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Fractional-order differential and integral operators and fractional differential equa-
tions have extensive applications in the mathematical modelling of real-world phenomena
which occur in scientific and engineering disciplines such as physics, chemistry, biophysics,
biology, medical sciences, financial economics, ecology, bioengineering, control theory,
signal and image processing, aerodynamics, transport dynamics, thermodynamics, vis-
coelasticity, hydrology, statistical mechanics, electromagnetics, astrophysics, cosmology,
and rheology. Fractional differential equations are also regarded as a better tool for the
description of hereditary properties of various materials and processes than the correspond-
ing integer-order differential equations. The Special Issue “Advances in Boundary Value
Problems for Fractional Differential Equations” covers aspects of the recent developments
in the theory and applications of fractional differential equations, inclusions, inequalities,
and systems of fractional differential equations with Riemann–Liouville derivatives, Ca-
puto derivatives, or other generalized fractional derivatives subject to various boundary
conditions. In the papers published in this Special Issue, the authors study the existence,
uniqueness, multiplicity, and nonexistence of classical or mild solutions, the approximation
of solutions, and the approximate controllability of mild solutions for diverse models. I will
present these papers in the following, grouped according to their subject.

1. Equations and Systems of Equations with Sequential Fractional Derivatives

In paper [1], the authors investigate the differential equation

Dσn z(t) = Az(t) + f(t), t ∈ (0, T], (1)

with the initial conditions

Dσk z(0) = zk, k = 0, 1, . . . , n − 1, (2)

where the operator A : DA ⊂ Z → Z is linear and closed with its domain DA (a dense
set), Z is a Banach space, f : [0, T] → Z is a given function, and Dσk , k = 0, 1, . . . , n are
the Dzhrbashyan–Nersesyan fractional derivatives. For the set of numbers {αk}n

0 , with
αk ∈ (0, 1], k = 0, 1, . . . , n, they introduced the numbers σk = ∑k

j=0 αj − 1, k = 0, 1, . . . , n,
with the condition σn > 0. The fractional derivatives Dσk , k = 0, 1, . . . , n are given by
Dσ0z(t) = Dα0−1

t z(t), Dσk z(t) = Dαk−1
t Dαk−1

t Dαk−2
t . . . Dα0

t z(t), for k = 1, 2, . . . , n, where
Dβ

t is the Riemann–Liouville integral for β ≤ 0 and the Riemann–Liouville derivative
for β > 0. The Dzhrbashyan–Nersesyan fractional derivative Dσn is a generalization of
the Riemann–Liouville and Caputo fractional derivatives. The authors prove firstly the
existence and uniqueness of the k-resolving families of operators (for k = 0, . . . , n − 1)
for the homogeneous equation Dσn z(t) = Az(t), and then they give a criterion for the
existence and uniqueness of analytic k-resolving families, namely A belongs to a class of
operators denoted by A{αk}(θ0, a0). Different properties of the resolving families are also
studied, and a perturbation theorem for operators from A{αk}(θ0, a0) is presented. Then,
the authors prove the existence and uniqueness of a solution for problem (1),(2), where
f is continuous in the graph norm of A or it is a Hölderian function. As an application,
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they show the existence of a unique solution for an initial boundary value problem to a
fractional linearized model of viscoelastic Oldroyd fluid dynamics.

Paper [2] deals with a nonlinear coupled system of sequential fractional differen-
tial equations {

(cDq+1 +c Dq)x(t) = f(t, x(t), y(t)), t ∈ [0, 1],
(cDp+1 +c Dp)y(t) = g(t, x(t), y(t)), t ∈ [0, 1],

(3)

supplemented with the coupled multipoint and Riemann–Stieltjes integral boundary conditions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(0) = 0, x′(0) = 0, x′(1) = 0,

x(1) = k
∫ ρ

0
y(s) dA(s) +

n−2

∑
i=1

αiy(σi) + k1

∫ 1

ν
y(s) dA(s),

y(0) = 0, y′(0) = 0, y′(1) = 0,

y(1) = h
∫ ρ

0
x(s) dA(s) +

n−2

∑
i=1

βix(σi) + h1

∫ 1

ν
x(s) dA(s),

(4)

where p, q ∈ (2, 3], cDκ denotes the Caputo fractional derivative of order κ ∈ {q, p},
0 < ρ < σi < ν < 1, f, g : [0, 1]×R×R → R are continuous functions, k, h, k1, h1, αi, βi ∈ R,
for i = 1, 2, . . . , n− 2, and A is a function of bounded variation. The word sequential is used
in the sense that the operator cDq+1 +c Dq can be written as the composition of operators
cDq and D + I, where D is the usual differential operator and I is the identity operator.
Under some assumptions of the data of the problem, the authors prove the existence and
uniqueness of solutions for problem (3),(4) by applying the Leray–Schauder alternative
and the Banach contraction mapping principle.

2. Resonance Problems for Caputo Fractional Differential Equations

Paper [3] is concerned with the nonlinear boundary value problem for a fractional
differential equation of variable order at resonance{

cDu(t)
0+ x(t) = g(t, x(t)), t ∈ [0, T],

x(0) = x(T),
(5)

where cDu(t)
0+ is the Caputo derivative of variable order u(t) with u : [0, T] → (0, 1]

and g : [0, T] × R → R is a continuous function. This problem is at resonance, that
is, the corresponding linear homogeneous boundary value problem has non-trivial so-
lutions. The authors transform firstly problem (5) to an equivalent standard boundary
value problem at resonance with a fractional derivative of constant order by using some
generalized intervals and piece-wise constant functions. Then, by applying Mawhin’s
continuation theorem, they demonstrate the existence of at least one solution to (5).

In paper [4], the authors study the fractional differential equation in space Rn

cDα
0+u(t) = f(t, u(t),cDα−1

0+ u), t ∈ (0, 1), (6)

subject to the boundary conditions

u(0) = Bu(ξ), u(1) = Cu(η), (7)

where cDk
0+ denotes the Caputo fractional derivative of order k ∈ {α, α − 1}, ξ, η ∈ (0, 1),

α ∈ (1, 2], f : [0, 1]× R2n → Rn satisfies Carathéodory conditions, and B, C are n-order
nonzero square matrices. They prove the existence of solutions of problem (6),(7) by using
Mawhin coincidence degree theory.

2
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3. Approximations of Solutions for Caputo Fractional Differential Equations

Paper [5] is devoted to the Caputo fractional differential equation with variable coefficients

Dλ
x u(x) + c1(x)u′(x) + c0(x)u(x) = g(x), 0 < x < 1, (8)

with the boundary conditions

p0u(0)− q0u′(0) = b0, p1u(1) + q1u′(1) = b1, (9)

where λ ∈ (1, 2], Dλ
x is the Caputo fractional derivative of order λ, c1, c0, and g are

continuous functions, p0, p1, q0, q1 ≥ 0, and p0 p1 + p0q1 + q0 p1 �= 0. By using the shifted
Chebyshev polynomials of the first kind and the collocation method, the authors present
approximate solutions to problem (8),(9).

4. Systems of Fractional Differential Equations with p-Laplacian Operators

In paper [6], the authors investigate the system of fractional differential equations with
r1-Laplacian and r2-Laplacian operators⎧⎨⎩ Dγ1

0+

(
ϕr1

(
Dδ1

0+u(t)
))

= f
(
t, u(t), v(t), Iσ1

0+u(t), Iσ2
0+v(t)

)
, t ∈ (0, 1),

Dγ2
0+

(
ϕr2

(
Dδ2

0+v(t)
))

= g
(
t, u(t), v(t), Iς1

0+u(t), Iς2
0+v(t)

)
, t ∈ (0, 1),

(10)

supplemented with the uncoupled nonlocal boundary conditions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(i)(0) = 0, i = 0, . . . , p − 2, Dδ1
0+u(0) = 0,

ϕr1(Dδ1
0+u(1)) =

∫ 1

0
ϕr1(Dδ1

0+u(τ)) dH0(τ), Dα0
0+u(1) =

n

∑
k=1

∫ 1

0
Dαk

0+u(τ) dHk(τ),

v(j)(0) = 0, j = 0, . . . , q − 2, Dδ2
0+v(0) = 0,

ϕr2(Dδ2
0+v(1)) =

∫ 1

0
ϕr2(Dδ2

0+v(τ)) dK0(τ), Dβ0
0+v(1) =

m

∑
k=1

∫ 1

0
Dβk

0+v(τ) dKk(τ),

(11)

where γ1, γ2 ∈ (1, 2], p, q ∈ N, p, q ≥ 3, δ1 ∈ (p − 1, p], δ2 ∈ (q − 1, q], n, m ∈ N,
σ1, ς1, σ2, ς2 > 0, αi ∈ R, i = 0, . . . , n, 0 ≤ α1 < α2 < . . . < αn ≤ α0 < δ1 − 1,
α0 ≥ 1, β j ∈ R, j = 0, . . . , m, 0 ≤ β1 < β2 < . . . < βm ≤ β0 < δ2 − 1, β0 ≥ 1,
ϕrk (τ) = |τ|rk−2τ, rk > 1, k = 1, 2, the functions f, g : (0, 1)×R4

+ → R+ are continuous,
singular at t = 0 and/or t = 1, (R+ = [0, ∞)), Iκ0+ is the Riemann–Liouville fractional
integral of order κ (for κ = σ1, ς1, σ2, ς2), Dκ

0+ is the Riemann–Liouville fractional deriva-
tive of order κ (for κ = γ1, γ2, δ1, δ2, α0, . . . , αn, β0, . . . , βm), and the integrals from the
boundary conditions (11) are Riemann–Stieltjes integrals with Hi : [0, 1] → R, i = 0, . . . , n
and Kj : [0, 1] → R, j = 0, . . . , m functions of bounded variation. By using the Guo–
Krasnoselskii fixed point theorem of cone expansion and norm-type compression, they
prove the existence and multiplicity of positive solutions for problem (10),(11).

Paper [7] is focused on the system of fractional differential equations (10) subject to
the nonlocal coupled boundary conditions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(i)(0) = 0, i = 0, . . . , p − 2, Dδ1
0+u(0) = 0,

ϕr1(Dδ1
0+u(1)) =

∫ 1

0
ϕr1(Dδ1

0+u(τ)) dH0(τ), Dα0
0+u(1) =

n

∑
i=1

∫ 1

0
Dαi

0+v(τ) dHi(τ),

v(j)(0) = 0, j = 0, . . . , q − 2, Dδ2
0+v(0) = 0,

ϕr2(Dδ2
0+v(1)) =

∫ 1

0
ϕr2(Dδ2

0+v(τ)) dK0(τ), Dβ0
0+v(1) =

m

∑
j=1

∫ 1

0
D

β j
0+u(τ) dKj(τ),

(12)

where αi ∈ R, i = 0, . . . , n, 0 ≤ α1 < α2 < . . . < αn ≤ β0 < δ2 − 1, β0 ≥ 1, β j ∈ R,
j = 0, . . . , m, 0 ≤ β1 < β2 < . . . < βm ≤ α0 < δ1 − 1, α0 ≥ 1. The authors present existence

3
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and multiplicity results for the positive solutions of problem (10),(12) by applying the
Guo–Krasnoselskii fixed point theorem.

Paper [8] deals with a system of fractional differential equations with �1-Laplacian
and �2-Laplacian operators{

Dγ1
0+(ϕ�1(Dδ1

0+u(t))) + a(t) f (v(t)) = 0, t ∈ (0, 1),
Dγ2

0+(ϕ�2(Dδ2
0+v(t))) + b(t)g(u(t)) = 0, t ∈ (0, 1),

(13)

with the coupled nonlocal boundary conditions⎧⎪⎪⎪⎨⎪⎪⎪⎩
u(i)(0) = 0, i = 0, . . . , p − 2; Dδ1

0+u(0) = 0, Dα0
0+u(1) =

n

∑
i=1

∫ 1

0
Dαi

0+v(τ) dHi(τ) + c0,

v(j)(0) = 0, j = 0, . . . , q − 2; Dδ2
0+v(0) = 0, Dβ0

0+v(1) =
m

∑
j=1

∫ 1

0
D

β j
0+u(τ) dKj(τ) + d0,

(14)

where γ1, γ2 ∈ (0, 1], p, q ∈ N, p, q ≥ 3, δ1 ∈ (p − 1, p], δ2 ∈ (q − 1, q], n, m ∈ N,
αi ∈ R for all i = 0, 1, . . . , n, 0 ≤ α1 < α2 < . . . < αn ≤ β0 < δ2 − 1, β0 ≥ 1, β j ∈ R

for all j = 0, 1, . . . , m, 0 ≤ β1 < β2 < . . . < βm ≤ α0 < δ1 − 1, α0 ≥ 1, the functions
f , g : R+ → R+ and a, b : [0, 1] → R+ are continuous, c0 and d0 are positive parameters,
�1, �2 > 1, ϕ�i (ζ) = |ζ|�i−2ζ, i = 1, 2, the functions Hj, j = 1, . . . , n and Ki, i = 1, . . . , m
have bounded variation, and Dκ

0+ denotes the Riemann–Liouville derivative of order κ (for
κ = γ1, γ2, δ1, δ2, αi for i = 0, 1, . . . , n, β j for j = 0, 1, . . . , m). The authors give sufficient
conditions for the functions f and g, and intervals for the parameters c0 and d0 such that
problem (13),(14) have at least one positive solution or they have no positive solutions.
They apply the Schauder fixed point theorem in the proof of the main existence result.

In paper [9], the authors study a system of nonlinear Fredholm fractional integro-
differential equations with p-Laplacian operator⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

tD
γj
T (kj(t)φp(c

0D
γj
t zj(t))) + lj(t)φp(zj(t))

= λfzj(t, z1(t), . . . , zm(t)) +
∫ T

0
gj(t, s)φp(zj(s)) ds, t ∈ [0, T], j = 1, 2, . . . , m,

zj(t) =
∫ T

0
gj(t, s)φp(zj(s)) ds, t ∈ [0, T], j = 1, 2, . . . , m,

(15)

supplemented with the Sturm–Liouville boundary conditions⎧⎨⎩ cjkj(0)φp(zj(0))− c′j tD
γj−1
T (kj(0)φp(c

0D
γj
t zj(0))) = 0, j = 1, 2, . . . , m,

djkj(T)φp(zj(T)) + d′j tD
γj−1
T (kj(T)φp(c

0D
γj
t zj(T))) = 0, j = 1, 2, . . . , m,

(16)

where λ is a positive parameter, ki, li ∈ L∞[0, T] with ess inf[0,T]ki(t) > 0 and ess inf[0,T]
li(t) ≥ 0, ci, di, c′i, d′i, i = 1, 2, . . . , m, are positive constants, p ∈ (1, ∞), φp(s) = |s|p−2s,
(s �= 0), φp(0) = 0, the functions f : [0, T] × Rm → R and gi : [0, T] × [0, T] → R,
i = 1, . . . , m satisfy some conditions, and c

0D
γj
t and tD

γj
T denote the left Caputo fractional

derivative and the right Riemann–Liouville fractional derivative of order γj, respectively.
By using the critical point theory, they prove the existence of infinitely many solutions of
problem (15),(16).

5. Approximate Controllability for Fractional Differential Equations in Banach Spaces

Paper [10] is concerned with the fractional evolution equation of Sobolev type in the
Hilbert space X, with a control and a nonlocal condition{ LDα

t (Ex(t)) = Ax(t) + f(t, x(t)) + Bu(t), t ∈ (0, b],
I1−α
t (Ex(t))|t=0 + g(x) = x0,

(17)

4
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where α ∈ (0, 1), A : D(A) ⊂ X → X and E : D(E) ⊂ X → X are linear operators,
B : U → X is a linear bounded operator, U is another Hilbert space, the control function
u ∈ Lp([0, b], U) for pα > 1, x0 ∈ X, the functions f and g satisfy some assumptions, I1−α

t
is the Riemann–Liouville fractional integral operator of order 1 − α, and LDα

t denotes the
Riemann–Liouville fractional derivative of order α. By using the Schauder fixed point
theorem and operator semigroup theory, the authors prove firstly the existence of mild
solutions for problem (17) without the compactness of the operator semigroup. Then, they
show that if the corresponding linear problem is approximately controllable on [0, b], then
problem (17) is also approximately controllable on [0, b]. An example with an initial bound-
ary value problem for a partial differential equation with Riemann–Liouville fractional
derivatives is finally presented.

Paper [11] is devoted to the fractional differential evolution equation in the Banach
space X with a finite delay and a control

cDβx(t) = Ax(t) + f(t, xt) + Bu(t), t ∈ [0, a], (18)

subject to the initial date
x(t) = φ(t), t ∈ [−b, 0], (19)

or to the nonlocal condition with a parameter

x(t) + λgt(x) = φ(t), t ∈ [−b, 0], (20)

where A : D ⊂ X → X is a closed linear unbounded operator on X, where its domain D is a
dense set; u is the control function; B : L2([0, a]; U) → L2([0, a];D) is a linear bounded oper-
ator, where U is another Banach space; φ ∈ L1([−b, 0]; X), xt denotes the history of the state
function defined by xt(θ) = {x(t + θ), if t + θ ≥ 0; φ(t + θ), if t + θ ≤ 0} for θ ∈ [−b, 0];
λ is a parameter; gt : C([−b, a]; X) → X is a given function satisfying some assumptions;
and cDβ is the Caputo fractional derivative of order β, with β ∈ (1/2, 1]. Under the assump-
tion that A is the infinitesimal generator of a differentiable resolvent operator, the authors
prove the existence and uniqueness of mild solutions for problems (18),(19) and (18),(20)
by utilizing the Banach contraction mapping principle. Then, based on the iterative method,
they give sufficient conditions for the approximate controllability of (18),(19) and (18),(20).
As an application, an example of a Caputo fractional partial differential equation with delay
in the space X = L2([0, π]) is finally addressed.

6. Fractional Differential Inclusions and Inequalities

In paper [12], the authors investigate the neutral impulsive semi-linear fractional
differential inclusion with delay and initial date⎧⎨⎩

cDα
0,t[x(t)− h(t,κ(t)x)] ∈ Ax(t) +F (t,κ(t)x), a.e. t ∈ [0, b] \ {t1, . . . , tm},

Iix(t−i ) = x(t−i )− x(t+i ), i = 1, . . . , m,
x(t) = ψ(t), t ∈ [−r, 0],

(21)

where α ∈ (0, 1), 0 = t0 < t1 < . . . < tm < tm+1 = b, r > 0, the operator A is the
infinitesimal generator of the non-compact semigroup T = {Y(t), t ≥ 0} on the Banach
space E, and F : [0, b] × Θ → 2E \ {φ} is a multifunction. Here, h : [0, b] × Θ → E,
Ii : E → E, i = 1, . . . , m, ψ ∈ Θ, and for every t ∈ [0, b], the function κ(t) : H → Θ
is defined by (κ(t)x)(θ) = x(t + θ) for θ ∈ [−r, 0]. cDα

0,t denotes the Caputo fractional
derivative of order α and the spaces Θ and H are defined in the paper. They show that the
set of mild solutions to problem (21) is nonempty, compact, and an Rδ-set in a complete
metric space H.
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Paper [13] is focused on the Hilfer fractional neutral integro-differential inclusion with
initial date⎧⎨⎩ Dk,ε

0+[y(t)−N (t, y(t))] ∈ Ay(t) + G
(

t, y(t),
∫ t

0
e(t, s, y(s)) ds

)
, t ∈ (0, d],

I(1−k)(1−ε)
0+ y(0) = y0,

(22)

where Dk,ε
0+ denotes the Hilfer fractional derivative of order k and type ε, with k ∈ (0, 1) and

ε ∈ [0, 1], I(1−k)(1−ε)
0+ is the Riemann–Liouville fractional integral of order (1 − k)(1 − ε),

and A is an almost sectorial operator of the analytic semigroup {T (t), t ≥ 0} on the
Banach space Y. Here, G : [0, d] × Y × Y → 2Y \ {φ} is a nonempty, bounded, closed,
convex multivalued map and N : [0, d] × Y → Y and e : [0, d] × [0, d] × Y → Y are
appropriate functions. By using the Martelli fixed point theorem, the authors prove the
existence of mild solutions to problem (22).

In paper [14], the authors study the damped wave inequality

∂2u
∂t2 − ∂2u

∂x2 +
∂u
∂t

≥ xσ|u|p, t > 0, x ∈ (0, L), (23)

subject to initial boundary conditions⎧⎨⎩ (u(t, 0), u(t, L)) = (f(t), g(t)), t > 0,(
u(0, x),

∂u
∂t

(0, x)
)
= (u0(x), u1(x)), x ∈ (0, L),

(24)

where L > 0, σ ∈ R, p > 1, f ∈ L1
loc([0, ∞)), g(t) = Cgtγ with Cg ≥ 0 and γ > −1,

and u0, u1 ∈ L1([0, L]). They also investigate the time-fractional damped wave inequality

∂αu
∂tα

− ∂2u
∂x2 +

∂βu
∂tβ

≥ xσ|u|p, t > 0, x ∈ (0, L), (25)

supplemented with the initial boundary conditions in (24), where α ∈ (1, 2), β ∈ (0, 1),
and ∂κ

∂tκ is the time Caputo fractional derivative of order κ, for κ ∈ {α, β}. By using the test
function method, the authors give sufficient conditions depending on the above data under
which problems (23),(24) and (23),(25) admit no global weak solutions.

7. Fractional q-Difference Equations and Systems

Paper [15] deals with the fractional q-difference equation in a Banach space E, with non-
linear integral conditions⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(cDα
q y)(t) = f(t, y(t)), a.e. t ∈ [0, T],

y(0)− y′(0) =
∫ T

0
g(s, y(s)) ds,

y(T) + y′(T) =
∫ T

0
h(s, y(s)) ds,

(26)

where T > 0, q ∈ (0, 1), cDα
q denotes the Caputo fractional q-derivative of order α, with

α ∈ (1, 2], and f, g, h : [0, T] × E → E are given functions satisfying some assumptions.
By using the measures of noncompactness technique and the Mönch fixed point theorem,
the authors prove the existence of solutions to problem (26).

Paper [16] is concerned with the system of nonlinear fractional q-difference equations{
(Dα

q u)(t) + P(t, u(t), v(t), Iω1
q u(t), Iδ1

q v(t)) = 0, t ∈ (0, 1),

(Dβ
q v)(t) + Q(t, u(t), v(t), Iω2

q u(t), Iδ2
q v(t)) = 0, t ∈ (0, 1),

(27)
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subject to the coupled nonlocal boundary conditions⎧⎪⎨⎪⎩
u(0) = Dqu(0) = . . . = Dn−2

q u(0) = 0, Dζ0
q u(1) =

∫ 1

0
Dζ

qv(t) dqH(t),

v(0) = Dqv(0) = . . . = Dm−2
q v(0) = 0, Dξ0

q v(1) =
∫ 1

0
Dξ

qu(t) dqK(t),
(28)

where q ∈ (0, 1), α, β ∈ R, α ∈ (n − 1, n], β ∈ (m − 1, m], n, m ∈ N, n, m ≥ 2,
ω1, δ1, ω2, δ2 > 0, ζ ∈ [0, β − 1), ξ ∈ [0, α − 1), ζ0 ∈ [0, α − 1), ξ0 ∈ [0, β − 1). Here,
Dκ

q denotes the Riemann–Liouville q-derivative of order κ for κ ∈ {α, β, ζ0, ζ, ξ0, ξ}, Ik
q is

the Riemann–Liouville q-integral of order k for k ∈ {ω1, δ1, ω2, δ2}, P and Q are nonlinear
functions, and the integrals from conditions (28) are Riemann–Stieltjes integrals with H, K
functions of bounded variation. By applying varied fixed point theorems, the authors
obtain existence and uniqueness results for the solutions of problem (27),(28).

Finally, I would like to thank all the authors for submitting papers to this Special
Issue, and hope that their results will be useful to other researchers working in the field of
fractional differential equations.
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Dzhrbashyan–Nersesyan Fractional Derivative
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Abstract: In this paper, a criterion for generating an analytic family of operators, which resolves
a linear equation solved with respect to the Dzhrbashyan–Nersesyan fractional derivative, via a
linear closed operator is obtained. The properties of the resolving families are investigated and
applied to prove the existence of a unique solution for the corresponding initial value problem of
the inhomogeneous equation with the Dzhrbashyan–Nersesyan fractional derivative. A solution is
presented explicitly using resolving families of operators. A theorem on perturbations of operators
from the found class of generators of resolving families is proved. The obtained results are used for a
study of an initial-boundary value problem to a model of the viscoelastic Oldroyd fluid dynamics.
Thus, the Dzhrbashyan–Nersesyan initial value problem is investigated in the essentially infinite-
dimensional case. The use of the proved abstract results to study initial-boundary value problems for
a system of partial differential equations is demonstrated.

Keywords: fractional Dzhrbashyan–Nersesyan derivative; differential equation with fractional
derivatives; resolving family of operators; perturbation theorem; initial value problem; initial-boundary
value problem; viscoelastic Oldroyd fluid

MSC: 34G10; 35R11; 34A08

1. Introduction

Consider the differential equation

Dσn z(t) = Az(t) + f (t), t ∈ (0, T], (1)

where A is a linear closed operator, which has a dense domain DA in a Banach space Z ,
T > 0, f : [0, T] → Z is a given function. Let Dβ

t be the Riemann–Liouville integral for β ≤ 0
and the Riemann–Liouville derivative for β > 0. Here Dσn z := Dαn−1

t Dαn−1
t Dαn−2

t . . . Dα0
t z(t),

where αk ∈ (0, 1], is the Dzhrbashyan–Nersesyan fractional derivative [1]. Note that this
derivative includes as partial cases the Gerasimov–Caputo (αk = 1, k = 0, 1, . . . , n − 1,
αn = α − n + 1) and the Riemann–Liouville (α0 = α − n + 1, αk = 1, k = 1, 2, . . . , n)
fractional derivatives of an order α from (n − 1, n].

In recent decades, fractional-order equations have been actively used in modeling
various complex systems and processes in physics, chemistry, social sciences, and human-
ities [2–6]. We note recent works [7–12], combining theoretical studies in various fields
of fractional integro-differential calculus and their use in real-world modeling problems,
particularly when modeling biological processes in virology, which is especially important
at present. Readers should also note the works [13,14], which consider some applied
problems with the Dzhrbashyan–Nersesyan fractional derivative.
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The initial value problem

Dσk z(0) = zk, k = 0, 1, . . . , n − 1, (2)

with

Dσ0 z(t) := Dα0−1
t z(t), Dσk z(t) := Dαk−1

t Dαk−1
t Dαk−2

t . . . Dα0
t z(t), k = 1, 2, . . . , n,

for Equation (1) in the scalar case (Z = R, A ∈ R) is studied by M.M. Dzrbashyan,
A.B. Nersesyan in [1]. The unique solvability theorem for such a problem with Z = Rn and
a matrix A was obtained in [15]. Various equations with partial derivatives of Dzhrbashyan
and Nersesyan were studied in papers [16–21]. Problem (1), (2) with a linear continuous
operator A ∈ L(Z) in an arbitrary Banach space Z was researched in [22] considering the
methods used to resolve families of operators; see [23].

The results obtained in this work generalize the corresponding results of the theory of
analytic semigroups of operators solving first-order equations in Banach spaces [24,25]. We
also note the works in which the theory of analytical resolving families is constructed for
evolutionary integral equations [26], equations with a Gerasimov–Caputo [27] or Riemann–
Liouville [28] derivative, fractional multi-term linear differential equations in Banach
spaces [29], and equations with various distributed fractional derivatives [30–34].

After the Introduction and Preliminaries, in the second section of the present work, the no-
tion of a k-resolving family for homogeneous Equation (1), i.e., with f ≡ 0, k = 0, 1, . . . , n − 1,
is introduced. In the third section, it is shown that the existence of k-resolving families,
k = 1, 2, . . . , n − 1, follows from the existence of a zero-resolving family. In the fourth sec-
tion, a criterion of the existence of a zero-resolving family of operators to the homogeneous
Equation (1) is found in terms of conditions for a linear closed operator A. The class of
operators which satisfy these conditions is denoted as A{αk}(θ0, a0). Various properties
of the resolving families are investigated, and a perturbation theorem for operators from
A{αk}(θ0, a0) is proved in the fifth section. For problem (1), (2) with a function f , which
is continuous in the graph norm of A or Hölderian, the existence of a unique solution is
obtained in the sixth section. In the last section, this result is used to prove the theorem on
a unique solution existence for an initial-boundary value problem to a fractional linearized
model of the viscoelastic Oldroyd fluid dynamics.

The theoretical significance of the obtained results lies in the fact that they give a correct
statement of an initial problem and conditions for its unique solvability for equations with
the Dzhrbashyan–Nersesian fractional derivative and with an unbounded linear operator
at the unknown function. The unboundedness of the operator in the equation makes it
possible to reduce initial-boundary value problems to various equations and systems of
partial differential equations in problems of this type.

2. Preliminaries

Let Z be a Banach space. For the function z : R+ → Z , the Riemann–Liouville
fractional integral of an order β > 0 has the form

Jβ
t z(t) :=

t∫
0

(t − s)β−1

Γ(β)
z(s)ds, t > 0.

For the function z, the Riemann–Liouville fractional derivative of an order α ∈ (m − 1, m],
where m ∈ N is defined as Dα

t z(t) := Dm
t Jm−α

t z(t), Dm
t := dm

dtm . Further, we use the notation
D−α

t := Jα
t for α > 0; D0

t = J0
t is the identical operator.

Let {αk}n
0 be a set of numbers αk ∈ (0, 1], k = 0, 1, . . . , n ∈ N. We will use the

denotations σk :=
k
∑

j=0
αj − 1, k = 0, 1, . . . , n, hence σk ∈ (−1, k − 1]. Further, we will assume

10
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that σn > 0. Define the Dzhrbashyan–Nersesyan fractional derivatives, which correspond
to the sequence {αk}n

0 , by relations

Dσ0 z(t) := Dα0−1
t z(t), (3)

Dσk z(t) := Dαk−1
t Dαk−1

t Dαk−2
t . . . Dα0

t z(t), k = 1, 2, . . . , n. (4)

Example 1. Take α ∈ (n − 1, n], α0 = α − n + 1 ∈ (0, 1], αk = 1, k = 1, 2, . . . , n, then
Dσ0 z(t) := Dα−n

t z(t) := Jn−α
t z(t), Dσk z(t) := Dk−1

t Dα−n+1
t z(t) = Dk

t Jn−α
t z(t) :=

Dk−n+α
t z(t), k = 1, 2, . . . , n, are the Riemann–Liouville fractional derivatives. In particular,

Dσn z(t) = Dn
t Jn−α

t z(t) := Dα
t z(t).

Example 2. If α ∈ (n − 1, n], αk = 1, k = 0, 1, . . . , n − 1, αn = α − n + 1, then Dσk z(t) :=
Dk

t z(t), k = 0, 1, . . . , n − 1, Dσn z(t) := Dα−n
t Dn

t z(t) := Jn−α
t Dn

t z(t) :=CDα
t is the Gerasimov–

Caputo fractional derivative.

Example 3. In [23], it is shown that the compositions of the Gerasimov–Caputo and the Riemann–
Liouville fractional derivatives Dα

t Dβ
t , Dα

t
CDβ

t , CDα
t Dβ

t , CDα
t

CDβ
t may be presented as Dzhrbashyan–

Nersesyan fractional derivatives Dσn for some sequences {σ0, σ1, . . . , σn}.

Let α ∈ (m − 1, m], m ∈ N. Then, for a function z : R+ → Z , we use ẑ to denote the
Laplace transform, and for too-large expressions for z as Lap[z]. In [22], it is proved that

D̂σn z(λ) = λσn ẑ(λ)−
n−1

∑
k=0

λσn−σk−1Dσk z(0). (5)

L(Z) denotes the Banach space of all linear continuous operators on a Banach space
Z ; C l(Z) denotes the set of all linear closed operators, which are densely defined in Z
and act into Z . For an operator A ∈ C l(Z), its domain DA is endowed by the norm
‖ · ‖DA := ‖ · ‖Z + ‖A · ‖Z , which is a Banach space due to the closedness of A.

Consider the initial value problem

Dσk z(0) = zk, k = 0, 1, . . . , n − 1. (6)

to the linear homogeneous equation

Dσn z(t) = Az(t), t > 0, (7)

where A ∈ C l(Z), Dσn is the Dzhrbashyan–Nersesyan fractional derivative, associated
with a set of real numbers {αk}n

0 , 0 < αk ≤ 1, k = 0, 1, . . . , n ∈ N, by (3), (4), σn > 0.
A solution to problem (6), (7) is a function z ∈ C(R+; DA), such that Dσk

t z ∈ C(R+;Z),
k = 0, 1, . . . , n − 1, Dσn

t z ∈ C(R+;Z), (7) holds for all t ∈ R+ and conditions (6) are valid.
Hereafter, R+ := R+ ∪ {0}.

Denote Sθ,a := {λ ∈ C : | arg(λ − a)| < θ, λ �= a}, θ ∈ [π/2, π], a ∈ R, Σψ := {t ∈ C :
| arg t| < ψ, t �= 0} for ψ ∈ (0, π/2] and formulate an assertion that is important for further
considerations.

Theorem 1 ([34]). Let θ0 ∈ (π/2, π], a ∈ R, β ∈ [0, 1), X be a Banach space, H : (a, ∞) → X .
Then, the next statements are equivalent.

(i) There exists an analytic function F : Σθ0−π/2 → X . For every θ ∈ (π/2, θ0), there exists
such a C(θ) > 0 that the inequality ‖F(t)‖X ≤ C(θ)|t|−βeaRe t is satisfied for all t ∈ Σθ−π/2; for
λ > a F̂(λ) = H(λ).
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(ii) H is analytically extendable on Sθ0,a; for every θ ∈ (π/2, θ0) there exists K(θ) > 0, such
that for all λ ∈ Sθ,a

‖H(λ)‖X ≤ K(θ)
|λ − a|1−β

.

3. k-Resolving Families of Operators

Definition 1. A set of linear bounded operators {Sl(t) ∈ L(Z) : t > 0} is called k-resolving
family, k ∈ {0, 1, . . . , n − 1}, for Equation (7), if it satisfies the next conditions:

(i) Sk(t) is a strongly continuous family at t > 0;
(ii) Sk(t)[DA] ⊂ DA, for all x ∈ DA, t > 0 Sk(t)Ax = ASk(t)x;
(iii) For every zk ∈ DA Sk(t)zk is a solution of initial value problem Dσk z(0) = zk,

Dσl z(0) = 0, l ∈ {0, . . . , n − 1} \ {k} to Equation (7).

Let ρ(A) := {λ ∈ C : Rλ(A) := (λI − A)−1 ∈ L(Z)} be the resolvent set of
operator A.

Proposition 1. Let αl ∈ (0, 1], l = 0, 1, . . . , n, σn > 0. For k ∈ {0, 1, . . . , m − 1} there exists a
k-resolving family of operators {Sk(t) ∈ L(Z) : t > 0} for Equation (7), such that at some K > 0,
a ∈ R, β ∈ [0, 1) ‖Sk(t)‖L(Z) ≤ Keatt−β for all t > 0. Then, λσn ∈ ρ(A) for Reλ > a,

Ŝk(λ) = λσn−σk−1Rλσn (A) (8)

and a k-resolving family of operators for Equation (7) is unique.

Proof. Due to identity (5) and Definition 1 for arbitrary zk ∈ DA, Reλ > a λσn Ŝk(λ)zk −
λσn−σk−1zk = AŜk(λ)zk = Ŝk(λ)Azk. Therefore, the operator λσn I − A : DA → Z is
invertible and equality (8) holds. Since Ŝk(λ) ∈ L(Z) for Reλ > a, we have λσn ∈ ρ(A).
Due to equality (8) from the uniqueness of the inverse Laplace transform, we see the
uniqueness of a k-resolving family for Equation (7).

Proposition 2. Let αk ∈ (0, 1], k = 0, 1, . . . , n, σn > 0. There exists a 0-resolving family
{S0(t) ∈ L(Z) : t > 0} for (7), such that at some K > 0, a ∈ R ‖S0(t)‖L(Z) ≤ Keattσ0

for all t > 0. Then, for every k = 0, 1, . . . , n − 1, there exists a unique k-resolving family
{Sk(t) ∈ L(Z) : t > 0}. Moreover, Sk(t) ≡ Jσk−σ0

t S0(t) and ‖Sk(t)‖L(Z) ≤ K1eattσk at some
K1 > 0 for all t > 0, k = 1, 2, . . . , n − 1.

Proof. Since every z0 ∈ DA \ {0} J1−α0 S0(t)z0 has a nonzero limit z0 as t → 0+, due
to ([29], Lemma 1) S0(t)z0 = tα0−1z0/Γ(α0) + o(tα0−1) as t → 0+. Therefore, for every
z0 ∈ Z , T > 0 S0(t)z0 ∈ L1(0, T;Z) and there are Riemann–Liouville fractional integrals
for this function.

Define for k = 1, 2, . . . , n − 1 the families {Sk(t) := Jσk−σ0
t S0(t) ∈ L(Z) : t > 0}. By

this construction, it satisfies condition (i) in the Definition 1. For x ∈ DA, t > 0

Jσk−σ0
t S0(t)Ax =

t∫
0

(t − s)σk−σ0−1

Γ(σk − σ0)
S0(s)Axds = AJσk−σ0

t S0(t)x,

since {S0(t) ∈ L(Z) : t > 0} satisfies condition (ii) in Definition 1 and the operator A is
closed. So, condition (ii) holds for {Sk(t) ∈ L(Z) : t > 0}, where k = 1, 2, . . . , n − 1.

Further, we have

‖Sk(t)‖L(Z) ≤ K
t∫

0

(t − s)σk−σ0−1

Γ(σk − σ0)
sσ0 easds ≤ Keattσk Γ(σ0 + 1)

Γ(σk + 1)
= K1eattσk , t > 0.

12
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For zk ∈ DA, multiply the equality λσn Ŝ0(λ)zk − λσn−σ0−1zk = AŜ0(λ)zk, which
follows from point (iii) of Definition 1 for k = 0 after the Laplace transform action, by λσ0−σk

and obtain the equality λσn ̂Jσk−σ0
t S0(λ)zk −λσn−σk−1zk = A ̂Jσk−σ0

t S0(λ)zk, i.e., λσn Ŝk(λ)zk −
λσn−σk−1zk = AŜk(λ)zk, which means that {Sk(t) ∈ L(Z) : t > 0} is a k-resolving family
for Equation (7) due to the uniqueness of the inverse Laplace transform. Hence equality (8)
is valid and a k-resolving family of Equation (7) is unique by Proposition 1.

Remark 1. The parameter σ0 in the formulation of Proposition 2 defines the power singularity of
the family {S0(t) ∈ L(Z) : t > 0} at zero. At the beginning of the proof of Proposition 2, it was
shown that we have two possibilities only: the singularity at zero has a power of σ0 := α0 − 1 < 0,
or a singularity is absent in the case α0 = 1. Due to Proposition 2, the k-resolving family
{Sk(t) ∈ L(Z) : t > 0} has the singularity of the power σk < 0, or it is absent at zero, if σk ≥ 0.

Theorem 2. Let αl ∈ (0, 1], l = 0, 1, . . . , n, σn > 0, there exist a k-resolving family of operators
{Sk(t) ∈ L(Z) : t > 0} of (7) for some k ∈ {0, 1, . . . , n − 1}, such that ‖Sk(t)‖L(Z) ≤ Keattσk

at some K > 0, a ∈ R for all t > 0. Then, there exists a limit lim
t→0+

Dσk Sk(t) = I in the norm of

the space L(Z), if and only if A ∈ L(Z).

Proof. Note that D̂σk Sk = λσk Ŝk = λσn−1(λσn I − A)−1 due to (5), Definition 1 and Proposition 1.
Hence for zk ∈ DA, b > a

Dσk Sk(t)zk =

b+i∞∫
b−i∞

λσn−1Rλσn (A)eλtzkdλ = zk +

b+i∞∫
b−i∞

λ−1Rλσn (A)eλt Azkdλ. (9)

Since, for large enough |λ|

‖λ−1Rλσn (A)‖L(Z) ≤
C1

|λ|σn−σ0+α0
=

C1

|λ|σn+1 ,

we have ‖Dσk Sk(t)zk‖Z ≤ K1ebt.
For Reλ > b

∞∫
0

e−λt(Dσk Sk(t)− I)dt = λσn−1Rλσn (A)− λ−1 I.

Assume that η(t) := ‖Dσk Sk(t)− I‖L(Z) is a continuous function on [0, 1] and η(0) = 0.
For arbitrary ε > 0, take δ > 0, such that for all t ∈ [0, δ] η(t) ≤ ε; therefore, due to the
inequality η(t) ≤ K1ebt + 1 for t ≥ 0, we have

∥∥∥λσn−1Rλσn (A)− λ−1 I
∥∥∥
L(Z)

≤
δ∫

0

e−λtη(t)dt +
∞∫

δ

e−λtη(t)dt ≤ ε

λ
+ o

(
1
λ

)

as Reλ → +∞. Hence, for large enough Reλ > 0
∥∥λσn−1Rλσn (A)− λ−1 I

∥∥
L(Z) < 1.

Consequently, Rλσn (A) is a continuously invertible operator, so A ∈ L(Z).
Let A ∈ L(Z), R > ‖A‖1/σn

L(Z)
, Γ1,R := {Reiϕ : ϕ ∈ (−π, π)}, Γ2,R := {reiπ : r ∈

[R, ∞)}, Γ3,R := {re−iπ : r ∈ [R, ∞)}, ΓR := Γ1,R ∪ Γ2,R ∪ Γ3,R. Due to equality (9), we
obtain for t > 0

Dσk Sk(t) = I +
1

2πi

∫
ΓR

λ−1Rλσn (A)Aeλtdλ = I +
1

2πi

∫
ΓR

1
λ

∞

∑
l=1

Aleλtdλ

λlσn
.

13
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Take R = 1/t for small t > 0; then,

‖Dσk Sk(t)− I‖L(Z) ≤ C1

3

∑
k=1

∞

∑
l=1

∫
Γk,R

‖A‖l
L(Z)

|dλ|
|λ|lσn+1 ≤

C2tσn‖A‖L(Z)

1 − tσn‖A‖L(Z)
→ 0

as t → 0+.

Remark 2. An analogous result of Theorem 2 is well-known for resolving semigroups of operators
for first-order equations (see, e.g., [35]). On resolving families of operators for equations, which are
solved with respect to a Gerasimov–Caputo derivative, a similar theorem was obtained in work [27].

4. Generation of Analytic k-Resolving Families

Let k ∈ {0, 1, . . . , n − 1}. A k-resolving family of operators is called analytic, if at some
ψ0 ∈ (0, π/2] it has an analytic continuation to Σψ0 . An analytic k-resolving family of
operators {Sk(t) ∈ L(Z) : t > 0} has a type (ψ0, a0, β) at some ψ0 ∈ (0, π/2], a0 ∈ R,
β ≥ 0, if, for arbitrary ψ ∈ (0, ψ0), a > a0, there exists C(ψ, a), such that the inequality
‖Sk(t)‖L(Z) ≤ C(ψ, a)eaRe t|t|−β is satisfied for all t ∈ Σψ.

Remark 3. From Proposition 2 and Remark 1 it follows that for a k-resolving family of operators
{Sk(t) ∈ L(Z) : t > 0}, we may have β = −σk, or β = 0.

Definition 2. An operator A ∈ C l(Z) belongs to the class A{αk}(θ0, a0), θ0 ∈ (π/2, π), a0 ≥ 0,
αk ∈ (0, 1], k = 0, 1, . . . , n, σn > 0, if:

(i) For all λ ∈ Sθ0,a0 we have λσn ∈ ρ(A);
(ii) For arbitrary θ ∈ (π/2, θ0), a > a0, there exists a constant K(θ, a) > 0, such that for

every λ ∈ Sθ,a

‖Rλσn (A)‖L(Z) ≤
K(θ, a)

|λ − a|α0 |λ|σn−σ0−1 .

If A ∈ A{αk}(θ0, a0), the operators

Zk(t) =
1

2πi

∫
γ

λσn−σk−1Rλσn (A)eλtdλ, t > 0, k = 0, 1, . . . , n − 1,

are defined, where Γ := Γ+ ∪ Γ− ∪ Γ0, Γ± := {λ ∈ C : λ = a + re±iθ , r ∈ (δ, ∞)},
Γ0 := {λ ∈ C : λ = a + δeiϕ, ϕ ∈ (−θ, θ)}, θ ∈ (π/2, θ0), a > a0, δ > 0.

Theorem 3. Let αk ∈ (0, 1], k = 0, 1, . . . , n, α0 + αn > 0, θ0 ∈ (π/2, π], a0 ≥ 0.
(i) If there exists an analytic 0-resolving family of operators of the type (θ0 − π/2, a0,−σ0)

for (7), then A ∈ A{αk}(θ0, a0).
(ii) If A ∈ A{αk}(θ0, a0), then for every k = 0, 1, . . . , n − 1 there exists a unique analytic

k-resolving family of operators {Sk(t) ∈ L(Z) : t > 0} of the type (θ0 − π/2, a0, max{−σk, 0})
for (7). Moreover, for t > 0, k = 0, 1, . . . , n − 1 Sk(t) ≡ Zk(t) ≡ Jσk−σ0

t Z0(t).

Proof. Choose R > δ,

ΓR :=
4⋃

k=1

Γk,R, Γ1,R := Γ0, Γ2,R := {λ ∈ C : λ = a + Reiϕ, ϕ ∈ (−θ, θ)},

Γ3,R := {λ ∈ C : λ = a + reiθ , r ∈ [δ, R]}, Γ4,R := {λ ∈ C : λ = a + re−iθ , r ∈ [δ, R]},

ΓR is the positively oriented closed loop,

Γ5,R := {λ ∈ C : λ = a + reiθ , r ∈ [R, ∞)}, Γ6,R := {λ ∈ C : λ = a + re−iθ , r ∈ [R, ∞)},

14
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then Γ = Γ5,R ∪ Γ6,R ∪ ΓR \ Γ2,R.
If A ∈ A{αk}(θ0, a0), then following Theorem 1 with X = L(Z), the operators family

{Z0(t) ∈ L(Z) : t > 0} is analytic of the type (θ0 − π/2, a0,−σ0), it implies point (i) of
Definition 1, and point (ii) of this definition is evidently fulfilled.

For any θ ∈ (π/2, θ0), a > a0, we have such a K(θ, a) > 0, that for every λ ∈ Sθ,a∥∥∥λσn−σk−1Rλσn (A)
∥∥∥
L(Z)

≤ C
∥∥∥λσn−σ0−1Rλσn (A)

∥∥∥
L(Z)

≤ CK(θ, a)
|λ − a|α0

.

So, for k = 0, 1, . . . , n − 1, Reλ > a0 there exists the Laplace transforms Ẑk(λ) =

λσn−σk−1Rλσn (A), Ĵβ
t Zk(λ) = λσn−σk−1−βRλσn (A), β > 0, therefore, Zk(t) = Jσk−σ0

t Z0(t).
For z0 ∈ DA

Dα0−1
t Z0(t)z0 =

1
2πi

∫
Γ

λσn−1Rλσn (A)eλtz0dλ =

=
1

2πi

∫
Γ

eλt

λ
z0dλ +

1
2πi

∫
Γ

λ−1Rλσn (A)eλt Az0dλ = z0 +
1

2πi

∫
Γ

λ−1Rλσn (A)eλt Az0dλ.

If t ∈ [0, 1], λ ∈ Γ \ {μ ∈ C : |μ| ≤ 2a}, then∥∥∥λ−1Rλσn (A)eλt Az0

∥∥∥
Z
≤ ea+δK(θ, a)‖Az0‖Z

|λ − a|α0 |λ|σn−σ0
≤ C1

|λ|σn+1 .

Hence,
1

2πi

∫
Γ

λ−1Rλσn (A)eλt Az0dλ =

= lim
R→∞

1
2πi

⎛⎜⎝∫
ΓR

−
∫

Γ2,R

+
∫

Γ5,R

+
∫

Γ6,R

⎞⎟⎠λ−1Rλσn (A)eλt Az0dλ = 0,

since by the Cauchy theorem∫
ΓR

λ−1Rλσn (A)eλt Az0dλ = 0,
∥∥∥ ∫

Γs,R

λ−1Rλσn (A)eλt Az0dλ
∥∥∥
Z
≤ C2

Rσn
→ 0

as R → ∞ for s = 2, 5, 6.
At the same time, due equality (5)

Lap[Dσ1 Z0(·)z0](λ) = λσn−σ0−1+σ1 Rλσn (A)z0 − λσ1−σ0−1z0 = λα1−1Rλσn (A)Az0,

for λ ∈ Γ \ {μ ∈ C : |μ| ≤ 2a}

‖λα1−1Rλσn (A)Az0‖Z ≤ C3

|λ|σn−σ0+α0−α1
=

C3

|λ|α0+α2+α3+···+αn
,

α0 + α2 + α3 + · · · + αn > α0 + αn > 1, hence Dσ1 Z0(0)z0 = 0. Further, for every
k = 2, 3, . . . , n − 1

Lap[Dσk Z0(·)z0](λ) = λσn−σ0−1+σk Rλσn (A)z0 − λσk−σ0−1z0 = λσk−σ0−1Rλσn (A)Az0,

for λ ∈ Γ \ {μ ∈ C : |μ| ≤ 2a}

‖λσk−σ0−1Rλσn (A)Az0‖Z ≤ C3

|λ|σn−σk+α0
=

C3

|λ|α0+αk+1+αk+2+···+αn
,
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thus, Dσk Z0(0)z0 = 0. Finally,

Lap[Dσn Z0(·)z0](λ) = λσn−σ0−1+σn Rλσn (A)z0 − λσn−σ0−1z0 = Aλσn−σ0−1Rλσn (A)z0.

Acting on the inverse Laplace transform, we get the equality Dσn Z0(t)z0 = AZ0(t)z0,
so {Z0(t) ∈ L(Z) : t > 0} is a zero-resolving family of operators for Equation (7). Then,
by Proposition 2 for every k = 1, 2, . . . , n − 1, there exists a k-resolving family of operators,
which coincide with operators Jσk−σ0

t Z0(t) = Zk(t). Every such family is analytic with the
type (θ0 − π/2, a0, max{−σk, 0}); see the proof of Proposition 2 and Remark 3.

If there exists a zero-resolving family with the type (θ0 − π/2, a0,−σ0), equality (8) at
k = 0 and Theorem 1 with X = L(Z) implies that A ∈ A{αk}(θ0, a0).

Remark 4. Note that σn > 0, if α0 + αn > 1.

Remark 5. An analogous for Theorem 3 result on the first-order equations is called the Solomyak–
Yosida theorem on generation of analytic semigroups of operators [24,25]. Previously, similar results
were obtained for evolutionary integral equations [26], differential equations with a Gerasimov–
Caputo fractional derivative [27], with a Riemann–Liouville derivative [28], for multi-term linear
fractional differential equations in Banach spaces [29], and equations with distributed fractional
derivatives [30,31,33,34].

Corollary 1. Let A ∈ A{αk}(θ0, a0), αk ∈ (0, 1], k = 0, 1, . . . , n, α0 + αn > 0, θ0 ∈ (π/2, π],
a0 ≥ 0. Then, for any z0, z1, . . . , zn−1 ∈ DA problem (6), (7) has a unique solution, and it has
the form

z(t) =
n−1

∑
k=0

Zk(t)zk.

The solution is analytic in Σθ0−π/2.

Proof. After Theorem 3, we need to prove the uniqueness of a solution only. If problem (6), (7)
has two solutions y1, y2, then the difference y = y1 − y2 is a solution of (7) with the initial
conditions Dσk y(0) = 0, k = 0, 1, . . . , n − 1. Redefine y on (T, ∞) for any T > 0 as a zero
function. The got function yT satisfies equality (7) at t > 0 without the point T. Using
the Laplace transform obtained from Equation (7) and zero initial conditions, the equality
λσn ŷT(λ) = AŷT(λ). Since A ∈ A{αk}(θ0, a0), we have ŷT(λ) ≡ 0 for λ ∈ Sθ0,a0 . Therefore,
yT ≡ 0 for arbitrary T > 0, hence y ≡ 0 on R+ and a solution of problem (6), (7) is
unique.

Remark 6. For A ∈ L(Z) the k-resolving operators of Equation (7) have the form (see [22])

Zk(t) = tσk Eσn ,σk+1(tσn A), t ∈ Sπ,0, k = 0, 1, . . . , n − 1.

Here, according to Eβ,γ the Mittag–Leffler function is denoted. Indeed, decomposing the
resolvent Rσn(A) in the series for large enough |λ| and using the Hankel integral, we obtain these
equalities.

Theorem 4. Let A ∈ A{αk}(θ0, a0), αk ∈ (0, 1], k = 0, 1, . . . , n, α0 + αn > 0, σn ≥ 2, θ0 ∈
(π/2, π], a0 ≥ 0. Then A ∈ L(Z).

Proof. For some ν0 ∈ C, such that |ν0| ≥ Rσn , take λ0 = ν1/σn
0 , hence |λ0| ≥ R, arg λ0 =

arg ν0/σn ∈ [−π/2, π/2], since σn ≥ 2. Then, λ0 ∈ Sθ0,a0 for sufficiently large R > 0.
Therefore, {ν ∈ C : |ν| ≥ Rσn} ⊂ [Sθ0,a0 ]

σn ⊂ ρ(A), since A ∈ A{αk}(θ0, a0). Here, we use
the principal branch of the power function.
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So, for |ν| ≥ Rσn , where ν = λσn ,

‖νRν(A)‖L(Z) ≤
K(θ, a)|λ|σ0+1

|λ − a|α0
≤ C

and by Lemma 5.2 [36] the operator A is bounded.

Remark 7. For strongly continuous resolving families of the equation with a Gerasimov–Caputo
derivative, such a result was proved in [27].

5. Inhomogeneous Equation

Let f ∈ C([0, T];Z). Consider the equation

Dσn z(t) = Az(t) + f (t), t ∈ (0, T]. (10)

A solution of the initial value problem

Dσk z(0) = zk, k = 0, 1, . . . , n − 1, (11)

to Equation (10) is a function z ∈ C((0, T]; DA), such that Dσk z ∈ C([0, T];Z), k =
0, 1, . . . , n − 1, Dσn z ∈ C((0, T];Z), for all t ∈ (0, T] equality (10) is fulfilled and condi-
tions (11) are valid.

Denote

Z(t) =
1

2πi

∫
Γ

Rλσn (A)eλtdλ, Yβ(t) =
1

2πi

∫
Γ

λβRλσn (A)eλtdλ, β ∈ R.

Lemma 1. Let A ∈ A{αk}(θ0, a0), αk ∈ (0, 1], k = 0, 1, . . . , n, α0 + αn > 0, θ0 ∈ (π/2, π],
a0 ≥ 0, f ∈ C([0, T]; DA). Then,

z f (t) =
t∫

0

Z(t − s) f (s)ds (12)

is a unique solution for the initial value problem

Dσk z(0) = 0, k = 0, 1, . . . , n − 1, (13)

to (10).

Proof. Since A ∈ A{αk}(θ0, a0), for sufficiently large |λ| ‖Rλσn (A)‖L(Z) ≤ C|λ|−σn , hence

for Reλ > a0 Ẑ(λ) = Rλσn (A), D̂σ0 Z(λ) = λσ0 Rλσn (A), ‖Z(t)‖L(Z) ≤ Ctσn−1,
‖Dσ0 Z(t)‖L(Z) ≤ Ctσn−σ0−1 for t ∈ (0, T]. Analogously, ‖Yβ(t)‖L(Z) ≤ Ctσn−β−1 for
t ∈ (0, T], β ∈ R.

Further,

‖Dσ0 z f (t)‖Z =

∥∥∥∥∥∥
t∫

0

Yσ0(t − s) f (s)ds

∥∥∥∥∥∥
Z

≤ C max
s∈[0,T]

‖ f (s)‖Z tσn−σ0 ,

hence Dσ0 z f (0) = 0. Define f by zero outside the segment [0, T]; then, z f = Z ∗ f ,

ẑ f (λ) = Ẑ(λ) f̂ (λ) = Rλσn (A) f̂ (λ), D̂σ1 z f (λ) = λσ1 Rλσn (A) f̂ (λ),

‖Dσ1 z f (t)‖Z =

∥∥∥∥∥∥
t∫

0

Yσ1(t − s) f (s)ds

∥∥∥∥∥∥
Z

≤ C max
s∈[0,T]

‖ f (s)‖Z tσn−σ1 , t ∈ (0, T],
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Dσ1 z f (0) = 0. Repeating the analogous reasoning sequentially, we get

k = 2, 3, . . . , n − 1 D̂σk z f (λ) = λσk Rλσn (A) f̂ (λ), ‖Dσk z f (t)‖L(Z) ≤ C max
s∈[0,T]

‖ f (s)‖Z tσn−σk

for t ∈ (0, T], Dσk z f (0) = 0, D̂σn z f (λ) = λσn Rλσn (A) f̂ (λ).
Since f ∈ C([0, T]; DA), we have

Âz f (λ) = ẑA f (λ) = ARλσn (A) f̂ (λ) = λσn Rλσn (A) f̂ (λ)− f̂ (λ),

so, Az f (t) = Dσn z f (t)− f (t) for all t > 0. Thus, the function z f satisfies equality (10). The
proof of a solution’s uniqueness is the same as for the homogeneous equation.

Let Cγ([0, T];Z) for some γ ∈ (0, 1] be the set of all functions f : [0, T] → Z , satisfying
the Hölder condition:

∃C > 0 ∀s, t ∈ [0, T] ‖ f (s)− f (t)‖Z ≤ C|s − t|γ.

Lemma 2. Let A ∈ A{αk}(θ0, a0), αk ∈ (0, 1], k = 0, 1, . . . , n, α0 + αn > 0, θ0 ∈ (π/2, π],
a0 ≥ 0, f ∈ Cγ([0, T];Z), γ ∈ (0, 1]. Then, problem (10), (13) has a unique solution; it has
form (12).

Proof. Since A is closed,

AZ(t) =
1

2πi

∫
Γ

ARλσn (A)eλtdλ =
1

2πi

∫
Γ

λσn Rλσn (A)eλtdλ = Yσn(t), t > 0,

therefore, imZ(t) ⊂ DA, as t → 0+ ‖AZ(t)‖L(Z) = O(t−1) (see the previous proof).
Therefore, for all t, s ∈ (0, T]

‖AZ(t − s)( f (s)− f (t))‖Z ≤ C|t − s|γ−1.

Then

t∫
0

AZ(t − s) f (s)ds =
t∫

0

AZ(t − s)( f (s)− f (t))ds +
t∫

0

Yσn(t − s) f (t)ds,

t∫
0

Yσn(t − s) f (t)ds = −
t∫

0

D1
s Yσn−1(t − s) f (t)ds = (Yσn−1(t)− Yσn−1(0)) f (t).

Note that for any x ∈ DA

Yσn−1(t)x = x +
1

2πi

∫
Γ

λ−1Rλσn (A)eλt Axdλ → x, t → 0+,

since for large enough |λ| ‖λ−1Rλσn (A)Ax‖Z ≤ C‖Ax‖Z |λ|−σn−1. At the same time, for
sufficiently large |λ| ‖λσn−1Rλσn (A)‖L(Z) ≤ C|λ|−1; therefore, the family {Yσn−1(t) ∈ L(Z) :
t > 0} is bounded uniformly. Since DA is dense in Z , for every x ∈ Z lim

t→0+
Yσn−1(t)x = x.

Thus,∥∥∥∥∥∥
t∫

0

AZ(t − s) f (s)ds

∥∥∥∥∥∥
Z

≤ C1tγ + ‖Yσn−1(t)− Yσn−1(0)‖L(Z)‖ f (t)− f (0)‖Z+

+‖(Yσn−1(t)− Yσn−1(0)) f (0)‖Z ≤
≤ C1tγ + C2‖ f (t)− f (0)‖Z + ‖(Yσn−1(t)− Yσn−1(0)) f (0)‖Z → 0
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as t → 0+. Therefore, z f (t) ∈ DA, z f ∈ C([0, T]; DA).
Other arguing is the same as in the proof of the previous lemma.

Corollary 1, Lemma 1 and Lemma 2 imply the following result.

Theorem 5. Let A ∈ A{αk}(θ0, a0), αk ∈ (0, 1], k = 0, 1, . . . , n, α0 + αn > 0, θ0 ∈ (π/2, π],
a0 ≥ 0, γ ∈ (0, 1], f ∈ C([0, T]; DA) ∪ Cγ([0, T];Z). Then problem (10), (11) has a unique
solution, it has the form

z(t) =
n−1

∑
k=0

Zk(t)zk +

t∫
0

Z(t − s) f (s)ds.

6. Perturbation Theorem

Theorem 6. Let A ∈ A{αk}(θ0, a0), αk ∈ (0, 1], k = 0, 1, . . . , n, α0 + αn > 0, θ0 ∈ (π/2, π],
a0 ≥ 0, B ∈ C l(Z), for some β, γ ≥ 0

‖Bx‖Z ≤ β‖Ax‖Z + γ‖x‖Z , x ∈ DA ⊂ DB, (14)

there exists q ∈ (0, 1), such that β(1 + K(θ, a)) < q for all θ ∈ (π/2, θ0), a > a0. Then,
A + B ∈ A{αk}(θ0, a1) for sufficiently large a1 > a0.

Proof. Choose l > sin−1 θ0, λ ∈ Sθ,la ⊂ Sθ,a for some θ ∈ (π/2, θ0), a > a0, then from (14),
it follows that

‖BRλσn (A)‖L(Z) ≤ β‖ARλσn (A)‖L(Z) + γ‖Rλσn (A)‖L(Z) ≤

≤ β

(
1 +

|λ|σ0+1KA(θ, a)
|λ − a|α0

)
+

γKA(θ, a)
|λ − a|α0 |λ|σn−σ0−1 ,

where KA(θ, a) is the constant from Definition 2. Note that the value

|λ|α0

|λ − a|α0
≤ 1(

1 − a
|λ|

)α0
≤ 1(

1 − 1
l sin θ0

)α0

is close to one, for a sufficiently large number l

|λ|α0

|λ − a|α0 |λ|σn
≤ 1(

1 − 1
l sin θ0

)α0
(la0 sin θ0)σn

is close to zero. So, for such a l, we have

‖BRλσn (A)‖L(Z) ≤ β

⎛⎜⎝1 +
KA(θ, a)(

1 − 1
l sin θ0

)α0

⎞⎟⎠+
γKA(θ, a)(

1 − 1
l sin θ0

)α0
(la0 sin θ0)σn

≤

≤ β(1 + K(θ, a)) + ε ≤ q < 1.

Therefore,

Rλσn (A + B) = Rλσn (A)(I − BRλσn (A))−1 = Rλσn (A)
∞

∑
k=0

[BRλσn (A)]k,

|λ − la|
|λ − a| =

∣∣∣∣1 − (l − 1)a
λ − a

∣∣∣∣ ≤ 1 +
(l − 1)a
|λ − a| < 1 +

1
sin θ0

,
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‖Rλσn (A + B)‖L(Z) ≤
KA(θ, a)

(1 − q)|λ − a|α0 |λ|σn−σ0−1 ≤
KA(θ, a)

(
1 + 1

sin θ0

)α0

(1 − q)|λ − la|α0 |λ|σn−σ0−1 .

So, A + B ∈ A{αk}(θ0, a1) with a1 = la0, for all θ ∈ (π/2, θ0), a > a1

KA+B(θ, a) =
KA(θ, a/l)

1 − q

(
1 +

1
sin θ0

)α0

.

Remark 8. For every B ∈ L(Z) condition, (14) is satisfied with β = 0, γ = ‖B‖L(Z).

Remark 9. Theorem 6 generalizes the similar theorem for generators of analytic semigroups of
operators [37]. Note that there are also analogous results for generators of resolving families for
equations with distributed fractional derivatives in [30].

7. Application to a Model of a Viscoelastic Oldroyd Fluid

Let αk ∈ (0, 1], k = 0, 1, . . . , n, α0 + αn > 1, σn ∈ (0, 2), Ω ⊂ Rd be a bounded
region, which has a smooth boundary ∂Ω. We consider a fractional linearized model of the
viscoelastic Oldroyd fluid dynamics with the order N = 1 (see [38])

Dσk v(x, 0) = vk(x), Dσk w(x, 0) = wk(x), x ∈ Ω, k = 0, 1, . . . , n − 1, (15)

v(x, t) = 0, w(x, t) = 0, (x, t) ∈ ∂Ω × (0, T], (16)

Dσn v = μΔv + Δw −∇p + g, (x, t) ∈ Ω × (0, T], (17)

Dσn w = bv + cw + h, (x, t) ∈ Ω × (0, T], (18)

∇ · v = 0, ∇ · w = 0, (x, t) ∈ Ω × (0, T]. (19)

Here, T > 0, Dσk , k = 0, 1, . . . , n, are Dzhrbashyan–Nersesyan fractional derivatives
with respect to time t, x = (x1, x2, . . . , xd) are spatial variables, v = (v1, v2, . . . , vd) is the
fluid velocity vector, w = (w1, w2, . . . , wd) is a function of memory for the velocity, which is
defined by a Volterra integral with respect to t for v, ∇p = (px1 , px2 , . . . , pxd) is the pressure
gradient of the fluid, Δ is the Laplace operator with respect to all the spatial variables,
Δv = (Δv1, Δv2, . . . , Δvd), Δw = (Δw1, Δw2, . . . , Δwd), ∇ · v = v1x1 + v2x2 + · · · + vdxd

,
∇ · w = w1x1 + w2x2 + · · ·+ wdxd

. The constants μ, b, c ∈ R and the functions g, h : Ω ×
[0, T] → Rd are given.

Take L2 := (L2(Ω))d, H1 := (W1
2 (Ω))d, H2 := (W2

2 (Ω))d. The closure of L := {u ∈
(C∞

0 (Ω))d : ∇ · u = 0} in the norm of L2 will be denoted by Hσ, and in the norm of the
space H1 by H1

σ. We also denote H2
σ := H1

σ ∩H2, Hπ is the orthogonal complement for Hσ

in the Hilbert space L2, Σ : L2 → Hσ, Π := I − Σ : L2 → Hπ are the projectors.
The operator B = ΣΔ, extended to a closed operator in the space Hσ with the domain

H2
σ, has a real, negative, discrete spectrum with finite multiplicities of eigenvalues, con-

densed at −∞ only [39]. Denote by {λk} eigenvalues of B, numbered in non-increasing
order, taking into account their multiplicities. Then, {ϕk} will be used to denote the
orthonormal system of eigenfunctions, which forms a basis in Hσ [39].

In order for Equation (19) to be fulfilled, take Z = Hσ ×Hσ and define in Z an operator

A =

(
μB B
bI cI

)
∈ C l(Z), DA = H2

σ ×H2
σ. (20)

Theorem 7. Let αk ∈ (0, 1], k = 0, 1, . . . , n, σn ∈ [1, 2), μ > 0, b, c ∈ R, Z = Hσ ×Hσ, the
operator A be defined by (20). Then, for some θ0 ∈ (π/2, π), a0 > 0 A ∈ A{αk}(θ0, a0).
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Proof. Let θ0 ∈ (π/2, π), θ ∈ (π/2, θ0), a0 > 0, a > a0, then for λ ∈ Sθ,a

|λ − a|
|λ| ≤ 1 +

a
|λ| ≤ 1 +

1
sin θ0

,

so,

1
|λ|σn

=
|λ − a|α0

|λ|α0

1
|λ − a|α0 |λ|σn−α0

≤

(
1 + 1

sin θ0

)α0

|λ − a|α0 |λ|σn−σ0−1

and instead of estimates of the form ‖Rλσn (A)‖L(Z) ≤ K
|λ−a|α0 |λ|σn−σ0−1 , it will be enough to

get inequalities ‖Rλσn (A)‖L(Z) ≤ K
|λ|σn .

Take θ0 ∈ (π/2, π/σn), a0 = (l|c|)1/σn , where l > 1 is sufficiently large, then for
λ ∈ Sθ0,a0

λσn I − A =
∞

∑
k=1

(
λσn − μλk −λk

−b λσn − c

)
〈·, ϕk〉ϕk,

(λσn I − A)−1 =
∞

∑
k=1

⎛⎝ λσn−c
(λσn−c)(λσn−μλk)−bλk

λk
(λσn−c)(λσn−μλk)−bλk

b
(λσn−c)(λσn−μλk)−bλk

λσn−μλk
(λσn−c)(λσn−μλk)−bλk

⎞⎠〈·, ϕk〉ϕk.

Since λσn ∈ Sθ0σn ,l|c| for λ ∈ Sθ0,a0 , we have |λσn − c| ≥ (l − 1)|c| sin(π − θ0σn), for
sufficiently large l, the value |b(λσn − c)−1| is small enough and

arg
(

μ +
b

λσn − c

)
<

1
2
(π − θ0σn).

Fix l, a0 = (l|c|)1/σn ; then, for λ ∈ Sθ0,a0 , we have λσn ∈ Sθ0σn ,l|c| ⊂ Sθ0σn ,0 and∣∣∣∣ λσn − c
(λσn − c)(λσn − μλk)− bλk

∣∣∣∣ = 1∣∣∣λσn − λk

(
μ + b

λσn−c

)∣∣∣ ≤ 1

|λ|σn sin π−θ0σn
2

,

∣∣∣∣ λk
(λσn − c)(λσn − μλk)− bλk

∣∣∣∣ = 1∣∣∣(λσn − c)
(

λσn
λk

− μ
)
− b

∣∣∣ ≤
≤ 1

|λ|σn sin(π − θ0σn) inf
k∈N,λ∈Sθ0,a0

∣∣∣ λσn
λk

− μ
∣∣∣− b

≤

≤ 2

|λ|σn sin(π − θ0σn) inf
k∈N,λ∈Sθ0,a0

∣∣∣ λσn
λk

− μ
∣∣∣ ,

if we take l, such that

|b| < l|c|
2

sinσn θ0 sin(π − θ0σn) inf
k∈N,λ∈Sθ0,a0

∣∣∣∣λσn

λk
− μ

∣∣∣∣ ≤
≤ |λ|σn

2
sin(π − θ0σn) inf

k∈N,λ∈Sθ0,a0

∣∣∣∣λσn

λk
− μ

∣∣∣∣.
Further, for large k ∈ N ∣∣∣∣ b

(λσn − c)(λσn − μλk)− bλk

∣∣∣∣ ≤
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≤ |b|∣∣∣∣∣∣
⎛⎝λσn −

c+μλk+

√
(c−μλk)

2−4bλk
2

2

⎞⎠⎛⎝λσn −
c+μλk−

√
(c−μλk)

2−4bλk
2

2

⎞⎠∣∣∣∣∣∣
≤

≤ |b|
|λ|2σn sin2(π − θ0σn)

≤ |b|(l|c|)−1 sin−σn θ0

|λ|σn sin2(π − θ0σn)
,∣∣∣∣ λσn − μλk

(λσn − c)(λσn − μλk)− bλk

∣∣∣∣ ≤ 1∣∣∣λσn − c − bλk
λσn−μλk

∣∣∣ ≤ 2
|λ|σn

for sufficiently large l, since

sup
k∈N,λ∈Sa0,θ0

∣∣∣∣c + bλk
λσn − μλk

∣∣∣∣ < ∞.

Thus, A ∈ A{αk}(θ0, a0) with θ0 ∈ (π/2, π/σn), a0 = (l|c|)1/σn with a chosen suffi-
ciently large l > 1.

Theorem 8. Let αk ∈ (0, 1], k = 0, 1, . . . , n, α0 + αn > 1, σn ∈ [1, 2), Σg, h ∈ C([0, T];H2
σ) ∪

Cγ([0, T];Hσ), γ ∈ (0, 1]. Then, problem (15)–(19) has a unique solution.

Proof. Problem (15)–(19) is represented as abstract problem (10), (11) due to the above
choice of Z and A. Since we find the vector functions v(·, t) and w(·, t) with the values in
Hσ for every t ∈ (0, T], instead of Equation (17), we consider its projection on Hσ

Dσn v = μBv + Bw + Σg, (x, t) ∈ Ω × (0, T],

In this case, the projection of Equation (18) on Hσ has the form

Dσn w = bv + cw + Σh, (x, t) ∈ Ω × (0, T],

hence, Πh ≡ 0. Theorem 7 and Theorem 5 imply the required statement.

Remark 10. If we found v(x, t) and w(x, t), we obtain the pressure gradient using the formula
∇p(·, t) = μΠΔv(·, t) + ΠΔw(·, t) + Π f (·, t) from the projection of Equation (17) on the sub-
space Hπ .

8. Conclusions

On the one hand, the results obtained will become the basis for the study of various
classes of semilinear and quasilinear equations with the Dzhrbashyan–Nersesyan deriva-
tive. It is supposed to consider cases when the nonlinearity in the equation is continuous in
the norm of the graph of the operator A and when it is Hölderian. In addition, there are
plans to investigate similar equations with a degenerate linear operator at the Dzhrbashyan–
Nersesyan derivative, linear, semi-linear and quasilinear. On the other hand, abstract
results will be used to study various initial-boundary value problems for partial differential
equations and their systems encountered in applications.
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Abstract: This paper is concerned with the existence of solutions for a fully coupled Riemann–
Stieltjes, integro-multipoint, boundary value problem of Caputo-type sequential fractional differential
equations. The given system is studied with the aid of the Leray–Schauder alternative and contraction
mapping principle. A numerical example illustrating the abstract results is also presented.

Keywords: sequential fractional differential equations; Caputo fractional derivative; Riemann–
Stieltjes integro-multipoint boundary conditions; existence and uniqueness; fixed point

1. Introduction

Coupled systems of fractional-order differential equations appear in the mathematical
models of several real-world problems. Examples include chaos and fractional dynam-
ics [1], bio-engineering [2], ecology [3], financial economics [4], etc. The topic of fractional
differential systems, complemented by different kinds of boundary conditions, has been
one a popular and important area of scientific investigation. Many researchers have con-
tributed to the development of this subject by publishing numerous articles, Special Issues,
etc. The modern methods of functional analysis areof great support in achieving existence
and uniqueness results for these problems [5,6]. For some recent works on fractional or
sequential fractional differential equations with nonlocal integral boundary conditions, we
refer the reader to a series of papers [7–13].

In the article of [14], the authors investigated the solvability of an initial value problem
involving a sequential fractional differential equation by means of fixed-point theorems in
partially ordered sets. In [15], the existence and uniqueness results for a periodic boundary
value problem of nonlinear sequential fractional differential equations were obtained by
the method of upper and lower solutions, together with the monotone iterative technique.

Now, we briefly describe some recent works on sequential fractional-order coupled
systems equipped with coupled boundary conditions. A fully coupled two-parameter sys-
tem of sequential fractional integro-differential equations with nonlocal integro-multipoint
boundary conditions was studied in [16]. The authors discussed the existence and unique-
ness of solutions for a system of Hilfer–Hadamard sequential fractional differential equa-
tions with two-point boundary conditions in [17]. The sequential hybrid inclusion boundary
value problem with three-point integro-derivative boundary conditions was investigated by
using the analytic methods relying on α-ψ-contractive mappings, endpoints, and the fixed
points of the product operators in [18]. The authors studied the existence and uniqueness
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of solutions for an initial value problem of coupled sequential fractional differential equa-
tions in [19]. The existence results for a nonlocal coupled system of sequential fractional
differential equations involving ψ-Hilfer fractional derivatives were presented in [20].

The objective of the present work is to develop the existence theory for a new class of
nonlinear coupled systems of sequential fractional differential equations supplemented
with coupled, non-conjugate, Riemann–Stieltjes, integro-multipoint boundary conditions.
In precise terms, we investigate the following system:{

(cDq+1 +c Dq)X (t) = f(t,X (t),Y(t)), 2 < q ≤ 3, t ∈ [0, 1],

(cDp+1 +c Dp)Y(t) = g(t,X (t),Y(t)), 2 < p ≤ 3, t ∈ [0, 1],
(1)

subject to the coupled boundary conditions:⎧⎪⎪⎪⎨⎪⎪⎪⎩
X (0) = 0, X ′(0) = 0, X ′(1) = 0, X (1) = k

∫ ρ

0
Y(s)dA(s) +

n−2

∑
i=1

αiY(σi) + k1

∫ 1

ν
Y(s)dA(s),

Y(0) = 0, Y′(0) = 0, Y′(1) = 0, Y(1) = h
∫ ρ

0
X (s)dA(s) +

n−2

∑
i=1

βiX (σi) + h1

∫ 1

ν
X (s)dA(s),

(2)

where cDξ denotes the Caputo fractional derivative of order ξ ∈ {q, p}, 0 < ρ < σi < ν < 1,
f, g : [0, 1]×R×R → R are given continuous functions, k, k1, h, h1, αi, βi ∈ R, i=1,2, · · · ,
n − 2 and A is a function of bounded variation.

Riemann–Stieltjes boundary conditions are quite general, since they include multipoint
and integral boundary conditions as special cases [21]. The Riemann–Stieltjes integral is a
generalization of the Riemann integral due to the Dutch astronomer T. J. Stieltjes and has
potential applications in probability theory [22]. In addition, the Riemann–Stieltjes integral
of the random variable with respect to its distribution function interprets the expected value
of random variable [23]. Moreover, the boundary conditions (2) have useful applications in
diffraction-free and self-healing optoelectronic devices. For more details, see [7].

The main emphasis in the present work is to investigate the existence criteria for
the solutions to a coupled system of nonlinear sequential fractional differential equations
equipped with multipoint Riemann–Stieltjes integral-type boundary conditions. Here, one
can see that the coupled boundary conditions relate the value of the unknown function
X (t) (Y(t)) at t = 1 with the distributions of the unknown function Y(t) (X (t)) on the
segments [0, ρ] and [ν, 1] in the sense of Riemann–Stieltjes integrals, together with the
sum of its discrete values at σi, i = 1, 2, · · · , n − 2. The present study is novel in the
given configuration and enriches the literature on boundary value problems of sequential
fractional differential equations.

Concerning our strategy when studying the problem (1)–(2), we use the fixed-point
approach, which is based on the idea of converting the given problem into a fixed-point
problem, followed by the application of appropriate fixed-point theorems to show the
existence of the fixed points for the operator involved in the problem at hand. We make use
of the Leray–Schauder alternative to show the existence of a solution to the given problem,
while the uniqueness result for the given problem is derived with the aid of the contraction
mapping principle due to Banach.

The rest of this paper is organized as follows. In Section 2, we present some basic
definitions of fractional calculus and prove an auxiliary lemma concerning the linear variant
of the problem (1)–(2), helping to convert it into a fixed-point problem. Section 3 establishes
the existence and uniqueness results for the given problem, whereas Section 4 contains an
example illustrating the main results. The paper ends with a discussion in Section 5, where
some special cases and possible future works are indicated.
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2. Preliminary Material

First, we outline some basic concepts of fractional calculus [24].

Definition 1. The Riemann–Liouville fractional integral of order ϑ ∈ R (ϑ > 0) for a locally
integrable, real-valued function U on −∞ ≤ a < z < b ≤ +∞, denoted by Iϑ

a U(z), is defined by

Iϑ
a U(z) =

1
Γ(ϑ)

∫ z

a
(z − s)ϑ−1U(s)ds.

Here, Γ(·) is the familiar Gamma function.

Definition 2. The Caputo derivative of fractional order ϑ for an (r− 1)-times absolutely continuous
function U : [a, ∞) −→ R is defined as

cDϑU(z) =
1

Γ(r − ϑ)

∫ z

a
(z − s)r−ϑ−1U(r)(s)ds, r − 1 < ϑ < r, r = [ϑ] + 1,

where [ϑ] denotes the integer part of the real number ϑ.

Lemma 1. The general solution of the fractional differential equation cDϑX (z) = 0, r− 1 < ϑ < r,
z ∈ [a, b], is

X (z) = �0 + �1(z − a) + �2(z − a)2 + · · ·+ �r−1(z − a)r−1,

where �i ∈ R, i = 0, 1, · · · , r − 1. Furthermore,

Iϑ cDϑX (z) = X (z) +
r−1

∑
i=0

�i(z − a)i.

Lemma 2. Let ψ, φ ∈ (C[0, 1],R) and Δ �= 0. Then the unique solution of the linear system of
fractional differential{

(cDq+1 +c Dq)X (t) = ψ(t), 2 < q ≤ 3, t ∈ [0, 1],

(cDp+1 +c Dp)Y(t) = φ(t), 2 < p ≤ 3, t ∈ [0, 1],
(3)

supplemented with the boundary conditions (2), can be expressed in the following formulas:

X (t) =
∫ t

0
e−(t−s) Iq

0+ψ(s)ds +
4

∑
i=1

Qi(t)Ei, i = 1, 2, 3, 4, (4)

Y(t) =
∫ t

0
e−(t−s) Ip

0+φ(s)ds +
4

∑
j=1

Pj(t)Ej, j = 1, 2, 3, 4, (5)

where

E1 =
∫ 1

0
e−(1−s) Iq

0+ψ(s)ds − Iq
0+ψ(1),

E2 =
∫ 1

0
e−(1−s) Ip

0+φ(s)ds − Ip
0+φ(1),

E3 = k
∫ ρ

0

( ∫ s

0
e−(s−z) Ip

0+φ(z)dz
)

dA(s) +
n−2

∑
i=1

αi

∫ σi

0
e−(σi−s) Ip

0+φ(s)ds

+k1

∫ 1

ν

( ∫ s

0
e−(s−z) Ip

0+φ(z)dz
)

dA(s)−
∫ 1

0
e−(1−s) Iq

0+ψ(s)ds

E4 = h
∫ ρ

0

( ∫ s

0
e−(s−z) Iq

0+ψ(z)dz
)

dA(s) +
n−2

∑
i=1

βi

∫ σi

0
e−(σi−s) Iq

0+ψ(s)ds
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+h1

∫ 1

ν

( ∫ s

0
e−(s−z) Iq

0+ψ(z)dz
)

dA(s)−
∫ 1

0
e−(1−s) Ip

0+φ(s)ds, (6)

Qi(t) = (e−t + t − 1)λi + (−2e−t + t2 − 2t + 2)νi, i = 1, 2, 3, 4,

Pj(t) = (e−t + t − 1)ρj + (−2e−t + t2 − 2t + 2)ωj, j = 1, 2, 3, 4, (7)

ν1 =
e + (1 − e)λ1

2
, ν2 =

(1 − e)λ2

2
, ν3 =

(1 − e)λ3

2
, ν4 =

(1 − e)λ4

2
, (8)

ω1 =
(1 − e)ρ1

2
, ω2 =

e + (1 − e)ρ2

2
, ω3 =

(1 − e)ρ3

2
, ω4 =

(1 − e)ρ4

2
, (9)

λ1 =
(2 − e)γ1 − A4γ2e

2Δ
, λ2 =

A2γ1e − (2 − e)γ2

2Δ
, λ3 =

γ1

Δ
, λ4 =

−γ2

Δ
, (10)

ρ1 =
A4γ1e − (2 − e)γ3

2Δ
, ρ2 =

(2 − e)γ1 − A2γ3e
2Δ

, ρ3 =
−γ3

Δ
, ρ4 =

γ1

Δ
, (11)

Δ = γ2
1 − γ2γ3, γ1 =

3 − e
2

, γ2 = −A1 − A2
(1 − e)

2
, γ3 = −A3 − A4

(1 − e)
2

, (12)

A1 = k
∫ ρ

0
(e−s + s − 1)dA(s) +

n−2

∑
i=1

αi(e−σi + σi − 1) + k1

∫ 1

ν
(e−s + s − 1)dA(s),

A2 = k
∫ ρ

0
(−2e−s + s2 − 2s + 2)dA(s) +

n−2

∑
i=1

αi(−2e−σi + σ2
i − 2σi + 2)

+k1

∫ 1

ν
(−2e−s + s2 − 2s + 2)dA(s),

A3 = h
∫ ρ

0
(e−s + s − 1)dA(s) +

n−2

∑
i=1

βi(e−σi + σi − 1) + h1

∫ 1

ν
(e−s + s − 1)dA(s),

A4 = h
∫ ρ

0
(−2e−s + s2 − 2s + 2)dA(s) +

n−2

∑
i=1

βi(−2e−σi + σ2
i − 2σi + 2)

+h1

∫ 1

ν
(−2e−s + s2 − 2s + 2)dA(s). (13)

Proof. Rewriting the first equation in (3) as cDq(D + 1)X (t) = ψ(t) and then applying the
integral operator Iq

0+ to it, we obtain

X (t) = (−e−t + 1)c1 + (e−t + t − 1)c2 + (−2e−t + t2 − 2t + 2)c3 + e−tc4

+
∫ t

0
e−(t−s) Iq

0+ψ(s)ds, (14)

where ci ∈ R, i = 1, 2, 3, 4 are unknown arbitrary constants. In a similar manner, applying
the integral operator Ip

0+ to the second equation in (3), we get

Y(t) = (−e−t + 1)b1 + (e−t + t − 1)b2 + (−2e−t + t2 − 2t + 2)b3 + e−tb4

+
∫ t

0
e−(t−s) Ip

0+φ(s)ds, (15)

where bi ∈ R, i = 1, 2, 3, 4 are unknown arbitrary constants. From (14) and (15), we have

X ′(t) = e−tc1 + (−e−t + 1)c2 + (2e−t + 2t − 2)c3 − e−tc4

−
∫ t

0
e−(t−s) Iq

0+ψ(s)ds + Iq
0+ψ(t), (16)
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Y′(t) = e−tb1 + (−e−t + 1)b2 + (2e−t + 2t − 2)b3 − e−tb4

−
∫ t

0
e−(t−s) Ip

0+φ(s)ds + Ip
0+φ(t). (17)

Using the conditions X (0) = 0,Y(0) = 0,X ′(0) = 0,Y′(0) = 0 in Equations (14)–(17),
we obtain c1 = c4 = 0 and b1 = b4 = 0. Then (14)–(17) become

X (t) = (e−t + t − 1)c2 + (−2e−t + t2 − 2t + 2)c3 +
∫ t

0
e−(t−s) Iq

0+ψ(s)ds, (18)

X ′(t) = (−e−t + 1)c2 + (2e−t + 2t − 2)c3 −
∫ t

0
e−(t−s) Iq

0+ψ(s)ds + Iq
0+ψ(t), (19)

Y(t) = (e−t + t − 1)b2 + (−2e−t + t2 − 2t + 2)b3 +
∫ t

0
e−(t−s) Ip

0+φ(s)ds, (20)

Y′(t) = (−e−t + 1)b2 + (2e−t + 2t − 2)b3 −
∫ t

0
e−(t−s) Ip

0+φ(s)ds + Ip
0+φ(t). (21)

Using (18)–(21) in the rest of the boundary conditions given by (2), together with
notation (13), yields

(−e−1 + 1)c2 + 2e−1c3 = E1, (22)

(−e−1 + 1)b2 + 2e−1b3 = E2, (23)

e−1c2 + (−2e−1 + 1)c3 − A1b2 − A2b3 = E3, (24)

e−1b2 + (−2e−1 + 1)b3 − A3c2 − A4c3 = E4, (25)

where Ai, i = 1, 2, 3, 4 are given by (13) and Ei, i = 1, 2, 3, 4 are defined by (6). Inserting the
values of c3 and b3 from (22) and (23) into (24) and (25), we obtain

γ1c2 + γ2b2 =
(2 − e)

2
E1 +

A2e
2

E2 + E3, (26)

γ3c2 + γ1b2 =
A4e

2
E1 +

(2 − e)
2

E2 + E4, (27)

where γi, i = 1, 2, 3 are given by (12). Solving (26) and (27) for c2 and b2, we obtain

c2 =
4

∑
i=1

λiEi, b2 =
4

∑
j=1

ρjEj,

where λi (i = 1, 2, 3, 4) and ρj (j = 1, 2, 3, 4) are given in (10) and (11), respectively.
Substituting the values of c2 and b2 into (22) and (23) respectively, we find that

c3 =
4

∑
i=1

νiEi, b3 =
4

∑
j=1

ωjEj,

where νi, i = 1, 2, 3, 4, and ωj, j = 1, 2, 3, 4 are given by (8) and (9) respectively. Inserting
the values of c2, c3, b2 and b3 in (18) and (20), together with the notation (7), we obtain the
solution (4) and (5). One can obtain the converse of this lemma by direct computation. This
completes the proof.

For computational convenience, we introduce the following lemma:

Lemma 3. For ψ, φ ∈ C([0, 1],R), we have

(i)

∣∣∣∣∣
∫ t

0
e−(t−s) Iq

0+ψ(s)ds

∣∣∣∣∣ ≤ 1
Γ(q + 1)

(1 − e−1)‖ψ‖,
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∣∣∣∣∣
∫ t

0
e−(t−s) Ip

0+φ(s)ds

∣∣∣∣∣ ≤ 1
Γ(p + 1)

(1 − e−1)‖φ‖.

(ii)

∣∣∣∣∣
∫ 1

0
e−(1−s) Iq

0+ψ(s)ds

∣∣∣∣∣ ≤ 1
Γ(q + 1)

(1 − e−1)‖ψ‖,

∣∣∣∣∣
∫ 1

0
e−(1−s) Ip

0+φ(s)ds

∣∣∣∣∣ ≤ 1
Γ(p + 1)

(1 − e−1)‖φ‖.

(iii)

∣∣∣∣∣ n−2

∑
i=1

αi

∫ σi

0
e−(σi−s) Ip

0+φ(s)ds

∣∣∣∣∣ ≤ 1
Γ(p + 1)

n−2

∑
i=1

|αi|σp
i (1 − e−σi )‖φ‖,

∣∣∣∣∣ n−2

∑
i=1

βi

∫ σi

0
e−(σi−s) Iq

0+ψ(s)ds

∣∣∣∣∣ ≤ 1
Γ(q + 1)

n−2

∑
i=1

|βi|σq
i (1 − e−σi )‖ψ‖.

(iv)

∣∣∣∣∣
∫ ρ

0

( ∫ s

0
e−(s−z) Ip

0+φ(z)dz
)

dA(s)

∣∣∣∣∣ ≤ [ ∫ ρ

0

sp

Γ(p + 1)
(1 − e−s)dA(s)

]
‖φ‖,

∣∣∣∣∣
∫ ρ

0

( ∫ s

0
e−(s−z) Iq

0+ψ(z)dz
)

dA(s)

∣∣∣∣∣ ≤ [ ∫ ρ

0

sq

Γ(q + 1)
(1 − e−s)dA(s)

]
‖ψ‖.

(v)

∣∣∣∣∣
∫ 1

ν

( ∫ s

0
e−(s−z) Ip

0+φ(z)dz
)

dA(s)

∣∣∣∣∣ ≤ [ ∫ 1

ν

sp

Γ(p + 1)
(1 − e−s)dA(s)

]
‖φ‖,

∣∣∣∣∣
∫ 1

ν

( ∫ s

0
e−(s−z) Iq

0+ψ(z)dz
)

dA(s)

∣∣∣∣∣ ≤ [ ∫ 1

ν

sq

Γ(q + 1)
(1 − e−s)dA(s)

]
‖ψ‖.

Proof. To prove (i), we have∣∣∣∣∣
∫ t

0
e−(t−s) Iq

0+ψ(s)ds

∣∣∣∣∣ =

∣∣∣∣∣
∫ t

0
e−(t−s)

( ∫ s

0

(s − z)q−1

Γ(q)
ψ(z)dz

)
ds

∣∣∣∣∣
≤ tq

Γ(q + 1)
(1 − e−t)‖ψ‖

≤ 1
Γ(q + 1)

(1 − e−1)‖ψ‖.

The other cases are similar. Therefore, we omit the details.

3. Main Results

Let (X, ‖ · ‖) be a Banach space equipped with the norm ‖X ‖ = sup{|X (t)|,
t ∈ [0, 1]}, where X = {X (t)|X (t) ∈ (C[0, 1],R)}. Then (X×X, ‖(·, ·)‖) is also a Banach
space endowed with norm ‖(X ,Y)‖ = ‖X ‖+ ‖Y‖,X ,Y ∈ X.

By Lemma 2, we introduce an operator T : X×X → X×X defined by

T(X ,Y)(t) =
(

T1(X ,Y)(t)
T2(X ,Y)(t)

)
, (28)

where

T1(X ,Y)(t) =
∫ t

0
e−(t−s) Iq

0+ f(s,X (s),Y(s))ds

+Q1(t)
[ ∫ 1

0
e−(1−s) Iq

0+ f(s,X (s),Y(s))ds − Iq
0+ f(s,X (s),Y(s))(1)

]
+ Q2(t)

[ ∫ 1

0
e−(1−s) Ip

0+g(s,X (s),Y(s))ds − Ip
0+g(s,X (s),Y(s))(1)

]
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+ Q3(t)
[
k
∫ ρ

0

( ∫ s

0
e−(s−z) Ip

0+g(z,X (z),Y(z))dz
)

dA(s)

+
n−2

∑
i=1

αi

∫ σi

0
e−(σi−s) Ip

0+g(s,X (s),Y(s))ds

+k1

∫ 1

ν

( ∫ s

0
e−(s−z) Ip

0+g(z,X (z),Y(z))dz
)

dA(s)

−
∫ 1

0
e−(1−s) Iq

0+ f(s,X (s),Y(s))ds
]

+ Q4(t)
[

h
∫ ρ

0

( ∫ s

0
e−(s−z) Iq

0+ f(z,X (z),Y(z))dz
)

dA(s)

+
n−2

∑
i=1

βi

∫ σi

0
e−(σi−s) Iq

0+ f(s,X (s),Y(s))ds

+h1

∫ 1

ν

( ∫ s

0
e−(s−z) Iq

0+ f(z,X (z),Y(z))dz
)

dA(s)

−
∫ 1

0
e−(1−s) Ip

0+g(s,X (s),Y(s))ds
]
, (29)

T2(X ,Y)(t) =
∫ t

0
e−(t−s) Ip

0+g(s,X (s),Y(s))ds

+P1(t)
[ ∫ 1

0
e−(1−s) Iq

0+ f(s,X (s),Y(s))ds − Iq
0+ f(s,X (s),Y(s))(1)

]
+ P2(t)

[ ∫ 1

0
e−(1−s) Ip

0+g(s,X (s),Y(s))ds − Ip
0+g(s,X (s),Y(s))(1)

]
+ P3(t)

[
k
∫ ρ

0

( ∫ s

0
e−(s−z) Ip

0+g(z,X (z),Y(z))dz
)

dA(s)

+
n−2

∑
i=1

αi

∫ σi

0
e−(σi−s) Ip

0+ g(s,X (s),Y(s))ds

+k1

∫ 1

ν

( ∫ s

0
e−(s−z) Ip

0+g(z,X (z),Y(z))dz
)

dA(s)

−
∫ 1

0
e−(1−s) Iq

0+ f(s,X (s),Y(s))ds
]

+ P4(t)
[

h
∫ ρ

0

( ∫ s

0
e−(s−z) Iq

0+ f(z,X (z),Y(z))dz
)

dA(s)

+
n−2

∑
i=1

βi

∫ σi

0
e−(σi−s) Iq

0+ f(s,X (s),Y(s))ds

+h1

∫ 1

ν

( ∫ s

0
e−(s−z) Iq

0+ f(z,X (z),Y(z))dz
)

dA(s)

−
∫ 1

0
e−(1−s) Ip

0+g(s,X (s),Y(s))ds
]
, (30)

where Qi(t), i = 1, 2, 3, 4 and Pj(t), j = 1, 2, 3, 4 are given in (7).

In the forthcoming analysis, we assume that f, g : [0, 1]×R×R → R are continuous
functions satisfying the following conditions:

(F1) There are real constants ηi, ζi ≥ 0, i = 1, 2, η0, ζ0 > 0 such that

|f(t,X ,Y)| ≤ η0 + η1|X |+ η2|Y|,

|g(t,X ,Y)| ≤ ζ0 + ζ1|X |+ ζ2|Y|,
∀t ∈ [0, 1],X ,Y ∈ R.
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(F2) There are positive real constants L1 and L2, such that

|f(t,X1,Y1)− f(t,X2,Y2)| ≤ L1(|X1 −X2|+ |Y1 −Y2|),

|g(t,X1,Y1)− g(t,X2,Y2)| ≤ L2(|X1 −X2|+ |Y1 −Y2|),
∀t ∈ [0, 1],X1,X2,Y1,Y2 ∈ R;

In the sequel, we use the notation:

Θ = Λ1L1 + Λ2L2, Θ = Λ1L1 + Λ2L2, (31)

M = Λ1N1 + Λ2N2, M = Λ1N1 + Λ2N2, (32)

Λ1 =
1

Γ(q + 1)

{
(1 − e−1) + (2 − e−1)Q̃1 + (1 − e−1)Q̃3 + Q̃4

[
|h|

∫ ρ

0
sq(1 − e−s)dA(s)

+
n−2

∑
i=1

|βi|σq
i (1 − e−σi ) + |h1|

∫ 1

ν
sq(1 − e−s)dA(s)

]}
,

Λ2 =
1

Γ(p + 1)

{
(2 − e−1)Q̃2 + Q̃3

[
|k|

∫ ρ

0
sp(1 − e−s)dA(s) (33)

+
n−2

∑
i=1

|αi|σp
i (1 − e−σi ) + |k1|

∫ 1

ν
sp(1 − e−s)dA(s)

]
+ (1 − e−1)Q̃4

}
,

Λ1 =
1

Γ(q + 1)

{
(2 − e−1)P̃1 + (1 − e−1)P̃3 + P̃4

[
|h|

∫ ρ

0
sq(1 − e−s)dA(s)

+
n−2

∑
i=1

|βi|σq
i (1 − e−σi ) + |h1|

∫ 1

ν
sq(1 − e−s)dA(s)

]}
,

Λ2 =
1

Γ(p + 1)

{
(1 − e−1) + (2 − e−1)P̃2 + P̃3

[
|k|

∫ ρ

0
sp(1 − e−s)dA(s)

+
n−2

∑
i=1

|αi|σp
i (1 − e−σi ) + |k1|

∫ 1

ν
sp(1 − e−s)dA(s)

]
+ (1 − e−1)P̃4

}
, (34)

N1 = sup
t∈[0,1]

|f(t, 0, 0)| < ∞, N2 = sup
t∈[0,1]

|g(t, 0, 0, )| < ∞, (35)

where Q̃i = sup
t∈[0,1]

|Qi(t)|, i = 1, 2, 3, 4 and P̃j = sup
t∈[0,1]

|Pj(t)|, j = 1, 2, 3, 4,

Ω0 = (Λ1 + Λ1)η0 + (Λ2 + Λ2)ζ0,

Ω1 = (Λ1 + Λ1)η1 + (Λ2 + Λ2)ζ1,

Ω2 = (Λ1 + Λ1)η2 + (Λ2 + Λ2)ζ2, (36)

and

Ω = max{Ω1, Ω2}. (37)

The following result shows the existence of a solution for the coupled system (1)–(2)
and is based on the Leray–Schauder alternative [6].
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Theorem 1. Assume that the condition (F1) holds and Ω < 1, where Ω is given by (37).
Then, the problem (1) and (2) has at least one solution on [0, 1].

Proof. In the first step, it will be shown that the operator T : X×X → X×X is completely
continuous. Note that the operator T is continuous in view of the continuity of the functions
f and g. Let V ⊂ X×X be bounded. Then, we can find positive constants M1 and M2 such
that |f(t,X (t),Y(t))| ≤ M1 and |g(t,X (t),Y(t))| ≤ M2, ∀(X ,Y) ∈ V . Therefore, for any
(X ,X ) ∈ V , we have

|T1(X ,Y)(t)| ≤
∫ t

0
e−(t−s) Iq

0+ |f(s,X (s),Y(s))|ds

+|Q1(t)|
[ ∫ 1

0
e−(1−s) Iq

0+ |f(s,X (s),Y(s))|ds + Iq
0+ |f(s,X (s),Y(s))|(1)

]
+|Q2(t)|

[ ∫ 1

0
e−(1−s) Ip

0+ |g(s,X (s),Y(s))|ds + Ip
0+ |g(s,X (s),Y(s))|(1)

]
+|Q3(t)|

[
|k|

∫ ρ

0

( ∫ s

0
e−(s−z) Ip

0+ |g(z,X (z),Y(z))|dz
)

dA(s)

+
n−2

∑
i=1

|αi|
∫ σi

0
e−(σi−s) Ip

0+ |g(s,X (s),Y(s))|ds

+|k1|
∫ 1

ν

( ∫ s

0
e−(s−z) Ip

0+ |g(z,X (z),Y(z))|dz
)

dA(s)

+
∫ 1

0
e−(1−s) Iq

0+ |f(s,X (s),Y(s))|ds
]

+|Q4(t)|
[
|h|

∫ ρ

0

( ∫ s

0
e−(s−z) Iq

0+ |f(z,X (z),Y(z))|dz
)

dA(s)

+
n−2

∑
i=1

|βi|
∫ σi

0
e−(σi−s) Iq

0+ |f(s,X (s),Y(s))|ds

+|h1|
∫ 1

ν

( ∫ s

0
e−(s−z) Iq

0+ |f(z,X (z),Y(z))|dz
)

dA(s)

+
∫ 1

0
e−(1−s) Ip

0+ |g(s,X (s),Y(s))|ds
]

≤ M1
1

Γ(q + 1)
(1 − e−1) + Q̃1

[
M1

1
Γ(q + 1)

(1 − e−1) + M1
1

Γ(q + 1)

]
+Q̃2

[
M2

1
Γ(p + 1)

(1 − e−1) + M2
1

Γ(p + 1)

]
+Q̃3

[
|k|M2

∫ ρ

0

sp

Γ(p + 1)
(1 − e−s)dA(s)

+M2

n−2

∑
i=1

|αi|
1

Γ(p + 1)
σ

p
i (1 − e−σi )

+M2|k1|
∫ 1

ν

sp

Γ(p + 1)
(1 − e−s)dA(s) + M1

1
Γ(q + 1)

(1 − e−1)
]

+Q̃4

[
M1|h|

∫ ρ

0

sq

Γ(q + 1)
(1 − e−s)dA(s) + M1

n−2

∑
i=1

|βi|σq
i (1 − e−σi )

+M1|h1|
∫ 1

ν

sp

Γ(p + 1)
(1 − e−s)dA(s) + M2

1
Γ(p + 1)

(1 − e−1)
]

≤ M1

Γ(q + 1)

{
(1 − e−1) + (2 − e−1)Q̃1 + (1 − e−1)Q̃3

+Q̃4

[
|h|

∫ ρ

0
sq(1 − e−s)dA(s) +

n−2

∑
i=1

|βi|σq
i (1 − e−σi )
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+|h1|
∫ 1

ν
sq(1 − e−s)dA(s)

]}
+

M2

Γ(p + 1)

{
(2 − e−1)Q̃2

+Q̃3

[
|k|

∫ ρ

0
sp(1 − e−s)dA(s) +

n−2

∑
i=1

|αi|σp
i (1 − e−σi )

+|k1|
∫ 1

ν
sp(1 − e−s)dA(s)

]
+ (1 − e−1)Q̃4

}
= Λ1M1 + Λ2M2.

