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Preface to ”10th Anniversary of Axioms: Logic”
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contributed so far to the success of the journal and the gathering of scientific research in mathematical

logic related to current challenges and future innovations.

Oscar Castillo

Editor

ix





Citation: Ali, I.; Li, Y.; Pedrycz, W.

Granular Computing Approach to

Evaluate Spatio-Temporal Events in

Intuitionistic Fuzzy Sets Data

through Formal Concept Analysis.

Axioms 2023, 12, 407. https://

doi.org/10.3390/axioms12050407

Academic Editor: Hsien-Chung Wu

Received: 9 February 2023

Revised: 29 March 2023

Accepted: 20 April 2023

Published: 22 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Granular Computing Approach to Evaluate Spatio-Temporal
Events in Intuitionistic Fuzzy Sets Data through Formal
Concept Analysis
Imran Ali 1,2 , Yongming Li 1,* and Witold Pedrycz 3,4

1 College of Computer Science, Shaanxi Normal University, Xi’an 710062, China;
aliimran@snnu.edu.cn or imran.bhatti@iba-suk.edu.pk

2 Department of Computer Science, Sukkur IBA University, Airport Road, Sukkur 65200, Pakistan
3 Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6R 2G7, Canada;

wpedrycz@ualberta.ca
4 Systems Research Institute, Polish Academy of Sciences, 01-224 Warsaw, Poland
* Correspondence: liyongm@snnu.edu.cn

Abstract: Knowledge discovery through spatial and temporal aspects of data related to occurrences
of events has many applications in digital forensics. Specifically, in electronic surveillance, it is helpful
to construct a timeline to analyze information. The existing techniques only analyze the occurrence
and co-occurrence of events; however, in general, there are three aspects of events: occurrences
(and co-occurrences), nonoccurrences, and uncertainty of occurrences/non-occurrences with respect
to spatial and temporal aspects of data. These three aspects of events have to be considered to
better analyze periodicity and predict future events. This study focuses on the spatial and temporal
aspects given in intuitionistic fuzzy (IF) datasets using the granular computing (GrC) paradigm;
formal concept analysis (FCA) was used to understand the granularity of data. The originality of the
proposed approach is to discover the periodicity of events data given in IF sets through FCA and the
GrC paradigm that helps to predict future events. An experimental evaluation was also performed to
understand the applicability of the proposed methodology.

Keywords: granular computing; formal concept analysis; intuitionistic fuzzy sets; periodicity; spatial
and temporal aspects; knowledge discovery

MSC: 74E20; 94D05; 03B52; 03G10; 06D72

1. Introduction

An event is the occurrence of something at some place and time which involves some
actors as objects and spatio-temporal features as attributes. In theliterature, the idea of
spatial, temporal, and spatio-temporal co-occurrences can be found. In general, spatial
co-occurrence is defined as when two or more events occur at the same place, temporal
co-occurrence as when a number of events occur at the same time or in the same time-
interval, and spatio-temporal co-occurrence as when events occur at the same place and
time. Periodical events are those that occur at the same time intervals, for example, an event
that occurs every day, weekend, month, or year. In the application domain, it is important
to analyze these aspects of events. In the context of smart video surveillance, it is possible
to discover the periodical and same-place movements of pedestrians to predict a crime
before it happens. Moreover, in the context of intuitionistic fuzzy (IF) sets, there are some
membership and nonmembership values that can be indicated for events occurring at some
place and time. Existing approaches only work on occurrences and co-occurrences of events;
however, in real life, there can be three aspects: occurrences (and co-occurrences), nonoc-
currences, and the uncertainty of occurrences/nonoccurrences. The limitation of focusing
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only on the occurrences and co-occurrences of events is that it indicates the data related to
event occurrences that may be missing the elicitation of complete and important knowledge
related to event nonoccurrences, as well as the uncertainty of occurrences/non-occurrences.
Motivated by these limitations, this research provides a novel approach based on granular
computing (GrC) to discover these three aspects of events at the same places and in the peri-
odical form in the IF sets, where µ (membership), γ (non-membership), and π (uncertainty)
values indicate the occurrences (and co-occurrences), nonoccurrences, and the uncertainty
of occurrences/nonoccurrences of events, respectively. GrC was used to discover the peri-
odicity in data at various abstraction levels. Moreover, formal concept analysis (FCA) was
used to discover the granulation levels and process the granulation measures to understand
the IF concepts, where the events indicated as objects and spatio-temporal occurrences
showed the attributes of lattices formed by formal concepts. The originality of the proposed
approach is to discover the periodicity of spatial–temporal occurrences data of events given
in IF sets through GrC and FCA. Moreover, this approach helps predict the occurrence
(co-occurrence), nonoccurrence, and uncertainty of occurrence/nonoccurrence of events
for spatial and temporal aspects of data through IF sets. The motivation for the use of
IF sets instead of fuzzy sets in this proposed approach is the three-tuple nature of the
IF sets, which contain the µ (membership), γ (nonmembership), and π (IF set index or
indeterminacy, which expresses the degree of uncertainty) values of the elements. Here, π
is used in the computation of GrC measures i.e., IG and COV that help in the process of
decision making. This paper is organized as follows: Section 2 discusses the related works;
Section 3 provides the definitions of IF sets and FCA specifically used in the context of
the IF sets data; Section 4 explains the GrC; Section 5 explains the proposed methodology;
Section 6 demonstrates the experimental evaluation; Section 7 gives the results and discus-
sion; Section 8 explains the comparison of the proposed approach with existing SOTA (state
of the art) approaches; and Section 9 contains the conclusion and future work, followed by
the references.

2. Related Works

In the literature, research work related to spatio-temporal and periodical occurrences
and co-occurrences can be found. The most important task regarding periodical occurrences
is to determine the data blocks in the whole dataset from which suitable views can be
analyzed. For example, in a dataset of hundred events, discovering seventy events that
always occur on a Sunday may be more interesting than ninety events occurring on the
weekends. For this type of task, views are determined by selecting the temporal attributes
and adjusting the temporal units in a way that helps to create a temporal zoom operation
on data and discover the more interesting data blocks in the form of periodical occurrences.
Depending on the data and objective, some data analysis techniques are required to evaluate
the data blocks aiming to discover the periodical co-occurrences of events. Based on the
GrC paradigm and FCA, different computational approaches are proposed to discover
the spatio-temporal co-occurrences for different purposes. As in [1], FCA as a central
tool for the proposed method is used to combine time-based granulation and three-way
decisions to understand the learned granular structures conceptualizing spatio-temporal
events. Moreover, the GrC is integrated with FCA as concept learning via GrC [2], granular
rule acquisition in decision formal contexts [3], GrC approach based on FCA in fuzzy
datasets [4], granular transformations, and irreducible element judgement [5]. There are
two types of granules in FCA, one is the granule made by the set of objects in formal concept
and the other is the one formed by the individual objects. Some research studies show that
the granule formed by the individual objects play a vital role, with a strong correlation with
object granules, object concepts [5], and granular concepts [6]. Additionally, there exist
many other types of granules in FCA; however, the classification and the criteria for the
classification of information granules in FCA are still an open research direction.

Yang et al. in [7] explained the sequential approach of three-way GrC by a framework
of spatio-temporal multilevel granular structure, described with temporality of data and
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spatiality of parameters. Moreover, in the context of three-way decision approaches in [8],
an IF three-way decision model based on IF sets is proposed to improve the ability to
process complex fuzzy incomplete information systems. Zhao et al., in [9], proposed a
novel spatial–temporal fuzzy information granule (STFIG) model to achieve the multistep
forecasting of time series. In [10], the method puts forward research on the optimal route
planning of traffic multisource routes based on GrC. GrC is used with set theory, shadowed
sets, rough sets, fuzzy sets, etc. In each of these sets’ environments, the granules or the
granulation processing is defined in different ways, as well as a tentative one to find
similarity and bridge the gap between these settings, as described in [11]. Additionally,
the IF sets using an FCA algorithm have already been discussed in the literature [12]; for
example, in [13], the structure of formal concept forming operators is given in the form of
fuzzy dilation and fuzzy erosion operators of bipolar fuzzy mathematical morphology, and
in [14], attribute reduction in IF concept lattices is discussed.

This methodology uses the GrC paradigm and FCA with IF datasets as spatio-temporal
attributes to realize the granulation or abstraction of data related to the periodical timeslots
in temporal attributes of formal contexts, which were formed from the IF datasets; the
granules involving spatio-temporal attributes were used to determine the co-occurrences
of events with respect to space and time. In addition, the granulation measures of lattices
made from the formal contexts of IF sets were discussed, such as information granulation
(IG), coverage (COV), specificity (SP), and unique index (Q) value, to evaluate the granule
according to its information related to spatio-temporal and periodical co-occurrences.

3. Preliminaries
3.1. Intuitionistic Fuzzy (IF) Sets

In [15], the notion of fuzzy sets is given as

C
′
=
{
〈x, µC′ (x)〉 | x ∈ X

}

where µC′ (x) ∈ [0, 1] is the membership function of the fuzzy set C
′
. The notion of IF

set [16–18] is given as
C = {〈x, µC(x), γC(x)〉 | x ∈ X},

where µC : X → [0, 1] and γC : X → [0, 1], such that

0 ≤ µC(x) + γC(x) ≤ 1.

Here, µC(x), γC(x) ∈ [0, 1] indicate the degree of membership and the degree of non-
membership of x ∈ C, respectively. Each fuzzy set in terms of IF sets can be represented as

C =
{
〈x, µC′ (x), 1− µC′ (x)〉 | x ∈ X

}
.

In addition to this, the important concept of each IF set C in X is given as

πC(x) = 1− µC(x)− γC(x).

Here, πC(x) is called the “hesitation degree” of x ∈ C, which indicates the uncer-
tainty or the lack of the knowledge of whether x ∈ C or x /∈ C. Moreover, it is clear
that 0 ≤ πC(x) ≤ 1, ∀x ∈ X. This hesitation degree plays an important role in dis-
tance [19,20], similarity [20], and entropy [21,22], which are key measures that are used
specially in the information processing tasks. Additionally, hesitation degree also plays
a significant role in image processing [23], multicriteria group decision making [24], IF
decision trees [25], genetic algorithms [26], and many other situations. In addition to this,
let C1, C2 ∈ IF(U), C1 ⊆ C2 ⇔ µC1(x) ≤ µC2(x) and γC1(x) ≥ γC2(x), ∀x ∈ U. If both
C1 ⊆ C2 and C2 ⊆ C1 then, C1 = C2 and C2 = C1. The universe set U and null set ∅ are the
special type of IF sets, where U = {〈x, 1, 0〉 | x ∈ U} and ∅ = {〈x, 0, 1〉 | x ∈ U}.

3
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3.2. Formal Concept Analysis (FCA)

The FCA method was proposed in early 1980 by R. Wille for when a set of objects share
a set of attributes. The foundation of FCA is built on the notions of lattice and set theory.
This method outputs two sets of data. The first one provides the hierarchical relationship of
constructed concepts in the form of a diagram called “Concept Lattice”. The second set of
data provides the list of the interdependencies among all the attributes in a formal context.

Definition 1. In FCA, the relation K = (G, M, I) is called a formal context, where G and M
denote the set of objects and set of attributes, respectively. In addition to this, I ⊆ G×M shows
the relationship between G objects (extents) and M attributes (intents). Moreover, the relation
(g, m) ∈ I shows that the object g has attribute m, which can also be written as gIm.

Definition 2. For a subset A ⊆ G of objects then, the subset of the attributes common to all the
objects in A is given as

A ↑= {m ∈ M | ∀g ∈ A, gIm}.
Likewise, given a subset B ⊆ M of attributes, the subset of objects having all the attributes in

set B is given as
B ↓= {g ∈ G | ∀m ∈ B, gIm}.

Definition 3 ([26]). A formal context K = (G, M, I) is defined as a pair (A, B), where A ⊆ G,
B ⊆ M and A ↑= B, B ↓= A, where A denotes the objects (extents) and B indicates the attributes
(intents) of the pair (A, B). Let (A1, B1) and (A2, B2) be the two formal concepts of a formal context
K = (G, M, I); (A1, B1) is called a superconcept of (A2, B2), and (A2, B2) is called a subconcept
of (A1, B1) if it satisfies the equivalent condition given as

(A1, B1) ≤ (A2, B2)⇔ A1 ⊆ A2 ⇔ B2 ⊆ B1

The set of all the superconcept and subconcept interrelations construct a design structure
known as a lattice. The lattice is an abstract structure with join (denoted by “∨”) and meet (denoted
by “∧”) operations. The above expression in this definition, in the form of join and meet, is

(A1, B1) ∨ (A2, B2) = ((A1 ∪ A2) ↓↑, B1 ∩ B2),

(A1, B1) ∧ (A2, B2) = (A1 ∩ A2, (B1 ∪ B2) ↓↑)
where “∨” and “∧” indicate the supermum and infimum operations, respectively.

For any ∀g ∈ G, the pair (g ↑↓, g ↑) is called the object concept, and ∀m ∈ M, the
pair (m ↑↓, m ↑) is called the attribute concept. In a lattice diagram, when two branches
join below, it is called a join operation “∨”, and the point where two branches meet above
is known as a meet operation “∧”. This interprets the relationship among the concepts,
objects, and attributes. The nodes in this diagram express the concepts. However, this
diagram is a type of directed acyclic graph. In IF sets, FCA is used for decision making,
data analysis, knowledge discovery, and especially for forecasting purposes.

Definition 4. Let C1, C2 ∈ IF(U) be the two IF sets, given as

C1 =
{(

x, µC1(x), γC1(x)
)
| x ∈ U

}
,

C2 =
{(

x, µC2(x), γC2(x)
)
| x ∈ U

}
.

where µC1(x), γC1(x) : U → [0, 1] and µC2(x), γC2(x) : U → [0, 1] such that

0 ≤ µC1(x) + γC1(x) ≤ 1,

0 ≤ µC2(x) + γC2(x) ≤ 1.

4
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Here, µC1(x), γC1(x) ∈ [0, 1] indicate the degree of membership and nonmembership of
x ∈ C1, and µC2(x), γC2(x) ∈ [0, 1] indicate the degree of membership and nonmembership of
x ∈ C2 IF sets, such that ∀x ∈ U.

Definition 5. Let C1, C2 ∈ IF(U) be the two IF sets given in Definition 4, then these two sets
through FCA algorithm are evaluated as

C1,2 =
{(

x, min
(

µC1(x), µC2(x)
)
, max

(
γC1(x), γC2(x)

))
| x ∈ U

}
.

These are the basic mathematical definitions which define the FCA and its operations
with respect to IF sets. Moreover, later sections explain it more in detail by means of the
GrC approach.

4. Granular Computing (GrC)

GrC is an emerging field for information processing [27,28] through the basic building
blocks of information, named granules. In the data science literature, the granule is defined
as the cluster or set of objects extracted or grouped together by similarity, uniformity,
proximity, predictability, resemblance, physical adjacency, or functionality. These granules
can be represented in interval values, rough sets, neutrosophic sets [29], fuzzy sets [30], IF
sets, etc. Moreover, these granules can be partitioned into finer or smaller granules called
subgranules. In order to compose and decompose the granules, specific measures called
granulation measures are employed.

In this study, the GrC approach is used with FCA by considering the IF datasets
containing various events as objects having spatio-temporal attributes. Moreover, different
GrC measures are used, including IG, COV, SP, and Q value for the IF datasets. Here,
for the first decomposition, IF datasets are decomposed in different granules, while each
granule consists of the set of events as objects having spatio-temporal attributes. In the first
decomposition, the IG of each granule is determined, and the granule (having more IG) is
selected for further granulation measures i.e., COV and SP. For the second decomposition,
the granule determined in the first decomposition (for the further granulation measures) is
further decomposed into subgranules, the IG of each subgranule is found, the subgranule
(with higher IG) for further granulation measures is determined, and so on. This process
is performed until the granules/subgranules are obtained, with interesting granulation
measures having more COV, less SP, and higher Q value.

5. Proposed Methodology
5.1. Periodic Occurrences (Co-Occurrences), Nonoccurrences, and Uncertainty of
Occurrences/Nonoccurrences of Events in the Form of IF Datasets

In real life, an event can be represented by spatio-temporal occurrences and co-
occurrences. Based on the specific time unit, different timelines can be assumed for the
temporal information related to the occurrences and co-occurrences of events [31]. For ex-
ample, the time unit is a day or a month, considering the timeline based on the day or
the month, respectively. A timeslot is the sequence of time units (days or months); if the
timeline is considered based on the days, then each day corresponds to a timeslot. Hence,
different timelines can provide temporal granularity.

In the literature, spatial and temporal events data are evaluated through FCA and
the GrC paradigm using classical single-attribute value in FCA data [31]. This proposed
methodology uses the IF datasets, in which events occur at a certain place (spatial aspect)
and time (temporal aspect) with certain membership and nonmembership values.

Definition 6. Let Gi be the set of objects having Mj set of attributes, where i = 1, 2, 3, · · ·
and j = 1, 2, 3, · · · denote the number of objects and attributes, respectively, such that each Mj

5
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attribute has IF set values µi,j and γi,j as membership and nonmembership of the Gi object in the
Mj attribute, respectively.

Mj =
{(

x, µi,j(x), γi,j(x)
)
| ∀x ∈ Mj

}

Definition 7. Formally, consider an IF formal context Ki,j = (Gi, Mj, I) such that Gi, Mj, and
I indicate the objects, attributes (given in Definition 6), and relation between the objects and the
attributes, respectively, as shown in Table 1, where

Gi = {G1, G2, G3, · · ·},
Mj = {M1, M2, M3, · · ·}.

Definition 8. Let a subset Gi ⊆ G of the objects, then the subset of the attributes to all the objects
in Gi is given as

Gi ↑= {m ∈ M | ∀g ∈ Gi, gIm}
Likewise, given a subset Mj ⊆ M of attributes, the subset of objects having all the attributes

in set Mj is given as
Mj ↓=

{
g ∈ G | ∀m ∈ Mj, gIm

}

Definition 9. According to FCA, for an IF formal concept of a formal context Ki,j = (Gi, Mj, I),
let there be a pair (Gi, Mj), where Gi ⊆ G, Mj ⊆ M and Gi ↑= Mj, Mj ↓= Gi, where Gi denotes
the objects (extents) and Mj indicates the attributes (intents) of the pair (Gi, Mj).

Definition 10. Let the IF concept lattice Li,j = (Gi, Mj, I), constructed with all the concepts of IF
formal concepts of Ki,j = (Gi, Mj, I), such that (G1, M1) and (G2, M2) are the two IF formal concepts
of the IF formal context Ki,j = (Gi, Mj, I), where (G1, M1) is called a superconcept of (G2, M2), and
(G2, M2) is called a subconcept of (G1, M1) if it satisfies the equivalent condition given as

(G1, M1) ≤ (G2, M2)⇔ G1 ⊆ G2 ⇔ M2 ⊆ M1

Definition 11. The set of all the IF superconcept and the subconcept interrelations construct a
lattice. The lattice is an abstract structure with join (denoted by “∨”) and meet (denoted by “∧”)
operations. Hence, the above expression of the IF superconcept and subconcept in this definition,
in the form of join and meet, is

(G1, M1) ∨ (G2, M2) = ((G1 ∪ G2) ↓↑, M1 ∩ M2),

(G1, M1) ∧ (G2, M2) = (G1 ∩ G2, (M1 ∪ M2) ↓↑)
In this mathematical form, “∨” and “∧” indicate the supermum and infimum operations of IF

formal concepts, respectively.

Definition 12. The IF formal concept of the given set of Gi objects with Mj attributes having the
IF values (µi,j, γi,j)→ [0, 1] in Ki,j = (Gi, Mj, I) formal context is evaluated as

(
min(µi,j), max(γi,j)

)

where i ∈ G, j ∈ M.

Example 1. Let the IF formal concept for G1 and G2 objects having Mj (j = 1, 2, 3, · · · ) attributes
(given in Table 1) be computed as

G12 =
[(

min(µ1,1, µ2,1), max(γ1,1, γ2,1)
)
,
(
min(µ1,2, µ2,2), max(γ1,2, γ2,2)

)
,(

min(µ1,3, µ2,3), max(γ1,3, γ2,3)
)
, · · · ,

(
min(µ1,j, µ2,j), max(γ1,j, γ2,j)

)]

6
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In this prposed methodology, the objects Gi indicate the events, and the attributes Mj
indicate the occurrence of those events at a certain place and time, with certain member-
ship µ (occurrence/co-occurrence), nonmembership γ (nonoccurrence), and uncertainty π
(uncertainty of occurrence/nonoccurrence) values provided in the IF datasets. For example,
in Table 1, let G1 be one of the events, M1 and M2 be two places, and M3, · · · , Mj be the
number of times an event has occurred with some µ membership of occurrence and γ
nonmembership of nonoccurrence values; then, it can be said that the event G1 has occurred
at M1 and M2 places at M3, · · · , Mj different times with µ happening and γ not happening
values of events.

Table 1. Objects having attributes in the form of IF sets.

M1 M2 M3 · · · Mj

G1 µ1,1, γ1,1 µ1,2, γ1,2 µ1,3, γ1,3 · · · µ1,j, γ1,j
G2 µ2,1, γ2,1 µ2,2, γ2,2 µ2,3, γ2,3 · · · µ2,j, γ2,j
G3 µ3,1, γ3,1 µ3,2, γ3,2 µ3,3, γ3,3 · · · µ3,j, γ3,j
...

...
...

...
...

...
Gi µi,1, γi,1 µi,2, γi,2 µi,3, γi,3 · · · µi,j, γi,j

Example 2. Let M3 be the one-year temporal attribute showing the events occurring in the M3
year. For the temporal granulation of the M3 year attribute, let Q1, Q2, Q3, and Q4 be the four
quarters, indicating data for January, February, and March; April, May, and June; July, August,
and September; and October, November, and December, given that each month’s data are a basic
granule. Hence, for the first decomposition, there will be four granules containing data for events
occurring in the four quarters of the year. For example, E1 event’s data in the Q1 quarter of the
M3 year in the form of IF sets is given as (0.3, 0.6), where µ = 0.3, (membership) indicates the
E1 event’s occurrence (co-occurrence) and γ = 0.6 (nonmembership) indicates the E1 event’s
nonoccurrence. Moreover, π = 0.1 (IF set index or indeterminacy) indicates the E1 event’s
uncertainty of occurrence/nonoccurrence, which is used to compute the IG later in this section.

Existing approaches only work on the periodical occurrences and co-occurrences of
events using the GrC paradigm and FCA by considering single-value attributes for for-
mal concepts. However, in the proposed approach, three aspects of the phenomenon of
events are considered: event occurrence (co-occurrence), nonoccurrence, and the uncer-
tainty of occurrence/nonoccurrence using GrC and the FCA algorithm by considering the
IF datasets. Furthermore, the events data are represented in the form of three-tuple IF
datasets as µ (membership), γ (nonmembership), and π (IF set index or indeterminacy),
indicating the event occurrence (co-occurrence), nonoccurrence, and the uncertainty of
occurrence/nonoccurrence, respectively. This timed granulation of occurring event data is
further explained and analyzed for the knowledge discovery in Section 6.

Here, the IF datasets (containing the objects and attributes relationship) are divided
into multiple parts, and each part is considered as the IF granule. Moreover, the lattice of
each IF granule is designed for the data analysis using FCA and IF granulation measures.

5.2. Computation of an IF Granule

In [32], fuzzy information granules and the hierarchical structures of IF rough sets
from the viewpoint of GrC are presented. In addition to this, FCA is also widely used in IF
sets, such as the research study in [33], which mainly focuses on the FCA in an IF formal
context. Moreover, in [33], the primitive notions in concept lattice theory are also extended
to the IF environment. In this research, the idea of IF granule evaluation is performed by
calculating IG, COV, SP, and the Q value of the IF concept lattice, where each concept
lattice is treated as an individual granule.

7
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5.3. Information Granulation (IG)

IG (IG) : IG = |1− IE| provides the information on the granule within the lattice by
taking into account the extensional parts (objects) included in the granule [31]. Information
entropy (IE) is an important measure to evaluate the uncertainty in data [34,35], which
is why the term |1− IE| gives the total IG obtained from the data granule or the concept
lattice. According to Shannon’s theory, IE is the key information measure in data analysis.
Based on the IF sets, different types of IE measures may be needed, depending upon the
evaluation. In [36], the authors introduce IE into the field of FCA to quantify the weight of
the concepts’ intent. A type of nonprobabilistic entropy measure for IF is proposed in [37].
Here, in [37], the entropy measure is the result of the IF sets’ geometric interpretation,
and it uses the ratio of distances between them, defined in terms of the ratio of the IF sets’
cardinalities of F ∩ Fc and F ∪ Fc, where Fc is the complement of the F IF set. Two methods
to determine the attribute weights are proposed in [38]. The first is when the information
regarding the attributes is completely unknown, and the second is when partial information
about attribute weights is known. Moreover, in [38], the attribute weights’ identification
based on the IF entropy is offered in the context of IF sets. In the literature, every type
of uncertainty measure, such as information Shannon entropy, information granularity,
rough entropy, and IE, is called by a common name: information granularity. The distance-
based information granularity for IF and multigranulation IF granular spaces is presented
in [39]; moreover, the author used this distance-based information granularity to construct
a novel hierarchical structure on such spaces. In [40], the authors compute the information
granularity by taking into account the number of objects (extensional parts) included in
the granule; hence, in this study, IG and IE provide the framework to evaluate the set of
granulation. Let K = (G, M, I) be the IF formal context of IF granule and L = (G, M, I) be
its corresponding lattice. The first granulation measure for the designed lattice of IF formal
context is given as

IG(L) =
1
G ∑

[
1
n

n

∑
j=1

1−
(

γj +
πj

2

)]
, (1)

where “G” is the number of objects involved in the IF granule, “n” is the number of
attributes of each object, j = 1, 2, 3, · · · shows the number of attributes, and “γj” and “πj”
are the nonmembership and hesitancy degree of the “jth” attribute. For the different IF
formal contexts from the IF datasets, Kx = (Gx, M, Ix) and Lx = (Gx, M, Ix), where Kx
indicates the formal contexts, Lx indicates their corresponding lattices, and x = 1, 2, 3, · · ·
denotes the number of formal contexts and their lattices. If the IG of lattice L1 = (G1, M, I1) is
greater than that of L2 = (G2, M, I2), then the K1 formal context contains more IG and is more
interesting with respect to providing spatio-temporal information in the IF GrC perspective.

Let E1, E2, E3, and E4 be the four events as objects; Place1, Place2, Place3, and Place4 be
the four spatial attributes; and Q1 and Q2 be the two parts of one-year data, such that Q1
consists of Jan, Feb, Mar, Apr, May, and June and Q2 consists of July, Aug, Sep, Oct, Nov,
and Dec temporal attributes data in the form of IF sets, as given in the Table 2. Furthermore,
let the events E1, E2, E3, and E4 occur at the given spatiality, with Q1 temporality in the K1
formal context and with Q2 temporality in the K2 formal context.

Table 2. Four Events as Objects with Four Spatial and Two Temporal Attributes Data.

Place1 Place2 Place3 Place4 Q1 Q2

E1 (0.9, 0.1) (0.6, 0.2) (0.3, 0.7) (0.8, 0.1) (0.3, 0.6) (0.9, 0.0)

E2 (0.3, 0.5) (0.5, 0.5) (0.8, 0.2) (0.2, 0.5) (0.7, 0.2) (0.8, 0.1)

E3 (0.8, 0.2) (0.6, 0.2) (0.7, 0.1) (0.2, 0.7) (0.4, 0.6) (0.1, 0.8)

E4 (0.2, 0.6) (0.3, 0.6) (0.6, 0.3) (0.1, 0.6) (0.2, 0.8) (0.7, 0.2)

Hence, the IG of K1 and K2 formal contexts is given as
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IG(K1) =

1
4 ∑

{
1
5

(
1−

(
0.1 +

0
2

))
+

(
1−

(
0.2 +

0.2
2

))
+

(
1−

(
0.7 +

0
2

))
+

(
1−

(
0.1 +

0.1
2

))
+

(
1−

(
0.6 +

0.1
2

))}
+

{
1
5

(
1−

(
0.5 +

0.2
2

))
+

(
1−

(
0.5 +

0
2

))
+

(
1−

(
0.2 +

0
2

))
+

(
1−

(
0.5 +

0.3
2

))
+

(
1−

(
0.2 +

0.1
2

))}
+

{
1
5

(
1−

(
0.2 +

0
2

))
+

(
1−

(
0.2 +

0.2
2

))
+

(
1−

(
0.1 +

0.2
2

))
+

(
1−

(
0.7 +

0.1
2

))
+

(
1−

(
0.6 +

0
2

))}
+

{
1
5

(
1−

(
0.6 +

0.2
2

))
+

(
1−

(
0.6 +

0.1
2

))
+

(
1−

(
0.3 +

0.1
2

))
+

(
1−

(
0.6 +

0.3
2

))
+

(
1−

(
0.8 +

0
2

))}
,

IG(K1) = 0.53
IG(K2) =

1
4 ∑

{
1
5

(
1−

(
0.1 +

0
2

))
+

(
1−

(
0.2 +

0.2
2

))
+

(
1−

(
0.7 +

0
2

))
+

(
1−

(
0.1 +

0.1
2

))
+

(
1−

(
0 +

0.1
2

))}
+

{
1
5

(
1−

(
0.5 +

0.2
2

))
+

(
1−

(
0.5 +

0
2

))
+

(
1−

(
0.2 +

0
2

))
+

(
1−

(
0.5 +

0.3
2

))
+

(
1−

(
0.1 +

0.1
2

))}
+

{
1
5

(
1−

(
0.2 +

0
2

))
+

(
1−

(
0.2 +

0.2
2

))
+

(
1−

(
0.1 +

0.2
2

))
+

(
1−

(
0.7 +

0.1
2

))
+

(
1−

(
0.8 +

0.1
2

))}
+

{
1
5

(
1−

(
0.6 +

0.2
2

))
+

(
1−

(
0.6 +

0.1
2

))
+

(
1−

(
0.3 +

0.1
2

))
+

(
1−

(
0.6 +

0.3
2

))
+

(
1−

(
0.2 +

0.1
2

))}
,

IG(K2) = 0.58
Hence, the IG of the K2 IF formal context is greater than the IG of the K1 IF formal

context, implying that the events with given spatial and Q2 temporal attributes are more
interesting with respect to providing more spatio-temporal information in the periodical IF
GrC perspective. Moreover, for the further process, the K2 IF formal context will be decided
for the computation of granulation measures, which is discussed in Section 6.

5.4. Granular Computing Measures for the Interestingness Level of IF Lattice

In the literature, there are various proposed granular measures based on FCA which
identify the interestingness level of the granule. The GrC and FCA measures defined
in [41] and [42], respectively, include COV, SP, stability, robustness, probability, separation,
etc. The most important granular measures are COV and SP, which are used in the GrC
approach based on FCA. In this study, COV, SP, and Q value are used to analyze the
interestingness level of the IF lattice.

5.5. Coverage (COV)

COV is the most important granulation measure to evaluate the granule within the
spatial, temporal, or spatio-temporal granulation perspective [31]. COV indicates the data
granule to represent or cover the given data. The main objective of calculating the COV in
this study is to find the IF lattice granule data objects’ COV which contains the interesting
information. Generally, the larger the data objects being covered the higher the COV of
the interesting information granule. In [43], the concept of COV with invariability and
its interconnections are analyzed from the viewpoint of algebraic properties of a fuzzy
system, including membership function, inclusion, union and intersection, and support and
fuzzy relation. Depending on the nature of granule, the definition of COV can be properly
expressed, as in [44], where the concept of COV is defined with the fuzzy perspective
of GrC. Here, the COV for the IF concept lattice objects using membership values in the
perspective of GrC approach is computed as

COV(C) =

[(
D
G
× 1

N

N

∑
i=1

C
(

xµj

))
+

πj

2

]
, (2)

where “N” is the number of elements in the IF concept lattice C granule, µj, where j =
1, 2, 3, · · · , is the number of membership values, and πj is the hesitation degree of each
attribute involved in the granule. Here, D shows the involved objects, and G indicates the
total number of objects in the granule. In the above Equation (2), (

πj
2 ) is used because the

uncertainty can be membership or nonmembership of the IF set value.
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The motivation behind the use of Equation (2) is the computation of COV for the
formal concept granule containing the event’s spatio-temporal information in the form of
IF sets. The COV for the IF formal concept as a granule C for the involved objects (events)
D
G [31] is the sum of membership grades [44] 1

N ∑N
i=1 C

(
xµj

)
in the IF formal concept.

Additionally, the term
πj
2 indicates the membership value in the π degree of indeterminacy.

The illustration to compute the COV is given in Example 3.

Example 3. Let X = {x1, x2, x3, x4, x5} and C̃(x) be the IF formal concept of IF formal context,
consisting of E1 event as an involved object with Q1 temporal data given in Table 2, such that

C̃(x) = {(0.9, 0.1, x1), (0.6, 0.2, x2), (0.3, 0.7, x3), (0.8, 0.1, x4), (0.3, 0.6, x5)}.

Let D = 1 and G = 4, because the object involved in the C̃ IF formal concept is one, i.e., E1,
and the total number of objects is four, i.e., E1, E2, E3, and E4, respectively. Moreover, N = 5 is the
number of IF attributes in the data, and πj is the total degree of indeterminacy in all the attributes
of the C̃ IF formal concept.

COV(C) =

[(
1
4
× 1

5

5

∑
i=1

0.9 + 0.6 + 0.3 + 0.8 + 0.3

)
+

0.4
2

]
= 0.34.

5.6. Specificity (SP)

The SP measure is the fundamental granulation measure used to find the abstract,
precise, or specific level of the granule in GrC. SP’s role in IF sets is similar to the role of
entropy in probability theory, as entropy estimates the probability of the specific event
under consideration, which encapsulates the information about the fundamental probability
distribution. The author of [45] states that in expert- and knowledge-based systems, SP
plays a fundamental role in determining the usefulness of the information provided by these
systems. Moreover, an increase in the abstract level of the SP of the information provided
increases the information’s usefulness. For example, a system shows the prediction of
tornado storm occurrences in different states at different times. Additionally, this system,
in most cases, will correctly predict the situation of the tornado’s occurrence in both spatial
and temporal perspectives. This system will not be of much use if it does not determine
which type of precautionary measures should be taken at particular states at a particular
time. This scenario points out a very important uncertainty principle of information theory,
which is called the specificity–correctness trade-off.

An important idea to note is that the higher the SP, the lower the granule level
of abstraction. In this study, the concept of SP is used for the spatio-temporality (two
perspectives) of the IF concept lattice granule measure by using the len(d) and range
concepts. As explained in [31], len(d) and range indicate the length of the involved temporal
slot and the sum of the lengths of all temporal slots, respectively. According to refs. [31,45],
SP is measured as follows:

SP(C) =
[

1− len(d)
range

]
×
[

α− 1
n− 1 ∑

x∈X 6=X∗
G(x)

]
. (3)

Here, the IF set’s concept lattice is considered. Let X = {x1, x2, x3, · · · , xn} be the set
of attributes in set X and C be the IF set with (C+(x), C−(x)) membership and nonmem-
bership of the IF ordered pair. In Equation (3) α = Maxx[C+(x)], assuming that it occurs at
xm such that α = C+(xn), ∀xn 6= xm, calculate G(x) = α ∧ (1− C−(x)) to compute the SP
of IF set C [45]. The illustration of calculating SP is given in Example 4.
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Example 4. Let X = {x1, x2, x3, x4, x5} and C̃(x) be the IF formal concept, such that

C̃(x) = {(0.9, 0.1, x1), (0.6, 0.2, x2), (0.3, 0.7, x3), (0.8, 0.1, x4), (0.3, 0.6, x5)}.

Here, the value of α = 0.9 occurs in x1, then G(x) = α ∧ (1− C−(x)) is computed for the
x 6= x1 as

G(x2) = 0.9∧ (1− 0.2) = 0.8,

G(x3) = 0.9∧ (1− 0.7) = 0.3,

G(x4) = 0.9∧ (1− 0.1) = 0.9,

G(x5) = 0.9∧ (1− 0.6) = 0.4.

For example, C̃(x) is one of the IF formal concepts of the IF formal context, with Q1
temporal data given in Table 2; then, len(d) = 6 and range = 12.

SP(C̃(x)) =
[

1− 6
12

]
×
[

0.9− 1
5− 1 ∑(0.8 + 0.3 + 0.9 + 0.4)

]
= 0.15.

The SP of individual IF concept lattice granules is calculated in Section 6.

5.7. Unique Index (Q) Value

In ref. [31], the authors define the aggregation of COV and SP as the Q value. In
the Q value, the COV(C) determines the objects representing the IF concept lattice granule
COV; on the other hand, SP(C) indicates the SP for the IF concept lattice granule in the
perspectives of spatial and temporal attributes using the GrC approach. The mathematical
measure to compute the Q value is given as

Q(C) = COV(C)× (SP(C))ζ (4)

Here, the exponent on SP, “ζ”, is the aspect of the SP. It shows the change in the
partition level of the data. Moreover, the higher the value of “ζ”, the more important the
aspect of the SP. The idea of “ζ” is more understandable later in the experimental analysis.
In ref. [31], the authors also propose the average Q value of data granules; here, the IF
concept lattice granule average Q value can be computed as follows:

Q(L) = ∑
(A,B)∈L

Q(C)
n

(5)

In this expression, the IF concept lattice granule C shows the object or the set of objects
A, which contains the attributes in the form of membership and nonmembership B of the
IF set.

To assess different hierarchical levels of data, granulation measures can be compared
by checking which granulation level provides more interesting results. To assess the hierar-
chical levels, a particular attribute is decomposed to check whether the data granulation
provides improved results over the previous ones. Here, the focus was spatial and tempo-
ral attributes. Suppose that temporal attributes are decomposed, such that T denotes the
temporal attribute, and after decomposing T in n attributes {T1, T2, T3, · · · , Tn}, it can be
determined through the granulation measures which temporal decomposition provides
more interesting results. Additionally, the formal context related to the T temporal attribute
is shown as K = (G, M, I), while that related to the decomposed temporal attributes,
i.e., T1, T2, T3, · · · , Tn, is given by K

′
= (G

′
, M

′
, I
′
). Moreover, the granulation measures

are expressed for different hierarchical levels accordingly. With this, the COV for different
granularity levels can be shown as

COV(C) ≥ COV(C
′
) (6)

11
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In addition to this, the SP for the different granular levels can also hold the following
statement:

SP(C) ≤ SP(C
′
) (7)

To check the granularity level of interestingness for a particular timeslot, [31] can be
computed as

Q(T) = ∑
Q(C)

nT
(8)

where nT is the cardinality of the set of IF formal concepts having T temporal attributes. It
is obvious that the granulation through the decomposition of temporal attribute may lead
to better results, such as

Q(C) ≥ Q(C
′
) (9)

In this way, the level of interestingness is assessed in different hierarchical granule
levels by checking that the greater Q(C) value is the more suitable granule in terms
of interestingness.

6. Experimental Evaluation

In this section, experimental analysis for the proposed IF concept lattice granule
through GrC methodology is discussed. The objective of this study is to analyze the spatio-
temporal perspectives of the IF granule. The results may be used to predict the spatiality
and periodicity of the information granule, particularly when the data are provided in the
IF sets. The datasets used in this experiment consist of the four activity records of providing
information related to spatiality and temporality of the activities executed by a specific
actor or user. Here, the activities are indicated as four events, E1, E2, E3, and E4; four places,
Place1, Place2, Place3, and Place4, denoting spatiality; and four quarters, Q1, Q2, Q3, and Q4,
of the year, denoting temporality, where events indicate objects, and places and quarters
of the year indicate the attributes. The main focus of this experiment is the periodical
granulation of the IF concept lattice granules. There may be hundreds of events indicating
object occurrences at different spatio-temporal attributes, but here, four events as objects
and four spatial and four temporal attributes for the experimental analysis are considered,
as presented in Table 3. In the temporal perspective of attributes, annual periodicity of
time granulation is decomposed into four quarters, Q1, Q2, Q3, and Q4, where these timed
granulation quarters consists of Jan, Feb, and Mar; Apr, May, and June; July, Aug, and
Sep; and Oct, Nov, and Dec, respectively. Additionally, the GrC approach is performed by
considering the periodicity of the temporal attribute, in which the first decomposition of
periodicity is set to months.

Table 3. Four Events as Objects with Four Spatial and Four Temporal Attributes Data.

Place1 Place2 Place3 Place4 Q1 Q2 Q3 Q4

E1 (0.9, 0.1) (0.6, 0.2) (0.3, 0.7) (0.8, 0.1) (0.3, 0.6) (0.9, 0.0) (0.7, 0.2) (0.4, 0.3)

E2 (0.3, 0.5) (0.5, 0.5) (0.8, 0.2) (0.2, 0.5) (0.7, 0.2) (0.8, 0.1) (0.8, 0.2) (0.5, 0.4)

E3 (0.8, 0.2) (0.6, 0.2) (0.7, 0.1) (0.2, 0.7) (0.4, 0.6) (0.1, 0.8) (0.7, 0.3) (0.2, 0.7)

E4 (0.2, 0.6) (0.3, 0.6) (0.6, 0.3) (0.1, 0.6) (0.2, 0.8) (0.7, 0.2) (0.8, 0.1) (0.1, 0.6)

The IF concepts of the given four objects with spatial attributes in the Q1 quarter of time
granule are (1, C̃1

1)), (2, C̃1
2), (3, C̃1

3), (12, C̃1
4), (13, C̃1

5), (23, C̃1
6), (24, C̃1

7), (123, C̃1
8), (124, C̃1

9),
(234, C̃1

10), (U, C̃1
11)and(∅, C̃1

∅) where:

C̃1
1 = {(0.9, 0.1), (0.6, 0.2), (0.3, 0.7), (0.8, 0.1), (0.3, 0.6)}, C̃1

2 = {(0.3, 0.5), (0.5, 0.5), (0.8, 0.2), (0.2, 0.5), (0.7, 0.2)}
C̃1

3 = {(0.8, 0.2), (0.6, 0.2), (0.7, 0.1), (0.2, 0.7), (0.4, 0.6)}, C̃1
4 = {(0.3, 0.5), (0.5, 0.5), (0.3, 0.7), (0.2, 0.5), (0.3, 0.6)}

C̃1
5 = {(0.8, 0.2), (0.6, 0.2), (0.3, 0.7), (0.2, 0.7), (0.3, o.6)}, C̃1

6 = {(0.3, 0.5), (0.5, 0.5), (0.7, 0.2), (0.2, 0.7), (0.4, 0.6)}
C̃1

7 = {(0.2, 0.6), (0.3, 0.6), (0.6, 0.3), (0.1, 0.6), (0.2, 0.8)}, C̃1
8 = {(0.3, 0.5), (0.5, 0.5), (0.3, 0.7), (0.2, 0.7), (0.3, 0.6)}

C̃1
9 = {(0.2, 0.6), (0.3, 0.6), (0.3, 0.7), (0.1, 0.6), (0.2, 0.8)}, C̃1

10 = {(0.2, 0.6), (0.3, 0.6), (0.6, 0.3), (0.1, 0.7), (0.2, 0.8)}
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C̃1
11 = {(0.2, 0.6), (0.3, 0.6), (0.3, 0.7), (0.1, 0.7), (0.2, 0.8)}, C̃1

∅ = {(1, 0), (1, 0), (1, 0), (1, 0), (1, 0)}

The IF values of the IF formal concepts are evaluated according to the expression(
min(µi,j), max(γi,j)

)
, given in Definition 12. The IF concept’s lattice design of the given

four objects with spatio-temporal attributes with the Q1 quarter of time granule is given in
Figure 1.

Figure 1. IF concept’s lattice diagram of four objects with spatial and Q1 quarter of time granule attributes.

Similarly, the IF concepts of the given four objects with spatial attributes in the Q2 quar-
ter of time granule are(1, C̃2

1), (2, C̃2
2), (3, C̃2

3), (12, C̃2
4), (13, C̃2

5), (23, C̃2
6), (24, C̃2

7), (123, C̃2
8),

(124, C̃2
9), (234, C̃2

10), (1234, C̃2
11), (∅, C̃2

∅) where:

C̃2
1 = {(0.9, 0.1), (0.6, 0.2), (0.3, 0.7), (0.8, 0.1), (0.9, 0.0)}, C̃2

2 = {(0.3, 0.5), (0.5, 0.5), (0.8, 0.2), (0.2, 0.5), (0.8, 0.1)}
C̃2

3 = {(0.8, 0.2), (0.6, 0.2), (0.7, 0.1), (0.2, 0.7), (0.1, 0.8)}, C̃2
4 = {(0.2, 0.6), (0.3, 0.6), (0.6, 0.3), (0.1, 0.6), (0.7, 0.2)}

C̃2
5 = {(0.8, 0.2), (0.6, 0.2), (0.3, 0.7), (0.2, 0.7), (0.1, 0.8)}, C̃2

6 = {(0.3, 0.5), (0.5, 0.5), (0.7, 0.2), (0.2, 0.7), (0.1, 0.8)}
C̃2

7 = {(0.2, 0.6), (0.3, 0.6), (0.6, 0.3), (0.1, 0.6), (0.7, 0.2)}, C̃2
8 = {(0.3, 0.5), (0.5, 0.5), (0.3, 0.7), (0.2, 0.7), (0.1, 0.8)}

C̃2
9 = {(0.2, 0.6), (0.3, 0.6), (0.3, 0.7), (0.1, 0.6), (0.7, 0.2)}, C̃2

10 = {(0.2, 0.6), (0.3, 0.6), (0.6, 0.3), (0.1, 0.7), (0.1, 0.8)}
C̃2

11 = {(0.2, 0.6), (0.3, 0.6), (0.3, 0.7), (0.1, 0.7), (0.1, 0.8)}, C̃2
∅ = {(1, 0), (1, 0), (1, 0), (1, 0), (1, 0)}

The IF concept’s lattice design of the given four objects with spatio-temporal attributes
with the Q2 quarter of time granule is given in Figure 2.

Moreover, the IF concepts of the given four objects with spatial attributes in the Q3 quar-
ter of time granule are (1, C̃3

1), (2, C̃3
2), (3, C̃3

3), (4, C̃3
4), (12, C̃3

5), (13, C̃3
6), (23, C̃3

7), (24, C̃3
8),

(123, C̃3
9), (124, C̃3

10), (234, C̃3
11), (1234, C̃3

12), (∅, C̃3
∅) where:

C̃3
1 = {(0.9, 0.1), (0.6, 0.2), (0.3, 0.7), (0.8, 0.1), (0.7, 0.2)}, C̃3

2 = {(0.3, 0.5), (0.5, 0.5), (0.8, 0.2), (0.2, 0.5), (0.8, 0.2)}
C̃3

3 = {(0.8, 0.2), (0.6, 0.2), (0.7, 0.1), (0.2, 0.7), (0.7, 0.3)}, C̃3
4 = {(0.2, 0.6), (0.3, 0.6), (0.6, 0.3), (0.1, 0.6), (0.8, 0.1)}

C̃3
5 = {(0.3, 0.5), (0.5, 0.5), (0.3, 0.7), (0.2, 0.5), (0.7, 0.2)}, C̃3

6 = {(0.8, 0.2), (0.6, 0.2), (0.3, 0.7), (0.2, 0.7), (0.7, 0.3)}
C̃3

7 = {(0.3, 0.5), (0.5, 0.5), (0.7, 0.2), (0.2, 0.7), (0.7, 0.3)}, C̃3
8 = {(0.2, 0.6), (0.3, 0.6), (0.6, 0.3), (0.1, 0.6), (0.8, 0.2)}

C̃3
9 = {(0.3, 0.5), (0.5, 0.5), (0.3, 0.7), (0.2, 0.7), (0.7, 0.3)}, C̃3

10 = {(0.2, 0.6), (0.3, 0.6), (0.3, 0.7), (0.1, 0.6), (0.7, 0.2)}
C̃3

11 = {(0.2, 0.6), (0.3, 0.6), (0.6, 0.3), (0.1, 0.7), (0.7, 0.3)}, C̃3
12 = {(0.2, 0.6), (0.3, 0.6), (0.3, 0.7), (0.1, 0.7), (0.7, 0.3)}

C̃3
∅ = {(1, 0), (1, 0), (1, 0), (1, 0), (1, 0)}
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Figure 2. IF concept’s lattice diagram of four objects with spatial and Q2 quarter of time granule attributes.

The IF concept’s lattice design of the given four objects with spatio-temporal attributes
with the Q3 quarter of time granule is given in Figure 3.

Figure 3. IF concept’s lattice diagram of four objects with spatial and Q3 quarter of time granule attributes.

Similarly, the IF concepts of the given four objects with spatial attributes in the Q4 quar-
ter of time granule are (1, C̃4

1), (2, C̃4
2), (3, C̃4

3), (12, C̃4
4), (13, C̃4

5), (23, C̃4
6), (24, C̃4

7), (123, C̃4
8),

(124, C̃4
9), (234, C̃4

10), (1234, C̃4
11), (∅, C̃4

∅) where:
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C̃4
1 = {(0.9, 0.1), (0.6, 0.2), (0.3, 0.7), (0.8, 0.1), (0.4, 0.3)}, C̃4

2 = {(0.3, 0.5), (0.5, 0.5), (0.8, 0.2), (0.2, 0.5), (0.5, 0.4)}
C̃4

3 = {(0.8, 0.2), (0.6, 0.2), (0.7, 0.1), (0.2, 0.7), (0.2, 0.7)}, C̃4
4 = {(0.3, 0.5), (0.5, 0.5), (0.3, 0.7), (0.2, 0.5), (0.4, 0.4)}

C̃4
5 = {(0.8, 0.2), (0.6, 0.2), (0.3, 0.7), (0.2, 0.7), (0.2, 0.7)}, C̃4

6 = {(0.3, 0.5), (0.5, 0.5), (0.7, 0.2), (0.2, 0.7), (0.2, 0.7)}
C̃4

7 = {(0.2, 0.6), (0.3, 0.6), (0.6, 0.3), (0.1, 0.6), (0.1, 0.6)}, C̃4
8 = {(0.3, 0.5), (0.5, 0.5), (0.3, 0.7), (0.2, 0.7), (0.2, 0.7)}

C̃4
9 = {(0.2, 0.6), (0.3, 0.6), (0.3, 0.7), (0.1, 0.6), (0.1, 0.6)}, C̃4

10 = {(0.2, 0.6), (0.3, 0.6), (0.6, 0.3), (0.1, 0.7), (0.1, 0.7)}
C̃4

11 = {(0.2, 0.6), (0.3, 0.6), (0.3, 0.7), (0.1, 0.7), (0.1, 0.7)}, C̃4
∅ = {(1, 0), (1, 0), (1, 0), (1, 0), (1, 0), (1, 0)}

Here, the IF concept’s lattice design of the given four objects with spatio-temporal
attributes with the Q4 quarter of time granule is given in Figure 4.

Figure 4. IF concept’s lattice diagram of four objects with spatial and Q4 quarter of time gran-
ule attributes.

Now, according to Equation (1), the IG of each lattice designed with the four events
showing the objects along with each quarter of the time granulation is given below:

Lattice1(designed with Q1 quarter of time granulation) IG : 0.53
Lattice2(designed with Q2 quarter of time granulation) IG : 0.58
Lattice3(designed with Q3 quarter of time granulation) IG : 0.60
Lattice4(designed with Q4 quarter of time granulation) IG : 0.52
Here, Lattice3, designed with the Q3 quarter of time granulation, gives more IG

than the other three lattices designed with the other three quarters of time granulation,
respectively. A higher IG leads to more interesting results with a less focused view of the
data. Now, the granulation measures COV and SP of Lattice3 IF concepts can be measured
through Equation (2) and Equation (3), respectively. According to Equations (2)–(4), the
COV, SP, and Q value of each IF concept of Lattice3 is given in Table 4.
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Table 4. Granulation measures of each IF concept of Lattice3.

COV(C) =[(
D
G ×

1
N ∑N

i=1 C
(

xµj

))
+

πj
2

]
SP(C) =

[
1− len(d)

range

]
×

[
α− 1

n−1 ∑X 6=X∗ G(x)
] Q(C) = COV(C)× (SP(C))ζ

C1 0.365 0.95 0.34675
C2 0.38 0.89 0.3382
C3 0.4 0.96 0.384
C4 0.5 0.92 0.46
C5 0.5 0.93 0.465
C6 0.41 0.93 0.3813
C7 0.44 0.92 0.4048
C8 0.55 0.92 0.506
C9 0.45 0.92 0.414
C10 0.59 0.92 0.5428
C11 0.585 0.94 0.5499
C12 0.57 0.91 0.5187
C13 0 0 0

Now, if the Q3 quarter of time granulation is decomposed into more parts, then this
decomposition of the Q3 quarter may provide more interesting results. For this purpose,
let Q3,1, Q3,2, and Q3,3 contain the July, August, and September IF data, respectively. This
is the second decomposition of the IF concept lattice designed through the Q3 quarter of
time granulation. Thus, the four events’ IF data with spatio-temporal attributes of the Q3
quarter’s second decomposition are given in Table 5.

Table 5. Events with Four Spatial and Three (decomposed) Q3,1, Q3,2, and Q3,3 Temporal At-
tributes Data.

Place1 Place2 Place3 Place4 Q3,1 Q3,2 Q3,3

E1 (0.9, 0.1) (0.6, 0.2) (0.3, 0.7) (0.8, 0.1) (0.9, 0.0) (0.0, 0.9) (0, 0)

E2 (0.3, 0.5) (0.5, 0.5) (0.8, 0.2) (0.2, 0.5) (1, 0) (0, 1) (0, 0)

E3 (0.8, 0.2) (0.6, 0.2) (0.7, 0.1) (0.2, 0.7) (0.8, 0.1) (0.1, 0.9) (0, 0)

E4 (0.2, 0.6) (0.3, 0.6) (0.6, 0.3) (0.1, 0.6) (0.9, 0.1) (0.1, 0.8) (0, 0)

The IG of each lattice, Lattice3,1, Lattice3,2, and Lattice3,3, with second decomposition
of Q3,1, Q3,2, and Q3,3 quarters of time granulation, respectively, is given below:

Lattice3,1 (designed with Q3,1 quarter of time granulation) IG : 0.63
Lattice3,2 (designed with Q3,2 quarter of time granulation) IG : 0.46
Lattice3,3 (designed with Q3,3 quarter of time granulation) IG : 0.44
It shows that Lattice3,1, made with the Q3,1 quarter of time granulation, gives more

IG than the other lattices of timed granulations. Moreover, the granulation measures of
the each concept lattice (as made with Lattice3), i.e., made with the Q3,1 quarter of time
granulation, are given as in Table 6.

Likewise, it can be observed that the granule Lattice2, designed with the Q2 quarter of
time granulation with an IG of 0.58, is the second highest IG. So, the granulation measures
COV, SP, and the Q value of the lattice, i.e., made with the Q2 quarter of time granulation,
are given as in Table 7.

Note, the value of “ζ = 1” is used because of the primary decomposition of the
granules. Here, primary decomposition means partitioning the data into months, be-
cause the first decided decomposition is set to one month. Moreover, partitioning one
month into two timeslots would be the secondary decomposition; in that case, the value
of “ζ” is 0.5. The applicability of the proposed approach is the knowledge discovery of
periodical events’ occurrences (co-occurrences), nonoccurrences, and uncertainty of occur-
rences/nonoccurrences in spatial and temporal aspects through IF datasets by applying
FCA and GrC.
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Table 6. Granulation measures of each IF concept of Lattice3,1.

COV(C) =[(
D
G ×

1
N ∑N

i=1 C
(

xµj

))
+

πj
2

]
SP(C) =

[
1− len(d)

range

]
×

[
α− 1

n−1 ∑X 6=X∗ G(x)
] Q(C) = COV(C)× (SP(C))ζ

C1 0.365 0.9 0.3285
C2 0.39 0.89375 0.3485625
C3 0.455 0.91875 0.4180313
C4 0.52 0.8875 0.4615
C5 0.47 0.8875 0.417125
C6 0.5 0.93125 0.465625
C7 0.56 0.89375 0.5005
C8 0.515 0.9 0.4635
C9 0.57 0.86875 0.4951875
C10 0.65 0.9125 0.593125
C11 0.64 0.8875 0.568
C12 0 0 0

Table 7. Granulation measures of each IF concept of Lattice2.

COV(C) =[(
D
G ×

1
N ∑N

i=1 C
(

xµj

))
+

πj
2

]
SP(C) =

[
1− len(d)

range

]
×

[
α− 1

n−1 ∑X 6=X∗ G(x)
] Q(C) = COV(C)× (SP(C))ζ

C1 0.175 0.9 0.1575
C2 0.13 0.89375 0.116188
C3 0.12 0.93125 0.11175
C4 0.21 0.9125 0.191625
C5 0.2 0.9 0.18
C6 0.18 0.91875 0.165375
C7 0.19 0.94375 0.179313
C8 0.21 0.95625 0.200813
C9 0.24 0.91875 0.2205
C10 0.195 0.93125 0.181594
C11 0.2 0.975 0.195
C12 0 0 0

7. Results and Discussion

The experiments were performed on a 64-bit system (Intel Core i3-4010U, 1.70 GHz,
4 GB RAM). Python (version 3.7) was used to construct the IF concepts’ lattice structures in
the experimental evaluation section. In the experimental evaluation of this research article,
IF data are taken to process the proposed methodology. Additionally, this IF data contain
four events, happening at four places in a year. For the first decomposition, one-year
timeslot data are partitioned into four quarters of the time granulation of events happening
at the given four places, where events show the objects and places, with time granulation
data indicating the attributes. The purpose of this methodology is to analyze the spatio-
temporal perspectives of the IF granule. More specifically, the idea is to find out whether
the granulation of IF data provides more interesting results. In the experimental evaluation,
the IG of the four lattices designed with the four events (objects) is analyzed first, which
happens at four places in four different quarters of the year, showing the spatio-temporal
attributes given as

Lattice1(designed with Q1 quarter of time granulation) IG : 0.53
Lattice2(designed with Q2 quarter of time granulation) IG : 0.58
Lattice3(designed with Q3 quarter of time granulation) IG : 0.60
Lattice4(designed with Q4 quarter of time granulation) IG : 0.52
Hence, the IG of Lattice3 made with the Q3 quarter of time granulation is higher than

the IG of all three lattices, so Lattice3 is chosen for further granulation measures. The COV,
SP, and Q value of each of Lattice3’s IF concept are calculated and given in Table 4. For the
second decomposition, the Q3 quarter is partitioned into three more timeslots, Q3,1, Q3,2,
and Q3,3, and the IG of lattices is made with the second partitioned timeslots, given as
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Lattice3,1 (designed with Q3,1 quarter of time granulation) IG : 0.63
Lattice3,2 (designed with Q3,2 quarter of time granulation) IG : 0.46
Lattice3,3 (designed with Q3,3 quarter of time granulation) IG : 0.44
It can be observed that the IG of the lattice with the Q3,1 quarter of time granulation

is greater than all the other IGs of the second decomposition lattices; therefore, if the
granulation measures of Lattice3,1 with the Q3,1 quarter of time granulation are checked in
Table 6, it can be seen that most of the IF concepts of the second decomposed lattice have
more COV and Q values than those of Lattice3 with the Q3 quarter of time granulation.
Hence, the granularity of data in IF sets gives more interesting results.

8. Comparison with Previous SOTA (State of the Art) Approaches
8.1. Comparison with Previous Spatial and Temporal Approaches Using FCA and GrC

This approach and its results are compared with other SOTA methodologies based
on the research methodology, the GrC perspective of spatial and temporal aspects and the
data viewpoint with the FCA algorithm. In [1], the authors present and evaluate a method
which uses an existing approach to discover periodic events in the data to combine time-
based granulation and three-way decisions to support decision makers in understanding
and reasoning on the learned granular structures conceptualizing spatial–temporal events.
In [7], the methodology interprets, represents, and implements sequential three-way GrC
with a framework of temporal–spatial multigranularity learning, which is described with
the temporality of data and the spatiality of parameters. The method in [31], based on the
GrC and FCA technique, proposes an approach which focuses on the temporal aspect of
data to extracte knowledge concerning the periodic occurrences of events. In the context
of three-way GrC, the authors in [46] introduce three extensional ideas, temporal, spatial,
spatial–temporal-based trisecting–acting–outcome (TAO) frameworks for the construction
of a multilevel composite granular structure.

