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Preface to ”System Dynamics Models for Public
Health and Health Care Policy”

System dynamics (SD) is a simulation modeling discipline first developed by MIT’s Jay Forrester

in the late 1950s, and it has been applied to medical and health care issues since the 1960s. Its

emphasis is on analyzing complex issues by quantitatively representing their inherent stocks and

flows, behavioral feedback loops, delays, and nonlinearities. Applications to public health and health

care have increased greatly in number over the years, and since 2017, they have accounted for 10-20%

of the hundreds of papers presented each year at the International SD Conference. The advent of

COVID-19 recently boosted the number of SD health applications, but the upward trend has been

evident since the 1990s. As of this writing, the bibliography of the SD Society includes about 750

published health applications, of which, nearly 80% were published after 2000 and 60% after 2010.

Dozens of journals and books have featured SD health applications over the years. Many health

organizations at the local, national, and international levels—including the US CDC and the World

Health Organization—have been long-time sponsors of SD studies. By any measure, health-related

modeling is a very active part of the SD field.

Yet, many people (both systems methodologists and health researchers and policymakers) are

only dimly aware of this good and important work. We gladly accepted the invitation to guest edit

a Special Issue in Systems as an opportunity to highlight innovative new work, concentrate it in a

single supportive journal, and bring it to a broader audience. We solicited papers on all aspects of

public health and health care policy. We stipulated that all submitted papers needed to base their

findings on strong evidence and solid methodology and be written in a clear, straightforward style.

We oversaw a rigorous review process, supported by the always helpful editorial team at Systems,

with special thanks to Managing Editors Margie Wang and Janie Zhang. Thanks also to all of the

anonymous paper reviewers whose constructive comments ensured that the papers would be of the

highest quality.

The result was the collection of ten excellent articles in this reprint. Arranged here in order of

their publication dates (from June 2022 to May 2023), they cover a wide variety of topics in the field

of public health (including chronic disease, COVID-19, youth homelessness, and community health

and well-being), medicine (lower-limb prosthetics and prostate cancer screening), and modeling

methodology (the use of cascaded system archetypes and Monte Carlo sensitivity analysis).

We hope you will get as much out of reading these papers as we did in their development.

Jack Homer and Gary B. Hirsch

Editors
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Evaluating Public Health Efforts to Prevent and Control
Chronic Disease: A Systems Modeling Approach
Morgan Clennin 1,* , Jack Homer 2 , Alex Erkenbeck 1 and Cheryl Kelly 1

1 Kaiser Permanente Colorado, Institute for Health Research, Aurora, CO 80014, USA;
alex.erkenbeck@kp.org (A.E.); cheryl.kelly@kp.org (C.K.)

2 Homer Consulting and MIT Research Affiliate, Barrytown, NY 12507, USA; jack@homerconsulting.com
* Correspondence: morgan.n.clennin@kp.org

Abstract: The growing burden of chronic disease represents a complex challenge to public health.
Innovative approaches, such as system dynamics simulation modeling, can aid public health pro-
fessionals in understanding such complex issues and identifying effective solutions. This paper
describes a system dynamics model and its application in projecting the impacts of evidence-based
interventions on chronic disease for the state of Colorado. The development of the model was guided
by data and input from subject matter expertise, peer-reviewed literature, and surveillance data. The
model includes 28 intervention levers for chronic disease prevention, screening, and management.
Interventions were simulated from 2020 to 2050 to project their impact on ten preventable causes of
death. The simulations indicated the 6 most impactful interventions by 2050 to be adult smoking
prevention, diabetes prevention, smoking cessation, blood pressure management, adult physical
activity promotion, and colorectal cancer screening. Together, these 6 interventions could reduce
preventable deaths by 7.1%, or 74% of the 9.6% reduction from all 28 interventions combined. This
system dynamics model is a flexible tool that could be adapted or extended to include other popu-
lations or preventable chronic diseases. Prioritization and wide-scale implementation of the most
impactful interventions could significantly reduce preventable deaths resulting from chronic disease.

Keywords: simulation model; public health practice; chronic disease; prevention; cardiovascular
diseases; cancer

1. Introduction

Despite significant efforts to understand complex health problems, such as chronic
disease, public health professionals still face a difficult challenge in the prioritization of
interventions. Well-designed experiments have provided important information about the
effect sizes of single interventions over short follow-up periods. However, the existing
literature cannot tell us what is likely to happen over longer periods of time, or how
multiple interventions (clinical and population-wide) might interact to influence population
health. The most pressing public health problems of the 21st century are the result of
complex interactions between multiple interrelated factors. Hence, public health must
supplement traditional analytic tools with systems approaches that can explicitly consider
such complexities [1–7].

