffset(ti) = kt + anew (13)

2. Clock drift compensation

The clock drift phenomenon is mainly caused by the difference between the slave
local clock change rate and the reference slave change rate. Periodically calculating the
reference slave time change rate and using it as the slope of the local clock curve is an
effective method for drift compensation.

Let tk and tk+1 be the times at which the two clock compensation messages arrive at
slave i, respectively. The local time change rate ki of the slave during this period can be
expressed as follows:

ki = [Clocal(tk+1)− Clocal(tk)]/(tk+1 − tk) (14)

According to Equation (11), the reference slave time change rate kref can also be
obtained as Equation (15).

kref = [Cref(tk+1)− Cref(tk)]/(tk+1 − tk) (15)

The change rate of local time can be corrected to knew according to the relationship of
the ratio of kref and ki. The local time after drift compensation and offset compensation can
be expressed as Equation (16).

Clocal(t) = k
[Cref(tk+1)− Cref(tk)]

[Clocal(tk+1)− Clocal(tk)]
t + anew = knewt + anew (16)
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In summary, the use of time drift and offset compensation methods to establish a
system-distributed clock can make each slave and the reference slave time maintain a high
degree of synchronization and solve the bus communication transmission delay problem.

4. Collaborative Method of System Communication and Device Control

In an architecture where logic control and device control are separated, ensuring the
temporal rationality of master communication tasks and slave control tasks is the key to
synchronous control of FCS. This section proposes a system communication and device con-
trol collaboration method based on the CANopen application layer protocol. Through the
design of the system communication data transmission method, communication scheduling
behavior, and device control timing sequence, the synchronization of device control by FCS
is ensured.

4.1. CANopen Data Transmission Method over Ethernet Links

The transmission mode of the CANopen protocol is based on the CAN bus, and each
communication frame can only carry data information for one slave station. In this way,
the master station needs to send multiple communication frames at a time to complete
the command transmission within a communication cycle. There is no doubt that this
will cause the time spent acquiring communication data from each slave station to be out
of sync.

To ensure synchronous transmission of communication data, each slave’s data can
be packaged into different messages and integrated into ethernet frames. However, this
method will generate more invalid data in ethernet frames, such as message headers,
interrupt responses, etc. Therefore, this section uses the data mapping method to design
the ethernet data frame format to improve the data transmission efficiency of the commu-
nication frame and to achieve more slave data transmission in the limited Ethernet data
space. The mapping principle is shown in Figure 7.

FCS checkMessage 1Ethernet frame Ethernet header Fieldbus header

Message header

Mapping message for read Mapping message for write

Mapping number

Mapping message

Start address of message

data length
Mapping Message 

processing

CMD M MAPNo LEN R O F IRQ MO MFMapping data 1 Mapping data N

Mapping manager

match

start

R/W control R/W

Y

Y

CANopen Data of slave N

Message N Message N+1 message 2N

Slave 1 data Slave N data Message header Slave 1 data Slave N data

 
Figure 7. Schematic diagram of the Ethernet frame data structure.

In Figure 7, the messages sent by the master to each slave are combined into one read
message, and the upload messages of each slave are combined into one write message. The
slave reads and writes the mapped message using the configuration information, such as
the mapping number, starting address, and data length. This data mapping transmission
method improves the data transmission efficiency of ethernet frames and allows for a larger
loading space for CANopen protocol data.

In the mapping message, the data of each slave is organized according to the standard
CANopen data frame format, which consists of 11 bytes of space for Cobid, data length,
and data information, respectively. The format of the CANopen frame transmission in the
mapping message is shown in Figure 8.
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Figure 8. Schematic diagram of CANopen frames integrated with the mapping message.

CANopen specifies a variety of communication objects, including NMT, SDO, PDO,
etc. The number of CANopen frames required for NMT, SDO, and PDO transmission
varies, and the master needs to configure different lengths of read/write message mapping
space according to the type of frames to be sent. NMT and SDO only need one CANopen
frame space for a single transmission. However, PDO can be configured into 1–4 groups
as required, including TPDO and RPDO. When composing ethernet frames, the master
needs to reserve data space of the appropriate size according to the number of PDOs of
each slave. In this way, the CANopen application layer data can be transmitted over the
ethernet Fieldbus.

4.2. System Communication Scheduling Method

To ensure real-time communication, the answer to the current command in the linear
network can only be transmitted back through the next ethernet frame. This delayed
response mechanism is not conducive to the timely upload of slave data, which may cause
the output logic of the POU to be out of sync. To make the POU and the device control algo-
rithm time reasonable, this section designs the communication frame scheduling methods
for system initialization, pre-operation, and operation status according to CANopen.

1. Initialization state scheduling

In this stage, after the slave completes the initialization of the protocol stack, a bootup
frame containing the slave node information will be generated and written to the MAC
controller. The master sends a query frame to read the bootup information of each slave in
the bus network. If the node information conforms to the hardware configuration file, it
will enter the pre-operation state. If it does not conform, it indicates that the bus connection
or slave station is abnormal.

2. Pre-operation state scheduling

In this state, the master performs status queries, parameter configuration, PDO con-
figuration, and other operations on the slave station through SDO. Figure 9 shows the
communication timing sequence of the slave device controller, MAC controller, and POU
in the pre-operation state.
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Figure 9. Schematic diagram of system communication timing sequence in the pre-operation state.

After entering the pre-operation state, the master sends the TSDO1 command to each
slave. At this time, the read-back information may still be bootup information, which
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can be ignored. After the device controller of the slave reads the TSDO1 data in the MAC
controller, it is processed by the CANopen protocol stack, and the SDO response RSDO1 is
written to the MAC controller. When the master sends the TSDO2 command, it can read
back the RSDO1 information in the MAC controller. At the end of the pre-operation state,
the master station sends an NMT command to read back RSDOn information and switch the
slave station to the operation state.

3. Operation state scheduling

The communication data on operation status is time-sensitive and closely related to
the POU control logic. In this state, the master periodically sends a synchronization frame
(syncf) to read the RPDO information of the slave and sends instructions after the POU
operation to each slave through TPDO frames. The key to system synchronization control is
to ensure that the POU input parameters are the latest data of the slave in this cycle and
that the POU output instructions can be executed by the slave in this cycle.

Figure 10 shows the system communication timing sequence in the operating state.
The communication scheduling task in a period can be divided into three stages, and
the tasks of each stage are the same. Taking communication period 1 as an example,
the communication scheduling process of master and slave at each stage is described in
detail below.
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Figure 10. Schematic diagram of system communication timing sequence in operation.

• Stage 1: At the beginning of communication period 1, the master sends syncf1 to each
slave station, and the read-back information is ignored. After the device controller of
the slave reads syncf1, it updates the sensor data and writes it to the MAC controller
through the RPDO1 frame of CANopen, waiting for the next frame to be read back.

• Stage 2: The master sends a query frame to read back the RPDO1 information in the
MAC controller of each slave. If an SDO frame is requested to be sent during the
period, the query frame is replaced by a TSDO1 data frame. After reading back RPDO1,
the master takes the RPDO1 data as a POU input parameter and runs POU.

• Stage 3: The master sends the POU operation result through the TPDO1 frame. The
slave runs the device control algorithm according to the instructions of TPDO1 and
controls the actuator.

The above communication scheduling mechanism can ensure the logic and inde-
pendence of sensor data acquisition, POU operation, and the device control algorithm
in time.

4.3. Slave Control Timing Sequence Design

The CANopen-based communication scheduling method provides a good timing
sequence reference for the implementation of the slave control algorithm. Combined with
the distributed clock synchronization signal SYNC, the execution time of each slave task
can be unified. The timing sequence relationship between system communication and slave
station control tasks under operation status is shown in Figure 11.

228



Machines 2023, 11, 98

Slave 1

0

syncf
ts

TPDO

tT

tSYNC_s tSYNC_T

tss1

tss2

tssn

tTs1

tTs2

tTsn

Period 1 Period 2

t

t

t

t

Sensor acquisition 
function

Device control 
function

Master

Slave 2

Slave N

IRQ signal SYNC signal

POU

Frame type

syncfquery

tqs1

tqs2

tqsn

tq

 
Figure 11. Slave control task timing sequence diagram in operation state.

In Figure 11, the MAC controller of each slave station will generate an IRQ signal after
receiving the communication frame, informing the device controller that the communication
data can be read. Due to the communication transmission delay, the interrupt signal IRQ
time generated by each slave MAC controller after receiving the communication frame
is inconsistent. However, the distributed clock can be used to generate a SYNC signal
simultaneously after the communication frame is received by all slaves. The SYNC signal
of the synchronization frame is used as the trigger for the sensor acquisition function of
each slave, and the SYNC signal of the TPDO frame is used as the trigger for the device
control algorithm.

It is worth noting that when setting the SYNC generation time, it must be ensured
that the last slave in the Fieldbus has finished receiving the data frames. Otherwise, it will
cause some slaves to be out of synchronization with the control commands of other slaves.
According to Equations (6)–(8), the SYNC signal generation time tSYNC of any frame should
satisfy the following condition:

tSYNC > tsend + tdl1n + td1n + (tnT0 − tnR0) (17)

where n is the last slave node number, and tsend is the time when the communication frame
is received by the reference slave.

Due to the different complexity of the control algorithms of the slave, the execution
time is quite different. To have the same time for each slave to output control signals, the
control signal generated by the control algorithm in this cycle is output at the same time
as the SYNC signal in the next cycle, which can ensure output synchronization. Figure 12
shows the timing sequence principle of slave communication and control task execution.
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Figure 12. Slave control task timing sequence diagram in operation state.
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During period n, the slave station executes the sensor reading task in this period
according to the SYNC signal of syncf(n) and simultaneously outputs the control signal of
the previous period. When the SYNC signal of the TPDO(n) frame is valid, the slave executes
the control algorithm of this cycle and latches the output signal. The latched control signal
will be output when the SYNC signal of the syncf(n + 1) frame of the n + 1 period is valid.
The synchronous output method after the latch will generate the output delay of tsdelay.
However, the communication period of a real-time Ethernet bus-based control system is
generally in the order of milliseconds, and tsdelay does not affect the control performance of
the system.

In summary, the logical synchronization of the system and the synchronization of the
device control can be ensured by the collaborative design of the system communication
scheduling and device control tasks.

5. Experiment

In this section, an experimental platform is constructed to verify the high-precision
synchronization control method of the device proposed in this paper. Figure 13 shows the
self-developed FCS experimental platform, which consists of a power supply, a master
station, four slave stations, an HMI display, and a PC with IDE installed. The master
adopts Hi3559a as a CPU chip that integrates the Linux Ubuntu16.04 operating system
and forms a linear network with 4 slaves via ethernet. The slave uses the FPGA of HME-
P1P6060N0TF784C as the MAC controller and the Soc chip HME-M7A12N0F484I7 with the
integrated cortex-m3 core as the device controller. The clock synchronization protocol pro-
posed in this paper is designed in Verilog, and integrated in the HME-P1P60600N0TF784C
chip. It forms the Ethernet physical layer with the general-purpose 100 M PHY chip, net-
work transformer, and M12 industrial connector. The Codesys software is installed on the
PC as the system IDE. The HMI display provides the human-machine interaction interface.
The power supply provides 24 V DC power to the master station and four slave stations.
The device interface of each slave is led from the interface board to facilitate oscilloscope
observation of the distributed clock synchronization signal SYNC as well as the device
control signal.

Master Slave 1 Slave 2 Slave 3 Slave 4
HMI

PC ( IDE )

Power

Device interface of slave  
Figure 13. FCS experimental platform diagram.

A multi-axis robot application scenario is simulated using the experimental platform
shown in Figure 13. The master controls each slave to generate the orthogonal pulse signal
required by the robot joint driver at the same time to control each joint axis. Set the system
communication cycle to 1 ms, and design the POU logic in the IDE to make the slave
generate 20 pulses with a frequency of 50 KHz in each communication cycle.

The SYNC signal is directly generated by the distributed clock, and the time error
of the SYNC signal of each slave directly reflects the synchronization accuracy of the
distributed clock. After the system is powered on and enters the operation state, the SYNC
signals of slave 1~4 are shown in Figure 14.
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Figure 14. System distributed clock synchronization test result diagram: (a) SYNC signal waveform
of each slave under a 400 μs time scale; (b) SYNC signal waveform of each slave under a 20 ns
time scale.

Figure 14a shows the oscilloscope waveform of the SYNC signal of each slave on a
400 μs time scale. It can be found that the SYNC signal generates two edge jumps within
1 ms, representing the synchronization frame and TPDO frame, respectively. SYNC signals
show consistency and periodicity in time. Figure 14b shows the rise edge detail of the
SYNC signal under a 20 ns time scale. The rise time of the SYNC signal of each slave has
deviation and jitter, and the jitter time error is about 36 ns. This time jitter is caused by
uncertainty factors such as timestamp measurement accuracy, data transmission delay jitter,
PHY chip data reception, transmission jitter, etc.

Time synchronization of the device control signal output of each slave is the key to
multi-axis coordinated control. Use the oscilloscope to observe the pulse output ports
of each slave station to test the synchronization performance of the equipment. The test
results are shown in Figure 15.

400 s

 

140ns

 
(a) (b) 

Figure 15. System device control synchronization test result diagram: (a) pulse output waveform
of each slave under a 200 μs time scale; (b) pulse output waveform of each slave under a 80 ns
time scale.

When the time scale of the oscilloscope is 200 us, slave 1~4 generates pulse signals
with a total time width of 400 μs in a communication cycle. The pulse output time of each
slave is the same, and the number and frequency of pulses are the same as the logic settings
of the master station, as shown in Figure 15a. When the time scale of the oscilloscope is
amplified to 80 ns, it can be observed that there is deviation and jitter in the jumping time
of each slave station pulse signal, and the overall jitter time range is about 140 ns, as shown
in Figure 15b. According to the slave control timing sequence in Section 4, the time error of
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the output pulse of each slave shall be theoretically consistent with the SYNC signal error.
However, because the pulse output involves MCU software modules and related hardware
circuits, the synchronization error is larger than the theoretical value.

To verify the independence of system synchronization accuracy and running time, the
experimental platform in Figure 13 was tested for seven consecutive days. The synchro-
nization error of the SYNC signal and pulse output signal is tested several times a day, and
its maximum value is recorded. The experimental results are shown in Table 2.

Table 2. Synchronization performance test table during continuous system operation.

Test Time Synchronization Error of SYNC Synchronization Error of Pulse

Day 1 36 ns 140 ns
Day 2 37 ns 143 ns
Day 3 37 ns 140 ns
Day 4 35 ns 137 ns
Day 5 40 ns 146 ns
Day 6 37 ns 141 ns
Day 7 36 ns 140 ns

From the test data in Table 2, it can be seen that the system communication trans-
mission synchronization error and device control synchronization error remain stable
during the continuous operation of the system. The fluctuation range of communication
transmission synchronization error is 4 ns, and the fluctuation range of device control
synchronization error is 8 ns.

In summary, the synchronization control method proposed in this paper can ensure
that the synchronization accuracy of FCS communication transmission is less than 50 ns
and the synchronization accuracy of device control is less than 150 ns.

6. Conclusions

This paper focuses on the research of the device synchronization control method of a
Fieldbus control system. Through the analysis of the composition principle of typical FCS
and the communication control process of FCS based on a real-time ethernet field bus, it is
concluded that the main factors affecting the synchronization control of the system are the
communication transmission delay and the desynchrony of communication and control
logic. To eliminate the impact of communication transmission delay on synchronization
control, this paper analyzes the communication transmission mechanism in the linear
ethernet topology and uses timestamps to measure the cable transmission delay and static
processing delay. The distributed synchronization clock of the system is established accord-
ing to the delay measurement results, which provides a unified time benchmark for each
slave of the system. In addition, aiming at the problem that the communication tasks and
control logic of the system are not synchronized, this paper uses the CANopen application
layer protocol to design the system communication data transmission, communication
task scheduling, and device control timing, forming a collaborative method of system
communication and device control. Finally, a typical FCS experimental platform is built
to verify the synchronization control method proposed in this paper. The experimental
results show that the synchronization method proposed in this paper can make the commu-
nication transmission synchronization accuracy less than 50 ns and the equipment control
synchronization accuracy less than 150 ns. The synchronization method proposed in this
paper meets the requirements of industrial applications for the synchronization accuracy of
the control system and provides a reference for FCS synchronization-related research. In
the future, we will further study the improvement of synchronization accuracy.
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Abstract: In this paper, we propose a misalignment correct method and a particle detection algorithm
to improve the accuracy in the quality inspection of the LCD module after the anisotropic conductive
film (ACF) bonding. We use only one camera to acquire images of multiple positions in order
to establish the transformation from the image space to the world coordinate. Our method can
accurately determine the center of rotation of the carrier table and calculate the deviation of position
and angle of the tested module. Compared to traditional ways that rely on multiple cameras to
align the large-sized product, our method has the advantages of simple structure, low cost, and fast
calibration process. The particle detection is performed after positioning all bumps of the bonded
module. The gray morphology-based algorithm is developed to detect the extreme point of every
particle and refine the particle result through blob analysis. This method reduces the over-checking
rate and performs better on the detection precision for dense particles. We verify the effectiveness of
our proposed methods in our experiments. The alignment error can be less than 0.05 mm, and the
accuracy of the particle detection is 93% while the recall rate is 92.4%.

Keywords: conductive particles; LCD module; ACF bonding; automated optical inspection;
visual-alignment

1. Introduction

Liquid crystal display (LCD) panels have been widely used in smartphones, car
monitors, and other industries. To fit the proliferated applications with different sizes and
shapes, LCD modules are expected to be more integrated, thinner, and of higher resolution.
Anisotropic conductive film (ACF) bonding technology, as the key process in the production
of LCD modules, is extremely important in order to achieve a higher signal density and
smaller overall package, which can enable the LCD modules more light-weighted and
miniaturized. To reduce the size of the module, circuit components such as integrated
circuits (ICs) and flexible printed circuits (FPCs) are expected to be connected to display
panels at a higher level of integration.

ACF is an important material that serves as a connector to achieve such a level of
integration. The authors of [1–3] examined the mechanical reliability of the ACF and con-
sidered it as a low-cost and reliable material that can be used in semiconductors packaging.
As shown in Figure 1, with the ACF, multiple components can be integrated into the display
panel to form a compact LCD module. Such a material can achieve both a mechanical and
electrical link between the substrates of peripheral circuits to that of the LCD.

Figure 2a shows a detailed bonding process, in which the ACF is first attached to the
panel substrates, and the substrates of ICs or FPCs can be further glued to it to realize
a reliable connection between components. This process is called ACF bonding. As
Figure 2b shows, the ACF mainly composes of conductive particles and polymer resin.
The conductive particles provide the ability of conductivity, while the resin works as an
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adhesive to hold the LCD panel tightly with other circuits. ACF allows the two components,
namely, the LCD panel and ICs or FPCs in our application, to create a reliable bond and
enable electrical interconnection. Similar conducting polymer and metal nanoparticle ink
have also been developed in [4,5] to fabricate materials with higher conductivity, thus
improving the electrical performance of printed electronics. Mainly used processes include
bonding integrated circuits (ICs) or flexible printed circuits (FPCs) onto the glass substrates,
which are called chip-on-glass (COG) and flex-on-glass (FOG), respectively.

Figure 1. ACF can reduce the size of the LCD module and achieve a higher level of integration.

Figure 2. (a) Demonstrates the diagram of the bonding process; (b) is zoomed in to show the
composition of the ACF.

The conductivity of the ACF is explained in Figure 3a, where the ACF is sandwiched
between the two substrates. After a period of heat and pressure, the indium tin oxide
(ITO) bumps of the substrates are bonded closer, thus trapping some conductive particles.
The interconnection is established by these trapped particles, and the power and signal
can be transmitted from external components into the display module. After the ACF
bonding process, the appearance of the bump areas taken by the camera is shown in
Figure 3b. Conductive particles on the bump areas can be viewed from those taken images.
As conductivity is a significant indicator of the quality of LCD modules, extensive studies
have been conducted to investigate the factors that contribute to poor conductivity. The
traditional method directly tests the resistance of the LCD module after the bonding
process, which is time-consuming and may inflict damage to test modules. According to
studies [6–11], the number and distribution of conductive particles are essential factors to

236



Machines 2023, 11, 49

the conductivity. Therefore, it has become a popular method for LCD manufacturing to
verify the conductivity by calculating the number of conductive particles. However, the
manual inspection method depends on sophisticated instruments to perform the detection,
and due to the low efficiency of labor work, random sampling is usually used in the industry.
Such a sampling method is less accurate, and with the mass production of LCD panels,
inspection methods that rely on human labor cannot satisfy the growing manufacturing
scale. Meanwhile, due to the small size of conductive particles, whose diameter is normally
3–5 μm, it is difficult to obtain high-resolution information about particles using human
eyes or traditional instruments.

Figure 3. (a) Explains the conductivity principle of the ACF; (b) shows part of the bump areas after
the bonding process.

To improve the detection efficiency and accuracy without potential contact damage,
the automated optical inspection (AOI), equipped with novel optical imaging methods and
machine vision algorithms, has been developed by studies [12–20]. The AOI primarily uses
the image sensor to acquire high-quality digital images of products and then draws upon a
machine vision algorithm to identify the target objects in those images based on the features
of the target. Many studies attempt to align the object module to the fiducial position to
ensure a consistent imaging condition thus helping improve the detection result. For a
large module, multiple cameras-based methods [21–24] are preferred because of higher
precision. However, such methods usually repeatedly calculated the offset to reduce the
alignment error, for example, an iterative algorithm proposed in [21]. Moreover, studies
including [22,24] required multiple shots and movements for alignment, and they assumed
a fixed center of rotation of the platform, which cannot be applied to other applications
when the module sizes change. The utilization of a specialized marker and alignment
layers were employed by the author of [25] in order to achieve precise positioning of the
microlens within the array. In our proposed misalignment correction method, one single
camera is used to take images of the feature mark on the both ends of the LCD module.
This method can enhance the accuracy of alignment while reducing the alignment time by
determining the center of rotation and calculating the displacement of the tested module in
one stage.

It remains challenging to accurately and quickly detect the number of particles on
the small bumps relative to a large entire image of the LCD module. The author of [13]
combined differential interference contrast (DIC) prism with the CCD camera and achieved
effective and high-contrast imaging of particles. The particles in the image represented
spheres composing a bright part and a dark part. The author of [12] improved the Prewitt
mask to calculate the image gradient and extract the extreme points using Otsu thresholding.
Another study [26] also took the gray distribution of the particles as the feature to separate
the original image into a light and a dark part. They then selected the more informative
part by comparing the image entropy of the two parts. After clustering gray values in the
selected image part, the center regions of particles were determined by the first two values
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in clusters. However, the aforementioned methods perform poorly in detecting particles
when imaging illumination is weak or the particles are heavily overlapped. The gradient-
based method is sensitive to the gradient change which makes it easy to recognize more
particles than are actually there, especially along edge areas of the image. The clustering-
based method has an unstable result in varying illumination conditions and leads to a low
detection rate compared to the total number of particles to be checked. In this paper, we
also propose a novel particle detection algorithm to improve the detection accuracy of the
ACF task. This algorithm emphasizes the region of each particle based on the gray dilation
morphology and then restores all particles by finding the extreme points of particles. The
main contributions of this article are listed below.