Thus,

‖T1(X ,Y)‖ ≤ Λ1M1 + Λ2M2. (38)

Similarly, we have

‖T2(X ,Y)‖ ≤ Λ1M1 + Λ2M2. (39)

Hence, (38) and (39) imply that the operator T uniformly bounded.
Now, we establish that the operator T is equicontinuous. For t1, t2 ∈ [0, 1] with t1 < t2,

we obtain∣∣∣T1(X ,Y)(t2)− T1(X ,Y)(t1)
∣∣∣

≤
∣∣∣∣∣
∫ t1

0
[e−(t2−s) − e−(t1−s)]Iq

0+ f(s,X (s),Y(s))ds

∣∣∣∣∣+
∣∣∣∣∣
∫ t2

t1

e−(t2−s) Iq
0+ f(s,X (s),Y(s))ds

∣∣∣∣∣
+
∣∣∣Q1(t2)−Q1(t1)

∣∣∣[∣∣∣ ∫ 1

0
e−(1−s) Iq

0+ f(s,X (s),Y(s))ds
∣∣∣+ ∣∣∣Iq

0+ f(s,X (s),Y(s))(1)
∣∣∣]

+
∣∣∣Q2(t2)−Q2(t1)

∣∣∣[∣∣∣ ∫ 1

0
e−(1−s) Ip

0+g(s,X (s),Y(s))ds
∣∣∣+ ∣∣∣Ip

0+g(s,X (s),Y(s))(1)
∣∣∣]

+
∣∣∣Q3(t2)−Q3(t1)

∣∣∣[|k|∣∣∣ ∫ ρ

0

( ∫ s

0
e−(s−z) Ip

0+g(z,X (z),Y(z))dz
)

dA(s)
∣∣∣

+
n−2

∑
i=1

|αi|
∣∣∣ ∫ σi

0
e−(σi−s) Ip

0+g(s,X (s),Y(s))ds
∣∣∣

+|k1|
∣∣∣ ∫ 1

ν

( ∫ s

0
e−(s−z) Ip

0+g(z,X (z),Y(z))dz
)

dA(s)
∣∣∣

+
∣∣∣ ∫ 1

0
e−(1−s) Iq

0+ f(s,X (s),Y(s))ds
∣∣∣]

+
∣∣∣Q4(t2)−Q4(t1)

∣∣∣[|h|∣∣∣ ∫ ρ

0

( ∫ s

0
e−(s−z) Iq

0+ f(z,X (z),Y(z))dz
)

dA(s)
∣∣∣

+
n−2

∑
i=1

|βi|
∣∣∣ ∫ σi

0
e−(σi−s) Iq

0+ f(s,X (s),Y(s))ds
∣∣∣

+|h1|
∣∣∣ ∫ 1

ν

( ∫ s

0
e−(s−z) Iq

0+ f(z,X (z),Y(z))dz
)

dA(s)
∣∣∣

+
∣∣∣ ∫ 1

0
e−(1−s) Ip

0+g(s,X (s),Y(s))ds
∣∣∣]

≤ M1

Γ(q + 1)

[
tq
1

(
e−(t2−t1) − 1 − e−t2 + e−t1

)
+ tq

2

(
1 − e−(t2−t1)

)]
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+
M1

Γ(q + 1)

{
(2 − e−1)

∣∣∣Q1(t2)−Q1(t1)
∣∣∣+ (1 − e−1)

∣∣∣Q3(t2)−Q3(t1)
∣∣∣

+
∣∣∣Q4(t2)−Q4(t1)

∣∣∣[|h|∣∣∣ ∫ ρ

0
sq(1 − e−s)dA(s)

∣∣∣
+
∣∣∣ n−2

∑
i=1

βiσ
q
i (1 − e−σi )

∣∣∣+ |h1|
∣∣∣ ∫ 1

ν
sq(1 − e−s)dA(s)

∣∣∣]}

+
M2

Γ(p + 1)

{
(2 − e−1)

∣∣∣Q2(t2)−Q2(t1)
∣∣∣

+
∣∣∣Q3(t2)−Q3(t1)

∣∣∣[|k|∣∣∣ ∫ ρ

0
sp(1 − e−s)dA(s)

∣∣∣
+
∣∣∣ n−2

∑
i=1

αiσ
p
i (1 − e−σi )

∣∣∣+ |k1|
∣∣∣ ∫ 1

ν
sp(1 − e−s)dA(s)

∣∣∣]+ (1 − e−1)
∣∣∣Q4(t2)−Q4(t1)

∣∣∣},

and∣∣∣T2(X ,Y)(t2)− T2(X ,Y)(t1)
∣∣∣

≤ M2

Γ(p + 1)

[
tp
1

(
e−(t2−t1) − 1 − e−t2 + e−t1

)
+ tp

2

(
1 − e−(t2−t1)

)]

+
M1

Γ(q + 1)

{
(2 − e−1)

∣∣∣P1(t2)−P1(t1)
∣∣∣+ (1 − e−1)

∣∣∣P3(t2)−P3(t1)
∣∣∣

+
∣∣∣P4(t2)−P4(t1)

∣∣∣[|h|∣∣∣ ∫ ρ

0
sq(1 − e−s)dA(s)

∣∣∣
+
∣∣∣ n−2

∑
i=1

βiσ
q
i (1 − e−σi )

∣∣∣+ |h1|
∣∣∣ ∫ 1

ν
sq(1 − e−s)dA(s)

∣∣∣]}

+
M2

Γ(p + 1)

{
(2 − e−1)

∣∣∣P2(t2)−P2(t1)
∣∣∣

+
∣∣∣P3(t2)−P3(t1)

∣∣∣[|k|∣∣∣ ∫ ρ

0
sp(1 − e−s)dA(s)

∣∣∣
+
∣∣∣ n−2

∑
i=1

αiσ
p
i (1 − e−σi )

∣∣∣+ |k1|
∣∣∣ ∫ 1

ν
sp(1 − e−s)dA(s)

∣∣∣]+ (1 − e−1)
∣∣∣P4(t2)−P4(t1)

∣∣∣}.

Clearly, |T1(X ,Y)(t2)− T1(X ,Y)(t1)| → 0 and |T2(X ,Y)(t2)− T2(X ,Y)(t1)| → 0 as
t2 → t1 independent of (X ,Y) ∈ V . In consequence, the operator T(X ,Y) is equicontinuous.
Hence, it follows, according to Arzelá-Ascoli theorem, that T(X ,Y) is completely continuous.

In the second step, we consider a set

U = {(X ,Y) ∈ X×X|(X ,Y) = σT(X ,Y), 0 < σ < 1}

and show that it is bounded. Let (X ,Y) ∈ U , then (X ,Y) = σT(X ,Y) and for any t ∈ [0, 1],
we have

X (t) = σT1(X ,Y)(t), Y(t) = σT2(X ,Y)(t).

In consequence, we have

|X (t)| ≤ Λ1(η0 + η1|X |+ η2|Y|) + Λ2(ζ0 + ζ1|X |+ ζ2|Y|),

which leads to

‖X ‖ ≤ Λ1(η0 + η1‖X ‖+ η2‖Y‖) + Λ2(ζ0 + ζ1‖X ‖+ ζ2‖Y‖). (40)
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Likewise, one can obtain that

‖Y‖ ≤ Λ1(η0 + η1‖X ‖+ η2‖Y‖) + Λ2(ζ0 + ζ1‖X ‖+ ζ2‖Y‖). (41)

From (40) and (41), together with notations (36) and (37), we obtain

‖X ‖+ ‖Y‖ ≤
[
(Λ1 + Λ1)η0 + (Λ2 + Λ2)ζ0

]
+
[
(Λ1 + Λ1)η1 + (Λ2 + Λ2)ζ1

]
‖X ‖

+
[
(Λ1 + Λ1)η2 + (Λ2 + Λ2)ζ2

]
‖Y‖,

which implies that

‖(X ,Y)‖ ≤ Ω0 + max{Ω1 + Ω2}‖(X ,Y)‖ ≤ Ω0 + Ω‖(X ,Y)‖.

Thus
‖(X ,Y)‖ ≤ Ω0

1 − Ω
,

which shows that U is bounded. In view of the foregoing steps, we deduce that the
hypothesis of the Leray–Schauder alternative [6] is satisfied; hence, its conclusion implies
that the operator T has at least one fixed point. Thus, there is at least one solution to the
problem (1) and (2) on [0, 1].

Our next result deals with the uniqueness of solutions for the problem (1) and (2) and
relies on Banach’s fixed point theorem.

Theorem 2. Let the condition (F2) hold, and that

Θ + Θ < 1, (42)

where Θ and Θ are given in (31). Then, there is a unique solution to the problem (1) and (2) on [0, 1].

Proof. Let us first establish that TUε ⊂ Uε, where the operator T is given by (28) and

Uε = {(X ,Y) ∈ X×X : ‖(X ,Y)‖ ≤ ε},

with ε >
M+M

1 − (Θ + Θ)
, Θ, Θ and M,M are respectively given by (31) and (32). By the

assumption (F2) and (35), for (X ,Y) ∈ Uε, t ∈ [0, 1], we have

|f(t,X (t),Y(t))| ≤ |f(t,X (t),Y(t))− f(t, 0, 0)|+ |f(t, 0, 0)|

≤ L1(|X (t)|+ |Y(t)|) +N1 ≤ L1(‖X ‖+ ‖Y‖) +N1 ≤ L1ε +N1.

Similarly, one can show that |g(t,X (t),Y(t))| ≤ L2ε +N2. Taking into account (31)
and (32), we obtain

|T1(X ,Y)(t)| ≤ (Λ1L1 + Λ2L2)ε + (Λ1N1 + Λ2N2) = Θε +M,

which yields

‖T1(X ,Y)‖ ≤ Θε +M. (43)

In a similar manner, we obtain

‖T2(X ,Y)‖ ≤ Θε +M. (44)
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It then follows from (43) and (44) that

‖T(X ,Y)‖ ≤ (Θε +M) + (Θε +M) = (Θ + Θ)ε + (M+M) ≤ ε.

Consequently, TUε ⊂ Uε. Next, we show that the operator T is a contraction. Using
conditions (F2) and (31), we get

‖T1(X1,Y1)− T1(X2,Y2)‖
= sup

t∈[0,1]
|T1(X1,Y1)(t)− T1(X2,Y2)(t)|

≤ sup
t∈[0,1]

{ ∫ t

0
e−(t−s)

∣∣∣Iq
0+ f(s,X1(s),Y1(s))− Iq

0+ f(s,X2(s),Y2(s))
∣∣∣ds

+|Q1(t)|
[ ∫ 1

0
e−(1−s)

∣∣∣Iq
0+ f(s,X1(s),Y1(s))− Iq

0+ f(s,X2(s),Y2(s))
∣∣∣ds

+
∣∣∣Iq

0+ f(s,X1(s),Y1(s))− Iq
0+ f(s,X2(s),Y2(s))

∣∣∣(1)]
+ |Q2(t)|

[ ∫ 1

0
e−(1−s)

∣∣∣Ip
0+g(s,X1(s),Y1(s))− Ip

0+g(s,X2(s),Y2(s))
∣∣∣ds

+
∣∣∣Ip

0+g(s,X1(s),Y1(s))− Ip
0+g(s,X2(s),Y2(s))

∣∣∣(1)]
+|Q3(t)|

[
|k|

∫ ρ

0

( ∫ s

0
e−(s−z)

∣∣∣Ip
0+g(z,X1(z),Y1(z))− Ip

0+g(z,X2(z),Y2(z))
∣∣∣dz

)
dA(s)

+
n−2

∑
i=1

|αi|
∫ σi

0
e−(σi−s)

∣∣∣Ip
0+g(s,X1(s),Y1(s))− Ip

0+g(s,X2(s),Y2(s))
∣∣∣ds

+|k1|
∫ 1

ν

( ∫ s

0
e−(s−z)

∣∣∣Ip
0+g(z,X1(z),Y1(z))− Ip

0+g(z,X2(z),Y2(z))
∣∣∣dz

)
dA(s)

+
∫ 1

0
e−(1−s)

∣∣∣Iq
0+ f(s,X1(s),Y1(s))− Iq

0+ f(s,X2(s),Y2(s))
∣∣∣ds
]

+|Q4(t)|
[
|h|

∫ ρ

0

( ∫ s

0
e−(s−z)

∣∣∣Iq
0+ f(z,X1(z),Y1(z))− Iq

0+ f(z,X2(z),Y2(z))
∣∣∣dz

)
dA(s)

+
n−2

∑
i=1

|βi|
∫ σi

0
e−(σi−s)

∣∣∣Iq
0+ f(s,X1(s),Y1(s))− Iq

0+ f(s,X2(s),Y2(s))
∣∣∣ds

+|h1|
∫ 1

ν

( ∫ s

0
e−(s−z)

∣∣∣Iq
0+ f(z,X1(z),Y1(z))− Iq

0+ f(z,X2(z),Y2(z))
∣∣∣dz

)
dA(s)

+
∫ 1

0
e−(1−s)

∣∣∣Ip
0+g(s,X1(s),Y1(s))− Ip

0+g(s,X2(s),Y2(s))
∣∣∣ds
]}

≤ Λ1L1

(
‖X1 −X2‖+ ‖Y1 −Y2‖

)
+ Λ2L2

(
‖X1 −X2‖+ ‖Y1 −Y2‖

)
=

(
Λ1L1 + Λ2L2

)(
‖X1 −X2‖+ ‖Y1 −Y2‖

)
= Θ

(
‖X1 −X2‖+ ‖Y1 −Y2‖

)
.

Similarly, we can find that

‖T2(X1,Y1)− T2(X2,Y2)‖ = sup
t∈[0,1]

|T2(X1,Y1)(t)− T2(X2,Y2)(t)|

≤
(

Λ1L1 + Λ2L2

)(
‖X1 −X2‖+ ‖Y1 −Y2‖

)
= Θ

(
‖X1 −X2‖+ ‖Y1 −Y2‖

)
.

Hence we obtain

‖T(X1,Y1)− T(X2,Y2))‖ ≤ (Θ + Θ)(‖X1 −X2‖+ ‖Y1 −Y2‖),
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which, in view of the condition (42), shows that T is a contraction. Thus, the conclusion
of Banach’s fixed-point theorem applies and, hence, the problem (1) and (2) has a unique
solution on [0, 1]. The proof is finished.

4. An Example

Example 1. Consider a coupled system of fractional differential equations⎧⎪⎪⎨⎪⎪⎩
(cD26/7 +c D19/7)X (t) =

135X (t)
225 + t

+
3 sinY(t)

13 + t2 +
3

13
√

9 + t2
,

(cD17/5 +c D12/5)Y(t) =

√
16 − t2

π(40 + t)
sin(2πX (t)) +

24| tan−1 Y(t)|
π(t2 + 120)

+
ln 5

2
, t ∈ [0, 1],

(45)

equipped with the coupled boundary conditions⎧⎪⎪⎪⎨⎪⎪⎪⎩
X (0) = 0, X ′(0) = 0, X ′(1) = 0, X (1) = k

∫ ρ

0
Y(s)dA(s) +

3

∑
i=1

αiY(σi) + k1

∫ 1

ν
Y(s)dA(s),

Y(0) = 0, Y′(0) = 0, Y′(1) = 0, Y(1) = h
∫ ρ

0
X (s)dA(s) +

3

∑
i=1

βiX (σi) + h1

∫ 1

ν
X (s)dA(s).

(46)

Here q = 19/7, p = 12/5, k = 3/16, k1 = 2/175, h = 5/88, h1 = 3/104, A(s) = 1 + sr+1

r+1 ,
r ∈ N, ρ = 2/7, ν = 6/7, σ1 = 3/7, σ2 = 4/7, σ3 = 5/7, α1 = 1/10, α2 = 1/414,
α3 = 3/313, β1 = 1/3, β2 = 1/41, β3 = 7/121. Clearly

|f(t,X (t),Y(t))| ≤ 1
13

+
3
5
‖X ‖+ 3

13
‖Y‖,

|g(t,X (t),Y(t))| ≤ ln 5
2

+
1
5
‖X ‖+ 1

10
‖Y‖,

and hence η0 = 1/13, η1 = 3/5, η2 = 3/13, ζ0 = (ln 5)/2, ζ1 = 1/5, ζ2 = 1/10. Using
(36) and (37) with the given data and r = 2, we find that Ω1 � 0.331501, Ω2 � 0.138843 and
Ω = max{Ω1, Ω2} � 0.331501 < 1. Therefore, by Theorem 1, the problem (45) and (46) has at
least one solution on [0, 1].

To explain Theorem 2, we consider the following system of sequential fractional differential
equations supplemented with the boundary conditions (46):⎧⎪⎪⎨⎪⎪⎩

(cD26/7 +c D19/7)X (t) =
3e−t√
(t4 + 25)

|X (t)|
(1 + |X (t)|) +

18
(t2 + 30)

sin(Y(t)) +
9

2
√

5 + t
,

(cD17/5 +c D12/5)Y(t) =
1

(t + 10)
tan−1 X (t) +

e−t

10
|Y(t)|3

(1 + |Y(t)|3) +
cos(t + 1)
(9 + t)

,
(47)

t ∈ [0, 1]. It is easy to check whether |f(t,X1,Y1)− f(t,X2,Y2)| ≤ L1(‖X1 −X2‖+ ‖Y1 −Y2‖)
with L1 = 3/5 and |g(t,X1,Y1)− g(t,X2,Y2)| ≤ L2(‖X1 −X2‖+ ‖Y1 −Y2‖)with L2 = 1/10.
Additionally, Θ + Θ � 0.282351 < 1. Therefore, the hypothesis of Theorem 2 is satisfied. Hence, by
the conclusion of Theorem 2, there is a unique solution to the system (47) equipped with the boundary
conditions (46) on [0, 1].

5. Discussion

We have presented the criteria ensuring the existence and uniqueness of solutions
for a coupled system of higher-order sequential Caputo fractional differential equations
complemented with Riemann–Stieltjes integro-multipoint boundary conditions on the
interval [0, 1]. A characteristic of the method employed in the present study is its generality,
as it can be applied to a variety of boundary value problems. As a special case, our results
become associated with multipoint boundary conditions:
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
X (0) = 0, X ′(0) = 0, X ′(1) = 0, X (1) =

n−2

∑
i=1

αiY(σi),

Y(0) = 0, Y′(0) = 0, Y′(1) = 0, Y(1) =
n−2

∑
i=1

βiX (σi),
(48)

if we take k = k1 = h = h1 = 0 in (2). In this case, the corresponding operators take
the form:

T̂1(X ,Y)(t) =
∫ t

0
e−(t−s) Iq

0+ f(s,X (s),Y(s))ds

+Q1(t)
[ ∫ 1

0
e−(1−s) Iq

0+ f(s,X (s),Y(s))ds − Iq
0+ f(s,X (s),Y(s))(1)

]
+ Q2(t)

[ ∫ 1

0
e−(1−s) Ip

0+g(s,X (s),Y(s))ds − Ip
0+g(s,X (s),Y(s))(1)

]
+ Q3(t)

[ n−2

∑
i=1

αi

∫ σi

0
e−(σi−s) Ip

0+g(s,X (s),Y(s))ds

−
∫ 1

0
e−(1−s) Iq

0+ f(s,X (s),Y(s))ds
]

+ Q4(t)
[ n−2

∑
i=1

βi

∫ σi

0
e−(σi−s) Iq

0+ f(s,X (s),Y(s))ds

−
∫ 1

0
e−(1−s) Ip

0+g(s,X (s),Y(s))ds
]
,

T̂2(X ,Y)(t) =
∫ t

0
e−(t−s) Ip

0+g(s,X (s),Y(s))ds

+P1(t)
[ ∫ 1

0
e−(1−s) Iq

0+ f(s,X (s),Y(s))ds − Iq
0+ f(s,X (s),Y(s))(1)

]
+ P2(t)

[ ∫ 1

0
e−(1−s) Ip

0+g(s,X (s),Y(s))ds − Ip
0+g(s,X (s),Y(s))(1)

]
+ P3(t)

[ n−2

∑
i=1

αi

∫ σi

0
e−(σi−s) Ip

0+g(s,X (s),Y(s))ds

−
∫ 1

0
e−(1−s) Iq

0+ f(s,X (s),Y(s))ds
]

+ P4(t)
[ n−2

∑
i=1

βi

∫ σi

0
e−(σi−s) Iq

0+ f(s,X (s),Y(s))ds

−
∫ 1

0
e−(1−s) Ip

0+g(s,X (s),Y(s))ds
]
.

In future, we plan to develop the existence theory for the multivalued analogue of the
problem (1) and (2). Moreover, the boundary value problem considered in this paper can
be studied for other kinds of derivatives, such as Hadamard, Caputo–Hadamard, Hilfer,
Hilfer–Hadamard, etc.
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Abstract: In this paper, we establish the existence of solutions to a nonlinear boundary value problem
(BVP) of variable order at resonance. The main theorem in this study is proved with the help of
generalized intervals and piecewise constant functions, in which we convert the mentioned Caputo
BVP of fractional variable order to an equivalent standard Caputo BVP at resonance of constant
order. In fact, to use the Mawhin’s continuation technique, we have to transform the variable order
BVP into a constant order BVP. We prove the existence of solutions based on the existing notions in
the coincidence degree theory and Mawhin’s continuation theorem (MCTH). Finally, an example is
provided according to the given variable order BVP to show the correctness of results.

Keywords: piecewise constant function; Mawhin’s continuation technique; variable order; resonance;
existence

1. Introduction

The initial idea of fractional calculus is taken from the powers of real or complex
numbers in the order of differentiation and integration operators. In recent decades, frac-
tional operators of variable order are appeared extensively in a vast domain of sciences
including chaotic dynamical systems, fractal theory, rheology, signal processing, mathe-
matical modeling, control theory, and biomedical applications. This range of applications
is due to the fact that fractional derivatives provide a strong tool in the mathematics to
describe the memory and hereditary properties of processes and various materials; see, for
example [1–3].

Before the variable order systems, discussion of boundary value problems with frac-
tional constant orders has attracted the attention of most researchers, and valuable findings
have been established. Various researches have been conducted to study the behaviors of
different fractional BVPs by means of some known methods such as fixed point theorems,
numerical methods, monotone iterative methods, variational methods, and etc. [4–12].

Nevertheless, in addition to numerous published papers on fractional constant order
problems, few studies on the existence theory have been done in relation to variable order
problems [13–19]. Hence, investigation of this interesting and general topic makes all our
findings worthy.
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In 1970, Gaines and Mawhin [20] introduced the theory of coincidence degree for anal-
ysis of differential and functional equations. Mawhin has made important contributions
since then, and the mentioned theory is also famous to the Mawhin’s coincidence theory.
Coincidence theory is considered as a powerful technique, especially with regard to ques-
tions about the existence of solutions for nonlinear differential equations. Mawhin’s theory
permits the use of a method based on the topological degree notion for some problems
which can be written as an abstract operator equation of the form Θx = Wx, where Θ is a
linear non-invertible operator and W is a nonlinear operator acting on a Banach space.

In 1972, Mawhin extended a technique to solve this operator equation in his famous
paper [21]. He assumed that Θ is a Fredholm operator of index zero. Then, he developed a
new theory of topological degree known as the degree of coincidence for (Θ, W), that is
also known as Mawhin’s coincidence degree theory in honor of him.

A given boundary value problem is said to be at resonance if the corresponding linear
homogeneous BVP has a non-trivial solution. Many authors studied ordinary BVPs at
resonance using Mawhin’s coincidence degree theory; we can cite some works done by
Feng and Webb [22], Guezane-Lakoud and Frioui [23], Mawhin and Ward [24], Infante [25],
and references therein.

Based on the aforementioned technique in relation to Mawhin’s method, in this paper,
we shall investigate a nonlinear boundary value problem of variable order at resonance
which takes the form as follows⎧⎨⎩

cDu(t)
0+ φ(t) = g(t, φ(t)), t ∈ A,

φ(0) = φ(T),
(1)

where A = [0, T], T ∈ (0, ∞), the function u(t) : A → (0, 1] is the order of the existing
derivative in the above boundary problem, cDu(t)

0+ is the variable order Caputo derivative,
and also g ∈ C(A ×R,R).

The important aim of this research is to investigate some qualitative properties of
solutions of the given Caputo boundary value problem of variable order (1). The main
novelty of this paper is that we use the Mawhin’s continuation technique for the first time
for proving the existence of solutions of a Caputo boundary value problem at resonance
equipped with variable order. Most papers apply this technique on the constant order
systems, while we here try to derive the necessary conditions on a variable order system.
In comparison to variable order partial systems, a linear analogue of this problem can be
observed in the framework of partial differential equation [26] and this shows another
version of such problems and specify our main contribution in this work. It is notable for
young researchers that they can implement and investigate this methods and techniques
on hidden-memory variable-order fractional problems introduced in [27,28] in the future.

The structure of the paper is organized as follows: Initially, some auxiliary definitions
and remarks are collected for recalling the required notions in Section 2. Further, in
Section 3, based on coincidence degree theory, a partition of the given interval A is applied,
and by defining the relevant piecewise constant functions, the existence results are derived
for an equivalent constant-order BVP at resonance and accordingly, for the given Caputo
BVP of variable order (1). This proof is completed in some steps. In Section 4, we give
an example to illustrate the theoretical existence theorems. The paper is completed with
conclusions in Section 5.

2. Auxiliary Concepts

At first, some needed concepts about our study are collected from different sources.
Here, the Banach space C(A,R) consisting of continuous functions like φ : A → R is
equipped with the sup-norm ‖φ‖ = sup{|φ(t)| : t ∈ A}.
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Definition 1 ([29,30]). The Riemann-Liouville fractional integral (RLFI) of variable order u(t)
for the function φ is defined by

Iu(t)
0+ φ(t) =

1
Γ(u(t))

∫ t

0
(t − s)u(t)−1φ(s)ds, t ∈ A, (2)

where Γ(z) =
∫ ∞

0 xz−1e−xdx, and the left Caputo fractional derivative (CFD) of variable order
u(t) for φ(t) is defined by

cDu(t)
0+ φ(t) =

1
1 − Γ(u(t))

∫ t

0
(t − s)−u(t)φ′(s)ds, t ∈ A. (3)

Remark 1. Notice that in (2), we have specified the variable order as the function u : A → (0, 1],
while for defining RLFI, we can consider it as a function with extended values like u : A → (0, ∞).

Remark 2 ([30]). When we define the variable order u as a constant-valued function in both (2)
and (3), then the variable order RLFI and CFD operators are the same as the usual RLFI and CFD
operators, respectively.

Remark 3 ([29]). As we know, the semigroup property is satisfied for the standard RLFI operators
equipped with constant order, while it is not valid for extended case of variable orders β1(t) and
β2(t). In other words, Iβ1(t)

0+ ( Iβ2(t)
0+ )φ(t) �= Iβ1(t)+β2(t)

0+ φ(t).

To see this problem, we give the following example.

Example 1. Let A = [0, 3] and φ(t) ≡ 1, ∀ t ∈ A. The variable orders of RLFI operator can be

taken as: β1(t) =
t
2

and β2(t) =
{

1, t ∈ [0, 1]
2, t ∈ [1, 3]

.

Then for all t ∈ A, and according to Definition (2), we compute

Iβ1(t)
0+

(
Iβ2(t)
0+ φ(t)

)
=

∫ t

0

(t − s)β1(t)−1

Γ(β1(t))

∫ s

0

(s − τ)β2(s)−1

Γ(β2(s))
φ(τ)dτds

=
∫ t

0

(t − s)β1(t)−1

Γ(u(t))
[
∫ 1

0

(s − τ)0

Γ(1)
dτ +

∫ s

1

(s − τ)

Γ(2)
dτ]ds

=
∫ t

0

(t − s)β1(t)−1

Γ(β1(t))
[
s2

2
− s +

3
2
]ds,

and

Iβ1(t)+β2(t)
0+ φ(t) =

∫ t

0

(t − s)β1(t)+β2(t)−1

Γ(beta1(t) + β2(t))
φ(s)ds.

For t = 2, it becomes

Iβ1(t)
0+

(
Iβ2(t)
0+ φ(t)

)
|t=2 =

∫ 2

0

(2 − s)0

Γ(1)
[
s2

2
− s +

3
2
]ds

=
∫ 2

0
(

s2

2
− s +

3
2
)ds

=
7
3

,
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and

Iβ1(t)+β2(t)
0+ φ(t)|t=2 =

∫ 2

0

(2 − s)β1(t)+β2(t)−1

Γ(β1(t) + β2(t))
φ(s)ds

=
∫ 1

0

(2 − s)1

Γ(2)
ds +

∫ 2

1

(2 − s)2

Γ(3)
ds

=
3
2
+

1
6

=
5
3

.

Hence, it is simply seen that the mentioned property is not correct for the generalized RLFI
operators with respect to variable orders.

The following expansion is key for our argument.

Lemma 1 ([31]). Let a1, α1 > 0 and n = 1 + [α1]. Then

Iα1
a+1
(cDα1

a+1
φ(t)) = φ(t)−

n−1

∑
k=0

φ(k)(a1)

k!
tk.

Lemma 2 ([32]). Let α1, α2 > 0, φ,c Dα1
a+1

φ ∈ L1(a1, a2). Then, the differential equation

cDα1
a+1

φ(t) = 0,

has unique solution

φ(t) = r0 + r1(t − a1) + r2(t − a1)
2 + ... + rn−1(t − a1)

n−1,

and we have

Iα1
a+1
(cDα1

a+1
)φ(t) = φ(t) + r0 + r1(t − a1) + r2(t − a1)

2 + ... + rn−1(t − a1)
n−1,

such that n − 1 < α1 ≤ n, rj ∈ R, j = 1, 2, ... , n.
Furthermore, we have

cDα1
a+1
(Iα1

a+1
)φ(t) = φ(t),

and
Iα1
a+1
(Iα2

a+1
)φ(t) = Iα2

a+1
(Iα1

a+1
)φ(t) = Iα1+α2

a+1
φ(t).

We recall some properties of variable order RLFI operator formulated by (2) which
will be used in the sequel.

Lemma 3 ([33]). If u : A → (0, 1] has the continuity property, then for

h ∈ Cδ(A,R) = {h(t) ∈ C(A,R), tδh(t) ∈ C(A,R)}, 0 ≤ δ ≤ 1,

the integral Iu(t)
0+ h(t) admits a finite value for all t ∈ A.

Lemma 4 ([33]). Assume that u : A → (0, 1] has the continuity property. Then

Iu(t)
0+ h(t) ∈ C(A,R) for h ∈ C(A,R).
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Definition 2 ([34,35]). An interval J ⊆ R is termed as a generalized interval if I is either an
interval, or {a1}, or ∅. A finite set F is defined to be a partition of J if every x ∈ J belongs to
exactly one and one generalized interval I in F . Finally, w : J → R is piecewise constant w.r.t F
as a partition of J, if for each I ∈ F , w is constant on I.

The next definitions and basic lemmas from coincidence degree theory are fundamen-
tal in the proof of theorems which we will establish them later.

Definition 3 ([20,36]). Consider two normed spaces S1 and S2. A Fredholm operator of index zero
is a linear operator like Θ : Dom(Θ) ⊂ S1 → S2 satisfying:

(a) IMG(Θ) ⊆ S2 is closed;
(b) dimKER(Θ) = codimIMG(Θ) < +∞.

In view of Definition 3, it is followed the existence of continuous projections Ψ :
S1 → S1 and Φ : S2 → S2 such that IMG(Ψ) = KER(Θ), KER(Φ) = IMG(Θ),
S1 = KER(Θ)⊕KER(Ψ), and S2 = IMG(Θ)⊕ IMG(Φ).

It is known that the restriction of Θ to Dom(Θ) ∩KER(Ψ), which we shall represent
by ΘΨ, will be an isomorphism onto its image [20,36].

Definition 4 ([20,36]). Let Θ be a Fredholm operator of index zero and Ω ⊆ S1 be bounded with
Dom(Θ) ∩ Ω �= ∅. We say W : Ω → S2 has the Θ-compactness property in Ω whenever:

(H1) ΦW : Ω → S2 is continuous, and ΦW(Ω) ⊆ S2 is bounded,
(H2) (ΘΨ)

−1(I − Φ)W : Ω → S1 is completely continuous.

The next theorem entitled Mawhin’s Continuation Theorem is our main criterion in the
present study which proves the existence of solution.

Theorem 1 ([37]). Assume that S1 and S2 are two Banach spaces and Ω ⊂ S1 is an open, bounded
and symmetric set with 0 ∈ Ω. Also, assume that:

(A1) the Fredholm operator Θ : Dom(Θ) ⊂ S1 → S2 of index zero is such that

Dom(Θ) ∩ Ω �= ∅,

(A2) the operator W : S1 → S2 is Θ-compact on Ω,
(A3) ∀ x ∈ Dom(Θ) ∩ ∂Ω and ∀ λ ∈ (0, 1],

Θx − Wx �= −λ(Θx + W(−x)),

where ∂Ω denotes the boundary of Ω w.r.t. S1.

Then the operator equation Θx = Wx has at least one solution on Dom(Θ) ∩ Ω.

3. Existence of Solutions

To begin the desired analysis, we consider the following assumptions:

(AS1) Consider a sequence of finite many points {Tk}n
k=0 so that 1 = T0 < Tk < Tn = T,

k ∈ Nn−1
1 . For k ∈ Nn

1 , denote the subintervals Ak as Ak := (Tk−1, Tk]. Then
P =

⋃n
k=1 Ak is a partition of A.

(AS2) Let g ∈ C(Aj ×R,R) and there exists δ ∈ (0, 1) such that tδg ∈ C(Aj ×R,R) and

there exists K > 0 with K < min

{
1,

Γ(uj + 1)
(Tj − Tj−1)

uj

}
so that tδ|g(t, φ1)− g(t, φ2)| ≤

K|φ1 − φ2|, for any φ1, φ2 ∈ R and t ∈ Aj.

For each j ∈ Nn
1 , the notation Ej = C(Aj,R) denotes the Banach space of continuous

functions φ : Aj → R with the sup-norm ‖φ‖Ej = supt∈Aj
|φ(t)|.
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On the other side, consider the piecewise constant mapping u(t) : A → (0, 1] w.r.t. P ,
i.e.,

u(t) =
n

∑
j=1

uj Ij(t),

where 0 < uj ≤ 1 are real numbers, and Ij denotes the indicator of Aj, j ∈ Nn
1 ; that is,

Ij(t) = 1 if t ∈ Aj and Ij(t) = 0 otherwise. In this case, the left CFD of variable order u(t)
for φ(t) ∈ C(A,R), defined as (3), can be formulated as a sum of the left CFD operators of
constant orders uk ∈ R which takes the form

cDu(t)
0+ φ(t) =

j−1

∑
k=1

∫ Tk

Tk−1

(t − s)−uk

Γ(1 − uk)
φ′(s)ds +

∫ t

Tj−1

(t − s)−uj

Γ(1 − uj)
φ′(s)ds. (4)

Thus, the given Caputo BVP of variable order (1) can be reformulated for each t ∈ Aj,
j ∈ Nn

1 in the following structure

j−1

∑
k=1

∫ Tk

Tk−1

(t − s)−uk

Γ(1 − uk)
φ′(s)ds +

∫ t

Tj−1

(t − s)−uj

Γ(1 − uj)
φ′(s)ds = g(t, φ(t)). (5)

Let the function φ̃ ∈ Ej be so that φ̃(t) ≡ 0 on t ∈ [0, Tj−1] and it satisfies the above
integral Equation (5). In such a situation, (5) is converted to the standard constant order
fractional differential equation (FDE) as

cD
uj

T+
j−1

φ̃(t) = g(t, φ̃(t)), t ∈ Aj.

In accordance with above equation, for each j ∈ Nn
1 , we have the auxiliary FBVP

equipped with Caputo constant order CFD operator⎧⎨⎩
cD

uj

T+
j−1

φ(t) = g(t, φ(t)), t ∈ Aj,

φ(Tj−1) = φ(Tj).
(6)

A resonance problem is a boundary problem in which the corresponding homoge-
neous BVP has a non–trivial solution. Hence, we consider the homogeneous version of the
given equivalent constant order FBVP (6) by⎧⎨⎩

cD
uj

T+
j−1

φ(t) = 0, t ∈ Aj,

φ(Tj−1) = φ(Tj).
(7)

By Lemma 2, the homogeneous constant order FBVP (7) has nontrivial solution
φ(t) = c which converts the equivalent constant order FBVP (6) to a resonance FBVP.

As well as, on the given subintervals, let S1 = {φ ∈ Ej :φ(t) = I
uj

T+
j−1

v(t) : v ∈ Ej,t ∈ Aj}
with the norm

‖φ‖S1 = ‖φ‖Ej .

The linear operator Θ : Dom(Θ) ⊆ S1 → Ej along with the operator W : S1 → Ej are
defined as

Θ[φ(t)] := cD
uj

T+
j−1

φ(t), (8)

and
W[φ(t)] := g(t, φ(t)), t ∈ Aj, (9)

where
Dom(Θ) = {φ ∈ S1 : cD

uj

T+
j−1

φ ∈ Ej and φ(Tj−1) = φ(Tj)}.
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Then the equivalent constant order resonance FBVP (6) can be reformulated by the
equation Θφ = Wφ.

The first theorem on the existence of solutions for the equivalent constant order
resonance FBVP (6) is established in this position.

Theorem 2. If the condition (AS2) holds, then the equivalent constant order resonance FBVP (6)
has at least one solution.

Proof. The proof will be followed in a sequence of claims.

Claim 1. We show that

KER(Θ) = {c : c ∈ R},

and

IMG(Θ) =
{

φ ∈ Ej :
∫ Tj

Tj−1

(Tj − s)uj−1φ(s)ds = 0
}

.

Let Θ (defined by (8)) be such that for t ∈ Aj and by Lemma 2, the equation Θ[φ(t)] =
cD

uj

T+
j−1

φ(t) = 0 has the solution φ(t) = c, c ∈ R. Then

KER(Θ) = {φ(t) = c : c ∈ R}.

On the other hand, for v ∈ IMG(Θ), there exits φ ∈ Dom(Θ) such that v = Θφ ∈ Ej.
By Lemma 1, for any t ∈ Aj, we have

φ(t) = φ(Tj−1) +
1

Γ(uj)

∫ t

Tj−1

(t − s)uj−1v(s)ds.

Since φ ∈ Dom(Θ), v satisfies

1
Γ(uj)

∫ Tj

Tj−1

(Tj − s)uj−1v(s)ds = 0.

Also, assume that v ∈ Ej satisfies

∫ Tj

Tj−1

(Tj − s)uj−1v(s)ds = 0.

Let φ(t) = I
uj

T+
j−1

v(t). Then v(t) = cD
uj

T+
j−1

φ(t) and so φ ∈ Dom(Θ). Hence, v ∈ IMG(Θ),
so

IMG(Θ) =
{

φ ∈ S2 :
∫ Tj

Tj−1

(Tj − s)uj−1φ(s)ds = 0
}

.

Claim 2. Θ is a Fredholm operator of index zero.

The linear continuous projector operators Ψ : S1 → S1 and Φ : Ej → Ej can be
considered by the following forms

Ψφ = φ(Tj−1), Φv(t) =
uj

(Tj − Tj−1)
uj

∫ Tj

Tj−1

(Tj − s)uj−1v(s)ds.

Clearly, IMG(Ψ) = KER(Θ) and Ψ2 = Ψ. It follows that for any φ ∈ S1,

φ = (φ − Ψφ) + Ψφ,
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i.e., S1 = KER(Ψ) +KER(Θ). A simple computation shows that KER(Ψ)∩KER(Θ) = 0.
Therefore, S1 = KER(Ψ)⊕KER(Θ). A similar argument shows that for every v ∈ Ej,
Φ2v = Φv and v = (v − Φ(v)) + Φ(v), where (v − Φ(v)) ∈ KER(Φ) = IMG(Θ).

From IMG(Θ) = KER(Φ) and Φ2 = Φ, we have

IMG(Φ) ∩ IMG(Θ) = 0.

Then, Ej = IMG(Θ)⊕ IMG(Φ).
In this case,

dim(KER(Θ) = dim IMG(Φ) = codimIMG(Θ).

The obtained result shows that Θ is a Fredholm operator of index zero.

Claim 3. Θ−1
Ψ = (Θ|Dom(Θ)∩KER(Ψ))

−1 (the inverse of Θ|Dom(Θ)∩KER(Ψ)).
Clearly, Θ−1

Ψ : IMG(Θ) → S1 ∩KER(Ψ) satisfies

Θ−1
Ψ (v)(t) = I

uj

T+
j−1

v(t).

Let v ∈ IMG(Θ). Then

ΘΘ−1
Ψ (v) = cD

uj

T+
j−1

(I
uj

T+
j−1

v) = v. (10)

Furthermore, for φ ∈ Dom(Θ) ∩KER(Ψ), we get

Θ−1
Ψ (Θ(φ(t))) = I

uj

T+
j−1

(cD
uj

T+
j−1

φ(t)) = φ(t)− φ(Tj−1).

Since φ ∈ Dom(Θ) ∩KER(Ψ), we know that φ(Tj−1) = 0. Thus

Θ−1
Ψ (Θ(φ(t))) = φ(t). (11)

Combining (10) and (11) shows that ΘΨ−1 = (Θ|Dom(Θ)∩KER(Ψ))
−1.

Claim 4. On every bounded and open set Ω ⊂ S1, W is Θ-compact.
Define Ω = {φ ∈ S1 : ‖φ‖S1 < M} as a bounded and open set, where M > 0.

The proof of this claim will be done in three steps.
Step 1. ΦW is continuous.
This property for ΦW is derived due to the imposed conditions on the nonlinear

function g and the Lebesgue dominated convergence criterion, immediately.
Step 2. ΦW(Ω) is bounded.
Now, for each φ ∈ Ω and for all t ∈ Aj, we have

|ΦW(φ)(t)| ≤
uj

(Tj − Tj−1)
uj

∫ Tj

Tj−1

(Tj − s)uj−1|g(s, φ(s))|ds

≤
uj

(Tj − Tj−1)
uj

∫ Tj

Tj−1

(Tj − s)uj−1|g(s, φ(s))− g(s, 0)|ds

+
uj

(Tj − Tj−1)
uj

∫ Tj

Tj−1

(Tj − s)uj−1|g(s, 0)|ds

≤ g∗ +
uj

(Tj − Tj−1)
uj

∫ Tj

Tj−1

(Tj − s)uj−1s−δ(K|φ(s)|)ds

≤ g∗ + MKT−δ
j−1,
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by assuming g∗ = sup
t∈Aj

|g(t, 0)|. Thus,

‖ΦW(φ)‖Ej ≤ g∗ + MKT−δ
j−1 := R > 0.

This shows that ΦW(Ω) ⊆ Ej is bounded.

Step 3. Θ−1
Ψ (I − Φ)W : Ω → S1 is completely continuous.

By considering the existing hypotheses in relation to Ascoli-Arzelà theorem, it is
necessary that we prove two properties of the boundedness and equi-continuity for
Θ−1

Ψ (I − Φ)W(Ω) ⊂ S1. At first, for each φ ∈ Ω and for all t ∈ Aj, we have

Θ−1
Ψ (I − Φ)Wφ(t) = Θ−1

Ψ (Wφ(t)− ΦWφ(t))

= I
uj

T+
j−1

[
g(t, φ(t))−

uj

(Tj − Tj−1)
u
j

∫ Tj

Tj−1

(Tj − s)uj−1g(s, φ(s))
]
ds

=
1

Γ(uj)

∫ t

Tj−1

(t − s)uj−1g(s, φ(s))ds

− tuj

(Tj − Tj−1)
uj Γ(uj)

∫ Tj

Tj−1

(Tj − s)uj−1g(s, φ(s))ds.

Further, for each φ ∈ Ω and for all t ∈ Aj, we get

|Θ−1
Ψ (I − Φ)Wφ(t)| ≤ 2

Γ(uj)

∫ Tj

Tj−1

(Tj − s)uj−1|g(s, φ(s))− g(t, 0)|ds

+
2

Γ(uj)

∫ Tj

Tj−1

(Tj − s)uj−1|g(t, 0)|ds

≤ [g∗ + MKT−δ
j−1]

2(Tj − Tj−1)
uj

Γ(uj + 1)
:= B1.

so
‖Θ−1

Ψ (I − Φ)Wφ‖Ej ≤ B1,

which gives the uniform boundedness of Θ−1
Ψ (I − Φ)W(Ω) in S1.

To prove the equi-continuity of Θ−1
Ψ (I − Φ)W(Ω), notice that for Tj−1 ≤ t1 ≤ t2 ≤ Tj

and φ ∈ Ω, we get

|Θ−1
Ψ (I − Φ)Wφ(t2)− Θ−1

Ψ (I − Φ)Wφ(t1)| ≤
g∗ + T−δ

j−1MK

Γ(uj)

[ ∫ t2

t1

(t2 − s)uj−1ds

+
∫ t1

Tj−1

|(t2 − s)uj−1 − (t1 − s)uj−1|ds
]
+
[T−δ

j−1MK + g∗

Γ(uj + 1)

]
(t

uj
2 − t

uj
1 ).

The right-hand side of above inequality tends to zero as t1 → t2. Thus, Θ−1
Ψ (I −Φ)W(Ω)

is equicontinuous in S1. On the basis of the Ascoli-Arzelà theorem, L−1
Ψ (I − Φ)W(Ω) is rela-

tively compact. In accordance with the steps 1 to 3, we can follow that W is Θ-compact in Ω.

Claim 5. There exists ε > 0 (not depending on λ) so that if

Θ(φ)− W(φ) = −λ[Θ(φ) + W(−φ)], λ ∈ (0, 1], (12)
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then ‖φ‖S1 ≤ ε. By the condition (AS2) and for each φ ∈ S1 satisfying (12), we get

Θ(φ)− W(φ) = −λΘ(φ)− λW(−φ).

So
Θ(φ) =

1
1 + λ

W(φ)− λ

1 + λ
W(−φ). (13)

By (13), and for all t ∈ Aj, we get

φ(t) =
1

1 + λ
Θ−1

Ψ Wφ(t)− λ

1 + λ
Θ−1

Ψ W(−φ(t)),

and so we estimate

|φ(t)| ≤ 1
(1 + λ)Γ(uj)

∫ t

Tj−1

(t − s)uj−1|g(s, φ(s))− g(s, 0)|ds

+
λ

(1 + λ)Γ(uj)

∫ t

Tj−1

(t − s)uj−1|g(s,−φ(s))− g(s, 0)|ds

+
g∗(Tj − Tj−1)

uj

(1 + λ)Γ(uj + 1)
+

λg∗(Tj − Tj−1)
uj

(1 + λ)Γ(uj + 1)

≤
( 1

1 + λ
+

λ

1 + λ

)T−δ
j−1(Tj − Tj−1)

uj

Γ(uj + 1)
(K‖φ‖Ej)

+
( 1

1 + λ
+

λ

1 + λ

) g∗(Tj − Tj−1)
uj

Γ(uj + 1)

=
KT−δ

j−1(Tj − Tj−1)
uj

Γ(uj + 1)
‖φ‖Ej +

g∗(Tj − Tj−1)
uj

Γ(uj + 1)
.

Hence,

‖φ‖Ej ≤
(

g∗ + KT−δ
j−1‖φ‖Ej

) (Tj − Tj−1)
uj

Γ(uj + 1)
, (14)

and so
‖φ‖S1 ≤ g∗

Γ(uj+1)

(Tj−Tj−1)
uj − KT−δ

j−1

:= ε.

Claim 6. There exists a bounded and open set Ω ⊂ S1 such that

Θ(φ)− W(φ) �= −λ[Θ(φ) + W(−φ)],

for all φ ∈ ∂Ω and all λ ∈ (0, 1].

By the condition (AS2) and Claim 5, there exits ε > 0 (independent of λ) such that if
φ solves

Θ(φ)− W(φ) = −λ[Θ(φ) + W(−φ)], λ ∈ (0, 1],

then ‖φ‖S1 ≤ ε. Consequently, if

Ω = {φ ∈ S1 : ‖φ‖S1 < B}, (15)

then from the condition (AS2), it is immediately obtained that the set Ω introduced by (15),
is symmetric, 0 ∈ Ω, and S1 ∩ Ω = Ω �= ∅.
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Furthermore, it is obtained that

Θ(φ)− W(φ) �= −λ[Θ(φ)− W(−φ)],

for all φ ∈ ∂Ω = {φ ∈ S1 : ‖φ‖S1 = B} and for all λ ∈ (0, 1], where B > ε. This together
with Theorem 1 imply that the equivalent constant order resonance FBVP (6) has at least
one solution, and this completes the proof.

Now, we complete our deduction on the existence property for solutions of the given
Caputo FBVP of variable order (1).

Theorem 3. Let the conditions (AS1) and (AS2) be satisfied for all j ∈ Nn
1 . Then, the given Caputo

FBVP of variable order (1) has at least a solution in C(A,R).

Proof. We know that for all j ∈ Nn
1 , and according to Theorem 2, the equivalent constant

order resonance FBVP (6) has at least one solution φ̃j ∈ Ej. For each j ∈ Nn
1 , and on the

existing subintervals, define

φj =

{
0, t ∈ [0, Tj−1],

φ̃j, t ∈ Aj.

In such a case, φj ∈ C([0, Tj],R) satisfies the integral equation (5) for t ∈ Aj, which
means that φj(0) = 0, φj(Tj) = φ̃j(Tj) = 0 and satisfies (5) for t ∈ Aj, j ∈ Nn

1 . Therefore, the
piecewise function

φ(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

φ1(t), t ∈ A1,

φ2(t), t ∈ A2,

. . . . . . . . . . . . . . .

φn(t), t ∈ An = [0, T],

is a solution to the given Caputo FBVP of variable order (1) in C(A,R).

4. Example

Example 2. Consider the following FBVP (based on the given Caputo FBVP of variable order (1))
as follows ⎧⎨⎩ cDu(t)

0+ φ(t) =
sin φ(t)− φ(t) cos t

5
√

1 + t
, t ∈ A := [0, 2],

φ(0) = φ(2).
(16)

Let
g(t, φ) =

sin φ − φ cos t
5
√

1 + t
, (t, φ) ∈ [0, 2]× [0,+∞),

and

u(t) =

⎧⎪⎨⎪⎩
7
5

, t ∈ A1 := [0, 1],

3
2

, t ∈ A2 := [1, 2].
(17)

In this case,

t
1
2 |g(t, φ1)− g1(t, φ2)| =

∣∣∣∣∣∣ t
1
2 (sin φ1 − φ1 cos t)

5
√

1 + t
− t

1
2 (sin φ2 − φ2 cos t)

5
√

1 + t

∣∣∣∣∣∣
≤ 1

5

√
t

1 + t

(
| sin φ1 − sin φ2|+ | cos t||φ1 − φ2|

)
≤ 2

5
|φ1 − φ2|.
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By (17) and (6), on every subintervals A1 and A2, two auxiliary constant order resonance
FBVPs are considered as⎧⎪⎨⎪⎩

cD
7
5
0+φ(t) =

sin φ(t)− φ(t) cos t
5
√

1 + t
, t ∈ A1,

φ(0) = φ(1),
(18)

and ⎧⎪⎨⎪⎩
cD

3
2
1+φ(t) =

sin φ(t)− φ(t) cos t
5
√

1 + t
, t ∈ A2,

φ(1) = φ(2).
(19)

Evidently, the condition (AS2) is satisfied for j = 1 with δ =
1
2

and K =
2
5

, and

0 < K =
2
5
< min

{
1,

Γ(uj + 1)
(Tj − Tj−1)

uj

}
= min

{
1, Γ(

12
5
)
}
= 1.

According to Theorem 2, the constant order resonance FBVP (18) has a solution like φ̃1 ∈ E1.

Next, the condition (AS2) is also valid for j = 2 with δ =
1
2

and K =
2
5

, and

0 < K =
2
5
< min

{
1,

Γ(uj + 1)
(Tj − Tj−1)

uj

}
= min

{
1, Γ(

5
2
)
}
= 1.

According to Theorem 2, the constant order resonance FBVP (19) has a solution like φ̃2 ∈ E2.
Then, by Theorem 3, the given Caputo FBVP of variable order (16) has a solution as

φ(t) =

⎧⎨⎩ φ̃1(t), t ∈ A1,

φ2(t), t ∈ A2,

where

φ2(t) =

⎧⎨⎩ 0, t ∈ A1,

φ̃2(t), t ∈ A2,

and this shows the correctness of our results.

5. Conclusions

In this paper, a theoretical study was done for the given Caputo BVP of variable
order (1) at resonance. To conduct this research, we defined some generalized subintervals
as a partition of the main interval, and then on each subinterval, the piecewise constant
functions were defined. With the help of these notions, we converted the given variable-
order system to a constant-order system at resonance. In this case, we implemented the
conditions of the Mawhin’s continuation theorem for proving the existence criterion for
solutions of the corresponding BVP. Finally, an example was simulated numerically to
show the correctness of our results. This technique on a variable-order BVP is new and
determines the novelty of this work compared with other limited published papers in the
form of variable orders. In relation to next studies, we aim to work on hidden-memory
variable order systems and analyze the qualitative behaviors of their solutions such as
existence, stability, and numerical solutions.
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Abstract: In this paper, the solvability of a system of nonlinear Caputo fractional differential equations
at resonance is considered. The interesting point is that the state variable x ∈ Rn and the effect of the
coefficient matrices matrices B and C of boundary value conditions on the solvability of the problem
are systematically discussed. By using Mawhin coincidence degree theory, some sufficient conditions
for the solvability of the problem are obtained.

Keywords: coincidence degree theory; four-point boundary value problem system; at resonance

1. Introduction

In partial differential equations theory, multipoint boundary conditions are those
which the solutions of multiple-parameter differential equations should satisfy. In recent
decades, more and more mathematicians turned their attention to nonlinear boundary value
problems (BVPs) in resonance cases and non-resonance cases. For some non-resonance
cases, we recommend readers to [1–4], and for resonance cases to [5–12] and the references
therein. In [8], Feng first obtained the existence of one solution of semilinear three-point
BVPs at resonance by making use of the coincidence degree theory of Mawhin. Then, as
an extension of [8], Ma [9] first developed the upper and lower solution method to obtain
some multiplicity results. Motivated by [9], Bai [6] researched a four-point boundary value
problem, and proved the existence and multiplicity results by making use of the method of
upper and lower solutions established by the coincidence degree theorem. Subsequently,
various boundary value conditions were studied.

V.A. Il’in and E.I. Moiseev in [1] studied Sturm–Liouville operator of the first kind
of nonlocal boundary value problem, which originated from the famous work of A. V.
Bitsadze and A. A. Samarskogo [3]: In the Euclidean n-dimensional space with orthogonal
Cartesian coordinates x1, x2, ..., xn, the elliptic linear differential equation on the (n − 1)
-dimensional piecewise smooth Lyapunov surface is transformed into a nonlocal problem
of an ordinary differential equation when solving a partial differential equation by the
separation of variables method. When the state variable is n-dimensional, consideration of
the general fractional model will naturally involve the model of the problem considered in
this paper.

To our best knowledge, before P.D. Phung [13], almost all articles on resonance BVPs
were focused on a single second-order equation with the dimension of Ker L ∈ [0, 2]. For a
second-order equation boundary value problem system with x ∈ Rn, the dimension of Ker
L will be between 0 and 2n; it will not be as easy as dim Ker L = 1 to establish projections
Q for matrices B and C with different properties. For the case of n = 2, Zhang in [12]
considered a three-point BVP at resonance for nonlinear fractional differential equations:⎧⎪⎨⎪⎩

Dα
0+u(t) = f (t, v(t), Dβ−1

0+ v(t)), 0 < t < 1,

Dβ
0+v(t) = g(t, u(t), Dα−1

0+ u(t)), 0 < t < 1,
u(0) = v(0) = 0, u(1) = σ1u(η1), v(1) = σ2v(η2),
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and obtained two existence results using the coincidence degree theory. In [13]. P.D. Phung
first researched the following resonant three-point BVPs in Rn:{

x
′′
(t) = f (t, x, x

′
), t ∈ (0, 1),

x
′
(0) = θ, x(1) = Ax(η),

where θ is an n-order zero vector, the matrix A satisfies one of the following conditions:{
A2 = I ( stands for n − order identity matrix),
A2 = A.

In [14], P.D. Phung removed the restriction on matrix A and studied the solvability of the
same problem as in [13]. Then, P.D. Phung [15] used similar methods to study the following
three-point boundary conditions in the fractional differential equations at resonance:

Dαx(t) = f (t, x(t), Dα−1x(t),

x(0) = θ, Dα−1x(1) = ADα−1x(η).

Recently, the solvability of integer or fractional differential equations with a wide range
of boundary value conditions at resonance in Rn has been researched. We direct readers
to [13–21] for details.

For nearly a decade, the resonant boundary value problem with n equations has been
studied by an increasing number of mathematicians. However, we found that the following
two problems have not been addressed. First, Zhang in [12] studied the resonance boundary
value problem of two equations, but used the same boundary value conditions for different
state variables u and v, so the study was similar to that of a single equation and could
not be easily extended to the case of n dimensions. Therefore, in this study we consider
the characterization of different constraints on different state variables, in other words,
we introduce matrices to control the constraints on state variables so that the expression
of the equation can be richer. However, other works [13–16,20,21] under the condition
of zero boundary value (similar to u(0) = 0) studied n equations of the problem. Gupta
in [10] proposed that many multi-point boundary value problems can be transformed
into four-point boundary value problems under certain conditions, so studying four-point
BVPs is more meaningful. The four-point boundary value condition does not contain zero
boundary value, which makes the structure of irreversible operators and the construction
of projection P and Q more complicated than that of three-point BVPs. Therefore, it is
more meaningful to introduce a matrix to study four-point boundary value problems
in mathematics.

Motivated by the above ideas, we consider the following fractional-order equations
with a new boundary value condition in Rn:

cDα
0+u(t) = f (t, u(t), cDα−1

0+ u), t ∈ (0, 1), (1)

u(0) = Bu(ξ), u(1) = Cu(η), (2)

where 0 < η, ξ < 1, 1 < α � 2; B, C are two n-order nonzero square matrices, cDα
0+

represents the Caputo differentiation, and f : [0, 1]× R2n → Rn satisfies Carathéodory
conditions. In this situation, Ker L may become a polynomial set with vector coefficients
and the construction of projectors will be somewhat complex. We say f : [0, 1]×R2n → Rn

satisfies Carathéodory conditions, that is,

(A1) f (·, u, v) is measurable on [0,1] for all (u, v) ∈ Rn ×Rn.
(A2) f (s, ·, ·) is continuous on Rn ×Rn, for a.e. s ∈ [0, 1].
(A3) The function gW(t) = sup(u,v)∈W | f (s, u, v)| is Lebesgue integrable on 0 � s � 1 for

all compact set W ⊂ Rn ×Rn.
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The problem in (1) and (2) is in resonance, meaning that the following linear homoge-
neous boundary value problem has nontrivial solutions:

CDα
0+u(t) = θ, 0 < t < 1, (3)

u(0) = Bu(ξ), u(1) = Cu(η). (4)

By (3), there is u(t) = c1 + c2t, c1, c2 ∈ Rn. Combining with (4), we can get the following
equations: {

(I − ηC)c1 + (I − C)c2 = θ,
−ξBc1 + (I − B)c2 = θ.

Clearly, the resonance condition is

Δ =

∣∣∣∣ I − ηC I − C
−ξB I − B

∣∣∣∣ = 0.

From the calculation formula of block matrix determinant, we can know that Δ = 0 if and
only if

|(I − ηC)(I − B) + ξB(I − C)| = 0. (5)

Condition (5) can be divided into three cases:

Case (1)B �= I, C �= I, |(I − ηC)(I − B) + ξB(I − C)| = 0;
Case (2)B = I, |I − C| = 0;
Case (3)B �= I, C = I, |I − B| = 0.

The paper is organized as follows. In Section 2, we state several notations and defini-
tions. In Sections 3 and 4, two main theorems (see Theorem 2 and 3) are established for
the solvability of problem (1) and (2) under resonance cases (1) and (2), respectively. It
is worth mentioning that, inspired by [14], in Section 4, we remove the restriction on the
matrix C, and give the existence theorem of the solution of the problem only under the
most basic resonance conditions (refer to case (2)).

2. Preliminaries

First, we recall some related definitions and lemmas of fractional calculus; we refer
the readers to [22] for more properties.

Definition 1. The α–order (α > 0) Riemann–Liouville fractional integral of function u is de-
fined as

Iα
0+u(t) =

1
Γ(α)

∫ t

0

u(s)
(t − s)1−α

ds, (6)

and the right side of the equation is defined at (0, ∞).

Definition 2. The α–order (α > 0) Caputo fractional derivative of function u : R+ → R is
defined as

CDα
0+u(t) = In−α

0+ Dnu(t) =
1

Γ(n − a)

∫ t

0

u(n)(s)
(t − s)1+α−n ds (7)

as long as the right side of the equation is defined at (0, ∞).

Lemma 1 ([22]). If u ∈ Cn−1(0, 1) ∩ L[0, 1], then the fractional differential equation

CDα
0+u(t) = 0 (8)

has a unique solution

u(t) =
n−1

∑
i=0

u(i)(0)
i!

tk. (9)
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The following lemma is also very important for subsequent research.

Lemma 2 ([22]). Let α > 0 and n − 1 < α � n.

(1) Let α > θ > 0 and u be a continuous function, then

CDθ
0+ Iα

0+u(t) = Iα−θ
0+ u. (10)

(2) Let u be an absolute continuous function of n − 1 times differentiable, then

Iα
0+

CDα
0+u(t) = u(t)−

n−1

∑
i=0

Diu(0)
i!

ti. (11)

Let X, Y be two Banach spaces, we call L : dom L ⊂ X → Y a Fredholm mapping of
index zero if

(E1) Im L is closed in Y and has codimension of finite dimension;
(E2) Tthe dimension of Ker L is equal to the codimension of Im L.

If L satisfies (E1) and (E2), then there will be two projectors Q : Y → Y, P : X → X
satisfies Ker Q = Im L, Im P = Ker L. Therefore, we can get the straight-sum decomposition:
Y = Im L ⊕ Im Q, X = Ker L ⊕ Ker P. Here, by KP we denote the inverse of L|Ker P∩dom L :
Ker P ∩ dom L → Im L and by KP,Q := KP(Id − Q) the generalized inverse of L.

We call N L-compact on Ω (Ω is an open bounded subset of X with dom L ∩ Ω �= ∅,
when it satisfies

(F1) QN(Ω) is bounded;
(F2) KP(Id − Q)N : Ω → X is completely continuous.

Theorem 1 ([23]). Let L be a Fredholm operator of index zero and N(Ω) be L-compact. Suppose
the following conditions are satisfied:

(i) Lu �= λNu for all x ∈ ∂Ω ∩ (dom L \ Ker L) and 0 < λ < 1;
(ii) Nu /∈ Im L for all x ∈ ∂Ω ∩ Ker L;
(iii) deg(J QN|Ω∩Ker L, Ker L ∩ Ω, 0) �= 0, where J : Im Q →Ker L is an isomorphism, and

Q : Y → Y is a projection as above.

Then, the equation Lu = Nu has at least one solution in dom L ∩ Ω.

By ‖u‖ = max{‖u‖∞, ‖cDα−1
0+ u‖∞} we denote the norm of space X = C1([0, 1];Rn),

where ‖·‖∞ is the maximum norm. Additionally, by ‖y‖1 we denote the Lebesgue norm of
Y = L1([0, 1];Rn). Set

X1 := {u : [0, 1] → Rn | u ∈ C2([0, 1];Rn)}.

Then, define map L : dom L → Y by setting

dom L = {u ∈ X1 : u(0) = Bu(ξ), u(1) = Cu(η)},

for u ∈ dom L,
Lu := CDα

0+u. (12)

3. Existence Results for Case (1)

Now, we show the solvability of BVP (1), (2) when B �= I, C �= I, |(I − ηC)(I − B) +
ξB(I − C)| = 0. Furthermore, suppose the matrices B, C satisfy the following conditions:

(H1) I − B is reversible;
(H2) (ηC − I)ξα−1 − ηαC + I is reversible;
(H3) I − ηC + ξ(I − C)(I − B)−1B = Θ,
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where Θ is an n-order zero matrix. From (12) we can know

Ker L = {c2t + C0c2, c2 ∈ Rn},

where C0 = ξ(I − B)−1B, and from (H3) we have (I − C)C0 = (ηC − I). Let

G(s) =

⎧⎪⎨⎪⎩
(ξ − s)α−1(I − C)(I − B)−1B − (η − s)α−1C + (1 − s)α−1 I, 0 � s � ξ;
−(η − s)α−1C + (1 − s)α−1 I, ξ < s < η;
(1 − s)α−1 I, η � s � 1,

then

Im L =

{
y ∈ Y

∣∣∣∣ 1
Γ(α)

∫ 1

0
G(s)y(s)ds = θ

}
.

Define a mapping Q : Y → Y as

Qy = γ
∫ 1

0
G(s)y(s)ds, (13)

where
γ = α{(ηC − I)ξα−1 − ηαC + I}−1.

Lemma 3. The operator L is a Fredholm operator with an index of zero.

Proof. For y ∈ Y, ∀t ∈ [0, 1]

Q2y(t) = γ
∫ 1

0
G(s)Qy(s)ds

=
γ

α
{(ηC − I)ξα−1 − ηαC + I}Qy(t)

= Qy(t),

so linear operator Q is a continuous projector. For y ∈ Im L, one has Qy(t) = θ; this shows
that y ∈ Ker Q. In fact, Im L = Ker Q.

Let y ∈ Y and it is easy to verify y − Qy ∈ Im L. Thus, Y = Im L + Im Q. For every
y ∈ Im Q have the form y = c, c ∈ Rn. At this time, if y ∈ Im L, then y = θ. Hence, Y = Im
L ⊕ Im Q. Combine with codim Im L = dim Im Q = dim Ker L, so L satisfies (E1) and (E2),
and the index of the Fredholm operator L is zero.

Define another projector P : X → X by

Pu = u
′
(0)t + C0u

′
(0). (14)

For v ∈ Ker L, one has
v(t) = c2t + C0c2, c2 ∈ Rn,

and
Pv(t) = c2t + C0c2 = v(t).

This shows that v ∈ Im P. Conversely, for every v ∈ Im P, there is x ∈ X such that
v(t) = Px(t). Thus,

v(t) = Px(t) = x
′
(0)t + c0x

′
(0) ∈ KerL. (15)

Hence, Ker L = Im P. Clearly, X = Ker P ⊕ Ker L. In fact, Ker P ∩ Ker L = {θ}.
Define a mapping KP : Im L → Ker P ∩ dom L as

KPy(t) = (I − B)−1BIα
0+y(ξ) + Iα

0+y(t), 0 � t � 1. (16)
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Lemma 4. KP is the inverse o f the mapping L|Ker P∩dom L and

‖KPy‖ � D‖y‖1, (17)

where D = 1 + ξ‖(I − B)−1B‖∗, ‖·‖∗ stand for the max-norm of matrices.

Proof. Let y ∈ Im L. It is clear that KPy(0) = BKPy(ξ) and KPy(1) = CKPy(η), such that
KPy ∈ dom L. Furthermore

PKPy(t) = (KPy)
′
(t)|t=0t + c0(KPy)

′
(t)|t=0 = θ. (18)

This shows that KPy ∈ Ker P. So, the definition of KP is reasonable.
For u ∈ Ker P ∩ dom L, from (11), one has

KPLu = (I − B)−1BIα
0+

cDα
0+u(ξ) + Iα

0+
cDα

0+u(t)

= (I − B)−1B
[
u(ξ)− u(0)− u

′
(0)ξ

]
− I(u(0)− u(t) + u

′
(0)t)

= u.

Conversely, for y ∈ Im L, one has LKPy = y. Thus, KP = (L|dom L∩Ker P)
−1.

Again, since

‖cDα−1
0+ (KPy)(t)‖∞ = ‖(I − B)−1BI1

0+y(ξ)‖∞ + ‖I1
0+y(t)‖∞

� (1 + ξ‖(I − B)−1B‖∗)‖y(t)‖1,

combining with (16), one has

‖KPy‖∞ � D
Γ(α)

‖y‖1.

Thus, we have ‖KPy‖ � D‖y‖1.

Define an operator N : X → Y by

Nu(t) = f (t, u(t), cDα−1
0+ u(t)), 0 � t � 1. (19)

Lemma 5. N is L-compact.

Proof. We divide the proof into two parts. The first part is bounded continuous. The
second part is completely continuous. Indeed, for f (t, u(t), cDα−1

0+ u(t)), there exists a
function gW(t) : R → Y s.t. for every u ∈ W ⊂ X and a.e. 0 � t � 1

‖ f (t, u, cDα−1
0+ u)‖∞ � gW . (20)

Combining with (13), one has

‖Qy‖1 � ‖G(s)‖∗‖γ‖∗‖y‖1, (21)

where
‖γ‖∗ = α‖{(ηC − I)ξα−1 − ηαC + I}−1‖∗,

‖G(s)‖∗ = (1 + ‖C‖∗ + ‖(I − C)(I − B)−1B‖∗).
Thus, QN(W) is bounded. Obviously, QN(W) is continuous.

For all u ∈ W ⊂ X, one has

KP,QNu =KP(I − Q)Nu

=(I − B)−1BIα
0+Nu(ξ) + Iα

0+Nu(t)− (I − B)−1BIα
0+QNu(ξ)− Iα

0+QNu(t)

=(I − B)−1BIα
0+Nu(ξ) + Iα

0+Nu(t)
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− γ

Γ(α)

{
ξα(Id − B)−1B

∫ 1

0
G(s)Nu(s)ds + tα

∫ 1

0
G(s)Nu(s)ds

}
. (22)

cDα−1
0+ KP,QNu = cDα−1

0+ KP(Id − Q)Nu = I1
0+Nx(t)− γΓ(α + 1)t

∫ 1

0
G(s)Nu(s)ds. (23)

Combining (20), (22), and (23), we have∣∣KP,QNu(t)
∣∣ �(1 + ‖(I − B)−1B‖∗)‖Nu‖1

+
‖γ‖∗
Γ(α)

(1 + ‖(I − B)−1B‖∗)‖G(s)‖∗‖Nu‖1,

∣∣∣cDα−1
0+ KP,QNu(t)

∣∣∣ � (1 + Γ(α + 1)‖γ‖∗‖G(s)‖∗)‖Nu‖1.

That is, KP,QNu(W) is uniformly bounded in X. Now we only need to prove KP,QNu(W)
is equicontinuous in X to end the proof of Lemma 5. For 0 � t1 < t2 � 1, one has∣∣KP,QNu(t2)− KP,QNu(t1)

∣∣
� 1

Γ(α)

∣∣∣∣∫ t2

t1

(t2 − s)α−1Nu(s)ds +
∫ t1

0
((t2 − s)α−1 − (t1 − s)α−1)Nu(s)ds

∣∣∣∣
+

γ

αΓ(α)
‖G(s)‖∗‖Nu‖1|tα

2 − tα
1 |

� 1
Γ(α)

( ∫ t1

0
(t2 − t1)

α−1gW(s)ds +
∫ t2

t1

gW(s)ds
)

+
γ

αΓ(α)
‖G(s)‖∗‖gW(t)‖1|tα

2 − tα
1 |,

and∣∣∣cDα−1
0+ KP,QNu(t2)− cDα−1

0+ KP,QNu(t1)
∣∣∣ � ∫ t2

t1

gW(s)ds + γ‖G(s)‖∗‖gW(t)‖1|t2 − t1|.

Thus, KP,QNu(W) is equicontinuous in X. In summary, N is L-compact.

We will use the following assumptions:

(M1) For all t ∈ [0, 1], x, y ∈ Rn, there exist three functions a1, b1, c ∈ Y, s.t.

(1 + ‖c0‖∗ + D)(‖a1‖1 + ‖b1‖1) < 1, (24)

and
| f (t, x, y)| � a1(t)|x|+ b1(t)|y|+ c(t), (25)

where D is the constant given in (17).
(M2) For u ∈ dom L, if there exist σ1 ∈ R+, s.t.

|cDα−1
0+ u(ν)| > σ1, ∀ν ∈ [0, 1],

then

C
∫ η

0
(η − s)α−1 f (ν, u(ν), cDα−1

0+ u(ν))dν

− I
∫ 1

0
(1 − s)α−1 f (ν, u(ν)dν, cDα−1

0+ u(ν))dν ∈ Im (I − C).

(M3) Let q(t) := (tI + C0), C0 = ξ(I − B)−1B, and

q(t)τ = (q1, ..., qn)
�, qi ∈ R.
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If there exist σ2 ∈ R+, s.t. ∀t ∈ [0, 1],

|qi| > σ2, ∀τ ∈ Rn, i = 1, ..., n,

then either
〈q(t)τ, QN(q(t)τ)〉 � 0 or 〈q(t)τ, QN(q(t)τ)〉 � 0, (26)

〈·, ·〉 stands for the scalar product in Rn.

Theorem 2. If assumptions (M1)–(M3) are satisfied, then Problem (1), (2) has at least one solution
in X.

Proof. Set Ω1 = {x ∈ dom L \ Ker L : Lx = λNx, 0 < λ < 1}. For u ∈ Ω1, one has
Nu ∈ Im L = Ker Q. Thus,

C
∫ η

0
(η − s)α−1 f (s, u(s), cDα−1

0+ u(s))ds − I
∫ 1

0
(1 − s)α−1 f (s, u(s), cDα−1

0+ u(s))ds

= (I − C)(I − B)−1B
∫ ξ

0
(ξ − s)α−1 f (s, u(s), cDα−1

0+ u(s))ds ∈ Im (I − C).

From (M2), there exist t0 ∈ [0, 1], s.t. |cDα−1
0+ u(t0)| � σ1, thus

|cDα−1
0+ u(0)| =

∣∣∣∣cDα−1
0+ u(t0)−

∫ t0

0

cDα
0+u(s)ds

∣∣∣∣ � σ1 + ‖cDα
0+u(t)‖1.

Furthermore

‖Pu(t)‖ = ‖u
′
(0)t + C0u

′
(0)‖ � (‖Nu‖1 + σ1)(1 + ‖C0‖∗). (27)

Note that Id is the identity operator. Combining with (27), one has

‖u(t)‖ = ‖Pu + (Id − P)u‖
� ‖Pu‖+ ‖KPL(Id − P)u‖
� (‖Nu‖1 + σ1)(1 + ‖C0‖∗) + D‖Nu‖1

= (1 + ‖C0‖∗ + D)‖Nu‖1 + (1 + ‖C0‖∗)σ1, (28)

where D was given in (16). Combining (19), (28), and (M1), we get

‖Nu‖1 �
∫ 1

0
| f (s, u(s), cDα−1

0+ u(s))|ds

� ‖a1‖1‖u‖∞ + ‖b1‖1‖cDα−1
0+ u‖∞ + ‖c‖1

� (‖a1‖1 + ‖b1‖1)‖u‖+ ‖c‖1

� (‖a1‖1 + ‖b1‖1)[(1 + ‖C0‖∗ + D)‖Nu‖1 + (1 + ‖C0‖∗)σ1] + ‖c‖1.

Therefore, it can be obtained that

‖Nu‖1 � (‖a1‖1 + ‖b1‖1)(1 + ‖C0‖∗)σ1] + ‖c‖1

1 − (1 + ‖C0‖∗ + D)(‖a1‖1 + ‖b1‖1)
. (29)

From (29) and (28), one has

sup
u∈Ω1

‖u‖ = sup
u∈Ω1

max{‖u‖∞, ‖cDα−1
0+ u‖∞} < +∞.

Hence Ω1 is bounded in X.
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Set Ω2 = {u ∈ Ker L | Nu ∈ Im L}. Assuming u ∈ Ω2, one has u = c2t + C0c2,
c2 ∈ Rn. Thus

C
∫ η

0
(η − s)α−1 f (s, c2s + C0c2, c2)ds − I

∫ 1

0
(1 − s)α−1 f (s, c2s + C0c2, c2)ds

= (I − C)(I − B)−1B
∫ ξ

0
(ξ − s)α−1 f (s, c2s + C0c2, c2)ds ∈ Im (I − C).

Then, from assumption (M2), one has

‖u‖ = max{‖u‖∞, ‖cDα−1
0+ u‖∞}

= max{‖c2t + C0c2‖∞, ‖c2‖∞}
� max{(1 + ‖C0‖∗)σ1, σ1}
� (1 + ‖C0‖∗)σ1 < +∞.

Therefore, Ω2 is a bounded subset.
Set Ω±

3 = {u ∈ Ker L : ±λ1u + (1 − λ1)QNu = θ, 0 � λ1 � 1}. We divide the proof
into the following two steps:

Step 1 : For u = c2t + C0c2 ∈ Ω+
3 , one has

λ1(c2t + C0c2) + (1 − λ1)QN(c2t + C0c2) = θ.

Case 1 : If λ1 = 0, then QN(c2t + C0c2) = θ, such that N(c2t + C0c2) ∈ Ker Q = Im L.
Thus we have N(c2t + C0c2) ∈ Ω2, so ‖u‖ � (1 + ‖C0‖∗)σ1.

Case 2 : If λ1 ∈ (0, 1], suppose ‖u‖ > nσ2. Then, from (M3) obtain that

0 > −λ1|u|2 = (1 − λ1)〈u, QNu〉 � 0.

So, we have a contradiction. Thus ‖u‖ � σ2.
Step 2 : For u ∈ Ω−

3 , using same arguments as in Step 1 above, we can deduce that
‖u‖ � σ2. Thus we can show that Ω−

3 , Ω+
3 ⊂ X are two bounded subsets.

Now, let Ω ⊂ Y and
⋃3

i=1 Ωi ⊂ Ω. According to the above arguments, we know
that both conditions (i) and (ii) of Theorem 1 are satisfied. In order to prove (iii), we use
isomorphic mapping J to construct the homotopy operator by

H(x(t), λ) = ±λx(t) + (1 − λ)J QNx(t).

Hence

deg(J QN|Ker L, Ω ∩ Ker L, θ) = deg(H(·, 0), Ω ∩ Ker L, θ)

= deg(±Id, Ω ∩ Ker L, θ) �= 0.

Therefore, (iii) of Theorem 1 is satisfied. Theorem 2 is proved.

4. Existence Results for Case (2)

Now, we show the solvability of BVP (1), (2) when B = I, |I − C| = 0. In this case, the
boundary value condition degenerates to

x(0) = x(ξ), x(1) = Cx(η). (30)

Unlike Section 3, this section removes the restriction on matrix C and uses the generalized
inverse to conduct research under the most basic resonance conditions, inspired by [14].
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Now we study the BVP (1) and (30) using Theorem 1. We use the same notations as in
Section 3. L, N,J . In this case,

dom L = {x ∈ X1 : x satisfies (30)}.

Let T = I − C and T + be the Moore–Penrose pseudoinverse matrix of T . From [24] we can
get the following conclusions, which are necessary for our subsequent research:

(I1) T +T T + = T +;
(I2) T T +T = T ;
(I3) Im T +T = Im T ;
(I4) Im (I − T +T ) = Ker T .

From (12), we have
Ker L = {c∗1 ∈ Rn : T c∗1 = θ}.

Define a linear operator H∗ by

H∗y(t) =
ηC − I

ξ
Iα
0+y(ξ)− CIα

0+y(η) + Iα
0+y(1).

Then
Im L = {y ∈ Y | H∗y(t) ∈ Im T }.

Define an operator Q∗ : Y → Y as

Q∗y = γ∗H∗y(t), (31)

where

γ∗ =
ξαΓ(α)

ηξα − ξα + ξ − ξηα
(I − T T +).

Then for y ∈ Y, we can get

Q∗2y = γ∗H∗Q∗y

=
ξαΓ(α)

ηξα − ξα + ξ − ξηα
(I − T T +)

(ηC − I)ξα + ξ I − ξηαC
αξΓ(α)

Q∗y

= Q∗y.

In fact
(I − T T +)(ηC − I)ξα + ξ I − ξηαC

= (I − T T +){η(C − I)ξα + (η − 1)ξα I + ηα(I − C) + (1 − ηα)I)}
= (η − 1)ξα I + ξ(1 − ηα)(I − T T +).

By similar arguments to Lemma 2.5 in [14], we have that the index of the Fredholm operator
L is zero.

Define an operator P∗ : X → X as

P∗x(t) = (I − T +T )x(0). (32)

If v ∈ Ker L, one has v = c∗1, c∗1 ∈ Rn ∩ Ker(T ) = Im (I − T +T ), thus there exists d∗1 ∈ Rn

suct that
c∗1 = (I − T +T )d∗1.

So, v ∈ Im P∗. Conversely, if v ∈ Im P∗, from (I2) we can know that v ∈ Ker T . Again,
since Ker P∗ ∩ Ker L = {θ}, then X = Ker P∗ ⊕ Ker L.

Define a mapping K∗
P : Im L → Ker P∗ ∩ dom L as

K∗
Py(s) = T +H∗y + Iα

0+y(s)− s
ξ

Iα
0+y(ξ). (33)
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Through checking calculation, we can get K∗
Py ∈ dom L and K∗

Py ∈ Ker P∗. Thus the
definition of K∗

P is reasonable.
Letting u ∈ Ker P∗ ∩ dom L, one has

K∗
PLu(t) = T +H∗cDα

0+u + Iα
0+

cDα
0+u(t)− t

ξ
Iα
0+

cDα
0+u(ξ)

= −T +(ηC − I)u
′
(0)ξ − T +C(u(0) + u

′
(0)η) + T +(u(0) + u

′
(0)) + u(t)− u(0)

= −T +Cu
′
(0)η + T +u

′
(0) + T +((ηC − I))u

′
(0)− (I − T +T )u(0) + u(t)

= u(t).

Similarly, for y ∈ Im L, we have LK∗
Py = y. Then we can deduce that K∗

P = (L|dom L∩Ker P)
−1.

Denote
D∗ = 2 + ‖T +‖∗((η + 1)‖C‖∗ + 2). (34)

By the similar proof process as in Lemma 4 and Lemma 5, we know that ‖K∗
Py‖ � D∗‖y‖1,

and K∗
P(I − Q)N is completely continuous.

Now we give the following assumptions:

(M1∗) For all s ∈ [0, 1], u, v ∈ Rn, we have

| f (s, u, v)| � a|u|+ b|v|+ c, (35)

where a, b, c ∈ Y are three positive functions satisfying (‖I − T T +‖∗ + D∗)(‖a‖1 +
‖b‖1) < 1, and D∗ is the constant given in (34).

(M2∗) For all u ∈ dom L, if

H∗ f (s, u(t), cDα−1
0+ u(t)) ∈ Im(T ). (36)

Then, there exist σ∗
1 ∈ R+ and s0 ∈ [0, 1], s.t. |u(s0)| � σ∗

1 .
(M3∗) There exist σ∗

2 ∈ R+, s.t. for every ν ∈ Rn with ν = Cν and |ν| > σ∗
2 , either

〈ν, Q∗N(ν)〉 � 0 or 〈ν, Q∗N(ν)〉 � 0, (37)

where 〈·, ·〉 stands for scalar product in Rn.

Theorem 3. If assumptions (M1∗)–(M3∗) are satisfied, BVP (1) and (30) has at least one solution
in X .

Proof. We use the same definitions of Ω1, Ω2, and Ω3 as in Theorem 2.
For x ∈ Ω1, we have that Nx ∈ Im L = Ker Q∗. Similarly, we can show

H∗ f (s, u(t), cDα−1
0+ u(t)) ∈ Im(T ).

In fact,

H∗ f (s, u, cDα−1
0+ u) = H∗cDα

0+u

= (ηC − I)u
′
(0) + Cu(η) + u(0)− Cu(0) + (I − Cη)u

′
(0)− u(1)

= T u(0) ∈ Im(T ).

Using assumption (M2∗), we can deduce that

|u(0)| =
∣∣∣∣u(t0)−

∫ t0

0

cDα−1
0+ u(s)ds

∣∣∣∣ � σ∗
1 + ‖cDα−1

0+ u‖∞,

and

|cDα−1
0+ u(t)| �

∫ t

0
|cDα

0+u(s)|ds � ‖Lu‖1.
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Then with the similar proof process in Theorem 2 we can know that

‖u(t)‖ � (‖I − T +T ‖∗ + D∗)‖Nu‖1 + σ∗
1 ‖I − T +T ‖∗, (38)

and

‖Nu‖1 � σ∗
1 (‖a‖1 + ‖b‖1)‖I − T +T ‖∗ + ‖c‖1

−(‖I − T +T ‖∗ + D∗)(‖a‖1 + ‖b‖1) + 1
. (39)

Combining (38) and (39) we can deduce that

sup
x∈Ω1

‖u‖ = sup
u∈Ω1

max{‖u‖∞, ‖cDα−1
0+ u‖∞} < +∞.

Hence Ω1 is a bounded subset of X.
For u ∈ Ω2, one has u = c∗1, c∗1 ∈ Rn. Combining with Nu ∈ Im L, we can get

H∗Nu ∈ Im(T ).

From assumptions (M2∗), we get

‖u‖ = max{‖u‖∞, ‖cDα−1
0+ u‖∞} = ‖c‖∞ = |u(t0)| � σ∗

1 < +∞.

Such that Ω2 is bounded in X.
In order to prove both Ω−

3 and Ω+
3 are bounded, we also divide the proof process into

two steps:
Step 1 : Assuming u ∈ Ω−

3 , one has u = c∗1, where c∗1 ∈ Rn ∩ Ker(T ). Thus we have

− λc∗1 + (1 − λ)QN(c∗1) = θ.

Case 1 : If λ = 0, then QN(c∗1) = θ, such that N(c∗1) ∈ Ker Q = Im L. Thus we have
Nx ∈ Ω2, so ‖x‖ � σ∗

1 .
Case 2 : If λ ∈ (0, 1], suppose ‖u‖ > σ2. From (B3) we get

0 < λ|c∗1 |2 = (1 − λ)〈c∗1, QNc∗1〉 � 0.

Therefore, we have ‖u‖ � σ∗
2 .

Step 2 : For u ∈ Ω+
3 , through a similar proof process as in Step 1, we can deduce that

‖u‖ � σ∗
2 .

Thus, Ω−
3 and Ω+

3 are two bounded subsets in X.
Let the definitions of bounded open subset Ω and homotopy H(u, λ) be the same as

in Theorem 2. Then we can deduce that (iii) of Theorem 1 is also satisfied. By Theorem 1,
Equations (1) and (30) must have a solution in dom L ∩ Ω.

5. Examples

In this section, we present two examples to illustrate our main results in Sections 3 and 4.

Example 1. Consider the following boundary value problem:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
CDα

0+x(t) = f1(t, x(t), y(t), CDα−1
0+ x(t), CDα−1

0+ y(t)), t ∈ (0, 1),
CDα

0+y(t) = f2(t, x(t), y(t), CDα−1
0+ x(t), CDα−1

0+ y(t)), t ∈ (0, 1),
x(0) = 5x( 1

4 ), y(0) = 0,
x(1) = 1

2 x( 3
4 ), y(1) = 4

3 y( 3
4 ),

(40)

where α = 3
2 , fi : [0, 1]×R4 → R, i = 1, 2, are defined as

f1(t, x1, x2, y1, y2) = − x1 + y1

40
, (41)
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f2(t, x1, x2, y1, y2) =
|x2|+ |y2|+ 1

60
, (42)

for all t ∈ [0, 1].

Clearly, ξ = 1
4 , η = 3

4 ,

B =

[
5 0
0 0

]
, C =

[ 1
2 0
0 4

3

]
, (I − C)(I − B)−1B =

[
− 5

8 0
0 0

]
, C0 =

[
− 5

16 0
0 0

]
,

and I − ηC + ξ(I − C)(I − B)−1B = Θ. Denote u1 = (x1, x2), u2 = (y1, y2) ∈ R2, define
function f : [0, 1]×R2 ×R2 → R2

f (t, u1, u2) = ( f1(t, u1, u2), f2(t, u1, u2))
�, ∀t ∈ [0, 1].

By (41), (42), and (43), f satisfies Carathéodory conditions.
Now we show that the other conditions of Theorem 3 hold. Choose positive inte-

grable functions

a(t) = b(t) = c(t) =
1

40
.

Then we have
| f (t, u, v)| � a(t)|u|+ b(t)|v|+ c(t),

By some simple computation, we get

(1 + ‖C0‖∗ + D)(‖a‖1 + ‖b‖1) =
25

384
< 1.

Hence, (M1) is satisfied.
In order to check (M2), one has

f2(t, u(t),C Dα−1
0+ u(t)) >

1
60

,

for all u ∈ C1([0, 1];R2) and all t ∈ [0, 1]. Letting f2(t, u(t),C Dα−1
0+ u(t)) = f2 be a positive

constant, we have

C
∫ η

0
(η − s)α−1 f (t, u(t),C Dα−1

0+ u(t))dt

− I
∫ 1

0
(1 − s)α−1 f (t, u(t),C Dα−1

0+ u(t))dt =
[ 1

2 f ∗1 + f ∗2
260
2911 f2

]
,

where f ∗1 = Iα
0+ f1(η), f ∗2 = Iα

0+ f1(1). If f2 = 1
60 , there is

C
∫ η

0
(η − s)α−1 f (t, u(t),C Dα−1

0+ u(t))dt

− I
∫ 1

0
(1 − s)α−1 f (t, u(t),C Dα−1

0+ u(t))dt =
[ 1

2 f ∗1 + f ∗2
13

8733

]
.

This shows that when f2(t, u(t),C Dα−1
0+ u(t)) > f2 = 1

60 , one has

C
∫ η

0
(η − s)α−1 f (t, u(t),C Dα−1

0+ u(t))dt

− I
∫ 1

0
(1 − s)α−1 f (t, u(t),C Dα−1

0+ u(t))dt /∈ Im((I − C)(I − B)−1B),

because Im((I − C)(I − B)−1B) = {(p, 0)� : p ∈ R}.
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Finally, we check (M3). Let q(t) = (tI + C0). Denote τ = (τ1, τ2)
�. So

q(t)τ = ((t +
5

16
)τ1, tτ2)

�

CDα−1
0+ q(t) = (

2τ1
√

t√
π

,
2τ2

√
t√

π
)�.

Then there is

Nq(t)τ =

⎛⎝− (t + 5
16 )τ1

40
− 2τ1

√
t

40
√

π
,

t|τ2|+ 2
√

t√
π
|τ2|+ 1

60

⎞⎠�

.

So

QN(q(t)τ) = α

[ − 31
5234 τ1

14
34946 |τ2|+ 25

181937

]
,

and

〈q(t)τ, QN(q(t)τ)〉 = α(− 31
5234

τ2
1 +

15
34946

|τ2|τ2 +
25

181937
τ2) � 0.

In fact, if τ2 � 0, this is obviously true. If τ2 > 0, letting |τ2| ≥ 1, one has τ2
2 > τ2.

Again, since
15

34946
>

25
181937

.

So, the formula above has no real root, which means − 31
5234 τ2

1 + 15
34946 |τ2|τ2 +

25
181937 τ2 < 0.

Thus, by Theorem 2, BVP (40) has at least one solution.

Example 2. Consider the following boundary value problem:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
CDα

0+x(t) = f1(t, x(t), y(t), CDα−1
0+ x(t), CDα−1

0+ y(t)), t ∈ (0, 1),
CDα

0+y(t) = f2(t, x(t), y(t), CDα−1
0+ x(t), CDα−1

0+ y(t)), t ∈ (0, 1),
x(0) = x( 1

4 ), y(0) = y( 1
4 ),

x(1) = y( 3
4 ), y(1) = y( 3

4 ).

(43)

We use the same α, f , ξ, η, a(t), b(t), and c(t) as in Example 1 and fi : [0, 1]×R4 →
R, i = 1, 2 are defined as

f1(t, x1, x2, y1, y2) =
x2 + y2

40
.

f2(t, x1, x2, y1, y2) =

⎧⎨⎩
√

y2
1+y2

2
40 , if |u2| > 1;

f1(t, x1, x2, y1, y2), otherwise.

C =

[
0 1
0 1

]
, T =

[
1 −1
0 0

]
, T + =

[ 1
2 0

− 1
2 0

]
.

We can easily check that assumption (M1∗) is satisfied. When |u2| > 1, from the definition
of f , one has y2

1 + y2
2 > 1 and H∗ f2 > H∗ 1

40 = 51
13571 > 0. According to a similar proof

process as Example 1, one has

H∗ f (t, u(t), CDα−1
0+ u(t)) =

[
H∗ f1
H∗ f2

]
/∈ Im(T ),
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because Im(T ) = {(p, 0)� : p ∈ R}. Finally, we check (M3∗). Letting τ = (τ0, τ0)
� ∈

Ker(T ), one has

Nτ = ( f1(t, τ, θ), f2(t, τ, θ))� =

{( τ0
40 , 0

)�, if |u2| > 1;( τ0
40 , τ0

40
)�, otherwise.

So

QNτ

= γ∗

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[
τ0

120

0

]
, if |u2| > 1;[

(7τ0)/480 − (31/2τ0)/160
(7τ0)/480 − (31/2τ0)/160

]
, otherwise,

and

〈τ, QNτ〉 =
{

1
120 τ2

0 c, if|u2| > 1;
7−3∗31/2

480 τ2
0 c, otherwise,

where c = ξαΓ(α)
ηξα−ξα+ξ−ξηα = 5302π1/2

1594 > 0. Thus, 〈τ, QNτ〉 > 0, by Theorem 3, (43) has at
least one solution.

6. Conclusions

This paper mainly studied a class of second-order nonlocal boundary value prob-
lem systems at resonance which state variable x ∈ Rn, and gave two new theorems on
the existence of solutions in different kernel spaces by using the Mawhin coincidence
degree theorem.

In the future, we could consider studying resonance boundary value problems under
less-restricted conditions or under more complicated boundary value conditions.
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Abstract: The boundary value problem (BVP) for the varying coefficient linear Caputo-type fractional
differential equation subject to the mixed boundary conditions on the interval 0 ≤ x ≤ 1 was
considered. First, the BVP was converted into an equivalent differential–integral equation merging
the boundary conditions. Then, the shifted Chebyshev polynomials and the collocation method were
used to solve the differential–integral equation. Varying coefficients were also decomposed into the
truncated shifted Chebyshev series such that calculations of integrals were only for polynomials
and can be carried out exactly. Finally, numerical examples were examined and effectiveness of the
proposed method was verified.

Keywords: fractional calculus; fractional differential equation; boundary value problem; Chebyshev
polynomial; collocation method

1. Introduction

In recent decades, the theory of fractional calculus has been attracting much attention
partly due to its ability for describing memory and hereditary properties of various ma-
terials and processes [1–7]. Fractional calculus has been applied to different fields such
as viscoelastic constitutive equations and related mechanical models [6–11], anomalous
diffusion phenomena [4,6,12,13], hydrology [14], control and optimization theory [3,15],
etc. It is worthwhile to mention that fractional calculus can be used to describe not only
viscoelasticity, but also viscoinertia by different values of order [16,17]. The applications of
fractional calculus lead to fractional differential equations (FDEs) in theory [2–5,18].

Let us recall some related definitions of fractional calculus used in this article. Let f (x)
be piecewise continuous on (0,+∞) and integrable on any finite subinterval of (0,+∞).
Then, for x > 0, the Riemann–Liouville fractional integral of f (x) is defined as

Iβ
x f (x) =

∫ x

0

(x − τ)β−1

Γ(β)
f (τ)dτ, (1)

for β > 0, and I0
x f (x) = f (x) for β = 0, where Γ(·) is the gamma function. The fractional

integral satisfies the following equalities:

Iβ
x Iν

x f (x) = Iβ+ν
x f (x), β ≥ 0, ν ≥ 0, (2)

Iν
x xμ =

Γ(μ + 1)
Γ(μ + ν + 1)

xμ+ν, ν ≥ 0, μ > −1. (3)
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Let α be a positive real number, m − 1 < α ≤ m, m ∈ N+, and f (m)(x) be piecewise
continuous on (0,+∞) and integrable on any finite subinterval of (0,+∞). Then, the
Caputo fractional derivative of f (x) of order α is defined as

Dα
x f (x) = Im−α

x f (m)(x), m − 1 < α ≤ m. (4)

For the power function xμ, μ > 0, if 0 ≤ m − 1 < α ≤ m < μ + 1, then we have

Dα
x xμ =

Γ(μ + 1)
Γ(μ − α + 1)

xμ−α, x > 0. (5)

The α-order integral of the α-order Caputo fractional derivative requires the knowledge
of the initial values of the function and its integer-ordered derivatives,

Iα
x Dα

x f (x) = f (x)−
m−1

∑
k=0

f (k)(0)
xk

k!
, m − 1 < α ≤ m. (6)

This property enables the Caputo fractional derivative to be conveniently applied
and analyzed.

In the earlier monograph [1], the Grünwald definition and the Riemann–Liouville def-
inition of fractional calculus were introduced, where numerical differentiation and integra-
tion were considered and semi-integration was introduced by a designed electrical circuit
model and semi-differentiation was applied to diffusion problems. The Weyl fractional
calculus was introduced in [2] beside the Grünwald definition and the Riemann–Liouville
definition. In [3], FDEs and fractional-order system and controllers were considered, where
the Caputo fractional derivative was introduced. The existence, uniqueness and analytical
methods of solutions for FDEs were investigated in [4]. In [18], the Caputo-type fractional
derivative and FDEs were emphasized. In [6], fractional viscoelastic models and frac-
tional wave models in viscoelastic media were introduced. In [5], numerical methods and
fractional variational principle were reviewed.

Damping, deformation, vibration and dissipation arising from viscoelastic material
can be modeled by FDEs [3,4,6,7]. The method of variable separation for fractional partial
differential equation describing anomalous diffusion [4,6,12,14] can lead to a boundary
value problem (BVP) for a fractional ordinary differential equation (ODE) [19]. The theorem
of existence and uniqueness of solutions for fractional ODEs was presented in [3,4,18,20].
Some analytical and numerical methods were proposed to solve FDEs, e.g., see [3–5,21–25].
BVPs for fractional ODEs were considered in [19,26–29] by using the Adomian decom-
position method, wavelet method, the method of upper and lower solutions, orthogonal
polynomial method, etc. However, a fractional BVP with varying coefficients and mixed
boundary conditions has hardly been considered.

In this work, we consider the BVP for the varying coefficient linear Caputo fractional ODE

Dλ
x u(x) + c1(x)u′(x) + c0(x)u(x) = g(x), 0 < x < 1, 1 < λ ≤ 2, (7)

Subject to the mixed boundary conditions

p0u(0)− q0u′(0) = b0, (8)

p1u(1) + q1u′(1) = b1, (9)

where the coefficients c1(x), c0(x), g(x) are specified continuous functions, the boundary
parameters satisfy p0, q0, p1, q1 ≥ 0 and p0 p1 + p0q1 + q0 p1 �= 0. In the next Section 2, some
preliminaries about the shifted Chebyshev polynomials are presented. In Section 3, we
first convert the BVP, (7)–(9), into an equivalent fractional differential–integral equation
merging the boundary conditions, then introduce the collocation method using the shifted
Chebyshev polynomials of the first kind to solve the fractional differential–integral equation.
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Next, three numerical examples are solved by using the proposed method. Section 4
summarizes our conclusions.

2. The Shifted Chebyshev Polynomials of the First Kind

The Chebyshev polynomials of the first kind are defined by the formulae [30]

Tn(x) = cos(n arccos x), −1 ≤ x ≤ 1, n = 0, 1, . . . . (10)

They take on the explicit expressions as

T0(x) = 1, Tn(x) =
n
2

[n/2]

∑
k=0

(−1)k (n − k − 1)!
k!(n − 2k)!

(2x)n−2k, n ≥ 1. (11)

It is well-known that the Chebyshev polynomials of the first kind are orthogonal
on the interval [−1, 1] with the weight function ρ(x) = 1√

1−x2 , and Tn(x) has exactly n

zeros within the interval (−1, 1): ξi = cos
(

2i+1
2n π

)
, i = 0, 1, . . . , n − 1. The Chebyshev

polynomials of the first kind satisfy the recurrence relation

T0(x) = 1, T1(x) = x, Tn(x) = 2xTn−1(x)− Tn−2(x), n = 2, 3, . . . . (12)

It is well-known that if f (x) is L2 integrable on [−1, 1] with the weight function ρ(x),
then its Chebyshev series expansion is L2 convergent with respect to its weight function
ρ(x). If f (x) has better smoothness, then stronger convergence can be attained for its
Chebyshev series. If the function f (x) has n + 1 continuous derivatives on [−1, 1], then
| f (x)− Sm f (x)| = O(m−n) for all x ∈ [−1, 1], where Sm f (x) is the (m + 1)-term truncation
of the Chebyshev series expansion of f (x). For more details for convergence, see [30].

In order to deal with the BVP on the interval [0, 1], we consider the shifted
Chebyshev polynomials

T∗
n (x) = Tn(2x − 1), x ∈ [0, 1], n = 0, 1, . . . . (13)

They are orthogonal on the interval [0, 1] with the weight function ρ∗(x) = 1√
x−x2 ,

and the zeros of T∗
n (x) are xi =

1
2 + 1

2 cos
(

2i+1
2n π

)
, i = 0, 1, . . . , n − 1. As a complement to

Equation (13), the shifted Chebyshev polynomials satisfy the relationship T∗
n (x) = T2n(

√
x).

So, the explicit expressions of the shifted Chebyshev polynomials are conveniently obtained:

T∗
0 (x) = 1, T∗

n (x) = n
n

∑
k=0

(−1)k (2n − k − 1)!
k!(2n − 2k)!

(4x)n−k, n ≥ 1. (14)

Finally, we mention the shifted Chebyshev polynomials of the second kind, which will
also be used in the next section for the representation of solutions, U∗

n(x) = Un(2x− 1), 0 ≤
x ≤ 1, n = 0, 1, . . . , where Un(x) is the Chebyshev polynomials of the second kind.

3. The Equivalent Fractional Differential-Integral Equation and Chebyshev
Collocation Method

First, we derive an equivalent differential–integral equation to the BVP (7)–(9). Apply-
ing the integral operator Iλ

x (·) to both sides of Equation (7) and using Equation (6) yields

u(x)− u(0)− u′(0)x + Iλ
x (c1(x)u′(x) + c0(x)u(x)) = Iλ

x g(x). (15)

Our aim is to solve for u(0) and u′(0) from the boundary conditions (8) and (9), and
then obtain an equation about the solution u(x) without any undetermined constants.
Substituting x = 1 in Equation (15) yields

u(1) = u(0) + u′(0)− Iλ
x,1(c1(x)u′(x) + c0(x)u(x)) + Iλ

x,1g(x), (16)

73



Fractal Fract. 2022, 6, 148

where the value of the fractional integral is defined for a general βth order integral of a
function v(x) at x = ξ as

Iβ
x,ξ v(x) =

∫ ξ

0

(ξ − τ)β−1

Γ(β)
v(τ)dτ. (17)

Calculating the first order derivative on the both sides of Equation (15) leads to

u′(x)− u′(0) + Iλ−1
x (c1(x)u′(x) + c0(x)u(x)) = Iλ−1

x g(x). (18)

Substituting x = 1 yields

u′(1) = u′(0)− Iλ−1
x,1 (c1(x)u′(x) + c0(x)u(x)) + Iλ−1

x,1 g(x). (19)

Substituting Equations (16) and (19) into Equation (9) yields

p1u(0) + (p1 + q1)u′(0) = b∗1 , (20)

where

b∗1 = b1 + p1 Iλ
x,1(c1(x)u′(x) + c0(x)u(x))− p1 Iλ

x,1g(x) + q1 Iλ−1
x,1 (c1(x)u′(x) + c0(x)u(x))− q1 Iλ−1

x,1 g(x). (21)

Equations (8) and (20) constitute a system of algebraic equations about u(0) and u′(0).
The coefficient determinant is

P = p0 p1 + p0q1 + q0 p1, (22)

which is positive by our assumptions. Thus, we can solve the system of algebraic
Equations (8) and (20) and obtain

u(0) =
(p1 + q1)b0

P
+

q0b∗1
P

, (23)

u′(0) = − p1b0

P
+

p0b∗1
P

. (24)

Substituting Equations (23) and (24) into Equation (15), we obtain

u(x)− (p1 + q1)b0

P
+

p1b0

P
x − p0x + q0

P
b∗1 + Iλ

x (c1(x)u′(x) + c0(x)u(x)) = Iλ
x g(x). (25)

Replacing b∗1 by using Equation (21) and reorganizing the equation yield

u(x)− p1(p0x + q0)

P
Iλ
x,1(c1(x)u′(x) + c0(x)u(x))

− q1(p0x + q0)

P
Iλ−1
x,1 (c1(x)u′(x) + c0(x)u(x)) + Iλ

x (c1(x)u′(x) + c0(x)u(x)) = h(x), (26)

where

h(x) =
(p1 + q1)b0 − p1b0x

P
+

p0x + q0

P

(
b1 − p1 Iλ

x,1g(x)− q1 Iλ−1
x,1 g(x)

)
+ Iλ

x g(x), (27)

Only involves the known boundary parameters and the known input function g(x).
Equation (26) is the equivalent differential–integral equation to the BVP (7)–(9). In the
sequel, we seek for the solution to the differential-integral Equation (26).
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We approximate the solution by an (m+ 1)-term truncation of the shifted Chebyshev series,

ϕm(x) =
m

∑
n=0

anT∗
n (x), (28)

where an, n = 0, 1, . . . , m, are undetermined coefficients. Inserting ϕm(x) into Equation (26),
we obtain the linear equation about an, n = 0, 1, . . . , m,

m

∑
n=0

an

(
T∗

n (x)− p1(p0x + q0)

P
Iλ
x,1

(
c1(x)T∗

n
′(x) + c0(x)T∗

n (x)
)

− q1(p0x + q0)

P
Iλ−1
x,1

(
c1(x)T∗

n
′(x) + c0(x)T∗

n (x)
)
+ Iλ

x

(
c1(x)T∗

n
′(x) + c0(x)T∗

n (x)
))

= h(x). (29)

We note that in Equation (29), Iλ
x,1
(
c1(x)T∗

n
′(x) + c0(x)T∗

n (x)
)

and Iλ−1
x,1(

c1(x)T∗
n
′(x) + c0(x)T∗

n (x)
)

are constants, represent the values of fractional integrals.
The collocation method may be applied to determine the coefficients an. The colloca-

tion points are taken as the zeroes of the m+ 1 degree shifted Chebyshev polynomial T∗
m+1(x),

xi =
1
2
+

1
2

cos
(

2i + 1
2m + 2

π

)
, i = 0, 1, . . . , m. (30)

Thus, the collocation equation system is

m

∑
n=0

an

(
T∗

n (xi)−
p1(p0xi + q0)

P
Iλ
x,1

(
c1(x)T∗

n
′(x) + c0(x)T∗

n (x)
)

− q1(p0xi + q0)

P
Iλ−1
x,1

(
c1(x)T∗

n
′(x) + c0(x)T∗

n (x)
)

+Iλ
x,xi

(
c1(x)T∗

n
′(x) + c0(x)T∗

n (x)
))

= h(xi), (31)

where

h(xi) =
(p1 + q1)b0 − p1b0xi

P
+

p0xi + q0

P

(
b1 − p1 Iλ

x,1g(x)− q1 Iλ−1
x,1 g(x)

)
+ Iλ

x,xi
g(x), i = 0, 1, . . . , m. (32)

The matrix form of the collocation equation system (31) is

W�a =�h, (33)

where

�a = (a0, a1, . . . , am)
T , �h = (h(x0), h(x1), . . . , h(xm))

T , (34)

and the entries of the matrix W are

wij = T∗
j (xi)−

p1(p0xi + q0)

P
Iλ
x,1

(
c1(x)T∗

j
′(x) + c0(x)T∗

j (x)
)

− q1(p0xi + q0)

P
Iλ−1
x,1

(
c1(x)T∗

j
′(x) + c0(x)T∗

j (x)
)
+ Iλ

x,xi

(
c1(x)T∗

j
′(x) + c0(x)T∗

j (x)
)

, (35)

i, j = 0, 1, . . . , m.