In the literature, knowledge discovery through spatial and temporal aspects of data
uses the classical FCA algorithm (using single-value attributes) and the GrC paradigm
for the occurrences and co-occurrences of events. However, there can be three aspects
of events: occurrences (and co-occurrences), nonoccurrences, and uncertainty of occur-
rences/nonoccurrences with respect to spatial and temporal aspects of data. In this pro-
posed approach, IF datasets were used for events, such that event occurrences (and co-
occurrences), nonoccurrences, and uncertainty of occurrences/nonoccurrences in spatial
and temporal views can be indicated through the µ, γ, and π values, respectively. GrC was
used to discover the periodicity in the data at various abstraction levels, while FCA was
used to discover the granulation levels and process the granulation measures to understand
IF concepts. References [1,31] use an FCA-based single-value attribute for the single aspect
of event occurrences (and co-occurrences) with respect to the spatial and temporal aspects,
while [7,46] use granular structures for the spatial and temporal aspects of data. The main
advantages of the proposed approach over the existing approaches are discovering the
periodicity of spatial–temporal events data given in IF sets through GrC and the FCA
algorithm and predicting event occurrences, (and co-occurrences), nonoccurrences, and un-
certainty of occurrences/nonoccurrences in spatial and temporal views of data through IF
sets. The comparison of the proposed approach with other SOTA approaches is presented
in Table 8.

8.2. Comparison with Finding IE/IG

IG is computed through IE (uncertainty) in data. In GrC, the approaches [31,35] calcu-
late IE and IG using single-value attributes for the FCA while considering the one aspect of
event occurrences (co-occurrences). However, the proposed approach based on the GrC
paradigm uses IF datasets for the attributes of FCA that improves the results of IG. Addition-
ally, unlike the existing approaches, the proposed approach provides three aspects of event
occurrences (co-occurrences), nonoccurrence, and uncertainty of occurrence/nonoccurrence
in the spatial and temporal views of data. The comparison of (improved results computed
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through) the proposed approach with other SOTA approaches [31,35] is presented in
Table 9.

Here, the IG results obtained with the approaches of [31,35] are unchanged due to the
different IF µ and γ values in all the attributes shared by the objects in each lattice.

Table 8. Comparison with other SOTA approaches.

Research Article Research Methodology GrC (Spatial or Temporal)
Perspective

Data Viewpoint
with FCA/IF Sets

[1]

A method to combine time-based granulation and
three-way decisions to understand and reason on

learned granular structures and discover
periodic events.

Spatial and temporal aspects
of data granularity

FCA-based single-
value attribute

[7]

The method implements sequential three-way GrC
by a spatial–temporal multigranularity learning

framework, described with the temporality of data
and spatiality of parameters.

Spatial and temporal aspects
of data granularity -

[31]
A method based on GrC and FCA to focus the

temporal aspect and extract the knowledge
concerning periodic occurrences of events in data.

Temporal aspect of data
granularity.

FCA-based single-
value attribute.

[46]

Temporal, spatial, and spatial–temporal-based
trisecting–acting–outcome (TAO) frameworks for
the construction of multilevel composite granular

structures are introduced.

Spatial, temporal, and
spatial–temporal aspects of

data granularity
-

Proposed Approach

This approach analyzes and predict event
occurrences, nonoccurrences, and uncertainty of
occurrences/nonoccurrences through spatial and
temporal aspects given in IF sets’ data using GrC

and FCA.

Temporal aspect of data
granularity in IF datasets

IF set values using
granular computing

and the
FCA algorithm

Table 9. Comparison with other research methodologies to find IG. Higher values are bolded.

Lattice No. Results Obtained with
Approaches Used [31,35]

Results Obtained with the
Proposed Approach

Lattice1 0.25 0.53
Lattice2 0.25 0.58
Lattice3 0.25 0.60
Lattice4 0.25 0.52

Lattice3,1 0.25 0.63
Lattice3,2 0.25 0.46
Lattice3,3 0.25 0.44

8.3. Comparison with Finding COV, SP, and Q Value

COV, SP, and Q value are important granulation measures to analyze the granule.
In [31], granules are represented in the form of formal concepts and GrC and evaluated
through these granulation measures; moreover, in [44,45], these granulation measures
are proposed for the granules represented in fuzzy and IF sets. In existing approaches,
granulation measures are used only in the perspectives of GrC with the FCA algorithm [31],
or on fuzzy and IF sets [44,45]. However, the granulation measures in the proposed
approach are used in the perspective of GrC, FCA, and IF sets. In the proposed approach,
IF concepts are made and represented as granules, where the granulation measures are
used to evaluate those granules. The comparison given in Tables 10 and 11 shows that the
granulation measures used in the proposed approach give improved results.
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Table 10. Comparison with other Research Methodologies to find the granulation measures (COV, SP,
and Q value) of Lattice3. Higher values are bolded.

COV, SP and Q
Value Obtained with

Approaches Used in [44,45]

COV, SP and
Q Value Obtained

with Proposed Approach

Lattice3
IF Concepts

COV SP Q Value COV SP Q Value

C1 0.66 0.175 0.1155 0.365 0.95 0.34675
C2 0.52 0.425 0.221 0.38 0.89 0.3382
C3 0.6 0.15 0.09 0.4 0.96 0.384
C4 0.4 0.325 0.13 0.5 0.92 0.46
C5 0.4 0.25 0.1 0.5 0.93 0.465
C6 0.52 0.275 0.143 0.41 0.93 0.3813
C7 0.48 0.325 0.156 0.44 0.92 0.4048
C8 0.4 0.325 0.13 0.55 0.92 0.506
C9 0.4 0.3 0.12 0.45 0.92 0.414
C10 0.32 0.325 0.104 0.59 0.92 0.5428
C11 0.38 0.25 0.095 0.585 0.94 0.5499
C12 0.32 0.35 0.112 0.57 0.91 0.5187
C13 1 0 0 0 0 0

Table 11. Comparison with other Research Methodologies to find the granulation measures (COV, SP,
and Q value) of Lattice3,1. Higher values are bolded.

COV, SP and Q
Value Obtained with

Approaches Used in [44,45]

COV, SP and
Q Value Obtained

with Proposed Approach

Lattice3,1
IF Concepts

COV SP Q Value COV SP Q Value

C1 0.66 0.4 0.264 0.365 0.9 0.328
C2 0.56 0.425 0.238 0.39 0.89375 0.348
C3 0.62 0.325 0.2015 0.455 0.91875 0.418
C4 0.44 0.45 0.198 0.52 0.8875 0.462
C5 0.54 0.45 0.243 0.47 0.8875 0.417
C6 0.5 0.275 0.1375 0.5 0.931 0.466
C7 0.42 0.425 0.179 0.56 0.894 0.5005
C8 0.42 0.4 0.168 0.515 0.9 0.464
C9 0.36 0.525 0.189 0.57 0.86875 0.495
C10 0.4 0.35 0.14 0.65 0.9125 0.593
C11 0.34 0.45 0.153 0.64 0.8875 0.568
C12 1 0 0 0 0 0

The proposed approach is compared with other SOTA approaches by applying gran-
ulation measures on the IF datasets given in Section 6 (experimental evaluation). These
IF datasets contain events as objects and spatial and temporal attributes, in which the
temporal attribute is decomposed into four quarters, Q1, Q2, Q3, and Q4 of the annual
periodicity of time granulation, and four granules are created in the first decomposition.
Afterwards, the IG of each granule is computed to determine the granule with more IG.
FCA is then used to construct lattices from each granule, and granulation measures are
performed on the decided granule (with more IG). As shown in Table 9, the IG obtained
with the proposed approach is greater than that obtained with other approaches [31,35].
In Table 9, the IG obtained with the other approaches is the same for all the lattices, because
none of the objects have identical IF values. Furthermore, in Tables 10 and 11, most of
the granulation measures (COV, SP, and Q value) of Lattice3 and Lattice3,1 obtained with
the proposed approach are greater than the existing approaches [44,45]. Hence, it can be
observed that the proposed approach provides improved results for IG, COV, and Q value
obtained from the IF datasets and processed through GrC and the FCA algorithm.

9. Conclusions and Future Work

This research suggests a novel approach to determine occurrences (and co-occurrences),
nonoccurrences, and uncertainty of occurrences/nonoccurrences of events based on GrC
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and IF datasets with spatio-temporal attributes. The FCA algorithm was used to analyze
the granulation level and granulation measures. Furthermore, different measures are
proposed to analyze granulation levels formed with the IF datasets. The originality of
this proposed methodology is to discover the periodical occurrences (and co-occurrences),
nonoccurrences, and uncertainty of occurrences/nonoccurrences in IF datasets with spatio-
temporal attributes using FCA and granulation measures. Here, the limited IF datasets
indicating the spatial and temporal aspects of data are considered for the experimentation
and work of the proposed methodology. This can be implemented on a large number
of IF datasets in the context of big data for the scalability of the proposed methodology.
In the real world, this approach can be used to discover the significance in periodicities
of data related to storm occurrences, digital forensics, and electronic and smart video
surveillance by constructing a timeline to analyze and predict information. Moreover,
the proposed approach does not provide an automatic or semiautomatic process to predict
an event’s occurrence in granular structures. The authors aim to address these additions in
future works.
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Abstract: Hydraulic valves are used to determine the set values of hydraulic quantities (flow rate,
pressure, or pressure difference) in a hydraulic system or its part. This is achieved through the
appropriate throttling of the stream flowing through the valve, which is automatically set by the
operator (e.g., opening the throttle valve). The procedures for determining its static and dynamic
properties were described using the example of modeling a two-stage proportional relief valve.
Subsequently, the importance of the design and operational parameters was determined using multi-
valued logic trees. Modeling began with the determination of equations describing the flow and
movement of moving parts in a valve. Based on the equations, a numerical model was then created,
e.g., in the Matlab/Simulink environment (R2020b). The static characteristics were obtained as the
result of a model analysis of slow changes in the flow rate through the valve. Various coefficients
of logical products have not been taken into account in the separable and common minimization
processes of multi-valued logic equation systems in any available literature. The results of the model
tests can be used to optimize several types of hydraulic valve constructions.

Keywords: multi-valued logic trees; hydraulic proportional valve; weighting factors; optimization

MSC: 03B50; 03B70; 03B80; 05C05

1. Introduction

In recent years, intensive development in the field of hydraulic valves has been ob-
served. This development is mainly related to the integration of electronics designed to
control the valves. Modern hydraulic valves—especially those controlled via the propor-
tional technique—are often equipped with various types of sensors, e.g., an inductive
spool-position sensor inside the body of a proportional valve. The integration of classic
hydraulics with electronics and sensors creates new, previously unattainable possibilities
for using hydraulic proportional valves [1]. The course of the control signal of proportional
valves is shown in the form of a block diagram in Figure 1.

An analog electrical signal with a voltage value typically not greater than 10 V is
fed to an electronic amplifier. From the electronic amplifier, the electric control signal is
fed through wires with a current that usually does not exceed 1.5 A per coil of a propor-
tional electromagnet. Depending on the type of proportional electromagnet, a force or
displacement of the proportional electromagnet armature is generated. If the valve uses
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a proportional solenoid with an adjustable stroke, a displacement of the electromagnet
armature is generated proportionally to the value of the control current. This affects the
proportional valve’s control element (e.g., a spool-bushing pair or seat plug), causing its
displacement (x). If the valve uses a proportional solenoid with a regulated force, the F
force is generated proportionally to the value of the control current on the armature of the
proportional solenoid. This force is transmitted to the valve control, which is usually a
poppet in the proportional pressure valve. With a change in the displacement of the valve
actuator or the force acting on it, the Q flow rate or the p pressure functionally vary depend-
ing on if a proportional valve is controlling the flow rate or pressure. These parameters
control the operation of the hydraulic receiver where the current determines the n or v
speed of the hydraulic receiver and the pressure determines the external M or F load.
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There are no significant differences in terms of the mechanical design between con-
ventionally controlled valves and proportionally controlled valves. The main difference
relies on the fact that, in proportional valves, instead of a spring, hand wheel, lever, or
conventional solenoid, there are one or more proportional solenoids. There are two types
of proportional electromagnets: force-adjustable and stroke-adjustable. Their use depends
on the type and function of the proportional valve and is determined by its characteristics.
The benefits of using proportional valves include combining several functions in one valve,
a smooth control of flow and pressure parameters, the ability to program the valve and
the receiver controlled by it, and the reduction of dynamic surpluses [2]. Proportional
valves also have some disadvantages in comparison to conventional ones, including a
higher price, stricter requirements regarding purity of the working liquid, and sensitivity
to operating conditions (moisture, salinity of the environment, and external mechanical
vibrations). Technically speaking, proportional valves were initially a bridge between
conventionally (mechanically or electrically) controlled valves and servo valves. Presently,
the latest proportional control valves have dynamic parameters equal to those of servo
valves and sometimes even surpass them [3]. For example, it can be stated that the limit
frequency of a two-stage servo valve is 240–270 Hz depending on the manufacturer, and
the limit frequency of the latest-generation proportional valve with VCD (Voice Coil Drive)
technology is 350 Hz. Several years ago, this frequency was 6–10 Hz for a single-stage
proportional valve [4]. In many industries, particularly mechanical engineering, propor-
tional relief valves with one—or more often, two—stages are widespread. An example of
the use of proportional valves is their use in the hydraulic system for lifting and lowering
loads with significant masses [5] such as agricultural machinery [6], CNC machine tools,
hydraulic presses, wheel loaders, and ships.

Related Work

The research to determine the importance of hydraulic valves’ design and/or oper-
ational parameters is still ongoing. For example, study [7] optimized the relief valve by
minimizing partial multi-valued logic functions. Multi-valued logical equations which
constituted design guidelines for the entire series of types of such valves were used. The
analysis of the stability of hydraulic elements based on the systems of multi-valued logical
equations and the method of multi-valued logical trees, taking into account weighting
factors, allows for the consideration of the conditions of global stability. The most favorable
result is the relationship specification, which binds the design and operational parameters
limitations. In addition, the conditions that limit the parameters of the valve and the system
are brought to a simple analytical and graphical relationship. Overall, it is limited to a
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relief valve system operated directly, general stability conditions, and a computerized
time-course solution with different variable coefficients.

The modeling of hydraulic systems usually uses ordinary differential equations. From
these equations a system of equations is created, initial conditions are assumed, and,
after parameterization of the equations, the equations are solved to obtain time courses
of the relevant parameters of the hydraulic system, e.g., pressure as a function of time
or the velocity of the receiver as a function of time. These are models with focused
parameters. One hydraulic system sometimes exhibits wave phenomena that lead to
hydraulic resonance. This is referred to as a hydraulic long line. In such cases, partial
differential equations are used for modeling and the method of characteristics (MOC) is
used to solve them. This paper considers a system in which no wave phenomena occur and
uses ordinary differential equations to describe the valve state. Decision-support systems
are also applied to hydraulic and pneumatic systems [8–16]. The paper [8] mainly presents
related methods, from classical clustering and classification topics to database methods
(e.g., association), and from database methods (e.g., association rules, data cubes) to newer
and more advanced topics (e.g., SVD/PCA, wavelets, support vector machines). The work
of [9–12] focused on concepts for integrating decision-support systems of poorly structured
data with a data warehouse based on relational or multidimensional structures. In [13], a
framework was developed to evaluate different rainwater-discharge options for urban areas
in arid regions. The modeling of rainfall runoff was carried out using the Hydrological-
Engineering-Centre and Hydrological-Modelling-System (HEC-HMS). Hydraulic modeling
was carried out using SewerGEM to evaluate the effectiveness of the various alternatives
for a given design flood [14,15]. The authors of [14,15] presented further applications of
multi-criteria decision support methods. In particular, in the work [15] of the Geospatial
Information System (GIS), a multi-criteria decision-making system (MCDM) was applied
to logic. The decision-making Trial and Evaluation Laboratory (DEMATEL) approach was
used to create a network of relationships between criteria. The author of [17] described
a model-driven decision-support system (software tool) implementing a model-based
online leak-detection and localization methodology that is useful for a large class of water
distribution networks.

The present work presents the use of multi-valued logical trees with multivalent
weighting factors in the analysis of a two-stage proportional relief valve and a nozzle-
aperture preliminary stage [18–20]. A significant amount of literature exists on the ap-
plications of decision trees in decision-making systems. However, there are only a small
number of publications on their application in design methodology. Cognitive decision
theories seek sufficient and effective solutions for so-called real-world problems and well-
defined problems. There are a number of decision-support methods that are familiar to
the authors and, in particular, have already been used by the authors to solve a number
of problems in decision-support areas, e.g., in the use of special types of parametric de-
pendency graphs [21,22]; inductive decision trees [23,24]; and in particular multi-valued
logic trees [25]. Specifically, the recent paper has shown how methods based on multi-
valued logic trees can be very beneficial when other methods are ineffective. However,
multi-valued logic tree methods have plenty of advantages in design methodology and are
still being developed. The advantage of the method of multi-valued logical trees is that the
measurement data can be recorded by means of appropriate formal notations and it is even
possible to combine complex quantitative and qualitative features with different degrees
of detail according to the rules of the multi-valued morphological array. The canonical
alternative normal form (KAPN) of a bivariate or multi-valued logical function describes all
variants, i.e., true (realizable) solutions of a given problem obtained according to the rules
of the morphological table, as the full array of combinations of values of logical variables
describes all theoretical variants. As a result of minimization (after applying the Quine–
McCluskey algorithm), one obtains from the realizable solutions the true sub-solutions as a
shortened alternative normal form of the SAPN of the logical function. In this way, the real
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sub-solutions of the problem are appropriately grouped and therefore the computational
time required to obtain the most important real sub-solutions is reduced.

2. The Tested Object

The tested object is a two-stage proportional relief valve with a preliminary nozzle-
aperture stage (Figure 2) [23]. Figure 2 demonstrates a two-stage proportional relief valve.
The main stage is pressure controlled, while the pilot is controlled by a proportional
solenoid. Changing the pressure in the chamber above the main-stage spool is possible
by throttling the fluid flowing out of the pilot. This throttling is altered by changing the
position of the diaphragm driven by the proportional solenoid.

Axioms 2022, 11, x FOR PEER REVIEW 4 of 35 
 

ical alternative normal form (KAPN) of a bivariate or multi-valued logical function de-
scribes all variants, i.e., true (realizable) solutions of a given problem obtained according 
to the rules of the morphological table, as the full array of combinations of values of logical 
variables describes all theoretical variants. As a result of minimization (after applying the 
Quine–McCluskey algorithm), one obtains from the realizable solutions the true sub-so-
lutions as a shortened alternative normal form of the SAPN of the logical function. In this 
way, the real sub-solutions of the problem are appropriately grouped and therefore the 
computational time required to obtain the most important real sub-solutions is reduced. 

2. The Tested Object 
The tested object is a two-stage proportional relief valve with a preliminary nozzle-

aperture stage (Figure 2) [23]. Figure 2 demonstrates a two-stage proportional relief valve. 
The main stage is pressure controlled, while the pilot is controlled by a proportional sole-
noid. Changing the pressure in the chamber above the main-stage spool is possible by 
throttling the fluid flowing out of the pilot. This throttling is altered by changing the po-
sition of the diaphragm driven by the proportional solenoid. 

 
Figure 2. The tested two-stage proportional relief valve. 

Figure 3 shows the drive system with a proportional valve and a receiver. 

Figure 2. The tested two-stage proportional relief valve.

Figure 3 shows the drive system with a proportional valve and a receiver.

1 
 

 
Figure 3. Diagram of the drive system.

26



Axioms 2023, 12, 8

The receiver in the analyzed system is a throttle valve whose performance characteris-
tics are described as follows:





p ≤ 1 MPa : Qodb = 1.2446666 · 10−10 p,
1 MPa ≤ p ≤ 6 MPa : Qodb = 0.3533333 · 10−10 p + 0.8913333 · 10−4,
p ≤ 6 MPa : Qodb = 0.2425893 · 10−10 p + 14.55 · 10−5.

(1)

where Qodb is the hydraulic actuator flow rate.
In order to describe the flow through a proportional valve it is necessary to consider

the value of the loss factor as a function of the displacement of the moving element. The
actual course is similar to the solution of a second-order differential equation with a variable
throttling factor. This relationship is described in the following form [26]:

kvx = 0.82 · [1− exp(−b · 103 · x
2 ) cos(103

√
−∆)],

∆ < 0
(2)

where:
b = 5 + 5·107

p ;
∆ = b2 − 100π2,
∆ > 0

(3)

and
kvx = 0.82[1− exp(−b−

√
−∆)103 x

2
]. (4)

The following course was used in the control stage (∆y < 0):

kvy = 0.75
[
1− exp

(
−by·103· y2

)
cos
(
103y

√
−∆y

)]

∆y > 0
(5)

where:
by = 40 + 1.5·108

py+105 ,

∆y = b2
y − 100π2.

(6)

The force generated by the electromagnetic transducer used in the valve is described
as follows:

Fm = 73.19631(i− 0.045),
di = 1

Tm
( U

18 − i)dt, (7)

where Tm = 15 ms when i increases
(

U
18 − i > 0

)
and Tm = 7.5 ms when i decreases

(
U
18 − i < 0

)
.

Mathematical Model of the Tested Valve

The mathematical model of the valve under consideration was built on the basis of
ordinary differential equations of the second order. The first equation of the system of
equations is the flow rate balance equation, which takes into account the compressibility of
the working fluid (its capacitance).

The flow balance of the drive system can be written as [23]:

Qp = QzQ + Q1x + Qodb. (8)

The flow balance through the main valve stage is described as:

QzQ = QzQx + QD1 + Qtx. (9)

The flow through the nozzle is described as:

QD1 = QD2 = QD3, (10)
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QDG = QzQY + QtY. (11)

The flow balance through the control stage is described as:

QD3 = Q1Y + QzQY + QtY. (12)

In addition, the flow rate is distinguished in the main stage as:

Q1x =
Vx

B
· dp

dt
=

4.33735 · 10−3

1.4 · 109
dp
dt

= 3.098107 · 10−12 dp
dt

, (13)

and at the control stage as:

Q1y =
Vy

B
· dp

dt
=

1.2 · 10−6

1.4 · 109
dp
dt

= 0.857 · 10−15 dpy
dt

, (14)

The flow rate through the valve is represented as:

Qz =
√

2
ρ ·k(kvx)

√
p− p0,

with
p0 � p,

(15)

• through the main stage:

QzQx =

√
2

892
· π · 22 · 10−3 · sin 30◦(kvx · x)

√
p, (16)

QzQx = 1.6355097 · 10−3(kvx · x)
√

p, (17)

• through the control stage:

QzQy =

√
2

892
· π · 1.8 · 10−3(kvy · y)

√
p, (18)

QzQy = 0.2676292 · 10−3(kvy · y)
√

p. (19)

Ultimately, the flow rates are represented as:

• through the nozzle D1:

QD1 = a1(p− p1) = 0.2370513 · 10−10(p− p1). (20)

• through the nozzle D3:

QD3 = a3(p2 − py) = 0.2370486 · 10−10(p2 − py). (21)

An additional equation described is the equilibrium equation of the forces acting
on the valve control element (according to d’Alembert’s principle) on the main stage
and the secondary stage. This equation takes into account the forces of inertia, spring
stiffness, frictional force, and the hydrodynamic reaction force associated with the change
in momentum of the fluid stream.

Forces in the valve:
Dynamic loads:

Fd = m
d2x
dt2 , (22)
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In the main stage:

Fdx =

[
0.675 +

1
3
(0.008 + 0.00439)

]
d2x
dt2 = 0.70631

d2x
dt2 , (23)

where the following values indicate:

• 0.0675—the mass of the main stage slider;
• 0.008—spring mass;
• 0.00439—the mass of the associated liquid.

In the control stage:

Fdy = 0.03
d2y
dt2 . (24)

Sticky friction:

Ft1 =
Ast · µ

L0
· dx

dt
, (25)

• forces in the main stage:

Ft1x =
π · 22 · 10−3 · 10.5 · 10−3 · 0.06265

5 · 10−6 = 9.0885102
dx
dt

, (26)

• forces in the control stage:

Ft1y =
32 · 10−6 · 0.06265

12 · 10−6
dy
dt

= 0.1670666
dy
dt

. (27)

Forces of the hydrodynamic reaction are described as follows:

• of the main stage:

Frx = 2kx cos θ(kvxx)p = 2 · π · 22 · 10−5 · sin 30◦ · 1 · cos 35◦(kvxx)p, (28)

Frx = 56.59033 · 10−6 · (kvxx)p, (29)

• of the nozzle-aperture pair:

Fry =
16Ay(kvyy)2

d2
DG

Pp
′ (30)

Fry =
16 · π/4(1.65 · 10−3)

(1.5 · 10−3)2

(
kvyy

)2
= 15.1976

(
kvyy

)2Pp. (31)

The dynamic equations of the proportional valve forces are described at any point in
the transient state after the introduction of the step function:

of the main stage:

Fdx = −Ft1x − Frx − Fszx − FGx + Fs1x − Fs2x. (32)

of the control stage:

Fdy = −Ft1y + Fry + Fsy − Ftsy − Fopy − Fm. (33)

The feedback loop equation is written as follows: when Uz − Up − e0 < 0,

du
dt

= KM
⌈
Kp1(Uz −Up) + Kp2

(
Uz −Up − e0

)⌉
, (34)
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when Uz − Up + e0 < 0,

du
dt

= KM
⌈
Kp1(Uz −Up) + Kp2

(
Uz −Up + e0

)⌉
, (35)

if none of these conditions are met:

−e0 < Uz −Up < e0,
to

du
dt = KMKp1

(
Uz −Up

)
.

(36)

The output equations for the computer simulation of the operation of the hydraulic
part are shown in Appendix A.

3. Methodology of Multi-Valued Logic Trees with Weight Coefficients as Discrete
Optimization

The methodology presented is based on two algorithms:

1. The Quine–McCluskey method of minimizing partial multi-valued logical functions,
2. The Quine–McCluskey method of minimising partial multi-valued logical functions

with multi-valued weighting factors.

3.1. Quine-Mc Cluskey Algorithm for the Minimization of Partial Multi-Valued Logical Functions

In the case of logic trees, the logical values of the variables are encoded on the branches
of the tree. There can only be one Boolean variable per level of the tree, with the number
of floors being equal to the number of independent variables of a given Boolean function.
Representing a given Boolean function written in canonical alternative normal form (KAPN)
on a logic tree involves encoding the individual canonical products on a tree path from the
root to the end vertex. An individual path on the tree (from root to vertex) is a component
of the singularity of the logical function, describing the realization of one possible solution.
On the contrary, the set of paths is the set of all possible solutions. Figure 4 shows a logic
tree in which a fixed Boolean function of three variables is encoded.
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In the Quine–McCluskey algorithm, a truncated alternative normal form (SAPN) and
eventually a minimum alternative normal form (MAPN) are obtained by simplifying the
Boolean functions encoded in KAPN (Figure 5).

A minimized form of the output function (with a minimum number of literals) is
subsequently obtained. However, given that so-called isolated branches exit, this is not
the minimum decision form, meaning that there is no continuity between the root and
the vertices. In the case of multi-valued logical functions—as in Boolean functions—the
notions of incomplete gluing and elementary absorption, which are applied to the APN of
a given logical function, play a fundamental role in the search for prime implicants.
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A gluing operation is called a transformation:

Ajo(xr) + . . . + Ajmr−1(xr) = A. (37)

where r = 1, . . . , n and A denotes an elementary partial product, of which, variables of
the individual literals belong to the set {x1, . . . , xr−i, xr+i, . . . , xn}.

An incomplete gluing operation is called a transformation:

Ajo(xr) + . . . + Ajmr−1(xr) = A + Ajo(xr) + . . . + Ajmr−1(xr), (38)

where r = 1, . . . , n and A denotes a partial product of which the variables of the individual
literals belong to a set of {x1, . . . , xr−i, xr+i, . . . , xn}.

An elementary absorption operation is called a transformation:

Aju(xr) + A = A, (39)

where 0 ≤ u ≤ mr − 1, 1 ≤ r ≤ n, and A denotes a partial product of which the variables
of the individual literals belong to a set of {x1, . . . , xr−1, xr+1, . . . , xn}. If the above
equation holds, then A absorbs Aju(xr). Signs (v) denote that a given partial product of
the elementary, written using the digits of the system (m1, . . . , mn)-positional, takes part
in the gluing with those products that have a sign (v) in the same column. The notation
marks of the gluing operation are entered separately in the columns and not in a single
column as was the case in previous literature studies of bivalent cases. In the case of equal,
multivalued variables x1, . . . , xn of a given logical function, the set of first implicants is
obtained as a special case from different multi-valued variables.

Example 1. Using the relationship:

Aj0(xr) + . . . + Ajm−1(xr) = A, Aju(xr) + A = A, (40)

whereA = A(x1, . . . , xr−1, xr+1, . . . , xn),

ju(xr) =





m− 1 , u = xr
0 ≤ u ≤ m− 1

0 , u 6= xr

; (41)

The successive steps of minimizing a multi-valued logical function can be represented
as follows:
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0 2 0 0 2 -
1 0 1 2 0 -
2 0 0 1 - 1

0 2 1 2 1 -
1 1 1 - 2 1
2 0 1 2 - 1
2 1 0

0 2 2
1 2 1
2 0 2
2 1 1

2 1 2
2 2 1

020 200 101 021 201 210 111 022 121 202 211 212 221
02- ∗ ∗ ∗
20- ∗ ∗ ∗
1-1 ∗ ∗ ∗
21- ∗ ∗ ∗
-21 ∗ ∗ ∗
2-1 ∗ ∗ ∗

Finally, two NAPNs and MAPNs of a given logic function are obtained, written using
m-position system numbers: {(02-), (20-), (1-1), (21-), (-21)} and {(02-), (20-), (1-1), (21-), (2-1)}.

The rank of importance of successive decision variables is determined using complex
alternative normal forms through the swapping of floors in logical decision trees. The swap-
ping of logical tree floors in complex, multi-valued logical functions establishes the rank of
importance of logical variables from the most important (at the root) to the least important
(at the top). There is a generalization of a bivariate quality indicator to a multivariate one;
(Ck − kimi) + (ki + Ki), where Ck represents the number of branches of the k-th floor, ki is the
simplification factor on the k-th floor of the mi-value variable, and Ki represents the number
of branches (k − 1)-th floors from which the non-simplifying branches of the k-th floor are
formed. In this way, it is possible to obtain the minimum complexity alternative normal
form (MZAPN) of a given logical function without isolated branches on the decision tree
and with a concomitant minimum number of real (realizable) branches, which in particular
can be considered to be elementary design guidelines. All transformations refer to the
so-called Quine—McCluskey algorithm for minimising individual partial multi-valued
logical functions.

Example 2. A multi-valued logical function f(x1, x2, x3), where x1, x2 and x3 are 0, 1 and 2,
respectively; with a numerically recorded KAPN: 100, 010, 002, 020, 101, 110, 021, 102, 210,
111, 201, 120, 022, 112, 211, 121, 212, 221 and 122; and with one MZAPN after applying the
Quine—McCluskey algorithm for minimising individual partial multi-valued logical functions has
13 literals:

f (x1, x2, x3) = jo(x1)(jo(x2)j2(x3) + j1(x2)jo(x3) + j2(x2))
+j1(x1) + j2(x1)(jo(x2)j1(x3) + j1(x2) + j2(x2)j1(x3)).

(42)

Figure 6 shows all possible ZKAPNs of a given multi-valued logical function.
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1. The first stage of minimization due to x3:

V
x1 x2 x3
1 0 0 V
0 1 0 V

0 0 2 V
0 2 0 V
1 0 1 V
1 1 0 V

0 2 1 V
1 0 2 V
2 1 0 V
1 1 1 V
2 0 1 V
1 2 0 V

0 2 2 V
1 1 2 V
2 1 1 V
1 2 1 V

2 1 2 V
2 2 1 V
1 2 2 V

2. The first stage of minimization due to x1:
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v
x1 x2 x3
1 0 0 V
0 1 0 V

0 0 2 V
0 2 0 V
1 0 1 V
1 1 0 V

0 2 1 V
1 0 2 V
2 1 0 V
1 1 1 V
2 0 1 V
1 2 0 V

0 2 2 V
1 1 2 V
2 1 1 V
1 2 1 V

2 1 2 V
2 2 1 V
1 2 2 V

3. The first stage of minimisation due to x2:

v
x1 x2 x3
1 0 0 V
0 1 0 V

0 0 2 V
0 2 0 V
1 0 1 V
1 1 0 V

0 2 1 V
1 0 2 V
2 1 0 V
1 1 1 V
2 0 1 V
1 2 0 V

0 2 2 V
1 1 2 V
2 1 1 V
1 2 1 V

2 1 2 V
2 2 1 V
1 2 2 V

x1: 19 − 2 × 3 + 2 + 7 = 22
x2: 19 − 4 × 3 + 4 + 5 = 16
x3: 19 − 5 × 3 + 5 + 4 = 13

Further minimisation steps for other variables:
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v v
x1 x2 x1 x2
0 0 V 0 0 V

- 1 0 V - 1 0 V
0 1 V 0 1 V

- 0 2 V - 0 2 V
- 1 1 V - 1 1 V

2 0 V 2 0 V

- 2 1 V - 2 1 V
- 1 2 V - 1 2 V

2 2 V 2 2 V
x1: 9 − 0 × 3 + 0 + 3 = 12
x2: 9 − 1 × 3 + 1 + 2 = 9

3.2. Generalization of the Quine–Mc Cluskey Algorithm for Minimization of Partial Multi-Valued
Logical Functions for Multi-Valued Weighting Factors

In multi-valued logical functions with weighted products it is possible to apply the
Quine–McCluskey algorithm for the minimization of multi-valued functions. As with the
minimization of multi-valued logical functions without weighting coefficients, in the algorithm
the elementary products are written as numbers in the corresponding positional systems.
Additional elements and operations are introduced to account for the weighting coefficients.

In partial data of multi-valued logical functions fi(x1, . . . , xn) n of variables (m1, . . . , mn),
value-added gluing and pseudo-gluing operations should include weighting factors
(wn, wn−1, wn−2, . . . , w1) assigned to the corresponding multi-valued logical products.

The Quine–McCluskey algorithm for minimizing multi-valued logical functions is
built from n columns with (w1, . . . , wn) weighting factors.

Symbols indicating pseudo-gluing (V) and gluing (v) sequentially relative to groups
of indices differing by one are placed in the columns corresponding to the values of the
weighting factors for the corresponding logical products.

Given multi-valued weighting coefficients, individual (parallel) pseudo-bonding opera-
tions sequentially against groups of indices, differing by at least one, and containing at most
(mi − 1) elements can proceed in canonical products with different weighting coefficients.

The characters appear in different columns. In addition, they may be in columns
with a corresponding coefficient (wn, wn−1, wn−2, . . . , w1). Therefore, the columns with
(w1, . . . , wn) weighting coefficients introduce position numbers pi, with i = 1,...,n, which is
useful for calculating the quality of the minimization in further stages.

Definitions of ‘pure’ and ‘impure’ gluing are introduced for gluing operations of
individual partial multi-valued logical functions with weighted coefficients.

Definition 1. The pure gluing operation is the gluing of multi-valued canonical elementary
products according to the Quine–McCluskey algorithm with the same weighting factor wi.

A pure gluing operation is a transformation of:

wi Aj0(xr) + . . . + wi Ajmr−1(xr) = wi A, (43)

where r = 1, . . . , n and A represents a partial product of which the variables of the
individual literals belong to a set of {x1, . . . , xr−i, xr+i, . . . , xn}. In n m-value variables, the
weighting factor before the partial canonical product takes values in the interval w1, . . . , wn,
with wj = wj−1 + wj−2 + . . . + w1 and j = 2, . . . , n.

Definition 2. The gluing operation according to the Quine–McCluskey algorithm of multi-valued
canonical elementary products with different values of weight coefficients (w1, . . . , wn) is impure gluing.
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The impure gluing operation for multi-valued canonical elementary products is per-
formed with respect to the weighting factor with the smallest value, i.e., min{w1, . . . , wn}.

An impure bonding operation is a transformation:

wo Ajo(xr) + . . . + wmr−1 Ajmr−1(xr)
= (min{wo, . . . , wmr−1}) · A + ∑

s=io ,...,imr−2

ws · A·js(xr) (44)

where r = 1, . . . , n, ws > min{w1, . . . , wmr−1}, and A denotes a partial product of which
the variables of the individual literals belong to a set of {x1, . . . , xr−i, xr+1, . . . , xn}. In
n(m1, . . . , mn)-value variables, the weighting factor wi before the partial canonical product
takes values in the interval w1, . . . , wn, with w1 where j = 2, . . . , n.

Definition 3. An incomplete gluing operation is a transformation that retains the original records
to be glued after the algorithm has been executed in the result.

Given that there is an isomorphic interpretation of logical transformations, the Quine–
McCluskey algorithm for minimizing individual partial multi-valued logical functions can
be considered with the weighting factors mentioned, which is important for describing the
rank validity of design guidelines.

Example 3 with weighting factors. In a partial logical function f (x1, x2, x3), written numer-
ically in KAPN: 010, 100, 002, 011, 110, 012 and 112, the Quine–McCluskey algorithm for
minimizing logical functions with multi-valued weight coefficients yields one MZAPN which has
11 literals of f (x1, x2, x3), i.e.,

f (x1, x3, x2) = j0(x1)(1j0(x3)j1(x2)) + 2j1(x3)2j1(x2) + 2j2(x3))
+j1(x1)(1j2(x3)j1(x2)) + 2j0(x3)j1(x2))

(45)

while other ZAPN f (x1, x2, x3), f (x2, x1, x3), f (x2, x3, x1)and f (x3, x1, x2)of a given logical func-
tion have 12 and f (x3, x2, x1)13 literals, respectively.

f (x2, x3, x1) = j0(x2)(1j0(x3)j1(x1) + 2j2(x3)j0(x1))
+j1(x2)(2j0(x3)j1(x1) + 2j1(x3)j0(x1) + 2j1(x3)j0(x1))

(46)

f (x2, x1, x3) = j0(x2)(2j0(x1)j2(x3) + 1j1(x1)j0(x3))
+j1(x2)(2j0(x1)(j1(x3) + j2(x3)) + j1(x1)(2j0(x3) + 1j2(x3)))

(47)

f (x1, x2, x3) = j0(x1)(2j0(x2)j2(x3) + 2j1(x2)(j1(x3) + j2(x3)))
+j1(x1)(1j0(x2)j0(x3) + j1(x2)(2j0(x3) + 1j2(x3)))

(48)

f (x3, x1, x2) = j0(x3)(1j0(x1)j1(x2) + 2j1(x1)j1(x2))
+2j1(x3)j0(x1)j1(x2) + j2(x3)(2j0(x1) + 1j1(x1)j1(x2))

(49)

f (x3, x2, x1) = j0(x3)(1j0(x2)j1(x1) + 2j1(x2)j1(x1))
+2j1(x3)j1(x2)j0(x1) + j2(x3)(2j0(x2)j0(x1) + 2j1(x2)j0(x1)).

(50)

The following are the successive steps in the minimisation of logical functions due to
given decision variables:
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v
wi x1 x2 x3 wi = 2 wi = 1
1 0 1 0 V
1 1 0 0 V
2 0 0 2 V
2 0 1 1 V V
2 1 1 0 V
2 0 1 2 V V
1 1 1 2 V

pi 1 2 3 4 5 6 1 2 3 4 5 6

v
wi x1 x2 x3 wi = 2 wi = 1
1 0 1 0 V
1 1 0 0 V
2 0 0 2 V
2 0 1 1 V
2 1 1 0 V V
2 0 1 2 V
1 1 1 2 V

pi 1 2 3 4 5 6 1 2 3 4 5 6

v
wi x1 x2 x3 wi = 2 wi = 1
1 0 1 0 V
1 1 0 0 V
2 0 0 2 V
2 0 1 1 V
2 1 1 0 V V
2 0 1 2 V V
1 1 1 2 V

pi 1 2 3 4 5 6 1 2 3 4 5 6

V
wi x2 x3 wi = 2 wi = 1

2(012) 1- 1 2 V
2(110) 1- 1 0 V

2 1 1 V
2 0 2 V
2 0 0 V

pi 1 2 3 4 5 6 1 2 3 4 5 6

V
wi x2 x3 wi = 2 wi = 1

2(012) 1- 1 2 V
2(110) 1- 1 0 V

2 1 1 V
2 0 2 V
2 0 0 V

pi 1 2 3 4 5 6 1 2 3 4 5 6

V
wi x1 x3 wi = 2 wi = 1
1 0 0 V

2(110) 1- 1 0 V
2- 0 2 V
2 0 1 V
1 1 2 V

pi 1 2 3 4 5 6 1 2 3 4 5 6

V
wi x1 x3 wi = 2 wi = 1
1 0 0 V

2(110) 1- 1 0 V
2- 0 2 V
2 0 1 V
1 1 2 V

pi 1 2 3 4 5 6 1 2 3 4 5 6

Tree interpretation.
Figure 7 shows the MZAPN of the multi-valued logical function from Example 3.
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The structuring of the described problem takes into account the methodology of multi-
valued logical trees, allowing for the introduction of appropriate formal notations and even
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making it possible to combine complex quantitative and qualitative features with different
degrees of detail according to the principles of a multidimensional morphological array.
Therefore, there is no need to extend the generation process to sub-arrays when using a
multidimensional morphological array as all information about the varieties of the main
and detailed features and their numerous modifications can be immediately stored in this
array and marked on the variant tree.

In addition, the morphological and decision tables can be encoded analytically and
numerically according to the definitions and theorems of the logic of multi-valued decision
processes. This enables a variant way of identifying and classifying information in computer
science terms when seeking and modifying solutions in the design process.

In such a situation it is possible to introduce CAD, e.g., for the generation of all
theoretical variants of the designed system, selection for realizability, search for realizable
solutions and—most importantly—realizable sub-solutions, etc. In order to ensure the
stable operation of the actual system, model tests are carried out on the basis of which
of the relevant parameters are selected. The phenomena occurring during the flow of a
medium are quite often not precisely defined, so it is necessary to identify an analytical
model when carrying out such studies.

4. Application of the Methodology of Multi-Valued Logic Trees with Weighting
Factors in the Optimization of a Proportional Valve

Tests have already been carried out for valves of the direct-acting UPZ type [4], which
are designed to regulate the upstream pressure of steam and non-flammable, chemically
inert gases and liquids regardless of the pressure at their outlet. Multivalent weighting
factors were not considered in the tested valve class. For this reason, it was decided
that an improved Quine–McCluskey algorithm with weighting factors for the hydraulic
proportional valve would be used. Therefore, three ‘novelties’ are presented in this paper.

One of the optimal methods presented are multi-valued logic algorithms. For example,
in [24] the authors presented a description of the dynamics of molecular states caused by a
sequence of laser pulses using multi-valued logic. In turn, the authors of [25] used multi-
valued logical schemes to calculate significance measures based on incompletely-defined
data. This method is based on the definition of a mathematical model of an analyzed
system in the form of a structure function that determines the correlation of the system
reliability and the states of its components.

In [27], the authors described the historical and technical background of MVL, as well
as the areas of present and future applications of quadrivalent logic. It was also intended to
serve as a guide for non-specialists. The wide application of multi-valued logic in particular
in these microelectronic circuits is presented in [28]. Additionally, there are many original
works describing the practical application of multi-valued logic trees.

In addition, there are other works in which multi-valued decision trees and logic
algorithms have been applied. For example, the authors of [29] presented the applications
of machine learning and classification and regression trees (CART) in medicine. Specifically,
they presented the concept of a gradient-boosting algorithm. The authors of [30] presented
the application of a rotation forest with decision trees as a base classifier and a new ensemble
model in the spatial modeling of groundwater potential. The use of fault-tree analysis to
calculate system-failure probability bounds from qualitative data in an intuitive, fuzzy
environment is presented in paper [31]. Meanwhile, in paper [32] the authors adopted
component fault trees (CFTs) to support fault tree analysis, failure mode, and effect analysis
as extensions of SysML models. Boolean decision support methods were presented in
paper [33]. A very modern optimization method was proposed by the authors of [34]: the
use of root trees. The root-tree algorithm was used for high-order sliding mode control
using a super-twist algorithm based on the DTC scheme for DFIG.

The initial conditions of a differential equation can be determined by entering dxi
dt = 0.

The simulations were performed using the Matlab/Simulink package:
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



−801.2102 · 10−3(kvxx1)x3 − 147224.3x1 − 1925.135 + 5.3792244 · 10−3[(1− 103x1)x3 − x6
]
= 0,

0.2851216 · 109(1− 1.32 · 10−9x3)− 0.5279061 · 109(kvxx1)
√

x3 − 7.65(x3 − x6)− 0.3227777 · 1012Qodb = 0,
0.7123874 · 10−4x7 + 418.87733(kvyx4)

2x7 − 33.33333Fm = 0,
0.276556 · 105(x3 − x6)− 0.312234 · 1012(kvyx4)

√
x6 = 0,

x7 = x6 − 0.2025169 · 106(kvyx4)
√

x6.

(51)

Assuming that:
Uz = Up = 1 V. (52)

It can be obtained that:

Uz = Up = 1 V,
Qodb = 12/6 · 10−4

[
m3

s

]
.

(53)

The Importance of the Design and/or Operational Parameters of a Hydraulic Proportional Valve

In the optimization process, the changed parameters of the proportional valve while
observing the Q flow rate and p pressure are represented by the regulator Kp1·Kp2 gain (as
a complex variable), the Qobd receiver flow rate (depending on the impulse input of the Uz
control voltage), and the Fm magnetic force.

The arithmetic values of the tested parameters were selected for the analysis. They
were coded by the authors of this work with logical decision variables:

(Kp1 · Kp2) = 30 ∼ 0;
(Kp1 · Kp2) = 40 ∼ 1;
(Kp1 · Kp2) = 50 ∼ 2;
(Kp1 · Kp2) = 60 ∼ 3;
Fm = 1.96[N] ∼ 0;
Fm = 2.96[N] ∼ 1;
Fm = 3.96[N] ∼ 2;
Fm = 4.96[N] ∼ 3;
Qrz = 36→ 24

[
dm3/min

]
∼ 0;

Qrz = 24→ 12
[
dm3/min

]
∼ 1;

Qrz = 36→ 12
[
dm3/min

]
∼ 2;

(54)

In the operation of the relief valve, the authors introduced restrictions on the Q
and p design parameters in terms of the stabilization time tw:tw < 0.48 t0. Subsequently,
dynamic calculations of the valve were carried out, resulting in the tw:tw < 0.48 t0 limitation.
Following the dynamic calculations, 23 charts were selected. The code changes of the Kp1,
Kp2, Qrz and Fm design parameters are presented in Table 1.

Furthermore, in the code changes of the Kp1·Kp2, Qrz and Fm design parameters multi-
valued wi weighting factors are introduced, similar to the relief valve. The greater the
weighting number, the faster the Q and p functions reach a stable state (tt > tj).

The following weighting factors were adopted in the tw < 0.48 t0 limitation:

• wi = 3, tw ≤ 0.16 t0;
• wi = 2, 0.16 t0 < tw ≤ 0.32 t0;
• wi = 1, 0.32 t0 < tw ≤ 0.48 t0.

Table 1 presents the code changes of the Kp1·Kp2, Qrz and Fm design parameters, taking
into account the multi-valued weighting factors and the tw < 0.48 t0 limitation.

Notably, the value of the weighting factor for changes in the code Kp1·Kp2, Qrz and Fm
design parameters in Table 1 is minimal among the coefficients defined separately in the Q
and p function. If one of the functions stabilizes faster than the other, then the canonical
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product for the same code changes of Kp1·Kp2, Qrz and Fm parameters should be assigned a
smaller weighting factor.

Table 1. KAPN for the Kp1, Kp2, Qrz and Fm parameter code data, taking into account the wi

weighting factors.

wi Fm Kp1, Kp2 Qrz

2 2 1 2
2 2 3 2
2 2 2 1
2 2 2 2
2 1 2 1
3 3 0 2
1 1 0 2
2 0 2 1
1 0 2 2
2 0 2 0
3 0 3 1
2 0 3 2
3 0 1 1
1 0 1 2
3 0 1 0
2 0 0 1
1 0 0 2
1 1 2 2
2 1 1 2
1 1 3 2
1 3 2 2
1 3 1 2
3 3 3 2

In the system of multi-valued logic functions with weighting factors, weighting factors
are assigned separately for each of the functions.

Figures 9–13 show the time periods of the Q and p functions with the weighting factor
intervals marked wi:p (red color) and Q (blue color).
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Figure 9. The Q and p time periods for code changes of the Kp1·Kp2, Qrz, and Fm parameters where Qrz: 
(a) 2(212), (b) 2(211), and (c) 2(210). Runs for a weighting factor value of wi = 2. 
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Figure 10. The Q and p time periods for code changes of theKp1·Kp2, Qrz, and Fm parameters where 
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Figure 12. The Q and p time periods for code changes of the Kp1·Kp2, Qrz, and  Fm parameters where 
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The multi-valued logical trees with the weighting factors from Table 1 are shown in
Figure 14.
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Figure 14. Multi-valued logical tree of the Kp1·Kp2, Qrz, and Fm parameters with (a) 24 branches, (b) 
25 branches, (c) 30 branches, and (d) 31 branches. 1, 2, 3—The values of the weighting factors wi. 
Figure 14. Multi-valued logical tree of the Kp1·Kp2, Qrz and Fm parameters with (a) 24 branches,
(b) 25 branches, (c) 30 branches, and (d) 31 branches. 1, 2, 3—The values of the weighting factors wi.
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For the tw < 0.48 t0 criterion of limitation, one optimal multi-valued logical tree is
presented in Figure 14. For a hydraulic proportional valve, the most crucial parameter is
the Qodb flow rate of the receiver (depending on the Uz step function of the control voltage).

One of the issues presented in this paper is the application of Boolean equations in the
optimization of machine systems. This paper generalizes the Quine–McCluskey algorithm
for minimizing multi-valued logical functions with multi-valued weight coefficients. In
addition, a procedure for the combinatorial solution of weighted multi-valued systems of
logical equations describing design guidelines in terms of morphological analysis with the
Rosser–Turguette axioms is discussed.

The application of the methodology of multi-valued logic trees with weighting coeffi-
cients for relief valves allows for the determination of alternative sets of design guidelines to
find the most crucial design guidelines in any fixed design and/or operational parameters
while ensuring that the constraints and extremes of the criterion are met. In particular, the
novelty presented in this paper is:

• the development of a Quine–McCluskey algorithm for minimizing logical functions
with weighted coefficients;

• the development of algorithms for multi-valued Boolean equations, allowing for the
obtainment of the most important design guidelines in the process of optimization of
machine systems; and

• carrying out calculations on a real object (relief valve) to confirm the developed algorithms.

5. Conclusions

This paper presents the use of multi-valued logical trees with weighting factors to
determine the importance of the constructional and operational parameters of a two-stage
proportional relief valve. As has been demonstrated by this research, relief valves do not
keep up with a pressure increase in the system, react with a certain delay, and can vibrate
under fixed operating conditions.

The above incorrect response of the valves usually occurs during the transition period.
Hence, it is necessary to carry out model tests of valves in the transition state and to
determine the importance of the operational parameters directly affecting their dynamics.
Model tests aim to select essential parameters to ensure the stability of the real system. It is
crucial to determine the importance of design and/or operational parameters during the
model verification and subsequently select the appropriate optimization procedure.

This work discusses the procedure of a combinatorial solution for weight–multi-valued
systems of logic equations describing the design guidelines in terms of morphological
analysis with the preservation of Rosser–Turguette axioms. It has been shown that, in
general, the minimization of logic functions with weight coefficients may be the same
as without weight coefficients. However, a better reflection of the physical models of
hydraulic relief systems was obtained through mathematical models. The literature shows
that various coefficients of logical products have not been taken into account in the separable
and common minimization of systems of multi-valued logic equations.

Three following ‘novelties’ are presented in this paper:

1. The Quine–McCluskey algorithm was applied to completely new proportional valves
previously not tested using such methods;

2. Multivariate weighting factors were taken into account, which allowed for the intro-
duction of multi-valued weighting factors to determine the most important design
guidelines. This made it possible to apply the method of multi-valued decision trees
to solve the technological problems of the studied proportional valve series. It also
made it possible to use systems of logical equations as a formal decision-making
description of the study of the importance rank of changes in design and operating
parameters as a method for optimizing relief valves and other hydraulic systems;

3. For the optimization process of hydraulic valve design, an approach using CFD
computer simulation methods is encountered. However, any results obtained from
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simulation solutions should be, at least to some extent, verified by reliable experimen-
tal studies.

Limits of the Methodology Used

Each of the KAPN products should be assigned corresponding discrete changes in
parameter values. Therefore, it is not possible to fully apply the developed methods in
continuous linear and non-linear optimisation. However, for construction/engineering
purposes, the use of discrete analysis is preferable in the opinion of the authors (who
have computational experience). If one were to change the numerical values of the input
variables in a mathematical model, one would obtain changes in the values of the output
variables. In order to obtain a different planned behaviour of a system (component),
one can often make many changes to the numerical values of the input variables. Concerns
related to change include: which values might be changed, how the change might be made
(by increasing values, keeping them unchanged, or decreasing them), or in what order the
variables might be changed, etc. Such conjecturing is akin to subjectively (according to
a given designer) changing the numerical values in a mathematical model. This means
that another designer, according to their own experience, may subjectively redesign the
layout (element) quite differently for new work conditions that are identical to those of the
previous designer.

The multi-valued weighting system of logical equations describing the design guide-
lines can be minimized separately or together with logical equivalence. Still, even in the
bivalent (Boolean) case, the common minimization is not inferior to the separate minimiza-
tion in terms of literal multiplicity. Increasing, reducing, or keeping the numerical values
unchanged in the process of redesigning a system for other operating conditions can be
coded using multi-valued logic while sets of design guidelines can be presented as sums of
multi-valued logical products.

Model tests are particularly important in the design of new valves. These design
parameters, which significantly affect the dynamics of valves, cannot be selected randomly
(depending on the assumptions and experience of the designer). Their values should be
closely related to the permissible peak overload of the controlled signal, operation speed,
time constant, and eliminating vibration. Model tests will be more useful if the described
valve is outlined more accurately in the transition state. Thus, building a correct analytical
equation that presents a given valve in a dynamic course determines the sense of any
theoretical considerations.

In further research, it will also be necessary to take into account the modified method-
ology of multi-valued logic trees as parametrically-playing out graphs, i.e., a heuristic
simulation method for solving linear–dynamic decision models for relief valves. In the
instance analyzed, a number of simplifications were additionally taken into account; for
example, the impact of the closing element hitting the valve seat was not considered and
the effect of the valve-wall compressibility was not taken into account. These factors will
be considered in further papers. Additionally, a new control system using optimised
proportional–directional control valves, throttling valves, and flow controllers will be
proposed in further studies.
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Nomenclature

MZAPN minimal complex alternative normal form;
ZKAPN complex canonical alternative normal form;
f (x1, x2, x3) multi-valued logic function of three variables;
wi weighting factor for multi-valued logical products;
A partial elementary product;
kvx, kvy loss factors in the control stage of a hydraulic proportional valve;
Fm electromagnetic force;
p operating pressure;
Qp actual pump capacity;
QD1, QD2, QD3 flow rate through the D1, D2 and D3 nozzles in a proportional valve;
Qodb receiver flow rate in a proportional valve;
Kp1 Kp2 regulator boost in a proportional valve;
Qt theoretical pump capacity (for a fixed hydraulic system);
Qzp flow rate through a relief valve;
Rp0 the resultant internal leakage resistance in a system;
Rpp the leakage resistance of a pump determined by means of volumetric efficiency;

Rpz
the leakage resistance of a relief valve determined by means of the slope of the
valve static characteristic for pressures below the opening pressure;

Rr the leakage resistance of a distributor;
Rs the leakage resistance of a motor determined by means of volumetric efficiency.

Appendix A The Output Equations for the Computer Simulation of the Operation of
the Hydraulic Part and the Model

The output equations to simulate the operation of a hydraulic part are presented in
the following form:





1 : dx1
dt = x2,

2 : dx2
dt = −14846.301x2 − 801.2102 · 10−3(kvxx1)x3 − 147224.3x1

−1925.135 + 5.3792244 · 10−3[(1− 103x1)x3 − x6
]
,

3 : dx3
dt = 0.2851216 · 109(1− 1.32 · 10−9x3)

−0.5279061 · 109(kvxx1)
√

x3 − 0.1226361 · 109x2 − 7.65(x3 − x6)
−0.3227777 · 1012Qodb,
4 : dx4

dt = x5,
5 : dx5

dt = −5.5688865 · 103x5 − 0.840264 · 106x2
5signx5

+0.7123874 · 10−4x7 + 418.87733(kvyx4)
2x7

−2.616signx5 − 33.33333Fm,
6 : dx6

dt = 0.276556 · 105(x3 − x6)− 0.312234 · 1012(kvyx4)
√

x6
+0.4432633 · 1012x3 − 2.060625 · 109x5,
7 : x7 = x6 − 0.2025169 · 106(kvyx4)

√
x6 − 1328.096x5.

(A1)
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Figure A1. Model in Matlab. 1-6 describes inputs and outputs. 
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Abstract: Rough set (RS) and fuzzy set (FS) theories were developed to account for ambiguity in the
data processing. The most persuasive and modernist abstraction of an FS is the linear Diophantine
FS (LD-FS). This paper introduces a resilient hybrid linear Diophantine fuzzy RS model (LDF-
RS) on paired universes based on a linear Diophantine fuzzy relation (LDF-R). This is a typical
method of fuzzy RS (F-RS) and bipolar FRS (BF-RS) on two universes that are more appropriate
and customizable. By using an LDF-level cut relation, the notions of lower approximation (L-A)
and upper approximation (U-A) are defined. While this is going on, certain fundamental structural
aspects of LD-FAs are thoroughly investigated, with some instances to back them up. This cutting-
edge LDF-RS technique is crucial from both a theoretical and practical perspective in the field of
medical assessment.

Keywords: fuzzy set; linear Diophantine fuzzy sets; linear Diophantine fuzzy relations; level cut
relations; rough approximations on two universes; decision analysis

1. Introduction

As one of the most effective methods for developing a set’s embryonic concept,
Zadeh [1] first proposed the idea of an FS in 1965. According to the attributes, FS permits
grading a set’s features in the range of [0, 1]. Since the conception of the theory, FS has been
developed in a variety of ways, including intuitionistic fuzzy set (IF-S) [2,3], bipolar FS
(B-FS) [4], Pythagorean FS (P-FS) [5,6], q-rung orthopair FS (q-ROF-S) [7], and LD-FS [8].

In 2019, Riaz and Hashmi [8] unveiled LD-FS, one of the most exquisite and significant
generalizations of FS. Using the control parameters, LD-FS eliminates the restrictions con-
nected to the membership degree (MD) and non-membership degree (NMD) of the preva-
lent abstractions of IF-Ss, B-FSs, and q-ROF-S. LD-FS is the most practical mathematical
model for decision making (DM), multi-attribute decision making (MADM), engineering,
artificial intelligence (AI), and medicine, allowing the decision maker to freely choose the
grades [8]. Today, LD-FS is the owner of a huge study (see [9–11]). Ayub et al. [12] advanced
an impressive method of an LDF-R to broaden the concept of IF-R, in which they provide
an in-depth analysis of its essential characteristics, algebraic structures, and application in
decision analysis.