(1) A novel misalignment correction method is proposed to determine the transition
and rotation of the carrier table to ensure a consistent imaging area, which can be
achieved by taking twelve images in one iteration. The requirement for assembly
accuracy of the alignment module is reduced through the proposed method.

(2) A robust and fast detection algorithm is presented for checking the number of
conductive particles.

(3) A complete AOI system is constructed to meet the demand for in-line process inspec-
tion, which can perform miscellaneous tasks including alignment calibration and
correction and particle detection.

This paper is organized as follows. In Section 2, the system design is presented,
followed by the misalignment correction method and particle detection algorithm. Details
of the experiment results are provided in Section 3. Finally, a conclusion and limitation of
the current work are given in Section 4.

2. Materials and Methods

2.1. Automatic Inspection System

The architecture and major modules of the inspection system are shown in Figure 4.
Table 1 lists the parameters and manufacturers of the main modules of the automatic
inspection system. The loading and unloading modules are placed at both ends to connect
with an existing assembly line. Specifically, the load unit receives LCD modules from the
upstream line after they complete the bonding process, while non-defective products can be
conveyed to the next stage through unload unit. As shown in Figure 4, the system mainly
includes five core modules. The conveyor module contains a robotic gripper equipped with
a suction cup to softly attach the detected material from upstream and then lay it on the
carrier table. The pre-alignment camera is then triggered to acquire the image of the LCD
module at both ends of the corner, where we search the mark pattern as the feature point for
calibration and alignment calculation afterward. As shown in Figure 5, the mark pattern
is a special shape usually printed on the circuit board of the module and can be used as a
feature point because of its distinctiveness. The carrier table can be controlled to translate
and rotate according to the result of misalignment correction. After the alignment process,
the CCD camera is initiated to scan the LCD module and acquire the high-resolution image
of the entire bump region where the particle detection algorithm is used to check the
number and distribution of conductive particles. The CCD line scan camera is adopted
because of the heavily disproportionate aspect ratio of the bonding area of the LCD module,
for example, can be 3200 × 60,000. Finally, the good product is conveyed to the unloading
unit while the not-good product is filtered to the NG output basket.

As we can see, the imaging quality of conductive particles is important to the detection
result. In the industrial setting, however, the line scan camera may struggle to maintain
a consistent distance from the module being tested due to the constraints of the practical
mechanical structure. Fluctuations in distance can cause the camera to lose focus, resulting
in a blurry image of particles. In order to maintain a proper depth of field, typically
within a range of 5–8 μm for our instrument, a laser displacement sensor is implemented
to enable non-contact distance measurement. This sensor is able to help the line scan
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camera adaptively adjust the distance relative to the target region and ensure the quality of
the image.

Figure 4. An overview of the automatic inspection system which mainly includes conveyor modules,
pre-alignment modules, CCD inspection modules, carrier modules, and NG output modules. Tested
LCD modules are first aligned by the misalignment correction algorithm, then the bump images are
acquired by the CCD line scan camera, and finally, the conductive particles are detected.

Table 1. Parameters and manufacturers of major modules in the inspection system.

Category Model Number Manufacturer Properties

X-axis linear actuator GTH5 series TOYO Stroke length: 500 mm
Y-axis linear actuator ETH14 series TOYO Stroke length: 500 mm

Θ-axis direct drive rotary motor LD series ZCOE Angular accuracy: ±30′′
Angular repeatability: ±2.5′′

Pre-alignment camera MV-CA013 series HIKROBOT Resolution: 1280 × 1024
Max. frame rate: 90 fps

TDI line scan camera VT-3K7C series Vieworks Resolution: 3200
Line rate: 100 khz

Laser displacement sensor ZS-HLDC/LDC Series Omron Max. resolution: 0.25 μm/px
Max. response speed: 110 μs
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Figure 5. Different shapes of marks: (a) represents a cross mark; (b) represents a dark cross sand-
wiched between four bright squares; (c) represents a square surrounded by four triangles. The mark
shape can be used according to practical manufacturer setting. We can extract the center of the marker
as the key point for calibration and alignment.

2.2. Misalignment Correction

The pre-alignment camera installed on the carrier table is responsible for this process.
The major procedure of the alignment correction is presented in Figure 6. A reference
image is selected to prepare a matching template as a shape model. It normally chooses a
distinguished shape in the region of interest (ROI) of the image as the feature mark. Figure 5
shows some different types of marks in the COG and FOG bonding process. Shape-based
pattern search is a technique that detects reference marks automatically. We use this way to
generate a shape model by specifying the range of rotations of the mark, the contrast of the
local gray value, and the minimum size of the object. In most cases, we choose the center of
the mark as the feature point after the matching process.

Save the mark for pattern match

Calculate the rotation center

Translations of carrier table
&&

record mark position

Calibrate the model

Rotations of carrier table
&&

record mark position

Set reference position and angle

Calculate the angle difference
between reference and current

object

Offset the angle difference

Calculate Δx and Δy

Offset the translation difference

Calibrate Phase Alignment Phase

Figure 6. This flowchart indicates the steps to simultaneously calibrate the camera and calculate the
center of rotation of the machine.

A 12-point calibration method is introduced to auto-calibrate the camera system and
calculate the rotation center of the carrier table simultaneously, from which nine points are
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used to calculate a homogeneous transformation matrix based on Zhang’s method [27],
and three points for finding the center of rotation. Such twelve points are derived from
different images that are acquired in nine positions and three different angles. Figure 7
shows a sample of twelve images, in which the feature points of the mark are searched
based on the described pattern search technique. The center of the mark region is chosen
as the feature point. After recording the coordinates of feature points, the corresponding
positions of these feature points in the world coordinate were then calculated through the
homogeneous transformation matrix.

Figure 7. (a) Uses the 12-point misalignment correction method to determine the center of rotation
and to calculate the offset of translation. These twelve sample images are taken by a pre-alignment
camera installed above the carrier table; (b) calculates the physical rotation center on the occasion of
a large radius and a small angular interval.

The homogeneous transformation matrix stands for a correspondence between differ-
ent coordinate systems which can be shown in Equation (1). The image point and the trans-
formed point in the real world are denoted as (xi, yi), (Xi, Yi) in homogeneous coordinates.⎛⎝Xi

Yi
1

⎞⎠ = HMat2d ·
⎛⎝xi

yi
1

⎞⎠ (1)

A simplified transformation matrix that only consists of translation and rotation is
represented as the Equation (2). Tx and Ty are the translation in the X- and Y- axis directions
and ra–rd denote the rotation parameters.

HMat2d =

⎛⎝ra rb Tx
rc rd Ty
0 0 1

⎞⎠ (2)

For a test subject, nine translation images and three rotation images are captured by
controlling the motion of the carrier table. In each position, the coordinate of the feature
point in the image space is measured by searching reference marks in view of an image
while the corresponding location in the real world is recorded. The rotation angle of the
carrier table is also included during this procedure. Nine of these pairs of points are used
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to approximate the transformation matrix which is expected to minimize the distance error
between those pairs of points following the Equation (3).

min

⎛⎜⎝∑
i

∥∥∥∥∥∥
⎛⎝Xi

Yi
1

⎞⎠− HMat2d ·
⎛⎝xi

yi
1

⎞⎠∥∥∥∥∥∥
2⎞⎟⎠ (3)

Once the calibration process is finished, one point in image space can be transformed
into that in the real world, thus enabling the calculation of the physical rotation center.

The rest three points are then offered to find the center of rotation. As a rotating angle
can have an effect on the position of points in both X- and Y-axis directions, it is necessary
to correct the angle deviation before translating the tested object to align with the reference
one. Due to a different design of the mechanic structure, the rotation center of the carrier
table can vary a lot, which leads to different impacts on the deviation of points. The main
idea of calculating the rotation center of the carrier table, known as fitting a circle, is to
obtain multiple points by rotating the carrier table and calculating the point of the circle
which is supposed to cover those points in the real world. This method is based on an
assumption that a pure rotational motion should form a track of a circle for a point on the
plane. Given that we can acquire the physical rotation angle of the carrier table, the center
of the circle can be calculated by each two of the three points as well as their included angle.

As demonstrated in Figure 7b, A(X1, Y1) and B(X2, Y2) are two points transformed
from image space to the real-world coordinates. The midpoint D(X0, Y0) of the line AB
through (X1, Y1) and (X2, Y2) is (X1+X2

2 , Y1+Y2
2 ), from which we can form the parametric

equation of perpendicular bisector through C and D.

X = X0 + tΔX

Y = Y0 + tΔY (4)

Because line CD is perpendicular to line AB, the slope of CD is reciprocal to that of
AB, which can be expressed as

ΔY
ΔX

= − 1
Y1−Y2
X1−X2

= −X1 − X2

Y1 − Y2
(5)

Therefore, Equation (4) can be transformed into

X =
X1 + X2

2
+ t(Y1 − Y2)

Y =
Y1 + Y2

2
+ t(X1 − X2) (6)

Additionally, we can obtain the following equation from the lengths of AD and CD
and their included ∠ACD

AD =

(
X1 − X1 + X2

2

)2
+

(
Y1 − Y1 + Y2

2

)2

=
(X1 − X2)

2 + (Y1 − Y2)
2

4
CD = (t(Y1 − Y2)

2) + (−t(X1 − X2)
2) (7)

= t2
[
(X1 − X2)

2 + (Y1 − Y2)
2
]

∠ACD =
θ

2
= arctan

AD
CD

= arctan
1
2t
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Therefore, we can derive the relationship between t and the included angle θ as

t =
cos θ

2

2 sin θ
2

=
sin θ

2(1 + cos θ)
(8)

Therefore, we have

Cx =
X1 + X2

2
+

sinθ(Y1 − Y2)

2(1 − cosθ)

Cy =
Y1 + Y2

2
+

−sinθ(X1 − X2)

2(1 − cosθ)
(9)

R =
√
(X1 − Cx)2 + (Y1 − Cy)2

where (Cx, Cy) represents the center of the fitting circle and R specifies the radius. Three
centers are given through the formula above and averaged to improve the accuracy of the
center of the fitting circle.

According to the flowchart in Figure 6, in the alignment phase, we first measure the
angle of the reference image whereby we can obtain the deviation of the angle between
the test image and the reference one. The camera can take images on the left and right
side of the LCD module, respectively. Through searching for the feature marks printed on
both sides, two feature points can be drawn to form a line that can act as a baseline. To
compare the different angles of two lines, points have to be transformed to a uniform world
coordinate. The transformed positions are then normalized by rotation center (Cx, Cy) to
take the center as the origin point. By calculating θt and θc for reference angle and current
angle, the difference of angle can be represented as Δθ = θt − θc. Secondly, the offset of
translation is determined. Based on the design that the center of rotation is the origin of the
coordinate, the radius and angle of a point in polar coordinate can be expressed as

r =
√

X2
c + Y2

c , θ = arctan
Yc

Xc
(10)

Then, the rotated points (Xr, Yr) can be obtained by

Xr = rcos(θ + Δθ)

Yr = rsin(θ + Δθ) (11)

Either point of left or right side feature point can be used to calculate the offset of
translation. We use (Xr, Yr) and (Xt, Yt) to denote rotated point by Δθ and the reference
point, respectively. Finally, the translation offset can be obtained by

ΔX = Xr − Xt

ΔY = Yr − Yt (12)

After determining the rotation center and the translation offset, the tested module can
be aligned to the reference position as Figure 8 shows.
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Figure 8. Expected result after the misalignment correction process.

2.3. Bump Positioning

After aligning the test object with the reference one, the positional deviation can be
reduced thus contributing to accurately positioning bump areas containing the particles
to be detected. The aligned LCD module is scanned by a line scan camera installed under
the carrier table. Figure 9 shows a scanned image in the COG process. The cross-shaped
pattern on the top right of the image serves as the positioning mark, while the red and blue
regions in the image stand for ITO bumps. Two major types of bumps are annotated in
Figure 9, which are block-like regions for type I and bar-like regions for type II, respectively.

As a whole imaging region consists of numerous bumps and other irrelevant pixels
that make up a large portion of the image, it is difficult and time-consuming to extract valid
information. Bump positioning intends to segment essential regions from the whole image
and allows the detection algorithm to operate on every smaller region, which can reduce
the size of detection areas and improve efficiency. Considering that the bump positions
of a type of component are relatively fixed, we can construct a standard file with position
information of all bump areas in it. Such information can be stored in the form of values
relative to the position of the mark, which can be quickly determined by the shape-based
match method. The feature mark is first searched in the test image, then the bump areas can
be annotated with information in the standard file. The standard file can also be finetuned
to adapt to the bump distribution in different LCD modules.

Figure 9. The local image of LCD module containing bump and mark areas.

2.4. Particle Detection

The number of particles captured is calculated in every segmented area of the bump.
ACF conductive particles represent microspheres and deform with different levels of press
strength. During the bonding process, these particles are trapped between the bump
areas, causing those areas to show uneven pits. Figure 10a extracts a sample of well-
deformed conductive particles, while (b) shows a local image of particles taken under the
inappropriate pressure condition.
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Figure 10. (a) Well deformed conductive particles; (b) over-deformed particles.

We can observe that the properly pressed particles appear as distinct light and dark
parts in the image, while over-deformed particles have a weak contrast compared with
neighbor areas. Based on such an observation, the particle areas are intended to be recog-
nized by locating the extreme point of gray value of every particle. However, many false
extreme points occur possibly caused by sharp changes in the gray-scale values of the edge
of the bump or the intersection area between particles.

To reduce the effect of edge and intersection area on the detection accuracy, we first
smooth the original image Figure 11a by the gaussian kernel, as shown in Figure 11b.
We denote the original image as I(x, y) and the smoothed image as Ig(x, y). During the
smoothing process, the original image is filtered by the 2D gaussian kernel G(x, y) which
can be formulated as the Equation (13)

G(x, y) =
1

2πσ2 exp− x2+y2

2σ2 (13)

where x is the distance from the origin in the horizontal axis, y is the distance from the
origin in the vertical axis. The smoothed image can be denoted as

Ig(x, y) = I(x, y) ∗ G(x, y). (14)

Subsequently, we perform a gray value dilation on the smoothed image with a struc-
turing element b in order to highlight the region of each particle. An example of output
image after the gray value dilation is shown in Figure 11c. The gray-scale value of the
dilated image is defined with the maximum value of the overlapped region between the
structuring element and the target image. Such processing can be demonstrated as

[I ⊕ b](x, y) = max
(s,t)∈b

I(x − s, y − t) (15)

where s and t denote the distance from the origin in both directions. According to the size
of structuring element b, the s and t should be in [−size, size]. We can regard the structuring
element as another filtering kernel because it serves to further reduce the variation of local
gray values. As a result, the gray values of a particle region are equivalent to the maximum
value of this region, which is usually the gray value of the center of the particle. Following
the process in Figure 11d, the dilated image is compared with the smoothed image to
create a differential image where the extreme points of every particle are expected to be
emphasized. To achieve this, we normalize the mean gray value of the smoothed image to
128 following the Equation (16)

Ig(x, y) = Ig(x, y)× 128
Mean

(16)

then the differential image Id(x, y) is created by the Equation (17).

Id(x, y) = Ig(x, y)− [I ⊕ b](x, y) + 128 (17)
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In the differential image, the central parts of particles are brighter than neighbor pixels
indicating the existence of particles.

Figure 11. This flowchart shows the procedure of particle detection. The original image (a) is
smoothed to image (b), (b) is dilated by a structuring element to produce (c), (d) highlights the
particle centers, (e) remove noisy objects by features of the particle, and the final result is presented
in (f). The processing and visualization of images are supported by OpenCV.

To refine the detection result, we also adopt the blob analysis to exclude noisy objects.
During the blob analysis, detected objects are checked case by case, such as a sample shown
in Figure 11e. Some gray features of particles can be used to enhance the reliability of
the detection result. For example, the gray strength of the particle is assumed to exceed a
certain threshold while the result with a lower strength should be removed. In addition,
since the standard deviation of the brightness in the particle region should be within a
certain range, we can extract the particle objects based on this criterion. After excluding
noisy objects, the detection results in Figure 11f can be visualized by the detected centers of
particles and a specified particle radius.

The number and density of particles in a given region can be determined from the
results depicted in Figure 11f. Normal particles tend to be numerous and have a relatively
uniform and dense distribution, while over-deformed particles can be identified by a small
number of particles and a sparse distribution in the image analysis. In practical production,
the threshold for distinguishing between normal and over-deformed particles should be
determined based on the specific criteria of the plant.

3. Results and Discussion

3.1. Experiment Setup

As depicted in Figure 4, the majority of the system consists of mechanical compo-
nents and sensor sets. The mechanical components primarily consist of robotic grippers
responsible for loading and unloading LCD modules, a carrier platform equipped with
translation and rotation motors, and a large horizontal track providing X-axis movement
for pre-alignment cameras. The sensor sets, including the pre-alignment camera, line
scan camera, and laser displacement sensor, are essential tools in the detection system.
A detailed configuration can be found in Table 1. In terms of the parameters for the de-
tection algorithm, a Gaussian kernel with a size of 3 × 3 and a σ of 0.6 was chosen, and
the structuring element employed a circle with a radius of 8 pixels. In the blob analysis,
the strength threshold of particles is set to 8, and the range of brightness within a particle
region is 20–220.

3.2. Calibration Result

In our experiment, we first calibrated the homogeneous transformation matrix between
the image space and the world coordinate and calculated the center of rotation of the carrier
table. In Figure 12, we show the relationship between the captured images in terms of
physical position, where subfigures 1–9 are captured by translating the carrier by 1 mm,
while subfigures 10–12 are captured by rotating the carrier by 0.25◦.
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Figure 12. The relationship between the captured images in terms of physical position.

Table 2 shows the pixel location and the physical location of twelve images. The
calibration result is shown in the last column. The location and rotation in the world
coordinate were determined by the relative distance to the origin of the carrier table.
We derived the homogeneous transformation matrix HMat2d through images 1–9 while
calculating the center of rotation through images 10–12. As the center of rotation of the
carrier platform was far from the location of captured images, three centers were calculated
by two images and the included angle following the Equation (9) and then averaged to the
final center.

Table 2. The pixel location and the physical location of twelve images and the calibration result.

Image
Index

X in Pixel
(px)

Y in Pixel
(px)

X in
Carrier
(mm)

Y in
Carrier
(mm)

θ in Carrier
(◦)

Result
(mm)

1 451.501 703.999 −26.4627 325.3494 0

HMat2d 1

2 657.752 695.463 −27.4627 325.3494 0
3 862.519 688.233 −28.4627 325.3494 0
4 855.523 481.747 −28.4627 324.3494 0
5 846.937 278.084 −28.4627 323.3494 0
6 642.295 285.407 −27.4627 323.3494 0
7 436.527 292.669 −26.4627 323.3494 0
8 444.942 497.018 −26.4627 324.3494 0
9 649.725 490.896 −27.4627 324.3494 0

10 780.087 301.71 −27.4627 324.3494 −0.25 Cx =
160.812

11 518.451 678.46 −27.4627 324.3494 0.25 Cy =
182.984

12 649.441 490.792 −27.4627 324.3494 0 R = 235.439

1 HMat2d =

⎛⎝ −0.00486334 0.000181669 −24.3918
0.000180196 0.00486517 321.846
0 0 1

⎞⎠.

3.3. Alignment Result

We selected some test samples to check the precision of our proposed method. Samples
were acquired by controlling the machine to move different offsets in Y-axis or around the
rotating axis while related information is recorded. This motion was conducted to simulate
the occasion when the robotic gripper fails to make sure that the LCD module keeps the
same position as the standard module.
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In our experiments, the line scan camera was installed at the X-axis. We moved the
line scan camera and took images of the left panel and right panel containing the feature
marks. The mark locations in both panels were recorded and compared with those in the
reference panel. Table 3 presents the positions of the left and right markers in various
settings, with the positions being unified to a coordinate system with the center of rotation
of the carrier table serving as the origin. For example, Y0.3 moves the carrier platform
in the Y-axis direction by 0.3 mm, and Y0.6-R0.3 moves 0.6 mm alongside the Y-axis and
rotates 0.3◦ around the center of rotation of the carrier table.

Table 3. The positions of the left and the right mark (unit:mm).

Setting Left Mark Right Mark

Ref. (−188.223, 141.469) (−538.615, 141.469)
Y0.3 (−187.458, 143.135) (−537.734, 141.295)
Y0.6 (−188.265, 142.068) (−538.535, 142.064)
R0.1 (−187.995, 141.828) (−538.264, 141.21)
R0.3 (−187.455, 142.542) (−537.729, 140.702)

Y0.6-R0.3 (−187.458, 143.135) (−537.734, 141.295)

Table 4 demonstrates the alignment precision as below. The rightmost column shows
the difference between the alignment result and previously recorded information, which
represents ΔX, ΔY, and Δθ, respectively. Such results show that our method achieves high
precision in restoring the offset of translation and rotation of tested modules.

Table 4. The result of misalignment correction in different settings (unit: ΔX(mm), ΔY(mm), Δθ(◦)).

Setting Left Panel Right Panel Result

Ref.
ΔX = 0
ΔY = 0
Δθ = 0

Y0.3
ΔX = −0.046
ΔY = 0.294
Δθ = −0.001

Y0.6
ΔX = −0.043
ΔY = 0.596
Δθ = −0.001

R0.1
ΔX = −0.042
ΔY = −0.002
Δθ = −0.1
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Table 4. Cont.

Setting Left Panel Right Panel Result

R0.3
ΔX = −0.035
ΔY = −0.004
Δθ = −0.301

Y0.6-
R0.3

ΔX = −0.035
ΔY = 0.588
Δθ = −0.301

Although the setting of the X-axis was not verified separately, the offset of the X-axis
was also calculated simultaneously during the verification of Y and θ. Considering the
similarity of the X-axis and Y-axis, the experimental results can also illustrate the alignment
accuracy of the X-axis.

Furthermore, we collected all data in three groups listed in Table 5 and analyzed how
different offsets can affect the accuracy of our proposed method. We can observe from this
table that our alignment method can keep a stable result in pure translation or rotation.

Table 5. The impact of different offset configurations on the accuracy of the alignment algorithm
(unit: X(mm), Y(mm), θ(◦)).