The solution of the linear algebraic equation system (31) or (33) gives the coefficients
an in Equation (28).

For the Dirichlet boundary conditions u(0) = b0, u(1) = b1, the boundary parameters
are simplified as p0 = p1 = 1 and q0 = q1 = 0, and thus Equation (31) degenerates to
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m

∑
n=0

an

(
T∗

n (xi)− xi Iλ
x,1

(
c1(x)T∗

n
′(x) + c0(x)T∗

n (x)
)
+ Iλ

x,xi

(
c1(x)T∗

n
′(x) + c0(x)T∗

n (x)
))

= h(xi), (36)

where h(xi) = b0 + (b1 − b0)xi − xi Iλ
x,1g(x) + Iλ

x,xi
g(x), i = 0, 1, . . . , m.

We remark that by the relationship of the first-kind and second-kind Chebyshev poly-
nomials Tn

′(x) = nUn−1(x), we have the relationship of the shifted Chebyshev polynomials
of the two kinds

T∗
n
′(x) = 2nU∗

n−1(x). (37)

So, the derivative T∗
n
′(x) in Equations (31), (35) and (36) may be replaced by the

second-kind Chebyshev polynomials.
The operators Iλ

x,1(·), Iλ−1
x,1 (·) and Iλ

x,xi
(·) in Equations (31), (32) and (35) represent

the values of fractional integrals of the known functions. Since the appearance of the
varying coefficients g(x) and ck(x), manual computations for these integrals are laborious
in general. Here we approximate the varying coefficients again using their truncated shifted
Chebyshev series as

g(x) =
M

∑′

n=0
gnT∗

n (x), ck(x) =
M

∑′

n=0
ck,nT∗

n (x), k = 0, 1, 0 ≤ x ≤ 1, (38)

where

gn =
2
π

∫ 1

0

1√
x − x2

g(x)T∗
n (x)dx, n = 0, 1, . . . , M, (39)

ck,n =
2
π

∫ 1

0

1√
x − x2

ck(x)T∗
n (x)dx, k = 0, 1, n = 0, 1, . . . , M, (40)

and the superscript ′ of ∑ denotes that the first term in the sum is halved. We note that
there is no need of connections between the values of m and M in Equations (28) and (38).
Utilizing the Gauss–Chebyshev quadrature formula we derive the numerical formulae for
gn and ck,n as

gn =
2

M + 1

M

∑
i=0

g(xi)T∗
n (xi), n = 0, 1, . . . , M, (41)

ck,n =
2

M + 1

M

∑
i=0

ck(xi)T∗
n (xi), k = 0, 1, n = 0, 1, . . . , M, (42)

where xi are the zeroes of the M + 1 degree shifted Chebyshev polynomial T∗
M+1(x),

xi =
1
2
+

1
2

cos
(

2i + 1
2M + 2

π

)
, i = 0, 1, . . . , M. (43)

Thus, making use of the decompositions in (38), the calculation of the integrals Iλ
x,1(·),

Iλ−1
x,1 (·) and Iλ

x,xi
(·) in Equations (31), (32) and (35) only involves integrals of polynomials,

so can be carried out exactly.
In the following three examples, we take M = 5 in Equation (38) to truncate the

decompositions of the coefficients g(x) and ck(x) and to calculate the involved integrals
Iλ
x,1(·), Iλ−1

x,1 (·) and Iλ
x,xi

(·). Collocation equation systems are solved by using Mathemat-
ica command “LinearSolve". Figures of approximate analytical solutions and errors are
generated by using Mathematica.
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Example 1. Consider the BVP for the linear FDE

D1.5
x u(x)− x sin(x)

3
u′(x) + sin(x)u(x) = g(x), 0 < x < 1, (44)

u′(0) = −1, u(1) = 1, (45)

where g(x) = 3
√

π
4 + 8x1.5√

π
− 2

3 x sin(x) + 1
2 x1.5 sin(x).

The BVP has the exact solution u∗(x) = −x + x1.5 + x3. The boundary parameters are
p0 = 0, q0 = −1, b0 = −1, p1 = 1, q1 = 0, b1 = 1. The collocation equation system in (31) is

m

∑
n=0

an

(
T∗

n (xi)− I1.5
x,1

(−x sin(x)
3

T∗
n
′(x) + sin(x)T∗

n (x)
)

+I1.5
x,xi

(−x sin(x)
3

T∗
n
′(x) + sin(x)T∗

n (x)
))

= h(xi), (46)

where h(xi) = 2 − xi − I1.5
x,1 g(x) + I1.5

x,xi
g(x), i = 0, 1, . . . , m.

Take m = 2, 3, 4 and 5, respectively, the solution approximations ϕm(x) are calculated as

ϕ2(x) = 0.0175774 − 1.10039x + 2.05832x2,

ϕ3(x) = −0.00586106 − 0.689478x + 0.925577x2 + 0.768798x3,

ϕ4(x) = −0.00288415 − 0.76024x + 1.24242x2 + 0.293418x3 + 0.22758x4,

ϕ5(x) = −0.00167028 − 0.8038x + 1.54387x2 − 0.47843x3 + 1.05648x4 − 0.316564x5.

The error function and maximum error of the approximate solution ϕm(x) are defined as

ERm(x) = |ϕm(x)− u∗(x)| and MEm = max
0≤x≤1

ERm(x). (47)

In Figure 1, the error functions ERm(x) for m = 2, 3, 4, 5 are depicted, where at
the m + 1 collocation points of ϕm(x), errors are zero. The maximum errors of the four
approximate solutions are 0.028696, 0.005861, 0.002884, and 0.001670, respectively.

0.2 0.4 0.6 0.8 1.0
x

0.005

0.010

0.015

0.020

0.025

ERm�x�

Figure 1. The error functions ERm(x) for m = 2 (solid line), m = 3 (dot line), m = 4 (dash line) and
m = 5 (dot-dash line).

Example 2. Consider the BVP for the linear FDE

Dλ
x u(x)− u(x) = −4xex, 0 < x < 1, 1 < λ ≤ 2, (48)

u(0)− u′(0) = −1, u(1) + u′(1) = −e. (49)

If λ = 2, the BVP has the exact solution u∗(x) = x(1 − x)ex.
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For this example, the coefficients and parameters are c1(x) = 0, c0(x) = −1, g(x) =
−4xex, p0 = q0 = p1 = q1 = 1, b0 = −1 and b1 = −e. The collocation equation system in
Equation (31) becomes

m

∑
n=0

an

(
T∗

n (xi)−
xi + 1

3
Iλ
x,1(−T∗

n (x))

− xi + 1
3

Iλ−1
x,1 (−T∗

n (x)) + Iλ
x,xi

(−T∗
n (x))

)
= h(xi),

where h(xi) =
xi−2−exi−e

3 + xi+1
3

(
−Iλ

x,1g(x)− Iλ−1
x,1 g(x)

)
+ Iλ

x,xi
g(x), i = 0, 1, . . . , m.

For the case of λ = 2, the error functions ERm(x) = |ϕm(x)− u∗(x)| are depicted
in Figure 2 for m = 2–5. The maximum errors of the approximate solutions are 0.069103,
0.007877, 0.000620, and 0.000038, respectively. For the case of λ = 1.5, the solution approxi-
mations ϕm(x), m = 2–5, are calculated as

ϕ2(x) = 0.578503 + 3.00467x − 2.45143x2,

ϕ3(x) = 0.659109 + 1.56065x + 1.43569x2 − 2.61289x3,

ϕ4(x) = 0.651626 + 1.81823x + 0.108085x2 − 0.448696x3 − 1.09621x4,

ϕ5(x) = 0.653112 + 1.75369x + 0.599869x2 − 1.78975x3 + 0.411041x4 − 0.596018x5.

The condition numbers of the coefficient matrices W in the derivations of the four
solution approximations are 2.85, 3.29, 3.67 and 4.02, respectively. These values show that
the coefficient matrices W are well conditioned. We note that the condition number is based
on the l2-matrix norm. The four solution approximations are plotted in Figure 3, where a
fast convergence is shown.

0.2 0.4 0.6 0.8 1.0
x

0.01

0.02

0.03

0.04

0.05

0.06

0.07
ERm�x�

Figure 2. For λ = 2, the error functions ERm(x) for m = 2 (solid line), m = 3 (dot line), m = 4 (dash
line) and m = 5 (dot-dash line).
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Figure 3. For λ = 1.5, the solution approximations ϕm(x) for m = 2 (solid line), m = 3 (dot line),
m = 4 (dash line) and m = 5 (dot-dash line).
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Example 3. Consider the BVP for the linear FDE

Dλ
x u(x)− x

1 + x
u′(x)− 1

1 + x
u(x) = 0, 0 < x < 1, 1 < λ ≤ 2, (50)

u(0)− 2u′(0) = −1, u(1) + 2u′(1) = 3e. (51)

If λ = 2, the BVP has the exact solution u∗(x) = ex.
The coefficients and parameters are c1(x) = − x

1+x , c0(x) = − 1
1+x , g(x) = 0,

p0 = p1 = 1, q0 = q1 = 2, b0 = −1, b1 = 3e. The collocation equation system in
Equation (31) becomes

m

∑
n=0

an

(
T∗

n (xi)−
xi + 2

5
Iλ
x,1

( −x
1 + x

T∗
n
′(x) +

−1
1 + x

T∗
n (x)

)
− 2(xi + 2)

5
Iλ−1
x,1

( −x
1 + x

T∗
n
′(x) +

−1
1 + x

T∗
n (x)

)
+ Iλ

x,xi

( −x
1 + x

T∗
n
′(x) +

−1
1 + x

T∗
n (x)

))
= h(xi),

where h(xi) =
1
5 (6e − 3 + 3exi + xi), i = 0, 1, . . . , m.

For the case of λ = 2, the error functions ERm(x) = |ϕm(x)− u∗(x)| for m = 2, 3, 4, 5,
are depicted in Figure 4. The maximum errors of the approximate solutions are 0.011605,
0.000742, 0.000037, and 0.000002, respectively. For the case of λ = 1.5, the solution approxi-
mations ϕm(x) for m = 2, 3, 4, 5 are calculated as

ϕ2(x) = 0.627196 + 0.801952x + 0.961626x2,

ϕ3(x) = 0.614413 + 0.94835x + 0.55162x2 + 0.269951x3,

ϕ4(x) = 0.615168 + 0.908026x + 0.734701x2 − 0.0100847x3 + 0.135331x4,

ϕ5(x) = 0.615706 + 0.894049x + 0.828159x2 − 0.242103x3 + 0.378859x4 − 0.0913166x5.

The condition numbers of the coefficient matrices W in the derivations of the four
solution approximations are 4.87, 7.83, 11.90 and 17.05, respectively. So the coefficient
matrices W are well conditioned. The four solution approximations are plotted in Figure 5.

In the three examples, fast convergent rates are shown only using the minor term
number with M = 5 in Equation (38) for the integral computation of the known functions,
and the minor term number with m = 2, 3, 4 and 5 in Equation (28) for the truncated
Chebyshev series of the unknown function.

0.2 0.4 0.6 0.8 1.0
x
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0.006

0.008
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0.012
ERm�x�

Figure 4. For λ = 2, the error functions ERm(x) for m = 2 (solid line), m = 3 (dot line), m = 4 (dash
line) and m = 5 (dot-dash line).
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0.2 0.4 0.6 0.8 1.0
x

1.0
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2.0

�m�x�

Figure 5. For λ = 1.5, the solution approximations ϕm(x) for m = 2 (solid line), m = 3 (dot line),
m = 4 (dash line) and m = 5 (dot-dash line).

4. Conclusions

We considered the BVP for the varying coefficient linear Caputo-type fractional ODE
subject to the mixed boundary conditions on the interval 0 ≤ x ≤ 1. The BVP was conve-
niently converted into an equivalent differential–integral equation merging the boundary
conditions. Then, the solution was decomposed into a truncated shifted Chebyshev series.
The collocation method was used to determine the solution. In order to deal with the
involved integrations, the varying coefficients were again decomposed into the truncated
shifted Chebyshev series. Thus, the calculations of the integrals are only for polynomials
and can be carried out exactly. Three numerical examples were solved by using the pro-
posed method, where fast convergent rates are shown only using the minor term number
with M = 5 in Equation (38) for the integral computation of the known functions, and the
minor term number with m = 2, 3, 4 and 5 in Equation (28) for the truncated Chebyshev
series of the unknown function.

In the presented method, there is no need to divide the interval commonly used in
numerical methods. The collocation points or the zeros of the Chebyshev polynomials have
exact explicit expressions. Approximate analytical solutions in the polynomial forms are
obtained, which are different from a discrete numerical solution. The obtained approxi-
mate analytical solutions in the polynomial forms can be directly checked by substitution.
The convergence and effectiveness of solutions can be examined by remainder errors.
Convergence order of the approximate solutions could be further consideration in this field.
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Abstract: We investigate the existence and multiplicity of positive solutions for a system of Riemann–
Liouville fractional differential equations with r-Laplacian operators and nonnegative singular
nonlinearities depending on fractional integrals, supplemented with nonlocal uncoupled boundary
conditions which contain Riemann–Stieltjes integrals and various fractional derivatives. In the proof
of our main results we apply the Guo–Krasnosel’skii fixed point theorem of cone expansion and
compression of norm type.
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1. Introduction

We consider the system of fractional differential equations with r1-Laplacian and
r2-Laplacian operators⎧⎨⎩ Dγ1

0+

(
ϕr1

(
Dδ1

0+u(τ)
))

= f
(
τ, u(τ), v(τ), Iσ1

0+u(τ), Iσ2
0+v(τ)

)
, τ ∈ (0, 1),

Dγ2
0+

(
ϕr2

(
Dδ2

0+v(τ)
))

= g
(
τ, u(τ), v(τ), Iς1

0+u(τ), Iς2
0+v(τ)

)
, τ ∈ (0, 1),

(1)

subject to the uncoupled nonlocal boundary conditions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(i)(0) = 0, i = 0, . . . , p − 2, Dδ1
0+u(0) = 0,

ϕr1(Dδ1
0+u(1)) =

∫ 1

0
ϕr1(Dδ1

0+u(η)) dH0(η), Dα0
0+u(1) =

n

∑
k=1

∫ 1

0
Dαk

0+u(η) dHk(η),

v(i)(0) = 0, i = 0, . . . , q − 2, Dδ2
0+v(0) = 0,

ϕr2(Dδ2
0+v(1)) =

∫ 1

0
ϕr2(Dδ2

0+v(η)) dK0(η), Dβ0
0+v(1) =

m

∑
k=1

∫ 1

0
Dβk

0+v(η) dKk(η),

(2)

where γ1, γ2 ∈ (1, 2], δ1 ∈ (p − 1, p], p ∈ N, p ≥ 3, δ2 ∈ (q − 1, q], q ∈ N, q ≥ 3, n, m ∈ N,
σ1, σ2, ς1, ς2 > 0, αk ∈ R, k = 0, . . . , n, 0 ≤ α1 < α2 < · · · < αn ≤ α0 < δ1 − 1, α0 ≥ 1,
βk ∈ R, k = 0, . . . , m, 0 ≤ β1 < β2 < · · · < βm ≤ β0 < δ2 − 1, β0 ≥ 1, ϕri (η) = |η|ri−2η,
ϕ−1

ri
= ϕ�i , �i =

ri
ri−1 , i = 1, 2, ri > 1, i = 1, 2, f , g : (0, 1) × R4

+ → R+ are continuous
functions, singular at τ = 0 and/or τ = 1, (R+ = [0, ∞)), Iκ

0+ is the Riemann–Liouville
fractional integral of order κ (for κ = σ1, σ2, ς1, ς2), Dκ

0+ is the Riemann-Liouville fractional
derivative of order κ (for κ = γ1, δ1, γ2, δ2, α0, . . . , αn, β0, . . . , βm), and the integrals from the
boundary conditions (2) are Riemann–Stieltjes integrals with Hi : [0, 1] → R, i = 0, . . . , n
and Ki : [0, 1] → R, i = 0, . . . , m functions of bounded variation.
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We give in this paper various conditions for the functions f and g such that problems (1)
and (2) have at least one or two positive solutions. From a positive solution of (1) and (2)
we understand a pair of functions (u, v) ∈ (C([0, 1],R+))2 satisfying the system (1) and
the boundary conditions (2), with u(τ) > 0 for all τ ∈ (0, 1] or v(τ) > 0 for all τ ∈ (0, 1].
In the proof of our main results we use the Guo–Krasnosel’skii fixed point theorem of
cone expansion and compression of norm type. We now present some recent results which
are connected with our problem. In [1], the authors studied the existence of multiple
positive solutions for the system of nonlinear fractional differential equations with a p-
Laplacian operator{

Dβ1
0+(ϕp1(Dα1

0+x(τ))) = f (τ, x(τ), y(τ)), τ ∈ (0, 1),
Dβ2

0+(ϕp2(Dα2
0+y(τ))) = g(τ, x(τ), y(τ)), τ ∈ (0, 1),

supplemented with the uncoupled boundary conditions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(0) = 0, Dγ1
0+x(1) =

m−2

∑
i=1

ξ1iD
γ1
0+x(η1i),

Dα1
0+x(0) = 0, ϕp1(Dα1

0+x(1)) = ∑m−2
i=1 ζ1i ϕp1(Dα1

0+x(η1i)),

y(0) = 0, Dγ2
0+y(1) =

m−2

∑
i=1

ξ2iD
γ2
0+y(η2i),

Dα2
0+y(0) = 0, ϕp2(Dα2

0+y(1)) = ∑m−2
i=1 ζ2i ϕp2(Dα2

0+y(η2i)),

where αi, βi ∈ (1, 2], γi ∈ (0, 1], αi + βi ∈ (3, 4], αi > γi + 1, i = 1, 2, ξ1i, η1i, ζ1i, ξ2i, η2i, ζ2i
∈ (0, 1) for i = 1, . . . , m − 2, and f and g are nonnegative and nonsingular functions.
In the proof of the existence results they use the Leray–Schauder alternative theorem,
the Leggett–Williams fixed point theorem and the Avery–Henderson fixed point theorem.
In [2], the authors investigated the existence and multiplicity of positive solutions for the
system of fractional differential equations with �1-Laplacian and �2-Laplacian operators{

Dγ1
0+(ϕ�1(Dδ1

0+x(τ))) + f (τ, x(τ), y(τ)) = 0, τ ∈ (0, 1),
Dγ2

0+(ϕ�2(Dδ2
0+y(τ))) + g(τ, x(τ), y(τ)) = 0, τ ∈ (0, 1),

(3)

subject to the uncoupled nonlocal boundary conditions⎧⎪⎪⎪⎨⎪⎪⎪⎩
x(j)(0) = 0, j = 0, . . . , p − 2; Dδ1

0+x(0) = 0, Dα0
0+x(1) =

n

∑
i=1

∫ 1

0
Dαi

0+x(τ) dHi(τ),

y(j)(0) = 0, j = 0, . . . , q − 2; Dδ2
0+y(0) = 0, Dβ0

0+y(1) =
m

∑
i=1

∫ 1

0
Dβi

0+y(τ) dKi(τ),

where γ1, γ2 ∈ (0, 1], δ1 ∈ (p − 1, p], δ2 ∈ (q − 1, q], p, q ∈ N, p, q ≥ 3, n, m ∈ N, αi ∈ R

for all i = 0, 1, . . . , n, 0 ≤ α1 < α2 < · · · < αn ≤ α0 < δ1 − 1, α0 ≥ 1, βi ∈ R for all
i = 0, 1, . . . , m, 0 ≤ β1 < β2 < · · · < βm ≤ β0 < δ2 − 1, β0 ≥ 1, �1, �2 > 1, the functions f
and g are nonnegative and continuous, and they may be singular at τ = 0 and/or τ = 1,
and Hi, i = 1, . . . , n and Kj, j = 1, . . . , m are functions of bounded variation. In the proof
of the main existence results they applied the Guo–Krasnosel’skii fixed point theorem.
In [3], the authors studied the existence and nonexistence of positive solutions for the
system (3) with two positive parameters λ and μ, supplemented with the coupled nonlocal
boundary conditions⎧⎪⎪⎪⎨⎪⎪⎪⎩

x(j)(0) = 0, j = 0, . . . , p − 2; Dδ1
0+x(0) = 0, Dα0

0+x(1) =
n

∑
i=1

∫ 1

0
Dαi

0+y(τ) dHi(τ),

y(j)(0) = 0, j = 0, . . . , q − 2; Dδ2
0+y(0) = 0, Dβ0

0+y(1) =
m

∑
i=1

∫ 1

0
Dβi

0+x(τ) dKi(τ),
(4)
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where n, m ∈ N, αi ∈ R for all i = 0, . . . , n, 0 ≤ α1 < α2 < · · · < αn ≤ β0 < δ2 − 1, β0 ≥ 1,
βi ∈ R for all i = 0, . . . , m, 0 ≤ β1 < β2 < · · · < βm ≤ α0 < δ1 − 1, α0 ≥ 1, the functions
f , g ∈ C([0, 1] × R+ × R+,R+), and the functions Hi, i = 1, . . . , n and Kj, j = 1, . . . , m
are bounded variation functions. They presented sufficient conditions on the functions
f and g, and intervals for the parameters λ and μ such that the problem (3) with these
parameters and (4) has positive solutions. In [4], by using the Guo–Krasnosel’skii fixed
point theorem, the authors investigated the existence and multiplicity of positive solutions
for the nonlinear singular fractional differential equation

Dα
0+w(τ) + f (τ, w(τ), Dα1

0+w(τ), . . . , Dαn−2
0+ w(τ)) = 0, τ ∈ (0, 1),

with the nonlocal boundary conditions⎧⎨⎩ w(0) = Dγ1
0+w(0) = · · · = Dγn−2

0+ w(0) = 0,

Dβ1
0+w(1) =

∫ η

0
h(τ)Dβ2

0+w(τ) dA(τ) +
∫ 1

0
a(τ)Dβ3

0+w(τ) dA(τ),

where α ∈ (n − 1, n], n ≥ 3, αk, γk ∈ (k − 1, k], k = 1, . . . , n − 2, α − γj ∈ (n − j − 1, n − j],
j = 1, . . . , n − 2, α − αn−2 − 1 ∈ (1, 2], γn−2 ≥ αn−2, β1 ≥ β2, β1 ≥ β3, α ≥ βi + 1,
βi ≥ αn−2 + 1, i = 1, 2, 3, β1 ≤ n − 1, the function f : (0, 1)×Rn−1

+ → R+ is continuous,
a, h ∈ C((0, 1),R+), and A is a function of bounded variation. In [5], the authors studied
the existence of a unique positive solution for a system of three Caputo fractional equations
with (p, q, r)-Laplacian operators subject to two-point boundary conditions, by using an
n-fixed point theorem of ternary operators in partially ordered complete metric spaces.
By relying on the properties of the Kuratowski noncompactness measure and the Sadovskii
fixed point theorem; in [6], the authors obtained new existence results for the solutions
of a Riemann–Liouville fractional differential equation with a p-Laplacian operator in a
Banach space, supplemented with multi-point boundary conditions with fractional deriva-
tives. In [7], the authors investigated the existence of solutions for a mixed fractional
differential equation with p(t)-Laplacian operator and two-point boundary conditions at
resonance, by applying the continuation theorem of coincidence degree theory. By using
the Leggett–Williams fixed-point theorem, the authors studied in [8] the multiplicity of pos-
itive solutions for a Riemann–Liouville fractional differential equation with a p-Laplacian
operator, subject to four-point boundary conditions. In [9], the authors established suitable
criteria for the existence of positive solutions for a Riemann–Liouville fractional equation
with a p-Laplacian operator and infinite-point boundary value conditions, by using the
Krasnosel’skii fixed point theorem and Avery–Peterson fixed point theorem. By applying
the Guo–Krasnosel’skii fixed point theorem the authors investigated in [10] the existence,
multiplicity and the nonexistence of positive solutions for a mixed fractional differential
equation with a generalized p-Laplacian operator and a positive parameter, supplemented
with two-point boundary conditions. We also mention some recent monographs devoted
to the investigation of boundary value problems for fractional differential equations and
systems with many examples and applications, namely [11–15].

So in comparison with the above papers, the new characteristics of our problem (1)
and (2) consist in a combination between the fractional orders γ1, γ2 ∈ (1, 2] with the
arbitrary fractional orders δ1, δ2, the existence of the fractional integral terms in equations
of (1), and the general uncoupled nonlocal boundary conditions with Riemann–Stieltjes
integrals and fractional derivatives. In addition, one of its special feature is the singularity
of the nonlinearities from the system (1), that is f , g become unbounded in the vicinity of 0
and/or 1 in the first variable (see Assumption (I2) in Section 3).

The structure of this paper is as follows. In Section 2, some preliminary results
including the properties of the Green functions associated to our problem (1) and (2) are
presented. In Section 3 we discuss the existence and multiplicity of positive solutions for (1)
and (2). Then two examples to illustrate our obtained theorems are given in Section 4,
and Section 5 contains the conclusions for this paper.
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2. Preliminary Results

We consider the fractional differential equation

Dγ1
0+

(
ϕr1

(
Dδ1

0+u(τ)
))

= x(τ), τ ∈ (0, 1), (5)

where x ∈ C(0, 1) ∩ L1(0, 1), with the boundary conditions⎧⎪⎨⎪⎩
u(i)(0) = 0, i = 0, . . . , p − 2, Dδ1

0+u(0) = 0,

ϕr1(Dδ1
0+u(1)) =

∫ 1

0
ϕr1(Dδ1

0+u(η)) dH0(η), Dα0
0+u(1) =

n

∑
k=1

∫ 1

0
Dαk

0+u(η) dHk(η).
(6)

We denote by

a1 = 1 −
∫ 1

0
ηγ1−1 dH0(η), a2 =

Γ(δ1)

Γ(δ1 − α0)
−

n

∑
i=1

Γ(δ1)

Γ(δ1 − αi)

∫ 1

0
ηδ1−αi−1 dHi(η). (7)

Lemma 1. If a1 �= 0 and a2 �= 0, then the unique solution u ∈ C[0, 1] of problem (5) and (6) is
given by

u(τ) =
∫ 1

0
G2(τ, η)ϕ�1

(∫ 1

0
G1(η, ϑ)x(ϑ) dϑ

)
dη, τ ∈ [0, 1], (8)

where

G1(τ, η) = g1(τ, η) +
τγ1−1

a1

∫ 1

0
g1(ϑ, η) dH0(ϑ), (τ, η) ∈ [0, 1]× [0, 1], (9)

with

g1(τ, η) =
1

Γ(γ1)

{
τγ1−1(1 − η)γ1−1 − (τ − η)γ1−1, 0 ≤ η ≤ τ ≤ 1,
τγ1−1(1 − η)γ1−1, 0 ≤ τ ≤ η ≤ 1,

(10)

and

G2(τ, η) = g2(τ, η) +
τδ1−1

a2

n

∑
i=1

(∫ 1

0
g2i(ϑ, η) dHi(ϑ)

)
, (τ, η) ∈ [0, 1]× [0, 1], (11)

with

g2(τ, η) =
1

Γ(δ1)

{
τδ1−1(1 − η)δ1−α0−1 − (τ − η)δ1−1, 0 ≤ η ≤ τ ≤ 1,
τδ1−1(1 − η)δ1−α0−1, 0 ≤ τ ≤ η ≤ 1,

g2i(τ, η) =
1

Γ(δ1 − αi)

{
τδ1−αi−1(1 − η)δ1−α0−1 − (τ − η)δ1−αi−1, 0 ≤ η ≤ τ ≤ 1,
τδ1−αi−1(1 − η)δ1−α0−1, 0 ≤ τ ≤ η ≤ 1,

i = 1, . . . , n.

(12)

Proof. We denote by ϕr1(Dδ1
0+u(τ)) = φ1(τ), τ ∈ (0, 1). Hence problems (5) and (6) are

equivalent to the following two boundary value problems

(I)

⎧⎨⎩ Dγ1
0+φ1(τ) = x(τ), τ ∈ (0, 1),

φ1(0) = 0, φ1(1) =
∫ 1

0
φ1(η) dH0(η),

and

(I I)

⎧⎪⎨⎪⎩
Dδ1

0+u(τ) = ϕ�1(φ1(τ)), τ ∈ (0, 1),

u(j)(0) = 0, j = 0, . . . , p − 2, Dα0
0+u(1) =

n

∑
k=1

∫ 1

0
Dαk

0+u(η) dHk(η).
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By using Lemma 4.1.5 from [14], the unique solution φ1 ∈ C[0, 1] of problem (I) is

φ1(τ) = −
∫ 1

0
G1(τ, ϑ)x(ϑ) dϑ, τ ∈ [0, 1], (13)

where G1 is given by (9). By using Lemma 2.4.2 from [12], the unique solution u ∈ C[0, 1] of
problem (I I) is

u(τ) = −
∫ 1

0
G2(τ, η)ϕ�1(φ1(η)) dη, τ ∈ [0, 1], (14)

where G2 is given by (11). Combining the relations (13) and (14) we obtain the solution u of
problem (5) and (6) which is given by relation (8).

We consider now the fractional differential equation

Dγ2
0+

(
ϕr2

(
Dδ2

0+v(τ)
))

= y(τ), τ ∈ (0, 1), (15)

where y ∈ C(0, 1) ∩ L1(0, 1), with the boundary conditions⎧⎪⎨⎪⎩
v(i)(0) = 0, i = 0, . . . , q − 2, Dδ2

0+v(0) = 0,

ϕr2(Dδ2
0+v(1)) =

∫ 1

0
ϕr2(Dδ2

0+v(η)) dK0(η), Dβ0
0+v(1) =

m

∑
k=1

∫ 1

0
Dβk

0+v(η) dKk(η).
(16)

We denote by

b1 = 1 −
∫ 1

0
ηγ2−1 dK0(η), b2 =

Γ(δ2)

Γ(δ2 − β0)
−

m

∑
i=1

Γ(δ2)

Γ(δ2 − βi)

∫ 1

0
ηδ2−βi−1 dKi(η). (17)

Similar to Lemma 1 we obtain the next result.

Lemma 2. If b1 �= 0 and b2 �= 0, then the unique solution v ∈ C[0, 1] of problem (15) and (16) is
given by

v(τ) =
∫ 1

0
G4(τ, η)ϕ�2

(∫ 1

0
G3(η, ϑ)y(ϑ) dϑ

)
dη, τ ∈ [0, 1], (18)

where

G3(τ, η) = g3(τ, η) +
τγ2−1

b1

∫ 1

0
g3(ϑ, η) dK0(ϑ), (τ, η) ∈ [0, 1]× [0, 1], (19)

with

g3(τ, η) =
1

Γ(γ2)

{
τγ2−1(1 − η)γ2−1 − (τ − η)γ2−1, 0 ≤ η ≤ τ ≤ 1,
τγ2−1(1 − η)γ2−1, 0 ≤ τ ≤ η ≤ 1,

(20)

and

G4(τ, η) = g4(τ, η) +
τδ2−1

b2

m

∑
i=1

(∫ 1

0
g4i(ϑ, η) dKi(ϑ)

)
, (τ, η) ∈ [0, 1]× [0, 1], (21)

with

g4(τ, η) =
1

Γ(δ2)

{
τδ2−1(1 − η)δ2−β0−1 − (τ − η)δ2−1, 0 ≤ η ≤ τ ≤ 1,
τδ2−1(1 − η)δ2−β0−1, 0 ≤ τ ≤ η ≤ 1,

g4i(τ, η) =
1

Γ(δ2 − βi)

{
τδ2−βi−1(1 − η)δ2−β0−1 − (τ − η)δ2−βi−1, 0 ≤ η ≤ τ ≤ 1,
τδ2−βi−1(1 − η)δ2−β0−1, 0 ≤ τ ≤ η ≤ 1,

i = 1, . . . , m.

(22)
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Lemma 3. We assume that a1, a2, b1, b2 > 0, Hi, i = 0, . . . , n, and Kj, j = 0, . . . , m are non-
decreasing functions. Then the functions Gi, i = 1, . . . , 4 given by (9), (11), (19) and (21) have
the properties

(a) Gi : [0, 1]× [0, 1] → [0, ∞), i = 1, . . . , 4 are continuous functions;
(b) G1(τ, η) ≤ J1(η), ∀ (τ, η) ∈ [0, 1]× [0, 1], where

J1(η) = h1(η) +
1
a1

∫ 1

0
g1(ϑ, η) dH0(ϑ), ∀ η ∈ [0, 1],

with h1(η) =
1

Γ(γ1)
(1 − η)γ1−1, η ∈ [0, 1];

(c) G2(τ, η) ≤ J2(η), ∀ (τ, η) ∈ [0, 1]× [0, 1], where

J2(η) = h2(η) +
1
a2

n

∑
i=1

∫ 1

0
g2i(ϑ, η) dHi(ϑ), ∀ η ∈ [0, 1],

with h2(η) =
1

Γ(δ1)
(1 − η)δ1−α0−1(1 − (1 − η)α0), η ∈ [0, 1];

(d) G2(τ, η) ≥ τδ1−1J2(η), ∀ (τ, η) ∈ [0, 1]× [0, 1];
(e) G3(τ, η) ≤ J3(η), ∀ (τ, η) ∈ [0, 1]× [0, 1], where

J3(η) = h3(η) +
1
b1

∫ 1

0
g3(ϑ, η) dK0(ϑ), ∀ η ∈ [0, 1],

with h3(η) =
1

Γ(γ2)
(1 − η)γ2−1, η ∈ [0, 1];

(f) G4(τ, η) ≤ J4(η), ∀ (τ, η) ∈ [0, 1]× [0, 1], where

J4(η) = h4(η) +
1
b2

m

∑
i=1

∫ 1

0
g4i(ϑ, η) dKi(ϑ), ∀ η ∈ [0, 1],

with h4(η) =
1

Γ(δ2)
(1 − η)δ2−β0−1(1 − (1 − η)β0), η ∈ [0, 1];

(g) G4(τ, η) ≥ τδ2−1J4(η), ∀ (τ, η) ∈ [0, 1]× [0, 1].

Proof. (a) Based on the continuity of functions g1, g2, g2i, i = 1, . . . , n, g3, g4, g4i, i =
1, . . . , m (given by (10), (12), (20) and (22)), we obtain that the functions Gi, i = 1, . . . , 4
are continuous.

(b) By the definition of g1 we find

G1(τ, η) ≤ 1
Γ(γ1)

(1 − η)γ1−1 +
1
a1

∫ 1

0
g1(ϑ, η) dH0(ϑ)

= h1(η) +
1
a1

∫ 1

0
g1(ϑ, η) dH0(ϑ) = J1(η), ∀ τ, η ∈ [0, 1].

(c–d) Using our assumptions and the properties of function g2 from Lemma 2.1.3
from [12], namely g2(τ, η) ≤ 1

Γ(δ1)
(1 − η)δ1−α0−1(1 − (1 − η)α0) = h2(η) and g2(τ, η) ≥

τδ1−1h2(η) for all τ, η ∈ [0, 1], we deduce

G2(τ, η) ≤ h2(η) +
1
a2

n

∑
i=1

∫ 1

0
g2i(ϑ, η) dHi(ϑ) = J2(η),

G2(τ, η) ≥ τδ1−1

(
h2(η) +

1
a2

n

∑
i=1

g2i(ϑ, η) dHi(ϑ)

)
= τδ1−1J2(η), ∀ τ, η ∈ [0, 1].
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(e) By the definition of g3 we obtain

G3(τ, η) ≤ 1
Γ(γ2)

(1 − η)γ2−1 +
1
b1

∫ 1

0
g3(ϑ, η) dK0(ϑ)

= h3(η) +
1
b1

∫ 1

0
g3(ϑ, η) dK0(ϑ) = J3(η), ∀ τ, η ∈ [0, 1].

(f–g) Using the assumptions of this lemma and the properties of function g4 from
Lemma 2.1.3 from [12], namely g4(τ, η) ≤ 1

Γ(δ2)
(1 − η)δ2−β0−1(1 − (1 − η)β0) = h4(η) and

g4(τ, η) ≥ τδ2−1h4(η) for all τ, η ∈ [0, 1], we find

G4(τ, η) ≤ h4(η) +
1
b2

m

∑
i=1

∫ 1

0
g4i(ϑ, η) dKi(ϑ) = J4(η),

G4(τ, η) ≥ τδ2−1

(
h4(η) +

1
b2

m

∑
i=1

g4i(ϑ, η) dKi(ϑ)

)
= τδ2−1J4(η), ∀ τ, η ∈ [0, 1].

Lemma 4. We assume that a1, a2, b1, b2 > 0, Hi, i = 0, . . . , n, and Kj, j = 0, . . . , m are nonde-
creasing functions, x, y ∈ C(0, 1) ∩ L1(0, 1) with x(τ) ≥ 0, y(τ) ≥ 0 for all τ ∈ (0, 1). Then the
solutions u and v of problems (5), (6) and (15), (16), respectively, satisfy the inequalities u(τ) ≥ 0,
v(τ) ≥ 0 for all τ ∈ [0, 1] and u(τ) ≥ τδ1−1u(s) and v(τ) ≥ τδ2−1v(s) for all τ, s ∈ [0, 1].

Proof. Based on the assumptions of this lemma, we obtain that the solutions u and v of
problems (5), (6) and (15), (16), respectively, are nonnegative, that is u(τ) ≥ 0, v(τ) ≥ 0 for
all τ ∈ [0, 1]. In addition, by using Lemma 3, we deduce

u(τ) ≥ τδ1−1
∫ 1

0
J2(η)ϕ�1

(∫ 1

0
G1(η, ϑ)x(ϑ) dϑ

)
dη

≥ τδ1−1
∫ 1

0
G2(s, η)ϕ�1

(∫ 1

0
G1(η, ϑ)x(ϑ) dϑ

)
dη

= τδ1−1u(s),

v(τ) ≥ τδ2−1
∫ 1

0
J4(η)ϕ�2

(∫ 1

0
G3(η, ϑ)y(ϑ) dϑ

)
dη

≥ τδ2−1
∫ 1

0
G4(s, η)ϕ�2

(∫ 1

0
G3(η, ϑ)y(ϑ) dϑ

)
dη

= τδ2−1v(s),

for all τ, s ∈ [0, 1].

We present finally in this section the Guo–Krasnosel’skii fixed point theorem, which
we will use in the proofs of our main results.

Theorem 1. ([16]). Let X be a real Banach space with the norm ‖ · ‖, and let C ⊂ X be a cone
in X . Assume Ω1 and Ω2 are bounded open subsets of X with 0 ∈ Ω1, Ω1 ⊂ Ω2 and let
A : C ∩ (Ω2 \ Ω1) → C be a completely continuous operator such that, either

(i) ‖Au‖ ≤ ‖u‖, ∀ u ∈ C ∩ ∂Ω1, and ‖Au‖ ≥ ‖u‖, ∀ u ∈ C ∩ ∂Ω2; or
(ii) ‖Au‖ ≥ ‖u‖, ∀ u ∈ C ∩ ∂Ω1, and ‖Au‖ ≤ ‖u‖, ∀ u ∈ C ∩ ∂Ω2.
Then A has at least one fixed point in C ∩ (Ω2 \ Ω1).
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3. Existence of Positive Solutions

According to Lemmas 1 and 2, the pair of functions (u, v) is a solution of problem (1)
and (2) if and only if (u, v) is a solution of the system⎧⎪⎪⎨⎪⎪⎩

u(τ) =
∫ 1

0
G2(τ, ζ)ϕ�1

(∫ 1

0
G1(ζ, ϑ) f

(
ϑ, u(ϑ), v(ϑ), Iσ1

0+u(ϑ), Iσ2
0+v(ϑ)

)
dϑ

)
dζ,

v(τ) =
∫ 1

0
G4(τ, ζ)ϕ�2

(∫ 1

0
G3(ζ, ϑ)g

(
ϑ, u(ϑ), v(ϑ), Iς1

0+u(ϑ), Iς2
0+v(ϑ)

)
dϑ

)
dζ,

for all τ ∈ [0, 1]. We introduce the Banach space X = C[0, 1] with supreme norm ‖u‖ =
supτ∈[0,1] |u(τ)|, and the Banach space Y = X ×X with the norm ‖(u, v)‖Y = ‖u‖+ ‖v‖.
We define the cone

P = {(u, v) ∈ Y , u(τ) ≥ 0, v(τ) ≥ 0, ∀ τ ∈ [0, 1]}.

We also define the operators A1,A2 : Y → X and A : Y → Y by

A1(u, v)(τ) =
∫ 1

0
G2(τ, ζ)ϕ�1

(∫ 1

0
G1(ζ, ϑ) f

(
ϑ, u(ϑ), v(ϑ), Iσ1

0+u(ϑ), Iσ2
0+v(ϑ)

)
dϑ

)
dζ,

A2(u, v)(τ) =
∫ 1

0
G4(τ, ζ)ϕ�2

(∫ 1

0
G3(ζ, ϑ)g

(
ϑ, u(ϑ), v(ϑ), Iς1

0+u(ϑ), Iς2
0+v(ϑ)

)
dϑ

)
dζ,

for τ ∈ [0, 1] and (u, v) ∈ Y , and A(u, v) = (A1(u, v),A2(u, v)), (u, v) ∈ Y . We see that
(u, v) is a solution of problem (1) and (2) if and only if (u, v) is a fixed point of operator A.

We introduce now the basic assumptions that we will use in this section.

(I1) γ1, γ2 ∈ (1, 2], δ1 ∈ (p − 1, p], p ∈ N, p ≥ 3, δ2 ∈ (q − 1, q], q ∈ N, q ≥ 3, n, m ∈ N,
σ1, σ2, ς1, ς2 > 0, αj ∈ R, j = 0, . . . , n, 0 ≤ α1 < α2 < · · · < αn ≤ α0 < δ1 − 1, α0 ≥ 1,
β j ∈ R, j = 0, . . . , m, 0 ≤ β1 < β2 < · · · < βm ≤ β0 < δ2 − 1, β0 ≥ 1, ϕri (τ) =

|τ|ri−2τ, ϕ−1
ri

= ϕ�i , �i =
ri

ri−1 , i = 1, 2, ri > 1, i = 1, 2, Hi : [0, 1] → R, i = 0, . . . , n,
and Kj : [0, 1] → R, j = 0, . . . , m are nondecreasing functions, a1, a2, b1, b2 > 0 (given
by (7) and (17)).

(I2) The functions f , g ∈ C((0, 1) × R4
+,R+) and there exist the functions ψ1, ψ2 ∈

C((0, 1),R+) and χ1, χ2 ∈ C([0, 1] × R4
+,R+) with Λ1 =

∫ 1
0 (1 − τ)γ1−1ψ1(τ) dτ ∈

(0, ∞), Λ2 =
∫ 1

0 (1 − τ)γ2−1ψ2(τ) dτ ∈ (0, ∞), such that

f (τ, z1, z2, z3, z4) ≤ ψ1(τ)χ1(τ, z1, z2, z3, z4),
g(τ, z1, z2, z3, z4) ≤ ψ2(τ)χ2(τ, z1, z2, z3, z4),

for any τ ∈ (0, 1), zi ∈ R+, i = 1, . . . , 4.

Lemma 5. We assume that assumptions (I1) and (I2) are satisfied. Then operator A : P → P is
completely continuous.

Proof. We denote by M1 =
∫ 1

0 J1(η)ψ1(η) dη, M2 =
∫ 1

0 J3(η)ψ2(η) dη. By using (I2) and
Lemma 3, we deduce that M1 > 0 and M2 > 0. In addition we find
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M1 =
∫ 1

0
J1(η)ψ1(η) dη =

∫ 1

0

(
h1(η) +

1
a1

∫ 1

0
g1(ζ, η) dH0(ζ)

)
ψ1(η) dη

≤ 1
Γ(γ1)

∫ 1

0
(1 − η)γ1−1ψ1(η) dη +

1
a1

∫ 1

0

(∫ 1

0

1
Γ(γ1)

ζγ1−1(1 − η)γ1−1 dH0(ζ)

)
ψ1(η)dη

=

[
1 +

1
a1

(∫ 1

0
ζγ1−1 dH0(ζ)

)]
1

Γ(γ1)

∫ 1

0
(1 − η)γ1−1ψ1(η) dη < ∞,

M2 =
∫ 1

0
J3(η)ψ2(η) dη =

∫ 1

0

(
h3(η) +

1
b1

∫ 1

0
g3(ζ, η) dK0(ζ)

)
ψ2(η) dη

≤ 1
Γ(γ2)

∫ 1

0
(1 − η)γ2−1ψ2(η) dη +

1
b1

∫ 1

0

(∫ 1

0

1
Γ(γ2)

ζγ2−1(1 − η)γ2−1 dK0(ζ)

)
ψ2(η)dη

=

[
1 +

1
b1

(∫ 1

0
ζγ2−1 dK0(ζ)

)]
1

Γ(γ2)

∫ 1

0
(1 − η)γ2−1ψ2(η) dη < ∞.

Also, by Lemma 3 we conclude that A maps P into P .
We will prove that A maps bounded sets into relatively compact sets. Let E ⊂ P

be an arbitrary bounded set. Then there exists Ξ1 > 0 such that ‖(u, v)‖Y ≤ Ξ1 for all
(u, v) ∈ E . By the continuity of χ1 and χ2, we deduce that there exists Ξ2 > 0 such that Ξ2 =
max{supτ∈[0,1],zi∈[0,ω], i=1,...,4 χ1(τ, z1, z2, z3, z4), supτ∈[0,1],zi∈[0,ω], i=1,...,4 χ2(τ, z1, z2, z3, z4)},

where ω = Ξ1 max
{

1, 1
Γ(σ1+1) , 1

Γ(σ2+1) , 1
Γ(ς1+1) , 1

Γ(ς2+1)

}
. Based on the inequality |Iξ

0+w(η)|
≤ ‖w‖

Γ(ξ+1) , for ξ > 0 and w ∈ C[0, 1], and by Lemma 3, we find for any (u, v) ∈ E and
η ∈ [0, 1]

A1(u, v)(η) ≤
∫ 1

0
J2(ζ)ϕ�1

(∫ 1

0
J1(τ)ψ1(τ)χ1(τ, u(τ), v(τ), Iσ1

0+u(τ), Iσ2
0+v(τ))dτ

)
dζ

≤ Ξ�1−1
2 ϕ�1

(∫ 1

0
J1(τ)ψ1(τ) dτ

) ∫ 1

0
J2(ζ) dζ = M�1−1

1 Ξ�1−1
2 M3,

A2(u, v)(η) ≤
∫ 1

0
J4(ζ)ϕ�2

(∫ 1

0
J3(τ)ψ2(τ)χ2(τ, u(τ), v(τ), Iς1

0+u(τ), Iς2
0+v(τ))dτ

)
dζ

≤ Ξ�2−1
2 ϕ�2

(∫ 1

0
J3(τ)ψ2(τ) dτ

) ∫ 1

0
J4(ζ) dζ = M�2−1

2 Ξ�2−1
2 M4,

where M3 =
∫ 1

0 J2(ζ) dζ and M4 =
∫ 1

0 J4(ζ) dζ.

Then ‖A1(u, v)‖ ≤ M�1−1
1 Ξ�1−1

2 M3, ‖A2(u, v)‖ ≤ M�2−1
2 Ξ�2−1

2 M4 for all (u, v) ∈ E ,

and ‖A(u, v)‖Y ≤ M�1−1
1 Ξ�1−1

2 M3 + M�2−1
2 Ξ�2−1

2 M4 for all (u, v) ∈ E , that is A1(E), A2(E)
and A(E) are bounded.

We will show that A(E) is equicontinuous. By using Lemma 1, for (u, v) ∈ E and
η ∈ [0, 1] we obtain

A1(u, v)(η) =
∫ 1

0

(
g2(η, ζ) +

ηδ1−1

a2

n

∑
i=1

(∫ 1

0
g2i(τ, ζ) dHi(τ)

))
ϕ�1

(∫ 1

0
G1(ζ, ϑ)

× f (ϑ, u(ϑ), v(ϑ), Iσ1
0+u(ϑ), Iσ2

0+v(ϑ)) dϑ
)
dζ

=
∫ η

0

1
Γ(δ1)

[ηδ1−1(1 − ζ)δ1−α0−1 − (η − ζ)δ1−1]

×ϕ�1

(∫ 1

0
G1(ζ, ϑ) f (ϑ, u(ϑ), v(ϑ), Iσ1

0+u(ϑ), Iσ2
0+v(ϑ)) dϑ

)
dζ

+
∫ 1

η

1
Γ(δ1)

ηδ1−1(1 − ζ)δ1−α0−1 ϕ�1

(∫ 1

0
G1(ζ, ϑ) f (ϑ, u(ϑ), v(ϑ),

Iσ1
0+u(ϑ), Iσ2

0+v(ϑ)) dϑ
)
dζ

+
ηδ1−1

a2

∫ 1

0

n

∑
i=1

(∫ 1

0
g2i(τ, ζ) dHi(τ)

)
ϕ�1

(∫ 1

0
G1(ζ, ϑ) f (ϑ, u(ϑ), v(ϑ),

Iσ1
0+u(ϑ), Iσ2

0+v(ϑ)) dϑ
)
dζ.
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Then for any η ∈ (0, 1) we deduce

(A1(u, v))′(η) =
∫ η

0

1
Γ(δ1)

[(δ1 − 1)ηδ1−2(1 − ζ)δ1−α0−1 − (δ1 − 1)(η − ζ)δ1−2]

×ϕ�1

(∫ 1

0
G1(ζ, ϑ) f (ϑ, u(ϑ), v(ϑ), Iσ1

0+u(ϑ), Iσ2
0+v(ϑ)) dϑ

)
dζ

+
∫ 1

η

1
Γ(δ1)

(δ1 − 1)ηδ1−2(1 − ζ)δ1−α0−1 ϕ�1

(∫ 1

0
G1(ζ, ϑ) f (ϑ, u(ϑ), v(ϑ),

Iσ1
0+u(ϑ), Iσ2

0+v(ϑ)) dϑ
)
dζ

+
(δ1 − 1)ηδ1−2

a2

∫ 1

0

n

∑
i=1

(∫ 1

0
g2i(τ, ζ) dHi(τ)

)
ϕ�1

(∫ 1

0
G1(ζ, ϑ) f (ϑ, u(ϑ), v(ϑ),

Iσ1
0+u(ϑ), Iσ2

0+v(ϑ)) dϑ
)
dζ.

So for any η ∈ (0, 1) we find

|(A1(u, v))′(η)| ≤ 1
Γ(δ1 − 1)

∫ η

0
[ηδ1−2(1 − ζ)δ1−α0−1 + (η − ζ)δ1−2]

×ϕ�1

(∫ 1

0
J1(ϑ)ψ1(ϑ)χ1(ϑ, u(ϑ), v(ϑ), Iσ1

0+u(ϑ), Iσ2
0+v(ϑ)) dϑ

)
dζ

+
1

Γ(δ1 − 1)

∫ 1

η
ηδ1−2(1 − ζ)δ1−α0−1 ϕ�1

(∫ 1

0
J1(ϑ)ψ1(ϑ)χ1(ϑ, u(ϑ), v(ϑ),

Iσ1
0+u(ϑ), Iσ2

0+v(ϑ)) dϑ
)
dζ

+
(δ1 − 1)ηδ1−2

a2

∫ 1

0

n

∑
i=1

(∫ 1

0
g2i(τ, ζ) dHi(τ)

)
ϕ�1

(∫ 1

0
J1(ϑ)χ1(ϑ, u(ϑ), v(ϑ),

Iσ1
0+u(ϑ), Iσ2

0+v(ϑ)) dϑ
)
dζ

≤ Ξ�1−1
2 M�1−1

1

{
1

Γ(δ1 − 1)

∫ η

0
[ηδ1−2(1 − ζ)δ1−α0−1 + (η − ζ)δ1−2] dζ

+
1

Γ(δ1 − 1)

∫ 1

η
ηδ1−2(1 − ζ)δ1−α0−1dζ

+
(δ1 − 1)ηδ1−2

a2

∫ 1

0

n

∑
i=1

(∫ 1

0
g2i(τ, ζ) dHi(τ)

)
dζ

}
.

Therefore, for η ∈ (0, 1) we obtain

|(A1(u, v))′(η)| ≤ Ξ�1−1
2 M�1−1

1

[
1

Γ(δ1 − 1)

(
ηδ1−2

δ1 − α0
+

ηδ1−1

δ1 − 1

)
+
(δ1 − 1)ηδ1−2

a2

∫ 1

0

n

∑
i=1

(∫ 1

0

1
Γ(δ1 − αi)

(1 − ζ)δ1−α0−1 dζ

)
τδ1−αi−1 dHi(τ)

]

= Ξ�1−1
2 M�1−1

1

[
1

Γ(δ1 − 1)

(
ηδ1−2

δ1 − α0
+

ηδ1−1

δ1 − 1

)
+

(δ1 − 1)ηδ1−2

a2(δ1 − α0)

n

∑
i=1

1
Γ(δ1 − αi)

×
∫ 1

0
τδ1−αi−1 dHi(τ)

]
.

(23)

We denote by

Θ0(η) =
1

Γ(δ1 − 1)

(
ηδ1−2

δ1 − α0
+

ηδ1−1

δ1 − 1

)
+
(δ1 − 1)ηδ1−2

a2(δ1 − α0)

n

∑
i=1

1
Γ(δ1 − αi)

∫ 1

0
τδ1−αi−1 dHi(τ), η ∈ (0, 1).
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This function Θ0 ∈ L1(0, 1), because∫ 1

0
Θ0(η) dη =

1
Γ(δ1)

(
1

δ1 − α0
+

1
δ1

)
+

1
a2(δ1 − α0)

×
n

∑
i=1

1
Γ(δ1 − αi)

∫ 1

0
τδ1−αi−1 dHi(τ) < ∞.

(24)

Then for any s1, s2 ∈ [0, 1] with s1 < s2 and (u, v) ∈ E , by (23) and (24) we conclude

|A1(u, v)(s1)−A1(u, v)(s2)| =
∣∣∣∣∫ s2

s1

(A1(u, v))′(τ) dτ

∣∣∣∣ ≤ Ξ�1−1
2 M�1−1

1

∫ s2

s1

Θ0(τ) dτ. (25)

By (24) and (25), we deduce that A1(E) is equicontinuous. By a similar method, we
find that A2(E) is also equicontinuous, and then A(E) is equicontinuous too. Using the
Arzela–Ascoli theorem, we conclude that A1(E) and A2(E) are relatively compact sets,
and so A(E) is also relatively compact. In addition, we can show that A1, A2 and A
are continuous on P (see Lemma 1.4.1 from [14]). Hence, A is a completely continuous
operator on P .

We define now the cone

P0 = {(u, v) ∈ P , u(η) ≥ ηδ1−1‖u‖, v(η) ≥ ηδ2−1‖v‖, η ∈ [0, 1]}.

Under the assumptions (I1) and (I2), by using Lemma 4, we deduce that A(P) ⊂ P0,
and so A|P0 : P0 → P0 (denoted again by A) is also a completely continuous operator.
For θ > 0 we denote by Bθ the open ball centered at zero of radius θ, and by Bθ and ∂Bθ its
closure and its boundary, respectively.

We also denote by M1 =
∫ 1

0 J1(τ)ψ1(τ)dτ, M2 =
∫ 1

0 J3(τ)ψ2(τ)dτ, M3 =
∫ 1

0 J2(τ)dτ,

M4 =
∫ 1

0 J4(τ)dτ, and for θ1, θ2 ∈ (0, 1), θ1 < θ2, M5 =
∫ θ2

θ1
J2(ζ)

(∫ ζ
θ1
G1(ζ, τ) dτ

)�1−1
dζ,

M6 =
∫ θ2

θ1
J4(ζ)

(∫ ζ
θ1
G3(ζ, τ) dτ

)�2−1
dζ.

Theorem 2. We suppose that assumptions (I1), (I2),

(I3) There exist ci ≥ 0, i = 1, . . . , 4 with ∑4
i=1 ci > 0, di ≥ 0, i = 1, . . . , 4 with ∑4

i=1 di > 0,
and μ1 ≥ 1, μ2 ≥ 1 such that

χ10 = lim sup
∑4

i=1 cizi→0

max
η∈[0,1]

χ1(η, z1, z2, z3, z4)

ϕr1((c1z1 + c2z2 + c3z3 + c4z4)μ1)
< l1,

and

χ20 = lim sup
∑4

i=1 dizi→0

max
η∈[0,1]

χ2(η, z1, z2, z3, z4)

ϕr2((d1z1 + d2z2 + d3z3 + d4z4)μ2)
< l2,

where l1 = (2r1−1M1Mr1−1
3 ρ

μ1(r1−1)
1 )−1, l2 = (2r2−1M2Mr2−1

4 ρ
μ2(r2−1)
2 )−1, with ρ1 =

2 max
{

c1, c2, c3
Γ(σ1+1) , c4

Γ(σ2+1)

}
, ρ2 = 2 max

{
d1, d2, d3

Γ(ς1+1) , d4
Γ(ς2+1)

}
;

(I4) There exist pi ≥ 0, i = 1, . . . , 4 with ∑4
i=1 pi > 0, qi ≥ 0, i = 1, . . . , 4 with ∑4

i=1 qi > 0,
θ1, θ2 ∈ (0, 1), θ1 < θ2 and λ1 > 1, λ2 > 1 such that

f∞ = lim inf
∑4

i=1 pizi→∞
min

η∈[θ1,θ2]

f (η, z1, z2, z3, z4)

ϕr1(p1z1 + p2z2 + p3z3 + p4z4)
> l3,

or

g∞ = lim inf
∑4

i=1 qizi→∞
min

η∈[θ1,θ2]

g(η, z1, z2, z3, z4)

ϕr2(q1z1 + q2z2 + q3z3 + q4z4)
> l4,
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where l3 = λ1(2ρ3M5θδ1−1
1 )1−r1 , l4 = λ2(2ρ4M6θδ2−1

1 )1−r2 with ρ3 = min
{

p1θδ1−1
1 ,

p2θδ2−1
1 , p3θ

σ1+δ1−1
1 Γ(δ1)

Γ(δ1+σ1)
, p4θ

σ2+δ2−1
1 Γ(δ2)

Γ(δ2+σ2)

}
, ρ4 = min

{
q1θ

δ1−1
1 , q2θδ2−1

1 , q3θ
ς1+δ1−1
1 Γ(δ1)

Γ(δ1+ς1)
,

q4θ
ς2+δ2−1
1 Γ(δ2)

Γ(δ2+ς2)

}
,

hold. Then there exists a positive solution (u(τ), v(τ)), τ ∈ [0, 1] of problems (1) and (2).

Proof. By (I3) there exists R ∈ (0, 1) such that

χ1(η, z1, z2, z3, z4) ≤ l1 ϕr1((c1z1 + c2z2 + c3z3 + c4z4)
μ1),

χ2(η, z1, z2, z3, z4) ≤ l2 ϕr2((d1z1 + d2z2 + d3z3 + d4z4)
μ2),

(26)

for all η ∈ [0, 1], zi ≥ 0, i = 1, . . . , 4 with ∑4
i=1 cizi ≤ R and ∑4

i=1 dizi ≤ R. We define
R1 ≤ min{R/ρ1, R/ρ2, R}. For any (u, v) ∈ BR1 ∩ P and ζ ∈ [0, 1] we have

c1u(ζ) + c2v(ζ) + c3 Iσ1
0+u(ζ) + c4 Iσ2

0+v(ζ)
≤ 2 max

{
c1, c2, c3

Γ(σ1+1) , c4
Γ(σ2+1)

}
‖(u, v)‖Y = ρ1‖(u, v)‖Y ≤ ρ1R1 ≤ R,

d1u(ζ) + d2v(ζ) + d3 Iς1
0+u(ζ) + d4 Iς2

0+v(ζ)
≤ 2 max

{
d1, d2, d3

Γ(ς1+1) , d4
Γ(ς2+1)

}
‖(u, v)‖Y = ρ2‖(u, v)‖Y ≤ ρ2R1 ≤ R.

Then by (26) and Lemma 3, for any (u, v) ∈ ∂BR1 ∩ P0 and η ∈ [0, 1], we deduce

(A1(u, v))(η) ≤
∫ 1

0
J2(ζ)ϕ�1

(∫ 1

0
J1(ϑ) f (ϑ, u(ϑ), v(ϑ), Iσ1

0+u(ϑ), Iσ2
0+v(ϑ)) dϑ

)
dζ

= M3 ϕ�1

(∫ 1

0
J1(ϑ) f (ϑ, u(ϑ), v(ϑ), Iσ1

0+u(ϑ), Iσ2
0+v(ϑ)) dϑ

)
≤ M3 ϕ�1

(∫ 1

0
J1(ϑ)ψ1(ϑ)χ1(ϑ, u(ϑ), v(ϑ), Iσ1

0+u(ϑ), Iσ2
0+v(ϑ)) dϑ

)
≤ M3 ϕ�1

(∫ 1

0
J1(ϑ)ψ1(ϑ)l1 ϕr1

(
(c1u(ϑ) + c2v(ϑ) + c3 Iσ1

0+u(ϑ) + c4 Iσ2
0+v(ϑ))μ1

)
dϑ

)
≤ M3 ϕ�1(ϕr1((ρ1‖(u, v)‖Y )μ1))ϕ�1(l1)ϕ�1(M1)

= M3M�1−1
1 l�1−1

1 ρ
μ1
1 ‖(u, v)‖μ1

Y ≤ M3M�1−1
1 l�1−1

1 ρ
μ1
1 ‖(u, v)‖Y = 1

2‖(u, v)‖Y ,

(A2(u, v))(η) ≤
∫ 1

0
J4(ζ)ϕ�2

(∫ 1

0
J3(ϑ)g(ϑ, u(ϑ), v(ϑ), Iς1

0+u(ϑ), Iς2
0+v(ϑ)) dϑ

)
dζ

= M4 ϕ�2

(∫ 1

0
J3(ϑ)g(ϑ, u(ϑ), v(ϑ), Iς1

0+u(ϑ), Iς2
0+v(ϑ)) dϑ

)
≤ M4 ϕ�2

(∫ 1

0
J3(ϑ)ψ2(ϑ)χ2(ϑ, u(ϑ), v(ϑ), Iς1

0+u(ϑ), Iς2
0+v(ϑ)) dϑ

)
≤ M4 ϕ�2

(∫ 1

0
J3(ϑ)ψ2(ϑ)l2 ϕr2

(
(d1u(ϑ) + d2v(ϑ) + d3 Iς1

0+u(ϑ) + d4 Iς2
0+v(ϑ))μ2

)
dϑ

)
≤ M4 ϕ�2(ϕr2((ρ2‖(u, v)‖Y )μ2))ϕ�2(l2)ϕ�2(M2)

= M4M�2−1
2 l�2−1

2 ρ
μ2
2 ‖(u, v)‖μ2

Y ≤ M4M�2−1
2 l�2−1

2 ρ
μ2
2 ‖(u, v)‖Y = 1

2‖(u, v)‖Y .

Then we conclude that

‖A(u, v)‖Y = ‖A1(u, v)‖+ ‖A2(u, v)‖ ≤ ‖(u, v)‖Y , ∀ (u, v) ∈ ∂BR1 ∩ P0. (27)

Now we suppose in (I4) that f∞ > l3 (in a similar manner we study the case g∞ > l4).
Then there exists C1 > 0 such that

f (η, z1, z2, z3, z4) ≥ l3 ϕr1(p1z1 + p2z2 + p3z3 + p4z4)− C1, (28)

94



Fractal Fract. 2022, 6, 18

for all η ∈ [θ1, θ2] and zi ≥ 0, i = 1, . . . , 4. By definition of Iσ1
0+, for any (u, v) ∈ P0 and

η ∈ [0, 1] we have

Iσ1
0+u(η) =

1
Γ(σ1)

∫ η

0
(η − ζ)σ1−1u(ζ) dζ ≥ 1

Γ(σ1)

∫ η

0
(η − ζ)σ1−1ζδ1−1‖u‖ dζ

ζ=ηy
=

‖u‖
Γ(σ1)

∫ 1

0
(η − ηy)σ1−1ηδ1−1yδ1−1η dy =

‖u‖
Γ(σ1)

ησ1+δ1−1
∫ 1

0
yδ1−1(1 − y)σ1−1 dy

=
‖u‖

Γ(σ1)
ησ1+δ1−1B(δ1, σ1) =

‖u‖ησ1+δ1−1Γ(δ1)

Γ(δ1 + σ1)
,

(29)
and in a similar way

Iσ2
0+v(η) ≥ ‖v‖ησ2+δ2−1Γ(δ2)

Γ(δ2 + σ2)
,

where B(p, q) is the first Euler function. Then by using (28) and (29), for any (u, v) ∈ P0
and η ∈ [θ1, θ2] we obtain

(A1(u, v))(η) ≥
∫ θ2

θ1

G2(η, ζ)ϕ�1

(∫ ζ

θ1

G1(ζ, ϑ) f (ϑ, u(ϑ), v(ϑ), Iσ1
0+u(ϑ), Iσ2

0+v(ϑ))dϑ

)
dζ

≥ θδ1−1
1

∫ θ2

θ1

J2(ζ)

(∫ ζ

θ1

G1(ζ, ϑ)
[
l3(p1u(ϑ) + p2v(ϑ) + p3 Iσ1

0+u(ϑ) + p4 Iσ2
0+v(ϑ))r1−1

−C1]dϑ)�1−1dζ

≥ θδ1−1
1

∫ θ2

θ1

J2(ζ)

(∫ ζ

θ1

G1(ζ, ϑ)
[
l3
(

p1θδ1−1
1 ‖u‖+ p2θδ2−1

1 ‖v‖

+p3
θσ1+δ1−1

1 Γ(δ1)

Γ(δ1 + σ1)
‖u‖+ p4

θσ2+δ2−1
1 Γ(δ2)

Γ(δ2 + σ2)
‖v‖

)r1−1

− C1

⎤⎦dϑ

⎞⎠�1−1

dζ

≥ θδ1−1
1

∫ θ2

θ1

J2(ζ)

(∫ ζ

θ1

G1(ζ, ϑ)

[
l3

(
min

{
p1θδ1−1

1 , p2θδ2−1
1 , p3

θ
σ1+δ1−1
1 Γ(δ1)

Γ(δ1 + σ1)
,

p4θσ2+δ2−1
1 Γ(δ2)

Γ(δ2 + σ2)

}
2‖(u, v)‖Y

)r1−1

− C1

⎤⎦dϑ

⎞⎠�1−1

dζ

= θδ1−1
1

∫ θ2

θ1

J2(ζ)

(∫ ζ

θ1

G1(ζ, ϑ)
[
l3(2ρ3‖(u, v)‖Y )r1−1 − C1

]
dϑ

)�1−1

dζ

= M5θδ1−1
1

[
l3(2ρ3‖(u, v)‖Y )r1−1 − C1

]�1−1

=
(

Mr1−1
5 θ

(δ1−1)(r1−1)
1 l32r1−1ρr1−1

3 ‖(u, v)‖r1−1
Y − Mr1−1

5 θ
(δ1−1)(r1−1)
1 C1

)�1−1

=
(

λ1‖(u, v)‖r1−1
Y − C2

)�1−1
, C2 = Mr1−1

5 θ
(δ1−1)(r1−1)
1 C1.

Then we deduce

‖A(u, v)‖Y ≥ ‖A1(u, v)‖ ≥ |A1(u, v)(θ1)| ≥
(

λ1‖(u, v)‖r1−1
Y − C2

)�1−1
, ∀ (u, v) ∈ P0.

We choose R2 ≥ max
{

1, C�1−1
2 /(λ1 − 1)�1−1

}
and we obtain

‖A(u, v)‖Y ≥ ‖(u, v)‖Y , ∀ (u, v) ∈ ∂BR2 ∩ P0. (30)

By Lemma 5, (27), (30) and Theorem 1 (i), we conclude that A has a fixed point (u, v) ∈
(BR2 \ BR1) ∩ P0, so R1 ≤ ‖(u, v)‖Y ≤ R2, and u(τ) ≥ τδ1−1‖u‖ and v(τ) ≥ τδ2−1‖v‖ for
all τ ∈ [0, 1]. Then ‖u‖ > 0 or ‖v‖ > 0, that is u(τ) > 0 for all τ ∈ (0, 1] or v(τ) > 0 for all
τ ∈ (0, 1]. Hence (u(τ), v(τ)), τ ∈ [0, 1] is a positive solution of problem (1) and (2).

Theorem 3. We suppose that assumptions (I1), (I2),
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(I5) There exist ei ≥ 0, i = 1, . . . , 4 with ∑4
i=1 ei > 0, ki ≥ 0, i = 1, . . . , 4 with ∑4

i=1 ki > 0
such that

χ1∞ = lim sup
∑4

i=1 eizi→∞

max
η∈[0,1]

χ1(η, z1, z2, z3, z4)

ϕr1(e1z1 + e2z2 + e3z3 + e4z4)
< m1,

and

χ2∞ = lim sup
∑4

i=1 kizi→∞

max
η∈[0,1]

χ2(η, z1, z2, z3, z4)

ϕr2(k1z1 + k2z2 + k3z3 + k4z4)
< m2,

where m1 < min{1/(2M1(ξ1M3)
r1−1), 1/(M1(2ξ1M3)

r1−1)},
m2 < min{1/(2M2(ξ2M4)

r2−1), 1/(M2(2ξ2M4)
r2−1)} with

ξ1 = 2 max
{

e1, e2, e3
Γ(σ1+1) , e4

Γ(σ2+1)

}
, ξ2 = 2 max

{
k1, k2, k3

Γ(ς1+1) , k4
Γ(ς2+1)

}
;

(I6) There exist si ≥ 0, i = 1, . . . , 4 with ∑4
i=1 si > 0, ti ≥ 0, i = 1, . . . , 4 with ∑4

i=1 ti > 0,
θ1, θ2 ∈ (0, 1), θ1 < θ2 and ν1 ∈ (0, 1], ν2 ∈ (0, 1], λ3 ≥ 1, λ4 ≥ 1 such that

f0 = lim inf
∑4

i=1 sizi→0
min

η∈[θ1,θ2]

f (η, z1, z2, z3, z4)

ϕr1((s1z1 + s2z2 + s3z3 + s4z4)ν1)
> m3,

or

g0 = lim inf
∑4

i=1 tizi→0
min

η∈[θ1,θ2]

g(η, z1, z2, z3, z4)

ϕr2((t1z1 + t2z2 + t3z3 + t4z4)ν2)
> m4,

where m3 = λr1−1
3 (M52ν1 ξν1

3 θδ1−1
1 )1−r1 , m4 = λr2−1

4 (M62ν2 ξν2
4 θδ2−1

1 )1−r2 , with ξ3 =

min
{

s1θδ1−1
1 , s2θδ2−1

1 , s3θ
σ1+δ1−1
1 Γ(δ1)

Γ(δ1+σ1)
, s4θ

σ2+δ2−1
1 Γ(δ2)

Γ(δ2+σ2)

}
, ξ4 = min

{
t1θδ1−1

1 , t2θδ2−1
1 ,

t3θ
ς1+δ1−1
1 Γ(δ1)

Γ(δ1+ς1)
, t4θ

ς2+δ2−1
1 Γ(δ2)

Γ(δ2+ς2)

}
,

hold. Then there exists a positive solution (u(τ), v(τ)), τ ∈ [0, 1] of problem (1) and (2).

Proof. From (I5) there exist C3 > 0, C4 > 0 such that

χ1(η, z1, z2, z3, z4) ≤ m1 ϕr1(e1z1 + e2z2 + e3z3 + e4z4) + C3,
χ2(η, z1, z2, z3, z4) ≤ m2 ϕr2(k1z1 + k2z2 + k3z3 + k4z4) + C4,

(31)

for any η ∈ [0, 1] and zi ≥ 0, i = 1, . . . , 4. By using (I2) and (31) for any (u, v) ∈ P0 and
η ∈ [0, 1] we find

A1(u, v)(η) ≤
∫ 1

0
J2(ζ)ϕ�1

(∫ 1

0
J1(ϑ) f (ϑ, u(ϑ), v(ϑ), Iσ1

0+u(ϑ), Iσ2
0+v(ϑ)) dϑ

)
dζ

≤ M3 ϕ�1

(∫ 1

0
J1(ϑ)ψ1(ϑ)χ1(ϑ, u(ϑ), v(ϑ), Iσ1

0+u(ϑ), Iσ2
0+v(ϑ)) dϑ

)
≤ M3 ϕ�1

(∫ 1

0
J1(ϑ)ψ1(ϑ)

[
m1 ϕr1

(
e1u(ϑ) + e2v(ϑ) + e3 Iσ1

0+u(ϑ) + e4 Iσ2
0+v(ϑ)

)
+ C3

]
dϑ

)
≤ M3 ϕ�1

(∫ 1

0
J1(ϑ)ψ1(ϑ)

[
m1

(
e1‖u‖+ e2‖v‖+ e3‖u‖

Γ(σ1 + 1)
+

e4‖v‖
Γ(σ2 + 1)

)r1−1

+ C3

]
dϑ

)
≤ M3 ϕ�1

[
m1

(
max

{
e1, e2, e3

Γ(σ1+1) , e4
Γ(σ2+1)

}
2‖(u, v)‖Y

)r1−1
+ C3

]
×
(∫ 1

0
J1(ϑ)ψ1(ϑ) dϑ

)�1−1

= M�1−1
1 M3

(
m1ξr1−1

1 ‖(u, v)‖r1−1
Y + C3

)�1−1
,
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and

A2(u, v)(η) ≤
∫ 1

0
J4(ζ)ϕ�2

(∫ 1

0
J3(ϑ)g(ϑ, u(ϑ), v(ϑ), Iς1

0+u(ϑ), Iς2
0+v(ϑ)) dϑ

)
dζ

≤ M4 ϕ�2

(∫ 1

0
J3(ϑ)ψ2(ϑ)χ2(ϑ, u(ϑ), v(ϑ), Iς1

0+u(ϑ), Iς2
0+v(ϑ)) dϑ

)
≤ M4 ϕ�2

(∫ 1

0
J3(ϑ)ψ2(ϑ)

[
m2 ϕr2

(
k1u(ϑ) + k2v(ϑ) + k3 Iς1

0+u(ϑ) + k4 Iς2
0+v(ϑ)

)
+ C4

]
dϑ

)
≤ M4 ϕ�2

(∫ 1

0
J3(ϑ)ψ2(ϑ)

[
m2

(
k1‖u‖+ k2‖v‖+ k3‖u‖

Γ(ς1 + 1)
+

k4‖v‖
Γ(ς2 + 1)

)r2−1

+ C4

]
dϑ

)
≤ M4 ϕ�2

[
m2

(
max

{
k1, k2, k3

Γ(ς1+1) , k4
Γ(ς2+1)

}
2‖(u, v)‖Y

)r2−1
+ C4

]
×
(∫ 1

0
J3(ϑ)ψ2(ϑ) dϑ

)�2−1

= M�2−1
2 M4

(
m2ξr2−1

2 ‖(u, v)‖r2−1
Y + C4

)�2−1
.

Then we obtain

‖A1(u, v)‖ ≤ M�1−1
1 M3

(
m1ξr1−1

1 ‖(u, v)‖r1−1
Y + C3

)�1−1
,

‖A2(u, v)‖ ≤ M�2−1
2 M4

(
m2ξr2−1

2 ‖(u, v)‖r2−1
Y + C4

)�2−1
,

and so
‖A(u, v)‖Y ≤ M�1−1

1 M3

(
m1ξr1−1

1 ‖(u, v)‖r1−1
Y + C3

)�1−1

+M�2−1
2 M4

(
m2ξr2−1

2 ‖(u, v)‖r2−1
Y + C4

)�2−1
,

for all (u, v) ∈ P0. We choose

R3 ≥ max

{
1,

M�1−1
1 M32�1−2C�1−1

3 + M�2−1
2 M42�2−2C�2−1

4

1 − (M�1−1
1 M32�1−2m�1−1

1 ξ1 + M�2−1
2 M42�2−2m�2−1

2 ξ2)
,

M�1−1
1 M3C�1−1

3 + M�2−1
2 M4C�2−1

4

1 − (M�1−1
1 M3m�1−1

1 ξ1 + M�2−1
2 M4m�2−1

2 ξ2)
,

M�1−1
1 M3C�1−1

3 + M�2−1
2 M42�2−2C�2−1

4

1 − (M�1−1
1 M3m�1−1

1 ξ1 + M�2−1
2 M42�2−2m�2−1

2 ξ2)
,

(32)

M�1−1
1 M32�1−2C�1−1

3 + M�2−1
2 M4C�2−1

4

1 − (M�1−1
1 M32�1−2m�1−1

1 ξ1 + M�2−1
2 M4m�2−1

2 ξ2)

}
,

and then we conclude

‖A(u, v)‖Y ≤ ‖(u, v)‖Y , ∀ (u, v) ∈ ∂BR3 ∩ P0. (33)

The above number R3 was chosen based on the inequalities (x + y)� ≤ 2�−1(x� + y�)
for � ≥ 1 and x, y ≥ 0, and (x + y)� ≤ x� + y� for � ∈ (0, 1] and x, y ≥ 0. Here
� = �1 − 1 or �2 − 1. We prove the inequality (33) in one case, namely �1 ∈ [2, ∞) and
�2 ∈ [2, ∞). In this case, by using (32) and the relations M�1−1

1 M32�1−2m�1−1
1 ξ1 < 1/2 and
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M�2−1
2 M42�2−2m�2−1

2 ξ2 < 1/2 (from the inequalities for m1 and m2 in (I5)) we have the
inequalities

M�1−1
1 M3(m1ξr1−1

1 Rr1−1
3 + C3)

�1−1 + M�2−1
2 M4(m2ξr2−1

2 Rr2−1
3 + C4)

�2−1

≤ M�1−1
1 M32�1−2(m�1−1

1 ξ1R3 + C�1−1
3 ) + M�2−1

2 M42�2−2(m�2−1
2 ξ2R3 + C�2−1

4 )

= (M�1−1
1 M32�1−2m�1−1

1 ξ1 + M�2−1
2 M42�2−2m�2−1

2 ξ2)R3

+(M�1−1
1 M32�1−2C�1−1

3 + M�2−1
2 M42�2−2C�2−1

4 ) ≤ R3.

In a similar manner we consider the cases �1 ∈ (1, 2] and �2 ∈ (1, 2]; �1 ∈ [2, ∞) and
�2 ∈ (1, 2]; �1 ∈ (1, 2] and �2 ∈ [2, ∞).

In (I6), we suppose that g0 > m4 (in a similar manner we can study the case f0 > m3).
We deduce that there exists R̃4 ∈ (0, 1] such that

g(η, z1, z2, z3, z4) ≥ m4 ϕr2((t1z1 + t2z2 + t3z3 + t4z4)
ν2), (34)

for all η ∈ [θ1, θ2], zi ≥ 0, i = 1, . . . , 4, ∑4
i=1 tizi ≤ R̃4. We take R4 ≤ min{R̃4/ξ̃4, R̃4}, where

ξ̃4 = 2 max
{

t1, t2, t3
Γ(ς1+1) , t4

Γ(ς2+1)

}
. Then for any (u, v) ∈ BR4 ∩ P and η ∈ [0, 1] we have

t1u(ζ) + t2v(ζ) + t3 Iς
0+u(ζ) + t4 Iς

0+v(ζ) ≤ t1‖u‖+ t2‖v‖+ t3‖u‖
Γ(ς1 + 1)

+
t4‖v‖

Γ(ς2 + 1)

≤ max
{

t1, t2,
t3

Γ(ς1 + 1)
,

t4

Γ(ς2 + 1)

}
2‖(u, v)‖Y = ξ̃4‖(u, v)‖Y ≤ ξ̃4R4 ≤ R̃4.

Therefore by using (34) and (29), we obtain for any (u, v) ∈ ∂BR4 ∩ P0 and η ∈ [θ1, θ2]

A2(u, v)(η) ≥
∫ θ2

θ1

G4(η, ζ)ϕ�2

(∫ ζ

θ1

G3(ζ, ϑ)g(ϑ, u(ϑ), v(ϑ), Iς1
0+u(ϑ), Iς2

0+v(ϑ))dϑ

)
dζ

≥ θδ2−1
1

∫ θ2

θ1

J4(ζ)ϕ�2

(∫ ζ

θ1

G3(ζ, ϑ)
[
m4 ϕr2

(
(t1u(ϑ) + t2v(ϑ) + t3 Iς1

0+u(ϑ)

+t4 Iς2
0+v(ϑ)

)ν2
)]

dϑ
)

dζ

≥ θδ2−1
1

∫ θ2

θ1

J4(ζ)ϕ�2

(∫ ζ

θ1

G3(ζ, ϑ)
[
m4

(
t1θδ1−1

1 ‖u‖+ t2θδ2−1
1 ‖v‖

+ +t3
θ

ς1+δ1−1
1 Γ(δ1)

Γ(δ1 + ς1)
‖u‖+ t4

θ
ς2+δ2−1
1 Γ(δ2)

Γ(δ2 + ς2)
‖v‖

)ν2(r2−1)
⎤⎦dϑ

⎞⎠dζ

≥ θδ2−1
1

∫ θ2

θ1

J4(ζ)

(∫ ζ

θ1

G3(ζ, ϑ)m4(2ξ4‖(u, v)‖Y )ν2(r2−1)dϑ

)�2−1

dζ

= θδ2−1
1 m�2−1

4 (2ξ4)
ν2(�2−1)(r2−1)‖(u, v)‖ν2

Y

(∫ θ2

θ1

J4(ζ)

(∫ ζ

θ1

G3(ζ, ϑ) dϑ

)�2−1

dζ

)
= M6θδ2−1

1 m�2−1
4 2ν2 ξν2

4 ‖(u, v)‖ν2
Y = λ4‖(u, v)‖ν2

Y ≥ ‖(u, v)‖ν2
Y ≥ ‖(u, v)‖Y .

Then we deduce ‖A2(u, v)‖ ≥ ‖(u, v)‖Y and then

‖A(u, v)‖Y ≥ ‖(u, v)‖Y , ∀ (u, v) ∈ ∂BR4 ∩ P0. (35)

From Lemma 5, (33), (35) and Theorem 1 (ii), we conclude that A has a fixed point
(u, v) ∈ (BR3 \ BR4) ∩ P0, so R4 ≤ ‖(u, v)‖Y ≤ R3, which is a positive solution of prob-
lem (1) and (2).

Theorem 4. We suppose that assumptions (I1), (I2), (I4) and (I6) hold. In addition, the functions
ψi and χi, i = 1, 2 satisfy the condition

98



Fractal Fract. 2022, 6, 18

(I7) M3M�1−1
1 D�1−1

0 < 1
2 , M4M�2−1

2 D�2−1
0 < 1

2 , where

D0 = max

{
max

η∈[0,1], zi∈[0,ω0], i=1,...,4
χ1(η, z1, z2, z3, z4),

max
η∈[0,1], zi∈[0,ω0], i=1,...,4

χ2(η, z1, z2, z3, z4)

}
,

with ω0 = max
{

1, 1
Γ(σ1+1) , 1

Γ(σ2+1) , 1
Γ(ς1+1) , 1

Γ(ς2+1)

}
.

Then there exist two positive solutions (u1(τ), v1(τ)), (u2(τ), v2(τ)), τ ∈ [0, 1] of prob-
lem (1) and (2).

Proof. Under assumptions (I1), (I2) and (I4), Theorem 2 gives us the existence of R2 > 1
such that

‖A(u, v)‖Y ≥ ‖(u, v)‖Y , ∀ (u, v) ∈ ∂BR2 ∩ P0. (36)

Under assumptions (I1), (I2) and (I6), Theorem 3 gives us the existence of R4 < 1
such that

‖A(u, v)‖Y ≥ ‖(u, v)‖Y , ∀ (u, v) ∈ ∂BR4 ∩ P0. (37)

Now we consider the set B1 = {(u, v) ∈ Y , ‖(u, v)‖Y < 1}. By (I7), for any (u, v) ∈
∂B1 ∩ P0 and η ∈ [0, 1], we obtain

A1(u, v)(η) ≤
∫ 1

0
J2(ζ)ϕ�1

(∫ 1

0
J1(ϑ)ψ1(ϑ)χ1(ϑ, u(ϑ), v(ϑ), Iσ1

0+u(ϑ), Iσ2
0+v(ϑ)) dϑ

)
dζ

≤ D�1−1
0

(∫ 1

0
J2(ζ) dζ

)(∫ 1

0
J1(ϑ)ψ1(ϑ) dϑ

)�1−1

= M3D�1−1
0 M�1−1

1 < 1
2 ,

A2(u, v)(η) ≤
∫ 1

0
J4(ζ)ϕ�2

(∫ 1

0
J3(ϑ)ψ2(ϑ)χ2(ϑ, u(ϑ), v(ϑ), Iς1

0+u(ϑ), Iς2
0+v(ϑ)) dϑ

)
dζ

≤ D�2−1
0

(∫ 1

0
J4(ζ) dζ

)(∫ 1

0
J3(ϑ)ψ2(ϑ) dϑ

)�2−1

= M4D�2−1
0 M�2−1

2 < 1
2 .

Then ‖Ai(u, v)‖ < 1/2 for all (u, v) ∈ ∂B1 ∩ P0, i = 1, 2. Hence

‖A(u, v)‖Y = ‖A1(u, v)‖+ ‖A2(u, v)‖ < 1 = ‖(u, v)‖Y , ∀ (u, v) ∈ ∂B1 ∩ P0. (38)

So from (36), (38) and Theorem 1, we deduce that problem (1) and (2) has one positive
solution (u1, v1) ∈ P0 with 1 < ‖(u1, v1)‖Y ≤ R2. From (37) and (38) and the Guo–
Krasnosel’skii fixed point theorem, we conclude that problem (1) and (2) have another
positive solution (u2, v2) ∈ P0 with R4 ≤ ‖(u2, v2)‖Y < 1. Then problem (1) and (2) have
at least two positive solutions (u1(τ), v1(τ)), (u2(τ), v2(τ)), τ ∈ [0, 1].

4. Examples

Let γ1 = 3/2, γ2 = 7/6, p = 4, q = 3, δ1 = 10/3, δ2 = 12/5, σ1 = 2/5, σ2 = 29/7,
ς1 = 11/9, ς2 = 21/4, n = 2, m = 1, α0 = 13/8, α1 = 5/7, α2 = 3/4, β0 = 10/9, β1 = 7/8,
r1 = 17/4, r2 = 25/8, �1 = 17/13, �2 = 25/17, H0(t) = {2/7, t ∈ [0, 3/4); 11/4,
t ∈ [3/4, 1]}, H1(t) = t/2, t ∈ [0, 1], H2(t) = {1/2, t ∈ [0, 1/2); 13/10, t ∈ [1/2, 1]},
K0(t) = 4t/9, t ∈ [0, 1], K1(t) = {1/4, t ∈ [0, 1/3); 29/20,
t ∈ [1/3, 1]}.

We consider the system of fractional differential equations⎧⎨⎩ D3/2
0+

(
ϕ17/4

(
D10/3

0+ u(τ)
))

= f (τ, u(τ), v(τ), I2/5
0+ u(τ), I29/7

0+ v(τ)), τ ∈ (0, 1),

D7/6
0+

(
ϕ25/8

(
D12/5

0+ v(τ)
))

= g(τ, u(τ), v(τ), I11/9
0+ u(τ), I21/4

0+ v(τ)), τ ∈ (0, 1),
(39)
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with the boundary conditions⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u(0) = u′(0) = u′′(0) = 0, D10/3
0+ u(0) = 0, D10/3

0+ u(1) = 1
24/13 D10/3

0+ u
( 3

4
)
,

D13/8
0+ u(1) = 1

2

∫ 1
0 D5/7

0+ u(η) dη + 4
5 D3/4

0+ u
(

1
2

)
,

v(0) = v′(0) = 0, D12/5
0+ v(0) = 0, ϕ25/8

(
D12/5

0+ v(1)
)
= 4

9

∫ 1
0 ϕ25/8

(
D12/5

0+ v(η)
)

dη,

D10/9
0+ v(1) = 6

5 D7/8
0+ v

(
1
3

)
.

(40)

We have here a1 ≈ 0.56698729 > 0, a2 ≈ 2.16111947 > 0, b1 ≈ 0.61904762 > 0,
b2 ≈ 0.43774133 > 0. So, assumption (I1) is satisfied. We also obtain

g1(τ, η) =
1

Γ(3/2)

{
τ1/2(1 − η)1/2 − (τ − η)1/2, 0 ≤ η ≤ τ ≤ 1,
τ1/2(1 − η)1/2, 0 ≤ τ ≤ η ≤ 1,

g2(τ, η) =
1

Γ(10/3)

{
τ7/3(1 − η)17/24 − (τ − η)7/3, 0 ≤ η ≤ τ ≤ 1,
τ7/3(1 − η)17/24, 0 ≤ τ ≤ η ≤ 1,

g21(τ, η) =
1

Γ(55/21)

{
τ34/21(1 − η)17/24 − (τ − η)34/21, 0 ≤ η ≤ τ ≤ 1,
τ34/21(1 − η)17/24, 0 ≤ τ ≤ η ≤ 1,

g22(τ, η) =
1

Γ(31/12)

{
τ19/12(1 − η)17/24 − (τ − η)19/12, 0 ≤ η ≤ τ ≤ 1,
τ19/12(1 − η)17/24, 0 ≤ τ ≤ η ≤ 1,

g3(τ, η) =
1

Γ(7/6)

{
τ1/6(1 − η)1/6 − (τ − η)1/6, 0 ≤ η ≤ τ ≤ 1,
τ1/6(1 − η)1/6, 0 ≤ τ ≤ η ≤ 1,

g4(τ, η) =
1

Γ(12/5)

{
τ7/5(1 − η)13/45 − (τ − η)7/5, 0 ≤ η ≤ τ ≤ 1,
τ7/5(1 − η)13/45, 0 ≤ τ ≤ η ≤ 1,

g41(τ, η) =
1

Γ(61/40)

{
τ21/40(1 − η)13/45 − (τ − η)21/40, 0 ≤ η ≤ τ ≤ 1,
τ21/40(1 − η)13/45, 0 ≤ τ ≤ η ≤ 1,

G1(τ, η) = g1(τ, η) +
τ1/2

2a1
g1

(
3
4

, η

)
, (τ, η) ∈ [0, 1]× [0, 1],

G2(τ, η) = g2(τ, η) +
τ7/3

a2

(
1
2

∫ 1

0
g21(ϑ, η) dϑ +

4
5
g22

(
1
2

, η

))
, (τ, η) ∈ [0, 1]× [0, 1],

G3(τ, η) = g3(τ, η) +
4τ1/6

9b1

∫ 1

0
g3(ϑ, η) dϑ, (τ, η) ∈ [0, 1]× [0, 1],

G4(τ, η) = g4(τ, η) +
6τ7/5

5b2
g41

(
1
3

, η

)
, (τ, η) ∈ [0, 1]× [0, 1],

h1(η) =
1

Γ(3/2)
(1 − η)1/2, h2(η) =

1
Γ(10/3)

(1 − η)17/24(1 − (1 − η)13/8), η ∈ [0, 1],

h3(η) =
1

Γ(7/6)
(1 − η)1/6, h4(η) =

1
Γ(12/5)

(1 − η)13/45(1 − (1 − η)10/9), η ∈ [0, 1].

Besides we deduce

J1(ζ) =

⎧⎨⎩ h1(ζ) +
1

2a1Γ(3/2)

[( 3
4
)1/2

(1 − ζ)1/2 −
( 3

4 − ζ
)1/2

]
, 0 ≤ ζ ≤ 3

4 ,

h1(ζ) +
1

2a1Γ(3/2)

( 3
4
)1/2

(1 − ζ)1/2, 3
4 < ζ ≤ 1,

J2(ζ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

h2(ζ) +
1
a2

{
1

2Γ(76/21)

[
(1 − ζ)17/24 − (1 − ζ)55/21

]
+ 4

5Γ(31/12)

[(
1
2

)19/12
(1 − ζ)17/24 −

(
1
2 − ζ

)19/12
]}

, 0 ≤ ζ ≤ 1
2 ,

h2(ζ) +
1
a2

{
1

2Γ(76/21)

[
(1 − ζ)17/24 − (1 − ζ)55/21

]
+ 4

5Γ(31/12)

(
1
2

)19/12
(1 − ζ)17/24

}
, 1

2 < ζ ≤ 1,

J3(ζ) = h3(ζ) +
4

9b1Γ(13/6)

[
(1 − ζ)1/6 − (1 − ζ)7/6

]
, ζ ∈ [0, 1],

J4(ζ) =

⎧⎪⎨⎪⎩
h4(ζ) +

6
5b2Γ(61/40)

[(
1
3

)21/40
(1 − ζ)13/45 −

(
1
3 − ζ

)21/40
]

, 0 ≤ ζ ≤ 1
3 ,

h4(ζ) +
6

5b2Γ(61/40)

(
1
3

)21/40
(1 − ζ)13/45, 1

3 < ζ ≤ 1.
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Example 1. We consider the functions

f (η, z1, z2, z3, z4) =
(2z1+z2+5z3+7z4)

13a/4

ηκ1 (1−η)κ2 , g(η, z1, z2, z3, z4) =
(3z1+8z2+2z3+9z4)

17b/8

ηκ3 (1−η)κ4 , (41)

for η ∈ (0, 1), zi ≥ 0, i = 1, . . . , 4, where a > 1, b > 1, κ1 ∈ (0, 1), κ2 ∈ (0, 3/2),
κ3 ∈ (0, 1), κ4 ∈ (0, 7/6). Here ψ1(η) = 1

ηκ1 (1−η)κ2 , ψ2(η) = 1
ηκ3 (1−η)κ4 for η ∈ (0, 1),

χ1(η, z1, z2, z3, z4) = (2z1 + z2 + 5z3 + 7z4)
13a/4 and χ2(η, z1, z2, z3, z4) = (3z1 + 8z2 + 2z3 +

9z4)
17b/8 for η ∈ [0, 1], zi ≥ 0, i = 1, . . . , 4. We also find Λ1 =

∫ 1
0 (1 − τ)1/2ψ1(τ) dτ =

B
(
1 − κ1, 3

2 − κ2
)
∈ (0, ∞), Λ2 =

∫ 1
0 (1 − τ)1/6ψ2(τ) dτ = B(1 − κ3, 7

6 − κ4
)
∈ (0, ∞).

Then assumption (I2) is also satisfied. Moreover, in (I3), for c1 = 2, c2 = 1, c3 = 5, c4 = 7,
μ1 = 1, d1 = 3, d2 = 8, d3 = 2, d4 = 9, μ2 = 1, we obtain χ10 = 0, χ20 = 0. In (I4),
for [θ1, θ2] ⊂ (0, 1), p1 = 2, p2 = 1, p3 = 5, p4 = 7, we have f∞ = ∞. By Theorem 2, we deduce
that there exists a positive solution (u(τ), v(τ)), τ ∈ [0, 1] of problems (39) and (40) with the
nonlinearities (41).

Example 2. We consider the functions

f (η, z1, z2, z3, z4) =
s0(η+2)

(η2+6) 3
√

η2

[(
1
4 z1 +

1
3 z2 + z3 +

1
2 z4

)ω1

+
(

1
4 z1 +

1
3 z2 + z3 +

1
2 z4

)ω2
]
, η ∈ (0, 1], zi ≥ 0, i = 1, . . . , 4,

g(η, z1, z2, z3, z4) =
t0(3+sin η)

(η+2)4 5
√

(1−η)3

(
ez1 + ln(z2 + z3 + 1) + zω3

4
)
,

η ∈ [0, 1), zi ≥ 0, i = 1, . . . , 4,

(42)

where s0 > 0, t0 > 0, ω1 > 13
4 , ω2 ∈

(
0, 13

4

)
, ω3 > 0. Here, we have ψ1(η) = 1

3
√

η2
,

η ∈ (0, 1], χ1(η, z1, z2, z3, z4) = s0(η+2)
(η2+6)

[(
1
4 z1 +

1
3 z2 + z3 +

1
2 z4

)ω1
+
(

1
4 z1 +

1
3 z2 + z3+

1
2 z4

)ω2
]
, η ∈ [0, 1], zi ≥ 0, i = 1, . . . , 4, ψ2(η) =

1
5
√

(1−η)3
, η ∈ [0, 1), χ2(η, z1, z2, z3, z4) =

t0(3+sin η)
(η+2)4

(
ez1 + ln(z2 + z3 + 1) + zω3

4
)
, η ∈ [0, 1], zi ≥ 0, i = 1, . . . , 4. We find Λ1 =∫ 1

0 (1 − τ)1/2 1
3√

τ2
dτ = B

(
1
3 , 3

2

)
∈ (0, ∞), Λ2 =

∫ 1
0 (1 − τ)1/6 1

5
√

(1−τ)3
dτ = 30

17 ∈ (0, ∞).

Then assumption (I2) is satisfied. For [θ1, θ2] ⊂ (0, 1), p1 = 1/4, p2 = 1/3, p3 = 1, p4 = 1/2,
we obtain f∞ = ∞, and for s1 = 1/4, s2 = 1/3, s3 = 1, s4 = 1/2 and ν1 ∈

(
4ω2
13 , 1

]
,

we have f0 = ∞. So assumptions (I4) and (I6) are satisfied. Then after some computations,
we deduce M1 =

∫ 1
0 J1(τ)ψ1(τ) dτ ≈ 3.04682891, M2 =

∫ 1
0 J3(τ)ψ2(τ) dτ ≈ 2.64937892,

M3 =
∫ 1

0 J2(τ) dτ ≈ 0.15582207, M4 =
∫ 1

0 J4(τ) dτ ≈ 1.25629509. In addition, we ob-

tain that ω0 = 1
Γ(7/5) ≈ 1.12706049, D0 = max

{ 3s0
7

[( 25
12 ω0

)ω1 +
( 25

12 ω0
)ω2

]
, t0m0[eω0 +

ln(2ω0 + 1)+ωω3
0 ]

}
, with m0 = maxη∈[0,1]

3+sin η

(η+2)4 ≈ 3.0123699. If

s0 < min
{

7
3(2M3)13/4 M1[(25ω0/12)ω1+(25ω0/12)ω2 ]

, 7
3(2M4)17/8 M2[(25ω0/12)ω1+(25ω0/12)ω2 ]

}
,

t0 < min
{

1
(2M3)13/4 M1m0[eω0+ln(2ω0+1)+ω

ω3
0 ]

, 1
(2M4)17/8 M2m0[eω0+ln(2ω0+1)+ω

ω3
0 ]

}
,

then the inequalities M3M4/13
1 D4/13

0 < 1
2 , M4M8/17

2 D8/17
0 < 1

2 are satisfied (that is, assumption
(I7) is satisfied). For example, if ω1 = 4, ω2 = 2, ω3 = 3, and s0 ≤ 0.0034 and t0 ≤ 0.0031, then
the above inequalities are satisfied. By Theorem 4, we conclude that problem (39) and (40) with the
nonlinearities (42) has at least two positive solutions (u1(τ), v1(τ)), (u2(τ), v2(τ)), τ ∈ [0, 1].

5. Conclusions

In this paper we investigate the system of Riemann–Liouville fractional differential
Equations (1) with r1-Laplacian and r2-Laplacian operators and fractional integral terms,
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subject to the uncoupled boundary conditions (2) which contain Riemann–Stieltjes integrals
and fractional derivatives of various orders. The nonlinearities f and g from the system are
nonnegative functions and they may be singular at τ = 0 and/or τ = 1. First we present
the Green functions associated to our problem (1) and (2) and some of their properties. Then
we give various conditions for the functions f and g such that (1) and (2) has at least one
or two positive solutions. In the proof of our main results we use the Guo–Krasnosel’skii
fixed point theorem of cone expansion and compression of norm type. We finally present
two examples for illustrating the obtained existence theorems.
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Abstract: In this paper, we study the existence of positive solutions for a system of fractional differ-
ential equations with ρ-Laplacian operators, Riemann–Liouville derivatives of diverse orders and
general nonlinearities which depend on several fractional integrals of differing orders, supplemented
with nonlocal coupled boundary conditions containing Riemann–Stieltjes integrals and varied frac-
tional derivatives. The nonlinearities from the system are continuous nonnegative functions and
they can be singular in the time variable. We write equivalently this problem as a system of integral
equations, and then we associate an operator for which we are looking for its fixed points. The main
results are based on the Guo–Krasnosel’skii fixed point theorem of cone expansion and compression
of norm type.