While binary relations play a significant role in several domains for the transmission
of unique things. In 1971, Zadeh [13] proposed the fuzzification of binary relations and
presented the idea of an F-R. Numerous significant applications of FSs and F-Rs may be
found in MCDM, neural networks, databases, pattern recognition, AI, clustering, F-control,
and uncertainty reasoning. A thorough analysis of FSs and F-Rs is offered in [14].
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The necessity to expand F-R was similar to that of FS. In 1984, Atanassov [15] proposed
the concept of IF-R. An IF-R, per Atanassov’s definition [15], is a pair of F-Rs where the
total of the coalition and alienation grades is less than or equal to 1. A soft set [16], being
a parameterized collection of the universe objects, has robust applications in decision
making. m-Polar neutrosophic topology provides a generalized topological structure for
data analysis [17].

Pawlak [18,19] suggested an approach of RS to deal with uncertainty in intelligent
systems as another abstraction of classical set theory. The L-A and U-A, which are used to
define the M of objects in RS theory, are two sharp approximation (A) sets. The fundamental
ideas of the RS theory, which reveals the hidden knowledge in information systems, are
these approximations. AI, machine learning, conflict analysis, and data analysis are just a
few fields where RS theory has been successfully applied.

Due to the equivalence relation (E-R) that underlies the RS theory, its application
in practical situations is constrained. Numerous abstractions have been constructed to
overcome the constraint of an E-R. For instance, RS based on a binary relation [20,21], a set-
valued map [22], a tolerance relation [23], a similarity relation [24], a reflexive relation (R-R)
and transitive relation (T-R) [25], a soft binary relation [26,27], a soft E-R [28], two E-Rs [29], a
normal soft group [30], two soft binary relations, and two normal soft groups, demonstrates
how an E-R may be adjusted with different granule interpretations. Zhan and Alcantud [31]
proposed a new kind of soft rough covering by means of soft neighborhoods. Motivation of
the proposed work is based on some existing methodologies such as attribute analysis [32],
picture fuzzy aggregation [33], interval-valued picture fuzzy Maclaurin symmetric mean
operator [34] complex interval-valued Pythagorean fuzzy aggregation [35], risk priority
evaluation [36], roughness in soft-intersection groups [37], and roughness in modules of
fractions [38]. Karamaşa et al. [39] proposed an extended SVN-AHP and MULTIMOORA
method to for flight training organizations. Osintsev [40] suggested DEMATEL-ANP
method for an evaluation of logistic flows in green supply chains.

1.1. Research Gap and Motivation

From all of the above-mentioned, the sequel summarizes the driving forces behind
our research and the gaps that lie underneath it:

(1) With the conceptualizations of the rough FS (R-FS) and fuzzy RS (F-RS) models
(see [41–44]), Dubios and Prade [45] started the unification of RS and FS. Several
authors have researched this idea (see [46–48]).

(2) Incorporating two universes, Li and Wang [49] created the R-FSA imagination.
(3) Yang [50] provided some of the applications for the notion of the roughness of a crisp

set of two universes.
(4) Yang et al. [51] presented the BF-RS’s idea on dual universe along with some of its

applications.
(5) Less research has been performed on the idea of roughness in dual universes, particu-

larly in P-FS and q-ROF-S.
(6) Ayub et al. [52] carefully thought out a method of applying RS to LD-FS with the aid

of LDF-R and its applications in DM.
(7) To the best of our knowledge, no research has been performed on the idea of LDF-S

roughness using the level cut relation of an LDF-R.
(8) To close this knowledge gap in the investigation of the roughness of LD-FSs, we

introduce an abstraction of LDF-Rs using the level cut relations of an LDF-R on two
different universal sets.

1.2. Major Contributions

This study uses level-cut relations from an LDF-R of dual universes to examine the
roughness of an LD-FS. The fore set and after set of the level cut relations are used to
design the underlying operations of RSs, the L- and U-As. With the use of useful examples,
certain fundamental conclusions about As are demonstrated. We also defined the terms
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“accuracy measure” (A-M) and “roughness measure” (R-M) for LDF-RS. Finally, an LDF-RSs
application to medical diagnosis is made to demonstrate its viability in real life.

1.3. Organization of the Paper

The remainder of this article is organized as follows to facilitate the study: In Section 2,
some hypothetical early conceptions of RS, LD-FS, and LDF-R are provided. Using an
LDF-R and a thorough examination of the essential characteristics of approximations with
examples, the concept of LDF-RS on two distinct universes is introduced in the third
segment. Section 4 includes the A-M and R-M cues for the LDF-RS. The application of
LDF-RSs is demonstrated with the help of an example in Section 5. Section 6 concludes the
paper by summarizing the final remarks.

2. Preliminaries

This subsection consists of some essential knowledge of LD-FS, LDF-R and RS. Through-
out this research, Ŭ , Ŭ1 and Ŭ2 will denote the initial universes, unless otherwise specified.

Definition 1 ([19]). Let ρ be an E − R on Ŭ . Then, the pair (Ŭ , ρ) is known as an R ap-
proximation space (R-AS). For any subset O of Ŭ , the L-A Oρ and the U-A Oρ are defined as
follows:

Oρ = {v ∈ Ŭ : [v]ρ ⊆ O} and Oρ
= {v ∈ Ŭ : [v]ρ ∩O 6= ∅}

where [v]ρ signifies an E-class of v ∈ Ŭ deduced by ρ. The boundary zone is indicated and described
as follows:

BR(O) = Oρ −Oρ

If BR(O) 6= ∅, then O is known as an RS or otherwise a crisp set or a definable set. Based on these
As, Pawlak characterized a crisp set O ⊆ Ŭ in the sequel:

? Oρ consists of the definite members and is known as the positive region (PR) of O;
? Ŭ −Oρ consists of the definite non-members and is known as the negative region (NR) of O;
? BR(O) contains questionable members that may or may not be contained in O and is known

as the boundary region (BR).

Recently, Riaz and Hashmi [8] introduced an efficient approach to handling uncertainties
that eradicate all the limitations related to affiliation and disassociation grades of the
existing models (FS,B-FS,IF-S and P-FS).

Definition 2 ([8]). An LD-FS on Ŭ is an object defined as follows:

£D = {(v,< ΘM(v), ΘN(v) >,< vM(v), vM(v) >) : v ∈ Ŭ }

where
ΘM, ΘN : Ŭ → [0, 1]

are M and NM functions and vM(v), vN(v) ∈ [0, 1] are the reference parameters of ΘM(v), ΘN(v)
respectively, such that 0 ≤ vM(v)ΘM(v) + vN(v)ΘN(v) ≤ 1 satisfying 0 ≤ vM(v) +
vN(v) ≤ 1 for all u ∈ Ŭ . The hesitation part is defined as Λ(v)Π(v) = 1− (vM(v)ΘM(v) +
vN(v)ΘN(v)), where Π(v) expresses the degree of indeterminacy, and Λ(v) refers to the relevant
reference parameter. We use the notion LD − FS(Ŭ ) to represent the collection of all LD-FSs
on Ŭ .

By using control parameters that correspond to the association and disassociation
grades in Riaz and Hashmi’s [8] motivation, Ayub et al. [12] have expanded the idea of
IF-R [15] to LDF-R.

Definition 3 ([12]). An expression of the following form is an LDF-R ρ̈ from Ŭ1 to Ŭ2:
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ρ̈ = {((v1, v2),< ΘM(v1, v2), ΘN(v1, v2) >,< vM(v1, v2), vN(v1, v2) >) : v1 ∈ Ŭ1, v2 ∈ Ŭ2}
where the mappings

ΘM, ΘN : Ŭ1 × Ŭ2 → [0, 1]

indicate the M and NM F-Rs from Ŭ1 to Ŭ2, respectively, and vM(v1, v2), vN(v1, v2) ∈ [0, 1]
are the relevant reference parameters to ΘM(v1, v2) and ΘN(v1, v2), respectively, fulfilling the
requirement 0 ≤ vM(v1, v2)ΘM(v1, v2) + vN(v1, v2)ΘN(v1, v2) ≤ 1, for all (v1, v2) ∈ Ŭ1 ×
Ŭ2 with 0 ≤ vM(v1, v2) + vN(v1, v2) ≤ 1. The hesitation part is defined as follows:

γ̈(v1, v2)π̈(v1, v2) = 1− (vM(v1, v2)ΘM(v1, v2) + vN(v1, v2)ΘN(v1, v2))

where π̈(v1, v2) is the hesitation index, and γ̈(v1, v2) is the relevant reference parameter. For the
sake of simplicity, we will use ρ̈ = (< ΘM(v1, v2), ΘN(v1, v2) >,< vM(v1, v2), vN(v1, v2) >)
for an LDF-R from Ŭ1 to Ŭ2. The collection of all LDF-Rs from Ŭ1 to Ŭ2 will be designated by
LDF− R(Ŭ1 × Ŭ2).

With respect to finite universes Ŭ1 and Ŭ2, the matrix notation of an LDF-R is given in
the sequel.

Definition 4 ([12]). Let ρ̈ = (< ΘM(ui, vj), ΘN(ui, vj) >,< vM(ui, vj), vN(ui, vj) >) be
an LDF-R from Ŭ1 to Ŭ2, where Ŭ1 = {u1, u2, ..., um} and Ŭ2 = {v1, v2, ..., vn}. Consider
ΘM(ui, vj) = (ΘM

ij )m×n, ΘN(ui, vj) = (ΘN
ij )m×n and vM(ui, vj) = (vM

ij )m×n, vN(ui, vj) =

(vN
ij )m×n, with 0 ≤ vM

ij + vM
ij ≤ 1 fulfilling 0 ≤ vM

ij ΘM
ij + vM

ij ΘN
ij ≤ 1 for all i, j, where

1 ≤ i ≤ m and 1 ≤ j ≤ n. Then, the following four matrices can be used to represent ρ̈:

ΘM = (ΘM
ij )m×n =




ΘM
11 ΘM

12 ... ΘM
1n

ΘM
21 ΘM

22 ... ΘM
2n

. . ... .

. . ... .

. . ... .
ΘM

m1 ΘM
m2 ... ΘM

mn




, ΘN = (ΘN
ij )m×n =




ΘN
11 ΘN

12 ... ΘN
1n

ΘN
21 ΘN

22 ... ΘN
2n

. . ... .

. . ... .

. . ... .
ΘN

m1 ΘN
m2 ... ΘN

mn




,

vM = (vM
ij )m×n =




vM
11 vM

12 ... vM
1n

vM
21 vM

22 ... vM
2n

. . ... .

. . ... .

. . ... .
vM

m1 vM
m2 ... vM

mn




, vN = (vN
ij )m×n =




vN
11 vN

12 ... vN
1n

vN
21 vN

22 ... vN
2n

. . ... .

. . ... .

. . ... .
vN

m1 vN
m2 ... vN

mn




The following definitions describe some basic operations on LDF-Rs.

Definition 5 ([12]). Let ρ̈1 = (< ΘM
1 (v1, v2), ΘN

1 (v1, v2) >,< vM
1 (v1, v2), vN

1 (v1, v2) >)
and ρ̈2 = (< ΘM

2 (v1, v2), ΘN
2 (v1, v2) >,< vM

2 (v1, v2), vN
2 (v1, v2) >) be two LDF-Rs from Ŭ1

to Ŭ2. Then,

(1) ρ̈1 ⊆ ρ̈2 if and only if

ΘM
1 (v1, v2) ≤ ΘM

2 (v1, v2) and ΘN
1 (v1, v2) ≥ ΘN

2 (v1, v2),

vM
1 (v1, v2) ≤ vM

2 (v1, v2) and vN
1 (v1, v2) ≥ vN

2 (v1, v2)

(2) ρ̈1 ∪ ρ̈2 = (< (ΘM
1 ∪ ΘM

2 )(v1, v2), (ΘN
1 ∩ ΘN

2 )(v1, v2) >,< vM
1 (v1, v2) ∨ vM

2 (v1, v2),
vM

1 (v1, v2) ∧vN
2 (v1, v2) >), where

(ΘM
1 ∪ΘM

2 )(v1, v2) = ΘM
1 (v1, v2) ∨ΘM

2 (v1, v2) and

(ΘN
1 ∩ΘN

2 )(v1, v2) = ΘN
1 (v1, v2) ∧ΘN

2 (v1, v2)
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(3) ρ̈1 ∩ ρ̈2 = (< (ΘM
1 ∩ ΘM

2 )(v1, v2), (ΘN
1 ∪ ΘN

2 )(v1, v2) >,< vM
1 (v1, v2) ∧ vM

2 (v1, v2),
vN

1 (v1, v2) ∨vN
2 (v1, v2) >), where

(ΘM
1 ∩ΘM

2 )(v1, v2) = ΘM
1 (v1, v2) ∧ΘM

2 (v1, v2) and

(ΘN
1 ∪ΘN

2 )(v1, v2) = ΘN
1 (v1, v2) ∨ΘN

2 (v1, v2)

(4) ρ̈c
1 = (< ΘN

1 (v1, v2), ΘM
1 (v1, v2) >,< vN

1 (v1, v2), vM
1 (v1, v2) >).

for all (v1, v2) ∈ Ŭ1 × Ŭ2.

Definition 6 ([12]). Let ρ̈1 = (< ΘM
1 (v1, v2), ΘN

1 (v1, v2) >,< vM
1 (v1, v2), vN

1 (v1, v2) >) be
an LDF-R over Ŭ1× Ŭ2 and ρ̈2 = (< ΘM

2 (v1, v2), ΘN
2 (v1, v2) >,< vM

2 (v1, v2), vN
2 (v1, v2) >)

be an LDF-R over Ŭ2 × Ŭ3. Then, their composition is denoted by ◦̂ and is determined accordingly:

ρ̈1◦̂ρ̈2 = (< (ΘM
1 ◦̂ΘM

2 )(v1, v3), (ΘN
1 ◦̂ΘN

2 )(v1, v3) >,< (vM
1 ◦̂vM

2 )(v1, v3), (vN
1 ◦̂vN

2 )(v1, v3) >)

where
(ΘM

1 ◦̂ΘM
2 )(v1, v3) = ∨x2∈Ŭ2

(ΘM
1 (v1, v2) ∧ΘM

2 (v2, v3))

(ΘN
1 ◦̂ΘN

2 )(v1, v3) = ∧x2∈Ŭ2
(ΘN

1 (v1, v2) ∨ΘN
2 (v2, v3))

and
(vM

1 ◦̂vM
2 )(v1, v3) = ∨u2∈Ŭ2

(vM
1 (v1, v2) ∧vM

2 (v2, v3))

(vN
1 ◦̂vN

2 )(v1, v3) = ∧u2∈Ŭ2
(vN

1 (v1, v2) ∨vN
2 (v2, v3))

for all (v1, v3) ∈ Ŭ1 × Ŭ3.

Definition 7 ([12]). Let ρ̈ be an LDF-R on Ŭ . Then, ρ̈ is classified as:

(1) a reflexive LDF-R (R-LDF-R), if:

ΘM(v, v) = 1, ΘN(v, v) = 0 and vM(v, v) = 1, vN(v, v) = 0

for all u ∈ Ŭ .
(2) a symmetric LDF-R (S-LDF-R), if

ΘM(v1, v2) = ΘM(v2, v1), ΘN(v1, v2) = ΘN(v2, v1) and α̈(v1, v2) = α̈(v2, v1), β̈(v1, v2) = β̈(v2, v1)

(3) a transitive LDF-R (T-LDF-R), if

ΘM◦̂ΘM ⊆ ΘM, ΘN ◦̂ΘN ⊇ ΘN and vM◦̂vM ⊆ vM, vN ◦̂vN ⊇ vN

(4) an equivalence LDF-R (E-LDF-R), if ρ̈ is a R-, S-, and T-LDF-R over Ŭ .

If |Ŭ | = n, where |.| indicates the quantity of items in Ŭ , ρ̈ = (< (ΘM
ij )n×n, (ΘN

ij )n×n >

,< (vM
ij )n×n, (vN

ij )n×n >). Let ΘM = (ΘM
ij )n×n, ΘN = (ΘN

ij )n×n and vM = (vM
ij )n×n,

vN = (vN
ij )n×n. Then,

(1) ρ̈ is R, if ΘM
ii = vM

ii = 1, and ΘN
ii = vN

ii = 0, where i, j = 1, 2, ..., n.
(2) ρ̈ is S, if (ΘM)T = ΘM, (ΘN)T = ΘN and (vM)T = vM, (ssvN)T = vN ,
(3) ρ̈ is T, if ΘM◦̂ΘM ⊆ ΘM, ΘN ◦̂ΘN ⊇ ΘN and vM◦̂vM ⊆ vM, vN ◦̂vN ⊇ vN .
(4) ρ̈ is E, if ρ̈ is R, S and T as well,

3. Some Properties of Linear Diophantine Fuzzy Relation

Ayub et al. [12] proposed the idea of LDF-R from Ŭ1 to Ŭ2. The purpose of this section
is to introduce the idea of a level cut relation of an LDF-R. Additionally, we investigate
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a few of its crucial characteristics, including the R-, S-, and T-LDF-R in terms of its level
cut relations.

Definition 8. Let ρ̈ = (< ΘM(v1, v2), ΘN(v1, v2) >,< vM(v1, v2), vN(v1, v2) >) be an
LDF-R from Ŭ1 to Ŭ2. Let s̈, ẗ, ü, v̈ ∈ [0, 1] be such that 0 ≤ s̈ü + ẗv̈ ≤ 1 with 0 ≤ ü + v̈ ≤ 1,
and define the (< s̈, ü >,< ẗ, v̈ >)−level cut relation of ρ̈ as follows:

(ρ̈)<ẗ,v̈>
<s̈,ü> = {(v1, v2) ∈ Ŭ1 × Ŭ2 : ΘM(v1, v2) ≥ s̈, vM(v1, v2) ≥ ü and ΘN(v1, v2) ≤ ẗ, vN(v1, v2) ≤ v̈}

where
(ρ̈)<s̈,ü> = {(v1, v2) ∈ Ŭ1 × Ŭ2 : ΘM(v1, v2) ≥ s̈, vM(v1, v2) ≥ ü}

is said to be < s̈, ü > −level cut relation of ρ̈, and

(ρ̈)<ẗ,v̈> = {(v1, v2) ∈ Ŭ1 × Ŭ2 : ΘN(v1, v2) ≤ ẗ, vN(v1, v2) ≤ v̈}

is called < ẗ, v̈ > −level cut relation of ρ̈.

Theorem 1. ρ̈ is R-LDF-R if and only if (ρ̈)<ẗ,v̈>
<s̈,ü> is R-R on Ŭ , for all s̈, ü, ẗ, v̈ ∈ [0, 1].

Proof. Suppose that ρ̈ is R-LDF-R. By Definition 7 (1), ΘM(v, v) = 1 ≥ s̈, ΘN(v, v) = 0 ≤
ẗ and vM(v, v) = 1 ≥ ü, vN(v, v) = 0 ≤ v̈, for all s̈, ẗ, ü, v̈ ∈ [0, 1] such that 0 ≤ s̈ü + ẗv̈ ≤ 1
with 0 ≤ ü + v̈ ≤ 1. Hence, (x, x) ∈ (ρ̈)<ẗ,v̈>

<s̈,ü> for all u ∈ Ŭ .

Conversely, assume that (ρ̈)<ẗ,v̈>
<s̈,ü> is R-R. If ρ̈ is not R-LDF-R, then for some v ∈ Ŭ

either ΘM(v, v) 6= 1, or ΘN(v, v) 6= 0 or vM(v, v) 6= 1 or vN(v, v) 6= 0, for some s̈, ẗ, ü, v̈ ∈
[0, 1]. If ΘM(v, v) 6= 1. Taking s̈ = 1, we have (x, x) /∈ (ρ̈)<ẗ,v̈>

<s̈,ü>, which is a contradiction.

The other three cases are similar. Hence, (ρ̈)<ẗ,v̈>
<s̈,ü> is a R-R.

Theorem 2. ρ̈ is S-LDF-R if and only if (ρ̈)<ẗ,v̈>
<s̈,ü> is S-R on Ŭ , for all s̈, ü, ẗ, v̈ ∈ [0, 1].

Proof. Suppose that ρ̈ is S-LDF-R. Let (v1, v2) ∈ (ρ̈)<ẗ,v̈>
<s̈,ü>. By Definition 8, ΘM(v1, v2) ≥

s̈, vM(v1, v2) ≥ ü and ΘN(v1, v2) ≤ ẗ, vN(v1, v2) ≤ v̈. Since ρ̈ is symmetric, so we have
ΘM(v2, v1) ≥ s̈, vM(v2, v1) ≥ ü and ΘN(v2, v1) ≤ ẗ, vN(v2, v1) ≤ v̈ (see Definition 7 (2)).
Thus, (v2, v1) ∈ (ρ̈)<ẗ,v̈>

<s̈,ü>.

Conversely, assume that (ρ̈)<ẗ,v̈>
<s̈,ü> is S-R on Ŭ . Letting ΘM(v1, v2) = s̈, vM(v1, v2) =

ü and ΘN(v1, v2) = ẗ, vN(v1, v2) = v̈, for some s̈, ẗ, ü, v̈ ∈ [0, 1] such that 0 ≤ s̈ü + ẗv̈ ≤ 1
with 0 ≤ ü + v̈ ≤ 1. It follows that (v1, v2) ∈ (ρ̈)<ẗ,v̈>

<s̈,ü>. By assumption on (ρ̈)<ẗ,v̈>
<s̈,ü>,

we have (v2, v1) ∈ (ρ̈)<ẗ,v̈>
<s̈,ü>. Thus, ΘM(v2, v1) ≥ s̈ = ΘM(v2, v1), vM(v2, v1) ≥ ü =

vM(v1, v2) and ΘN(v2, v1) ≤ ẗ = ΘN(v1, v2), β(v2, v1) ≤ v̈ = vN(v1, v2). By using similar
arguments, other inequalities can be shown. Thus, ρ̈ is S-LDF-R on Ŭ . This completes the
proof.

Proposition 1. ρ̈ is T-LDF-R if and only if

ΘM(v1, v2) ∧ΘM(v2, v3) ≤ ΘM(v1, v3), ΘN(v1, v2) ∧ΘN(v2, v3) ≥ ΘN(v1, v3)

and vM(v1, v2) ∧vM(v2, v3) ≤ vM(v1, v3), vN(v1, v2) ∧vN(v2, v3) ≥ vN(v1, v3),

for all v1, v2, v3 ∈ Ŭ .

Proof. Suppose that ρ̈ is T-LDF-R on Ŭ . By Definition 7 (3), (ΘM◦̂ΘM)(v1, v3) ⊆ ΘM(v1, v3),
(ΘN ◦̂ΘN)(v1, v3) ⊇ ΘN(v1, v3) and (vM◦̂vM)(v1, v3) ⊆ vM(v1, v3), (vN ◦̂vN)(v1, v3) ⊇
vN(v1, v3), for all v1, v3 ∈ Ŭ . Thus, ΘM(v1, v2) ∧ΘM(v2, v3) ≤ ΘM(v1, v3), ΘN(v1, v2) ∧
ΘN(v2, v3) ≥ ΘN(v1, v3) and vM(v1, v2) ∧ vM(v2, v3) ≤ vM(v1, v3), vN(v1, v2) ∧ vN(v2,
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v3) ≥ vN(v1, v3), for all v1, v2, v3 ∈ Ŭ (see Definition 6). The converse can be proven,
similarly.

Theorem 3. ρ̈ is a T-LDF-R if and only if (ρ̈)<ẗ,v̈>
<s̈,ü> is T-R on Ŭ , for all s̈, ü, ẗ, v̈ ∈ [0, 1].

Proof. Suppose that ρ̈ is T-LDF-R. Let (v1, v2), (v2, v3) ∈ (ρ̈)<ẗ,v̈>
<s̈,ü>. Then, ΘM(v1, v2) ∧

ΘM(v2, v3) ≥ s̈, α(v1, v2) ∧ α(v2, v3) ≥ ü and ΘN(v1, v2) ∨ ΘN(v2, v3) ≤ ẗ, β(v1, v2) ∨
β(v2, v3) ≤ v̈ (see Definition 8 ). Using above Proposition 1, we obtain: ΘM(v1, v3) ≥
s̈, vM(v1, v3) ≥ ü, ΘN(v1, v3) ≤ ẗ, vN(v1, v3) ≤ v̈. Thus, (v1, v3) ∈ (ρ̈)<ẗ,v̈>

<s̈,ü>.

Theorem 4. ρ̈ is an E-LDF-R if and only if (ρ̈)<ẗ,v̈>
<s̈,ü> is an E-R on Ŭ , for all s̈, ẗ, ü, v̈ ∈ [0, 1].

Proof. Theorems 1–3 have a direct impact on the proof.

Now, to measure the ‘resemblance’, ‘comparability’ or ‘closeness’ of the objects in Ŭ ,
we define the following concept.

Definition 9. ρ̈ is said to be a tolerance LDF-R (or compatible LDF-R), if it is R-LDF-R and
S-LDF-R.

To illustrate our above notions, we provide Example 2 below.

Example 1. Let Ŭ = {v1, v2, v3, v4}. Construct an LDF-R ρ̈ on Ŭ in matrix notation form
as follows:

ΘM =




1 0.725 0.862 0.921
0.725 1 0.815 0.132
0.862 0.815 1 0.325
0.921 0.132 0.325 1


, ΘN =




0 0.218 0.125 0.215
0.218 0 0.651 0.334
0.125 0.651 0 0.728
0.215 0.334 0.728 0


,

vM =




1 0.71 0.81 0.89
0.71 1 0.75 0.11
0.81 0.75 1 0.21
0.89 0.11 0.21 1


, vN =




0 0.16 0.10 0.11
0.16 0 0.25 0.34
0.10 0.25 0 0.64
0.11 0.34 0.64 0


.

Using Definition 8 of (< s̈, ü >,< ẗ, v̈ >)-level cut relation, we are able to obtain the following:
For s̈ = ü = 1, ẗ = v̈ = 0,

(ρ̈)<0,0>
<1,1> = {(v1, v1), (v2, v2), (v3, v3), (v4, v4)}

For s̈ = 0.725, ü = 0.71 and ẗ = 0.218, v̈ = 0.16,

(ρ̈)<0.218,0.16>
<0.725,0.71> = {(v1, v1), (v1, v2), (v1, v3), (v2, v1), (v2, v2), (v3, v1), (v3, v3), (v4, v1), (v4, v4)}

For s̈ = 0.862, ü = 0.81 and ẗ = 0.125, v̈ = 0.10,

(ρ̈)<0.125,0.10>
<0.862,0.81> = {(v1, v1), (v1, v3)(v2, v2), (v3, v1), (v3, v3), (v4, v4)}

For s̈ = 0.921, ü = 0.89 and ẗ = 0.215, v̈ = 0.11,

(ρ̈)<0.215,0.11>
<0.921,0.89> = {(v1, v1), (v1, v4), (v2, v2), (v3, v3), (v4, v1), (v4, v4)}

For s̈ = 0.815, ü = 0.75 and ẗ = 0.651, v̈ = 0.25,

(ρ̈)<0.651,0.25>
<0.815,0.75> = {(v1, v1), (v1, v3), (v1, v4), (v2, v2), (v2, v3), (v3, v1), (v3, v2), (v3, v3), (v4, v1), (v4, v4)}

For s̈ = 0.132, ü = 0.11 and ẗ = 0.334, v̈ = 0.34,
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(ρ̈)<0.334,0.34>
<0.132,0.11> = {(v1, v1), (v1, v2), (v1, v3), (v1, v4), (v2, v1), (v2, v2), (v2, v4), (v3, v1), (v3, v3), (v4, v1), (v4, v2), (v4, v4)}

For s̈ = 0.325, ü = 0.21 and ẗ = 0.728, v̈ = 0.64,

(ρ̈)<0.728,0.64>
<0.325,0.21> = (Ŭ × Ŭ ) \ {(v2, v4), (v4, v2)}

It is simple to observe that (ρ̈)<ẗ,v̈>
<s̈,ü> is an E-R on Ŭ , for each s̈, ü, ẗ, v̈. Hence, by using Theorem 4,

ρ̈ is an E-LDF-R on Ŭ .

4. Linear Diophantine Fuzzy Rough Sets on Two Universes

In literature, R-As on two different universes using F-R are initiated by Sun and Ma [48].
Since the NM part is not discussed in F-R, Yang et al. [51] extended the concept of [48] to fuzzy
bipolar relation (FB-R). In this segment, we generalize this concept to LDF-R and introduce a
new concept of roughness called LDF-RS on two universes based on the after sets and fore
sets of the level cut relation of an LDF-R (a crisp relation).

If ρ̈ ∈ LDF − R(Ŭ1 × Ŭ2), then the triplet P̈ = (Ŭ1, Ŭ2, ρ̈) is called an LDF rough
approximation space (LDF-RAS).

Definition 10. Let P̈ = (Ŭ1, Ŭ2, ρ̈) be an LDF-RAS andY ⊆ Ŭ2. Describe the L-A appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y)

of Y and the U-A appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y) of Y as follows:

appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y) = {v1 ∈ Ŭ1 : ∅ 6= v1ρ̈<ẗ,v̈>
<s̈,ü> ⊆ Y};

appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y) = {v1 ∈ Ŭ1 : ∅ 6= v1ρ̈<ẗ,v̈>
<s̈,ü>, v1ρ̈<ẗ,v̈>

<s̈,ü> ∩ Y 6= ∅}

Similarly, we can define the L-A (X )appr
ρ̈<ẗ,v̈>
<s̈,ü>

and U-A (X )appr
ρ̈<ẗ,v̈>
<s̈,ü>

for any subset X ⊆ Ŭ1

as follows:
(X )appr

ρ̈<ẗ,v̈>
<s̈,ü>

= {v2 ∈ Ŭ2 : ∅ 6= ρ̈<ẗ,v̈>
<s̈,ü>v2 ⊆ X}

(X )appr
ρ̈<ẗ,v̈>
<s̈,ü>

= {v2 ∈ Ŭ2 : ∅ 6= ρ̈<ẗ,v̈>
<s̈,ü>v2, ρ̈<ẗ,v̈>

<s̈,ü>v2 ∩ X 6= ∅}

where v2ρ̈<ẗ,v̈>
<s̈,ü> = {v2 ∈ Ŭ2 : (v1, v2) ∈ ρ̈<ẗ,v̈>

<s̈,ü>} and ρ̈<ẗ,v̈>
<s̈,ü>v2 = {v1 ∈ Ŭ1 : (v1, v2) ∈

ρ̈<ẗ,v̈>
<s̈,ü>}.

Remark 1.

(1) If Ŭ1 = Ŭ2, then the L-A and U-A for any X ⊆ Ŭ1 can also be defined as in the above
Definition 10.

(2) All the notions and results for any subset Y of Ŭ2 from Definition 11 to Theorem 5 can be
proved in similar manners for any subset X ⊆ Ŭ1.

Definition 11. Let P̈ = (Ŭ1, Ŭ2, ρ̈) be an LDF-RAS and Y ⊆ Ŭ2. Then, the following sets are
defined as follows:

(1) LDF− POSP̈(Y) = appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y);

(2) LDF− BNDP̈(Y) = appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y)− appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y);

(3) LDF− NEGP̈(Y) = Ŭ2 − appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y) = (appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y))c.

are called the PR, BR and NR of Y ⊆ Ŭ2, respectively.
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In the sequel of this manuscript, we mean P̈ = (Ŭ1, Ŭ2, ρ̈) as a LDF-RAS and s̈, ü ∈
(0, 1], ẗ, v̈ ∈ [0, 1).

Proposition 2. Let Y1,Y2 ⊆ Ŭ2. Then,

(1) appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y1) ⊆ appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y1);

(2) appr
ρ̈<ẗ,v̈>
<s̈,ü>

(∅) = ∅ = appr
ρ̈<ẗ,v̈>
<s̈,ü>

(∅);

(3) If Y1 ⊆ Y2, then appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y1) ⊆ appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y2);

(4) Y1 ⊆ Y2, then appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y1) ⊆ appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y2);

(5) appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y1 ∩ Y2) = appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y1) ∩ appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y2);

(6) appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y1 ∩ Y2) ⊆ appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y1) ∩ appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y2);

(7) appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y1 ∪ Y2) ⊇ appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y1) ∪ appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y2);

(8) appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y1 ∪ Y2) = appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y1) ∪ appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y2)

Proof. All the assertions can be easily proved by using Definition 10.

Note that: if xρ̈<ẗ,v̈>
<s̈,ü> 6= ∅, then the assertions (1) and (2) may not hold (see Example 2).

Example 2. Let Ŭ1 = {u1, u2, u3} and Ŭ2 = {v1, v2, v3} be the universal sets. Then, we define
an LDF-R ρ̈ from Ŭ1 to Ŭ2 in the matrix notations given as below:

ΘM =




0.77 0.57 0.67
0.55 0.48 0.50
0.68 0.45 0.43


, ΘN =




0.71 0.41 0.56
0.80 0.72 0.46
0.54 0.40 0.22


,

vM =




0.51 0.50 0.61
0.46 0.40 0.37
0.54 0.39 0.35


, vN =




0.49 0.46 0.38
0.52 0.58 0.58
0.45 0.56 0.61


.

Using Definition 8 of (< s̈, ü >,< ẗ, v̈ >)-level cut relation, for s̈ = 0.77, ü = 0.51,
ẗ = 0.71, v̈ = 0.49, we can obtain:

u1ρ̈<0.71,0.49>
<0.77,0.51> = {v1}, u2ρ̈<0.71,0.49>

<0.77,0.51> = u3ρ̈<0.71,0.49>
<0.77,0.51> = ∅

Suppose Y = {v1, v2}. Then by Definition 10,

(Y)appr
ρ̈<0.71,0.49>
<0.77,0.51>

= U1, (Y)appr
ρ̈<0.71,0.49>
<0.77,0.51>

= {u1}

(∅)appr
ρ̈<0.71,0.49>
<0.77,0.51>

= {u2, u3}, (∅)appr
ρ̈<0.71,0.49>
<0.77,0.51>

= ∅

(U2)appr
ρ̈<0.71,0.49>
<0.77,0.51>

= U1, (U2)appr
ρ̈<0.71,0.49>
<0.77,0.51>

= {u1}

Thus, we obtain that (∅)appr
ρ̈<0.71,0.49>
<0.77,0.51>

6= ∅ and (U2)appr
ρ̈<0.71,0.49>
<0.77,0.51>

6= U1. However, if

uρ̈<0.71,0.49>
<0.77,0.51> 6= ∅, then:

(U2)appr
ρ̈<0.71,0.49>
<0.77,0.51>

= (U2)appr
ρ̈<0.71,0.49>
<0.77,0.51>

= {u1} 6= U1

(see Proposition 3).

Proposition 3. Let ρ̈ be a R-LDF-R on Ŭ1 and s̈, ü ∈ (0, 1], ẗ, v̈ ∈ [0, 1). For any subset Y ⊆ Ü1,
the following properties hold:
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(1) appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y) ⊆ Y ⊆ appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y);

(2) appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Ŭ1) = Ŭ1 = appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Ŭ1).

Proof. The proof is straightforward.

Lemma 1. Suppose that s̈1, s̈2, ü1, ü2 ∈ (0, 1] and ẗ1, ẗ2, v̈1, v̈2 ∈ [0, 1) such that s̈1 ≤ s̈2, ü1 ≤ ü2
and ẗ2 ≤ ẗ1, v̈2 ≤ v̈1. Then,

ρ̈<ẗ2,v̈2>
<s̈2,ü2>

⊆ ρ̈<ẗ1,v̈1>
<s̈1,ü1>

.

Proof. Let (v1, v2) ∈ ρ̈<ẗ2,v̈2>
<s̈2,ü2>

. Using Definition 8, ΘM(v1, v2) ≥ s̈2, vM(v1, v2) ≥ ü2 and
ΘN(v1, v2) ≤ ẗ2, vN(v1, v2) ≤ v̈2. Since s̈1 ≤ s̈2, ü1 ≤ ü2 and ẗ2 ≤ ẗ1, v̈2 ≤ v̈1, so

ΘM(v1, v2) ≥ s̈2 ≥ s̈1, vM(v1, v2) ≥ ü2 ≥ ü1 and ΘN(v1, v2) ≤ ẗ2 ≤ ẗ1, vN(v1, v2) ≤ v̈2 ≤ v̈1

Hence, ΘM(v1, v2) ≥ s̈1, vM(v1, v2) ≥ ü1 and ΘN(v1, v2) ≤ ẗ1, vN(v1, v2) ≤ v̈1. Thus
(v1, v2) ∈ ρ̈<ẗ1,v̈1>

<s̈1,ü1>
.

Proposition 4. With the same assumptions as in the above Lemma 1, suppose that Y ⊆ Ŭ2. Then,
the following assertions are true:

(1) appr
ρ̈
<ẗ2,v̈2>
<s̈2,ü2>

(Y) ⊆ appr
ρ̈
<ẗ1,v̈1>
<s̈1,ü1>

(Y),

(2) appr
ρ̈
<ẗ1,v̈1>
<s̈1,ü1>

(Y) ⊆ appr
ρ̈
<ẗ2,v̈2>
<s̈2,ü2>

(Y).

Proof. (1) Let v1 ∈ appr
ρ̈
<ẗ2,v̈2>
<s̈2,ü2>

(Y). From Definition 10, v2 ∈ v1ρ̈<ẗ2,v̈2>
<s̈2,ü2>

∩ Y for some

v2 ∈ U1. Since v1ρ̈<ẗ2,v̈2>
<s̈2,ü2>

⊆ v1ρ̈<ẗ1,v̈1>
<s̈1,ü1>

, therefore v2 ∈ v1ρ̈<ẗ1,v̈1>
<s̈1,ü1>

∩ Y (using Lemma 1).

Hence, v1 ∈ appr
ρ̈
<t1,v1>
< ¨̈s1,ü1>

(Y).

(2) Let v1 ∈ appr
ρ̈
<ẗ1,v̈1>
<s̈1,ü1>

(Y). By Definition 10, v1ρ̈<ẗ1,v̈1>
<s̈1,ü1>

⊆ Y . From Lemma 1,

v1ρ̈<ẗ2,v̈2>
<s̈2,ü2>

⊆ Y . This proves that v1 ∈ appr
ρ̈
<ẗ2,v̈2>
<s̈2,ü2>

(Y).

The inclusions in Proposition 4 may not hold, as is demonstrated in the sequel.

Example 3. Let us revisit Example 2, assume s̈1 = 0.55, ü1 = 0.46, ẗ1 = 0.80, v̈1 = 0.52 and
s̈2 = 0.77, ü2 = 0.51, ẗ2 = 0.71, v̈2 = 0.49. Then by Definition 8,

u1ρ̈<0.80,0.52>
<0.55,0.46> = U2, u2ρ̈<0.80,0.52>

<0.55,0.46> = u3ρ̈<0.80,0.52>
<0.55,0.46> = {v1}

u1ρ̈<0.71,0.49>
<0.77,0.51> = {v1}, u2ρ̈<0.71,0.49>

<0.77,0.51> = u3ρ̈<0.71,0.49>
<0.77,0.51> = ∅

Take Y = {v1}, then by Definition 10, we have:

appr
ρ̈<0.71,0.49>
<0.77,0.51>

(Y) = appr
ρ̈<0.71,0.49>
<0.77,0.51>

(Y) = {u1}

appr
ρ̈<0.80,0.52>
<0.55,0.46>

(Y) = {u2, u3}, appr
ρ̈<0.80,0.52>
<0.55,0.46>

(Y) = U1

Since s̈1 < s̈2, ü1 < ü2 and ẗ1 > ẗ2, v̈1 > v̈2, but appr
ρ̈<0.71,0.49>
<0.77,0.51>

(Y) and appr
ρ̈<0.80,0.52>
<0.55,0.46>

(Y) *
appr

ρ̈<0.71,0.49>
<0.77,0.51>

(Y).
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Lemma 2. Let ρ̈1, ρ̈2 ∈ LDF− R(Ŭ1 × Ŭ2) be such that ρ̈1 ⊆ ρ̈2. Then,

ρ̈1
<ẗ,v̈>
<s̈,ü> ⊆ ρ̈2

<ẗ,v̈>
<s̈,ü>

Proof. Let (v1, v2) ∈ ρ̈1
<ẗ,v̈>
<s̈,ü>. By Definition 8, ΘM

1 (v1, v2) ≥ s̈, vM
1 (v1, v2) ≥ ü and

ΘN
1 (v1, v2) ≤ ẗ, vN

1 (v1, v2) ≤ v̈. Since ρ̈1 ⊆ ρ̈2, therefore s̈ ≤ ΘM
1 (v1, v2) ≤ ΘM

2 (v1, v2), ü ≤
vM

1 (v1, v2) ≤ vM
2 (v1, v2) and ẗ ≥ ΘN

1 (v1, v2) ≥ ΘN
2 (v1, v2), v̈ ≥ vN

1 (v1, v2) ≥ vN
2 (v1, v2).

Hence, ΘM
2 (v1, v2) ≥ s̈, vM

2 (v1, v2) ≥ ü and ΘN
2 (v1, v2) ≤ ẗ, vN

2 (v1, v2) ≤ v̈. Thus,
(v1, v2) ∈ ρ̈2

<ẗ,v̈>
<s̈,ü>.

Proposition 5. With the same notations as in Lemma 2, assume that Y ⊆ Ŭ2. Then,

(1) appr
ρ̈2

<ẗ,v̈>
<s̈,ü>

(Y) ⊆ appr
ρ̈1

<ẗ,v̈>
<s̈,ü>

(Y),

(2) appr
ρ̈1

<ẗ,v̈>
<s̈,ü>

(Y) ⊆ appr
ρ̈2

<ẗ,v̈>
<s̈,ü>

(Y).

Proof. (1) Let v ∈ appr
ρ̈2

<ẗ,v̈>
<s̈,ü>

(Y). Then, vρ̈2
<ẗ,v̈>
<s̈,ü> ⊆ Y . By Lemma 2, vρ̈1

<ẗ,v̈>
<s̈,ü> ⊆

vρ̈2
<ẗ,v̈>
<s̈,ü> ⊆ Y . Hence, xρ̈1

<ẗ,v̈>
<s̈,ü> ⊆ Y . This proves that v ∈ appr

ρ̈1
<ẗ,v̈>
<s̈,ü>

(Y). Similar to

the proof of (1), proof of (2).

5. Accuracy Measure and Roughness Measure for LDF-RSs on Two Universes

The concept of A-M and R-M was first invented by Pawlak in 1982 in order to define
the imprecision of R-As. Our perception of the accuracy of the data relating to an E-R for a
given classification is based on these numerical measures. In [51], Yang et al. gave the idea
of A-M and R-M for BF-RSs on dual universes. In this passage, we extend this concept to
LDF-RSs on two universes.

With respect to a Pawlak A-S P = (Ŭ , ρ), where ρ is an E-R on Ŭ . Then the A-M and
R-M of O of Ŭ are defined as follows, respectively:

AM(O) =
ρ(O)
ρ(O)

and RM(O) = 1− AM(O).

We define the subsequent ideas by using the same pattern.

Definition 12. Let P̈ = (Ŭ1, Ŭ2, ρ̈) be an LDF-RAS and Y ⊆ Ŭ2, define the AM of Y with
respect to ρ̈ as follows:

AM(Y) =
|appr

ρ̈<ẗ,v̈>
<s̈,ü>

(Y)|

|appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y)|

where |.| indicates the number of elements in the sets. After that, we define the RM of Y ⊆ Ŭ2 with
respect to ρ̈ as follows:

RM(Y) = 1−AM(Y)

Remark 2. The following points can be deduced from definition 12 given above:

(1) AM(Y), RM(Y) ∈ [0, 1].
(2) If s̈ = ü = 1 and ẗ = v̈ = 0, then AM(Y) = 1 and RM(Y) = 0.

In the following, we construct an example for the clarification of the above Definition 12.

Example 4. In Example 3, for s̈1 = 0.55, ü1 = 0.46, ẗ1 = 0.80, v̈1 = 0.52 and Y = {y1},
we have:

appr
ρ̈<0.71,0.49>
<0.77,0.51>

(Y) = appr
ρ̈<0.71,0.49>
<0.77,0.51>

(Y) = {x1}
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Thus, by Definition 12, MA(Y) = 1 and MR(Y) = 0. Hence, our information related to ρ̈ is
accurate up to grade 1, which means that ρ̈ describes the objects of Y absolutely accurately. On the
other hand, for s̈2 = 0.77, ü2 = 0.51, ẗ2 = 0.71, v̈2 = 0.49 and Y = {y1}, we have:

appr
ρ̈<0.80,0.52>
<0.55,0.46>

(Y) = {x2, x3}, appr
ρ̈<0.80,0.52>
<0.55,0.46>

(Y) = Ŭ1

Then, MA(Y) = 2
3 and MR(Y) = 1

3 . Hence, our information related to ρ̈ is accurate up to grade
0.6666, which means that ρ̈ describes the items of Ŭ2 accurately up to grade 0.6666.

In the following result, we describe a connection of the A-M AM(Y) and R-M RM(Y)
about the union and intersection of Y1 and Y2 on the universe U2.

Theorem 5. Let P̈ = (Ŭ1, Ŭ2, ρ̈) be a LDF-RAS and Y1,Y2 are any non-empty subsets of Ŭ2.
Then, A-M and R-M of Y1, Y2, Y1 ∪ Y2 and Y1 ∩ Y2 the following relations;

(1) MR(Y1 ∪ Y2)|appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y1) ∪ appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y2)| ≤MR(Y1)|appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y1)|+
MR(Y2)|appr

ρ̈<ẗ,v̈>
<s̈,ü>

(Y2)| −MR(Y1 ∩ Y2)|appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y1) ∩ appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y2)|;
(2) MA(Y1 ∪ Y2)|appr

ρ̈<ẗ,v̈>
<s̈,ü>

(Y1) ∪ appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y2)| ≥MA(Y1)|appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y1)|+
MA(Y2)|appr

ρ̈<ẗ,v̈>
<s̈,ü>

(Y2)| −MA(Y1 ∩ Y2)|appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y1) ∩ appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y2)|

Proof. The proof resembles that of Theorem 3.3 in [51].

6. An Application of LDF-RSs on Two Different Universes

In the literature, a number of scientists have developed various techniques for medical
diagnosis. Sun and Ma [48] presented an application of the F-RS model on two distinct
domains in clinical diagnosis systems. Since the information is insufficient in the case of
F-RS, Yang et al. [51] expanded the idea of Sun and Ma [48] to BF-RS model on two distinct
cosmologies. LD-FSs are more efficient in decision analysis than the prevailing concepts of
FS, IF-S, B-FS and q-ROF-S. Therefore, we need to extend the existing technique of BF-RS to
a more general and robust model, namely LDF-RS on two contrasting universes and utilize
this notion in clinical diagnosis.

Suppose that Ŭ1 refers to the collection of afflicted people and Ŭ2 indicates the group
of symptoms. Let P̈ = (Ŭ1, Ŭ2, ρ̈) be LDF-RAS. If (v1, v2) ∈ ρ̈<ẗ,v̈>

<s̈,ü>, for all v1 ∈ Ŭ1 and
v2 ∈ Ŭ2, then we say that the sufferer x has the symptom y and the percentage of the
patient who exhibits symptom y is at least s̈ and the degree of its corresponding parameter
is not less than ü, the sufferer’s degree of symptom y non-existence is not greater than ẗ,
and the degree of its corresponding parameter is not greater than v̈.

We are aware that a certain illness has a number of common symptoms. We denote a
certain disease by Y = {yi ∈ Ŭ2 : i ∈ I} for any Y ⊆ Ŭ2 and make the following inferences
using the PR, NR, and BR described in Definition 11:

Let v ∈ Ŭ1 be a given certain sufferer. Then,

(1) If v ∈ LDF − POSP̈(Y) = appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y) and vρ̈<ẗ,v̈>
<s̈,ü> 6= ∅, that is, he must have

illness Y , at which point the patient urgently requires treatment.
(2) If v ∈ LDF − BNDP̈(Y) = appr

ρ̈<ẗ,v̈>
<s̈,ü>

(Y)− appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y), consequently, he will be

the doctor’s second choice because he is not diagnosed based on these symptoms,
even though he may have the disease Y .

(3) If v ∈ LDFNEGP̈(Y), that is, v ∈ (appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y))c, consequently, he does not have

illness Y and does not require treatment.

Let us use a specific case to demonstrate this.
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Example 5. Let Ŭ1 = {p1, p2, p3, p4} be the group of certain victims and Ŭ2 = {q1, q2, q3} be
the set of some symptoms. Consider an LDF-R ρ̈ from Ŭ1 to Ŭ2. It describes the M and NM grades,
together with the grades of their parameters, for each patient pi in relation to the symptom qj in the
following matrices:

ΘM =




0.80 0.54 0.68
0.71 0.45 0.40
0.57 0.36 0.75
0.85 0.81 0.62


, ΘN =




0.35 0.46 0.38
0.36 0.72 0.43
0.46 0.56 0.47
0.21 0.32 0.25


,

vM =




0.71 0.50 0.62
0.62 0.38 0.30
0.46 0.26 0.60
0.80 0.78 0.59


, β =




0.24 0.48 0.38
0.38 0.52 0.70
0.54 0.66 0.40
0.20 0.18 0.28


.

Let Y = {q1, q2} symbolize a specific sickness, and there are two signs of this condition
in clinic.

Case-1: For s̈ = 0.45, ü = 0.38 and ẗ = 0.72, v̈ = 0.52, we have:

p1ρ̈<0.72,0.52>
<0.45,0.38> = p4ρ̈<0.72,0.52>

<0.45,0.38> = Ŭ2, p2ρ̈<0.72,0.52>
<0.45,0.38> = {q1, q2}, p3ρ̈<0.72,0.52>

<0.45,0.38> = {q3}

(see Definition 8). By simple computations, the L-A and U-A of Y are given below:

appr
ρ̈<0.72,0.52>
<0.45,0.38>

(Y) = {p2}, appr
ρ̈<0.72,0.52>
<0.45,0.38>

(Y) = {p1, p2, p4}

Using Definition 10, LDF − POSP̈(Y) = {p2}, LDF − BNDP̈(Y) = {p1, p4} and LDF −
NEGP̈(Y) = {p3}. Furthermore, by Definition 12, the A-M and R-M are calculated as:

MA(Y) = 1
3

,MR(Y) = 2
3

Thus, we interpret the subsequent results:

(1) Patient p2 must be afflicted with illness Y and requires emergency medical attention.
(2) We cannot guarantee that patients p1 and p4 are suffering from illness Y based on these

symptoms. The doctor will therefore choose the second option.
(3) The sickness Y does not affect patient p3.

Case-2: For s̈ = 0.57, ü = 0.46 and ẗ = 0.46, v̈ = 0.54, we have:

p1ρ̈<0.46,0.54>
<0.57,0.46> = {q1, q3}, p2ρ̈<0.46,0.54>

<0.57,0.46> = {q1} = p3ρ̈<0.46,0.54>
<0.57,0.46>, p4ρ̈<0.46,0.54>

<0.57,0.46> = Ŭ2.

(using Definition 8). By simple calculations, the L- and U-As of Y are as follows:

appr
ρ̈<0.46,0.54>
<0.57,0.46>

(Y) = {p2, p3}, appr
ρ̈<0.46,0.54>
<0.57,0.46>

(Y) = Ŭ2

Using Definition 10, LDFPOSP̈(Y) = {p2, p3}, LDFBNDP̈(Y) = {p1, p4} and LDFNEGP̈
(Y) = ∅. Further, using Definition 12, the A-M and R-M are computed as follows:

MA(Y) = 1
2

, MR(Y) = 1
2

Thus, we conclude that:

(1) Patients p2 and p3 must endure illness Y , and he requires prompt medical attention.
(2) Regarding patients p1 and p4, we cannot guarantee whether or not they are experiencing the

symptoms of illness Y . The doctor will therefore choose the second option.
(3) No one who suffers has a healthy diagnosis.
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Remark 3.

(�) Based on the analysis discussed earlier, we may infer that decision precision rises with ap-
proximation precision, as in [51]. Thus, a precise decision can be made by a doctor using the
proposed method of LDF-RSs.

(�) Furthermore, our proposed technique of LDF-RSs allows reducing the likelihood of a surgical
misconception.

(�) Additionally, the LDF-RS model, and because of the application of control or reference factors
found in LD-FSs, the applied approach may help decision-makers arrive at a precise and
scientific conclusion in circumstances where they frequently encounter one another.

Comparative Analysis

In this section, we contrast our findings with a few of Yang et al. [51], Sun and Ma [48]
and Ayub et al.’s [52] previously used methods.

Example 6. For [48], consider our previous example 5, where Ŭ1 = {p1, p2, p3, p4} and Ŭ2 =
{q1, q2, q3}. The following describes the M grades for each patient pi in connection to the symptom
qj and F-R ΘM on Ŭ1 × Ŭ2:

ΘM =




0.80 0.54 0.68
0.71 0.45 0.40
0.57 0.36 0.75
0.85 0.81 0.62


,

Using Definition 3.3 of [48] for level cuts, we obtain the following for s̈ = 0.45:

p1ΘM
0.45 = p4ΘM

0.45 = Ŭ2, p3ΘM
0.45 = {q1, q3}, p2ΘM

0.45 = {q1, q2}

For Y = {q1, q2}, the L- and U-As are obtained by using Definition 3.3 of [48] below:

apprΘM
0.45

(Y) = {p2}, apprΘM
0.45

(Y) = Ŭ2

Therefore, P− R(Y) = {p2}, B− R(Y) = {p1, p3, p4} and N − R(Y) = ∅. As a result, the
following conclusions may be made from this information:

(1) Patient p2 needs immediate medical care as he must deal with the sickness Y .
(2) We are unable to confirm if patients p1, p3, and p4 are displaying the signs of sickness Y .

Therefore, the doctor will select choice number two.
(3) Nobody who is ill has a clear diagnosis.

For s̈ = 0.57, we have:

p1ΘM
0.57 = p3ΘM

0.57 = {q1, q3}, p2ΘM
0.57 = {q1}, p4ΘM

0.57 = Ŭ2

The L- and U-As for Y are found by applying Definition 3.3 of [48] below:

apprΘM
0.57

(Y) = {p3}, apprΘM
0.57

(Y) = Ŭ2

Therefore, P− R(Y) = {p3}, B− R(Y) = {p1, p2, p4} and N − R(Y) = ∅. Thus, it follows
that:

(1) Patient p3 is suffering from illness Y and needs immediate medical care.
(2) We are unable to confirm if patients p1, p2, and p4 are displaying the signs of sickness Y .

Therefore, the doctor will select choice number two.
(3) There is no healthy diagnosis for someone who is suffering.

Example 7. We use the same Example 5 with BF-R which is expressed in the Table 1 for [51]:
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Table 1. ρB.

U1\U2 q1 q2 q3

p1 < 0.80, 0.20 > < 0.54, 0.46 > < 0.68, 0.30 >
p2 < 0.71, 0.25 > < 0.45, 0.45 > < 0.40, 0.43 >
p3 < 0.57, 0.40 > < 0.36, 0.56 > < 0.75, 0.25 >
p4 < 0.85, 0.12 > < 0.81, 0.15 > < 0.62, 0.25 >

Using Definition 3.1 of [51], the < s̈, ẗ > −level cuts for s̈ = 0.45 and ẗ = 0.54, we have the
sequel:

p1(ρB)
<0.45,0.54> = p4(ρB)

<0.45,0.54> = U2, p2(ρB)
<0.45,0.54> = {q1, q2}, p3(ρB)

<0.45,0.54> = {q3}
From Definition 3.2 of [51], the L-, and U-As of Y are given below:

appr(ρB)<0.45,0.54>(Y) = {p2}, appr(ρB)<0.45,0.54>(Y) = {p1, p2, p4}

Therefore, P− R(Y) = {p2}, B− R(Y) = {p1, p4} and N − R(Y) = {p3}. Thus, based on
these findings, the following inferences can be made:

(1) Patient p2 must suffer from disease Y , so he requires urgent medical attention.
(2) We are uncertain as to whether patients p1 and p4 are exhibiting the signs of sickness Y .

Therefore, the doctor will select choice number two.
(3) Patient p3 was declared to be in good health and does not require any additional care.

Now, for s̈ = 0.57 and ẗ = 0.40, using Definition 3.1 of [51] for < s̈, ẗ > −level cuts, we
obtain the following:

p1(ρB)
<0.45,0.54> = p3(ρB)

<0.45,0.54> = {q1, q3}, p2(ρB)
<0.45,0.54> = {q1}, p4(ρB)

<0.45,0.54> = U2

By using Definition 3.2 of [51] and simple calculations, we obtain the L-A and U-A of Y in the
sequel:

appr(ρB)<0.57,0.40>(Y) = {p2}, appr(ρB)<0.57,0.40>(Y) = U2

Therefore, P− R(Y) = {p2}, B− R(Y) = {p1, p3, p4} and N − R(Y) = ∅. Based on these
results, we conclude that:

(1) Patient p2 has to have illness Y , so he needs to get medical help right away.
(2) We cannot guarantee that patients p1, p3, and p4 are displaying the signs of sickness Y or

not. Therefore, the doctor will select choice number two.
(3) Nobody who is in pain has a good diagnosis.

Example 8. For [52], consider the same LDF-R as in Example 5. By using Definition 9 of [52], we
obtain the L-, and U-As for Y = {q1, q2} and s̈ = 0.45, ü = 0.38 as follows:

ρ̈(Y)
<0.45,0.38>

= {p2}, ρ̈(Y)<0.45,0.38>
= U1

For ẗ = 0.72 and v̈ = 0.52, the L-A and U-A are as follows:

ρ̈(Y)
<0.72,0.52>

= {p1, p2, p4}, ρ̈(Y)<0.72,0.52>
= ∅

Thus, P − R(Y) = ({p2}, ∅), B − R(Y) = ({p1, p3, p4}, {p1, p2, p4}) and N − R(Y) =
(∅, {p3}). These findings allow for the following inferences:

(1) Patient p2 must deal with the ailment Y , necessitating immediate medical attention. Since
there is no other patient in the area, we can declare with certainty that this patient does not
have illness Y .

(2) We cannot ensure that patients p1, p3, and p4 are exhibiting the symptoms of sickness Y .
Consequently, the doctor will pick option number two.
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(3) Nobody who is in pain has a good diagnosis.

Now, for s̈ = 0.57, ü = 0.46 the L-, and U-As are as follows:

ρ̈(Y)
<0.57,0.46>

= {p2}, ρ̈(Y)<0.45,0.38>
= U1

For ẗ = 0.46 and v̈ = 0.54, the L-A and U-As of Y are as follows:

ρ̈(Y)
<0.46,0.54>

= U1, ρ̈(Y)<0.46,0.54>
= ∅

Thus, P− R(Y) = ({p2}, ∅), B− R(Y) = ({p1, p3, p4},U1) and N − R(Y) = (∅, ∅). These
lead us to conclude that:

(1) Patient p2 must deal with ailment Y , necessitating immediate medical attention. Since there
is no other patient in the area, we can declare with certainty that this patient does not have
illness Y .

(2) We cannot confirm whether patients p1, p3, and p4 are exhibiting the signs of sickness Y . As
a result, the doctor will go with option number two.

(3) No one with a diagnosis of illness is healthy.