Configuration X Y θ ΔX ΔY Δθ diff X diff Y diff θ

Y0.3 1 0 0.3 0 0.046 0.294 0.002 0.046 0.006 0.002
Y0.6 0 0.6 0 0.044 0.596 0.001 0.044 0.004 0.001
Y0.9 0 0.9 0 0.045 0.897 0.001 0.045 0.003 0.001

R0.1 0 0 0.1 0.043 0.002 0.101 0.043 0.002 0.001
R0.2 0 0 0.2 0.04 0.002 0.201 0.04 0.002 0.001
R0.3 0 0 0.3 0.036 0.004 0.301 0.036 0.004 0.001

Y0.3-R0.2 0 0.3 0.2 0.038 0.298 0.201 0.038 0.002 0.001
Y0.6-R0.2 0 0.6 0.2 0.042 0.591 0.2 0.042 0.009 0
Y0.6-R0.3 0 0.6 0.3 0.035 0.588 0.301 0.035 0.012 0.001

1 Different colors are used to denote the relevance of the results. For instance, the red text “Y0.3” signifies an offset
of 0.3 mm along the Y-axis, with a corresponding difference in the result of “0.006”.

3.4. Detection Results

We evaluated the effectiveness of the proposed method in bump areas acquired from
both COG and FOG samples. Figure 13 shows the results of particle detection in COG
and FOG, respectively. Bump areas were segmented according to the saved file about the
relative position of bumps to the feature mark in different types of samples such as COG
and FOG. Two major types of bumps were categorized the bar-shape and the block-shape.
The bar-shape bump is long and narrow, while the block-shape bump is short and wide
that contains relatively dense particles. The target area of the block-shaped bump is smaller
in size and the visibility of particles is weaker, thus making it more difficult to accurately
inspect the number of particles.

249



Machines 2023, 11, 49

Figure 13. The first row is a part of the bump area of the COG sample (left) and the corresponding
result (right), while the second row displays the input and output of the FOG test in the same order.

Figure 14 looks closer at bar-like bump areas. Bumps with an insufficient number of
particles would be sent to NG output based on the manufacturer’s requirement.

Figure 14. A closer view of the result of particle counts in bar-shape bump areas. The first row is the
raw image while the second row is the detection result.

We also compared our method with Lin’s [12] and Chen’s [26] method and verified
the effectiveness of our method as shown in Figure 15. Lin’s method was sensitive to slight
changes in gray value, thus causing the algorithm to detect more particles in regions where
particles overlap densely. Such a method treated the NG module as the OK module and
may produce many false positive samples, which is inappropriate in the practical industry.
Contrarily, Chen’s method recognized the number of overlapped particles more accurately.
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However, the performance of Chen’s method depended on the initialization of the cluster
center and thus may lose a number of particles on some occasions.

The detection result in 433 particle samples of bar-shape bumps and 629 samples of
block-shape bumps are shown in Table 6. Lin’s method demonstrates a slightly improved
recall rate for bar bumps due to its tendency to generate more particle candidates than are
actually present, thereby covering a larger portion of the region on samples with smaller
dimensions. Conversely, this method exhibits a significant decline in recall performance
on samples with larger dimensions, such as the block-shape bumps. Combined with the
low precision, Lin’s method shows a high over-checking rate which will allow a number of
false products to be passed and affect negatively quality control. Chen’s precision rate is
good but the number of detected particles is lower than that in other methods when the
gray-scale value of the image is weak. In contrast, our method balances the precision and
recall rate of the detection result and performs better than the aforementioned methods.

Figure 15. Examples of different detection methods on bar-shape bumps and block-shape bumps.

Table 6. The comparison of detection results of different methods.

Bump
Type

Method
Detected
Number

Right
Result

Precision Recall
Calculation
Time (ms)

Bar-shape
Lin’s 884 402 45.5% 92.8% 13.3

Chen’s 256 218 85.2% 50.3% 43.2
Ours 430 400 93% 92.4% 1.2

Block-shape
Lin’s 870 464 53.3% 73.8% 15.15

Chen’s 382 353 92.4% 56.1% 57.7
Ours 564 537 95.2% 85.4% 5.5
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4. Conclusions

In this paper, we establish an automatic inspection system to serve multiple bonding
processes such as COG and FOG in LCD module manufacturing. A 12-point calibration
method is developed to adaptively control the position and rotation of the carrier table
and to alleviate the high requirement of assembly accuracy. This method can complete the
alignment by taking images once, which calculates a homogeneous transformation matrix
with nine pairs of points and determines the center of rotation with extra three pairs of
points. In our experiments, the alignment error can be less than 0.05 mm.

This study also proposes an automatic particle detection method based on gray mor-
phology which achieves a fast and robust inspection of the number of conductive particles
trapped in bump areas of the anisotropic conductive film. Based on the observation that
the central part of conductive particles is brighter than the neighbor region in grayscale
under our DIC imaging model, we apply the gray dilation method to the whole image and
subtract dilated image from the original input, from which the center regions of particles
are stressed out. Our experiments have examined the effectiveness of this method, in which
the precision rate is 93%, while the recall rate is 92.4%. As our proposed detection method
depends on finding the difference between the central and peripheral regions of particles,
the overlap of multiple particles may intervene in this difference, thus creating an obstacle
to accurate segmentation. In the future, further research will be conducted to improve the
representation of particles and segment those overlapped particles more accurately.
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Abstract: Defect generation is a crucial method for solving data problems in industrial defect de-
tection. However, the current defect generation methods suffer from the problems of background
information loss, insufficient consideration of complex defects, and lack of accurate annotations,
which limits their application in defect segmentation tasks. To tackle these problems, we proposed
a mask-guided background-preserving defect generation method, MDGAN (mask-guided defect
generation adversarial networks). First, to preserve the normal background and provide accurate
annotations for the generated defect samples, we proposed a background replacement module (BRM),
to add real background information to the generator and guide the generator to only focus on the
generation of defect content in specified regions. Second, to guarantee the quality of the generated
complex texture defects, we proposed a double discrimination module (DDM), to assist the discrimi-
nator in measuring the realism of the input image and distinguishing whether or not the defects were
distributed at specified locations. The experimental results on metal, fabric, and plastic products
showed that MDGAN could generate diversified and high-quality defect samples, demonstrating an
improvement in detection over the traditional augmented samples. In addition, MDGAN can transfer
defects between datasets with similar defect contents, thus achieving zero-shot defect detection.

Keywords: industrial manufacturing; deep learning; data augmentation; defect generation; defect
detection

1. Introduction

Methods based on machine learning and deep learning have remarkably improved
industrial defect detection performance [1–3]. However, practical industrial scenarios
pose challenges to the current detection methods, such as data problems. Acquiring large
datasets for manufacturing applications remains a challenging proposition, due to the time
and costs involved [4]. The small number of defect samples and data imbalances can lead to
overfitting during the training of supervised deep-learning methods and poor performance
in testing [5].

Data augmentation is a very powerful method for building useful deep-learning
models and for reducing validation errors [6]. Image data augmentation mainly includes
traditional and learning-based methods. Traditional methods can increase the number of
samples, but cannot create new defect samples. In contrast, learning-based methods such
as GAN (Generative Adversarial Nets) [7], AAE (Adversarial AutoEncoders) [8], and VAE
(Variational Auto-Encoder) [9] can model the distribution of a real dataset and synthesize
new samples that are different from the original dataset, which increases both the number
and the diversity of the dataset. Based on cutting-edge work in image synthesis [10–13],
industrial image generation can be carried out, to achieve the augmentation of few-sample
datasets. Currently, diverse learning-based augmentation methods are emerging, to allevi-
ate data problems in industrial defect detection [14–20].
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However, there are still some challenges that need to be addressed in the current
learning-based defect image augmentation methods.

Insufficient retention of realistic background textures. Textures provide important
and unique information for intelligent visual detection and identification systems [5]. In
industrial defect detection, any slight change to real textures can disturb the detection
results. Researchers usually perform defect image generation based on non-defective
samples, due to their easy availability in industrial manufacturing. This requires generation
methods that preserve the real normal backgrounds to the maximum extent possible. Many
works [15–17,19] have used CycleGAN [21] to generate a defective image for an input
normal image, where normal backgrounds may be excessively falsified, since they do not
constrain the treatment of the normal background.

The independent controls of the normal backgrounds, defect shapes, and defect
textures are rarely considered. If independent control and operation of the three are
achieved, then they can be arbitrarily combined to obtain an infinite number of defective
images from a normal image. However, current effective methods such as SDGAN [15],
Defect-GAN [16], and SIGAN [17] control the three as a whole and can only obtain one
defect image from a normal image based on well-trained models, whose randomness
and diversity are insufficient. Moreover, the pixel-level annotations of the generated
defect images can be acquired if we separately process the normal backgrounds and defect
regions. Defect-GAN generates a spatial distribution map, to indicate what is modified
in the source image compared with the generated image, but it does not decouple the
backgrounds and defect regions and cannot obtain accurate binary annotations from the
spatial distribution map.

Lack of exploration of the generation of non-uniform complex structure defects with
binary annotations. There are multiple semantic regions in a non-uniform structure image,
where texture features are different and the corresponding defects are distinct. As shown
in Figure 1, there are two types of textures in a zipper image: fabric and zipper teeth,
whose defect contents are significantly disparate. In terms of such non-uniform structure
images, networks must generate conforming defects at the specified locations, to obtain
realistic synthetic results. In addition, obtaining binary annotations for the generated
complex texture defect images is also a challenging task. Shuanlong N. et al. [18] used
random seeds to construct input masks, while this is limited to simple stripe defects in
some uniform textures. Du-Ming T. et al. [19] adopted two CycleGANs to preserve normal
backgrounds and threshold segmentation to obtain binary annotations. However, this work
also only synthesized defects with uniform textures, and the overall networks contained
four generators and four discriminators, which were too complicated.

Figure 1. An example of a defect sample with non-uniform structures. The top two boxes indicate a
type of fabric defect. The bottom box indicates a type of teeth defect.

To tackle these challenges, we proposed a MDGAN (mask-guided defect generation
adversarial network) based on CGAN [22]. The MDGAN can generate realistic defects in
regions specified by the input binary mask. First, we introduce a BRM (background replace-
ment module) to extract normal backgrounds using a binary mask to replace the contents
at the corresponding positions in the feature maps. The BRM achieves the preservation of
the normal backgrounds and facilitates the separate control of the normal backgrounds and
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the shape of defects. In addition, the generated defect textures can be controlled by training
MDGAN separately for different types of defects. Second, we proposed a DDM (double
discrimination module), to extract the defect features from the whole feature map with the
guidance of binary masks and measure the authenticity of the whole and the local based
on one discriminator. In addition, we constructed a pseudo-normal background for each
defect image, to provide paired training inputs. This preprocess ensures MDGAN gener-
ates defects according to normal features in the same regions, thus enabling generation of
defects with non-uniform structures. Finally, the outputs of MDGAN and the input binary
masks were combined to construct our pixel-level annotated synthetic datasets.

In summary, the main contributions of this work are as follows.

(1) We constructed corresponding pseudo-normal backgrounds for defective images,
which solves the problem of the lack of paired training inputs in industrial defect
generation and avoids the dependence on CycleGAN.

(2) We proposed a MDGAN, to achieve independent control of the normal backgrounds,
defect shapes, and defect textures of images. The addition of BRM achieves the
preservation of normal backgrounds and enables the acquisition of binary annotations.
Our DDM focuses on the defect region and the whole image simultaneously, ensuring
the quality of the generated results.

(3) Since BRM can achieve total preservation of the normal background in the generated
defect images, our MDGAN can also achieve defect transfer between datasets with
similar defect contents.

The subsequent sections of this article are organized as follows: Section 2 proposes the
MDGAN. Section 3 introduces the related datasets used in this work. Section 4 details the
generation, ablation, comparison, and segmentation experiments. Finally, we summarize
our work in Section 5.

2. Methods

This section introduces the construction of the paired training inputs, the architectures,
and the training process of MDGAN.

2.1. Pseudo-Normal Background

Image-to-image (I2I) translation [23] is the most effective method to convert images in
the source domain into the target domain, where paired source-target images are needed in
training. Defect synthesis based on normal images is an I2I task, where the source domain
consists of normal industrial images and the defect images constitute the target domain.
However, it is almost impossible to obtain exactly corresponding normal–defective pairs
in industrial manufacturing. Many works relied on CycleGAN to avoid this problem.
Unfortunately, CycleGAN lacks randomness and cannot retain the background, as shown
in Section 1. Therefore, we construct pseudo-normal backgrounds for the defect images.
First, we select a similar normal image N for the defect image D, whose binary mask is M.
N contains areas where the defect contents in D appears. Then calibrate N to obtain Nc by
affine transformation matrix T,

Nc
i,j = T ∗ Ni,j (1)

T =

⎡⎣cosθ −sinθ Tx
sinθ cosθ Ty

0 0 1

⎤⎦ (2)

where Nc
i,j, Ni,j are points of homogeneous form in Nc and N, respectively, θ is the rotation

angle in the anticlockwise direction, and Tx and Ty are translation parameters. Affine
transformation can ensure that the area used for filling in the normal image is aligned with
the defect area. Finally, use Nc to replace the defect regions in D,

B = (D � M−) ⊕ (Nc � M) (3)
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where M− means (1–M), and �, ⊕ means element-level multiplication and addition,
respectively. Then B is used as the pseudo-normal background in the source domain to
train the MDGAN.

2.2. MDGAN

As shown in Figure 2, MDGAN consists of a generator and a discriminator. A BRM is
proposed to modulate the background in the generator using binary masks, as a way to
avoid the modification of the background and control the generated defect shapes. A DDM
is proposed, to divide the feature map into a whole feature branch and a defect feature
branch, which can guide the discriminator to focus on both the whole and the local regions.
Only a discriminator is needed to facilitate the generator to output high-quality defect
images. Overall, MDGAN is able to generate images with defects appearing in regions
specified by binary masks and preserve the normal backgrounds, combining them with
input masks to obtain defect samples with pixel-level annotations.

 
Figure 2. Architectures of MDGAN. Conv-3 means the convolution kernel size is 3 × 3, Upsample-2
means the feature map is upsampled two times. AvgPooling-k means the average pooling kernel size
is k × k, which depends on the size of d. cat means the channel-level connection of inputs.

2.2.1. Architectures

As shown in Figure 2, the generator is a UNet-like [24] architecture, whose inputs
are Gaussian noise, pseudo-normal background, and a 0-1 binary mask. The size of the
output is same as the input images. In the output image, the defective contents are at the
“1” positions specified by the mask, and the original normal backgrounds are at the “0”
positions. The discriminator adopts patchGAN [23] to process the input defect image and
binary mask, and its output indicates the probability that the input defect image annotated
by the mask is real.

Background Replacement Module (BRM). As shown in Figure 2, BRM employs a
binary mask to fuse the real background to the specific positions of the feature map. First,
the input binary mask M is average pooling down-sampled, convolved, and activated by
Sigmoid, to obtain a weight map f with values of [0, 1]. f has the same size as the feature
map d of the current layer. The input normal background B is downsampled and convolved
with 1 × 1 kernels, to obtain a background feature map B′ with the same size as f . B′ is
modulated into the generator to obtain the input of the next layer and the skip-connected F,

F = (B′ � f−) ⊕ (d � f), (4)
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Double Discrimination Module (DDM). As shown in Figure 2, DDM divides the
current feature map of the discriminator into whole image features and local defect features
for processing. First, M is processed to obtain a weight map with the same size as the feature
map, and then the weight map is used to extract the local defect information. Finally, the
extracted contents are connected with the original feature map and input into the next layer.
Thus, DDM assists the discriminator in processing both the local and global information
and ensures the realism of the generated defects. Therefore, we need two discriminators
to achieve the above tasks without DDM, which slows down the training and makes the
architectures more complex.

2.2.2. Training Objectives

First, a binary mask M; a real defect image D, which is the ground truth of the
generator; and a constructed pseudo-normal background B are given, and we sample
random noise z from the Gaussian distribution N (0, I) as code from latent space. Next,
z is mapped and reshaped to obtain xz with the same size as B. The input of the first
convolution layer of the generator is

x = xz � M ⊕ B, (5)

x, M, and B are processed by the generator to obtain the output Dr = G(M, z, B) and the
input feature map dl

r of the last BRM.
Defect region losses. First, we calculate the defect reconstruction loss of Dr and D,

Lr1 = 5 ‖ (Dr − D) � M ‖1, (6)

where ‖ ‖1 is the L1 loss. In order to improve the diversity of the generated defects, we
sample another z′ ∼ N (0, I) to obtain the new outputs D′ = G(M, z′, B) and dl

′, and
calculate the diversity loss of the defect regions,

Ldiv = − ‖ (
Dr − D′) � M ‖1. (7)

Essentially, Dr and D′ are synthetic defect images with the same background and
annotations, but different defect contents.

Normal background losses. According to the above description, we calculate the
reconstruction loss of the normal backgrounds,

Lr2 = ‖ (Dr − D)� M− ‖1 + ‖ (
D′ − D

)� M− ‖1 . (8)

In addition, when the normal background of dl (input of the last BRM) is as similar
as possible to D, the last BRM can only modulate the details of D into dl . On the contrary,
MDGAN will depend on the last BRM to substantially replace the normal background
of dl , which may lead to a large incoherence between the normal and the defect regions.
Therefore, in order to avoid a dependence on the last BRM and obtain a more coherent
transition between the defect contents and the normal background of the final output, we
calculate Lr3 to constrain the backgrounds of dl to be as similar as possible to D,

Lr3 = ‖ (dl
r − D) � M− ‖1 + ‖ (dl

′ − D) � M− ‖1, (9)

Whole image losses. To ensure the coherence of the defect and background regions after
replacement, the gradient loss [25] at the boundary between the two regions is calculated,

Lgrad = ‖ F(∇M)!0→1 � (∇D −∇Dr) ‖1+ ‖ F(∇M)!0→1 � (∇D −∇D′) ‖1, (10)

where ∇ is the gradient and F(X)!0→1 sets all the non-zero elements in X to 1.
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In order to stabilize the training process, we add the gradient penalty of WGAN-
GP [26,27] to the discriminator. We construct two hybrid samples based on the real and the
generated defect samples,

Dr
α = α1D + (1 − α1)Dr, (11)

D′
α = α2D + (1 − α2) D′, (12)

where α1 and α2 are random numbers [0, 1] and the discriminator needs to process the
two hybrid samples, which only back-propagate gradients to the discriminator Dis. The
gradient penalty loss is

Lgp = ‖ Dis(Dr
α, M) ‖2+ ‖ Dis(D′

α, M) ‖2. (13)

Then we calculate the adversarial loss, to constrain the reality of the images,

Ladv = 2 ‖ Dis(D, M) ‖2+ ‖ Dis(Dr, M)− 1 ‖2+ ‖ Dis(D′, M)− 1 ‖2. (14)

Full objective. Ultimately, we obtain the final training objective

G, Dis = min
G

max
Dis

λr

3

∑
i=1

Lri + λdLdiv + λgLgrad +Ladv + λgpLgp (15)

where λr, λd, λg, and λgp control the contribution of each loss to the whole. Based on the
trained MDGAN, inputting the normal background and the binary mask to the generator,
the output is the synthesized defect image whose pixel-level annotation is the binary mask.

3. Datasets

3.1. Training Sets

MVTec-AD [28] is a commonly used public dataset in industrial vision tasks. MVTec-
test contains multiple classes of defect images with pixel-level annotations, and MVTec-
train contains many normal images. Therefore, we employed MVTec-AD to construct the
training and testing sets of MDGAN.

In this work, experiments were conducted on four items, including the grid, zipper,
capsule, and metal nut in MVTec-AD. Figure 3 shows the training images cropped from the
original large images. It can be seen that there are multiple complex texture regions in these
items. In addition, the phone band images from the actual production line were used in
this work. We classified the phone band defects into dirty, roll, and scratch, to facilitate the
network in reducing unnecessary blending. In addition, the defect samples for subsequent
segmentation testing needed to be pre-preserved. The numbers of the relevant datasets are
shown in Table 1. The training sets for generation and segmentation were taken from the
same original images. Zipper-combined means there are multiple classes of defects in one
image, which were only used in segmentation testing. As shown in Table 1, we replaced
some long defect names with initials, to simplify the description.

3.2. Testing Sets

We employed two methods to obtain binary masks to construct the rich MDGAN test
sets. First, MVTec-AD provided many binary masks of defect samples, which characterized
the shapes of industrial defects and could be cropped as inputs for MDGAN. Second,
to generate more defects with different shapes, we acquired a large number of binary
masks based on Perlin noise [29]. Figure 4 shows the process of Perlin-noise-based mask
generation. The normal images and binary masks were cropped to obtain image pairs.
Based on the above two methods, we could obtain an arbitrary number of test sets.
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Figure 3. Non-uniform structure images in training sets. Defect Images (2562) are cropped from the
original real images. Pseudo NB (2562) are the cropped constructed pseudo-normal backgrounds.
Binary Masks (2562) are the cropped binary annotation images. In particular, the size of training
images in Capsule and phone band were 3202 and 1282, respectively.

Table 1. The number of datasets (original/cropped images). Training means the training sets of
MDGAN. EL/AUG means the number of augmented samples from MDGAN (EL) and traditional
methods (AUG). RAW and Seg-test are the real training and testing sets of segmentation, respectively.

Item Defect

Dataset Training EL/AUG RAW Seg-Test

Metal nut

scratch 18/1282 900 18/848 5/23
color 17/1108 800 17/919 5/19
bent 19/656

19/931
6/23

flip 4/19

Grid

bent 10/820 500 10/507 2/26
broken 10/775 500 10/500 2/33

glue 9/542 700 9/323 2/29
mc 9/580 800 9/200 2/21

thread 8/677 500 8/493 3/20

Zipper

broken teeth (bt) 14/771 800 14/597 5/23
fabric border (fb) 12/817 900 12/521 5/44
fabric interior (fi) 11/741 1000 11/465 5/38

rough 12/1105 600 12/814 5/14
split teeth (spt) 13/867 800 13/620 5/37

squeezed teeth (sqt) 12/658 1000 12/479 4/22
combined 16/87

Capsule

crack 23/643 700 23/459 5//12
faculty imprint (fm) 22/672 900 22/309 4/7

poke 21/518 800 21/358 4/13
scratch 23/806 600 23/509 4/19
squeeze 20/861 500 20/650 4/25

Phone band
scratch 24/496 550 24/258 5/11

roll 52/1031 550 52/924 12/27
dirty 49/497 550 49/344 12/24
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Figure 4. Example of generating a binary mask from Perlin noise. Set the values greater than 0.4 in
the Original noise map (2562) to 1 and other values to 0 to obtain a Binary mask (2562).