One such systems approach is system dynamics (SD) simulation modeling. Unlike
some other approaches, SD models realistically represent complex causal pathways with
intermediate variables, delays, nonlinearities, and feedback loops [6–9]. SD models of
populations are typically compartmental, meaning they specify population subgroup
categories rather than modeling each individual in the population separately. Since the
1970s, SD has been increasingly used to model many public health and health care issues
such as chronic diseases [10–12]. One of the best-known SD applications is the Center
for Disease Control and Prevention’s Prevention Impacts Simulation Model (PRISM) of
cardiovascular disease (CVD) risks and outcomes [13–19].

1
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Building on previous work, our purpose is two-fold: (i) to describe a state-level SD
model of CVD, cancer, and chronic pulmonary disease inspired by and in the general style
of PRISM; and (ii) to demonstrate how this simulation model can be used to estimate the
impacts of state-level public health efforts to prevent and control multiple chronic diseases
over a period of 30 years. With these impact estimates, we can identify the evidence-
based public health interventions (or combinations of interventions) that have the greatest
potential to influence population health outcomes.

2. Materials and Methods
2.1. Model Development

The SD model was developed through a collaborative effort with key partners and
subject matter experts across Colorado. Several meetings and conversations were held
to (a) discuss the mechanisms by which specified interventions impact health outcomes,
(b) identify peer-reviewed literature documenting the association between interventions
and health outcomes, and (c) review the existing data sources to identify the best available
state and national-level data for model inputs. The feedback received guided the devel-
opment of a preliminary draft of the simulation model. The model was updated on an
ongoing basis to reflect emerging evidence-based literature and/or new surveillance data
through the end of the contract. Kaiser Permanente Colorado’s Institutional Review Board
deemed the study to be non-human subjects research.

2.2. Model Overview

This SD model is broader in disease scope than the PRISM model, detailing the primary
risk factors and development pathways not only for CVD, but also for five types of pre-
ventable cancer (namely, colorectal, breast, cervical, oral, and respiratory), as well as asthma
and chronic obstructive pulmonary disease (COPD). The model contains 28 intervention
levers that were designed to reflect risk reduction strategies identified in Colorado’s Chronic
Disease State Plan 2018–2020 (https://cdphe.colorado.gov/chronicdisease (accessed on
1 June 2022)). These intervention levers are evidence-based strategies for the prevention,
early detection, and treatment of cardiovascular disease, cancer, and chronic pulmonary
disease. The long-term goal of such strategies is to reduce the burden of morbidity and
mortality associated with the reference chronic disease outcomes.

Figure 1 presents an overview of the model’s structural logic. The arrows depict causal
chains of risk factors, interventions, disease conditions, and causes of death. The model
covers the entire Colorado population, changing over time with births, net in-migration,
deaths, and aging. Youth are represented in two age groups of 0–11 and 12–17, and adults
in three age groups of 18–39, 40–64, and 65-plus. The model’s chronic (controllable but
not reversible) prevalent conditions include diabetes, hypertension, high cholesterol, CVD,
asthma, and COPD. All five cancers are modeled from risk factors through latency periods
to rates of incidence and then mortality, based on five-year mortality rates. Interventions
affecting diet and physical activity may affect youth and/or adults, and these behavioral
factors cascade to impact obesity, diabetes, hypertension, high cholesterol, CVD, asthma
control, and two types of cancer (i.e., colorectal and breast). Smoking prevalence has
similarly wide-ranging effects, impacting diabetes, CVD, asthma, COPD, and four types of
cancer (i.e., respiratory, oral, colorectal, and breast).

The shaded boxes in Figure 1 show the 10 causes of death (aside from all-causes deaths)
calculated in the model and Colorado’s 2015 death count for each. Cause of death is defined
as the first cause listed on the death certificate [20]. The total number of deaths across all
10 preventable causes of death (hereafter ‘Combo10’) represented 36.5% of all 2015 deaths
in Colorado (or 13,270 of 36,352 deaths). Among the Combo10 deaths, CVD was the largest
cause of death across the 10 preventable causes (6527 of 13,270 deaths, 49.2%), followed by
COPD (2576 deaths, 19.4%), and respiratory cancers (1543 deaths, 11.6%).