7. Conclusions

The concept of LD-FS is a very powerful and convenient tool to describe the uncertainties
in many practical problems, which involves decisions. The decision makers can freely
choose the degree of truthness and the degree of falsity by making the use of reference
or control parameters. Thus, LD-FS enhanced the space of truthness degree and falsity
degree and removed the limitations of these degrees as in the existing concepts of FS, IF-S,
B-FS, P-FS and q-ROF-S. In this paper, the existing notions of the F-RS model and BF-RS
model on two universes have been generalized into the LDF-RS model on two universes as
a more convenient and a robust model. The basic notions of lower and upper LDF-RAS
have been defined by employing the after sets and fore sets of the (< s̈, ü >,< ẗ, v̈ >)-level
cut relation of an LDF-Rs. Some important results related to the L- and U-As have been
proved with illustrative examples. Furthermore, to illustrate the application of LDF-RSs,
an example has been employed. Further research on the proposed ideas of this research
paper applied to other practical applications is needed, which may lead to many fruitful
outcomes.
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Abstract: Exploring the proofs and refutations of an abstract statement, conjecture with the aim to give
a formal syntactic treatment of its proving–refuting process, we introduce the notion of extrapolation
of a possibly unprovable statement having the form if A, then B, and propose a procedure that should
result in the new statement if A′, then B′, which is similar to the starting one, but provable. We think
that this procedure, based on the extrapolation method, can be considered a basic methodological
tool applicable to prove–refute–improve any conjecture. This new notion, extrapolation, presents a
dual counterpart of the well-known interpolation introduced in traditional logic sixty-five years ago.
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1. Introduction

Lakatos’ monumental play ’Proofs and Refutations’ (see [1]) can be considered a
demonstration of applying the proof–refutation (or conjecture–refutation) method as a
practical realization of the falsificationism concept advocated and supported at that time,
among other authors, by [2]. At the same time, the concept of proving–refuting–improving,
demonstrated in the same play, can be used as an effective interactive class model.

Refutation, as an isolated process, plays an extremely important role in the develop-
ment of a pupil’s critical thinking and has a crucial place in each study program syllabus.
We deem that examples of finding and treating incorrectness in some reasoning and argu-
mentation are at least of equal didactic importance as those with correct derivations and
proofs. Such examples present and help incite critical thinking.

First, let us explain in brief what we mean under the term ’extrapolation’. As we know,
interpolation deals with finding statements C and D, which are in between A and B, when
A ` B; i.e., ’A implies B’, is provable, meaning that all three sequents A ` C, C ` D and
D ` B are provable. In this case, the sequent C ` D presents an interpolant for A ` B. On
the other side, if A ` B is refutable, i.e., A 6` B, then we are looking for two statements C
and D, such that C ` A, B ` D and C ` D are all provable; in this case, the sequent C ` D
will be an extrapolant for A 6` B.

In this paper, we extend the proving–refuting method by its immediate result—
improving—and place it in a wider logical context relating it with the well-known concept
of interpolation, with a new concept, extrapolation, as its dual. Both these notions, extrapo-
lation and interpolation, are closely connected with many aspects of abductive reasoning [3].
The improving process, based deeply on the extrapolation method, is presented through
several examples. Let me repeat here that once, a long time ago, my teacher Aleksan-
dar Kron told me: ‘Oh, how many times I fell asleep with a proof, and woke up with a
counterexample’. This was the essence of the proving–refuting–improving process, during
the daily journey of any scientist from a conjecture to the truth (see [4]). This process,
consisting of proving and refuting attempts producing an improvement of the starting
conjecture, is presented formally as an methodological procedure for discovering better
statements. In fact, this can be considered a kind of Hegelian–Marxist dialectic scheme:
thesis–antithesis–synthesis. However, the crucial cognition is that the essential step of this
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procedure is based on extrapolation, which is a dual to the well-known logical feature
of reasoning—the interpolation property. We introduce the notion of extrapolation as a
counterpart of interpolation. We do this in general form, independently of the basic logic.
Namely, our definition depends neither on language—we do not use connectives—nor on
logic—we suppose that our deduction relation is not necessarily linked to classical logic.
Pure propositional logics open the problem of existence of a minimal extrapolant, which
seems particularly interesting in case of infinitely valued systems.

2. Interpolation and Extrapolation—A General Idea

A typical form of a scientific statement is that ’B follows from A’, denoted by A ` B,
expressing a causal relationship between A and B. Refutation of such a statement consists
of argumentation presenting at least one example (interpretation) where A is satisfied, but
B is not.

The turnstyle symbol will be used in an informal way, not connected to any particular
logical system, but assuming its rudimentary structural properties such as identity (A ` A),
weakening (A ` B implies A, C ` B), permutation (A, B ` C implies B, A ` C), contraction
(A, A ` B implies A ` B) and transitivity (A ` B and B ` C imply A ` C).

Establishing a statement A ` B as a conjecture means that we believe that A ` B holds,
but also that this is partly under question; does A ` B? In order to obtain a final conclusion
regarding the truthfulness of our conjecture, we try to prove and to refute it. This process
implies finding examples supporting A ` B and counterexamples refuting A ` B, as well
as looking for similar statements A′ ` B′ that are, by their nature, weaker than A ` B in
cases when A ` B is refutable, and stronger than A ` B in cases when A ` B is provable.

Let us consider the two apparently simplest cases of causal connection: (i) A ` B is not
proven and (ii) A ` B is proven, where A and B are two arbitrary sentences. In the second
case (ii), we can assert that there are two propositions C and D such that the following
statements are provable: A ` C, C ` D and D ` B. If C and D are logically equivalent, then
we recognize here a form of the well-known Craig interpolation theorem (see [5]), pointing
out that the form presented here can be considered as its slight generalization. In a similar
way, we will deal with the first case (i) and suppose that there are two propositions C and
D such that the following statements are provable: C ` A, B ` D and C ` D, obtaining a
form that is somehow dual to interpolation (ii) and which could be treated as a kind of
extrapolation.

We point out that the term ’duality’ is used here in a quite different meaning than in
classical two-valued logic. For each statement of the form A ` B, provable or unprovable,
we consider a provable statement C ` D. If A ` C and D ` B are provable, then C ` D
is called an interpolant, while when C ` A and B ` D are provable, then C ` D is called
an extrapolant. Consequently, C and D as parts of an interpolant are in consequent of A
and antecedent of B, respectively, but as parts of an extrapolant, they have ’dually’ just the
opposite roles; C is in antecedent of A and D is in consequent of B.

More accurately, if we suppose that A ` B is any statement, provable or not, then (i)
C ` D is its extrapolant if all statements C ` A, B ` D and C ` D are provable; (ii) C ` D is
its interpolant if all statements A ` C, D ` B and C ` D are provable. We omit here more
formal details such as variable sharing and the context of a particular logical system for the
deduction relation.

Note that in the case that an interpolant exists, the original statement A ` B is provable.
However, in the case that an extrapolant exists, we can conclude nothing regarding the
provability of A ` B. The most interesting cases in the sequel of this paper will be exactly
those (i) when A 6` B, i.e., A ` B is unprovable. The challenges before us here are how to
find some ’good’ extrapolants for A 6` B and (ii) when A ` B is provable, how to find its
’good’ interpolants. This is because in both these cases, the statement C ` D should present
an improvement of A ` B, which will be explained below.

The term ’interpolation’ is justified by the simple fact that we insert a new statement
C ` D in between A and B, with an obvious possibility to infer A ` B from A ` C,
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C ` D and D ` B. Similarly, the extrapolation process involves looking for a statement C
’before’ A, because C ` A, and a statement D ’after’ B, because B ` D. Both requirements,
interpolation and extrapolation, have some trivial solutions. If A ` B is proven, then both
forms A ` A and B ` B present possible interpolants. Furthermore, for any A ` B, all
statements ⊥ ` >, ⊥ ` A and B ` > present its extrapolants, where we use the symbols
> and ⊥, respectively, to denote truth and absurdity constants. Later, after sharpening
both notions, extrapolation and interpolation, following the spirit of Craig’s interpolation
theorem and practical applications of extrapolation, we will see that trivial solutions have
no importance (as usual).

Example 1 (Lakatos’ Proofs and Refutations). In his famous work, by giving a picturesque
presentation of the proving–refuting process, Lakatos (see [1]) begins with an incorrect and refutable
formulation of Euler’s Polyhedral Theorem. The dialog between a teacher and his pupils starts
with the teacher’s provocation: “In our last lesson we arrived at a conjecture concerning polyhedra,
namely, that for all polyhedra V − E + F = 2, where V is the number of vertices, E the number
of edges and F the number of faces. We tested it by various methods. But we have not yet proven
it. Has anybody found a proof?” After that, through a few iterations, the teacher, together with
his pupils, by using a proving–refuting–improving method, obtains and proves the correct form of
Euler’s Polyhedral Theorem: for all convex polyhedra, V − E + F = 2.

Example 2 (Elementary Geometry). Let RTr(a, b, c) denote any right triangle with sides a, b, c,
where c is its hypothenuse, and Tr(a, b, c) denotes any triangle with sides a, b, c. Some of the known
elementary geometric facts can be formulated by means of a deduction relation as follows:

Triangle Inequality: Tr(a, b, c) ` a + b > c.
Pythagorean Theorem: RTr(a, b, c) ` a2 + b2 = c2 and a2 + b2 = c2 ` RTr(a, b, c).

We also have two obvious facts: RTr(a, b, c) ` Tr(a, b, c); i.e., each right triangle is a triangle
and, in elementary algebra, a2 + b2 = c2 ` a + b > c for any positive reals a, b, c (see [6]). In
order to illustrate the extrapolation phenomenon in this context, we consider the following negative
statement:

Tr(a, b, c) 6` a2 + b2 = c2

By the extrapolation approach, bearing in mind that RTr(a, b, c) ` Tr(a, b, c) and a2 + b2 = c2 `
a + b > c, we can infer the following statements: RTr(a, b, c) ` a2 + b2 = c2, Tr(a, b, c) `
a + b > c and RTr(a, b, c) ` a + b > c, as possible extrapolants. Deeming the proving–refuting–
improving process one of the most important methods of knowledge growth, the author of this
text, with a group of his brilliant students (Aleksanra Djoković, Bojana Tujković, Ivana Čekrdžić,
Aleksandar Elezović, Doroteja Djordjević and Milan Perić), during the spring semester 2014, set
up a musical performance under the title ’Proofs and refutations: devoted to the glorious triangle’,
at the Faculty of Economics, University of Belgrade. That performance was deeply inspired by [1]
but, for the sake of better understanding the basic message, instead of Euler’s Polyhedral Theorem,
considered in the original Lakatos’ play, we dealt with proofs and refutations of the Pythagorean
Theorem.

Example 3 (Propositional Calculus). Here, we present some more subtle examples of interpolants
and extrapolants. Let ∧ and ∨ denote the conjunction and disjunction connectives, respectively. (i)
The form p ∨ q ` p ∧ q is unprovable, i.e., p ∨ q 6` p ∧ q, and it can be improved by the following
forms: p ` p, q ` q, p ` p ∨ q, q ` p ∨ q and p ∧ q ` p ∨ q; this is not a complete list of its
extrapolants. (ii) The form p ∧ q ` p ∨ q is provable and it can be improved by the following
interpolants: p ∧ q ` p, p ` p ∨ q, p ` p and q ` q; this is not a complete list of its interpolants.
Let us note that the examples of extrapolants and interpolants considered here are compatible not
only with classical, but also with many non-classical propositional logics.

Example 4 (Set-Theoretic Interpretation). Due to the immediate link between the set-theoretic
inclusion relation and the classical implication connective, the interpolation and extrapolation have
a rough illustrative and a quite simple set-theoretic interpretation. Namely, if for two sets A and B
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we have A ⊆ B, then the sets C and D, such that A ⊆ C ⊆ D ⊆ B, can be considered as the basic
constituents of an interpolant C ⊆ D for A ⊆ B. On the other side, if A 6⊆ B, then the sets C and
D, such that C ⊆ A, B ⊆ D and C ⊆ D, define an extrapolant C ⊆ D for A 6⊆ B.

Example 5 (Impossibility Tradition). In spite of their great methodological and logical importance
(see [7,8]), impossibility theorems raise a natural question: how they can be transformed into the
corresponding relevant possibility results? Each such transformation is based on some proving–
refuting–improving process that starts with the improving, i.e., with an extrapolation step. Let us
discuss two simple cases of impossibility theorems.

Incommensurability of the diagonal and the side of a square: if a is the side of a square and d is
its diagonal, then a = 1 ` d /∈ N, i.e., a = 1 6` d ∈ N, where N is the set of natural numbers. By
replacing (weakening) d ∈ N with d ∈ Q, bearing in mind that d ∈ N ` d ∈ Q where Q is the
set of rational numbers, we also obtain by extrapolation an invalid statement a = 1 ` d ∈ Q. The
next iteration is finding an appropriate extrapolant for the statement a = 1 6` d ∈ Q. Obviously,
by replacing d ∈ Q with d ∈ R, bearing in mind that d ∈ Q ` d ∈ R where R is the set of reals,
we obtain a valid positive statement a = 1 ` d ∈ R, i.e., a possibility result.

Unsolvability of the equation x2 + a = 0, a ∈ R, in the field of reals: a ∈ R ∧ x2 + a = 0 6`
x ∈ R leads to two simple positive possibilities. By antecedent weakening, from a ≤ 0 ` a ∈ R, we
obtain a ≤ 0 ∧ x2 + a = 0 ` x ∈ R, or, by consequent weakening, from x ∈ R ` x ∈ C where
C is the set of complex numbers, we have a ∈ R ∧ x2 + a = 0 ` x ∈ C, i.e., solvability of that
equation in the field of complex numbers.

In a similar way, but with more complex argumentation and context, Arrow’s Impossibility
Theorem (see [7–9]), the most popular and important result in Social Choice Theory during the last
century, has generated a number of possibility results. Variations of the corresponding possibility
theorems (see [10]), obtained by weakening the antecedent or consequent of Arrow’s original theorem,
can be considered as effective examples of applying the proving–refuting–improving process as well.

Here, we will explain why we do believe that both interpolants and extrapolants
present improvements of our initial statement A ` B. (i) If A ` B is not provable, then its
extrapolant C ` D, which is provable, obtained from an unprovable statement, presents
its improvement, bearing in mind that from the initial statement A ` B of low quality
(unprovable), we obtain its extrapolant C ` D, a statement of higher quality (provable). (ii)
If A ` B is provable, then its interpolant C ` D, which is provable together with A ` C and
C ` B, can be used as a sufficient condition to infer the initial statement A ` B, and from
this point of view it can be considered as its essence—its improvement—enabling us to
prove and better understand the meaning of the initial statement A ` B.

3. Extrapolation—More Formally

Let us discuss a more subtle aspect of extrapolation including some views of relevance
logic. A deduction of B from hypothesis A is acceptable relevance logic if this deduction
employs every element of A. Another syntactic relevance principle, known as variable
sharing condition, is that if A entails B, then AtA ∩AtB 6= ∅, where AtA denotes the set of
all atomic formulae, i.e., propositional letters, occurring in A (see [11]). Variable sharing is
not sufficient, but it is a necessary condition for relevance.

Now, we can formulate more ambitious expectations, including some kind of variable
sharing principle.

Interpolation property: If AtA ∩AtB 6= ∅ and A ` B, then there exist C and D such
that AtC ∪AtD ⊆ AtA ∩AtB, A ` C, D ` B and C ` D.

Extrapolation property: If AtA ∩AtB 6= ∅ and A 6` B, then there exist C and D such
that AtC ∪AtD ⊆ AtA ∩AtB, C ` A, B ` D and C ` D.

The interpolation property is defined in accordance with Craig’s well-known approach
(see [5]). The extrapolation property tends to find relevant, non-trivial and, in some sense,
minimal statements C and D establishing an extrapolant.

76



Axioms 2022, 11, 559

Let us note here that Craig’s original definition deals with only one formula C, such
that A ` C and C ` B, as an interpolant for A ` B. In this spirit, it would be possible to
redefine our notion of extrapolant C for A 6` B so that C ` A and B ` C. It is not difficult to
see that this approach with one formula playing the role of interpolant (or extrapolant) is
logically equivalent to our definition employing two formulae in both cases.

The logical, methodological, philosophical and, even algebraic aspects of interpolation
have been analyzed, discussed and explained in detail as a necessary part of most textbooks
in logic (see [12,13]). Here, we will attempt to elucidate the logical sense of extrapolation.
Bearing in mind the following derivation:

C ` A
A ` B

C, A ` B, D
weakening × 2

B ` D
C, C ` D, D

C ` D
contraction × 2

cut × 2

the extrapolation can be considered to be a weakening of the antecedent and the consequent
of A ` B, respectively, by special statements C and D, such that C ` A and B ` D (Instead
of {A, B} ` {C, D}, we will write simply A, B ` C, D, which, according to the traditional
classical logic proof-theoretic interpretation, can be understood as A ∧ B ` C ∨ D). The
procedure will be satisfiable when, from an unprovable statement, we obtain a provable one,
i.e., when, in fact, from A 6` B, we obtain C ` D, where C and D are in the corresponding
causal connections with A and B, respectively. In practice, when we search for an adequate
statement, instead of reasoning starting with the explicit application of weakening rules, as
above, the pure derivation with the cut rules

C ` A A ` B B ` D
C ` D

cut × 2

hides the presence of weakening. On the other side, we have to emphasize that it would
be wrong to understand the extrapolation just as a simple weakening, because it is a very
restricted and specific weakening in order to find the relevant extrapolant.

Extrapolation is formally, in the context of classical logic, equivalent to the left and the
right side weakening rules, bearing in mind the following derivations

C, A ` A A ` B
C, A ` B

and
A ` B B ` B, D

A ` B, D

Nevertheless, the extrapolation, as defined, seems more restrictive and suggests some
kind of ’relevant’ weakening. Namely, the above two derivations are classically, and even
intuitionistically, admissible, but not from the point of view of relevance logic. This is the
reason why the extrapolation can be essentially considered as a process partly supported
by relevant logic principles, bearing in mind that variable sharing conditions for C with A
and B with D are satisfied, but not necessary for C with D.

In case of an unprovable statement A ` B, when we look for some of its improvements
C ` D, in order to avoid trivial solutions and to find the best one, if possible, we define the
notion of minimal sentences:

Minimal extrapolants: Suppose A ` B is not proven and C ` D is its extrapolant. C
will be called a minimal sentence for A, B and D, in this order, if for each C′, such that C ` C′

is provable and C′ ` C is unprovable, one of the statements C′ ` A or C′ ` D is unprovable.
In a dual way, D will be called a minimal sentence for A, B and C, in this order, if for each D′,
such that D ` D′ is unprovable and D′ ` D is provable, one of the statements B ` D′ or
C ` D′ is unprovable. In cases when both hold, C is a minimal sentence for A, B and D,
and D is a minimal sentence for A, B and C; then, the statement C ` D is called a minimal
extrapolant for A ` B.

The central question now is the following one: does a minimal extrapolant exist (and
when)? It depends on the logical context, clearly. For instance, in m-valued propositional
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logics, due to the existence of finitely many nonequivalent formulae over any finite set
of atomic formulae (propositional letters), we always have the possibility to choose the
minimal sentences. The next question is: does the minimal nontrivial extrapolant exist (and
when)? Moreover, how could a nontrivial statement be characterized?

Example 6. Obviously, for any two sentences A and B, such that A 6` B and p ∈ AtA ∩AtB, the
statement p ∧ ¬p ` p→ p presents an extrapolant. This is a trivial example.

Example 7. Let us consider again some extrapolants p ∧ q ` p ∨ q, p ` p ∨ q, p ∧ q ` p and
p ` p of the statement p ∨ q ` p ∧ q. In the case of extrapolant p ∧ q ` p ∨ q, the statement p ∧ q
is not minimal for p ∨ q, p ∧ q and p ∨ q because there is a statement, p such that p ∧ q ` p, and
both p ` p ∨ q and p ∧ q ` p are provable. On the other hand, the statement p is a minimal one for
p∨ q, p∧ q and p∨ q, and this is a way to find a new and ’better’ extrapolant p ` p∨ q. In the case
of this extrapolant p ` p ∨ q, although p is a minimal for p ∨ q, p ∧ q and p ∨ q, the proposition
p ∨ q is not minimal for p ∨ q, p ∧ q and p because, for the statement p, we have that p ` p ∨ q
and both p ` p ∨ q and p ` p are provable, while p is a minimal statement for p ∨ q, p ∧ q and p.
Let us note also that the examples considered here have a general character and are compatible with
both classical and intuitionistic propositional logics.

Example 8. In set-theoretic interpretation, when A 6⊆ B, the parts of minimal extrapolants will
be the sets in between C = A ∩ B and D = A ∪ B with respect to the inclusion relation. In
general, C = A ∩ B ⊆ B = D will be a minimal extrapolant for C = A ∩ B(⊆ A), A( 6⊆ B)
and B ⊆ D = B, and C = A(⊆ D = A ∪ B) will be a minimal extrapolant for A = C(⊆ A),
A( 6⊆ B) and B(⊆ D = A ∪ B).

4. More Examples

The importance of propositional language is founded, inter alia, on its simplicity.
Propositional context is usually suitable for explaining and understanding the differences
between various philosophical concepts for the foundations of mathematics. For instance,
the spirit of essential variations between Platonism, intuitionism and relevance is already
visible on the level of classical, intuitionistic and relevant propositional logics. On the
other side, the founding of any serious mathematical theory needs much more than a
propositional language. Here, we will try to present the idea of extrapolation in the context
of the first-order predicate language.

The general symbolic form of an Impossibility Theorem stating that ’there does not
exist an object x such that A implies B’, is

¬∃x(A→ B)

The first-order sentence ¬∃x(A(x) → B(x)) can be presented in a classically equiv-
alent way as ¬(∀xA(x) → ∃xB(x)), or a bit more informally as “∀xA(x) does not imply
∃xB(x)”, i.e., ∀xA(x) 6` ∃xB(x). Here, we want to describe an application of extrapolation
method on

∀xA(x) 6` ∃xB(x)

Namely, we are looking for sentences C and D such that C ` ∀xA(x), ∃xB(x) ` D
and C ` D, where the last statement presents an extrapolant and, simultaneously, a
transformation of an ’impossibility’ result into a ’possibility’ one.

On the level of general first-order languages examples, we analyze an ’impossibility case’.

Example 9. Let us consider the following statement: ∀x(A ∨ B) 6` ∃x(A ∧ B), having exactly the
form of an impossibility theorem. If we try to weaken the antecedent ∀x(A ∨ B) by (1) ∀xA ∨ ∀xB
or by (2) ∀xA, and the consequent ∃x(A ∧ B) by (3) ∃xA ∧ ∃xB or by (4) ∃xA, we do not obtain
extrapolants by combining (1) with (3), (1) with (4) or (2) with (3); only the combination (2) with
(4) gives an extrapolant, because ∀xA ` ∀x(A ∨ B), ∃x(A ∧ B) ` ∃xA, and ∀xA ` ∃xA.
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We also consider some relationships between binary relations properties.

Example 10. The logic of preferences is usually based on axioms concerning some properties
of a binary relation P, called a preference relation. For instance, the list of axioms contains
irreflexivity (Ir), ∀x¬P(y, x), asymmetry (As), ∀x∀y(P(x, y) → ¬P(y, x)), transitivity (Tr),
∀x∀y∀z(P(x, y) ∧ P(y, z) → P(x, z)) and connectivity (Cn), ∀x∀y∀z(P(x, y) → P(x, z) ∨
P(z, y)). It is an easy exercise to show that Cn 6` Tr, but, bearing in mind that As ∧ Cn ` Cn,
As ∧ Cn ` Tr and Tr ` Tr, we conclude that As ∧ Cn ` Tr presents an extrapolant and an
improvement of the initial statement. In a similar way, we can find that the same statement,
As∧Cn ` Tr is an extrapolant for both Ir∧Cn 6` Tr and As∧ Tr 6` Cn.

5. A Proving–Refuting–Improving Procedure

Each theorem, or more generally, each scientific statement, can be expressed in the
following form: if Γ, then ∆. Γ presents a set of hypotheses (given context or a theory) and
∆ is a consequence (conclusion). This is the reason why the basic form we use in this part
of the paper is Γ ` ∆, an informal deduction relation (entailment) ` between two finite
sets of sentences Γ (antecedent) and ∆ (consequent), with the intended meaning that it
is possible to infer a conclusion ∆, interpreted as a disjunction of all elements of ∆, from
the hypotheses set Γ, interpreted as a conjunction of all elements of Γ. The Greek capitals
Γ, ∆, . . . , with or without subscripts or superscripts, will be used as metavariables over
finite sets of sentences denoted by Latin capitals A, B, C, D, . . . We also use Γ |= ∆ with the
usual model theoretic, meaning that if all elements of Γ are true, then at least one element
of ∆ is true. This will be the context enabling us to express that Γ ` ∆, or A ` B, is provable
or unprovable, and that Γ |= ∆, or A |= B, is refutable or irrefutable.

The idea of a proving–refuting–improving procedure has been hinted at by [4]. Here,
we will develop it further. In both cases when Γ ` ∆ is provable or unprovable, i.e., when
Γ |= ∆ is valid or refutable, we define the following four sets: Γ-antecedent, Γ-consequent, ∆-
antecedent and ∆-consequent, respectively, as Γant = {Aa

1, . . . , Aa
m}, Γcon = {Ac

1, . . . , Ac
m},

∆ant = {Ba
1, . . . , Ba

n} and ∆con = {Bc
1, . . . , Bc

n}, corresponding to the sets Γ = {A1, . . . , Am}
and ∆ = {B1, . . . , Bn}, such that, for each i (1 ≤ i ≤ m), Aa

i ` Ai and Ai ` Ac
i are provable,

and for each j (1 ≤ j ≤ n), Ba
j ` Bj and Bj ` Bc

j are provable.
The main problem here is to define concrete content of sets Γant, Γcon, ∆ant and ∆con

in this general case, because the condition that Aa
i ` Ai is provable has infinitely many

solutions for Aa
i . On the other hand, each particular problem in some specific part of

mathematics gives the researcher a freedom to use his intuition during the process of
’looking for a better theorem’.

The two elementary steps in our proving–refuting–improving procedure as follows:
Step (i): if Γ ` ∆ is not proven or Γ |= ∆ is refuted, we are looking for some Aa

i ∈ Γant
or some Bc

j ∈ ∆con for which the provability of Γ′ ` ∆′ can be reconsidered, where Γ′ ∪ ∆′

is obtained from Γ ∪ ∆ by substituting at least one occurrence of Ai by Aa
i in Γ or at least

one occurrence of Bj by Bc
j in ∆;

Step (ii): if Γ ` ∆ is proven, or Γ |= ∆ is not refuted, we are looking for some Ac
i ∈ Γcon

or Ba
j ∈ ∆ant for which the provability of Γ′ ` ∆′ can be reconsidered, where Γ′ ∪ ∆′ is

obtained from Γ ∪ ∆ by substituting at least one occurrence of Ai by Ac
i in Γ or at least one

occurrence of Bj by Ba
j in ∆.

In both cases (i) and (ii), the result will be a statement Γ′ ` ∆′. If Γ′ ` ∆′ is provable,
then the procedure can be stopped and Γ′ ` ∆′ will present a generalized extrapolant or
interpolant for Γ ` ∆ in cases (i) and (ii), respectively. Otherwise, if we cannot decide if
Γ′ ` ∆′ is provable or if Γ′ ` ∆′ is refutable, then we proceed with step (i) on Γ′ ` ∆′.

Finally, in the sequel, we apply the same procedure on Γ′ ` ∆′; i.e., firstly, we try
to prove Γ′ ` ∆′ or to falsify Γ′ |= ∆′. If Γ′ ` ∆′ is not proven or Γ′ |= ∆′ is falsifiable,
then we apply the procedure (i) on Γ′ ` ∆′ in order to obtain a new statement Γ′′ ` ∆′′. If
Γ′ ` ∆′ is provable or Γ′ |= ∆′ is not refuted, then we apply the procedure (ii) on Γ′ ` ∆′
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in order to obtain a new statement Γ′′ ` ∆′′. This process is called the proving–refuting–
improving procedure.

Let us point out that a similar form of a generalized interpolant appears in S. Maehara’s
approach to interpolation in the context of sequent calculi (see [13]).

Note that the sentence ’Γ ` ∆ is not proven’ does not exclude the case that Γ ` ∆ can
be provable, and sentence ’Γ |= ∆ is not refuted’ does not exclude the case that Γ |= ∆ can
be refutable. Namely, if some fact is not proven, maybe, in the future, it could be proven,
and if some fact has not been refuted up to now, it could be refuted later.

The above procedure, part (i), proving–refuting–improving, was based on methodological
ideas promoted by Popper–Lakatos’ proof–refutation (also known as conjecture–refutation)
falsificationism (see [1,2]). Furthermore, the transformation of Γ ` ∆ into Γ′ ` ∆′, generally,
can be considered a kind of Hegelian–Marxist dialectic scheme: thesis–antithesis–synthesis,
which is obviously parallel with our scheme consisting of (i) and (ii), defining the process
of proving–refuting–improving.

The statement Γ′ ` ∆′ presents an improvement of Γ ` ∆ in case (i), in a sense that from
an unprovable statement Γ ` ∆, we obtain a statement Γ′ ` ∆′, which may be provable;
but if Γ ` ∆ is provable, then Γ′ ` ∆′ is provable as well. On the other hand, the statement
Γ′ ` ∆′ presents an improvement of Γ ` ∆ in case (ii), in the sense that from a provable
statement Γ ` ∆, we obtain a provable statement Γ′ ` ∆′ from which Γ ` ∆ can be derived;
i.e., Γ′ ` ∆′ is more general than Γ ` ∆. These are the reasons to treat Γ′ ` ∆′ as an
improvement of Γ ` ∆ in both cases. This also means that any possible application of our
procedure to a provable statement cannot produce an unprovable statement.

If reconsideration of Γ ` ∆ provides a statement Γ′ ` ∆′, consisting of some new
elements of Γant ∪ Γcon ∪ ∆ant ∪ ∆con, then, obviously, Γ′ ` ∆′ presents an improvement of
Γ ` ∆. More accurately, we can justify our procedure by some kind of soundness statement:

Theorem 1.

(i) If the statement Γ′ ` ∆′ is obtained from Γ ` ∆ by applying step (i), then Γ′ ` ∆′ can be
inferred from Γ ` ∆;

(ii) If the statement Γ′ ` ∆′ is obtained from Γ ` ∆ by applying step (ii), then Γ ` ∆ can be
inferred from Γ′ ` ∆′.

Proof. By induction on n + m—the number of statements belonging to Γ ∪ ∆: in case (i),
from both, Γ ` ∆ and Aa

i ` Ai, and Γ ` ∆ and Bj ` Bc
j , by the hypothetical syllogism rule,

we can infer Γ′ ` ∆′. In case (ii), from both pairs, Γ′ ` ∆′ and Ai ` Ac
i , and from Γ′ ` ∆′

and Ba
j ` Bj, by the hypothetical syllogism rule, we can infer Γ ` ∆.

Let us note that in the particular case when Aa
i is true or when Bc

j is a false statement,
applying step (i) of our procedure produces the effects of enthymematic reasoning (see [14]).

A rare and unexpected case, which is not covered by (i) and (ii), is when the statement
Γ ` ∆ is undecidable, i.e., the case when it is possible to show that Γ ` ∆ is neither provable
nor refutable. Such examples are connected with highly formalized concepts and will not
be our focus.

This procedure can be considered a sequence of consecutive attempts to falsify a
statement and then to save it as a supplementary conjecture or to give it a new semantic
interpretation. In this way, a progressive improvement of the initial claim is enabled.

In order to visualize the transformation process of Γ ` ∆ into Γ′ ` ∆′ with the help of
Γant, Γcon, ∆ant and ∆con, we give a 2D-presentation of relationships between elements of Γ
and ∆, with or without subscripts or superscripts:
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Aa
1 Aa

m Ba
1 Ba

n
> > > >

A1, . . . , Am ? ` B1, . . . , Bm
> > > >
Ac

1 Ac
m Bc

1 Bc
n

where, for instance, the first column
Aa

1
>
A1
>
Ac

1

of this 2D-presentation means that both Aa
1 ` A1 and A1 ` Ac

1 are provable. Consequently,
by some replacements of Ai with Aa

i or with Ac
i , (1 ≤ i ≤ m), and some replacements of

Bj with Ba
j or with Bc

j , (1 ≤ j ≤ n), we obtain this new form Γ′ ` ∆′. The symbol ’? `’,
appearing above, stands for ’ 6`’ or ’`’.

6. Concluding Remarks

An unproven statement of hypothetical character, a conjecture, is usually treated
in one of the following two ways: we try to prove it, or we try to refute it. Then, for a
proven statement, we try to find its interpolants, in order to simplify its proof and to better
understand the nature of its proof, but for a refuted, i.e., unprovable, statement, we look
for its extrapolants, trying to find a similar and relevant but provable statement.

Briefly, if we start with a statement of the form A ` B, then we have, syntactically,
two possibilities to obtain from A ` B a better statement: if A ` B is unproven, we will
look for its extrapolant presenting a provable statement relevant for A ` B, but if A ` B is
proven, then we will find its interpolant relevant for A ` B, better explaining the nature of
A ` B. Namely, the basic principle respected in the process of transforming A ` B into a
’better statement’ A′ ` B′ is that all side statements occurring in derivations, such as C ` A
and B ` D, are provable, except the principal statement A ` B, which can be, but does not
have to be, provable, and that each step in the considered derivation is made strictly in
accordance with the sound logical inference rules.

In working versions of this paper, we used the term ’algorithm’ for the proving–
refuting–improving process, but later we accepted the term ’procedure’ as the appropriate
one. Namely, it is not clear if the step transforming Γ 6` ∆ into Γ′ ` ∆′ is well defined, in
the sense that we do not know if the problem of provability of both Γ ` ∆ and Γ′ ` ∆′

is decidable.
Finally, let us note that while the phenomenon of interpolation is usually treated

as a property of an axiomatic theory or a logical system, because even some natural
propositional logics do not possess it (see [15]), extrapolation, although observed as a dual
to interpolation, presents essentially a method of transforming an unprovable statement
A ` B into a ’similar’, but provable one: A′ ` B′.

We also point out that if there is a grain of suspicion that a counterexample to our
conjecture exists, it will be of great didactic importance in developing and stirring the
critical reasoning of students and researchers. This has to find a central place in all study
programs as a basic goal of education, together with stimulating creative thinking.
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8. Boričić, B. Dictatorship, liberalism and the Pareto rule: possible and impossible. Econ. Ann. 2009, 54, 45–54. [CrossRef]
9. Arrow, K. Social Choice and Individual Values; John Wiley: New York, NY, USA, 1963.
10. Sen, A. Quasi–Transitivity, Rational Choice and Collective Decisions. Rev. Econ. Stud. 1969, 36, 381–393. [CrossRef]
11. Anderson, A.R.; Belnap, N.D., Jr. Entailment: The Logic of Relevance and Necessity; Princeton University Press: Princeton, NJ, USA,

1975; Volume I.
12. Chang, C.C.; Keisler, H.J. Model Theory; North-Holland Publishing: Amsterdam, The Netherlands, 1973.
13. Takeuti, G. Proof Theory; North-Holland Publishing: Amsterdam, The Netherlands, 1975.
14. Anderson, A.R.; Belnap, N.D., Jr. Enthymemes. J. Philos. 1961, 58, 713–723. [CrossRef]
15. Maksimova, L.L. Interpolation properties of superintuitionistic logics. Stud. Log. 1979, 38, 419–428. [CrossRef]

82



Citation: Wu, S. Spatial Fuzzy

C-Means Clustering Analysis of U.S.

Presidential Election and COVID-19

Related Factors in the Rustbelt States

in 2020. Axioms 2022, 11, 401.

https://doi.org/10.3390/

axioms11080401

Academic Editor: Oscar Castillo

Received: 29 June 2022

Accepted: 10 August 2022

Published: 15 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Spatial Fuzzy C-Means Clustering Analysis of U.S. Presidential
Election and COVID-19 Related Factors in the Rustbelt States
in 2020
Shianghau Wu

Department of International Business, Chung Yuan Christian University, Taoyuan City 320314, Taiwan;
antonwoo888@hotmail.com

Abstract: The rustbelt states play a key role in determining the vote turnout in the U.S. elections. The
current study attempts to utilize the spatial fuzzy C-means method to analyze the U.S. presidential
election in the rustbelt states in 2020. We intend to explore that the U.S. presidential election had
related factors, including COVID-19-related factors, such as the mask-wearing percentage and the
COVID-19 death tolls in each county of the rust belt states. Contrary to the related literature,
the study uses education level, number of house units, unemployment rate, household income,
COVID-19-related factors and the share of Republican’s votes in the presidential election. The results
indicate that spatial generalized fuzzy C-means analysis has better clustering results than the C-means
clustering method. Moreover, the COVID-19 death toll in each county did not affect the Republican’s
vote share in the rustbelt states, while the mask-wearing behavior in some regions had a negative
impact on the Republican’s vote share.

Keywords: spatial fuzzy C-means; COVID-19; rustbelt states

MSC: 03B52; 03C45

1. Introduction

The U.S. presidential election in 2020 was influenced by the COVID-19 pandemic,
including increasing infections, death tolls, and lockdowns. The previous literature indi-
cated that political polarization was aggravated due to intense fear during the disaster [1,2].
People tended to search for assuage by insisting on their conservative political viewpoints
and supporting the ruling party, while other scholars believed that some voters would
punish the political elite for worse management during the natural or man-made disaster.
Since COVID-19-related policies were created in a very short period of time, without full
deliberation, it was possible to arouse public discontent [3]. People were more supportive
of their governments during the early stage of the COVID-19 pandemic [4]. However, the
evaluations of the policies about the pandemic were influenced by two polarized mindsets.
Some voters chose to punish the politicians for the conditions caused by the pandemic,
which were out of their control, while some voters were attentive to the political elites’
reactions and determined their feelings accordingly [5].

The previous literature about the U.S. presidential election in 2020 focused on the
effects of COVID-19 on the U.S. presidential election results. Hart (2021) stated that
the COVID-19 pandemic seemed to have decreased the support for Trump among the
Democrats, while it increased for independent voters [6]. Baccini et al. [7] pointed out
that COVID-19-related factors negatively affected Donald Trump’s re-election, and the
effect was stronger in urban areas. They also observed that COVID-19 had a positive
effect on the voters’ mobilization for Joe Biden. The rustbelt states are traditionally “swing
states” in the U.S. presidential elections, including Illinois, Wisconsin, Indiana, Michigan,
Ohio, West Virginia, Pennsylvania, and New York. Geographical and racial divergences
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increased in the counties of rustbelt states in the past five years [8]. The geographical
factors enable these divergences to become more visible, and people tend to live in more
politically polarized conditions [9]. The voting results of rustbelt states have a pivotal
influence on the whole country. However, there are fewer instances in the literature about
the voting results’ analysis of the rustbelt states. Gimpel [10] pointed out that some counties
in rustbelt states changed their support to the Democrats in the presential election in 2020.
The influencing factors of the voting results need to be examined. In order to analyze the
topic more thoroughly, we attempt to analyze the COVID-19 pandemic effects along with
the regional factors’ influence, the related economic variables, and the Republican’s support
rate in the 2020 U.S. presidential election.

The structure of this research is as follows: the Research Method Section presents
our research design and related descriptive statistics of the variables. The Discussion
Section presents the results of the research model. The research findings are listed in the
Conclusions Section.

2. Methodology
2.1. Research Method

The current study used the spatial fuzzy C-means clustering method to analyze the
influencing factors of COVID-19 on the U.S. presidential election. In order to explore the
impacts of COVID-19 and other factors, such as social and geographical factors, as the
mentioned in the Introduction, the study also used educational level, number of house units,
unemployment rate, and household income variables to create the clustering. The previous
literature utilized daily experience sampling (ESM) to analyze the impact of COVID-19 on
employee uncertainty [11]. Di Nardo et al. (2019) utilized the literature review method
to provide useful information about COVID-19 infection on neonates and children [12].
Regarding the fuzzy clustering approach, Indelicato et al. (2022) used the method with the
fuzzy TOPSIS model to analyze the determinants of immigrants in Cuenca, Ecuador [13].
Compared to the COVID-19-related research about its effects on U.S. elections, the study
considered spatial factors and attempted to describe the regional differences under the
influence of these variables.

2.2. Data Description

The study explored the influencing factors of the pandemic on the 2020 U.S presiden-
tial election. The study used the Republican’s voting share (X1) in the U.S. presidential
election in 2020 as one of the variables related to the U.S. presidential election. The data
were obtained from the web repository (https://github.com/tonmcg/US_County_Level_
Election_Results_08-20 (accessed on 6 August 2022)); it collected the 2020 election results
at the county level, which were scraped from the results published by Fox News, Politico,
and the New York Times.

In order to measure mask-wearing behavior in the rustbelt states (X2), the study
used the dataset collected by the survey firm, Dynata. Dynata surveyed 250 thousand
respondents in the U.S. between 2 and 14 July 2020. The survey asked the respondents
whether or not they wore face masks often in public. The responses included “always”,
“frequently”, “sometimes”, “rarely”, and “never”, according to the descending frequency.

The variables (X3, X4, X5, X6) were obtained from the dataset of the U.S. Census Bureau.
These variables were released on a flow basis throughout each year.

The study also used the death toll (X7) before the U.S. presidential election as a COVID-
19-related variable. Other variables included education level and household economic
condition. The descriptive statistics of all the variables are listed in Tables 1 and 2:
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Table 1. All variables used for clustering.

Variable Meaning

X1 Republican’s share of votes in U.S. presidential election

X2
The share of respondents who thought they wore face
masks often

X3 The number of housing units

X4
The number of residents who were high-school
graduates or above

X5 Unemployment rate

X6 Household income

X7 Death toll of COVID-19 cases

Table 2. Descriptive statistics of all variables.

Statistic N Mean St.Dev Min. Max.

X1 669 0.662 0.127 0.120 0.900
X2 669 0.536 0.139 0.190 0.880
X3 669 52,630.64 135,268.2 1107 2,204,019
X4 669 34,032.23 84,810.53 616 1,314,995
X5 669 4.591 1.273 2.400 13.00
X6 669 52,867.07 12,235.31 26,278 115,301
X7 669 71.175 306.17 0 5517

2.3. C-Means Clustering

Initially, the study used the classical C-means method to create the fuzzy unsupervised
classification. The fuzziness degree (m) was set at 1.5 in order to obtain the satisfied results.
The classical C-means method includes the following two equations. The first equation is
the updated values of membership in each iteration of uik [14]:

uik =
(||xk − vi||2)

−1
m−1

∑c
j=1 (

∣∣∣∣xk − vj
∣∣∣∣2)

−1
m−1

(1)

The center of the cluster is as follows:

vi =
∑N

k=1 um
ik(xk)

∑N
k=1 um

ik

(2)

In Equations (1) and (2), xk represents the observation of k’s value, vi is the value of
the center of the cluster i, c is the cluster number, and m is the index of fuzziness.

2.4. Fuzzy C-Means Clustering

Fuzzy C-means clustering is an algorithm that permits a data point to pertain to two or
more clusters. Let X = {x1, x2, . . . , xn} represent an image with n pixels, where xi is the gray
value of the ith pixel. The objective function of the standard FCM algorithm is as follows:

J = ∑K
k=1 ∑n

i=1 um
ki ||xi − vk||2 (3)

In Equation (3), the center of the kth cluster is vk (1 ≤ k ≤ K), and uki (1 ≤ k ≤ K,
1 ≤ i ≤ n) is the membership degree function value of the ith pixel, which pertains to the
kth cluster. uki also needs to meet the requirements of the following constraints:

∑K
k=1 uki = 1, uki ∈ [0, 1], 0 ≤∑n

i=1 uki ≤ n (4)
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In Equation (3), the distance between xi and vk is used in the Euclidean form, and
parameter m (m > 1) is a weighting parameter that relates to the level of fuzziness and the
resulting partition. The minimization of the objective function in Equation (3) can obtain
the updated equations of the membership degree function uki and the cluster center vk
as follows:

uki =
1

∑k
i=1 (

||xi−vk ||2
||xi−vl ||2

)
1

m−1
(5)

vk =
∑n

i=1 um
ki xi

∑n
i=1 um

ki
(6)

The goal of these functions is to obtain suitable clusters for the data points.

2.5. Spatial Fuzzy C-Means Clustering

Fuzzy C-means clustering (FCM) has shortcomings due to its sensitivity to noise.
Some algorithms were developed to overcome this shortcoming by utilizing the spatial
information obtained from the neighborhood window around each pixel. Mean spatial
information and median spatial information are two prevalent types of local information.
The mean spatial information of the ith pixel is denoted as follows [15]:

δi =
1
|Si|∑pεSi

xp (7)

In Equation (7), Si is the set of neighboring pixels in a window centered at the ith pixel,
and |Si| represents its cardinality. The median spatial information can be represented as:

εi = median
{

xp
}

, pεSi (8)

Most of the FCM algorithms utilize the above-mentioned local spatial information in
the objective function; however, FCM algorithms with local spatial information can obtain a
better image segmentation performance with a low noise level. The local spatial information
obtained from the near pixels of a pixel is not efficient due to possible contamination. In
fact, there are many pixels with a similar neighborhood configuration in an image. It is
more beneficial to utilize pixels with a similar neighborhood configurations to the given
pixel to obtain the spatial information than only using the neighboring pixels of the given
pixel. Such types of spatial information can be taken as non-local spatial information. The
non-local spatial information for the ith pixel xi is calculated by the following equation [16]:

xi = ∑j∈wr
i

wijxj (9)

In Equation (9), ωr
i represents the r × r search window centered at the ith pixel. The

non-local spatial information of the ith pixel is computed by using the pixels in the window.
The weight between the ith and jth pixels can be denoted as wij

(
j ∈ wr

i
)
, 0 ≤ wij ≤ 1 and

∑j∈wr
i

wij = 1. The weight wij is defined as follows:

wij =
1
Zi

exp(−||x(Ni)− x
(

Nj
)
||22,σ/h2) (10)

In Equation (10), h means the filtering degree parameter and directs the decreasing
weight function wij, and Zi = ∑j∈wr

i
exp(−||x(Ni) − x

(
Nj
)
||22,σ/h2) is the normalizing

constant. The weight wij depends on the similarity between the ith and jth pixels. The
similarity is computed by the Gaussian weighted Euclidean distance ||x(Ni)− x

(
Nj
)
||22,σ .

The positive term σ is the Euclidean distance, which means the standard deviation of the
Gaussian kernel. x(Ni) is the gray level vector with an s × s square neighborhood Ni
centered at ith pixel.
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Fuzzy clustering algorithm with spatial information uses the spatial information for
individual pixels to determine the spatial constant term, and then obtains the spatial
constraint to the objective function of FCM.

3. Results
3.1. Fuzzy C-Means and Generalized Fuzzy C-Means Clustering

The study used the classical K-means to determine the number of clusters. According
to Figure 1, the four clusters can explain almost 40% of the original data variance.
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Figure 1. Impact of the number of groups on the explained variance.

Then, the study used the “fclust” package of R language to analyze the quality of the
classification [17]. The study also utilized the “geocmeans” package of the R language
to compute the generalized version of the c-means algorithm [18]. The algorithm can
accelerate convergence and obtain less fuzzy results by adjusting the membership matrix
at each iteration. It needs an extra beta parameter controlling the effectiveness of the
modification. The modification only influences the formula updating the membership
matrix.

uki =
(
∣∣∣∣xk − vj

∣∣∣∣2 − βk)
−1

m−1

∑c
i=1 (

∣∣∣∣xk − vj
∣∣∣∣2 − βk)

−1
m−1

(11)

In Equation (11), βk = min(||xk − v||2) and 0 ≤ β ≤ 1. In order to choose an adequate
value for this parameter, the study sought all the possible values between 0 and 1 with a
step of 0.05. The results of the related index were obtained according to the ascending β
values in Table 3.

Table 3. Some indices with ascending β values.

Beta Silhouette Index Xie and Beni Index Explained Inertia

0 0.287 2.476 0.161
0.05 0.29 2.282 0.171
0.1 0.294 2.113 0.181

0.15 0.298 1.964 0.191
0.2 0.3 1.83 0.201

0.25 0.303 1.706 0.212
0.3 0.307 1.584 0.223

0.35 0.313 1.47 0.235
0.4 0.315 1.374 0.247

0.45 0.315 1.292 0.26
0.5 0.292 1.478 0.265
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Table 3. Cont.

Beta Silhouette Index Xie and Beni Index Explained Inertia

0.55 0.289 1.41 0.277
0.6 0.286 1.349 0.289

0.65 0.283 1.295 0.301
0.7 0.281 1.249 0.313

0.75 0.277 1.211 0.325
0.8 0.273 1.182 0.337

0.85 0.268 1.163 0.349
0.9 0.259 1.157 0.361

0.95 0.249 1.172 0.371
1 0.235 1.296 0.374

According to Table 1, the study chose beta = 0.8, maintained a satisfied silhouette index,
increased the Xie and Beni index, and explained inertia. The results of GFCM (generalized
version of fuzzy C-means clustering) and FCM are listed in Table 4.

Table 4. Comparison of the indices between GFCM and FCM.

GFCM FCM

Silhouette index 0.273 0.287

Partition entropy 0.323 0.951

Partition coeff 0.837 0.486

XieBeni index 1.182 2.476

Fukuyama Sugeno index 1096.84 1706.23

Explained inertia 0.337 0.161

The results indicate that the GFCM provides a less fuzzy solution (with higher ex-
plained inertia and lower partition entropy), but keeps a good silhouette index and a lower
Xie and Beni index. The study created two membership matrices maps and the most likely
group for each observation. The study used the function map clusters from geocmeans
in R language. We set a threshold of 0.45. If an observation only obtained values below
this probability in a membership matrix, it was marked as “undecided” (represented by
transparency on the map).

In Figure 2, the left-hand-side graph was the fuzzy C-means clustering result. The
right-hand-side graph was the generalized fuzzy C-means clustering result. We can observe
that the right-hand-side graph had fewer undecided parts.
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3.2. Spatial C-Means and Generalized C-Means

The study used the SFCM function of R language to execute spatial c-means clustering.
The first step was to determine a spatial weight matrix indicating the observations that
were neighbors and the strength of their relationship. The study attempted to use a basic
queen neighbor matrix (built with the spdep package of R language). The matrix should be
row-standardized to ensure that the interpretation of all the parameters remains clear.

The two following equations indicate how the functions renewing the condition of the
membership matrix and the centers of the clusters are modified.

uik =
(||xk − vi||2 + α||xk − vi||2)

−1
m−1

∑c
j=1 (||xk − vi||2 + α||xk − vi||2)

−1
m−1

(12)

vi =
∑N

k=1 um
ik(xk + αxk)

(1 + α)∑N
k=1 um

ik

(13)

In Equations (12) and (13), x is the lagged version of x, and α ≥ 0.
The SFCM (spatial fuzzy C-means) can be taken as a spatially smoothed version of the

classical c-means, and alpha controls the degree of spatial smoothness. This smoothing can
be taken as an attempt to reduce the spatial overfitting of the classical c-means.

The study chose the best alpha value in order to reduce spatial inconsistency as much
as possible and to maintain a good classification quality. The relationship between the
spatial inconsistency and alpha value is shown in Figure 3.
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In Figure 3, the increasing alpha value results in the decrease in the spatial inconsistency.
In Figure 4, the explained inertia decreased when the alpha value increased and

again followed an inverse function. The classification searched for a compromise between
the original and lagged values. However, the loss was only 3% between alpha = 0 and
alpha = 2.
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According to Figures 5 and 6, as a larger silhouette index means a better classification,
and a smaller Xie and Beni index represents a better classification, the study intended to
retain the alpha = 0.25 value to provide a good balance between spatial consistency and
classification quality.
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3.3. Spatial Generalized Fuzzy C-Means (SGFCM)

In order to facilitate the clustering process of the SGFCM method, we needed to
determine the alpha and beta values of the following equation regarding the center of
the clusters.

uik =
(||xk − vi||2 − βk + α||xk − vi||2)

−1
m−1

∑c
j=1 (||xk − vi||2 − βk + α||xk − vi||2)

−1
m−1

(14)

The study attempted to use the multiprocessing approach to select the suitable alpha
and beta values. The impact of alpha and beta values on the various indices is shown
as follows:

Figures 7 and 8 indicate that some specific combinations of alpha and beta values
generate good results in the range of 0.3 < alpha < 0.7 and 0.4 < beta < 0.6. Figure 9 shows
that the selection of beta has no impact on spatial consistency.
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Regarding Figures 7–9, the study selected beta = 0.5 and alpha = 0.25, which obtained
better results for all the indices considered. Based on the alpha and beta values, the study
acquired the results of the SFCM and SGFCM results (see Table 5).
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Table 5. Comparison of the indices between SFCM and SGFCM.

SFCM SGFCM

Silhouette index 0.219 0.319

Partition entropy 1.043 0.682

Partition coeff 0.431 0.633

XieBeni index 5.008 1.394

Fukuyama Sugeno index 1824.58 1290.69

Explained inertia 0.134 0.248

sp consistency 0.276 0.262

The results of the SGFCM are better concerning the semantic and spatial aspects due
to the lower partition entropy, Xie Beni index, and Fukuyama Sugeno index, and higher
values of other indices.

The SFCM and SGFCM clustering maps are listed as follows.
According to Figure 10, the right-hand-side graph is the SGFCM clustering map. The

left-hand-side graph is the SFCM clustering map. We can observe that the undecided units
are less on the SGFCM clustering map.
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3.4. Comparison of the Four Algorithms

The study attempted to perform a thorough spatial analysis and compare the spatial
consistency of the four classifications (FCM, GFCM, SFCM, SGFCM) (see Table 6).

Table 6. Moran I index for the columns of the membership matrices among the four algorithms.

FCM GFCM SFCM SGFCM

Cluster 1 0.642 0.602 0.769 0.696
Cluster 2 0.349 0.187 0.501 0.66
Cluster 3 0.691 0.595 0.809 0.823
Cluster 4 0.205 0.14 0.674 0.73

The Moran I value according to the membership matrices were higher for SFCM and
SGFCM, representing strongaer spatial structures in the classifications.

The study also checked that the values of spatial inconsistency for SGFCM were sig-
nificantly lower than those of SFCM. The study used the previously mentioned 250 values
obtained by permutations; we could calculate a pseudo p-value = 0.032 > 1/250 = 0.004.
This means that the SGFCM algorithm did not have a predominant advantage over the
SFCM algorithm. However, the SGFCM clustering map indicated that the undecided points
were fewer than that of the SFCM.
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We can observe that the undecided parts were fewer as compared with Figures 2 and 10.

4. Discussion

The study attempted to utilize the spatial fuzzy C-means clustering method to analyze
the relationship among COVID-19-related factors and the vote share of Republicans in
the U.S. presidential election in the rustbelt states in 2020. The study found that spatial
generalized fuzzy C-means clustering (SGFCM) produced better results compared to the
other three algorithms according to Table 3. The study also found the SGFCM clustering
graph in Figure 10 presented better results because the uncertain parts (areas that did
not belong to any cluster) were fewer compared to the other clustering results shown in
Figure 2.

The descriptive statistics of the four clusters (Tables A1–A4) are listed in the Appendix A.
According to the four tables, we can conclude the four clusters are as follows:

(1) First cluster: the cluster had lower X1 (mean < 0.5), higher X2, higher X4, lower X5,
and higher X6 values. Other variables did not seem obvious. We can conclude that
people in this region were not inclined to support the Republican candidate, often
wore masks, had more high-school graduates or above, had a lower unemployment
rate, and a higher income. The first cluster included a little part of southeastern
Pennsylvania, New York state and other scatter parts of the rustbelt states.

(2) Second cluster: The cluster had higher X1 (mean > 0.5), higher X2, lower X4, lower
X5, and higher X6 values. Other variables did not seem obvious. We can conclude
that people in this region were inclined to support the Republican candidate, often
wore masks, had less high-school graduates, a lower unemployment rate, and higher
income. The second cluster included the larger part of New York state, most part of
Michigan and northern Illinois.

(3) Third cluster: The cluster had higher X1 (mean > 0.5), lower X2, lower X4, higher
X5, lower X6, and higher X7 values. This means that people in this region tended
to support the Republican candidate, wore masks less frequently, had less high-
school graduates or above, a higher unemployment rate, lower income, and higher
COVID-19 death toll. The cluster included some parts of Kentucky, West Virginia and
Ohio and other scatter parts of the rustbelt states.

(4) Fourth cluster: The cluster had higher X1 (mean > 0.5), lower X2, lower X4, lower
X5, higher X6, and higher X7 values. This means that people in this region tended to
support the Republican candidate, wore masks less frequently, had less high-school
graduates or above, a lower unemployment rate, higher income, and higher COVID-19
death toll. The cluster included the larger part of Indiana, Ohio and part of Illinois.

The results seem to slightly contrast with the previous literature. Warshaw et al. (2020)
found that COVID-19 fatalities decreased the support for Donald Trump in the 2020
presidential election [19]. However, our results show that the third and fourth clusters in
the rustbelt states have higher COVID-19 death tolls with higher Republican vote shares
and residents less inclined to wear face masks. Meanwhile, the second cluster had higher
Republican vote shares and the residents there often wore face masks, while the COVID-19
death toll seemed unimportant. We can conclude that the COVID-19 death toll in each
county did not affect the Republican vote shares in the rustbelt states, while the mask-
wearing behavior in some regions had a negative impact on the Republican vote shares.

According to Figure 11, we can observe that cluster 2 accounts for the largest area in
the rustbelt states. Cluster 1 accounts for the smallest area. The clustering results indicate
that the U.S. presidential election-related factors and COVID-19-related factors are closely
related to the clustering results. It enables the researchers in the related field to conduct
further studies.
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5. Conclusions

The present study intended to use the spatial fuzzy C-means clustering to analyze the
related factors of COVID-19 and the U.S. presidential election in the rustbelt states in 2020.
The study found that the spatial generalized fuzzy C-means (SGFCM) method produced
better clustering results. The SGFCM method divided the rustbelt states into four areas.
The results imply that the COVID-19 death toll in each county did not affect the Republican
vote shares in the rustbelt states, while the mask-wearing behavior in some regions had a
negative impact on the Republican vote shares. It is worth conducting further research.
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Appendix A

Table A1. Descriptive statistics for cluster 1.

X1 X2 X3 X4 X5 X6 X7

Q5 0.222 0.514 28 9872.6 2.9 46,288.2 7
Q10 0.27 0.549 67 16,480.8 3.2 49,515 19
Q25 0.37 0.641 198 41,764 3.4 58,222 45
Q50 0.446 0.742 379 132,127 3.8 66,270 81
Q75 0.533 0.788 501 211,597 4.2 86,108 103
Q90 0.614 0.82 596 347,971.4 4.9 94,521 153
Q95 0.678 0.842 632 522,061 5.4 100,887 165

Mean 0.448 0.71 342.689 168,655.4 3.901 70,973.15 80.35
Std 0.134 0.107 187.555 199,205.9 0.793 17,662.76 48.11
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Table A2. Descriptive statistics for cluster 2.

X1 X2 X3 X4 X5 X6 X7

Q5 0.417 0.449 49.4 4579.6 3.1 43,118 9
Q10 0.463 0.487 89 5836.6 3.3 46,262 15
Q25 0.539 0.54 198 11,116 3.8 49,767 37
Q50 0.605 0.612 368 20,204 4.4 53,901 77
Q75 0.674 0.723 510 41,229 4.9 60,121 115
Q90 0.729 0.79 608 68,550 5.5 66,521 155
Q95 0.762 0.827 633.6 109,462 5.7 73,006.8 174.2

Mean 0.599 0.627 356.193 35,019.47 4.415 55,596.35 79.845
Std 0.105 0.119 186.098 62,713.13 0.899 9592.194 52.128

Table A3. Descriptive statistics for cluster 3.

X1 X2 X3 X4 X5 X6 X7

Q5 0.576 0.341 29.4 2415 3.84 30,950 7
Q10 0.624 0.368 56 3297 4.2 33,218 13
Q25 0.693 0.409 155 5072 4.9 38,171 43
Q50 0.747 0.475 341 8354 5.6 43,457 81
Q75 0.787 0.54 518 13,670 6.4 48,182 129
Q90 0.83 0.611 604 25,221 7.4 51,812.2 169
Q95 0.856 0.641 631.6 34,390.8 8.3 55,443.8 195

Mean 0.734 0.481 334.757 14,615.75 5.743 43,457.84 88.095
Std 0.088 0.097 199.112 47,465.07 1.377 8146.738 57.705

Table A4. Descriptive statistics for cluster 4.