4. Experiments

MDGAN was used to synthesize defect images based on the above datasets. Except
for the metal nut and capsule, which involved three-channel color images, the images
consisted of single-channel grayscale images. Section 4.2 shows the generated quality,
diversity, and annotation accuracy of MDGAN. The effectiveness of BRM and DDM are
demonstrated in Section 4.3. We also compare MDGAN with the most commonly used
CycleGAN in Section 4.5, to certify the effectiveness of our methods. Then we assess the
advantages of our synthetic samples over traditional augmented results. Finally, we explore
the possibility of defect transfer using MDGAN in Section 4.6.

4.1. Implementations

To construct the pseudo-normal backgrounds, we first obtain the main area where
defects may occur in defect image D and select normal image N by thresholding, and
draw the minimum external rectangular boxes of these areas. Then we conduct affine
transformation for D and N, so that the length and width of the two boxes are parallel and
the center points are overlapped. Finally, the defect contents in D are filled by N, and the
filled image is reversely transformed to the attitude of the original D. These two affine
transformations can be simplified as Equations (1)–(3). We performed the above processes
based on the OpenCV library, where functions such as cv2.getRotationMatrix2D() and
cv2.warpAffine() were used.

MDGAN was trained for each type of defect under each item. We augmented the
training image pairs by rotation, flipping, and random cropping. The binary mask was
normalized to [−1, 1] when inputting to the MDGAN and [0, 1] when calculating losses.
The number of output channels of the 12 convolution layers of the generator from input to
output were 64, 128, 256, 256, 512, 512, 512, 256, 256, 128, and 64, respectively; those of the
discriminator were 32, 128, 256, 256, 512, and 1, respectively. The dimension of latent space
was 8, and the hyperparameters of Equation (15) were set as λr= 10, λd= 15, λg= 10, and
λgp= 10. The Adam optimizer was used with β1= 0.5, β2= 0.999 to train MDGAN, with
a batch size = 20 and learning rate = 0.0004. We trained the MDGAN for 500 iterations
on one NVIDIA GeForce RTX 3090 GPU of a sever with Intel(R) Xeon(R) Gold 622306R
CPU @ 2.90 GHz. During training, backgrounds could be retained without the last BRM in
some datasets, which could simplify the architecture and obtain a better transition between
normal backgrounds and defect regions. Therefore, we eliminated the last BRM in the
defects of the grid.

4.2. Synthetic Results

Some synthetic defect samples are shown in Figures 5 and 6. As shown in Figure 5,
MDGAN achieved defect image generation for all categories. Good synthesis results were
obtained for complex and weak defects, such as the fine-grained texture defects (zipper-fb,
zipper-fi, grid-thread, etc.), color defects (metal nut-color), metallic defects (grid-mc), and
weak defects (phone band). As seen from the Defect contents in Figure 5, the generated
defect contents were realistic and accurately distributed in the locations marked by the
mask, achieving an accurate correspondence between the synthetic defect images and
the input binary masks. In addition, MDGAN preserved the background structures in
the Grid reasonably well, despite canceling the last BRM. In summary, with the help of
BRM and DDM, MDGAN was able to generate realistic defect images, while preserving
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the original real backgrounds outside the annotations and achieved a natural transition
between generated defects and real background, so that the generated defect images were
accurately labeled by input binary masks.

 

Figure 5. Synthesis results for each item. Normal background indicates the real background image,
Mask is the corresponding binary mask, and both were input into the generator to obtain the synthetic
defect image Generated defect. Defect contents were segmented by the Mask from the Generated defect.

(a) (b) (c) 

Figure 6. Examples of one-to-many generation. NB and mask denote the normal background and the
binary mask input into MDGAN, respectively. (a) Background variation. Color denotes the generated
metal nut color defects. (b) Defect shape and texture variation. Spt, Rough, and Bt denote the three
types of zipper defects generated from the same background. (c) Defect texture variation.

Controllability of the backgrounds, defect shapes, and defect textures. We separately
processed these three aspects, to verify that MDGAN could generate various defect images
for a normal background and obtain accurate annotations. Figure 6 shows the generated
results when normal backgrounds, defect shapes, and defect textures were changed, re-
spectively. First, the defect images in Figure 6a shared the same binary mask. This shows
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that BRM added different backgrounds to the generator, to obtain multiple defect samples,
whose annotations were the same, and the defects varied with the background. Second,
Figure 6b shows the generated defect images of the zipper, with the same background NB
and five different masks. Defect images in the same row shared the same mask on the left
side. It can be seen that the BRM could replace different background regions with different
masks, which assisted MDGAN in generating multiple defects with different shapes and
contents on the same normal image. Third, Figure 6c shows multiple categories of gen-
erated defects in the grid, where the defect images shared the same normal background
(NB) and annotations (Mask), but had different defective textures. As seen from Figure 6c
and each row in Figure 6b, MDGAN could produce multiple types of defect in the same
specified region of the same normal image when the training sets were different.

In summary, based on BRM and DDM, MDGAN achieved independent control of the
background, defect shape, and defect texture, and was able to generate a huge number of
diverse and high-quality defect samples for a normal image. In reality, various defects may
appear in a normal image, and our experimental results fit actual situations. Moreover,
since MDGAN accurately controls defect shapes and preserves backgrounds using the
given binary mask, the output defect regions are precisely labeled by the mask. Thus,
our synthetic samples can be used to train segmentation models, which is beneficial for
detecting defects.

4.3. Ablation Experiments

To verify the effect of BRM on the background retention and DDM on generated quality,
we separately removed the two modules and performed ablation experiments on the above
datasets, where the remaining settings were exactly the same as in the formal experiments.

Without BRM. Figure 7 shows the comparison results of the with/without (wo) BRM
for the same pairs of test images. As can be seen, the results generated without BRM
have drastically and unreasonably modified backgrounds, while MDGAN retained the
details of the backgrounds well. In particular, substantial modifications to the original
backgrounds led to the loss of real structures in the phone band. The generated defect
contents did not appear accurately in the annotated positions without BRM, resulting in
inaccurate binary annotations.

Figure 7. Comparison of with and without BRM. Background and Mask are input normal backgrounds
and binary masks, MDGAN is the synthetic result of MDGAN. Without BRM is the synthetic result
after canceling BRM.

In order to quantify the background retention ability of BRM, we employed the
structure similarity index measure (SSIM) to evaluate the background similarity. The SSIM
value is between [0, 1], and the larger the value, the more similar the two images. Using
the same test set, and based on the with/wo BRM models, to synthesize 1000 defective
samples, the SSIM between the normal background areas of the output and the input was
calculated. The mean SSIM (mSSIM) is shown in Table 2. It can be seen that the backgrounds
generated by MDGAN were highly similar to the real backgrounds. Both the qualitative
and quantitative results showed that BRM can modulate the real backgrounds in the feature
map of the generator, which restricted the location of the generated defects, avoided the
loss of backgrounds in the training, and finally facilitated MDGAN in generating defect
samples with realistic backgrounds and accurate binary annotations.
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Table 2. Quantitative results of the ablation experiments. Bold fonts indicate better results.

Dataset
mSSIM

Dataset
mSSIM

MDGAN wo BRM MDGAN wo BRM

Capsule

crack 0.998 0.915

Zipper

fb 0.996 0.736
fm 0.998 0.888 fi 0.990 0.793

poke 0.998 0.921 rough 0.890 0.832
scratch 0.998 0.937 bt 0.932 0.849
squeeze 0.998 0.927 sqt 0.996 0.800

Grid

bent 0.975 0.917 spt 0.899 0.813

broken 0.977 0.927
Metal nut

color 0.997 0.716
glue 0.964 0.935 scratch 0.997 0.725

mc 0.977 0.913
Phone band

dirty 0.996 0.734
thread 0.972 0.902 roll 0.997 0.707

scratch 0.996 0.665

Without DDM. All DDMs were removed in the discriminator. The mask and image
were channel-level connected and input into the discriminator. To match the formal experi-
ments, the number of output channels of the first three convolutional layers was doubled.
As shown in Figure 8, the discriminator’s binding on the defect quality decreased after
removing the DDM. As shown in Figure 8a, the generated defects without DDM contained
unrealistic stripes and the zipper teeth were not smooth enough, being totally different from
the real images. In addition, as shown in Figure 8b, there were unreasonable black contents
in the generated capsule-crack without DDM, while MDGAN smoothly stripped the black
blocks and generated clear red defects on them. On capsule-fm, without DDM covered the
annotated region with only fuzzy uniform white blocks, while MDGAN generated realistic
and detailed scratches. That is, the networks could not inherit and generate the real defects
without DDM. Overall, the addition of DDM assisted the discriminator in focusing on
both on the whole image and the local defects, to improve judgment and enable MDGAN
to accurately capture the stripes and grayscale distribution of defects and generate more
realistic and higher quality images.

  
(a) (b) 

Figure 8. Comparison of with and without DDM. Real is the real defect image. MDGAN and Without
DDM are the generated defect samples with and without DDM, respectively. (a) One type of effect
without DDM. part is the enlarged defect in the red box of the defect. (b) Another effect.

4.4. Comparison with CycleGAN

CycleGAN-based methods are leading the way in defect synthesis. To verify the
advantages of MDGAN over other methods, CycleGANs were trained on the above datasets.
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To help CycleGAN retain the normal background, we added a L1 loss between the input and
output to the original losses [17]. Some of results generated by CycleGAN and MDGAN
based on the same backgrounds are shown in Figure 9. Despite the addition of the L1
loss, CycleGAN still modified the normal backgrounds, and it could convert the input
normal images into defect images for the zipper-fi, zipper-sqt, zipper-spt, and grid-broken.
Moreover, there were stretches and artifacts in the generated results of the capsule and
phone band. This indicated that CycleGAN could only convert the source image into the
most similar target image seen during the training for few-sample datasets, resulting in
either a failed generation or loss of structures in the source image. In contrary, MDGAN
generated realistic defect images for each category of input normal backgrounds and
retained the original normal textures.

Figure 9. Generated results of MDGAN and CycleGAN with L1 loss based on the same normal
backgrounds NB. MDGAN was generated from the NB and a binary mask by MDGAN, and CycleGAN
was generated from the NB by CycleGAN. Defects are indicated by red boxes.

To quantify the generation quality, 1000 samples were generated on the same testing
set based on CycleGAN and MDGAN, and the FID [30] between the generated and the
real defect datasets was calculated. The lower the FID, the closer the generated and real
features. As shown in Table 3, MDGAN obtained smaller FID than CycleGAN for most
defect types. Nevertheless, CycleGAN had a lower FID for the grid-glue, grid-bent, and
zipper-fb. In grid-glue, as shown in Figure 9, CycleGAN simply memorized training sets
and translated all test images into the most similar training images, resulting in a low FID.
In the other two items, MDGAN generated defects in the given annotated regions, and
when the mask shapes used in testing differed significantly from the real, the generated
features were a little far away from the real features, resulting in a high FID.

Table 3. FID between generated results and real images. Bold fonts indicate better results.

Dataset

Model MDGAN CycleGAN + L1

Dataset

Model MDGAN CycleGAN + L1

Capsule

squeeze 81.72 119.2

Zipper

bt 45.69 50.67
crack 51.99 111.45 rough 48.81 56.47

fm 39.99 94.96 fb 88.08 86.93
scratch 45.02 99.39 fi 54.96 59.15
poke 60.86 97.01 sqt 29.13 136.25

Grid

bent 78.84 63.90 spt 38.4 42.93

broken 75.98 112.13
Metal nut

color 69.93 95.52
glue 114.23 94.76 scratch 66.90 81.85

mc 99.39 102.92
Phone band

dirty 115.31 129.83
thread 79.74 89.63 scratch 112.54 169.62

roll 107.88 147.69
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Overall, MDGAN constructed pseudo-normal images, to efficiently acquire pairs of
inputs without relying on CycleGAN and obtained a higher quality than CycleGAN for
most items. Moreover, MDGAN imports random noise to construct latent representa-
tions for real defects; in contrast with CycleGAN, which improves both the randomness
of the generation and the diversity of results, and is thus more suitable for few-sample
synthesis. Furthermore, due to the background preservation with BRM and the constraints
on quality from DDM, MDGAN successfully generated defect images with pixel-level
annotations, while preserving the real normal backgrounds. Meanwhile, CycleGAN gen-
erated samples with only image-level annotations, which could not be used for defect
segmentation experiments.

4.5. Detection Performance

To verify the advantages of MDGAN for detection over traditional augmentation,
synthetic samples from MDGAN were added to the real segmentation training set RAW,
to construct EL; and the traditional brightness adjustment, rotation, and noise injection
were adopted to obtain the training set AUG. The number of datasets is shown in Table 1.
Two types of segmentation network, UNet and sResNet, were trained using the above
three training sets. sResNet is a UNet-like segmentation model, where the skip-connections
are removed and the convolution layers are replaced by the Res-blocks in ResNet [31].
UNet consists of six downsampling and six upsampling layers whose number of output
channels are 32, 64, 128, 256, 512, 256, 512, 256, 128, 64, 32, and 1. sResNet consists of
four downsampling layers, four res-blocks, and four upsampling layers, whose number
of output channels are 32, 64, 128, 256, 256, 256, 256, 256, 128, 64, 32, and 1. The output
of the two networks is a single-channel map with the same size as the input. We used
cross entropy loss to train the two models. The Adam optimizer was used with β1 = 0.5,
β2 = 0.999, batch size = 50, and learning rate = 0.0005 on an NVIDIA GeForce RTX 3090 GPU.
The mIoU (mean Intersection over Union) and F1 coefficient were calculated on the same
test set at 500th iterations.

The mean testing results of each item are shown in Table 4, where higher values
indicate a better detection performance. It can be seen that EL greatly improved the
detection performance in contrast to AUG and RAW. The mean results were substantially
improved in EL. Among the mean results of the various items, EL outperformed RAW and
AUG, with an mIoU improvement up to 7.3% (UNet-capsule) and F1 up to 6.2% (sResNet-
capsule). On the contrary, AUG reduced the overall detection results (zipper). Figure 10
shows a qualitative comparison of the segmentation results; the results of EL had less
over-kill and escape versus RAW and AUG and were closer to the ground truths.

Table 4. Comparison of the mean test results for the three training sets. Bold fonts indicate the
optimal IoU and F1 among the three results. R and A denote RAW and AUG, respectively.

Network UNet sResNet

Index mIoU F1 mIoU F1

Dataset R A EL R A EL R A EL R A EL

Metal
nut 0.742 0.748 0.768 0.846 0.848 0.86 0.733 0.738 0.751 0.844 0.84 0.847

Grid 0.619 0.603 0.652 0.755 0.714 0.782 0.636 0.652 0.657 0.769 0.783 0.786

Zipper 0.732 0.719 0.775 0.970 0.959 0.975 0.745 0.723 0.764 0.977 0.959 0.979

Capsule 0.548 0.571 0.621 0.692 0.713 0.748 0.472 0.483 0.561 0.618 0.627 0.689

Phone
band 0.656 0.646 0.666 0.979 0.985 0.987 0.65 0.653 0.681 0.984 0.981 0.985
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Figure 10. Comparison of UNet-based segmentation results. Test and Ground Truth denote the test
images and the corresponding ground truth (2562). RAW, AUG, and EL denote the test results
obtained by the three training sets (2562).

Overall, the inclusion of synthetic samples alleviates the data problems of class im-
balance, lack of diversity, and few samples, and improves the detection performance.
Compared with the traditional augmented samples, there were various backgrounds, de-
fect contents, and shapes of binary annotations in our synthesized datasets, which were
very different from the original training sets and could assist the networks in seeing and
remembering richer defect information during training. When testing, the EL-trained
models learned more knowledge and were more conducive to detecting unseen samples.
This demonstrated that the synthetic samples from MDGAN could be used to train the
supervised segmentation networks and that our work has practical application value.

4.6. Defect Transfer

It can be seen from the above that MDGAN achieved defect image generation with
complete retention of backgrounds. Therefore, we could try to employ the MDGAN-
trained source dataset to perform defect synthesis on a target dataset and used only the
synthetic target defect images to train models to detect real defects in the target dataset,
thus achieving defect transfer and zero-shot detection of the target dataset.

Figure 11 shows the related images and procedure of defect transfer, where the first
and second rows in the Source are from phone bands on the reverse side (phone band1)
and curved glass, respectively, and those in Target are from phone band on the front side
(phone band2) and phone cover glass, respectively. It can be seen that the Source and
Target have different structures, but their defect contents were similar. In consequence, we
trained MDGAN based on phone band1 and curved glass and tested it on phone band2
and phone cover glass. The generated results are shown in the middle parts of Figure 11.
It can be seen that, despite the differences in the backgrounds on the two sides of the
defect transfer, MDGAN still generated defects in the annotated areas (Defect contents)
and obtained defect images (GD) similar to the real ones. As shown in Res, MDGAN
only modified the annotated regions and fully retained the targeted normal backgrounds
after transfer.
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Figure 11. The first row shows the two types of Phone bands, and the second is the two types of glass.
Red boxes indicate real defects. Source is the defect image used for training MDGAN. Target means
the images to be transferred. NB is the normal background cut from Big NB. Mask is the input binary
mask. GD is the generated target defect image. Real defect is defect image of the target datasets to
be tested.

In order to verify the effect of the transferred defect samples, we only used the
transferred defect samples to train the segmentation networks and adopted the real images
as the test set. The number of datasets and the test results are shown in Table 5. It can be
seen that good results were obtained on the real test set based on segmentation models
trained only using transferred defect samples. The AUC (area under curve) was up to 0.971

(UNet) for phone band1 detection and 0.991 (sResNet) for phone cover glass detection.

Table 5. The numbers of transferred training sets and real test sets, and the test results of segmentation.

Datasets Train Test Models mIoU F1 AUC

Phone
band2

2508 186
UNet 0.464 0.622 0.971

sResNet 0.425 0.579 0.969

Phone
cover glass 1302 115

UNet 0.458 0.636 0.987
sResNet 0.439 0.619 0.991

Based on the generated samples from MDGAN trained using another dataset, we
achieved defect detection on two real industrial surface defect datasets, showing that
MDGAN could achieve defect transfer between datasets with similar defects but differ-
ent backgrounds. Hence, we could train MDGAN based on the existing source defect
datasets and then synthesize a large number of defect samples on the new target normal
backgrounds when the type of products changed. As long as the defect textures are similar,
the resource consumption for recollecting and labeling datasets can be greatly reduced by
MDGAN, which is highly valuable for intelligent manufacturing.

5. Conclusions

This paper proposes MDGAN, to tackle the problems of falsifying backgrounds, lack
of pixel-level annotations, and less attention being given to non-uniform complex structures
in the current defect synthesis methods. Guided by binary masks, MDGAN modulates the
real background into the generator using BRM and employs DDM to achieve discrimination
of both local and global information. Due to the background-preserving effect of BRM
and the quality constraint of DDM, MDGAN solves the problem of falsifying backgrounds
and enriches the diversity of datasets. Finally, defect samples with accurate pixel-level
annotations on multiple datasets with complex textures were synthesized using MDGAN.
In addition, the qualitative and quantitive results showed that MDGAN obtained a better
quality than the commonly used CycleGAN. The segmentation results demonstrated that
the synthetic samples from MDGAN greatly improved the detection performance, with an
improvement of IoU up to 7.3% and F1 up to 6.2%. Furthermore, based on the excellent
background retention capability of MDGAN, we successfully synthesized target defect
images using MDGAN trained on a source dataset and achieved the defect detection of
real target samples, based only on the synthesized samples.
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There are some aspects that need to be improved in our work. Since the binary
masks are directly given by the test sets, the feature and the diversity of the generated
defect shapes can be limited. In follow-up work, we will explore the synthesis method
of producing both defect images and annotations using networks, as a way to enrich the
defect shapes.
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Abstract: Grinding, which determines the final dimension of parts, is an important process in
manufacturing companies. In praxis, in order to avoid quality problems on the customer’s side, an
online dimension check is normally used after the grinding process to ensure the product dimensions;
however, it is always hysteretic and needs extra space and machine investment. To deal with the issue,
dimensional error prediction of the grinding process is highly needed, and does not require extra
space or machinery, as well as having better real-time performance. In this paper, a dimensional error
prediction algorithm using principal component analysis (PCA), extreme learning machine (ELM),
genetic algorithm (GA), and ensemble strategy (bagging algorithm) is designed. Specifically, PCA is
used as a pre-treatment method to extract the main relevant components, then a bagging–GA–ELM
model is constructed to predict the final product dimensional error after the grinding process, in
which extreme learning machine (ELM) is utilized as a basic framework because of its fast calculation
speed. GA, with its excellent global optimization capability, is implemented to search optimal input
weights and thresholds of ELM, enabling ELM to obtain a better prediction performance. In addition,
considering the complex environment of the industrial field, the bagging algorithm is employed to
enhance the anti-noise ability of the proposed algorithm. Finally, the proposed algorithm is verified
by a case from a bearing company.

Keywords: dimensional error prediction; grinding process; bagging–GA–ELM; robust analysis

1. Introduction

Grinding is a vital manufacturing process, which has a significant impact on a final
part’s surface quality and cost [1]. With the increasing competition in manufacturing
industries, the pursuit of higher quality and lower costs puts the focus on the grinding
process. [2–4]. In fact, the grinding process is complex and the final quality and cost are
highly related to the process parameters; therefore, many researchers study the influence of
the process parameters on quality and cost. Then, artificial intelligence (AI) techniques are
used to optimize process parameters to improve product quality and process efficiency [5,6].
In the literature [7], an improved differential evolution algorithm (DE) based on double
populations is employed to optimize the grinding operation, and, finally, the surface
roughness is effectively reduced. Mondal et al. [8] use particle swarm optimization (PSO)
to find the optimal parameters for minimizing the surface roughness of a crane-hook-pin
in the grinding process. Furthermore, in order to obtain faster convergence speed and
higher performance of models, the idea of a multi-algorithm fusion-based technique has
gained a lot of attention in recent years [9–12]. Huang et al. [13] utilize the Taguchi method
and grey relational analysis (GRA) to obtain the optimal parameters in the cylindrical
grinding process, which successfully solves the problem of minimizing surface roughness
and maximizing material removal rate.
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On the other side, in practice, a quality check is usually used to avoid quality prob-
lems on the customer’s side. Currently, the majority of quality checking operates offline,
which increases the production throughput time and furthers quality risks. In addition, it
also makes the process difficult to trace. Therefore, to reduce grinding cost and increase
process control ability, many researchers focus on online quality checks and online quality
predictions based on data collected in real-time [14–16].