2
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Figure 1. Model’s structural logic. All conditions were calibrated based on state-level surveys, with
detailed age group breakouts based on national data from NHANES and NHIS. Numbers in bold
are Colorado deaths in 2015 for 10 specified causes of death, which together account for 13,270 out
of Colorado’s 36,352 total deaths in 2015. Key: bold italic = intervention; box = prevalent condition;
shaded = cause of death.

The model was implemented using VensimTM software (Ventana Systems Inc., Har-
vard, MA, USA) and contains more than 1600 interacting equations and parameters (de-
tailed documentation of the model, in the form of an extensive reference guide, is available
upon request from the authors). The model is initialized in 2000 and simulates forward
by increments of one-quarter of a year through 2050; all output variables are recalculated
at every increment. The model’s base run, which closely matches historical data through
2019, assumes no change in exogenous inputs after 2020. Interventions can be ramped up
at any time starting in 2020 and can be tested individually or in any combination.

2.3. Model Inputs

Data sources that included historical metrics of the specified disease types and as-
sociated risk factors were identified to calibrate the model. Table 1 presents the publicly
available longitudinal data sources that were used for calibrating and validating the model.
The identified data sources provide data inputs over the period of 1999–2019. The last
column of the table presents calculated ratios (e.g., Colorado vs. national BRFSS, and
national BRFSS vs. national NHANES) that were helpful for synthetic data extrapolations
to fill in gaps in Colorado’s historical records.
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Table 1. Publicly available Colorado and US overall data sources used for calibrating the state-level
system dynamics model.

Variable Colorado US Overall Ratios 1

Adult obesity BR 1999–2018 BR 1999–2016,
NH 1999–2008

CO vs. US: 0.73;
BR vs. NH: 0.76

Youth obesity NSCH 2003–2011
(age 10–17)

NH 1999–2008
(age 12–17) CO vs. US: 0.72

Adult healthy diet BR 1999–2009
(fruit-veg 5×day)

BR 1999–2009
(fruit-veg 5×/day) CO vs. US: 1.05

Youth healthy diet
(high school)

HKCS 2015
(veg 2×/day) (n/a) (n/a)

Adult healthy drinks BR 2009–2017
(sugary < 1/day) (n/a) (n/a)

Youth healthy drinks
(age 1–14)

CCHS 2004–2014
(sugary < 1/day) (n/a) (n/a)

Adult physical activity BR 2001–2009
(per guideline)

BR 2001–2009
(per guideline) CO vs. US: 1.13

Youth physical activity
(high school)

HKCS 2013–2015
(per guideline) (n/a) (n/a)

Breastfeeding
(6 months+) NIS 2001–2016 NIS 2001–2015 CO vs. US: 1.17

Adult current smoking BR 1999–2019 BR 1999–2019,
NH 1999–2008

CO vs. US: 0.91;
BR vs. NH: 0.935

Adult former smoking BR 2011–2019 BR 2011–2019,
NH 1999–2008

CO vs. US: 1.04;
BR vs. NH: 1.09

Youth smoking
(high school) YR 2005–2019 YR 1999–2019 CO vs. US: 0.85

Adult prediabetes (n/a) NH 1999–2008 (n/a)

Adult diabetes BR 1999–2018 BR 1999–2016,
NH 1999–2008

CO vs. US: 0.70;
BR vs. NH: 0.74

Diabetes self-management
education (DSME) or

control

BR 2000–2017
(DSME)

BR 2011–2015 (DSME),
NH 2005–2008 (control)

CO vs. US: 1.08;
BR vs. NH: 0.98

Adult high blood pressure BR 1999–2015 BR 1999–2015,
NH 1999–2008

CO vs. US: 0.81;
BR vs. NH: 0.825

Adult high cholesterol BR 1999–2015 BR 1999–2015,
NH 1999–2008

CO vs. US: 0.92;
BR vs. NH: 0.715

Cardiovasc. disease
(ever event) BR 2005–2018 BR 2005–2016,

NH 1999–2008
CO vs. US: 0.69;
BR vs. NH: 0.99

Adult asthma BR 2000–2016 BR 2000–2016,
NHIS 2001–2016

CO vs. US: 0.99;
BR vs. NHIS: 1.11

Youth asthma (0–17) (n/a) NHIS 2001–2016 (n/a)

Adult COPD BR 2011–2016,
NHIS 1999–2011

BR 2011–2016,
NHIS 1999–2011

CO vs. US: 0.71
(BR), 0.78 (NHIS)

HPV vaccination female
(age 13–17)

NIS 2008–2017
(2+ doses)

NIS 2012–2016
(2+ doses) CO vs. US: 1.05

HPV vaccination male
(age 13–17)

NIS 2013–2017
(2+ doses)

NIS 2012–2016
(2+ doses) CO vs. US: 1.13

4
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Table 1. Cont.