Keywords: Riemann–Liouville fractional differential equations; nonlocal coupled boundary conditions;
singular functions; positive solutions; multiplicity

MSC: 34A08; 34B10; 34B16; 34B18

1. Introduction

We consider the system of Riemann–Liouville fractional differential equations with
ρ1-Laplacian and ρ2-Laplacian operators{

Dδ1
0+(ϕρ1(Dγ1

0+x(t))) = f(t, x(t), y(t), Iμ1
0+x(t), Iμ2

0+y(t)), t ∈ (0, 1),
Dδ2

0+(ϕρ2(Dγ2
0+y(t))) = g(t, x(t), y(t), Iν1

0+x(t), Iν2
0+y(t)), t ∈ (0, 1),

(1)

subject to the nonlocal coupled boundary conditions⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x(j)(0) = 0, j = 0, . . . , p − 2, Dγ1
0+x(0) = 0,

ϕρ1 (Dγ1
0+x(1)) =

∫ 1

0
ϕρ1 (Dγ1

0+x(τ)) dM0(τ), Dα0
0+x(1) =

n

∑
k=1

∫ 1

0
Dαk

0+y(τ) dMk(τ),

y(j)(0) = 0, j = 0, . . . , q − 2, Dγ2
0+y(0) = 0,

ϕρ2 (Dγ2
0+y(1)) =

∫ 1

0
ϕρ2 (Dγ2

0+y(τ)) dN0(τ), Dβ0
0+y(1) =

m

∑
k=1

∫ 1

0
Dβk

0+x(τ) dNk(τ),

(2)

where δ1, δ2 ∈ (1, 2], γ1 ∈ (p − 1, p], p ∈ N, p ≥ 3, γ2 ∈ (q − 1, q], q ∈ N, q ≥ 3, n, m ∈ N,
μ1, μ2, ν1, ν2 > 0, αk ∈ R, k = 0, . . . , n, 0 ≤ α1 < α2 < · · · < αn ≤ β0 < γ2 − 1, β0 ≥ 1,
βk ∈ R, k = 0, . . . , m, 0 ≤ β1 < β2 < · · · < βm ≤ α0 < γ1 − 1, α0 ≥ 1, ϕρi (s) = |s|ρi−2s,
ϕ−1

ρi
= ϕ�i , �i =

ρi
ρi−1 , i = 1, 2, ρi > 1, i = 1, 2, f, g : (0, 1) × R4

+ → R+ are continuous

functions, singular at t = 0 and/or t = 1, (R+ = [0, ∞)), Iθ
0+ is the Riemann–Liouville

fractional integral of order θ (for θ = μ1, μ2, ν1, ν2), Dθ
0+ is the Riemann–Liouville fractional

derivative of order θ (for θ = δ1, γ1, δ2, γ2, α0, . . . , αn, β0, . . . , βm), and the integrals from the
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boundary conditions (2) are Riemann–Stieltjes integrals with Mi : [0, 1] → R, i = 0, . . . , n
and Nj : [0, 1] → R, j = 0, . . . , m functions of bounded variation. The present work was
motivated by the applications of ρ-Laplacian operators in various fields such as nonlinear
elasticity, glaciology, nonlinear electrorheological fluids, fluid flows through porous media,
etc. see for details the paper [1] and its references.

In this paper, we present varied conditions for the functions f and g such that problem
(1), (2) has a positive solution, and then it has two positive solutions. A positive solution
of (1), (2) is a pair of functions (x, y) ∈ (C([0, 1],R+))2 satisfying the system (1) and the
boundary conditions (2), with x(s) > 0 for all s ∈ (0, 1] or y(s) > 0 for all s ∈ (0, 1]. We
apply the Guo–Krasnosel’skii fixed point theorem of cone expansion and compression
of norm type (see [2]) in the proof of our main results. Connected to our problem, we
mention the following papers. In [3], the authors studied the existence of multiple positive
solutions of the system of nonlinear fractional differential equations with p1-Laplacian and
p2-Laplacian operators{

Dβ1
0+(ϕp1(Dα1

0+x(s))) = f(s, x(s), y(s)), s ∈ (0, 1),
Dβ2

0+(ϕp2(Dα2
0+y(s))) = g(s, x(s), y(s)), s ∈ (0, 1),

supplemented with the nonlocal uncoupled boundary conditions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(0) = 0, Dγ1
0+x(1) =

m−2

∑
k=1

ξ1kDγ1
0+x(η1k),

Dα1
0+x(0) = 0, ϕp1(Dα1

0+x(1)) = ∑m−2
k=1 ζ1k ϕp1(Dα1

0+x(η1k)),

y(0) = 0, Dγ2
0+y(1) =

m−2

∑
k=1

ξ2kDγ2
0+y(η2k),

Dα2
0+y(0) = 0, ϕp2(Dα2

0+y(1)) = ∑m−2
k=1 ζ2k ϕp2(Dα2

0+y(η2k)),

where αi, βi ∈ (1, 2], γi ∈ (0, 1], αi + βi ∈ (3, 4], αi > γi + 1, i = 1, 2, ξ1k, η1k, ζ1k, ξ2k, η2k,
ζ2k ∈ (0, 1) for k = 1, . . . , m − 2, p1, p2 > 1, and f and g are nonnegative and nonsingular
functions. They applied the Leray-Schauder alternative theorem, the Leggett-Williams fixed
point theorem and the Avery-Henderson fixed point theorem in the proof of the existence
results. In [4], the authors studied the existence and nonexistence of positive solutions for
the system of Riemann–Liouville fractional differential equations with �1-Laplacian and
�2-Laplacian operators{

Dγ1
0+(ϕ�1(Dδ1

0+x(s))) + λf(s, x(s), y(s)) = 0, s ∈ (0, 1),
Dγ2

0+(ϕ�2(Dδ2
0+y(s))) + μg(s, x(s), y(s)) = 0, s ∈ (0, 1),

(3)

subject to the coupled nonlocal boundary conditions⎧⎪⎪⎪⎨⎪⎪⎪⎩
x(j)(0) = 0, j = 0, . . . , p − 2; Dδ1

0+x(0) = 0, Dα0
0+x(1) =

n

∑
k=1

∫ 1

0
Dαk

0+y(ζ) dMk(ζ),

y(j)(0) = 0, j = 0, . . . , q − 2; Dδ2
0+y(0) = 0, Dβ0

0+y(1) =
m

∑
k=1

∫ 1

0
Dβk

0+x(ζ) dNk(ζ),
(4)

where λ and μ are positive parameters, γ1, γ2 ∈ (0, 1], δ1 ∈ (p − 1, p], δ2 ∈ (q − 1, q], p, q ∈
N, p, q ≥ 3, n, m ∈ N, αk ∈ R for all k = 0, . . . , n, 0 ≤ α1 < α2 < · · · < αn ≤ β0 < δ2 − 1,
β0 ≥ 1, βk ∈ R for all k = 0, . . . , m, 0 ≤ β1 < β2 < · · · < βm ≤ α0 < δ1 − 1, α0 ≥ 1,
�1, �2 > 1, the functions f, g ∈ C([0, 1]×R+ ×R+,R+), and the functions Mj, j = 1, . . . , n
and Nk, k = 1, . . . , m are bounded variation functions. They presented sufficient conditions
on the functions f and g, and intervals for the parameters λ and μ such that problem (3),
(4) has positive solutions. In [5], the authors investigated the existence and multiplicity of
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positive solutions for the system (3) with λ = μ = 1, supplemented with the uncoupled
nonlocal boundary conditions⎧⎪⎪⎪⎨⎪⎪⎪⎩

x(j)(0) = 0, j = 0, . . . , p − 2; Dδ1
0+x(0) = 0, Dα0

0+x(1) =
n

∑
k=1

∫ 1

0
Dαk

0+x(ζ) dMk(ζ),

y(j)(0) = 0, j = 0, . . . , q − 2; Dδ2
0+y(0) = 0, Dβ0

0+y(1) =
m

∑
k=1

∫ 1

0
Dβk

0+y(ζ) dNk(ζ),

where n, m ∈ N, αk ∈ R for all k = 0, 1, . . . , n, 0 ≤ α1 < α2 < · · · < αn ≤ α0 < δ1 − 1,
α0 ≥ 1, βk ∈ R for all k = 0, 1, . . . , m, 0 ≤ β1 < β2 < · · · < βm ≤ β0 < δ2 − 1, β0 ≥ 1,
the functions f and g from system (3) are nonnegative and continuous, and they may be
singular at s = 0 and/or s = 1, and Mj, j = 1, . . . , n and Nk, k = 1, . . . , m are functions of
bounded variation. They applied the Guo–Krasnosel’skii fixed point theorem in the proof
of the main existence results. In [6] the authors studied the existence and multiplicity of
positive solutions for the system (1) subject to general uncoupled boundary conditions
in the point t = 1. We mention that our problem (1), (2) is different than the problems
from papers [4,6]. Indeed the orders of the first fractional derivatives in the system (3)
(from [4]) are positive numbers less than or equal to 1, and in our system (1) the first
fractional derivatives are numbers greater than 1 and less than or equal to 2. This difference
conducts to the consideration of different boundary conditions (more precisely, for our
problem, we have a bigger number of such boundary conditions)—see (2) and (4). Another
differences are the presence of the parameters in system (3)—here, we do not have any
parameters, and also the nonlinearities f and g from (3) which are nonsingular functions,
as opposed to our problem in which the functions f and g are singular; so here is a more
difficult case to study. On the other hand, the essential difference between the present
problem (1), (2) and the problem studied in [6], is given by the boundary conditions. In
[6] the last boundary conditions for the unknown functions are uncoupled in the point
1, and here in (2), the last boundary conditions for the unknown functions x and y are
coupled in the point 1; that is, the fractional derivative of order α0 of function x in the point
1 is dependent of varied fractional derivatives of function y, and the fractional derivative
of order β0 of function y in 1 is dependent of various fractional derivatives of function x.
Hence the novelty of our problem (1), (2) is represented by a combination between the
existence of ρ-Laplacian operators in system (1), the dependence of the nonlinearities in (1)
on diverse fractional integrals, and the nature of the last boundary conditions in the point
1 which are coupled here. We also mention the recent papers [7–12] in which the authors
study fractional differential equations and systems with ρ-Laplacian operators, and some
recent monographs devoted to the investigation of boundary value problems for fractional
differential equations and systems, namely [13–17].

The paper is organized in the following way. In Section 2, some auxiliary results which
include the properties of the Green functions associated to our problem (1), (2) are given.
In Section 3 we present the system of integral equations corresponding to our problem,
and the main existence and multiplicity theorems for positive solutions of (1), (2), and
Section 4 contains their proofs. Finally, two examples which illustrate our obtained results
are presented in Section 5, and the conclusions are given in Section 6.

2. Auxiliary Results

In this section, we consider the system of fractional differential equations{
Dδ1

0+(ϕρ1(Dγ1
0+x(t))) = u(t), t ∈ (0, 1),

Dδ2
0+(ϕρ2(Dγ2

0+y(t))) = v(t), t ∈ (0, 1),
(5)

with the coupled boundary conditions (2), where u, v ∈ C(0, 1) ∩ L1(0, 1).
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We denote ϕρ1(Dγ1
0+x(t)) = h(t), ϕρ2(Dγ2

0+y(t)) = k(t). Then problem (2), (5) is
equivalent to the following three problems{

Dδ1
0+h(t) = u(t), t ∈ (0, 1),

h(0) = 0, h(1) =
∫ 1

0 h(τ) dM0(τ),
(6)

{
Dδ2

0+k(t) = v(t), t ∈ (0, 1),
k(0) = 0, k(1) =

∫ 1
0 k(τ) dN0(τ),

(7)

and {
Dγ1

0+x(t) = ϕ�1(h(t)), t ∈ (0, 1),
Dγ2

0+y(t) = ϕ�2(k(t)), t ∈ (0, 1),
(8)

with the boundary conditions{
x(j)(0) = 0, j = 0, . . . , p − 2, Dα0

0+x(1) = ∑n
k=1

∫ 1
0 Dαk

0+y(τ) dMk(τ),
y(j)(0) = 0, j = 0, . . . , q − 2, Dβ0

0+y(1) = ∑m
k=1

∫ 1
0 Dβk

0+x(τ) dNk(τ).
(9)

By Lemma 4.1.5 from [16], the unique solution h ∈ C[0, 1] of problem (6) is

h(t) = −
∫ 1

0
G1(t, τ)u(τ) dτ, t ∈ [0, 1], (10)

where

G1(t, τ) = g1(t, τ) +
tδ1−1

a1

∫ 1

0
g1(ζ, τ) dM0(ζ),

g1(t, τ) =
1

Γ(δ1)

{
tδ1−1(1 − τ)δ1−1 − (t − τ)δ1−1, 0 ≤ τ ≤ t ≤ 1,
tδ1−1(1 − τ)δ1−1, 0 ≤ t ≤ τ ≤ 1,

for (t, τ) ∈ [0, 1]× [0, 1], with a1 = 1 −
∫ 1

0 ζδ1−1 dM0(ζ) �= 0.
By the same lemma (Lemma 4.1.5 from [16]), the unique solution k ∈ C[0, 1] of problem

(7) is

k(t) = −
∫ 1

0
G2(t, τ)v(τ) dτ, t ∈ [0, 1], (11)

where

G2(t, τ) = g2(t, τ) +
tδ2−1

a2

∫ 1

0
g2(ζ, τ) dN0(ζ),

g2(t, τ) =
1

Γ(δ2)

{
tδ2−1(1 − τ)δ2−1 − (t − τ)δ2−1, 0 ≤ τ ≤ t ≤ 1,
tδ2−1(1 − τ)δ2−1, 0 ≤ t ≤ τ ≤ 1,

for (t, τ) ∈ [0, 1]× [0, 1], with a2 = 1 −
∫ 1

0 ζδ2−1 dN0(ζ) �= 0.
By Lemma 2.2 from [4], the unique solution (x, y) ∈ (C[0, 1])2 of problem (8), (9) is⎧⎪⎨⎪⎩

x(t) = −
∫ 1

0
G3(t, τ)ϕ�1(h(τ)) dτ −

∫ 1

0
G4(t, τ)ϕ�2(k(τ)) dτ, t ∈ [0, 1],

y(t) = −
∫ 1

0
G5(t, τ)ϕ�1(h(τ)) dτ −

∫ 1

0
G6(t, τ)ϕ�2(k(τ)) dτ, t ∈ [0, 1],

(12)
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where

G3(t, τ) = g3(t, τ) +
tγ1−1b1

b

(
m

∑
i=1

∫ 1

0
g3i(ϑ, τ) dNi(ϑ)

)
,

G4(t, τ) =
tγ1−1Γ(γ2)

bΓ(γ2 − β0)

n

∑
i=1

∫ 1

0
g4i(ϑ, τ) dMi(ϑ),

G5(t, τ) =
tγ2−1Γ(γ1)

bΓ(γ1 − α0)

m

∑
i=1

∫ 1

0
g3i(ϑ, τ) dNi(ϑ),

G6(t, τ) = g4(t, τ) +
tγ2−1b2

b

(
n

∑
i=1

∫ 1

0
g4i(ϑ, τ) dMi(ϑ)

)
,

g3(t, τ) =
1

Γ(γ1)

{
tγ1−1(1 − τ)γ1−α0−1 − (t − τ)γ1−1, 0 ≤ τ ≤ t ≤ 1,
tγ1−1(1 − τ)γ1−α0−1, 0 ≤ t ≤ τ ≤ 1,

g3i(ϑ, τ) =
1

Γ(γ1 − βi)

{
ϑγ1−βi−1(1 − τ)γ1−α0−1 − (ϑ − τ)γ1−βi−1, 0 ≤ τ ≤ ϑ ≤ 1,
ϑγ1−βi−1(1 − τ)γ1−α0−1, 0 ≤ ϑ ≤ τ ≤ 1,

g4(t, τ) =
1

Γ(γ2)

{
tγ2−1(1 − τ)γ2−β0−1 − (t − τ)γ2−1, 0 ≤ τ ≤ t ≤ 1,
tγ2−1(1 − τ)γ2−β0−1, 0 ≤ t ≤ τ ≤ 1,

g4j(ϑ, τ) =
1

Γ(γ2 − αj)

{
ϑγ2−αj−1(1 − τ)γ2−β0−1 − (ϑ − τ)γ2−αj−1, 0 ≤ τ ≤ ϑ ≤ 1,
ϑγ2−αj−1(1 − τ)γ2−β0−1, 0 ≤ ϑ ≤ τ ≤ 1,

for all t, τ, ϑ ∈ [0, 1], i = 1, . . . , m, j = 1, . . . , n, and b1 = ∑n
i=1

Γ(γ2)
Γ(γ2−αi)

∫ 1
0 ζγ2−αi−1 dMi(ζ),

b2 = ∑m
i=1

Γ(γ1)
Γ(γ1−βi)

∫ 1
0 ζγ1−βi−1 dNi(ζ), and b = Γ(γ1)Γ(γ2)

Γ(γ1−α0)Γ(γ2−β0)
− b1b2 �= 0.

Combining the above Formulas (10)–(12) for h(t), k(t), x(t), y(t), t ∈ [0, 1], we obtain
the following result.

Lemma 1. If a1 �= 0, a2 �= 0 and b �= 0, then the unique solution (x, y) ∈ (C[0, 1])2 of problem
(5), (2) is given by

x(t) =
∫ 1

0
G3(t, τ)ϕ�1

(∫ 1

0
G1(τ, ζ)u(ζ) dζ

)
dτ

+
∫ 1

0
G4(t, τ)ϕ�2

(∫ 1

0
G2(τ, ζ)v(ζ) dζ

)
dτ, ∀ t ∈ [0, 1],

y(t) =
∫ 1

0
G5(t, τ)ϕ�1

(∫ 1

0
G1(τ, ζ)u(ζ) dζ

)
dτ

+
∫ 1

0
G6(t, τ)ϕ�2

(∫ 1

0
G2(τ, ζ)v(ζ) dζ

)
dτ, ∀ t ∈ [0, 1].

Now by using the properties of functions g1, g2, g3, g3i, i = 1, . . . , m, g4, g4j,
j = 1, . . . , n (see [14,16]), we deduce the following properties of the functions Gi, i =
1, . . . , 6.

Lemma 2. We suppose that a1 > 0, a2 > 0 and b > 0, Mi, i = 1, . . . , n and Nj, j = 0, . . . , m
are nondecreasing functions. Then the functions Gi, i = 1, . . . , 6 have the properties:

(a) Gi : [0, 1]× [0, 1] → [0, ∞), i = 1, . . . , 6 are continuous functions.
(b) G1(t, τ) ≤ J1(τ), for all (t, τ) ∈ [0, 1]× [0, 1], where

J1(τ) = h1(τ) +
1
a1

∫ 1

0
g1(ζ, τ) dM0(ζ), ∀ τ ∈ [0, 1],

with h1(τ) =
1

Γ(δ1)
(1 − τ)δ1−1, τ ∈ [0, 1].

(c) G2(t, τ) ≤ J2(τ), for all (t, τ) ∈ [0, 1]× [0, 1], where

J2(τ) = h2(τ) +
1
a2

∫ 1

0
g2(ζ, τ) dN0(ζ), ∀ τ ∈ [0, 1],
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with h2(τ) =
1

Γ(δ2)
(1 − τ)δ2−1, τ ∈ [0, 1].

(d) G3(t, τ) ≤ J3(τ), for all (t, τ) ∈ [0, 1]× [0, 1], where

J3(τ) = h3(τ) +
b1

b

(
m

∑
i=1

∫ 1

0
g3i(ϑ, τ) dNi(ϑ)

)
, ∀ τ ∈ [0, 1],

with h3(τ) =
1

Γ(γ1)
(1 − τ)γ1−α0−1(1 − (1 − τ)α0), τ ∈ [0, 1].

(e) G3(t, τ) ≥ tγ1−1J3(τ), for all (t, τ) ∈ [0, 1]× [0, 1].
(f) G4(t, τ) ≤ J4(τ), for all (t, τ) ∈ [0, 1]× [0, 1], where

J4(τ) =
Γ(γ2)

bΓ(γ2 − β0)

n

∑
i=1

∫ 1

0
g4i(ϑ, τ) dMi(ϑ), ∀ τ ∈ [0, 1].

(g) G4(t, τ) = tγ1−1J4(τ), for all (t, τ) ∈ [0, 1]× [0, 1].
(h) G5(t, τ) ≤ J5(τ), for all (t, τ) ∈ [0, 1]× [0, 1], where

J5(τ) =
Γ(γ1)

bΓ(γ1 − α0)

m

∑
i=1

∫ 1

0
g3i(ϑ, τ) dNi(ϑ), ∀ τ ∈ [0, 1].

(i) G5(t, τ) = tγ2−1J5(τ), for all (t, τ) ∈ [0, 1]× [0, 1].
(j) G6(t, τ) ≤ J6(τ), for all (t, τ) ∈ [0, 1]× [0, 1], where

J6(τ) = h4(τ) +
b2

b

(
n

∑
i=1

∫ 1

0
g4i(ϑ, τ) dMi(ϑ)

)
, ∀ τ ∈ [0, 1],

with h4(τ) =
1

Γ(γ2)
(1 − τ)γ2−β0−1(1 − (1 − τ)β0), τ ∈ [0, 1].

(k) G6(t, τ) ≥ tγ2−1J6(τ), for all (t, τ) ∈ [0, 1]× [0, 1].

Under the assumptions of Lemma 2, we find that Ji(τ) ≥ 0 for all τ ∈ [0, 1] and
i = 1, . . . , 6, and J1, J2, J3, J6 �≡ 0. In addition, J4 ≡ 0 if all the functions Mi, i = 1, . . . , n
are constant, and J5 ≡ 0 if all the functions Nj, j = 1, . . . , m are constant.

We also deduce easily the next lemma.

Lemma 3. We suppose that a1 > 0, a2 > 0 and b > 0, Mi, i = 1, . . . , n and Nj, j = 0, . . . , m
are nondecreasing functions, u, v ∈ C(0, 1) ∩ L1(0, 1) with u(s) ≥ 0, v(s) ≥ 0 for all s ∈ (0, 1).
Then the solution (x, y) of problem (5), (2) satisfies the inequalities x(s) ≥ 0, y(s) ≥ 0 for all
s ∈ [0, 1], and x(s) ≥ sγ1−1x(τ) and y(s) ≥ sγ2−1y(τ) for all s, τ ∈ [0, 1].

3. Main Theorems

By using Lemma 1, the pair of functions (x, y) is a solution of problem (1), (2) if and
only if (x, y) is a solution of the system

x(t) =
∫ 1

0
G3(t, τ)ϕ�1

(∫ 1

0
G1(τ, ζ)f(ζ, x(ζ), y(ζ), Iμ1

0+x(ζ), Iμ2
0+y(ζ)) dζ

)
dτ

+
∫ 1

0
G4(t, τ)ϕ�2

(∫ 1

0
G2(τ, ζ)g(ζ, x(ζ), y(ζ), Iν1

0+x(ζ), Iν2
0+y(ζ)) dζ

)
dτ,

y(t) =
∫ 1

0
G5(t, τ)ϕ�1

(∫ 1

0
G1(τ, ζ)f(ζ, x(ζ), y(ζ), Iμ1

0+x(ζ), Iμ2
0+y(ζ)) dζ

)
dτ

+
∫ 1

0
G6(t, τ)ϕ�2

(∫ 1

0
G2(τ, ζ)g(ζ, x(ζ), y(ζ), Iν1

0+x(ζ), Iν2
0+y(ζ)) dζ

)
dτ,
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for all t ∈ [0, 1]. We introduce the Banach space U = C[0, 1] with supremum norm
‖x‖ = sups∈[0,1] |x(s)|, and the Banach space V = U× U with the norm ‖(x, y)‖V = ‖x‖+
‖y‖. We define the cone

Q = {(x, y) ∈ V, x(s) ≥ 0, y(s) ≥ 0, ∀ s ∈ [0, 1]}.

We also define the operators E1, E2 : V → U and E : V → V by

E1(x, y)(t) =
∫ 1

0
G3(t, τ)ϕ�1

(∫ 1

0
G1(τ, ζ)f(ζ, x(ζ), y(ζ), Iμ1

0+x(ζ), Iμ2
0+y(ζ)) dζ

)
dτ

+
∫ 1

0
G4(t, τ)ϕ�2

(∫ 1

0
G2(τ, ζ)g(ζ, x(ζ), y(ζ), Iν1

0+x(ζ), Iν2
0+y(ζ)) dζ

)
dτ,

E2(x, y)(t) =
∫ 1

0
G5(t, τ)ϕ�1

(∫ 1

0
G1(τ, ζ)f(ζ, x(ζ), y(ζ), Iμ1

0+x(ζ), Iμ2
0+y(ζ)) dζ

)
dτ

+
∫ 1

0
G6(t, τ)ϕ�2

(∫ 1

0
G2(τ, ζ)g(ζ, x(ζ), y(ζ), Iν1

0+x(ζ), Iν2
0+y(ζ)) dζ

)
dτ,

for all t ∈ [0, 1] and (x, y) ∈ V, and E(x, y) = (E1(x, y),E2(x, y)), (x, y) ∈ V. We remark
that (x, y) is a solution of problem (1), (2) if and only if (x, y) is a fixed point of operator E.

We define the constants: Ξi =
∫ 1

0 Ji(τ)ξi(τ) dτ, i = 1, 2, Ξj =
∫ 1

0 Jj(τ) dτ, j = 3, . . . , 6,

and for σ1, σ2 ∈ (0, 1), σ1 < σ2, Ξ7 =
∫ σ2

σ1
J3(τ)

(∫ τ
σ1
G1(τ, ζ) dζ

)�1−1
dτ, Ξ8 =

∫ σ2
σ1

J6(τ)(∫ τ
σ1
G2(τ, ζ) dζ

)�2−1
dτ.

We now present the assumptions that we will use in our theorems.

(H1) δ1, δ2 ∈ (1, 2], γ1 ∈ (p − 1, p], p ∈ N, p ≥ 3, γ2 ∈ (q − 1, q], q ∈ N, q ≥ 3, n, m ∈ N,
μ1, μ2, ν1, ν2 > 0, αk ∈ R, k = 0, . . . , n, 0 ≤ α1 < α2 < · · · < αn ≤ β0 < γ2 − 1,
β0 ≥ 1, βk ∈ R, k = 0, . . . , m, 0 ≤ β1 < β2 < · · · < βm ≤ α0 < γ1 − 1, α0 ≥ 1,
Mi : [0, 1] → R, i = 0, . . . , n, and Nj : [0, 1] → R, j = 0, . . . , m are nondecreasing
functions, ϕρi (τ) = |τ|ρi−2τ, ϕ−1

ρi
= ϕ�i , �i =

ρi
ρi−1 , i = 1, 2, ρi > 1, i = 1, 2, a1 > 0,

a2 > 0, b > 0 (given in Section 2).
(H2)The functions f, g ∈ C((0, 1)×R4

+,R+) and there exist the functions ξ1, ξ2 ∈ C((0, 1),R+)

and ψ1, ψ2 ∈ C([0, 1] × R4
+,R+) with M1 =

∫ 1
0 (1 − t)δ1−1ξ1(t) dt ∈ (0, ∞), M2 =∫ 1

0 (1 − t)δ2−1ξ2(t) dt ∈ (0, ∞), such that

f(t, w1, w2, w3, w4) ≤ ξ1(t)ψ1(t, w1, w2, w3, w4),
g(t, w1, w2, w3, w4) ≤ ξ2(t)ψ2(t, w1, w2, w3, w4),

for any t ∈ (0, 1), wi ∈ R+, i = 1, . . . , 4.
(H3)There exist li ≥ 0, i = 1, . . . , 4 with ∑4

i=1 li > 0, mi ≥ 0, i = 1, . . . , 4 with ∑4
i=1 mi > 0,

and θ1 ≥ 1, θ2 ≥ 1 such that

ψ10 = lim sup
∑4

i=1 liwi→0

max
t∈[0,1]

ψ1(t, w1, w2, w3, w4)

ϕρ1((l1w1 + l2w2 + l3w3 + l4w4)θ1)
< c1,

and ψ20 = lim sup
∑4

i=1 miwi→0

max
t∈[0,1]

ψ2(t, w1, w2, w3, w4)

ϕρ2((m1w1 + m2w2 + m3w3 + m4w4)θ2)
< c2,

where

c1 =

{
min

{(
4ρ1−1Ξ1Ξρ1−1

3 dθ1(ρ1−1)
1

)−1
,
(

4ρ1−1Ξ1Ξρ1−1
5 dθ1(ρ1−1)

1

)−1
}

, if Ξ5 �= 0;
(

4ρ1−1Ξ1Ξρ1−1
3 dθ1(ρ1−1)

1

)−1
, if Ξ5 = 0

}
,

c2 =

{
min

{(
4ρ2−1Ξ2Ξρ2−1

4 dθ2(ρ2−1)
2

)−1
,(

4ρ2−1Ξ2Ξρ2−1
6 dθ2(ρ2−1)

2

)−1
}

, if Ξ4 �= 0;
(

4ρ2−1Ξ2Ξρ2−1
6 dθ2(ρ2−1)

2

)−1
, if Ξ4 = 0

}
, with d1 = 2 max

{
l1, l2, l3

Γ(μ1+1) , l4
Γ(μ2+1)

}
,

d2 = 2 max
{

m1, m2, m3
Γ(ν1+1) , m4

Γ(ν2+1)

}
.
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(H4)There exist si ≥ 0, i = 1, . . . , 4 with ∑4
i=1 si > 0, ti ≥ 0, i = 1, . . . , 4 with ∑4

i=1 ti > 0,
σ1, σ2 ∈ (0, 1), σ1 < σ2 and η1 > 1, η2 > 1 such that

f∞ = lim inf
∑4

i=1 siwi→∞
min

t∈[σ1,σ2]

f(t, w1, w2, w3, w4)

ϕρ1(s1w1 + s2w2 + s3w3 + s4w4)
> c3,

or g∞ = lim inf
∑4

i=1 tiwi→∞
min

t∈[σ1,σ2]

g(t, w1, w2, w3, w4)

ϕρ2(t1w1 + t2w2 + t3w3 + t4w4)
> c4,

where

c3 = η1

(
2d3Ξ7σ

γ1−1
1

)1−ρ1
, c4 = η2

(
2d4Ξ8σ

γ2−1
1

)1−ρ2
with d3 = min

{
s1σ

γ1−1
1 , s2σ

γ2−1
1 , s3

σ
μ1+γ1−1
1 Γ(γ1)

Γ(γ1+μ1)
, s4

σ
μ2+γ2−1
1 Γ(γ2)

Γ(γ2+μ2)

}
,

d4 = min
{

t1σ
γ1−1
1 , t2σ

γ2−1
1 , t3

σ
ν1+γ1−1
1 Γ(γ1)

Γ(γ1+ν1)
, t4

σ
ν2+γ2−1
1 Γ(γ2)

Γ(γ2+ν2)

}
.

(H5)There exist ui ≥ 0, i = 1, . . . , 4 with ∑4
i=1 ui > 0, vi ≥ 0, i = 1, . . . , 4 with ∑4

i=1 vi > 0
such that

ψ1∞ = lim sup
∑4

i=1 uiwi→∞

max
t∈[0,1]

ψ1(t, w1, w2, w3, w4)

ϕρ1(u1w1 + u2w2 + u3w3 + u4w4)
< e1,

and ψ2∞ = lim sup
∑4

i=1 viwi→∞

max
t∈[0,1]

ψ2(t, w1, w2, w3, w4)

ϕρ2(v1w1 + v2w2 + v3w3 + v4w4)
< e2,

where

e1 <
[
2Ξ�1−1

1 (Ξ3 + Ξ5)Λ1k1

]1−ρ1
, e2 <

[
2Ξ�2−1

2 (Ξ4 + Ξ6)Λ2k2

]1−ρ2
, with Λ1 = max

{
2�1−2, 1

}
, Λ2 = max

{
2�2−2, 1

}
,

k1 = 2 max
{

u1, u2, u3
Γ(μ1+1) , u4

Γ(μ2+1)

}
, k2 = 2 max

{
v1, v2, v3

Γ(ν1+1) , v4
Γ(ν2+1)

}
.

(H6)There exist pi ≥ 0, i = 1, . . . , 4 with ∑4
i=1 pi > 0, qi ≥ 0, i = 1, . . . , 4 with ∑4

i=1 qi > 0,
σ1, σ2 ∈ (0, 1), σ1 < σ2 and ς1 ∈ (0, 1], ς2 ∈ (0, 1], η3 ≥ 1, η4 ≥ 1 such that

f0 = lim inf
∑4

i=1 piwi→0
min

t∈[σ1,σ2]

f(t, w1, w2, w3, w4)

ϕρ1((p1w1 + p2w2 + p3w3 + p4w4)ς1)
> e3,

or g0 = lim inf
∑4

i=1 qiwi→0
min

t∈[σ1,σ2]

g(t, w1, w2, w3, w4)

ϕρ2((q1w1 + q2w2 + q3w3 + q4w4)ς2)
> e4,

where
e3 =

(
σ

γ1−1
1 2ς1 kς1

3 Ξ7

)1−ρ1
, e4 =

(
σ

γ2−1
1 2ς2 kς2

4 Ξ8

)1−ρ2
, with k3 = min

{
p1σ

γ1−1
1 ,

p2σ
γ2−1
1 , p3

σ
μ1+γ1−1
1 Γ(γ1)

Γ(γ1+μ1)
, p4

σ
μ2+γ2−1
1 Γ(γ2)

Γ(γ2+μ2)

}
, k4 = min

{
q1σ

γ1−1
1 , q2σ

γ2−1
1 ,

q3
σ

ν1+γ1−1
1 Γ(γ1)

Γ(γ1+ν1)
, q4

σ
ν2+γ2−1
1 Γ(γ2)

Γ(γ2+ν2)

}
.

(H7) A�1−1
0 Ξ3Ξ�1−1

1 < 1
4 , A�2−1

0 Ξ4Ξ�2−1
2 < 1

4 , A�1−1
0 Ξ5Ξ�1−1

1 < 1
4 , A�2−1

0 Ξ6Ξ�2−1
2 < 1

4 ,
where

A0 = max
{

maxt∈[0,1], wi∈[0,�], i=1,...,4 ψ1(t, w1, w2, w3, w4), maxt∈[0,1], wi∈[0,�], i=1,...,4 ψ2(t, w1, w2, w3, w4)}, with

� = max
{

1, 1
Γ(μ1+1) , 1

Γ(μ2+1) , 1
Γ(ν1+1) , 1

Γ(ν2+1)

}
.

Lemma 4. We suppose that (H1) and (H2) hold. Then E : Q → Q is a completely continuous
operator.

We introduce now the cone

Q0 = {(x, y) ∈ Q, x(τ) ≥ τγ1−1‖x‖, y(τ) ≥ τγ2−1‖y‖, ∀ τ ∈ [0, 1]}.

If (H1) and(H2) are satisfied, then by Lemma 3 we obtain E(Q) ⊂ Q0 and then the
operator E|Q0 : Q0 → Q0 (which we will denote again by E) is completely continuous. For
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κ > 0 we denote by Bκ the open ball centered at zero of radius κ, and by Bκ and ∂Bκ its
closure and its boundary, respectively.

Our main existence results are the following theorems.

Theorem 1. We suppose that assumptions (H1)–(H4) hold. Then there exists a positive solution
(x(t), y(t)), t ∈ [0, 1] of problem (1), (2).

Theorem 2. We suppose that assumptions (H1), (H2), (H5), (H6) hold. Then there exists a
positive solution (x(t), y(t)), t ∈ [0, 1] of problem (1), (2).

Theorem 3. We suppose that assumptions (H1), (H2), (H4), (H6) and (H7) hold. Then there
exist two positive solutions (x1(t), y1(t)), (x2(t), y2(t)), t ∈ [0, 1] of problem (1), (2).

4. Proofs of the Results

Proof of Lemma 4. By (H2), we have Ξ1 =
∫ 1

0 J1(τ)ξ1(τ) dτ > 0 and Ξ2 =
∫ 1

0 J2(τ)ξ2(τ)
dτ > 0. In addition, by using Lemma 2.2 we find

Ξ1 ≤ M1

Γ(δ1)

[
1 +

1
a1

(∫ 1

0
ζδ1−1 dM0(ζ)

)]
< ∞,

Ξ2 ≤ M2

Γ(δ2)

[
1 +

1
a2

(∫ 1

0
ζδ2−1 dN0(ζ)

)]
< ∞.

Using now Lemma 3, we deduce that the operator E maps Q into Q.
Next, we will show that E transforms the bounded sets into relatively compact sets.

Let S ⊂ Q be a bounded set. So there exists L1 > 0 such that ‖(x, y)‖V ≤ L1 for all
(x, y) ∈ S . Because ψ1 and ψ2 are continuous functions, we find that there exists L2 > 0
such that L2 = max

{
supτ∈[0,1], wi∈[0,Λ], i=1,...,4 ψ1(τ, w1, w2, w3, w4), supτ∈[0,1], wi∈[0,Λ], i=1,...,4

ψ2(τ, w1, w2, w3, w4)}, where Λ = L1 max
{

1, 1
Γ(μ1+1) , 1

Γ(μ2+1) , 1
Γ(ν1+1) , 1

Γ(ν2+1)

}
. Because

|Iω
0+z(t)| ≤ ‖z‖

Γ(ω+1) for ω > 0 and z ∈ C[0, 1], by Lemma 2 we obtain that for any (x, y) ∈ S
and t ∈ [0, 1]

E1(x, y)(t) ≤
∫ 1

0
J3(τ)ϕ�1

(∫ 1

0
J1(ζ)ξ1(ζ)ψ1(ζ, x(ζ), y(ζ), Iμ1

0+x(ζ), Iμ2
0+y(ζ)) dζ

)
dτ

+
∫ 1

0
J4(τ)ϕ�2

(∫ 1

0
J2(ζ)ξ2(ζ)ψ2(ζ, x(ζ), y(ζ), Iν1

0+x(ζ), Iν2
0+y(ζ)) dζ

)
dτ

≤ L�1−1
2 ϕ�1

(∫ 1

0
J1(ζ)ξ1(ζ) dζ

) ∫ 1

0
J3(τ) dτ

+L�2−1
2 ϕ�2

(∫ 1

0
J2(ζ)ξ2(ζ) dζ

) ∫ 1

0
J4(τ) dτ

= L�1−1
2 Ξ�1−1

1 Ξ3 + L�2−1
2 Ξ�2−1

2 Ξ4.

In a similar way we have

E2(x, y)(t) ≤ L�1−1
2 Ξ�1−1

1 Ξ5 + L�2−1
2 Ξ�2−1

2 Ξ6.

Therefore
‖E1(x, y)‖ ≤ L�1−1

2 Ξ�1−1
1 Ξ3 + L�2−1

2 Ξ�2−1
2 Ξ4,

‖E2(x, y)‖ ≤ L�1−1
2 Ξ�1−1

1 Ξ5 + L�2−1
2 Ξ�2−1

2 Ξ6,

for all (x, y) ∈ S , and then E1(S), E2(S) and E(S) are bounded.
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In what follows, we prove that E(S) is equicontinuous. By Lemma 1, for (x, y) ∈ S
and t ∈ [0, 1] we find

E1(x, y)(t) =
∫ 1

0

[
g3(t, τ) +

tγ1−1b1

b

(
m

∑
i=1

∫ 1

0
g3i(ϑ, τ) dNi(ϑ)

)]
×ϕ�1

(∫ 1

0
G1(τ, ζ)f

(
ζ, x(ζ), y(ζ), Iμ1

0+x(ζ), Iμ2
0+y(ζ)

)
dζ

)
dτ

+
∫ 1

0

tγ1−1Γ(γ2)

bΓ(γ2 − β0)

(
n

∑
i=1

∫ 1

0
g4i(ϑ, τ) dMi(ϑ)

)
×ϕ�2

(∫ 1

0
G2(τ, ζ)g

(
ζ, x(ζ), y(ζ), Iν1

0+x(ζ), Iν2
0+y(ζ)

)
dζ

)
dτ

=
∫ t

0

1
Γ(γ1)

[
tγ1−1(1 − τ)γ1−α0−1 − (t − τ)γ1−1

]
×ϕ�1

(∫ 1

0
G1(τ, ζ)f

(
ζ, x(ζ), y(ζ), Iμ1

0+x(ζ), Iμ2
0+y(ζ)

)
dζ

)
dτ

+
∫ 1

t

1
Γ(γ1)

tγ1−1(1 − τ)γ1−α0−1

×ϕ�1

(∫ 1

0
G1(τ, ζ)f(ζ, x(ζ), y(ζ), Iμ1

0+x(ζ), Iμ2
0+y(ζ)) dζ

)
dτ

+
tγ1−1b1

b

∫ 1

0

(
m

∑
i=1

∫ 1

0
g3i(ϑ, τ) dNi(ϑ)

)
×ϕ�1

(∫ 1

0
G1(τ, ζ)f(ζ, x(ζ), y(ζ), Iμ1

0+x(ζ), Iμ2
0+y(ζ)) dζ

)
dτ

+
tγ1−1Γ(γ2)

bΓ(γ2 − β0)

∫ 1

0

(
n

∑
i=1

∫ 1

0
g4i(ϑ, τ) dMi(ϑ)

)
×ϕ�2

(∫ 1

0
G2(τ, ϑ)g(ζ, x(ζ), y(ζ), Iν1

0+x(ζ), Iν2
0+y(ζ)) dζ

)
dτ.

Then for any t ∈ (0, 1), we obtain

(E1(x, y))′(t) =
∫ t

0

1
Γ(γ1)

[
(γ1 − 1)tγ1−2(1 − τ)γ1−α0−1 − (γ1 − 1)(t − τ)γ1−2

]
×ϕ�1

(∫ 1

0
G1(τ, ζ)f(ζ, x(ζ), y(ζ), Iμ1

0+x(ζ), Iμ2
0+y(ζ))dζ

)
dτ

+
∫ 1

t

1
Γ(γ1)

(γ1 − 1)tγ1−2(1 − τ)γ1−α0−1

×ϕ�1

(∫ 1

0
G1(τ, ζ)f(ζ, x(ζ), y(ζ), Iμ1

0+x(ζ), Iμ2
0+y(ζ)) dζ

)
dτ

+
(γ1 − 1)tγ1−2b1

b

∫ 1

0

(
m

∑
i=1

∫ 1

0
g3i(ϑ, τ) dNi(ϑ)

)
×ϕ�1

(∫ 1

0
G1(τ, ζ)f(ζ, x(ζ), y(ζ), Iμ1

0+x(ζ), Iμ2
0+y(ζ)) dζ

)
dτ

+
(γ1 − 1)tγ1−2Γ(γ2)

bΓ(γ2 − β0)

∫ 1

0

(
n

∑
i=1

∫ 1

0
g4i(ϑ, τ) dMi(ϑ)

)
×ϕ�2

(∫ 1

0
G2(τ, ζ)g(ζ, x(ζ), y(ζ), Iν1

0+x(ζ), Iν2
0+y(ζ)) dζ

)
dτ.

112



Fractal Fract. 2022, 6, 610

So for any t ∈ (0, 1) we deduce

|(E1(x, y))′(t)| ≤ 1
Γ(γ1 − 1)

∫ t

0

[
tγ1−2(1 − τ)γ1−α0−1 + (t − τ)γ1−2

]
×ϕ�1

(∫ 1

0
J1(ζ)ξ1(ζ)ψ1

(
ζ, x(ζ), y(ζ), Iμ1

0+x(ζ), Iμ2
0+y(ζ)

)
dζ

)
dτ

+
1

γ1 − 1

∫ 1

t
tγ1−2(1 − τ)γ1−α0−1

×ϕ�1

(∫ 1

0
J1(ζ)ξ1(ζ)ψ1

(
ζ, x(ζ), y(ζ), Iμ1

0+x(ζ), Iμ2
0+y(ζ)

)
dζ

)
dτ

+
(γ1 − 1)tγ1−2b1

b

∫ 1

0

(
m

∑
i=1

∫ 1

0
g3i(ϑ, τ) dNi(ϑ)

)
×ϕ�1

(∫ 1

0
J1(ζ)ξ1(ζ)ψ1

(
ζ, x(ζ), y(ζ), Iμ1

0+x(ζ), Iμ2
0+y(ζ)

)
dζ

)
dτ

+
(γ1 − 1)tγ1−2Γ(γ2)

bΓ(γ2 − β0)

∫ 1

0

(
n

∑
i=1

∫ 1

0
g4i(ϑ, τ) dMi(ϑ)

)
×ϕ�2

(∫ 1

0
J2(ζ)ξ2(ζ)ψ2

(
ζ, x(ζ), y(ζ), Iν1

0+x(ζ), Iν2
0+y(ζ)

)
dζ

)
dτ

≤ L�1−1
2 Ξ�1−1

1

{
1

Γ(γ1 − 1)

∫ t

0

[
tγ1−2(1 − τ)γ1−α0−1 + (t − τ)γ1−2

]
dτ

+
1

Γ(γ1 − 1)

∫ 1

t
tγ1−2(1 − τ)γ1−α0−1dτ

+
(γ1 − 1)tγ1−2b1

b

∫ 1

0

(
m

∑
i=1

∫ 1

0
g3i(ϑ, τ) dNi(ϑ)

)
dτ

}

+L�2−1
2 Ξ�2−1

2
(γ1 − 1)tγ1−2Γ(γ2)

bΓ(γ2 − β0)

∫ 1

0

(
n

∑
i=1

∫ 1

0
g4i(ϑ, τ) dMi(ϑ)

)
dτ.

Hence for any t ∈ (0, 1) we find

|(E1(x, y))′(t)| ≤ L�1−1
2 Ξ�1−1

1

{
1

Γ(γ1 − 1)

(
tγ1−2

γ1 − α0
+

tγ1−1

γ1 − 1

)
+
(γ1 − 1)tγ1−2b1

b

∫ 1

0

(
m

∑
i=1

(∫ 1

0

1
Γ(γ1 − βi)

ϑγ1−βi−1(1 − τ)γ1−α0−1 dNi(ϑ)

))
dτ

}
+L�2−1

2 Ξ�2−1
2

(γ1 − 1)tγ1−2Γ(γ2)

bΓ(γ2 − β0)

×
∫ 1

0

(
n

∑
i=1

(∫ 1

0

1
Γ(γ2 − αi)

ϑγ2−αi−1(1 − τ)γ2−β0−1 dMi(ϑ)

))
dτ

= L�1−1
2 Ξ�1−1

1

[
1

Γ(γ1 − 1)

(
tγ1−2

γ1 − α0
+

tγ1−1

γ1 − 1

)
+

(γ1 − 1)tγ1−2b1b2

b(γ1 − α0)Γ(γ1)

]
+L�2−1

2 Ξ�2−1
2

(γ1 − 1)tγ1−2b1

bΓ(γ2 − β0 + 1)

= L�1−1
2 Ξ�1−1

1

[
1

Γ(γ1 − 1)

(
tγ1−2

γ1 − α0
+

tγ1−1

γ1 − 1)

)
+

tγ1−2b1b2

b(γ1 − α0)Γ(γ1 − 1)

]
+L�2−1

2 Ξ�2−1
2

(γ1 − 1)tγ1−2b1

bΓ(γ2 − β0 + 1)

= L�1−1
2 Ξ�1−1

1

[
(b+ b1b2)tγ1−2

b(γ1 − α0)Γ(γ1 − 1)
+

tγ1−1

Γ(γ1)

]
+ L�2−1

2 Ξ�2−1
2

(γ1 − 1)tγ1−2b1

bΓ(γ2 − β0 + 1)
.

We denote by

Θ1(t) =
(b+ b1b2)tγ1−2

b(γ1 − α0)Γ(γ1 − 1)
+

tγ1−1

Γ(γ1)
, Θ2(t) =

(γ1 − 1)tγ1−2b1

bΓ(γ2 − β0 + 1)
, t ∈ (0, 1).
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Then for any t1, t2 ∈ [0, 1] with t1 < t2 and (x, y) ∈ S , we deduce

|E1(x, y)(t1)− E1(x, y)(t2)| =
∣∣∣∣∫ t2

t1

(E1(x, y))′(τ) dτ

∣∣∣∣
≤ L�1−1

2 Ξ�1−1
1

∫ t2

t1

Θ1(τ) dτ + L�2−1
2 Ξ�2−1

2

∫ t2

t1

Θ2(τ) dτ.
(13)

Because Θ1, Θ2 ∈ L1(0, 1), by (13), we conclude that E1(S) is equicontinuous. By using a
similar technique, we deduce that E2(S) is also equicontinuous, and so E(S) is equicontin-
uous. We apply now the Arzela-Ascoli theorem and we obtain that E1(S) and E2(S) are
relatively compact sets, and then E(S) is relatively compact, too. In addition, we can prove
that E1, E2 and E are continuous operators on Q (see Lemma 1.4.1 from [16]). Therefore,
the operator E is completely continuous on Q.

Proof of Theorem 1. From (H3) we deduce that there exists r ∈ (0, 1) such that

ψ1(t, w1, w2, w3, w4) ≤ c1 ϕρ1((l1w1 + l2w2 + l3w3 + l4w4)
θ1),

ψ2(t, w1, w2, w3, w4) ≤ c2 ϕρ2((m1w1 + m2w2 + m3w3 + m4w4)
θ2),

(14)

for all t ∈ [0, 1], wi ≥ 0, i = 1, . . . , 4 with ∑4
i=1 liwi ≤ r and ∑4

i=1 miwi ≤ r. We consider
firstly the case Ξ4 �= 0 and Ξ5 �= 0. We define r1 ≤ min{r/d1, r/d2, r}. For any (x, y) ∈
Br1 ∩Q and τ ∈ [0, 1] we find

l1x(τ) + l2y(τ) + l3 Iμ1
0+x(τ) + l4 Iμ2

0+y(τ)
≤ 2 max

{
l1, l2, l3

Γ(μ1+1) , l4
Γ(μ2+1)

}
‖(x, y)‖V = d1‖(x, y)‖V ≤ d1r1 ≤ r,

m1x(τ) + m2y(τ) + m3 Iν1
0+x(τ) + m4 Iν2

0+y(τ)
≤ 2 max

{
m1, m2, m3

Γ(ν1+1) , m4
Γ(ν2+1)

}
‖(x, y)‖V = d2‖(x, y)‖V ≤ d2r1 ≤ r.

Therefore by (14) and Lemma 2, for any (x, y) ∈ ∂Br1 ∩Q0 and t ∈ [0, 1] we deduce

E1(x, y)(t) ≤
∫ 1

0
J3(τ)ϕ�1

(∫ 1

0
J1(ζ)f(ζ, x(ζ), y(ζ), Iμ1

0+x(ζ), Iμ2
0+y(ζ)) dζ

)
dτ

+
∫ 1

0
J4(τ)ϕ�2

(∫ 1

0
J2(ζ)g(ζ, x(ζ), y(ζ), Iν1

0+x(ζ), Iν2
0+y(ζ)) dζ

)
dτ

= Ξ3 ϕ�1

(∫ 1

0
J1(ζ)f

(
ζ, x(ζ), y(ζ), Iμ1

0+x(ζ), Iμ2
0+y(ζ)

)
dζ

)
+Ξ4 ϕ�2

(∫ 1

0
J2(ζ)g

(
ζ, x(ζ), y(ζ), Iν1

0+x(ζ), Iν2
0+y(ζ)

)
dζ

)
≤ Ξ3 ϕ�1

(∫ 1

0
J1(ζ)ξ1(ζ)ψ1

(
ζ, x(ζ), y(ζ), Iμ1

0+x(ζ), Iμ2
0+y(ζ)

)
dζ

)
+Ξ4 ϕ�2

(∫ 1

0
J2(ζ)ξ2(ζ)ψ2

(
ζ, x(ζ), y(ζ), Iν1

0+x(ζ), Iν2
0+y(ζ)

)
dζ

)
≤ Ξ3 ϕ�1

(∫ 1

0
J1(ζ)ξ1(ζ)c1 ϕρ1

((
l1x(ζ) + l2y(ζ) + l3 Iμ1

0+x(ζ) + l4 Iμ2
0+y(ζ)

)θ1
)

dζ

)
+Ξ4 ϕ�2

(∫ 1

0
J2(ζ)ξ2(ζ)c2 ϕρ2

((
m1x(ζ) + m2y(ζ) + m3 Iν1

0+x(ζ) + m4 Iν2
0+y(ζ)

)θ2
)

dζ

)
≤ Ξ3 ϕ�1

(
ϕρ1

(
(d1‖(x, y)‖V)θ1

))
ϕ�1(c1)ϕ�1(Ξ1)

+Ξ4 ϕ�2

(
ϕρ2

(
(d2‖(x, y)‖V)θ2

))
ϕ�2(c2)ϕ�2(Ξ2)

= Ξ3Ξ�1−1
1 c�1−1

1 dθ1
1 ‖(x, y)‖θ1

V + Ξ4Ξ�2−1
2 c�2−1

2 dθ2
2 ‖(x, y)‖θ2

V

≤ Ξ3Ξ�1−1
1 c�1−1

1 dθ1
1 ‖(x, y)‖V + Ξ4Ξ�2−1

2 c�2−1
2 dθ2

2 ‖(x, y)‖V
≤ 1

4‖(x, y)‖V + 1
4‖(x, y)‖V = 1

2‖(x, y)‖V.
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In a similar manner we obtain

E2(x, y)(t) ≤ Ξ5Ξ�1−1
1 c�1−1

1 dθ1
1 ‖(x, y)‖V + Ξ6Ξ�2−1

2 c�2−1
2 dθ2

2 ‖(x, y)‖V
≤ 1

4‖(x, y)‖V + 1
4‖(x, y)‖V = 1

2‖(x, y)‖V.

Then we conclude

‖E(x, y)‖V = ‖E1(x, y)‖+ ‖E2(x, y)‖ ≤ ‖(x, y)‖V, ∀ (x, y) ∈ ∂Br1 ∩Q0. (15)

If Ξ4 = 0 or Ξ5 = 0 we also find in a similar manner inequality (15).
In what follows, in (H4) we assume that g∞ > c4 (in a similar manner we study the

case f∞ > c3). Then there exists a positive constant C1 > 0 such that

g(t, w1, w2, w3, w4) ≥ c4 ϕρ2(t1w1 + t2w2 + t3w3 + t4w4)− C1, (16)

for all t ∈ [σ1, σ2] and wi ≥ 0, i = 1, . . . , 4. From the definition of Iν1
0+, for any (x, y) ∈ Q0

and τ ∈ [0, 1], we find

Iν1
0+x(τ) =

1
Γ(ν1)

∫ τ

0
(τ − ζ)ν1−1x(ζ) dζ ≥ 1

Γ(ν1)

∫ τ

0
(τ − ζ)ν1−1ζγ1−1‖x‖ dζ

ζ=τz
=

‖x‖
Γ(ν1)

∫ 1

0
(τ − τz)ν1−1τγ1−1zγ1−1τ dz =

‖x‖
Γ(ν1)

τν1+γ1−1
∫ 1

0
zγ1−1(1 − z)ν1−1 dz

=
‖x‖

Γ(ν1)
τν1+γ1−1B(γ1, ν1) =

‖x‖τν1+γ1−1Γ(γ1)

Γ(γ1 + ν1)
,

(17)

and similarly

Iν2
0+y(τ) ≥ ‖y‖τν2+γ2−1Γ(γ2)

Γ(γ2 + ν2)
,

where B(z1, z2) is the first Euler function defined by B(z1, z2) =
∫ 1

0 tz1−1(1 − t)z2−1 dt,
z1, z2 > 0. Then by using (16) and (17), for any (x, y) ∈ Q0 and t ∈ [σ1, σ2] we obtain

E2(x, y)(t) ≥
∫ σ2

σ1

G6(t, τ)ϕ�2

(∫ τ

σ1

G2(τ, ζ)g
(
ζ, x(ζ), y(ζ), Iν1

0+x(ζ), Iν2
0+y(ζ)

)
dζ

)
dτ

≥ σ
γ2−1
1

∫ σ2

σ1

J6(τ)

(∫ τ

σ1

G2(τ, ζ)
[
c4
(
t1x(ζ) + t2y(ζ) + t3 Iν1

0+x(ζ) + t4 Iν2
0+y(ζ)

)ρ2−1

−C1]dζ)�2−1dτ

≥ σ
γ2−1
1

∫ σ2

σ1

J6(τ)

(∫ τ

σ1

G2(τ, ζ)
[
c4

(
t1σ

γ1−1
1 ‖x‖+ t2σ

γ2−1
1 ‖y‖

+t3
σ

ν1+γ1−1
1 Γ(γ1)

Γ(γ1 + ν1)
‖x‖+ t4

σ
ν2+γ2−1
1 Γ(γ2)

Γ(γ2 + ν2)
‖y‖

)ρ2−1

− C1

⎤⎦dζ

⎞⎠�2−1

dτ

≥ σ
γ2−1
1

∫ σ2

σ1

J6(τ)

(∫ τ

σ1

G2(τ, ζ)

[
c4

(
min

{
t1σ

γ1−1
1 , t2σ

γ2−1
1 , t3

σ
ν1+γ1−1
1 Γ(γ1)

Γ(γ1 + ν1)
,

t4
σ

ν2+γ2−1
1 Γ(γ2)

Γ(γ2 + ν2)

}
2‖(x, y)‖V

)ρ2−1

− C1

⎤⎦ dζ

⎞⎠�2−1

dτ

= σ
γ2−1
1

∫ σ2

σ1

J6(τ)

(∫ τ

σ1

G2(τ, ζ)
[
c4(2d4‖(x, y)‖V)ρ2−1 − C1

]
dζ

)�2−1
dτ

= Ξ8σ
γ2−1
1

[
c4(2d4‖(x, y)‖V)ρ2−1 − C1

]�2−1

=
(

Ξρ2−1
8 σ

(γ2−1)(ρ2−1)
1 c42ρ2−1dρ2−1

4 ‖(x, y)‖ρ2−1
V − Ξρ2−1

8 σ
(γ2−1)(ρ2−1)
1 C1

)�2−1

=
(

η2‖(x, y)‖ρ2−1
V − C2

)�2−1
, C2 = Ξρ2−1

8 σ
(γ1−1)(ρ2−1)
1 C1.
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So we find

‖E(x, y)‖V ≥ ‖E2(x, y)‖ ≥ E2(x, y)(σ1) ≥
(

η2‖(x, y)‖ρ2−1
V − C2

)�2−1
, ∀ (x, y) ∈ Q0.

We choose r2 ≥ max
{

1, C�2−1
2 /(η2 − 1)�2−1

}
and we deduce

‖E(x, y)‖V ≥ ‖(x, y)‖V, ∀ (x, y) ∈ ∂Br2 ∩Q0. (18)

Now based on Lemma 4, the relations (15), (18) and the Guo–Krasnosel’skii fixed point
theorem we conclude that the operator E has a fixed point (x, y) ∈ (Br2 \ Br1) ∩Q0 with
r1 ≤ ‖(x, y)‖V ≤ r2 and x(s) ≥ sγ1−1‖x‖, y(s) ≥ sγ2−1‖y‖ for all s ∈ [0, 1]. So ‖x‖ > 0
or ‖y‖ > 0, that is x(s) > 0 for all s ∈ (0, 1] or y(s) > 0 for all s ∈ (0, 1]. Therefore,
(x(t), y(t)), t ∈ [0, 1] is a positive solution of problem (1), (2).

Proof of Theorem 2. From assumption (H5) we deduce that there exist C3 > 0, C4 > 0
such that

ψ1(t, w1, w2, w3, w4) ≤ e1 ϕρ1(u1w1 + u2w2 + u3w3 + u4w4) + C3,
ψ2(t, w1, w2, w3, w4) ≤ e2 ϕρ2(u1w1 + u2w2 + u3w3 + u4w4) + C4,

(19)

for any t ∈ [0, 1] and wi ≥ 0, i = 1, . . . , 4. By using (H2) and (19), for any (x, y) ∈ Q0 and
t ∈ [0, 1] we obtain

E1(x, y)(t) ≤
∫ 1

0
J3(τ)ϕ�1

(∫ 1

0
J1(ζ)f(ζ, x(ζ), y(ζ), Iμ1

0+x(ζ), Iμ2
0+y(ζ)) dζ

)
dτ

+
∫ 1

0
J4(τ)ϕ�2

(∫ 1

0
J2(ζ)g(ζ, x(ζ), y(ζ), Iν1

0+x(ζ), Iν2
0+y(ζ)) dζ

)
dτ

≤ Ξ3 ϕ�1

(∫ 1

0
J1(ζ)ξ1(ζ)ψ1(ζ, x(ζ), y(ζ), Iμ1

0+x(ζ), Iμ2
0+y(ζ)) dζ

)
+Ξ4 ϕ�2

(∫ 1

0
J2(ζ)ξ2(ζ)ψ2(ζ, x(ζ), y(ζ), Iν1

0+x(ζ), Iν2
0+y(ζ)) dζ

)
≤ Ξ3 ϕ�1

(∫ 1

0
J1(ζ)ξ1(ζ)

[
e1 ϕρ1

(
u1x(ζ) + u2y(ζ) + u3 Iμ1

0+x(ζ) + u4 Iμ2
0+y(ζ)

)
+ C3

]
dζ

)
+Ξ4 ϕ�2

(∫ 1

0
J2(ζ)ξ2(ζ)

[
e2 ϕρ2

(
v1x(ζ) + v2y(ζ) + v3 Iν1

0+x(ζ) + v4 Iν2
0+y(ζ)

)
+ C4

]
dζ

)
≤ Ξ3 ϕ�1

(∫ 1

0
J1(ζ)ξ1(ζ)

[
e1

(
u1‖x‖+ u2‖y‖+ u3‖x‖

Γ(μ1 + 1)
+

u4‖y‖
Γ(μ2 + 1)

)ρ1−1

+ C3

]
dζ

)

+Ξ4 ϕ�2

(∫ 1

0
J2(ζ)ξ2(ζ)

[
e2

(
v1‖x‖+ v2‖y‖+ v3‖x‖

Γ(ν1 + 1)
+

v4‖y‖
Γ(ν2 + 1)

)ρ2−1

+ C4

]
dζ

)
≤ Ξ3 ϕ�1

[
e1

(
max

{
u1, u2, u3

Γ(μ1+1) , u4
Γ(μ2+1)

}
2‖(x, y)‖V

)ρ1−1
+ C3

]
×
(∫ 1

0
J1(ζ)ξ1(ζ) dζ

)�1−1

+Ξ4 ϕ�2

[
e2

(
max

{
v1, v2, v3

Γ(ν1+1) , v4
Γ(ν2+1)

}
2‖(x, y)‖V

)ρ2−1
+ C4

]
×
(∫ 1

0
J2(ζ)ξ2(ζ) dζ

)�2−1

= Ξ�1−1
1 Ξ3

(
e1kρ1−1

1 ‖(x, y)‖ρ1−1
V + C3

)�1−1
+ Ξ�2−1

2 Ξ4

(
e2kρ2−1

2 ‖(x, y)‖ρ2−1
V + C4

)�2−1
.

In a similar way we find

E2(x, y)(t) ≤ Ξ�1−1
1 Ξ5

(
e1kρ1−1

1 ‖(x, y)‖ρ1−1
V + C3

)�1−1

+Ξ�2−1
2 Ξ6

(
e2kρ2−1

2 ‖(x, y)‖ρ2−1
V + C4

)�2−1
.
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Hence we conclude

‖E1(x, y)‖ ≤ Ξ�1−1
1 Ξ3

(
e1kρ1−1

1 ‖(x, y)‖ρ1−1
V + C3

)�1−1

+Ξ�2−1
2 Ξ4

(
e2kρ2−1

2 ‖(x, y)‖ρ2−1
V + C4

)�2−1
,

‖E2(x, y)‖ ≤ Ξ�1−1
1 Ξ5

(
e1kρ1−1

1 ‖(x, y)‖ρ1−1
V + C3

)�1−1

+Ξ�2−1
2 Ξ6

(
e2kρ2−1

2 ‖(x, y)‖ρ2−1
V + C4

)�2−1
,

and then

‖E(x, y)‖V ≤ Ξ�1−1
1 (Ξ3 + Ξ5)

(
e1kρ1−1

1 ‖(x, y)‖ρ1−1
V + C3

)�1−1

+Ξ�2−1
2 (Ξ4 + Ξ6)

(
e2kρ2−1

2 ‖(x, y)‖ρ2−1
V + C4

)�2−1
,

(20)

for all (x, y) ∈ Q0. We choose

r3 ≥ max

⎧⎨⎩1,
Ξ�1−1

1 (Ξ3 + Ξ5)Λ1C�1−1
3 + Ξ�2−1

2 (Ξ4 + Ξ6)Λ2C�2−1
4

1 −
[
Ξ�1−1

1 (Ξ3 + Ξ5)Λ1e�1−1
1 k1 + Ξ�2−1

2 (Ξ4 + Ξ6)Λ2e�2−1
2 k2

]
⎫⎬⎭.

Then by (20) and the inequalities (a + b)�i−1 ≤ Λi(a�i−1 + b�i−1), for a, b ≥ 0, i = 1, 2 we
deduce

‖E(x, y)‖V ≤ ‖(x, y)‖V, ∀ (x, y) ∈ ∂Br3 ∩Q0. (21)

Now, in (H6) we assume that f0 > e3 (the case g0 > e4 is treated in a similar way). So
there exists r̃4 ∈ (0, 1] such that

f(t, w1, w2, w3, w4) ≥ e4 ϕρ1((p1w1 + p2w2 + p3w3 + p4w4)
ς1), (22)

for all t ∈ [σ1, σ2], wi ≥ 0, i = 1, . . . , 4, ∑4
i=1 piwi ≤ r̃4. We define r4 ≤ min{r̃4/k̃3, r̃4},

where k̃3 = 2 max
{

p1, p2, p3
Γ(μ1+1) , p4

Γ(μ2+1)

}
. Hence for any (x, y) ∈ Br4 ∩Q and t ∈ [0, 1]

we find
p1x(τ) + p2y(τ) + p3 Iμ1

0+x(τ) + p4 Iμ2
0+y(τ)

≤ 2 max
{

p1, p2, p3
Γ(μ1+1) , p4

Γ(μ2+1)

}
‖(x, y)‖V = k̃3r4 ≤ r̃4.

Therefore, by using (22) and the inequalities Iμ1
0+x(τ) ≥ ‖x‖ τμ1+γ1−1Γ(γ1)

Γ(γ1+μ1)
and Iμ2

0+y(τ) ≥
‖y‖ τμ2+γ2−1Γ(γ2)

Γ(γ2+μ2)
, for all τ ∈ [0, 1] and (x, y) ∈ Q0, we obtain for any (x, y) ∈ Br4 ∩Q0 and

t ∈ [σ1, σ2]

E1(x, y)(t) ≥
∫ σ2

σ1

G3(t, τ)ϕ�1

(∫ τ

σ1

G1(τ, ζ)f(ζ, x(ζ), y(ζ), Iμ1
0+x(ζ), Iμ2

0+y(ζ)) dζ

)
dτ

≥ σ
γ1−1
1

∫ σ2

σ1

J3(τ)

(∫ τ

σ1

G1(τ, ζ)e3

(
p1x(ζ) + p2y(ζ) + p3 Iμ1

0+x(ζ)

+p4 Iμ2
0+y(ζ)

)ς1(ρ1−1)
dζ

)�1−1
dτ

≥ σ
γ1−1
1

∫ σ2

σ1

J3(τ)

(∫ τ

σ1

G1(τ, ζ)e3

(
p1σ

γ1−1
1 ‖x‖+ p2σ

γ2−1
1 ‖y‖

+ p3
σ

μ1+γ1−1
1 Γ(γ1)

Γ(γ1 + μ1)
‖x‖+ p4

σ
μ2+γ2−1
1 Γ(γ2)

Γ(γ2 + μ2)
‖y‖

)ς1(ρ1−1)

dζ

⎞⎠�1−1

dτ
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≥ σ
γ1−1
1

∫ σ2

σ1

J3(τ)

(∫ τ

σ1

G1(τ, ζ)e3

(
min

{
p1σ

γ1−1
1 , p2σ

γ2−1
1 , p3

σ
μ1+γ1−1
1 Γ(γ1)

Γ(γ1 + μ1)
,

p4
σ

μ2+γ2−1
1 Γ(γ2)

Γ(γ2 + μ2)

}
2‖(x, y)‖V

)ς1(ρ1−1)

dζ

⎞⎠�1−1

dτ

= σ
γ1−1
1

∫ σ2

σ1

J3(τ)

(∫ τ

σ1

G1(τ, ζ)e3(2k3‖(x, y)‖V)ς1(ρ1−1)dζ

)�1−1
dτ

= σ
γ1−1
1 e�1−1

3 2ς1 kς1
3 ‖(x, y)‖ς1

V

∫ σ2

σ1

J3(τ)

(∫ τ

σ1

G1(τ, ζ) dζ

)�1−1
dτ

= σ
γ1−1
1 e�1−1

3 2ς1 kς1
3 Ξ7‖(x, y)‖ς1

V

≥ σ
γ1−1
1 e�1−1

3 2ς1 kς1
3 Ξ7‖(x, y)‖V = ‖(x, y)‖V.

Then we deduce

‖E(x, y)‖V ≥ ‖E1(x, y)‖ ≥ E1(x, y)(σ1) ≥ ‖(x, y)‖V, ∀ (x, y) ∈ ∂Br4 ∩Q0. (23)

By Lemma 4, (21), (23) and the Guo–Krasnosel’skii fixed point theorem, we conclude that
E has a fixed point (x, y) ∈ (Br3 \ Br4) ∩Q0, so r4 ≤ ‖(x, y)‖V ≤ r3, and x(s) ≥ sγ1−1‖x‖,
y(s) ≥ sγ2−1‖y‖ for all s ∈ [0, 1], which is a positive solution of problem (1), (2).

Proof of Theorem 3. Because assumptions (H1), (H2) and (H4) hold, then by Theorem 1
we deduce that there exists r2 > 1 such that

‖E(x, y)‖V ≥ ‖(x, y)‖V, ∀ (x, y) ∈ ∂Br2 ∩Q0. (24)

Next because assumptions (H1), (H2) and (H6) hold, then by Theorem 2 we conclude that
there exists r4 < 1 such that

‖E(x, y)‖V ≥ ‖(x, y)‖V, ∀ (x, y) ∈ ∂Br4 ∩Q0. (25)

Now, consider the set B1 = {(x, y) ∈ V, ‖(x, y)‖V < 1}. By assumption (H7) for any
(x, y) ∈ ∂B1 ∩Q0 and t ∈ [0, 1] we find

E1(x, y)(t) ≤
∫ 1

0
J3(τ)ϕ�1

(∫ 1

0
J1(ζ)ξ1(ζ)ψ1

(
ζ, x(ζ), y(ζ), Iμ1

0+x(ζ), Iμ2
0+y(ζ)

)
dζ

)
dτ

+
∫ 1

0
J4(τ)ϕ�2

(∫ 1

0
J2(ζ)ξ2(ζ)ψ2

(
ζ, x(ζ), y(ζ), Iν1

0+x(ζ), Iν2
0+y(ζ)

)
dζ

)
dτ

≤ A�1−1
0

∫ 1

0
J3(τ)ϕ�1

(∫ 1

0
J1(ζ)ξ1(ζ) dζ

)
dτ + A�2−1

0

∫ 1

0
J4(τ)ϕ�2

(∫ 1

0
J2(ζ)ξ2(ζ) dζ

)
dτ

= A�1−1
0

(∫ 1

0
J3(τ) dτ

)(∫ 1

0
J1(ζ)ξ1(ζ) dζ

)�1−1

+A�2−1
0

(∫ 1

0
J4(τ) dτ

)(∫ 1

0
J2(ζ)ξ2(ζ) dζ

)�2−1

= A�1−1
0 Ξ3Ξ�1−1

1 + A�2−1
0 Ξ4Ξ�2−1

2 < 1
4 + 1

4 = 1
2 ,

E2(x, y)(t) ≤
∫ 1

0
J5(τ)ϕ�1

(∫ 1

0
J1(ζ)ξ1(ζ)ψ1

(
ζ, x(ζ), y(ζ), Iμ1

0+x(ζ), Iμ2
0+y(ζ)

)
dζ

)
dτ

+
∫ 1

0
J6(τ)ϕ�2

(∫ 1

0
J2(ζ)ξ2(ζ)ψ2

(
ζ, x(ζ), y(ζ), Iν1

0+x(ζ), Iν2
0+y(ζ)

)
dζ

)
dτ

≤ A�1−1
0

∫ 1

0
J5(τ)ϕ�1

(∫ 1

0
J1(ζ)ξ1(ζ) dζ

)
dτ + A�2−1

0

∫ 1

0
J6(τ)ϕ�2

(∫ 1

0
J2(ζ)ξ2(ζ) dζ

)
dτ

= A�1−1
0

(∫ 1

0
J5(τ) dτ

)(∫ 1

0
J1(ζ)ξ1(ζ) dζ

)�1−1

+A�2−1
0

(∫ 1

0
J6(τ) dτ

)(∫ 1

0
J2(ζ)ξ2(ζ) dζ

)�2−1

= A�1−1
0 Ξ5Ξ�1−1

1 + A�2−1
0 Ξ6Ξ�2−1

2 < 1
4 + 1

4 = 1
2 .
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Therefore we deduce ‖E1(x, y)‖ < 1
2 , ‖E2(x, y)‖ < 1

2 for all (x, y) ∈ ∂B1 ∩Q0. So we obtain

‖E(x, y)‖V = ‖E1(x, y)‖+ ‖E2(x, y)‖ < 1 = ‖(x, y)‖V, ∀ (x, y) ∈ ∂B1 ∩Q0. (26)

Then, by (24) and (26) we conclude that there exists a positive solution (x1, y1) ∈ Q0
with 1 < ‖(x1, y1)‖V ≤ r2 for problem (1), (2). By (25) and (26) we deduce that there exists
another positive solution (x2, y2) ∈ Q0 with r4 ≤ ‖(x2, y2)‖V < 1 for problem (1), (2). Hence
problem (1), (2) has at least two positive solutions (x1(t), y1(t)), (x2(t), y2(t)), t ∈ [0, 1].

5. Examples

Let δ1 = 7
4 , δ2 = 5

3 , p = 3, q = 4, γ1 = 5
2 , γ2 = 17

5 , n = 1, m = 2, μ1 = 23
6 , μ2 = 19

7 ,
ν1 = 47

9 , ν2 = 22
3 , α0 = 4

3 , α1 = 2
3 , β0 = 9

4 , β1 = 3
4 , β2 = 5

6 , ρ1 = 27
8 , ρ2 = 38

9 , �1 = 27
19 ,

�2 = 38
29 , M0(τ) = 5τ

7 , τ ∈ [0, 1], N0(τ) =
{

1
2 , τ ∈

[
0, 1

3

)
; 11

10 , τ ∈
[

1
3 , 1

]}
, M1(τ) ={

3
4 , τ ∈

[
0, 1

2

)
; 93

28 , τ ∈
[

1
2 , 1

]}
, N1(τ) =

{
1
3 , τ ∈

[
0, 4

5

)
; 29

24 , τ ∈
[

4
5 , 1

]}
, N2(τ) = 3τ

2 ,
τ ∈ [0, 1].

We consider the system of fractional differential equations⎧⎨⎩ D7/4
0+

(
ϕ27/8

(
D5/2

0+ x(t)
))

= f
(

t, x(t), y(t), I23/6
0+ x(t), I19/7

0+ y(t)
)

, t ∈ (0, 1),

D5/3
0+

(
ϕ38/9

(
D17/5

0+ y(t)
))

= g
(

t, x(t), y(t), I47/9
0+ x(t), I22/3

0+ y(t)
)

, t ∈ (0, 1),
(27)

with the boundary conditions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(0) = x′(0) = 0, D5/2
0+ x(0) = 0, ϕ27/8

(
D5/2

0+ x(1)
)
= 5

7

∫ 1

0
ϕ27/8

(
D5/2

0+ x(τ)
)

dτ,

D4/3
0+ x(1) = 18

7 D2/3
0+ y

(
1
2

)
,

y(0) = y′(0) = y′′(0) = 0, D17/5
0+ y(0) = 0, D17/5

0+ y(1) =
(

3
5

)9/29
D17/5

0+ y
(

1
3

)
,

D9/4
0+ y(1) = 7

8 D3/4
0+ x

(
4
5

)
+ 3

2

∫ 1

0
D5/6

0+ x(τ) dτ.

(28)

We obtain here a1 ≈ 0.59183673 > 0, a2 ≈ 0.71155008 > 0, b1 ≈ 1.45311179,
b2 ≈ 2.39587178, b ≈ 1.09690108 > 0. Then assumption (H1) is satisfied. We also
find

g1(t, τ) =
1

Γ(7/4)

{
t3/4(1 − τ)3/4 − (t − τ)3/4, 0 ≤ τ ≤ t ≤ 1,
t3/4(1 − τ)3/4, 0 ≤ t ≤ τ ≤ 1,

g2(t, τ) =
1

Γ(5/3)

{
t2/3(1 − τ)2/3 − (t − τ)2/3, 0 ≤ τ ≤ t ≤ 1,
t2/3(1 − τ)2/3, 0 ≤ t ≤ τ ≤ 1,

g3(t, τ) =
1

Γ(5/2)

{
t3/2(1 − τ)1/6 − (t − τ)3/2, 0 ≤ τ ≤ t ≤ 1,
t3/2(1 − τ)1/6, 0 ≤ t ≤ τ ≤ 1,

g31(ϑ, τ) =
1

Γ(7/4)

{
ϑ3/4(1 − τ)1/6 − (ϑ − τ)3/4, 0 ≤ τ ≤ ϑ ≤ 1,
ϑ3/4(1 − τ)1/6, 0 ≤ ϑ ≤ τ ≤ 1,

g32(t, τ) =
1

Γ(5/3)

{
ϑ2/3(1 − τ)1/6 − (ϑ − τ)2/3, 0 ≤ τ ≤ ϑ ≤ 1,
ϑ2/3(1 − τ)1/6, 0 ≤ ϑ ≤ τ ≤ 1,

g4(t, τ) =
1

Γ(17/5)

{
t12/5(1 − τ)3/20 − (t − τ)12/5, 0 ≤ τ ≤ t ≤ 1,
t12/5(1 − τ)3/20, 0 ≤ t ≤ τ ≤ 1,

g41(ϑ, τ) =
1

Γ(41/15)

{
ϑ26/15(1 − τ)3/20 − (ϑ − τ)26/15, 0 ≤ τ ≤ ϑ ≤ 1,
ϑ26/15(1 − τ)3/20, 0 ≤ ϑ ≤ τ ≤ 1,

G1(t, τ) = g1(t, τ) +
5t3/4

7a1

∫ 1

0
g1(ζ, τ) dζ,

G2(t, τ) = g2(t, τ) +
3t2/3

5a2
g2

(
1
3

, τ

)
,
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G3(t, τ) = g3(t, τ) +
t3/2b1

b

[
7
8
g31

(
4
5

, τ

)
+

3
2

∫ 1

0
g32(ϑ, τ) dϑ

]
,

G4(t, τ) =
18t3/2Γ(17/5)

7bΓ(23/20)
g41

(
1
2

, τ

)
,

G5(t, τ) =
t12/5Γ(5/2)
bΓ(7/6)

[
7
8
g31

(
4
5

, τ

)
+

3
2

∫ 1

0
g32(ϑ, τ) dϑ

]
,

G6(t, τ) = g4(t, τ) +
18t12/5b2

7b
g41

(
1
2

, τ

)
,

h1(τ) =
1

Γ(7/4) (1 − τ)3/4, h2(τ) =
1

Γ(5/3) (1 − τ)2/3,
h3(τ) =

1
Γ(5/2) (1 − τ)1/6(1 − (1 − τ)4/3),

h4(τ) =
1

Γ(17/5) (1 − τ)3/20(1 − (1 − τ)9/4),

for all t, τ, ϑ ∈ [0, 1]. In addition we deduce

J1(τ) = h1(τ) +
5

7a1Γ(11/4)

[
(1 − τ)3/4 − (1 − τ)7/4

]
, τ ∈ [0, 1],

J2(τ) =

⎧⎪⎨⎪⎩
h2(τ) +

3
5a2Γ(5/3)

[(
1
3

)2/3
(1 − τ)2/3 −

(
1
3 − τ

)2/3
]

, 0 ≤ τ ≤ 1
3 ,

h2(τ) +
3

5a2Γ(5/3)

(
1
3

)2/3
(1 − τ)2/3, 1

3 < τ ≤ 1,

J3(τ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

h3(τ) +
b1
b

{
7

8Γ(7/4)

[(
4
5

)3/4
(1 − τ)1/6 −

(
4
5 − τ

)3/4
]

+ 3
2Γ(8/3)

[
(1 − τ)1/6 − (1 − τ)5/3

]}
, 0 ≤ τ ≤ 4

5 ,

h3(τ) +
b1
b

{
7

8Γ(7/4)

(
4
5

)3/4
(1 − τ)1/6

+ 3
2Γ(8/3)

[
(1 − τ)1/6 − (1 − τ)5/3

]}
, 4

5 < τ ≤ 1,

J4(τ) =

⎧⎪⎨⎪⎩
18Γ(17/5)

7bΓ(23/20)Γ(41/15)

[(
1
2

)26/15
(1 − τ)3/20 −

(
1
2 − τ

)26/15
]

, 0 ≤ τ ≤ 1
2 ,

18Γ(17/5)
7bΓ(23/20)Γ(41/15)

(
1
2

)26/15
(1 − τ)3/20, 1

2 < τ ≤ 1,

J5(τ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Γ(5/2)
bΓ(7/6)

{
7

8Γ(7/4)

[(
4
5

)3/4
(1 − τ)1/6 −

(
4
5 − τ

)3/4
]

+ 3
2Γ(8/3)

[
(1 − τ)1/6 − (1 − τ)5/3

]}
, 0 ≤ τ ≤ 4

5 ,

Γ(5/2)
bΓ(7/6)

{
7

8Γ(7/4)

(
4
5

)3/4
(1 − τ)1/6

+ 3
2Γ(8/3)

[
(1 − τ)1/6 − (1 − τ)5/3

]}
, 4

5 < τ ≤ 1,

J6(τ) =

⎧⎪⎨⎪⎩
h4(τ) +

18b2
7bΓ(41/15)

[(
1
2

)26/15
(1 − τ)3/20 −

(
1
2 − τ

)26/15
]

, 0 ≤ τ ≤ 1
2 ,

h4(τ) +
18b2

7bΓ(41/15)

(
1
2

)26/15
(1 − τ)3/20, 1

2 < τ ≤ 1.

Example 1. We introduce the functions

f(t, w1, w2, w3, w4) =
(3w1 + 2w2 + w3 + 5w4)

19a/8

tz1(1 − t)z2
,

g(t, w1, w2, w3, w4) =
(w1 + 7w2 + 4w3 + 2w4)

29b/9

tz3(1 − t)z4
,

(29)

for t ∈ (0, 1), wi ≥ 0, i = 1, . . . , 4, where a > 1, b > 1, z1 ∈ (0, 1), z2 ∈
(
0, 7

4
)
, z3 ∈ (0, 1),

z4 ∈
(
0, 5

3
)
. Here ξ1(t) = 1

tz1 (1−t)z2 , ξ2(t) = 1
tz3 (1−t)z4 for t ∈ (0, 1), ψ1(t, w1, w2, w3, w4) =

(3w1 + 2w2 + w3 + 5w4)
19a/8 and ψ2(t, w1, w2, w3, w4) = (w1 + 7w2 + 4w3 + 2w4)

29b/9 for
t ∈ [0, 1], wi ≥ 0, i = 1, . . . , 4. We also obtain M1 = B(1 − z1, 7/4 − z2) ∈ (0, ∞),
M2 = B(1 − z3, 5/3 − z4) ∈ (0, ∞). Then assumption (H2) is satisfied. In addition, in (H3),
for l1 = 3, l2 = 2, l3 = 1, l4 = 5, θ1 = 1, m1 = 1, m2 = 7, m3 = 4, m4 = 2, θ2 = 1, we find
ψ10 = 0 and ψ20 = 0. In (H4), for [σ1, σ2] ⊂ (0, 1), s1 = 3, s2 = 2, s3 = 1, s4 = 5, we obtain
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f∞ = ∞. Then by Theorem 1 we deduce that problem (27), (28) with the nonlinearities (29) has at
least one solution (x1(t), y1(t)), t ∈ [0, 1].

Example 2. We define the functions

f(t, w1, w2, w3, w4) =
p0(t + 3)

(t2 + 8) 4√t3

[(
1
2

w1 + w2 +
1
4

w3 +
1
5

w4

)υ1

+
(

1
2 w1 + w2 +

1
4 w3 +

1
5 w4

)υ2
]
, t ∈ (0, 1], wi ≥ 0, i = 1, . . . , 4,

g(t, w1, w2, w3, w4) =
q0(2 + sin t)

(t + 6)4 7
√
(1 − t)5

(
wυ3

1 + ew2 + ln (w3 + w4 + 1)
)
,

t ∈ [0, 1), wi ≥ 0, i = 1, . . . , 4,

(30)

where p0 > 0, q0 > 0, υ1 > 19/8, υ2 ∈ (0, 19/8), υ3 > 0. Here we have ξ1(t) = 1
4√t3

, t ∈ (0, 1],

ψ1(t, w1, w2, w3, w4) =
p0(t+3)
(t2+8)

[(
1
2 w1 + w2 +

1
4 w3 +

1
5 w4

)υ1
+
(

1
2 w1 + w2 +

1
4 w3+

1
5 w4

)υ2
]
, t ∈ [0, 1], wi ≥ 0, i = 1, . . . , 4, ξ2(t) = 1

7
√

(1−t)5
, t ∈ [0, 1), ψ2(t, w1, w2, w3, w4) =

q0(2+sin t)
(t+6)4 (wυ3

1 + ew2 + ln(w3 + w4 + 1)), t ∈ [0, 1], wi ≥ 0, i = 1, . . . , 4. We obtain M1 =

B(1/4, 7/4) ∈ (0, ∞), M2 = 21
20 ∈ (0, ∞). Then assumption (H2) is satisfied. For [σ1, σ2] ⊂

(0, 1), s1 = 1
2 , s2 = 1, s3 = 1

4 , s4 = 1
5 , we find f∞ = ∞ (in (H4)), and for p1 = 1

2 , p2 = 1,

p3 = 1
4 , p4 = 1

5 , ς1 ∈
(

8υ2
19 , 1

]
, we have f0 = ∞ (in (H6)). So assumptions (H4) and (H6)

are satisfied. Then after some computations we deduce Ξ1 ≈ 3.93816256, Ξ2 ≈ 1.53523525,
Ξ3 ≈ 1.40740842, Ξ4 ≈ 0.97489748, Ξ5 ≈ 1.04873754, Ξ6 ≈ 0.92404828, � = 1, and
A0 = max

{
4p0

9

(( 39
20
)υ1 +

( 39
20
)υ2
)

, q0m0(1 + e + ln 3)
}

, where m0 = maxt∈[0,1]
2+sin t
(t+6)4 ≈

2.00035047. If

p0 <
9( 39

20
)υ1 +

( 39
20
)υ2

min

{
1

427/8Ξ19/8
3 Ξ1

,
1

438/9Ξ29/9
4 Ξ2

,
1

427/8Ξ19/8
5 Ξ1

,
1

438/9Ξ29/9
6 Ξ2

}
,

q0 <
1

m0(1 + e + ln 3)
min

{
1

419/8Ξ19/8
3 Ξ1

,
1

429/9Ξ29/9
4 Ξ2

,
1

419/8Ξ19/8
5 Ξ1

,
1

429/9Ξ29/9
6 Ξ2

}
,

then the inequalities A8/19
0 Ξ3Ξ8/19

1 < 1
4 , A9/29

0 Ξ4Ξ9/29
2 < 1

4 , A8/19
0 Ξ5Ξ8/19

1 < 1
4 ,

A9/29
0 Ξ6Ξ9/29

2 < 1
4 are satisfied, (that is, assumption (H7) is satisfied). For example, if υ1 = 2,

υ2 = 3 and p0 ≤ 0.0008, q0 ≤ 0.0004, then the above inequalities are verified. By Theorem 3,
we conclude that problem (27), (28) with the nonlinearities (30) has at least two positive solutions
(x1(t), y1(t)), (x2(t), y2(t)), t ∈ [0, 1].

6. Conclusions

In this paper we investigated the system of coupled fractional differential equations (1)
with ρ-Laplacian operators and Riemann–Liouville fractional derivatives of varied orders,
supplemented with general nonlocal boundary conditions (2) containing Riemann–Stieltjes
integrals and fractional derivatives of differing orders. The nonlinearities from the system
are dependent on various fractional integrals and they are nonnegative and singular in the
points t = 0 and t = 1. The last boundary conditions for the unknown functions x and y
are coupled in the point 1, in contrast to the boundary conditions from paper [6] in which
they are uncoupled in the point 1. We presented diverse assumptions on the functions f

and g so that problem (1), (2) has one positive solution (in Theorems 1 and 2), and two
positive solutions (in Theorem 3). We also gave the corresponding Green functions and
their properties used in the proof of the main results. We transformed our problem into a
system of integral equations and we associated an operator E for which we looked for the
fixed points by applying the Guo–Krasnosel’skii fixed point theorem of cone expansion and
compression of norm type. We presented finally two examples for illustrating our main
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theorems. For some future research directions we have in mind the study of some systems
of fractional differential equations with other nonlocal coupled or uncoupled boundary
conditions.
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Abstract: In this paper, we study the existence and nonexistence of positive solutions of a system of
Riemann–Liouville fractional differential equations with �-Laplacian operators, supplemented with
coupled nonlocal boundary conditions containing Riemann–Stieltjes integrals, fractional derivatives
of various orders, and positive parameters. We apply the Schauder fixed point theorem in the proof
of the existence result.

Keywords: Riemann–Liouville fractional differential equations; nonlocal coupled boundary conditions;
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1. Introduction

We consider the system of fractional differential equations with �1-Laplacian and
�2-Laplacian operators{

Dγ1
0+(ϕ�1(Dδ1

0+u(t))) + a(t)f(v(t)) = 0, t ∈ (0, 1),
Dγ2

0+(ϕ�2(Dδ2
0+v(t))) + b(t)g(u(t)) = 0, t ∈ (0, 1),

(1)

subject to the coupled nonlocal boundary conditions⎧⎪⎪⎨⎪⎪⎩
u(j)(0) = 0, j = 0, . . . , p − 2; Dδ1

0+u(0) = 0, Dα0
0+u(1) =

n

∑
j=1

∫ 1

0
D

αj
0+v(τ) dHj(τ) + c0,

v(j)(0) = 0, j = 0, . . . , q − 2; Dδ2
0+v(0) = 0, Dβ0

0+v(1) =
m

∑
j=1

∫ 1

0
D

β j
0+u(τ) dKj(τ) + d0,

(2)

where γ1, γ2 ∈ (0, 1], δ1 ∈ (p − 1, p], δ2 ∈ (q − 1, q], p, q ∈ N, p, q ≥ 3, n, m ∈ N,
αj ∈ R for all j = 0, 1, . . . , n, 0 ≤ α1 < α2 < · · · < αn ≤ β0 < δ2 − 1, β0 ≥ 1, β j ∈ R

for all j = 0, 1, . . . , m, 0 ≤ β1 < β2 < · · · < βm ≤ α0 < δ1 − 1, α0 ≥ 1, the functions
f, g : R+ → R+ and a, b : [0, 1] → R+ are continuous, (R+ = [0, ∞)), c0 and d0 are
positive parameters, �1, �2 > 1, ϕ�i (ζ) = |ζ|�i−2ζ, ϕ−1

�i
= ϕρi , ρi =

�i
�i−1 , and i = 1, 2. The

integrals from the conditions (2) are Riemann–Stieltjes integrals with Hj, j = 1, . . . , n and
Ki, i = 1, . . . , m functions of bounded variation, and Dk

0+ denotes the Riemann–Liouville
derivative of order k (for k = γ1, δ1, γ2, δ2, αj; for j = 0, 1, . . . , n, βi; and for i = 0, 1, . . . , m).

We present in this paper sufficient conditions for the functions f and g, and intervals
for the parameters c0 and d0 such that problem (1) and (2) has at least one positive solution,
or it has no positive solutions. We apply the Schauder fixed point theorem in the proof
of the main existence result. A positive solution of (1) and (2) is a pair of functions
(u, v) ∈ (C([0, 1];R+))2 that satisfy the system (1) and the boundary conditions (2), with
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u(t) > 0 and v(t) > 0 for all t ∈ (0, 1]. Now, we present some recent results related to
our problem. By using the Guo–Krasnosel’skii fixed point theorem, in [1], the authors
investigated the system of fractional differential equations{

Dγ1
0+(ϕ�1(Dδ1

0+u(t))) + λ f (t, u(t), v(t)) = 0, t ∈ (0, 1),
Dγ2

0+(ϕ�2(Dδ2
0+v(t))) + μg(t, u(t), v(t)) = 0, t ∈ (0, 1),

(3)

supplemented with the boundary conditions (2) with c0 = d0 = 0, where λ and μ are
positive parameters, and f , g ∈ C([0, 1]×R+ ×R+,R+). They presented various intervals
for λ and μ such that problem (2) and (3) with c0 = d0 = 0 has at least one positive solution
(u(t) > 0 for all t ∈ (0, 1], or v(t) > 0 for all t ∈ (0, 1]). They also studied the nonexistence
of positive solutions. In [2], the author investigated the existence and nonexistence of
positive solutions for the system (3) with the uncoupled boundary conditions⎧⎪⎪⎪⎨⎪⎪⎪⎩

u(j)(0) = 0, j = 0, . . . , p − 2; Dδ1
0+u(0) = 0, Dα0

0+u(1) =
n

∑
j=1

∫ 1

0
D

αj
0+u(τ) dHj(τ),

v(j)(0) = 0, j = 0, . . . , q − 2; Dδ2
0+v(0) = 0, Dβ0

0+v(1) =
m

∑
j=1

∫ 1

0
D

β j
0+v(τ) dKj(τ),

where αj ∈ R for all j = 0, 1, . . . , n, 0 ≤ α1 < α2 < · · · < αn ≤ α0 < δ1 − 1, α0 ≥ 1, β j ∈ R

for all j = 0, 1, . . . , m, 0 ≤ β1 < β2 < · · · < βm ≤ β0 < δ2 − 1, β0 ≥ 1, Hi, i = 1, . . . , n, and
Kj, j = 1, · · · , m are functions of bounded variation. In [3], the authors studied the positive
solutions for the system of nonlinear fractional differential equations{

Dα
0+u(t) + a(t)f(v(t)) = 0, t ∈ (0, 1),

Dβ
0+v(t) + b(t)g(u(t)) = 0, t ∈ (0, 1),

subject to the coupled integral boundary conditions⎧⎪⎨⎪⎩
u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(1) =

∫ 1

0
v(τ)dH(τ) + c0,

v(0) = v′(0) = · · · = v(m−2)(0) = 0, v(1) =
∫ 1

0
u(τ)dK(τ) + d0,

where n − 1 < α ≤ n, m − 1 < β ≤ m, n, m ∈ N, n, m ≥ 3, a, b, f, g are nonnegative
continuous functions, c0 and d0 are positive parameters, and H and K are bounded variation
functions. In [4], the authors investigated the existence and nonexistence of positive
solutions for the system (1) with the nonlocal uncoupled boundary conditions with positive
parameters⎧⎪⎪⎪⎨⎪⎪⎪⎩

u(j)(0) = 0, j = 0, . . . , p − 2; Dδ1
0+u(0) = 0, Dα0

0+u(1) =
n

∑
j=1

∫ 1

0
D

αj
0+u(τ) dHj(τ) + c0,

v(j)(0) = 0, j = 0, . . . , q − 2; Dδ2
0+v(0) = 0, Dβ0

0+v(1) =
m

∑
j=1

∫ 1

0
D

β j
0+v(τ) dKj(τ) + d0.

We note that our problem (1) and (2) is different than the problem studied in [4],
because of the boundary conditions, which are coupled in (2) and uncoupled in [4]. Based
on this difference, here, we will use, for problem (1) and (2), other Green functions, different
systems of integral equations, and different operators than those in [4]. We would also
like to mention the papers [5–10], and the monographs [11–13], which contain other recent
results for fractional differential equations and systems of fractional differential equations
with or without Laplacian operators, and for various applications. The novelties of our
problem (1) and (2) with respect to the above papers consist in the consideration of positive
parameters c0 and d0 in the coupled nonlocal boundary conditions (2) containing fractional
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derivatives of various orders and Riemann–Stieltjes integrals, combined with the system of
fractional differential Equation (1), which has �-Laplacian operators.

The paper is structured as follows. In Section 2, we present some auxiliary results,
which include the Green functions associated with our problem (1) and (2) and their
properties. In Section 3, we give the main theorems for the existence and nonexistence of
positive solutions for (1) and (2), and Section 4 contains an example illustrating our results.
Finally, in Section 5, we present the conclusions of this work.

2. Auxiliary Results

In this section, we present some results from [1], which will be used in our main
theorems in the next section.

We consider the system of fractional differential equations{
Dγ1

0+(ϕ�1(Dδ1
0+u(t))) + h̃(t) = 0, t ∈ (0, 1),

Dγ2
0+(ϕ�2(Dδ2

0+v(t))) + k̃(t) = 0, t ∈ (0, 1),
(4)

with the coupled boundary conditions⎧⎪⎪⎨⎪⎪⎩
u(j)(0) = 0, j = 0, . . . , p − 2; Dδ1

0+u(0) = 0, Dα0
0+u(1) =

n

∑
j=1

∫ 1

0
D

αj
0+v(τ) dHj(τ),

v(j)(0) = 0, j = 0, . . . , q − 2; Dδ2
0+v(0) = 0, Dβ0

0+v(1) =
m

∑
j=1

∫ 1

0
D

β j
0+u(τ) dKj(τ),

(5)

where h̃, k̃ ∈ C[0, 1]. We denote this by

Δ1 =
n

∑
i=1

Γ(δ2)

Γ(δ2 − αi)

∫ 1

0
τδ2−αi−1 dHi(τ), Δ2 =

m

∑
i=1

Γ(δ1)

Γ(δ1 − βi)

∫ 1

0
τδ1−βi−1 dKi(τ),

Δ =
Γ(δ1)Γ(δ2)

Γ(δ1 − α0)Γ(δ2 − β0)
− Δ1Δ2.

Lemma 1 ([1]). If Δ �= 0, then the unique solution (u, v) ∈ (C[0, 1])2 of problem (4) and (5) is
given by⎧⎪⎨⎪⎩

u(t) =
∫ 1

0
G1(t, ζ)ϕρ1(Iγ1

0+h̃(ζ)) dζ +
∫ 1

0
G2(t, ζ)ϕρ2(Iγ2

0+k̃(ζ)) dζ, ∀ t ∈ [0, 1],

v(t) =
∫ 1

0
G3(t, ζ)ϕρ1(Iγ1

0+h̃(ζ)) dζ +
∫ 1

0
G4(t, ζ)ϕρ2(Iγ2

0+k̃(ζ)) dζ, ∀ t ∈ [0, 1],
(6)

where

G1(t, ζ) = g1(t, ζ) +
tδ1−1Δ1

Δ

(
m

∑
j=1

∫ 1

0
g1j(τ, ζ) dKj(τ)

)
,

G2(t, ζ) =
tδ1−1Γ(δ2)

ΔΓ(δ2 − β0)

n

∑
j=1

∫ 1

0
g2j(τ, ζ) dHj(τ),

G3(t, ζ) =
tδ2−1Γ(δ1)

ΔΓ(δ1 − α0)

m

∑
j=1

∫ 1

0
g1j(τ, ζ) dKj(τ),

G4(t, ζ) = g2(t, ζ) +
tδ2−1Δ2

Δ

(
n

∑
j=1

∫ 1

0
g2j(τ, ζ) dHj(τ)

)
,

(7)

for all (t, ζ) ∈ [0, 1]× [0, 1] and

g1(t, ζ) =
1

Γ(δ1)

{
tδ1−1(1 − ζ)δ1−α0−1 − (t − ζ)δ1−1, 0 ≤ ζ ≤ t ≤ 1,
tδ1−1(1 − ζ)δ1−α0−1, 0 ≤ t ≤ ζ ≤ 1,

g1j(τ, ζ) =
1

Γ(δ1 − β j)

{
τδ1−β j−1(1 − ζ)δ1−α0−1 − (τ − ζ)δ1−β j−1, 0 ≤ ζ ≤ τ ≤ 1,
τδ1−β j−1(1 − ζ)δ1−α0−1, 0 ≤ τ ≤ ζ ≤ 1,
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g2(t, ζ) =
1

Γ(δ2)

{
tδ2−1(1 − ζ)δ2−β0−1 − (t − ζ)δ2−1, 0 ≤ ζ ≤ t ≤ 1,
tδ2−1(1 − ζ)δ2−β0−1, 0 ≤ t ≤ ζ ≤ 1,

g2k(τ, ζ) =
1

Γ(δ2 − αk)

{
τδ2−αk−1(1 − ζ)δ2−β0−1 − (τ − ζ)δ2−αk−1, 0 ≤ ζ ≤ τ ≤ 1,
τδ2−αk−1(1 − ζ)δ2−β0−1, 0 ≤ τ ≤ ζ ≤ 1,

for all j = 1, . . . , m and k = 1, . . . , n.

Lemma 2 ([1]). We suppose that Δ > 0, Hj, j = 1, . . . , n, Kj, j = 1, . . . , m are nondecreasing
functions. Therefore, the functions Gi, i = 1, . . . , 4 (given by (7)) have the following properties:

(1) Gi : [0, 1]× [0, 1] → R+, i = 1, . . . , 4 are continuous functions;
(2) G1(t, ζ) ≤ J1(ζ) for all (t, ζ) ∈ [0, 1]× [0, 1], where

J1(ζ) = h1(ζ) +
Δ1

Δ

(
m

∑
j=1

∫ 1

0
g1j(τ, ζ)dKj(τ)

)
, ∀ ζ ∈ [0, 1],

and h1(ζ) =
1

Γ(δ1)
(1 − ζ)δ1−α0−1(1 − (1 − ζ)α0), for all ζ ∈ [0, 1].

(3) G1(t, ζ) ≥ tδ1−1J1(ζ) for all (t, ζ) ∈ [0, 1]× [0, 1];
(4) G2(t, ζ) ≤ J2(ζ), for all (t, ζ) ∈ [0, 1]× [0, 1], where

J2(ζ) =
Γ(δ2)

ΔΓ(δ2 − β0)

n

∑
j=1

∫ 1

0
g2j(τ, ζ)dHj(τ), ∀ ζ ∈ [0, 1];

(5) G2(t, ζ) = tδ1−1J2(ζ) for all (t, ζ) ∈ [0, 1]× [0, 1];
(6) G3(t, ζ) ≤ J3(ζ) for all (t, ζ) ∈ [0, 1]× [0, 1], where

J3(ζ) =
Γ(δ1)

ΔΓ(δ1 − α0)

m

∑
j=1

∫ 1

0
g1j(τ, ζ)dKj(τ), ∀ ζ ∈ [0, 1];

(7) G3(t, ζ) = tδ2−1J3(ζ) for all (t, ζ) ∈ [0, 1]× [0, 1];
(8) G4(t, ζ) ≤ J4(ζ) for all (t, ζ) ∈ [0, 1]× [0, 1], where

J4(ζ) = h2(ζ) +
Δ2

Δ

(
n

∑
j=1

∫ 1

0
g2j(τ, ζ)dHj(τ)

)
, ∀ ζ ∈ [0, 1],

and h2(ζ) =
1

Γ(δ2)
(1 − ζ)δ2−β0−1(1 − (1 − ζ)β0), for all ζ ∈ [0, 1].

(9) G4(t, ζ) ≥ tδ2−1J4(ζ), for all (t, ζ) ∈ [0, 1]× [0, 1].

Lemma 3. We suppose that Δ > 0, Hi, i = 1, . . . , n, Kj, j = 1, . . . , m are nondecreasing
functions, and h̃, k̃ ∈ C([0, 1];R+). Therefore, the solution (u(t), v(t)), t ∈ [0, 1] of problem
(4) and (5) (given by (6)) satisfies the inequalities u(t) ≥ 0, v(t) ≥ 0, u(t) ≥ tδ1−1u(ν),
v(t) ≥ tδ2−1v(ν) for all t, ν ∈ [0, 1].

Proof. Under the assumptions of this lemma, by using relations (6) and Lemma 2, we find
that u(t) ≥ 0 and v(t) ≥ 0 for all t ∈ [0, 1]. In addition, for all t, ν ∈ [0, 1], we obtain the
following inequalities:

u(t) ≥ tδ1−1
(∫ 1

0
J1(ζ)ϕρ1(Iγ1

0+h̃(ζ)) dζ +
∫ 1

0
J2(ζ)ϕρ2(Iγ2

0+k̃(ζ)) dζ

)
≥ tδ1−1

(∫ 1

0
G1(ν, ζ)ϕρ1(Iγ1

0+h̃(ζ)) dζ +
∫ 1

0
G2(ν, ζ)ϕρ2(Iγ2

0+k̃(ζ)) dζ

)
= tδ1−1u(ν),

v(t) ≥ tδ2−1
(∫ 1

0
J3(ζ)ϕρ1(Iγ1

0+h̃(ζ)) dζ +
∫ 1

0
J4(ζ)ϕρ2(Iγ2

0+k̃(ζ)) dζ

)
≥ tδ2−1

(∫ 1

0
G3(ν, ζ)ϕρ1(Iγ1

0+h̃(ζ)) dζ +
∫ 1

0
G4(ν, ζ)ϕρ2(Iγ2

0+k̃(ζ)) dζ

)
= tδ2−1v(ν).
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3. Main Results

In this section, we study the existence and nonexistence of positive solutions for
problem (1) and (2) under some conditions on a, b, f, and g, when the positive parameters
c0 and d0 belong to some intervals.