However, an online quality check requires enterprises to provide extra space and
investment. Moreover, the online quality check is always hysteretic; when a quality problem
is detected, some further products which are already produced and in the transmission
facility (conveyor, Truss manipulator), are already affected. Compared to online quality
checks, online quality prediction does not need further space or equipment, and it also has
the advantage of instantaneity. Once the quality problem is predicted based on real-time
collected data and a prediction algorithm, the process can be stopped to avoid further loss.
Therefore, online quality prediction has become a hot topic. Chen et al. [17] propose a
novel acoustic signal-based detection method by combining a random forest algorithm (RF)
and multiple linear regression model (MLR); at the end, the online prediction problem of
tool wear in the grinding process is successfully solved. Li et al. [18] adopt a multi-scale
attention convolutional neural network (CNN) to predict the final machining quality of the
workpiece. It finally shows the high accuracy of online prediction of the material removal
state in experiments.

Recently, researchers also tend to use neural networks with a more complex structure
to obtain better prediction accuracy [19,20]. Guo et al. [21] present a novel online prediction
system of surface roughness in the grinding process by combining the long short-term
memory (LSTM) network with a hybrid feature selection approach; ultimately, it shows
good prediction performance. Yin et al. [22] propose a reliable prediction model based
on a genetic algorithm (GA) and deep neural network (DNN), and prove its feasibility in
the prediction of the roughness and subsurface material damage in the real-time grinding
process. However, it also should be noticed that, although the complex neuron network
increases the accuracy of prediction, it also makes a significant reduction in calculation
efficiency, which has difficulty meeting the requirements of high calculation efficiency in
online quality prediction.

Extreme learning machine (ELM) [23] has received more attention for high compu-
tational speed and global approximation capability [24]. However, during the prediction
process of ELM, some network parameters are determined randomly, which causes the
fluctuation of prediction performance and also will lead to an accuracy reduction of prod-
uct dimensional error prediction. Thus, the fusion of ELM and a heuristic algorithm is
needed in order to obtain better prediction performance [25–27]. Liu et al. [28] propose a
multi-kernels fault diagnostic model based on ELM and PSO; the suggested fault diagnostic
model is tested by well-known rolling bearing data set and achieves successful identifica-
tion of bearing faults. Sun et al. [29] obtain a prediction model of the extrusion grinding
process by combining the ELM model with GA (GA–ELM), based on the comparison results
of experiments, the GA–ELM model keeps the actual data prediction error within ±4%.
However, compared to GA, although the reason for the faster convergence speed of PSO
is that the best particles have a significant influence on other particles, it also causes the
problem of poor population diversity, which limits the PSO to obtain the global optimum.
Therefore, GA has a better ability to acheive a globally optimal solution [30–33].

Moreover, as is well known, in a real industrial environment, the random interference
and noise from various processes as well as environments have a non-negligible impact on
the online prediction results. For ensuring the reliability of prediction results, it is necessary
to improve the robustness of the prediction approach. Currently, the ensemble learning
algorithms represented by bagging and boosting have been widely verified because of their
ability to improve the accuracy and stability of prediction [34], Gao et al. [35] propose a
novel material removal model for belt grinding with the integration of a boosting algorithm,
which shows an effective improvement in predicting the material removal despite the
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complicated grinding environment. Bustillo et al. [36] verify the effectiveness of the bagging
algorithm in the case of tool-life prediction in the turning process. The experiments show
that the technique of bagging significantly improves the robustness of the prediction
model. Furthermore, it should be noted that the bagging algorithm has the characteristics
of simple operation, strong interpretability, and excellent performance. In general, the
bagging algorithm has more obvious benefits than the boosting algorithm in preventing
the overfitting problem and improving the noise immunity of the model [37,38]. Thus, the
bagging algorithm is employed to improve the robustness of the proposed algorithm.

As mentioned above, considering the complex environment and processing property,
to predict the grinding dimensional error, it is necessary to introduce an algorithm with
excellent global search ability, fast calculation speed, high prediction accuracy, and good
robustness. Therefore, a dimensional error prediction algorithm which combines the
advantages of ELM, GA, and bagging algorithm, is proposed.

2. Materials and Methods

In this section, the theoretical background of the proposed algorithm is introduced first,
which consists of PCA, GA, ELM, and bagging algorithm. Then, the proposed algorithm is
explained in detail.

2.1. Principal Component Analysis

In order to improve the accuracy and robustness of the proposed algorithm, the feature
parameters which are related to the final product dimension should be regarded as inputs
of the proposed algorithm. Considering that excessive feature parameters will lead to
a calculation efficiency reduction as well as the overlap of information, it is necessary
to further extract the main relevant components from feature parameters to simplify the
inputs of the proposed algorithm.

Principal component analysis (PCA) [39] is a technique used for reducing the di-
mension of data, which is widely employed in the analysis of the machining process
for removing redundant variables and extracting the main relevant components. The
calculation process of PCA is shown in Figure 1 and defined as follows:

Original data (X)

Calculate the centering matrix and 
covariance matrix

Calculate the eigenvalues and 
eigenvectors

SVD

Calculate orthogonal matrix (W)

Select top K PCs 

Calculate projection matrix (Y):
 =  × X  

Figure 1. The flowchart of PCA.
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Step 1. Suppose original data, named X, consists of N samples with D dimensional
features; the centering matrix of original data is given by Equation (1) and the covariance
matrix can be further calculated by Equation (2).

Step 2. Via singular value decomposition (SVD), the principal components (PCs)
consist of eigenvalues, and eigenvectors are computed from the eigen-decomposition
operation of the covariance matrix, which is shown in Equation (3).

Step 3. K (lower than D) eigenvectors are usually picked out to form the orthogonal
matrix (W). For this aim, the conventional methodology is used to sort the eigenvalues
from maximum to minimum and to select the top K PCs. Finally, the projection matrix Y
can be calculated as Y = WT × X.

Xc = ∑N
i=1

(
xi − X

)
/N (1)

C = Xc × Xc
T (2)

C = V × E × VT (3)

where X and Xc are the mean vector and centering matrix of original data, respectively, C
denotes the covariance matrix, V and E represent the eigenvalue matrix and eigenvector
matrix, respectively.

2.2. Extreme Learning Machine

Due to the characteristics of simple structure, fast calculation speed, and excellent
ability in the field of prediction, an extreme learning machine (ELM) [23] is taken as the
basic framework of the proposed algorithm.

ELM is a new type of single hidden layer feed-forward neural network (SLFN). The
neural network structure of ELM has only three network layers namely the input layer, the
hidden layer, and the output layers. The schematic diagram of ELM is shown in Figure 2,
and the ELM model can be established as follows:

Figure 2. The schematic diagram of ELM.

Firstly, the network parameters of the ELM model should be determined. According to
Figure 2, the network parameters mainly consist of the input weights (W), output weights
(β) and the threshold of the hidden neuron (b), as shown in Equation (4). The determination
of network parameters is introduced by two steps:

Step 1. The input weights and the threshold of the hidden neuron are given randomly;
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Step 2. The output weights are obtained by solving the least squares solution of the
ELM, which is shown in Equations (5)–(7).

Secondly, based on the determined network parameters, the prediction results can be
obtained by Equation (8).

W =

⎡⎢⎣w11 · · · w1p
...

. . .
...

wd1 · · · wdp

⎤⎥⎦, β =

⎡⎢⎣β11 · · · β1q
...

. . .
...

βp1 · · · βpq

⎤⎥⎦, b =
[
b1 · · · bp

]T (4)

X =
[
x1 · · · xd

]T , Y =
[
y1 · · · yq

]T (5)

O = g
(

XTW + bT
)

(6)

β =
(

OTO
)−1

OTYT (7)

Ypre = g
(

XTW + bT
)

β (8)

where wij denotes the connection weight of i-th neuron of the input layer and the j-th neuron
of the hidden layer, β jm denotes the connection weight of j-th neuron of the hidden layer
and the m-th neuron of the output layer, bk denotes the threshold of k-th hidden neuron, X
and Y are the input and output data of ELM model, W, b, β, g(·), and O represent input
weight matrix, threshold matrix, output weight matrix, activation function and output
matrix of hidden layer, respectively.

2.3. Genetic Algorithm

Because some network parameters (input weights and threshold) of ELM are deter-
mined randomly, this leads to the fluctuation of prediction performance. In order to achieve
stable prediction performance and high prediction accuracy, it is necessary to combine the
ELM model with another algorithm with excellent global optimization ability.

Based on the selection operation, crossover operation, and mutation operation, the
genetic algorithm (GA) [40] can keep the population diversity effectively to avoid the local
optimal solution, so that it has a global optimization capability [27,41]. Thus, GA is employed
to optimize the ELM by globally searching the optimal value of input weights as well as a
threshold in this research, and the flow of GA is shown in Figure 3 and defined as follows:

Step 1. The parameters of GA are determined at first, which consists of the chromosome
number in the population, the maximum generation, crossover rate, and mutation rate.

Step 2. Then, the variables of non-linear problems are encoded as the chromosome for
obtaining the primary population.

Step 3. Subsequently, the fitness value of each chromosome will be calculated as an
evaluation method. By simulating the survival of the fittest in the biological evolution
process, the chromosomes with higher fitness value have more possibility to be selected into
the next generation and the others will be dropped. The formula is shown in Equation (9).

Step 4. In addition, so as to increase the diversity of the population, crossover operation
and mutation operation are necessary. In addition, it is essential to increase the diversity of
the population, crossover operation, and mutation operation. The former will randomly
select several pairs of chromosomes for crossover based on the crossover rate, which is
shown in Equation (10). Furthermore, as shown in Equations (11) and (12), the latter will
make the genes of each chromosome mutate by the mutation rate.

Step 5. Finally, repeat step 3 and step 4 until meeting the termination condition.
The chromosome with the highest fitness value will be regarded as the best solution to
non-linear problems and decoded as the value of related parameters.

Pi = fi/ ∑M
j=1 f j (9)
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Zt+1
1 = ϕ × Zt

1 + (1 − ϕ)× Zt
2, Zt+1

2 = Zt
1 + ϕ × (

Zt
1 + Zt

2
)

(10)

Δ(t, z) = z × θ × (1 − t/T)b (11)

zt+1 =

{
zt + Δ

(
t,
(
1 − zt)), θ > 0.5

zt − Δ
(
t,
(
zt + 1

))
, θ ≤ 0.5

(12)

where fi and Pi denote the fitness value and selection probability of i-th chromosome,
respectively, Zt

1 and Zt
2 represent the pair of chromosomes in t-th generation, ϕ and θ are

random values between 0 and 1, T is the value of the maximum generation, zt denotes a
gene in t-th generation.

Determine the parameters of GA

Initialize the first chromosome 
population

Use selection, cross, mutation operation to 
obtain new chromosome population

Calculate the fitness of each 
chromosome

Select the chromosome with best fitness 
value as result

Achieve the maximum
of  generation?

Y

N

 

Figure 3. The flowchart of GA.

2.4. Bagging Algorithm

Since the various environmental noise is inevitable and it will greatly influence the
final prediction result, therefore, the anti-interference ability of the proposed algorithm
needs to be focused. The bagging algorithm [42] is a widely used ensemble strategy. By
constructing several base learners and combining the outputs of base learners to obtain a
comprehensive evaluation, the bagging algorithm has a powerful ability to solve overfitting
problems with the characteristics of high variance. Thus, the bagging algorithm will be
utilized as the further optimization algorithm to prevent overfitting problems as well as
improve the generalization and robustness of the prediction process.

The mechanism of the bagging algorithm is shown in Figure 4 and illustrated as follows:
Step 1. The bootstrap sampling method is used to obtain several training subsets from

the training set, which adopts the strategy of random sampling with replacement.
Step 2. Then, each base learner will be trained by the corresponding training subsets.
Step 3. The multiple prediction results will be generated by base learners and combined

to form an aggregated output.
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Figure 4. The mechanism of bagging algorithm.

2.5. Proposed Dimensional Error Prediction Algorithm

In order to solve the problem of dimension prediction in the grinding process, a
dimensional error prediction approach with the advantages of fast calculation speed, high
accuracy, and strong robustness is proposed.

The main idea of the proposed algorithm can be divided into two parts: the raw data
is pre-treated at first to remove the redundant information as well as noise. Next, the
bagging–GA–ELM algorithm will rapidly learn the complex mapping between parameters
and dimensional error to obtain excellent prediction performance, in which the ELM model
is taken as a basic framework at first, then it is optimized by the GA to obtain the optimal
network parameters. Finally, the bagging algorithm is utilized as further optimization to
improve the robustness of ELM model.

The block diagram of proposed algorithm is shown in Figure 5 and described as follows:
Firstly, for obtaining the bagging–GA–ELM model with higher accuracy and robust-

ness, the raw data should be pretreated, which contains three aspects:

1. In the grinding process, some process parameters have a significant impact on the
final product dimension, and it also has an obvious influence on the final prediction
performance of bagging–GA–ELM [43,44]. Therefore, relevant parameters which
are chosen by processing property, previous experiments, and relevant theories, are
selected as feature parameters, such as the grinding power of the fine grinding process,
the grinding power of the spark out process, etc.

2. Then, normalization is used to eliminate the difference of dimension among different
parameters, and PCA is used to extract the main-relevant components from feature
parameters. Both of them can improve the calculation speed of the bagging–GA–ELM
model. Especially, the negative noise can be avoided by using PCA.

3. At last, the training set is divided into different training subsets by the strategy of
random sampling with replacement, which aims to provide the foundation for the
subsequent ensemble learning optimization.

Secondly, the bagging–GA–ELM is proposed to predict dimensional error as well
as to avoid the scrap with a dimension problem flowing to the customer. The proposed
bagging–GA–ELM model consists of the following three parts:

1. ELM is used as a basic framework to predict dimensional error because of its fast
calculation speed and excellent ability in the field of industrial prediction. Although
ELM just uses the single hidden layer feed-forward network structure, it can also
achieve good prediction performance with high accuracy by increasing the width of
the network (the number of hidden layer neurons) [45,46]. In addition, compared
with other complex neural networks, especially deep neural networks, the design of
a single hidden layer greatly reduces the size of network parameters, which makes
ELM obtain extremely high calculation efficiency. Hence, the ELM model is selected
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in this research to learn the nonlinear relationship between selected features and the
dimensional error;

2. The optimization of ELM with GA: the traditional ELM model is characterized by
short training time, high execution efficiency, and strong generalization ability. How-
ever, because some network parameters (input weights and threshold) of ELM are
determined randomly, this results in the fluctuation problem of prediction perfor-
mance. Therefore, the GA which has global optimization capability, is combined
with ELM to search the optimal network parameters, and the optimization detail is
delineated as follows:

Step 1. The encoding process of chromosomes: each network parameter (input weight
and threshold) will be encoded as a gene and aligned in a row, namely chromosomes. Then,
based on the random determination of network parameters, different values of parameters
generate different chromosomes until meeting the size of the population.

Step 2. Evaluation of chromosomes: via loading network parameters carried by the
chromosome into the GA–ELM part, the prediction accuracy of the training set is used to
calculate the fitness value of the chromosome. The formulas are shown in Equation (13).

Step 3. The decoding process of chromosomes: based on the optimization of the GA
part, the chromosome with the best fitness value will be decoded into network parameters
according to the reverse operation of the encoding process. Then, in accordance with
the training set, the output weights will be further decided by solving the least squares
solution of the ELM part. Finally, the prediction function of the GA–ELM part is shown in
Equation (14).

fi = exp
(
−

√
∑N

k=1(yk − ŷk)/N
)

(13)

Ypre = βT g
(

WTX + b
)

(14)

where fi denotes the fitness value of i-th chromosome, yk and ŷk represent the observed
value and predicted value of k-th sample, N denotes the sample number, W, b, β and
g(·) represent input weight matrix, threshold matrix, output weight matrix and activation
function of ELM part, respectively, X and Ypre are matrices of parameters and prediction
values of dimensional error, respectively.

3. The improvement of prediction robustness by bagging algorithm: due to the unavoid-
able environmental noise in the real grinding process, which will greatly influence the
final prediction result, it is important to ensure the robustness of the proposed algo-
rithm. Since the bagging algorithm has the characteristics of simple operation, strong
interpretability, and excellent performance, and it also has significant advantages in
preventing the overfitting problem and improving the anti-noise ability of the model,
thus, the bagging algorithm is employed to improve the robustness of the proposed
algorithm. Based on the bootstrap sampling method, the bagging–GA–ELM model
is formed by the base learners trained from different training sets, and the output of
bagging–GA–ELM is obtained by averaging the outputs of base learners.

Finally, the bagging–GA–ELM will be obtained and used in the prediction of dimen-
sional error with high accuracy and strong robustness.

3. Results

For proving the feasibility and effectiveness of the proposed algorithm, a case of a
heavy cross-axis centerless grinding process in a bearing company in Hangzhou, Zhejiang
Province, China, is used to verify the proposed algorithm. The raw data was acquired
from a high precision centerless grinder (M1083A), meanwhile, the grinding power was
obtained directly by a process monitoring tool which contained the power sensor (IMC,
IGTech, Shenzhen, China) installed in the grinding machine.

280



Machines 2023, 11, 32

In this section, the background of experiments is introduced at first, subsequently,
the parameters optimization of the proposed algorithm is discussed. Eventually, the
dimensional error prediction of the grinding process is explained in detail.

Raw data Determine the parameters of 
GA

Use selection, cross, mutation 
operation to obtain new 
chromosome population

Select feature 
parameters

Normalization

Extract the relevant 
features by PCA

Determine the topological 
structure of ELM

Initialize the input weights and 
bias as well as encode it as the 
first chromosome population 

Calculate corresponding 
output weights and evaluate 

the accuracy of ELM

Regard the ELM optimized by 
GA as a base learner

Achieve the maximum
of  generation?

Decode chromosome into 
corresponding input weights 
and bias as well as load them 

into ELM  

Decode the chromosome with 
best fitness value into optimal 
input weights and bias, then 

calculate optimal output 
weights 

The number of base 
learner is enough?

Outputs of base learners will be 
averaged to get final prediction 

result 

Obtain the Bagging-GA-ELM 
model

Predict the dimension error by 
Bagging-GA-ELM model

NoYes

Yes
No

Data pretreatment ELM part GA part

Ensemble learning part

 

Figure 5. The block diagram of the proposed dimensional error prediction algorithm.

3.1. Background of Experiments
3.1.1. Feature Selection and Sample division

The chosen case is from a centerless grinding process which produces a heavy cross
axis; the product drawing is shown in Figure 6. In addition, the grinding machine is shown
in Figure 7.

It can be observed from Figure 6 that the dimension tolerance of the products is
[−0.025, 0]. In addition, according to Figure 6, two diagonal axes are ground at the same
time in the grinding process, so that two-dimensional errors (dimensional error of diameter
I and dimensional error of diameter II) should be predicted together.

Furthermore, from previous experiments and arguments, the grinding force has a
strong influence on the elastic deformation of the product during grinding, hence it is the
key influencing factor for dimensional errors. Since grinding force is difficult to be detected
and grinding power has a high correlation with grinding force, thus the grinding power
is regarded as the main process feature to be studied. Moreover, considering that the fine
grinding process and the spark out process have different effects on the final dimension
of the product, therefore, after the experimental verification, the grinding power of the
above process and its derived variables are selected as important input variables of the
proposed algorithm. In addition, in view of the inconsistency of the workpiece, in this case,
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the 1–20th points of grinding power and other relevant derived variables (peak value of
grinding power, etc.) are also selected as input variables.

 

Figure 6. Drawing of heavy cross axis.

 

Figure 7. The picture of the grinding machine and product.

Finally, the input variables of the proposed algorithm are shown as follows:

1. The grinding power for the fine grinding process and the variables derived from it
(average value, area of the power curve, slope, and variance), as recorded in Table 1.

2. The grinding power of spark out process and its derived variables (average value, area
of power curve, slope, variance, peak value, mode value, median value, skewness,
kurtosis, minimum value, end value, the ratio between the end power of spark out
process and average power of fine grinding process as well as the ratio between end
power of spark out process and peak of grinding power), as shown in Table 2.

3. Other relevant derived variables of grinding power (peak value, the sum value of
1–20th points, the peak of first twenty points, the variance of first twenty points, the
sum value of 40–128th points), as recorded in Table 3.

Moreover, the raw datasets are randomly separated into 60% for the training set, 20%
for the validation set, and 20% testing set, in which the training set and validation set are
used in the training process of the bagging–GA–ELM model, the training set is used to
determine the output weights of ELM model and the validation set is used to evaluate the
fitness value of each chromosome in the optimization process of GA. Then a testing set will
be used to evaluate the performance of the bagging–GA–ELM model.
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Table 1. The grinding power of fine grinding process and its derived variables.

Feature Parameter Max Min Mean

average value 6091.2 4151.9 4694.5
area of power curve 97,482.5 69,439.5 75,425.7

slope 1.5 −85.1 −17.7
variance 540.1 22.2 121.1

Table 2. The grinding power of spark out process and its derived variables.

Feature Parameter Max Min Mean

average value 3747.2 1912.7 2817.4
area of power curve 108,518.5 55,368.5 81,432.0

slope −55.7 −120.0 −84.8
variance 1188.8 509.9 853.8

peak value 5709.0 3006.0 4434.9
mode value 5295.0 1123.0 2701.9

median value 3616.0 1877.5 2590.7
skewness 1.0 −0.1 0.5
kurtosis 2.9 1.3 2.0

minimum value 2232.0 1015.0 1746.1
end value 2297.0 1061.7 1793.4

the ratio between the end power of spark out process
and average power of fine grinding process 0.46 0.24 0.38

the ratio between end power of spark out process and
peak of grinding power 0.45 0.21 0.36

Table 3. Other relevant derived variables of grinding power.

Feature Parameter Max Min Mean

peak value 6696.0 4608.0 4975.1
sum of first twenty points 54,432.0 20,082.0 32,668.5
peak of first twenty points 3534.0 1054.0 1909.1

variance of first twenty points 716.6 7.9 192.2
sum of values from 40th to 128th points 457,541.0 280,200.0 348,018.6

3.1.2. Experiment Setup and Evaluation Indicator

The analysis of raw data acquired from the grinding process and all prediction ex-
periments of dimensional error run in the Python 3.8 environment on a 3.20 GHz PC with
processor i5-11320H and 16 GB RAM. Since the effect of randomness on the experiment
results, all experiments in this research are run repeatedly three times and then averaged to
obtain the final result.

In addition, the true positive ratio (TPR), false positive ratio (FPR), and corrected
mean absolute percentage error (CMAPE) are used as evaluation indicators of prediction
performance, the formulas of which are formed as Equations (15)–(17). Among evaluation
indicators, TPR, as well as FPR, are used to evaluate the ability to identify quality problems.
In addition, it is worth noticing that the traditional MAPE uses the observed value as
the denominator. However, in this case, partially observed values of dimensional error
are close to 0 mm, which will make the value of MAPE trend to infinity and make the
performance of the prediction model unable to be evaluated accurately. Thus, CMAPE
is designed in this case as the corrected value of MAPE, in which the value of tolerance
(0.025 mm) will be used as the denominator.