X1 X2 X3 X4 X5 X6 X7

Q5 0.555 0.285 35 3184.2 2.7 41,799.2 9
Q10 0.602 0.33 60 4188.8 2.98 44,913 21
Q25 0.673 0.392 146 6912 3.3 48,342 49
Q50 0.728 0.462 289 11,761 4 52,798 97
Q75 0.76 0.529 473 18,689 4.5 57,705 145
Q90 0.789 0.584 585 33,791.4 5.1 63,827.4 175.4
Q95 0.809 0.627 629.6 45,496 5.46 67,758 193

Mean 0.707 0.459 308.856 18,494.64 4.009 53,761.27 98.385
Std 0.084 0.106 190.401 46,181.82 0.91 8948.192 58.712
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Does Set Theory Really Ground Arithmetic Truth?
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University of Aveiro, 3810-193 Aveiro, Portugal; alfredo.roque.freire@ua.pt

Abstract: We consider the foundational relation between arithmetic and set theory. Our goal is to
criticize the construction of standard arithmetic models as providing grounds for arithmetic truth.
Our method is to emphasize the incomplete picture of both theories and to treat models as their
syntactical counterparts. Insisting on the incomplete picture will allow us to argue in favor of the
revisability of the standard-model interpretation. We start briefly characterizing the expansion of
arithmetic ‘truth’ provided by the interpretation in a set theory. Interpreted versions of an arithmetic
theory into set theories generally have more theorems than the original. This theorem expansion is
not complete however. Using this, the set theoretic multiversalist concludes that there are multiple
legitimate standard models of arithmetic. We suggest a different multiversalist conclusion: while there
is a single arithmetic structure, its interpretation in each universe may vary or even not be possible.
We continue by defining the coordination problem. We consider two independent communities of
mathematicians responsible for deciding over new axioms for ZF and PA. How likely are they to
be coordinated regarding PA’s interpretation in ZF? We prove that it is possible to have extensions
of PA not interpretable in a given set theory ST. We further show that the number of extensions of
arithmetic is uncountable, while interpretable extensions in ST are countable. We finally argue that
this fact suggests that coordination can only work if it is assumed from the start.
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1. Overview

In this article, we study the idea of reducing arithmetic to set theory as a strategy for
grounding arithmetic truth. The method of reduction we have in mind is interpretation.
We say that a theory T1 is interpreted in a theory T2, when there is a uniform mapping of
theorems of T1 in theorems of T2. This mapping should preserve the boolean structure
and bound quantifiers of T1 in a definable class of T2. We will next indicate how model
constructions can be understood as the establishment of interpretations between theories.

In what follows, we assume that mathematical structures exist independently of our
ability to completely describe them. It is common practice, however, to refer to models as
fully formed entities for which one can assert whether any formula is valid. This is generally
done with Gödel-Tarski method within a set-theoretic metatheory. The fact that one can
decide whether any formula ϕ is satisfied by a model M is simply given by the axiom of
excluded middle in the metatheory. Although this strategy may help us to understand
model-theoretic properties, it will not necessarily help us to concretely determine which
are the valid formulas. For example, considering the standard model N of arithmetic built
in a ZF metatheory, we indeed know that ψ = “twin prime conjecture” is satisfied or not by
the model. But that “N satisfies ψ” can still be unprovable from the point of view of ZF.

This is the reason why we will consider models via their syntactical representation
through interpretations. Understanding models in this way will allow us to distinguish
more precisely the undecidable instances of the form “N satisfies ψ” in the chosen metathe-
ory. Structures should not be treated as syntactical constructions nevertheless. One may
refer to a set-theoretic structure V as a platonic collection of objects; and due to our limited
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knowledge, the notion of satisfaction in V is vaguely defined. We can, however, define a
precise notion of knowledge about satisfaction by fixing a set theoretic theory ST:

We know that V � ϕ if, and only if, ST ` ϕ (1)

Now, each model definable in a given base model V � ST can be said be to the result
of bounding the elements of V to a given interpretation I (this will be define precisely in
the Section 2 with respect to arithmetic). By doing so, we can keep in mind our limited
knowledge of models. Since, ifM is definable in V (i.e.,M = IV) and we do not know
any other information about V other than that it satisfies ST, then

We knowM � ϕ if, and only if, ST ` ϕI (2)

Furthermore, we investigate the grounding relation represented by interpreting PA in
ZF. Notably, if one considers the standard interpretation of PA in ZF to be correct, then it
expands what one known to be arithmetically true—i.e., many independent formulas in PA
become theorems as we see them in ZF through the interpretation. But even though we
expect that interpretations of PA in ZF expand knowledge of arithmetic truth, ZF does not
completely decide on arithmetical formulas. Indeed, for every interpretation I of arithmetic
in a recursive extension S of ZF, there is an arithmetical formula that S does not decide
under this interpretation. At any stage in the development of ZF (a recursive extension),
the concept of arithmetical truth will still be open. Some arithmetic formulas will be
undecidable under the interpretation in any recursively extended set theory. Hence, it is
possible to build two structures satisfying the set theory that disagree about the truth value
of an arithmetic formula.

Taking a multiversalist view of set theory, Hamkins and others (see [1–3]) use a similar
basis to advance a pluralist view of arithmetic. In [1], for example, Hamkins and Yang
show that there are models of ZF that agree about what the standard model of arithmetic
is and yet disagree about what is valid in the standard model. This (and other results)
suggests that there are alternative models of arithmetic. In this article we use a different
approach. Assuming we have good reasons to say that there is a unique arithmetic intended
structure while maintaining a multiversalist view of set theory (this view is suggested by
Koellner in [4]), we argue that the standard interpretation should be taken as revisable.
Furthermore, it may happen that the structure of arithmetic is not definable in some
set-theoretic universes.

It is due to this phenomena that we consider what we call the coordination problem:
consider that there are two groups of mathematicians responsible for deciding over new
axioms. The first will decide over axioms for arithmetic and the second for a set theory.
How should we consider the relation between the two groups? Note that if we consider that
the arithmetic group should conform to any development provided by the set theory group,
it becomes hard to see in what sense the interpretation of arithmetic into set theory has any
foundational role. This framework is indistinguishable from simply taking arithmetic to
live in set theory.

If, however, the interpretation of arithmetic in set theory has a meaningful foundational
role, it is important to consider the possibility of the coordination between the two theories
to break. Is it possible that an extension of arithmetic not to be interpretable in any extension
of a set theory? We show in Theorem 2 that for any extension A of PA and any extension S
of ZF, there is an extension A+ that is not interpretable in S. But, how likely is it to be the
case? We will further show in Theorem 3 that there are uncountable consistent extensions
of a recursive A, while only a countable number of interpretations of arithmetic in any
set theory. For this reason, the addition of axioms to set theory and arithmetic by the two
groups would preserve the interpretability relation only if coordination is assumed. We
further conclude that this perfect coordination would empty the reductivist foundational
role of set theory to arithmetic. Finally, we briefly explore an alternative foundational role
that would avoid this problem.
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2. The Standard Model of Arithmetic

The strategy of offering set-theoretical models to describe objects of a theory comes
from the work of Tarski, Mostowsky, and Robinson in the 1940s [5]. Ever since this date,
mathematicians and philosophers often resort to this strategy. It is generally accepted that
once we start talking about models, we put aside the formal aspects of the mathematical
subject and start talking about its objects and truths. Nevertheless, because of Gödel’s
incompleteness theorem and Löwenhein-Skolem theorem, there is no formal way to fix
the model of any recursive extension of Peano arithmetic. It is impossible to say that the
only model that satisfies our descriptions of arithmetic is the intended model, no matter
how extensively we describe it. Still, using a set-theoretical apparatus, we can describe the
intended model as N = 〈ω,+, ., 0, s〉 (called standard model). We can then show that a set
theory like ZF is expressive enough to define a truth predicate for this interpretation.

The literature on this subject generally presents two approaches for fixing the standard
model: (i) one should offer extra-logical (or second-order) reasons for choosing N from
the myriad possible models for arithmetic; (ii) one should abandon the model-theoretical
construction and find other ways to ground arithmetic truth. A renewed version of (ii)
can be seen in Gabbay’s defense of a new kind of formalism [6]; Moreover, others may
abandon a privileged emphasis on N, because we must focus on mathematical practice
(Ferreirós [7]) or because we must commit ourselves to a realistic multiverse (Hamkins [8]).
Still, differences of opinion are more common as to how and why we should follow project
(i). Those like Williamson [9] argue for metaphysical reasons for setting N, others like
Maddy [10], Quine [11] or Putnam [12] advocate ways to naturalize the reasons for N.
Finally, a recent approach by Rodrigo Freire grounds N in mathematical practice using a
normative basis in place of the Platonist commitment to N [13].

The question of the adequacy of N is often overlooked. Though one may find a vast
literature on non-standard models of arithmetic, these are generally regarded as ‘deviant’
or not intended. They are indeed existing structures that satisfy an arithmetic theory,
but they are not the one true model of arithmetic. The assumption behind this is that
if something is a model of arithmetic, then it is N. We may not know why this is the
intended model or even deny that such a model exists, but the conformity to N is hardly
questioned. However, presenting N as an object without further consideration is a category
mistake. Notably, a similar category mistake would be to say that ‘there have been two sun
revolutions since so and so’. The phrase ‘two sun revolutions’ is used as quantity of time,
even though it describes a movement in reference to the Sun. Hence, the statement would
be a category mistake unless, for instance, an implicit reference to Earth and not Mars is
assumed. Precisely stated, N is an interpretation of PA in the language of membership. It
represents therefore a construction of objects for arithmetic in terms of objects of a given set
theory. Hence, it is only when we fix the objects for a set theory that the objects expressed
in the construction N gain life.

For any given model of set theory V � ZF, an arithmetic interpretation I can be under-
stood as a procedure for obtaining a modelN for PA. The modelN = 〈Obj,+N , .N , 0N , sN〉
is a set in the vaguely defined V with the appropriate meaning for the arithmetic symbols
+ (sum), . (multiplication), 0 (constant zero) and s (successor function). The model N is
built from the interpretation I = 〈U, f+, f., fs, zero〉. The elements of I are formulas in the
language of ZF: U is a formula with one free variable, f+ and f. are formulas with three
free variables, fs is a formula with two free variables and zero is a formula with one free
variable. It is then necessary to prove in V that the formulas in f+(x, y, z), f.(x, y, z), fs(x, z)
indeed represent functions with respect to the variable z and that zero(x) is satisfied by a
unique element in V. With these ingredients, we explicitly build in V the model N :

1. Obj = {x ∈ V | V � U(x)}.
2. 0N = a such that V � zero(a).
3. +N = {〈x, y, z〉 | x, y, z ∈ Obj and V � f+(x, y, z)}.
4. .N = {〈x, y, z〉 | x, y, z ∈ Obj and V � f.(x, y, z)}.
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5. sN = {〈x, y〉 | x, y ∈ Obj and V � fs(x, y)}.
We may refer to the model obtained from V using I as IV . In this context, the standard

interpretation N = 〈U, f+, f., fs, Zero〉 is the case where U(x) expresses in set theory ‘x is
an finite ordinal’, f+(x, y, z) expresses ‘z is the ordinal sum of x and y’, f.(x, y, z) expresses
‘z is the ordinal product of x and y’, fs(x, z) expresses ‘z is the ordinal successor of x’ and
Zero(x) expresses ‘x is the empty set’. We can then obtain that, independently on the choice
of the base model V � ZF, the model NV � PA.

Syntactically, we may use I to produce a uniform strategy for mapping formulas in
the language of arithmetic L(PA) to formulas in the language of set theory L(ZF). As
we assumed that f+(x, y, z) is a function in V, we may use, for simplicity, a function-like
language defining F+(x, y) in ZF as “the z such that f (x, y, z)”. Similarly, we define F., Fs
and Zero. For every arithmetic formula ϕ, we define the partially interpreted formula ϕI∗

by:

1. replacing in every atomic subformula of ϕ occurrence of the form x + y, x.y, s(x), for
F+(x, y)), F.(x, y), Fs(x) respectively;

2. replacing every occurrence of ∀x(ψ) for ∀x(U(x)→ ψ);
3. replacing every occurrence of ∃x(ψ) for ∃x(U(x) ∧ ψ);

If ϕ has free variables x1, x2, . . . , xn, the interpreted formula ϕI is defined as (U(x1) ∧
U(x2) ∧ . . . ∧U(xn)) → ϕI∗ . With this, we can now say that ZF interprets PA with the
standard interpretation N since every ϕ ∈ PA is such that ZF ` ϕN .

Our idea is to insist on the incomplete picture of the set-theoretical representation of
arithmetic. All we know about the vaguely defined V is that it is based on an incomplete
theory ZF. Therefore, the picture of arithmetic obtained from reducing PA to V by N is also
incomplete. In this context, it is worth paying attention to precisely what is decidedly valid
in the standard construction with the syntactic notion ZF ` ϕN . If one only commits to the
validity of the axioms of a set theory ST, the undecidable formulas in ST of the form ϕI are
precisely the arithmetic formulas that one does not know if they are valid or not.

So to what are we committing in the case where we say that N is the standard model of
arithmetic? As we will discuss in the next section, it depends on what is the chosen model
V. It is in fact showing that the standard model has many representations (even isomorphic,
though with different truth predicates), that Hamkins and Yang in [1] proposes a pluralist
view of arithmetic. Notably, however, they still fix the standard interpretation–evaluating
this interpretation in different structures of set theory. It seems like the single construction
for the intended model of arithmetic is based on the idea condensed in the sentence: ‘no
matter which model of set theory one is assuming, the model of arithmetic would be given
by N’. Indeed, the picture provided by the literature is that of revisable truth for set theory
and arithmetic–but unrevisable reduction of arithmetic in set theory. In the next sections,
we argue that to take the standard model to have a foundational role, one should assume
the interpretation to be revisable. For now, we consider the characterization of arithmetic
in set theory in more details.

Foundational Characterization of PA in ZF

Being I an interpretation of arithmetic in a set theory S, we call the set AS
I = {ϕ ∈

L(PA) | S ` ϕI} the expansion of arithmetic truth under the interpretation. Indeed
some undecidable formulas ϕ of PA are ‘true’ in the standard model (ZF ` ϕN). This is
the case for the Gödel formula, Goodstein’s theorem and many others arithmetic results.
We will thus consider more broadly the question of expansion of arithmetic truth from
interpretations in set theories.

Given that I is an interpretation of an arithmetic theory A in a set theory S and
Th(A) = {ϕ | A ` ϕ}, we expect to have Th(A) $ AS

I $ Arithmetic truth, as we see in
Figure 1:
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A ` α S ` αI Arithmetic
Truth

Figure 1. Expansion of validity under interpretation.

The reason for the expansion Th(A) $ AS
I is that, in the usual case, one expects to

build a set-size model of arithmetic. Consequently, a consistency predicate for A should
be expressed and proved in S. Consider the base case of PA and ZF with the standard
interpretation N. Assuming a model V for ZF, we can build a model NV satisfying PA.
We then know that there are many valid formulas in NV that are not provable in PA. The
most immediate example is the consistency predicate Con(PA); in fact, we know that the
predicate is valid in NV or, in other words, that ZF ` (Con(PA))I .

Of course, from a given recursive extension S of ZF, one may simply choose the
recursive arithmetic theory corresponding to the theorems in ST about the standard inter-
pretation (i.e., AS

N). But this is to put the cart before the horse, being open to the evaluation of
extra valid formulas with respect to the current axiomatization of arithmetic (e.g., ϕ ∈ AS

N
but such that ϕ is not proved in the current axiomatization of arithmetic) is a fundamental
aspect in this study. In addition, there are important recent results that show fundamental
mismatches between arithmetic and set theory. In fact, no subtheory of any extension of
ZF is bi-interpretable with any extension of PA. This is a simple consequence of a theorem
by Enayat and independently discovered by Hamkins and me: two different extensions of
ZF can never be bi-interpretable [14–16] (the direct proof is done in the dissertation ([17]
pp. 150–152). Together with the bi-interpretation of finite set theory and Peano arithmetic,
the result follows. Hence, in order to obtain a set theory equivalent to PA we must add
an axiom that contradicts ZF. Similarly, no compatible (with ZF) collection of set-theoretic
concepts can perfectly mirror an axiomatization of arithmetic that extends PA.

We also note that the characterization of the foundation relation by theorem expansion
relates to the mathematical practice. With the discovery of the Gödel’s incompleteness
theorem in [18], some resistance to the result was argued in the sense that the obtained
undecidable statement had little mathematical meaning. Later on, Goodstein [19] proved
that there are fast growing functions (called Goodstein sequences) that cannot be proved
to be total in PA. The existence of these sequences is directly connected to the traditional
Hydra problem, and thus it bears a clear mathematical meaning (see Caicedo’s “Goodstein’s
function” [20]). Thus the question of foundation arises as to whether the interpretation of
PA in set theory answers a significant arithmetical problem that was not possibly addressed
by the axiomatization. And this is indeed the case as we consider Goodstein sequences.

Notably, important results in number theory have recently become so loaded with
complicated techniques that mathematicians have begun to question whether the proofs
extrapolated Peano’s axioms. This is the case of Fermat’s last theorem and the weak Gold-
bach conjecture, proved respectively by Andrew Wiles [21,22] and by Harald Helfgott [23].
This type of question is akin to the program of reverse mathematics and has drawn the at-
tention of mathematicians like Harvey Friedman. However, the validity of those theorems,
whether they depend or not on more axioms than PA, is hardly questioned. The choice is
not commonly to add axioms to PA, but to investigate arithmetic truths in a theory that
expands the extension of theorems. One is not however simply doing ‘finite ordinal set
theory’ when dealing more loosely with arithmetic’s axiomatization, as these ‘stronger than
PA’ assumption should correspond to number theorists’ intuitions about natural numbers.
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We have discussed that interpretations of arithmetic in set theories generally expand
what may be taken to be arithmetical truth (Th(A) $ AS

I ). Yet this expansion is not
necessarily complete (AS

I = arithmetic truth). A confusion in this regard is due to the
idea that model constructions in set theories offer venues for defining truth for interpreted
theories. Each interpretation I represents the appropriate model construction such that
the grounding set theoretic model V can provide the notion of satisfaction IV � ϕ for any
formula. Eventually, we would have that for any formula γ, either V I � γ or V I � ¬γ.
However, as we have already discussed, a more syntactical approach makes it clear that
this is simply the expression of the excluded middle. Indeed, “either V I � γ or V I � ¬γ”
should be syntactically represented by

ZF ` γI ∨ ¬γI (3)

Instead, what is really wanted is a notion like

ZF ` γI or ZF ` ¬γI (4)

As we suppose a base model V for ZF, we are at hand with an interpretation for
ZF itself or with a loosely defined model. In this case, the notion of truth in a model is
represented by “either IV � γ or IV � ¬γ”. However, if our supposition of a model V is not
informed by any specific information other than V � ZF, the interpretation works simply
as the identity. Therefore, we return to the problem of establishing a notion as in (4).

However, Equation (4) is not achievable for any recursive extension of ZF. For a
given interpretation I of arithmetic in a recursive extension S of ZF, there will be formulas
of L(PA) that are undecidable about arithmetic in S, that is, formulas ϕ in L(PA) such
that S 0 ϕI and S 0 (¬ϕ)I . One may think that this is a direct consequence of Gödel’s
incompleteness for PA, as S could be seen as a recursive extension of PA. But this is false. As
mentioned before, no subtheory of an extension of ZF is bi-interpretable with any extension
of PA. Indeed, PA is bi-interpretable with the theory ZFf in composed of ZF without axiom
of infinity and with the addition of negation of infinity and transitive closure (see [24]).
However, no extension of ZFf in can be S, since S asserts the existence of infinite sets. In
view of this, we prove the very simple theorem:

Theorem 1. For a given interpretation I of PA in a recursive extension S of ZF, there will be
formulas of L(PA) such that S 0 ϕI and S 0 (¬ϕ)I .

Proof. To prove this, we should reinternalize the provability predicate under the inter-
pretation. Let as consider A = {ϕ | S ` ϕI}. Notably, PA ⊆ A and thus A can produce
arithmetization for arithmetic formulas and for set-theoretic formulas. Let pϕq be the Gödel
number of any formula ϕ in A or in S and p〈ϕ1, ϕ2, . . . , ϕn〉q the Gödel number of any
sequence of formulas 〈ϕ1, ϕ2, . . . , ϕn〉 in A or in S (as done in ([25] pp. 122–126)).

Since S is recursive, “p〈ϕ1, ϕ2, . . . , ϕn〉q is a proof in S” is recursive. From the repre-
sentation theorem (see [25] pp. 126–128), there is a predicate PrS(x, y) such that

A ` PrS(p〈ϕ1, ϕ2, . . . , ϕn〉q, pψq) ⇐⇒ 〈ϕ1, ϕ2, . . . , ϕn〉 is a proof in S and ψ is ϕn (5)

Moreover, the statement “ψ is the ϕI of some ϕ” is recursive. Then, from the represen-
tation theorem, there is a predicate FmlI(x) such that

A ` FmlI(pψq) ⇐⇒ ψ is the ϕI of some ϕ (6)

Defining ThA
S (y) as ∃x(PrS(x, y) ∧ FmlI(y)), we can then use the diagonal lemma for

the formula ¬ThA
S (y), obtaining a formula G such that

A ` G ↔ ¬ThS(pGq) (7)
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If S ` GI , then A ` FmlI(pGq) and A ` ThS(pGq) from (5) and (6). From (7), we
have A ` ¬ThS(pGq), contradiction. To obtain a contradiction from S ` ¬GI , we should
reformulate the proof using the Rosser trick, although it will also work the same way as
in ([25] pp. 131–132). Then the formula G obtained in the diagonalization for the equivalent
Rosser-Gödel predicate is the undecidable arithmetic formula in S.

This theorem can be understood as a very small expansion of Gödel’s incompleteness
theorem as we consider decidability under relations between theories. Moreover, it relates
to results available in Satisfaction is not absolute [1]. In this article, Hamkins and Yang
considered the idea that there may be arithmetical formulas ρ that two models of ZF
disagree–even as these same models agree on what is the standard model for arithmetic.
Though very important in the context of this paper, the result lacks a construction for the ρ
formula. This formula is obtained as the existential for a number representing a formula.
In fact, exhibiting ρ is not possible, since it would imply the inconsistency of ZF.

Put another way, we have shown a similar phenomenon in which disagreement can
be exhibited. To make it possible, we considered a foundational view that accommodates
our incomplete understanding of set theory and arithmetic. Thus, agreement on arithmetic
is to be understood as having similar sets of known arithmetical truths {ϕ | S ` ϕN},
S being some stage (or alternative stage) in the development of ZF. In this sense, there
is a formula ρ that would be true in some possible development of S and false in some
other possible development of S. As a reviewer pointed out, Ali Enayat [26] has recently
studied this phenomenon in a similar light. He points out that NZF ( NZFI , where I
indicates the existence of an inaccessible cardinal. Interestingly, he also creates a natural
way of describing the S’s expansion of arithmetic. If θ0, θ1, . . . , θi, . . . is an enumeration
of formulas of S and Sn = {θi | i < n}, the resulting arithmetic obtained from S is PA
together with statements ϕ → Con(Sn ∪ {ϕN}). Enayat later shows a series of results
on how and to what extent set theory models can disagree over the standard model of
arithmetic. The limit of his method for the purposes of the present article is that his main
concern is a model-theoretical characterization of ’nonstandard’ models (with respect to
some background V) that are obtained in some S using the standard interpretation.

There are indeed various important open statements of finite set theory. The recent
book “Extremal problems for finite sets” ([26] pp. 211–215) deals with some of those system-
atically: Erdős matching conjecture, Chvátal conjecture, Frankl’s union-closed conjecture
and so on. If some of these turn out to be undecidable in ZF (or ZFC), they will correspond
to undecidable statements of arithmetic under the standard interpretation. The question
we would like to propose is this: assuming that the standard interpretation of PA in ZF
produces true arithmetic statements, should we simply say that if some set theorists decide
to include some of those conjectures as axioms, then should number theorists accept the
corresponding statements as arithmetic truths?

In particular, there has been an important debate regarding the multiversalist picture
of set theory. Many set theorists today consider that there are indeed equally legitimate
non-isomorphic set theoretic models. The motivations for this are various (see [8]). But do
those motivations apply to arithmetic? With set theory, there is a fundamental limitation
generally accepted even by many conservative set theorists: whenever we deal with a
model of set theory, we should always set a limit to an ordinal level in the cumulative
hierarchy. Therefore, there is at least a multiverse of set-theoretic models with respect to
ordinal levels. Nothing similar to this is found in arithmetic intuitions. Natural numbers
are precisely those one can effectively count and there is little to no reason to take a pluralist
view with respect to arithmetic. Notice, however, that by accepting the multiversalist
view of set theory together with the view that the one true reduction of arithmetic to set
theory is the standard interpretation, we are consequently subscribing to a pluralist view
of arithmetic. And this is precisely the conclusion drawn by Hamkins. Now, if there
is only one model of arithmetic and many legitimate set theoretic models, it becomes
fundamentally important to consider that the interpretation of arithmetic in set theory
is revisable and that the model of arithmetic may not even characterizable in some set

103



Axioms 2022, 11, 351

theoretic models. It is in view of this consideration that we should now investigate what
we call the coordination problem.

3. The Coordination Problem

Let us consider the following fictional scenario for the development of set theory and
arithmetic. There are two groups of mathematicians who would decide about new axioms
for set theory and arithmetic. The first Gs is responsible for one (among possibly many)
set-theoretic universe, and the second Ga for the arithmetic structure. Let us further assume
that Ga agrees with the standard expansion of arithmetic in ZF (AZF

N is considered valid for
Ga). How should we frame the relation between the two groups?

Consider that Gs have decided in favor of new axiom α to set theory ZF. In particular,
this would expand the set of arithmetic truths in AZF+α

N . Should Ga consider this new set
to be true? This being the general attitude towards arithmetic means that the standard
reduction determines new truths for arithmetic. In what sense does the standard inter-
pretation provide a foundation for new arithmetical truths? If we think that the standard
interpretation does this, it seems like we have simply assumed that arithmetic lives in set
theory, without any further considerations. After all, this framework bounds the expansion
of arithmetic truth to the expansion of set-theoretic truth. Therefore, Ga would not have
any authority over new arithmetic axioms after all.

In order to make room for this setting, one should consider that we have a better
understanding on how arithmetic is reduced to set theory than we have for each of the
theories. And, for this to work in general, we should consider the reduction of arithmetic
in set theory unrevisable.

Very often we consider ourselves to have a good understanding on relations between
things that we may not have a good understanding. This is the case for translating a sen-
tence like “Napoleon was an emperor”. We may have a lot of doubts about the ontological
status of the words used in this sentence and still be confident about how to translate it
into Chinese.

Indeed, we may be more confident about the way we reduce arithmetic to set theory
than about the truth in these theories. Yet this is not sufficient to assume the unrevisability
of the reduction relation. After some investigation over the concept of emperor, one has
realized that the standard translation of emperor in Chinese does not really represents
what English speakers refer with ‘emperor’. For instance, emperor is usually translated as
‘Huangdi’ in Chinese, even though this word associate the monarch with his divinity. In
English, although often associated with divinity, the word emperor can be used without
divine association. So a more intricate description as ‘Napoleon was the non-divine man
who ruled over the French empire’ would be better (even if it is not practical).

If there are grounds for taking N to be a privileged interpretation, those would be
based on partial representations of arithmetic and set theory. Therefore, the idea that N
correctly works as a connection between the theories may be simply because we have not
advanced the theories enough. This would be a similar case if a Chinese working in the
translation of a western modern history book has been translating ‘Emperor’ as ‘Huangdi’.
It seems perfectly fine if he believed this to be a general translation, given that the only
time he applied the translation was for the ‘Emperor of the Holy Roman Empire’. But as he
starts translating the Napoleonic period, the broader picture would force him to reconsider
the generality of the translation.

A different picture would be the case where the Chinese translator invented a language
where w means ‘blue chair’. Finding someone else using w to refer to a red chair, he could
correctly accuse the person to be using the word incorrectly. So this would be similar to the
case where we consider arithmetic to be a definition inside set theory. But this being the
case would imply that there is no foundational gain in studying the relation between the
theories.

Whereas set theory has a foundational role for arithmetic, we may now consider that
the standard interpretation is a good yet revisable set-theoretic inspection over arithmetic.
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It is precisely because we assume the interpretation to be revisable that a foundational
relation can be argued. As truth expands in both theories, we evaluate conflicts and revise,
if necessary, the interpretation to accommodate changes. A summary of the steps in the
coordination of Ga and Gs can be:

1. Every addition of axioms to one theory should provoke an inspection over the ade-
quacy of the current interpretation of arithmetic in set theory.

2. If a conflict arises in the development of the theories, the two groups should meet to
adjust the interpretation to prevent the conflict.

3. The adequacy of an interpretation should have reasons for itself apart from accommo-
dating the interpretation.

As we see in Step 2, the two communities should sit together and reevaluate the state
of the reduction, if necessary. Hopefully, these conferences would hardly occur. But we
should allow some independence to each group. Otherwise, their development, especially
on arithmetic, would turn out to be assumed by definition in the development of the other.

We have added some life to the grounding relation by allowing it to fail. However,
there is still a deeper problem. The following scenario is still possible:

(i) Each instance of development allows one to fix the interpretation between the theories.
(ii) And at least one of the extensions of any state of arithmetic is not possibly interpreted

in set theory.

Allowing both of these possibilities weakens the edifice of the grounding relation.
Each moment in the development of the theories is an incomplete stage in which we cannot
anticipate the impossibility of reductions occurring further in the development of the
theories. From (i), any addition to the theories allows one to find (or keep) an interpretation
of arithmetic. However, from (ii), finding those interpretations does not add to the idea
that arithmetic is indeed reducible to a given set theory. This scenario is possible, as we
will see in the next theorem.

Theorem 2. Let S be a consistent extension of ZF and A a consistent recursive extension of PA,
then there is a consistent extension A∗ of A that is not interpretable in S.

Proof. We extend the theory A by generating a sequence of theories that are not inter-
pretable in S by a particular interpretation I. Being these theories compatible with each
other, the union of them will not be interpretable in S.

Let A0 = A and {I1, I2, . . .} be an enumeration of all interpretations from PA language
to ZF language. We generate a sequence of theories A0 ⊆ A1 ⊆ . . . ⊆ An ⊆ . . . by adding
one formula in each step. It should be noticed that the proof here is not constructive,
meaning we are not using a recursive method to determine the new formula added to Ai to
obtain Ai+1. Nonetheless, since every theory Ai will be the addition of i formulas to the
recursively axiomatized A0, then Ai is also recursively axiomatized. In this case, for every
i, there is a formula Gi obtained by the Rosser-Gödel diagonalization argument. With this
in mind, we define the Ai’s as follows (abbreviation: T ≤J T′ represents “T is interpreted
in T′ by J”):

Let ϕ0, ϕ1, . . . , ϕk, . . . be an enumeration of arithmetic formulas.

1. If Ai ≤Ii S and there is a least k such that Ai 0 ϕk and S ` ϕ
Ii
k , then

Ai+1 = Ai ∪ {¬ϕk}

2. Otherwise,
Ai+1 = Ai ∪ Gi

Let A∗ =
⋃

i∈ω
Ai. We note that A∗ is a consistent extension of A because in each step

we add an unprovable formula.
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Suppose A∗ is interpretable by I in S, then I = Ik for some natural number k. Notably,
if a theory T is interpreted in a theory T′, then any subtheory of T is interpreted in T′ by
the same interpretation. Thus the entire sequence of theories {A1, A2, . . .} is interpreted
in S by Ik. In particular, we have Ak ≤Ik S and Ak+1 = Ai + ¬ϕq or Ak+1 = Ak + Gk as in
the definition. If Ak+1 = Ai + ¬ϕq, then option 1 in the definition was used and we have
S ` ϕ

Ik
q . However, since S also interprets Ak+1 with Ik, we have the contradiction S ` ¬ϕ

Ik
q .

If Ak+1 = Ak + Gk, then option 1 is not applied and we have either (i) Ak �Ik S or (ii) that,
for all n, Ai ` ϕn if, and only if, S ` ϕ

Ik
n . Note that (i) contradicts Ak ≤Ik S. Moreover,

since Ai 0 Gi, it follows from (ii) that S 0 GIk
k –which, in turn, implies the contradiction

Ak+1 �Ik S. Therefore, A∗ is not interpretable in S.

Let A = AZF
N , Ak be the Ackermann interpretation of membership in arithmetic

language and consider that a formula ϕ is equivalent to (con(ZF))Ak in A. Suppose
also that the group Ga considers ϕ to be valid. Notably, this formula would represent
a relation between natural numbers such that the standard interpretation stops being a
correct interpretation of arithmetic. Similar constructions can be used to generate a myriad
of examples. However, each of these examples can be subject to a ‘contrary to intuition’
kind of criticism. In the case presented, one may suggest that (con(ZF))Ak means that we
are adding an axiom representing the consistency of ZF in the arithmetic without doing the
same in the set theory. Simply adding the axiom con(ZF) to our set theory would make
the standard interpretation work again nicely. Nevertheless, we note that the phenomenon
presented in the theorem is not exactly to add isolated axioms, but to add an enumeration
of axioms to the arithmetic. Our suggestion is therefore that a bundle addition of axioms
may force the theories to loose coordination. We also note that we do not impose the set
theory S to be recursive. For this reason, one may simply consider that S is a complete
extension of ZF. In this case, no addition to the set theory would possibly allow the theories
to recover the interpretability relation.

We argued that it is possible for ZF and PA to part ways along the path of development.
Although disturbing, this may simply account for the meaningfulness of the question about
the reduction between the two theories. We have considered that we should conceive it to
fail (even fatally, as in this case) in order not to take for granted that the reduction works.
Note further that this pays tribute to the idea that by interpreting arithmetic in set theory
we should inform something that was not simply given, i.e., that arithmetic lives in the
realm of set theory. Nonetheless, we should now show the simple (and not a novelty) result
that the number consistent extensions of PA is uncountable. Meanwhile, the number of
interpretations is trivially countable. This means that we are in a situation similar to that
of choosing a random number in the Real line expecting to find a natural number. Our
claim is that, for this reason, the coordination between the systems can work only if the
coordination is assumed from the beginning and as a principle.

Theorem 3. Let A be a consistent recursive extension of PA, then there is a uncountable number of
consistent extensions of A.

Proof. From the incompletness theorem, there is a formula G that is undecidable in PA.
Thus, both PA + G and PA + ¬G are consistent. Notably, this is still true for the addition of
any finite number of new axioms α1, α2, . . . , αn. There is a formula G〈i〉 that is undecidable
in A〈i〉 = PA + {α1, α2, . . . , αn} since A〈i〉 is a recursive extension. Let us then index PA
extensions with binary codes (i.e. sequences of 0’s and 1’s) in the following way:

1. A〈0〉 = PA.
2. If G〈i〉 is the undecidable obtained with Rosser-Gödel technique A〈i〉, then A〈i1〉 is

A〈i〉 + G〈i〉 and A〈i0〉 is A〈i〉 + ¬G〈i〉. (where i1 and i0 are the binary extension of the
code i with the digits 1 and 0)

3. Let FinBin be the set of all finite binary codes, the set Σ = {A〈x〉 | x ∈ FinBin} is a
subset of finite extensions of PA.
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Note that each member of Σ is an extension of PA with the addition of a finite number
of formulas. Now we build infinite extensions of PA from Σ. Let M : FinBin → Σ be the
map between binary codes and extensions in Σ. We say that C : ω → FinBin is a chain
in FinBin when ∀x, y ∈ ω(x ≤ y→ (C(y) extends the code of C(x))). Also, if x ∈ FinBin,
we write

x(n) =

{
n’th digit of x, if there is the n’th digit
0, otherwise

If C is a chain in FinBin, then digC = 〈(C(0))(0), (C(1))(1), . . . , (C(n))(n), . . .〉 is an
infinite binary code associated with the extension ExC obtained by

⋃
{C(i) | i ∈ ω}

We define Π as the set

{〈digC, ExC〉 | C is a chain in FinBin}

Note that Π is a function from the set of all binary infinite codes to extensions of PA.
Since infinite binary codes are uncountable, we need only to show that Π is injective and
that the image of Π is composed of consistent extensions of PA.

Suppose that some ExC is not consistent; then there is a finite proof of the inconsistency
of ExC. Hence, there is n ∈ ω such that Exn

C =
⋃{C(i) | i ∈ n} = C(n) is inconsistent. But

this is false, since each C(i + 1) obtained by adding an unprovable formula to C(i) and
C(0) = PA is assumed consistent.

Suppose that Π(digC1) = Π(digC2) and that digC1 6= digC2 . Then there is the least i
such that digC1(i + 1) 6= digC2(i + 1). This means, without loss of generality, that C1(i +
1) = C1(i) + GC1(i), C2(i + 1) = C2(i) + ¬GC2(i) and C1(i) = C2(i). Therefore, Π(digC1)
contains the formulas GC1(i) and ¬GC1(i). This is absurd, as we just showed that the image
of Π is composed of consistent extensions of PA.

We note that the same can be obtained, even if the starting point includes all theorems
of the set theory S under the interpretation. Indeed, we can include the theorems under a
given interpretation at any point without interfering with the result.

Although extensions like A+ are in general not interpretable in S, the process of
generating these theories is internalizable in S. Therefore, we may say that S proves
the consistency statement for all these extensions. This is not enough to claim a proper
foundational relation. The model construction emerging from this type of consistency proof
is simply given by the existence of a model as in the Henkin canonical construction. Thus,
the foundational model one can generate provides little more information than saying that
the theory is consistent (see [27]). Therefore, we should not consider those cases as a path
to avoid the problem discussed in this section.

As developed in this section, we should not consider that the addition of new axioms
to the systems is, in principle, coordinated. Instead, the reducibility of arithmetical truth
should be a result of the expressiveness of set theory. However, assuming that the choices
of the two groups Ga and Gs would result in a interpretable arithmetic is similar to expect
that a random choice of a real number to be a natural number (which has probability
zero). It follows that coordination between the groups of mathematicians can only occur
in principle. Hence, the reduction of arithmetic truth to set theory is not attainable unless
assumed and the foundational relation should be based on other grounds.

To further elaborate on this conclusion, let us consider a metaphor. Picture the situation
in which we have the unstable equilibrium of a sphere on a hill with a very small slope. We
would like to say that the appearance of equilibrium represents our intuitions about the
reduction between the theories being correct. Indeed, we have put the sphere in a position
that appears to be an equilibrium. As the slope of the hill is very small, our perception
of equilibrium works really well. However, even if it takes a long time, it will become
evident that the interpretation of PA in ZF is not in equilibrium. We are, nonetheless, in a
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better position if we accept the multiversalist view of set theory. Under this assumption, we
should thus say that there are indeed some universes perfectly coordinated with arithmetic
under the standard interpretation, and there are some universes perfectly coordinated with
arithmetic under other interpretations. However, these universes are only a small portion
among a much larger multitude of possible universes of set theory.

The ideas developed in the present article, especially in Theorem 3, bring attention
to the fact that we are talking about an unstable hill. No matter how the sphere appears
to be at rest, we know that eventually it will gain traction and fall. The project of using
N for grounding arithmetic truth is equivalent to finding the equilibrium peak of the hill.
It seems to be a good project as we focus on the movement of the sphere–but an analysis
of the geography of the hill is already sufficient to conclude this hill to be unstable. We
should not base our foundational investigations on the guarantee that we have the correct
interpretation in a fixed set theory. Instead, we should use the interpretations as it informs
about arithmetic concepts and as it considers bundles of arithmetic formulas in the very
expressive environment of set theory.

Our position is not that the standard interpretation N cannot play a foundational role.
Alternatively, the very possibility of investigating expansions of arithmetic propositions
provided by analyzing N (or other interpretations) is all the ground we need. In place
of using foundational relations to establish ‘arithmetic truth’, we propose using the N
interpretation to understand how bundles of arithmetical propositions relates to each other.
In this case, we use the technical apparatus and the expressiveness of theories like ZF to
analyze arithmetical concepts rather than fixing its truth.

4. Final Remarks

Rather than manipulating models of PA, we considered interpretations of PA in ZF.
Our goal was to accommodate the incomplete picture of the set-theoretical metatheory into
our analysis of the foundations of arithmetic. The standard interpretation expands what we
may consider true in arithmetic: many undecidable formulas in PA become theorems when
examined under the interpretation in ZF. This is a general phenomenon. For every well
founded interpretation of recursive extensions of PA in extensions of ZF, the interpreted
version of arithmetic has more theorems than the original. This shows that studying
arithmetic inside set theory can be significant. As one considers these interpretations,
one explores expansion of arithmetic truth and how the addition of bundles of axioms
plays out.

We continued by introducing the coordination problem. We considered two indepen-
dent communities of mathematicians responsible for deciding over new axioms of ZF and
PA. Using this setting, we studied the possibility of coordinating PA with PA’s interpreta-
tion in ZF. Nonetheless, we showed that it is possible to have extensions of PA that are not
interpretable in a given set theory S. Moreover, we consider a given recursive extension
A of PA and an extension S of ZF. Here, we prove that there are uncountable extensions
of A while countable interpretations of arithmetic in S. This last result implies that the
coordination between the two communities of mathematicians should be coordinated from
the start. However, we argued that this would empty the foundational role of set theory
over arithmetic.

We have, therefore, set a framework to criticize the notion of grounding truth between
theories such as arithmetic and set theory, specially with respect to the idea of fixing an
interpretation between the systems. Indeed, the multiversalist propagates their pluralism
from set theory to arithmetic by relying on the standard interpretation. We reject this
conclusion, arguing that it is the interpretation that should be revised. By allowing the
interpretation of arithmetic into set theory to change, we make compatible the set theoretic
pluralism with the view that there is a single arithmetic structure.

However, this is not to be understood as a general criticism of the idea of using set
theory to investigate foundational matters regarding arithmetic. Instead, we have solely
shown that it may be flawed to assume that a single set theory can really provide grounds
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for arithmetic truth or a definitive description of the universe of numbers. Our suggestion is
therefore to consider a foundational relation that aims primarily at conceptual clarification
of the concepts involved in the studied theory. An expressively rich environment such
as set theory is armed with tools to study arithmetical relations in wider settings than it
would be possible without leaving its deductive apparatus.
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Abstract: Experimentation and the evaluation of algorithms have a long history in algebra. In this
paper we follow a single test example over more than 250 years. In 1685, John Wallis published
A treatise of algebra, both historical and practical, containing a solution of Colonel Titus’ problem
that was proposed to him around 1650. The Colonel Titus problem consists of three algebraic
quadratic equations in three unknowns, which Wallis transformed into the problem of finding the
roots of a fourth-order (quartic) polynomial. When Joseph Raphson published his method in 1690,
he demonstrated the method on 32 algebraic equations and one of the examples was this quartic
equation. Edmund Halley later used the same polynomial as an example for his new methods in
1694. Although Wallis used the method of Vietè, which is a digit–by–digit method, the more efficient
methods of Halley and Raphson are clearly demonstrated in the works by Raphson and Halley. For
more than 250 years the quartic equation has been used as an example in a wide range of solution
methods for nonlinear equations. This paper provides an overview of the Colonel Titus problem and
the equation first derived by Wallis. The quartic equation has four positive roots and the equation
has been found to be very useful for analyzing the number of roots and finding intervals for the
individual roots, in the Cardan–Ferrari direct approach for solving quartic equations, and in Sturm’s
method of determining the number of real roots of an algebraic equation. The quartic equation,
together with two other algebraic equations, have likely been the first set of test examples used to
compare different iteration methods of solving algebraic equations.

Keywords: Vietè’s method; Newton–Raphson method; regula falsi method; testing of algorithms

MSC: 65-03; 68-03; 01A50; 01A55; 01A60

1. Introduction

A problem brought to John Pell (1611–1685) in 1649, and discussed at the time
with Silius Titus (1623–1704), was the following—to find numbers a, b, and c satisfying
the equations

a2 + bc = 16, b2 + ac = 17, and c2 + ab = 22. (1)

A solution with positive integers is easily seen to be a = 2, b = 3, and c = 4, but Pell
decided to challenge himself by changing the final equation:

a2 + bc = 16, b2 + ac = 17, and c2 + ab = 18. (2)

In 1662, Pell left notes on their progress for Titus and by the following year he and John
Wallis had successfully solved it, calculating values of a, b, and c to 15 decimal places
each [1]. The solution was printed in 1685 [2], derived from the general problem

a2 + bc = l, b2 + ac = m, and c2 + ab = n.

Colonel Titus’ problem is likely the earliest instance of a problem involving three
simultaneous quadratic equations ([3], p. 34) and is one of the first algebraic problems
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leading to a quartic equation, an equation that is not derived from a problem in geometry
or trigonometry.

A variant of the Colonel Titus problem is Question 113 in Ladies’ Diary from 1725
shown in Figure 1

a2 + bc = 920, b2 + ac = 980, and c2 + ab = 1000, (3)

and was solved by John Turner in 1726. Turner only specifies the quartic equation to be
solved and a solution a, b, c, of (3). Question 113 is also found in algebra textbooks in
1820 ([4], p. 405) and in 1840 ([5], p. 563).

The publications of collected questions in Ladies’ Diary in 1774, 1775 [6,7], and 1817 [8]
sparked new interest in Colonel Titus’ problem.

A fourth variant of the problem was published in Question 209 in The Scientific Recep-
tacle in 1796 and shown in Figure 2:

a2 + bc = 1 806 520, b2 + ac = 2 225 275, and c2 + ab = 5 567 720. (4)

John Ryley solved the problem and introduced a new way to solve it by expressing a and b
as a fraction of c [9].

Figure 1. Question 113, proposed by Thomas Grant in Ladies Diary from 1725, taken from Charles
Hutton 1775 [7], p. 266. In the collection by Leybourn from 1817, the question is slightly rephrased [8],
p. 145.

Wallis ([2], pp. 225–256) eliminates the variables b and c in (2) and reduces the three
equations to a fourth-order algebraic equation

x4 − 80x3 + 1998x2 − 14,937x + 5000 = 0 (5)

where x = 2a2. In the following we will use the term “Pell–Wallis equation” to refer to (5).
To determine a root x∗, Wallis uses Viète’s method and a is found through a =

√
x∗/2.

To compute b, Wallis derives a cubic equation which follows from multiplying the first
quadratic equation by a and the second by b and eliminates abc to obtain the cubic equation

17b− b3 = 16a− a3, where a =

√
1
2

x∗.

Having found a and b, the unknown c is found from the first quadratic a2 + bc = 16.
One of the most classical problems in mathematics is the solution of systems of

polynomial equations in several unknowns [10]. They arise in robotics, coding theory,
optimization, mathematical biology, computer vision, game theory, statistics, machine
learning, control theory, and numerous other areas [10]. Systems of quadratic polynomial
equations appear in nearly every crypto-system [11] and in robotics [12].
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For more than 250 years, the equation x4 − 80x3 + 1998x2 − 14937x + 5000 = 0 has
played an important role in the development of new methods, analyses of algebraic equa-
tions, and comparisons of methods for solving nonlinear equations.

In Section 2 we discuss four different approaches in solving Colones Titus’ problem
that have appeared in the literature and in Section 3 we discuss different techniques
and methods using the Pell–Wallis Equation (5). For a modern treatment of numerical
methods for roots of polynomials, see [13,14] and references therein. For solving systems of
polynomial equations, see [10,11] and references therein.

2. Colonel Titus’ Problem

Using the notation in Wallis algebra book from 1685 [2], Ch. LX–LXI, the general
Colonel Titus problem is as follows. For given positive real numbers l, m, and n, find a, b,
and c such that

a2 + bc = l, (6)

b2 + ac = m, and (7)

c2 + ab = n. (8)

We review several solution techniques, mainly using what could be described as
high-school algebra [15]. An elegant solution is given in Solutions of the principal questions of
Dr. Hutton’s course of mathematics by Thomas Stephens Davies, and we follow his solution
technique.

From (6) and (7) we have

c =
l − a2

b
and c =

m− b2

a
.

Equating the two expressions for c, we have a cubic equation in b

b3 −mb + a(l − a2) = 0.

From (8) and the two expression for c above, we have

n− ab = c2 =
l − a2

b
m− b2

a

which is a quadratic equation in b

(l − 2a2)b2 + nab + (a2 − l)m = 0.

Multiply the quadratic equation by b and the cubic equation by l − 2a2 and subtract the
two expressions to eliminate the cubic term. We now have two quadratic equations in b

(l − 2a2)b2 + nab + (a2 − l)m = 0 and nb2 −mab + (a2 − l)(l − 2a2) = 0.

To eliminate b2, multiply the first quadratic equation by n and the second by l − 2a2 and
subtract the two resulting quadratic equations. The result is a linear equation in b. Solve
for b:

b =
(l − a2)(mn− (l − 2a2)2)

a(n2 + m(l − 2a2))
.

Substitute the value for b in

nb−ma =
(l − a2)(mn2 −m2a2 − n(l − a2)(l − 2a2))

a(n2 + m(l − 2a))
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and
1
b
(a2 − l)(l − 2a2) =

n(l − a2)(l − 2a2)2a(n2 + m(l − aa2))

(l − a2)(mn− (l − 2a2)2)
.

Equate the two expressions in nb−ma = (l − a2)(l − 2a2)/b and simplify

8a8 − 20la6 + (18l2 − 2mn)a4 + (5lmn− 7l3 −m3 − n3)a2 + (l2 −mn)2 = 0.

Multiply the equation by 2 and let x = 2a2 and we have the equation

x4 − 5lx3 + (9l2 −mn)x2 + (5lmn− 7l3 −m3 − n3)x + 2(l2 −mn)2 = 0. (9)

For each real root, x∗ of (9) a, b, and c, can be computed in the following way; a in 2a2 =
x∗, b in n b2 −ma b = (l − a2)2 − a2(l − a), and c in a2 + bc = l. For l = 16, m = 17, and
n = 18 we have the equation

x4 − 80x3 + 1998x2 − 14937x + 5000 = 0

which is (5).
Different techniques for solving Colonel Titus’ problem have been suggested in the

literature by philomaths and mathematicians, school teachers of mathematics, and pro-
fessors of mathematics. The different solution techniques can mainly be divided in two
groups; the first group is based on elimination and the second group on first reformulating
the problem and then performing an elimination.

The first solution to Colonel Titus’ problem was published by J. Wallis [2] and this
was an elimination of the unknowns that results in the quartic Equation (5). To find the
four positive roots of (5) Wallis used a digit-by-digit computation method. The solution
of Colonel Titus’ problem by Wallis was republished by Francis Maseres (1731–1824) in
1800, including numerous details ([16], pp. 187–239). However, Maseres did not use a
digit-by-digit method to find the roots, but rather the Newton–Raphson method. Similar
solutions using explicit elimination are found in [5,17–19], all leading to the same quartic
Equation (5). J. Kirkby [20] in 1735 and A. Cayley [21] in 1860 used a general elimination
theory, leading to the same quartic equation.

The method of introducing two new variables expressing the unknowns as a fraction of
one of the other variable was studied by J. Ryley [9] in 1796, and made popular by William
Frend [22] in 1800. Variations of this technique are found in [23–25]. Ivory expressed two of
the unknowns as a difference of the third [26,27]. All these reformulations lead to quartic
equations that are different from the quartic Equation (5). These quartic equations never
reached the same popularity as (5).

Using iterative methods to solve the three equations simultaneously was suggested in
the Diarian Repository [6] in 1774 and by Whitley [28] in 1824.

2.1. Ladies’ Diary 1725 Question 113

We find a variation of Colonel Titus’ problem in the journal Ladies’ Diary from 1725 in
Question 113 shown in Figure 1 where l = 920, m = 980, and m = 1000.

In Ladies’ Diary in 1726 John Turner (active in Ladies’ Diary from 1726 to 1750 ([17],
p. 423)) gives a solution of the problem and states the equation (using the notation in Wallis)

8a8 − 20la6 + (18l2 − 2mn)a4 + (5lmn− 7l3 −m3 − n3)a2 + l4 − 2l2mn + m2n2 = 0.

Let x = 2u2 and multiplying the equation by two gives (9). Turner gives the solution of
Question 113 in Ladies’ Diary to be 19.5991, 22.7788, and 23.5276. There are three minor
typographical errors in the solution by Turner ([29], p. 7):

8a8 − 18la6 + (18l2+2mn)a4 + (5lmn− 7l3 −m3 − n3−mn)a2 + l4 − 2l2mn + m2n2 = 0.
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These three typographical errors are repeated in Diarian Miscellany [7] and Diarian Reposi-
tory [6] and one error is pointed out in the Errata of [8].

For l = 920, m = 980, and n = 1000, the Equation (9) has four positive roots approxi-
mately equal to 1937.6, 1881.6, 768.0, and 12.7, and the only root that gives reasonable ages
is 768.0, and the ages are approximately a = 19.5965, b = 22.7799, and c = 23.5286.

2.2. A Renewed Interest in Colonel Titus’ Problem

In Diarian Repository by S. Clark [6], pp. 190–191 (Archibald [30] states that Samuel
Clark was the editor of this repository) from 1774; Diarian Miscellany by C. Hutton from
1775 [7], pp. 266 and 271; and later in Leybourn’s four volume collection of questions in
Ladies’ Diary from 1817 [8], pp. 145–146, we find Question 113 and the three Equations (6)–
(8). The three repositories [6–8] all reproduce John Turner’s equation and solution (ages)
but also give additional information or alternative solution techniques.

Leybourn also presents an additional solution of Colones Titus’ problem provided
by Mark Noble (a mathematician at Royal Military College (Sandhurst)) in the appendix
in the fourth volume [17], pp. 255–259. The contribution is signed N and in the preface
of Leybourn’s first volume ([8], Preface page X) it is signed "this is Mark Noble".This is
an elimination technique and it leads to the same quartic equation as in Wallis. Noble
derives one cubic and one quadratic equation similar to the equations derived by Kirkby.
Although Kirkby invokes a general elimination result from Newton ([31], p. 74), Noble
carries out the elimination explicitly and obtains the Equation (9). Noble gives the roots of
the polynomials and the different values of a, b, and c.

2.3. The Scientific Receptacle 1796 Question 209

The Scientific Receptacle published in 1796 the question shown in Figure 2 ([9], p. 77).
The problem is find positive numbers (using the notation in Wallis) a, b, and c so that

a2 + bc = 1, 806, 520, b2 + ac = 2, 225, 275, and c2 + ab = 5, 567, 720

with a solution published in a later issue in the same volume ([9], p. 95).

Figure 2. Question 209 in The Scientific Receptacle from 1796 proposed by James Gale.

John Ryley (1747–1815) published the solution of the problem in 1796 [9]. Ryley
considered the three Equations (6)–(8) and introduced two new variables x and y so that

b = x c and a = y c. (10)

and derived the equation

(n2 − lm)x4 + (m2 + ln)x3 − 4mnx2 + (n2 + lm)x + m2 − ln = 0. (11)
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From a root of (11), all other quantities can be determined. However, Ryley does not
compute any root of (11) or values of a, b, and c for the given l, m, and n.

2.4. First Reformulation and then Elimination

J. Ryley was the first to express two of the unknowns as a fraction of the third. W. Frend
(1757–1841) ([22], pp. 240–246) in 1800 provided a different derivation and introduced x
and y so that

b = x a and c = y a, (12)

and derived the equation

(mn− l2)x4 − (ln + m2)x3 + 4lmx2 − (l2 + mn)x−m2 + ln = 0. (13)

A minor improvement of Frend’s solution, avoiding a square root, was given by John
Hellins (c. 1749–1827) in the introduction of the same volume in which Frend’s solution
was found [16], pp. lxxi–lxxii. By interchanging the variables, Equation (13) can be derived
from (11).

For l = 16, m = 17, and n = 18 we obtain the equation

50x4 − 577x3 + 1088x2 − 562x− 1 = 0.

The equation has four real solutions (or roots), of which one is negative. Maseres [16]
(pp. 246–275) finds the three positive roots to be approximately 1.027179787, 1.17565,
and 9.3388519 using Newton–Raphson iteration. Maseres regards the root 1.027179787
as “impossible” since y is negative. For a given root, y and the unknowns a, b, and c are
easily found.

Maseres ends the tract with a comment that Mr. Frend’s solution has the advantage
that it saves the trouble of those very tedious and perplexing algebraic multiplications and
divisions necessary in Dr. Wallis’s solution [16], p. 275. A similar solution to Frend’s was
given by Tebay [25] in 1845. A third variation is to express a and b in terms of c [23].

James Ivory (1765–1842) [26] wrote that the solution provided by Wallis to the prob-
lem (2) was remarkably operose and inellegant and a solution of the same problem by Frend [22]
is preferable to Wallis’s solution. Ivory expressed two of the unknowns as a difference of
the third and the analysis was printed in 1804 in [26], but with no numerical solution. Ivory
restricts his analysis to the specific choice l = 16, m = 17, and n = 18. Ivory’s analysis
was mailed to Baron Maseres [27] p. 360 and Maseres added many details and a numerical
solution based on the Newton–Raphson method [32].

Whitley [24], p. 121 wrote in 1824 that Mr. Ivory’s solution was an elegant specimen
of analysis and Davis [18], p. 274 in 1840 called it an exceedingly elegant investigation.
Cockle [3] speculated that the analysis can be carried over to the case where m = (n + l)/2.
It can be shown that the derivation by Ivory can be extended to the general case of l, m,
and n. Maseres [32], pp. 371–395 computed the two positive roots of the quartic equation
derived by Ivory and these correspond to the positive a, b, and c values provided by Wallis.

2.5. Simultaneous Solution of the Three Unknowns

In the Repository Solution section in the Diarian Repository [6], pp. 190–191 an iterative
approach was suggested. First, find an approximate solution (in this case 23, 22.5, and
21.1); then, find a correction (x, y, and z) that solves the (linear) equations where the second
order terms are eliminated. . . . then via the solution of the resulting equations, x, y, and z will be
determined to a sufficient degree of exactness; if not, the operation must be again repeated with the
last found values. . . [6], pp. 190–191. This is Newton’s method but no actual computations
of a, b, and c are shown, except for finding the starting point for the iteration.

J. H. Swales, the editor of the Liverpool Apollonius asked its readers in 1823 to find
a simpler solution than those given by Ivory [26], p. 156 and Frend [22], p. 240. Three
traditional solutions were submitted by J. Whitley, Settle, and S. Ryley and a completely
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new approach using a fixed-point iteration method by Whitley was published in the next
volume. In 1853, T. T. Wilkinson, in his series of articles on the History of Mathematical
Periodicals wrote in relation to the Liverpool Apollonius (In Mechanics Magazine, Volume 58,
1853 p. 307) that the iterative method used by Whitley was one of the neatest and most
effective methods of solving Colonel Titus’ problem. The same appraisal was provided
in 1865 in the Educational Times (Educational Times p. 270, 1865 on Question 113 from the
Ladies’ Diary).

The method proposed by Whitley [28], pp. 127–128 in 1824 is the fixed-point iteration




ak+1
bk+1
ck+1


 =



√

l − bkck√
m− akck√
n− akbk


 k ≥ 0

with the starting point given by a0 = b0 = c0 = 3, where l = 16, m = 17, and n = 18.
Table 1 compares the fixed-point iteration to Newton’s method for F(a, b, c) ≡ (a2 + bc−
16, b2 + ac− 17, c2 + ab− 18) = (0, 0, 0) with the starting point (a0, b0, c0) = (3, 3, 3).

Table 1. Fixed-point iterations of Whitley and Newton’s method.

Whitley

k ak bk ck

1 2.6458 3.0104 3.1678
2 2.5423 2.9910 3.2242
3 2.5211 2.9785 3.2390
4 2.5205 2.9726 3.2415
5 2.5227 2.9703 3.2414

Newton

k ak bk ck

1 2.5833 2.9167 3.2500
2 2.5263 2.9698 3.2395
3 2.5255 2.9692 3.2406
4 2.5255 2.9692 3.2406

Arthur Cayley (1821–1895) considered Colonel Titus’ problem and suggested that if
a = x

z and b = y
z the equations become

x2 + cyz− lz2 = 0

y2 + czx−mz2 = 0

(c2 − n)z2 + xy = 0

which are three homogeneous equations of second order in three unknowns [21]. However,
Cayley did not solve the homogeneous equations. Schumacher solved this problem [33]
in 1911.