We now give the assumptions that we will use in the next part.

(K1) γ1, γ2 ∈ (0, 1], δ1 ∈ (p − 1, p], δ2 ∈ (q − 1, q], p, q ∈ N, p, q ≥ 3, n, m ∈ N, αj ∈ R

for all j = 0, 1, . . . , n, 0 ≤ α1 < α2 < · · · < αn ≤ β0 < δ2 − 1, β0 ≥ 1, β j ∈ R for all
j = 0, 1, . . . , m, 0 ≤ β1 < β2 < · · · < βm ≤ α0 < δ1 − 1, α0 ≥ 1, c0 > 0 and d0 > 0, Hi,
i = 1, . . . , n and Kj, j = 1, . . . , m are nondecreasing functions, and Δ > 0.

(K2) The functions a, b : [0, 1] → R+ are continuous, and there exist τ1, τ2 ∈ (0, 1) such
that a(τ1) > 0, b(τ2) > 0.

(K3) The functions f, g : R+ → R+ are continuous, and there exists e0 > 0 such that

f(z) < e
�1−1
0
L , g(z) < e

�2−1
0
L for all z ∈ [0, e0], where

L = max

{
2�1−1Ξ1

Γ(γ1 + 1)

(∫ 1

0
Ji(ζ)ζ

γ1(ρ1−1) dζ

)�1−1

, i ∈ {1, 3};

2�2−1Ξ2

Γ(γ2 + 1)

(∫ 1

0
Jj(ζ)ζ

γ2(ρ2−1) dζ

)�2−1

, j ∈ {2, 4}
}

,

with Ξ1 = supτ∈[0,1] a(τ), Ξ2 = supτ∈[0,1] b(τ).

(K4) The functions f, g : R+ → R+ are continuous and satisfy the conditions limw→∞
f(w)

w�1−1

= ∞ and limw→∞
g(w)

w�2−1 = ∞.

By assumptions (K1) and (K2) and Lemma 2, we obtain that the constant L from
assumption (K3) is positive.

Now, we consider the following system of fractional differential equations:{
Dγ1

0+(ϕ�1(Dδ1
0+x(t))) = 0, t ∈ (0, 1),

Dγ2
0+(ϕ�2(Dδ2

0+y(t))) = 0, t ∈ (0, 1),
(8)

subject to the coupled boundary conditions⎧⎪⎪⎨⎪⎪⎩
x(j)(0) = 0, j = 0, . . . , p − 2; Dδ1

0+x(0) = 0, Dα0
0+x(1) =

n

∑
j=1

∫ 1

0
D

αj
0+y(τ) dHj(τ) + c0,

y(j)(0) = 0, j = 0, . . . , q − 2; Dδ2
0+y(0) = 0, Dβ0

0+y(1) =
m

∑
j=1

∫ 1

0
D

β j
0+x(τ) dKj(τ) + d0.

(9)

Lemma 4. Under assumption (K1), the unique solution (x, y) ∈ (C[0, 1])2 of problem (8) and
(9) is

x(t) =
tδ1−1

Δ

(
c0

Γ(δ2)

Γ(δ2 − β0)
+ d0Δ1

)
, y(t) =

tδ2−1

Δ

(
c0Δ2 + d0

Γ(δ1)

Γ(δ1 − α0)

)
, t ∈ [0, 1], (10)

which satisfies the conditions x(t) > 0 and y(t) > 0 for all t ∈ (0, 1].

Proof. We note that ϕ�1(Dδ1
0+x(t)) = φ(t), ϕ�2(Dδ2

0+y(t)) = ψ(t). Therefore, the problem
(8) and (9) is equivalent to the following three problems:

(I)
{

Dγ1
0+φ(t) = 0,

φ(0) = 0,
(I I)

{
Dγ2

0+ψ(t) = 0,
ψ(0) = 0,
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and

(I I I)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
Dδ1

0+x(t) = ϕρ1(φ(t)), t ∈ (0, 1),
Dδ2

0+y(t) = ϕρ2(ψ(t)), t ∈ (0, 1),
(I I I)1

with⎧⎪⎪⎪⎨⎪⎪⎪⎩
x(j)(0) = 0, j = 0, . . . , p − 2, Dα0

0+x(1) =
n

∑
j=1

∫ 1

0
D

αj
0+y(τ) dHj(τ) + c0,

y(j)(0) = 0, j = 0, . . . , q − 2, Dβ0
0+y(1) =

m

∑
j=1

∫ 1

0
D

β j
0+x(τ) dKj(τ) + d0.

(I I I)2

Problem (I) has the solution φ(t) = 0 for all t ∈ [0, 1], and problem (I I) has the
solution ψ(t) = 0 for all t ∈ [0, 1]. Therefore, problem (I I I) can be written as{

Dδ1
0+x(t) = 0, t ∈ (0, 1),

Dδ2
0+y(t) = 0, t ∈ (0, 1),

(11)

supplemented with the boundary conditions (I I I)2. The solutions of system (11) are

x(t) = a1tδ1−1 + a2tδ1−2 + · · ·+ aptδ1−p, t ∈ [0, 1],
y(t) = b1tδ2−1 + b2tδ2−2 + · · ·+ bqtδ2−q, t ∈ [0, 1],

(12)

with a1, . . . , ap, b1, . . . , bq ∈ R. By using the boundary conditions x(j)(0) = 0, j = 0, . . . , p −
2, y(j)(0) = 0, j = 0, . . . , q − 2 (from (I I I)2), we obtain a2 = · · · = ap = 0 and b2 =

· · · = bq = 0. Then, the functions in Equation (12) become x(t) = a1tδ1−1, t ∈ [0, 1],
y(t) = b1tδ2−1, t ∈ [0, 1]. For these functions, we find

Dα0
0+x(t) = a1

Γ(δ1)

Γ(δ1 − α0)
tδ1−α0−1, Dβ0

0+y(t) = b1
Γ(δ2)

Γ(δ2 − β0)
tδ2−β0−1,

D
αj
0+y(t) = b1

Γ(δ2)

Γ(δ2 − αj)
tδ2−αj−1, D

β j
0+x(t) = a1

Γ(δ1)

Γ(δ1 − β j)
tδ1−β j−1.

Therefore, by now using the above fractional derivatives and the conditions Dα0
0+x(1) =

∑n
j=1

∫ 1
0 D

αj
0+y(τ) dHj(τ) + c0 and Dβ0

0+y(1) = ∑m
j=1

∫ 1
0 D

β j
0+x(τ) dKj(τ) + d0 (from (I I I)2),

we deduce the following system for a1 and b1:⎧⎪⎪⎪⎨⎪⎪⎪⎩
a1

Γ(δ1)

Γ(δ1 − α0)
=

n

∑
j=1

∫ 1

0
b1

Γ(δ2)

Γ(δ2 − αj)
τδ2−αj−1 dHj(τ) + c0,

b1
Γ(δ2)

Γ(δ2 − β0)
=

m

∑
j=1

∫ 1

0
a1

Γ(δ1)

Γ(δ1 − β j)
τδ1−β j−1 dKj(τ) + d0,

or equivalently ⎧⎪⎪⎨⎪⎪⎩
a1

Γ(δ1)

Γ(δ1 − α0)
= b1Δ1 + c0,

b1
Γ(δ2)

Γ(δ2 − β0)
= a1Δ2 + d0.

The determinant of the above system in the unknown a1 and b1 is∣∣∣∣∣∣∣∣
Γ(δ1)

Γ(δ1 − α0)
−Δ1

−Δ2
Γ(δ2)

Γ(δ2 − β0)

∣∣∣∣∣∣∣∣ =
Γ(δ1)Γ(δ2)

Γ(δ1 − α0)Γ(δ2 − β0)
− Δ1Δ2 = Δ.
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Then, we obtain

a1 =
1
Δ

(
c0

Γ(δ2)

Γ(δ2 − β0)
+ d0Δ1

)
, b1 =

1
Δ

(
d0

Γ(δ1)

Γ(δ1 − α0)
+ c0Δ2

)
.

Therefore, we deduce the solution (x(t), y(t)) of problem (8) and (9) presented in (10).
By assumption (K1), we find that x(t) > 0 and y(t) > 0 for all t ∈ (0, 1].

We use the functions x(t) and y(t), t ∈ [0, 1] (given by (10)), and we make a change of
unknown functions for our boundary value problem (1) and (2) such that the new boundary
conditions have no positive parameters. For a solution (u, v) of problem (1) and (2), we
define the functions h(t) and k(t), t ∈ [0, 1] by

h(t) = u(t)− x(t) = u(t)− tδ1−1

Δ

(
c0

Γ(δ2)

Γ(δ2 − β0)
+ d0Δ1

)
, t ∈ [0, 1],

k(t) = v(t)− y(t) = v(t)− tδ2−1

Δ

(
c0Δ2 + d0

Γ(δ1)

Γ(δ1 − α0)

)
, t ∈ [0, 1].

Then, problem (1) and (2) can be equivalently written as the system of fractional
differential equations{

Dγ1
0+(ϕ�1(Dδ1

0+h(t))) + a(t)f(k(t) + y(t)) = 0, t ∈ (0, 1),
Dγ2

0+(ϕ�2(Dδ2
0+k(t))) + b(t)g(h(t) + x(t)) = 0, t ∈ (0, 1),

(13)

with the boundary conditions without parameters⎧⎪⎪⎪⎨⎪⎪⎪⎩
h(j)(0) = 0, j = 0, . . . , p − 2; Dδ1

0+h(0) = 0, Dα0
0+h(1) =

n

∑
j=1

∫ 1

0
D

αj
0+k(τ) dHj(τ),

k(j)(0) = 0, j = 0, . . . , q − 2; Dδ2
0+k(0) = 0, Dβ0

0+k(1) =
m

∑
j=1

∫ 1

0
D

β j
0+h(τ) dKj(τ).

(14)

Using the Green functions Gi, i = 1, . . . , 4 and Lemma 1, a pair of functions (h, k)
is a solution of problem (13) and (14) if and only if (h, k) is a solution of the system of
integral equations

h(t) =
∫ 1

0
G1(t, ζ)ϕρ1(Iγ1

0+(a(ζ)f(k(ζ) + y(ζ)))) dζ

+
∫ 1

0
G2(t, ζ)ϕρ2(Iγ2

0+(b(ζ)g(h(ζ) + x(ζ)))) dζ, t ∈ [0, 1],

k(t) =
∫ 1

0
G3(t, ζ)ϕρ1(Iγ1

0+(a(ζ)f(k(ζ) + y(ζ)))) dζ

+
∫ 1

0
G4(t, ζ)ϕρ2(Iγ2

0+(b(ζ)g(h(ζ) + x(ζ)))) dζ, t ∈ [0, 1].

(15)

We consider the Banach spaceX = C[0, 1]with the supremum norm ‖z‖ = supτ∈[0,1] |z(τ)|
for z ∈ X , and the Banach space Y = X × X with the norm ‖(h, k)‖Y = max{‖h‖, ‖k‖} for
(h, k) ∈ Y . We define the set V = {(h, k) ∈ Y , 0 ≤ h(t) ≤ e0, 0 ≤ k(t) ≤ e0, ∀ t ∈ [0, 1]}.
We also define the operator S : V → Y , S = (S1,S2),

S1(h, k)(t) =
∫ 1

0
G1(t, ζ)ϕρ1(Iγ1

0+(a(ζ)f(k(ζ) + y(ζ)))) dζ

+
∫ 1

0
G2(t, ζ)ϕρ2(Iγ2

0+(b(ζ)g(h(ζ) + x(ζ)))) dζ, t ∈ [0, 1],

S2(h, k)(t) =
∫ 1

0
G3(t, ζ)ϕρ1(Iγ1

0+(a(ζ)f(k(ζ) + y(ζ)))) dζ

+
∫ 1

0
G4(t, ζ)ϕρ2(Iγ2

0+(b(ζ)g(h(ζ) + x(ζ)))) dζ, t ∈ [0, 1],
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for (h, k) ∈ V . We easily see that (h, k) is a solution of system (15) if and only if (h, k) is a
fixed point of operator S . Therefore, our next task is the detection of the fixed points of
operator S . The first result is the following existence theorem for problem (1) and (2):

Theorem 1. We assume that assumptions (K1)− (K3) are satisfied. Therefore, there exist c1 > 0
and d1 > 0 such that for any c0 ∈ (0, c1] and d0 ∈ (0, d1], the problem (1) and (2) has at least one
positive solution.

Proof. By assumption (K3) we deduce that there exist s0 > 0 and t0 > 0 such that

f(w) ≤ e
�1−1
0
L for all w ∈ [0, e0 + s0], and g(w) ≤ e

�2−1
0
L for all w ∈ [0, e0 + t0]. We define now

c1 and d1 as follows:

• If Δ1 �= 0 and Δ2 �= 0, then

c1 = min
{
s0Δ
2Δ2

,
t0ΔΓ(δ2 − β0)

2Γ(δ2)

}
, d1 = min

{
s0ΔΓ(δ1 − α0)

2Γ(δ1)
,
t0Δ
2Δ1

}
.

• If Δ1 = 0 and Δ2 �= 0, then

c1 = min
{
s0Δ
2Δ2

,
t0ΔΓ(δ2 − β0)

Γ(δ2)

}
, d1 =

s0ΔΓ(δ1 − α0)

2Γ(δ1)
.

• If Δ1 �= 0 and Δ2 = 0, then

c1 =
t0ΔΓ(δ2 − β0)

2Γ(δ2)
, d1 = min

{
s0ΔΓ(δ1 − α0)

Γ(δ1)
,
t0Δ
2Δ1

}
.

• If Δ1 = 0 and Δ2 = 0, then

c1 =
t0ΔΓ(δ2 − β0)

Γ(δ2)
, d1 =

s0ΔΓ(δ1 − α0)

Γ(δ1)
.

Let c0 ∈ (0, c1] and d0 ∈ (0, d1]. Then, for (h, k) ∈ V and ζ ∈ [0, 1], we have

k(ζ) + y(ζ) ≤ e0 +
1
Δ

(
c0Δ2 + d0

Γ(δ1)
Γ(δ1−α0)

)
≤ e0 +

1
Δ

(
c1Δ2 + d1

Γ(δ1)
Γ(δ1−α0)

)
≤ e0 + s0,

h(ζ) + x(ζ) ≤ e0 +
1
Δ

(
c0

Γ(δ2)
Γ(δ2−β0)

+ d0Δ1

)
≤ e0 +

1
Δ

(
c1

Γ(δ2)
Γ(δ2−β0)

+ d1Δ1

)
≤ e0 + t0,

and so

f(k(ζ) + y(ζ)) ≤ e
�1−1
0
L

, g(h(ζ) + x(ζ)) ≤ e
�2−1
0
L

. (16)

By using Lemma 3, we deduce that Si(h, k)(t) ≥ 0, i = 1, 2 for all t ∈ [0, 1] and
(h, k) ∈ V . By inequalities (16), for all (h, k) ∈ V , we obtain

Iγ1
0+(a(ζ)f(k(ζ) + y(ζ))) =

1
Γ(γ1)

∫ ζ

0
(ζ − τ)γ1−1a(τ)f(k(τ) + y(τ)) dτ

≤ e
�1−1
0

LΓ(γ1)

∫ ζ

0
(ζ − τ)γ1−1a(τ) dτ ≤ Ξ1e

�1−1
0

LΓ(γ1)

∫ ζ

0
(ζ − τ)γ1−1 dτ

=
Ξ1e

�1−1
0 ζγ1

LΓ(γ1 + 1)
, ∀ ζ ∈ [0, 1],

and

Iγ2
0+(b(ζ)g(h(ζ) + x(ζ))) =

1
Γ(γ2)

∫ ζ

0
(ζ − τ)γ2−1b(τ)g(h(τ) + x(τ)) dτ

≤ e
�2−1
0

LΓ(γ2)

∫ ζ

0
(ζ − τ)γ2−1b(τ) dτ ≤ Ξ2e

�2−1
0

LΓ(γ2)

∫ ζ

0
(ζ − τ)γ2−1 dτ

=
Ξ2e

�2−1
0 ζγ2

LΓ(γ2 + 1)
, ∀ ζ ∈ [0, 1].
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Then, by Lemma 2 and the definition of L from (K3), we find

S1(h, k)(t) ≤
∫ 1

0
J1(ζ)ϕρ1

(
Ξ1e

�1−1
0 ζγ1

LΓ(γ1 + 1)

)
dζ +

∫ 1

0
J2(ζ)ϕρ2

(
Ξ2e

�2−1
0 ζγ2

LΓ(γ2 + 1)

)
dζ

=

(
Ξ1e

�1−1
0

LΓ(γ1 + 1)

)ρ1−1 ∫ 1

0
J1(ζ)ζ

γ1(ρ1−1) dζ

+

(
Ξ2e

�2−1
0

LΓ(γ2 + 1)

)ρ2−1 ∫ 1

0
J2(ζ)ζ

γ2(ρ2−1) dζ ≤ e0

2
+

e0

2
= e0, ∀ t ∈ [0, 1],

and

S2(h, k)(t) ≤
∫ 1

0
J3(ζ)ϕρ1

(
Ξ1e

�1−1
0 ζγ1

LΓ(γ1 + 1)

)
dζ +

∫ 1

0
J4(ζ)ϕρ2

(
Ξ2e

�2−1
0 ζγ2

LΓ(γ2 + 1)

)
dζ

=

(
Ξ1e

�1−1
0

LΓ(γ1 + 1)

)ρ1−1 ∫ 1

0
J3(ζ)ζ

γ1(ρ1−1) dζ

+

(
Ξ2e

�2−1
0

LΓ(γ2 + 1)

)ρ2−1 ∫ 1

0
J4(ζ)ζ

γ2(ρ2−1) dζ ≤ e0

2
+

e0

2
= e0, ∀ t ∈ [0, 1].

Therefore, we find that S(V) ⊂ V . By using a standard method, we conclude that S is a
completely continuous operator. Therefore, by the Schauder fixed point theorem, we deduce
that S has a fixed point (h, k) ∈ V , which is a non-negative solution for problem (15), or
equivalently, for problem (13) and (14). Hence, (u, v), where u(t) = h(t) + x(t) and v(t) =
k(t) + y(t) for all t ∈ [0, 1], is a positive solution of problem (1) and (2). This solution (u, v)
satisfies the conditions tδ1−1

Δ (c0
Γ(δ2)

Γ(δ2−β0)
+ d0Δ1) ≤ u(t) ≤ tδ1−1

Δ (c0
Γ(δ2)

Γ(δ2−β0)
+ d0Δ1) + e0 and

tδ2−1

Δ (c0Δ2 + d0
Γ(δ1)

Γ(δ1−α0)
) ≤ v(t) ≤ tδ2−1

Δ (c0Δ2 + d0
Γ(δ1)

Γ(δ1−α0)
) + e0 for all t ∈ [0, 1].

The second result is the following nonexistence theorem for the boundary value
problem (1) and (2).

Theorem 2. We assume that assumptions (K1), (K2), and (K4) are satisfied. Then, there exist
c2 > 0 and d2 > 0 such that for any c0 ≥ c2 and d0 ≥ d2, the problem (1) and (2) has no
positive solution.

Proof. By assumption (K2), there exist [η1, η2] ⊂ (0, 1), η1 < η2 such that τ1, τ2 ∈ (η1, η2),
and then

Λ1 =
∫ η2

η1

J1(ζ)

(∫ ζ

η1

a(τ)(ζ − τ)γ1−1 dτ

)ρ1−1

dζ > 0,

Λ4 =
∫ η2

η1

J4(ζ)

(∫ ζ

η1

b(τ)(ζ − τ)γ2−1 dτ

)ρ2−1

dζ > 0.

We define the number

R0 = max

{
2�1−1Γ(γ1)

η
(δ1+δ2−2)(�1−1)
1 Λ�1−1

1

,
2�2−1Γ(γ2)

η
(δ1+δ2−2)(�2−1)
1 Λ�2−1

4

}
.

By using (K4), for R0 defined above, we obtain that there exists L0 > 0 such that
f(w) ≥ R0w�1−1 and g(w) ≥ R0w�2−1 for all w ≥ L0. We define now c2 and d2 as follows:

• If Δ1 �= 0 and Δ2 �= 0, then

c2 = max

{
L0ΔΓ(δ2 − β0)

2ηδ1−1
1 Γ(δ2)

,
L0Δ

2ηδ2−1
1 Δ2

}
, d2 = max

{
L0Δ

2ηδ1−1
1 Δ1

,
L0ΔΓ(δ1 − α0)

2ηδ2−1
1 Γ(δ1)

}
.
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• If Δ1 = 0 and Δ2 �= 0, then

c2 = max

{
L0ΔΓ(δ2 − β0)

ηδ1−1
1 Γ(δ2)

,
L0Δ

2ηδ2−1
1 Δ2

}
, d2 =

L0ΔΓ(δ1 − α0)

2ηδ2−1
1 Γ(δ1)

.

• If Δ1 �= 0 and Δ2 = 0, then

c2 =
L0ΔΓ(δ2 − β0)

2ηδ1−1
1 Γ(δ2)

, d2 = max

{
L0Δ

2ηδ1−1
1 Δ1

,
L0ΔΓ(δ1 − α0)

ηδ2−1
1 Γ(δ1)

}
.

• If Δ1 = 0 and Δ2 = 0, then

c2 =
L0ΔΓ(δ2 − β0)

η
δ1−1
1 Γ(δ2)

, d2 =
L0ΔΓ(δ1 − α0)

ηδ2−1
1 Γ(δ1)

.

Let c0 ≥ c2 and d0 ≥ d2. We assume that (u, v) is a positive solution of (1) and (2).
Then, the pair (h, k), where h(t) = u(t)− x(t), k(t) = v(t)− y(t), t ∈ [0, 1], with x and y
given by (10), is a solution of problem (13) and (14), or equivalently, of system (15). By
using Lemma 3, we find that h(t) ≥ tδ1−1‖h‖, k(t) ≥ tδ2−1‖k‖ for all t ∈ [0, 1]. Then,
infs∈[η1,η2]

h(s) ≥ η
δ1−1
1 ‖h‖, infs∈[η1,η2]

k(s) ≥ ηδ2−1
1 ‖k‖. By the definition of the functions x

and y, we obtain

inf
s∈[η1,η2]

x(s) =
ηδ1−1

1
Δ

(
c0

Γ(δ2)

Γ(δ2 − β0)
+ d0Δ1

)
= η

δ1−1
1 ‖x‖,

inf
s∈[η1,η2]

y(s) =
ηδ2−1

1
Δ

(
c0Δ2 + d0

Γ(δ1)

Γ(δ1 − α0)

)
= ηδ2−1

1 ‖y‖.

Hence, we deduce

inf
s∈[η1,η2]

(h(s) + x(s)) ≥ inf
s∈[η1,η2]

h(s) + inf
s∈[η1,η2]

x(s) ≥ η
δ1−1
1 ‖h‖+ η

δ1−1
1 ‖x‖

= η
δ1−1
1 (‖h‖+ ‖x‖) ≥ η

δ1−1
1 ‖h + x‖,

inf
s∈[η1,η2]

(k(s) + y(s)) ≥ inf
s∈[η1,η2]

k(s) + inf
s∈[η1,η2]

y(s) ≥ ηδ2−1
1 ‖k‖+ ηδ2−1

1 ‖y‖

= ηδ2−1
1 (‖k‖+ ‖y‖) ≥ ηδ2−1

1 ‖k + y‖.

In addition we have

inf
s∈[η1,η2]

(h(s) + x(s)) ≥ η
δ1−1
1 ‖x‖ = η

δ1−1
1

1
Δ

(
c0

Γ(δ2)

Γ(δ2 − β0)
+ d0Δ1

)
≥ η

δ1−1
1

1
Δ

(
c2

Γ(δ2)

Γ(δ2 − β0)
+ d2Δ1

)
≥ L0,

inf
s∈[η1,η2]

(k(s) + y(s)) ≥ ηδ2−1
1 ‖y‖ = ηδ2−1

1
1
Δ

(
c0Δ2 + d0

Γ(δ1)

Γ(δ1 − α0)

)
≥ ηδ2−1

1
1
Δ

(
c2Δ2 + d2

Γ(δ1)

Γ(δ1 − α0)

)
≥ L0.
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By using Lemma 3 and the above inequalities we find

Iγ1
0+(a(ζ)f(k(ζ) + y(ζ)))

≥ 1
Γ(γ1)

∫ ζ

η1

(ζ − τ)γ1−1a(τ)f(k(τ) + y(τ)) dτ

≥ R0

Γ(γ1)

∫ ζ

η1

(ζ − τ)γ1−1a(τ)(k(τ) + y(τ))�1−1 dτ

≥ R0

Γ(γ1)

∫ ζ

η1

(ζ − τ)γ1−1a(τ)

(
inf

τ∈[η1,η2]
(k(τ) + y(τ))

)�1−1
dτ

≥ R0L�1−1
0

Γ(γ1)

∫ ζ

η1

(ζ − τ)γ1−1a(τ) dτ, ∀ ζ ∈ [η1, η2],

and then

h(η1) ≥
∫ 1

0
ηδ1−1

1 J1(ζ)ϕρ1(Iγ1
0+(a(ζ)f(k(ζ) + y(ζ)))) dζ

≥
∫ η2

η1

ηδ1−1
1 J1(ζ)

(
R0L�1−1

0
Γ(γ1)

∫ ζ

η1

(ζ − τ)γ1−1a(τ) dτ

)ρ1−1

dζ

=
Rρ1−1

0 L0η
δ1−1
1 Λ1

(Γ(γ1))ρ1−1 > 0.

We deduce that ‖h‖ ≥ h(η1) > 0. In a similar manner, we obtain

Iγ2
0+(b(ζ)g(h(ζ) + x(ζ)))

≥ R0

Γ(γ2)

∫ ζ

η1

(ζ − τ)γ2−1b(τ)

(
inf

τ∈[η1,η2]
(h(τ) + x(τ))

)�2−1
dτ

≥ R0L�2−1
0

Γ(γ2)

∫ ζ

η1

(ζ − τ)γ2−1b(τ) dτ, ∀ ζ ∈ [η1, η2],

and so

k(η1) ≥
∫ 1

0
ηδ2−1

1 J4(ζ)ϕρ2(Iγ2
0+(b(ζ)g(h(ζ) + x(ζ)))) dζ

≥
∫ η2

η1

ηδ2−1
1 J4(ζ)

(
R0L�2−1

0
Γ(γ2)

∫ ζ

η1

(ζ − τ)γ2−1b(τ) dτ

)ρ2−1

dζ

=
Rρ2−1

0 L0ηδ2−1
1 Λ4

(Γ(γ2))ρ2−1 > 0.

We deduce that ‖k‖ ≥ k(η1) > 0.
In addition, from the above inequalities we have

Iγ1
0+(a(ζ)f(k(ζ) + y(ζ)))

≥ R0

Γ(γ1)

∫ ζ

η1

(ζ − τ)γ1−1a(τ)

(
inf

τ∈[η1,η2]
(k(τ) + y(τ))

)�1−1
dτ

≥ R0η
(δ2−1)(�1−1)
1
Γ(γ1)

‖k + y‖�1−1
∫ ζ

η1

(ζ − τ)γ1−1a(τ) dτ, ∀ ζ ∈ [η1, η2],

and so

h(η1) ≥
∫ η2

η1

ηδ1−1
1 J1(ζ)

(
R0η

(δ2−1)(�1−1)
1
Γ(γ1)

)ρ1−1

‖k + y‖
(∫ ζ

η1

(ζ − τ)γ1−1a(τ) dτ

)ρ1−1

dζ

=
η

δ1+δ2−2
1 Rρ1−1

0
(Γ(γ1))ρ1−1 Λ1‖k + y‖ ≥ 2‖k + y‖ ≥ 2‖k‖.
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Hence,

‖k‖ ≤ 1
2

h(η1) ≤
1
2
‖h‖. (17)

In a similar manner, we deduce

Iγ2
0+(b(ζ)g(h(ζ) + x(ζ)))

≥ R0

Γ(γ2)

∫ ζ

η1

(ζ − τ)γ2−1b(τ)

(
inf

τ∈[η1,η2]
(h(τ) + x(τ))

)�2−1
dτ

≥ R0η
(δ1−1)(�2−1)
1
Γ(γ2)

‖h + x‖�2−1
∫ ζ

η1

(ζ − τ)γ2−1b(τ) dτ, ∀ ζ ∈ [η1, η2],

and then

k(η1) ≥
∫ η2

η1

ηδ2−1
1 J4(ζ)

(
R0η

(δ1−1)(�2−1)
1
Γ(γ2)

)ρ2−1

‖h + x‖
(∫ ζ

η1

(ζ − τ)γ2−1b(τ) dτ

)ρ2−1

dζ

=
η

δ1+δ2−2
1 Rρ2−1

0
(Γ(γ2))ρ2−1 Λ4‖h + x‖ ≥ 2‖h + x‖ ≥ 2‖h‖.

Therefore,

‖h‖ ≤ 1
2

k(η1) ≤
1
2
‖k‖. (18)

Hence, by (17) and (18), we conclude that ‖h‖ ≤ 1
2‖k‖ ≤ 1

4‖h‖, which is a contradiction
(we saw before that ‖h‖ > 0). Therefore, problem (1) and (2) has no positive solution.

4. An Example

We consider γ1 = 3
4 , γ2 = 2

5 , δ1 = 14
3 , (p = 5), δ2 = 11

2 , (q = 6), n = 2, m = 1, α0 = 17
8 ,

β0 = 19
6 , α1 = 3

2 , α2 = 16
7 , β1 = 3

7 , �1 = 73
12 , �2 = 59

8 , ρ1 = 73
61 , ρ2 = 59

51 , a(t) = 1, b(t) = 1

for all t ∈ [0, 1], H1(t) = 91
6 t for all t ∈ [0, 1], H2(t) =

{
1
3 , t ∈

[
0, 2

3
)
; 17

15 , t ∈
[ 2

3 , 1
]}

,

K1(t) =
{

1
2 , t ∈

[
0, 8

11
)
; 33

26 , t ∈
[ 8

11 , 1
]}

. We introduce the functions f, g; [0, ∞) → [0, ∞),

f(z) = ω1zσ1 , g(z) = ω2zσ2 for all z ∈ [0, ∞) with ω1, ω2 > 0, σ1, σ2 > 0, σ1 > 61
12 , σ2 > 51

8 .

We have limz→∞
f(z)

z�1−1 = ∞ and limz→∞
g(z)

z�2−1 = ∞.
We consider the system of Riemann–Liouville fractional differential equations⎧⎨⎩ D3/4

0+

(
ϕ73/12

(
D14/3

0+ u(t)
))

+ ω1(v(t))σ1 = 0, t ∈ (0, 1),

D2/5
0+

(
ϕ59/8

(
D11/2

0+ v(t)
))

+ ω2(u(t))σ2 = 0, t ∈ (0, 1),
(19)

subject to the coupled boundary conditions⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
u(i)(0) = 0, i = 0, . . . , 3, D14/3

0+ u(0) = 0,

D17/8
0+ u(1) =

91
6

∫ 1

0
D3/2

0+ v(t) dt +
4
5

D16/7
0+ v

(
2
3

)
+ c0,

v(i)(0) = 0, i = 0, . . . , 4, D11/2
0+ v(0) = 0, D19/6

0+ v(1) =
10
13

D3/7
0+ u

(
8
11

)
+ d0.

(20)
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We obtain here Δ1 ≈ 40.01662964, Δ2 ≈ 0.49478575, and Δ ≈ 452.46647281 > 0.
Therefore, assumptions (K1), (K2), and (K4) are satisfied. In addition, we deduce

g1(t, ζ) =
1

Γ(14/3)

{
t11/3(1 − ζ)37/24 − (t − ζ)11/3, 0 ≤ ζ ≤ t ≤ 1,
t11/3(1 − ζ)37/24, 0 ≤ t ≤ ζ ≤ 1,

g11(τ, ζ) =
1

Γ(89/21)

{
τ68/21(1 − ζ)37/24 − (τ − ζ)68/21, 0 ≤ ζ ≤ τ ≤ 1,
τ68/21(1 − ζ)37/24, 0 ≤ τ ≤ ζ ≤ 1,

g2(t, ζ) =
1

Γ(11/2)

{
t9/2(1 − ζ)4/3 − (t − ζ)9/2, 0 ≤ ζ ≤ t ≤ 1,
t9/2(1 − ζ)4/3, 0 ≤ t ≤ ζ ≤ 1,

g21(τ, ζ) =
1
6

{
τ3(1 − ζ)4/3 − (τ − ζ)3, 0 ≤ ζ ≤ τ ≤ 1,
τ3(1 − ζ)4/3, 0 ≤ τ ≤ ζ ≤ 1,

g22(τ, ζ) =
1

Γ(45/14)

{
τ31/14(1 − ζ)4/3 − (τ − ζ)31/14, 0 ≤ ζ ≤ τ ≤ 1,
τ31/14(1 − ζ)4/3, 0 ≤ τ ≤ ζ ≤ 1,

G1(t, ζ) = g1(t, ζ) +
10Δ1t11/3

13Δ
g11

(
8

11
, ζ

)
,

G2(t, ζ) =
t11/3Γ(11/2)

ΔΓ(7/3)

(
91
6

∫ 1

0
g21(τ, ζ) dτ +

4
5
g22

(
2
3

, ζ

))
,

G3(t, ζ) =
10t9/2Γ(14/3)
13ΔΓ(61/24)

g11

(
8

11
, ζ

)
,

G4(t, ζ) = g2(t, ζ) +
t9/2Δ2

Δ

(
91
6

∫ 1

0
g21(τ, ζ) dτ +

4
5
g22

(
2
3

, ζ

))
,

h1(ζ) =
1

Γ(14/3)
(1 − ζ)37/24

(
1 − (1 − ζ)17/8

)
,

h2(ζ) =
1

Γ(11/2)
(1 − ζ)4/3

(
1 − (1 − ζ)19/6

)
,

for all t, τ, ζ ∈ [0, 1]. In addition, we find

J1(ζ) =

⎧⎨⎩ h1(ζ) +
10Δ1

13ΔΓ(89/21)

[( 8
11
)68/21

(1 − ζ)37/24 −
( 8

11 − ζ
)68/21

]
, 0 ≤ ζ < 8

11 ,

h1(ζ) +
10Δ1

13ΔΓ(89/21)

( 8
11
)68/21

(1 − ζ)37/24, 8
11 ≤ ζ ≤ 1,

J2(ζ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Γ(11/2)
ΔΓ(7/3)

{
91

144 (1 − ζ)4/3 − 91
144 (1 − ζ)4 + 4

5Γ(45/14)

×
[( 2

3
)31/14

(1 − ζ)4/3 −
( 2

3 − ζ
)31/14

]}
, 0 ≤ ζ < 2

3 ,
Γ(11/2)
ΔΓ(7/3)

[
91
144 (1 − ζ)4/3 − 91

144 (1 − ζ)4 + 4
5Γ(45/14)

×
( 2

3
)31/14

(1 − ζ)4/3
]
, 2

3 ≤ ζ ≤ 1,

J3(ζ) =

⎧⎨⎩
10Γ(14/3)

13ΔΓ(61/24)Γ(89/21)

[( 8
11
)68/21

(1 − ζ)37/24 −
( 8

11 − ζ
)68/21

]
, 0 ≤ ζ < 8

11 ,
10Γ(14/3)

13ΔΓ(61/24)Γ(89/21)

( 8
11
)68/21

(1 − ζ)37/24, 8
11 ≤ ζ ≤ 1,

J4(ζ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

h2(ζ) +
Δ2
Δ

{
91
144 (1 − ζ)4/3 − 91

144 (1 − ζ)4 + 4
5Γ(45/14)

×
[( 2

3
)31/14

(1 − ζ)4/3 −
( 2

3 − ζ
)31/14

]}
, 0 ≤ ζ < 2

3 ,

h2(ζ) +
Δ2
Δ

[
91
144 (1 − ζ)4/3 − 91

144 (1 − ζ)4 + 4
5Γ(45/14)

×
( 2

3
)31/14

(1 − ζ)4/3
]
, 2

3 ≤ ζ ≤ 1.

We also obtain Ξ1 = 1 and Ξ2 = 1. After some computations, we find

P1 :=
261/12

Γ(7/4)

(∫ 1

0
J1(ζ)ζ

9/61 dζ

)61/12

≈ 4.11609161 × 10−9,

P2 :=
251/8

Γ(7/5)

(∫ 1

0
J2(ζ)ζ

16/255 dζ

)51/8

≈ 3.11233481 × 10−10,
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P3 :=
261/12

Γ(7/4)

(∫ 1

0
J3(ζ)ζ

9/61 dζ

)61/12

≈ 1.39796164 × 10−18,

P4 :=
251/8

Γ(7/5)

(∫ 1

0
J4(ζ)ζ

16/255 dζ

)51/8

≈ 1.16007238 × 10−13,

and so L = max{Pi, i = 1, . . . , 4} = P1. We choose e0 = 10, σ1 = 31
6 , σ2 = 13

2 , and

if we select ω1 < 1
L 10−1/12 and ω2 < 1

L 10−1/8, then we deduce that f(z) < 1061/12

L and

g(z) < 1051/8

L for all z ∈ [0, 10]. For example, if ω1 ≤ 2.0053 × 108 and ω2 ≤ 1.8218 × 108,
then the above conditions for f and g are satisfied. Therefore, assumption (K3) is also
satisfied. By Theorem 1, we conclude that there exist positive constants c1 and d1 such that
for any c0 ∈ (0, c1] and d0 ∈ (0, d1], problem (19) and (20) has at least one positive solution
(u(t), v(t)), t ∈ [0, 1]. By Theorem 2, we deduce that there exist positive constants c2 and
d2 such that for any c0 ≥ c2 and d0 ≥ d2, problem (19) and (20) has no positive solution.

5. Conclusions

In this paper, we studied the system of coupled Riemann–Liouville fractional differ-
ential Equation (1) with �1-Laplacian and �2-Laplacian operators, subject to the nonlocal
coupled boundary conditions (2), which contain fractional derivatives of various orders,
Riemann–Stieltjes integrals, and two positive parameters c0 and d0. Under some assump-
tions for the nonlinearities f and g of system (1), we established intervals for the parameters
c0 and d0 such that our problem (1) and (2) has at least one positive solution. First, we made
a change of unknown functions such that the new boundary conditions have no positive
parameters. By using the corresponding Green functions, the new boundary value problem
was then written equivalently as a system of integral equations (namely the system (15)).
We associated to this integral system an operator (S), and we proved the existence of at
least one fixed point for it by applying the Schauder fixed point theorem. Intervals for
parameters c0 and d0 were also given such that problem (1) and (2) has no positive solution.
Finally, we presented an example to illustrate our main results.
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Abstract: This paper deals with a class of nonlinear fractional Sturm–Liouville boundary value
problems. Each sub equation in the system is a fractional partial equation including the second kinds
of Fredholm integral equation and the p-Laplacian operator, simultaneously. Infinitely many solutions
are derived due to perfect involvements of fractional calculus theory and variational methods with
some simpler and more easily verified assumptions.

Keywords: fractional integro-differential equation; Sturm–Liouville boundary condition; variational
method

MSC: 26A33; 34B15; 35A15

1. Introduction

Nano/microactuators, as an indispensable portion of nano/microelectromechanical
systems, are always subject to different inherent nonlinear forces. Many studies show that
an integro-differential equation is generated in the modeling process of the nano/microactuator
governing equation owing to axial forces ([1–3]). In [4,5], the following nanoactuator beam
equation augmented to boundary conditions and containing an integro-differential expres-
sion, was discussed{

d4 f
dt4 − (μ

∫ 1
0 (

d f
dt )

2dt + L) d2 f
dt2 + θ

f η + κ
(r+ f )2 +

s
f = 0, t ∈ [0, 1],

f (0) = f (1) = 0, f ′(0) = f ′(1) = 0,
(1)

where f and t denote the deflection and length of the beam, respectively. μ, L, κ and r denote
some inherent nonlinear forces. Actually, in practical engineering applications, actuators are
constructed by the billions for chipsets, therefore, developing more effective and accurate
strategies for the study of nano/microactuator structures is of great significance.

Furthermore, it is often not appropriate to establish models with delayed behaviors by
ordinary differential equations or partial differential equations, while integral equations
are ideal tools. Moreover, fractional calculus operators are convolution operators (For
details, please refer to the definitions of fractional integral and differential operators in [6],
in which the definitions involving convolution integrals.), because they are nonlocal and
have full-memory function, and those characteristics can be well used to describe various
phenomena and complex processes involving delay and global correlations. For this reason,
fractional calculus has been extensively applied in interdisciplinary fields such as fluid and
viscoelastic mechanics, control theory, signal and image processing, electricity, physical,
etc., (see [7–9]). Therefore, matching fractional calculus operators and integro-differential
equations is ideal to complete the mathematical modeling of practical problems. Taking
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into account the effect of a full-memory system, the integer derivatives in Equation (1)
can be substituted for fractional ones. Inspired by this fact in Equation (1), Shivanian [10]
introduced the following overdetermined Fredholm fractional integro-differential equations

⎧⎪⎨⎪⎩
tD

αj
T (aj(t)0D

αj
t uj(t)) = λFuj(t, u1(t), . . . , um(t)) +

∫ T
0 kj(t, s)uj(s)ds, t ∈ (0, T), j = 1, 2, . . . , m,

uj(t) =
∫ T

0 kj(t, s)uj(s)ds, t ∈ (0, T), j = 1, 2, . . . , m,
uj(0) = uj(T) = 0, j = 1, 2, . . . , m,

(2)

where αj ∈ (0, 1], aj(t) ∈ L∞[0, T], j = 1, 2, . . . , m. The existence of at least three weak
solutions was obtained through the three critical points theorem.

Committed to fully considering more general systems, this paper studies a class of
nonlinear Fredholm fractional integro-differential equations with p-Laplacian operator and
Sturm–Liouville boundary conditions as below⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

tD
γj
T (kj(t)Φp(C

0 D
γj
t zj(t))) + lj(t)Φp(zj(t))

= λ fzj(t, z1(t), . . . , zm(t)) +
∫ T

0 gj(t, s)Φp(zj(s))ds, t ∈ [0, T], j = 1, 2, . . . , m,

zj(t) =
∫ T

0 gj(t, s)Φp(zj(s))ds, t ∈ [0, T], j = 1, 2, . . . , m,

cjkj(0)Φp(zj(0))− c′jtD
γj−1
T (kj(0)Φp(C

0 D
γj
t zj(0))) = 0, j = 1, 2, . . . , m,

djkj(T)Φp(zj(T)) + d′jtD
γj−1
T (kj(T)Φp(C

0 D
γj
t zj(T))) = 0, j = 1, 2, . . . , m,

(3)

where cj, c′j, dj and d′j are positive constants, λ ∈ (0,+∞) is a parameter, kj, lj ∈ L∞[0, T]

with k̂j = ess inf[0,T] kj(t) > 0 and l̂j = ess inf[0,T] lj(t) ≥ 0, j = 1, 2, . . . , m. For 1 < p < ∞,
Φp(s) = |s|p−2s(s �= 0), Φp(0) = 0, f : [0, T]×Rm → R satisfies f (·, z1(t), . . . , zm(t)) ∈
C[0, T] and f (t, ·, . . . , ·) ∈ C1[Rm], gj(·, ·) ∈ C([0, T], [0, T]). C

0 D
γj
t and tD

γj
T denote the left

Caputo fractional derivative and right Riemann–Liouville fractional derivative of order γj,
respectively, which are defined by Kilbas et al. in [6]

tD
γj
T u(t) = (−1)n dn

dtn tD
γj−n
T u(t) =

(−1)n

Γ(n − γj)

dn

dtn

∫ T

t
(ζ − t)n−γj−1u(ζ)dζ, (4)

C
0 D

γj
t u(t) = 0D

γj−n
t u(n)(t) =

1
Γ(n − γj)

∫ t

0
(t − ζ)n−γj−1u(n)(ζ)dζ, (5)

for ∀u(t) ∈ AC([0, T],R), n − 1 ≤ γj < n, n ∈ N.
We emphasize that this paper extends previous results in several directions, which

are listed as follows: (i) In recent years, a large number of existence results for fractional
differential equations have been acquired by variational methods and critical point theory
([11–14]). However, not many research works are available in related references to handle
fractional integro-differential equations, let alone involving the p-Laplacian operator and
Sturm–Liouville boundary conditions. (ii) It is not hard to see that Equation (3) can
turn into the Dirichlet boundary value problem Equation (2) under p = 2, c′j = d′j =

0, lj(t) ≡ 0, j = 1, 2, . . . , m, which means that Equation (2) is a special case of Equation (3).
Furthermore, since the p-Laplacian operator is considered with 1 < p < ∞ in the paper,
the linear differential operator tD

γ
T

C
0 Dγ

t is extended to the nonlinear differential operator
tD

γ
TΦp(C

0 Dγ
t ). In short, the form of Equation (3) is more generalized, as well as the boundary

value conditions. (iii) Infinitely many solutions are obtained in this paper with some simpler
and more easily verified assumptions. Hence, our work improves and replenishes some
existing results form the literature.

2. Preliminaries

Assume H is a Banach space and F ∈ C1(H,R). Functional F satisfies the Palais–Smale
condition if each sequence {zk}∞

k=1 ⊂ H such that {F (zk)} is bounded and lim
k→∞

F′(zk) = 0

possesses strongly convergent subsequence in H.
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Theorem 1 ([15]). Let H be an infinite-dimensional Banach space, F ∈ C1(H,R) is an even
functional and satisfies the Palais–Smale condition. Assume that:

(i) F (0) = 0. There exist τ > 0 and η > 0 such that Υτ ⊂ {z ∈ H | F (z) ≥ 0} and
F (z) ≥ η for all z ∈ ∂Υτ , where Υτ = {z ∈ H | ‖z‖ < τ};

(ii) For any finite dimensional subspace H0 ⊂ H, the set H0
⋂{z ∈ H | F (z) ≥ 0} is bounded.

Then, F has infinitely many critical points.

Definition 1. Let 1 < p < ∞, 1
p < γj ≤ 1, j = 1, 2, . . . , m. Define the fractional derivative space

H = Πj=m
j=1 Hγj ,p with the weighted norm

‖Z‖H =
j=m

∑
j=1

‖zj‖(γj ,p), zj ∈ Hγj ,p, Z = (z1, . . . , zm) ∈ H, (6)

where
Hγj ,p = {zj ∈ AC([0, T],R) : C

0 D
γj
t zj(t) ∈ Lp([0, T],R)}

as the closure of C∞([0, T],R) endowed with the norm

‖zj‖(γj ,p) :=
( ∫ T

0
| zj(t) |p dt +

∫ T

0
| C

0 D
γj
t zj(t) |p dt

) 1
p

, ∀zj ∈ Hγj ,p. (7)

Hγj ,p is a reflexive and separable Banach space [16]. Therefore, H also is a reflexive and separable
Banach space.

Lemma 1 ([13]). For any zj(t) ∈ Hγj ,p, 1 < p, q < ∞ with 1
p + 1

q = 1, there exists a constant

W(γj ,p) = max
{

Tγj− 1
p

Γ(γj)((γj−1)q+1)
1
q

, 1
}
+

[
2p−1

T max
{

1,
(

Tγj

Γ(γj+1)

)p}] 1
p

such that ‖zj‖∞ ≤

W(γj ,p)‖zj‖(γj ,p), j = 1, 2, . . . , m.

Taking into account Lemma 1, one has

‖zj‖∞ ≤
W(γj ,p)

(min{k̂j, l̂j})
1
p

( ∫ T

0
lj(t) | zj(t) |p dt +

∫ T

0
kj(t) | C

0 D
γj
t zj(t) |p dt

) 1
p

, ∀ zj(t) ∈ Hγj ,p, (8)

j = 1, 2, . . . , m. In order to describe it more easily for the further analysis, denote

Wj =
W(γj ,p)

(min{k̂j, l̂j})
1
p

, Ŵ = max
1≤j≤m

{Wj}. (9)

Obviously, the norm defined by (7) is equivalent to

‖zj‖(γj ,p) =

( ∫ T

0
lj(t) | zj(t) |p dt +

∫ T

0
kj(t) | C

0 D
γj
t zj(t) |p dt

) 1
p

, j = 1, 2, . . . , m. (10)

We work with the norm (10) hereinafter.

Lemma 2 ([17]). Let 1 < p < ∞, γj ∈ ( 1
p , 1], j = 1, 2, . . . , m. Suppose that any sequence {zk,j}

converges to zj in Hγj ,p weakly. Then, zk,j → zj in C([0, T]) as k → ∞.

Lemma 3 ([18]). Let Hj be any finite-dimensional subspace of Hγj ,p, j = 1, 2, . . . , m. There exists
a constant ζ0 > 0 such that meas{t ∈ [0, T] :| zj(t) |≥ ζ0‖zj‖(γj ,p)} ≥ ζ0, ∀zj(t) ∈ Hj \ {0}.
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Lemma 4 ([6]). Let γ > 0, p ≥ 1, q ≥ 1 and 1
p + 1

q ≤ 1 + γ (p �= 1, q �= 1 in the case

when 1
p + 1

q = 1 + γ). If z1 ∈ Lp([a, b]) and z2 ∈ Lq([a, b]), then,
∫ b

a (aD−γ
t z1(t))z2(t)dt =∫ b

a z1(t)(tD
−γ
b z2(t))dt.

Lemma 5. It is said Z = (z1, . . . , zm) ∈ H is a weak solution of Equations (3), if the following
equation holds

m

∑
j=1

{ ∫ T

0
kj(t)Φp(

C
0 D

γj
t zj(t))C

0 D
γj
t yj(t) + lj(t)Φp(zj(t))yj(t)dt +

cj

c′j
kj(0)Φp(zj(0))yj(0) +

dj

d′j
kj(T)Φp(zj(T))yj(T)

}

=
m

∑
j=1

{ ∫ T

0

∫ T

0
gj(t, s)Φp(zj(s))yj(t)dsdt + λ

∫ T

0
fzj (t, z1(t), . . . , zm(t))yj(t)dt

}
, ∀Y = (y1, . . . , ym) ∈ H. (11)

Proof. Consider (4) and (5), the boundary conditions in Equation (3) and Lemma 4 yield:

∫ T

0
tD

γj
T (kj(t)Φp(

C
0 D

γj
t zj(t)))yj(t)dt

=−
∫ T

0
yj(t)d[tD

γj−1
T (kj(t)Φp(

C
0 D

γj
t zj(t)))]

=tD
γj−1
T

(
kj(0)Φp(

C
0 D

γj
t zj(0))

)
yj(0)− tD

γj−1
T

(
kj(T)Φp(

C
0 D

γj
t zj(T))

)
yj(T) +

∫ T

0
tD

γj−1
T (kj(t)Φp(

C
0 D

γj
t zj(t)))y′j(t)dt (12)

=
cj

c′j
kj(0)Φp(zj(0))yj(0) +

dj

d′j
kj(T)Φp(zj(T))yj(T) +

∫ T

0
kj(t)Φp(

C
0 D

γj
t zj(t))C

0 D
γj
t yj(t)dt.

Substituting yj(t) into Equation (3) and integrating on both sides from 0 to T, then
summing from j = 1 to j = m and combining with (12), we can obtain Equation (11).
The proof is completed.

Remark 1. For any zj ∈ Hγj ,p ⊂ C([0, T]), j = 1, 2, . . . , m, from Equation (3) we have

tD
γj
T (kj(t)Φp(

C
0 D

γj
t zj(t))) + lj(t)Φp(zj(t)) = λ fzj (t, z1(t), . . . , zm(t)) +

∫ T

0
gj(t, s)Φp(zj(s))ds, t ∈ [0, T],

because f (t, ·, . . . , ·) ∈ C1[Rm], zj(t) =
∫ T

0 gj(t, s)Φp(zj(s))ds ∈ Hγj ,p and

tD
γj
T (kj(t)Φp(

C
0 D

γj
t zj(t))) =

(
tD

γj−1
T (kj(t)Φp(

C
0 D

γj
t zj(t)))

)′
,

one gets

tD
γj−1
T (kj(t)Φp(

C
0 D

γj
t zj(t))) ∈ AC([0, T]).

Hence, the terms tD
γj−1
T (kj(0)Φp(C

0 D
γj
t zj(0))) and tD

γj−1
T (kj(T)Φp(C

0 D
γj
t zj(T))) exist in

this paper.

Consider the functional F : H → R with

142



Fractal Fract. 2022, 6, 467

F (Z) :=
1
p

j=m

∑
j=1

∫ T

0
kj(t) | C

0 D
γj
t zj(t) |p +lj(t) | zj(t) |p dt +

j=m

∑
j=1

[
cj

pc′j
kj(0) | zj(0) |p +

dj

pd′j
kj(T) | zj(T) |p

]

−
j=m

∑
j=1

∫ T

0
Gj(zj(t))dt − λ

∫ T

0
f (t, z1(t), . . . , zm(t))dt

=
1
p

j=m

∑
j=1

‖zj‖p
(γj ,p)

+
j=m

∑
j=1

[
cj

pc′j
kj(0) | zj(0) |p +

dj

pd′j
kj(T) | zj(T) |p

]

−
j=m

∑
j=1

∫ T

0
Gj(zj(t))dt − λ

∫ T

0
f (t, z1(t), . . . , zm(t))dt, (13)

where Gj(zj(t)) = 1
2

∫ T
0 gj(t, s)Φp(zj(s))zj(t)ds, t ∈ (0, T), j = 1, 2, . . . , m. Owing to zj(t) =∫ T

0 gj(t, s)Φp(zj(s))ds, j = 1, 2, . . . , m, the Gâteaux derivative of Gj is

G′
j(zj)(yj) = lim

h→0

Gj(zj + hyj)− Gj(zj)

h
(14)

= lim
h→0

1
2

∫ T
0 gj(t, s)Φp(zj(s) + hyj(s))(zj(t) + hyj(t))− gj(t, s)Φp(zj(s))zj(t)ds

h

= lim
h→0

1
2 h2y2

j (t) + hzj(t)yj(t)

h
= zj(t)yj(t) =

∫ T

0
gj(t, s)Φp(zj(s))yj(t)ds, j = 1, 2, . . . , m.

Then, combining the continuity of f and (14), we can see that F ∈ C1(H,R) and

F′(Z)(Y) =
j=m

∑
j=1

{ ∫ T

0
kj(t)Φp(

C
0 D

γj
t zj(t))C

0 D
γj
t yj(t) + lj(t)Φp(zj(t))yj(t)dt +

cj

c′j
kj(0)Φp(zj(0))yj(0) (15)

+
dj

d′j
kj(T)Φp(zj(T))yj(T)−

∫ T

0

∫ T

0
gj(t, s)Φp(zj(s))yj(t)dsdt − λ

∫ T

0
fzj(t, Z(t))yj(t)dt

}
, ∀Z, Y ∈ H.

Notice that, the critical point of F is the weak solution of Equation (3).

3. Main Results

First, some hypotheses related to nonlinearity f are given, which play important roles
in the remaining discussion.
(H0) lim

∀j:|zj |→∞

f (t,Z(t))

∑
j=m
j=1 |zj |p

= ∞ uniformly for t ∈ [0, T], Z(t) = (z1(t), . . . , zm(t)) ∈ Rm;

(H1) 0 ≤ f (t, Z(t)) = o(∑
j=m
j=1 | zj |p) as ∑

j=m
j=1 | zj |→ 0 uniformly for t ∈ [0, T];

(H2) For any Z(t) = (z1(t), . . . , zm(t)) ∈ Rm, f (t, Z(t)) = ∑
j=m
j=1

ηj
p | zj |p −J(t, Z(t)) with

J(t, 0) ≡ 0, and

min
1≤j≤m

{ηj} >
1

λζ
p+1
0

(
3
2
+ p

j=m

∑
j=1

[
cj

pc′j
kj(0) +

dj

pd′j
kj(T)]W

p
j ),

j=m

∑
j=1

(
ηj

p
+

β j

2λ
) | zj |ωj≤ J(t, Z(t)) ≤

j=m

∑
j=1

δj | zj |ωj ,

where ωj ∈ (0, p), δj > 0, ζ0 > 0 is a constant and β̂ is introduced thereinafter, j = 1, 2, . . . , m.

Lemma 6. F satisfies the Palais–Smale condition under (H0).

Proof. Suppose that sequence {F (Zk)}k∈N is bounded and lim
k→∞

F′(Zk) = 0, Zk(t) =

(zk,1(t), . . . , zk,m(t)). We claim that {Zk}k∈N is bounded in H. Indeed, assume
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∀j : ‖zk,j‖(γj ,p) → ∞(k → ∞). From (H0), for any L > 0, there exists k0 ∈ N such
that

f (t, Zk(t))

∑
j=m
j=1 ‖zk,j‖p

(γj ,p)

≥ L, ∀ k > k0, t ∈ [0, T]. (16)

For any fixed k∗ ∈ N with k∗ > k0, from the integral mean value theorem, there exists
ξ(k∗) ∈ (0, 1] such that∫ T

0
f (t, Zk∗(t))dt = T f (ξ(k∗)T, Zk∗(ξ(k∗)T)). (17)

Combining (16) and (17) yields

∫ T
0 f (t, Zk∗(t))dt

∑
j=m
j=1 ‖zk∗ ,j‖p

(γj ,p)

=
T f (ξ(k∗)T, Zk∗(ξ(k∗)T))

∑
j=m
j=1 ‖zk∗ ,j‖p

(γj ,p)

≥
TL ∑

j=m
j=1 ‖zk∗ ,j‖p

(γj ,p)

∑
j=m
j=1 ‖zk∗ ,j‖p

(γj ,p)

= TL.

Hence, we can get ∫ T
0 f (t, Zk(t))dt

∑
j=m
j=1 ‖zk,j‖p

(γj ,p)

≥ TL, ∀ k > k0, t ∈ [0, T]. (18)

In view of (8), (9), (13) and (18) we have

F (Zk(t))

∑
j=m
j=1 ‖zk,j‖p

(γj ,p)

=
1
p
+

∑
j=m
j=1

[
cj
pc′j

kj(0) | zk,j(0) |p +
dj
pd′j

kj(T) | zk,j(T) |p
]

∑
j=m
j=1 ‖zk,j‖p

(γj ,p)

−
∑

j=m
j=1

∫ T
0 Gj(zk,j(t))dt + λ

∫ T
0 f (t, Zk(t))dt

∑
j=m
j=1 ‖zk,j‖p

(γj ,p)

≤ 1
p
+

∑
j=m
j=1 [

cj
pc′j

kj(0) +
dj
pd′j

kj(T)]W
p
j ‖zk,j‖p

(γj ,p)

∑
j=m
j=1 ‖zk,j‖p

(γj ,p)

− λTL

≤ 1
p
+

j=m

∑
j=1

[
cj

pc′j
kj(0) +

dj

pd′j
kj(T)]W

p
j − λTL. (19)

Choose L large enough such that 1
p + ∑

j=m
j=1 [

cj
pc′j

kj(0) +
dj
pd′j

kj(T)]W
p
j − λTL < −1, then

combining (19) yields that F (Zk(t)) ≤ −∑
j=m
j=1 ‖zk,j‖p

(γj ,p)
, which means that F (Zk(t)) →

−∞ as ‖zk,j‖(γj ,p) → ∞, ∀j = 1, 2, . . . , m. It contradicts that {F (Zk)} is bounded. Hence,
{Zk} is bounded in H. Because of the reflexivity of H, we get that Zk ⇀ Z∗ in H (up to
subsequences). From Lemma 2, we have Zk → Z∗ uniformly in C([0, T]m) and Lp([0, T]m).
Then,⎧⎪⎨⎪⎩

(F′(Zk)−F′(Z∗))(Zk − Z∗) → 0, k → ∞,∫ T
0 ( fzj (t, Zk(t))− fzj (t, Z∗(t)))(zk,j(t)− z∗j (t))dt → 0, k → ∞, , j = 1, 2, . . . , m,∫ T
0 | zk,j(t)− z∗j (t) |2 dt → 0, zk,j(0)− z∗j (0) → 0, zk,j(T))− z∗j (T) → 0, k → ∞, j = 1, 2, . . . , m.

(20)

From (15), we obtain that
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(F′(Zk)−F′(Z∗))(Zk − Z∗) = F′(Zk)(Zk − Z∗)−F′(Z∗)(Zk − Z∗)

=
j=m

∑
j=1

{ ∫ T

0
kj(t)

(
Φp(

C
0 D

γj
t zk,j(t))− Φp(

C
0 D

γj
t z∗j (t))

)
C
0 D

γj
t (zk,j(t)− z∗j (t)) + lj(t)

(
Φp(zk,j(t))− Φp(z∗j (t))

)
(zk,j(t)− z∗j (t))dt (21)

−
∫ T

0

∫ T

0
gj(t, s)

(
Φp(zk,j(s))− Φp(z∗j (s))

)
(zk,j(t)− z∗j (t))dsdt +

cj

c′j
kj(0)

(
Φp(zk,j(0))− Φp(z∗j (0))

)
(zk,j(0)− z∗j (0))

+
dj

d′j
kj(T)

(
Φp(zk,j(T))− Φp(z∗j (T))

)
(zk,j(T)− z∗j (T))− λ

∫ T

0
( fzj (t, Zk(t))− fzj (t, Z∗(t)))(zk,j(t)− z∗j (t))dt

}
;

moreover,∫ T

0

∫ T

0
gj(t, s)

(
Φp(zk,j(s))− Φp(z∗j (s))

)
(zk,j(t)− z∗j (t))dsdt =

∫ T

0
| zk,j(t)− z∗j (t) |2 dt. (22)

Denote

Ψk,j(γj, p) =
∫ T

0
kj(t)

(
Φp(

C
0 D

γj
t zk,j(t))− Φp(

C
0 D

γj
t z∗j (t))

)
C
0 D

γj
t (zk,j(t)− z∗j (t))dt,

Ψk,j(p) =
∫ T

0
lj(t)

(
Φp(zk,j(t))− Φp(z∗j (t))

)
(zk,j(t)− z∗j (t))dt,

combining (20), (21) and (22), we obtain ∑
j=m
j=1 {Ψk,j(γj, p) + Ψk,j(p)} → 0 as k → ∞. As in

the discussion of Θ(α, p), Θ(p) in [19], we can get

Ψk,j(γj, p) + Ψk,j(p) ≥

⎧⎨⎩ ej‖zk,j − z∗j ‖
p
γj ,p, p ≥ 2,

e′j‖zk,j − z∗j ‖2
(γj ,p)

(‖zk,j‖p
Lp + ‖z∗j ‖

p
Lp)

p−2
p , 1 < p < 2,

where ej, e′j are constants, j = 1, 2, . . . , m. Based on the above discussion, we can obtain
‖zk,j − z∗j ‖(γj ,p) → 0, j = 1, 2, . . . , m, for all 1 < p < ∞. Hence, the Palais–Smale condi-
tion holds.

Theorem 2. Assume that (H0) and (H1) hold and f (t, Z) = f (t,−Z). Then, Equation (3) has
infinitely many solutions with 1

TpŴ p − β̂ > 0 and 0 < λ < ∞.

Proof. Due to f (t, Z) = f (t,−Z), it is easy to verify that F is even. Obviously, F (0) = 0.
Taking into account (H1) that, for any ε > 0, there exists r(ε) such that

f (t, Z(t)) ≤ ε
j=m

∑
j=1

| zj |p, ∀t ∈ [0, T],
j=m

∑
j=1

| zj |≤ r(ε). (23)

Further, gj(·, ·) ∈ C([0, T], [0, T]) means that the kernel gj is bounded by, say β j, i.e.,
| gj(t, s) |≤ β j, and

Gj(zj(t)) =
1
2

∫ T

0
gj(t, s)Φp(zj(s))zj(t)ds ≤

β j

2
zj(t) ‖ zj ‖p−1

∞ ≤
β j

2
‖ zj ‖p

∞, j = 1, 2, . . . , m. (24)

Let τ = r
Ŵ

. For any Z ∈ Υτ , one has ‖Z‖H = ∑
j=m
j=1 ‖zj‖(γj ,p) ≤

r
Ŵ

. Then,

r
Ŵ

≥
j=m

∑
j=1

‖zj‖(γj ,p) ≥
j=m

∑
j=1

1
Wj

‖zj‖∞ ≥ 1
Ŵ

j=m

∑
j=1

‖zj‖∞, (25)
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which means that ∑
j=m
j=1 ‖zj‖∞ ≤ r(ε). At this point, from (13), (23) and (24) we can see

F (Z) ≥ 1
p

j=m

∑
j=1

‖zj‖p
(γj ,p)

−
j=m

∑
j=1

∫ T

0

β j

2
‖ zj ‖p

∞ dt − λ
∫ T

0
ε

j=m

∑
j=1

| zj |p dt

≥ 1
p

j=m

∑
j=1

‖zj‖p
(γj ,p)

−
j=m

∑
j=1

(
Tβ j

2
+ λεT)Wp

j ‖zj‖p
(γj ,p)

(26)

≥[
1
p
− (

Tβ̂

2
+ λεT)Ŵp]

1
mp

( j=m

∑
j=1

‖zj‖(γj ,p)

)p

=[
1
p
− (

Tβ̂

2
+ λεT)Ŵp]

1
mp ‖Z‖p

H , ∀Z ∈ Υτ ,

where β̂ = max
1≤j≤m

{β j}. Choose ε = 1
2λ (

1
TpŴ p − β̂), from (26), we get

F (Z) ≥ 1
2pmp ‖Z‖p

H ≥ 0. (27)

Hence, Υτ ⊂ {Z ∈ H | F (Z) ≥ 0} and F (Z) ≥ 1
2pmp ‖Z‖p

H , ∀Z ∈ ∂Υτ . Therefore,
the condition (i) in Theorem 1 holds.

For any finite-dimensional space H0 ⊂ H, we claim that H̃ = H0
⋂{Z ∈ H | F (Z) ≥

0} is bounded. Assume that there exists at least a sequence {Zk} ⊂ H̃ such that ‖Zk‖H → ∞
as k → ∞. From F (Zk) ≥ 0 and (19), we obtain

0 ≤ F (Zk(t))

∑
j=m
j=1 ‖zk,j‖p

(γj ,p)

≤ 1
p
+

j=m

∑
j=1

[
cj

pc′j
kj(0) +

dj

pd′j
kj(T)]W

p
j − λTL.

Since L is arbitrary, we draw a contradiction. Therefore, H̃ = H0
⋂{Z ∈ H | F (Z) ≥ 0}

is bounded. Based on Theorem 1, functional F has infinitely many critical points, which
means that Equation (3) has infinitely many solutions in H.

Theorem 3. Assume that (H2) holds and J(t, Z) = J(t,−Z). Then, Equation (3) has infinitely

many solutions with ∑
j=m
j=1

1
p −

(
β jT

2 +
λTηj

p

)
Wp

j > 0.

Proof. Suppose that the sequence {F (Zk)}k∈N is bounded and lim
k→∞

F′(Zk) = 0, Zk(t) =

(zk,1(t), . . . , zk,m(t)). In what follows, we prove that F satisfies the Palais–Smale condition.
Indeed, assume ∀j : ‖zk,j‖(γj ,p) → ∞(k → ∞), from (13), (24), (H2) and (8), we have

1
p

j=m

∑
j=1

‖zk,j‖p
(γj ,p)

≤F (Zk) +
j=m

∑
j=1

∫ T

0
Gj(zj(t))dt + λ

∫ T

0
f (t, z1(t), . . . , zm(t))dt (28)

≤F (Zk) +
j=m

∑
j=1

∫ T

0

β j

2
| zk,j |p dt + λ

j=m

∑
j=1

∫ T

0

ηj

p
| zk,j |p −(

ηj

p
+

β j

2λ
) | zk,j |ωj dt

≤F (Zk) +
j=m

∑
j=1

(
β jT

2
+

λTηj

p

)
Wp

j ‖zk,j‖p
(γj ,p)

+ λT
j=m

∑
j=1

(
ηj

p
+

β j

2λ
)W

ωj

j ‖zk,j‖
ωj

(γj ,p)
,

namely

j=m

∑
j=1

[
1
p
−
(

β jT
2

+
λTηj

p

)
Wp

j

]
‖zk,j‖p

(γj ,p)
− λT

j=m

∑
j=1

(
ηj

p
+

β j

2λ
)W

ωj

j ‖zk,j‖
ωj

(γj ,p)
≤ F (Zk). (29)
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Recall that ∑
j=m
j=1

1
p −

(
β jT

2 +
λTηj

p

)
Wp

j > 0, ωj ∈ (0, p) and {F (Zk)} is bounded, we

get a contradiction. Hence, {Zk} is bounded on H. The rest of the proof for the Palais–Smale
condition is similar to that of Lemma 6, so we do not repeat it.

Let τ′ ∈ (0, 1
Ŵ
). For any Z ∈ Υτ′ , one has ‖Z‖H = ∑

j=m
j=1 ‖zj‖(γj ,p) ≤ τ′ < 1

Ŵ
. A

similar analysis with (25) yields ∑
j=m
j=1 ‖zj‖∞ < 1. From (28), we get

F (Z) ≥ 1
p

j=m

∑
j=1

‖zj‖p
(γj ,p)

−
j=m

∑
j=1

∫ T

0

β j

2
| zj |p dt − λ

j=m

∑
j=1

∫ T

0

ηj

p
| zj |p −(

ηj

p
+

β j

2λ
) | zj |ωj dt

=
1
p

j=m

∑
j=1

‖zj‖p
(γj ,p)

−
j=m

∑
j=1

[ ∫ T

0

β j

2
| zj |p dt + λ

∫ T

0

ηj

p
| zj |p −(

ηj

p
+

β j

2λ
) | zj |ωj dt

]

=
1
p

j=m

∑
j=1

‖zj‖p
(γj ,p)

−
j=m

∑
j=1

[ ∫ T

0
(

β j

2
+

ληj

p
) | zj |p −(

ληj

p
+

β j

2
) | zj |ωj dt

]

=
1
p

j=m

∑
j=1

‖zj‖p
(γj ,p)

+
j=m

∑
j=1

∫ T

0
(

ληj

p
+

β j

2
) | zj |ωj −(

ληj

p
+

β j

2
) | zj |p dt

≥ 1
p

j=m

∑
j=1

‖zj‖p
(γj ,p)

+
j=m

∑
j=1

∫ T

0
(

ληj

p
+

β j

2
) | zj |p −(

ληj

p
+

β j

2
) | zj |p dt

=
1
p

j=m

∑
j=1

‖zj‖p
(γj ,p)

≥ 1
pmp (

j=m

∑
j=1

‖zj‖(γj ,p))
p =

1
pmp ‖Z‖p

H ≥ 0, ∀ Z ∈ Υτ′ .

Clearly, Υτ′ ⊂ {Z ∈ H | F (Z) ≥ 0} and F (Z) ≥ 1
pmp ‖Z‖p

H , ∀Z ∈ ∂Υτ′ .

For any finite-dimensional space H′
0 ⊂ H, we claim that Ĥ = H′

0
⋂{Z ∈ H | F (Z) ≥

0} is bounded. Assume that there exists at least a sequence {Zk} ⊂ Ĥ such that ‖Zk‖H → ∞
as k → ∞. Then, according to (19), (H2) and Lemma 3 we obtain

0 ≤ F (Zk(t))

∑
j=m
j=1 ‖zk,j‖p

(γj ,p)

≤ 1
p
+

j=m

∑
j=1

[
cj

pc′j
kj(0) +

dj

pd′j
kj(T)]W

p
j −

λ
∫ T

0 ∑
j=m
j=1

ηj
p | zk,j |p −J(t, Zk(t))dt

∑
j=m
j=1 ‖zk,j‖p

(γj ,p)

(30)

≤ 1
p
+

j=m

∑
j=1

[
cj

pc′j
kj(0) +

dj

pd′j
kj(T)]W

p
j −

∑
j=m
j=1

ληj
p
∫

Ωzk,j
ζ

p
0‖zk,j‖p

(γj ,p)
dt

∑
j=m
j=1 ‖zk,j‖p

(γj ,p)

+
λ
∫ T

0 ∑
j=m
j=1 δj | zk,j |ωj dt

∑
j=m
j=1 ‖zk,j‖p

(γj ,p)

≤ 1
p
+

j=m

∑
j=1

[
cj

pc′j
kj(0) +

dj

pd′j
kj(T)]W

p
j − λζ

p+1
0
p

min
1≤j≤m

{ηj}+
λT ∑

j=m
j=1 δjW

ωj

j ‖zk,j‖
ωj

(γj ,p)

∑
j=m
j=1 ‖zk,j‖p

(γj ,p)

,

where Ωzk,j = {t ∈ [0, T] :| zk,j(t) |≥ ζ0‖zk,j‖(γj ,p)} and meas{Ωzk,j} ≥ ζ0.

Since min1≤j≤m{ηj} > 1
λζ

p+1
0

( 3
2 + p ∑

j=m
j=1 [

cj
pc′j

kj(0) +
dj
pd′j

kj(T)]W
p
j ), then

1
p
+

j=m

∑
j=1

[
cj

pc′j
kj(0) +

dj

pd′j
kj(T)]W

p
j − λζ

p+1
0
p

min
1≤j≤m

{ηj} < − 1
2p

, (31)

based on ωj ∈ (0, p) and ‖Zk‖H → ∞ as k → ∞, we get

λT ∑
j=m
j=1 δjW

ωj
j ‖zk,j‖

ωj
(γj ,p)

∑
j=m
j=1 ‖zk,j‖p

(γj ,p)

→ 0, k → ∞. (32)
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Combining (31) and (32), we obtain that 0 ≤ F (Zk(t))

∑
j=m
j=1 ‖zk,j‖

p
(γj ,p)

< − 1
2p as k → ∞, which

draws a contradiction. Hence, Ĥ is bounded. Based on Theorem 1, functional F has
infinitely many critical points, which means that Equation (3) has infinitely many solutions
in H.

Example 1. Focus on the following Fredholm fractional partial integro-differential equations with
m = 3 and p = 4:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tD0.5
1 ((t + 1)Φ4(

C
0 D0.5

t z1(t))) + ( 1
2 + t)Φ4(z1(t)) = Dz1 f (t, z1(t), z2(t), z3(t)) +

∫ 1
0 10−5t sin(s)Φ4(z1(s))ds, t ∈ [0, 1],

z1(t) =
∫ 1

0 10−5t sin(s)Φ4(z1(s))ds, t ∈ [0, 1],

tD0.6
1 ((t2 + 1)Φ4(

C
0 D0.6

t z2(t))) + ( 1
3 + t2)Φ4(z2(t)) = Dz2 f (t, z1(t), z2(t), z3(t)) +

∫ 1
0 10−5t2 sin(s)Φ4(z2(s))ds, t ∈ [0, 1],

z2(t) =
∫ 1

0 10−5t2 sin(s)Φ4(z2(s))ds, t ∈ [0, 1],

tD0.75
1 ((t3 + 1)Φ4(

C
0 D0.75

t z3(t))) + ( 1
4 + t3)Φ4(z3(t)) = Dz3 f (t, z1(t), z2(t), z3(t)) +

∫ 1
0 10−5t3 sin(s)Φ4(z3(s))ds, t ∈ [0, 1],

z3(t) =
∫ 1

0 10−5t3 sin(s)Φ4(z3(s))ds, t ∈ [0, 1],
Φ4(z1(0))− tD−0.5

1 (Φ4(
C
0 D0.5

t z1(0))) = 0, Φ4(z1(1)) + tD−0.5
1 (Φ4(

C
0 D0.5

t z1(1))) = 0,
Φ4(z2(0))− tD−0.4

1 (Φ4(
C
0 D0.6

t z2(0))) = 0, Φ4(z2(1)) + tD−0.4
1 (Φ4(

C
0 D0.6

t z2(1))) = 0,
Φ4(z3(0))− tD−0.25

1 (Φ4(
C
0 D0.75

t z3(0))) = 0, Φ4(z3(1)) + tD−0.25
1 (Φ4(

C
0 D0.75

t z3(1))) = 0,

(33)

where cj = cj′ = 1, dj = dj′ =
1
2 , j = 1, 2, 3,

f (t, z1, z2, z3) = (1 + t)

{
(z4

1 + z4
2 + z4

3)
2, z4

1 + z4
2 + z4

3 ≤ 1,
2(z4

1 + z4
2 + z4

3)
2 − (z4

1 + z4
2 + z4

3)
1
2 , z4

1 + z4
2 + z4

3 > 1.

It is easy to verify that f is continuous with respect to t and continuously differentiable
with respect to z1, z2 and z3 (see Figures 1 and 2) and satisfies (H0) and (H1). Obviously,
k1(0) = k2(0) = k3(0) = 1, k1(1) = k2(1) = k3(1) = 2, β̂ = 10−5. By direct calculation we
have k̂1 = k̂2 = k̂3 = 1, l̂1 = 1

2 , l̂2 = 1
3 , l̂3 = 1

4 , and

W(0.5,4) = max
{

1

Γ(0.5)[(− 1
2 )

4
3 + 1]

3
4

, 1
}
+

[
8 max

{
1,
(

1
Γ(1.5)

)4}] 1
4

= 3.184,

W(0.6,4) = max
{

1

Γ(0.6)[(− 2
5 )

4
3 + 1]

3
4

, 1
}
+

[
8 max

{
1,
(

1
Γ(1.6)

)4}] 1
4

= 3.072,

W(0.75,4) = max
{

1

Γ(0.75)[(− 1
4 )

4
3 + 1]

3
4

, 1
}
+

[
8 max

{
1,
(

1
Γ(1.75)

)4}] 1
4

= 2.936,

then
W4

(0.5,4)

min{k̂1, l̂1}
= 206,

W4
(0.6,4)

min{k̂2, l̂2}
= 267,

W4
(0.75,4)

min{k̂3, l̂3}
= 297,

namely, Ŵ = 297, 1
pŴ

= 8.4 × 10−5, then 1
pŴ

− β̂ > 0. Hence, from Theorem 2 we can see

that Equation (33) has infinitely many solutions.
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Figure 1. the contour-plot of Equation (33) for t = 0.

Figure 2. the contour-plot of Equation (33) for t = 1.
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Abstract: This paper investigates the existence and approximate controllability of Riemann–Liouville
fractional evolution systems of Sobolev-type in abstract spaces. At first, a group of sufficient condi-
tions is established for the existence of mild solutions without the compactness of operator semigroup.
Then the approximate controllability is studied under the assumption that the corresponding linear
system is approximate controllability. The proof is based on the fixed point theory and the method of
operator semigroup. An example is given as an application of the obtained results.
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Schauder fixed point theorem

MSC: 26A33; 93B05

1. Introduction

Let X be a Hilbert space, whose norm is denoted by ‖ · ‖. We consider the fractional
evolution equation of sobolev type with the Riemann–Liouville derivative of the form{ LDα

t (Ex(t)) = Ax(t) + f (t, x(t)) + Bu(t), t ∈ J′ := (0, b],

I1−α
t (Ex(t))|t=0 + g(x) = x0,

(1)

where LDα
t is the Riemann–Liouville fractional derivative operator of order α ∈ (0, 1), I1−α

t
is the fractional integral operator of order 1 − α, A : D(A) ⊂ X → X and E : D(E) ⊂ X →
X are linear operators, B is a linear bounded operator from U to X; here U is another Hilbert
space, the control function u ∈ Lp(J, U) for pα > 1, x0 ∈ X, f is the nonlinear function and
g represents the nonlocal function which satisfies specific conditions.

Fractional differential equations, including of the Caputo type and Riemann–Liouville
type, have been proved to be crucial tools in portraying the hereditary and memory
property of various materials and processes. In 2011, Du et al. [1] pointed out that Riemann–
Liouville fractional derivatives are more suitable to describe certain characteristics of
viscoelastic materials than Caputo ones. Therefore, it is significant to study Riemann–
Liouville fractional differential systems. In 2013, Zhou et al. [2], applying the Laplace
transform technique and probability density functions, presented a suitable concept of mild
solutions of Riemann–Liouville fractional evolution equations, and proved the existence of
mild solutions for the fractional Cauchy problems under the cases that the C0-semigroup
is compact or noncompact. For the existence of mild solutions of fractional evolution
equations, we refer to [3–8] and the references therein. In these papers, the compactness
of operator semigroup or the measure of non-compactness conditions on nonlinearity are
required. Sometimes, in order to obtain the uniqueness of mild solutions, the Lipschitz
condition is also assumed.

In recent years, the controllability of fractional evolution equations has gained consid-
erable attention. Generally speaking, the controllability of fractional evolution equations in
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abstract spaces includes two cases: the exact controllability and the approximate controlla-
bility. When we study the exact controllability of fractional evolution systems in abstract
spaces, we assume that the control operator has a bounded inverse operator in a quotient
space. However, if the state space is infinite dimensional and the operator semigroup is
compact, the inverse of the control operator may not exist, see [9]. Hence, the assumptions
for the exact controllability are too strong. Contrasting with the exact controllability, ap-
proximate controllability is more suitable to describe the natural phenomena. There are
many research works focusing on the approximate controllability of fractional evolution
systems, see [10–12] and the references therein. In [10], Chang et al. investigated the
approximate controllability of fractional differential systems of Sobolev type in Banach
spaces under the assumption that the resolvent operators, generated by the linear part, are
compact. Sakthivel et al. [11] studied the approximate controllability of nonlinear fractional
stochastic evolution systems when the linear part generates a compact semigroup. Recently,
In [12], Yang demonstrated the existence and approximate controllability of mild solutions
for α ∈ (1, 2)-order fractional evolution equations of Sobolev type when the pair (A, E)
generates a compact resolvent family.

Inspired by the above mentioned papers, the aim of this work is to investigate the
existence and approximate controllability of Riemann–Liouville fractional evolution system
(1) in Hilbert space X. By using the Schauder fixed point theorem and the operator
semigroup theory, we first prove the existence of mild solutions of the considered system
without the compactness of operator semigroup and the measure of non-compactness
conditions on nonlinearity. Then the approximate controllability is studied under the
assumption that the corresponding linear system is approximate controllability. It is
emphasized that the compactness of the operator semigroup and the Lipschitz continuity
of nonlinearity are deleted in our work. The redundant assumptions on the linear operator
E, such as the conditions [C1] and [C4] of [13], are removed in this paper.

2. Preliminaries

Let J = [0, b] and C(J, X) be the continuous function space. Denote by

C1−α(J, X) := {x : ·1−αx(·) ∈ C(J, X)}.

Then C1−α(J, X) is a Banach space endowed with the norm ‖x‖C1−α
= sup

t∈J
t1−α‖x(t)‖.

At first, for any h ∈ Lp(J, X) with pα > 1, we consider the following linear fractional
initial value problem { LDα

t (Ex(t)) = Ax(t) + h(t), t ∈ J′,

I1−α
t (Ex(t))|t=0 + g(x) = x0.

(2)

Throughout this paper, we suppose the following assumptions on A and E.
(A1) The linear operator A is densely defined and closed.
(A2) D(E) ⊂ D(A) and E is bijective.
(A3) The linear operator E−1 : X → D(E) ⊂ X is compact.
By (A1)–(A3), the linear operator AE−1 : X → X is bounded due to the closed graph

theorem. Hence, AE−1 generates a C0-semigroup T(t)(t ≥ 0), which is expressed by
T(t) = eAE−1t for t ≥ 0. We suppose that M := sup

t≥0
‖T(t)‖ < +∞.

Remark 1. Contrasting with [13], we delete the redundant conditions [C1] and [C4] of [13] in our
paper. Hence, the results obtained in this work extends the results of [13].

Applying the Riemann–Liouville fractional integral operator on both sides of (2),
we obtain
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Ex(t) =
tα−1

Γ(α)
I1−α
t (Ex(t))|t=0 + Iα

t Ax(t) + Iα
t h(t)

=
tα−1

Γ(α)
[x0 − g(x)] +

1
Γ(α)

∫ t

0
(t − s)α−1[Ax(s) + h(s)

]
ds.

Let λ > 0. Taking the Laplace transform

x̂(λ) =
∫ ∞

0
e−λtx(t)dt

and
ĥ(λ) =

∫ ∞

0
e−λth(t)dt

on both sides of the above equality, we can obtain

Ex̂(t) =
1

λα
[x0 − g(x)] +

1
λα

AE−1Ex̂(λ) +
1

λα
ĥ(λ)

= (λα I − AE−1)−1[x0 − g(x)] + (λα I − AE−1)−1ĥ(λ)

=
∫ ∞

0
e−λαsT(s)[x0 − g(x)]ds +

∫ ∞

0
e−λαsT(s)ĥ(λ)ds,

where (λα I − AE−1)−1 =
∫ ∞

0 e−λαsT(s)ds. Consider the one-side stable probability density
function

ξα(θ) =
1
π

∞

∑
n=1

(−1)n−1θ−αn−1 Γ(nα + 1)
n!

sin(nπα), θ ∈ (0,+∞),

whose Laplace transform is given by∫ ∞

0
e−λθξα(θ)dθ = e−λα

, α ∈ (0, 1).

A similar argument as in [2] shows that

Ex̂(λ) =
∫ ∞

0
e−λt

∫ ∞

0
αθξα(θ)T(tαθ)tα−1[x0 − g(x)]dθdt

+
∫ ∞

0
e−λt

∫ t

0

∫ ∞

0
αθξα(θ)T((t − s)αθ)(t − s)α−1h(s)dθdsdt,

where ξα(θ) =
1
α θ−1− 1

α �α(θ
− 1

α ). This fact implies that

Ex(t) =
∫ ∞

0
αθξα(θ)T(tαθ)tα−1[x0 − g(x)]dθ

+
∫ t

0

∫ ∞

0
αθξα(θ)T((t − s)αθ)(t − s)α−1h(s)dθds.

Thus, we obtain

x(t) = tα−1TE(t)[x0 − g(x)] +
∫ t

0
(t − s)α−1TE(t − s)h(s)ds,

where
TE(t) = E−1

∫ ∞

0
αθξα(θ)T(tαθ)dθ.

Remark 2. When E = I, I : X → X is the identity operator, we have

TI(t) =
∫ ∞

0
αθξα(θ)T(tαθ)dθ, t ≥ 0.
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Therefore, TE(t) = E−1TI(t) for all t ≥ 0.

From the above arguments, we introduce the definition of mild solution of the
system (1) as follows.

Definition 1. For each u ∈ Lp(J, U), pα > 1, a function x ∈ C1−α(J, X) is called a mild solution
of the system (1) if I1−α

t (Ex(t))|t=0 + g(x) = x0 and

x(t) = tα−1TE(t)[x0 − g(x)] +
∫ t

0
(t − s)α−1TE(t − s)[ f (s, x(s)) + Bu(s)]ds, t ∈ J′. (3)

For the operator family {TE(t)}t≥0, we have the following lemma.

Lemma 1. Let the assumptions (A1)–(A3) hold. Then {TE(t)}t≥0 has the following properties:
(i) For fixed t ≥ 0, TE(t) is a linear and bounded operator, i.e., for any x ∈ X,

‖TE(t)x‖ ≤ M‖E−1‖
Γ(α)

‖x‖.

(ii) {TE(t)}t≥0 is continuous in the uniform operator topology for t ≥ 0.
(iii) {TE(t)}t≥0 is compact.

Proof. From Proposition 3.1 of [2] and Remark 2, it is easy to verify that (i) holds. By virtue
of the definition of the operator T(t)(t ≥ 0) and the Lebesgue dominated convergence
theorem, we can deduce (ii). Next, we prove (iii). For any r > 0, x ∈ X with ‖x‖ ≤ r,
we have

‖TI(t)x‖ ≤ αM
∫ ∞

0
θξα(θ)dθ‖x‖

≤ αM
Γ(α + 1)

‖x‖

≤ Mr
Γ(α)

.

This fact means that TI(t) maps bounded subset of X into the bounded set. Then E−1TI(t)
maps the bounded subset of X into relatively compact set due to the compactness of E−1.
Thus, {TE(t)}t≥0 is compact.

Definition 2. Let K f (b) = {x(b) : x be a mild solution of the system (1) for some u ∈ Lp(J, U)}.
If K f (b) = X, the system (1) is said to be approximate controllability on J.

We consider the linear fractional control system corresponding to (1) in the form{ LDα
t (Ex(t)) = Ax(t) + Bu(t), t ∈ J′,

I1−α
t (Ex(t)) = x0.

(4)

Define two operators Πb
0 and R(ε, Πb

0) by

Πb
0 =

∫ b

0
(b − s)α−1TE(b − s)BB∗T∗

E(b − s)ds,

R(ε, Πb
0) = (εI + Πb

0)
−1, ε > 0,

where B∗ and T∗
E(t) denote the adjoint operators of B and TE(t), respectively. Then, Πb

0 is a
linear operator. From [14], we obtain the following result.

154



Fractal Fract. 2022, 6, 56

Lemma 2. The following conditions are equivalent:
(i) The linear fractional control system (4) is approximately controllable on J.
(ii) The operator Πb

0 is positive, that is, 〈x∗, Πb
0x∗〉 > 0 for all nonzero x∗ ∈ X∗.

(iii) For any x ∈ X, ‖εR(ε, Πb
0)x‖ → 0 as ε → 0+.

3. Existence and Approximate Controllability

In order to study the approximate controllability of the fractional control system (1),
we first investigate the existence of solutions for the following integral system⎧⎪⎪⎪⎨⎪⎪⎪⎩

x(t) = tα−1TE(t)[x0 − g(x)] +
∫ t

0 (t − s)α−1TE(t − s)[ f (s, x(s)) + Bu(s; x)]ds, t ∈ J′,

u(t; x) = B∗T∗
E(b − t)R(ε, Πb

0)P(x),

P(x) = xb − bα−1TE(b)(x0 − g(x))−
∫ b

0 (b − s)α−1TE(b − s) f (s, x(s))ds,

(5)

where xb is an arbitrary element in X which is different from x0. By Definition 1, the mild
solution of the system (1) is equivalent to the solution of the integral system (5) for u(·; x) ∈
Lp(J, X).

For this purpose, we make the following assumptions.
(A4) f : J × X → X satisfies the following conditions.
(i) For each x ∈ X, f (·, x) : J → X is strongly measurable, and for every t ∈ J, f (·, x) :

X → X is continuous.
(ii) For any r > 0, there is a function φ ∈ Lp(J,R+), pα > 1 such that

‖ f (t, x)‖ ≤ φ(t)

for any t ∈ J and x ∈ X with ‖x‖ ≤ r.
(A5) g : C1−α(J, X) → X is continuous and maps bounded subset of C1−α(J, X) into

the bounded set.
(A6) B : U → X is a bounded linear operator, i.e., ∃ MB > 0 such that ‖B‖ ≤ MB.
(A7) ‖R(ε, Πb

0)‖ ≤ 1
ε for all ε > 0.

For any r > 0, let Br =
{

x ∈ C1−α(J, X) : ‖x‖C1−α
≤ r

}
. Then Br is a nonempty

bounded, closed and convex subset of C1−α(J, X). By the assumption (A5) we know that
there exists a constant M1 > 0 such that ‖g(x)‖ ≤ M1 for any x ∈ Br. From the assumption
(A6) we deduce that Bu ∈ Lp(J, X) for any u ∈ Lp(J, X) with pα > 1.

Lemma 3. For any F ∈ Lp(J, X), the operator ℵ : Lp(J, X) → C(J, X), defined by

(ℵF )(·) = ·1−α
∫ ·

0
(· − s)α−1TE(· − s)F (s)ds,

is compact.

Proof. Denote by

(ℵ0F )(t) = t1−α
∫ t

0
(t − s)α−1TI(t − s)F (s)ds.

It follows from Lemma 1 that

‖(ℵ0F )(t)‖ ≤ M
Γ(α)

(
bp − b
pα − 1

)
1− 1

p ‖F‖Lp .

So, owing to the compactness of E−1, we conclude that the set

{(ℵF )(t) = E−1(ℵ0F )(t) : F ∈ Lp(J, X), t ∈ J}

is relatively compact in X.
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Next, we will prove that the set {ℵF : F ∈ Lp(J, X)} is equi-continuous in C(J, X).
For t1, t2 ∈ J with 0 ≤ t1 < t2 < b, we have

‖(ℵF )(t2)− (ℵF )(t1)‖ ≤ ‖(t1−α
2 − t1−α

1 )
∫ t2

0
(t2 − s)α−1TE(t2 − s)F (s)ds‖

+ t1−α
1 ‖

∫ t1

0
[(t2 − s)α−1 − (t1 − s)α−1]TE(t2 − s)F (s)ds‖

+ t1−α
1 ‖

∫ t1

0
(t1 − s)α−1[TE(t2 − s)− TE(t1 − s)]F (s)ds‖

+ t1−α
1 ‖

∫ t2

t1

(t2 − s)α−1TE(t2 − s)F (s)ds‖

=
4

∑
i=1

Ii.

Obviously, if t2 − t1 → 0, we have

I1 = ‖(t1−α
2 − t1−α

1 )
∫ t2

0
(t2 − s)α−1TE(t2 − s)F (s)ds‖

≤ M‖E−1‖
Γ(α)

(
p − 1

pα − 1
)

1− 1
p ‖F‖Lp(t2 − t1)

1−α

→ 0,

I2 = t1−α
1 ‖

∫ t1

0
[(t2 − s)α−1 − (t1 − s)α−1]TE(t2 − s)F (s)ds‖

≤ M‖E−1‖b1−α

Γ(α)

∫ t1

0
[(t2 − s)α−1 − (t1 − s)α−1]F (s)ds

→ 0

and

I4 = t1−α
1 ‖

∫ t2

t1

(t2 − s)α−1TE(t2 − s)F (s)ds‖

≤ M‖E−1‖b1−α

Γ(α)
(

p − 1
pα − 1

)
1− 1

p ‖F‖Lp(t2 − t1)
pα−1

p

→ 0.

Since TE(t) is continuous in the uniform operator topology for t ≥ 0, we obtain that

I3 = t1−α
1 ‖

∫ t1

0
(t1 − s)α−1[TE(t2 − s)− TE(t1 − s)]F (s)ds‖

≤ sup
s∈[0,t1]

‖TE(t2 − s)− TE(t1 − s)‖( bp − b
pα − 1

)
1− 1

p ‖F‖Lp

→ 0

as t2 − t1 → 0. Consequently, we have

‖(ℵF )(t2)− (ℵF )(t1)‖ → 0 (t2 − t1 → 0).

This fact yields that the set {ℵF : F ∈ Lp(J, X)} is equi-continuous in C(J, X). Accord-
ing to the Ascoli–Arzela theorem, the set {ℵF : F ∈ Lp(J, X)} is relatively compact in
C(J, X).
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Theorem 1. Let the assumptions (A1)–(A7) hold. Then, the system (1) has at least one mild
solution on J.

Proof. For any ε > 0, let r > 0 be large enough such that

r ≥ N∗‖xb‖+
M‖E−1‖

Γ(α)
(N∗bα−1 + 1)(‖x0‖+ M1) +

M‖E−1‖
Γ(α)

(
bp − b
pα − 1

)
1− 1

p (‖φ‖Lp(N∗ + 1), (6)

where N∗ = b
ε (

MMB‖E−1‖
Γ(α) )2( p−1

pα−1 )
1− 1

p . Define an operator Φ : Br → C1−α(J, X) by

(Φx)(t) = tα−1TE(t)[x0 − g(x)] +
∫ t

0
(t − s)α−1TE(t − s)[ f (s, x(s)) + Bu(s; x)]ds,

where
u(s; x) = B∗T∗

E(b − s)R(ε, Πb
0)P(x),

P(x) = xb − bα−1TE(b)(x0 − g(x))−
∫ b

0
(b − s)α−1TE(b − s) f (s, x(s))ds.

Step 1. We will prove Φ : Br → Br.
For any ε > 0, by assumptions (A4)–(A7) and Lemma 1, we have

‖u(t; x)‖ ≤ MMB‖E−1‖
εΓ(α)

‖P(x)‖, x ∈ Br, t ∈ J′

and

‖P(x)‖ ≤ ‖xb‖+
M‖E−1‖bα−1

Γ(α)
(M1 + ‖x0‖) +

M‖E−1‖
Γ(α)

(
bp − b
pα − 1

)
1− 1

p ‖φ‖Lp , x ∈ Br.

Together this fact with (6), for any ε > 0, we have

t1−α‖(Φx)(t)‖ ≤ ‖TE(t)[x0 − g(x)]‖+ t1−α‖
∫ t

0
(t − s)α−1TE(t − s)[ f (s, x(s)) + Bu(s)]ds‖

≤ M‖E−1‖
Γ(α)

(‖x0‖+ M1) + b1−α M‖E−1‖
Γ(α)

∫ t

0
(t − s)α−1(φ(s) + MB‖u(s)‖)ds

≤ M‖E−1‖
Γ(α)

(‖x0‖+ M1) +
M‖E−1‖

Γ(α)
(

bp − b
pα − 1

)
1− 1

p (‖φ‖Lp + MB‖u‖Lp)

≤ N∗‖xb‖+
M‖E−1‖

Γ(α)
(N∗bα−1 + 1)(‖x0‖+ M1)

+
M‖E−1‖

Γ(α)
(

bp − b
pα − 1

)
1− 1

p ‖φ‖Lp(N∗ + 1)

≤ r.

Thus, ‖Φx‖C1−α
= sup

t∈J
t1−α‖(Φx)(t)‖ ≤ r, which implies Φ : Br → Br.

Step 2. Φ : Br → Br is continuous.
Let {xn} ⊂ Br with xn → x as n → ∞. From the continuity of f and g, we have

f (t, xn(t)) → f (t, x(t)), t ∈ J

and
g(xn) → g(x)

as n → ∞. Since

‖(t − s)α−1[ f (s, xn(s))− f (s, x(s))]‖ ≤ 2(t − s)α−1φ(s) ∈ L1(J,R+),
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it follows from the Lebesgue dominated convergence theorem that

t1−α‖(Φxn)(t)− (Φx)(t)‖

≤ ‖TE(t)(g(xn)− g(x))‖+ b1−α M‖E−1‖
Γ(α)

∫ t

0
(t − s)α−1‖ f (s, xn(s))− f (s, x(s))‖ds

→ 0 (n → ∞).

Hence,
‖Φxn − Φx‖C1−α

→ 0

as n → ∞ and Φ : Br → Br is continuous.
Step 3. The set {Φx : x ∈ Br} is relatively compact in C1−α(J, X).
In order to prove the relative compactness of {Φx : x ∈ Br} in C1−α(J, X), we prove

that the set {·1−αΦx(·) : x ∈ Br} is relatively compact in C(J, X).
Denote by

(Φ1x)(t) = TE(t)(x0 − g(x)), t ∈ J

and

(Φ2x)(t) = t1−α
∫ t

0
(t − s)α−1TE(t − s)[ f (s, x(s)) + Bu(s)]ds, t ∈ J.

Then for any t ∈ J, we have

t1−αΦx(t) = (Φ1x)(t) + (Φ2x)(t).

It is sufficient to prove that {Φ1x : x ∈ Br} and {Φ2x : x ∈ Br} are relatively compact
in C(J, X).

For any x ∈ Br and t ∈ J, by virtue of

‖TI(t)(x0 − g(x))‖ ≤ M
Γ(α)

(‖x0‖+ M1),

we obtain that {(Φ1x)(t) : x ∈ Br, t ∈ J} is relatively compact in X owing to the compact-
ness of E−1. It is obvious that the set {Φ1x : x ∈ Br} is equi-continuous in C(J, X) because
TE(t) is continuous in the uniform operator topology for t ≥ 0. Hence, it follows from the
Ascoli–Arzela theorem that the set {Φ1x : x ∈ Br} is relatively compact in C(J, X).

By assumptions (A4) and (A6), we know that

f (t, x(t)) + Bu(t) ∈ Lp(J, X).

By Lemma 3, the set {Φ2x : x ∈ Br} is relatively compact in C(J, X). Consequently,
the set {Φx : x ∈ Br} is relatively compact in C1−α(J, X).

Hence, Φ is completely continuous in C1−α(J, X). By the Schauder fixed point theorem,
Φ has at least one fixed point in Br, which is the mild solution of the system (1).

Remark 3. In [15], Lian et al. proved the existence of mild solutions of fractional evolution
equations under the assumption that the nonlocal function g is continuous, uniformly bounded and
satisfies some other conditions. In [2], Zhou et al. investigated the existence of mild solutions of
fractional evolution equations when the nonlocal function g is Lipschitz continuous or completely
continuous. In our Theorem 1, we only assume that the nonlocal function g is continuous and maps
bounded subset into bounded set, without the Lipschitz continuity and the complete continuity
and any other extra conditions we obtain the existence of mild solutions of the fractional evolution
Equation (1). Hence, Theorem 1 greatly extends the main results in [2,15].

If the assumptions (A4) and (A5) are replaced by the following conditions:
(A4)′ f : J × X → X satisfies the following conditions.
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(i) For each x ∈ X, f (·, x) : J → X is strongly measurable, and for every t ∈ J, f (·, x) :
X → X is continuous.

(ii) There exists a function ψ ∈ Lp(J,R+), pα > 1 and a constant ρ > 0 such that

‖ f (t, x)‖ ≤ ψ(t) + ρt1−α‖x‖, t ∈ J, x ∈ X.

(A5)′ g : C1−α(J, X) → X is continuous and there exists a constant M2 > 0 such that
‖g(x)‖ ≤ M2 for any x ∈ C1−α(J, X).
then by Theorem 1 we can obtain the following existence theorem.

Theorem 2. Let the assumptions (A1)–(A3), (A4)′, (A5)′, (A6) and (A7) hold. Then the
system (1) has at least one mild solution in C1−α(J, X).

Proof. It is clear that (A5)′ ⇒ (A5) and (A4)′ ⇒ (A4) with φ(·) = ψ(·) + rρ·1−α ∈
Lp(J, X) for any r > 0 and x ∈ Br. Therefore, by Theorem 1 we can prove that the system
(1) has a mild solution x ∈ C1−α(J, X).

Now, we state and prove the approximate controllability of the fractional control
system (1).

Theorem 3. Let the conditions (A1)–(A3), (A4)′′, (A5)′ and (A6) be satisfied, where
(A4)′′ f : J × X → X satisfies the following conditions.
(i) For each x ∈ X, f (·, x) : J → X is strongly measurable, and for every t ∈ J, f (·, x) :

X → X is continuous.
(ii) There exist a function ϕ ∈ Lp(J,R+) with pα > 1 such that

‖ f (t, x)‖ ≤ ϕ(t), ∀t ∈ J, x ∈ X.

In addition, the linear fractional control system (4) is approximately controllable on J. Then the
fractional control system (1) is approximately controllable on J.

Proof. It is clear that (A4)′′ ⇒ (A4) and (A5)′ ⇒ (A5). By Lemma 2 we know that the
condition (H7) holds. It follows from Theorem 1 that the system (1) has a mild solution
xε ∈ C1−α(J, X) for every ε > 0, which is expressed by

xε(t) = tα−1TE(t)[x0 − g(x)] +
∫ t

0
(t − s)α−1TE(t − s) f (s, xε(s))ds

+
∫ t

0
(t − s)α−1TE(t − s)BB∗T∗

E(b − s)R(ε, Πb
0)
[
xb − bα−1TE(b)(x0 − g(x))

−
∫ b

0
(b − θ)α−1TE(b − θ) f (θ, xε(θ))dθ

]
ds.

In view of I − Πb
0(εI + Πb

0)
−1 = εR(ε, Πb

0), we have

xε(b) = xb − εR(ε, Πb
0)p(xε),

where

p(xε) = xb − bα−1TE(b)(x0 − g(xε))−
∫ b

0
(b − s)α−1TE(b − s) f (s, xε(s))ds.