According to Equation (17), if the predicted value deviated significantly from the
observed value, the value of CMAPE will become large. On the contrary, when the
difference between the predicted value and observed value is small, the value of CMAPE
will be close to 0.

TPR = 100% × TP/(TP + FN) (15)
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FPR = 100% × FP/(FP + TN) (16)

CMAPE = 100% × ∑n
i=1

∣∣ypre,i − yobs,i
∣∣/0.025 (17)

where TP denotes the number of positive samples predicted as positive, FN denotes the
number of positive samples predicted as negative, FP denotes the number of negative
samples predicted as positive, TN denotes the number of negative samples predicted
as negative, n denotes sample size, ypre,i and yobs,i represent the predicted value and the
observed value of ith sample, respectively.

3.2. Parameters Optimization of Proposed Algorithm

It is considered that the different parameters of the proposed algorithm have an
essential influence on the prediction performance of the dimensional error. Thus, the
determination of main parameters (the main-relevant component number of PCA, the
neurons number of hidden layer, and the number of the base learner) are discussed in detail
in this section.

3.2.1. The Main Relevant Component Number of PCA

Adopting PCA in the pretreatment of data can extract main relevant components from
feature parameters and remove negative noise, but it needs to be noted that excessive main
relevant components can deteriorate the elimination effect of noise, while too few main
relevant components lead to the loss of effective information. Therefore, the main relevant
component number of PCA is analyzed and the performance ranking of different main
relevant component numbers from 1 to 22 is shown in detail in Figure 8.

Figure 8. The performance of the main relevant component number on the testing set.

According to Figure 8, as the main relevant component number increases from 1 to 5, it is
clear that the CMAPE on the testing set decreases significantly. Then, the optimal CMAPE
is obtained when the main relevant component number is 5. With further increase of main
relevant component number, the dimensional error of both diameter I and diameter II
start to increase gradually, which means that the residual noise results in a reduction of
generalization ability. Hence, the top five main relevant components are regarded as the
final features extracted from data by PCA.

3.2.2. The Neurons Number of Hidden Layer and Parameters of GA

As a variant of ANN, the ability of ELM to deal with non-linear prediction problems
mainly depends on the interconnection of neurons as well as the non-linear transformation
of the hidden layer. Thus, the number of neurons in the hidden layer has high relation with
the prediction accuracy of the proposed algorithm.
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Obviously, the complex association between process parameters and dimensional
error is difficult to be learned effectively by the prediction model with few hidden neurons.
However, because of the limited information of raw data, too many hidden neurons will
make the network parameters (input weights and thresholds) insufficiently trained, which
usually results in overfitting problems.

In order to obtain the optimal number of hidden neurons, the prediction performance
of the proposed algorithm with different number of hidden neurons are compared by
experiments. The result of experiments is shown in Figure 9.

Figure 9. The performance of hidden neuron number on the testing set.

As shown in Figure 9, with the increase of neurons from 20 to 150, the CMAPE of
testing set will decline at first. On the contrary, when the number of hidden neurons is
more than 150, the increasing neurons start to make the dimensional error fluctuate and
increase, which indicates that the prediction model has a symptom of overfitting. As a
result, the optimum of neuron number in the hidden layer is 150.

In addition, the genetic algorithm (GA) which has global optimization capability is
combined with ELM to search the optimal network parameters, in which the population
size and max generation of GA will be discussed in Figure 10.

Figure 10. The effects of parameters of GA. (a) The effects of population size, (b) The effects of
generation number.

According to Figure 10a, when the value of population size increases from 20 to 40,
the CMAPE on the testing set decreases significantly; it is owing to that the increase in
population size improves the diversity of chromosomes and the optimization effects of GA.
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However, with a further increase in population size, the curve tendency of CMAPE starts
to slow down obviously. Thus, the optimal population size is set as 40. Further, in the view
of Figure 10b, when the number of generations increases from 0 to 100, the fitness value
increases significantly. However, when the number of generations is larger than 100, the
further increase of generation number makes it difficult to obtain an effective improvement
of fitness value. Thus, the optimal max generation is set as 100.

Furthermore, the genetic algorithm has been widely used to optimize parameters in
the industrial field. Many experiments show that the crossover rate is usually larger than
0.9 to ensure the diversity of the population and the mutation rate is advised to be set lower
than 0.05 [47]. Thus, the crossover rate and mutation rate in the evolution of chromosomes
are set as 0.95 and 0.05, respectively.

Then, the comparisons between the ELM model and the ELM model optimized with
GA (GA-ELM) are shown in Table 4. Compared to the CMAPE of the ELM model, it can
be observed that the CMAPE of the GA-ELM model achieves a significant reduction (the
reduction rate of CMAPE in diameter I and diameter II are 41.73% and 54.58%, respectively),
which shows the significant contribution of GA in accuracy improvement of dimensional
error prediction.

Table 4. The comparison between ELM model and GA–ELM model.

Model
CMAPE of Dimensional Error on Testing Set (%)

Diameter I Diameter II

ELM 7.74 10.68
GA–ELM 4.51 4.85

3.2.3. The Number of Base Learners

In the proposed algorithm, the bagging algorithm is used to avoid the impact of noise
in the real-time collected data, in which the GA–ELM model is used as the base learner.
Then, various base learners are trained depending on different samples. After that, the
outputs of these base learners are averaged to reduce the variance of the prediction results.

Since excessive base learners not only increase the time-consuming nature of the
calculation process and the waste of computing resources but also have few contributions
to the improvement of prediction performance, the optimal number of base learners should
be determined carefully.

In this subsection, the influence of different base learner numbers on the prediction
performance is studied, as shown in Figure 11.

Figure 11. The prediction performance on the different number of base learners.
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It can be seen from Figure 11, that when the number of base learners increases from
1 to 25, the value of CMAPE declines significantly. However, when the number of base
learners exceeds 25, the curve tendency of CMAPE starts to slow down obviously, which
means that further increase of the base learner number makes it difficult to obtain effective
accuracy improvement. Finally, the optimal number of base learners is set as 25.

Furthermore, the robustness of bagging–GA–ELM needs to be investigated because
of the high complexity and strong interference in the industrial environments. In order to
simulate the noise of real industrial environments, white Gaussian noise is added to the
raw data. The intensity of white Gaussian noise is estimated by the signal-to-noise ratio
(SNR), as formed in Equations (18) and (19).

To evaluate the robustness of the proposed algorithm, the prediction accuracy of the
bagging–GA–ELM model and GA–ELM model are analyzed under various white Gaussian
noise (SNR ranging from 1 dB to 10 dB); results are shown in Figure 12.

SNR = 10log10(Pr/Pn) (18)

Pr = ∑n
i=1 Ar,i/n, Pn = ∑n

i=1 Anoise,i/n (19)

where n denotes sample size, Pr and Pn denote the signal power of raw data and noise,
respectively, Ar,i and Anoise,i represent the i-th amplitude value of raw data and noise,
respectively.

Figure 12. The performance of prediction models under different background noise. (a) Dimensional
error of diameter I, (b) Dimensional error of diameter II.

It is clear from Figure 12, with the reduction of SNR, the interference of noise becomes
obvious gradually and makes the CMAPE of both models start to increase. However, in
comparison with the GA–ELM model, the CMAPE of bagging–GA–ELM is much lower
than that of the GA–ELM model, which obviously shows the contribution of the bagging
algorithm in the improvement of anti-interference ability.

3.2.4. The Structure of Proposed Algorithm

Based on the above discussions, the structure of the proposed algorithm has been
determined as follows:

The raw data acquired from the grinding process is a matrix of N × 22, which means
that there are N samples and each sample has 22 feature parameters. Then, the matrix will
be normalized at first and the PCA is used to transform 22 feature parameters into five main
relevant components to remove the redundant information as well as noise. Next step, the
five main relevant components will be regarded as the inputs (N × 5) of the ELM model.
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The ELM model has three layers (input layer, hidden layer, and output layer), in which
the input layer has 5 neurons, the hidden layer has 150 neurons and the output layer has
2 neurons. Thus, the output of the proposed algorithm is a matrix of N × 2, which means that
there are N samples and each sample has two prediction results (diameter I and diameter II).

3.3. The Dimensional Error Prediction in Grinding Process

In this section, the performance of bagging–GA–ELM is further discussed. Firstly,
the bagging–GA–ELM will be compared with other prediction models (KSVM and ANN)
to analyze its accuracy and calculation speed. Next, the proposed algorithm is applied
to analyze the raw data acquired from the grinding process and shows the results of
dimensional error prediction.

3.3.1. Comparisons of Prediction Models

Since KSVM and ANN are widely used in the field of industrial analysis, which are
regarded to have characteristics of high accuracy and strong universality by practice. So as
to evaluate the dimensional error prediction performance of the proposed algorithm in the
grinding process, the above models are used to compare to the bagging–GA–ELM model,
and the parameters of these models are recorded in Table 5. In addition, the comparisons
among different prediction models are shown in Table 6.

Table 5. The parameters of different prediction models.

Model Parameters Value

KSVM
Kernel Gaussian

Penalty coefficient 1

ANN
Hidden layer 5

Hidden neurons 25, 50, 150, 50, 25

Bagging–GA–ELM
Hidden neurons 150
Max generation 100

Number of base learners 25

Table 6. The comparison among different prediction models.

Model
CMAPE of Dimensional Error on Testing Set (%)

Diameter I Diameter II

KSVM 12.03 11.54
ANN 5.78 6.33

Bagging–GA–ELM 3.20 3.01

According to Table 6, it is clear that the CMAPE of KSVM is higher than other models,
which is related to the complexity of dimensional error prediction as well as the ability to deal
with the non-linear problem. Moreover, it can be further found that the bagging–GA–ELM
model achieves the optimal performance in prediction (the CMAPE of dimensional errors on
the testing set are 3.20% for diameter I and 3.01% for diameter II, respectively).

3.3.2. Prediction Results Based on Proposed Algorithm

Based on the proposed algorithm, the dimensional error of products will be predicted
during the grinding process. Once the predicted dimensional error exceeds the dimen-
sion tolerance, the process will be stopped and the alarm will be generated and relative
information will be sent to operators to prevent a further quality problem. Thus, although
the accuracy and robustness of the proposed algorithm have been verified in the above
discussions, the ability of the proposed algorithm to identify the quality problem is further
to be evaluated.
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Considering that the difference between the number of products with a quality prob-
lem (namely positive samples) and the number of products without a quality problem
(namely negative samples) is usually significant, it is necessary to investigate the identifica-
tion rate of positive samples and negative samples, respectively. Therefore, the true positive
ratio (TPR) and false positive ratio (FPR) are used as evaluation indicators of identification
performance, in which TPR is used to evaluate the rate of positive samples predicted as
positive, and the larger value of TPR denotes the higher identification performance on
the positive samples. In addition, FPR is used to evaluate the rate of negative samples
predicted as positive, so that the smaller value of FPR denotes the higher identification
performance on the negative samples.

Therefore, based on the TPR and FPR, the identification performance of the proposed
algorithm is evaluated and compared to other models, as shown in Table 7.

Table 7. The identification performance of quality problems under different background noise.

Model
Diameter I Diameter II

TPR (%) FPR (%) TPR (%) FPR (%)

KSVM 89.61 13.56 86.83 15.14
ANN 94.78 4.89 91.16 6.21

Bagging-GA-
ELM 99.48 0.36 99.32 0.98

According to Table 7, it can be observed that bagging–GA–ELM achieves the best
identification performance in both diameter I and diameter II. The values of TPR are higher
than 99% and the values of FPR are lower than 1%, which means that the success rate
of the proposed algorithm achieves more than 99% in the identification of the real-time
collected data. Therefore, the proposed algorithm can be used to identify the quality
problem accurately, which meets the requirement of the production line.

Finally, based on the proposed algorithm, the prediction results of data acquired from
the real-time grinding process are shown in Table 8 and Figure 13.

Table 8. The comparison between the actual dimension error (ADE) and the predicted dimension
error (PDE).

Data
Mean Std

10−3 mm 10−3 mm

ADE of diameter I −5.32 3.03
PDE of diameter I −5.35 2.37

The absolute difference between ADE and PDE in diameter I 0.79 1.27
ADE of diameter II −5.46 3.48
PDE of diameter II −5.47 2.89

The absolute difference between ADE and PDE in diameter II 0.75 1.49
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Figure 13. The prediction results of dimensional error. (a) The prediction of diameter I, (b) The
prediction of diameter II.
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4. Conclusions and Future Work

In this paper, an approach based on bagging–GA–ELM is proposed to predict the final
part dimensional error during the grinding process with high accuracy and robustness.
In particular, firstly, the raw data are pre-processed to eliminate the dimensionality of
the data while avoiding negative noise. Then the bagging–GA–ELM, which combines
the advantage of ELM with short training time, GA with global optimization ability, and
bagging with good anti-interference ability, is used to predict the dimensional error of
parts. The experimental performance shows that the proposed algorithm achieves the
best dimensional error prediction performance compared with the KSVM model and
ANN model. In addition, the proposed algorithm has achieved good quality problem
identification performance (success rate of more than 99%), which can satisfy customers’
requirements. Additionally, the application of the algorithm in the bearing company helps
to save additional investment in equipment.

In the future, we intend to continue our research in the parameters of the grinding
process to improve the prediction success rate. By doing this, the grinding process can be
better controlled. In addition, we will also study the proposed algorithm in other products.
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Abstract: A new manufacturing mode, called social manufacturing, has been developing widely,
and employed in many enterprises across the business value chain in recent years. Faced with
this increasing dynamic, both enterprises and customers have to be more aware of the potential
opportunity and benefit to be derived from this new manufacturing mode. One benefit is more
value-adding potential for both enterprises upstream and customers downstream across the business
value chain, compared with the normal mode. This research extends the application of social
manufacturing to the entire business value chain system to bring new opportunities and value-
adding potential for enterprises. This paper proposes a social value chain system that applies the
social manufacturing mode to the entire value chain and contributes to three areas: (1) a new way
of thinking for enterprises to create new opportunities to add value throughout the value chain
by employing the social manufacturing mode; (2) establishing the social value chain system for all
participants/enterprises across the chain in order to gain a win–win situation for all participants;
and (3) suggesting some idea of a suitable performance measurement to monitor and evaluate the
proposed social value chain system.

Keywords: social manufacturing; social value chain system; value-adding; key supporting technologies;
digital-driven technologies

1. Introduction

Social manufacturing (SocialM) was first introduced as a “third industry revolution”
in the Economist magazine in 2012 [1]. From then, through the efforts of some pioneers
who have advocated the SocialM mode such as Wang et al., this new manufacturing mode
has been developing along with the development of relevant technology [2–5]. The dis-
cussion on SocialM has been becoming a topic of great interest with the growth of the
sharing economy and Internet-based and digital-driven technology [3–8]. In practice,
the business model of enterprises has been changed compared with the normal mode
due to the rapid development of Internet-based and digital-driven technology. For in-
stance, one topical sourcing mechanism in manufacturing—crowd-sourcing—has been
applied to some enterprises in order to provide the potential to share capacity and ability
by means of Internet-based technology [9]. With this SocialM mode, it is possible to con-
nect different enterprises and even customers across the business value chain to enable
an effective collaboration among enterprises and customers to the meet the customers’
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requirements [6–10]. With the revolution in technology and business mode in the context
SocialM, value-adding activities by operational processes are not only contributed to by
upstream and intermediate enterprises (suppliers/manufacturers), but contributions from
all participants, including downstream customers [10–14].

Regarding the mode of business operation, a business value chain (VC) is a supply
demand network that may include multiple layers of participants who are linked to the
chain by business, and which can add value for their downstream customers by means of
business process or activity. The operational activity of participants must aim at adding
value to the product/service by each of their focused business processes or activities. In the
context of new manufacturing mode-SocialM, the value-adding mode can also be changed
with the new manufacturing mode, or extend to a more value-adding opportunity. Figure 1
shows a normal business value chain of an enterprise, with the major business process
across the order delivery chain. The enterprise needs to make value-adding to customer
orders through the process of the value chain. Regarding the functional process with
customer orders, the Association for Supply Chain Management (ASCM) [15] points out
that the entire supply chain/value chain includes multiple enterprises across the chain,
and the associated process is “the integrated process of plan, source, make, deliver, return,
and enable spanning from the suppliers’ supplier to the customers’ customer”. According
to the above illustration, an entire value chain contains multiple participants: different
levels’ suppliers from upstream and different levels’ customers downstream, and we call
all of them participants. The participants can be linked by three major flows: materials,
information, and cash (see Figure 2), among which the information flow includes internal
and external flows. For the single product order delivery process, in the context of the
normal VC shown in Figure 2, the material flow is a forward flow that is from the upstream
suppliers (higher layer participants) moving to the downstream participant (except product
returns). The cash flow is a reverse flow from downstream to upstream. The information
flow should be both ways in the chain as the involved participants should communicate or
share necessary information. The management of the value chain is mainly associated with
the three flows.

Figure 1. Manufacturing focused process for customer order delivery through the enterprise business
value chain.

Figure 2 reflects the ASCM description, and the order delivery business VC consists of
multiple participants across the chain, who are from upstream and intermediate (suppliers),
to downstream participants and their end customers. In the normal value chain system,
upstream participants need to create value (value-adding) to meet downstream participants’
(enterprises and end customers/users) expectations; however, the customers make only
a very limited contribution to the value-adding, except for providing the requirements
or expectations associated with the order. In comparison, the SocialM mode offers more

296



Machines 2022, 10, 978

potential for downstream participants to be involved in value-adding activities across the
value chain.

Figure 2. Three major flows through the value chain.

With the SocialM mode, new value-adding opportunities can be created by various so-
cialized manufacturing resources (SMRs)/social manufacturing groups (SMGs)/prosumers
(producer + consumer), including downstream participants and end customers who can
connect and communicate through cross-enterprise-centered and Internet-based behaviors,
supported by supporting technologies. Meanwhile, customers may obtain better quality,
and better serviced product/service from upstream socialized suppliers/sub-suppliers.
Upstream participants (socialized suppliers, socialized sub-suppliers) can gain stronger
value-adding capacity to deliver product/service for their downstream participants (down-
stream suppliers and customers/users). In particular, cross-enterprise-centered suppliers
can extend more value-adding processes, such as after-sales service to end customers/users
or maintenance for the whole product lifecycle, such as remote service through a cloud-
platform, or even establishing service-oriented manufacturing in the context of SocialM.

Before proceeding, we need to clarify two main types of value chains in business.
The first follows the order delivery process from CO (customers’ order) to delivery of
the product/service to the customer. We call this a CO-focused value chain, as shown in
Figure 2. The second type follows the process of different phases of the product–lifecycle
(PL), which is developed originally from Stan Shih’s smiling curve [16], and then extended
to illustrate value-adding and sharing benefits in different phases through the entire
lifecycle of the product (see Figure 3). This type is called a PL-based value chain. From a
continuous improvement perspective, in a PL-focused VC, all processes/activities of phases
from starting a product development to the end of the product lifecycle can be taken into
consideration in terms of value-adding, and in the CO-focused value chain, all processes
from customer demand to delivery of the product/service to the customer can be taken
into consideration in value-adding. This research emphasizes the first type of VC: the
CO-focused value chain.

In recent years, numbers of scholars have been showing great interest in the SocialM
mode, its application, and supporting technologies. However, there has been relatively
limited research on the potential of value-adding creation of SocialM spreading to the entire
value chain, when compared with the amount of research attention to the manufacturing
mode itself and supporting technologies. This paper takes the perspective of the entire
value chain, and attempts to fill the research gap by presenting a case study in SocialM: a
new perspective for adding value through the social value chain system.
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Figure 3. Smiling curve illustrating the relationship between the product life cycle and the benefits
on different phases [16] .

The purpose of the current research is to propose a new perspective on adding value
for enterprises and customers through applying SocialM. A SocialVC (social value chain)
system is presented that extends from SocialM mode to the entire business value chain.
The rest of the paper is organized as follows: first, a definition of terms, and literature
review and prior work are presented. Next, the research method is presented and the results
introduced, which present a new perspective on value-adding, establishing the proposed
social value chain system with some relevant key supporting technologies (KSTs) and a
preliminary idea for a high-level measurement model for the performance of SocialVC.
Finally, a summary of the study and some areas for further research are presented.

2. Literature and Prior Work

2.1. Definition of Terms

To better understand the new perspective of adding value through the SocialVC
system, it is necessary to give definitions of key terms in the SocialVC system.

Definition 1. Value is defined from the customers’ perspective (externally focused) according to
Lean Thinking [17]. Regarding the SocialVC system in this paper, the true value extends to the
prosumers’ perspective in the product or service. Enterprises in the SocialVC system should consider
a strategy to identify participants, including prosumers who will provide the required work in
achieving value for the product or service in the future through the SocialVC system.

Definition 2. Value-adding/value-added (VA) is defined as an enterprise adding value to its
products or services before delivering them to customers so that value in a product or service is a
true value only if the customer is willing to pay for it. Enterprises in the SocialVC system can use
the SocialM mode with KSTs for participants in achieving VA in growing businesses through the
sharing of opinions, capabilities and capacity for “win–win” scenarios.

Definition 3. SocialVC system is the demand–supply chain between the end customer and the
suppliers in the context of the SocialM mode. This system not only considers both high level
information and material flow which cover all nodes (including end customer and key suppliers)
as normal VC, but also applies SocialM to involved participants. The value-adding not only
aims to deliver maximum value to the end customer, but also achieve win–win scenarios for all
involved participants.

Defining the system aims to fix the scope, products, and nodes that a demand–supply
chain will cover. For this target, the effective method is discussion with the management to
take overall business units and their activities into account.
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Definition 4. SocialVC network is a network of chains that produce multiple products or services
for prosumers according to the SocialVC system.

Definition 5. Node is a point among key participants and the main physical process where
goods/data/knowledge comes to stay or pass in the context of the SocialVC system. Key roles
include prosumers and other participants such as SMRs and SMGs across SocialVC, and the main
physical process includes warehouse, factory, and any connecting points between the key roles and
other participants.

Definition 6. Prosumer takes the roles of both producer and consumer at the same time. The role
involves a combination of consumption and production according to Ritzer et al. [18].

Definition 7. SMRs comprise all kinds of property-type and consumable-supply-type manufactur-
ing resources that can be geographically distributed across the prosumers on SocialVC in order to
provide the activities of SocialM for a product or service [13,14].

Definition 8. SMGs are manufacturing resources grouped together in the context of SocialM to
input SMRs which provide participants across SocialVC. The SMGs can be categorized according
to the participants’ wishes, manufacturing interests, resources, and social activities in the context of
SocialVC. In the SocialVC system, SMG provides SMRs for SocialM in order to create value for
products or services.