Variable Colorado US Overall Ratios 1

Colorectal cancer screen
(age 50–85) BR 2014–2016 BR 2014–2016 CO vs. US: 1.00

Mammography past
2 years (age 50–74) BR 2014–2016 BR 2014–2016 CO vs. US: 0.95

Pap test past 3 years
(age 21–65) BR 2014–2016 BR 2014–2016 CO vs. US: 1.02

Cancer incidence over
5 years USCS 2011–2015 (n/a) (n/a)

Deaths by 5-or-10 year
age group

CDPHE VSP
1999–2017 annual (n/a) (n/a)

1 Ratios were used to fill in gaps in Colorado’s historical records. Key: BR (BRFSS): Behavioral Risk Factor
Surveillance System (CO and US); NIS: National Immunization Survey (CO and US); NH (NHANES): National
Health and Nutrition Examination Survey (US); YR (YRBSS): Youth Risk Behavior Surveillance System (CO and
US); NSCH: National Survey of Children’s Health (CO and US); USCS: United States Cancer Statistics (CO and
US); HKCS: Healthy Kids Colorado Survey (CO); CDPHE VSP: CO Dept of Public Health and Environment, Vital
Statistics Program (CO); CCHS: Colorado Child Health Survey (CO); NHIS: National Health Interview Survey
(CO and US); 5 cancer types: respiratory, colorectal, breast, oral, cervical; 11 death causes: diabetes, hypertension,
CVD, asthma, COPD, 5 cancers, all-cause; (n/a): not available or not needed for CO model calibration. Adult
refers to those 18+ years old.

Table 2 shows the 28 types of interventions represented in the model, divided into four
categories. The 11 population health interventions primarily target population approaches
to improve healthy behaviors and involve no clinical visits. The 4 clinical prevention
interventions are similarly preventive but do involve clinical resources. The 7 clinical
screening interventions improve the detection of prevalent disease conditions so that they
can be better managed or treated. The 6 clinical management interventions help bring
diagnosed disease conditions under control. As shown in the table, each intervention
has a corresponding target subpopulation (‘target description’), performance metric for
which improvement in a health behavior or outcome is sought (‘performance definition’),
and estimated performance levels for the baseline year of 2018—prior to any intervention
implemented in the model (‘2018 value’). For example, success for the ‘healthy food—
adults’ intervention was defined by the percentage of all Colorado adults reporting the
consumption of five or more fruits and vegetables per day, which was reported to be 25%
of the population in 2018.

Table 2. Evidence-based interventions (n = 28) included in the system dynamics simulation model 1.

Intervention Types Target Description Performance Definition (Data Source) 2018 Value

Population health

Healthy food—adults Adults age 18+ Fruits/vegetables 5× per day (BRFSS) 25%
Healthy food—youth Youth age 0–17 Vegetables 2× per day, high school (HKCS) 30.5%

Healthy beverage—adults Adults age 18+ Less than 1 sugary drink per day (BRFSS) 74%

Healthy beverage—youth Youth age 0–17 Less than 1 sugary drink per day,
ages 1–14 (CCHS) 85%

Physical activity—adults Adults age 18+ Exercise per national guidelines (BRFSS) 57%

Physical activity—youth Youth age 0–17 Exercise per national guidelines,
high school (HKCS) 52%

Breastfeeding New mothers Breastfeed non-exclusive for 6 months
(NIS for CO) 67%

Antismoking—adults Adults age 18+ Smoking initiation below 2018 level, ages
18+ (NHIS) 0%

Antismoking—youth Youth age 0–17 Smoking rate below 2018 level, high
school (YRBSS) 0%

Radon in new homes New housing units Radon mitigation beyond 2018 level (CDPHE) 0%
Radon in resales Housing unit resales Radon mitigation beyond 2018 level (CDPHE) 0%

5
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Table 2. Cont.