2.6. Erroneous Solution

The achievements of Adrien Quentin Buée (1748–1825), also called Abbé Buée, are
important in relation to the conceptual development of the negative numbers and for
the graphical representation of the complex numbers. In [34], he considers Colonel Titus’
problem and makes an attempt to solve it using geometry and complex numbers. He claims
that the solution must be a = 3.25x, b = 4.25x, and c = 5.25x, where x is the area of a
circle in the geometric construction. However, he does not find any correct solution to
the problem.
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3. The Pell–Wallis Equation

In the late 17th and early 18th centuries, there were numerous collections of alge-
braic equations [35]. Most practical algebraic equations were derived from geometric or
trigonometric problems. An algebra book by John Ward from 1695 contains ten geometric
problems with corresponding algebraic equations [36] and The Young Mathematician’s guide
from 1707 contains more than 20 practical problems from geometry and trigonometry,
leading to algebraic equations [37]. However, The Pell–Wallis equation is derived from a
different type of problem. The equation has been in use for 270 years, from the first time it
appeared in print in 1685 to the most recent reference to the equation in a paper from 1955.

3.1. Digit-by-Digit Methods

The root finding method used by Wallis in 1685 was a digit-by-digit computation
method [2]. The method used by Wallis was based on Vietè’s method but it deviated
from Vietè’s method in the divisor used to compute the next digit [38]. In this method,
the roots are computed with a very high degree of accuracy. With Horner’s technique
to compute shifted polynomials, the digit-by-digit approach became more efficient using
Holdred’s and Horner’s divisor [38]. The Pell–Wallis equation is used as an example in
Holdred [39], pp. 55–56 and Nicholson [40], pp. 74–76, 80–82 in 1820 and [41], p. 19;
de Morgan [42], pp. 50–51 in 1839; Perkins [43], pp. 356–358 and Young [44], pp. 213–221 in
1842; Lobatto [45], pp. 114–166 in 1845; Schnuse [46], pp. 212–216 in 1850; and Onley [47],
pp. 240–245 in 1878—all using digit-by-digit computation.

3.2. Bracketing Methods

In Vietè’s method, the first digit of a root must be specified. This will normally lead
to the determination of the intervals of the roots. Intervals of the real roots may also
provide a starting point for linear interpolation. Cardano’s golden rule and regula falsi are
methods in which a root is bracketed. Application of the Newton–Raphson method and
the Halley method, which are iterative methods, requires a starting point sufficiently close
to a root/solution and this point is often determined to be in an interval including the root.

The Pell–Wallis equation has been used as an example in [48], p. 335, Kirkby [20] Part
IV, pp. 32–34 in 1735; Frend [49], pp. 109–111 and [50] pp. 298–299 in 1799 and 1800. A
more systematic approach was employed with the application of Sturm’s theorem in [51]
from 1839 and Young [52], pp. 159–161 in 1841. This method was also used by Siebel in
1880 and 1887 [53], pp. 406–407 [54], pp. 337–338 in an ad hoc way.

3.3. Linear Interpolation

The first use of the Pell–Wallis equation and interpolation occurred in 1732. Graaf [55],
pp. 33–35 considered (5) and scaled the variable x ← x/10 in the interval of 0 to 3.6 and
plotted the graph (x, f (x)), where f (x) is the left-hand side of (5). Based on the graph,
an interval where a solution exists was identified, and then linear interpolation. This is a
variation of regula falsi [56] and Cardano’s regula aurea [57], Chapter 30 methods, since
both end points of the interval are changed in de Graaf’s approach.

The method of John Davidson, a teacher in mathematics in Burntisland, involves
a bracketing approach and linear interpolation [58], p. 114, [59], p. 38, as shown in his
textbooks from 1814 and 1852. This is Cardano’s golden rule [57], Chapter 30.

3.4. The Newton–Raphson Method

Wallis published his algebra book in 1685 [2] and it contained the first printed version
of Newton’s method. When Raphson presented his method in 1690 it was regarded as a
different method. It was not until the mid-18th century that it became clear that the two
methods generated the same sequence of iterations [35]. From a computational point of
view, the methods are very different. Raphson demonstrated his method on 32 examples
and the Pell–Wallis equation was given as example 21 [60] Problem XXI. Kirby [20], Part IV,
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pp. 35, 44–45 in 1735 used the Newton–Raphson method to find one of the roots of the
Pell–Wallis equation.

In Volume III of Scriptores logarithmici from 1796, Francis Maseres used the Newton–
Raphson method. First an approximation 0.3507 to the smallest root is found by using a
series expansion and then two iterations are performed [61], pp. 718–725. Maseres writes
". . . and this I take to be the very best method that can be employed to find the value of x to this
degree of exactness".

Lockhart [62] in 1839 argues that the numbers of digits required to compute an approxi-
mate solution using the Newton–Raphson method is not worse than Horner’s digit-by-digit
method, as presented by De Morgan [42] in 1839.

3.5. Halley’s Method

Edmund Halley (1656–1742), in a paper from 1694, derived two methods, the rational
and irrational method [63]. Halley pointed out that the Pell–Wallis Equation (5) was solved
by Wallis using the method of Vieté and solved by Raphson using the Newton–Raphson
method. Halley applied both methods to the Pell–Wallis equation. For the irrational
method, two possible corrections can be used before the new iteration.

In 1710, Christian Wolff (1679–1754) provided a different derivation of Halley’s irra-
tional method and redid the computation method developed by Halley using the irrational
method and the correction to find the largest root of (5) [64], pp. 192–194.

Philip Ronyane (1683–1755) applied Halley’s rational and irrational methods. With
the irrational method he use the two corrections used by Halley and gave a derivation of
the corrections, whereas Halley has just stated them [65], pp. 242–244.

One of the earliest professors in mathematics in an American college was Isaac Green-
wood (1702–1745) and two notebooks from his students—Samuel Langdon (1723–1797),
who graduated from Harvard in 1740, and James Diman (1707–1788), who graduated in
1730—have been kept [66], ([67], pp. 3–17). A topic in the Diman notebook from 1730 is
“Dr. Halley’s theorems for solving equations of all sorts” and here we find (reproduced
in [66], p. 64) three iterations with Halley’s rational method on (5).

3.6. Ferrari–Cardano Approach

The linear shift x− 20 in the Pell–Wallis equation makes the term x3 vanish and the
depressed quartic equation is

x4 − 402x2 + 983x + 25,460 = 0. (14)

Taking two slightly different approaches, Francis Maseres first finds the depressed quar-
tic (14) and then, with reference to Ferrari, finds the resolvent cubic

v3 − 201v2 − 25460v− 967,897
8

= 0, (15)

and, with reference to Descartes [68], p. 142, the resolvent cubic (in e2) is

e6 − 804u4 + 59764e2 − 966,289 = 0. (16)

The four roots of the Pell–Wallis equation can then found [68], pp. 134–182. Maseres points
out that the use of linear interpolation and one iteration with Newton–Raphson will require
fewer arithmetic operations than the use of Ferrari-Cardano approach [68] p. 178.

William Rutherford (1798–1871) found the depressed quartic (14) and then derived
the resolvent cubic equation (in u2)

u6 − 402
2

u4 +
59,764

16
u2 − 966,289

64
= 0. (17)
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From the resolvent cubic (17), using Horner’s method, Rutherford found one root and the
four roots of the Pell–Wallis equation [69], pp. 17–18.

Orson Pratt (1811–1881) [70], pp. 130–131 used the depressed quartic (14) and derived
the resolvent depressed cubic

y3 − 1,401,372y− 633,074,427 = 0.

A root of the depressed cubic is found using a digit-by-digit approach with a modified
divisor in Vietè’s method, to eleven decimal places, and then the roots of the Pell–Wallis
equation are given.

Christian Heinrich Schnuse (1800–1878) considered the Pell–Wallis equation and
derived the depressed quartic (14) and the resolvent cubic (17). Using a digit-by-digit
approach, he found the same root of (17) as Rutherford in 1849 [46], pp. 358–359.

3.7. Gräffe’s Method

D. Miguel Merino (1831–1905) translated and revised a work by Johann Franz Encke
(1791–1865) [71] on the numerical solution of equations. Using Gräffe’s method and one
final Newton–Raphson iteration, the four roots are found [71], pp. 42–44. In Gräffe’s method
a sequence of polynomials is generated and the method is a “root-squaring” process and
approximations to the roots can be computed from the coefficients of of the generated
polynomials. The method works well for the Pell–Wallis equation since the roots are
real, positive, and separated. The method is suitable for computation by hand, whereas
computer implementations usually exhibit overflow after only a few steps. After a few
steps, the estimates of the roots are good and suitable for a correction by means of Newton–
Raphson iterations. The two smallest roots are correct with four decimal digits after four
steps in Gräffe’s method. Given that the two smallest roots have been accurately computed,
the remaining two roots can be computed [72], pp. 74–75. Encke in 1839, Merino in 1879,
and Rey Pastor [72] (1888–1962) in 1924 found it more convenient to work with the log of
the coefficients of the polynomials.

3.8. Miscellaneous Methods and Comments

• Wells pointed out in 1698 that the Pell–Wallis equation was solved by Raphson,
Halley, and Wallis using the Newton–Raphson method, Halley’s methods, and Vietè’s
method [73], pp. 213–214.

• In 1716 [74], pp. 138–139, Struyck translated Halley’s papers from 1694 into Dutch
(French translation in 1912 [75], pp. 148–149).

• In the 4th edition of the Theory of Equations [76], pp. 269–270 from 1899, Burnside
and Panton derived the resolvent cubic (16). They also showed that the roots are
real [76], p. 194 and if two of the roots are known, the two remaining roots can easily
be found [76], p. 267.

• With reference to [72] (pp. 74–75) for the Pell–Wallis equation Carlos Calvo Car-
bonell [77] derived the depressed quartic (14) and scaled the variable

√
402x and

obtained the equation

x4 − x2 +
983√
4023

x +
25,460
4022 = 0. (18)

By graphical inspection, the roots of (18) are located in intervals of length 0.01.For a
point in the interval, a first correction method is a Newton-Raphson iteration, then a
correction based on the next term in the Taylor expansion. The four roots are computed
using two or three corrections.

• Silvestre François Lacroix (1765–1843) [78], p. 261 discussed the Pell–Wallis equation
as a problem of scaling the coefficients and found that the two roots are between 0 and
10 and 10 and 20.
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• Preston Albert Lambert (1862–1925), in 1903, used the Pell–Wallis equation to find the
depressed fourth-order polynomial (14) and applied Maclaurin expansion to find an
approximate solution [79], p. 92.

• Leonard Eugene Dickson (1874–1954), in his book on Elementary theory of Equations
from 1914, used the Pell-Wallis equation as a problem. He first found two approximate
roots r and s and then the next two roots r1 and r2 by solving using expressions for
r1 + r2 and r1 − r2 as functions of r and s [80], p. 121.

• We find numerous examples of the use of the Pell–Wallis equation as an exercise
or problem in the second half of the 19th century: [81], p. 218, [82], p. 116, [83],
p. 350, [84], p. 14, [85] p. 358, [86], pp. 352–353, [87], p. 170, and [88], p. 307.

3.9. An Early Comparison of Four Algorithms on Three Examples

One of the first comparisons of the use of several algorithms on different problems
is found in [16]. The methods used were Newton–Raphson, Halley’s two methods, and
regula falsi or linear interpolation. The latter method is called the the differential method
in [16] or the method of double position. Maseres [16] p. 109 provides a reference to A Course
of Mathematics in Two Volumes, Composed for the Use of the Royal Military Academy by Charles
Hutton for the equivalence between the differential method and the method of double
position.

The three equations tested were x3 − 17x2 + 54x− 350 = 0, x4 − 3x2 + 75x− 10,000 =
0, and the Pell–Wallis equation −x4 + 80x3 − 1998x2 + 14,937x − 5000 = 0. These three
examples are from Halley [63].

4. Concluding Remarks

We have shown that the three quadratic equations in three unknowns forming Colonel
Titus’ problem can be reduced to a single quartic equation using standard high school
algebra. The different derivations of a quartic equation have been suggested by philomaths
and mathematicians, school teachers of mathematics, and professors of mathematics over a
period ranging from the mid-17th to the early 20th century. We find systems of quadratic
equations in modern crypto-systems or robotics. Today, solutions can easily be obtained
through the use of computer algebra systems implemented in Maple, Mathematica, or
Wolfram. The modern theory related to solution methods, such as the use of a Gröbner
basis, has not yet been explored in relation to Colonel Titus’ problem.

We have seen that the quartic equation, the Pell–Wallis Equation (5), derived from
Colonel Titus’ problem, has been used for more than 250 years as a test example to develop
methods to solve algebraic equations, techniques to determine the number of roots, or
intervals of the roots, as well as in numerous textbooks. As a well-known equation, it has
been included in the early numerical comparisons of root finding methods.

The references in this paper do not form a complete list of the use of this equation and
Colonel Titus’ problem.
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Abstract: In this article, an intelligent system utilizing type-3 fuzzy logic for automated image quality
tuning in televisions is presented. The tuning problem can be formulated as controlling the television
imaging system to achieve the requirements of production quality. Previously, the tuning process has
been carried out by experts, by manually adjusting the television imaging system on production lines
to meet the quality control standards. In this approach, interval type-3 fuzzy logic is utilized with the
goal of automating the tuning of televisions manufactured on production lines. An interval type-3
fuzzy approach for image tuning is proposed, so that the best image quality is obtained and, in this
way, meet quality requirements. A system based on type-3 fuzzy control is implemented with good
simulation results. The validation of the type-3 fuzzy approach is made by comparing the results
with human experts on the process of electrical tuning of televisions. The key contribution is the
utilization of type-3 fuzzy in the image tuning application, which has not been reported previously
in the literature.

Keywords: interval type-3 fuzzy theory; fuzzy control; manufacturing

MSC: 03B52; 03E72; 62P30

1. Introduction

In this article, the application of interval type-3 fuzzy theory [1–6] for automating
the tuning process is presented. The tuning process involves a process of dynamically
adjusting the image quality to achieve the best possible image in the end. A set of fuzzy
rules that encapsulates the knowledge of experts in performing the tuning process has
been designed. Based on these fuzzy rules we propose the automation of television tuning.
Interval type-3 fuzzy enables the handling of the decision-making uncertainty for this
problem in a better way than other available alternatives described in the literature, such as
type-1 [7–9], interval type-2, and general type-2 fuzzy logic [10–18]. Of course, there are
successful applications of type-1 fuzzy control in the recent literature, such as the excellent
works presented in [19–21], but the main goal of this article was exploring the utilization of
type-3 in this particular application and its comparison with type-2 and type-1.

The key issue that we are dealing with in this work is achieving a way to reproduce
images in the best fashion in televisions. In the production of televisions, we usually find a
section on the manufacturing line with the responsibility of adjusting the imaging system.
Traditionally, an expert adjusts the imaging system using a remote controller, based on
voltage and current values. Here, we are dealing with a system based on type-3 fuzzy
for controlling the image tuning of televisions. The interval type-3 system has a rule base
formed from expert knowledge about the tuning of televisions. The main reason behind the
utilization of interval type-3 fuzzy logic is to model better the uncertainty in the decision-
making process [6,22]. We need to consider the voltage, current intensity, time, and quality
as fuzzy variables in the fuzzy rules [23] and define the membership functions (MFs) for
these variables that reflect real data and the knowledge of experts.
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Several important related works have demonstrated the efficiency of interval type-3
fuzzy logic systems (IT3FLSs) when compared to type-1 fuzzy logic systems (T1FLSs),
interval type-2 fuzzy logic systems (IT2FLSs), and generalized type-2 fuzzy logic systems
(GT2FLSs); and some of these works are highlighted in the following: in [24] a subsethood
for type-n fuzzy sets is presented by Rickard et al.; in [25] a related approach to the design
of interval type-3 TS systems is presented by Singh et al.; in [3] Qasem et al. present a
type-3 logic fuzzy system that was optimized using a Kalman filter with adaptive fuzzy
kernel size; in [26] Wang et al. present a non-singleton type-3 fuzzy approach for flowmeter
fault detection for the gas industry; in [27] Alattas et al. present a new data-driven control
system for gyroscopes: using type-3 fuzzy systems; in [1] Cao et al. analyze a deep-learned
recurrent type-3 fuzzy system with application for renewable energy prediction; in [28] Tian
et al. design a deep-learned type-3 fuzzy system and describe its application in modeling
problems; in [5] Mohammadzadeh et al. describe an interval type-3 fuzzy system and a
new online fractional-order learning algorithm; and in [29] Ma et al. use an optimal type-3
fuzzy system for solving singular equations.

The field of control is an area in which there is a wide and deep number of problems
where IT3FLSs may prove to have good performance. The following works focus their
studies on showing that an IT3FLS is an excellent tool in control, based on their results.
A stabilization of deep type-3 fuzzy control is presented by Gheisarnejad et al. in [30];
an interval type-3 control for solar systems is developed by Liu et al. in [6]; a type-3
controller for gyroscopes is studied by Vafaie et al. in [31]; interval type-3 control for
navigation of autonomous vehicles is presented by Tian et al. in [32]; a fractional-order
type-3 fuzzy control is implemented by Mohammadzadeh et al. in [33]; an interesting
model-predictive type-3 controller for power converters is presented by Gheisarnejad et al.
in [34]; a predictive type-3 control for multi-agents is presented by Taghieh et al. in [35]; an
event-triggered type-3 controller for multi-agent systems is presented by Yan et al. in [36];
and a type-3 fuzzy voltage management is applied in battery systems by Nabipour et al.
in [37]. As can be noted from the discussion of previous works on type-3 fuzzy logic, the
particular application that is being considered in this article has not been tackled before
with interval type-3 fuzzy models, and this was part of the motivation for carrying out this
work. In addition, from a practical point of view, we are presenting a working prototype to
the industrial workers in a manufacturing plant in Tijuana, Mexico (as they provided the
experts to give us their empirical knowledge on tuning the imaging system). Additionally,
on the theoretical side, we were able to extend concepts from type-1 and type-2 to the level
of type-3 [38], that could be useful for other problems. In summary, the objective of this
research work was to extend the theory and methodology for designing type-2 fuzzy to
interval type-3 fuzzy, and also to test this theory and methodology with a challenging
application that allows us to make a comparative study of type-3 versus type-2 and type-1
in tuning the imaging systems of televisions.

The key contribution is the utilization of interval type-3 fuzzy theory for achieving
an efficient tuning during the production of televisions. This has not been previously
reported in the literature, which is evidence of the innovative nature of this research work.
In addition, we show that interval type-3 outperforms type-2 and type-1 fuzzy in handling
the uncertainty in the decision-making process involved in the evaluation of image quality.
There is also innovation on the application side of this work. It is worth noting that
the utilization of type-3 fuzzy in the image-tuning application has not been described
previously in the literature, which indicates of the novelty of the study. There are only
applications of type-2 and type-1 to manufacturing problems reported at this time [23]. In
this sense, the approach presented here could be generalized to other problems related
to the manufacturing of similar, products, such as sound speakers, sound systems, and
others. These problems also involve the tuning of images or sound in a similar way, and
the approach proposed here could be adapted to solve them.

The rest of the paper is described as follows: Section 2 highlights the concepts of
interval type-3. Section 3 outlines the basic terminology involved in Mamdani type-3 fuzzy
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systems. Then, Section 4 describes how to use type-3 fuzzy techniques for automating the
tuning of televisions and illustrates its validity with simulations. At the end, Section 5
outlines the conclusions.

2. Interval Type-3 Fuzzy Theory

We begin by formulating type-3 terminology.

Definition 1. A type-3 fuzzy set (T3 FS) [2,4,5,38], denoted by A(3), is represented by the plot of
a function called MF of A(3) in the Cartesian product X× [0, 1]× [0, 1] in [0, 1], where X is the
primary variable universe of A(3), x.

In this case, u is the membership function of x, and v is the membership function of u.
The MF of µA(3) is formulated by µA(3)(x, u, v) (or µA(3) for short) and it is labeled a type-3
MF (T3 MF). In other words,

µA(3) : X× [0, 1]× [0, 1]→ [0, 1]

A(3) =
{(

x, u(x), v(x, u), µA(3)(x, u, v)
) ∣∣ x ∈ X, u ∈ U ⊆ [0, 1], v ∈ V ⊆[0, 1]

}
(1)

where U is the universe for the secondary variable u and V is the universe for tertiary
variable v. A T3FS, A(3) can be formulated as:

A(3) =
∫

x∈X

∫

u∈[0,1]

∫

v∈[0,1]
µA(3)(x, u, v)/(x, u, v) (2)

A(3) =
∫

x∈X

[∫

u∈[0,1]

[∫

v∈[0,1]
µA(3)(x, u, v)/v

]
/u
]

/x (3)

where
t

is notation for the union over all the admissible x, u, v values.
Equation (3) is formulated as a T3 FS MF mapping with the expressions:

A(3) =
∫

x∈X
µ

A(3)
x
(u, v)/x (4)

µ
A(3)

x
(u, v) =

∫

u∈[0,1]
µ

A(3)
(x,u)

(v)/u (5)

µ
A(3)
(x,u)

(v) =
∫

v∈[0,1]
µA(3)(x, u, v)/v (6)

where µ
A(3)

x
(u, v) is the primary MF, µ

A(3)
x
(u, v) is the secondary membership function, and

µ
A(3)
(x,u)

(v) is the tertiary MF of the T3 FS.

If µA(3)(x, u, v) = 1 for all x ∈ X, u ∈ U, v ∈ V, the T3 FS, A(3), is simplified to an
interval type-3 fuzzy set (IT3 FS) with the notation A, postulated by expression (7):

A =
∫

x∈X

[∫

u∈[0,1]

[∫

v∈[µA(x,u), µA(x,u)
1/v

]
/u

]
/x (7)

where
µA(x,u)(v) =

∫

v∈[µA(x,u), µA(x,u)
1/v (8)

µA(x)(u, v) =
∫

u∈[0,1]

[∫

v∈[µA(x,u), µA(x,u)
1/v

]
/u (9)

A =
∫

x∈X
µA(x)

(u, v)/x (10)
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Assuming that v ∈
[
µA(x, u), µA(x, u)

]
and the lower and upper MFs µA(x, u),

µA(x, u) are general type-2 MFs (T2 MFs) on the plane (x, u), Equation (4) can be simplified

to an interval type-3 MF (IT3 MF), µ̃A(x, u) ∈
[
µA(x, u), µA(x, u)

]
, defined by Equation

(11):

A =
∫

x∈X

∫

u∈[0,1]
µ̃A(x, u)/(x, u) (11)

where the lower T2 MF µA(x, u), is contained in the upper T2 MF µA(x, u), that is,
µA(x, u) ⊆ µA(x, u), then µA(x, u) ≤ µA(x, u), and as a consequence an IT3 FS is ex-
pressed by two T2 FSs, one inferior A with T2 MF µA(x, u), and another superior A, with
T2 MF µA(x, u), expressed by Equations (12) and (13) (see Figure 1):

A =
∫

x∈X

∫

u∈[0,1]
µA(x, u)/(x, u) =

∫

x∈X

[∫

u∈[0,1]
f

x
(u)/u

]
/x (12)

A =
∫

x∈X

∫

u∈[0,1]
µA(x, u)/(x, u) =

∫

x∈X

[∫

u∈[0,1]
f x(u)/u

]
/x (13)

where the secondary MFs of A and A are T1 MFs of T1FS expressed by Equations (14) and
(15):

µA(x)(u) =
∫

u∈Jx
f

x
(u)/u (14)

µA(x)(u) =
∫

u∈Jx
f x(u)/u (15)
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Figure 1. IT3 FS with IT3MF µ̃(x, u) where µ(x, u) is the LMF and µ(x, u) is the UMF.

In this case, we utilize interval type-3 MFs that are scaled Gaussians in the primary
and secondary variables, respectively. This function can be represented as µ̃A(x, u), with
Gaussian footprint of uncertainty FOU(A), characterized with parameters [σ, m] (UpperPa-
rameters) for the upper membership function UMF, and for the lower membership function
LMF the parameters λ (LowerScale) and ` (LowerLag), to form the DOU = [µ(x), µ(x)].
The vertical cuts A(x)(u) characterize the FOU(A), and are IT2 FSs with Gaussian IT2 MFs,
µA(x)(u) with parameters [σu, m(x)] for the UMF and LMF λ (LowerScale), ` (LowerLag).
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The IT3 MF, µ̃A(x, u) = ScaleGaussScaleGaussIT3MF (x, [σ, m], λ, `) is described with the
following equations:

u(x) = exp

[
−1

2

(
x−m

σ

)2
]

(16)

u(x) = λ·exp

[
−1

2

(
x−m

σ∗

)2
]

(17)

where σ∗ = σ
√

ln(`)
ln(ε) and ε is the machine epsilon. If ` = 0, then σ∗ = σ. In this case, u(x)

and u(x) are the upper and lower limits of the domain of uncertainty (DOU). The range,
δ(x) and radius, σx of the FOU are:

δ(x) = u(x)− u(x) (18)

σx =
δ(x)
2
√

3
+ ε (19)

The apex or core, m(x), of the IT3 MF µ̃(x, u), is defined by the expression:

m(x) = exp

[
−1

2

(
x−m

ρ

)2
]

(20)

where ρ = (σ + σ∗)/2. Then, the vertical cuts with IT2 MF, µA(x)(u) =
[

µA(x)
(u), µA(x)(u)

]
,

are described by the equations:

µA(x)(u) = exp

[
−1

2

(
u− u(x)

σx

)2
]

(21)

µA(x)
(u) = λ·exp

[
−1

2

(
u− u(x)

σ∗x

)2
]

(22)

where σ∗x = σx

√
ln(`)
ln(ε) . If ` = 0, then σ∗u = σu. Then, µA(x)(u) and µA(x)

(u) are the UMF

and LMF of the IT2 FSs of the vertical cuts of the secondary IT2MF of the IT3 FS.

3. Mamdani Type-3 Fuzzy Models

The IT3 FLS structure contains the same main components (fuzzifier, rule base, infer-
ence machine and, in the final stage, an output processing unit) as its analogous T2 FLSs.
While in the case of T2 FLSs the final stage consists of a process of type reduction to T1 FS +
defuzzification, in the case of an IT3 FLS, the output process consists of type reduction to
an IT2 FS + defuzzification. The fuzzy operators of the inference machine of an IT3 FLS
and the type-reduction methods are equivalent to a T2 FLS, except that in the inputs and
outputs we have IT3 FSs in an IT3 FLS. The interval type-3 fuzzy operators of union (∪)
and intersection (∩), are related to the join (t) and meet (u) operators, respectively. The
Cartesian product (×) and the implication (→) are intersection operations. We first define
the type-3 fuzzy operators, as follows: consider two IT3 FSs, A and B, that are expressed
utilizing the representation of horizontal cuts, as in [38]:

A =
∫

x∈X
µA(x) (u)/x =

∫

x∈X

[
sup

α∈[0,1]
α/ Aα(x)

]
/x =

∫

x∈X

[
sup

α∈[0,1]
α/
[

Aα(x), Aα(x)
]
]

/x (23)

where
Aα(x) = [aα(x), bα(x)]

aα(x) = in f
{

u
∣∣∣u ∈ [0, 1] , µA(x, u) ≥ α

}
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bα(x) = sup
{

u
∣∣∣u ∈ [0, 1] , µA(x, u) ≥ α

}

Aα(x) =
[

aα(x), bα(x)
]

aα(x) = in f {u |u ∈ [0, 1] , µA(x, u) ≥ α}
bα(x) = sup{u |u ∈ [0, 1] , µA(x, u) ≥ α}

B =
∫

x∈X
µB(x) (u)/x =

∫

x∈X

[
sup

α∈[0,1]
α/ Bα(x)

]
/x =

∫

x∈X

[
sup

α∈[0,1]
α/
[

Bα(x), Bα(x)
]
]

/x (24)

where
Bα(x) = [cα(x), dα(x)]

cα(x) = in f
{

u
∣∣∣u ∈ [0, 1] , µB(x, u) ≥ α

}

dα(x) = sup
{

u
∣∣∣u ∈ [0, 1] , µB(x, u) ≥ α

}

Bα(x) =
[
cα(x), dα(x)

]

cα(x) = in f {u |u ∈ [0, 1] , µB(x, u) ≥ α}
dα(x) = sup{u |u ∈ [0, 1] , µB(x, u) ≥ α}

Union of IT3 FSs
The union of two IT3FSs, A∪B, is calculated using horizontal cuts as:

A∪B =
∫

x∈X

µ(A∪B)x
(u)/x =

∫

x∈X


 sup︸︷︷︸ α

α∈[0,1]

/(Aα ∪Bα)


/x =

∫

x∈X

[
sup

α∈[0,1]
α/
[

Aα(x) ∪ Bα(x), Aα(x) ∪ Bα(x)
]
]

/x (25)

where
Aα(x) ∪ Bα(x) = [aα(x) ∨ cα(x), bα(x) ∨ dα(x)]

and
Aα(x) ∪ Bα(x) =

[
aα(x) ∨ cα(x), bα(x) ∨ dα(x)

]

Intersection of IT3 FSs
The intersection of two IT3FSs, A

⋂
B, is calculated using horizontal cuts as:

A
⋂

B =
∫

x∈X

µ(A
⋂
B)x

(u)/x =
∫

x∈X


 sup︸︷︷︸ α

α∈[0,1]

/
(
Aα

⋂
Bα

)

/x =

∫

x∈X

[
sup

α∈[0,1]
α/
[
Aα(x)

⋂
Bα(x), Aα(x)

⋂
Bα(x)

]]
/x (26)

where
Aα(x)

⋂
Bα(x) = [aα(x) ∧ cα(x), bα(x) ∧ dα(x)]

Aα(x)
⋂

Bα(x) =
[

aα(x) ∧ cα(x), bα(x) ∧ dα(x)
]

Complement of IT3 FSs
The complement of an IT3 FS, A, is calculated using horizontal cuts as:

A =
∫

x∈X

µ(A)x
(v)/x =

∫

x∈X


 sup︸︷︷︸ α

α∈[0,1]

/¬µAα(x)


/x =

∫

x∈X


 sup︸︷︷︸ α

α∈[0,1]

/
[
¬Aα(x),¬Aα(x)

]

/x (27)

¬Aα(x) = [1− bα(x), 1− aα(x)]

¬Aα(x) =
[
1− bα(x), 1− aα(x)

]
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Definition 2. The structure of the Mamdani if–then rule is:

Rk
Z : IF x1 is Fk

1 and . . . and xi is Fk
i and . . . and xn is Fk

n THEN y1 is Gk
1, . . . , yj is Gk

j , . . . , ym is Gk
m

where i = 1 . . . , n (number of inputs), j = 1 . . . , m (number of outputs) and k = 1 . . . , r (number
of rules).

To initiate the explanation, we represent the antecedents of the rules with a fuzzy
relation Ak = Fk

1 × . . .× Fk
n, utilizing the Cartesian product, ×, with interval type-3 fuzzy

sets (IT3 FS), Fk
i , and the implication for the consequent of the j-th output is also an IT3 FS,

Gk
j ; then, the fuzzy relation of the rule Rk

j can be formulated as:

Rk
j = Ak → Gk

j (28)

The n-dimensional input is given by a type-2 fuzzy relation, AX′ , with T2MF as:

AX′ = X1 × . . .×Xn (29)

Each relation of the rule Rk
j establishes a fuzzy set of the consequent of the rule

Bk
j = AX′ ◦Rk

j in Y such that:

Bk
j =

[
X1 ◦

(
Fk

1 ×Gk
j

)]
× . . .×

[
Xn ◦

(
Fk

n ×Gk
j

)]
= ×n

i=1

[
Xi ◦

(
Fk

i ×Gk
j

)]
(30)

where the level of activation of the rule is an IT3 FS, Bk
j . By aggregating all the sets, Bk

j that
represent the levels of activation of the rules, we obtain the aggregated set Bj for the outputs
j = 1 . . . , m.

Bj = B1
j ∪ . . . ∪Bk

j ∪ . . . ∪Br
j = ∪r

k=1B
k
j (31)

The abstract model of ŷj = f (x) is a fuzzy model IT3 (yj is Bj), where the sets Bk
j are

submodels of Bj.
Equation (32) is obtained by the MF of IT3 fuzzy relation, µBk

j

(
yj
∣∣x′
)
, and is:

µBk
j

(
yj
∣∣x′
)
= µAX′◦Rk

j

(
yj
∣∣x′
)
= sup︸︷︷︸

x∈X

[
µAX′ (x) u µAk→Gk

j

(
x, yj

)]
, y ∈ Y (32)

where µBk
j

(
yj
∣∣x′
)

is the input–output relation between the fuzzy set that fires the inference

of a rule (reasoning) and the output fuzzy set. The composition (◦) is a nonlinear mapping
from input x′ to an IT3 FS with MF, µBk

j

(
yj
∣∣x′
)

(yj ∈ Y) of the output yj. The reasoning

is a mechanism that transforms fuzzy sets into fuzzy sets by the composition operator
(basically a max–min operator). Simplifying Equation (32), we obtain:

µBk
j

(
yj
∣∣x′
)
= Φ̃

k(
x′
)
u µGk

j

(
yj
)

(33)

where

Φ̃
k(

x′
)
= un

i=1


 sup︸︷︷︸

xi∈Xi

µQk
i

(
xi
∣∣x′i
)

 (34)

µQk
i

(
xi
∣∣x′i
)
= µXi

(
xi
∣∣x′i
)
u µFk

i
(xi) (35)
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Maximizing function µQk
i

(
xi
∣∣x′i
)
, we obtain the supremum value in x = xmax

k,i :

xmax
k,i ≡ argmax︸ ︷︷ ︸

xi





sup︸︷︷︸
xi∈Xi

µQk
i

(
xi
∣∣x′i
)




(36)

The firing strength Φ̃
k
(x′), is the membership of the t-norm operation, u, of all the

supreme membership values µQk
i

(
xmax

k,i

∣∣∣x′i
)

of the intersection of each input µXi

(
xi
∣∣x′i
)

with
its antecedent µFk

i
(xi) that contributes to the rule level of activation, i.e.:

Φ̃
k(

x′
)
= un

i=1µQk
i

(
xmax

k,i

∣∣∣x′i
)

(37)

The level of activation of the rule is the membership µBk
j

(
yj
∣∣x′
)

resulting from the op-

eration u of the firing strength Φ̃
k
(x′) and the membership of the consequent of the rule

µGk
j

(
yj
)
, that is, the composition operation (◦) of the facts and the knowledge base rules

that describe the relational function, Bk
j = AX′ ◦Rk

j .
Equation (27) for the MF of the fuzzy relation IT3, µB̃j

(
yj
∣∣x′
)
, is the aggregation of

all the rules for each output j= 1 . . . , m, using the operator join (u)-fuzzy union-. The
combining of the rules using the join (t) operator for calculating the aggregation of the
values of µBk

j

(
yj
∣∣x′
)

is described by the equation:

µBj

(
yj
∣∣x′
)
= µB1

j

(
yj
∣∣x′
)
t . . . t µBk

j

(
yj
∣∣x′
)
t . . . t µBr

j

(
yj
∣∣x′
)
= tr

k=1 µBk
j

(
yj
∣∣x′
)

(38)

or

µBj

(
yj
∣∣x′
)
= tr

k=1

[
Φ̃

k(
x′
)
u µGk

j

(
yj
)]

(39)

For applications that require a numeric output, µBj

(
yj
∣∣x′
)

is reduced to an IT2 FS or
interval, and this is then reduced to a numeric value ŷj. The type reduction methods are
the same as the ones used in T2 FS theory.

ŷj = typeReduction
(

yj, µBj

(
yj
∣∣x′
))

(40)

In Figure 2, we illustrate the inference in a type-3 system for a particular value of x = 4,
and in Figure 3 the type reduction process.
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In Figure 4, we illustrate the inference in a type-3 fuzzy system for another value of
x = 6, and in Figure 5, the corresponding type reduction process.
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Figure 5. Illustration of the type reduction process for a value of x = 6.

For more details on the type reduction process for type-3 fuzzy sets the reader can
check a more detailed (step by step) explanation in a recent reference work on type-3 fuzzy
systems [38]. Of course, this type reduction is similar to the process that is performed for
type-2 fuzzy sets [10,11].

The structure of an interval type-3 system is almost the same as for type-2 and type-1,
and it is composed of a fuzzifier, rules, inference, type reduction and defuzzifier [38]. In
Figure 6 we show the structure of an interval IT3 system [4,6].
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In the next section, we explain the usefulness of interval type-3 fuzzy as we illustrate
the design method and also show the improvements in results compared to type-1 and
type-2 systems.

4. Simulation Results

We developed our own toolbox for type-3 fuzzy systems to implement the fuzzy rules
for automated tuning of televisions. A fuzzy system with three inputs and one output was
utilized. The inputs are the voltage, current intensity, and time, and the output is the image
quality. We use the Mamdani inference and Gaussian MFs. The fuzzy system was designed
by reducing the knowledge of human experts to a system of 14 rules. The block diagram of
the system is illustrated in Figure 7.

We show in Table 1 the rule base for automated tuning of televisions that encapsulates
the knowledge of the experts in image tuning. In Table 2, the parameters of the MFs
utilized in the inputs and output are presented. The parameters shown in Table 2 were
determined by empirical knowledge of experts combined with a trial-and-error approach,
but in the future, these could be optimized to improve results even more. At this stage of
the research we considered three membership functions for several reasons: (1) according
to experts this was reasonable for them and the fuzzy model was also understandable for
them, (2) previous implementations of the fuzzy tuning (type-2 and type-1) of imaging
systems have been carried out with three membership functions [23], so for comparative
purposes we also needed to have three membership functions, and (3) in future work, we
plan to consider changing and optimizing the number of membership functions, so that we
investigate this issue more precisely.
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Table 1. Fuzzy rules for tuning control.

Number
IF AND AND THEN

Voltage Current Intensity Time Image Quality

1 High Adequate Low Very Good

2 Adequate High Low Very Good

3 High High Low Regular

4 Low Adequate Low Regular

5 Adequate Low Low Regular

6 Low Low Low Bad

7 Adequate Adequate High Very Good

8 High Adequate High Good

9 Adequate High High Good

10 Adequate Adequate High Regular

11 Low Adequate High Bad

12 Adequate Adequate Low Excellent

136



Axioms 2022, 11, 276

Table 2. Parameter values for the Gaussian MFs used in the linguistic values.

Variable Membership Function σ m

Input 1 low 1.30 0.00

Input 1 adequate 1.10 5.00

Input 1 high 1.30 10.00

Input 2 low 1.30 0.00

Input 2 adequate 1.10 5.00

Input 2 high 1.30 10.00

Input 3 low 2.50 0.00

Input 3 high 2.60 10.00

Output bad 7.00 0.00

Output regular 7.00 25.00

Output good 7.00 50.00

Output very good 6.50 75.00

Output excellent 4.10 100.00

A sample of the simulation results for 11 cases is shown in Table 3, where we can see
that the results from the fuzzy system are close to the real values provided by the experts
(in this case two experts were consulted because of the availability of experts at the real
plant). In Figures 8–10, the MFs of the inputs (voltage, current intensity and time) are
presented. We depict in Figure 11 the MFs for the output of the system. The design of the
membership functions was based on the original definitions that were utilized for type-1
and type-2 in [23]. Finally, we illustrate, in Figures 12 and 13, two views of the surface of
the fuzzy model.

Table 3. Simulation results for a sample of cases.

Voltage Current Time
Image Quality
with T1 Fuzzy

(%)

Image Quality
with IT2 Fuzzy

(%)

Image Quality
with GT2 Fuzzy

(%)

Image Quality
with IT3 Fuzzy

(%)

Expert
Evaluation

(%)

9.03 7.47 2.53 37.2215 38.5492 39.1266 39.6137 40.50

5.01 5.02 3.10 84.3312 85.4573 86.8751 87.9177 88.25

4.91 5.10 5.10 50.7735 51.4486 51.9168 52.2079 53.00

8.75 4.95 5.03 55.4532 56.6396 57.2788 58.5392 57.75

5.20 4.85 8.70 48.1782 48.3319 48.8429 49.1119 50.75

2.25 6.33 7.20 24.9891 24.5638 24.0734 21.9642 23.25

5.10 4.99 5.20 48.7865 49.5543 50.7942 51.8969 51.50

6.20 3.17 5.15 48.6734 49.5112 50.7333 51.8500 52.25

5.31 5.21 4.80 53.1853 53.7693 54.2964 55.8204 56.50

3.99 6.25 5.10 49.0231 49.9732 51.2754 52.1439 53.25

5.00 5.00 0.20 89.9638 90.9367 91.7652 94.3397 95.50
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From Table 3 we can notice that the image quality achieved with type-3 fuzzy is closer
to the expert evaluation when compared to general type-2 (GT2), interval type-2 (IT2) and
type-1 (T1).

Figures 12 and 13 provide a graphical representation of the fuzzy model. Two figures
are needed because we have, in total, four variables, so we need to show two different
views of the model. In Figure 12, we can appreciate the influence of current intensity and
voltage on the image quality, and this can be viewed as showing all possible image quality
outputs for different combinations of the input values. In Figure 13, we also show, in a
similar way, the influence of time and current intensity on the image quality.
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5. Conclusions

We have described in this article an intelligent system utilizing type-3 fuzzy logic for
the tuning of the imaging system of televisions. We have shown in Section 2 the concepts
of interval type-3. Then, in Section 3 the basic terminology involved in Mamdani type-3
fuzzy systems was presented. Section 4 then described how to use type-3 fuzzy techniques
for automating the tuning of televisions and illustrated its validity with simulations. The
tuning problem can be defined as controlling the imaging system of the television to meet
quality standards. Previously, this process has been carried out by experts, by manually
adjusting the imaging system of televisions on production lines. In the approach proposed
here, we utilize an interval type-3 fuzzy system to automate this tuning process. The
fuzzy system was designed to control the tuning, so that the imaging system meets quality
requirements. An intelligent system was implemented based on type-3 fuzzy control and
produced good simulation results. The validation of the type-3 fuzzy approach was made
by comparing its results with those of human experts in the process of electrical tuning of
televisions. In most of the tests, the interval type-3 fuzzy system provided results closer to
the human experts, when compared to type-2 and type-1 fuzzy approaches. We believe that
these results are due to the fact that type-3 is able to handle in a better way the uncertainty
involved in the tuning process of the imaging system. The main contribution of the article
has been the application of the new concepts of interval type-3 to an interesting problem
with relevance to the television manufacturing process. The main advantage of the proposal
is the relative simplicity of building the fuzzy model based on expert knowledge, though
this could be a disadvantage if there were a lack of experts concerning other problems
or case studies. In future works, we plan to optimize the MFs of the system by using
metaheuristic optimization techniques, in this way improving the results even more. In
addition, the proposed type-3 decision-making approach could be applied and tested in
similar quality control problems [23] and classification systems [39,40].
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Abstract: When dealing with the haziness that is intrinsic in decision analysis-driven decision
making procedures, interval-valued intuitionistic fuzzy sets (IVIFSs) can be quite effective. Our
approach to solving the multiple attribute decision making (MADM) difficulties, where all of the
evidence provided by the decision-makers is demonstrated as interval-valued intuitionistic fuzzy
(IVIF) decision matrices, in which all of the components are distinguished by an IVIF number (IVIFN),
is based on Aczel–Alsina operational processes. We begin by introducing novel IVIFN operations
including the Aczel–Alsina sum, product, scalar multiplication, and exponential. We may then create
IVIF aggregation operators, such as the IVIF Aczel–Alsina weighted geometric operator, the IVIF
Aczel–Alsina ordered weighted geometric operator, and the IVIF Aczel–Alsina hybrid geometric
operator, among others. We present a MADM approach that relies on the IVIF aggregation operators
that have been developed. A case study is used to demonstrate the practical applicability of the
strategies proposed in this paper. By contrasting the newly developed technique with existing
techniques, the method is capable of demonstrating the advantages of the newly developed approach.
A key result of this work is the discovery that some of the current IVIF aggregation operators are
subsets of the operators reported in this article.

Keywords: MADM; Aczel–Alsina operations; IVIFNs; IVIF Aczel–Alsina geometric aggregation
operators

MSC: 90B50; 47S40

1. Introduction

The intuitionistic fuzzy set [1] was extended by Atanassov and Gargov to the IVIFS [2],
which is represented by membership and non-membership functions whose values are
intervals rather than real numbers. Due to the advantages of IVIFS, several researchers
have attempted to incorporate IVIF information generated by different kinds of operators
to generate judgments [3,4]. For instance, Xu [5] constructed several aggregation operators
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for IVIFNs, including the IVIF weighted averaging (IVIFWA) operator and the IVIF hybrid
averaging (IVIFHA) operator. Liu [6] presented two IVIF operators based on the power
average and Heronian mean operators and then integrated IVIF information using them.
Zhao and Xu [7] provided several novel IVIF aggregation operations. Yu et al. [8] created the
IVIF prioritized weighted averaging/geometric operator. Chen and Han [9,10] provided
a MADM approach that was built on the multiplication of IVIF values, in addition to
the LP and NLP methodologies. The influenced IVIF weighted and ordered weighted
geometric operators were invented by Wei et al. [11]. Li [12] suggested a MADM technique
using IVIFSs based on TOPSIS-based nonlinear programming (NLP). Xu and Gou [13]
discussed the IVIF aggregation operator in detail. Chen et al. [14] developed a variety of
MADM techniques based on IVIFSs. The influenced IVIF hybrid Choquet integral operators
developed by Meng et al. [15] were used in decision-making issues. Wang and Liu [16,17]
recommended the IVIF Einstein weighted averaging and geometric operators. IVIF MADM
has already been widely applied in a variety of fields, including hotel location selection [18],
air quality evaluation [19], solid waste management [20], hotel location selection [18],
sustainable supplier selection [21], potential partner selection [22], and weapon-group
target analysis [23].

Schweizer and Sklar pioneered the idea of triangular norms in their theory of empirical
metric spaces [24]. As it develops out, t-norms and their associated t-conorms are vital oper-
ations in fuzzification and other evolutionary computing, for instance, Lukasiewicz t-norm
and t-conorm [25], Hamacher t-norm and t-conorm [26], Einstein t-norm and t-conorm [17],
general continuous Archimedean t-norm, t-conorm [27], etc. Klement et al. [28] conducted
a thorough examination of the characteristics and concept implications of triangular norms
in the latest years.

1.1. Motivation of the Study

Generalizing the ideas of Menger [29] from 1942, Schweizer and Sklar [24] proposed in
1960 the concept of triangular norms, or t-norms. While their methodology was developed
within the context of probabilistic metric spaces for the purpose of making generalizations
the triangular inequality of metrics, however, within some years they have been considered
in several other branches, most notably fuzzy set theory (there, t-norms generate the
fuzzy conjunctions, generalizing the original proposal of Zadeh [30] considering the min
operation when introducing the intersection of fuzzy sets). Already in the framework of
probabilistic metric spaces, but later also to cover the fuzzy disjunctions, the dual operations
to t-norms, namely t-conorms were considered [31]. Later, t-norms and t-conorms have
been considered in several generalizations of the fuzzy set theory, including intuitionistic
fuzzy set theory [1], interval-valued fuzzy set theory and fuzzy type-2 theory [32], IVIFS
theory [2], etc. For more details concerning t-norms and t-conorms we highly suggest the
monograph [28] due to Klement et al.

Let F : [0, 1]2 → [0, 1] be a commutative, associative and monotone function. Then, if
e = 1 is its neutral element, F(x, 1) = F(1, x) = x for all x ∈ [0, 1], F is called a triangular
norm (t-norm in short). Similarly, if e = 0 is its neutral element, i.e., F(x, 0) = F(0, x) = x
for all x ∈ [0, 1], then F is called a triangular t-conorm (t-conorm, in short).

To have a clear distinction for t-norms and t-conorms in notation, we will consider the
traditional notation T for t-norms and S for t-conorms. Note that these two classes are dual,
i.e., for any t-norm T, the function S : [0, 1]2 → [0, 1] given by S(x, y) = 1− T(1− x, 1− y)
is a t-conorm (also called a t-conorm dual to T), and for any t-conorm S, the function
T : [0, 1]2 → [0, 1] determined by T(x, y) = 1− S(1− x, 1− y) is a t-norm (t-norm dual
to S).

It is not difficult to see that the strongest (greatest) t-norm is TM(x, y) = min(x, y)
following the notation from [28], while the smallest t-norm is the drastic product TD
which is vanishing on [0, 1]2 (clearly, if max(x, y) = 1 then for any t-norm we have
T(x, y) = min(x, y)). Two prototypical t-norms playing an important role both in theory
and applications are the product t-norm TP (standard product of reals), and the Lukasiewicz
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t-norm TL given by TL(x, y) = max(0, x + y− 1). One of the most distinguished subclasses
of the class of all t-norms is formed by the continuous Archimedean t-norms, i.e., t-norms
generated by a continuous additive generator. Their importance is clearly visible when
n-ary extensions of t-norms are considered. For deeper results and more details see [28]. In
our paper, we will deal with some specially generated t-norms, namely with strict t-norms
which are isomorphic to the product t-norm, and which are generated by decreasing bijec-
tive additive generators t : [0, 1]→ [0, ∞]. In such a case, T(x, y) = t−1(t(x) + t(y)), and,
considering the n-array extension (which is unique due to the associativity of t-norms),

T(x1, . . . , xn) = t−1(
n
∑

i=1
t(xi)). Recall that both extremal t-norms TM and TD, as well as the

product t-norm TP commute with the power functions, i.e., for any λ > 0, they satisfy the
equality T(xλ, yλ) = T(x, y)λ. Aczel and Alsina in the early 1980s [33] have characterized
all other t-norm solutions of the above functional equation, showing that these are just strict
t-norms generated by additive generators tð, ð ∈]0, ∞[, given by tð(x) = (−logx)ð. The
related t-norms are denoted as Tð

A and called (strict) Aczel–Alsina t-norms, and given by

Tð
A(x, y) =





TD(x, y), if ð = 0
min(x, y), if ð = ∞
e−((− log x)ð+(− log y)ð)1/ð

, otherwise.

Observe that including the extremal t-norms, we obtain their Aczel–Alsina family
(Tð

A), ð ∈ [0, ∞] of t-norms, which is strictly increasing and continuous in parameter ð.
Due to the duality, similar notes and examples can be introduced for t-conorms.

There, the smallest t-conorms is SM = max (dual to TM), and the greatest t-conorm is the
drastic product SD, which is constant 1 on [0, 1]2. For any t-conorm S, if min(x, y) = 0,
then S(x, y) = max(x, y). Dual t-conorm SL to TL(Lukasiewicz t-conorm, also called a
truncated sum) is given by SL(x, y) = min(1, x + y), and the dual t-conorm SP to the
product TP (called a probabilistic sum) is given by SP(x, y) = x + y − xy. Continuous
Archimedean t-conorms are also generated by additive generators (which are increasing),
and if S is dual to a continuous Archimedean t-norm T generated by an additive generator
t, then S is generated by an additive generator s given by s(x) = t(1− x). In particular,
dual t-conorms Sð

A to strict Aczel–Alsina t-noms Tð
A are generated by additive generators

sð(x) = (−log(1− x))ð, and they are given by

Sð
A(x, y) =





SD(x, y), if ð = 0
max(x, y), if ð = ∞
1− e−((− log(1−x))ð+(− log(1−y))ð)1/ð

, otherwise.

Observe that including the extremal t-conorms, we obtain their Aczel–Alsina family
(Sð

A), ð ∈ [0, ∞] of t-conorms, which is strictly decreasing and continuous in parameter ð.
Aczel-Alsina [33] came up with two new operations called Aczel–Alsina t-norm and

Aczel-Alsina t-conorm. These operations have a good relationship with the deployment
of parameters. Wang et al. [34] used the Aczel-Alsina triangular norm (AA t-norm)
to come up with a score level convolution neural network that increases the distance
between imposters and legitimate at the same time. Senapati et al. [35–38] came up with
Aczel—Alsina operations depending on intuitionistic fuzzy, IVIF, hesitant fuzzy, picture
fuzzy aggregation operators, and they used them to solve MADM problems. The primary
objective of this insightful article is to illustrate several geometric aggregation operators
using IVIF data, known to as IVIF Aczel–Alsina geometric aggregations, for the purpose of
identifying the successfully guide of decisions made utilizing decision-making techniques.
Unaware of the previously existing unique ways that have been developed in this domain,
we have fully examined every possibility to exhibit our proposed approach, in order for it
to exceed all past attempts to apprehend the system assessment problem.

147



Axioms 2022, 11, 258

1.2. Structure of This Study

The framework of the study is presented in Figure 1. The following details are
presented: The next section discusses several basic concepts relating to IVIFSs. Section 3
discusses the Aczel–Alsina operational laws governing the IVIFNs. Section 4 discusses the
IVIF Aczel–Alsina weighted geometric (IVIFAAWG) operator, the IVIF Aczel–Alsina order
weighted geometric (IVIFAAOWG) operator, and the IVIF Aczel–Alsina hybrid geometric
(IVIFAAHG) operator, as well as a few particular instances. In Section 5, we demonstrate
how to use the IVIFAAWG operator to construct particular approaches for resolving
multiple attribute decision-making challenges in which support and understanding are
represented as IVIF values. Section 6 shows the overall methodology with a genuine
scenario. Section 7 investigates the effect of a parameter on the outcome of decision-
making. Section 8 provides a comparison investigation of alternative important strategies
to substantiate the suggested technique’s sufficiency. Section 9 concludes this analysis and
identifies potential future concerns.

Figure 1. The framework of the study.

2. Preliminaries

This section will summarize some major themes that will be discussed throughout the
remainder of this work.

Definition 1 ([2]). Assuming F is a recognized universe of discourse, an IVIFS in F is an expression
Ẽ given by

Ẽ = {〈 f , β̃E( f ), δ̃E( f )〉 : f ∈ F} (1)
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where β̃E( f ) : F → D[0, 1], δ̃E( f ) : F → D[0, 1] and D[0, 1] is the set of all subintervals
of [0, 1]. The intervals β̃E( f ) and δ̃E( f ) denote the intervals of the degree of membership and
degree of non-membership of the element f in the set Ẽ, where β̃E( f ) = [βL

E( f ), βU
E ( f )] and

δ̃E( f ) = [δL
E( f ), δU

E ( f )], for all f ∈ F, including the condition 0 ≤ βU
E ( f ) + δU

E ( f ) ≤ 1.
πE( f ) = [πL

E( f ), πU
E ( f )] denotes the indeterminacy degree of element f that belongs to Ẽ, where

πL
E( f ) = 1− βU

E ( f )− δU
E ( f ) and πU

E ( f ) = 1− βL
E( f )− δL

E( f ).

Assume that Ẽ = {〈 f , β̃E( f ), δ̃E( f )〉 : f ∈ F} and W̃ = {〈 f , β̃W( f ), δ̃W( f )〉 : f ∈ F}
are two IFSs over the universe F. The next relations and operations concerning two IVIFSs
were described as follows [2,25]:

(i) Ẽ ⊆ W̃, if βL
E( f ) ≤ βL

W( f ), βU
E ( f ) ≤ βU

W( f ), δL
E( f ) ≥ δL

W( f ), and δU
E ( f ) ≥ δU

W( f ) for
all f ∈ F;

(ii) Ẽ = W̃ iff Ẽ ⊆ W̃ and W̃ ⊆ Ẽ;
(iii) ẼC = {〈 f , δ̃E( f ), β̃E( f )〉| f ∈ F} for all f ∈ F;
(iv) Ẽ∩T,S W̃ = {〈 f , [T{βL

E( f ), βL
W( f )}, T{βU

E ( f ), βU
W( f )}], [S{δL

E( f ), δL
W( f )}, S{δU

E ( f ), δU
W

( f )}]〉| f ∈ F};
(v) Ẽ∪S,T W̃ = {〈 f , [S{βL

E( f ), βL
W( f )}, S{βU

E ( f ), βU
W( f )}], [T{δL

E( f ), δL
W( f )}, T{δU

E ( f ), δU
W

( f )}]〉| f ∈ F};
where any pair (T, S) can be utilized, T indicates a t-norm and S a so-called t-conorm dual
to the t-norm T, characterized by S(x, y) = 1− T(1− x, 1− y).

For convenience, Xu [5] called ∂̃ = ([βL
∂ , βU

∂ ], [δ
L
∂ , δU

∂ ]) an IVIFN, where [βL
∂ , βU

∂ ] ∈
D[0, 1], [δL

∂ , δU
∂ ] ∈ D[0, 1] and βU

∂ + δU
∂ ≤ 1.

For any three IVIFNs ∂̃ = ([βL
∂ , βU

∂ ], [δ
L
∂ , δU

∂ ]), ∂̃1 = ([βL
∂1

, βU
∂1
], [δL

∂1
, δU

∂1
]) and ∂̃2 =

([βL
∂2

, βU
∂2
], [δL

∂2
, δU

∂2
]), Xu [5] and Xu and Chen [39] stated a few operations as follows:

(i) ∂̃1 ∩ ∂̃2 = ([min{βL
∂1

, βL
∂2
}, min{βU

∂1
, βU

∂2
}], [max{δL

∂1
, δL

∂2
}, max{δU

∂1
, δU

∂2
}]);

(ii) ∂̃1 ∪ ∂̃2 = ([max{βL
∂1

, βL
∂2
}, max{βU

∂1
, βU

∂2
}], [min{δL

∂1
, δL

∂2
}, min{δU

∂1
, δU

∂2
}]);

(iii) ∂̃1 ⊕ ∂̃2 = ([βL
∂1
+ βL

∂2
− βL

∂1
βL

∂2
, βU

∂1
+ βU

∂2
− βU

∂1
βU

∂2
], [δL

∂1
δL

∂2
, δU

∂1
δU

∂2
]);

(iv) ∂̃1 ⊗ ∂̃2 = ([βL
∂1

βL
∂2

, βU
∂1

βU
∂2
], [δL

∂1
+ δL

∂2
− δL

∂1
δL

∂2
, δU

∂1
+ δU

∂2
− δU

∂1
δ∂2 ]);

(v) ϕ · ∂̃ = ([1− (1− βL
∂ )

ϕ, 1− (1− βU
∂ )

ϕ], [(δL
∂ )

ϕ, (δU
∂ )ϕ]), ϕ > 0;

(vi) ∂̃ϕ = ([(βL
∂ )

ϕ, (βU
∂ )

ϕ], [1− (1− δL
∂ )

ϕ, 1− (1− δU
∂ )ϕ]), ϕ > 0.

Several indices [5,40] were used to characterize IVIFN.

Definition 2 ([40]). For any IVIFN ∂̃ = ([βL
∂ , βU

∂ ], [δ
L
∂ , δU

∂ ]), the score function Sco(∂̃), accuracy
function Acc(∂̃), membership uncertainty index Mui(∂̃) and hesitation uncertainty index Hui(∂̃)
of ∂ be defined as follows:

Sco(∂̃) =
1
2
(βL

∂ + βU
∂ − δL

∂ − δU
∂ ), (2)

Acc(∂̃) =
1
2
(βL

∂ + βU
∂ + δL

∂ + δU
∂ ), (3)

Mui(∂̃) = βU
∂ + δL

∂ − βL
∂ − δU

∂ , (4)

Hui(∂̃) = βU
∂ + δU

∂ − βL
∂ − δL

∂ . (5)

Based on these indices of IVIFNs, the total ordering [40] on IVIFNs was defined
as follows.