By the assumption (A5)′, we have

‖bα−1(x0 − g(xε))‖ ≤ bα−1(‖x0‖+ M2).
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Then the set {bα−1TE(b)(x0 − g(xε))} is relatively compact since TE(b) is a compact opera-
tor. There exists a subsequence of {bα−1TE(b)(x0 − g(xε))}, still denoted by itself, and a
function g∗ such that

bα−1TE(b)(x0 − g(xε)) → g∗ (ε → 0+).

By means of (A4)′′ we have

‖ f (·, xε(·))‖Lp = (
∫ b

0
‖ f (s, xε(s))‖pds)

1
p ≤ ‖ϕ‖Lp .

Hence, the set { f (·, xε(·))} is bounded in Lp(J, X). So there is a subsequence, still
denoted by { f (·, xε(·))}, converges weakly to some f ∗(·) ∈ Lp(J, X), that is,

f (s, xε(s))
w−→ f ∗(s), a.e. s ∈ J

as ε → 0. By Lemma 3 and the Lebesgue dominated convergence theorem, we can obtain

∫ b

0
(b − s)α−1TE(b − s) f (s, xε(s))ds →

∫ b

0
(b − s)α−1TE(b − s) f ∗(s)ds

as ε → 0. Denote by

h = xb − g∗ −
∫ b

0
(b − s)α−1TE(b − s) f ∗(s)ds.

Then by the definition of p(xε), we obtain that

p(xε) → h (ε → 0).

Consequently, we have

‖xε(b)− xb‖ = ‖εR(ε, Πb
0)p(xε)‖

= ‖εR(ε, Πb
0)(p(xε)− h)‖+ |εR(ε, Πb

0)h‖
→ 0 (ε → 0).

By Definition 2, the fractional control system (1) is approximately controllable on J.

4. An Example

Consider the Sobolev-type partial differential equation with Riemann-Liouville frac-
tional derivatives⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

LD
3
4
t [(I − ∂2

∂y2 )x(t, y)] = ∂2

∂y2 x(t, y) + e−3t
√

sin x(t,y)
3+|x(t,y)| + u(t), (t, y) ∈ (0, 1]× [0, π],

x(t, 0) = x(t, π) = 0, t ∈ [0, 1],

I1−α
0+ [(I − ∂2

∂y2 )x(t, y)]|t=0 +
m
∑

i=1
ci

3
√

sin(t1−αx(t, y)) + 7 = x0(y),

(7)

where ci > 0, i = 1, 2, · · · , m are given positive constants.
Let X = U := L2[0, π]. Denote D(A) = D(E) := {x ∈ X : x, x′ are absolutely

continuous, x′′ ∈ X and x(t, 0) = x(t, π) = 0}. We define two operators A : D(A) ⊂ X →
X and E : D(E) ⊂ X → X by

Ax =
∂2

∂y2 x, x ∈ D(A); Ex = (I − ∂2

∂y2 )x, x ∈ D(E).

160



Fractal Fract. 2022, 6, 56

Let en(y) =
√

2
π sin ny, n ∈ N be the orthonormal set of eigenvectors of A. By [4,16],

we have
Ax = −Σ∞

n=1n2〈x, en〉en, x ∈ D(A)

and
Ex = Σ∞

n=1(1 + n2)〈x, en〉en, x ∈ D(E).

This implies, for any x ∈ H, that

E−1x = Σ∞
n=1

1
1 + n2 〈x, en〉en,

AE−1x = Σ∞
n=1

−n2

1 + n2 〈x, en〉en

and

T(t)x = Σ∞
n=1e

−n2

1+n2 t〈x, en〉en,

where T(t)x = eAE−1tx, t ≥ 0. Then E−1 is a linear operator which is compact and
‖E−1‖ ≤ 1. Hence,

TE(t) =
3
4

∫ ∞

0
E−1θξ 3

4
(θ)T(t

3
4 θ)dθ

with
‖TE(t)x‖ ≤ 1

Γ( 3
4 )

‖x‖,

where

ξ 3
4
(θ) =

1
π

∞

∑
n=1

(−1)n−1θ−
3
4 n−1 Γ( 3

4 n + 1)
n!

sin(
3
4

nπ), θ ∈ (0,+∞).

Let x(t)(y) = x(t, y). Denote

f (t, x(t))(y) =
e−3t

√
sin x(t, y)

3 + |x(t, y)|

and

g(x)(y) =
m

∑
i=1

ci
3
√

sin(t1−αx(t, y)) + 7.

Then the problem (7) can be rewritten as the abstract control system (1). Moreover, the

assumptions (A1)–(A6) are fulfilled with ‖ f (t, x)‖X = 1
3 and ‖g(x)‖X ≤ 2

m
∑

i=1
ci. If the lin-

ear system corresponding to (7) is approximately controllable on [0, 1], then by Theorem 3,
the fractional partial differential equation of (7) is approximately controllable on [0, 1].

5. Conclusions

In this paper, with the aid of the compactness of the operator E−1, we prove the
existence of mild solutions of the fractional evolution system (1) without the compactness
of operator semigroup. The Lipschitz continuity and the compactness of the nonlocal
function g are not needed in our main results. Under the assumption that the associate
linear control system (4) is approximately controllable, the approximate controllability of
the fractional evolution system (1) is also studied.
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Abstract: This manuscript mainly discusses the approximate controllability for certain fractional
delay evolution equations in Banach spaces. We introduce a suitable complete space to deal with
the disturbance due to the time delay. Compared with many related papers on this issue, the
major tool we use is a set of differentiable properties based on resolvent operators, rather than the
theory of C0-semigroup and the properties of some associated characteristic solution operators. By
implementing an iterative method, some new controllability results of the considered system are
derived. In addition, the system with non-local conditions and a parameter is also discussed as an
extension of the original system. An instance is proposed to support the theoretical results.

Keywords: approximate controllability; resolvent operator; delay; nonlocal conditions; parameter

1. Introduction

This manuscript mainly investigates the sufficient conditions of the approximate
controllability of some fractional control systems as below:{ CDβx(t) = Ax(t) + f (t, xt) + Bu(t), t ∈ I := [0, a],

x(t) = φ(t), t ∈ [−b, 0],
(1)

and { CDβx(t) = Ax(t) + f (t, xt) + Bu(t), t ∈ I := [0, a],
x(t) + λgt(x) = φ(t), t ∈ [−b, 0],

(2)

where CDβ means the Caputo derivative with order
1
2
< β ≤ 1. X and U are Banach spaces.

Linear operator A : D ⊂ X → X is unbounded with dense domain D. The delay term xt is
explained in Equation (5). The control u takes values in L2(I; U). For any t ∈ [−b, 0], the
non-local term gt : C([−b, a]; X) → X satisfies some given conditions. λ is a parameter. Let
φ ∈ L1([−b, 0]; X). B : L2(I; U) → L2(I;D) is a bounded linear operator. f is a non-linearity
that will be specified later.

Fractional differential systems and evolution systems have been studied extensively
owing to its widespread backgrounds of some scientific and engineering realms, such as
signal processing, finance, anomalous diffusion phenomena, heat conduction, etc. We refer
readers to [1–4] for further detailed information. On the other side, controllability has
gained a lot of importance and interest, and it plays a significant role in the description of
various dynamical problems [5–8]. It is known to all that the fractional evolution system is
closely related to time. In this regard, it has something in common with the controllability
problem. Therefore, the controllability of some kinds of fractional evolution systems has
become an important research hotspot. For example, exact controllability and approximate
controllability are two mainstream research directions and they have important differences
from the viewpoint of mathematics. Exact controllability can steer the control system to
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any given final time point. The control operator is usually assumed to be reversible. Then,
the controllability problem is transformed into a fixed point problem [9–13]. Furthermore,
an induced inverse of the control operator is not necessarily true in infinite-dimensional
space. In consideration of these strong assumptions, more and more scholars begin to
study the approximate controllability in various abstract spaces, which means that it can
steer the control system to an any small neighborhood of final time point [14–20]. In
addition, controllability of fractional evolution systems also has important applications in
the research areas of logical control networks or Boolean networks.

For instance, S. Ji [16] and F. Ge et al. [17] studied the approximate controllability
of fractional semi-linear non-local evolution systems and fractional differential systems
with impulsive conditions via approximating method under the assumption that A gen-
erated a C0-semigroup, respectively. Moreover, the approximate controllability of some
other fractional systems, such as stochastic equations, neutral equations, etc., have also
been deeply investigated (one can see [18–20] for more details). However, approximate
controllability of the linear systems correspondence to the considered systems is necessary
in this method. Therefore, some other approaches, such as the iterative method, are used to
solve the approximate controllability problems for some evolution systems. For example,
H. Zhou [21] obtained a sufficient condition of the approximate controllability for certain
first-order evolution equations by utilizing iterative approach and the theory of strongly
continuous semigroup. Authors in [22] dealt with the approximate controllability of some
evolution systems with fractional order without delay by using iterative method. The prop-
erties of C0-semigroup are also included. By applying the same method, [23] also derived
some appropriate controllability conclusions for some fractional differential equations with
no delay effects.

It is noted that the results of approximate controllability discussed above are based
on the C0-semigroup together with some associated characteristic solution operators [24].
However, in many cases, infinitesimal generator A may not be able to generate a C0-
semigroup, but it can generate a resolvent operator instead [25]. On the other side, a
resolvent operator can degenerate into a C0-semigroup when the integral kernel is equal to
1, that is, a resolvent operator covers a C0-semigroup as a special case. Of course, this can
also be explained by the subordinate principle [26].

In comparision with results in [27] considering the influence of delay, we shall study
the approximate controllability for some fractional control systems on the supposition
that A is an infinitesimal generator of a differentiable resolvent operator rather than a
C0-semigroup; we shall consider a control problem with variable delay, not fixed delay by
contrast; the function φ(t) is supposed to be integrable rather than continuous. Under these
generalized conditions, the difficulty mainly lies in how to overcome the obstacles caused
by the variable delay and how to make use of the differentiability of resolvent operators.
We solve this problem by means of a new special complete space we introduced and the
theory of differentiable resolvent operator developed in [25].

Motivated by the aforementioned discussions, we shall establish a set of new ap-
proximate controllability results for systems (1) and (2) by using iterative method. As far
as we know, the approximate controllability for the fractional evolution equations with
finite variable delay and with non-local conditions and a parameter under the hypothesis
that A generate a differentiable resolvent operator is still an untreated topic in the exist-
ing literature. Therefore, it is necessary to make further investigations to fill the gap in
this regard.

Summarily, different from the above discussed papers, some highlights of the manuscript
are presented as follows. (i) The approximate controllability of considered systems is stud-
ied on the supposition that the resolvent operator is differentiable, rather than utilizing
the theory of C0-semigroup together with the properties of associated characteristic so-
lution operators; (ii) The delay-induced-difficulty is overcome by introducing a special
complete integrable space since we generalize the delay term from continuity to integrabil-
ity compared with some other papers; (iii) The system (2) discussed in this manuscript is
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provided with some more generalized nonlocal conditions compared with many related
papers [5,9,11,16,17] (λ = 1, t = 0).

This manuscript is arranged as below. In the next part, we include some necessary
preparations for the main controllability results. InSection 3, some existence results of
the mild solution of the considered systems are obtained. In Section 4, we investigate
the approximate controllability for the fractional delay control systems, and the case with
non-local conditions and a parameter is discussed in Section 5. An instance is proposed in
Section 6 to illustrate our abstract conclusions.

2. Preparations

Let X be a Banach space with norm ‖x‖, x ∈ X. The linear operator A : D ⊂ X → X
is closed and unbounded, in which D means the domain of A equipped with graph
norm ‖x‖D = ‖x‖+ ‖Ax‖. C(I; X) stands for the space with all the continuous functions
mapping I into X equipped with the sup-norm ‖x‖C, L2(I; X) stands for the space of
all Bochner integrable functions mapping I into X equipped with the norm ‖x‖L2(I;X) =(∫ a

0
‖x(t)‖2dt

)1/2
, and Cβ(I; X) denotes the space of all the β-Hölder continuous func-

tions mapping I into X provided with the norm ‖x‖Cβ(I;X) = ‖x‖C(I;X) + [|x|]Cβ(I;X), where

[|x|]Cβ(I;X) = sup
t,s∈I,t �=s

‖x(t)− x(s)‖
(t − s)β

.

In the next discussion, the following equation

x(t) =
1

Γ(β)

∫ t

0

Ax(s)
(t − s)1−β

ds, t ≥ 0, (3)

is assumed to possess an resolvent operator {R(t)}t≥0 on X.

Definition 1 ([28]). The fractional integral of order β > 0 with the lower limit zero is written as

Iβ
0+x(t) =

1
Γ(β)

∫ t

0
(t − s)β−1x(s)ds, t > 0,

where Γ denotes the Gamma function.

Definition 2 ([28]). The fractional derivative of the function x ∈ C((0,+∞);R) in the Caputo
sense can be defined by

CDβ
0+x(t) =

1
Γ(n − β)

∫ t

0

x(n)(s)
(t − s)β−n+1 ds, t > 0,

where n = [β] + 1, [β] represents the integer part of the positive constant β.

Definition 3 ([25]). Suppose a set of operators {R(t)}t≥0 to be bounded and linear on space X. If
it fulfills hypotheses as below:
(i) R(t) is strongly continuous on R+ and R(0) = I ;
(ii) R(t)D ⊂ D; for each x ∈ D, t ≥ 0, it satisfies AR(t)x = R(t)Ax;
(iii) The following equality can be established

R(t)x = x +
1

Γ(β)

∫ t

0

Ax(s)
(t − s)1−β

ds,

then we define it as a resolvent operator of Equation (3).

165



Fractal Fract. 2022, 6, 424

Definition 4 ([25]). A resolvent operator R(t) of Equation (3) is known as differentiable, if it
satisfies R(·)x ∈ W1,1

loc (R+; X), ∀x ∈ D. In addition, for ∀x ∈ D, there exists a function
ω ∈ L1

loc(R+) satisfying
‖Ṙ(t)x‖ ≤ ω(t)‖x‖D a.e. on R+.

Consider the following equality

x(t) = w(t) +
1

Γ(β)

∫ t

0

Ax(s)
(t − s)1−β

ds, t ∈ I, (4)

where w ∈ L1(I; X).

Definition 5 ([25]). A function x ∈ C(I; X) is said to be a mild solution of equality Equation (4)

if it satisfies
∫ t

0

x(s)
(t − s)1−β

ds ∈ D and

x(t) = w(t) +
1

Γ(β)
A
∫ t

0

x(s)
(t − s)1−β

ds, ∀t ∈ I.

The following result provides another equivalent form of mild solution for Equation (4).

Lemma 1 ([25]). If the resolvent operator R(t) of Equation (4) is differentiable, then for w ∈
C(I;D), the following function

x(t) =
∫ t

0
Ṙ(t − s)w(s)ds + w(t), t ∈ I,

is called a mild solution of Equation (4).

To end this section, the set L1([−b, 0]; X) is proposed which stands for a space of
all the integrable functions mapping [−b, 0] into X equipped with norm ‖ · ‖L1[−b,0] =∫ 0

−b
‖ · (t)‖dt. Obviously, it is complete. Considering Equation (1), for any x ∈ C(I; X),

t ∈ I, let

xt(θ) =

{
x(t + θ), t + θ ≥ 0,

φ(t + θ), t + θ ≤ 0,
(5)

for any θ ∈ [−b, 0], where φ(t) denotes the function mentioned in Equation (1). Obviously,
we can check that xt ∈ L1([−b, 0]; X).

On the basis of Equation (5), we give the following result.

Lemma 2. Assume that xn → x0 (n → +∞) for xn, x0 ∈ C(I; X). Then, for any t ∈ I, one can
derive that (xn)t → (x0)t (n → +∞) for (xn)t, (x0)t ∈ L1([−b, 0]; X).

Proof. In view of (5), we can easily derive

‖(xn)t − (x0)t‖L1[−b,0] =

⎧⎪⎪⎨⎪⎪⎩
∫ t

0
‖xn(s)− x0(s)‖ds, t ≤ b,∫ t

t−b
‖xn(s)− x0(s)‖ds, t ≥ b,

which indicates that
‖(xn)t − (x0)t‖L1[−b,0] ≤ b‖xn − x0‖C, (6)

for any t ∈ I.
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3. Existence Results

This part establishes the existence results of mild solution of Equation (1). Now, assume
resolvent operator {R(t)}t≥0 to be differentiable. Let ωA be the function mentioned in
Definition 4.

From Definition 1 and Definition 5, we can obtain

Definition 6. For any u ∈ L2(I; U), a function x ∈ C(I; X) is called a mild solution of Equa-
tion (1) on I, provided that

x(t) = φ(0) +
1

Γ(β)
A
∫ t

0

x(s)
(t − s)1−β

ds +
1

Γ(β)

∫ t

0

f (s, xs)

(t − s)1−β
ds +

1
Γ(β)

∫ t

0

Bu(s)
(t − s)1−β

ds,

where
∫ t

0

x(s)
(t − s)1−β

ds ∈ D, ∀t ∈ I, and xs is defined by Equation (5).

In the next content, we will need the following assumptions.

Hypothesis 1 (H1). f is a continuous function from I × L1([−b, 0]; X) into D and φ(0) ∈ D.

There is a real number β1 ∈ (0, β) and a function m ∈ L
1

β1 (I;R+) satisfying ‖ f (t, x)‖D ≤ m(t)
for any t ∈ I and x ∈ L1([−b, 0]; X).

Hypothesis 2 (H2). For any x, y ∈ L1([−b, 0]; X), there exists a constant L > 0 satisfying

‖ f (t, x)− f (t, y)‖D ≤ L‖x − y‖L1[−b,0].

For simplicity, we denote

Fx(t) =
1

Γ(β)

∫ t

0

f (s, xs)

(t − s)1−β
ds, Bu(t) =

1
Γ(β)

∫ t

0

Bu(s)
(t − s)1−β

ds, ϑ =
β − 1

1 − β1
.

From Lemma 1 and Definition 6, we can derive the mild solution of Equation (1) on I of
another expression as follows.

Definition 7. For any u ∈ L2(I; U), a function x ∈ C(I; X) is called a mild solution of Equa-
tion (1) on I, provided that

x(t) = φ(0) + Fx(t) +Bu(t) +
∫ t

0
Ṙ(t − s)(φ(0) + Fx(s) +Bu(s))ds.

Remark 1. It follows from Definition 1 that the classical solution of system Equation (1) is a
convolution equation. Hence, it is natural to apply Laplace transform on it to express an appropriate
formula for the mild solution representation of the considered system. For this purpose, we suppose
that resolvent operator R(t) is exponentially bounded. By utilizing the theory of the Laplace
transform and inverse Laplace transform, the mild solution of Equation (1) could be defined by

x(t) =

⎧⎪⎨⎪⎩ R(t)φ(0) +
∫ t

0
K�(t − s) f (s, xs)ds +

∫ t

0
K�(t − s)Bu(s)ds, t ∈ I = [0, a],

φ(t), t ∈ [−b, 0],

where K�(t) =
d
dt
(Iβ

0+R(t)) and xs is defined by Equation (5).

Lemma 3. (i) If hypothesis (H1) holds, then for arbitrarily given x ∈ C(I; X), we have Fx ∈
Cβ−β1(I;D), and

[|Fx|]Cβ−β1 (I;D) ≤
2‖m‖

L
1

β1

Γ(β)(1 + ϑ)1−β1
.
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(ii) For any u ∈ L2(I; U), we have Bu ∈ Cβ− 1
2 (I;D), and

[|Bu|]
Cβ− 1

2 (I;D)
≤

2‖Bu‖L2(I;D)

Γ(β)(2β − 1)
1
2

.

Proof. (i) For arbitrarily given x ∈ C(I; X), ∀t ∈ [0, a), ∀h > 0 satisfying t + h ∈ [0, a],
by using Hölder inequality, one can derive

‖Fx(t + h)− Fx(t)‖D
≤ 1

Γ(β)

∫ t

0
[(t − s)β−1 − (t + h − s)β−1]‖ f (s, xs)‖Dds

+
1

Γ(β)

∫ t+h

t
(t + h − s)β−1‖ f (s, xs)‖Dds

≤ 1
Γ(β)

(∫ t

0

[
(t − s)β−1 − (t + h − s)β−1

] 1
1−β1 ds

)1−β1

‖m‖
L

1
β1

+
1

Γ(β)

(∫ t+h

t

[
(t + h − s)β−1

] 1
1−β1 ds

)1−β1

‖m‖
L

1
β1

≤ 1
Γ(β)

(∫ t

0

[
(t − s)ϑ − (t + h − s)ϑ

]
ds
)1−β1

‖m‖
L

1
β1

+
1

Γ(β)

(∫ t+h

t
(t + h − s)ϑds

)1−β1

‖m‖
L

1
β1

≤
‖m‖

L
1

β1

Γ(β)(1 + ϑ)1−β1
(t1+ϑ − (t + h)1+ϑ + h1+ϑ)1−β1 +

‖m‖
L

1
β1

Γ(β)(1 + ϑ)1−β1
h(1+ϑ)(1−β1)

≤
2‖m‖

L
1

β1

Γ(β)(1 + ϑ)1−β1
h(1+ϑ)(1−β1)

=

2‖m‖
L

1
β1

Γ(β)(1 + ϑ)1−β1
hβ−β1 ,

which indicates that [|Fx|]Cβ−β1 (I;D) ≤
2‖m‖

L
1

β1

Γ(β)(1 + ϑ)1−β1
and Fx ∈ Cβ−β1(I;D).

(ii) In the light of the proof for (i), it can be obtained similarly.

Lemma 4. (i) If Hypotheses (H1) and (H2) hold, then for ∀x, y ∈ C(I; X),

‖Fx(t)− Fy(t)‖D ≤ Laβb
Γ(β + 1)

‖x − y‖C, ∀t ∈ I,

and

‖Fx(t)‖D ≤
aβ−β1‖m‖

L
1

β1

Γ(β)(1 + ϑ)1−β1
, ∀t ∈ I.

(ii) For any u, v ∈ L2(I; U),

‖Bu(t)−Bv(t)‖D ≤ 1
Γ(β)

√
a2β−1

2β − 1
‖Bu − Bv‖L2(I;D), ∀t ∈ I,

and

‖Bu(t)‖D ≤ 1
Γ(β)

√
a2β−1

2β − 1
‖Bu‖L2(I;D), ∀t ∈ I.
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Proof. (i) In view of Lemma 2, we can obtain

‖Fx(t)− Fy(t)‖D ≤ 1
Γ(β)

∫ t

0
(t − s)β−1‖ f (s, xs)− f (s, ys)‖Dds

≤ L
Γ(β)

∫ t

0
(t − s)β−1‖xs − ys‖L[−b,0]ds

≤ Lb
Γ(β)

∫ t

0
(t − s)β−1‖x − y‖Cds

=
Laβb

Γ(β + 1)
‖x − y‖C, ∀t ∈ I.

In addition,

‖Fx(t)‖D ≤ 1
Γ(β)

∫ t

0
(t − s)β−1‖ f (s, xs)‖Dds

≤ 1
Γ(β)

(∫ t

0
[(t − s)β−1]

1
1−β1 ds

)1−β1

‖m‖
L

1
β1

≤ t(1+ϑ)(1−β1)

Γ(β)(1 + ϑ)1−β1
‖m‖

L
1

β1

≤
aβ−β1‖m‖

L
1

β1

Γ(β)(1 + ϑ)1−β1
, ∀t ∈ I.

(ii) Obviously, we can obtain that

‖Bu(t)−Bv(t)‖D ≤ 1
Γ(β)

∫ t

0
(t − s)β−1‖Bu(s)− Bv(s)‖Dds

≤ 1
Γ(β)

(∫ t

0
[(t − s)β−1]2ds

) 1
2
‖Bu −Bv‖L2(I;D)

=
1

Γ(β)

√
a2β−1

2β − 1
‖Bu −Bv‖L2(I;D), ∀t ∈ I.

Similarly, we can obtain

‖Bu(t)‖D ≤ 1
Γ(β)

√
a2β−1

2β − 1
‖Bu‖L2(I;D), ∀t ∈ I.

Theorem 1. If the Hypotheses (H1) and (H2) hold, then for any given control u ∈ L2(I; U),
fractional evolution system Equation (1) has an unique mild solution on I, provided that

Laβb(1 + ‖ωA‖L1(I))

Γ(β + 1)
< 1. (7)

Proof. In view of Definition 7, for any t ∈ I, define an operator Ψ : C(I; X) → C(I; X)
as below

(Ψx)(t) = φ(0) + Fx(t) +Bu(t) +
∫ t

0
Ṙ(t − s)(φ(0) + Fx(s) +Bu(s))ds. (8)

Evidently, we only need to consider the fixed point of Ψ.
Step 1. Ψ maps C(I; X) into C(I; X).
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For every x ∈ C(I; X), 0 < t < t + h ≤ a, we have

(Ψx)(t + h)− (Ψx)(t) = Fx(t + h)− Fx(t) +Bu(t + h)−Bu(t)

+
∫ t+h

0
Ṙ(t + h − s)φ(0)ds −

∫ t

0
Ṙ(t − s)φ(0)ds

+
∫ t+h

0
Ṙ(t + h − s)Fx(s)ds −

∫ t

0
Ṙ(t − s)Fx(s)ds

+
∫ t+h

0
Ṙ(t + h − s)Bu(s)ds −

∫ t

0
Ṙ(t − s)Bu(s)ds

=
5

∑
i=1

Υi,

where
Υ1 = Fx(t + h)− Fx(t),
Υ2 = Bu(t + h)−Bu(t),

Υ3 =
∫ t+h

0
Ṙ(t + h − s)φ(0)ds −

∫ t

0
Ṙ(t − s)φ(0)ds,

Υ4 =
∫ t+h

0
Ṙ(t + h − s)Fx(s)ds −

∫ t

0
Ṙ(t − s)Fx(s)ds,

Υ5 =
∫ t+h

0
Ṙ(t + h − s)Bu(s)ds −

∫ t

0
Ṙ(t − s)Bu(s)ds.

By Lemma 3, we can obtain

‖Υ1‖ ≤
2‖m‖

L
1

β1

Γ(β)(1 + ϑ)1−β1
hβ−β1 → 0, as h → 0,

and

‖Υ2‖ ≤
2‖Bu‖L2(I;D)

Γ(β)(2β − 1)
1
2

hβ− 1
2 → 0, as h → 0.

Notice that

Υ3 =
∫ h

0
Ṙ(t + h − s)φ(0)ds +

∫ t+h

h
Ṙ(t + h − s)φ(0)ds −

∫ t

0
Ṙ(t − s)φ(0)ds

=
∫ h

0
Ṙ(t + h − s)φ(0)ds.

Then, we have

‖Υ3‖ ≤ ‖φ(0)‖D
∫ h

0
ωA(t + h − s)ds → 0, as h → 0.

In addition, since

Υ4 =
∫ h

0
Ṙ(t + h − s)Fx(s)ds +

∫ t+h

h
Ṙ(t + h − s)Fx(s)ds −

∫ t

0
Ṙ(t − s)Fx(s)ds

=
∫ h

0
Ṙ(t + h − s)Fx(s)ds +

∫ t

0
Ṙ(s)Fx(t + h − s)ds −

∫ t

0
Ṙ(s)Fx(t − s)ds,
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we thus can derive from Definition 4, Lemma 3 and Lemma 4 that

‖Υ4‖ ≤
∫ h

0
‖Ṙ(t + h − s)Fx(s)‖ds +

∫ t

0
‖Ṙ(s)(Fx(t − s + h)− Fx(t − s))‖ds

≤
∫ h

0
ωA(t + h − s)‖Fx(s)‖Dds +

∫ t

0
ωA(s)[|Fx|]Cβ−β1 (I;D)h

β−β1 ds

≤
aβ−β1‖m‖

L
1

β1

Γ(β)(1 + ϑ)1−β1

∫ h

0
ωA(t + h − s)ds +

2‖m‖
L

1
β1

hβ−β1

Γ(β)(1 + ϑ)1−β1

∫ t

0
ωA(s)ds

≤
‖m‖

L
1

β1

Γ(β)(1 + ϑ)1−β1

(
aβ−β1

∫ h

0
ωA(t + h − s)ds + 2hβ−β1‖ωA‖L1(I)

)
→ 0, as h → 0.

It is not difficult to have

Υ5 =
∫ h

0
Ṙ(t + h − s)Bu(s)ds +

∫ t+h

h
Ṙ(t + h − s)Bu(s)ds −

∫ t

0
Ṙ(t − s)Bu(s)ds

=
∫ h

0
Ṙ(t + h − s)Bu(s)ds +

∫ t

0
Ṙ(s)Bu(t + h − s)ds −

∫ t

0
Ṙ(s)Bu(t − s)ds,

which together with Lemma 3 and Lemma 4 implies

‖Υ5‖ ≤
∫ h

0
‖Ṙ(t + h − s)Bu(s)‖ds +

∫ t

0
‖Ṙ(s)(Bu(t − s + h)−Bu(t − s))‖ds

≤
∫ h

0
ωA(t + h − s)‖Bu(s)‖Dds +

∫ t

0
ωA(s)[|Bu|]

Cβ− 1
2 (I;D)

hβ− 1
2 ds

≤ 1
Γ(β)

√
a2β−1

2β − 1
‖Bu‖L2(I;D)

∫ h

0
ωA(t + h − s)ds

+
2‖Bu‖L2(I;D)h

β− 1
2

Γ(β)(2β − 1)
1
2

∫ t

0
ωA(s)ds

≤
‖Bu‖L2(I;D)

Γ(β)(2β − 1)
1
2

(
aβ− 1

2

∫ h

0
ωA(t + h − s)ds + 2hβ− 1

2 ‖ωA‖L1(I)

)

→ 0, as h → 0.

Hence, ‖(Ψx)(t + h) − (Ψx)(t)‖ → 0, h → 0, which indicates that Ψx ∈ C(I; X),
∀x ∈ C(I; X).

Step 2. Ψ is contractive on C(I; X).
In fact, Lemma 2 indicates that

‖(Ψx)(t)− (Ψy)(t)‖ ≤ ‖Fx(t)− Fy(t)‖D +
∫ t

0
ωA(t − s)‖Fx(s)− Fy(s)‖Dds

≤ 1
Γ(β)

∫ t

0
(t − s)β−1‖ f (s, xs)− f (s, ys)‖Dds

+
1

Γ(β)

∫ t

0
ωA(t − s)

(∫ s

0
(s − τ)β−1‖ f (τ, xτ)− f (τ, yτ)‖Ddτ

)
ds

≤ L
Γ(β)

∫ t

0
(t − s)β−1‖xs − ys‖L1[−b,0]ds

+
L

Γ(β)

∫ t

0
ωA(t − s)

(∫ s

0
(s − τ)β−1‖xτ − yτ‖L1[−b,0]dτ

)
ds

≤ Laβb
Γ(β + 1)

‖x − y‖C +
Laβb‖ωA‖L1(I)

Γ(β + 1)
‖x − y‖C

=
Laβb(1 + ‖ωA‖L1(I))

Γ(β + 1)
‖x − y‖C, ∀t ∈ I,

171



Fractal Fract. 2022, 6, 424

which shows that

‖Ψx − Ψy‖C ≤
Laβb(1 + ‖ωA‖L1(I))

Γ(β + 1)
‖x − y‖C.

Hence, Ψ is contractive on C(I; X) due to the Hypothesis (1). By utilizing the Banach’s
fixed point theorem, we find that Ψ has a unique fixed point on C(I; X).

4. Main Results

This part gives the results of approximate controllability of Equation (1). Let us show
the next definitions which is critical to our work.

Definition 8. The set K(a, f ) = {x(a; u) : u ∈ L2(I; U)} is said to be the reachable set of
Equation (1) at final point a, where x(t; u) is the state value of Equation (1) at time point t
corresponding to control u ∈ L2(I; U). If K(a, f ) = X, we call that Equation (1) is approximately
controllable on I, where K(a, f ) stands for the closure of K(a, f ).

Denote Nemytskii operator F : C(I; X) → L2(I;D) corresponding to the non-linearity
f by

Fx(t) = f (t, xt), t ∈ I,

and define the continuous operator P : L2(I;D) → X by

Py =
1

Γ(β)

∫ a

0

y(t)
(a − t)1−β

dt +
1

Γ(β)

∫ a

0
Ṙ(a − t)

(∫ t

0

y(s)
(t − s)1−β

ds
)

dt, y ∈ L2(I;D). (9)

It is not difficult to see that the approximate controllability of Equation (1) on I is
equivalent to that the set K(a, f ) is dense on X. That is to say, we can obtain an equivalent
definition as below.

Definition 9. System (1) is said to be approximately controllable on I, provided that for any ε > 0
and any final value ξ ∈ X, there exists a control term uε ∈ L2(I; U) satisfying

‖ξ −R(a)φ(0)−P(Fxε)−P(Buε)‖ < ε,

where xε(t) = x(t; uε) is a mild solution of Equation (1) corresponding to uε ∈ L2(I; U).

In addition, following hypotheses to obtain our approximate controllability results
are presented.

Hypothesis 3 (H3). For arbitrarily given ε > 0 and ψ ∈ L2(I;D), there is a function u ∈
L2(I; U) satisfying

‖Pψ −P(Bu)‖ < ε,

and
‖Bu‖L2(I;D) < μ‖ψ‖L2(I;D),

where μ > 0 is a real number independent of ψ.

Hypothesis 4 (H4). Under Equation (7), the following inequality holds

μLa
1
2 b

(
1 −

Laβb(1 + ‖ωA‖L1(I))

Γ(β + 1)

)−1 1 + ‖ωA‖L1(I)

Γ(β)

√
a2β−1

2β − 1
< 1.

Next, to demonstrate our main result, we still need a lemma as below.
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Lemma 5. If the Hypotheses (H1) and (H2) hold, then for any mild solutions of Equation (1), the
following result holds

‖x1 − x2‖C ≤
(

1 −
Laβb(1 + ‖ωA‖L1(I))

Γ(β + 1)

)−1 1 + ‖ωA‖L1(I)

Γ(β)

√
a2β−1

2β − 1
‖Bu1 − Bu2‖L2(I;D),

for any u1, u2 ∈ L2(I; U).

Proof. The mild solution xi(t) = x(t; ui) (i = 1, 2) of system (1) corresponding to ui (i =
1, 2) satisfy

xi(t) = φ(0) + Fxi (t) +Bui (t) +
∫ t

0
Ṙ(t − s)(φ(0) + Fxi (s) +Bui (s))ds, ∀t ∈ I.

From Lemma 4, one can obtain

‖x1(t)− x2(t)‖
≤ ‖Fx1(t)− Fx2(t)‖+ ‖Bu1(t)−Bu2(t)‖

+
∫ t

0
‖Ṙ(t − s)(Fx1(s)− Fx2(s))‖ds +

∫ t

0
‖Ṙ(t − s)(Bu1(t)−Bu2(t))‖ds

≤ ‖Fx1(t)− Fx2(t)‖D + ‖Bu1(t)−Bu2(t)‖D
+
∫ t

0
ωA(t − s)‖Fx1(s)− Fx2(s)‖Dds +

∫ t

0
ωA(t − s)‖Bu1(s)−Bu2(s)‖Dds

≤
Laβb(1 + ‖ωA‖L1(I))

Γ(β + 1)
‖x1 − x2‖C +

1 + ‖ωA‖L1(I)

Γ(β)

√
a2β−1

2β − 1
‖Bu1 − Bu2‖L2(I;D), ∀t ∈ I,

which implies that

‖x1 − x2‖C ≤
(

1 −
Laβb(1 + ‖ωA‖L1(I))

Γ(β + 1)

)−1 1 + ‖ωA‖L1(I)

Γ(β)

√
a2β−1

2β − 1
‖Bu1 − Bu2‖L2(I;D).

Theorem 2. If the Hypotheses (H1)–(H4) hold, then system (1) is approximately controllable on I.

Proof. It is only needed to prove that D ⊂ K(a, f ) due to the fact that D is dense, i.e., for
∀ε > 0 and ξ ∈ D, there is a control term uε ∈ L2(I; U) satisfying

‖ξ −R(a)φ(0)−P(Fxε)−P(Buε)‖ < ε. (10)

It follows from the Definition 3 that R(a)φ(0) ∈ D for φ(0) ∈ D, which indicates
that ξ −R(a)φ(0) ∈ D. Then, it can be see that there exists some ψ ∈ L2(I;D), such that
Pψ = ξ −R(a)φ(0). Next, we are to show that there is a control uε ∈ L2(I; U) satisfying
(4.2). Actually, for ∀ε > 0 and u1 ∈ L2(I; U), in view of (H3), we can find a function
u2 ∈ L2(I; U), such that

‖ξ −R(a)φ(0)−P(Fx1)−P(Bu2)‖ <
ε

22 ,

where x1(t) = x(t; u1), t ∈ I. Further, for u2 ∈ L2(I; U), we can find a function v2 ∈
L2(I; U) by (H3) again, such that

‖P(Fx2 −Fx1)−P(Bv2)‖ <
ε

23 ,
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where x2(t) = x(t; u2), t ∈ I. Then, from Lemma 5, we derive

‖Bv2‖L2(I;D)

≤ μ‖Fx2 −Fx1‖L2(I;D)

≤ μLa
1
2 b‖x2 − x1‖C

≤ μLa
1
2 b

(
1 −

Laβb(1 + ‖ωA‖L1(I))

Γ(β + 1)

)−1 1 + ‖ωA‖L1(I)

Γ(β)

√
a2β−1

2β − 1
‖Bu1 − Bu2‖L2(I;D).

Next, define u3 = u2 − v2 ∈ L2(I; U), and, thus, it has

‖ξ −R(a)φ(0)−P(Fx2)−P(Bu3)‖
≤ ‖ξ −R(a)φ(0)−P(Fx1)−P(Bu2)‖+ ‖P(Bv2)−P(Fx2 −Fx1)‖
≤

(
1
22 +

1
23

)
ε.

Utilizing induction, it is not hard to find a sequence {un : n ≥ 1} ⊂ L2(I; U) satisfying

‖ξ −R(a)φ(0)−P(Fxn)−P(Bun+1)‖ <

(
1
22 +

1
23 + · · ·+ 1

2n+1

)
ε, (11)

where xn(t) = x(t; un), t ∈ I, and

‖Bun+1 − Bun‖L2(I;D)

≤ μLa
1
2 b

(
1 −

Laβb(1 + ‖ωA‖L1(I))

Γ(β + 1)

)−1 1 + ‖ωA‖L1(I)

Γ(β)

√
a2β−1

2β − 1
‖Bun − Bun−1‖L2(I;D).

From Hypothesis (H4), we know that {Bun : n ≥ 1} is a Cauchy sequence on L2(I;D),
and, thus, there exists a function u∗ ∈ L2(I;D) satisfying

lim
n→∞

Bun = u∗ in L2(I;D).

Hence, for every ε > 0, we can obtain a number N > 0 satisfying

‖P(BuN+1)−P(BuN)‖ <
ε

2
. (12)

Then, from Equations (11) and (12), it is easy to deduce

‖ξ −R(a)φ(0)−P(FxN)−P(BuN)‖
≤ ‖ξ −R(a)φ(0)−P(FxN)−P(BuN+1)‖+ ‖P(BuN+1)−P(BuN)‖
≤

(
1
22 +

1
23 + · · ·+ 1

2N+1

)
ε +

ε

2
< ε,

where xN(t) = x(t; uN), t ∈ I. Consequently, the fractional evolution system (1) is approxi-
mately controllable on I.

5. Non-Local Conditions

The practical usefulness and significance of non-local conditions in the field of tech-
nology and mechanical engineering have been demonstrated [5,9,11]. It has been proved
that the non-local initial condition can provide more accurate descriptions than the clas-
sical initial conditions. Therefore, we concern the following system involving non-local
conditions and a parameter as below:{ CDβx(t) = Ax(t) + f (t, xt) + Bu(t), t ∈ I := [0, a],

x(t) + λgt(x) = φ(t), t ∈ [−b, 0].
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Firstly, we present the following hypothesis about the non-local conditions.

Hypothesis 5 (H5). gt : C([−b, a]; X) → D, for any t ∈ [−b, 0];
(i) For ∀x, y ∈ C(I; X), there has a number l > 0 satisfying

‖gt(x)− gt(y)‖D ≤ l‖x − y‖C;

(ii) The non-local term gt(x) is continuous in t ∈ [−b, 0] for all x ∈ C([−b, a]; X), and there has a
constant C > 0 satisfying ‖gt(x)‖D ≤ C.

Next, for ∀x ∈ C(I; X) and t ∈ I, let

xt(θ) =

{
x(t + θ), t + θ ≥ 0,

φ(t + θ)− λgt+θ(x), t + θ ≤ 0,
(13)

for ∀θ ∈ [−b, 0]. Obviously, we can check that xt ∈ L1([−b, 0]; X). On the basis of Equation (13)
and (H5), we have the following result similar to Lemma 2.

Lemma 6. Assume that xn → x0 (n → +∞) for xn, x0 ∈ C(I; X). Then, for any t ∈ I, one can
derive that (xn)t → (x0)t (n → +∞) for (xn)t, (x0)t ∈ L1([−b, 0]; X), and satisfies

‖(xn)t − (x0)t‖L1[−b,0] ≤ (|λ|l + 1)b‖xn − x0‖C, t ∈ I.

Proof. In accordance with Equation (13) and condition (H5), we can draw the inequalities
as below:

‖(xn)t − (x0)t‖L1[−b,0] =
∫ 0

−b
‖(xn)t(θ)− (x0)t(θ)‖dθ

=
∫ 0

t−b
|λ|‖gs(xn)− gs(x0)‖ds +

∫ t

0
‖xn(s)− x0(s)‖ds

≤ |λ|lb‖xn − x0‖C + b‖xn − x0‖C
= (|λ|l + 1)b‖xn − x0‖C, t ≤ b,

and

‖(xn)t − (x0)t‖L1[−b,0] =
∫ 0

−b
‖(xn)t(θ)− (x0)t(θ)‖dθ

=
∫ t

t−b
‖xn(s)− x0(s)‖ds

≤ b‖xn − x0‖C, t ≥ b,

which imply that

‖(xn)t − (x0)t‖L1[−b,0] ≤ (|λ|l + 1)b‖xn − x0‖C,

for any t ∈ I.

Definition 10. (i) For any u ∈ L2(I; U), a function x ∈ C(I; X) is called a mild solution of
Equation (2) on I, provided that

x(t) = φ(0)− λg0(x) + Fx(t) +Bu(t) +
∫ t

0
Ṙ(t − s)(φ(0)− λg0(x) + Fx(s) +Bu(s))ds, t ∈ I.

(ii) System (2) is said to be approximately controllable on I, provided that for any ε > 0 and
any final value ξ ∈ X, there exists a control term uε ∈ L2(I; U) satisfying

‖ξ −R(a)(φ(0)− λg0(xε))−P(Fxε)−P(Buε)‖ < ε,

where xε(t) = x(t; uε) is a mild solution of Equation (2) corresponding to uε ∈ L2(I; U).
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Theorem 3. In accordance with the proof steps of Theorem 1, one finds that if the Hypotheses
(H1)–(H2) hold, then for any given control u ∈ L2(I; U), system (2) has an unique mild solution
on I, provided that

(1 + ‖ωA‖L1(I))

(
|λ|l + Laβ(|λ|l + 1)b

Γ(β + 1)

)
< 1. (14)

Under the condition Equation (14), we further suppose the following hypothesis:

Hypothesis 6 (H6). The following inequality holds

μLa
1
2 (|λ|l + 1)b

(
1 − (1 + ‖ωA‖L1(I))

(
|λ|l + Laβ(|λ|l + 1)b

Γ(β + 1)

))−1 1 + ‖ωA‖L1(I)

Γ(β)

√
a2β−1

2β − 1
< 1.

In addition, to obtain the non-local results, we still need a lemma as below.

Lemma 7. If the hypotheses (H1)–(H2) hold, then for any mild solutions of system (2), the following
result holds

‖x1 − x2‖C ≤
(

1 − (1 + ‖ωA‖L1(I))

(
|λ|l + Laβ(|λ|l + 1)b

Γ(β + 1)

))−1 1 + ‖ωA‖L1(I)

Γ(β)

√
a2β−1

2β − 1
‖Bu1 − Bu2‖L2(I;D),

for any u1, u2 ∈ L2(I; U).

By means of iterative method utilized in Theorem 2 similarly, we now can obtain the
main controllability result of the non-local case:

Theorem 4. If the Hypotheses (H1)–(H3) and (H5) hold, then system (2) is approximately control-
lable on I.

Remark 2. Usually, the non-local condition can be given as follows

λgt(x) = λ
q

∑
i=1

lix(t + ιi), t ∈ [−b, 0],

where li (i = 1, · · ·, q) are some real numbers; 0 < ι1 < ι2 < · · · < ιq ≤ a. When λ = 1 and at
time t = 0, it is evident that

g0(x) = g(x) =
q

∑
i=1

lix(ιi),

which is exactly the case in [5,9,11,16,17].

6. Applications

Evolutionary fractional behavior has widespread backgrounds of some practical fields
of science and engineering. For example, in an electrical circuit, the voltage produced by
some non-linear device can be expressed by the non-linear term f in the evolution systems;
some related resistances can be represented by A; and linear operator B can denote some
inductances. On the other hand, non-local conditions are more extensive in practical
applications because they usually includes many other conditions, such as conditions of
initial value, multipoint average, and periodic, etc. In this part, we consider the following
fractional non-local delayed evolution systems
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⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂
3
4

∂t
3
4

x(t, ξ) =
∂2

∂ξ2 x(t, ξ) +
�(t)e−t

1 + e2t

∫ t

t−b
�(t − s) sin(x(s, ξ))ds + Bu(t, ξ), (t, ξ) ∈ [0, a]× (0, π),

x(t, 0) = x(t, π) = 0, t ∈ [0, a],

x(t, ξ) + λ
m

∑
j=1

kj sin(x(ς j + t, ξ)) = φ(t, ξ), (t, ξ) ∈ [−b, 0]× [0, π], ς j ∈ [0, a],

(15)

where � ∈ C([0, a];R), � ∈ L1
loc(R+), and φ ∈ C2,1([−b, 0]× [0, π];R). φ(t, 0) = φ(t, π) =

0, ∀t ∈ [−b, 0].
Let X = U = L2([0, π]), Ax = x′′ for x ∈ D, where

D = {x ∈ X : x, x′are absolutely continuous, x′′ ∈ X, x(0) = x(π) = 0}.

Evidently, A is an infinitesimal generator of a semigroup {T(t)}t≥0 satisfying

T(t)x =
∞

∑
n=1

e−n2t〈x, δn〉δn, x ∈ X.

In view of subordinate principle (Chapter 3, [26]), we know that A is also an infinitesi-
mal generator of a continuous differentiable bounded linear operators family {R(t)}t≥0
satisfying R(0) = I , and

R(t) =
∫ ∞

0
ηt,β(s)T(s)ds, t > 0,

where ηt,β(s) = t−βΦβ(st−β), and

Φβ(y) =
∞

∑
n=0

(−y)n

n!Γ(−βn + 1 − β)
=

1
2πi

∫
H

ζβ−1exp(ζ − yζβ)dζ, 0 < β < 1,

where H is a contour which encircles the origin once counterclockwise.
For each u ∈ L2([0, a]; U), one has

u(t) =
∞

∑
n=0

un(t)δn, un(t) = 〈u(t), δn〉.

Then, an operator B can be defined by

Bu =
∞

∑
n=1

unδn,

where

un(t) =

{
0, 0 ≤ t < a − a

n2 ,

un(t), a − a
n2 ≤ t ≤ a,

for every n = 1, 2, · · ·. This ensures that B is a bounded linear operator. In addition, the
operator P in Equation (9) is exactly the case of the operator in [29] when B = I and t = a.
Furthermore, denote by

β =
3
4
∈ (

1
2

, 1],

CD
3
4 x(t)(ξ) =

∂
3
4

∂t
3
4

x(t, ξ),

x(t)(ξ) = x(t, ξ),
Bu(t)(ξ) = Bu(t, ξ),
φ(t)(ξ) = φ(t, ξ),
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gt(x)(ξ) =
m

∑
j=1

kj sin(x(ς j + t, ξ)),

f (t, xt)(ξ) =
�(t)e−t

1 + e2t

∫ t

t−b
�(t − s) sin(x(s, ξ))ds.

Hence, Equation (15) can be regarded as{ CDβx(t) = Ax(t) + f (t, xt) + Bu(t), t ∈ [0, a],
x(t) + λgt(x) = φ(t), t ∈ [−b, 0],

In addition, it can be checked that f , B, gt, φ satisfy all assumptions in Theorem 4.
Therefore, system (15) is approximately controllable on [0, a]. In addition, it is well known
to all that the prospect of digital signal processing (DSP) is widespread and developmental,
and digital filters play a significant role in it. Therefore, in this part, we also present the
filter pattern of the system we studied which is given in Figure 1.

Figure 1. Filter system.

For any time t, the resultant values of samples xt and f (t) are produced and transferred
to the integrators I1 and I2, where the signals are integrated over time 0 to t. The signals
of resultant values of B and ux(t) are integrated in integrators I3 and I4. Integrators I1
and I3 are entered into summer network-1; Integrators I2 and I4 are entered into summer
network-2. Inputs φ(t) and λgt(x) at time t = 0 are added up in the summer network-3
and summer network-4. The integral for the product of Ṙ(t − s) and the signals in summer
network-4 over time 0 to t is performed in integrators I5. At last, move the above outputs
and integrators I5 to summer network-5, and, thus, the final outputs x(t) is derived, which
is bounded and approximately controllable.

7. Conclusions

In this manuscript, some approximate controllability results of fractional delay systems
with non-local conditions and a parameter are derived by using an iterative method. We
substitute for the theory of C0-semigroup and its associated characteristic solution operators
by utilizing differentiability properties about resolvent operator. A special complete space
is used to assist in solving the disturbance due to delay effects. Then, the current results
seem to be more general and generalize some recent analogous outcomes, e.g., [21–23,27].
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By means of iterative method, some further new study can be devoted to the approxi-
mate controllability of fractional impulsive systems as below:⎧⎨⎩

CDβx(t) = Ax(t) + f (t, xt, Qx(t)) + Bu(t), a.e. t ∈ I = [0, a],
Δx(ti) = x(t+i )− x(t−i ) = Ii(x(t−i )), i = 1, 2, · · ·, m,
x(t) + λgt(x) = φ(t), t ∈ [−b, 0],

where Qx(t) =
∫ t

0
q(t, s, xs)ds, q : Λ × L([−b, 0]; X) → X and Λ = {(t, s) ∈ I × I : s ≤ t}.

The impulsive items Ii (i = 1, 2, · · ·, m) are given functions that satisfy some appropriate
hypotheses. φ ∈ L1([−b, 0]; X). The main tools we are about to use here can be the theory
of differentiable resolvent operators or analytic resolvent operators [25,30,31]. Furthermore,
evolutionary fractional behavior is more accurately captured by variable-order fractional
calculus. To this end, extending the present results to the more generalized variable-order
fractional system will be an interesting problem.
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Abstract: In this paper, we give an affirmative answer to a question about the sufficient conditions
which ensure that the set of mild solutions for a fractional impulsive neutral differential inclusion
with state-dependent delay, generated by a non-compact semi-group, are not empty compact and
an Rδ-set. This means that the solution set may not be a singleton, but it has the same homology
group as a one-point space from the point of view of algebraic topology. In fact, we demonstrate that
the solution set is an intersection of a decreasing sequence of non-empty compact and contractible
sets. Up to now, proving that the solution set for fractional impulsive neutral semilinear differential
inclusions in the presence of impulses and delay and generated by a non-compact semigroup is an
Rδ-set has not been considered in the literature. Since fractional differential equations have many
applications in various fields such as physics and engineering, the aim of our work is important. Two
illustrative examples are given to clarify the wide applicability of our results.

Keywords: impulsive fractional differential inclusions; neutral differential inclusions; mild solutions;
contractible sets; Rδ-set

1. Introduction

Impulsive differential equations and inclusions describe phenomena in which states
are changing rapidly at certain moments. In [1–8], the authors examined whether a mild
solution for different types of impulsive differential inclusions exist.

The study of neutral differential equations appears in many applied mathematical sci-
ences, such as viscoelasticity and equations that describe the distribution of heat. The struc-
ture of neutral equations involve derivatives related to delay beside the function. Neutral
differential equations and inclusions were studied in [9–12]. These papers examined the
mild solutions and controllability of the system.

Because the set of mild solutions for a differential inclusion having the same initial
point may not be a singleton, many authors are interested in investigating the structure
of this set in a topological point of view. An important aspect of such structure is the
Rδ-property, which means that the homology group of the set of mild solutions is the
same as a one-point space. We list some studies in which the authors demonstrated the
solution sets satisfying Rδ-property: Gabor [13] considered impulsive semilinear differen-
tial inclusions with finite delay on the half-line of order one generated by a non-compact
semi-group; Djebali et al. [14] worked on impulsive differential inclusions on unbounded
domains; Zhou et al. [15] studied the neutral evolution inclusions of order one generated
by a non-compact semi-group; Zhou et al. [16] considered fractional stochastic evolu-
tion inclusions generated by a compact semi-group; Zhao et al. [17] studied a stochastic
differential equation of Sobolev-type which is semilinear with Poisson jumps of order
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α ∈ (1, 2); Beddani [18] examined a differential inclusion involving Riemann–Liouville frac-
tional derivatives; Wang et al. [19] worked on semilinear fractional differential inclusions
with non-instantaneous impulses; Ouahab et al. [20] considered fractional inclusions that
are non-local and have impulses at different times; Zaine [21] studied weighted fractional
differential equations. Recently, Zhang et al. [22] proved that the set of C0-solutions for
impulsive evolution inclusions of order one is an Rδ-set and generated by m–dissipative op-
erator. Wang et al. [23] proved that the solution for evolution equations that have nonlinear
delay and multivalued perturbation on a non-compact interval is an Rδ-set.

In [6,24–26], the authors studied different kinds of fractional differential inclusions,
and, in all cases, they showed that the set of solutions is a compact set. For more work
related to this, the reader can consult the book in [27] about the topological properties for
evolution inclusions.

However, up to now, proving that the solution set for fractional impulsive neutral semi-
linear differential inclusions involving delay and generated by a non-compact semigroup is
an Rδ-set has not been considered in the literature. Thus, this topic is new and interesting
and, hence, the question whether there exists a solution set carrying an Rδ-structure remains
unsolved for fractional differential inclusions when there are impulses, delay (finite or
infinite) and the operator families generated by the linear part lack compactness. Therefore,
our main goal is to give an affirmative answer to this question. In fact, we study a neutral
fractional impulsive differential inclusion with delay which is generated by a non-compact
semigroup, and we show that the set of solutions is non-empty and equal to an intersection
of a decreasing sequence of sets each of which is non-empty compact and has a homotopy
equivalent to a point.

Let α ∈ (0, 1), r > 0, J = [0, b], T = {Υ(η) : η ≥ 0} a semigroup on E, which is
Banach space, and A the infinitesimal generator of T. Let F : J × Θ → 2E − {φ} be a
multifunction, h : J × Θ → E, 0 = η0 < η1 < · · · < ηm < ηm+1 = b, and ψ ∈ Θ be given.
For every η ∈ J, let κ(η) : H → Θ, (κ(η)x)(θ) = x(η + θ); θ ∈ [−r, 0]; where Θ and H are
defined later.

The present paper shows the solution set of a fractional neutral impulsive semilinear
differential inclusion with delay having details as follows:⎧⎨⎩

cD α
0,η [x(η)− h(η,κ(η)x)] ∈ Ax(η) + F(η,κ(η)x), a.e. η ∈ [0, b]− {η1, . . . , ηm},

Iix(η−
i ) = x(η−

i )− x(η+
i ), i = 1, . . . , m,

x(η) = ψ(η), η ∈ [−r, 0],
(1)

is not empty, compact and an Rδ-set, where Ii : E −→ E, i = 1, . . . , m, and x(η+
i ), x(η−

i )
are the limits of the function x evaluated at ηi from the right and the left. Furthermore,
cD α

0,η denotes the Caputo derivative that has order α ∈ (0, 1) and lower limit at zero [28].
In the following points, we clarify the originality, importance and the main contribu-

tions of this article:

1. Up to now, proving that the solution set is an Rδ-set for fractional impulsive neutral
semilinear differential inclusions involving delay and generated by a non- compact
semigroup has not been considered in the literature.

2. Demonstrating that the set of solutions is an Rδ-set for fractional neutral differential
inclusions involving impulses and delay has not been considered yet.

3. We do not assume that the semi-group which generates the linear part is compact.
4. Proving that the set of solutions is an Rδ-set for neutral differential inclusions (without

impulses) with a finite delay, α = 1, and generated by a non-compact semigroup,
has been investigated in [15], while stochastic neutral differential inclusions (without
impulsive effects) with finite delay of order α ∈ (0, 1) and generated by a compact
semigroup has been examined in [16].

5. Gabor [13] considered Problem 1 on the half-line when α = 1 and h ≡ 0.
6. Problem 1 is investigated in [19] when h ≡ 0 and in the absence of delay.

182



Fractal Fract. 2022, 6, 188

7. Our technique can be used to derive suitable conditions, which implies that the solu-
tion set is an Rδ-set for the problems studied in [13–23] when they contain impulses
and delay.

In order to clarify the difficulties encountered to achieve our aim, we point to the
normed space PC([−r, b], E], which consists of piecewise continuous bounded functions
defined on [−r, b] with a finite number of discontinuity points and is left continuous at the
discontinuity points, and is not necessarily complete. Moreover, unlike the Banach spaces
C([−r, b], E) and PC(J, E), the Hausdorff measure of noncompactness on PC([−r, b], E] is
not specific. Thus, when the problem involves delay and impulses, we cannot consider
PC([−r, b], E] as the space of solutions. To overcome these difficulties, a complete metric
space H is introduced as the space of mild solutions (see the next section). In addition,
the function η → κ(η)x; x ∈ H is not necessarily measurable (see Remark 1, and so, a norm
different from the uniform convergence norm is introduced (see Equation (2) below).

For recent contributions on neutral differential inclusions of fractional order,
Burqan et al. [29] give a numerical approach in solving fractional neutral pantograph equations
via the ARA integral transform. Ma et al. [30] studied the controllability for a neutral differ-
ential inclusion with Hilfer derivative, and Etmad et al. [31] investigated a neutral fractional
differential inclusion of Katugampola-type involving both retarded and advanced arguments.

For more recent papers we cite [32–34].
The sections of the paper are organized as follows: We include some background

materials in Section 2 as we need them in the main sections. Section 3 is assigned for
proving that the solution set of Problem (1) is non-empty and compact. In Section 4, we
show that this set is an Rδ-set in the complete metric space H. In Section 5, e give an
example as an application of the obtained results. Sections 6 and 7 are the discussion and
conclusion sections.

2. Preliminaries and Notation

In all the text we denote for the set of mild solutions for Problem 1 by ΣF
ψ[−r, b] and by

L1(J, E) to the quotient space consisting of E−valued Bohner integrable functions defined
on J having the norm ‖ f ‖L1(J,E) =

∫ b
0 ‖ f (θ)‖dθ. Let Pck(E) = {B ⊆ E : B be non-empty,

convex and compact}.

Definition 1. (Ref. [35]) Let h : J → E, {Υ(η) : η ≥ 0} a C0−semigroup and A be the
infinitesimal generator of it. A continuous function x : J → E is called a mild solution for the
problem: { cD αz(η) = Az(η) + h(η), η ∈ J,

z(0) = z0 ∈ E,

if

z(η) = K1(η)z0 +
∫ η

0
(η − τ)α−1K2(η − τ)h(τ)dτ, η ∈ J,

where K1(η) =
∫ ∞

0 ξα(θ)Υ(η αθ)dθ,K2(η) = α
∫ ∞

0 θξα(θ)Υ(ηαθ)dθ,

ξα(θ) =
1
α θ−1− 1

α wα(θ
− 1

α ) ≥ 0, wα(θ) =
1
π ∑∞

n=1(−1)n−1θ−αn−1 Γ(n α+1)
n! sin(nπα), θ ∈

(0, ∞) and
∫ ∞

0 ξα(θ)dθ = 1.

Lemma 1. (Ref. [35] (lemma 3.1)) The properties stated below are held:

(i) For every fixed η ≥ 0, K1(η),K2(η) are linear and bounded.
(ii) Assuming ||η(η)|| ≤ M, η ≥ 0, we have that for any x ∈ E, ||K1(η)x|| ≤ M||x|| and

||K2(η)x|| ≤ M
Γ(α) ||x||.

(iii) If η, τ ≥ 0; then for any x ∈ E,

lim
η→τ

||K1(η)x − K1(τ)x|| = 0, and lim
η→τ

||K2(η)x − K2(τ)x|| = 0.
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Consider the spaces:

1. The normed space

Θ : = {x : [−r, 0] → E, where x is discontinuous at finite number of

points τ �= 0, and all the limits x(τ+) and x(τ−) are less than ∞}

endowed with the norm:

||x||Θ :=
∫ 0

−r
||x(τ)||dτ. (2)

2. The Banach space

PC(J, E) : = {u : J → E : u|Ji
∈ C(Ji, E), i = 0, 1, 2, . . . , m, and u(η+

i ),

u(ηi) = u(η−
i ) are finite for every i = 1, 2, . . . .m},

where J0 = [0, η1], Ji = (ηi, ηi+1], i = 1, 2, . . . , m, and ||v||PC(J;E) = τupη∈J ||v(η)||.
3. The complete metric space

H = {x : [−r, b] → E : where x is continuous at η = 0, x|[−r,0]
= ψ,x|Ji

∈ PC (J, E)},

where the metric function is given by:

dH(x, y) = τupη∈J ||x(η)− y(η)||.

4. The Banach space

H := {x : [−r, b] → E where x(η) = 0, ∀η ∈ [−r, 0],x|Ji
∈ PC (J, E)}

together with the norm ||x||H = τupη∈J ||x(η)||+ ||x|[−r,0]
||Θ = τupη∈J ||x(η)||.

The Hausdorff measure of noncompactness on a Banach space PC(J, E) is given by

χPC(B) := max
i=0,1,2,...,m

χi(B| Ji
),

where B is a bounded subset of PC(J, E) and χi is the Hausdorff measure of noncompact-
ness on the Banach space C(Ji, E) and

B|Ji
:= {x∗ : Ji → E : x∗(η) = x(η), η ∈ Ji and x∗(ηi) = x(η+

i ), x ∈ B}.

The Hausdorff measure of noncompactness on H is defined by:

χH(B) = max
i=0,1,2,...,m

χi(B| Ji
),

where B is a bounded subset of H.

Remark 1. Since the function η → κ(η)x; x ∈ H is not necessarily measurable, we do not
consider the uniform convergence norm to be the norm defined on the space Θ (see Example 3.1, [36]).
Therefore, the multivalued superposition operator

x → S1
F(.,κ(.)x) = { f ∈ L1(J, E) : f (η) ∈ F(η,κ(η)x), a.e.,η ∈ J}

would not be well defined. Therefore, we consider a norm defined by Equation (2).

Definition 2. A function x ∈ H is said to be a mild solution for (1) if
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x(η) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ψ(η), η ∈ [−r, 0],
K1(η)[ψ(0)− h(0, ψ)] + h(η,κ(η)x)
+
∫ η

0 (η − τ)α−1 AK2(η − τ)h(τ,κ(τ)x)dτ

+
∫ η

0 (η − τ)α−1K2(η − τ) f (τ)dτ
+∑0<ηi<η K1(η − ηi)Ii(x(η−

i )), η ∈ J = [0, b],

(3)

where f ∈ S1
F(.,κ(.)x).

We assume the following conditions:
(HA) A is the infinitesimal generator of T, 0 is an element of the resolvent of A, ρ(A)

and supη≥0 ||Υ(η)|| ≤ M, where M ≥ 1.
(HF) F : J × Θ → Pck(E) where:
(HF1) For any z ∈ Θ, the multifunction η −→ F(η, z) has a measurable selection,

and for η ∈ J, a.e., the multifunction z −→ F(η, z) is upper semicontinuous.
(HF2) There exists a ϕ ∈ LP(I,R+)(P > 1

α ) satisfying

‖F(η, z)‖ ≤ ϕ(η) (1 + ‖z‖Θ), ∀z ∈ Θ and for a.e. η ∈ J.

(HF3) There is a β ∈ LP([0, b], E), p > 1
α such that, for any D ⊂ Θ that is bounded, we

have
χE(F(η, D)) ≤ β(η) sup

θ∈[−r,0]
χE{z(θ) : z ∈ D}, a.e. for η ∈ J. (4)

(HI) For any i = 1, . . . , m, the function Ii : E → E is continuous, and there are σi > 0
and ςi > 0 satisfying ||Ii(x)|| ≤ σi||x||, and for any bounded subset D ⊆ E,

χE(Ii(D)) ≤ ςiχE(Ii(D)).

Lemma 2. (Ref. [37]) Under condition (HA), for any γ ∈ (0, 1), the fractional power Aγ can be
defined, and it is linear and closed on its domain D(Aγ). In addition, the following properties are
satisfied:

(i) D(Aγ) is a Banach space with the norm

||x||γ = ||Aγx||.

(ii) For any η > 0, x ∈ E, we have Υ(η)x ∈ D(Aγ) and, assuming x ∈ D(Aγ), we get
AγΥ(η)x = Υ(η)Aγx.

(iii) For every η > 0, AγΥ(η) is bounded on E, and there is a constant Cγ > 0 such that

||AγΥ(η)|| ≤ Cγ

ηγ
. (5)

(iv) A−γ is a bounded linear operator on E.
(v) For every x ∈ E,

AK2(η)x = A1−γK2(η)Aγx, η ∈ J, (6)

and

||AγK2(η)|| ≤
αCγΓ(2 − γ)

ηαγΓ(1 + α(1 − γ))
, η ∈ (0, b]. (7)

We need the next lemmas in order to prove our main results.

Lemma 3. Assume W ⊆ E to be bounded, closed and convex, Φ1 : W → E is a single-valued
function, Φ2 : W → Pck(E) is a multifunction, and for any x ∈ W, Φ1(x) + y ∈ W, ∀y ∈ Φ2(x).
Suppose that

(a) Φ1 is a contraction with the contraction constant k < 1
2 ;

(b) Φ2 is a closed and completely continuous multifunction.
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Then, the fixed point set of Φ1 + Φ2 is not empty. Moreover, the set of fixed points for
Φ1 + Φ2 is compact if it is bounded.

Proof. Φ1 is continuous on W since it is a contraction and, hence, it follows by the closeness
of Φ2, that the multifunction R = Φ1 + Φ2 is closed. We show that R is χE−condensing,
where χE is the Hausdorff measure of noncompactness on E. Let Z be a bounded set of W.
Since Φ1 is a contraction with the contraction constant k, we get μE(Φ1(Z)) ≤ kμE(Z) ≤
2kχE(Z) < χE(Z), where μE is the Kuratowski measure of noncompactness on E. Because
Φ2 is compact, χE(Φ2(Z)) = 0. Therefore,

χE(R(Z)) = χE(Φ1(Z)) + χE(Φ2(Z)

= χE(Φ1(Z)) ≤ μE(Φ1(Z))

< χE(Z).

This means that R is χE−condensing. By Proposition 3.5.1 in [38], the fixed point set
of Φ1 + Φ2 is not empty. The second part follows from Proposition 3.5.1 in [38].

3. The Compactness of ΣF
ψ[−r, b]

In this section, we show that the set of mild solutions for Problem 1 is nonempty
and compact.

For any x ∈ H with x(0) = ψ(0), let x ∈ H be defined by

x(η) :=
{

ψ(η), η ∈ [−r, 0],
x(η), η ∈ (0, b].

(8)

Lemma 4. For any x ∈ H, the function η → κ(η)x is continuous from J to Θ.

Proof. Assume η, τ ∈ J, η ≤ τ. Then,

||κ(η)x −κ(τ)x||Θ =
∫ 0

−r
||x(η + θ)− x(τ + θ)||dθ.

Because x is continuous on [−r, b] except for a finite number of points, it follows that
limη→τ ||x(η + θ)− x(τ + θ)|| = 0, a.e. Since x ∈ H, limη→τ

∫ 0
−r ||x(η + θ)− x(τ + θ)||dθ =

0, and the proof is completed.

Theorem 1. Assume that (HA) and (HF) are held and that {Υ(η) : η ≥ 0} is equicontinuous.
Assume also that the following conditions are satisfied.

(Hh) The function h : J × Θ → E is continuous and there exists a γ ∈ (0, 1) satisfying
h(η, u) ∈ D(Aγ), ∀(η, u) ∈ J × Θ and

(i) For any η ∈ J, Aγh(η, .) is strongly measurable.
(ii) There are d1 > 0 and d2 > 0 with

d1||A−γ||+ d1bαγC1−γΓ(1 + γ)

γΓ(1 + αγ)
<

1
2r

, (9)

||Aγh(η, u)|| ≤ d2(1 + ||u||Θ), ∀(η, u) ∈ J × Θ, (10)

and
||Aγh(η, u1)− Aγh(η, u2)|| ≤ d1||u1 − u2||Θ, ∀η ∈ J. (11)

Then, ΣF
ψ[−r, b] is not empty and a compact subset of H provided that

||A−γ||d2r + d2
C1−γΓ(1 + γ)bαγ

Γ(1 + αγ)γ
r +

M
Γ(α)

Δ‖ϕ‖LP
(J,,R+)

r + σM < 1, (12)

186



Fractal Fract. 2022, 6, 188

and
4ΔM
Γ(α)

||β||LP(J, R+) + 2M
i=m

∑
i=1

ςi <
1
2

, (13)

where σ = ∑i=m
i=1 σi and Δ = ( P−1

αP−1 )
P−1

P bα− 1
P .

Proof. A multioperator Φ : H → P(H) is defined as the following: let x ∈ H, hence, as a
consequence of (HF1), the multifunction η −→ F(η,κ(η)x) admits a measurable selection
which, by (HF2), belongs to S1

F(.,κ(.)x), and, therefore, y ∈ Φ(x) can be defined by

y(η) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, η ∈ [−r, 0],
K1(η)[ψ(0)− h(0, ψ)] + h(η,κ(η)x)
+
∫ η

0 (η − τ)α−1 AK2(η − τ)h(τ,κ(τ)x)dτ

+
∫ η

0 (η − τ)α−1K2(η − τ) f (τ)dτ
+∑0<ηi<η K1(η − ηi)Ii(x(η−

i )), η ∈ J,

(14)

where f ∈ S1
F(.,κ(.)x) and x is defined by (8).

We show that a point x is a fixed point for Φ if and only if x ∈ ΣF
ψ[−r, b]. Assume x is

a fixed point to Φ. Hence,

x(η) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, η ∈ [−r, 0],
K1(η)[ψ(0)− h(0, ψ)] + h(η,κ(η)x)
+
∫ η

0 (η − τ)α−1 AK2(η − τ)h(τ,κ(τ)x)dτ

+
∫ η

0 (η − τ)α−1K2(η − τ) f (τ)dτ
+∑0<ηi<η K1(η − ηi)Ii(x(η−

i )), η ∈ J.

Therefore,

x(η) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ψ(η), η ∈ [−r, 0],
K1(η)[ψ(0)− h(0, ψ)] + h(η,κ(η)x)
+
∫ η

0 (η − τ)α−1 AK2(η − τ)h(τ,κ(τ)x)dτ

+
∫ η

0 (η − τ)α−1K2(η − τ) f (τ)dτ
+∑0<ηi<η K1(η − ηi)Ii(x(η−

i )), η ∈ J,

which means that x satisfies (3), and, thus, it is a mild solution for problem (1). In a similar
way, it can be seen that if x satisfies (3), then x is a fixed point for Φ. Let Φ1 : H → H and
Φ2 : Φ2 → P(H) be such that

Φ1(x)(η) =

⎧⎨⎩
0, η ∈ [−r, 0],
K1(η)[ψ(0)− h(0, ψ)] + h(η,κ(η)x)
+
∫ η

0 (η − τ)α−1 AK2(η − τ)h(τ,κ(τ)x)dτ, η ∈ J,
(15)

and a function y ∈ Φ2(x) if and only if

y(η) =

⎧⎨⎩
0, η ∈ [−r, 0],
+
∫ η

0 (η − τ)α−1K2(η − τ) f (τ)dτ
+∑0<ηi<η K1(η − ηi)Ii(x(η−

i )), η ∈ J,
(16)

where f ∈ S1
F(.,κ(.)x). Notice that Φ = Φ1 + Φ2. Let ξ = supθ∈[−r,0] ||ψ(θ)||,

ω = M [ξ + ||A−γ||d2(1 + rξ)]

+(1 + rξ)[||A−γ||d2 + d2
C1−γΓ(1 + γ)bαγ

Γ(1 + αγ)γ
+

M
Γ(α)

Δ‖ϕ‖LP
(J,,R+)

]
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and υ be a positive real number satisfying

υ >
ω

1 − [||A−γ||d2r + d2
C1−γΓ(1+γ)bαγ

Γ(1+αγ)γ
r + M

Γ(α)Δ‖ϕ‖LP
(J,,R+)

r + σM]
. (17)

Put Bυ = {u ∈ H : ||u||H ≤ ν}. Due to (12), υ is well defined. The rest of the proof is
divided in the following steps:

Step 1. This step shows that Φ(Bν) ⊆ Bν. Let x ∈ Bυ and y ∈ Φ(x). There exists
f ∈ S1

F(.,κ(.)x) where

y(η) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, η ∈ [−r, 0],
K1(η)[ψ(0)− h(0, ψ)] + h(η,κ(η)x)
+
∫ η

0 (η − τ)α−1 AK2(η − τ)h(τ,κ(τ)x)dτ

+
∫ η

0 (η − τ)α−1K2(η − τ) f (τ)dτ
+∑0<ηi<η K1(η − ηi)Ii(x(η−

i )), η ∈ J.

Let η ∈ J. For every x ∈ H, we get

||κ(η)x||Θ =
∫ 0

−r
||x(η + θ)||dθ ≤ r(ξ + υ),

which implies that (HF2), || f (τ)|| ≤ ϕ(τ)(1 + ||κ(η)x||Θ) ≤ r(ξ + υ); a.e.τ ∈ J. So, by (ii)
of Lemma 1, and the Holder inequality, it follows that

||
∫ η

0
(η − τ)α−1K2(η − τ) f (τ)dτ||

≤ M
Γ(α)

(1 + r(ξ + υ))
∫ η

0
(η − τ)α−1 ϕ(τ)dτ

≤ M
Γ(α)

Δ‖ϕ‖LP
(J,,R+)

(1 + r(ξ + υ)).

Then, from (6), (7), (10) and (HI), one has, for η ∈ J,

||y(η)|| ≤ M [ξ + ||A−γ Aγh(0, ψ)||] + ||A−γ Aγh(η,κ(η)x)||

+
∫ η

0
(η − τ)α−1||A1−γK2(η − τ)Aγh(τ,κ(τ)x)||dτ

+
M

Γ(α)
Δ‖ϕ‖LP

(J,,R+)
(1 + r(ξ + υ)) + Mυσ

≤ M [ξ + ||A−γ||d2(1 + rξ)] + ||A−γ||d2(1 + ||κ(η)x||Θ)

+d2(1 + r(ξ + υ))
αC1−γΓ(2 − (1 − γ)

Γ(1 + α(1 − (1 − γ))

∫ η

0

(η − τ)α−1

(η − τ)α(1−γ)
dτ

+
M

Γ(α)
(1 + r(ξ + υ))Δ‖ϕ‖LP

(J,,R+)
+ Mυσ

≤ M [ξ + ||A−γ||d2(1 + rξ)] + ||A−γ||d2(1 + r(ξ + υ))

+d2(1 + r(ξ + υ))
C1−γΓ(1 + γ)bαγ

Γ(1 + αγ)γ

+
M

Γ(α)
(1 + r(ξ + υ))Δ‖ϕ‖LP

(J,,R+)
+ Mυσ.
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This equation with (12) leads to

||y||H ≤ M [ξ + ||A−γ||d2(1 + rξ)]

+(1 + rξ)[||A−γ||d2 + d2
C1−γΓ(1 + γ)bαγ

Γ(1 + αγ)γ
+

M
Γ(α)

Δ‖ϕ‖LP
(J,,R+)

]

+υ[||A−γ||d2r + d2
C1−γΓ(1 + γ)bαγ

Γ(1 + αγ)γ
r +

M
Γ(α)

Δ‖ϕ‖LP
(J,,R+)

r + σM]

< υ.

Then, Φ(Bυ) ⊆ Bυ.
Step 2. Φ1 is a contraction with a contraction constant k < 1

2 .
Let u, v ∈ Bυ and η ∈ J. Then, ||κ(η)u − κ(η)v||Θ =

∫ 0
−r ||u(η + θ)− v(η + θ)||dθ ≤

r||u − v||H. From (6), (7) and (11), for every u, v ∈ Bυ and any η ∈ J, we have that

||Φ1(u)(η)− Φ1(v)(η)||
≤ ||h(η,κ(η)u)− h(η,κ(η)v)||

+||
∫ η

0
(η − τ)α−1 AK2(η − τ)[h(τ,κ(τ)u)− h(τ,κ(τ)v)]dτ

≤ ||A−γ Aγ[h(η,κ(η)u)− h(η,κ(η)v)]||

+||
∫ η

0
(η − τ)α−1 A1−γK2(η − τ)Aγ[h(τ,κ(τ)u)− h(τ,κ(τ)v)]dτ

≤ ||A−γ|| ||Aγh(η,κ(η)u)− Aγh(η,κ(η)v)||

+
αC1−γΓ(1 + γ)

Γ(1 + αγ)

∫ η

0
(η − τ)αγ−1||Aγh(τ,κ(τ)u)− Aγh(τ,κ(τ)v)||dτ

≤ d1||A−γ|| ||κ(η)u −κ(η)v||Θ

+
d1αC1−γΓ(2 − γ)

Γ(1 + αγ)
sup

τ∈[0,η]
||κ(τ)u −κ(τ)v||Θ

bαγ

αγ

≤ ||u − v||H[d1||A−γ||+ d1bαγC1−γΓ(1 + γ)

γΓ(1 + αγ)
]r,

which yields with (9) that Φ1 is a contraction with a contraction constant k < 1
2 .

Step 3. Φ2 has a closed graph and Φ2(x); x ∈ Bυ is compact.
Assume (xn)n≥1 and (yn)n≥1 are sequences in Bυ where xn → x, yn → y and yn ∈

Φ2(xn); n ≥ 1. Then,

yn(η) =

⎧⎨⎩
0, η ∈ [−r, 0],
+
∫ η

0 (η − τ)α−1K2(η − τ) fn(τ)dτ
+∑0<ηk<η K1(η − ηk)Ii(xn(η

−
k )), η ∈ J,

(18)

where fn ∈ τ1
F(.,κ(.)xn)

. Using (HF2), it yields that

|| fn(η)|| ≤ ϕ(η)(1 + r(υ + ξ)), a.e.η ∈ J.

So, ( fn)n≥1 is bounded in LP(J, E) and, hence, there exists a subsequence of { fn}∞
n=1.

We denote them by ( fn)n≥1, where fn −→ f ∈ LP(J, E). From Mazur’s Lemma, there exists
a sequence of convex combination, {zn}∞

n=1 of { fn}∞
n=1 that converges almost everywhere

to f . Note that by (HF2), again, for any η ∈ J, τ ∈ (0, η] and any n ≥ 1,

||(η − τ)α−1 fn(τ)|| ≤ |η − τ)|α−1 ϕ(τ)(1 + r(υ + ξ)) ∈ LP((0, η],R+).
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Set

ỹn(η) =

⎧⎨⎩
0, η ∈ [−r, 0],
+
∫ η

0 (η − τ)α−1K2(η − τ)zn(τ)dτ
+∑0<ηi<η K1(η − ηi)Ii(xn(η

−
i )), η ∈ J.

(19)

Note that by (18), ỹn(η) → y(η), η ∈ J. Moreover, since κ(η)xn → κ(η)x; η ∈ J,
F(η, .); a.e. η ∈ J is upper semicontinuous, it yields f (η) ∈ F(η,κ(η)x), a.e. Therefore,
from the continuity of K2(η − τ); τ ∈ [0, η], Ii (i = 1, 2, . . . ), and by taking the limit of (19)
as n → ∞ , one gets y ∈ Φ2(x).

To prove that the values of Φ2 are compact, assume x ∈ H and yn ∈ Φ2(x), n ≥
1. Using similar arguments to the above, we get that {yn : n ≥ 1} has a convergent
subsequence (ỹ)n≥1. So, Φ2(x) is relatively compact. Since the graph of Φ2 is closed its
values are closed and, hence, Φ2(x) is relatively compact in H.

Step 4. We claim that the subsets Z|Ji
(i = 0, 1, . . . , m) are equicontinuous, where

Z|Ji
= {y∗ ∈ C(Ji, E) : y∗(η) = y(η), η ∈ (ηi, ηi+1], y∗(ηi) = y(η+

i ), y ∈ Φ2(x), x ∈ Bv}.

Assume y∗ ∈ Z|Ji
. Then, there exists x ∈ Bυ and f ∈ S1

F(.,κ(.)x) , where, for η ∈ Ji,

y∗(η) =
∫ η

0
(η − τ)α−1K2(η − τ) f (τ)dτ

+ ∑
0<ηk<η

K1(η − ηk)Ik(x(η−
k )),

and y∗(ηi) = y(η+
i ).

Case 1. Let η1, η2 (η1 < η2) be two points in (ηi, ηi+1]. Then,

‖y∗(η2)− y∗(η1)‖

≤ ||
∫ η2

0
(η2 − τ)α−1K2(η2 − τ) f (τ)dτ

−
∫ η1

0
(η1 − τ)α−1K2(η1 − τ) f (τ)||

+|| ∑
0<ηk<η2

K1(η2 − ηk)Ik(x(η−
k ))− ∑

0<ηi<η1

K1(η1 − ηk)Ik(x(η−
k ))||

≤ ||
∫ η2

η1

(η2 − τ)α−1K2(η2 − τ) f (τ)dτ||

+
∫ η1

0
|(η2 − τ)α−1 − (η1 − τ)α−1| ||K2(η2 − τ) f (τ)||dτ

+||
∫ η1

0
(η1 − τ)α−1||K2(η2 − τ) f (τ)− K2(η1 − τ) f (τ)|| dτ .

+ ∑
0<ηk<η2

||K1(η2 − ηk)− K1(η1 − ηk)|| ||Ii(x(η−
i ))||

=
i=4

∑
i=1

Ii.

The hypothesis (HF2) implies || f (η)|| ≤ ϕ(η) (1 + r(υ + ξ)), a.e.η ∈ J, and, hence,
by Lemma 1, we get

lim
η2→η1

I1 = lim
η2→η1

||
∫ η2

η1

(η2 − τ)α−1K2(η2 − τ) f (τ)dτ||

≤ M(1 + r(υ + ξ))

Γ(α)
lim

η2→η1

∫ η2

η1

(η2 − τ)α−1 ϕ(τ)dτ

=
M(1 + r(υ + ξ))

Γ(α)
||ϕ||LP([J,R+) lim

η2→η1
(
∫ η2

η1

(η2 − τ)
P(α−1)

P−1 dτ)
P−1

P = 0.
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For I2, we have

lim
η2→η1

I2 ≤ lim
η2→η1

∫ η1

0
|(η2 − τ)α−1 − (η1 − τ)α−1| ||K2(η2 − τ) f (τ)||dτ

=
M(1 + r(υ + ξ))

Γ(α)
lim

η2→η1

∫ η1

0
|(η2 − τ)α−1 − (η1 − τ)α−1|ϕ(τ)dτ.

Note that ω = α−1
1− 1

P
∈ (−1, 0), then, for τ < η1 , we have (η1 − τ)ω ≥ (η2 − τ)ω . As an

application of Lemma 3 in [8] and considering P−1
P ∈ (0, 1), we get

|
[
(η1 − τ)ω

]1− 1
P −

[
(η2 − τ)ω

] P−1
P | ≤

[
(η1 − τ)ω − (η − τ)ω

] P−1
P .

Then,

|(η1 − τ)α−1 − (η2 − τ)α−1| ≤
[
(η1 − τ)ω − (η2 − τ)ω

] P−1
P .

This leads to

|(η − τ)α−1 − (η + λ − τ)α−1| P−1
P ≤

[
(η − τ)ω − (η + λ − τ)ω

]
.

Therefore,

lim
η2→η1

I2

≤ M(1 + r(υ + ξ))

Γ(α)
lim

η2→η1

∫ η1

0
|(η2 − τ)α−1 − (η1 − τ)α−1|ϕ(τ)dτ

≤ M(1 + r(υ + ξ)))

Γ(α)
lim

η2→η1

[∫ η1

0
|(η2 − τ)α−1 − (η1 − τ)α−1| P

P−1 dτ

] P−1
P
‖ϕ‖LP

(J,R+)

≤ M(1 + r(υ + ξ)))

Γ(α)
lim

η2→η1

[∫ η1

0
[(η2 − τ)ω − (η1 − τ)ω ]dτ

] P−1
P
‖ϕ‖LP

(J,R+)

≤ M(1 + r(υ + ξ))

Γ(α)
lim

η2→η1

[
1

ω + 1
[ηω+1

2 − (η2 − η1)
ω+1 − η1

ω+1
] P−1

P
‖ϕ‖LP

(J,R+)

= 0.

For I3,

lim
η2→η1

I3 ≤ lim
η2→η1

||
∫ η1

0
(η1 − τ)α−1||K2(η2 − τ) f (τ)− K2(η1 − τ) f (τ)|| dτ.

Observe that for every τ ∈ [0, η],

(η1 − τ)α−1||Kα(η2 − τ) f (τ)− Kα(η1 − τ) f (τ)||

≤ 2M(ν + 1)
Γ(α)

(η1 − τ)α−1 ϕ(τ) ∈ LP(J,R+).

Moreover, since {η(η) : η > 0} is equicontinuous, and, using the Lebesgue-dominated
convergence theorem, one gets
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lim
η2→η1

I3 ≤ M(1 + r(υ + ξ))

Γ(α)
lim

η2→η1

∫ η1

0
(η1 − τ)α−1||K2(η2 − τ)− K2(η1 − τ)||ϕ(τ)dτ

=
M(1 + r(υ + ξ))

Γ(α)

∫ η1

0

∫ ∞

0
θ(η1 − τ)α−1ζα(θ)×

[ lim
η2→η1

‖(Υ((η2 − τ)αθ)− Υ(η1 − τ)αθ))‖] dθϕ(τ)dτ

= 0.

For I4,

lim
η2→η1

I4 ≤ συ lim
η2→η1

∑
0<ηk<η2

||K1(η2 − ηk)− K1(η1 − ηk)|| = 0.

Case 2. η = ηi , i = 1, . . . , m. Assume δ > 0, ηi + δ ∈ (ηi, ηi+1] and λ > 0 where
ηi < λ < ηi + δ ≤ ηi+1. Hence, as above, it can be shown that

‖y∗(ηi + δ)− y∗(ηi)‖ = lim
λ→η+i

‖y(ηi + δ)− y(λ)‖ = 0.

Then, Z|Ji
(i = 0, 1, . . . , m) are equicontinuous.

Step 5. Set B1 = convΦ(Bυ) and Bn = convΦ(Bn−1), n ≥ 2. Then, the sequence (Bn),
n ≥ 1 is a decreasing sequence of not empty, closed and bounded subsets of H. So, the set
B =

⋂
n≥1

Bn is bounded, closed, convex and Φ(B) ⊂ B. Next, we show that B is compact.

According to the generalized Cantor’s intersection property, we only need to prove that

lim
n→∞

χH(Bn) = 0, (20)

where χH is the Hausdorff measure of noncompactness on H. Assume n ∈ N and n ≥ 1 are
fixed. From the fact that Φ1 is a contraction with a contraction constant k < 1

2 , it follows that

χHΦ(Bn−1)

≤ χHΦ1(Bn−1) + χHΦ2(Bn−1)

≤ 1
2

χH(Bn−1) + χHΦ2(Bn−1). (21)

Let ε > 0. Using Lemma 5 in [39], there is a (yk)k≥1 in Φ2(Bn−1) with

χHΦ2(Bn−1) ≤ 2χH{yk : k ≥ 1}+ ε.

From the fact that the subsets Z|Ji
(i = 0, 1, . . . , m) are equicontinuous, one obtains

χHΦ2(Bn−1)

≤ 2χH{yk : k ≥ 1}+ ε

≤ 2 sup
η∈[0,b]

χE{yk(η) : k ≥ 1}+ ε. (22)

Now, let xk ∈ Bn−1 and yk ∈ Φ2(xk), k ≥ 1. Then, for every k ≥ 1, there is a
fk ∈ τ1

F(.,κ(η)xk)
such that, for any η ∈ J,

yk(η) =

⎧⎨⎩
0, η ∈ [−r, 0],∫ η

0 (η − τ)α−1K2(η − τ) fk(τ)dτ
+∑0<ηi<η K1(η − ηi)Ii(xk(η

−
i )), η ∈ J.
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Note that the assumption (HI) implies that for η ∈ J,

χE{ ∑
0<ηi<η

K1(η − ηi)Ii(xk(η
−
i )) : k ≥ 1}

≤ M
i=m

∑
i=1

ςi χE{xk(η
−
i )) : k ≥ 1}

≤ M
i=m

∑
i=1

ςi χE{xk(η
−
i )) : k ≥ 1}

≤ M χH(Bn−1)
i=m

∑
i=1

ςi . (23)

Moreover, from (4) , we have that for a.e.τ ∈ J,

χE{ fk(τ) : k ≥ 1} ≤ χ{F(τ,κ(τ)xk) : k ≥ 1}
≤ β(τ) sup

θ∈[−r,0]
χ{xk(τ + θ) : k ≥ 1}

≤ β(τ) sup
δ∈[−r,τ]

χ{xk(δ) : k ≥ 1}

≤ β(τ) sup
δ∈[0,τ]

χ{xk(δ) : k ≥ 1}

≤ β(τ)χH(Bn−1) = γ(η). (24)

Again, by (HF2)
∗, for every k ≥ 1, and for almost η ∈ J, || fk(η)|| ≤ ϕ(η) (1 + r(υ +

ξ)) and, hence, { fk : k ≥ 1} is integrably bounded. As a consequence of Lemma 4 in [40],
there is a compact set Kε ⊆ E, a measurable set Jε ⊂ J having a measure less than ε and
{zε

k} ⊂ LP(J, E) such that for every τ ∈ J, {zε
k(τ) : k ≥ 1} ⊆ Kε and

|| fk(τ)− zε
k(τ)|| < 2γ(τ) + ε for all k ≥ 1 and all τ ∈ J − Jε. (25)

Then, by (24) and (25) and Minkowski’s inequality, it follows that for k ≥ 1,

||
∫

J−Jε

(η − τ)α−1K2(η − τ)( fk(τ)− zε
k(τ))dτ||

≤ M
Γ(α)

|| fk − zε
k ||LP(J0−Jε ,R+)(

∫
J− Jε

(η − τ)
(α−1)P

P−1 dτ)
P−1

P

≤ ΔM
Γ(α)

|| fk − zε
k ||LP(J0−Jε ,R+)

≤ ΔM
Γ(α)

(2||γ||LP(J− Jε , R+) + εb
1
P )

=
ΔM
Γ(α)

(2||β||LP(J, R+) χH(Bn−1) + εb
1
P ), (26)

and

||
∫

Jε

(η − τ)α−1K2(η − τ) fk(τ)dτ||

≤ M
Γ(α)

(1 + r(υ + ξ))
∫

Jε

(η − τ)α−1 ϕ(τ)dτ

≤ M
Γ(α)

(1 + r(υ + ξ)||ϕ||LP(Jε , R+)(
∫

Jε

(η − τ)
(α−1)P

P−1 dτ)
P−1

P . (27)

Moreover, from the fact that {zε
k(τ) : k ≥ 1}; τ ∈ J is contained in a compact subset,

we get
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χ{
∫

J−Jε

(η − τ)α−1K2(η − τ)zε
k(τ)dτ : k ≥ 1} = 0.

Combining this relation with (26) and (27), it follows that

χ{
∫ η

0
(η − τ)α−1K2(η − τ) fk(τ)dτ : k ≥ 1}

≤ ΔM
Γ(α)

(2||β||LP(J, R+) χH(Bn−1) + εb
1
P )

+
(1 + r(υ + ξ)M

Γ(α)
||ϕ||LP(Jε , R+)Δε, (28)

where Δε = (
∫

Jε
(η − τ)

(α−1)P
P−1 dτ)

P−1
P . Using the fact that ε is chosen arbitrary, relation (28)

becomes

χ{
∫ η

0
(η − τ)α−1K2(η − τ) fk(τ)dτ : k ≥ 1}

≤ 2ΔM
Γ(α)

||β||LP(J, R+) χH(Bn−1).

Using the above inequality and (21)–(23), in addition to the fact that ε is arbitrary, it
follows that

χH(Bn) ≤ (
4ΔM
Γ(α)

||β||LP(J, R+) + 2M
i=m

∑
i=1

ςi +
1
2
)χH(Bn−1).

This leads to

χH(Bn) ≤ (
4ΔM
Γ(α)

||β||LP(J, R+) + M
i=m

∑
i=1

ςi +
1
2
)n−1χH(B1), ∀n ≥ 1.

The above inequality holds for any natural number n, and by (13) together with taking
the limit as n → ∞, we get (20). Then, B is not empty and a compact subset of H. So,
Φ : B → Pck(B) is completely continuous. By applying Lemma 3, we conclude that the
fixed points set of Φ is not an empty subset of H. Furthermore, by arguing as in Step 1,
we can prove that the set of fixed points of Φ is bounded and, hence, by Lemma 3, it is
compact in H. Therefore, the set ΣF

ψ[−r, b] is not empty and a compact subset of H.

4. The Structure Topological of ΣF
ψ[−r, b]

In the section we prove that ΣF
ψ[−r, b] is an Rδ-set

Definition 3 ([41]). A topological space X, which is homotopy equivalent to a point, is called
contractible. In other words, there is a continuous map h : [0, 1] × X → X, h(0, .x) = x and
h(1, x) = x0 ∈ X.

Lemma 5 ([41]). Let A ⊆ X, where A is not empty and X is a complete metric space. Then, A is
said to be Rδ-set if and only if it is an intersection of a decreasing sequence {An} of contractible sets
and χX(An) → 0, as n → ∞.

Now, consider the multi-valued function F̃ : J × Θ → Pck(E) that is given by:

F̃ (η, u) :=

{
F(η, u), ||u|| < υ,
F(η, υu

||u|| ), ||u|| ≥ υ,
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where υ is defined by (17). Since F̃ = F on Dυ, the set of solutions consisting of mild
solutions for Problem (1) is equal to the set of solutions consisting of mild solutions for
the problem:⎧⎪⎨⎪⎩

cD α
0,η [x(η)− h(η,κ(η)x)] ∈ Ax(η) + F̃(η,κ(η)x), a.e. η ∈ [0, b]− {η1, . . . , ηm},

Ii(x(η−
i )) = x(η−

i )− x(η+
i ), i = 1, . . . , m,

x(η) = ψ(η), η ∈ [−r, 0].

Obviously, F̃ verifies (HF1) and, for η ∈ J, a.e.,

||F̃ (η, u)|| ≤
{

ϕ(η)(1 + ||u||) ≤ ϕ(η)(1 + r(ξ + υ)) = ζ(η), ||u|| < υ,
ϕ(η)(1 + || υu

||u|| ||) = ϕ(η)(1 + r(ξ + υ)) = ζ(η), ||u|| ≥ υ.

Then, we can assume that F verifies the next condition:
(HF2)

∗ There exists a function ξ ∈ LP(I,R+)(P > 1
α ), where for every z ∈ Θ,

‖F(η, z)‖ ≤ ζ(η), a.e. η ∈ J.

We recall the next Lemma. For its proof, we refer the reader to the second step in the
proof of Theorem 3.5 in [13].

Lemma 6. Assume that (HF1) and (HF2)
∗ are satisfied. Then, there exists a sequence of multi-

functions {Fi}∞
i=1 with Fi : J × Θ → Pck(E) such that:

(i) Every Fi (η, .) is continuous for almost η ∈ J.
(ii) F(η, x) ⊆ . . . . ⊆ Fi+1(η, x) ⊆ Fi(η,κ(η)x) ⊆ · · · ⊆ coF(η, {y ∈ Θ : ||y − x|| ≤

31−i}), i ≥ 1, for each η ∈ J and x ∈ Θ.
(iii) F(η, z) = ∩i ≥1Fi(η, z).
(iv) For all i ≥ 1, there is a selection gi : J × Θ → E of Fi such that gi(., x) is measurable for each

x ∈ Θ and for gi(η, .) is locally Lipschitz.

Remark 2. (Ref. [19]) The property (iv) in Lemma 6 implies that, for almost η ∈ J, gi(η, .), i ≥ 1
is continuous.

Assume ΣFi
ψ [−r, b] is the mild solutions set of the following fractional neutral impulsive

semilinear differential inclusions with delay:⎧⎨⎩
cD α

0,η [x(η)− h(η,κ(η)x)] ∈ Ax(η) + Fi(η,κ(η)x), a.e. η ∈ [0, b]− {η1, . . . , ηm},
Ii(x(η−

i )) = x(η−
i )− x(η+

i ), i = 1, . . . , m,
x(η) = ψ(η), η ∈ [−r, 0].

(29)

Theorem 2. Assume that the conditions in Theorem 1 after substituting (HF2) by (HF2)∗ are
held. Then, there exists N0 ∈ N such that, for i ≥ N0, the set ΣFi

ψ [−r, b] is compact and not empty
in H.

Proof. Let i be a fixed natural number. We define a multioperator Φi : H → P(H) as the
following : y ∈ Φi(x) if and only if

y(η) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, η ∈ [−r, 0],
K1(η)[ψ(0)− h(0, ψ)] + h(η,κ(η)x)
+
∫ η

0 (η − τ)α−1 AK2(η − τ)h(τ,κ(τ)x)dτ

+
∫ η

0 (η − τ)α−1K2(η − τ) f (τ)dτ
+∑0<ηi<η K1(η − ηi)Ii(x(η−

i )), η ∈ J,
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where f ∈ τ1
Fi(.,κ(.)x). Due to Lemma 5, Fi verifies (F1), (F2)

∗. As a result of Theorem 1,
Φi is closed , Φi(Bυ) ⊆ Bυ and Φi(Bυ) is equicontinuous. Set B1,i = convΦi(Bυ) and
Bn,i = convΦi(Bn−1,i), n ≥ 2. As in Theorem 1, the sequence (Bn,i), n ≥ 1 is a decreasing
sequence of non-empty, closed and bounded subsets of H. We show that

lim
n→∞

χC([−r,b],E)(Bn,i) = 0. (30)

Let ε > 0. Choose a natural number N0 with 31−N0 < ε
2||β||LP(J, R+)

and let i > N0 be a

fixed natural number. Using a similar argument as the one used in the proof of Theorem 1,
one gets

χH(Bn,i)

≤ 2 sup
η∈J

χE{yk(η) : k ≥ 1}+ ε

2
,

where

yk(η) =

⎧⎨⎩
0, η ∈ [−r, 0]∫ η

0 (η − τ)α−1K2(η − τ) fk(τ)dτ
+∑0<ηi<η K1(η − ηi)Ii(x(η−

i )), η ∈ J,

and fk ∈ τ1
Fi(.,κ(η)xk)

. Next, due to Remark 4.2 in [7], it follows that for any bounded subset
D ⊂ Θ,

χE(Fi(η, D)) ≤ β(η)[ sup
θ∈[−r,η]

χE{z(θ) : z ∈ D}+ 31−i]. (31)

Then, it yields from (ii) in Lemma 5 and (31), for a.e.τ ∈ J,

χE({ fk(τ) : k ≥ 1}
≤ χE{Fi(τ,κ(τ)xk) : k ≥ 1}
≤ β(τ)[ sup

θ∈[−r,0]
χE{xk(τ + θ) : k ≥ 1}+ 31−N0 ]

≤ β(τ)[ sup
δ∈[−r,τ]

χE{xk(δ) : k ≥ 1}+ 31−N0 ]

≤ β(τ)[ sup
θ∈[0,,τ]

χE{xk(δ) : k ≥ 1}+ 31−N0 ]

≤ β(τ)χH(Bn−1,i) + β(τ)31−N0 = γ(τ). (32)

As in (28) but by using (32) instead of (24), we get

χ{
∫ η

0
(η − τ)α−1K2(η − τ) fk(τ)dτ : k ≥ 1}

≤ ΔM
Γ(α)

(2||β||LP(J, R+) χH(Bn−1) + εb
1
P ) +

ε

2

+
M

Γ(α)
(1 + rυ + rξ)×

||ϕ||LP(Jε , R+)(
∫

Jε

(η − τ)
P

P−1 dτ)
P−1

P .

Similarly, as in the proof of Theorem 1, we confirm the validity of (30). Therefore, by
the generalized Cantor’s intersection property, the set Bi is not empty and compact in H.
As in Theorem 1, the fixed points set of the multivalued function Φi : Bi → Pck(Bi) is not
empty and a compact subset in H. Consequently, the set ∑Fn

ψ [−r, b] is not empty and a
compact subset of H.

Theorem 3. Under the conditions of Theorem 2, ∑F
ψ[−r, b] = ∩∞

n=N0
∑Fn

ψ [−r, b].
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Proof. In view of (iii) in Lemma 8, it can be seen that ∑F
ψ[−r, b] ⊆ ∩∞

n=N0
∑Fn

ψ [−r, b]. Let

x ∈ ∩∞
n=N0

∑Fn
ψ [−r, b]. Then, there is fn ∈ τ1

Fn(.,κ(.)x), n ≥ N0 such that

x(η) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ψ(η), η ∈ [−r, 0],
K1(η)[ψ(0)− h(0, ψ)] + h(η,κ(η)x)
+
∫ η

0 (η − τ)α−1 AK2(η − τ)h(τ,κ(τ)x)dτ

+
∫ η

0 (η − τ)α−1K2(η − τ)fn(τ)dτ
+∑0<ηi<η K1(η − ηi)Ii(x(η−

i )), η ∈ J.

(33)

It follows from (HF2)∗ that

||fn(η)|| ≤ ζ(η), for a.e.η ∈ J.

This means that the sequence (fn)n≥1 is weakly relatively compact in LP(J, E), so we
can assume fn ⇀ f weakly, where f ∈ LP(J,R+). As in the proof of Theorem 1, there is a
sequence of convex combinations (zn)n≥1 of (fn)n≥1 that converges almost everywhere to
f . Note that

x(η) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ψ(η), η ∈ [−r, 0],
K1(η)[ψ(0)− h(0, ψ)] + h(η,κ(η)x)
+
∫ η

0 (η − τ)α−1 AK2(η − τ)h(τ,κ(τ)x)dτ

+
∫ η

0 (η − τ)α−1K2(η − τ)zn(τ)dτ
+∑0<ηi<η K1(η − ηi)Ii(x(η−

i )), η ∈ J,

(34)

and zn(η) ∈ Fn (η,κ(η)x), n ≥ 1. It yields, from (ii) of Lemma 8, that for almost η ∈ J,

zn(η) ∈ coF(η, {y ∈ Θ : ||y −κ(η)x|| ≤ 31−n}), n ≥ 1,

which implies that f (η) ∈ F(η,κ(η)x), for a.e. η ∈ J. Moreover, using the fact that
K2(η)(η > 0) is continuous, and taking the limit as n → ∞ in (34), one gets

x(η) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ψ(η), η ∈ [−r, 0],
K1(η)[ψ(0)− h(0, ψ)] + h(η,κ(η)x)
+
∫ η

0 (η − τ)α−1 AK2(η − τ)h(τ,κ(τ)x)dτ

+
∫ η

0 (η − τ)α−1K2(η − τ) f (τ)dτ
+∑0<ηi<η K1(η − ηi)Ii(x(η−

i )), η ∈ J.

This means that x ∈ ∑F
ψ[−r, b].

To prove our main results, we need the next lemma.

Lemma 7 ([19], Lemma 4.5). Assume that (X, d) and (Y, ρ) are two metric spaces. Then, if
f : (M, d) → (Y, ρ) is locally Lipschitz, then it is Lipschitz on all subsets of X that are compact.