Definition 9. Crowdsourcing is a mechanism to provide for a distributed problem-solving work
on a product or service through an Internet-based tool, such as Apps, Internet-based social media,
or other internet platform [19]. Crowdsourcing allows everyone to have a chance to be involved
in the work or activities of relevant problem-solving if capable of doing so. The involvement can
include offering work, information, or opinions which people can submit online.

Definition 10. KSTs is the technology that may be adopted to support the realization of the
SocialVC system. Some examples of technologies include digital-driven technologies such as Internet-
based technology, RFID, social sensor, CPSS, digital-twins, blockchain, big data, AI; supporting
mechanisms such as crowdsourcing and outsourcing mechanisms; or methods such as modeling
and simulation, supporting management to achieve various goals, continuous improvement (CI),
performance evaluation, etc.

2.2. Evolution of Value Chain Concept

The normal value chain was not a very new concept, when first introduced by Professor
M.E. Porter, who first used this concept as a decision support tool to the competitive
strategies of enterprises [20,21], who has completed the important pioneering works on
the value chain to both business and scholars. According to Porter’s value chain [18],
the process could be divided into two types of activities in enterprises: one is primary
activities that cover production, marketing, transportation, after-sale services, etc., and these
activities are directly relevant to how value is created to a product or service. The other
type is supporting activities that cover raw material supply, technology, human resources,
financials, etc., and these activities can implement and coordinate the primary activities.
In the middle of the 1980s, Hopkins and Wallerstein proposed a CC (commodity chain)
concept [22]. Then, Gereffi further developed the theory of global commodity chains during
the mid-1990s, and he introduced an analytical and normative usage to the value chain [23].
Griffin pointed out that multinational enterprises act as “drivers” which can play a role in
governance in the global value chain (GVC) by organizing, coordinating and controlling
international production and supply activities.

After the 1990s, GVC have experienced a transition from rapid expansion, upgrading
to the transition process with occasional small contractions. The focus of some scholars
has extended from a VC or GVC concept to improvement in efficiency and profitability by
optimizing the value-adding mode through management or the business process [24].
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Regarding value-adding from business to customers, the lean concept has been applied
widely since the 1970s by enterprises to remove non-valued-added (waste) activities from
the business process, especially the seven wastes that Ohno defined [25]. As described by
Womack and Jones [26], five key lean principles are important for business: value, value
stream, flow, pull, and perfection. Among these five principles, value is first defined for
enterprises as the customer’s need for a specific product or service. Since then, the five
principles provide clear systematic steps for improvement in value adding that can be
widely applied for continuous improvement in the business process of enterprises moving
towards an optimized process.

Extending from the business process perspective to the entire business value chain,
involved participants in the value chain should also consider effective ways for adding
value across the VC. In past years, in the context of normal manufacturing mode, enter-
prises/participants in the VC have been putting effort into considering how value is added
through their business process of manufacturing, e.g., value might be added from remov-
ing non-value-adding activities according to the optimization of overall value streams.
Comprehensive thinking on the combination of value-adding from the lean concept and
value-adding across enterprises from the VC concept provides enterprises with more
opportunities to reduce non-value-added activities in the VC process [26–30].

Regarding improvement in value-adding, in the past years, there have been significant
achievements in value-adding through CI (continuous improvement) in industry and
service businesses [24,31]. For a long time, identifying and eliminating waste has been a
major CI (continuous improvement) task for value-adding activities in the context of any
value chain. Even so, many enterprises are still facing challenges that limit their value-
adding capability in normal manufacturing or normal value chain modes. Especially since
the COVID-19 pandemic, even more challenges have prompted enterprises to re-think
what new perspectives on value-adding for both enterprises and customers would produce
more advantages than the normal way. The new perspectives should mitigate the difficulty
of adding value, moving towards satisfying customers’ expectations and requirements for
both enterprises and customers in the new situation [31].

The main issues in value-adding across the normal VC based on normal manufacturing
mode are listed as below: - Role of customers: due to customers having their ideas along
with increasingly customized and personalized demand for products and service, customer
participation in the value-adding process upstream of the value chain is a trend in the
product or service chain. For instance, in the garment and fashion industry, customer value
can be better reflected if the customers’ creativity is added in the design stage. However,
the customer participation is very limited by means of a normal value chain.

- Sourcing issues: due to the limited capacity of sourcing in enterprises and the supply-
side market, it is not easy to select qualified suppliers at reasonable cost. Therefore,
waste is caused by sourcing or supplier issues.

- Service issues: due to service having been considered a crucial factor in competi-
tiveness in recent years, many enterprises must try to meet the requirements from
customers. In particular, for the process of after-sales, such as installing, commission-
ing and maintenance on-site, service problems have existed for a long time, and in
the normal mode are difficult to solve. For instance, the crane industry has suffered
from timeliness, effectiveness, efficiency in after-sales service, such as delays, and de-
clining productivity [30]. In particular, with an increased amount of customization
and personalization, the demand for after-sales service or product maintenance has
been increasing dramatically. Good service can provide more value-adding potential
for enterprises; however, most enterprises lack effective service systems or appropri-
ate service providers and support technology to meet the requirements through the
normal mode.

- Networking issues: from the perspective of connecting with customers, customer
feedback is an integral part of the business. There is no scope for improvement if
enterprises do not get to know what the customer likes and does not like. From the per-
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spective of interacting and communicating among manufacturing resources, such as
people-to-people, people-to-machine or machine-to-people, and machine-to-machine,
the communicating and interacting mode has great room for improvement.

- Mass customization (MC) issues: due to customized and personalized demand in
markets becoming permanent trend, there is a lot of space to create value relevant
to customized products and services. However, regardless of mass production, lean
production, or other normal manufacturing mode, it has been increasingly difficult to
satisfy increased individual requirements and specifications by means of normal VC.

- Sharing issues: limited sharing of information on sourcing, capacity, and other re-
sources among all participants in VC brings about huge waste through normal VC.
For instance, enterprise A has excess capacity, while enterprise B in the same industry
a lack of capacity, but enterprise B cannot utilize the excess capacity from A. Similar
issues have widely existed in the context of normal manufacturing mode and VC

- Technical issues: lack of support technology limits the value-added capacity through-
out the VC process Technical issues are also obstacles to the creating of value from
enterprises to customers.

In order to solve the above issues, there is a need to explore different ways of adding
value to solve issues that are not easily solved in the normal value chain. In particular,
the uncertainties caused by the COVID-19 pandemic in recent years have not only ruined
the smoothness of flows in the supply–demand network, but also further exacerbated
the anxiety of enterprises. Our research proposes a new perspective of value-adding for
enterprises/participants in the context of the proposed SocialVC extended from SocialM.
The following review is about the evolution of SocialM mode to SocialVC system and its
use in the participants’ manufacturing.

2.3. Evolution of SocialM

The theory of SocialM mode has been growing and developing along with the concept
of the sharing economy over the last decade [32–34]. At an early stage, the emergence of the
idea of the sharing economy has opened up people’s horizons and brought enterprises more
opportunities or potentials [34,35]. One important opportunity was that enterprises could
have more possibilities to add value as the boundaries of manufacturing capabilities were
expanding, bringing about a change in the customers’ role from buyer to “prosumer” [18].
This new role can create more possibilities to create value to the ordered product/service
in the context of SocialM. The prosumer concept in SocialM extends the responsibilities of
customers and users, which can bring more value to consumers (prosumers in SocialM),
such as better products and more professional services [13].

Regarding business operations, the sharing concept has shown power when it is
applied in service operations, well-known examples of which are Uber and Airbnb [34].
Meanwhile, some public social media that need digital content operations have been
growing rapidly, such as businesses pioneering Internet-based technology: Facebook,
Twitter, and WeChat, amongst others. The operating mode of these public social media
have not only influenced people’s daily communicating, but also changed social manners
that people have been used to using. Consequently, the change of communicating and social
manners have significantly influenced the business model and promoted the development
of the SocialM mode [6–13,36,37].

The emergence of the SocialM mode has changed the game rules among large and
small enterprises in the business value chain. According to Hamalainen and Karjalainen,
and Jiang et al., more individuals have participated in product manufacturing activities due
to the evolution of Internet-based technology and communicating behaviors [6–12]. Clearly,
not only enterprises in the traditional sense are affected by this change, but also MSMEs
(micro, small and medium-sized enterprises), and even individuals. Moreover, KSTs also
show the important power. For example, crowdsourcing and crowdfunding mechanisms
and some service or product maintenance supported by Internet-based technology/systems
bring new value-adding opportunities through customer order value chains and product
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value chains throughout the product lifecycle, through different forms of cooperation,
interacting, and communication [9–14].

In practice, some enterprises have attempted to implement SocialM to solve some
issues that the normal mode does not easily solve in order to create more value-adding
opportunities. Some enterprises have adopted digital content or coding operations to
achieve benefits from applying the SocialM mode. For example, RepRap has used the open-
source 3D printers’ manufacturer network as a new model for product development, and
it has been beneficial from relevance open design platforms based on SocialM mode [38];
Vehicle Forge platform has provided a virtual collaborative environment for design work
by the cloud infrastructure [39,40].

While SocialM mode has been applied and made progress in business, the academic
discussion has also kept pace with the technological progress and gradual in-depth appli-
cation. According to Wang et al., early in the development of SocialM, it was defined as
a new manufacturing concept and emphasized social computing and considered social
intelligence techniques in the configuration of outsourcing and crowdsourcing for the
whole product life cycle [2,3]. Shang and Xiong et al. thought that SocialM used the smart-
interactive connection of dynamic information to process manufacturing services, instead
of the whole product life cycle focus. In their opinion, SocialM can be considered as a
production process that consumers could be fully involved in through the internet, and rel-
evant equipment could be connected directly on the network by the smart-interactive
terminal [4,5]. Later, with the development of Internet-based technology, Hamalainen,
Nyberg and Karjalainen et al. defined SocialM as a new collaborative manufacturing mode
in which the relevant process can be facilitated by mobile technology, new digital manufac-
turing, and online social networks. They emphasized the application of new supporting
technologies and advanced manufacturing concepts, such as 3D printing technology, mo-
bile technology, customization concept, value chain concept and social networks. [6,7].
This paper uses the definition introduced by Hamalainen, Nyberg and Karjalainen as our
study focuses on the CO-focused delivery value chain, which corresponds to this definition.
Jiang et al. took into account the key factor in SocialM illustration, and pointed out that
“SocialM is defined as a kind of Internet-based and service-oriented advanced manufactur-
ing mode covering the whole stages of a product life cycle” [12–14]. In this definition, two
important points were highlighted. The first was from a technical point of view, which was
Internet-based technology, and the second was a distinct service characteristic, which met
requirements across the product life cycle. Jiang’s definition corresponds to PL-focused VC.

To have an overall understanding, Jiang et al. summarize the seven characteristics of
SocialM as below [14]:

• Microlization and minimalization of manufacturing resources;
• Self-enterprise of socialized manufacturing resources;
• Virus-like propagation of enterprise structure;
• Sharing and competing capabilities and business benefits;
• Dynamically distributive infrastructure;
• Big-data driven decision-making and performance optimization;
• Industrial software model to be used.

The characteristics summarized above are not only associated with and impact the
manufacturing, but also deeply affect how to accomplish value-adding activities when
compared with the normal business value chain. The SocialM mode breaks the normal
organizational mode, sourcing mode and ways of interacting and communicating among
participants in the value chain. These changes have not only brought about innovation
in the manufacturing mode, but have also deeply affected the value-added mode that
participants in the business value chain are involved in every day. The resulting new value-
added mode with new business value mode has not only been an interest for scholars,
but also enterprises seeking out innovative ways to satisfy their customers through the new
perspective of value-adding. Many customers and suppliers/enterprises have suffered
from broken supply chains caused by the COVID-19 pandemic since 2019, so the new
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perspective of value-adding through the innovative value chain mode has a deeper practical
significance for enterprises and customers.

To make the application of SociaM possible, support from technology is very crucial,
and this has attracted the interest of academic scholars. We categorize three streams of
supporting technologies for SocialM. The first stream is digital-technology-oriented, such
as IT, the Internet, etc., and we call this stream hard technology in this paper. The second
stream is called people-oriented and includes management, organization structure, and the
like. We call this stream soft technology in this paper. The third stream is social computing
relevant technology that is combined with both hard (the first stream) and soft technology
(the second stream), and constitutes an extended version of the SocialM mode to realize the
Societies 5.0 [40,41].

Regarding the digital-technology-oriented stream, a number of digital technologies
have been developed since NC (numerical control) first occurred in manufacturing, some
of which could support SocialM according to the manufacturing requirements. In the
early stage of SocialM applications, Internet-based technology provided more possibilities
for SocialM application [2–13]. Among Internet-based technology, 3D printing systems
were considered to be a key enabler in implementing SocialM [10–14]. Recent develop-
ments have been the Internet of Things (IoT), cyber-physical-systems (CPS), RFID, social
sensors, loud computing, blockchain, big data, digital-twins, machine learning, and deep
learning [4,11–13,42,43]. Among these technologies, the social sensor is important in data
transfer and in interacting and communicating among enterprises and various manufactur-
ing resources in the context of SocialM, such as between “people–machine–material”,
“people–people”, “people–machine”, and “machine–machine” [44]. The adoption of
these technologies has accelerated and enabled the application of SocialM, such as cloud
service [4], open product design [6,36,37,39], healthcare systems [44], the crane industry [45],
amongst others. In the reality of manufacturing, the application of digital-oriented tech-
nology still requires effective cooperation between people, and organization structure and
corporate culture, which is called people-oriented technology in this paper.

Regarding the people-oriented stream, people’s behavior, the organization’s struc-
ture, and way of communication and cooperation among participants across the value
chain must meet the new manufacturing mode from the social perspective [14,46]. As the
environment of SocialM is different from the generic manufacturing environment, a corre-
sponding change is required in the VC process. Consequently, a series of adjustments are
needed in terms of people’s behavior accordingly [6,47]. Meanwhile, the process change
also brings about an organizational change [48], such as new roles, new mechanisms
and new functions being established. The role of prosumers also brings about a new
force to manufacturing resources for value–value capacity; a crowdsourcing mechanism
can be applied to connect prosumers with upstream suppliers or manufacturers in the
VC [4,8,47,49]. Self-organization corresponds to a dynamic resource community (DRC) in
SocialM in order to provide suitable capacity for production and product-driven services
to prosumers [13,49,50]. Moreover, all people/organizations have to have skills that align
with SocialM requirements and take on the relevant responsibilities through VC. In reality,
the behaviors involved with connecting and communicating between people in the VC
could draw on some social-media-like technology. It requires people to cooperate skill-
fully through relevant Internet-based technology, which belongs to the digital-technology-
oriented stream. Therefore, the effective application of SocialM is supported by either
digital-technology-oriented or people-oriented supporting technologies, both of which are
associated with the third stream of SocialM supporting technologies.

Regarding the third stream of supporting technologies—social computing relevant
technology—advanced supporting technologies can be effective in combination with pro-
viding a cutting-edge manufacturing solution in moving towards the Society 5.0 era,
as Wang et al. has pointed out [40,51]. A number of supporting technologies have emerged,
including hard and soft technology that provide more power to promote the application of
SocialM. To do so, SocialM in practice will need not only a Cyber-Physical-Social-System
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(CPSS) that is extended from CPS (Cyber-Physical-Systems) and provides a socialized
ecosystem for SocialM, but also the SMRs that can provide numbers of self-organized par-
ticipants/prosumers in the VC for various specialized product-related, production-related
or service-related capabilities to meet customers’ requirements [2,49–51]. In social comput-
ing relevant technology, more functions can be realized through a combination of different
digital-driven technologies. For instance, social sensor and RFID could be integrated with
CPS to form a CPSS platform in the context of SocialM, in order to provide the socialized
ecosystem. Big data technology combining the technology of digital-twins/modeling and
simulation can support the digitalization in SocialM operation [52,53]. Regarding the
Societies 5.0 era supported by SocialM, a number of emerging technologies have been
effectively combined and configured for different manufacturing scenarios to meet the
customers’ requirements in products/service. Among the many emerged KSTs, a parallel
system method has opened up in the research on SocialM, as presented by Wang, which
provide effective methods in the control and management of a complex system. According
to Wang, one common system can consist of a reality system and one or more virtual
systems that can have some artificial system [54]. Alongside this idea, one KST—digital
twin technology—can provide a tool for modelling and simulation and analyzing SocialM
application, such as product design, production line design, and even design for social
factory [55–57]. For the decision-making of enterprises, big-data, cloud computing, com-
bined with deep learning, can support performance monitoring in the VC and optimization
performance if needed, as well as support decision-making [58,59]. In short, AI-based,
Internet-based KSTs and appropriate organizational arrangement in the value chain can
provide more configurable technology in the application of SocialM. According to research
in past years, it is clear that more new technology is bound to emerge to enable SocialM
application for various enterprises such as AI and digital technology which will continue
to advance in the near future. In the following discussion, we will collectively refer to AI,
IT, internet-based technologies, as digital-driven technologies.

As reviewed above, many scholars have focused on SocialM manufacturing itself and
technology. This paper applies the SocialM mode to the entire value chain, in order to create
more value-adding potential, which will also fill one research gap in relation to SocialM.

2.4. Contributions of the Research

To explore the possibility of solving issues that present obstacles to value-adding in
the context of the normal VC, this research proposes a new concept: the SocialVC system
that extends the SocialM mode to the entire value chain, towards creating more potential
for adding value across the value chain. The main contributions are listed as below:

• New thinking for enterprises in terms of having more opportunities to add value,
as compared with the normal manufacturing mode;

• Establishing the social value chain system for all participants/enterprises across the chain
by means of the value chain concept and SocialM mode with supporting technology;

• Considering a suitable performance measurement to monitor and evaluate whether
the SocialVC system works efficiently.

3. Method

A new sight must be opened to for all participants on VC to adopt the new perspective
on value-adding by SocialVC that is associated with SocialM mode. In past years, many
scholars have been interested in SocialM mode and its application in enterprises; however, a
little research focus on value-adding across entire business value chain when SocialM mode
is applied across business process of enterprise, this research will fill this gap. A methodol-
ogy of the research begins with a context of the theoretical reviews on previous research
both in value chain and SocialM subject, follows with new idea of value-adding from the
proposed SocailVC in this research, ends up with a conclusion on an innovative way for
enterprises to add value for both customers and enterprises in the context of SocialVC
system that is a different way from the normal VC.
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The methodology mainly outlines four parts in this paper. In first part, a systematic
review on normal business value chain concept associated with this research is made.
After that, a review of the SocialM mode is followed to describe the relevant work on
the area of the SocialM mode. Based on these, a literature gap is identified in the area
of analysis on value-adding, especially relevant to value-adding in the context of value
chain for customer order delivery. In the second part, a new perspective of value-adding
across value chain that extend from SocialM to an entire value chain is illustrated, and a
new potential of value-adding is followed. The third part introduces some important
supporting technologies to support value-adding in the context of the proposed SocialVC
system. The fourth part explores possible measurement metrics to measure performances
of SocialVC. In the end, some conclusion and suggestions on the future work are presented
based on the above parts.

One reminder is that this work is an academic research, and the technology adopted
to the relevant SocialVC system is based on current relevant supporting technologies, and
the paper just discusses some major supporting technologies; łthere might be more existing
technologies that are being adopted, but are not fully covered in paper or more innovative
technology along with a continuing emergence of advanced technology may be applied for
future SocialM or SocialVC, which is impossible to be covered in this research.

4. Results and Discussion

4.1. Establishing an Architecture of the SocialVC System

Regarding SocialVC system, it is associated with SocialM, the concept of value chain
and the value-adding across chain, and some important supporting technologies mentioned
in the previous sections. To establish the SocialVC system, this research proposes an
architecture of the SocialVC system (See Figure 4). As Figure 4 shows, the architecture
is layered and interconnected among each. The information and data through chain
participants should be collected and shared by Internet-based social media platform, and the
available manufacturing resources is identified. The required tasks for customer orders
are distributed by means of supporting technologies. Meanwhile, SMRs are defined and
matched to the SocialVC network. Finally, the ordered product/service and tasks are
completed, and delivered by means of distributed SMRs/SMGs/prosumers. According to
the above logic, the proposed architecture system is divided to five layers that are associated
with the value-adding through the customer order delivery process in the context of the
SocialVC system. The details of each layer are illustrated in the following subsections.

4.1.1. Layer1—Input Layer

Layer1 collects important data and information as input, which will be used for
decision-making about the distributing of a resource with the required work. As Figure 4
shows, all input is from involved participants. Firstly, the involved multiple participants
of each node on the VC is listed in layer1, and important resources of each participant
are identified and collected, which should be sent to layer2—the support layer. In this
research, we classify participants in three categories according to the manufacturing reality,
namely enterprises, MSMEs (micro and-small-scale manufacturing enterprises)/Micro-
enterprise [60] and individuals. Compared with the normal manufacturing mode and
normal VC system, MSMEs and individuals have more opportunities to be involved more
in the business to create value. Meanwhile, all participants can develop more flexible ways
to be involved in the process of customer order fulfillment than in the normal value chain
system, when these participants with relevant resources are included in the SMRs.
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Figure 4. Architecture of the SocialVC system.

There are two main groups of data for input defined here. One group of data are manufac-
turing resources-related, including the available physical resources, nonphysical information,
and knowledge. The collected data from each node/participant are a basis that present
participants with the capacity to meet the required tasks that add value to product/service.
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For the manufacturing business, the main resources can be classified as tangible and intangible
resources. Tangible resources include resources such as the geographical sites, physical plants,
available facilities, warehouse, local service or sales office, manpower, etc. These tangible
resources can be adopted for value-adding activities through the manufacturing process in the
value chain. Intangible resources include resources such as IP (intellectual property), brand
value, trademark, self-developed software, knowledge and corporation culture. Intangible
resources not only show competitiveness and advantages of the enterprise and power to
create customer value, but also shareholder/stakeholder value. Besides data on resources,
other important data such as key parameters also need to be collected, for example operations
and supply chain KPI (key performance indictors) figures.

The second group of data are from customer orders for expected products/services.
Due to the variability of the ordered product/service, the order fulfillment process varies
widely, and relevant data and information need to be collected into a defined database
system. All data/information are connected to layer2 through an Internet-based social
media system and advance intelligent algorithm for configuration on SMRs. Participants
become prosumers in the context of the SocialVC system, and they should be allocated to
tasks of order fulfillment that are called task orders.