Definition 3. Let ∂̃1 = ([βL
∂1

, βU
∂1
], [δL

∂1
, δU

∂1
]) and ∂̃2 = ([βL

∂2
, βU

∂2
], [δL

∂2
, δU

∂2
]) be two IVIFNs, then

(1) if Sco(∂̃1) < Sco(∂̃2), then ∂̃1 < ∂̃2,
(2) if Sco(∂̃1) = Sco(∂̃2), then

(a) if Acc(∂̃1) < Acc(∂̃2), then ∂̃1 < ∂̃2,
(b) if Acc(∂̃1) = Acc(∂̃2), then
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(I) if Mui(∂̃1) < Mui(∂̃2), then ∂̃1 < ∂̃2,
(II) if Mui(∂̃1) = Mui(∂̃2), then

(i) if Hui(∂̃1) < Hui(∂̃2), then ∂̃1 < ∂̃2,
(ii) if Hui(∂̃1) = Hui(∂̃2), then ∂̃1 and ∂̃2 are same, i.e., βL

∂1
= βL

∂2
, βU

∂1
= βU

∂2
,

δL
∂1

= δL
∂2

and δU
∂1

= δU
∂2

, denoted by ∂̃1 = ∂̃2.

Definition 3 defines a way to compare two IVIFNs by prioritizing the functions of
score, accuracy, membership uncertainty index, and hesitation uncertainty index. Because
once two IVIFNs are analyzed, the sequencing is examined in the following order: general
belonging degree, accuracy or hesitation level, membership uncertainty index, and hesi-
tation uncertainty index. This comparative procedure is repeated unless one of the four
functions defined in Definition 3 recognizes the two IVIFNs. When these two IVIFNs are
distinguished at a particular level of severity, the computation is completed and functions
with lower value levels are not computed.

Deschrijver et al. [41] designed the concept of the notion of non-empty intervals. They
denoted by L the lattice of non-empty intervals L = {[m, n]|(m, n) ∈ [0, 1]2, m ≤ n} with
the partial order ≤L determined as [m, n] ≤L [p, q] ⇔ m ≤ p and n ≤ q. The inferior and
superior elements are denoted by the symbol 0L = [0, 0] and 1L = [1, 1], respectively.

In this specific situation, Wang and Liu [16,17] meant by L? the lattice of non-empty IV-
IFNs L? = {〈[m, n], [p, q]〉|[m, n], [p, q] ∈ D[0, 1], n + q ≤ 1} with the partial order ≤L? char-
acterized as 〈[m1, n1], [p1, q1]〉 ≤L? 〈[m2, n2], [p2, q2]〉 ⇔ [m1, n1] ≤L [m2, n2]&[p2, q2] ≤L
[p1, q1]⇔ m1 ≤ m2, n1 ≤ n2, p1 ≥ p2 and q1 ≥ q2, where the inferior and superior elements
are 0L? = 〈0L, 1L〉 = 〈[0, 0], [1, 1]〉 and 1L? = 〈1L, 0L〉 = 〈[1, 1], [0, 0]〉, respectively.

Remark 1. If α ≤L? ν, then α ≤ ν, i.e., the total order consists of the standard partial order on L?.

Definition 4. gL? : (L?)} → L? is an aggregation function if it is monotone with respect to ≤L?

and satisfies gL?(0L? , . . . , 0L?) = 0L? and gL?(1L? , . . . , 1L?) = 1L? .

Currently, a wide number of operators are now being developed for accumulating IVIF
data in L? [42,43]. The IVIF weighted geometric (IVIFWG) operator and the IVIF ordered
weighted geometric (IVIFOWG) operator are probably the most frequently acknowledged
operators for accumulating inputs, and they are discussed in details in the following.

Definition 5. Let ∂̃ζ = ([βL
∂ζ

, βU
∂ζ
], [δL

∂ζ
, δU

∂ζ
]) (ζ = 1, 2, . . . ,}) be an accumulation of IVIFNs and

ξ = (ξ1, ξ2, . . . , ξ})
T is the weight vector of ∂ζ (ζ = 1, 2, . . . ,}) so as ξζ ∈ [0, 1], ζ = 1, 2, . . . ,}

and
}
∑

ζ=1
ξζ = 1. Therefore, the IVIF weighted geometric (IVIFWG) operator of dimension } is a

function IVIFWG : (L?)} → L? and IVIFWG(∂̃1, ∂̃2, . . . , ∂̃}) =
}⊗

ζ=1
(∂̃ζ)

ξζ

=
([ }

∏
ζ=1

(βL
∂ζ
)ξζ ,

}
∏

ζ=1
(βU

∂ζ
)ξζ

]
,
[
1−

}
∏

ζ=1
(1− δL

∂ζ
)

ξζ , 1−
}
∏

ζ=1
(1− δU

∂ζ
)

ξζ
])

.

Definition 6. Let ∂̃ζ = ([βL
∂ζ

, βU
∂ζ
], [δL

∂ζ
, δU

∂ζ
]) (ζ = 1, 2, . . . ,}) be a collection of IVIFNs and

ξ = (ξ1, ξ2, . . . , ξ})
T is the weight vector of ∂ζ (ζ = 1, 2, . . . ,}) so as ξζ ∈ [0, 1], ζ = 1, 2, . . . ,}

and
}
∑

ζ=1
ξζ = 1. Then, the IVIF ordered weighted geometric (IVIFOWG) operator of dimension } is

a function IVIFOWG : (L?)} → L? and IVIFOWG(∂̃1, ∂̃2, . . . , ∂̃}) =
}⊗

ζ=1
(∂̃$(j))

ξζ

=
([ }

∏
ζ=1

(βL
∂$(j)

)ξζ ,
}
∏

ζ=1
(βU

∂$(j)
)ξζ

]
,
[
1−

}
∏

ζ=1
(1− δL

∂$(j)
)

ξζ , 1−
}
∏

ζ=1
(1− δU

∂$(j)
)

ξζ
])

.
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3. Aczel–Alsina Operations of IVIFNs

This section will introduce the Aczel–Alsina operations on IVIFNs and discuss some
of its fundamental properties.

If you let the t-norm T be the Aczel–Alsina product TA and the t-conorm S be the
Aczel–Alsina sum SA, the generalized intersection and union over two IVIFNs E and W
are the Aczel–Alsina product (E⊗W) and Aczel–Alsina sum (E⊕W) over two IVIFNs E
and W, respectively, which can be seen:

E⊗W =
〈[

TA{βL
E, βL

W}, TA{βU
E , βU

W}
]
,
[
SA{δL

E, δL
W}, SA{δU

E , δU
W}
]〉

E⊕W =
〈[

SA{βL
E, βL

W}, SA{βU
E , βU

W}
]
,
[

TA{δL
E, δL

W}, TA{δU
E , δU

W}
]〉

.

Proposition 1. Let ∂̃1 = ([βL
∂1

, βU
∂1
], [δL

∂1
, δU

∂1
]) and ∂̃2 = ([βL

∂2
, βU

∂2
], [δL

∂2
, δU

∂2
]) be two IVIFNs,

ð ∈ [0, ∞] and ϕ > 0. Then, the Aczel–Alsina t-norm and t-conorm operations of IVIFNs are
assigned as:

(i) ∂̃1 ⊕ ∂̃2 =
〈[

1− e−((− log(1−βL
∂1
))ð+(− log(1−βL

∂2
))ð)1/ð

,

1− e−((− log(1−βU
∂1
))ð+(− log(1−βU

∂2
))ð)1/ð]

,
[
e−((− log δL

∂1
)ð+(− log δL

∂2
)ð)1/ð

,

e−((− log δU
∂1
)ð+(− log δU

∂2
)ð)1/ð]〉

,

(ii) ∂̃1 ⊗ ∂̃2 =
〈[

e−((− log βL
∂1
)ð+(− log βL

∂2
)ð)1/ð

,

e−((− log βU
∂1
)ð+(− log βU

∂2
)ð)1/ð]

,
[
1− e−((− log(1−δL

∂1
))ð+(− log(1−δL

∂2
))ð)1/ð

,

1− e−((− log(1−δU
∂1
))ð+(− log(1−δU

∂2
))ð)1/ð]〉

,

Definition 7. Let ∂̃ = ([βL
∂ , βU

∂ ], [δ
L
∂ , βU

∂ ]) be a IVIFN, ð ∈ [0, ∞] and ϕ > 0. Then, the following
two operations of IVIFNs are defined as:

(i) ϕ∂̃ =
〈[

1− e−(ϕ(− log(1−βL
∂ ))

ð)1/ð
, 1− e−(ϕ(− log(1−βU

∂ ))
ð)1/ð

]
,

[
e−(ϕ(− log δL

∂ )
ð)1/ð

, e−(ϕ(− log δU
∂ )ð)1/ð

]〉
,

(ii) ∂̃ϕ =
〈[

e−(ϕ(− log βL
∂ )

ð)1/ð
, e−(ϕ(− log βU

∂ )
ð)1/ð

]
,
[
1− e−(ϕ(− log(1−δL

∂ ))
ð)1/ð

,

1− e−(ϕ(− log(1−δU
∂ ))ð)1/ð

〉
.

Example 1. Let ∂̃ = ([0.55, 0.60], [0.35, 0.40]), ∂̃1 = ([0.75, 0.80], [0.15, 0.20]) and ∂̃2 =
([0.35, 0.45], [0.45, 0.50]) be three IVIFNs, then applying Aczel–Alsina operation on IVIFNs as
specified in Proposition 1 and Definition 7 for ð = 3 and ϕ = 2, we get

(i) ∂̃1 ⊕ ∂̃2 =
〈[

1− e−((− log(1−0.75))3+(− log(1−0.35))3)1/3
,

1− e−((− log(1−0.80))3+(− log(1−0.45))3)1/3
]
,
[
e−((− log 0.15)3+(− log 0.45)3)1/3

,

e−((− log 0.20)3+(− log 0.50)3)1/3
]〉

= ([0.75341, 0.80534], [0.14325, 0.19182]).

(ii) ∂̃1 ⊗ ∂̃2 =
〈[

e−((− log 0.75)3+(− log 0.35)3)1/3
, e−((− log 0.80)3+(− log 0.45)3)1/3

]
,
[
1−

e−((− log(1−0.15))3+(− log(1−0.45))3)1/3
, 1− e−((− log(1−0.20))3+(− log(1−0.50))3)1/3

]〉

= ([0.34751, 0.44741], [0.45218, 0.50380]).

(iii) 2∂̃ =
〈[

1− e−(2(− log(1−0.55))3)1/3
, 1− e−(2(− log(1−0.60))3)1/3

]
,
[
e−(2(− log 0.35)3)1/3

,

e−(2(− log 0.40)3)1/3
]〉

= ([0.63434, 0.68477], [0.26642, 0.31523]).

(iv) ∂̃2 =
〈[

e−(2(− log 0.55)3)1/3
, e−(2(− log 0.60)3)1/3

]
,
[
1− e−(2(− log(1−0.35))3)1/3

,

1− e−(2(− log(1−0.40))3)1/3
]〉

= ([0.47084, 0.52540], [0.41885, 0.47460]).
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Theorem 1. Let ∂̃ = ([βL
∂ , βU

∂ ], [δ
L
∂ , βU

∂ ]), ∂̃1 = ([βL
∂1

, βU
∂1
], [δL

∂1
, δU

∂1
]), and ∂̃2 = ([βL

∂2
, βU

∂2
], [δL

∂2
,

δU
∂2
]) be three IVIFNs, then we have

(i) ∂̃1 ⊕ ∂̃2 = ∂̃2 ⊕ ∂̃1;
(ii) ∂̃1 ⊗ ∂̃2 = ∂̃2 ⊗ ∂̃1;
(iii) ϕ(∂̃1 ⊕ ∂̃2) = ϕ∂̃1 ⊕ ϕ∂̃2, ϕ > 0;
(iv) (ϕ1 + ϕ2)∂̃ = ϕ1∂̃⊕ ϕ2∂̃, ϕ1, ϕ2 > 0;
(v) (∂̃1 ⊗ ∂̃2)

ϕ = ∂̃
ϕ
1 ⊗ ∂̃

ϕ
2 , ϕ > 0;

(vi) ∂̃ϕ1 ⊗ ∂̃ϕ2 = ∂̃(ϕ1+ϕ2), ϕ1, ϕ2 > 0.

Proof. For the three IVIFNs ∂̃, ∂̃1 and ∂̃2, ð ∈ [0, ∞], and ϕ, ϕ1, ϕ2 > 0, as stated in
Proposition 1 and Definition 7, we can get

(i) ∂̃1 ⊕ ∂̃2 =
〈[

1− e−((− log(1−βL
∂1
))ð+(− log(1−βL

∂2
))ð)1/ð

,

1− e−((− log(1−βU
∂1
))ð+(− log(1−βU

∂2
))ð)1/ð]

,
[
e−((− log δL

∂1
)ð+(− log δL

∂2
)ð)1/ð

,

e−((− log δU
∂1
)ð+(− log δU

∂2
)ð)1/ð]〉

=
〈[

1− e−((− log(1−βL
∂2
))ð+(− log(1−βL

∂1
))ð)1/ð

,

1− e−((− log(1−βU
∂2
))ð+(− log(1−βU

∂1
))ð)1/ð]

,
[
e−((− log δL

∂2
)ð+(− log δL

∂1
)ð)1/ð

,

e−((− log δU
∂2
)ð+(− log δU

∂1
)ð)1/ð]〉

= ∂̃2 ⊕ ∂̃1.

(ii) It is simple.

(iii) Let t = 1− e−((− log(1−βL
∂1
))ð+(− log(1−βL

∂2
))ð)1/ð

.
Then, log(1− t) = −((− log(1− βL

∂1
))ð + (− log(1− βL

∂2
))ð)1/ð.

Using this, we get ϕ(∂̃1 ⊕ ∂̃2) = ϕ
〈[

1− e−((− log(1−βL
∂1
))ð+(− log(1−βL

∂2
))ð)1/ð

,

1− e−((− log(1−βU
∂1
))ð+(− log(1−βU

∂2
))ð)1/ð]

,
[
e−((− log δL

∂1
)ð+(− log δL

∂2
)ð)1/ð

,

e−((− log δU
∂1
)ð+(− log δU

∂2
)ð)1/ð]〉

=
〈[

1− e−(ϕ((− log(1−βL
∂1
))ð+(− log(1−βL

∂2
))ð)1/ð

,

1− e−(ϕ((− log(1−βU
∂1
))ð+(− log(1−βU

∂2
))ð)1/ð]

,
[
e−(ϕ((− log δL

∂1
)ð+(− log δL

∂2
)ð))1/ð

,

e−(ϕ((− log δU
∂1
)ð+(− log δU

∂2
)ð))1/ð]〉

=
〈[

1− e−(ϕ(− log(1−βL
∂1
))ð)1/ð

, 1−

e−(ϕ(− log(1−βU
∂1
))ð)1/ð]

,
[
e−(ϕ(− log δL

∂1
)ð)1/ð

, e−(ϕ(− log δU
∂1
)ð)1/ð]〉

⊕
〈[

1−

e−(ϕ(− log(1−βL
∂2
))ð)1/ð

, 1− e−(ϕ(− log(1−βU
∂2
))ð)1/ð]

,
[
e−(ϕ(− log δL

∂2
)ð)1/ð

,

e−(ϕ(− log δU
∂2
)ð)1/ð]〉

= ϕ∂̃1 ⊕ ϕ∂̃2.

(iv) ϕ1∂̃⊕ ϕ2∂̃ =
〈[

1− e−(ϕ1(− log(1−βL
∂ ))

ð)1/ð
, 1− e−(ϕ1(− log(1−βU

∂ ))
ð)1/ð

]
,

[
e−(ϕ1(− log δL

∂ )
ð)1/ð

, e−(ϕ1(− log δU
∂ )ð)1/ð

]〉
⊕
〈[

1− e−(ϕ2(− log(1−βL
∂ ))

ð)1/ð
,

1− e−(ϕ2(− log(1−βU
∂ ))

ð)1/ð
]
,
[
e−(ϕ2(− log δL

∂ )
ð)1/ð

, e−(ϕ2(− log δU
∂ )ð)1/ð

]〉

=
〈[

1− e−((ϕ1+ϕ2)(− log(1−βL
∂ ))

ð)1/ð
, 1− e−((ϕ1+ϕ2)(− log(1−βU

∂ ))
ð)1/ð

]
,

[
e−((ϕ1+ϕ2)(− log δL

∂ )
ð)1/ð

, e−((ϕ1+ϕ2)(− log δU
∂ )ð)1/ð

]〉
= (ϕ1 + ϕ2)∂̃.

(v) (∂̃1 ⊗ ∂̃2)
ϕ =

〈[
e−((− log βL

∂1
)ð+(− log βL

∂2
)ð)1/ð

, e−((− log βU
∂1
)ð+(− log βU

∂2
)ð)1/ð]

,
[
1− e−((− log(1−δL

∂1
))ð+(− log(1−δL

∂2
))ð)1/ð

, 1−

e−((− log(1−δU
∂1
))ð+(− log(1−δU

∂2
))ð)1/ð]〉ϕ

=
〈[

e−(ϕ((− log βL
∂1
)ð+(− log βL

∂2
)ð))1/ð

,

e−(ϕ((− log βU
∂1
)ð+(− log βU

∂2
)ð))1/ð]

,
[
1− e−(ϕ((− log(1−δL

∂1
))ð+(− log(1−δL

∂2
))ð)1/ð

,

1− e−(ϕ((− log(1−δU
∂1
))ð+(− log(1−δU

∂2
))ð)1/ð]〉

=
〈[

e−(ϕ(− log βL
∂1
)ð)1/ð

,

152



Axioms 2022, 11, 258

e−(ϕ(− log βU
∂1
)ð)1/ð]

,
[
1− e−(ϕ(− log(1−δL

∂1
))ð)1/ð

, 1− e−(ϕ(− log(1−δU
∂1
))ð)1/ð]〉

⊕
〈[

e−(ϕ(− log βL
∂2
)ð)1/ð

, e−(ϕ(− log βU
∂2
)ð)1/ð]

,
[
1− e−(ϕ(− log(1−δL

∂2
))ð)1/ð

,

1− e−(ϕ(− log(1−δU
∂2
))ð)1/ð]〉

= ∂̃
ϕ
1 ⊗ ∂̃

ϕ
2 .

(vi) ∂̃ϕ1 ⊗ ∂̃ϕ2 =
〈[

e−(ϕ1(− log βL
∂ )

ð)1/ð
, e−(ϕ1(− log βU

∂ )
ð)1/ð

]
,
[
1−

e−(ϕ1(− log(1−δL
∂ ))

ð)1/ð
, 1− e−(ϕ1(− log(1−δU

∂ ))ð)1/ð
]〉
⊗
〈[

e−(ϕ2(− log βL
∂ )

ð)1/ð
,

e−(ϕ2(− log βU
∂ )

ð)1/ð
]
,
[
1− e−(ϕ2(− log(1−δL

∂ ))
ð)1/ð

, 1− e−(ϕ2(− log(1−δU
∂ ))ð)1/ð

]〉

=
〈[

e−((ϕ1+ϕ2)(− log βL
∂ )

ð)1/ð
, e−((ϕ1+ϕ2)(− log βU

∂ )
ð)1/ð

]
,
[
1−

e−((ϕ1+ϕ2)(− log(1−δL
∂ ))

ð)1/ð
, 1− e−((ϕ1+ϕ2)(− log(1−δU

∂ ))ð)1/ð
]〉

= ∂̃(ϕ1+ϕ2).

4. IVIF Aczel–Alsina Geometric Aggregation Operators

We demonstrate some IVIF geometric aggregation operators throughout this section
using the Aczel–Alsina operations.

Definition 8. Let ∂̃ζ = ([βL
∂ζ

, βU
∂ζ
], [δL

∂ζ
, δU

∂ζ
]) (ζ = 1, 2, . . . ,}) be an accumulation of IVIFNs

and ξ = (ξ1, ξ2, . . . , ξ})
T be the weight vector associated with ∂ζ (ζ = 1, 2, . . . ,}), along with

ξζ ∈ [0, 1] and
}
∑

ζ=1
ξζ = 1. In that case an IVIF Aczel–Alsina weighted geometric (IVIFAAWG)

operator can be described as function IVIFAAWG : (L?)}→ L?, in which

IVIFAAWGξ(∂̃1, ∂̃2, . . . , ∂̃}) =
}⊗

ζ=1

(∂̃ζ)
ξζ = (∂̃1)

ξ1
⊗

(∂̃2)
ξ2
⊗
· · ·

⊗
(∂̃})

ξ} .

Following that, we prove the associated theorem for the Aczel–Alsina operations
on IVIFNs.

Theorem 2. Let ∂̃ζ = ([βL
∂ζ

, βU
∂ζ
], [δL

∂ζ
, δU

∂ζ
]) (ζ = 1, 2, . . . ,}) be an accumulation of IVIFNs and

ð ∈ [0, ∞], then aggregated value of them utilizing the IVIFAAWG operator is also a IVIFNs, and

IVIFAAWGξ(∂̃1, ∂̃2, . . . , ∂̃}) =
}⊗

ζ=1

(∂̃ζ)
ξζ

=

〈[
e
−
(

}
∑

ζ=1
ξζ (− log βL

∂ζ
)ð
)1/ð

, e
−
(

}
∑

ζ=1
ξζ (− log βU

∂ζ
)ð
)1/ð]

, (6)

[
1− e

−
(

}
∑

ζ=1
ξζ (− log(1−δL

∂ζ
))ð
)1/ð

, 1− e
−
(

}
∑

ζ=1
ξζ (− log(1−δU

∂ζ
))ð
)1/ð]〉

where ξ = (ξ1, ξ2, . . . , ξ}) function as weight vector associated with ∂̃ζ (ζ = 1, 2, . . . ,}) so that

ξζ ∈ [0, 1], and
}
∑

ζ=1
ξζ = 1.
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Proof. We may prove Theorem 2 using the following mathematical induction method:
(i) When } = 2, rely upon Aczel–Alsina operations of IVIFNs, we acquire

(∂̃1)
ξ1 =

〈[
e−(ξ1(− log βL

∂1
)ð)1/ð

, e−(ξ1(− log βU
∂1
)ð)1/ð]

,
[
1− e−(ξ1(− log(1−δL

∂1
))ð)1/ð

, 1− e−(ξ1(− log(1−δU
∂1
))ð)1/ð〉

,

(∂̃2)
ξ2 =

〈[
e−(ξ2(− log βL

∂2
)ð)1/ð

, e−(ξ2(− log βU
∂2
)ð)1/ð]

,
[
1− e−(ξ2(− log(1−δL

∂2
))ð)1/ð

, 1− e−(ξ2(− log(1−δU
∂2
))ð)1/ð〉

.

Depending on Definition 7 and Proposition 1, we get

IVIFAAWGξ(∂̃1, ∂̃2) = (∂̃1)
ξ1
⊗
(∂̃2)

ξ2 =
〈[

e−(ξ1(− log βL
∂1
)ð)1/ð

, e−(ξ1(− log βU
∂1
)ð)1/ð]

,
[
1− e−(ξ1(− log(1−δL

∂1
))ð)1/ð

, 1− e−(ξ1(− log(1−δU
∂1
))ð)1/ð〉⊗ 〈[

e−(ξ2(− log βL
∂2
)ð)1/ð

,

e−(ξ2(− log βU
∂2
)ð)1/ð]

,
[
1− e−(ξ2(− log(1−δL

∂2
))ð)1/ð

, 1− e−(ξ2(− log(1−δU
∂2
))ð)1/ð〉

=

〈[
e
−
(

ξ1(− log βL
∂1
)ð+ξ2(− log βL

∂2
)ð
)1/ð

, e
−
(

ξ1(− log βU
∂1
)ð+ξ2(− log βU

∂2
)ð
)1/ð]

,
[

1−

e
−
(

ξ1(− log(1−δL
∂1
))ð+ξ2(− log(1−δL

∂2
))ð
)1/ð

, 1− e
−
(

ξ1(− log(1−δU
∂1
))ð+ξ2(− log(1−δU

∂2
))ð
)1/ð]〉

=

〈[
e
−
(

2
∑

ζ=1
ξζ (− log βL

∂ζ
)ð
)1/ð

, e
−
(

2
∑

ζ=1
ξζ (− log βU

∂ζ
)ð
)1/ð]

,
[

1− e
−
(

2
∑

ζ=1
ξζ (− log(1−δL

∂ζ
))ð
)1/ð

,

1− e
−
(

2
∑

ζ=1
ξζ (− log(1−δU

∂ζ
))ð
)1/ð]〉

. Hence, (6) is true for } = 2.

(ii) Assume that (6) is true for } = k, then we have

IVIFAAWGξ(∂̃1, ∂̃2, . . . , ∂̃k) =
k⊗

ζ=1

(∂̃ζ)
ξζ

=

〈[
e
−
(

k
∑

ζ=1
ξζ (− log βL

∂ζ
)ð
)1/ð

, e
−
(

k
∑

ζ=1
ξζ (− log βU

∂ζ
)ð
)1/ð]

,

[
1− e

−
(

k
∑

ζ=1
ξζ (− log(1−δL

∂ζ
))ð
)1/ð

, 1− e
−
(

k
∑

ζ=1
ξζ (− log(1−δU

∂ζ
))ð
)1/ð]〉

.

Now for } = k + 1, then

IVIFAAWGξ(∂̃1, ∂̃2, . . . , ∂̃k, ∂̃k+1) =
k⊗

ζ=1
(∂̃ζ)

ξζ
⊗
(∂̃k+1)

ξk+1

=

〈[
e
−
(

k
∑

ζ=1
ξζ (− log βL

∂ζ
)ð
)1/ð

, e
−
(

k
∑

ζ=1
ξζ (− log βU

∂ζ
)ð
)1/ð]

,

[
1− e

−
(

k
∑

ζ=1
ξζ (− log(1−δL

∂ζ
))ð
)1/ð

, 1− e
−
(

k
∑

ζ=1
ξζ (− log(1−δU

∂ζ
))ð
)1/ð]〉

⊗
〈[

e
−
(

ξk+1(− log βL
∂k+1

)ð
)1/ð

, e
−
(

ξk+1(− log βU
∂k+1

)ð
)1/ð]

,
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[
1− e

−
(

ξk+1(− log(1−δL
∂k+1

))ð
)1/ð

, 1− e
−
(

ξk+1(− log(1−δU
∂k+1

))ð
)1/ð]〉

=

〈[
e
−
(

k+1
∑

ζ=1
ξζ (− log βL

∂ζ
)ð
)1/ð

, e
−
(

k+1
∑

ζ=1
ξζ (− log βU

∂ζ
)ð
)1/ð]

,

[
1− e

−
(

k+1
∑

ζ=1
ξζ (− log(1−δL

∂ζ
))ð
)1/ð

, 1− e
−
(

k+1
∑

ζ=1
ξζ (− log(1−δU

∂ζ
))ð
)1/ð]〉

.

Thus, (6) is true for } = k + 1.
Therefore, from (i) and (ii), we may conclude that (6) holds for any }.

Theorem 3. (Idempotency) If all ∂̃ζ = ([βL
∂ζ

, βU
∂ζ
], [δL

∂ζ
, δU

∂ζ
]) (ζ = 1, 2, . . . ,}) are equal, i.e.,

∂̃ζ = ∂̃ for all ζ, then IVIFAAWGξ (∂̃1, ∂̃2, . . . , ∂̃}) = ∂̃.

Proof. Since ∂̃ζ = ([βL
∂ζ

, βU
∂ζ
], [δL

∂ζ
, δU

∂ζ
]) (ζ = 1, 2, . . . ,}), then we have by Equation (6),

IVIFAAWGξ(∂̃1, ∂̃2, . . . , ∂̃}) =
}⊗

ζ=1
(∂̃ζ)

ξζ =

〈[
e
−
(

}
∑

ζ=1
ξζ (− log βL

∂ζ
)ð
)1/ð

,

e
−
(

}
∑

ζ=1
ξζ (− log βU

∂ζ
)ð
)1/ð]

,

[
1− e

−
(

}
∑

ζ=1
ξζ (− log(1−δL

∂ζ
))ð
)1/ð

, 1− e
−
(

}
∑

ζ=1
ξζ (− log(1−δU

∂ζ
))ð
)1/ð]〉

=

〈[
e
−
(
(− log βL

∂ )
ð
)1/ð

, e
−
(
(− log βU

∂ )
ð
)1/ð]

,

[
1− e

−
(
(− log(1−δL

∂ ))
ð
)1/ð

, 1−

e
−
(
(− log(1−δU

∂ ))ð
)1/ð]〉

=

〈[
elog βL

∂ , elog βU
∂

]
,

[
1− elog(1−δL

∂ ), 1− elog(1−δU
∂ )

]〉

= ([βL
∂ , βU

∂ ], [δ
L
∂ , δU

∂ ]) = ∂̃. Thus, IVIFAAWGξ(∂̃1, ∂̃2, . . . , ∂̃}) = ∂̃ holds.

Theorem 4. (Boundedness) Let ∂̃ζ = ([βL
∂ζ

, βU
∂ζ
], [δL

∂ζ
, δU

∂ζ
]) (ζ = 1, 2, . . . ,}) be an accumula-

tion of IVIFNs. Let ∂̃− = min(∂̃1, ∂̃2, . . . , ∂̃}) and ∂̃+ = max(∂̃1, ∂̃2, . . . , ∂̃}). Then, ∂̃− ≤
IVIFAAWGξ(∂̃1, ∂̃2, . . . , ∂̃}) ≤ ∂̃+.

Proof. Let ∂̃ζ = ([βL
∂ζ

, βU
∂ζ
], [δL

∂ζ
, δU

∂ζ
]) (ζ = 1, 2, . . . ,}) be an accumulation of IVIFNs.

Let ∂̃− = min(∂̃1, ∂̃2, . . . , ∂̃}) = ([βL−
∂ , βU−

∂ ], [δL−
∂ , δU−

∂ ]) and ∂̃+ = max(∂̃1, ∂̃2, . . . , ∂̃}) =

([βL+
∂ , βU+

∂ ], [δL+
∂ , δU+

∂ ]). We have, βL−
∂ = min

ζ
{βL

∂ζ
}, βU−

∂ = min
ζ
{βU

∂ζ
}, δL−

∂ = max
ζ
{δL

∂ζ
},

δU−
∂ = max

ζ
{δU

∂ζ
}, βL+

∂ = max
ζ
{βL

∂ζ
}, βU+

∂ = max
ζ
{βU

∂ζ
}, δL+

∂ = min
ζ
{δL

∂ζ
}, and δU+

∂ =

min
ζ
{δU

∂ζ
}. Hence, there have the subsequent inequalities,
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e
−
(

}
∑

ζ=1
ξζ (− log βL−

∂ )ð
)1/ð

≤ e
−
(

}
∑

ζ=1
ξζ (− log βL

∂ζ
)ð
)1/ð

≤ e
−
(

}
∑

ζ=1
ξζ (− log βL+

∂ )ð
)1/ð

,

e
−
(

}
∑

ζ=1
ξζ (− log βU−

∂ )ð
)1/ð

≤ e
−
(

}
∑

ζ=1
ξζ (− log βU

∂ζ
)ð
)1/ð

≤ e
−
(

}
∑

ζ=1
ξζ (− log βU+

∂ )ð
)1/ð

,

1− e
−
(

}
∑

ζ=1
ξζ (− log(1−δL+

∂ ))ð
)1/ð

≤ 1− e
−
(

}
∑

ζ=1
ξζ (− log(1−δL

∂ζ
))ð
)1/ð

≤ 1− e
−
(

}
∑

ζ=1
ξζ (− log(1−δL−

∂ ))ð
)1/ð

,

1− e
−
(

}
∑

ζ=1
ξζ (− log(1−δU+

∂ ))ð
)1/ð

≤ 1− e
−
(

}
∑

ζ=1
ξζ (− log(1−δU

∂ζ
))ð
)1/ð

≤ 1− e
−
(

}
∑

ζ=1
ξζ (− log(1−δU−

∂ ))ð
)1/ð

.

Therefore, ∂̃− ≤ IVIFAAWGξ(∂̃1, ∂̃2, . . . , ∂̃}) ≤ ∂̃+.

Theorem 5. (Monotonicity) Let ∂̃ζ and ∂̃
′
ζ (ζ = 1, 2, . . . ,}) be two sets of IVIFNs, if ∂̃ζ ≤ ∂̃

′
ζ for

all ζ, then IVIFAAWGξ(∂̃1, ∂̃2, . . . , ∂̃}) ≤ IVIFAA- WGξ(∂̃
′
1, ∂̃

′
2, . . . , ∂̃

′
}).

Proof. The proof is straightforward.

Now, we present IVIF Aczel–Alsina ordered weighted geometric (IVIFAAOWG) operator.

Definition 9. Let ∂̃ζ = ([βL
∂ζ

, βU
∂ζ
], [δL

∂ζ
, δU

∂ζ
]) (ζ = 1, 2, . . . ,}) be an accumulation of IVIFNs.

An IVIF Aczel–Alsina ordered weighted geometric (IVIFAAOWG) operator of dimension } is a
mapping IVIFAAOWG : (L?)} → L? with the corresponding vector ξ = (ξ1, ξ2, . . . , ξ})

T such

that ξζ ∈ [0, 1], and
}
∑

ζ=1
ξζ = 1, as

IVIFAAOWGξ(∂̃1, ∂̃2, . . . , ∂̃}) =
}⊗

ζ=1

(∂̃$(ζ))
ξζ

= (∂̃$(1))
ξ1
⊗

(∂̃$(2))
ξ2
⊗
· · ·

⊗
(∂̃$(}))

ξ} ,

where ($(1), $(2), . . . , $(})) are the permutation of (ζ = 1, 2, . . . ,}), for which ∂̃$(ζ−1) ≥ ∂̃$(ζ)

for all ζ = 1, 2, . . . ,}.

We generate the following theorem on IVIFNs based on the Aczel–Alsina product.

Theorem 6. Let ∂̃ζ = ([βL
∂ζ

, βU
∂ζ
], [δL

∂ζ
, δU

∂ζ
]) (ζ = 1, 2, . . . ,}) be an accumulation of IVIFNs.

An IVIF Aczel–Alsina ordered weighted geometric (IVIFAAOWG) operator of dimension } is a
mapping IVIFAAOWG : (L?)} → L? with the associated vector ϑ = (ϑ1, ϑ2, . . . , ϑ})

T such that

ϑζ ∈ [0, 1], and
}
∑

ζ=1
ϑζ = 1. Then,
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IVIFAAOWGϑ(∂̃1, ∂̃2, . . . , ∂̃}) =
}⊗

ζ=1

(∂̃$(ζ))
ϑζ

=

〈[
e
−
(

}
∑

ζ=1
ϑζ

(
−log βL

∂$(ζ)

)ð)1/ð

, e
−
(

}
∑

ζ=1
ϑζ

(
−log βU

∂$(ζ)

)ð)1/ð]
,

[
1−

e
−
(

}
∑

ζ=1
ϑζ

(
−log

(
1−δL

∂$(ζ)

))ð)1/ð

, 1− e
−
(

}
∑

ζ=1
ϑζ

(
−log

(
1−δU

∂$(ζ)

))ð)1/ð]〉

where ($(1), $(2), . . . , $(})) are the permutation of (ζ = 1, 2, . . . ,}), for which ∂̃$(ζ−1) ≥ ∂̃$(ζ)

for all ζ = 1, 2, . . . ,}.

Proof. Like Theorem 2, Theorem 6 is simply obtained.

The following characteristics can be proven well by employing the IVIFAAOWG operator.

Property 1. (Idempotency) If ∂̃ζ (ζ = 1, 2, . . . ,}) are identical, i.e., ∂̃ζ = ∂̃ for every ζ, then
IVIFAAOWGϑ(∂̃1, ∂̃2, . . . , ∂̃}) = ∂̃.

Property 2. (Boundedness) Let ∂̃ζ (ζ = 1, 2, . . . ,}) be an accumulation of IVIFNs. Let ∂̃− =

min
s

∂̃ζ , ∂̃+ = max
s

∂̃ζ . Then, ∂̃− ≤ IVIFAAOWGϑ(∂̃1, ∂̃2, . . . , ∂̃}) ≤ ∂̃+.

Property 3. (Monotonicity) Suppose that ∂̃ζ and ∂̃
′
ζ (ζ = 1, 2, . . . ,}) are two sets of IVIFNs and

∂̃ζ ≤ ∂̃
′
ζ for every ζ, then IVIFAAOWGϑ(∂̃1, ∂̃2, . . . , ∂̃}) ≤ IVIFAAOWGϑ(∂̃

′
1, ∂̃

′
2, . . . , ∂̃

′
}).

Property 4. (Commutativity) Let ∂̃ζ and ∂̃
′
ζ (ζ = 1, 2, . . . ,}) be two sets of IVIFNs, then

IVIFAAOWGϑ(∂̃1, ∂̃2, . . . , ∂̃}) = IVIFAAOWGϑ(∂̃
′
1, ∂̃

′
2, . . . , ∂̃

′
}) where ∂̃

′
ζ (ζ = 1, 2, . . . ,}) is

any permutation of ∂̃ζ (ζ = 1, 2, . . . ,}).

As defined in Definition 8, the IVIFAAWG operator measures only the IVIFNs, and as
defined in Definition 9, the IVIFAAOWG operator measures only the IVIFNs’ consistent
positions. Following that, weights represent different aspects of both the IVIFAAWG
and IVIFAAOWG operators. Nevertheless, both the operators think about just one of
them. To overcome this disadvantage, in the following we will exhibit IVIF Aczel–Alsina
hybrid geometric (IVIFAAHG) operator, which weights both the given IVIFN and its
ordered position.

Definition 10. Let ∂̃ζ (ζ = 1, 2, . . . ,}) be an accumulation of IVIFNs. An IVIFAAHG operator
of dimension } is a function IVIFAAHG : (L?)} → L?, such that

IVIFAAHGξ,ϑ(∂̃1, ∂̃2, . . . , ∂̃}) =
}⊗

ζ=1

( ˙̃∂$(ζ))
ϑζ

= ( ˙̃∂$(1))
ϑ1
⊗

( ˙̃∂$(2))
ϑ2
⊗
· · ·

⊗
( ˙̃∂$(}))

ϑ}

where ϑ = (ϑ1, ϑ2, . . . , ϑ})
T is the weighting vector associated with the IVIFAAHG operator, with

ϑζ ∈ [0, 1] (ζ = 1, 2, . . . ,}) and ∑}
ζ=1 ϑζ = 1; ˙̃∂ζ = ∂̃

}ξζ

ζ , ζ = 1, 2, . . . ,}, ( ˙̃∂$(1),
˙̃∂$(2), . . . , ˙̃∂$(}))

is any permutation of a collection of the weighted IVIFNs ( ˙̃∂1, ˙̃∂2, . . . , ˙̃∂}), such that ˙̃∂$(ζ−1) ≥
˙̃∂$(ζ) (ζ = 1, 2, . . . ,}); ξ = (ξ1, ξ2, . . . , ξ})

T is the weight vector of ∂̃ζ (ζ = 1, 2, . . . ,}), with
ξζ ∈ [0, 1] (ζ = 1, 2, . . . ,}) and ∑}

ζ=1 ξζ = 1, and } is the balancing coefficient, which plays a role
of balance.
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The following theorem can be deduced using Aczel–Alsina operations on
IVIFNs information.

Theorem 7. Let ∂̃ζ = ([βL
∂ζ

, βU
∂ζ
], [δL

∂ζ
, δU

∂ζ
]) (ζ = 1, 2, . . . ,}) be an accumulation of IVIFNs and

ð ∈ [0, ∞]. Their aggregated value by IVIFAAHG operator is still a IVIFN, and

IVIFAAHGξ(∂̃1, ∂̃2, . . . , ∂̃}) =
}⊗

ζ=1

( ˙̃∂$(ζ))
ξζ =

〈[
e
−
(

}
∑

ζ=1
ξζ

(
−log β̇L

∂$(ζ)

)ð)1/ð

, e
−
(

}
∑

ζ=1
ξζ

(
−log β̇U

∂$(ζ)

)ð)1/ð]
,

[
1−

e
−
(

}
∑

ζ=1
ξζ

(
−log

(
1−δ̇L

∂$(ζ)

))ð)1/ð

, 1− e
−
(

}
∑

ζ=1
ξζ

(
−log

(
1−δ̇U

∂$(ζ)

))ð)1/ð]〉

where ϑ = (ϑ1, ϑ2, . . . , ϑ})
T is the weighting vector associated with the IVIFAAHG operator, with

ϑζ ∈ [0, 1] (ζ = 1, 2, . . . ,}) and ∑}
ζ=1 ϑζ = 1; ˙̃∂ζ = ∂̃

}ξζ

ζ , ζ = 1, 2, . . . ,}, ( ˙̃∂$(1),
˙̃∂$(2), . . . , ˙̃∂$(}))

is any permutation of a collection of the weighted IVIFNs ( ˙̃∂1, ˙̃∂2, . . . , ˙̃∂}), such that ˙̃∂$(ζ−1) ≥
˙̃∂$(ζ) (ζ = 1, 2, . . . ,}); ξ = (ξ1, ξ2, . . . , ξ})

T is the weight vector of ∂̃ζ (ζ = 1, 2, . . . ,}), with
ξζ ∈ [0, 1] (ζ = 1, 2, . . . ,}) and ∑}

ζ=1 ξζ = 1, and } is the balancing coefficient, which plays a role
of balance.

Proof. Like Theorem 2, Theorem 7 is simply obtained.

Theorem 8. The IVIFAAWG and IVIFAAOWG operators are both variants of the IVIFAAHG operator.

Proof. (1) Assume ϑ = (1/}, 1/}, . . . , 1/})T . Then,

IVIFAAHGξ,ϑ(∂̃1, ∂̃2, . . . , ∂̃}) = ( ˙̃∂$(1))
ϑ1
⊗

( ˙̃∂$(2))
ϑ2
⊗
· · ·

⊗
( ˙̃∂$(}))

ϑ}

= ( ˙̃∂$(1))
(1/})⊗( ˙̃∂$(2))

(1/})⊗ · · ·
⊗

( ˙̃∂$(}))
(1/})

= (∂̃1)
ξ1
⊗

(∂̃2)
ξ2
⊗
· · ·

⊗
(∂̃})

ξ}

= IVIFAAWGξ(∂̃1, ∂̃2, . . . , ∂̃}),

(2) Let ξ = (1/}, 1/}, . . . , 1/})T . Then, ˙̃∂ζ = ∂̃ζ (ζ = 1, 2, . . . ,}) and

IVIFAAHGξ,ϑ(∂̃1, ∂̃2, . . . , ∂̃}) = ( ˙̃∂$(1))
ϑ1
⊗

( ˙̃∂$(2))
ϑ2
⊗
· · ·

⊗
( ˙̃∂$(}))

ϑ}

= (∂̃$(1))
ϑ1
⊗

(∂̃$(2))
ϑ2
⊗
· · ·

⊗
(∂̃$(}))

ϑ}

= IVIFAAOWGϑ(∂̃1, ∂̃2, . . . , ∂̃}),

which completes the proof.

5. MADM Methods Influenced by IVIFAAWG Operator

In this section, we shall take advantage of the IVIFAAWG operator to create a way for
addressing MADM difficulties with IVIF information.

For a MADM issue, let Φ = {Φ1, Φ2, . . . , Φψ} function as the set of alternatives
and J = {J1, J2, . . . , J}} function as the set of attributes, and attributes weight vector is

ξ = (ξ1, ξ2, . . . , ξ})
T , fulfilling ξζ ∈ [0, 1] and

}
∑

ζ=1
ξζ = 1. We explicit the assessment infor-

mation of the alternative Φ℘ concerning the criterion Jζ by Υ̃℘ζ = ([βL
∂℘ζ

, βU
∂℘ζ

], [δL
∂℘ζ

, δU
∂℘ζ

]),

158



Axioms 2022, 11, 258

and Γ =
(
Υ̃℘ζ

)
ψ×} is definitely an IVIF decision matrix. Hence, the MADM issue with

IVIFNs may be discussed in the following matrix form, acknowledged by Equation (7).

Γ =
(
Υ̃℘ζ

)
ψ×} =

J1 J2 · · · J}
Φ1
Φ2
...

Φψ




([βL
∂11

, βU
∂11

], [δL
∂11

, δU
∂11

]) ([βL
∂12

, βU
∂12

], [δL
∂12

, δU
∂12

]) · · · ([βL
∂1}

, βU
∂1}

], [δL
∂1}

, δU
∂1}

])

([βL
∂21

, βU
∂21

], [δL
∂21

, δU
∂21

]) ([βL
∂22

, βU
∂22

], [δL
∂22

, δU
∂22

]) · · · ([βL
∂2}

, βU
∂2}

], [δL
∂2}

, δU
∂2}

])
...

...
. . .

...
([βL

∂ψ1
, βU

∂ψ1
], [δL

∂ψ1
, δU

∂ψ1
]) ([βL

∂ψ2
, βU

∂ψ2
], [δL

∂ψ2
, δU

∂ψ2
]) · · · ([βL

∂ψ}
, βU

∂ψ}
], [δL

∂ψ}
, δU

∂ψ}
])




(7)

where every one of the components Υ̃℘ζ = ([βL
∂℘ζ

, βU
∂℘ζ

], [δL
∂℘ζ

, δU
∂℘ζ

]) is certainly an IVIFN,

where [βL
∂℘ζ

, βU
∂℘ζ

] is the positive membership degree because of which alternative Φ℘ fulfills

the attribute Jζ that has been appropriated by the decision-makers, and [δL
∂℘ζ

, δU
∂℘ζ

] gave the
degree that the alternative Φ℘ does not fulfill the attribute Jζ that has been distributed by the
decision-maker, where [βL

∂℘ζ
, βU

∂℘ζ
] ⊂ D[0, 1], [δL

∂℘ζ
, δU

∂℘ζ
] ⊂ D[0, 1] and 0 ≤ βU

∂℘ζ
+ δU

∂℘ζ
≤ 1,

(℘ = 1, 2, . . . , ψ).
The methodology dependent on IVIFAAWG operator to find out the MADM difficul-

ties with IVIF data explicitly incorporates these steps:

Step 1. Modify decision matrix Γ =
(
Υ̃℘ζ

)
ψ×} into the normalization matrix Γ =

(
Υ̃℘ζ

)
ψ×}.

Υ̃℘ζ =

{
Υ̃℘ζ for benefit attribute Jζ

(Υ̃℘ζ)
c for cost attribute Jζ

(8)

where (Υ̃℘ζ)
c is the complement of Υ̃℘ζ , such that (Υ̃℘ζ)

c = ([δL
∂℘ζ

, δU
∂℘ζ

], [βL
∂℘ζ

, βU
∂℘ζ

]).

In fact, if all the attributes Jζ (ζ = 1, 2, . . . ,}) are the same type, then there is no need
to normalize them, but if it is found that there are two types of attributes then we will
convert cost attributes to benefit attributes. Then, Γ =

(
Υ̃℘ζ

)
ψ×} will be transformed into

IVIF decision matrix Γ =
(
Υ̃℘ζ

)
ψ×}.

Step 2. Make use of the decision data expressed in matrix Γ, and the operator IVIFAAWG
to get the overall preference values Υ̃℘ (℘ = 1, 2, . . . , ψ) of the alternative Φ℘, i.e.,

Υ̃℘ = IVIFAAWGξ(Υ̃℘1, Υ̃℘2, . . . , Υ̃℘}) =
}⊗

ζ=1
(Υ̃℘ζ)

ξζ

=

〈[
e
−
(

}
∑

ζ=1
ξζ (− log βL

∂ζ
)ð
)1/ð

, e
−
(

}
∑

ζ=1
ξζ (− log βU

∂ζ
)ð
)1/ð]

,

[
1−

e
−
(

}
∑

ζ=1
ξζ (− log(1−δL

∂ζ
))ð
)1/ð

, 1− e
−
(

}
∑

ζ=1
ξζ (− log(1−δU

∂ζ
))ð
)1/ð]〉

. (9)

Step 3. Rank all of the alternatives in order of preference. Make use of the method in
Definition 3 to rank the entire rating values Υ̃℘ (℘ = 1, 2, . . . , ψ) and rank all the
alternatives Φ℘ (℘ = 1, 2, . . . , ψ) as per ~Υ̃℘ (℘ = 1, 2, . . . , ψ) in descending order.
Lastly, we choose the advantageous alternative(s) with the highest rating value.

Step 4. End.

6. Numerical Example

This section contains an interesting explanation demonstrating the systematic method-
ology for choosing an appropriate car.
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6.1. Problem Description

Consider a consumer who is considering purchasing a car. There are five distinct
types of cars (alternatives) Φ℘ (℘ = 1, 2, . . . , 5). The consumer considers six attributes
while deciding which vehicle to buy (adapted from Herrera and Martinez [44]): J1: Fuel
economy; J2: Aerod degree; J3: Price; J4: Comfort; J5: Design; and J6: Security. The weight
vector of the attributes Jζ (ζ = 1, 2, . . . , 6) is ξ = (0.15, 0.25, 0.14, 0.16, 0.20, 0.10)T . Expect
that the features of the alternatives Φ℘ (℘ = 1, 2, . . . , 5) are addressed by the IVIFNs, as
demonstrated in the IVIF decision matrix Γ =

(
Υ̃℘ζ

)
6×5 (Table 1).

Table 1. IVIF decision matrix.

Φ1 Φ2 Φ3 Φ4 Φ5

J1 ([0.56,0.66],[0.26,0.31]) ([0.38,0.47],[0.34,0.44]) ([0.56,0.63],[0.23,0.32]) ([0.64,0.73],[0.16,0.27]) ([0.48,0.63],[0.26,0.36])
J2 ([0.78,0.88],[0.07,0.12]) ([0.47,0.56],[0.27,0.37]) ([0.51,0.57],[0.16,0.26]) ([0.65,0.75],[0.13,0.20]) ([0.64,0.69],[0.21,0.31])
J3 ([0.61,0.82],[0.11,0.18]) ([0.79,0.84],[0.11,0.16]) ([0.51,0.56],[0.36,0.44]) ([0.54,0.64],[0.25,0.36]) ([0.79,0.84],[0.08,0.16])
J4 ([0.82,0.91],[0.02,0.07]) ([0.55,0.65],[0.22,0.32]) ([0.63,0.74],[0.21,0.25]) ([0.65,0.75],[0.20,0.25]) ([0.60,0.73],[0.17,0.27])
J5 ([0.44,0.56],[0.32,0.42]) ([0.68,0.78],[0.17,0.22]) ([0.35,0.45],[0.35,0.45]) ([0.59,0.69],[0.25,0.30]) ([0.45,0.54],[0.35,0.45])
J6 ([0.70,0.83],[0.08,0.17]) ([0.53,0.58],[0.31,0.36]) ([0.76,0.83],[0.07,0.17]) ([0.41,0.51],[0.36,0.42]) ([0.56,0.66],[0.22,0.32])

6.2. The IFAAWG Operator-Based Technique

To determine one of most perfect car Φ℘ (℘ = 1, 2, . . . , 5), we employ the IFAAWG
operator to construct a MADM theory using intuitionistic fuzzy information, which is
frequently evaluated as follows:

• Step 1. Because the attributes are classified into two types, we begin by converting
the attribute of the cost type into the attribute of the benefit type by employing
Equation (8). At that point, Γ =

(
Υ̃℘ζ

)
6×5 is changed into the normalized decision

matrix Γ =
(
Υ̃℘ζ

)
6×5 (Table 2).

• Step 2. Assume that ð = 1. The IVIFAAWG operator is used to know the overall
alternative values Υ̃℘ for five alternatives Φ℘ (℘ = 1, 2, . . . , 5),
Υ̃1 = ([0.637689, 0.762041], [0.154922, 0.224767]),
Υ̃2 = ([0.547075, 0.633999], [0.237723, 0.318131]),
Υ̃3 = ([0.516381, 0.595996], [0.241492, 0.328694]),
Υ̃4 = ([0.591841, 0.691298], [0.212673, 0.286312]),
Υ̃5 = ([0.574598, 0.669233], [0.226311, 0.324705]).

• Step 3. We evaluate the score values K̂(Υ̃℘) (℘ = 1, 2, . . . , 5) of the universal IVIFNs
Υ̃℘ (℘ = 1, 2, . . . , 5) utilizing Equation (2) as K̂(Υ̃1) = 0.510021, K̂(Υ̃2) = 0.312610,
K̂(Υ̃3) = 0.271095, K̂(Υ̃4) = 0.392077, K̂(Υ̃5) = 0.346408.

• Step 4. Ranking these five alternatives Φ℘ (℘ = 1, 2, . . . , 5) according to the score
values K̂(Υ̃℘) (℘ = 1, 2, . . . , 5) of the overall IVIFNs as Φ1 � Φ4 � Φ5 � Φ2 � Φ3.

• Step 5. Thus, the best car is Φ1.

Table 2. Normalized IVIF decision matrix.

Φ1 Φ2 Φ3 Φ4 Φ5

J1 ([0.56,0.66],[0.26,0.31]) ([0.38,0.47],[0.34,0.44]) ([0.56,0.63],[0.23,0.32]) ([0.64,0.73],[0.16,0.27]) ([0.48,0.63],[0.26,0.36])
J2 ([0.78,0.88],[0.07,0.12]) ([0.47,0.56],[0.27,0.37]) ([0.51,0.57],[0.16,0.26]) ([0.65,0.75],[0.13,0.20]) ([0.64,0.69],[0.21,0.31])
J3 ([0.61,0.82],[0.11,0.18]) ([0.79,0.84],[0.11,0.16]) ([0.51,0.56],[0.36,0.44]) ([0.54,0.64],[0.25,0.36]) ([0.79,0.84],[0.08,0.16])
J4 ([0.82,0.91],[0.02,0.07]) ([0.55,0.65],[0.22,0.32]) ([0.63,0.74],[0.21,0.25]) ([0.65,0.75],[0.20,0.25]) ([0.60,0.73],[0.17,0.27])
J5 ([0.44,0.56],[0.32,0.42]) ([0.68,0.78],[0.17,0.22]) ([0.35,0.45],[0.35,0.45]) ([0.59,0.69],[0.25,0.30]) ([0.45,0.54],[0.35,0.45])
J6 ([0.70,0.83],[0.08,0.17]) ([0.53,0.58],[0.31,0.36]) ([0.76,0.83],[0.07,0.17]) ([0.41,0.51],[0.36,0.42]) ([0.56,0.66],[0.22,0.32])
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7. The Impact of the Parameter ð in This Technique

To show how the different values of the parameter ð affect the alternatives, we use
different values of the parameter ð to categorize the alternatives. The IVIFAAWG operator
is used to rank the alternatives Φ℘ (t = 1, 2 . . . , 5), and they are shown in Table 3 and
shown in Figure 2. Clearly, when the value of ð for IVIFAAWG operator starts growing,
the score values of the possible alternatives decrease, but the ranking stays the same:
Φ1 � Φ4 � Φ5 � Φ2 � Φ3. Thus, the most important alternative is Φ1.

Table 3. Ranking order of the alternatives with various parameter ð by IVIFAAWG operator.

ð K̂(Υ̃1) K̂(Υ̃2) K̂(Υ̃3) K̂(Υ̃4) K̂(Υ̃5) Ranking Order

1 0.510021 0.312610 0.271095 0.392077 0.346408 Φ1 � Φ4 � Φ5 � Φ2 � Φ3
2 0.432522 0.274768 0.232654 0.369262 0.315391 Φ1 � Φ4 � Φ5 � Φ2 � Φ3
3 0.374209 0.245251 0.200569 0.344796 0.289366 Φ1 � Φ4 � Φ5 � Φ2 � Φ3
4 0.332473 0.222023 0.174023 0.319924 0.267292 Φ1 � Φ4 � Φ5 � Φ2 � Φ3
5 0.302133 0.203274 0.152149 0.295960 0.248489 Φ1 � Φ4 � Φ5 � Φ2 � Φ3
6 0.279331 0.187738 0.134129 0.273905 0.232478 Φ1 � Φ4 � Φ5 � Φ2 � Φ3
7 0.261630 0.174584 0.119238 0.254265 0.218860 Φ1 � Φ4 � Φ5 � Φ2 � Φ3
8 0.247512 0.163268 0.106868 0.237122 0.207273 Φ1 � Φ4 � Φ5 � Φ2 � Φ3
9 0.236003 0.153420 0.096520 0.222303 0.197390 Φ1 � Φ4 � Φ5 � Φ2 � Φ3

10 0.226454 0.144778 0.087797 0.209530 0.188927 Φ1 � Φ4 � Φ5 � Φ2 � Φ3

ð = 1 ð = 3 ð = 5 ð = 8 ð = 10
0

0.1

0.2

0.3

0.4

0.5

Φ1 Φ2 Φ3 Φ4 Φ5

Figure 2. Score values belonging to the alternatives for various values ð by IVIFAAWG operator.

Additionally, Figure 2 reveals that when the value of ð is changed in the example, the
ranking results remain identical, demonstrating the resilience of the IVIFAAWG operators.

8. Sensitivity Analysis (SA) of Criteria Weights

To investigate the effect of criteria weights on ranking order, we present a sensitivity
investigation. This is done using 24 different weight sets, namely—Q1, Q2, . . . , Q24 (Table 4)
formed by considering all possible combinations of the criteria weights η1 = 0.15, η2 = 0.25,
η3 = 0.14, η4 = 0.16, η5 = 0.20, and η6 = 0.10. This is especially valuable for achieving a
more broad scope of criteria weights for taking a gander at the affectability of the created
model. The scores of alternatives are accumulated in Figure 3, and their respective ranking
orders are indexed in Table 5. Upon examining the ranking order of alternatives, it is seen
that Φ1 holds the first rank in 100% of the scenarios when the IVIFWG operator (taking
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ð = 2) is applied. Hence, the priority of alternatives acquired by utilizing our developed
method is credible.

Table 4. Various weight sets of criteria.

Weight Sets η1 η2 η3 η4 η5 η6 Weight Sets η1 η2 η3 η4 η5 η6

Q1 0.15 0.25 0.14 0.16 0.20 0.10 Q13 0.16 0.20 0.25 0.15 0.14 0.10
Q2 0.15 0.14 0.16 0.20 0.10 0.25 Q14 0.16 0.25 0.15 0.14 0.10 0.20
Q3 0.15 0.16 0.20 0.10 0.25 0.14 Q15 0.16 0.15 0.14 0.10 0.20 0.25
Q4 0.15 0.20 0.10 0.25 0.14 0.16 Q16 0.16 0.14 0.10 0.20 0.25 0.15
Q5 0.25 0.15 0.14 0.20 0.10 0.16 Q17 0.20 0.25 0.10 0.14 0.15 0.16
Q6 0.25 0.14 0.20 0.10 0.16 0.15 Q18 0.20 0.10 0.14 0.15 0.16 0.25
Q7 0.25 0.20 0.10 0.16 0.15 0.14 Q19 0.20 0.14 0.15 0.16 0.25 0.10
Q8 0.25 0.10 0.16 0.15 0.14 0.20 Q20 0.20 0.15 0.16 0.25 0.10 0.14
Q9 0.14 0.16 0.15 0.20 0.10 0.25 Q21 0.10 0.14 0.15 0.16 0.20 0.25

Q10 0.14 0.15 0.20 0.10 0.25 0.16 Q22 0.10 0.15 0.16 0.20 0.25 0.14
Q11 0.14 0.20 0.10 0.25 0.16 0.15 Q23 0.10 0.16 0.20 0.25 0.14 0.15
Q12 0.14 0.10 0.25 0.16 0.15 0.20 Q24 0.10 0.20 0.25 0.14 0.15 0.16

Figure 3. Utility values of alternatives for distinct sets of weighted criteria.

Table 5. Priority order of alternatives for diverse weight sets.