Theorem 4. Under the assumptions of Theorem 2, the set ∑F
ψ[−r, b] is an Rδ-set in H provided

that rd1||A−γ|| < 1.

Proof. Using Lemma 4 and Theorems 1–3, we only need to prove that ∑Fn
ψ [−r, b], where

n ≥ N0 is contractible. Assume that n ∈ N and n ≥ N0 . Consider the following fractional
neutral impulsive semilinear:⎧⎨⎩

cD α
0,η [x(η)− h(η,κ(η)x)] = Ax(η) + gn(η,κ(η)x), a.e. η ∈ [0, b]− {η1, . . . , ηm},

Ii(x(η−
i )) = x(η−

i )− x(η+
i ), i = 1, . . . , m,

x(η) = ψ(η), η ∈ [−r, 0].
(35)
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Using Lemma 6 and Remark 3, gn(., u) is measurable, and for η ∈ J, a.e., gn(η, .) is
continuous. Since the multi-valued F satisfies (F2)

∗and (F3), then, following the arguments
employed in the proof of Theorem 2, the fractional differential Equation (35) has a mild
solution y ∈ ∑Fn

ψ [−r, b] satisfying the following integral equation:

y(η) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ψ(η), η ∈ [−r, 0],
K1(η)[ψ(0)− h(0, ψ)] + h(η,κ(η)y)
+
∫ η

0 (η − τ)α−1 AK2(η − τ)h(τ,κ(τ)y)dτ

+
∫ η

0 (η − τ)α−1K2(η − τ)gn(η,κ(η)y)dτ
+∑0<ηi<η K1(η − ηi)Ii(y(η−

i )), η ∈ J.

(36)

Next, we show that the solution is unique. Assume that x ∈ ∑Fn
ψ [−r, b] is another

mild solution for (35). Then,

x(η) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ψ(η), η ∈ [−r, 0],
K1(η)[ψ(0)− h(0, ψ)] + h(η,κ(η)x)
+
∫ η

0 (η − τ)α−1 AK2(η − τ)h(τ,κ(τ)x)dτ

+
∫ η

0 (η − τ)α−1K2(η − τ)gn(η,κ(η)x)dτ
+∑0<ηi<η K1(η − ηi)Ii(x(η−

i )), η ∈ J.

(37)

Let η ∈ [0, η1] be fixed. Due to (6), (7), (11) (36) and (37), it yields

||y(η)− x(η)||
≤ ||h(η,κ(η)y)− h(η,κ(η)x)||

+||
∫ η

0
(η − τ)α−1 AK2(η − τ)(h(τ,κ(τ)y)− h(τ,κ(τ)x))dτ||

+||
∫ η

0
(η − τ)α−1K2(η − τ)(gn(τ,κ(τ)y)− gn(τ,κ(τ)x))dτ||

≤ ||A−γ||||Aγh(η,κ(η)y)− Aγh(η,κ(η)x)||

+
∫ η

0
(η − τ)α−1||A1−γK2(η − τ)|| ||Aγh(τ,κ(τ)y)− Aγh(τ,κ(τ)x))||dτ

+
M

Γ(α)

∫ η

0
(η − τ)α−1||gn(τ,κ(τ)y)− gn(τ,κ(τ)x))||dτ.

≤ d1||A−γ|| ||κ(η)y −κ(η)x||Θ

+d1||A−γ||αC1−γΓ(1 + γ)

Γ(1 + αγ))

∫ η

0
(η − τ)αγ−1||κ(τ)y −κ(τ)x||Θdτ

+
M

Γ(α)

∫ η

0
(η − τ)α−1||gn(τ,κ(τ)y)− gn(τ,κ(τ)x))||dτ. (38)

Now, from Lemma 5, the function τ → κ(τ)x is continuous from [0, η1] to Θ and,
hence, the subset Zx = {κ(τ)x : τ ∈ [0, η1]} is compact in Θ. Similarly, the set Zy =
{κ(τ)y : τ ∈ [0, η1]} is compact in Θ and, therefore, the set Zx,y = Zx ∪ Zy is compact in Θ,
and consequently, [0, η1]× Zx,y is compact in [0, η1]× Θ. Thus, by (iv) in Lemma 6 and
Lemma 7, there exists cη1 > 0 , for which the estimate

||gn(τ,κ(τ)y)− gn(τ,κ(τ)x)|| ≤ cη1 ||κ(τ)y −κ(τ)x||Θ,
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holds for τ ∈ J. Therefore, from (38), it yields

||x(η)− y(η)||
≤ d1||A−γ|| ||κ(η)y −κ(η)x||Θ

+d1||A−γ||αC1−γΓ(1 + γ)

Γ(1 + αγ))

∫ η

0
(η − τ)αγ−1||κ(τ)y −κ(τ)x||Θdτ

+
Mcη1

Γ(α)

∫ η

0
(η − τ)α−1||κ(τ)y −κ(τ)x||Θdτ.

Note that when τ ∈ [0, η], we have

||κ(τ)y −κ(τ)x||Θ =
∫ 0

−r
||y(τ + θ)− x(τ + θ)||dθ

≤ r sup
δ∈[0,τ]

||y(δ)− x(δ)||.

It yields

||x(η)− y(η)||
≤ d1||A−γ|| ||κ(η)y −κ(η)x||Θ

+rd1||A−γ||αC1−γΓ(1 + γ)

Γ(1 + αγ))

∫ η

0
(η − τ)αγ−1 sup

δ∈[a,τ]
||y(δ)− x(δ)||dτ

+
rMcη1

Γ(α)

∫ η

0
(η − τ)α−1 sup

δ∈[0,τ]
||y(δ)− x(δ)||dτ.

Since x and y are continuous on [0, η], there is ρ ∈ [0, η] with ||x(ρ) − y(ρ)|| =
supδ∈[0,η] ||x(δ)− y(δ)||. Then,

sup
δ∈[0,η]

||x(δ)− y(δ)|| = ||x(ρ)− y(ρ)||

≤ d1||A−γ|| ||κ(ρ)y −κ(ρ)x||Θ

+rd1||A−γ||αC1−γΓ(1 + γ)

Γ(1 + αγ))

∫ ρ

0
(ρ − τ)αγ−1 sup

δ∈[0,τ]
||y(δ)− x(δ)||dτ

+
rMcη1

Γ(α)

∫ ρ

0
(ρ − τ)α−1 sup

δ∈[0,τ]
||y(δ)− x(δ)||dτ

≤ rd1||A−γ|| sup
δ∈[0,η]

||x(δ)− y(δ)||

+rd1||A−γ||αC1−γΓ(1 + γ)

Γ(1 + αγ))

∫ ρ

a
(ρ − τ)αγ−1 sup

δ∈[a,τ]
||y(δ)− x(δ)||dτ

+
rMcη1

Γ(α)

∫ ρ

a
(ρ − τ)α−1 sup

δ∈[a,τ]
||y(δ)− x(δ)||dτ.

Since rd1||A−γ|| < 1, the last relations lead to

sup
δ∈[0,η]

||x(δ)− y(δ)||

≤ 1
1 − rd1||A−γ|| [

∫ ρ

0
(ρ − τ)αγ−1d1||A−γ|| rαC1−γΓ(1 + γ)

Γ(1 + αγ))

+
∫ ρ

0
(ρ − τ)α−1 rMcV

Γ(α)
] sup

δ∈[0,τ]
||y(δ)− x(δ)||dτ.
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Using the generalized Gronwall inequality [42], one has supδ∈[0,η] ||x(δ)− y(δ)|| = 0.
Since η ∈ [0, η1] is arbitrary, we conclude that x = y on [0, η1].

Next, let η ∈ [η1, η2] be fixed. Note that x(η−
1 ) = y(η−

1 ). Then,

||y(η)− x(η)||
≤ ||h(η,κ(η)y)− h(η,κ(η)x)||Θ

+||
∫ η

η1

(η − τ)α−1 AK2(η − τ)(h(τ,κ(τ)y)− h(τ,κ(τ)x))dτ||

+||
∫ η

η1

(η − τ)α−1K2(η − τ)(gn(τ,κ(τ)y)− gn(τ,κ(τ)x))dτ||

≤ d1||A−γ|| ||κ(η)y −κ(η)x||Θ

+d1||A−γ||αC1−γΓ(1 + γ)

Γ(1 + αγ))

∫ η

a
(η − τ)αγ−1||κ(τ)y −κ(τ)x||Θdτ

+
M

Γ(α)

∫ η

η1

(η − τ)α−1||gn(τ,κ(τ)y)− gn(τ,κ(τ)x))||dτ.

By repeating the arguments employed above, we get x = y on [η1, η2]. Continuing
with the same processes, we arrive to x = y on J.

Next, we prove that ∑Fn
ψ [−r, b] is homotopically equivalent to y. To this end, we define

a continuous function Zn : [0, 1] × ∑Fn
ψ [−r, b] → ∑Fn

ψ [−r, b], where Zn (0, x̃) = x̃ and

(1, x̃) = y. Assume (λ, x̃ ) ∈ [0, 1]× ∑Fn
ψ [−r, b] is fixed. Then, there exists a f ∈ τ1

Fn(.,κ(.)x̃)
such that

x̃(η) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ψ(η), η ∈ [−r, 0],
K1(η)[ψ(0)− h(0, ψ)] + h(η,κ(η)x̃)
+
∫ η

0 (η − τ)α−1 AK2(η − τ)h(τ,κ(τ)x̃)dτ

+
∫ η

0 (η − τ)α−1K2(η − τ) f (τ)dτ
+∑0<ηi<η K1(η − ηi)Ii(x̃(η−

i )), η ∈ J.

(39)

Consider the partition { 0, 1
m+1 , 2

m+1 , . . . , m+1
m+1} for J = [0, 1]. We consider the following

cases:
(i) λ ∈ [0, 1

m+1 ]. Put a1
λ = ηm+1 − λ (m + 1)(ηm+1 − ηm). The following fractional

neutral differential inclusion is a result of the above discussion:{
cD α

a1
λ ,η

[x(η)− h(η,κ(η)x)] = Ax(η) + gn(η,κ(η)x), a.e. η ∈ [aλ,1, b],

x(η) = x̃(η), η ∈ [−r, a1
λ],

has a unique mild solution x1
λ ∈ ∑Fn

ψ [−r, b] satisfying the next integral equation:

x1
λ(η) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x̃(η), η ∈ [−r, a1
λ],

K1(η − a1
λ)[x̃(a1

λ)− h(a1
λ,κ(a1

λ)x̃(a1
λ)]

+h(η,κ(η)x1
λ(η))

+
∫ η

a1
λ

(η − τ)α−1 AK2(η − τ)h(τ,κ(τ)x1
λ(η))dτ

+
∫ η

a1
λ

(η − τ)α−1K2(η − τ)gn(η,κ(η)x1
λ)dτ, η ∈ [aλ,1, b].

(40)

Note that x1
0(η) = x̃(η); η ∈ [−r, b].

(ii) λ ∈ ( 1
m+1 , 2

m+1 ].Put a2
λ = ηm − (m + 1)(λ − 1

m+1 )(ηm − ηm−1). Again, the follow-
ing fractional neutral differential inclusion:⎧⎪⎨⎪⎩

cD α
a2

λ ,η
[x(η)− h(η,κ(η)x)] = Ax(η) + gn(η,κ(η)x), a.e. η ∈ [a2

λ, b]− {ηm},

Im(x(η−
m )) = x(η−

m )− x(η+
m ),

x(η) = x̃(η), η ∈ [−r, a2
λ],
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has a unique mild solution x2
λ ∈ ∑Fn

ψ [−r, b] and

x2
λ(η) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̃(η), η ∈ [−r, a2
λ],

K1(η − a2
λ)[x̃(a2

λ)− h(aλ,1,κ(a2
λ)x̃(a2

λ)]
+h(η,κ(η)x2

λ(η))
+
∫ η

a2
λ

(η − τ)α−1 AK2(η − τ)h(τ,κ(τ)x2
λ(η))dτ

+
∫ η

a2
λ

(η − τ)α−1K2(η − τ)gn(η,κ(η)x2
λ)dτ

+∑a2
λ<ηi<η K1(η − ηi)Ii(x2

λ(η
−
i )), η ∈ [a2

λ, b].

We continue up to m + 1−step. That is λ ∈ ( m
m+1 , 1] and put am+1

λ = η1 − (m +

1)(λ − m
m+1 )η1. Let xm+1

λ ∈ ∑Fn
ψ [−r, b ] be the unique mild solution for the impulsive

fractional neutral differential inclusion:⎧⎪⎨⎪⎩
cD α

am+1
λ ,η

[x(η)− h(η,κ(η)x)] = Ax(η) + gn(η,κ(η)x), a.e. η ∈ [am+1
λ , b]− {η1, η2, . . . ηm},

Ii(x(η−
i )) = x(η−

i )− x(η+
i ), i = 1, 2, . . . , m

x(η) = x̃(η), η ∈ [−r, am+1
λ ].

Then,

xm+1
λ (η) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̃(η), η ∈ [−r, am+1
λ ],

K1(η)[x̃(am+1
λ )− h(aλ,1,κ(am+1

λ )x̃(am+1
λ )]

+h(η,κ(η)xm+1
λ )

+
∫ η

am+1
λ

(η − τ)α−1 AK2(η − τ)h(τ,κ(τ)xm+1
λ (η))dτ

+
∫ η

am+1
λ

(η − τ)α−1K2(η − τ)gn(η,κ(η)xm+1
λ )dτ

+∑am+1
λ <ηi<η

K1(η − ηi)Ii(xm+1
λ (η−

i )), η ∈ [am+1
λ , b].

(41)

Note that am+1
1 = 0 and xm+1

1 = y. Now, we define Zn at (λ, x̃) as

Zn(λ, x̃) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x1
λ, if λ ∈ [0, 1

m+1 ],
x2

λ, if λ ∈ ( 1
m+1 , 2

m+1 ],
.
.
.
xm+1

λ , if λ ∈ ( m
m+1 , 1].

(42)

Therefore, Zn(0, x̃) = x1
λ = x̃ and Zn(1, x̃) = xm+1

1 = y.
It remains to clarify the continuity of Zn. Let (λ, u ), (�, v) ∈ [0, 1]× ∑Fn

ψ [−r, b]. Let

λ = � = 0. Then, by (42), limu→v Zn(λ, u) = limu→v u = v = Zn(�, v). Let λ, � ∈ (0, 1
m+1 ].

So, Zn(λ, u) = u1
λ and Zn(λ, v) = v1

μ, where

u1
λ(η) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x̃(η), η ∈ [−r, a1
λ],

K1(η − a1
λ)[x̃(a1

λ)− h(a1
λ,κ(a1

λ)x̃(a1
λ)]

+h(η,κ(η)u1
λ(η))

+
∫ η

a1
λ

(η − τ)α−1 AK2(η − τ)h(τ,κ(τ)u1
λ(η))dτ

+
∫ η

a1
λ

(η − τ)α−1K2(η − τ)gn(η,κ(η)u1
λ)dτ, η ∈ [aλ,1, b],

(43)
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and

v1
μ(η) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x̃(η), η ∈ [−r, a1
μ],

K1(η − a1
λ)[x̃(a1

λ)− h(a1
μ,κ(a1

μ)x̃(a1
μ)]

+h(η,κ(η)v1
μ(η))

+
∫ η

a1
μ
(η − τ)α−1 AK2(η − τ)h(τ,κ(τ)v1

μ(η))dτ

+
∫ η

a1
μ
(η − τ)α−1K2(η − τ)gn(η,κ(η)v1

μ)dτ, η ∈ [a1
μ, b],

(44)

a1
λ = b−μ(m+ 1)(b− τm) and a1

μ = b−μ(m+ 1)(b− τm). Obviously, limλ→μ a1
λ = a1

μ

and, hence, by (43) and (44), and by arguing as above, we get

lim
λ→μ
u→v

Zn(λ, u) = Zn(μ, v),

which implies the continuity of Zn(., .), when λ ∈ [0, 1
m+1 ]. Similarly, we can show the

continuity of Zn and consequently, ∑Fn
ψ [−r, b] is contractible. This completes the proof.

5. Example

Example 1. Assume that E = L2([0, π],R), J = [0, 1], r = 1
2 , m = 1, η0 = 0 and η1 = 1

2 ,
η2 = 1. For any x : J → E = L2([0, π],R), we denote by x(η, ω); η ∈ J, ω ∈ [0, π] the value of
x(η) at ω. Let A : D(A) ⊆ L2[0, π] → L2[0, π] , Ax(η, ω) := − ∂2

∂ω2 x(η, ω) and domain A be
defined as

D(A) = {x ∈ L2[0, π] : x, x′ are absolutely continuous, x′′ ∈ L2[0, 1],

x(η, 0) = x(η, π) = 0}.

Using [37], there is a compact analytic semi-group {Υ(η) : η ≥ 0} generated by A and

Ax =
∞

∑
n=1

n2 < x, xn > xn, x ∈ D(A), (45)

where xn(y) =
√

2 sin ny, n = 1, 2, . . . is the orthonormal set of eigenvalues of A. In
addition, for all x ∈ L2[0, 1], one gets

Υ(η)(x) =
∞

∑
n=1

e−n2η < x, xn > xn.

So, M = sup{||Υ(η)|| : η ≥ 0} = 1. Furthermore, for each x ∈ L2([0, π],R),

A
−1
2 x =

∞

∑
n=1

1
n
< x, xn > xn.

A
1
2 x =

∞

∑
n=1

n < x, xn > xn,

and ||A−1
2 || = 1. The domain of A

1
2 is defined as

D(A
1
2 ) = {x ∈ L2([0, π],R) :

∞

∑
n=1

n < x, xn > xn ∈ L2([0, π],R)}.

Let h : J × Θ → E be such that

h(η, u) := A
−1
2 (
∫ 0

−r
λu(θ)dθ), (46)
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where λ > 0. We have

||A 1
2 h(η, u1)− A

1
2 h(η, u2)||E ≤ λ ||

∫ 0

−r
(u1(θ)− u2(θ))dθ||

≤ λ
∫ 0

−r
||u1(θ)− u2(θ)||dθ

≤ λ||u1 − u2||Θ,

and

||Aγh(η, u)|| ≤ λ ||
∫ 0

−r
(u(θ)dθ|| ≤ λ||u||Θ.

Then, (10) and (11) are satisfied with d1 = d2 = λ.
Let Λ be a convex compact subset in E, sup{||z|| : z ∈ Z} = � and κ > 0. Define

F : J × Θ → 2L2[0,π] by

F(η, u) :=
e−κη ||u||

�
Λ. (47)

We have

||F(η, u)|| = sup{|| e
κη ||u||

�
z : z ∈ Λ} ≤ eκη ; η ∈ J.

Moreover, for any bounded subset D ⊂ Θ, we have F(η, D) ⊆ ς eκη

� Λ, where ς =

sup{||u|| : u ∈ D} and, hence, χE(F(η, D)) = 0. Then, F satisfies (HF1), (HF2)∗and
(HF3) with ξ(η) = e−κη , β(η) = 0; η ∈ J.

Next, let
I : E → E, Ii(x) := σ projΛx, (48)

where σ is a positive number. Obviously, I verifies (HI) with ςi = 0 ; i = 1, 2, . . . .
Therefore, by applying Theorems 1 and 4, the set of solutions for the following frac-

tional neutral impulsive semilinear differential inclusions with delay:⎧⎪⎪⎪⎨⎪⎪⎪⎩
cD α

0,η [x(η)− h(η,κ(η)x)]

∈ − ∂2

∂ω2 x(η, ω) + F(η,κ(η)x), a.e. η ∈ [0, 1]− { 1
2 , 1},

Iix(η−
i , ω) = x(η−

i , ω)− x(η+
i , ω), i = 1, 2, ω ∈ [0, π],

x(η, ω) = ψ(η, ω), η ∈ [−r, 0], η ∈ [0, 1]− { 1
2 , 1},

(49)

is a not empty, compact and an Rδ-set provided that

λ(1 +
C1−γΓ( 3

2 )

Γ(1 + α
2 )

) < 1, (50)

and
λ

2
+ 2λ

C1−γΓ( 3
2 )

Γ(1 + α
2 )

+
1

2Γ((α)
(

P − 1
αP − 1

)
P−1

P ‖ξ‖LP
(J,,R+)

+ σ < 1, (51)

where F, h I are given by (45)–(47). By choosing λ and σ small enough and κ large enough,
we arrive to (50) and (51).

Example 2. Let J, E, A, r, η0, η1, η2 Λ, and � be as in Example (1) and θ ∈ [−r, 0] be a fixed
element.

Let h : J × Θ → E be such that

h((η,κ(η)x)(ω) := λ
∫ π

0
U(ω, y)x(θ + η)(ω)dy; ω ∈ [0, π]; η ∈ [0, 1], (52)
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where λ > 0, U : [0, π]× [0, π] → R is measurable,
∫ π

0

∫ π
0 U(ω, y)dydω < ∞, ∂U(ω,η)

∂ω is

measurable, U(0, y) = U(π, y) = 0, ∀y ∈ [0, π] and (
∫ π

0

∫ π
0 ( ∂U(ω,η)

∂ω )2dydω)
1
2 < ∞.

Next, let F : J × Θ → 2L2[0,π], F((η,κ(η)x)(ω) = γG(η,x(θ+η)(ω))|
� Λ, where γ > 0, G :

J ×R → R is a continuous function. Then, by choosing λ and σ small enough, one can
show that h and F satisfy all assumptions of Theorems 2 (see [15,43]) and, hence, the set of
mild solutions for the partial differential inclusions of impulsive neutral type with delay:⎧⎪⎪⎪⎨⎪⎪⎪⎩

cD α
0,η [x(η, ω)−

∫ π
0 U(ω, y)x(θ + η)(ω)dy, ]

∈ − ∂2

∂ω2 x(η, ω) + G(η,x(θ+η)(ω))|
� Λ, a.e. η ∈ [0, 1]− { 1

2 , 1},
Iix(η−

i , ω) = x(η−
i , ω)− x(η+

i , ω), i = 1, 2, ω ∈ [0, π],
x(η, ω) = ψ(η, ω), η ∈ [−r, 0], η ∈ [0, 1]− { 1

2 , 1},

(53)

is an Rδ-set.

6. Discussion

The neutral differential equations and inclusions appear in many applied mathematical
sciences such as viscoelasticity, and the equations describe the distribution of heat. Since
the set of mild solutions for a differential inclusion having the same initial point may
not be a singleton, many authors are interested to investigate the structure of this set in
a topological point of view. An important aspect of such structure is the Rδ- property,
which means that the homology group of the set of mild solutions is the same as a one-
point space. In the literature, there are many results on this subject but no result about
the topological properties of the set of mild solutions for a fractional neutral differential
inclusion generated by a non-compact semigroup in the presence of impulses and delay.
As cited in the introduction, when the problem involves delay and impulses, we cannot
consider the space PC([−r, b], E] as the space of solutions. To overcome these difficulties,
a complete metric space H is introduced as the space of mild solutions. In addition,
the function η → κ(η)x; x ∈ H is not necessarily measurable, therefore, a norm different
from the uniform convergence norm is introduced on Θ (see Equation (2)).

7. Conclusions

During the past two decades, fractional differential equations and fractional differen-
tial inclusions have gained considerable importance due to their applications in various
fields, such as physics, mechanics and engineering. For some of these applications, one can
see [28] and the references therein. In this paper, we have given an affirmative answer for a
basic question, which is whether there exists a solution set carrying an Rδ-structure when
there are impulsive effects and delay on the system, the operator families generated by the
linear part lack compactness and the order is fractional. More specifically,

1. By utilizing the properties of both multivalued functions, fraction powers of operators,
measures of non-compactness and analytic semi-groups, we showed that the mild
solutions set for a fractional impulsive neutral semilinear differential inclusions with
delay and generated by a non-compact semi-group is not empty, compact and an
Rδ-set. This means that, from an algebraic topological perspective, it is equivalent to
a point.

2. Our work generalizes the obtained results in [19], where Problem 1 is investigated
without delay and h ≡ 0.

3. Our work generalizes the obtained results in [15] to the case when there are impulsive
effects on the system.

4. Our technique can be used to prove that the solutions set is an Rδ-set for problems
considered in [13–23,30] when it is generated by a non-compact semi-group, the order
is fractional and there are impulsive effects and delay.

5. As a future work, we suggest to extend the work conducted in [24–26] to find the
sufficient conditions that guarantee that the solution set is an Rδ-set.
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Abstract: This manuscript focuses on the existence of a mild solution Hilfer fractional neutral
integro-differential inclusion with almost sectorial operator. By applying the facts related to fractional
calculus, semigroup, and Martelli’s fixed point theorem, we prove the primary results. In addition,
the application is provided to demonstrate how the major results might be applied.

Keywords: Hilfer fractional system; neutral system; multi-valued maps; sectorial operators
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1. Introduction

In modern mathematics, the fundamentals surrounding fractional computation and
the fractional differential equation have taken center stage. The idea of fractional com-
putation has now been put to the test in a wide variety of social, physical, signal, image
processing, biological, control theory, engineering, etc., challenges. However, it has been
demonstrated that fractional differential equations may be a valuable tool for describing
a variety of situations. For many different types of realistic applications, fractional-order
models are superior to integer-order models. The research articles [1–15] are concerned with
the theory of fractional differential systems, and readers will find a number of fascinating
findings about fractional dynamical systems. Please refer to [16–21] for more information.

Other fractional derivatives introduced by Hilfer [22] include the R-L derivative and
Caputo fractional derivative. Many scholars have recently shown tremendous interest in
this area, e.g., [23–25]; researchers have established their results with the help of Schauder’s
fixed point theorem. In [26–28], the authors worked on the existence and controllability
of differential inclusions via the fixed point theorem approach. In references [29–31], the
authors discussed the existence of a mild solution by using Martelli’s fixed point theorem.
As a result of these findings, we expand on the literature’s earlier findings to a class of Hilfer
fractional differential (HFD) systems in which the closed operator is almost sectorial.

In [32], M. Zhou, C. Li, and Y. Zhou studied the existence of mild solutions to Hilfer
fractional differential equations with the order λ ∈ (0, 1) and type ν ∈ [0, 1] in the abstract
sense, as follows:

H Dλ,ν
0+ y(t) = Ay(t) + g(t, y(t)), t ∈ (0, T],

I(1−λ)(1−ν)
0+ y(0) = y0,

here, A denotes the almost sectorial operator of the semigroup and the Schauder fixed
point theorem is used.
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In [33], Zhang and Zhou demonstrated the existence of fractional Cauchy problems
using almost sectorial operators of the type,

LDq
0+x(t) = Ax(t) + f (t, x(t)) t ∈ [0, a],

I(1−q)
0+ x(0) = x0,

where LDq
0+ is the R − L derivative of order q, 0 < q < 1, I(1−q)

0+ is the R − L integral of
order 1 − q, A is an almost sectorial operator on a complex Banach space. We refer the
reader to [34–37] for information. These discoveries led us to extend past findings in the
literature to Hilfer fractional Volterra–Fredholm integro-differential inclusions.

We will examine the following subject in the article: The almost sectorial operators are
contained in the HF neutral integro-differential inclusion,

Dκ,ε
0+
[
y(z)−N (z, y(z))

]
∈ Ay(z) + G

(
z, y(z),

∫ z

0
e
(
z, s, y(s)

)
ds
)

, z ∈ J ′ = (0, d], (1)

I(1−κ)(1−ε)
0+ y(0) = y0, (2)

where Dκ,ε
0+ notates the HFD of order κ, 0 < κ < 1, type ε, 0 ≤ ε ≤ 1; and A is an almost

sectorial operator of the analytic semigroup
{
T(z), z ≥ 0

}
on Y. State y(·) takes the value in

a Banach space Y with norm ‖ · ‖. Let J = [0, d], N : J × Y be the appropriate function,
G : J × Y × Y → 2Y\{∅} be a non-empty, bounded, closed convex multi-valued map,
N : J × Y → Y and e : J × J × Y → Y are the appropriate functions.

This article is structured as follows: In Section 2, we present the fundamentals of
fractional differential systems, semigroup, and closed linear operators. In Section 3, we
present the existence of the required solution. In Section 4, we provide an application to
demonstrate our main arguments and some inferences are established in the end.

2. Preliminaries

Here, we introduce some basic definitions, theorems, and lemmas that are applied to
every part of the paper.

Let � be the collection of all continuous functions from J to Y, where J = [0, d] and
J ′ = (0, d] with d > 0. Take X = {y ∈ � : limz→0 z

1−ε+κε−κξy(z) exists and finite }, which
is the Banach space and its norm on ‖ · ‖X , defined as ‖y‖X = supz∈I′{z1−ε+κε−κξ‖y(z)‖}.
Let y(z) = z−1+ε−κε+κξ u(z), z ∈ (0, d] then, y ∈ X i f f y ∈ � and ‖y‖X = ‖y‖. Moreover,
define BP(J ) = {y ∈ � such that ‖y‖ ≤ P}.

Definition 1 ([19]). The left side of the R-L fractional integral of order κ with the lower limit d for
function G : [d, ∞) → R is presented by

Iκ
d+G(z) =

1
Γ(κ)

∫ z

d

G(w)

(z− w)1−κ
dw, z > 0, κ > 0,

provided the right side is pointwise determined on [d,+∞), Γ(·) is the gamma function.

Definition 2 ([19]). The left-sided R-L fractional derivative of order κ > 0, m − 1 ≤ κ < m,
m ∈ N, for a function G : [d,+∞) → R is presented by

LDκ
d+G(z) =

1
Γ(m − κ)

dm

dzm

∫ z

d

G(w)

(z− w)κ+1−m dw, z > d,

where Γ(·) is the gamma function.
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Definition 3 ([19]). The left-sided Caputo derivative of the type of order κ > 0, m − 1 ≤ κ <
m, m ∈ N for a function G : [d,+∞) → R, is defined as

CDκ
d+G(z) =

1
Γ(m − κ)

∫ z

d

Gm(w)

(z− w)κ+1−m dw = Im−κ
d+ Gm(z), z > d,

where Γ(·) is the gamma function.

Definition 4 ([22]). The left-sided HFD of order 0 < κ < 1 and type ε ∈ [0, 1], of function
G : [d,+∞) → R, is defined as

Dκ,ε
d+G(z) = [I(1−κ)ε

d+ D(I(1−κ)(1−ε)
d+ G)](z).

Remark 1 ([22]). 1. If ε = 0, 0 < κ < 1, and d = 0, then the HFD corresponds to the classical
R-L fractional derivative:

Dκ,0
0+G(z) =

d
dz

I1−κ
0+ G(z) =L Dκ

0+G(z).

2. If ε = 1, 0 < κ < 1, and d = 0, then the HFD corresponds to the classical Caputo
fractional derivative:

Dκ,1
0+G(z) = I1−κ

0+
d
dz
G(z) =C Dκ

0+G(z).

Definition 5 ([38]). For 0 < ξ < 1, 0 < ω < π
2 , Θ−ξ

ω is the family of closed linear operators,
the sector Sω = {v ∈ C\{0} with |arg v| ≤ ω}, and A : D(A) ⊂ Y → Y, which satisfy

(i) σ(A) ⊆ Sω ;
(ii) For any ω < δ < π ∃ Λδ is a constant, such that,∥∥(vI − A)−1∥∥ ≤ Λδ|v|−ξ

then A ∈ Θ−ξ
ω is called an almost sectorial operator on Y.

Lemma 1 ([38]). Let 0 < ξ < 1 and 0 < ω < π
2 , A ∈ Θ−ξ

ω (Y). Then

1. T(z1 + z2) = T(z1) + T(z2), f or any z1, z2 ∈ S0
π
2 −ω

;

2. ∃ Λ0 > 0 is the constant, such that ‖T(z)‖� ≤ Λ0z
ξ−1, for any z > 0;

3. The range R(T(z)) of T(z), z ∈ S0
π
2 −ω

is contained in D(A∞). Particularly, R(T(z)) ⊂
D(Aθ) for all θ ∈ C with Re(θ) > 0,

AθT(z)y =
1

2πi

∫
Γγ

zθe−zzR(z; A)ydz, f or all y ∈ Y,

and, hence, ∃ is a constant Λ′ = Λ′(β, θ) > 0, such that∥∥AθT(z)
∥∥

B(Y) ≤ Λ′z−β−Re(θ)−1, f or all z > 0;

4. If θ > 1 − ξ, then D(Aθ) ⊂ ΣT = {y ∈ Y : limz→0+ T(z)y = y};
5. R(κ′, A) =

∫ ∞
0 e−κ′zT(z)dz, ∀ κ′ ∈ C with Re(κ′) > 0.
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Consider the operator families
{
Sκ(z)

}
z∈S π

2 −ω
,
{
Qκ(z)

}
z∈S π

2 −ω
is defined as follows:

Sκ(z) =
∫ ∞

0
Wκ(ν)T(zκν)dν,

Qκ(z) =
∫ ∞

0
κνWκ(ν)T(zκν)dν,

where Wκ(β) is the Wright-type function:

Wκ(β) = ∑
n∈N

(−β)n−1

Γ(1 − κn)(n − 1)!
, β ∈ C. (3)

Let −1 < ι < ∞, p > 0, the succeeding properties are satisfied.

(a) Wκ(θ) ≥ 0, z > 0;

(b)
∫ ∞

0 θιWκ(θ)dθ = Γ(1+ι)
Γ(1+κι)

;

(c)
∫ ∞

0
κ

θ(κ+1) e−pθWκ(
1
θκ )dθ = e−pκ

.

Theorem 1 ([19]). Sκ(z) and Qκ(z) are continuous in the uniform operator topology, for z > 0,
for every c > 0, the continuity is uniform on [c, ∞).

Definition 6 ([16]). A multi-valued map G is called u.s.c. on Y if for each y0 ∈ Y the set G(y0) is
a non-empty, closed subset of Y, and if for each open set U of Y containing G(y0), there exists an
open neighborhood V of y0, such that G(V) ⊆ U .

Definition 7 ([16]). G is said to be completely continuous if G(C) is relatively compact for each
bounded subset C of Y. If a multi-valued map G is completely continuous with non-empty compact
values, then G is upper semi-continuous if and only if G has a closed graph i.e., ym → y0, zm → z0,
zm ∈ G(ym) imply z0 ∈ G(y0).

Definition 8 ([16]). A multi-valued mapping G : Y → 2Y is said to be condensing, if for any
bounded subset D ⊂ Y with β(D) �= 0, we have β(F(D)) < β(D), where β(·) denotes the
Kuratowski measure of non-compactness, defined as follows:

β(D) = inf
{

d > 0 : D covered by a finite number of balls of radius d
}

.

Lemma 2. System (1)–(2) is equivalent to an integral inclusion given by

y(z) ∈ y0 −N (0, y(0))
Γ(ε(1 − κ) + κ)

z(1−κ)(ε−1) +N (z, y(z)) +
1

Γ(κ)

∫ z

0
(z− w)κ−1AN (w, y(w))dw

+
1

Γ(κ)

∫ z

0
(z− w)κ−1

[
Ay(w) + G

(
w, y(w),

∫ w

0
e
(
w, s, y(s)

)
ds
)

dw
]

.

Definition 9. By a mild solution of the Cauchy problem (1)–(2), the function y(z) ∈ C(J ′, Y) satisfies

y(z) =Sκ,ε(z)
[
y0 −N (0, y(0))

]
+N (z, y(z)) +

∫ z

0
Kκ(z− w)AN (w, y(w))dw

+
∫ z

0
Kκ(z− w)G

(
w, y(w),

∫ w

0
e
(
w, s, y(s)

)
ds
)

dw, z ∈ J ,

where Sκ,ε(z) = Iε(1−κ)
0 Kκ(z), Kκ(z) = zκ−1Qκ(z).
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Lemma 3 ([32]). For any fixed ν > 0, Qκ(ν), Kκ(ν) and Sκ,ε(ν) are linear operators, and for
any y ∈ Y,∥∥Qκ(z)

∥∥ ≤ L′z−κ+κξ ,
∥∥Kκ(z)y

∥∥ ≤ L′z−1+κξ‖y‖,
∥∥Sκ,ε(z)y

∥∥ ≤ L′′z−1+ε−κε+κξ‖y‖,

where

L′ = Λ0
Γ(ξ)

Γ(κξ)
, L′′ = Λ0

Γ(ξ)
Γ(ε(1 − κ) + κξ)

.

Lemma 4 ([32]). Let
{

T(z)
}
z>0 be equicontinuous, then

{
Qκ(z)

}
z>0,

{
Kκ(z)

}
z>0, and{

Sκ,ε(z)
}
z>0 are strongly continuous, i.e., for any y ∈ Y and z2 > z1 > 0,∥∥Qκ(z2)y−Qκ(z1)y

∥∥ → 0,
∥∥Kκ(z2)y−Kκ(z1)y

∥∥ → 0∥∥Sκ,ε(z2)y− Sκ,ε(z1)y
∥∥ → 0, as z2 → z1.

Proposition 1 ([39]). Let κ ∈ (0, 1), μ ∈ (0, 1] and for all y ∈ D(A), there exists a Λμ > 0,
such that ∥∥AμQκ(z)y

∥∥ ≤ κΛμΓ(2 − μ)

zκμΓ(1 + κ(1 − μ))
‖y‖, 0 < z < d.

Lemma 5 ([40]). Let J be a compact real interval and Pbd,cv,cl(Y) be the set of all non-empty,
bounded, convex, and closed subsets of Y. Let G be the L1-Carathéodory multi-valued map, measur-
able to z for each y ∈ Y, u.s.c. to y for each z ∈ C(J , Y), the set

SG,y =

{
g ∈ L1(J , Y) : g(z) ∈ G

(
z, y(z),

∫ w

0
e
(
w, s, y(s)

)
ds
)

, z ∈ J
}

, (4)

is non-empty. Let Υbe the linear continuous function from L1(J , Y) to �, then

Υ ◦ SG : � → Pbd,cv,cl(�), y → (Υ ◦ SG)(y) = Υ(SG,y), (5)

is a closed graph operator in �× �.

Lemma 6 (Martelli’s fixed point theorem [17]). Let Y be a Banach space and F : Y →
Pbd,cv,cl(Y) be an upper semi-continuous and condensing map. If the set

M = {y ∈ Y : λy ∈ F(y) for some λ > 1}

is bounded, then F has a fixed point.

3. Existence

We need the succeeding hypotheses:

(H1) The almost sectorial operator A produces an analytic semigroup T(z), where z ≥ 0 in
Y and ‖T(z)‖ ≤ M, for some M > 0.

(H2) (a) Let G : J × Y × Y → Pbd,cv,cl(Y) be measurable to z for each fixed y ∈ Y,
upper semi-continuous to y for each z ∈ J , and each y ∈ �, take

SG,y =

{
g ∈ L1(J , Y) : g(z) ∈ G

(
z, y(z),

∫ w

0
e
(
w, s, y(s)

)
ds
)

, z ∈ J
}

,

is non-empty.
(b) For z ∈ J , G(z, ·, ·) : Y × Y → Y, e(z, s, ·) : Y → Y are continuous functions

and for each y ∈ �, G
(
·, y,

∫
e) : J → I and e(·, ·, y) : I × J → Y are strongly

measurable.
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(c) There exists a function φ(z) ∈ C(J ′,R+) satisfying

lim
z→0+

z1−ε+κε−κξ Iκξ
0+φ(z) = 0

∥∥G(z, z1, z2)
∥∥ = sup

{
‖G‖ : G(z) ∈ G

(
z, y(z),

∫ z

0
e
(
z, s, y(s)

)
ds
)}

≤ φ(z)Φ
(
‖z1‖+ ‖z2‖

)
.

for a.e. z ∈ J and z1, z2 ∈ Y, where Φ : R+ → (0, ∞) is a continuous,
additive, and non-decreasing function, satisfying Φ(γ1(z)(y)) ≤ γ1(z)Φ(y),
where γ ∈ C(J ′,R+).

(d) There exists ψ ∈ C(J ′,R+), such that∥∥∥∥ ∫ z

0
e(z, s, y(s))

∥∥∥∥ ≤ ψ(z)‖y‖ for each z ∈ J , y ∈ Y.

(H3) For any z ∈ J , multi-valued map N : J × Y → Y is a continuous function and
there exists μ ∈ (0, 1), such that N ∈ D(Aμ) and all y ∈ Y, z ∈ J , AμN (z, ·) satisfy
the following:∥∥AμN (z, y(z))

∥∥ ≤ Mg
(
1 + z1−ε+κε−κξ‖y(z)‖

)
and

∥∥A−μ
∥∥ ≤ M0, (z, y) ∈ J × Y.

(H4) N is completely continuous, and for any bounded set D ⊂ �, the set {z → N (z, y(z)), y ∈
D} is equicontinuous in Y.

Theorem 2. Assume that (H1)− (H4) hold. Then the HF system (1)–(2) has a mild solution on
J , provided

L′
∫ z

0
(z− w)κξ−1φ(z)

(
1 + ψ(z)

)
dw <

∫ ∞

M∗
1

du
Φ(u)

,

where

M∗
1 = d1−ε+κε−κξ

[
L′′d−1+ε−κε+κξ

(
y0 − M0Mg

)
+ M0Mg(1 + P)

]
and y0 ∈ D(Aθ) with θ > 1 − ξ.

Proof. We define the multi-valued operator Ψ : X → P(X ) by

Ψ(y(z)) =

{
z ∈ X : z(z) = z1−ε+κε−κξ

[
Sκ,ε(z)

[
y0 −N (0, y(0))

]
+N

(
z, y(z)

)
+
∫ z

0
(z− w)κ−1Qκ(z− w)AN

(
w, y(w)

)
dw

+
∫ z

0
(z− w)κ−1Qκ(z− w)G

(
w, y(w),

∫ w

0
e
(
w, s, y(s)

)
ds
)]

dw, z ∈ (0, d]
}

.

To show that the fixed point of Ψ exists.
Step:1 Convexity of Ψ(y) ∀ y ∈ BP(J ).

Let z1, z2 ∈ {Ψy(z)} and h1, h2 ∈ SG,y such that z ∈ J . We know

zi =z1−ε+κε−κξ

[
Gκ,ε(z)

[
y0 −N (0, y(0))

]
+N

(
z, y(z)

)
+
∫ z

0
(z− w)κ−1Qκ(z− w)AN

(
w, y(w)

)
dw +

∫ z

0
(z− w)κ−1Qκ(z− w)hi(w)dw

]
, i = 1, 2.
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Let 0 ≤ λ ≤ 1; then for each of z ∈ J , we have

λz1 + (1 − λ)z2(z) =z1−ε+κε−κξ

(
Sκ,ε(z)

[
y0 −N (0, y(0))

]
+N

(
z, y(z)

)
+
∫ z

0
(z− w)κ−1Qκ(z− w)A

(
w, y(w)

)
dw
)

+ z1−ε+κε−κξ
∫ z

0
(z− w)κ−1Qκ(z− w)

[
λh1(w) + (1 − λ)h2(w)

]
dw.

We know that N has a convex value, then SG,y is convex. So, λh1 + (1 − λ)h2 ∈ SG,y.
Therefore,

λz1 + (1 − λ)z2 ∈ Ψy(z),

hence Ψ is convex.
Step 2: Boundness of Ψ on BP(J ). Consider, ∀ y ∈ BP(J ), we have

∥∥z(z)
∥∥ ≤ sup z1−ε+κε−κξ

∥∥∥∥Sκ,ε(z)
[
y0 −N (0, y(0))

]
+N

(
z, y(z)

)
+
∫ z

0
(z− w)κ−1Qκ(z− w)AN

(
w, y(w)

)
dw

+
∫ z

0
(z− w)κ−1Qκ(z− w)G

(
w, y(w),

∫ w

0
e
(
w, s, y(s)

)
ds
)

dw
∥∥∥∥

≤ d1−ε+κε−κξ

(
sup

∥∥∥∥Sκ,ε(z)
[
y0 −N (0, y(0))

]∥∥∥∥+ ∥∥N (
z, y(z)

)∥∥
+ sup

∫ z

0
(z− w)κ−1

∥∥∥∥A1−μQκ(z− w)

∥∥∥∥∥∥∥∥AμN
(
w, y(w)

)∥∥∥∥dw

+ sup
∫ z

0
(z− w)κ−1

∥∥∥∥Qκ(z− w)

∥∥∥∥∥∥∥∥G(w, y(w),
∫ w

0
e
(
w, s, y(w)

)
ds
)∥∥∥∥dw

)
≤ d1−ε+κε−κξ

[
L′′d−1+ε−κε+κξ

(
y0 − M0Mg

)
+ M0Mg(1 + P)

]
+ d1−ε+κε−κξ

[(
Λ1−μ

dκμΓ(1 + μ)

μΓ(1 + κμ)

(
Mg(1 + P)

))
+ L′φ(z)Φ(y)[1 + ψ(z)]

dκξ

κξ

]
≤ M∗

1 + dε(1−κ)−κξ−1
[(

Λ1−μ
dκμΓ(1 + μ)

μΓ(1 + κμ)

(
Mg(1 + P)

))
+ L′φ(z)Φ(y)[1 + ψ(z)]

dκξ

κξ

]
.

From Lemma 2 and hypotheses (H3), we have the boundness of the operators. Hence, it
is bounded.
Step 3: Next, we show that the z(z) bounded maps are set to the equicontinuous set of
BP(J ).
Consider 0 < z1 < z2 ≤ d and ∃ G ∈ SG,y, we have
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∥∥∥∥z(z2)− z(z1)

∥∥∥∥
≤
∥∥∥∥z1−ε+κε−κξ

2

[
Sκ,ε(z2)

[
y0 −N (0, y(0))

]
+N

(
z2, y(z2)

)
+
∫ z2

0
(z2 − w)κ−1Qκ(z2 − w)AN

(
w, y(w)

)
dw

+
∫ z2

0
(z2 − w)κ−1Qκ(z2 − w)G

(
w, y(w),

∫ w

0
e
(
w, s, y(s)

)
ds
)

dw
]

− z
1−ε+κε−κξ
1

[
Sκ,ε(z1)

[
y0 −N (0, y(0))

]
+N

(
z1, y(z1)

)
+
∫ z1

0
(z1 − w)κ−1Qκ(z1 − w)AN

(
w, y(w)

)
dw

+
∫ z1

0
(z1 − w)κ−1Qκ(z1 − w)G

(
w, y(w),

∫ w

0
e
(
w, s, y(s)

)
ds
)

dw
]∥∥∥∥

≤
∥∥∥∥[z1−ε+κε−κξ

2 Sκ,ε(z2)− z
1−ε+κε−κξ
1 Sκ,ε(z1)

][
y0 −N (0, y(0))

]∥∥∥∥
+

∥∥∥∥z1−ε+κε−κξ
2 N (z2, y(z2))− z

1−ε+κε−κξ
1 N (z1, y(z1))

∥∥∥∥
+

∥∥∥∥z1−ε+κε−κξ
2

∫ z1

0
(z2 − w)κ−1Qκ(z2 − w)AN

(
w, y(w)

)
dw

+ z
1−ε+κε−κξ
2

∫ z2

z1

(z2 − w)κ−1Qκ(z2 − w)AN
(
w, y(w)

)
dw

− z
1−ε+κε−κξ
1

∫ z1

0
(z1 − w)κ−1Qκ(z1 − w)AN

(
w, y(w)

)
dw
∥∥∥∥

+

∥∥∥∥z1−ε+κε−κξ
2

∫ z1

0
(z2 − w)κ−1Qκ(z2 − w)G

(
w, y(w),

∫ w

0
e
(
w, s, y(s)

)
ds
)

dw

+ z
1−ε+κε−κξ
2

∫ z2

z1

(z2 − w)κ−1Qκ(z2 − w)G
(

w, y(w),
∫ w

0
e
(
w, s, y(s)

)
ds
)

dw

− z
1−ε+κε−κξ
1

∫ z1

0
(z1 − w)κ−1Qκ(z1 − w)G

(
w, y(w),

∫ w

0
e
(
w, s, y(s)

)
ds
)

dw
∥∥∥∥

≤
∥∥∥∥[z1−ε+κε−κξ

2 Sκ,ε(z2)− z
1−ε+κε−κξ
1 Sκ,ε(z1)

][
y0 −N (0, y(0))

]∥∥∥∥
+

∥∥∥∥z1−ε+κε−κξ
2 N (z2, y(z2))− z

1−ε+κε−κξ
1 N (z1, y(z1))

∥∥∥∥
+

∥∥∥∥z1−ε+κε−κξ
2

∫ z2

z1

(z2 − w)κ−1Qκ(z2 − w)N
(
w, y(w)

)
dw
∥∥∥∥

+

∥∥∥∥z1−ε+κε−κξ
2

∫ z1

0
(z2 − w)κ−1Qκ(z2 − w)AN

(
w, y(w)

)
dw

− z
1−ε+κε−κξ
1

∫ z1

0
(z1 − w)κ−1Qκ(z2 − w)AN

(
w, y(w)

)
dw
∥∥∥∥

+

∥∥∥∥z1−ε+κε−κξ
1

∫ z1

0
(z1 − w)κ−1Qκ(z2 − w)AN

(
w, y(w)

)
dw

− z
1−ε+κε−κξ
1

∫ z1

0
(z1 − w)κ−1Qκ(z1 − w)AN

(
w, y(w)

)
dw
∥∥∥∥

+

∥∥∥∥z1−ε+κε−κξ
2

∫ z2

z1

(z2 − w)κ−1Qκ(z2 − w)G
(

w, y(w),
∫ w

0
e
(
w, s, y(s)

)
ds
)

dw
∥∥∥∥

+

∥∥∥∥z1−ε+κε−κξ
2

∫ z1

0
(z2 − w)κ−1Qκ(z2 − w)G

(
w, y(w),

∫ w

0
e
(
w, s, y(s)

)
ds
)

dw

− z
1−ε+κε−κξ
1

∫ z1

0
(z1 − w)κ−1Qκ(z2 − w)G

(
w, y(w),

∫ w

0
e
(
w, s, y(s)

)
ds
)

dw
∥∥∥∥

+

∥∥∥∥z1−ε+κε−κξ
1

∫ z1

0
(z1 − w)κ−1Qκ(z2 − w)G

(
w, y(w),

∫ w

0
e
(
w, s, y(s)

)
ds
)

dw

− z
1−ε+κε−κξ
1

∫ z1

0
(z1 − w)κ−1Qκ(z1 − w)G

(
w, y(w),

∫ w

0
e
(
w, s, y(s)

)
ds
)

dw
∥∥∥∥

=
8

∑
i=1

Ii .
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Since Sκ,ε(z)(y0 − M0Mg) is strong-continuous, we have

I1 tends to 0 as z2 → z1.

The equicontinuity of N ensures that

I2 tends to 0, as z2 → z1.

I3 =

∥∥∥∥z1−ε+κε−κξ
2

∫ z2

z1

(z2 − w)κ−1Qκ(z2 − w)AN
(
w, y(w)

)
dw
∥∥∥∥

≤ z
1−ε+κε−κξ
2 Λ1−μ Mg(1 + P)

Γ(1 + μ)

μΓ(1 + κμ)
(z2 − z1)

κμ

Then, I3 tends 0 as z2 → z1.

I4 =

∥∥∥∥z1−ε+κε−κξ
2

∫ z1

0
(z2 − w)κ−1Qκ(z2 − w)AN

(
w, y(w)

)
dw

− z
1−ε+κε−κξ
1

∫ z1

0
(z1 − w)κ−1Qκ(z2 − w)AN

(
w, y(w)

)
dw
∥∥∥∥

≤ κΛ1−μ Mg(1 + P)
Γ(1 + μ)

μΓ(1 + κμ)

×
∥∥∥∥ ∫ z1

0

(
z

1−ε+κε−κξ
2 (z2 − w)κ−1 − z

1−ε+κε−κξ
1 (z1 − w)κ−1

)
(z2 − w)κ(μ−1)dw

∥∥∥∥.

We have, I4 tends 0 as z2 → z1. Also,

I5 =

∥∥∥∥z1−ε+κε−κξ
1

∫ z1

0

(
(z1 − w)κ−1Qκ(z2 − w)AN

(
w, y(w)

)
− (z1 − w)κ−1Qκ(z1 − w)AN

(
w, y(w)

))
dw
∥∥∥∥

≤ M′
0Mg(1 + P)z1−ε+κε−κξ

1

∫ z1

0
(z1 − w)κ−1∥∥[Qκ(z2 − w)−Qκ(z1 − w)

]∥∥.

By Theorem 1 and strong continuity o f Qκ(z), I5 tends to 0, as z2 → z1.

I6 =

∥∥∥∥z1−ε+κε−κξ
2

∫ z2

z1

(z2 − w)κ−1Qκ(z2 − w)G
(

w, y(w),
∫ w

0
e
(
w, s, y(s)

)
ds
)

dw
∥∥∥∥

≤ L′
∣∣∣∣z1−ε+κε−κξ

2

∫ z2

z1

(z2 − w)κξ−1φ(w)Φ(y)
[
1 + ψ(z)

]
dw
∣∣∣∣

≤ L′
∫ z1

0

[
z

1−ε+κε−κξ
1 (z1 − w)κξ−1 − z

(1+κξ)(1−κ)
2 (z2 − w)κξ−1

]
× φ(w)Φ(y)

[
1 + ψ(z)

]
dw.

Then I6 tends to 0 as z2 → z1 by using (H2) and the Lebesgue-dominated convergent theorem.

I7 =

∥∥∥∥z1−ε+κε−κξ
2

∫ z1

0
(z2 − w)κ−1Qκ(z2 − w)G

(
w, y(w),

∫ w

0
e
(
w, s, y(s)

)
ds
)

dw

− z
1−ε+κε−κξ
1

∫ z1

0
(z1 − w)κ−1Qκ(z2 − w)G

(
w, y(w),

∫ w

0
e
(
w, s, y(s)

)
ds
)

dw
∥∥∥∥

≤ L′
∫ z1

0
(z2 − w)−κ+κξ

∣∣∣∣z1−ε+κε−κξ
2 (z2 − w)κ−1 − z

1−ε+κε−κξ
1 (z1 − w)κ−1

∣∣∣∣
× φ(w)Φ(y)[1 + ψ(z)]dw,
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and
∫ z1

0 2z(1+κξ)(1−κ)
1 (z1 − w)κξ−1φ(w)Φ(y)[1 + ψ(z)]dw exists (w ∈ (0, z1]), then from

Lebesgue’s dominated convergence theorem, we obtain

∫ z1

0
(z2 − w)−κ+κξ

∣∣∣∣z1−ε+κε−κξ
2 (z2 − w)κ−1 − z

1−ε+κε−κξ
1 (z1 − w)κ−1

∣∣∣∣φ(w)Φ(y)
[
1 + ψ(z)

]
dw

→ 0 as z2 → z1,

so we conclude limz2→z1 I7 = 0.
For any ε > 0, we have

I8 =

∥∥∥∥ ∫ z1

0
z

1−ε+κε−κξ
1

[
Qκ(z2 − w)−Qκ(z1 − w)

]
(z1 − w)κ−1G

(
w, y(w),

∫ w

0
e
(
w, s, y(s)

)
ds
)

dw
∥∥∥∥

≤ z
1−ε+κε−κξ+κ(1+ξ)
1

∫ z1

0
(z1 − w)κξ−1φ(w)Φ(y)

[
1 + ψ(z)

]
dw

× sup
w∈[0,z1−ε]

∥∥Qκ(z2 − w)−Qκ(z1 − w)
∥∥

+ 2L′
∫ z1

z1−ε
z

1−ε+κε+κξ
1 (z1 − w)κξ−1φ(w)Φ(y)

[
1 + ψ(z)

]
dw.

From Theorem (1) and limz2→z1 I6 = 0, we have I8 → 0 independently of y ∈ BP(J ) as
z2 → z1, ε → 0. Hence, ‖z(z2) − z(z1)‖ → 0 independently of y ∈ BP(J ) as z2 → z1.
Therefore, {Ψy(z) : y ∈ BP(J )} is equicontinuous on J .
Step 4: Show the relative compact of V(z) =

{
z(z) : z ∈ Ψ(BP(J ))

}
for z ∈ J .

Let 0 < α < z, and there is a positive value q, assume an operator z′(z) on BP(J ) by

z′α,q(z) = z1−ε+κε−κξ

[
Sκ,ε(z)

[
y0 −N (0, y(0))

]
+N

(
z, y(z)

)
+
∫ z−α

0
(z− w)κ−1Qκ(z− w)AN

(
w, y(w)

)
dw

+
∫ z−α

0
(z− w)κ−1Qκ(z− w)G

(
w, y(w),

∫ w

0
e
(
w, s, y(s)

)
ds
)

dw
]

= z1−ε+κε−κξ

[
Sκ,ε(z)

[
y0 −N (0, y(0))

]
+N

(
z, y(z)

)
+
∫ z−α

0

∫ ∞

q
κθMκ(θ)(z− w)κ−1T((z− w)κθ)AN

(
w, y(w)

)
dw

+
∫ z−α

0

∫ ∞

q
κθMκ(θ)(z− w)κ−1T((z− w)κθ)G

(
w, y(w),

∫ w

0
e
(
w, s, y(s)

)
ds
)

dθdw
]

= z1−ε+κε−κξ

[
Sκ,ε(z)

[
y0 −N (0, y(0))

]
+N

(
z, y(z)

)]
+ κz1−ε+κε−κξ T(ακq)

∫ z−q

0

∫ ∞

q
θMκ(θ)(z− w)κ−1

× T((z− w)κθ − ακq)
[
AN

(
w, y(w)

)
+ G

(
w, y(w),

∫ w

0
e
(
w, s, y(s)

))
dθdw.
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From the compactness of T(ακq), we note that Vα,ξ(z) = {(z′α,q(z))y(z) : y ∈ BP(J )} is
pre-compact in Y. ∀ y ∈ BP(J ), we have∥∥∥∥z(z)− z′α,q(z)

∥∥∥∥
≤
∥∥∥∥κz1−ε+κε−κξ

∫ z

0

∫ q

0
θMκ(θ)(z− w)κ−1T((z− w)κθ)[

AN
(
w, y(w)

)
+ G

(
w, y(w),

∫ w

0
e
(
w, s, y(s)

)
ds
)]

dθdw
∥∥∥∥

+

∥∥∥∥κz1−ε+κε−κξ
∫ z

z−α

∫ ∞

q
(z− w)κ−1θMκ(θ)T((z− w)κθ)[

AN
(
w, y(w)

)
+ G

(
w, y(w),

∫ w

0
e
(
w, s, y(s)

)
ds
)]

dθdw
∥∥∥∥

≤ κΛ0z
1−ε+κε−κξ

( ∫ z

0

∫ q

0
θMκ(θ)(z− w)κ−1(z− w)κξ−κθξ−1

×
[
M′

0 Mg(1 + P) + φ(w)Φ(y)[1 + ψ(z)]
]
dθdw

+
∫ z

z−α

∫ ∞

q
(z− w)κ−1θMκ(θ)(z− w)κξ−κθξ−1[M′

0 Mg(1 + P) + φ(w)Φ(y)[1 + ψ(z)]
]
dw
)

≤ κΛ0z
1−ε+κε−κξ

( ∫ z

0
(z− w)κξ−1[M′

0 Mg(1 + P) + φ(w)Φ(y)[1 + ψ(z)]
]
dw

∫ q

0
θξ Mκ(θ)dθ

+
∫ z

z−α
(z− w)κξ−1[M′

0 Mg(1 + P) + φ(w)Φ(y)[1 + ψ(z)]
]
dw

∫ ∞

0
θξ Mκ(θ)dθ

)
≤ κΛ0z

1−ε+κε−κξ

( ∫ z

0
(z− w)κξ−1[M′

0 Mg(1 + P) + φ(w)Φ(y)[1 + ψ(z)]
]
dw

∫ q

0
θξ Mκ(θ)dθ

+
Γ(1 − ξ)

Γ(1 − κξ)

∫ z

z−α
(z− w)κξ−1[M′

0 Mg(1 + P) + φ(w)Φ(y)[1 + ψ(z)]
]
dw
)

→ 0 as α tends to 0, q tends to 0.

So, Vα,q(z) =
{

zα,q(z) : z ∈ BP(J )
}

are arbitrary closed to V(z) =
{

z(z) : z ∈ BP(I)
}

.
Therefore, {z(z) : z ∈ BP(J )} is relatively compact by the Arzela–Ascoli theorem. Thus,
the continuity of z(z) and relative compactness of {z(z) : z ∈ BP(J )} imply that z(z) is a
completely continuous operator.
Step 5: Ψ has a closed graph.

Take yn → y∗ as n → ∞, zn(z) ∈ Ψ(yn) and zn → z∗ as n → ∞, we have to show that
z∗ ∈ Ψ(y∗). Since zn ∈ Ψ(yn) then ∃ a function Gn ∈ SG,yn , such that

zn(z) = z1−ε+κε−κξ

[
Sκ,ε(z)

[
y0 −N (0, y(0))

]
+N

(
z, yn(z)

)
+
∫ z

0
(z− w)κ−1Qκ(z− w)AN

(
w, yn(w)

)
dw +

∫ z

0
(z− w)κ−1Qκ(z− w)Gn(w)dw

]
.

We need to show that ∃ G∗ ∈ SG,y∗ , such that

z∗(z) = z1−ε+κε−κξ

[
Sκ,ε(z)

[
y0 −N (0, y(0))

]
+N

(
z, y∗(z)

)
+
∫ z

0
(z− w)κ−1Qκ(z− w)AN

(
w, y∗(w)

)
dw +

∫ z

0
(z− w)κ−1Qκ(z− w)G∗(w)dw

]
.
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Clearly,∥∥∥∥[zn(z)− z1−ε+κε−κξ

(
Sκ,ε(z)

[
y0 +N

(
0, y(0)

)]
−N

(
z, yn(z)

)
−
∫ z

0
(z− w)z−1Qκ(z− w)AN

(
w, yn(w)

)
dw
)]

−
[

z∗(z)− z1−ε+κε−κξ

(
Sκ,ε(z)

[
y0 −N

(
0, y(0)

)]
−N

(
z, y∗(z)

)
−
∫ z

0
(z− w)z−1Qκ(z− w)AN

(
w, y∗(w)

)
dw
)]∥∥∥∥ → 0 as n → ∞.

Next, we define the operator Υ : L′(J , Y) → X ,

Υ(g)(z) =
∫ z

0
(z− w)κ−1Qκ(z− w)G

(
w, y(w),

∫ w

0
e
(
w, s, y(w)

)
ds
)

dw.

We have (by (5)) that Υ ◦ SG,y is a closed graph operator. So, by referring to ypsilon, we know[
zn(z)− z1−ε+κε−κξ

(
Sκ,ε(z)

[
y0 +N

(
0, y(0)

)]
−N

(
z, yn(z)

)
−
∫ z

0
(z− w)z−1Qκ(z− w)AN

(
w, yn(w)

)
dw
)]

∈ Υ(SG,yn),

since Gn → G∗, we follow from (5) that[
z∗(z)− z1−ε+κε−κξ

(
Sκ,ε(z)

[
y0 −N

(
0, y(0)

)]
−N

(
z, y∗(z)

)
−
∫ z

0
(z− w)z−1Qκ(z− w)AN

(
w, y∗(w)

)
dw
)]

∈ Υ(SG,u∗).

Therefore, Ψ is a closed graph.
Step:6 Set Λ is bounded.

Λ = {y ∈ ∂BP(J ) : λy = Ψ(y) for some λ > 1}.

Let y ∈ Λ. Then λw ∈ Ψ(y) for some λ > 1. Thus, there exists G ∈ SG,y in ways that for
each z ∈ [0, d] and ‖A1−μ‖ ≤ M′

0, we have

y(z) = λ−1z1−ε+κε−κξ

[
Sκ,ε(z)

[
y0 −N (0, y(0))

]
+N

(
z, y(z)

)
+
∫ z

0
(z− w)κ−1Qκ(z− w)AN

(
w, y(w)

)
dw

+
∫ z

0
(z− w)κ−1Qκ(z− w)G

(
w, y(w),

∫ w

0
e
(
w, s, y(s)

)
ds
)]

dw.

By assumptions (H2)− (H4), we have
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‖y(z)‖ =

∥∥∥∥λ−1z1−ε+κε−κξ

[
Sκ,ε(z)

[
y0 −N (0, y(0))

]
+N

(
z, y(z)

)
+
∫ z

0
(z− w)κ−1Qκ(z− w)AN

(
w, y(w)

)
dw

+
∫ z

0
(z− w)κ−1Qκ(z− w)G

(
w, y(w),

∫ w

0
e
(
w, s, y(s)

)
ds
)]

dw
∥∥∥∥

≤ d1−ε+κε−κξ

[
sup

∥∥∥∥Sκ,ε(z)
[
y0 −N (0, y(0))

]∥∥∥∥+ ∥∥∥∥N (
z, y(z)

)∥∥∥∥
+ sup

∫ z

0
(z− w)κ−1

∥∥∥∥Qκ(z− w)

∥∥∥∥(∥∥∥∥AN
(
w, y(w)

)∥∥∥∥+ ∥∥∥∥G(w, y(w),
∫ w

0
e
(
w, s, y(s)

)
ds
)∥∥∥∥)dw

]
≤ d1−ε+κε−κξ

[
L′′d−1+ε−κε+κξ

(
y0 − M0Mg

)
+ M0Mg(1 + P)

]
+ d1−ε+κε−κξ L′

∫ z

0
(z− w)κξ−1[M′

0Mg(1 + P) + φ(w)Φ(‖y(w)‖)(1 + ψ(w))
]
dw

≤ M∗
1 + L′M∗

2 + d1−ε+κε−κξ L′
∫ z

0
(z− w)κξ−1φ(w)Φ(‖y(w)‖)(1 + ψ(w))dw,

where M∗
1 = d1−ε+κε−κξ

[
L′′d−1+ε−κε+κξ

(
y0 − M0Mg

)
+ M0Mg(1 + P)

]
and M∗

2 = d1−ε(1+κξ) M′
0Mg(1 + P)

κξ
.

Consider the RHS of the above inequality as γ(z). Then, we have

γ(0) = M∗
1 , ‖y(z)‖ ≤ γ(z), z ∈ [0, d],

γ′(z) = d1−ε+κε−κξ L′(w − z)κξ−1φ(z)Φ
(
‖y(z)‖

)(
1 + ψ(z)

)
.

By the non-decreasing character of Φ, we obtain

γ′(z) = d1−ε+κε−κξ L′(w − z)κξ−1φ(z)Φ
(
γ(z)

)(
1 + ψ(z)

)
.

Then the above inequality implies (for each z ∈ J ) that

∫ γ(z)

γ(0)

du
Φ(u)

≤ L′
∫ z

0
(z− w)κξ−1φ(z)

(
1 + ψ(z)

)
dw <

∫ ∞

M∗
1

du
Φ(u)

.

This inequality implies that there exists a constant L, such that γ(z) ≤ L, z ∈ J , and, hence,
y(z) ≤ L. From this we notice that set Λ is bounded. Therefore, by [17], Martelli’s fixed
point theorem Ψ has a fixed point, which is the mild solution of the system (1)–(2).

4. Example

As an idea of how our findings may be used, think about the following Hilfer fractional
neutral integro-differential inclusion,

D
4
7 ,ε
0+
[
Δ(z, v)−N (z, Δ(z, v))

]
∈ ∂2

∂z2 Δ(z, v) + Ḡ
(
z, Δ(z, v), (EΔ)(z, v)

)
z ∈ (0, d], v ∈ [0, π],

Δ(z, 0) = Δ(z, π) = 0z ∈ [0, d], (6)

I(1−
4
7 )(1−ε)y(w, 0) = y0(v), v ∈ [0, π],
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where D
4
7 ,ε
0+ is the HFD of order 4

7 , type ε, I(1−
4
7 )(1−ε) is the Riemann–Liouville integral

of order 3
7 (1 − ε), Ḡ

(
z, Δ(z, v), (EΔ)(z, v)

)
, (EΔ)(z, v), and N̄ (z, Δ(z, v)) are the required

functions.
To write the system (6) in the abstract form of (1)–(2), we chose the space Y = L2[0, π].

Define an almost sectorial operator A by AΔ = Δzz with the domain

D(A) =

{
Δ ∈ Y :

∂Δ
∂z

,
∂2Δ
∂z2 ∈ Y : Δ(z, 0) = Δ(z, π) = 0

}
.

Then A produces a compact semigroup that is analytic and self-adjoint, T(z)z ≥ 0. Ad-
ditionally, the discrete spectrum of A contains eigenvalues of k2, k ∈ N and orthogonal

eigenvectors ζk(z) =
√

2
π sin(kz), then

Az =
∞

∑
k=0

k2〈z, ζk〉ζk.

Moreover, we have each v ∈ Y, T(z)v = ∑∞
k=1 ζ−k2z〈v, ζk〉ζk. In particular, T(·) is uniformly

stable semigroup and ‖T(z)‖ ≤ M, which satisfies (H1).
y(z)(v) = Δ(z, v), z ∈ J = [0, d], v ∈ [0, π]. Take y ∈ Y = L2[0, π], v ∈ [0, π], we

consider the multi-valued mapping G : J × Y × Y → Y,

G
(
z, y(z), (Ey)(z)

)
= G

(
z, Δ(z, v), (EΔ)(z, v)

)
=

e−z

1 + e−z
sin

(
w(z, v) +

∫ z

0
cos(zs)Δ(s, v)ds

)
,

where

(Ey)(z)(v) =
∫ z

0
e(z, s, Δ(s, v))ds =

∫ z

0
cos(zs)Δ(s, v)ds.

Since, mapping G is measurable, upper semi-continuous, and strongly measurable,

G
(
z, Δ(z, v), (EΔ)(z, v)

)
≤ M∗

1.

So G is satisfied (H2). Additionally, N : J × Y → Y must have completely continuous
mapping, which is defined as N (z, u(z)) = N (z, Δ(z, v)), satisfying the necessary hypothe-
ses. Therefore, the required mapping satisfied all hypotheses. As a result, the nonlocal
Cauchy problem (1)–(2) may be used to rephrase the fractional system (6). It is clear that
the boundary of G

(
z, Δ(z, u), (EΔ)(z, u)

)
is uniform. The problem has a mild solution on J ,

according to Theorem 2 .

5. Conclusions

In this study, Martelli’s fixed point theorem was used to examine the possibility of
a mild solution for an abstract Hilfer fractional differential system via almost sectorial
operators. Adequate criteria were applied to the present findings and were satisfied. The
controllability of the Hilfer fractional neutral derivative (via almost sectorial operators) will
be investigated in the future using a fixed point technique.
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Abstract: We first consider the damped wave inequality ∂2u
∂t2 − ∂2u

∂x2 + ∂u
∂t ≥ xσ|u|p, t > 0,

x ∈ (0,L), where L > 0, σ ∈ R, and p > 1, under the Dirichlet boundary conditions
(u(t, 0), u(t, L))= ( f (t), g(t)), t > 0. We establish sufficient conditions depending on σ, p, the
initial conditions, and the boundary conditions, under which the considered problem admits no
global solution. Two cases of boundary conditions are investigated: g ≡ 0 and g(t) = tγ, γ > −1.
Next, we extend our study to the time-fractional analogue of the above problem, namely, the time-
fractional damped wave inequality ∂αu

∂tα − ∂2u
∂x2 + ∂βu

∂tβ ≥ xσ|u|p, t > 0, x ∈ (0, L), where α ∈ (1, 2),
β ∈ (0, 1), and ∂τ

∂tτ is the time-Caputo fractional derivative of order τ, τ ∈ {α, β}. Our approach
is based on the test function method. Namely, a judicious choice of test functions is made, taking
in consideration the boundedness of the domain and the boundary conditions. Comparing with
previous existing results in the literature, our results hold without assuming that the initial values
are large with respect to a certain norm.

Keywords: time-fractional damped wave inequalities; bounded domain; singularity; nonexistence

MSC: 35B44; 35B33; 26A33

1. Introduction

In this paper, we first consider the damped wave inequality⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2u
∂t2 − ∂2u

∂x2 +
∂u
∂t

≥ xσ|u|p, t > 0, x ∈ (0, L),

(u(t, 0), u(t, L)) = ( f (t), g(t)), t > 0,(
u(0, x),

∂u
∂t

(0, x)
)
= (u0(x), u1(x)), x ∈ (0, L),

(1)

where L > 0, σ ∈ R, and p > 1. It is supposed that u0, u1 ∈ L1([0, L]), f ∈ L1
loc([0, ∞)),

and g(t) = Cgtγ, where Cg ≥ 0 and γ > −1, are constants. Namely, we establish sufficient
conditions depending on the initial values, the boundary conditions, p, and σ, under which
(1) admits no global weak solution, in a sense that will be specified later.

Next, we study the time-fractional analogue of (1), namely the time-fractional damped
wave inequality
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂αu
∂tα

− ∂2u
∂x2 +

∂βu
∂tβ

≥ xσ|u|p, t > 0, x ∈ (0, L),

(u(t, 0), u(t, L)) = ( f (t), g(t)), t > 0,(
u(0, x),

∂u
∂t

(0, x)
)
= (u0(x), u1(x)), x ∈ (0, L),

(2)

where α ∈ (1, 2), β ∈ (0, 1), and ∂τ

∂tτ , τ ∈ {α, β}, is the time-Caputo fractional derivative of
order τ.

The investigation of the question of blow-up of solutions to initial boundary value
problems for semilinear wave equations started in the 1970s. For example, Tsutsumi [1]
considered the nonlinear damped wave equation

∂2u
∂t2 − Δu + b

∂u
∂t

= F(u),

under homogeneous Dirichlet boundary conditions, where b ≥ 0 and

F(s)s − 2(2κ + 1)
∫ s

0
F(τ) dτ ≥ d0|s|ρ+2, s ∈ R,

for some κ > 0 and ρ > 0. By means of the energy method, the author established
sufficient conditions for the blow-up of solutions. In [2], using a concavity argument,
Levine established sufficient conditions for the blow-up of solutions to an abstract Cauchy
problem in a Hilbert space, of the form

P
∂2u
∂t2 + Au + Q

∂u
∂t

= F(u),

where P and A are positive symmetric operators and F is a nonlinear operator satisfying
certain conditions. Later, the concavity method was used and developed by many authors
in order to study more general problems. For further blow-up results for nonlinear wave
equations, obtained by means of the energy/concavity method, see e.g., [3–11] and the
references therein.

Fractional operators arise in various applications, such as chemistry, biology, continuum
mechanics, anomalous diffusion, and materials science, see for instance [12–16]. Conse-
quently, many mathematicians dealt with the study of fractional differential equations in both
theoretical and numerical aspects, see e.g., [17–21].

In [22], Kirane and Tatar considered the time-fractional damped wave equation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2u
∂t2 − Δu +

∂1+αu
∂t1+α

= a|u|p−1u, t > 0, x ∈ Ω,

u(t, x) = 0, t > 0, x ∈ ∂Ω,(
u(0, x),

∂u
∂t

(0, x)
)
= (u0(x), u1(x)), x ∈ Ω,

(3)

where p > 1, α ∈ (−1, 1), and Ω is a bounded domain of RN . Using some arguments based
on Fourier transforms and the Hardy–Littlewood inequality, it was shown that the energy
grows exponentially for sufficiently large initial data.

By combining an argument due to Georgiev and Todorova [23] with the techniques
used in [22], Tatar [24] proved that the solutions to (3) blow up in finite-time for sufficiently
large initial data.

In all the above cited references, the blow-up results were obtained for sufficiently
large initial data. In this paper, we use a different approach than those used in the above
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mentioned references. Namely, our approach is based on the test function method intro-
duced by Mitidieri and Pohozaev [25]. Taking into consideration the boundedness of the
domain as well as the boundary conditions, adequate test functions are used to obtain
sufficient conditions for the nonexistence of global weak solutions to problems (1) and (2).
Notice that our results hold without assuming that the initial values are large with respect
to a certain norm.

Let us mention also that recently, methods for the numerical diagnostics of the solu-
tion’s blow-up have been actively developing (see e.g., [26–28]), which make it possible to
refine the theoretical estimates.

The rest of the paper is organized as follows: In Section 2, we provide some preliminar-
ies on fractional calculus, and some useful lemmas. We state our main results in Section 3.
The proofs are presented in Section 4.

2. Preliminaries on Fractional Calculus

For the reader’s convenience, we recall below some notions from fractional calculus,
see e.g., [17,20].

Let T > 0 be fixed. Given ρ > 0 and v ∈ L1([0, T]), the left-sided and right-sided
Riemann–Liouville fractional integrals of order ρ of v, are defined, respectively, by

(Iρ
0 v)(t) =

1
Γ(ρ)

∫ t

0
(t − s)ρ−1v(s) ds and (Iρ

Tv)(t) =
1

Γ(ρ)

∫ T

t
(s − t)ρ−1v(s) ds,

for almost everywhere t ∈ [0, T], where Γ denotes the Gamma function. It can be easily
seen that, if v ∈ C([0, T]), then

lim
t→0+

(Iρ
0 v)(t) = lim

t→T−
(Iρ

Tv)(t) = 0.

In this case, we may consider Iρ
0 v and Iρ

Tv as continuous functions in [0, T], by taking

(Iρ
0 v)(0) = (Iρ

Tv)(T) = 0.

Given a positive integer n, τ ∈ (n − 1, n), and v ∈ Cn([0, T]), the (left-sided) Caputo
fractional derivative of order τ of v, is defined by

dτv
dtτ

(t) =
(

In−τ
0

dnv
dtn

)
(t) =

1
Γ(n − τ)

∫ t

0
(t − s)n−τ−1 dnv

dtn (s) ds,

for all t ∈ [0, L].
We have the following integration by parts rule.

Lemma 1 (see the Corollary in [17], p. 67). Let ρ > 0, q, r ≥ 1, and 1
q + 1

r ≤ 1 + ρ (q �= 1,

r �= 1, in the case 1
q +

1
r = 1 + ρ). If (v, w) ∈ Lq([0, T])× Lr([0, T]), then

∫ T

0
(Iρ

0 v)(t)w(t) dt =
∫ T

0
v(t)(Iρ

Tw)(t) dt.

Lemma 2. For sufficiently large λ, let

η(t) = T−λ(T − t)λ, 0 ≤ t ≤ T. (4)
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Let ρ ∈ (0, 1). Then

(Iρ
Tη)(t) =

Γ(λ + 1)
Γ(ρ + λ + 1)

T−λ(T − t)ρ+λ, (5)

(Iρ
Tη)′(t) = −Γ(λ + 1)

Γ(ρ + λ)
T−λ(T − t)ρ+λ−1, (6)

(Iρ
Tη)′′(t) =

Γ(λ + 1)
Γ(ρ + λ − 1)

T−λ(T − t)ρ+λ−2. (7)

Proof. We have

(Iρ
Tη)(t) =

1
Γ(ρ)

∫ T

t
(s − t)ρ−1η(s) ds

=
T−λ

Γ(ρ)

∫ T

t
(s − t)ρ−1(T − s)λ ds

=
T−λ

Γ(ρ)

∫ T

t
(s − t)ρ−1((T − t)− (s − t))λ ds

=
T−λ(T − t)λ

Γ(ρ)

∫ T

t
(s − t)ρ−1

(
1 − s − t

T − t

)λ

ds.

Using the change of variable z = s−t
T−t , we obtain

(Iρ
Tη)(t) =

T−λ(T − t)λ+ρ

Γ(ρ)

∫ 1

0
zρ−1(1 − z)λ dz

=
T−λ(T − t)λ+ρ

Γ(ρ)
B(ρ, λ + 1),

where B denotes the Beta function. Using the property (see e.g., [20])

B(a, b) =
Γ(a)Γ(b)
Γ(a + b)

, a, b > 0,

we obtain

(Iρ
Tη)(t) =

T−λ(T − t)λ+ρ

Γ(ρ)
Γ(ρ)Γ(λ + 1)
Γ(ρ + λ + 1)

=
Γ(λ + 1)

Γ(ρ + λ + 1)
T−λ(T − t)ρ+λ,

which proves (5).
Next, calculating the derivative of Iρ

Tη, we obtain

(Iρ
Tη)′(t) = − (ρ + λ)Γ(λ + 1)

Γ(ρ + λ + 1)
T−λ(T − t)ρ+λ−1.

On the other hand, by the property (see e.g., [20])

Γ(a + 1) = aΓ(a), a > 0, (8)

we obtain
Γ(ρ + λ + 1) = (ρ + λ)Γ(ρ + λ).

Hence, we deduce that

(Iρ
Tη)′(t) = −Γ(λ + 1)

Γ(ρ + λ)
T−λ(T − t)ρ+λ−1,
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which proves (6).
Differentiating (Iρ

Tη)′ and using (8), we obtain

(Iρ
Tη)′′(t) =

(ρ + λ − 1)Γ(λ + 1)
Γ(ρ + λ)

T−λ(T − t)ρ+λ−2

=
(ρ + λ − 1)Γ(λ + 1)

(ρ + λ − 1)Γ(ρ + λ − 1)
T−λ(T − t)ρ+λ−2

=
Γ(λ + 1)

Γ(ρ + λ − 1)
T−λ(T − t)ρ+λ−2,

which proves (7).

The following inequality will be useful later.

Lemma 3 (Young’s Inequality with Epsilon, see [29], p. 36). Let ε > 0 and p > 1. Then, for
all a, b ≥ 0, there holds

ab ≤ εap + Cε,pb
p

p−1 ,

where Cε,p = (p − 1)p−1(εp)
−1
p−1 .

Remark 1. For a function u : (0, ∞)× (0, L) → R, the notation ∂αu
∂tα used in (2), where 1 < α < 2,

means the following:

∂αu
∂tα

(t, x) =
(

I2−α
0

∂2u
∂t2 (·, x)

)
(t), t > 0, 0 < x < L,

i.e.,
∂αu
∂tα

(t, x) =
1

Γ(2 − α)

∫ t

a
(t − s)1−α ∂2u

∂t2 (s, x) ds.

Similarly, the notation ∂βu
∂tβ used in (2), where 0 < β < 1, means the following:

∂βu
∂tβ

(t, x) =
(

I1−β
0

∂u
∂t

(·, x)
)
(t), t > 0, 0 < x < L,

i.e.,
∂βu
∂tβ

(t, x) =
1

Γ(1 − β)

∫ t

a
(t − s)−β ∂u

∂t
(s, x) ds.

3. Statement of the Main Results

We first consider problem (1). Let

Q = [0, ∞)× [0, L].

We introduce the test function space

Φ =
{

ϕ ∈ C2(Q) : ϕ ≥ 0, ϕ(·, 0) = ϕ(·, L) ≡ 0, ϕ(t, ·) ≡ 0 for sufficiently large t
}

.

Definition 1. Let u0, u1 ∈ L1([0, L]) and f , g ∈ L1
loc([0, ∞)). We say that u is a global weak

solution to (1), if

(i) xσ|u|p ∈ L1
loc(Q), u ∈ L1

loc(Q);
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(ii) for every ϕ ∈ Φ,

∫
Q

xσ|u|p ϕ dx dt +
∫ ∞

0

(
f (t)

∂ϕ

∂x
(t, 0)− g(t)

∂ϕ

∂x
(t, L)

)
dt

+
∫ L

0

(
u1(x)ϕ(0, x)− u0(x)

∂ϕ

∂t
(0, x) + u0(x)ϕ(0, x)

)
dx

≤ −
∫

Q
u

∂2 ϕ

∂x2 dx dt +
∫

Q
u

∂2 ϕ

∂t2 dx dt −
∫

Q
u

∂ϕ

∂t
dx dt.

(9)

Remark 2. The weak formulation (9) is obtained by multiplying the differential inequality in (1)
by ϕ, integrating over Q, and using the initial conditions in (1). So, clearly, any global solution to
(1) is a global weak solution to (1) in the sense of Definition 1.

We first consider the case g ≡ 0.

Theorem 1. Let u0, u1 ∈ L1([0, L]), f ∈ L1
loc([0, ∞)), and g ≡ 0. Suppose that

∫ L

0
(u0(x) + u1(x))(L − x) dx > 0. (10)

If
σ < −(p + 1), (11)

then (1) admits no global weak solution.

Remark 3. Comparing with the existing results in the literature, in Theorem 1, it is not required
that the initial data are sufficiently large with respect to a certain norm. The same remark holds for
the next theorems.

Example 1. Consider problem (1) with

f (t) =
1√

t
, t > 0, g ≡ 0, u0(x) = −(L − x), u1(x) = 2(L − x), σ = −4, p = 2.

Then, all the assumptions of Theorem 1 are satisfied. Consequently, we deduce that (1) admits
no global weak solution.

Next, we consider the case when

g(t) = Cgtγ, γ > −1, t > 0, (12)

where Cg > 0 is a constant.

Theorem 2. Let u0, u1 ∈ L1([0, L]), f ∈ L1
loc([0, ∞)), and g be the function defined by (12). If

one of the following conditions is satisfied:

(i) σ < −(p + 1);
(ii) σ ≥ −(p + 1), γ > 0,

then (1) admits no global weak solution.

Example 2. Consider problem (1) with

f (t) =
et
√

t
, t > 0, u0(x) = x, u1(x) = x2, g(t) =

√
t, t > 0, σ = −2, p = 2.

Then, by the statement (ii) of Theorem 2, we deduce that (1) admits no global weak solution.
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Consider now problem (2). For all T > 0, let

QT = [0, T]× [0, L].

We introduce the test function space

ΦT =

{
ϕ ∈ C2(QT) : ϕ ≥ 0, ϕ(·, 0) = ϕ(·, L) ≡ 0,

∂(I2−α
T ϕ)

∂t
(T, ·) ≡ 0

}
.

Definition 2. Let u0, u1 ∈ L1([0, L]) and f , g ∈ L1
loc([0, ∞)). We say that u is a global weak

solution to (2), if

(i) xσ|u|p ∈ L1
loc(Q), u ∈ L1

loc(Q);
(ii) for all T > 0 and ϕ ∈ ΦT,

∫
QT

xσ|u|p ϕ dx dt +
∫ T

0

(
f (t)

∂ϕ

∂x
(t, 0)− g(t)

∂ϕ

∂x
(t, L)

)
dt

+
∫ L

0

(
u1(x)(I2−α

T ϕ)(0, x)− u0(x)
∂(I2−α

T ϕ)

∂t
(0, x) + u0(x)(I1−β

T ϕ)(0, x)

)
dx

≤ −
∫

QT

u
∂2 ϕ

∂x2 dx dt +
∫

QT

u
∂2(I2−α

T ϕ)

∂t2 dx dt −
∫

QT

u
∂(I1−β

T ϕ)

∂t
dx dt.

(13)

Remark 4. The weak formulation (13) is obtained by multiplying the differential inequality in (2)
by ϕ, integrating over QT, using the initial conditions in (2), and using the fractional integration
by parts rule provided by Lemma 1. So, clearly, any global solution to (2) is a global weak solution
to (2) in the sense of Definition 2.

As for problem (1), we first consider the case g ≡ 0.

Theorem 3. Let u0, u1 ∈ L1([0, L]), f ∈ L1
loc([0, ∞)), and g ≡ 0. If

σ < −(p + 1),

and one of the following conditions is satisfied:

α < β + 1,
∫ L

0
u1(x)(L − x) dx > 0; (14)

α = β + 1,
∫ L

0
(u0(x) + u1(x))(L − x) dx > 0; (15)

α > β + 1,
∫ L

0
u0(x)(L − x) dx > 0, (16)

then (2) admits no global weak solution.

Example 3. Consider problem (2) with

f (t) =
1√

t
, t > 0, u0 ≡ 0, u1(x) = 2(L − x), α =

3
2

, β =
3
4

, σ = −4, p = 2.

Since (14) is satisfied and σ < −(p + 1), by Theorem 3, we deduce that (2) admits no global
weak solution.

Next, we consider the inhomogeneous case, where the function g is given by (12).
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Theorem 4. Let u0, u1 ∈ L1([0, L]), f ∈ L1
loc([0, ∞)), and g be the function defined by (12). If

α > max{1 − γ, 1}, β > max{−γ, 0}, (17)

and one of the following conditions is satisfied:

(i) σ < −(p + 1);
(ii) σ ≥ −(p + 1), γ > 0,

then (2) admits no global weak solution.

Example 4. Consider problem (2) with

f (t) =
1√

t
, t > 0, u0(x) = −x, u1(x) = x2, g(t) = t

2
3 , t > 0, α =

3
2

, β =
1
2

,

and
σ = −3, p = 3.

Then (17) is satisfied, σ ≥ −(p + 1), and γ > 0. Then, by Theorem 4, we deduce that (2)
admits no global weak solution.

4. Proof of the Main Results

Throughout this section, any positive constant independent on T and R, is denoted
by C. Namely, in the proofs, we use several asymptotic estimates as T → ∞ and R → ∞;
therefore, the value of any positive constant independent of T and R has no influence in
our analysis.

4.1. Proof of Theorem 1

Proof. Suppose that u is a global weak solution to (1). Then, by (9), for every ϕ ∈ Φ,
there holds ∫

Q
xσ|u|p ϕ dx dt +

∫ ∞

0

(
f (t)

∂ϕ

∂x
(t, 0)− g(t)

∂ϕ

∂x
(t, L)

)
dt

+
∫ L

0

(
u1(x)ϕ(0, x)− u0(x)

∂ϕ

∂t
(0, x) + u0(x)ϕ(0, x)

)
dx

≤
∫

Q
|u|
∣∣∣∣∂2 ϕ

∂x2

∣∣∣∣ dx dt +
∫

Q
|u|
∣∣∣∣∂2 ϕ

∂t2

∣∣∣∣ dx dt +
∫

Q
|u|
∣∣∣∣∂ϕ

∂t

∣∣∣∣ dx dt.

(18)

On the other hand, using Lemma 3 with ε = 1
3 and adequate choices of a and b,

we obtain

∫
Q
|u|
∣∣∣∣∂2 ϕ

∂x2

∣∣∣∣ dx dt ≤ 1
3

∫
Q

xσ|u|p ϕ dx dt + C
∫

Q
x

−σ
p−1 ϕ

−1
p−1

∣∣∣∣∂2 ϕ

∂x2

∣∣∣∣
p

p−1

dx dt, (19)

∫
Q
|u|
∣∣∣∣∂2 ϕ

∂t2

∣∣∣∣ dx dt ≤ 1
3

∫
Q

xσ|u|p ϕ dx dt + C
∫

Q
x

−σ
p−1 ϕ

−1
p−1

∣∣∣∣∂2 ϕ

∂t2

∣∣∣∣
p

p−1

dx dt, (20)

∫
Q
|u|
∣∣∣∣∂ϕ

∂t

∣∣∣∣ dx dt ≤ 1
3

∫
Q

xσ|u|p ϕ dx dt + C
∫

Q
x

−σ
p−1 ϕ

−1
p−1

∣∣∣∣∂ϕ

∂t

∣∣∣∣
p

p−1
dx dt. (21)
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Using (18)–(21), we obtain∫ ∞

0

(
f (t)

∂ϕ

∂x
(t, 0)− g(t)

∂ϕ

∂x
(t, L)

)
dt

+
∫ L

0

(
u1(x)ϕ(0, x)− u0(x)

∂ϕ

∂t
(0, x) + u0(x)ϕ(0, x)

)
dx

≤ C
3

∑
j=1

Ij(ϕ),

(22)

where

I1(ϕ) =
∫

Q
x

−σ
p−1 ϕ

−1
p−1

∣∣∣∣∂2 ϕ

∂x2

∣∣∣∣
p

p−1

,

I2(ϕ) =
∫

Q
x

−σ
p−1 ϕ

−1
p−1

∣∣∣∣∂2 ϕ

∂t2

∣∣∣∣
p

p−1

,

I3(ϕ) =
∫

Q
x

−σ
p−1 ϕ

−1
p−1

∣∣∣∣∂ϕ

∂t

∣∣∣∣
p

p−1
.

Consider now two cut-off functions ξ, μ ∈ C∞([0, ∞)) satisfying the following properties:

0 ≤ ξ, μ ≤ 1, ξ(s) =
{

1 if 0 ≤ s ≤ 1
2

0 if s ≥ 1
, μ(s) =

{
0 if 0 ≤ s ≤ 1

2
1 if s ≥ 1

.

For sufficiently large � and R, let

ϕ1(t) = ξ�(R−θt), ϕ2(x) = (L − x)μ�(Rx), t ≥ 0, x ∈ [0, L], (23)

where θ > 0 is a constant that will be determined later. Consider the function

ϕ(t, x) = ϕ1(t)ϕ2(x), t ≥ 0, x ∈ [0, L]. (24)

By the properties of the cut-off functions ξ and μ, it can be easily seen that the function
ϕ defined by (24), belongs to Φ. Thus, the estimate (22) holds for this function.

Now, let us estimate the terms Ij(ϕ), j = 1, 2, 3. For j = 1, by (24), we obtain

I1(ϕ) =

(∫ ∞

0
ϕ1(t) dt

)(∫ L

0
x

−σ
p−1 ϕ

−1
p−1
2 (x)|ϕ′′

2 (x)|
p

p−1 dx
)

:= I(1)1 (ϕ1)I(2)1 (ϕ2). (25)

On the other hand, by the definitions of the function ϕ1 and the cut-off function ξ,
there holds

I(1)1 (ϕ1) =
∫ ∞

0
ξ�
(

R−θt
)

dt

=
∫ Rθ

0
ξ�
(

R−θt
)

dt

≤ Rθ . (26)

By the definitions of the function ϕ2 and the cut-off function μ, we obtain

ϕ′′
2 (x) = �R2μ�−2(Rx)×[

(L − x)
(
(�− 1)μ′2(Rx) + μ(Rx)μ′′(Rx)

)
− 2R−1μ(Rx)μ′(Rx)

]
χ[ 1

2 R−1,R−1](x),

which yields
|ϕ′′

2 (x)| ≤ CR2μ�−2(Rx)χ[ 1
2 R−1,R−1](x),
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where χ[ 1
2 R−1,R−1] is the indicator function of the interval

[
1
2 R−1, R−1

]
. Then, there holds

I(2)1 (ϕ2) ≤ CR
2p

p−1

∫ R−1

1
2 R−1

x
−σ
p−1 (L − x)

−1
p−1 μ

�− 2p
p−1 (Rx) dx

≤ CR
2p

p−1

∫ R−1

1
2 R−1

x
−σ
p−1 dx

≤ CR
σ

p−1+
2p

p−1−1. (27)

Thus, it follows from (25)–(27) that

I1(ϕ) ≤ CRθ+
p+1+σ

p−1 . (28)

For j = 2, Ij(ϕ) can be written as

I2(ϕ) =

(∫ ∞

0
ϕ

−1
p−1
1 (t)|ϕ′′

1 (t)|
p

p−1 dt
)(∫ L

0
x

−σ
p−1 ϕ2(x) dx

)
:= I(1)2 (ϕ1)I(2)2 (ϕ2). (29)

By the definitions of the function ϕ1 and the cut-off function ξ, we obtain

ϕ′′
1 (t) = �R−2θξ�−2(R−θt)

[
(�− 1)ξ ′2(R−θt) + ξ�−1(R−θt)ξ ′′(R−θt)

]
χ[ 1

2 Rθ ,Rθ ](t),

which yields
|ϕ′′

1 (t)| ≤ CR−2θξ�−2(R−θt)χ[ 1
2 Rθ ,Rθ ](t).

Thus, there holds

I(1)2 (ϕ1) ≤ CR
−2θp
p−1

∫ Rθ

1
2 Rθ

ξ
�− 2p

p−1 (R−θt) dt

≤ CRθ
(

1− 2p
p−1

)
. (30)

Moreover, we have

I(2)2 (ϕ2) =
∫ L

0
x

−σ
p−1 ϕ2(x) dx

=
∫ L

1
2 R−1

x
−σ
p−1 (L − x)μ�(Rx) dx

≤ C
∫ L

1
2 R−1

x
−σ
p−1 dx.

On the other hand, by (11), we have σ < p − 1, thus we deduce that

I(2)2 (ϕ2) ≤ C. (31)

Combining (29)–(31), there holds

I2(ϕ) ≤ CRθ
(

1− 2p
p−1

)
. (32)

Now, let us estimate I3(ϕ). This term can be written as

I3(ϕ) =

(∫ ∞

0
ϕ

−1
p−1
1 (t)|ϕ′

1(t)|
p

p−1 dt
)(∫ L

0
x

−σ
p−1 ϕ2(x) dx

)
:= I(1)3 (ϕ1)I(2)3 (ϕ2). (33)
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A similar calculation as above yields

I(1)3 (ϕ1) ≤ CRθ
(

1− p
p−1

)
. (34)

Observe that I(2)3 (ϕ2) = I(2)2 (ϕ2). Thus, by (31), (33), and (34), we obtain

I3(ϕ) ≤ CRθ
(

1− p
p−1

)
. (35)

Next, combining (28), (32), and (35), we obtain

3

∑
j=1

Ij(ϕ) ≤ C
(

Rθ+
p+1+σ

p−1 + Rθ
(

1− p
p−1

))
. (36)

Let θ be such that

θ +
p + 1 + σ

p − 1
= θ

(
1 − p

p − 1

)
,

that is,

θ =
−(p + 1)− σ

p
.

Notice that by (11), we have θ > 0. Then, (36) reduces to

3

∑
j=1

Ij(ϕ) ≤ CRθ
(

1− p
p−1

)
. (37)

Next, let us estimate the terms from the right side of (22). Observe that by the definition
of the function ϕ, and the properties of the cut-off function μ, we have

∂ϕ

∂x
(t, 0) = 0, t > 0.

Moreover, since g ≡ 0, there holds∫ ∞

0

(
f (t)

∂ϕ

∂x
(t, 0)− g(t)

∂ϕ

∂x
(t, L)

)
dt = 0. (38)

By the properties of the cut-off function ξ, we have

ϕ(0, x) = ϕ2(x),
∂ϕ

∂t
(0, x) = 0, x ∈ (0, L).

Thus, we obtain∫ L

0

(
u1(x)ϕ(0, x)− u0(x)

∂ϕ

∂t
(0, x) + u0(x)ϕ(0, x)

)
dx

=
∫ L

0
(u0(x) + u1(x))ϕ(0, x) dx

=
∫ L

0
(u0(x) + u1(x))ϕ2(x) dx

=
∫ L

0
(u0(x) + u1(x))(L − x)μ�(Rx) dx.
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Then, taking into consideration that u0, u1 ∈ L1([0, L]), by the dominated convergence
theorem, we obtain

lim
R→∞

∫ L

0

(
u1(x)ϕ(0, x)− u0(x)

∂ϕ

∂t
(0, x) + u0(x)ϕ(0, x)

)
dx

=
∫ L

0
(u0(x) + u1(x))(L − x) dx.

(39)

Hence, by (10), for sufficiently large R, there holds∫ L
0

(
u1(x)ϕ(0, x)− u0(x) ∂ϕ

∂t (0, x) + u0(x)ϕ(0, x)
)

dx ≥ 1
2

∫ L
0 (u0(x) + u1(x))(L − x) dx. (40)

Next, combining (22), (37), (38), and (40), we obtain

1
2

∫ L

0
(u0(x) + u1(x))(L − x) dx ≤ CRθ

(
1− p

p−1

)
.

Passing to the limit as R → ∞ in the above inequality, we obtain

1
2

∫ L

0
(u0(x) + u1(x))(L − x) dx ≤ 0,

which contradicts (10). Consequently, (1) admits no global weak solution. The proof
is completed.

4.2. Proof of Theorem 2

Proof. As was performed previously, suppose that u is a global weak solution to (1). From
the proof of Theorem 1, for sufficiently large R, there holds

−
∫ ∞

0
g(t)

∂ϕ

∂x
(t, L) dt

+
∫ L

0

(
u1(x)ϕ(0, x)− u0(x)

∂ϕ

∂t
(0, x) + u0(x)ϕ(0, x)

)
dx

≤ C
(

Rθ+
p+1+σ

p−1 + Rθ
(

1− p
p−1

) ∫ L

1
2 R−1

x
−σ
p−1 dx

)
,

(41)

where θ > 0 and ϕ is the function defined by (24). On the other hand, by the definition of
the function ϕ, for sufficiently large R, there holds

∂ϕ

∂x
(t, L) = −ϕ1(t), t > 0,

which yields

−
∫ ∞

0
g(t)

∂ϕ

∂x
(t, L) dt =

∫ ∞

0
g(t)ϕ1(t) dt

= C
∫ ∞

0
tγξ�(R−θt) dt

≥ C
∫ 1

2 Rθ

0
tγ dt

= CRθ(γ+1).
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Then, by (41), we deduce that

C + R−θ(γ+1)
∫ L

0

(
u1(x)ϕ(0, x)− u0(x)

∂ϕ

∂t
(0, x) + u0(x)ϕ(0, x)

)
dx

≤ C
(

R−θγ+
p+1+σ

p−1 + R−θ
(

γ+
p

p−1

) ∫ L

1
2 R−1

x
−σ
p−1 dx

)
.

(42)

Let σ < −(p + 1). In this case, (42) reduces to

C + R−θ(γ+1)
∫ L

0

(
u1(x)ϕ(0, x)− u0(x)

∂ϕ

∂t
(0, x) + u0(x)ϕ(0, x)

)
dx

≤ C
(

R−θγ+
p+1+σ

p−1 + R−θ
(

γ+
p

p−1

))
.

(43)

Taking θ > 0 so that

θγ >
p + 1 + σ

p − 1
, (44)

passing to the limit as R → ∞ in (43), and using (39), we obtain a contradiction with C > 0.
This proves part (i) of Theorem 2.

Let σ ≥ −(p + 1) and γ > 0.
If −(p + 1) ≤ σ < p − 1, then (43) holds. Since γ > 0, there exists θ > 0 such that (44)

holds. Thus, passing to the limit as R → ∞ in (43), we obtain a contradiction.
If σ = p − 1, then (42) yields

C + R−θ(γ+1)
∫ L

0

(
u1(x)ϕ(0, x)− u0(x)

∂ϕ

∂t
(0, x) + u0(x)ϕ(0, x)

)
dx

≤ C
(

R−θγ+
p+1+σ

p−1 + R−θ
(

γ+
p

p−1

)
ln R

)
.

As in the previous case, since γ > 0, there exists θ > 0 such that (44) holds. Thus,
passing to the limit as R → ∞ in the above inequality, we obtain a contradiction.
If σ > p − 1, then (42) yields

C + R−θ(γ+1)
∫ L

0

(
u1(x)ϕ(0, x)− u0(x)

∂ϕ

∂t
(0, x) + u0(x)ϕ(0, x)

)
dx

≤ C
(

R−θγ+
p+1+σ

p−1 + R−θ
(

γ+
p

p−1

)
+ σ

p−1−1
)

.

Taking θ such that (44) is satisfied, and passing to the limit as R → ∞ in the above
inequality, a contradiction follows. Thus, part (ii) of Theorem 2 is proved.

4.3. Proof of Theorem 3

Proof. Suppose that u is a global weak solution to (2). Then, by (13), for every T > 0 and
ϕ ∈ ΦT , there holds∫

QT

xσ|u|p ϕ dx dt +
∫ T

0

(
f (t)

∂ϕ

∂x
(t, 0)− g(t)

∂ϕ

∂x
(t, L)

)
dt

+
∫ L

0

(
u1(x)(I2−α

T ϕ)(0, x)− u0(x)
∂(I2−α

T ϕ)

∂t
(0, x) + u0(x)(I1−β

T ϕ)(0, x)

)
dx

≤
∫

QT

|u|
∣∣∣∣∂2 ϕ

∂x2

∣∣∣∣ dx dt +
∫

QT

|u|
∣∣∣∣∣∂2(I2−α

T ϕ)

∂t2

∣∣∣∣∣ dx dt +
∫

QT

|u|
∣∣∣∣∣∂(I1−β

T ϕ)

∂t

∣∣∣∣∣ dx dt.