4.1.2. Layer2—Support Layer

Layer2 provides some KSTs which are mostly based on digital-driven technology
to support the application of the SocialVC system. In the SocialVc system, each layer
needs certain supporting technology to enable the defined function to satisfy the customers’
requirements. The KSTs in layer2 not only support the manufacturing resource allocation
for the manufacturing tasks in layer3, but also support the functions of all the other layers.
The main KSTs include Internet-based social media, big data analytics, digital twins or
modeling and simulation, and cloud computing. In addition, an algorithm to support
intelligent decision-making is also important, containing big-data-driven data mining,
machine learning, and multi-criteria optimization.

Through an Internet-based social media platform, the information and data can be
transferred or even shared appropriately. Moreover, interactions and communication
among nodes/participants can be performed through a social media platform, and behav-
iors of business process can be monitored and follow-up actions also communicated.

With support from the combination of social sensors and RFID, with CCPS, an intelli-
gent configuration of nodes and SMRs for SocialVC is made and encapsulated. In particular,
CCPS can also be widely adopted for effective interconnection and management among
“people–machine–material" resources in multiple levels of manufacturing resources on
the participants’ site, including levels of machine, production line, shopfloor, and partici-
pants, involving for example the sharing and transferring of data and knowledge, dynamic
scheduling, collaborating, and matching [12,50].

Through an advanced algorithm that integrates the data mining, machine/deep learn-
ing, and multi-criteria optimization, big-data-driven intelligent decision-making not only
helps to identify and separate the customers’ requirements into actionable job/activity,
but also mines various relations and interactions among various resources, including SMRs
and prosumers. The advanced algorithm also carries out configuration (configure layer)
of the participants’ resources by identifying the quantified SMRs with support from out-
sourcing and crowdsourcing mechanisms through SocialVC. All the capacity of configured
SMRs needs to be distributed from the SMR pool to matched nodes (SMGs/prosumers)
which will accomplish the required manufacturing tasks/task orders; hence, relevant
SMRs/SMGs/prosumers will add value to the customer order through the business pro-
cess in the context of SocialVC.

Through outsourcing and crowdsourcing mechanisms in Internet-based social media,
more flexible capacity for production or problem-solving in value-adding activities can be
gained in a competitive environment. The manufacturing capacity from outsourcing and
crowdsourcing mechanisms is becoming one kind of socialized capacity, which not only
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creates value, but also may reduce manufacturing costs compared with corresponding activ-
ities/tasks in the context of normal manufacturing mode or normal value chain. Therefore,
this type of outsourcing and crowdsourcing is also one type of value-adding mechanism.

Besides KSTs, there could be other manufacturing functions through the SocialM
process, which are not included here. For instance, blockchain technology can be adopted
as a credit and security mechanism, and 3D printing plays an important role in promot-
ing decentralized social manufacturing [61,62]. 3D printing applied in SocialM not only
achieves big cost savings, but also offers more potential for outsourcing, crowdsourcing and
crowdfund mechanisms and the participation of MSEMs and individuals. In this research,
we only focus on the more common KSTs relevant to establishing layers of SocialVC.

4.1.3. Layer3—Configuration Layer

Layer3 focuses on distributing manufacturing resources for the nodes/participants
of each value chain in the SocialVC network. Various products are derived from various
chains, which form the SocialVC network. Nodes on participants need to be distributed
SMRs that match the required tasks in the job pool from the customer orders.

By supporting technically, the relations and interactions between participants in the
value chain are mined and identified, in order to match SMRs from the SMR pool and
required capacities of the relevant algorithm in support layer2.

From the operations prospective, the dynamic operation of outsourcing and crowd-
sourcing mechanism continuously collects updated information of manufacturing resources
from prosumers, then matches them with the required tasks in the job pool. Finally, the task
order can be made according to the successful match. During operation, the prosumers
provide SMRs to SMGs, whose role is acting as an “agent” of various prosumers and
works like a provider to the SMR pool. SMRs are made up of various types of enterprises,
including big/normal sized enterprises, MSEMs, or even individuals. Meanwhile, as SMRs
are characterized by socialization, decentralization, self-organization and specialization,
they have the ability to provide the appropriate manufacturing resource accordingly [46],
including tangible and intangible resources.

As various SMGs are grouped by similar business interests and common social ac-
tivities, and provide various dynamic production capability to SMR, so numerous SMRs
provide the configured capacity to nodes of participants along the chain. The task orders
are performed by the configured capacity in SMGs, and relevant value-adding activities are
reflected in products across the corresponding value chain. For instance, some enterprises
with CNC (computer numerical control) as the main equipment can form an SMG, in order
to take the kinds of task orders that need CNC.

All configured manufacturing resources are distributed to relevant nodes within the
SocialVC network so that the prosumer on the node will complete the task orders or
customer orders by means of the allocated capacity.

4.1.4. Layer4—Implement Layer

Layer4 is for implementing the customers’ orders including all task orders or from the
job pool in layer2, through configured SMRs in Social VC. The configured SMRs provided
from the SMRs pool come from various different SMGs and are formed by prosumers.
In order to fulfill an order, the configured resources are connected by process and supported
by a defined management system for various goals.

Flows in the SocialVC become more complicated, compared with the normal VC.
As the definition previously, the prosumers’ role takes a dual role of customer and manu-
facturer, that is, prosumers are not only the product/service receiver, but also the supplier
or manufacturer for product. Consequently, the material flow is changed to multiple paths
for a single product in the context of SocialVC. For the same reason, the cash flow is also
changed, and is not a single direction of flow, but a multiple path flow. The information
flow is changed to multiple paths as well. Besides the major flows, there are also some
other flows, such as people flow and machine flow. Supported by KSTs, the resource flows
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interconnect among “people–machine–material”, “people–people”, “people–machine”,
“machine–machine”, as described in support layer2. For multiple products, the flows are
even more multi-directional according to how the SMRs/SMGs/prosumers form. All flows
are intertwined and more complicated, and can be called flow-networks (see Figure 5),
compared with flows in the normal VC. With support from KSTs and formed from the
social environment in the SocialVC system, all flows through flow-networks across each
node can run in adaptive, autonomy and decentralization modes, as shown in Figure 5.

Meanwhile, management support is also important and should be defined to ensure
that all processes operate smoothly and avoid uneven flows, with continuous optimization
to make all resources produce the best capacity for value-adding. As shown in layer4 in
Figure 5, the management system can contain data collection, data management, monitor-
ing, communication, coordination, optimization, risk management, continuous optimiza-
tion and supply management (not limited here), defined for various goals. Comparing with
the normal VC, the connecting and interaction among nodes are not only dependent on
process, but also interaction supported by the social sensor, RFID and CPSS in the context
of SocialVC. Digital-driven technology enables various nodes/participants/prosumers to
effectively connect and interact during order fulfilment, and avoid more non-value-adding
activities due to poor communication, or untimely reaction, which happen often in the
normal VC. With digital technology and management support, all SMRs work in an orderly
and efficient manner to add value to the end product by means of the configured tasks.

Figure 5. Flow-networks of the SocialVC system.

4.1.5. Layer5—Output Layer

Layer5 is for delivering the product/service to end customers appropriately. There
are two kinds of deliveries from order fulfillment to customers, namely non-physical
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products/digital products and physical products. Digital products include all products
which use data for the product, service, production and customer feedback, such as a
software, data-based application or tool, a set of information, data for service, online
training, and drawing and BOM (bill of materials) from engineering work. Physical
products include all tangible items, such as books, various physical equipment, instruments,
cranes, etc.

4.2. SocialVC Measurement Framework

To ensure that the SocialVC system operates in a stable and reliable way, and at
the same time continues to optimize value-adding, measurement of the SocialVC system
should be well defined and take into account monitoring of the performance of SocialVC.
However, the performance measurement of SocialVC is still a new subject, even though
some scholars have shown an interest in social performance (SP) [63]. For the normal
value chain system, ASCM has defined the performance system in the SCOR (Supply
Chain Operations Reference) model [64], which is a comprehensive system to measure
the normal value chain. Most measurement of normal VC mainly focuses on delivery
performance and cost performance, for instance SCOR performance. However, SocialVC
needs the appropriate performance to measure how SocialVC meets the requirements
of customers, how KSTs support the new system—SocialVC—and how manufacturing
resources across the chain are efficiently used for adding value to the customers’ order.
The normal measurement system for the performance of normal VC is not able to cover the
new requirements for the performance of the SocialVC.

4.3. Critical Success Factors for SocialVC Operation

To develop the performance of the SocialVC by measuring how the overall process
behaves to create value and how the participants in the chain work together to meet the
customers’ requirements, this research uses a CSF tool as the basis for a performance
measurement framework to measure the performance of the SocialVC.

CSF is an effective management tool that is strongly relevant to the strategic goals
of enterprises [65]. This research extends the application of CSF to achieve success in the
operation of SocialVC. CSF of SocialVC should take into account both the characteristics of
SocialVC and value-adding tasks/activities for the required product/service through the
value chain process.

Based on the characteristics and management requirements of SocialVC, this research
suggests some main CSF to ensure operation of the process in the context of SocialVC.
A logical relation between outputs from the SocialVC system and defined as three grouped
CSF is illustrated in Figure 6. As Figure 6 shows, the value of output is relevant to the
customers’ satisfaction and products/services that meet the customers’ expectations and
achieve a win–win scenario. Regarding the requirement of success in the SlVC, we classify
CSF as three groups that provide the core factors for success in the context of SocialVC,
as below:

Group 1: information/data-driven CSF mainly includes two primary CSF: informa-
tion/data transparency/sharing and communicating efficiently, which provide the major
key basis for other CSF;

Group 2: technology and management-driven CSF, which is a supporting group
and includes technology and management solutions to provide the relevant process and
management skill/methods for value-adding capability;

Group 3: deliverability-driven CSF, which are directly linked to ensuring value-adding
to product/service to meet the customers’ requirements, supported by group 1 and group
2. The CSF of group 3 shows the key value-adding capacity to provide product/service
to customers.
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Figure 6. Grouped major CSF and relations with output from SocialVC.

These CSF lead to success in deliveries that create added value to the customers’ re-
quirements from SocialVC. Some CSF in SocialVC are similar to the normal VC; for example,
information transparency/sharing is a key for the cooperation of participants across the
supply chain. However, the even stricter requirements for SocialVC should be supported
in the management process and supporting technologies to enable responsiveness and
adaptability due to the characteristics of the social mode: being decentralized, self-adaptive,
and needing self-organization and more involvement from MSMEs and individuals. There-
fore, the process for information transparency/sharing of the relevant management should
have a much higher requirement for SMRs to respond in a timely manner to the demands of
the tasks or of customers. In addition, there are more highly prioritized factors in SocialVC
to support flexibility and adaptability, which also relate to quicker responsiveness and
more management commitment, and effective communication from all SMRs. As stated
previously, CSFs are reflected in performance measurement, and some CSFs have a strong
relation to KPIs, for instance quick responsiveness and flexibility strongly reflecting opera-
tional behavior of SocialVC. According to customer demand and characteristics in SocialVC,
the above grouped CSF are defined as the most important factors according to SocialVC
implementing. From a practical perspective, involved participants should develop and
extend more customized levels of CSF based on the specific situation.

Based on the identified CSF, the relevant management system (see layer 4 in Figure 4)
can be developed, including the relevant management process and approaches. Therefore,
systematic management should be a research topic. It is noticed that management details
are not a focus of this research, even though certain management elements are listed in the
proposed architecture in Figure 4. Meanwhile, in order to quantify the CSF and measure
the SocialVC system, the framework of performance is considered and discussed in the
following subsection.

4.4. Performance Measurement Framework of VC

Comparing SCOR metrics for normal VC and taking into account CSF and characteris-
tics of SocialVC, we propose a performance measurement framework in which high-level
KPI (key performance indicators) are developed to evaluate and measure how the SocialVC
system behaves in terms of value-adding activities/tasks for the relevant production and
service according to customer requirements.

In the performance measurement framework, a primary/ high-level KPI is defined
based on CSF and the strategic intentions of SocialVC (see Table 1). In Table 1, the primary
SocialVC performance is listed and comprises a level of data/information supportability,
cooperating-ability, technology supportability, management, delivery, value-adding capa-
bility and maturity of SC. Definitions of each primary performance and relevant examples
are also made and shown in Table 1. Regarding the normal value chain, the KPI mainly
focuses on delivery-driven performance to the customer and cost-driven performance for
enterprises, such as the SCOR metrics developed by ASCM [64]. Regarding SocialVC in
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this research, more factors should be considered due to certain changes; for instance, in-
volved participants become prosumers that link to SMRs/SMGs, communication is under
the social environment, and various KSTs play an important role in the application of
the SocialVC system. Consequently, CSF extends to more factors, and performance also
includes more elements accordingly. As shown in Table 1, besides delivery performance
and cost-driven performance, which are similar to with those in the normal value chain,
more factors are taken into consideration in the SocialVC performance, such as more focus
on data/information, communication/coordination, support technology, management,
and maturity; and the definition of performance of value-adding capability is also expanded
from the normal value chain.

Table 1. Primary measurement metrics of the social value chain.

No. Metrics Definitions Examples

1 Level of data/
information supportability

Measurement that focuses on how
effectively the relevance data

system/process/program/activity behaves
in data management towards the business
goal, such as data collection, data analysis,

sharing, etc. across the value chain

Accuracy, Completeness, Timeliness of
data collection, Consistency of data, Revise

timely, Quality of data analysis,
Traceability, data/information richness for
carrying out required tasks/delivery, Level

of privacy & security of data

2 Level of cooperating-ability

Measurement that focuses on how
effectively communication/coordination is

carried out among participants
(prosumers/SMRs/SMGs) across the

value chain

Supporting data/information, Timeliness
of responses and feedback, Efficiency of
interaction process/techniques/social

media/channels for
communication/coordination/sharing

3 Level of technology
supportability

Measurement that focuses on how the
defined support technology supports

relevant goals of
process/management/prosumers

Convenience, Stability, Maintainability,
Connectivity of multiple techniques,

Connectivity for requirement,
Enableability, Compatibility

4 Level of Management

Measurement that focuses on how defined
management system with relevant

process/role effectively to achieve relevant
management goal

Achievement of goal, Maturity of
management process, Development of

people’s skills, method of CI (continuous
improvement) for optimization

5 Service level of delivery

Measurement that focuses on operational
factors across the value chain to achieve

both satisfaction of customers/prosumers,
and win–win for all

participants/prosumers of the value chain

Responsiveness to customer, Flexibility and
adaptability to change, Rate of perfect

order fulfillment

6 Value-adding capability

Measurement that focuses on the ability
from all participants/prosumers across the

value chain to carry out value-adding
activity/task on product/service to meet
the expectations of customers/prosumers

Total cash-to-cash cycle time, Total order
delivery cost, Total of asset utilization of
prosumers, Value of customer/prosumer;

perceived value of product/service, Ability
of innovation to create value for both

customers and prosumers

7 Maturity of SocialVC

Measurement that focuses on how
SocialVC operates in a resilient, stable,

and healthy manner to deliver a
product/service. Sl VC may define

different maturity assessment models
according to different management

systems/processes with specific goals
towards value-adding and win–win across

the value chain

Maturity of data/information, Maturity of
management/process across the chain,

Maturity of overall
cooperation/commitment of all

prosumers/SMRs/SMGs

Well-defined KPI with multiple-levels not only can provide a comprehensive eval-
uation for understanding on the effectiveness and efficiency of the entire value chain
system and value-adding capability in the context of SocialVC, but also provide a gap
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between the baseline (current KPI) and target (future KPI) by continuous improvement
of systems/structures/processes. Therefore, a more detailed multiple-level KPI needs
to be developed, guided by the proposed high-level KPI. Examples in Table 1 give more
selections to define the detailed-level KPI even though this topic is excluded in this research.
For instance, to achieve good performance, responsiveness to customers, flexibility and
adaptability to change, and rate of perfect order fulfillment are associated with primary
performance-delivery. All seven primer KPI can be broken down into more detailed KPI
levels to develop the appropriate calculation accordingly, for better in-depth understanding
of the entire SocialVC.

5. Conclusions and Future Research

As described above, this research presents a novel way of adding value via SocialVC,
which provides more potential for enterprises to create value and strengthen their com-
petition. The major contributions from this research work are summarized in this section,
and directions for future research are also suggested.

5.1. Conclusions

Compared with the value-adding capability of the normal value chain, the proposed
new perspective of value-adding in the context of SocialVC system can leverage the new
value-adding mode provided by the SocialVC system in order to promote opportunities
and capabilities for adding value for all involved participants. The proposed architecture
of SocialVC can play an important role in forming the SocialVC system, which helps to
understand how enterprises and customers can use the SocialVC system in dealing with
coordinating various manufacturing resources, and how the value-adding activities/tasks
made by SMRs/SMGs/prosumers are supported from various KETs and management
systems. In reality, the SocialVC can mitigate the non-value-adding factors caused by
certain issues in the context of the normal value chain. It can also promote a win–win
scenario for all involved participants (prosumers/SMRs/SMGs) in the Social VC.

It can be concluded that there is plenty of value-adding potential from the enter-
prise perspective, especially for those MSMEs and individuals not easily involved in
many manufacturing tasks in the context of the normal value chain. From the perspective
of former customers in the normal value chain system, the role of customers changes
to that of prosumers who can also be involved in the upstream manufacturing process
to mitigate waste due to the ideas and manufacturing capacity of customers being ne-
glected or not incorporated into the manufacturing system. As the manufacturers become
SMRs/SMGs/prosumers, there is no clear line among enterprises/MSEMs/individuals
and customers in the SocialVC system, and some issues that have been difficult to solve for
a long time in the normal VC system must be greatly reduced, such as sourcing, service,
and the roles of customers as discussed in Section 2.

Regarding the networking issue in the normal value chain, the new perspective in
SocialVC is adopting social networking, such as Internet-based social media or platforms.
Social networking not only allows feedback from all SocialVC participants, but also pro-
vides an effective way of interacting and communicating for collaborative value-adding
activity with its downstream consumers (prosumers in SocialVC) across the chain. Social
networking with other supporting technologies can minimize waste in networking in the
context of the normal VC.

Regarding the high demand for mass customization, the customized product/service
can be dealing with the SocialVC system, which provides an effective social network for
stronger interacting and collaborating among various resources. Meanwhile, prosumers
are one resource in the SocialVC; they have a better understanding of customization
and individualization. Consequently, waste caused by understanding customers can
be minimized in the context of SocialVC. With supporting technologies, such as social
networking, big data, intelligent decisions, etc., the networked resources collaborate to
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contribute a lot of capacity/idea/knowledge for more value-adding activities/tasks in the
manufacturing process, driven by much customization and individualization.

Regarding measurement of the SocialVC system’s performance, the authors present a
performance measurement framework considering the identified main CSF and characteris-
tics of SocialVC. The primary/high-level KPI are defined in the performance measurement
framework, and some examples of lower-level KPI are provided. With the high-level
performance metrics, detailed low-level KPI with the relevant calculation should be further
developed for evaluating how the SocialVC operates.

In brief, the SocialVC brings more potential for value-adding for all involved partic-
ipants while reducing waste that is difficult to remove in the context of the normal VC.
For this purpose, the SocialVC architecture provides a social networked manufacturing
environment in which participants (enterprises/MSMEs/individuals) across the chain can
collaborate to carry out order fulfillment, supported by KSTs and defined management sys-
tems. The theory of and knowledge about the SocialVC system still needs to be developed
towards a more systematic and mutual SocialVC which fosters the capability of enterprises
to add value and address issues relevant to the concerns of value-adding in the context of
the normal VC.

5.2. Future Research

Deepening and exploring the various potentials of value-adding in the context of
SocialVC remains a major area for future research. It is also important to draw on certain
existing lean tools to analyze or identify the further potential of value-adding, such as
value stream analysis/value stream mapping. In the context of digital technology, it
would be crucial to search out more value-adding potential supported by advanced digital
technology applications.

Regarding SocialVC networking, exploring more support technology and relevant
computing methods for decision-making on the optimization of the shape of SMRs is
needed. As described in Section 4, SMRs are characterized by socialization, decentralization,
self-organized and specialization, which are different from the normal organization with
centralized management. Another important research area in the future will focus on
intelligent decision-making in more optimized modes for interacting and collaborating
with SMRs’ shape, in order to carry out customers’ order fulfillment, in particular, orders
with mass customization and mass individualization. For example, a topology model for
enterprise relationship network in the context of the social manufacturing is introduced by
Jiang et al. [54].

Regarding the high demand for mass customization, this is associated with the above
research area: more optimized SMR shape with more effective interaction and collaboration
to help in dealing with mass customization or mass individualization. In addition, from the
business perspective, there is a need to improve the overall production planning mode in
the context of the SocialVC system, including a socialized integrated planning mechanism
in an ecosystem of the socialized business model.

Regarding the performance measurement of the SocialVC system, the original in-
tention of this research was to propose a new perspective on value-adding for enter-
prises/customers, so performance-focused attention is limited in this paper, although the
authors propose a high-level performance measurement framework which is helpful in
developing detailed multiple low level KPIs with calculations to measure and evaluate the
SocialVC system in order to optimize the system and create more value-adding potential.
Liu et al. paid attention to social factors in evaluation of the supply chain management
system. From the perspective of preferred suppliers, they developed an SSSE indicator sys-
tem that considered economic, environmental, and social factors, and the cloud probability
dominance relations (PDR) method was used for the selection of the optimal sustainable
supplier [66]. From the perspective of comprehensively evaluating the performance of
the SocialVC, a bigger effort is still needed to develop detailed performance measures to
evaluate the major business process across the SocialVC. Further research on the SocialVC
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system is needed on the behavior of involved participants, such as behaviors among enter-
prises, MSEM and individuals who are involved in value-adding activity in the SocialVC
system as prosumers, as their behavior impacts both the efficiency of the delivery of the
SocialVC system and the value-adding capacity for all involved participants.

Regarding the product-lifecycle-based value chain that is actually not the focus in this
paper, it is nevertheless still an important topic in SocialVC, for instance, how to build a
sustainable socialized manufacturing value chain that covers the product lifecycle. More
effort should be put into the product-lifecycle-based value chain: for example, Liu et al.
proposed a graph-matching model that can calculate the similarity score to solve the
matching problem in the crowdsourcing mechanism between the collaborative design
crowdsourcing task network graph and the designer network graph [67]. There are more
issues in the product-lifecycle-based value chain which could be an area focused on in the
future. Moreover, future research may also focus on different industries to establish various
industrial social systems according to the needs or specific purposes of the particular
industry. In this area, some attempts have been made. For instance, a digital monitoring
and management platform for urban construction crane machinery has been established in
Ningbo, China [45]. More than 10,000 various construction crane equipment items have
been connected to the digital platform, with 869 linked enterprises and 23,139 operators,
and more than 3000 construction sites in 2022. This platform creates a city-wide socialized
entire value chain management for the construction industry. This case from the crane
industry provides a sample of the SocialVC of various industries which have a special
purpose, and this can also be one future research direction.
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