Ranking Order Ranking Order Ranking Order

Q1 Φ1 � Φ4 � Φ5 � Φ2 � Φ3 Q9 Φ1 � Φ5 � Φ3 � Φ4 � Φ2 Q17 Φ1 � Φ4 � Φ5 � Φ3 � Φ2
Q2 Φ1 � Φ5 � Φ3 � Φ4 � Φ2 Q10 Φ1 � Φ4 � Φ2 � Φ5 � Φ3 Q18 Φ1 � Φ5 � Φ4 � Φ3 � Φ2
Q3 Φ1 � Φ4 � Φ5 � Φ2 � Φ3 Q11 Φ1 � Φ4 � Φ5 � Φ3 � Φ2 Q19 Φ1 � Φ4 � Φ5 � Φ2 � Φ3
Q4 Φ1 � Φ4 � Φ5 � Φ3 � Φ2 Q12 Φ1 � Φ5 � Φ2 � Φ4 � Φ3 Q20 Φ1 � Φ5 � Φ4 � Φ3 � Φ2
Q5 Φ1 � Φ4 � Φ5 � Φ3 � Φ2 Q13 Φ1 � Φ5 � Φ4 � Φ2 � Φ3 Q21 Φ1 � Φ5 � Φ2 � Φ4 � Φ3
Q6 Φ1 � Φ4 � Φ5 � Φ2 � Φ3 Q14 Φ1 � Φ5 � Φ4 � Φ3 � Φ2 Q22 Φ1 � Φ4 � Φ2 � Φ5 � Φ3
Q7 Φ1 � Φ4 � Φ5 � Φ3 � Φ2 Q15 Φ1 � Φ5 � Φ4 � Φ2 � Φ3 Q23 Φ1 � Φ5 � Φ4 � Φ2 � Φ3
Q8 Φ1 � Φ5 � Φ4 � Φ3 � Φ2 Q16 Φ1 � Φ4 � Φ5 � Φ2 � Φ3 Q24 Φ1 � Φ5 � Φ4 � Φ2 � Φ3

9. Comparison Study

Following that, we will compare and contrast our proposed approach with some other
conventional methods such as the IVIF weighted averaging (IVIFWA) operator [5], the
IVIF weighted geometric (IVIFWG) operator [39], the IVIF Einstein weighted geometric
(IVIFWGε) operator [16], and the IVIF Einstein weighted averaging (IVIFWAε) opera-
tor [17]. The comparison findings are given in Tables 6 and 7, and they are depicted in

162



Axioms 2022, 11, 258

Figure 4 visually. If you look at Tables 3 and 6, you can see that the IVIFWG operator is a
special case of the IVIFAAWG operator, and that this happens when ð = 1.

As a consequence, our recommended procedures for resolving IVIF MADM problems
are frequently more extensive and adaptable than some of the techniques now in use.

Table 6. Comparative assessment using a few popular methodologies.

Techniques K̂(Υ̃1) K̂(Υ̃2) K̂(Υ̃3) K̂(Υ̃4) K̂(Υ̃5) Preference Order

Xu [5] 0.605185 0.370086 0.326785 0.375578 0.391143 Φ1 � Φ5 � Φ4 � Φ2 � Φ3
Xu & Chen [39] 0.510021 0.312610 0.271095 0.392077 0.346408 Φ1 � Φ4 � Φ5 � Φ2 � Φ3
Wang & Liu [16] 0.523568 0.321157 0.279447 0.396147 0.352904 Φ1 � Φ4 � Φ5 � Φ2 � Φ3
Wang & Liu [17] 0.597400 0.362337 0.319370 0.413345 0.385472 Φ1 � Φ4 � Φ5 � Φ2 � Φ3

Proposed method 0.226454 0.144778 0.087797 0.209530 0.188927 Φ1 � Φ4 � Φ5 � Φ2 � Φ3

Table 7. Qualitative evaluations of the current methods.

Techniques Whether It Is More Straightforward Whether It Should Make Information
to Express Ambiguous Data Aggregation More Parameter-Adjustable

Xu [5] Yes No
Xu & Chen [39] Yes No
Wang & Liu [16] Yes No
Wang & Liu [17] Yes No

Proposed method Yes Yes

K̂(Υ̃1) K̂(Υ̃2) K̂(Υ̃3) K̂(Υ̃4) K̂(Υ̃5)

0.2

0.4

0.6

IVIFWA operator
IVIFWG operator

IVIFWGε operator
IVIFWAε operator

Proposed IVIFAAWG operator

Figure 4. Comparison analysis with a few prevailing techniques.

10. Conclusions

We began this study by extending the Aczel–Alsina t-norm and t-conorm to IVIF
scenarios, defining and examining a few additional working principles for IVIFNs. Then,
in light of these new operating laws, different new aggregation operators, such as the IVI-
FAAWG operator, the IVIFAAOWG operator, and the IVIFAAHG operator, were devised
to accommodate situations in which the specified assertions are IVIFNs. The fundamental
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characteristics of the recommended operators are examined, as well as their specific situa-
tions. We provide a realistic approach to MADM difficulties with IVIFNs depending on the
IFAAWG operator. Furthermore, an exemplary scenario of choosing suitable cars is utilized
to demonstrate the developed model, and a comparative study with some other methods is
undertaken to show the recommended operators’ distinct advantages. In future studies,
we plan to extend the challenge further by introducing new characteristics, including the
use of probabilistic aggregations. Additionally, we will discuss additional decision-making
aspects like cluster analysis, performance analysis [45], sustainable city logistics [46], risk in-
vestment assessment [47], Wireless Sensor Networks [48], capital budgeting techniques [49],
home buying process [50], and other domains in uncertain environment [51–58].
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Abstract: The use of discrete probabilistic distributions is relevant to many practical tasks, especially
in present-day situations where the data on distribution are insufficient and expert knowledge and
evaluations are the only instruments for the restoration of probability distributions. However, in
such cases, uncertainty arises, and it becomes necessary to build suitable approaches to overcome
it. In this direction, this paper discusses a new approach of fuzzy binomial distributions (BDs) and
their extensions. Four cases are considered: (1) When the elementary events are fuzzy. Based on
this information, the probabilistic distribution of the corresponding fuzzy-random binomial variable
is calculated. The conditions of restrictions on this distribution are obtained, and it is shown that
these conditions depend on the ratio of success and failure of membership levels. The formulas
for the generating function (GF) of the constructed distribution and the first and second order
moments are also obtained. The Poisson distribution is calculated as the limit case of a fuzzy-random
binomial experiment. (2) When the number of successes is of a fuzzy nature and is represented as a
fuzzy subset of the set of possible success numbers. The formula for calculating the probability of
convolution of binomial dependent fuzzy events is obtained, and the corresponding GF is built. As
a result, the scheme for calculating the mathematical expectation of the number of fuzzy successes
is defined. (3) When the spectrum of the extended distribution is fuzzy. The discussion is based
on the concepts of a fuzzy-random event and its probability, as well as the notion of fuzzy random
events independence. The fuzzy binomial upper distribution is specifically considered. In this case
the fuzziness is represented by the membership levels of the binomial and non-binomial events of
the complete failure complex. The GF of the constructed distribution and the first-order moment
of the distribution are also calculated. Sufficient conditions for the existence of a limit distribution
and a Poisson distribution are also obtained. (4) As is known, based on the analysis of lexical
material, the linguistic spectrum of the statistical process of word-formation becomes two-component
when switching to vocabulary. For this, two variants of the hybrid fuzzy-probabilistic process are
constructed, which can be used in the analysis of the linguistic spectrum of the statistical process
of word-formation. A fuzzy extension of standard Fuchs distribution is also presented, where the
fuzziness is reflected in the growing numbers of failures. For better representation of the results, the
examples of fuzzy BD are illustrated in each section.

Keywords: fuzzy-sets; fuzzy-random variables; distribution generating function; fuzzy binomial
distribution; Fuchs distribution

MSC: 03E72; 60A86

1. Introduction

In current practice, and especially in the creation of new technologies, the use of
extensions of classical probabilistic distributions based on expert data and evaluations is be-
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coming more and more common. Particularly, the fuzzy extensions of discrete distributions
are attracting attention, and the use of fuzzy-stochastic distributions or fuzzy-stochastic
processes often have no alternative in dealing with incomplete objective-experimental
data [1–8]. Based on these considerations, the aim of our research was to develop a new
approach to the extension of the BD under the fuzzy uncertainty environment. In the
introduction, we first review the existing research directions on the fuzzy BD extensions
and then present the main principle of our approach.

Briefly, regarding the basic works studying fuzzy BD and its application in the different
problems, practices, and research, the addition of two fuzzy Bernoulli distributions and the
sum of subsequent fuzzy BDs have been discussed in [9]. Extensions of these ideas would
be of use to study fuzzy randomness and the concept of measure. In [10], the authors
assume that the probability of “success” p is not known exactly and is to be estimated
from a random sample or from expert opinion. For the fuzzy BD, a fuzzy number p̃
instead of p is substituted. In [11], discrete probability distributions, where some of the
probability values are uncertain, are considered. These uncertainties are modeled using
fuzzy numbers. The basic laws of fuzzy probability theory are derived. Applications to
the binomial probability distribution and queuing theory are considered. In [12], essential
properties of fuzzy probability are derived to present the measurement of fuzzy conditional
probability, fuzzy independency, and fuzzy Bayes theorem. Fuzzy discrete distributions,
fuzzy binomials, and fuzzy Poisson distributions are introduced with different examples.
Among intelligent techniques, the authors in [13] focus on the application of the fuzzy set
theory in the acceptance sampling. Multi-objective mathematical models for fuzzy single
and fuzzy double acceptance sampling plans with illustrative examples are proposed. The
study illustrates how an acceptance sampling plan should be designed under fuzzy BD.
The fuzzy set theory can be successfully used to cope with the vagueness in these linguistic
expressions for acceptance sampling. In [14], the main distributions of acceptance sampling
plans are handled with fuzzy parameters, and their acceptance probability functions are
derived. Then, the characteristic curves of acceptance sampling are examined under
fuzziness. Illustrative examples are given with binomial and other fuzzy distributions.
In [15], the authors intend to generate some properties of negative BD under imprecise
measurement. These properties include fuzzy mean, fuzzy variance, fuzzy moments, and
fuzzy GF. The uncertainty in the observations may not be addressed with the classical
approach to probability distribution; therefore, the fuzzy set theory helps to modify the
classical approach. In [16], the authors discuss the single acceptance sampling plan, when
the proportion of nonconforming products is a fuzzy number. They showed that the
operating characteristic (OC) curve of the plan is a band with high and low bounds and
that for a fixed sample size and acceptance number, the width of the band depends on the
ambiguity proportion parameter in the lot. Illustrative examples are given with binomial
and other fuzzy distributions. In [17], the portfolio consists of only options traded in
the financial market. One of the most famous models of option pricing is the Binomial
Cox-Ross-Rubinstein (CRR) Model. Using Fuzzy Binomial CRR procedure, the price
of option is an interval with a specific membership degree, by which the investors are
allowed to adjust their portfolios. We make a portfolio dynamically adjusted periodically,
in which the membership degree of an option price determines the decision of buying
or selling the option in the simulation. Classifiers based on the BD can be found in
the scientific literature, but due to the uncertainty of the epidemiological data, a fuzzy
approach may be interesting. Reference [18] presents a new classifier named fuzzy binomial
naive Bayes (FBiNB). The theoretical development is presented as well as the results of
its application on simulated multidimensional data. A brief comparison among FBiNB,
a classical binomial naive Bayes classifier, and a naive Bayes classifier is performed. The
results obtained showed that the FBiNB provided the best performance, according to
the Kappa coefficient. In [19], two main distributions of acceptance sampling plans are
considered, which are binomial and Poisson distributions with fuzzy parameters, and they
derived their acceptance probability functions. Then, fuzzy acceptance sampling plans
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were developed based on these distributions. In [20] the authors study the determination of
the Quick Switching Single Double Sampling System using fuzzy BD, where the acceptance
number tightening method is used. In [21], the fuzzy representations of a real-valued
random variable are introduced for capturing relevant information on the distribution of
the variable through the corresponding fuzzy-valued mean value. Specifically, characteristic
fuzzy representations of a random variable allow us to capture the whole information
on its distribution. As a result, the tests about fuzzy means of fuzzy random variables
can be applied to develop goodness-of-fit tests. In this work, empirical comparisons of
goodness-of-fit tests based on some convenient fuzzy representations with well-known
procedures in case the null hypothesis relates to some specified BDs are presented. As is
known [22], the optimal hypothesis tests for the BD and some other discrete distributions
are uniformly most powerful (UMP) one-tailed and UMP unbiased (UMPU) two-tailed
randomized tests. Therefore, conventional confidence intervals are not dual to randomized
tests and perform badly on discrete data at small and moderate sample sizes. In this work,
a new confidence interval notion, called fuzzy confidence intervals, that is dual to and
inherits the exactness and optimality of UMP and UMPU tests is introduced. A new P-value
notion, called fuzzy P-values or abstract randomized P-values, that also inherits the same
exactness and optimality is also introduced. In [15], the generating procedure of some
properties of negative BD under imprecise measurement is developed. These properties
include fuzzy mean, fuzzy variance, fuzzy moments, and fuzzy moments GF.

It should be noted that in almost all of the studies presented here, the use of binomial
distribution (BD) in an uncertain environment may result in fuzziness for only one reason:
the value-realization of a binomial value in an uncertain environment cannot be the result
of exact measurements or calculations, and it must be represented by fuzzy variables [9–22].
In other words, we are dealing with a binomial experiment when the possible results are
presented in fuzzy values, more often in triangular or trapezoidal fuzzy numbers [23]—i.e.,
the binomial distribution is a descriptor of a random-fuzzy experiment whose realizations or
characteristic parameters are represented in fuzzy values. The problem presented in this
article is different from those presented in the studies above. It refers to a generalization of
binomial distribution when the results or characteristics of an experiment are described by
fuzzy variables. These variables are defined on the universe of all the results of the exper-
iment and not on a certain subset of real numbers, as discussed in the studies presented
above—i.e., we are dealing with a fuzzy-random experiment, where the binomial variable is a
fuzzy-random variable. It has both a probability distribution and a membership function
on the universe of all results of the experiment. Of course, the use of such binomial models
is in great demand. This was the main motivation for us, the authors, to explore some of
the new fuzzy extensions of binomial distribution.

In this work, we present a new approach to the extension of a classical BD under
different fuzzy environments. In contrast to the above approaches to the study of fuzzy
BDs, a completely new approach is developed in this paper. Section 2 presents the fuzzy
extension of the BD, where the Bernoulli fuzzy-random variable is considered instead of the
Bernoulli random variable. Success and failure events have both probabilistic distributions
and their implementation possibility in the form of compatibility levels. Based on this
information, the probabilistic distribution of the corresponding binomial fuzzy-random
variable is calculated. The conditions of restrictions on this distribution are obtained. The
Poisson distribution is calculated as a limit case of the constructed binomial fuzzy-random
experiment. Section 3 considers the fuzzy extension of a BD, where the number of successes,
unlike the previous case, is of a fuzzy nature and is represented as a fuzzy subset of the set
of possible success numbers. A formula for calculating the probability of the occurrence of
binomial dependent fuzzy events is obtained. The formula for calculating the probability of
the convolution of binomial dependent fuzzy events is obtained. The invariance principle
of exponential distribution is applied, and the corresponding GF is constructed. As a result,
a scheme for calculating the mathematical expectation of the number of fuzzy successes
is created. Section 4 considers the fuzzy extension of the binomial upper distribution,
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where the fuzziness is represented in the compatibility levels of the binomial and non-
binomial events of the complete failure complex. The GF of the constructed distribution
and the first-order moment of the distribution are also calculated. Sufficient conditions
for the existence of a corresponding limit distribution and the Poisson distribution are
also obtained. Section 5 presents the fuzzy extension of the classical Fuchs distribution,
where fuzziness is reflected in the number of increasing failures. The built distribution
function and the first and second order moments of the distribution are also calculated.
Sufficient conditions for the existence of a corresponding limit distribution and the Poisson
distribution are obtained. For better representation of the results, the examples of fuzzy BD
are illustrated in each section. Section 6 presents the main results obtained and prospects
for future research. A sequential scheme of the key facts and obtained results is presented
by Scheme 1.
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2. BD by Fuzzy Elementary Events

Consider P1 and P0 = 1− P1 as elementary a priori probabilities of success (“1”) and
failure (“0”) events, respectively. Let us also consider the membership levels µ1 and µ2
for (1) and (0), respectively. Therefore, we created a fuzzy-random variable of Bernoulli

-X̃ ∼



values 1 0
probabilities P1 P0

membership levels µ1 µ2


. Then, the probabilities of the fuzzy events 1̃ and 0̃

according to [24,25] can be calculated by the formulas:

P(1̃) = µ1P1 and P(0̃) = µ2P0 (1)

For a sequence of n repetitive ordinary (non-fuzzy) trials in a binomial experiment,
we introduce the notations

C1 ≡ (1, . . . , 1) , C2 ≡ (1, . . . , 1, 0), . . . ,
C2n−1 ≡ (0, . . . , 0, 1), C2n ≡ (0, . . . , 0),

(2)

as there exist 2n possible results by the combination of (1) and (0). For describing the “n
repetitive fuzzy elementary experiments”

C̃1 ≡ (1̃, . . . , 1̃), . . . , C̃2n ≡ (0̃, . . . , 0̃) (3)

We refer to the notion of a fuzzy variable introduced in [24]. Suppose we have a fuzzy
Bernoulli variable X̃ ≡ (X, U, R̃(x, u)), where X is a fuzzy elementary event, U = {0, 1} is
a universal set, and the restriction R̃(x, u) ⊂ U means that

R̃(x, u) ≡ R̃(X̃ ) ≡ 0̃∪ 1̃ ≡
{

0̃, 1̃
}

, (4)

Consider an ordered set of n such variables (X̃1, . . . , X̃n) as a fuzzy binomial experiment.
According to [24], the universal set of such a compound fuzzy variable is the Cartesian product
U1 × . . .×Un. Now, suppose that X̃1, . . . , X̃n are the same non-interactive variables, i.e.,

R̃(X̃1, . . . , X̃n) = R̃(X̃1) ∩ . . . ∩ R̃(X̃n) (5)

where R̃(X̃i) is a cylindrical continuation of a marginal constraint R̃(X̃i), i = 1, . . . , n. We
refer to the sequence of “n repetitive fuzzy elementary experiments” as a fuzzy point
R̃(X̃1, . . . , X̃n). According to (5), we have:

µC̃1
= min{µ1, . . . , µ1}, µC̃2n

= min{µ2, . . . , µ2},
µC̃i

= min{(µ1 or µ2) ∧ . . . ∧ (µ1 or µ2)} = µ1 ∧ µ2, i = 2, 3, . . . , 2n − 1.
(6)

If we use the formula for calculating a fuzzy event probability, we obtain the following
probabilities:

P
(

C̃1

)
≡ P(1̃, . . . , 1̃, 1̃) = µ1P(1, . . . , 1, 1)

P
(

C̃2

)
≡ P(1̃, . . . , 1̃, 0̃) = (µ1 ∧ µ2)P(1, . . . , 1, 0), . . . ,

P
(

C̃2n−1

)
≡ P(0̃, . . . , 0̃, 1̃) = (µ1 ∧ µ2)P(0, . . . , 0, 1)

P
(

C̃2n

)
≡ P(0̃, . . . , 0̃, 0̃) = µ2P(0, . . . , 0, 0).

(7)

As is well known, the projection of a relation on a given set of variables is a marginal
sub-relation of that relation which applies only on these variables. It is considered on the
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Cartesian product of the universes of these variables. If we sum the distribution (7) by the
projection of relation (5)

Proj
Ui1
×...× Uin−1

〈
R̃(X̃1, . . . , X̃n)

〉
= R̃q

(
X̃i1 , . . . , X̃in−1

)
, q ≡ ( i1, . . . , in−1), (8)

we receive only normed fuzzy probabilities of 1̃ and 0̃

P(1̃) = µ1P1

∑2n
i=1 P

(
C̃i

) , (9)

P(0̃) = 1−P(1̃) = µ1P0 + (µ2 − µ1)P(0, . . . , 0)

∑2n
i=1 P

(
C̃i

) .

After substituting (7) and (9) in the BD formula, we receive:

P(C̃(k)) =
Pk

1[
1+
(

µ2
µ1
−1
)

P(0,...,0)
]n−1

[
1 +

(
µ2
µ1
− 1
)

P(0, . . . , 0)− P1

]n−k
,

k = 1, . . . , n.
(10)

where common notation C̃(k) is introduced for those C̃i to which the same number k of
successes correspond, since the probabilities of such C̃i are equal. Note that

2n

∑
i=1
P(C̃i) = µ1 + (µ2 − µ1)P(0, . . . , 0), (11)

It is clear from (9) and (10) that if µ1 = µ2, then the conditions for the independence of
fuzzy events degenerate to the corresponding conditions for ordinary events.

The constraint (7) for probabilities P(C̃(k)) leads to the relationship

µ2

µ1
=


1 +

1− P1 · n−1
√

P1
P(1, ...,1)

P(1, . . . , 1)
(

n−1
√

P1
P(1, ...,1) − 1

)n




−1

. (12)

By putting Formula (12) into (11) and assuming that µ2 ≥ µ1 and P
(

C̃i

)
≥ 0, we get

a system of conditions

P
(

C̃(k)

)
= P(1, . . . , 1)

[
n−1

√
P1

P(1, . . . , 1)
− 1

]n−k

, k = 1, . . . , n; (13)

0 ≤
P1 · n−1

√
P1

P(1, ...,1) − 1

P(1, . . . , 1)
[

n−1
√

P1
P(1, ...,1) − 1

]n < 1;
µ2

µ1
= 1 +

−1 + P1 · n−1
√

P1
P(1, ...,1)

P(0, . . . , 0)
. (14)

The probabilities of considering fuzzy events, normalized in R̃(X̃1, . . . , X̃n) =
2n

∪
i=1

C̃i,

are calculated by the formula

P ′(C̃i) =
P(C̃i)

∑2n
j=1 P(C̃j)

, i = 1, . . . , 2n. (15)

In deriving the BD with fuzzy elementary events, we will proceed from the notion of
the independence of fuzzy events [23], which is not equivalent to the ordinary indepen-
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dence. This leads to the certain conditions of independence, which we discuss below. For
the purpose of clarity, let µ1 ≤ µ2; then, we obtain the fuzzy binomial distribution:

P ′
(

C̃1

)
=
[
P ′(1̃)

]n
, . . . ,P ′

(
C̃2n

)
=
[
P ′(0̃)

]n

Thus, conditions (13)–(15) are equivalent to the existence of the n-ar fuzzy-random
variable, which is a sequence of n repetitive, fuzzy, non-interacting, and independent
elementary events whose distribution is described by the BD with fuzzy elementary events

P ′
(
B̃k

n

)
= Ck

n

[
P ′(1̃)

]k[
P ′(0̃)

]n−k
= Ck

n
µk

1Pk
1 [µ1P0+(µ2−µ1)P(0...,0)]n−k

[µ1+(µ2−µ1)P(0,...0)]n
=

Ck
n

Pk
1

[
P0+

(
µ2
µ1
−1
)

P(0,...,0)
]n−k

[
1+
(

µ2
µ1
−11

)
P(0,...0)

]n ,
(16)

where
B̃k

n = ∪
∀ j with k successes

C̃j.

If µ2 < µ1, for the calculation of P ′
(
B̃k

n

)
, it is necessary to make the following changes

in the ending part of Equation (16). Instead of µ2
µ1

, we write µ1
µ2

, and instead of P(0, . . . , 0),
we write P(1, . . . , 1):

µ2

µ1
← µ1

µ2
, P(0, . . . , 0)← P(1, . . . , 1).

To be more precise, we receive

P ′
(
B̃k

n

)
= Ck

n
[µ2P1+(µ1−µ2)P(1,...,1)]kµn−k

2 Pn−k
0

[µ2+(µ1−µ2)P(1,...,1)]n
,

Ck
n

Pn−k
0

[
P1+

(
µ1
µ2
−1
)

P(1,...,1)
]n−k

[
1+
(

µ1
µ2
−1
)

P(1,...,1)
]n .

(17)

Note that in both cases, if µ2 = µ1, then (16) and (17) transform to the usual BD.
From Formulas (16) and (17), we see that P ′

(
B̃k

n

)
depends on the ratio µ2

µ1
if µ2 > µ1,

and on the ratio µ1
µ2

if µ2 < µ1, while the condition of independence and non-interaction

(14) allows us to express the normalized probability P ′
(
B̃k

n

)
with the probabilities of the

corresponding non-fuzzy events. Indeed, it is not difficult to show that

P ′(1̃) =





n−1

√

P1(

n−1︷ ︸︸ ︷
1, . . . , 1), µ1 < µ2

n−1

√

P0(

n−1︷ ︸︸ ︷
1, . . . , 1), µ1 > µ2

, P ′(0̃) =





n−1

√

P1(

n−1︷ ︸︸ ︷
0, . . . , 0), µ1 < µ2

n−1

√

P0(

n−1︷ ︸︸ ︷
0, . . . , 0), µ1 > µ2

(18)

If we enter the values from Formula (18) to Formulas (16) and (17), we get

P ′
(
B̃k

n

)
=





Ck
n


P1(

n−1︷ ︸︸ ︷
1, . . . , 1)




k
n−1

P1(

n−1︷ ︸︸ ︷
0, . . . , 0)




n−k
n−1

, µ1 < µ2,

Ck
n


P0(

n−1︷ ︸︸ ︷
1, . . . , 1)




k
n−1

P0(

n−1︷ ︸︸ ︷
0, . . . , 0)




n−k
n−1

, µ1 > µ2.

(19)
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Using the notion of a discrete distribution moment generating function, we analytically
obtain the formula of the GF of the BD with fuzzy elementary events (two cases are
considered as presented above).

GP ′(B̂k
n)
(y) =





[µ1P0+µ1P1y+(µ2−µ1)P(0,...,0)]n

[µ1+(µ2−µ1)P(0,...,0)]n
, µ1 < µ2,

[µ2P1y+(µ1−µ2)P(1,...,1)y+µ2P0]
n

[µ2+(µ1−µ2)P(1,...,1)]n
, µ1 > µ2.

(20)

As is well known, distribution moments are easily calculated from the generating
function. Without presenting a long process of calculation, we give the analytical form of
the first and second order moments of the BD with fuzzy elementary events

k =





nµ1P1
µ1+(µ2−µ1)P(0, ...,0)

n[µ2P1+(µ1−µ2)P(1, ...,1)]
µ2+(µ1−µ2)P(1, ...,1)

, µ1 < µ2,

, µ1 > µ2.
=





nP1

1+
(

µ2
µ1
−1
)

P(0, ...,0)

n[P1+
(

µ1
µ2
−1
)

P(1, ...,1)]

1+
(

µ1
µ2
−1
)

P(1, ...,1)

, µ1 < µ2,

, µ1 > µ2.
(21)

k
2
= k(1 +

n− 1
n

k) =





nµ1P1
µ1+(µ2−µ1)P(0, ...,0)

[
1 + (n−1)µ1P1

µ1+(µ2−µ1)P(0, ...,0)

]

n[µ2P1+(µ1−µ2)P(1, ...,1)]
µ2+(µ1−µ2)P(1, ...,1)

[
1 + (n−1)[µ2P1+(µ1−µ2)P(1, ...,1)]

µ2+(µ1−µ2)P(1, ...,1)

]
, µ1 < µ2,

, µ1 > µ2.

=





nP1

1+
(

µ2
µ1
−1
)

P(0, ...,0)

[
1 + (n−1)P1

1+
(

µ2
µ1
−1
)

P(0, ...,0)

]

n[P1+
(

µ1
µ2
−1
)

P(1, ...,1)]

1+
(

µ1
µ2
−1
)

P(1, ...,1)

[
1 +

(n−1)P1+
(

µ1
µ2
−1
)

P(1, ...,1)]

1+
(

µ1
µ2
−1
)

P(1, ...,1)

]
, µ1 < µ2,

, µ1 > µ2.

(22)

Expressions (16), (17), and (21) allow us to prove the existence of Poisson limits for
BD with fuzzy elementary events. It is not difficult to calculate the limits below if we use a
well-known numerical sequence limit calculation technique. There are some possible cases:

(1). k = const. In this case, we obviously have

lim
n→ ∞

k = const

P ′
(
B̃k

n

)
= e−k k

k

k!
, k = 0, 1, . . . (23)

(2). µ1 and µ2 are fixed and nP1 = const. It is easy to show that:

lim
n→ ∞

nP1 = λ = const
P1 → 0

P ′
(
B̃k

n

)
=





e−c′ (c′)
k

k! , c′ = λ

1+
(

µ2
µ1
−1
)
[P(
︷ ︸︸ ︷
0, . . . , 0)]

, µ1 < µ2,

e−c′′ (c′′ )
k

k! c′′ = λ +
(

µ1
µ2
− 1
)
[P(

n︷ ︸︸ ︷
1, . . . , 1)], µ1 > µ2.

(24)

Example 1. Let the fuzzy Bernoulli distribution be given X̃ ∼



values 1 0
probabilities 0.3 0.7

membership levels 0.5 0.6


.

Based on Formula (19), construct fuzzy BD for the n = 5. Use Formulas (21) and (22) and calculate
the moments of the first and second order k and k

2
. Calculate the standard deviation of distribution

SD =

√
k

2 − (k)
2
. Using the Poisson distribution Formula (24), calculate the distribution values

for k = 0, 1, . . . , 7 when nP1 ' const = 6.

Solution of Example 1. It is clear that for the calculations P1 = 0.3 and P0 = 0.7,
µ1 = 0.5 and µ2 = 0.6, n = 5, k = 0, 1, 2, 3, 4, 5. In our case, µ1 < µ2. Let us assume
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that P1(

n−1︷ ︸︸ ︷
0, . . . , 0) = P1(

4︷ ︸︸ ︷
0, . . . , 0) = (0.7)4 and P1(

n−1︷ ︸︸ ︷
1, . . . , 1) = P1(

4︷ ︸︸ ︷
1, . . . , 1) = (0.3)4. We receive

(Table 1).

Table 1. Conditional fuzzy binomial probability distribution.

k 0 1 2 3 4 5

P ′
(
B̃k

n

)
0.1681 0.3601 0.3087 0.1323 0.0283 0.0024

Using Formulas (21) and (22), we receive k = 1.4512, k
2

= 3.1360, and

SD =

√
k

2 − (k)
2

= 1.0149. For the Poisson distribution, if nP1 ' const = 6, then, for
k = 0, 1, 2, 3, 4, 5, we receive (Table 2).

Table 2. Fragment of Poisson distribution.

k 0 1 2 3 4 5 6 7

lim
n→ ∞

nP1 = const

P ′
(
B̃k

n

)

0.0029 0.0170 0.0497 0.0967 0.1411 0.1647 0.1603 0.1336

3. BDs with a Fuzzy Number of Successes

Consider a set An ≡ {0, 1, . . . , n}. Let k̃, k̃ ⊂ An be the fuzzy subset in An,
k̃ = “approximately k number” with some membership function µk̃ : An → [0, 1] and

k̃ =
n∪

l=0

[
µk̃(l)/l

]
[23,24].

IfAn is a set of numbers of possible successes in n trials of the binomial scheme, then it
is well known that to each element of An corresponds the probability P(Bk

n;p) = Ck
n pkqn−k.

Therefore, according to [24,25], for the BD with the fuzzy success number, we obtain the
formula

P
(
B k̃

n;p

)
= ∑n

l=0 µk̃(l)P
(
Bl

n;p

)
(25)

Here, P
(
B̃k

n;p

)
is the probability measure of a fuzzy event B k̃

n;p or the fuzzy subset k̃.

Note that in this scheme under consideration, the fuzzy events B k̃
n;p are not mutually

exclusive events. Therefore, according to the additivity property of a probability measure
of a fuzzy event [24,25], we have

P
(

n∪
k=0
B k̃

n;p

)
= ∑n

k=0 P
(
B k̃

n;p

)
− ∑

k,k′
P
(
B k̃

n;p ∩ B
∼
k′
n;p

)
+ ∑

k,k′ ,k′′
P
(
B k̃

n;p ∩ B
∼
k′
n;p ∩ B k̃′′

n;p

)
+ . . .

+(−1)nP
(
B õ

n;p ∩ . . . ∩ Bñ
n;p

)
.

(26)

Let 0 < pi < 1, i = 1, 2 be two numbers. An important feature of the distribution (25)
is that the law of composition is satisfied

P
(
B k̃

n;p1 p2

)
= ∑n

m=0 P
(
Bm

n;p1

)
P
(
B k̃

m,p2

)
(27)

which is easily verified by the simple calculations

P
(
B k̃

n;p1 p2

)
= ∑n

l=0 µk̃(l)P
(
Bl

n;p1 p2

)
= ∑n

l=0 µk̃(l)C
k
n(p1 p2)

l(1− p1 p2)
n−l

and
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∑n
m=0 P

(
Bm

n;p1

)
P
(
B k̃

m,p2

)
= ∑n

m=0 P
(
Bm

n;p1

)
∑n

l=0 µk̃(l)P
(
Bl

n;p2

)
=

∑n
l=0 µk̃(l)∑n

m=0 Cm
n Cl

m pm
1 (1− p1)

n−m pl
2(1− p2)

m−l = ∑n
l=0 µk̃(l)

n!
l!(n−l)! (p1 p2)

l(1− p1 p2)
n−l

×∑n
m=0

(n−l)!
(n−m)!(m−l)!

pm−l
1 (1−p1)

n−m(1−p2)
m−l

(1−p1 p2)
n−l = ∑n

l=0 µk̃(l)
n!

l!(n−l)! p1 pl
2(1− p1 p2)

n−l

×∑n−l
j=0

(n−l)!
j!(n−l−j)!

pj
1(1−p1)

n−l−j(1−p2)
j

(1−p1 p2)
n−l = ∑n

l=0 µk̃(l)P
(
Bl

n;p1 p2

)
.

Based on the property of the invariability of the exponential distribution, let us extend
the fuzzy subset k̃ from the set An to the non-negative integer numbers set N ∪ {0}. In this
case, the extended membership function µk̃(l), l ∈ N ∪ {0} will be a mapping of a set of
natural numbers N into [0, 1]. Consider the expression of the moments’ generating function
of fuzzy BD.

Consider the expression of the moments’ GF of the fuzzy BD

G(k̃) = ∑∞
n=0 P

(
B k̃

n;p

)
fn(u), (28)

where fn(u) = (1− u)un, 0 < u < 1.
If we denote v = pu

1−u+pu and gl(v) = (1− v)vl , then

G(k̃) = ∑∞
l=0 µk̃(l)gl(v). (29)

Indeed,

G(k̃) = ∑∞
n=0 fn(u)P

(
B k̃

n;p

)
= ∑∞

n=0 fn(u)∑n
l=0 µk̃(l)P

(
Bl

n;p

)
= f0(u)∑0

l=0 µk̃(l)P
(
Bl

0;p

)

+ f1(u)∑1
l=0 µk̃(l)P

(
Bl

1;p

)
+ f2(u)∑2

l=0 µk̃(l)P
(
Bl

2;p

)
+ . . .

= µk̃(0)
[

f0(u)P
(
B0

0;p

)
+ f1(u)P

(
B0

1;p

)
+ f2(u)P

(
B0

2;p

)
+ . . .

]
+

µk̃(1)
[

f1(u)P
(
B1

1;p

)
+ f2(u)P

(
B1

2;p

)
+ . . .

]

+µk̃(2)
[

f2(u)P
(
B2

2;p

)
+ f3(u)P

(
B2

3;p

)
+ . . .

]
+ . . .

Given that for r < s P
(
Bs

r;p

)
= 0, then

G
(

k̃
)
= ∑∞

n=0 µk̃(n)∑∞
l=0 fl(u)P

(
Bn

l;p

)

= ∑∞
n=0 µk̃(n)∑∞

l=0
l!

n!(n−l)! pn(1− p)l−n(1− u)ul

= ∑∞
n=0 µk̃(n)(1− u)(pu)n ∑∞

l=0
l!

n!(n−l)! [(1− p)u]l−n =

∑∞
n=0 µk̃(n)(1− u)(pu)n ∑∞

j=0
(n+j)!

n!j! [(1− p)u]j .

The last sum is a decomposition of the function [1− (1− p)u]−n+1 into series by
degrees of (1− p)u. Considering the connection between u and v, we finally obtain the
expression of (29)

G
(

k̃
)
= ∑∞

n=0 µk̃(l)
1− u

1− (1− p)u

[
pu

1− (1− p)u

]n
.

To determine the mean value of a success fuzzy number “with probability measure
P”, let us do the following. Consider a set of ordinary (nonfuzzy) events A ⊂ An. Define
the function of a set E(.) in such a way that, for any subset A, this function corresponds
to the conditional mean, i.e., if A ⊂ An, then E(A) = kA. According to the principle of
generalization [23], the domain of definition E(.) can be extended to fuzzy subsets as well.
Suppose we have a fuzzy subset k̃ of An, and k̃ is represented as

k̃ = ∪
α
Aα, α ∈ [0, 1], (30)
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where Aα denotes a cut set of level α. Then,

E(k̃) = ∪
α

E(Aα) = ∪
α

kAα
. (31)

Here, E(k̃) is a fuzzy subset on the set of all conditional mean values E . Relationships
(30) and (31) define the calculation rule for the values of the characteristic functions of fuzzy
subsets on the set of all conditional means µ

(
kA
)

corresponding to ordinary subsets An

over µk̃(l).
Define the mean value of the fuzzy success number as a convex combination [23] of

the fuzzy subsets E(k̃) with the following weights: Wn(k̃) =
P
(
B k̃

n;p

)

∑l P
(
B l̃

n;p

) . We define a fuzzy

subset with the following membership function

µk̃p

(
lA
)
= ∑

k̃∈An

Wn(k̃)µE(k̃)

(
lA
)

, lA ∈ E (32)

Note that when µũ(l)→ δl k, δl k =

{
1, i f l = k,
0, i f l 6= k

, that is, when moving k̃ to the

ordinary set {k}, “the average by the measure P” tends to the mathematical expectation
of the number of successes of the BD, k̃P → np. The method given here can be used for
the calculation of any order fuzzy moments k̃r

P , but when calculating high-order moments,
it is necessary to use a certain rule for multiplying fuzzy numbers. Most importantly, we
present a rule that is derived from the principle of generalization [23].

The discussion of the Poisson and Normal approximations for (25) is reduced to the
substitution of the corresponding approximate values of P

(
Bl

n;p

)
in this formula.

Example 2. Let the Bernoulli distribution be given X ∼
(

values 1 0
propbabilities 0.3 0.7

)
and let

a binomial experiment be created based on this Bernoulli experiment for n = 6. Let be given the
following fuzzy subsets “approximately k successes” (k = 0, . . . , 6) (Table 3).

Table 3. Fuzzy subsets “approximately k successes” (k = 0, 1, 2, 3, 4, 5, 6 ).

k̃\k 0 1 2 3 4 5 6

0̃ 1.0 0.8 0.6 0.5 0.3 0.2 0.1

1̃ 0.9 1.0 0.8 0.6 0.5 0.3 0.1

2̃ 0.7 0.8 1.0 0.9 0.6 0.4 0.2

3̃ 0.4 0.6 0.8 1.0 0.9 0.7 0.5

4̃ 0.2 0.3 0.5 0.8 1.0 0.8 0.6

5̃ 0.1 0.3 0.5 0.7 0.9 1.0 0.8

6̃ 0.1 0.2 0.3 0.5 0.7 0.9 1.0

Use the results of this Section to calculate the numerical values of BD with fuzzy
success numbers.

Solution of Example 2. Note that p = 0.3. Using expression (25) and the data of Table 3,
we calculate the BD values presented in Table 4.
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Table 4. Numerical values of BD with fuzzy success numbers—P
(
B k̃

n;p

)
.

k̃ 0̃ 1̃ 2̃ 3̃ 4̃ 5̃ 6̃

P
(
B k̃

n;p

)
0.6667 0.8118 0.8552 0.7342 0.4927 0.4586 0.3137

4. Fuzzy “Upper” BD

As is well known, the discussion on the (non-fuzzy) “upper” BD is based on a model of
the superposition of two processes: the binomial process Bk

n;p and the process of “increasing
the total number of failures” B0-denoted by B0 ◦ Bk

n;p, characterized by a priori probability
P(B0) = 1− γ [26], where p is the elementary event probability of (“1”). Let µ0 and µ′0 be

the values of the membership function that correspond to the complex events

n︷ ︸︸ ︷
(0, . . . , 0)

at attempting to distinguish the binomial and non-binomial origin events. Then, as it
is easy to verify, the probability of k successes in n trials of the binomial “upper” fuzzy
experiment—denoted by B̃0 ◦ Bk

n;p will have the form

P
(
B̃0 ◦ Bk

n;p

)
= 1

Z





µ0P(B0) + µ′0P
(
B0

)
P
(
B0

n;p

)
, k = 0,

P
(
B0

)
P
(
Bk

n;p

)
, k = 1, . . . , n,

=

1
Z

{
µ0(1− γ) + µ′0γ(1− p)n, k = 0,
γCk

n pk(1− p)n−k, k = 1, . . . , n

(33)

where Z is a constant that is determined by the normalization condition ∑
k
P
(
B̃0 ◦ Bk

n;p

)
= 1

and
Z = µ0(1− γ) + µ′0γ(1− p)n + γ

[
1− (1− p)n]. (34)

The corresponding GF and the first moment of this probabilistic distribution are
as follows:

GP(B̃0◦Bk
n,p)

(y) =
1
Z
[µ0(1− γ) + µ0γ(1− p)n + γ((1− p + py)n − (1− p)n)], (35)

and k = Z−1γnp.
Poisson’s limit ( np→ c > 0, n→ ∞, p→ 0) is

PPoiss(k) =
1
Z

{
µ0(1− γ) + µ′0γe−c , k = 0,

γe−c ck

k! , k = 1, 2, . . . .
(36)

k and c are related by the ratio

k =
[
µ0(1− γ) + µ′0γe−c + γ

(
1− e−c)]−1

γc. (37)

By the integration of Formula (36) with respect to membership levels 0 ≤ µ0 ≤ 1, 0 ≤
µ′0 ≤ 1, we obtain the Poisson distribution

PPoiss(k) =

{
1− (1− e−c)ξ, k = 0,
ξe−c ck

k! , k = 1, 2, . . . ,
(38)

where
ξ =

x

0≤µ0,µ′0≤1

γZ−1dµ0dµ′0. (39)
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It is easy to show that GF GPoiss looks like as follows:

GPoiss(y) = 1− (1− ec) ξ + ξe−c(ecy − 1), (40)

and in this case, k = ξc. Therefore, we finally receive

PPoiss(k) =





1−
(

1− e−
k

ξ

)
ξ , k = 0,

ξe−
k

ξ

(
k

ξ

)k

k! , k = 1, 2, . . . .

(41)

Example 3. Let the binomial experiment by the same data presented in Example 2 be given:
p = 0.3, q = 0.7, n = 6. For the creation of the (non-fuzzy) “upper” BD B0 ◦ Bk

n;p as a model of
the superposition of two processes—the binomial process Bk

n;p and the process of “increasing the
total number of failures” B0—we enter the a priori probability value P(B0) = 1− γ = 0.65 [13]
and the elementary event probability of (“1”)—p = 0.3. Let µ0 = 0.8 and µ′0 = 0.4 be the levels

of the membership function that correspond to the complex events

n︷ ︸︸ ︷
(0, . . . , 0) when we want to

distinguish the binomial and non-binomial origin events. Calculate: 1. the probability distribution
of k success of the fuzzy “upper” binomial experiment—denoted by B̃0 ◦ Bk

n;p; 2. the Poisson
distribution—PPoiss(k); 3. the Poisson distribution PPoiss(k).

Solution of Example 3. Case 1. Using Formula (33), we receive the numerical values
of the probability distribution of k success of the fuzzy “upper” binomial experiment—
denoted by B̃0 ◦ Bk

n;p. p = 0.3, q = 0.7, n = 6 (Table 5).

Table 5. The values of probabilities of the fuzzy “upper” BD B̃0 ◦ Bk
n;p.

k 0 1 2 3 4 5 6

P
(
B̃0 ◦ Bk

n,p

)
0.6347 0.1253 0.1342 0.0767 0.0247 0.0042 0.0002

Case 2. By Formula (36), we calculated the values of the Poisson distribution—PPoiss(k)
for the k = 0, 1 . . . , 6 success (Table 6).

Table 6. The probabilities of k success of the Poisson distribution—PPoiss(k).

k 0 1 2 3 4 5 6

PPoiss(k) 0.6445 0.1242 0.1129 0.0685 0.0319 0.0128 0.0052

Case 3. Using Formula (37), we numerically calculated the value of the first order
moment of distribution—k. Therefore, we analytically received expression of the functions
Z (Formula (34)) and GF GP(B̃0◦Bk

n;p)
(y). After this, we numerically calculated the value of

the integral ξ. Finally, we calculated the values of the Poisson distribution PPoiss(k) for the
k = 0, 1 . . . , 6 success (Table 7).

Table 7. The probabilities of k success of the Poisson distribution PPoiss(k).

k 0 1 2 3 4 5 6

PPoiss(k) 0.5100 0.1747 0.1572 0.0943 0.0424 0.0153 0.0061
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5. Fuzzy Fuchs Distribution

Let us consider a hybrid fuzzy-random process where the fuzzy process is pre-
distributed while the random process is ordinary. Based on the analysis of lexical material, it
has been established that the linguistic spectrum of the statistical process of word-formation
(which is in conversation) becomes two-component when switching to vocabulary. This
has been explained for several languages [24]. In this section, we construct two variants of
such a process, which can be used in the analysis of the linguistic spectrum of the statistical
process of word-formation. It is well known that, as in the case of the binomial “upper”
distribution, all variants of the Fuchs distribution are based on a two-process superposition
model, which, in the case under consideration, is interpreted as “determined” and binomial,
Φk

n;ν;p = Bν ◦ Bk
n−ν;p [24].

The derivation of the Fuchs probability distribution function for the most characteristic
cases discussed below actually coincides with the corresponding (non-fuzzy) probability
distribution. Therefore, we will present only the final results. In addition, we use the Fuchs
model and terminology [26]. We consider two cases:

Case 1. The pre-placement process is non-fuzzy, while the fuzziness of the binomial
process is conditioned by the fuzziness of the elementary events. In this case, the fuzzy
elemental event is characterized by a probability that depends on the number of pre-placed
elements. As in Section 1, we consider a basic fuzzy-random variable of Bernoulli B̃ ∼


values 1 0
probabilities P1 P0

membership levels µ
1

µ2


 and a sequence of fuzzy-random variables of Bernoulli

B̃ν ∼




values 1 0
probabilities P(ν)

1 P(ν)
0

membership levels f or ( ν) µ
(ν)
1 µ

(ν)
2


, ν = 0, . . . , n for the creation of a fuzzy

Fuchs probability distribution. In this case, the Fuchs probabilistic distribution is as follows:

P ′
(
B̃v ◦ B̃k

n−v;p

)
= ∑n

v=0 ρvCk−v
n−v

[
P ′n−v(1̃)

]k−v[
P ′n−v(0̃)

]n−k
, (42)

where ρν are the proportions of those cells in which the ν elements are pre-placed (according
to (15)) for ν = 0, 1, . . . and must meet the conditions µ

(ν)
1 < µ

(ν)
2 , ν = 0, . . . n, and

P (v)
(

C̃(k)

)
=

n−v︷ ︸︸ ︷
P(v)

1 (1, . . . , 1)




n−v−1

√√√√√√√

P(v)
1

n−v︷ ︸︸ ︷
P(v)

1 (1, . . . , 1)

− 1




n−k

, k = 1, . . . , (43)

P (v)
(

C̃2n−v

)
=

n−v︷ ︸︸ ︷
P(v)

1 (1, . . . , 1)·




n−v−1)

√√√√√√√

P(v)
1

n−v︷ ︸︸ ︷
P(v)

1 (1, . . . , 1)

− 1




n−v

+ 1− P(v)
1 · n−v−1

√√√√√√√

P(v)
1

n−v︷ ︸︸ ︷
P(v)

1 (1, . . . , 1)

,

0 ≤

P(ν)
1 ×

n−ν−1

√√√√√
P(ν)

1
n−ν︷ ︸︸ ︷

P(ν)
1 (1, . . . , 1)

P(ν)
1

n−ν

(1, . . . , 1)


 n−ν−1

√√√√√
P(ν)

1
n−ν︷ ︸︸ ︷

P(ν)
1 (1, . . . , 1)

− 1




n−ν

< 1,
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µ
(ν)
2

µ
(v)
1

= 1 + [

n−ν︷ ︸︸ ︷
P(ν)

1 (0, . . . , 0)]

−1



−1 +

n−ν−1

√√√√√√√

P(ν)
1

n−ν︷ ︸︸ ︷
P(ν)

1 (1, . . . , 1)




.

The corresponding GF of the distribution (42) and the first two moments are as follows:

GP ′(B̃v◦B̃k
n−v;p)

(y) = ∑
v=0

ρvyv [µ1P0+µ1P1y+(µ2−µ1)[

n−v︷ ︸︸ ︷
P(v)

1 (0, . . . , 0)]n−v

[µ1+(µ2−µ1)[

n−v︷ ︸︸ ︷
P(v)

1 (0, . . . , 0)]n−v

,

k = nP1 + (1− P0)
(

∑n
v=0 µ

(v)
1 ρv

)−1(
∑n

v=0 µ
(v)
2 ρv

)
(44)

k
2
= (∑n

ν=0 µ
(ν)
1 ρν)

−1[
∑n

ν=0 µ
(ν)
2 ρν + P1 ∑n

ν=0(n− ν)(2ν + 1 + P1(n− ν− 1))µ(ν)
2 ρν

]
. (45)

We can obtain the similar expressions for GP ′(B̃v◦B̃k
n−v;p)

(y), k, and k
2

in the case

µ
(ν)
1 > µ

(ν)
2 , ν = 0, . . . , n, (omitted here).

Case 2. The pre-placement process is fuzzy, while the Binomial process is non-fuzzy—
Φ̃k

n;ν;p = B̃ν ◦ Bk
n−ν;p. Analogously to the previous case, we receive

P ′(B̃v ◦ Bk
n−v;p) = ∑n

v=0
ρv pv

∑n
s=0 ρs ps

P
(
Bk

n−v;p

)
, (46)

where (ν, ρν, pν), ν = 0, 1, . . . , n is some fuzzy-random variable of the pre-placement
process in the Fuchs distribution.

Given the subjective nature of the spectral probabilities in the Fuchs distribution, we
can argue that, in this case, the non-fuzzy and fuzzy distributions coincide.

Example 4. Case 1. Calculate the first and second moments of the Fuchs distribution if, in the role

of fuzzy Bernoulli distribution, we selected B̃ ∼



values 1 0
probabilities P1 = 0.3 P0 = 0.7

membership levels µ1 = 0.5 µ2 = 0.6


,

and the sequence of the membership levels of B̃ν is given by Table 8.

Table 8. Sequence of the membership levels of B̃ν.

Values 1 0

Probabilities P1 = 0.3 P0 = 0.7

Membership levels µ1 = 0.6 µ2 = 0.8

Membership levels for ν = 0 µ
(0)
1 = 0.5 µ

(0)
2 = 0.6

Membership levels for ν = 1 µ
(1)
1 = 0.4 µ

(1)
2 = 0.7

Membership levels for ν = 2 µ
(2)
1 = 0.3 µ

(2)
2 = 0.6

Membership levels for ν = 3 µ
(3)
1 = 0.5 µ

(3)
2 = 0.8

Membership levels for ν = 4 µ
(4)
1 = 0.3 µ

(4)
2 = 0.6

Membership levels for ν = 5 µ
(5)
1 = 0.5 µ

(5)
2 = 0.9

Membership levels for ν = 6 µ
(0)
1 = 0.6 µ

(0)
2 = 0.7

Calculate the values of k and k
2
.
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Case 2. Let the fuzzy binomial experiment and the fuzzy random variable on all
possible success values be given {0, 1, 2, 3, 4, 5, 6} (Table 9).

Table 9. The fuzzy random variable.

ν 0 1 2 3 4 5 6

pν 0.05 0.1 0.2 0.3 0.2 0.1 0.05

ρν 0.15 0.25 0.45 0.75 0.55 0.35 0.25

Let the fuzzy Bernoulli variable also be given

X̃ ∼



values 1 0
probabilities P1 = 0.3 P0 = 0.7

membership levels µ1 = 0.5 µ2 = 0.6


. Calculate the numerical value of the

Fuchs distribution.
Solution of the Example 4.
In Case 1, the fuzzy character of the binomial process is conditioned by the fuzzy character

of the elementary events. Therefore, we received an expression of the corresponding GF. After
this, we calculated the values of k = 2.3100 and k̃2 = 10.7470 (Formulas (44) and (45)).

In Case 2, when in the Fuchs experiment there is a fuzzy pre-placement process
while the binomial process is non fuzzy—Φ̃k

n;ν;p = B̃ν ◦ Bk
n−ν;p, for obtaining the numer-

ical values of the Fuchs fuzzy distribution, we used Table 9 and Formula (46), where
P(Bl

n−ν;p) = Cl
n−ν pl(1− p)n−ν−l , p = P1 = 0.3, Cl

n−ν = 0 if l > n− ν. The results are
given by Table 10.

Table 10. Values of the Fuchs fuzzy distribution.

k 0 1 2 3 4 5 6

P ′(B̃v ◦ Bk
n−v;p) 0.1157 0.4044 0.5702 0.3867 0.1382 0.0336 0.0045

6. Conclusions

The research presented in this paper is relevant today in terms of its applicability.
Experimental, objective data are often not sufficient to build discrete distributions in the
study, analysis, and synthesis of difficult and complex phenomena. Often, such data do
not exist at all. Modern modeling, and in particular simulation modeling, is unthinkable
outside of the solution of the problems of restoring discrete distributions. The research
presented in this paper is different from the existing studies. It refers to a generalization of
binomial distribution where the results of an experiment are described by fuzzy variables.
These variables are defined in the universe of all the results of the experiment. We are
dealing with a binomial fuzzy-random variable. It has both a probability distribution and a
membership function in the universe of all results of the experiment. This paper discusses
four new and different cases of BD fuzzy extensions. Case 1: The fuzzy extension of the
BD is presented when the Bernoulli fuzzy-random variable is considered instead of the
Bernoulli random variable—i.e., the success and failure events have both probabilistic
distributions and their implementation capabilities in the form of compatibility levels.
Based on this information, the probabilistic distribution of the corresponding binomial
fuzzy-random variable is calculated. The conditions of restrictions on this distribution
are obtained. It is shown that these conditions depend on the ratio of success and failure
compatibility levels. The formulas for the GF of the built distribution and the first and
second order moments are also obtained. The Poisson distribution is calculated as a limit
case of a constructed binomial fuzzy-random experiment. Case 2: The fuzzy extension of
the BD is considered, where the number of successes, in contrast to the previous case, is of
a fuzzy nature and is represented as a fuzzy subset of the set of possible success numbers.
A formula for calculating the probability of the convolution of binomial dependent fuzzy
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events is obtained. Using the principle of the invariancy of an exponential distribution,
the corresponding GF is built. As a result, the scheme for calculating the mathematical
expectation of the number of fuzzy successes is defined. It becomes possible in future
studies to obtain Poisson and normal distributions as marginal cases of the fuzzy BDs
constructed here. Case 3: The fuzzy extension of the “upper” BD is considered, where
the fuzziness is represented by the compatibility levels of the binomial and non-binomial
events of the complete failure complex. The GF and the first-order moment of the built
distribution are calculated. Sufficient conditions for the existence of an appropriate marginal
distribution, a Poisson distribution, are also obtained. Case 4: The fuzzy extension of the
classical Fuchs distribution is presented, where the fuzziness is reflected in the growing
number of failures. The built distribution function and the first and second order moments
of the distribution are also calculated. In each section of the paper, for illustration of the
obtained results, examples of the built fuzzy BD are considered. It becomes possible in
future studies to obtain Poisson and normal distributions as marginal cases of the fuzzy
Fuchs distribution. Of course, the practical application of the hybrid fuzzy-binomial models
studied here is in great demand. This is the main motivation to continue research in this
direction in the future. The main gradient of the research will be directed to the solution of
applied problems, where the distributions built in this paper, or their modifications and
generalizations, will be used.

Author Contributions: Conceptualization, G.S. and B.M. (Bidzina Midodashvili); Formal analysis,
T.M.; Methodology, J.K.; Software, B.M. (Bidzina Matsaberidze). The authors contributed equally in
this work. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Shota Rustaveli National Scientific Foundation of Georgia
(SRNSF), grant number [FR-21-2015].

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The paper is original and, therefore, no data were used.

Acknowledgments: We would like to mention our deceased colleague Tamaz Gachechiladze, whose
ideas were very helpful to us in this work. The authors are grateful to the anonymous reviewers for
their valuable comments and suggestions in improving the quality of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kacprzyk, J.; Kondratenko, Y.P.; Merigó, J.M.; Hormazabal, J.H.; Sirbiladze, G.; Gil-Lafuente, A.M. A Status Quo Biased Multistage

Decision Model for Regional Agricultural Socioeconomic Planning Under Fuzzy Information, Advanced Control Techniques in
Complex Engineering Systems: Theory and Applications. In Studies in Systems, Decision and Control; Springer: Cham, Switzerland,
2019; Volume 203, pp. 201–226.

2. Sirbiladze, G. Extremal Fuzzy Dynamic Systems. Theory and Applications. In IFSR International Series on Systems Science and
Engineering; Springer: New York, NY, USA; Heidelberg, Germany; Dordrecht, The Netherlands; London, UK, 2013; p. 28.

3. Sirbiladze, G.; Ghvaberidze, I.K.B. Multistage decision-making fuzzy methodology for optimal investments based on experts’
evaluations. Eur. J. Oper. Res. 2014, 232, 169–177. [CrossRef]

4. Sirbiladze, G. Associated Probabilities’ Aggregations in Interactive MADM for q-Rung Orthopair Fuzzy Discrimination Environ-
ment. Int. J. Intell. Syst. 2020, 35, 335–372. [CrossRef]

5. Garg, H.; Sirbiladze, G.; Ali, Z.; Mahmood, T. Hamy Mean Operators Based on Complex q-Rung Orthopair Fuzzy Setting and
Their Application in Multi-Attribute Decision Making. Mathematics 2021, 9, 2312. [CrossRef]

6. Sirbiladze, G. Associated Probabilities in Interactive MADM under Discrimination q-Rung Picture Linguistic Environment.
Mathematics 2021, 9, 2337. [CrossRef]

7. Sirbiladze, G. An Identification Model for a Fuzzy Time Based Stationary Discrete Process. Iran. J. Fuzzy Syst. 2022, 19, 169–186.
8. Sirbiladze, G.; Manjafarashvil, T.T. Connections between Campos-Bolanos and Murofushi–Sugeno Representations of a Fuzzy

Measure. Mathematics 2022, 10, 516. [CrossRef]
9. Goswami, P.; Baruah, H.K. Fuzzy Discrete Distribution: The Binomial Case. 2008. Available online: https://Www.Researchgate.

Net/Publication/235006838_Fuzzy_Discrete_Distributions (accessed on 10 April 2022).

183



Axioms 2022, 11, 220

10. Buckley, J.J. Discrete Fuzzy Random Variables. In Fuzzy Probabilities. New Approach and Applications, Studies in Fuzziness and Soft
Computing; Springer: Berlin, Germany, 2003; Volume 115, pp. 51–54.

11. Buckley, J.J.; Eslami, E. Uncertain probabilities I: The discrete case. Soft Comput. 2003, 7, 500–505. [CrossRef]
12. Parlak, I.B.; Tolga, A.C. Fuzzy Probability Theory I: Discrete Case. In Fuzzy Statistical Decision-Making, Studies in Fuzziness and Soft

Computing; Kahraman, C., Kabak, Ö., Eds.; Springer: Berlin, Germany, 2016; Volume 343, pp. 13–31.
13. Kahraman, C.; Bekar, E.T.; Senvar, O. A Fuzzy Design of Single and Double Acceptance Sampling Plans. In Intelligent Systems

Reference Library; Kahraman, C., Yanık, S., Eds.; Springer: Berlin, Germany, 2016; Volume 97, pp. 179–211.
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