(45)
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On the other hand, using Lemma 3 with ε = 1
3 and adequate choices of a and b,

we obtain ∫
QT

|u|
∣∣∣∣∂2 ϕ

∂x2

∣∣∣∣ dx dt

≤ 1
3

∫
QT

xσ|u|p ϕ dx dt + C
∫

QT

x
−σ
p−1 ϕ

−1
p−1

∣∣∣∣∂2 ϕ

∂x2

∣∣∣∣
p

p−1

dx dt,

(46)

∫
QT

|u|
∣∣∣∣∣∂2(I2−α

T ϕ)

∂t2

∣∣∣∣∣ dx dt

≤ 1
3

∫
QT

xσ|u|p ϕ dx dt + C
∫

QT

x
−σ
p−1 ϕ

−1
p−1

∣∣∣∣∣∂2(I2−α
T ϕ)

∂t2

∣∣∣∣∣
p

p−1

dx dt,

(47)

and ∫
QT

|u|
∣∣∣∣∣∂(I1−β

T ϕ)

∂t

∣∣∣∣∣ dx dt

≤ 1
3

∫
QT

xσ|u|p ϕ dx dt + C
∫

QT

x
−σ
p−1 ϕ

−1
p−1

∣∣∣∣∣∂(I1−β
T ϕ)

∂t

∣∣∣∣∣
p

p−1

dx dt.

(48)

Using (45)–(48), we obtain∫ T

0

(
f (t)

∂ϕ

∂x
(t, 0)− g(t)

∂ϕ

∂x
(t, L)

)
dt

+
∫ L

0

(
u1(x)(I2−α

T ϕ)(0, x)− u0(x)
∂(I2−α

T ϕ)

∂t
(0, x) + u0(x)(I1−β

T ϕ)(0, x)

)
dx

≤
3

∑
j=1

Jj(ϕ),

(49)

where

J1(ϕ) =
∫

QT

x
−σ
p−1 ϕ

−1
p−1

∣∣∣∣∂2 ϕ

∂x2

∣∣∣∣
p

p−1

dx dt,

J2(ϕ) =
∫

QT

x
−σ
p−1 ϕ

−1
p−1

∣∣∣∣∣∂2(I2−α
T ϕ)

∂t2

∣∣∣∣∣
p

p−1

dx dt,

J3(ϕ) =
∫

QT

x
−σ
p−1 ϕ

−1
p−1

∣∣∣∣∣∂(I1−β
T ϕ)

∂t

∣∣∣∣∣
p

p−1

dx dt.

For sufficiently large T, λ, �, and R, let

ϕ(t, x) = η(t)ϕ2(x), t ≥ 0, x ∈ [0, L], (50)

where η is the function defined by (4), and ϕ2 is the function given by (23). Using Lemma 2
and the properties of the cut-off function μ, it can be easily seen that the function ϕ defined
by (50), belongs to ΦT . Thus, (49) holds for this function.

Let us estimate the terms Jj(ϕ), j = 1, 2, 3. For j = 1, by (50), we have

J1(ϕ) =

(∫ T

0
η(t) dt

)(∫ L

0
x

−σ
p−1 ϕ

−1
p−1
2 (x)|ϕ′′

2 (x)|
p

p−1 dx
)

. (51)
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An elementary calculation shows that∫ T

0
η(t) dt =

T
λ + 1

. (52)

Hence, using (27), (51), and (52), we obtain

J1(ϕ) ≤ CTR
σ+2p
p−1 −1. (53)

For j = 2, we have

J2(ϕ) =

(∫ T

0
η

−1
p−1 (t)|(I2−α

T η)′′(t)|
p

p−1 dt
)(∫ L

0
x

−σ
p−1 ϕ2(x) dx

)
. (54)

Moreover, by Lemma 2, we obtain

η
−1
p−1 (t)|(I2−α

T η)′′(t)|
p

p−1 =

[
Γ(λ + 1)

Γ(1 − α + λ)

] p
p−1

T−λ(T − t)λ− αp
p−1 .

Integrating over (0, T), there holds∫ T

0
η

−1
p−1 (t)|(I2−α

T η)′′(t)|
p

p−1 dt = CT
−αp
p−1 +1. (55)

Next, taking into consideration that σ < −(p + 1) (so σ < p − 1), it follows from (31),
(54), and (55) that

J2(ϕ) ≤ CT1− αp
p−1 . (56)

Proceeding as above, we obtain

J3(ϕ) ≤ CT1− βp
p−1 . (57)

Hence, by (53), (56), and (57), we obtain

3

∑
j=1

Jj(ϕ) ≤ C
(

TR
σ+2p
p−1 −1

+ T1− βp
p−1

)
. (58)

Consider now the terms from the right side of (49). By (50) and the properties of the
cut-off function μ, since g ≡ 0, there holds∫ T

0

(
f (t)

∂ϕ

∂x
(t, 0)− g(t)

∂ϕ

∂x
(t, L)

)
dt = 0. (59)

On the other hand, using (50) and Lemma 2, for all x ∈ [0, L], we obtain

(I2−α
T ϕ)(0, x) = Γ(λ+1)

Γ(3−α+λ)
T2−α ϕ2(x) := C1T2−α ϕ2(x),

∂(I2−α
T ϕ)
∂t (0, x) = − Γ(λ+1)

Γ(2−α+λ)
T1−α ϕ2(x) := −C2T1−α ϕ2(x),

(I1−β
T ϕ)(0, x) = Γ(λ+1)

Γ(2−β+λ)
T1−β ϕ2(x) := C3T1−β ϕ2(x).
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Consequently, we obtain

∫ L

0

(
u1(x)(I2−α

T ϕ)(0, x)− u0(x)
∂(I2−α

T ϕ)

∂t
(0, x) + u0(x)(I1−β

T ϕ)(0, x)

)
dx

=
∫ L

0

(
C1T2−αu1(x) + C2T1−αu0(x) + C3T1−βu0(x)

)
ϕ2(x) dx

=
∫ L

0

(
C1T2−αu1(x) + C2T1−αu0(x) + C3T1−βu0(x)

)
(L − x)μ�(Rx) dx.

(60)

Thus, combining (49), (58)–(60), we obtain∫ L

0

(
C1T2−αu1(x) + C2T1−αu0(x) + C3T1−βu0(x)

)
(L − x)μ�(Rx) dx

≤ C
(

TR
σ+2p
p−1 −1

+ T1− βp
p−1

)
.

Next, taking T = Rθ , where θ > 0 is a constant that will be determined later, the above
inequality reduces to∫ L

0

(
C1Rθ(2−α)u1(x) + C2Rθ(1−α)u0(x) + C3Rθ(1−β)u0(x)

)
(L − x)μ�(Rx) dx

≤ C
(

Rθ+
σ+2p
p−1 −1

+ Rθ
(

1− βp
p−1

))
.

(61)

Suppose that (14) holds. In this case, we obtain

lim
R→∞

R−θ(2−α)
∫ L

0

(
C1Rθ(2−α)u1(x) + C2Rθ(1−α)u0(x) + C3Rθ(1−β)u0(x)

)
(L − x)μ�(Rx) dx

= C1

∫ L

0
u1(x)(L − x) dx

> 0.

Hence, for sufficiently large R,∫ L
0

(
C1Rθ(2−α)u1(x) + C2Rθ(1−α)u0(x) + C3Rθ(1−β)u0(x)

)
(L − x)μ�(Rx) dx ≥ CRθ(2−α). (62)

Combining (61) with (62), we obtain

C ≤ Rθ(α−1)+ σ+2p
p−1 −1

+ Rθ
(

α− βp
p−1−1

)
. (63)

Observe that, since α < β + 1, we have

α − βp
p − 1

− 1 < 0.

Hence, taking into consideration that σ < −(p + 1), picking θ > 0 so that

θ <
−(p + 1)− σ

(p − 1)(α − 1)
,

and passing to the limit as R → ∞ in (63), we obtain a contradiction with C > 0.
Suppose that (15) holds. Then,

(I2−α
T ϕ)(0, x) = (I1−β

T ϕ)(0, x).
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Thus, (61) reduces to∫ L

0

(
C1Rθ(2−α)(u0(x) + u1(x)) + C2Rθ(1−α)u0(x)

)
(L − x)μ�(Rx) dx

≤ C
(

Rθ+
σ+2p
p−1 −1

+ Rθ
(

1− βp
p−1

))
.

(64)

Moreover, we have

lim
R→∞

R−θ(2−α)
∫ L

0

(
C1Rθ(2−α)(u0(x) + u1(x)) + C2Rθ(1−α)u0(x)

)
(L − x)μ�(Rx) dx

= C1

∫ L

0
(u0(x) + u1(x))(L − x) dx

> 0,

which yields∫ L

0

(
C1Rθ(2−α)(u0(x) + u1(x)) + C2Rθ(1−α)u0(x)

)
(L − x)μ�(Rx) dx ≥ CRθ(2−α),

for sufficiently large R. Hence, using (64), and following the same argument as above, a
contradiction follows.

Finally, suppose that (16) holds. In this case, we obtain

lim
R→∞

R−θ(1−β)
∫ L

0

(
C1Rθ(2−α)u1(x) + C2Rθ(1−α)u0(x) + C3Rθ(1−β)u0(x)

)
(L − x)μ�(Rx) dx

= C3

∫ L

0
u0(x)(L − x) dx

> 0.

Hence, for sufficiently large R,∫ L
0

(
C1Rθ(2−α)u1(x) + C2Rθ(1−α)u0(x) + C3Rθ(1−β)u0(x)

)
(L − x)μ�(Rx) dx ≥ CRθ(1−β). (65)

Combining (61) with (65), we obtain

C ≤ Rθβ+
σ+2p
p−1 −1

+ R
−θβ
p−1 . (66)

Taking θ > 0 such that

θ <
−σ − (p + 1)

β(p − 1)
,

and passing to the limit as R → ∞ in (66), a contradiction follows. This completes the proof
of Theorem 3.

4.4. Proof of Theorem 4

Proof. Suppose that u is a global weak solution to (2). From the proof of Theorem 3, for
sufficiently large T and R, there holds

−
∫ T

0
g(t)

∂ϕ

∂x
(t, L) dt

+
∫ L

0

(
C1T2−αu1(x) + C2T1−αu0(x) + C3T1−βu0(x)

)
(L − x)μ�(Rx) dx

≤ C
(

TR
σ+2p
p−1 −1

+ T1− βp
p−1

∫ L

1
2 R−1

x
−σ
p−1 dx

)
,

(67)
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where ϕ is the function defined by (50). On the other hand, by (50) and the properties of
the cut-off function μ, we have

−
∫ T

0
g(t)

∂ϕ

∂x
(t, L) dt =

∫ T

0
g(t)η(t) dt

= T−λ
∫ T

0
tγ(T − t)λ dt

= B(γ + 1, λ + 1)Tγ+1

:= CTγ+1,

where B denotes the Beta function. Thus, by (67), we obtain

C +
∫ L

0

(
C1T1−α−γu1(x) + C2T−γ−αu0(x) + C3T−β−γu0(x)

)
(L − x)μ�(Rx) dx

≤ C
(

T−γR
σ+2p
p−1 −1

+ T− βp
p−1−γ

∫ L

1
2 R−1

x
−σ
p−1 dx

)
.

Taking T = Rθ , where θ > 0 is a constant that will be determined later, the above
inequality reduces to

C +
∫ L

0

(
C1Rθ(1−α−γ)u1(x) + C2R−θ(γ+α)u0(x) + C3R−θ(β+γ)u0(x)

)
(L − x)μ�(Rx) dx

≤ C
(

R−θγ+
σ+2p
p−1 −1

+ R−θ
(

βp
p−1+γ

) ∫ L

1
2 R−1

x
−σ
p−1 dx

)
.

(68)

Let σ < −(p + 1). In this case, for sufficiently large R, there holds∫ L

1
2 R−1

x
−σ
p−1 dx ≤ C.

Hence, (68) yields

C +
∫ L

0

(
C1Rθ(1−α−γ)u1(x) + C2R−θ(γ+α)u0(x) + C3R−θ(β+γ)u0(x)

)
(L − x)μ�(Rx) dx

≤ C
(

R−θγ+
σ+2p
p−1 −1

+ R−θ
(

βp
p−1+γ

))
.

(69)

Since by (17), β + γ > 0, there holds

βp
p − 1

+ γ > 0.

Thus, taking θ > 0 so that

θγ >
σ + p + 1

p − 1
, (70)

using (17), and passing to the limit as R → ∞ in (69), we obtain a contradiction with C > 0.
This proves part (i) of Theorem 4.

Let σ ≥ −(p + 1) and γ > 0.
If −(p + 1) ≤ σ < p − 1, then (69) holds. Since γ > 0, there exists θ > 0 satisfying

(70). Thus, passing to the limit as R → ∞ in (69), a contradiction follows.
If σ = p − 1, then (68) yields

C +
∫ L

0

(
C1Rθ(1−α−γ)u1(x) + C2R−θ(γ+α)u0(x) + C3R−θ(β+γ)u0(x)

)
(L − x)μ�(Rx) dx

≤ C
(

R−θγ+
σ+2p
p−1 −1

+ R−θ
(

βp
p−1+γ

)
ln R

)
.

(71)
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As in the previous case, since γ > 0, there exists θ > 0 satisfying (70). Thus, passing
to the limit as R → ∞ in (71), a contradiction follows.
If σ > p − 1, then (68) yields

C +
∫ L

0

(
C1Rθ(1−α−γ)u1(x) + C2R−θ(γ+α)u0(x) + C3R−θ(β+γ)u0(x)

)
(L − x)μ�(Rx) dx

≤ C
(

R−θγ+
σ+2p
p−1 −1

+ R−θ
(

βp
p−1+γ

)
+ σ

p−1−1
)

.
(72)

So, taking θ > 0 satisfying (70) and

θ

(
βp

p − 1
+ γ

)
>

σ

p − 1
− 1,

and passing to the limit as R → ∞ in (72), a contradiction follows. This proves part (ii) of
Theorem 4.

5. Conclusions

Using the test function method, sufficient conditions for the nonexistence of global
weak solutions to problems (1) and (2) are obtained. For each problem, an adequate choice
of a test function is made, taking into consideration the boundedness of the domain and the
boundary conditions. Comparing with previous existing results in the literature, our results
hold without assuming that the initial values are large with respect to a certain norm.

In this paper, we treated only the one dimensional case. It will be interesting to study
problems (1) and (2) in a bounded domain Ω ⊂ RN under different types of boundary
conditions, such as Dirichlet boundary conditions, Neumann boundary conditions, and
Robin boundary conditions.
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Abstract: The authors investigate the existence of solutions to a class of boundary value problems for
fractional q-difference equations in a Banach space that involves a q-derivative of the Caputo type
and nonlinear integral boundary conditions. Their result is based on Mönch’s fixed point theorem
and the technique of measures of noncompactness. This approach has proved to be an interesting
and useful approach to studying such problems. Some basic concepts from the fractional q-calculus
are introduced, including q-derivatives and q-integrals. An example of the main result is included as
well as some suggestions for future research.
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derivative; measure of noncompactness; Mönch’s fixed point theorem
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1. Introduction

Fractional differential equations play an essential role when attempting to model phe-
nomena in a number of areas and have recently been studied by researchers in engineering,
physics, chemistry, biology, economics, and control theory. For additional details see, for ex-
ample, the monographs of Hilfer [1], Kilbas et al. [2], Miller and Ross [3], Podlubny [4],
Samko et al. [5], and Tarasov [6] as well as the references they contain. The existence of
solutions to fractional boundary value problems is currently a very active area of research
as can be seen, for example, from the recent papers of Ahmad et al. [7], Agarwal et al. [8],
Benchohra et al. [9], Benhamida et al. [10], Hamini et al. [11], and Zahed et al. [12].

Considerable attention has been given to the problem of existence of solutions to
boundary value problems for fractional differential equations in Banach spaces, and we
refer the reader to the recent contributions in [13–15].

The q-difference calculus, or quantum calculus, was first introduced by Jackson in
1910 [16,17]. The basic definitions and properties of the q-difference calculus can be found
in [18,19]. Later, Al-Salam [20] and Agarwal [21] proposed the study of the fractional
q-difference calculus. Fractional q-difference calculus by itself and nonlinear fractional
q-difference boundary value problems have appeared as the object of study for a number
of researchers. Recent developments on the fractional q-difference calculus and boundary
value problems for such can be found in [7,22–25] and the references therein.

In this paper, we study the existence of solutions to the boundary value problem (BVP
for short) for fractional q-difference equations with nonlinear integral conditions

(CDα
q y)(t) = f (t, y(t)), for a.e. t ∈ J = [0, T], 1 < α ≤ 2, (1)

y(0)− y′(0) =
∫ T

0
g(s, y(s))ds, (2)
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y(T) + y′(T) =
∫ T

0
h(s, y(s))ds, (3)

where T > 0, q ∈ (0, 1), CDα
q is the Caputo fractional q-difference derivative of order

1 < α ≤ 2, and f , g, h : J × E → E are given functions and g and h are continuous.
In our investigation of the existence of solutions to the problem above, we utilize

the method associated with the technique of measures of noncompactness and Mönch’s
fixed point theorem. This approach turns out to be very useful in proving the existence
of solutions for several different types of equations. The method of using measures of
noncompactness was mainly initiated in the monograph of Banas and Goebel [26], and sub-
sequently developed and used in many papers; see, for example, Banas et al. [27], Guo
et al. [28], Akhmerov et al. [29], Mönch [30], Mönch and Von Harten [31], and Szufla [32].

This paper is structured as follows. In Section 2, we introduce some preliminary
concepts including basic definitions and properties from fractional q-calculus and some
properties of the Kuratowski measure of noncompactness. In Section 3, the existence of
solutions to problem (1)–(3) is proved by using Mönch’s fixed point theorem. Section 4 con-
tains an example to illustrate our main results. The final section contains some concluding
remarks and suggestions for future research.

2. Materials and Methods

We begin by introducing definitions, notations, and some preliminary facts that are
used in the remainder of this paper.

Let J = [0, T], T > 0, and consider the Banach space C(J, E) of continuous functions
from J into E with the norm

‖y‖∞ = sup{|y(t)| : t ∈ J}.

We let C2(J, E) be the space of differentiable functions y : J → E, whose first and second
derivatives are continuous, and let L1(J, E) be the Banach space of measurable functions
y : J → E that are Bochner integrable with the norm

‖y‖L1 =
∫

J
|y(t)|dt.

Let L∞(J, E) be the Banach space of bounded measurable functions y : J → E equipped
with the norm

‖y‖L∞ = inf{c > 0 : ‖y(t)‖ ≤ c, a.e t ∈ J}.

We now recall some definitions and properties from the fractional q-calculus [18,19].
For a ∈ R and 0 < q < 1, we set

[a]q =
1 − qa

1 − q
.

The q-analogue of the power (a − b)(n) is given by

(a − b)(0) = 1, (a − b)(n) =
n−1

∏
k=0

(a − bqk), a, b ∈ R, n ∈ N.

In general,

(a − b)(α) = aα
∞

∏
k=0

(
a − bqk

a − bqk+α

)
, a, b, α ∈ R.

Note that if b = 0, then a(α) = aα.
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Definition 1 ([19]). The q-gamma function is defined by

Γq(α) =
(1 − q)(α−1)

(1 − q)α−1 , α ∈ R− {0,−1,−2, . . .}.

We wish to point out that the q-gamma function satisfies the relation Γq(α + 1) =
[α]qΓq(α).

Definition 2 ([19]). The q-derivative of order n ∈ N of a function f : J → R is defined by
(D0

q f )(t) = f (t),

(Dq f )(t) = (D1
q f )(t) =

f (t)− f (qt)
(1 − q)t

, t �= 0, (Dq f )(0) = lim
t→0

(Dq f )(t),

and
(Dn

q f )(t) = (D1
q Dn−1

q f )(t), t ∈ J, n ∈ {1, 2, . . .}.

Now set Jt = {tqn : n ∈ N} ∪ {0}.

Definition 3 ([19]). The q-integral of a function f : Jt → R is defined by

(Iq f )(t) =
∫ t

0
f (s)dqs =

∞

∑
n=0

t(1 − q)qn f (tqn),

provided that the series converges.

We note that (Dq Iq f )(t) = f (t), while if f is continuous at 0, then

(IqDq f )(t) = f (t)− f (0).

Definition 4 ([21]). The Riemann–Liouville fractional q-integral of order α ∈ R+ of a function
f : J → R is defined by (I0

q f )(t) = f (t), and

(Iα
q f )(t) =

∫ t

0

(t − qs)(α−1)

Γq(α)
f (s)dqs, t ∈ J.

Note that for α = 1, we have (I1
q f )(t) = (Iq f )(t).

Lemma 1 ([33]). For α ∈ R+ and β ∈ (−1,+∞), we have

(Iα
q (t − a)(β))(t) =

Γq(β + 1)
Γq(α + β + 1)

(t − a)(α+β), 0 < a < t < T.

In particular,

(Iα
q 1)(t) =

1
Γq(α + 1)

t(α).

In what follows, we let [α] denote the integer part of α.

Definition 5 ([34]). The Riemann–Liouville fractional q-derivative of order α ∈ R+ of a function
f : J → R is defined by (D0

q f )(t) = f (t), and

(Dα
q f )(t) = (D[α]

q I[α]−α
q f )(t), t ∈ J.
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Definition 6 ([34]). The Caputo fractional q-derivative of order α ∈ R+ of a function f : J → R

is defined by (D0
q f )(t) = f (t), and

(CDα
q f )(t) = (I[α]−α

q D[α]
q f )(t), t ∈ J.

Lemma 2 ([34]). Let α, β ∈ R+ and let f be a function defined on J. Then:

(1) (Iα
q Iβ

q f )(t) = (Iα+β
q f )(t);

(2) (Dα
q Iα

q f )(t) = f (t).

Lemma 3 ([34]). Let α ∈ R+ and let f be a function defined on J. Then:

(Iα
q

CDα
q f )(t) = f (t)−

[α]−1

∑
k=0

tk

Γq(k + 1)
(Dk

q f )(0).

In particular, if α ∈ (0, 1), then

(Iα
q

CDα
q f )(t) = f (t)− f (0).

Next, we recall the definition of the Kuratowski measure of noncompactness and
summarize some of the main properties of this measure.

Definition 7 ([26]). Let E be a Banach space and let ΩE be the family of bounded subsets of E. The
Kuratowski measure of noncompactness is the map μ : ΩE → [0, ∞) defined by

μ(B) = inf{ε > 0 : B ⊂ ∪m
i=1Bi and diam(Bi) ≤ ε}, where B ∈ ΩE.

Property 1 ([26]). The Kuratowski measure of noncompactness satisfies:

(1) μ(B) = 0 if and only if B is compact (B is relatively compact).
(2) μ(B) = μ(B).
(3) A ⊆ B implies μ(A) ≤ μ(B).
(4) μ(A + B) ≤ μ(A) + μ(B).
(5) μ(cB) = |c|μ(B), c ∈ R.
(6) μ(conB) = μ(B).
(7) μ(B + x0) = μ(B), for all x0 ∈ E.

Here B and conB denote the closure and the convex hull of the bounded set B, respectively.

Definition 8. The map f : J × E → E is Carathéodory if

1. t → f (t, u) is measurable for each u ∈ E, and
2. u → f (t, u) is continuous for almost each t ∈ J.

For a given set V of functions v : J → E, let

V(t) = {v(t) : v ∈ V}, t ∈ J,

V(J) = {v(t) : v ∈ V, t ∈ J}.

We next recall Mönch’s fixed point theorem.

Theorem 1 ([30,35]). Let D be a bounded, closed, and convex subset of a Banach space E such that
0 ∈ D, and let N be a continuous mapping of D into itself. If the implication

V = conN(V) or V = N(V) ∪ {0} implies μ(V) = 0,

holds for every subset V of D, then N has a fixed point.
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The next lemma is a useful result.

Lemma 4 ([28]). If V ⊂ C(J, E) is a bounded and equicontinuous set, then

1. The function t → μ(V(t)) is continuous on J.

2. μ

({∫
J

y(t)dt : y ∈ V
})

≤
∫

J
μ(V(t))dt.

3. Results

We now define what is meant by a solution of the problem (1)–(3).

Definition 9. A function y ∈ C2(J, E) is said to be a solution of the problem (1)–(3) if y satisfies
the equation (CDα

q y)(t) = f (t, y(t)) on J, and satisfies the boundary conditions (2) and (3).

In order to prove the existence of solutions to the problem (1)–(3), we need the follow-
ing lemma.

Lemma 5. Let σ, ρ1, ρ2 : J → E be continuous functions. The solution of the boundary value
problem

(CDα
q y)(t) = σ(t), t ∈ J = [0, T], 1 < α ≤ 2, (4)

y(0)− y′(0) =
∫ T

0
ρ1(s)ds, (5)

y(T) + y′(T) =
∫ T

0
ρ2(s)ds, (6)

is given by

y(t) = K(t) +
∫ T

0
H(t, s)σ(s)dqs, (7)

where

K(t) =
(1 + T − t)
(2 + T)

∫ T

0
ρ1(s)ds +

(1 + t)
(2 + T)

∫ T

0
ρ2(s)ds, (8)

and

H(t, s) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(t − qs)(α−1)

Γq(α)
− (1 + t)(T − qs)(α−1)

(2 + T)Γq(α)
− (1 + t)(T − qs)(α−2)

(2 + T)Γq(α − 1)
, 0 ≤ s < t,

− (1 + t)(T − qs)(α−1)

(2 + T)Γq(α)
− (1 + t)(T − qs)(α−2)

(2 + T)Γq(α − 1)
, t ≤ s ≤ T.

(9)

Proof. Applying the Riemann–Liouville fractional q-integral of order α to both sides of
Equation (4), and by using Lemma 3, we have

y(t) =
∫ t

0

(t − qs)(α−1)

Γq(α)
σ(s)dqs + c0 + c1t. (10)

Using the boundary conditions (5) and (6), we obtain

c0 − c1 =
∫ T

0
ρ1(s)ds, (11)
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and

c0 + (1 + T)c1 +
∫ T

0

(t − qs)(α−1)

Γq(α)
σ(s)dqs

+
∫ T

0

(t − qs)(α−2)

Γq(α − 1)
σ(s)dqs =

∫ T

0
ρ2(s)ds. (12)

Equations (11) and (12) give

c1 =
1

(2 + T)

(∫ T

0
ρ2(s)ds −

∫ T

0
ρ1(s)ds −

∫ T

0

(t − qs)(α−1)

Γq(α)
σ(s)dqs

−
∫ T

0

(t − qs)(α−2)

Γq(α − 1)
σ(s)dqs

)
, (13)

and

c0 =
(1 + T)
(2 + T)

∫ T

0
ρ1(s)ds +

1
(2 + T)

(∫ T

0
ρ2(s)ds −

∫ T

0

(t − qs)(α−1)

Γq(α)
σ(s)dqs

−
∫ T

0

(t − qs)(α−2)

Γq(α − 1)
σ(s)dqs

)
. (14)

From (10), (13), and (14) and using the fact that
∫ T

0 =
∫ t

0 +
∫ T

t , we have

y(t) = K(t) +
∫ T

0
H(t, s)σ(s)dqs,

where

K(t) =
(1 + T − t)
(2 + T)

∫ T

0
ρ1(s)ds +

(1 + t)
(2 + T)

∫ T

0
ρ2(s)ds,

and

H(t, s) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(t − qs)(α−1)

Γq(α)
− (1 + t)(T − qs)(α−1)

(2 + T)Γq(α)
− (1 + t)(T − qs)(α−2)

(2 + T)Γq(α − 1)
, 0 ≤ s < t,

− (1 + t)(T − qs)(α−1)

(2 + T)Γq(α)
− (1 + t)(T − qs)(α−2)

(2 + T)Γq(α − 1)
, t ≤ s ≤ T,

which is what we wanted to show.

We now prove an existence result for the problem (1)–(3) by applying Mönch’s fixed
point theorem (Theorem 1 above).

Let
H∗ = sup

(t,s)∈J×J
|H(t, s)|.

Theorem 2. Assume that the following conditions hold.

(P1) The functions f , g, h : J × E → E satisfy Carathéodory conditions.
(P2) There exists p f , pg, ph ∈ L∞(J,R+) such that

‖ f (t, y)‖ ≤ p f (t)‖y‖, f or a.e. t ∈ J and all y ∈ E,

‖g(t, y)‖ ≤ pg(t)‖y‖, f or a.e. t ∈ J and all y ∈ E,

‖h(t, y)‖ ≤ ph(t)‖y‖, f or a.e. t ∈ J and all y ∈ E.
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(P3) For almost all t ∈ J and each bounded set B ⊂ E, we have

μ( f (t, B)) ≤ p f (t)μ(B), f or a.e. t ∈ J,

μ(g(t, B)) ≤ pg(t)μ(B), f or a.e. t ∈ J,

μ(h(t, B)) ≤ ph(t)μ(B), f or a.e. t ∈ J.

Then, the BVP (1)–(3) has at least one solution in C2(J, E), provided

T(1 + T)
(2 + T)

(
‖pg‖L∞ + ‖ph‖L∞

)
+ H∗T‖p f ‖L∞ < 1. (15)

Proof. In order to transform problem (1)–(3) into a fixed point type problem, consider the
operator

N : C2(J, E) −→ C2(J, E)

defined by

(Ny)(t) = K(t) +
∫ T

0
H(t, s) f (s, y(s))dqs, (16)

where

K(t) =
(1 + T − t)
(2 + T)

∫ T

0
g(s, y(s))ds +

(1 + t)
(2 + T)

∫ T

0
h(s, y(s))ds,

and H(t,s) is given by (9). It is easy to see that the fixed points of N are solutions of (1)–(3).
Let R > 0 and consider

DR = {y ∈ C2(J, E) : ‖y‖∞ ≤ R}. (17)

Clearly, DR is a closed, bounded, and convex subset of C2(J, E). We show that N satisfies
the hypotheses of Mönch’s fixed point theorem. We give the proof in three steps.

Step 1: N is continuous. Let {yn}n∈N be a sequence with yn → y in C2(J, E). For each
t ∈ J, we have

|(Nyn)(t)− (Ny)(t)| ≤ (1 + T − t)
(2 + T)

∫ T

0
|g(s, yn(s))− g(s, y(s))|ds

+
(1 + t)
(2 + T)

∫ T

0
|h(s, yn(s))− h(s, y(s))|ds

+
∫ T

0
|H(t, s)|| f (s, yn(s))− f (s, y(s))|dqs.

Hence,

‖N(yn)− N(y)‖ ≤ T(1 + T)
(2 + T)

‖g(s, yn(s))− g(s, y(s))‖

+
T(1 + T)
(2 + T)

‖h(s, yn(s))− h(s, y(s))‖

+H∗T‖ f (s, yn(s))− f (s, y(s))‖.

Let ρ > 0 be such that
‖yn‖∞ ≤ ρ, ‖y‖∞ ≤ ρ.

By (P2), we have
‖ f (s, yn(s))− f (s, y(s))‖ ≤ 2ρp f (s) := σf (s),
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‖g(s, yn(s))− g(s, y(s))‖ ≤ 2ρpg(s) := σg(s),

‖h(s, yn(s))− h(s, y(s))‖ ≤ 2ρph(s) := σh(s),

and σf (s), σg(s), σh(s) ∈ L1(J,R+). Since the functions f , g, and h satisfy Carathéodory
conditions, the Lebesgue-dominated convergence theorem implies that

‖N(yn)− N(y)‖∞ → 0 as n → ∞.

Consequently, N is continuous on C2(J, E).
Step 2: N maps DR into itself. Now, for any y ∈ DR, (P2) and (15) imply that for each

t ∈ J,

‖(Ny)(t)‖ ≤ (1 + T − t)
(2 + T)

∫ T

0
‖g(s, y(s))‖ds +

(1 + t)
(2 + T)

∫ T

0
‖h(s, y(s))‖ ds

+
∫ T

0
|H(t, s)|‖ f (s, y(s))‖dqs,

≤ (1 + T − t)
(2 + T)

∫ T

0
pg(s)‖y‖ds +

(1 + t)
(2 + T)

∫ T

0
ph(s)‖y‖ds

+
∫ T

0
|H(t, s)|p f (s)‖y‖dqs,

≤ R
(

T(1 + T)
(2 + T)

‖pg‖L∞ +
T(1 + T)
(2 + T)

‖ph‖L∞ + H∗T‖p f ‖L∞

)
,

≤ R.

Step 3: N(DR) is bounded and equicontinuous. In view of Step 2, it is clear that N(DR) is
bounded. To show the equicontinuity of N(DR), let t1, t2 ∈ J, t1 < t2, and y ∈ DR. Then,

‖(Ny)(t2)− (Ny)(t1)‖ =

∥∥∥∥ (t1 − t2)

(2 + T)

∫ T

0
g(s, y(s))ds +

(t2 − t1)

(2 + T)

∫ T

0
h(s, y(s))ds

+
∫ T

0
(H(t2, s)− H(t1, s)) f (s, y(s))dqs

∥∥∥∥,

≤ (t1 − t2)

(2 + T)

∫ T

0
‖g(s, y(s))‖ds +

(t2 − t1)

(2 + T)

∫ T

0
‖h(s, y(s))‖ ds

+
∫ T

0
|H(t2, s)− H(t1, s)|‖ f (s, y(s))‖dqs.

By (P2), we have

‖(Ny)(t2)− (Ny)(t1)‖ ≤ (t1 − t2)

(2 + T)

∫ T

0
pg(s)‖y‖ds +

(t2 − t1)

(2 + T)

∫ T

0
ph(s)‖y‖ ds

+
∫ T

0
|H(t2, s)− H(t1, s)|p f (s)‖y‖dqs,

≤ RT
(t1 − t2)

(2 + T)
‖pg‖L∞ + RT

(t2 − t1)

(2 + T)
‖ph‖L∞

+ R‖p f ‖L∞

∫ T

0
|H(t2, s)− H(t1, s)| dqs.

As t1 → t2, the right-hand side of the above inequality tends to zero, which shows the
equicontinuity of N(DR).
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Now, let V ⊂ DR be such that V ⊂ con(N(V) ∪ {0}). Since V is bounded and
equicontinuous, the function v → v(t) = μ(V(t)) is continuous on J. Moreover, (P3),
Lemma 4, and properties of the measure μ imply that for each t ∈ J,

v(t) ≤ μ(N(V)(t) ∪ {0}),
≤ μ(N(V)(t)),

≤ (1 + T − t)
(2 + T)

∫ T

0
pg(s)μ(V(s))ds +

(1 + t)
(2 + T)

∫ T

0
ph(s)μ(V(s))ds

+
∫ T

0
|H(t, s)|p f (s)μ(V(s))dqs,

≤ ‖v‖∞

[
T(1 + T)
(2 + T)

(
‖pg‖L∞ + ‖ph‖L∞

)
+ H∗T‖p f ‖L∞

]
.

This means that

‖v‖∞

(
1 −

[
T(1 + T)
(2 + T)

(
‖pg‖L∞ + ‖ph‖L∞

)
+ H∗T‖p f ‖L∞

])
≤ 0.

From (15), we see that ‖v‖∞ = 0, so v(t) = 0 for t ∈ J, and hence, V(t) is relatively compact
in E. The Ascoli–Arzelà theorem yields that V is relatively compact in DR. Applying
Theorem 1, we see that N has a fixed point that in turn is a solution of (1)–(3).

4. Example

Let

E = l1 = {(y1, y2, · · · , yn, · · · ) :
∞

∑
n=1

yn < ∞},

be our Banach space with the norm

‖y‖E =
∞

∑
n=1

|yn|.

Consider the boundary value problem for fractional 1
4 -difference equations given by

(CD
3
2
1
4

y)(t) =
1

(et + 5)
yn(t), f or a.e. t ∈ J = [0, 1], 1 < α ≤ 2, (18)

y(0)− y′(0) =
∫ 1

0

s3 − 1
9

yn(s)ds, (19)

y(1) + y′(1) =
∫ 1

0

s3 + 1
6

yn(s)ds. (20)

Here, α = 3
2 , q = 1

4 , T = 1, and

fn(t, y) =
1

et + 5
yn, (t, y) ∈ J × E,

gn(t, y) =
t3 − 1

9
yn, (t, y) ∈ J × E,

and

hn(t, y) =
t3 + 1

6
yn, (t, y) ∈ J × E,

where
y = (y1, y2, . . . , yn, . . .),

f = ( f1, f2, . . . , fn, . . .),
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g = (g1, g2, . . . , gn, . . .),

and
h = (h1, h2, . . . , hn, . . .).

Clearly, conditions (P1) and (P2) hold with

p f (t) =
1

et + 5
, pg(t) =

t3

9
, ph(t) =

t3

6
.

From (9), we have

H∗ = sup
(t,s)∈J×J

|H(t, s)| = 5
3Γ 1

4
( 3

2 )
+

2
3Γ 1

4
( 1

2 )
.

To see that condition (15) is satisfied with T = 1, notice that

T(1 + T)
(2 + T)

(
‖pg‖L∞ + ‖ph‖L∞

)
+ H∗T‖p f ‖L∞

=
2
3

(
1
9
+

1
6

)
+

⎛⎝ 5
3Γ 1

4
( 3

2 )
+

2
3Γ 1

4
( 1

2 )

⎞⎠1
6
� 0.5564 < 1.

Then, by Theorem 2, the problem (18)–(20) has a solution on [0, 1].

5. Discussion

In this work, we proved the existence of solutions to a fractional q-difference equa-
tion with nonlinear integral type boundary conditions in Banach spaces using a method
involving the Kuratowski measure of noncompactness and Mönch’s fixed point theorem.
An example was presented to illustrate the effectiveness of the results.

An interesting direction for future research of course would be to consider fractional
q-difference equations of order 0 < α ≤ 1 and orders greater than the 1 < α ≤ 2 considered
here. Another direction would be to consider Riemann–Stieltjes integral-type boundary
conditions. Adding impulsive effects to the problem would expand the ares of possible
applications as well.
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Solvability Criterion for Fractional q-Integro-Difference System
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Abstract: Due to the great application potential of fractional q-difference system in physics, mechanics
and aerodynamics, it is very necessary to study fractional q-difference system. The main purpose of
this paper is to investigate the solvability of nonlinear fractional q-integro-difference system with
the nonlocal boundary conditions involving diverse fractional q-derivatives and Riemann-Stieltjes
q-integrals. We acquire the existence results of solutions for the systems by applying Schauder fixed
point theorem, Krasnoselskii’s fixed point theorem, Schaefer’s fixed point theorem and nonlinear
alternative for single-valued maps, and a uniqueness result is obtained through the Banach contraction
mapping principle. Finally, we give some examples to illustrate the main results.

Keywords: q-calculus; fractional q-integro-difference system; solvability; Riemann-Stieltjes q-integrals;
fixed point theorems

1. Introduction

In the early twentieth century, Jackson [1] proposed a new mathematical direction of
q-calculus, and it plays an indispensable role in the fields of nuclear, conformal quantum
mechanics and dynamics. In the 1960s, Agarwal [2] and Al-Salam [3] put forward a
novel concept of fractional q-calculus, its relevant application and development can be
seen in the literature [4–6]. Compared with classical q-calculus, fractional q-calculus can
more accurately describe some phenomena in nature, and many practical problems can
be abstracted into fractional q-difference equations or a system of fractional q-difference
equations by mathematical modeling. In recent years, abundant theoretical achievements
have been made in the research of boundary value problems (BVPs) for fractional q-
difference equations, according to the literature [7–16] and the references therein.

Riemann-Stieltjes integral is a generalization of Riemann integral. As well as we
known, the classical Riemann-Stieltjes integral can be widely applied in several areas of
analysis, such as probability theory, stochastic processes, physics, econometrics, biometrics
and informetrics and so on. BVPs with Riemann-Stieltjes integral boundary condition (BC)
have been considered as both multi-point and integral type BCs are treated in a single
framework. In recent years, some interesting results about the existence of solutions for
nonlinear fractional differential equations with the Riemann-Stieltjes integral BC have been
researched, see [17,18] and the references therein.

Nowadays, the system of nonlinear fractional differential equations has important
applications in engineering, economy and other fields. This is mainly because the effect
of using fractional calculus to solve problems is more practical and efficient than that of
classical calculus. Over the years, the BVPs for a system of fractional differential equations
have developed rapidly, and numerous mature conclusions have been obtained, which can
be referred to the literature [19–25].
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In [24], Tudorache, A. and Luca, R. applied the Guo-Krasnoselskii fixed point theorem
to study the existence of solutions for a system of fractional differential equations with
p-Laplacian operators{

Dα1
0+(ϕ�1(Dβ1

0+x(t))) + λ f (t, x(t), y(t)) = 0, t ∈ (0, 1),

Dα2
0+(ϕ�2(Dβ2

0+y(t))) + μg(t, x(t), y(t)) = 0, t ∈ (0, 1),

with the nonlocal BCs⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x(j)(0) = 0, j = 0, . . . , n − 2; Dβ1

0+x(0) = 0,
Dγ0

0+x(1) = ∑
p
i=1

∫ 1
0 Dγi

0+y(t)dHit,
y(j)(0) = 0, j = 0, . . . , m − 2; Dβ2

0+y(0) = 0,
Dδ0

0+y(1) = ∑
q
i=1

∫ 1
0 Dδi

0+x(t)dKit.

In [25], Luca, R. considered the existence of solutions of the nonlinear system of
fractional differential equations by using a variety of fixed point theorems{

Dα
0+x(t) + f (t, x(t), y(t), Iθ1

0+x(t), Iσ1
0+y(t)) = 0, t ∈ (0, 1),

Dβ
0+y(t) + g(t, x(t), y(t), Iθ2

0+x(t), Iσ2
0+y(t)) = 0, t ∈ (0, 1),

with the nonlocal BCs{
x(0) = x

′
(0) = · · · = x(n−2)(0) = 0, Dγ0

0+x(1) = ∑
p
i=1

∫ 1
0 Dγi

0+y(t)dHi(t),
y(0) = y

′
(0) = · · · = y(m−2)(0) = 0, Dδ0

0+y(1) = ∑
q
i=1

∫ 1
0 Dδi

0+x(t)dKi(t).

Despite quite a number of contributions dealing with the solvability for the system
of classical fractional difference equations. However, as the generalization of the above
system, limited work has been done in the nonlinear system of fractional q-difference
equations. In particular, there is little research on the existence and uniqueness of solutions
for the system of fractional q-difference equations with Riemann-Stieltjes integral BC. To fill
this gap, we investigate the system of nonlinear fractional q-difference equations{

(Dα
q u)(t) + P(t, u(t), v(t), Iω1

q u(t), Iδ1
q v(t)) = 0,

(Dβ
q v)(t) + Q(t, u(t), v(t), Iω2

q u(t), Iδ2
q v(t)) = 0,

(1)

with the nonlocal BCs{
u(0) = Dqu(0) = · · · = Dn−2

q u(0) = 0, Dζ0
q u(1) =

∫ 1
0 Dζ

q v(t)dqH(t),
v(0) = Dqv(0) = · · · = Dm−2

q v(0) = 0, Dξ0
q v(1) =

∫ 1
0 Dξ

q u(t)dqK(t),
(2)

where t ∈ (0, 1), 0 < q < 1, α ∈ (n − 1, n], β ∈ (z − 1, z], n, z ∈ N, n ≥ 2 and z ≥ 2,
ω1, ω2, δ1, δ2 > 0, 0 ≤ ζ < β− 1, 0 ≤ ξ < α− 1, ζ0 ∈ [0, α− 1), ξ0 ∈ [0, β− 1), Di

q denotes
the Riemann-Liouville q-derivative of order i (i = α, β, ζ0, ζ, ξ0, ξ), I�

q is the Riemann-
Liouville q-integral of order � (� = ω1, ω2, δ1, δ2), P and Q are nonlinear functions. The BCs
include Riemann-Stieltjes integrals, where H(t), K(t) are the bounded variation functions.
In the case where H(t) = K(t) = t , the Riemann–Stieltjes integrals in (2) reduce to the
classical q-integral.

The present paper is bulit up as follows. The second part offers the necessary defini-
tions, lemmas and theorems needed in the following. The third part obtains the important
conclusions by applying various fixed point theorems, including nine theorems or corollar-
ies. In the final part, four examples are provided to verify our main results.

2. Preliminaries

In this section, we present some definitions, lemmas and theorems.
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Definition 1 ([11]). Let β ≥ 0 and f be a function defined on [0, 1]. The fractional q-integral of
the Riemann-Liouville type is

(Iβ
q f )(s) =

1
Γq(β)

∫ s

0
(s − qt)(β−1) f (t)dqt, β > 0, s ∈ [0, 1].

Obviously, (Iβ
q f )(s) = (Iq f )(s), when β = 1.

Definition 2 ([11]). The fractional q-derivative of the Riemann-Liouville type of order β ≥ 0 is
defined by (D0

q f )(s) = f (s) and

(Dβ
q f )(s) = (Dl

q Il−β
q f )(s), β > 0, s ∈ [0, 1],

where l is the smallest integer greater than or equal to β.

Lemma 1 ([11]). Let α, β ≥ 0 and f be a function defined on [0, 1]. Then, the following formulas
hold:

1. (Iβ
q Iα

q f )(x) = (Iα+β
q f )(x),

2. (Dα
q Iα

q f )(x) = f (x).

Lemma 2 ([11]). Let α > 0 and p be a positive integer. Then, the following equality holds:

(Iα
q Dp

q f )(x) = (Dp
q Iα

q f )(x)−
p−1

∑
k=0

xα−p+k

Γq(α + k − p + 1)
(Dk

q f )(0).

Lemma 3. If x ∈ C[0, 1], then for κ > 0, we get

|Iκ
q x(t)| ≤ ‖ x ‖

Γq(κ)
,

where ‖ x ‖= supt∈[0,1] |x(t)|.

Proof. According to Definition 1, this lemma clearly holds.

Definition 3 ([15]). The function f : I ×R4 → R is called an S-Carathéodory function if and
only if

(i) for each (u, v, x, y) ∈ R4, t → f (t, u, v, x, y) is measurable on I;
(ii) for a.e. t ∈ I, (u, v, x, y) → f (t, u, v, x, y) is continuous on R4;
(iii) for each r > 0, there exists ψr(t) ∈ L1(I,R+) with tψr(t) ∈ L1(I,R+) on I such that

max{|u|, |v|, |x|, |y|} ≤ r implies | f (t, u, v, x, y)| ≤ ψr(t), for a.e.I, where L1(I,R+) =

{u ∈ X :
∫ 1

0 u(t)dqt exists}, and normed ‖ u ‖L1=
∫ 1

0 |u(t)|dqt for all u ∈ L1(I,R+).

Theorem 1 ([26]). (Schauder fixed point theorem) Let D be a bounded closed convex set in E (D
does not necessarily have an interior point), and A : D → D is completely continuous, then A
must have a fixed point in D.

Theorem 2 ([12]). (Krasnoselskii’s fixed point theorem) Let K be a closed convex and nonempty
subset of a Banach space X. Let T, S be the operators such that

(i) Tu + Sv ∈ K whenever u, v ∈ K;
(ii) T is compact and continuous;
(iii) S is a contraction mapping.

Then, there exists z ∈ K such that z = Tz + Sz.
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Theorem 3 ([16]). (Schaefer’s fixed point theorem) Let T be a continuous and compact mapping of
a Banach space X into itself, such that the set E = {x|x ∈ X : x = λTx, 0 ≤ λ ≤ 1} is bounded.
Then T has a fixed point.

Theorem 4 ([15]). (Nonlinear alternative for single-valued maps) Let E be a Banach space, let C
be a closed and convex subset of E, and let U be an open subset of C and 0 ∈ U. Suppose that
F : U → C is a continuous, compact (that is, F(U) is a relatively compact subset of C) map.
Then either

(i) F has a fixed point in U, or
(ii) there is a u ∈ ∂U (the boundary of U in C) and λ ∈ (0, 1) with u = λFu.

Throughout this paper, we adopt the following assumptions:
(H1) The functions P, Q ∈ C([0, 1] × R4,R) and for xi, yi ∈ R, there exist

Li(t), li(t) ∈ C([0, 1], [0,+∞)), i = 1, 2, 3, 4, such that

∣∣P(t, x1, x2, x3, x4)− P(t, y1, y2, y3, y4)
∣∣ ≤ 4

∑
i=1

Li(t)|xi − yi|,

∣∣Q(t, x1, x2, x3, x4)− Q(t, y1, y2, y3, y4)
∣∣ ≤ 4

∑
i=1

li(t)|xi − yi|.

(H′
1) The functions P, Q ∈ C([0, 1]×R4,R) and for xi, yi ∈ R, there exist real constants

Li, li > 0, i = 1, 2, 3, 4, such that

∣∣P(t, x1, x2, x3, x4)− P(t, y1, y2, y3, y4)
∣∣ ≤ 4

∑
i=1

Li|xi − yi|,

∣∣Q(t, x1, x2, x3, x4)− Q(t, y1, y2, y3, y4)
∣∣ ≤ 4

∑
i=1

li|xi − yi|.

(H′′
1 ) The functions P, Q ∈ C([0, 1]×R4,R) and for xi, yi ∈ R, there exist real functions

ρi(t), �i(t) ∈ C([0, 1],R+), i = 1, 2, 3, 4, such that

|P(t, x1, x2, x3, x4)− P(t, y1, y2, y3, y4)| ≤
4

∑
i=1

ρi(t)|xi − yi|,

|Q(t, x1, x2, x3, x4)− Q(t, y1, y2, y3, y4)| ≤
4

∑
i=1

�i(t)|xi − yi|.

(H2) The functions P, Q ∈ C([0, 1] × R4,R), and for xi ∈ R, there exist functions
ci(t), di(t) ∈ C([0, 1],R+), and hi, mi ∈ (0, 1), i = 1, 2, 3, 4, such that

|P(t, x1, x2, x3, x4)| ≤ c0(t) +
4

∑
i=1

ci(t)|xi|hi ,

|Q(t, x1, x2, x3, x4)| ≤ d0(t) +
4

∑
i=1

di(t)|xi|mi .

(H3) The functions P, Q ∈ C([0, 1]×R4,R), and for xi ∈ R, i = 1, 2, 3, 4, there exist
functions σ1(t), σ2(t) ∈ C([0, 1],R+) such that

|P(t, x1, x2, x3, x4)| ≤ σ1(t),

|Q(t, x1, x2, x3, x4)| ≤ σ2(t).

(H4) The functions P, Q : [0, 1]×R4 → R and for a.e. t ∈ [0, 1], xi ∈ R, there exist
r1(t), r2(t), Li(t), li(t) ∈ C([0, 1],R+), i = 1, 2, 3, 4, such that
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|P(t, x1, x2, x3, x4)| ≤
4

∑
i=1

Li(t)|xi|+ r1(t),

|Q(t, x1, x2, x3, x4)| ≤
4

∑
i=1

li(t)|xi|+ r2(t).

(H′
4) The functions P, Q : [0, 1]×R4 → R and for a.e. t ∈ [0, 1], xi ∈ R, there exist

non-negative real numbers Li, li (i = 1, 2, 3, 4), and r1, r2, where at least one of r1 and r2 is
positive, such that ∣∣P(t, x1, x2, x3, x4)

∣∣ ≤ 4

∑
i=1

Li|xi|+ r1,

∣∣Q(t, x1, x2, x3, x4)
∣∣ ≤ 4

∑
i=1

li|xi|+ r2.

(H5) The functions P, Q : [0, 1]×R4 → R and for a.e. t ∈ [0, 1], xi ∈ R, there exist
functions pi(t), qi(t) ∈ C([0, 1],R+), where pi(t), qi(t) have at least one non-zero function,
and there exist nondecreasing functions ϕi, ηi ∈ C([0, ∞),R+), i = 1, 2, 3, 4, such that∣∣P(t, x1, x2, x3, x4)

∣∣ ≤ 4

∑
i=1

pi(t)ϕi(|xi|) + p0(t),

∣∣Q(t, x1, x2, x3, x4)
∣∣ ≤ 4

∑
i=1

qi(t)ηi(|xi|) + q0(t).

For convenience, we denote

C1 =1 +
1

Γq(ω1)
, C2 = 1 +

1
Γq(δ1)

, C3 = max{C1, C2},

C4 =1 +
1

Γq(ω2)
, C5 = 1 +

1
Γq(δ2)

, C6 = max{C4, C5},

C7 =
1

Γq(α)
+

Γq(β)

|Ω|Γq(α − ζ0)Γq(β − ξ0)

+
Γq(β)

|Ω|Γq(α − ξ)Γq(β − ζ)

∣∣∣ ∫ 1

0
sβ−ζ−1dqH(s)

∣∣∣ · ∣∣∣ ∫ 1

0
dqK(s)

∣∣∣,
C8 =

1
Γq(β)

+
Γq(α)

|Ω|Γq(α − ζ0)Γq(β − ξ0)

+
Γq(α)

|Ω|Γq(α − ξ)Γq(β − ζ)

∣∣∣ ∫ 1

0
sα−ξ−1dqK(s)

∣∣∣ · ∣∣∣ ∫ 1

0
dqH(s)

∣∣∣,
C9 =

Γq(α)

|Ω|Γq(α − ζ0)Γq(α − ξ)

∣∣∣ ∫ 1

0
sα−ξ−1dqK(s)

∣∣∣
+

Γq(α)

|Ω|Γq(α − ζ0)Γq(α − ξ)

∣∣∣ ∫ 1

0
dqK(s)

∣∣∣,
C10 =

Γq(β)

|Ω|Γq(β − ξ0)Γq(β − ζ)

∣∣∣ ∫ 1

0
sβ−ζ−1dq H(s)

∣∣∣
+

Γq(β)

|Ω|Γq(β − ξ0)Γq(β − ζ)

∣∣∣ ∫ 1

0
dqH(s)

∣∣∣,
C11 =C7 −

1
Γq(α)

, C12 = C8 −
1

Γq(β)
.

Ω1 =
Γq(β)

Γq(β − ζ)

∫ 1

0
sβ−ζ−1dqH(s), Ω2 =

Γq(α)

Γq(α − ξ)

∫ 1

0
sα−ξ−1dqK(s),

Ω =
Γq(α)Γq(β)

Γq(α − ζ0)Γq(β − ξ0)
− Ω1Ω2.

(3)
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3. Criterion of Uniqueness and Existence

In this section, we show some existence and uniqueness results for the Systems (1)–(2).

Lemma 4. Let h, k ∈ C(0, 1)∩ L1(0, 1) and Ω �= 0, then the system of fractional q-difference equations{
Dα

q u(t) + h(t) = 0, t ∈ (0, 1),

Dβ
q v(t) + k(t) = 0, t ∈ (0, 1),

(4)

with the coupled BCs (2) has a unique solution (u(t), v(t)), namely

u(t) =− 1
Γq(α)

∫ t

0
(t − qs)(α−1)h(s)dqs +

tα−1

Ω

[
Ω1

Γq(β − ξ0)

∫ 1

0
(1 − qs)(β−ξ0−1)k(s)dqs

− Ω1

Γq(α − ξ)

∫ 1

0

[ ∫ s

0
(s − qτ)(α−ξ−1)h(τ)dqτ

]
dqK(s)

+
Γq(β)

Γq(α − ζ0)Γq(β − ξ0)

∫ 1

0
(1 − qs)(α−ζ0−1)h(s)dqs

− Γq(β)

Γq(β − ζ)Γq(β − ξ0)

∫ 1

0

[ ∫ s

0
(s − qτ)(β−ζ−1)k(τ)dqτ

]
dqH(s)

]
,

v(t) =− 1
Γq(β)

∫ t

0
(t − qs)(β−1)k(s)dqs +

tβ−1

Ω

[
Ω2

Γq(α − ζ0)

∫ 1

0
(1 − qs)(α−ζ0−1)h(s)dqs

− Ω2

Γq(β − ζ)

∫ 1

0

[ ∫ s

0
(s − qτ)(β−ζ−1)k(τ)dqτ

]
dqH(s)

+
Γq(α)

Γq(β − ξ0)Γq(α − ζ0)

∫ 1

0
(1 − qs)(β−ξ0−1)k(s)dqs

− Γq(α)

Γq(α − ξ)Γq(α − ζ0)

∫ 1

0

[ ∫ s

0
(s − qτ)(α−ξ−1)h(τ)dqτ

]
dqK(s)

]
, t ∈ [0, 1].

Proof. The proof is similar to the Lemma 2.1 in [24].

Let U = C[0, 1] and V = U × U be the Banach spaces with the norms
‖ u ‖= supt∈[0,1] |u(t)| and ‖ (u, v) ‖V=‖ u ‖ + ‖ v ‖, respectively. Nowdays, we
introduce the operator T : V → V, where T (x, y) = (T1(x, y), T2(x, y)) for (x, y) ∈ V,
and T1, T2 : V → U are defined by

T1(u, v)(t) =− 1
Γq(α)

∫ t

0
(t − qs)(α−1)Fuv(s)dqs +

Ω1tα−1

ΩΓq(β − ξ0)

∫ 1

0
(1 − qs)(β−ξ0−1)

· Guv(s)dqs − Ω1tα−1

ΩΓq(α − ξ)

∫ 1

0

[ ∫ s

0
(s − qτ)(α−ξ−1)Fuv(τ)dqτ

]
dqK(s)

+
Γq(β)tα−1

ΩΓq(α − ζ0)Γq(β − ξ0)

∫ 1

0
(1 − qs)(α−ζ0−1)Fuv(s)dqs

− Γq(β)tα−1

ΩΓq(β − ζ)Γq(β − ξ0)

∫ 1

0

[ ∫ s

0
(s − qτ)(β−ζ−1)Guv(τ)dqτ

]
dq H(s),

and
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T2(u, v)(t) =− 1
Γq(β)

∫ t

0
(t − qs)(β−1)Guv(s)dqs +

Ω2tβ−1

ΩΓq(α − ζ0)

∫ 1

0
(1 − qs)(α−ζ0−1)

· Fuv(s)dqs − Ω2tβ−1

ΩΓq(β − ζ)

∫ 1

0

[ ∫ s

0
(s − qτ)(β−ζ−1)Guv(τ)dqτ

]
dq H(s)

+
Γq(α)tβ−1

ΩΓq(β − ξ0)Γq(α − ζ0)

∫ 1

0
(1 − qs)(β−ξ0−1)Guv(s)dqs

− Γq(α)tβ−1

ΩΓq(α − ξ)Γq(α − ζ0)

∫ 1

0

[ ∫ s

0
(s − qτ)(α−ξ−1)Fuv(τ)dqτ

]
dqK(s),

for t ∈ [0, 1] and (u, v) ∈ V, where

Fuv(s) = P(s, u(s), v(s), Iω1
q u(s), Iδ1

q v(s)), Guv(s) = Q(s, u(s), v(s), Iω2
q u(s), Iδ2

q v(s)).

According to Lemma 4, it is easy to see that (u(t), v(t)) is a solution of the Systems (1)–(2)
if and only if (u(t), v(t)) is a fixed point of operator T .

At first, we prove the existence and uniqueness theorem of the Systems (1)–(2) by
Banach contraction mapping principle.

Theorem 5. Suppose that (H1) holds. If Ω �= 0, and

Λ = Λ1C3(C7 + C9) + Λ2C6(C8 + C10) < 1,

where Λ1 = maxt∈[0,1]
{

∑4
i=1 Li(t)

}
, Λ2 = maxt∈[0,1]

{
∑4

i=1 li(t)
}

. Then the Systems (1)–(2)
has a unique solution.

Proof. Let r > 0 such that

r =
C0(C7 + C9) + C̃0(C8 + C10)

1 − Λ1C3(C7 + C9)− Λ2C6(C8 + C10)
,

where C0 = supt∈[0,1] |P(t, 0, 0, 0, 0)|, C̃0 = supt∈[0,1] |Q(t, 0, 0, 0, 0)|.
We divide two steps to prove the theorem.
(i) Our first task is to show that T maps bounded sets into bounded sets in V.
Let Br =

{
(u, v) ∈ V, ‖ (u, v) ‖V≤ r

}
be a bounded set in V and (u, v) ∈ Br. Then we

show that T (Br) ⊂ Br. By (H1) and Lemma 3, we get∣∣Fuv(t)
∣∣ ≤∣∣P(t, u(t), v(t), Iω1

q u(t), Iδ1
q v(t))− P(t, 0, 0, 0, 0)

∣∣+ ∣∣P(t, 0, 0, 0, 0)
∣∣

≤
[

L1(t)|u(t)|+ L2(t)|v(t)|+ L3(t)|Iω1
q u(t)|+ L4(t)|Iδ1

q v(t)|
]
+ C0

≤Λ1

[
‖ u ‖ + ‖ v ‖ +

‖ u ‖
Γq(ω1)

+
‖ v ‖

Γq(δ1)

]
+ C0

=Λ1(C1 ‖ u ‖ +C2 ‖ v ‖) + C0

≤Λ1C3 ‖ (u, v) ‖V +C0 ≤ Λ1C3r + C0,

similarly, ∣∣Guv(t)
∣∣ ≤ Λ2C6r + C̃0.

According to the expression of operators T1 and T2, we obtain
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|T1(u, v)(t)| ≤ 1
Γq(α)

∫ t

0
(t − qs)(α−1)∣∣Fuv(s)

∣∣dqs

+
Γq(β)tα−1

|Ω|Γq(β − ξ0)Γq(β − ζ)

∫ 1

0
(1 − qs)(β−ξ0−1)∣∣Guv(s)

∣∣dqs

·
∣∣∣∣ ∫ 1

0
sβ−ζ−1dqH(s)

∣∣∣∣+ Γq(β)tα−1

|Ω|Γq(α − ξ)Γq(β − ζ)

·
∣∣∣∣ ∫ 1

0

[ ∫ s

0
(s − qτ)(α−ξ−1)∣∣Fuv(τ)

∣∣dqτ

]
dqK(s)

∣∣∣∣ · ∣∣∣∣ ∫ 1

0
sβ−ζ−1dq H(s)

∣∣∣∣
+

Γq(β)tα−1

|Ω|Γq(α − ζ0)Γq(β − ξ0)

∫ 1

0
(1 − qs)(α−ζ0−1)∣∣Fuv(s)

∣∣dqs

+
Γq(β)tα−1

|Ω|Γq(β − ξ0)Γq(β − ζ)

∣∣∣∣ ∫ 1

0

[ ∫ s

0
(s − qτ)(β−ζ−1)∣∣Guv(τ)

∣∣dqτ

]
dqH(s)

∣∣∣∣
≤
[

1
Γq(α)

+
Γq(β)

|Ω|Γq(α − ζ0)Γq(β − ξ0)
+

Γq(β)

|Ω|Γq(α − ξ)Γq(β − ζ)

·
∣∣∣ ∫ 1

0
sβ−ζ−1dqH(s)

∣∣∣ · ∣∣∣ ∫ 1

0
dqK(s)

∣∣∣] ∫ 1

0

∣∣Fuv(s)
∣∣dqs

+

[
Γq(β)

|Ω|Γq(β − ξ0)Γq(β − ζ)
·
∣∣∣ ∫ 1

0
sβ−ζ−1dq H(s)

∣∣∣
+

Γq(β)

|Ω|Γq(β − ξ0)Γq(β − ζ)

∣∣∣ ∫ 1

0
dq H(s)

∣∣∣] ∫ 1

0

∣∣Guv(s)
∣∣dqs,

thus, we have

‖ T1(u, v) ‖≤ C7(Λ1C3r + C0) + C10(Λ2C6r + C̃0), (5)

in like wise,

‖ T2(u, v) ‖≤C9(Λ1C3r + C0) + C8(Λ2C6r + C̃0). (6)

Using (5) and (6), we obtain that for ∀(u, v) ∈ Br,

‖ T (u, v) ‖V= ‖ T1(u, v) ‖ + ‖ T2(u, v) ‖
≤(Λ1C3r + C0)(C7 + C9) + (Λ2C6r + C̃0)(C8 + C10) = r,

that is T (Br) ⊂ Br.
(ii) The next step is to prove that operator T is a contraction.
For (ui, vi) ∈ Br(i = 1, 2), t ∈ [0, 1], we get
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|T1(u1, v1)(t)− T1(u2, v2)(t)|

≤ 1
Γq(α)

∫ t

0
(t − qs)(α−1)∣∣Fu1v1(s)− Fu2v2(s)

∣∣dqs

+
Γq(β)tα−1

|Ω|Γq(β − ξ0)Γq(β − ζ)

∫ 1

0
(1 − qs)(β−ξ0−1)∣∣Gu1v1(s)− Gu2v2(s)

∣∣dqs

·
∣∣∣ ∫ 1

0
sβ−ζ−1dq H(s)

∣∣∣
+

Γq(β)tα−1

|Ω|Γq(α − ξ)Γq(β − ζ)

∣∣∣∣ ∫ 1

0

[ ∫ s

0
(s − qτ)(α−ξ−1)∣∣Fu1v1(τ)− Fu2v2(τ)

∣∣dqτ

]
dqK(s)

∣∣∣∣
·
∣∣∣ ∫ 1

0
sβ−ζ−1dq H(s)

∣∣∣+ Γq(β)tα−1

|Ω|Γq(α − ζ0)Γq(β − ξ0)

∫ 1

0
(1 − qs)(α−ζ0−1)

·
∣∣Fu1v1(s)− Fu2v2(s)

∣∣dqs +
Γq(β)tα−1

|Ω|Γq(β − ξ0)Γq(β − ζ)

·
∣∣∣∣ ∫ 1

0

[ ∫ s

0
(s − qτ)(β−ζ−1)∣∣Gu1v1(τ)− Gu2v2(τ)

∣∣dqτ

]
dqH(s)

∣∣∣∣.

(7)

Since∣∣Fu1v1(s)− Fu2v2(s)
∣∣ ≤[L1(s)

∣∣u1(s)− u2(s)
∣∣+ L2(s)

∣∣v1(s)− v2(s)
∣∣

+ L3(s)
∣∣Iω1

q u1(s)− Iω1
q u2(s)

∣∣+ L4(s)
∣∣Iδ1

q v1(s)− Iδ1
q v2(s)

∣∣]
≤Λ1(C1 ‖ u1 − u2 ‖ +C2 ‖ v1 − v2 ‖)
≤Λ1C3 ‖ (u1, v1)− (u2, v2) ‖V ,

and ∣∣Gu1v1(s)− Gu2v2(s)
∣∣ ≤ Λ2C6 ‖ (u1, v1)− (u2, v2) ‖V .

By (7), we have∣∣T1(u1, v1)(t)− T1(u2, v2)(t)
∣∣

≤ 1
Γq(α)

∫ 1

0

∣∣Fu1v1(s)− Fu2v2(s)
∣∣dqs +

Γq(β)

|Ω|Γq(α − ζ0)Γq(β − ξ0)

∫ 1

0

∣∣Fu1v1(s)− Fu2v2(s)
∣∣dqs

+
Γq(β)

|Ω|Γq(β − ξ0)Γq(β − ζ)

∫ 1

0

∣∣Gu1v1(s)− Gu2v2(s)
∣∣dqs ·

∣∣∣ ∫ 1

0
sβ−ζ−1dqH(s)

∣∣∣
+

Γq(β)

|Ω|Γq(α − ξ)Γq(β − ζ)

∣∣∣∣ ∫ 1

0

[ ∫ 1

0

∣∣Fu1v1(τ)− Fu2v2(τ)
∣∣dqτ

]
dqK(s)

∣∣∣∣
·
∣∣∣ ∫ 1

0
sβ−ζ−1dqH(s)

∣∣∣+ Γq(β)

|Ω|Γq(β − ξ0)Γq(β − ζ)

·
∣∣∣∣ ∫ 1

0

[ ∫ 1

0

∣∣Gu1v1(τ)− Gu2v2(τ)
∣∣dq(τ)

]
dq H(s)

∣∣∣∣
≤Λ1C3 ‖ (u1, v1)− (u2, v2) ‖V

[
1

Γq(α)
+

Γq(β)

|Ω|Γq(α − ζ0)Γq(β − ξ0)

+
Γq(β)

|Ω|Γq(α − ξ)Γq(β − ζ)

∣∣∣ ∫ 1

0
dq H(s)

∣∣∣∣∣∣ ∫ 1

0
sβ−ζ−1dqH(s)

∣∣∣]
+ Λ2C6 ‖ (u1, v1)− (u2, v2) ‖V

[
Γq(β)

|Ω|Γq(β − ξ0)Γq(β − ζ)

∣∣∣ ∫ 1

0
sβ−ζ−1dq H(s)

∣∣∣
+

Γq(β)

|Ω|Γq(β − ξ0)Γq(β − ζ)

∣∣∣ ∫ 1

0
dq H(s)

∣∣∣],
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hence, we deduce

‖ T1(u1, v1)− T1(u2, v2) ‖≤ (Λ1C3C7 + Λ2C6C10) ‖ (u1, v1)− (u2, v2) ‖V . (8)

For the same way, we can obtain

‖ T2(u1, v1)− T2(u2, v2) ‖≤ (Λ1C3C9 + Λ2C6C8) ‖ (u1, v1)− (u2, v2) ‖V . (9)

From (8) and (9), we have

‖ T (u1, v1)− T (u2, v2) ‖V

= ‖ T1(u1, v1)− T1(u2, v2) ‖ + ‖ T2(u1, v1)− T2(u2, v2) ‖
≤
[
Λ1C3(C7 + C9) + Λ2C6(C8 + C10)

]
‖ (u1, v1)− (u2, v2) ‖V

=Λ ‖ (u1, v1)− (u2, v2) ‖V .

Due to Λ < 1, it follows that ‖ T (u1, v1) − T (u2, v2) ‖V<‖ (u1, v1) − (u2, v2) ‖V , so
operator T is a contraction. Hence, we obtain that the Systems (1)–(2) has a unique solution
(u, v) ∈ Br by using Banach contraction mapping principle. The proof is completed.

Corollary 1. Suppose that (H′
1) holds. If Ω �= 0, and

Λ∗ = Λ3C3(C7 + C9) + Λ4C6(C8 + C10) < 1,

where Λ3 = ∑4
i=1 Li, Λ4 = ∑4

i=1 li. Then the Systems (1)–(2) has a unique solution.

Corollary 2. Suppose that (H′′
1 ) holds. If Ω �= 0, and

Λ̃ = Λ5C3(C7 + C9) + Λ6C6(C8 + C10) < 1,

where Λ5 = supt∈[0,1]{∑4
i=1 ρi(t)}, Λ6 = supt∈[0,1]{∑4

i=1 �i(t)}. Then the Systems (1)–(2) has
a unique solution.

Next, we apply several kinds of fixed point theorems to achieve the existence results
of solutions for the Systems (1)–(2).

Theorem 6. Suppose that (H2) and Ω �= 0 hold. Then the System (1)–(2) has at least one solution.

Proof. Let BR = {(u, v) ∈ V, ‖ (u, v) ‖V≤ R}, and we denote

R1 = max

{[
‖ c0 ‖ + ‖ c1 ‖ (N1)

h1+ ‖ c2 ‖ (N2)
h2+ ‖ c3 ‖

( N1

Γq(ω1)

)h3

+ ‖ c4 ‖
( N2

Γq(δ1)

)h4
]

C7,

[
‖ d0 ‖ + ‖ d1 ‖ (N1)

m1+ ‖ d2 ‖ (N2)
m2

+ ‖ d3 ‖
( N1

Γq(ω2)

)m3

+ ‖ d4 ‖
( N2

Γq(δ2)

)m4
]

C10

}
,

R2 = max

{[
‖ c0 ‖ + ‖ c1 ‖ (N1)

h1+ ‖ c2 ‖ (N2)
h2+ ‖ c3 ‖

( N1

Γq(ω1)

)h3

+ ‖ c4 ‖
( N2

Γq(δ1)

)h4
]

C9,

[
‖ d0 ‖ + ‖ d1 ‖ (N1)

m1+ ‖ d2 ‖ (N2)
m2

+ ‖ d3 ‖
( N1

Γq(ω2)

)m3

+ ‖ d4 ‖
( N2

Γq(δ2)

)m4
]

C8

}
,

R = 2 max
{

R1, R2
}

.
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where there exist N1,N2 ∈ R such that |u(t)| ≤ N1, |v(t)| ≤ N2.
Firstly, we show that T maps bounded sets into bounded sets in V. For (u, v) ∈ BR,

we obtain

‖ T1(u, v) ‖≤
[
‖ c0 ‖ + ‖ c1 ‖ (N1)

h1+ ‖ c2 ‖ (N2)
h2+ ‖ c3 ‖

( N1

Γq(ω1)

)h3

+ ‖ c4 ‖
( N2

Γq(δ1)

)h4
]

C7 +

[
‖ d0 ‖ + ‖ d1 ‖ (N1)

m1+ ‖ d2 ‖ (N2)
m2

+ ‖ d3 ‖
( N1

Γq(ω2)

)m3

+ ‖ d4 ‖
( N2

Γq(δ2)

)m4
]

C10 ≤ 2R1,

similarly, ‖ T2(u, v) ‖≤ 2R2, then

‖ T (u, v) ‖V=‖ T1(u, v) ‖ + ‖ T2(u, v) ‖≤ R, (u, v) ∈ BR,

as above, we obtain T (BR) ⊂ BR.
Secondly, we prove that T maps bounded sets into equicontinuous sets of V. Let

N = max{N1,N2}, for simplicity of presentation, we denote that

ΨN = sup
t∈[0,1]

{
|P(t, u, v, x, y)|, |u| ≤ N , |v| ≤ N , |x| ≤ N

Γq(ω1)
, |y| ≤ N

Γq(δ1)

}
,

ΘN = sup
t∈[0,1]

{
|Q(t, u, v, x, y)|, |u| ≤ N , |v| ≤ N , |x| ≤ N

Γq(ω2)
, |y| ≤ N

Γq(δ2)

}
,

then for (u, v) ∈ BR and t1, t2 ∈ [0, 1] with t1 < t2, we have

∣∣T1(u, v)(t2)− T1(u, v)(t1)
∣∣

≤ ΨN
Γq(α + 1)

(tα
2 − tα

1) + ΨN (tα−1
2 − tα−1

1 )

[
Γq(β)

|Ω|Γq(α − ξ)Γq(β − ζ)

∣∣∣ ∫ 1

0
sβ−ζ−1dqH(s)

∣∣∣
·
∣∣∣ ∫ 1

0
dqK(s)

∣∣∣+ Γq(β)

|Ω|Γq(α − ζ0)Γq(β − ξ0)

]
+ ΘN (tα−1

2 − tα−1
1 )

[
Γq(β)

|Ω|Γq(β − ξ0)Γq(β − ζ)

·
∣∣∣ ∫ 1

0
sβ−ζ−1dqH(s)

∣∣∣+ Γq(β)

|Ω|Γq(β − ξ0)Γq(β − ζ)

∣∣∣ ∫ 1

0
dq H(s)

∣∣∣]
=

ΨN
Γq(α + 1)

(tα
2 − tα

1) + (ΨN C11 + ΘN C10)(tα−1
2 − tα−1

1 ).

The same can be proved that

∣∣T2(u, v)(t2)− T2(u, v)(t1)
∣∣ ≤ ΘN

Γq(β + 1)
(tβ

2 − tβ
1 ) + (ΨN C9 + ΘN C12)(t

β−1
2 − tβ−1

1 ).

Hence, we conclude

|T1(u, v)(t2)− T1(u, v)(t1)| → 0, |T2(u, v)(t2)− T2(u, v)(t1)| → 0,

as t2 → t1, (u, v) ∈ BR. Thus, T (BR) is equicontinuous. According to the Arzela-Ascoli
theorem, it follows that the set T (BR) is relatively compact. Therefore, T is compact on
BR. By Theorem 1, we get that the System (1)–(2) has at least one solution. The proof is
completed.

265



Fractal Fract. 2022, 6, 554

Theorem 7. Suppose that (H′
1) and (H3) hold. If Ω �= 0, and

Λ = Λ3C3
1

Γq(α)
+ Λ4C6

1
Γq(β)

< 1.

Then the System (1)–(2) has at least one solution.

Proof. Take r0 > 0 such that

r0 ≥ (C7 + C9) ‖ σ1 ‖ +(C8 + C10) ‖ σ2 ‖ .

Let Br0 = {(u, v) ∈ V, ‖ (u, v) ‖V≤ r0}, and let the operators be X = (X1,X2) : Br0 →
V and Y = (Y1,Y2) : Br0 → V, where X1,X2,Y1,Y2 : Br0 → U are denoted by

X1(u, v)(t) =− 1
Γq(α)

∫ t

0
(t − qs)(α−1)Fuv(s)dqs,

Y1(u, v)(t) =
Ω1tα−1

ΩΓq(β − ξ0)

∫ 1

0
(1 − qs)(β−ξ0−1)Guv(s)dqs

− Ω1tα−1

ΩΓq(α − ξ)

∫ 1

0

[ ∫ s

0
(s − qτ)(α−ξ−1)Fuv(τ)dqτ

]
dqK(s)

+
Γq(β)tα−1

ΩΓq(α − ζ0)Γq(β − ξ0)

∫ 1

0
(1 − qs)(α−ζ0−1)Fuv(s)dqs

− Γq(β)tα−1

ΩΓq(β − ζ)Γq(β − ξ0)

∫ 1

0

[ ∫ s

0
(s − qτ)(β−ζ−1)Guv(τ)dqτ

]
dq H(s),

X2(u, v)(t) =− 1
Γq(β)

∫ t

0
(t − qs)(β−1)Guv(s)dqs,

Y2(u, v)(t) =
Ω2tβ−1

ΩΓq(α − ζ0)

∫ 1

0
(1 − qs)(α−ζ0−1)Fuv(s)dqs

− Ω2tβ−1

ΩΓq(β − ζ)

∫ 1

0

[ ∫ s

0
(s − qτ)(β−ζ−1)Guv(τ)dqτ

]
dqH(s)

+
Γq(α)tβ−1

ΩΓq(α − ζ0)Γq(β − ξ0)

∫ 1

0
(1 − qs)(β−ξ0−1)Guv(s)dqs

− Γq(α)tβ−1

ΩΓq(α − ξ)Γq(α − ζ0)

∫ 1

0

[ ∫ s

0
(s − qτ)(α−ξ−1)Fuv(τ)dqτ

]
dqK(s),

where t ∈ [0, 1], (u, v) ∈ Br0 . Thus, T1 = X1 + Y1, T2 = X2 + Y2 and T = X + Y .
By (H3), we know that ∀(u1, v1), (u2, v2) ∈ Br0 ,
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‖ X (u1, v1) + Y(u2, v2) ‖V

≤ ‖ X (u1, v1) ‖V + ‖ Y(u2, v2) ‖V

= ‖ X1(u1, v1) ‖ + ‖ X2(u1, v1) ‖ + ‖ Y1(u2, v2) ‖ + ‖ Y2(u2, v2) ‖

≤ 1
Γq(α)

‖ σ1 ‖ +
1

Γq(β)
‖ σ2 ‖ + ‖ σ1 ‖

[
Γq(β)

|Ω|Γq(α − ξ)Γq(β − ζ)

∣∣∣ ∫ 1

0
dqK(s)

∣∣∣
·
∣∣∣ ∫ 1

0
sβ−ζ−1dqH(s)

∣∣∣+ Γq(β)

|Ω|Γq(α − ζ0)Γq(β − ξ0)

]
+ ‖ σ2 ‖

[
Γq(β)

|Ω|Γq(β − ξ0)Γq(β − ζ)

·
∣∣∣ ∫ 1

0
sβ−ζ−1dqH(s)

∣∣∣+ Γq(β)

|Ω|Γq(β − ξ0)Γq(β − ζ)

∣∣∣ ∫ 1

0
dqH(s)

∣∣∣]+ ‖ σ1 ‖

·
[

Γq(α)

|Ω|Γq(α − ζ0)Γq(α − ξ)

∣∣∣ ∫ 1

0
sα−ξ−1dqK(s)

∣∣∣+ Γq(α)

|Ω|Γq(α − ξ)Γq(α − ζ0)

∣∣∣ ∫ 1

0
dqK(s)

∣∣∣]
+ ‖ σ2 ‖

[
Γq(α)

|Ω|Γq(α − ξ)Γq(β − ζ)

∣∣∣ ∫ 1

0
dq H(s)

∣∣∣+ Γq(α)

|Ω|Γq(α − ζ0)Γq(β − ξ0)

]
=(C7 + C9) ‖ σ1 ‖ +(C8 + C10) ‖ σ2 ‖≤ r0.

For ∀(u1, v1), (u2, v2) ∈ Br0 , and Λ < 1, we have

‖ X (u1, v1)−X (u2, v2) ‖V

= ‖ X1(u1, v1)−X1(u2, v2) ‖ + ‖ X2(u1, v1)−X2(u2, v2) ‖

≤(Λ3C3
1

Γq(α)
+ Λ4C6

1
Γq(β)

)(‖ u1 − u2 ‖ + ‖ v1 − v2 ‖)

=Λ ‖ (u1, v1)− (u2, v2) ‖V

< ‖ (u1, v1)− (u2, v2) ‖V .

Hence, the operator X is a contraction.
Owing to the continuity of P and Q, Y is continuous. Next, we need to verify that Y is

a compact operator. Due to ∀(u, v) ∈ Br0 ,

‖ Y(u, v) ‖V=‖ Y1(u, v) ‖ + ‖ Y2(u, v) ‖≤ (C9 + C11) ‖ σ1 ‖ +(C10 + C12) ‖ σ2 ‖,

we have derived that the functions from Y are uniformly bounded.
We can show the equicontinuous of the functions from Y(Br0). We denote that

Ψr0 = sup
t∈[0,1]

{
|P(t, u, v, x, y)|, |u| ≤ r0, |v| ≤ r0, |x| ≤ r0

Γq(ω1)
, |y| ≤ r0

Γq(δ1)

}
,

Θr0 = sup
t∈[0,1]

{
|Q(t, u, v, x, y)|, |u| ≤ r0, |v| ≤ r0, |x| ≤ r0

Γq(ω2)
, |y| ≤ r0

Γq(δ2)

}
,

for (u, v) ∈ Br0 and t1, t2 ∈ [0, 1] with t1 < t2. An argument similar to the one used in the
proof of Theorem 6 shows that

|Y1(u, v)(t2)−Y1(u, v)(t1)| → 0, |Y2(u, v)(t2)−Y2(u, v)(t1)| → 0,

as t2 → t1, (u, v) ∈ Br0 . Therefore, Y(Br0) is equicontinuous. Then, we can see that Y(Br0)
is relatively compact. Hence, Y is compact on Br0 . Using Theorem 2, we know that the
System (1)–(2) has at least one solution. The proof is completed.

Remark 1. Evidently, we prove that the operator X is a contraction, the operator Y is compact
and continuous in Theorem 7. An alternative method of proof is to show that X is compact and
continuous, Y is a contraction, that is Theorem 8.
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Theorem 8. Suppose that (H′
1) and (H3) hold. If Ω �= 0, and

Λ̂ = Λ3C3(C9 + C11) + Λ4C6(C8 + C10) < 1.

Then the Systems (1)–(2) has at least one solution.

Proof. On the basis of Remark 1, this theorem can be proved by the same method as
employed in Theorem 7.

Theorem 9. Suppose that P, Q are S-Carathéodory functions and (H4) hold. If Ω �= 0, and

Ξ = max{C13, C14} < 1,

where C13 = (j1 +
j3

Γq(ω1)
)(C7 + C9) + (k1 +

k3
Γq(ω2)

)(C8 + C10), C14 = (j2 +
j4

Γq(δ1)
)(C7 +

C9) + (k2 +
k4

Γ1(δ2)
)(C8 + C10), and there exist A1, A2, ji, ki > 0 such that |r1(t)| ≤ A1,

|r2(t)| ≤ A2, |Li(t)| ≤ ji and |li(t)| ≤ ki (i = 1, 2, 3, 4). Then, the System (1)–(2) has at least
one solution.

Proof. The main point of Theorem 9 is to prove T is completely continuous. Firstly, for the
continuity of functions P and Q, we obtain that the operator T is continuous. Secondly, we
show that T is compact.

Let the set Φ ⊂ V be bounded. Then, there exist integrable functions M1(t) and
M2(t) ∈ L1([0, 1],R+) such that for ∀t ∈ [0, 1], (u, v) ∈ Φ, we have∣∣P(t, u(t), v(t), Iω1

q u(t), Iδ1
q v(t))

∣∣ ≤ M1(t),∣∣Q(t, u(t), v(t), Iω2
q u(t), Iδ2

q v(t))
∣∣ ≤ M2(t).

According to the Theorem 5, we get∣∣Fuv(t)
∣∣ =∣∣P(t, u(t), v(t), Iω1

q u(t), Iδ1
q v(t))

∣∣ ≤‖ M1 ‖L1 ,∣∣Guv(t)
∣∣ =∣∣Q(t, u(t), v(t), Iω2

q u(t), Iδ2
q v(t))

∣∣ ≤‖ M2 ‖L1 ,

where ‖ u ‖L1=
∫ 1

0 |u(t)|dqt.
Then

‖ T1(u, v) ‖≤ ‖ M1 ‖L1

[
1

Γq(α)
+

Γq(β)

|Ω|Γq(α − ζ0)Γq(β − ξ0)

+
Γq(β)

|Ω|Γq(α − ξ)Γq(β − ζ)

∣∣∣ ∫ 1

0
sβ−ζ−1dqH(s)

∣∣∣ · ∣∣∣ ∫ 1

0
dqK(s)

∣∣∣]
+ ‖ M2 ‖L1

[
Γq(β)

|Ω|Γq(β − ξ0)Γq(β − ζ)

∣∣∣ ∫ 1

0
sβ−ζ−1dqH(s)

∣∣∣
+

Γq(β)

|Ω|Γq(β − ξ0)Γq(β − ζ)

∣∣∣ ∫ 1

0
dqH(s)

∣∣∣]
= ‖ M1 ‖L1 C7+ ‖ M2 ‖L1 C10,

in a similar manner, we have

‖ T2(u, v) ‖≤ ‖ M1 ‖L1 C9+ ‖ M2 ‖L1 C8,

so ∀(u, v) ∈ Φ,

‖ T (u, v) ‖V=‖ T1(u, v) ‖ + ‖ T2(u, v) ‖≤‖ M1 ‖L1 (C7 + C9)+ ‖ M2 ‖L1 (C10 + C8),

therefore, T (Φ) is uniformly bounded.
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Another step is to show that T (Φ) is equicontinuous. Proceeding as in the proof of
Theorem 6, we obtain

∣∣T1(u, v)(t2)− T1(u, v)(t1)
∣∣ → 0 and

∣∣T2(u, v)(t2)− T2(u, v)(t1)
∣∣ →

0, as t2 → t1, (u, v) ∈ Φ. Thus, T (Φ) is equicontinuous. At the same time, we can also
obtain that T is completely continuous.

Finally, we illustrate that S = {(u, v) ∈ V, (u, v) = λT (u, v), 0 ≤ λ ≤ 1} is
bounded. Let (u, v) ∈ S , then ∀t ∈ [0, 1], we have u(t) = λT1(u, v)(t), v(t) = λT2(u, v)(t).
For simplicity, we denote that

F̂uv(s) = r1(s) + L1(s)
∣∣u(s)∣∣+ L2(s)

∣∣v(s)∣∣+ L3(s)
∣∣Iω1

q u(s)
∣∣+ L4(s)

∣∣Iδ1
q v(s)

∣∣,
Ĝuv(s) = r2(s) + l1(s)

∣∣u(s)∣∣+ l2(s)
∣∣v(s)∣∣+ l3(s)

∣∣Iω2
q u(s)

∣∣+ l4(s)
∣∣Iδ2

q v(s)
∣∣,

so,

F̂uv(s) ≤ A1 + j1
∣∣u(s)∣∣+ j2

∣∣v(s)∣∣+ j3
∣∣Iω1

q u(s)
∣∣+ j4

∣∣Iδ1
q v(s)

∣∣,
Ĝuv(s) ≤ A2 + k1

∣∣u(s)∣∣+ k2
∣∣v(s)∣∣+ k3

∣∣Iω2
q u(s)

∣∣+ k4
∣∣Iδ2

q v(s)
∣∣,

then∣∣u(t)∣∣ ≤∣∣T1(u, v)(t)
∣∣

≤ 1
Γq(α)

∫ t

0
(t − qs)(α−1) F̂uv(s)dqs +

Γq(β)tα−1

|Ω|Γq(α − ζ0)Γq(β − ξ0)

∫ 1

0
(1 − qs)(α−ζ0−1)

· F̂uv(s)dqs +
Γq(β)tα−1

|Ω|Γq(β − ξ0)Γq(β − ζ)

∣∣∣∣ ∫ 1

0
sβ−ζ−1dq H(s)

∣∣∣∣ ∫ 1

0
(1 − qs)(β−ξ0−1)

· Ĝuv(s)dqs +
Γq(β)tα−1

|Ω|Γq(α − ξ)Γq(β − ζ)

∣∣∣∣ ∫ 1

0
sβ−ζ−1dqH(s)

∣∣∣∣∣∣∣∣ ∫ 1

0

[ ∫ s

0
(s − qτ)(α−ξ−1)

· F̂uv(τ)dqτ

]
dqK(s)

∣∣∣∣+ Γq(β)tα−1

|Ω|Γq(β − ξ0)Γq(β − ζ)

∣∣∣∣ ∫ 1

0

[ ∫ s

0
(s − qτ)(β−ζ−1)

· Ĝuv(τ)dqτ

]
dqH(s)

∣∣∣∣,
hence,

‖ u ‖≤
∫ 1

0

∣∣F̂uv(s)
∣∣dqs

[
1

Γq(α)
+

Γq(β)

|Ω|Γq(α − ξ)Γq(β − ζ)

∣∣∣ ∫ 1

0
sβ−ζ−1dqH(s)

∣∣∣
·
∣∣∣ ∫ 1

0
dqK(s)

∣∣∣+ Γa(β)

|Ω|Γq(α − ζ0)Γq(β − ξ0)

]
+
∫ 1

0

∣∣Ĝuv(s)
∣∣dqs

·
[

Γq(β)

|Ω|Γq(β − ξ0)Γq(β − ζ)
·
∣∣∣ ∫ 1

0
sβ−ζ−1dqH(s)

∣∣∣
+

Γq(β)

|Ω|Γq(β − ξ0)Γq(β − ζ)

∣∣∣ ∫ 1

0
dqH(s)

∣∣∣]
=(A1 + j1 ‖ u ‖ +j2 ‖ v ‖ +

j3
Γq(ω1)

‖ u ‖ +
j4

Γq(δ1)
‖ v ‖)C7

+ (A2 + k1 ‖ u ‖ +k2 ‖ v ‖ +
k3

Γq(ω2)
‖ u ‖ +

k4

Γq(δ2)
‖ v ‖)C10.

(10)

Similarly,

‖ v ‖≤(A1 + j1 ‖ u ‖ +j2 ‖ v ‖ +
j3

Γq(ω1)
‖ u ‖ +

j4
Γq(δ1)

‖ v ‖)C9

+ (A2 + k1 ‖ u ‖ +k2 ‖ v ‖ +
k3

Γq(ω2)
‖ u ‖ +

k4

Γq(δ2)
‖ v ‖)C8,

(11)
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by means of (11) and (12), we have

‖ (u, v) ‖V= ‖ u ‖ + ‖ v ‖
≤A1(C7 + C9) + A2(C8 + C10) + C13 ‖ u ‖ +C14 ‖ v ‖
≤A1(C7 + C9) + A2(C8 + C10) + Ξ ‖ (u, v) ‖V .

Due to Ξ < 1, we get

‖ (u, v) ‖V≤
[
A1(C7 + C9) + A2(C8 + C10)

]
(1 − Ξ)−1, (u, v) ∈ S ,

thus, S is bounded.
By Theorem 3, it is time to say that the Systems (1)–(2) has at least one solution. Hence,

the statements in Theorem 9 are proved.

Corollary 3. Suppose that P, Q are S-Carathéodory functions and (H′
4) hold. If Ω �= 0, and

Ξ̂ = max{C15, C16} < 1,

where C15 = L1(C7 + C9) + L3
Γq(ω1)

(C7 + C9) + l1(C8 + C10) + l3
Γq(ω2)

(C8 + C10),

C16 = L2(C7 + C9) +
L4

Γq(δ1)
(C7 + C9) + l2(C8 + C10) +

l4
Γq(δ2)

(C8 + C10). Then the Systems
(1)–(2) has at least one solution.

Theorem 10. Suppose that P, Q are S-Carathéodory functions and (H5) hold. If Ω �= 0 and there
exists Π > 0 such that[

‖ p0 ‖ + ‖ p1 ‖ ϕ1(Π)+ ‖ p2 ‖ ϕ2(Π)+ ‖ p3 ‖ ϕ3

( Π
Γq(ω1)

)
+ ‖ p4 ‖ ϕ4

( Π
Γq(δ1)

)]
(C7 + C9) +

[
‖ q0 ‖ + ‖ q1 ‖ η1(Π)

+ ‖ q2 ‖ η2(Π)+ ‖ q3 ‖ η3

( Π
Γq(ω2)

)
+ ‖ q4 ‖ η4

( Π
Γq(δ2)

)]
(C8 + C10) < Π.

Then the Systems (1)–(2) has at least one solution.

Proof. Let BΠ = {(u, v) ∈ V, ‖ (u, v) ‖V≤ Π}. Firstly, we prove that T : BΠ → BΠ.
For (u, v) ∈ BΠ and t ∈ [0, 1], we have

‖ T1(u, v) ‖≤C7

[
‖ p0 ‖ + ‖ p1 ‖ ϕ1(Π)+ ‖ p2 ‖ ϕ2(Π)+ ‖ p3 ‖ ϕ3

( Π
Γq(ω1)

)
+ ‖ p4 ‖ ϕ4

( Π
Γq(δ1)

)]
+ C10

[
‖ q0 ‖ + ‖ q1 ‖ η1(Π)+ ‖ q2 ‖ η2(Π)

+ ‖ q3 ‖ η3

( Π
Γq(ω2)

)
+ ‖ q4 ‖ η4

( Π
Γq(δ2)

)]
,

and

‖ T2(u, v) ‖≤C9

[
‖ p0 ‖ + ‖ p1 ‖ ϕ1(Π)+ ‖ p2 ‖ ϕ2(Π)+ ‖ p3 ‖ ϕ3

( Π
Γq(ω1)

)
+ ‖ p4 ‖ ϕ4

( Π
Γq(δ1)

)]
+ C8

[
‖ q0 ‖ + ‖ q1 ‖ η1(Π)+ ‖ q2 ‖ η2(Π)

+ ‖ q3 ‖ η3

( Π
Γq(ω2)

)
+ ‖ q4 ‖ η4

( Π
Γq(δ2)

)]
.
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For (u, v) ∈ BΠ, we have

‖ T (u, v) ‖V= ‖ T1(u, v) ‖ + ‖ T2(u, v) ‖

≤(C7 + C9)

[
‖ p0 ‖ + ‖ p1 ‖ ϕ1(Π)+ ‖ p2 ‖ ϕ2(Π)+ ‖ p3 ‖ ϕ3

( Π
Γq(ω1)

)
+ ‖ p4 ‖ ϕ4

( Π
Γq(δ1)

)]
+ (C10 + C8)

[
‖ q0 ‖ + ‖ q1 ‖ η1(Π)+ ‖ q2 ‖ η2(Π)

+ ‖ q3 ‖ η3

( Π
Γq(ω2)

)
+ ‖ q4 ‖ η4

( Π
Γq(δ2)

)]
< Π.

Consequently, T (BΠ) ⊂ BΠ. At the same time, it is easy to see that T is completely
continuous, which can be derived in the same way as employed in Theorem 6.

Furthermore, assume that there exists (u, v) ∈ ∂BΠ such that (u, v) = λT (u, v) for
λ ∈ (0, 1), it is simple to get ‖ (u, v) ‖V≤‖ T (u, v) ‖V< Π, this leads to a contradiction
for (u, v) ∈ ∂BΠ. Therefore, by applying Theorem 4, we deduce that T has a fixed point
(u, v) ∈ BΠ, which is a solution of the Systems (1)–(2). The proof is completed.

4. Application Examples

In this section, for the system with the different nonlinearity terms, some examples
are appreciated to illustrate our main results.

We consider the following system of fractional q-difference equations:⎧⎨⎩ (D
3
2
q u)(t) + P(t, u(t), v(t), I

1
4
q u(t), I

4
3
q v(t)) = 0, t ∈ (0, 1),

(D
5
2
q v)(t) + Q(t, u(t), v(t), I

9
4
q u(t), I

2
3
q v(t)) = 0, t ∈ (0, 1),

(12)

with the nonlocal BCs⎧⎨⎩ u(0) = 0, D
1
5
q u(1) =

∫ 1
0 D

5
4
q v(t)dq(−t2),

v(0) = Dqv(0) = 0, D
7
5
q v(1) =

∫ 1
0 D

1
6
q u(t)dqt,

(13)

where α = 3
2 , β = 5

2 , ω1 = 1
4 , δ1 = 4

3 , ω2 = 9
4 , δ2 = 2

3 , ζ0 = 1
5 , ξ0 = 7

5 , ζ = 5
4 , ξ = 1

6 ,
q = 1

2 , H(t) = −t2, K(t) = t.
After a simple caculation, we obtain Ω = 2.58954375 �= 0, C1 = 1.34100597,

C2 = 2.08201688, C3 = C2, C4 = 1.92455621, C5 = 1.79251862, C6 = C4,
C7 = 2.29230629, C8 = 1.75022309, C9 = 0.7590784, C10 = 1.42695841, C11 = 1.20641206,
C12 = 0.91031044.

Example 1. Consider the nonlinear terms of the system

P(t, x1, x2, x3, x4) = et +
t

36
cos x1 −

t
54

sin x2 +
1

63 + t
arctan x3 −

x4

(t + 9)2 ,

Q(t, x1, x2, x3, x4) =
1√

5 + t2
− t

48
sin x1 +

t
64

cos x2 −
1

36 + t
arctan x3 +

x4

t2 + 56
,

where t ∈ [0, 1], xi ∈ R (i = 1, 2, 3, 4). For xi, yi ∈ R (i = 1, 2, 3, 4), we obtain
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∣∣P(t, x1, x2, x3, x4)− P(t, y1, y2, y3, y4)
∣∣

≤ t
36

|x1 − y1|+
t

54
|x2 − y2|+

1
t + 63

|x3 − y3|+
1

(t + 9)2 |x4 − y4| ≤ Λ1

4

∑
i=1

|xi − yi|,∣∣Q(t, x1, x2, x3, x4)− Q(t, y1, y2, y3, y4)
∣∣

≤ t
48

|x1 − y1|+
t

64
|x2 − y2|+

1
t + 36

|x3 − y3|+
1

56 + t2 |x4 − y4| ≤ Λ2

4

∑
i=1

|xi − yi|.

It is obvious that L1(t) = t
36 , L2(t) = t

54 , L3(t) = 1
63+t , L4(t) = 1

(t+9)2 and l1(t) = t
48 ,

l2(t) = t
64 , l3(t) = 1

36+t , l4(t) = 1
t2+56 . By a simple computation, we obtain

Λ1 = 0.07451499, Λ2 = 0.08209325 and Λ = 0.97536897 < 1, respectively. By Theorem 5,
the Systems (12)–(13) has a unique solution.

Example 2. Consider the nonlinear terms of the system

P(t, x1, x2, x3, x4) =(3t + 5)2 +
t

30
|x1|

1
3 +

t
t2 + 9

arctan |x2|
1
2 +

1
5 + 8t

sin |x3|
3
4

− 1
(4t + 9)2 |x4|

1
5 ,

Q(t, x1, x2, x3, x4) =et +
1

46(t + 1)
|x1|

3
5 +

t
37

|x2|
1
6 +

1
t + 29

sin |x3|
2
3 − 8t arctan |x4|

5
6 ,

where t ∈ [0, 1], xi ∈ R (i = 1, 2, 3, 4). It is clear that

∣∣P(t, x1, x2, x3, x4)
∣∣ ≤ (3t + 5)2 +

t
30

|x1|
1
3 +

t
t2 + 9

|x2|
1
2 +

1
8t + 5

|x3|
3
4 +

1
(4t + 9)2 |x4|

1
5 ,

∣∣Q(t, x1, x2, x3, x4)
∣∣ ≤ et +

1
46(t + 1)

|x1|
3
5 +

t
37

|x2|
1
6 +

1
t + 29

|x3|
2
3 + 8t|x4|

5
6 .

Therefore, the assumption (H2) is satisfied with c0(t) = (3t + 5)2, c1(t) = t
30 ,

c2(t) = t
t2+9 , c3(t) = 1

8t+5 , c4(t) = 1
(4t+9)2 , d0(t) = et, d1(t) = 1

46(t+1) , d2(t) = t
37 ,

d3(t) = 1
t+29 , and d4(t) = 8t. By Theorem 6, the Systems (12)–(13) has at least one solution.

Example 3. Consider the nonlinear terms of the system

P(t, x1, x2, x3, x4) = et +
t

40
arctan x1 −

1
(t + 6)2 sin x2 +

1
4(t + 9)

sin x3 −
t

32
cos x4,

Q(t, x1, x2, x3, x4) =
5t

6 + t2 − 3t
56

cos x1 +
1

t + 28
sin x2 −

t
72

sin2 x3 +
t

18
arctan x4,

where t ∈ [0, 1], xi ∈ R (i = 1, 2, 3, 4). For ∀t ∈ [0, 1], xi, yi ∈ R (i = 1, 2, 3, 4), We obtain

∣∣P(t, x1, x2, x3, x4)− P(t, y1, y2, y3, y4)
∣∣ ≤ 1

40
|x1 − y1|+

1
36

|x2 − y2|+
1
36

|x3 − y3|

+
1

32
|x4 − y4|,∣∣Q(t, x1, x2, x3, x4)− Q(t, y1, y2, y3, y4)

∣∣ ≤ 3
56

|x1 − y1|+
1
28

|x2 − y2|+
1
36

|x3 − y3|

+
1

18
|x4 − y4|,

and
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∣∣P(t, x1, x2, x3, x4)
∣∣ ≤ et +

πt
80

+
1

(t + 6)2 +
1

4(t + 9)
+

t
32

,

∣∣Q(t, x1, x2, x3, x4)
∣∣ ≤ 5t

6 + t2 +
3t
56

+
1

t + 28
+

t
72

+
πt
36

,

It is obvious that L1 = 1
40 , L2 = 1

36 , L3 = 1
36 , L4 = 1

32 , l1 = 3
56 , l2 = 1

28 , l3 = 1
36 ,

l4 = 1
18 . By a simple computation, we have Λ3 = 0.11180556, Λ4 = 0.17261905, and

Λ = 0.53180725 < 1, respectively. Therefore, the assumptions (H′
1), and (H3) are satisfied,

by Theorem 7, the Systems (12)–(13) has at least one solution.

Example 4. Consider the nonlinear terms of the system

P(t, x1, x2, x3, x4) =
t

20
+

6t
35

sin x1 −
1

4t + 9
√

6
sin 2x2,

Q(t, x1, x2, x3, x4) =
2t
3
+

5t
56

sin x1 −
3

2(7
√

5 + t)
sin 2x2,

where t ∈ [0, 1], xi ∈ R (i = 1, 2, 3, 4). It is clear that

∣∣P(t, x1, x2, x3, x4)
∣∣ ≤ 1

20
+

6
35

|x1|+
2

9
√

6
|x2|,

∣∣Q(t, x1, x2, x3, x4)
∣∣ ≤ 2

3
+

5
56

|x1|+
3

7
√

5
|x2|.

Hence, L1 = 6
35 , L2 = 2

9
√

6
, L3 = L4 = 0, r1 = 1

20 , l1 = 5
56 , l2 = 3

7
√

5
, l3 = l4 = 0,

r2 = 2
3 . By a simple computation, we obtain C15 = 0.80677144, C16 = 0.88577528,

and Ξ̂ = 0.88577528 < 1, respectively. By Corollary 3, the Systems (12)–(13) has at least
one solution.

5. Discussion

The system of fractional q-difference equations plays an extremely crucial role in
many fields, such as quantum mechanics, dynamical systems, black holes, mathematical
physics equations and so on, see [2,3,5,6,27–30] and the references therein. In this article,
we are concerned with the solvability of a system of fractional q-difference equations with
Riemann-Stieltjes integrals conditions based on some classical fixed point theorems. We
obtain the multiple existence and uniqueness conclusions for the Systems (1)–(2). As a
matter of fact, in the limit q → 1−, the system studied in this paper reduces to the classical
system of fractional differential equations. It follows that the results we have discussed
are the generalization of the classical analysis, they can extend classical theory in order to
expand the range of the possible applications. In the future, we will devote ourselves to
finding new inspirations and outstanding methods to overcome the more complex practical
problems associated with the system of fractional q-difference equations. Moreover, we
will investigate numerical methods for this kind of system.
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