Intervention Types Target Description Performance Definition (Data Source) 2018 Value

Clinical prevention

Diabetes prevention program Diagnosed (or high risk for)
prediabetes Completion of NDPP program (CDC for CO) 0.1%

Female HPV vaccination Females age 13–26 At least 2 doses (NIS for CO) 55%
Male HPV vaccination Males age 13–26 At least 2 doses (NIS for CO) 55%
Smoking quit services Adults age 18+ Successful quit rate above 2018 level (NHIS) 0%

Clinical screening

Blood glucose Adults age 18+ Checked past 2 years (BRFSS) 74%
Blood pressure Adults age 18+ Checked past 2 years (BRFSS) 83%

Cholesterol Adults age 18+ Checked past 2 years (BRFSS) 81%
Lung CT scan Smokers age 50–80 Per national guidelines (NHIS for US) 4.4%

Colorectal cancer Adults age 50–84 Per national guidelines (BRFSS) 68%
Mammography Females age 50–74 Per national guidelines (BRFSS) 74%

Pap test Females age 21+ Per national guidelines (BRFSS) 81%

Clinical management

Diabetes Diagnosed diabetes Completion of diabetes self-mgmt class (BRFSS) 60%
Hypertension Diagnosed hypertension Control per guidelines (NHANES for US) 65%

High cholesterol Diagnosed high cholesterol Control per guidelines (NHANES for US) 60%
Asthma—youth Diagnosed asthma age 0–17 No past year attack (NHIS for US) 47%
Asthma—adults Diagnosed asthma age 18+ No past year attack (NHIS for US) 55%

COPD Diagnosed COPD Daily treatment (BRFSS for selected states) 50%
1 Shown for each intervention is the corresponding target population, baseline performance metric, data source,
and value of the metric in 2018.

2.4. Model Testing and Analysis

To test the model, each intervention was initiated in January 2020 and ramped up to a
specified final dose or yield by January 2021. The dose refers to the fraction of the targeted
population (see Table 2) that is (a) not meeting the performance metric at baseline; and
(b) would successfully and permanently meet the performance metric after exposure to
the intervention [21]. For model testing, the dose remained in effect until the end of the
simulation in 2050.

To demonstrate how this SD model could be applied in public health, each interven-
tion was first tested individually at a representative dose based on (a) the implementation
literature; or (b) a corresponding national Healthy People 2030 (HP2030) goal (n = 18
interventions) [22]. For example, one HP2030 goal (HDS-05) calls for increasing the pro-
portion of hypertensive adults whose blood pressure is under control from 47.8% to 60.8%
nationally, which corresponds to a dose of 25% (=(0.608 − 0.478)/(1 − 0.478)). Next, we
used the model to test 27 different combinations of interventions, performed by layering in
interventions (at their representative doses) one by one in order of their individual impact
on Combo10 deaths in 2050. That is, we first tested a combination of the most impactful (#1
ranking) intervention with the second most impactful (#2); for the next test we added #3,
and so forth, until all 28 interventions were combined in the final test.

3. Results

Table 3 reports the independent and cumulative impacts of the 28 interventions
included in the model on the simulated death rates per 100,000 adults as of 2050. For each
intervention, its independent impact on the Combo10 deaths is reported as the rate (i.e.,
death rate per 100,000) and percent (%) change relative to the base run. Next, the cumulative
impact on Combo10 deaths is reported as the summative rate and percent change relative
to the base run (e.g., top ranked intervention only, top intervention and second ranked
intervention, and so on). Finally, the last column reports the proportion of the total
cumulative impact across all 28 interventions that is accounted for by the corresponding
ranked interventions. For example, when the top 3 ranked interventions are combined,
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the result is a 4.86% reduction in the Combo10 death rate, which represents 50.7% of the
cumulative 9.58% reduction in Combo10 death rate from combining all 28 interventions.

Table 3. Independent and cumulative intervention impact on simulated death rates per 100,000 adults
as of 2050 (across 10 preventable causes of death, ‘Combo10’) and percentage reduction relative to
the base run.

Intervention_Dose % 1 Rank 2

Independent Impact Cumulative Impact
Proportion of Total
Cumulative ImpactDeath Rate per

100,000 % Change Death Rate per
100,000 % Change

Base run 0 411.098 0.00% 411.098 0.00% 0.0%

Smoking Prevention _23 1 402.391 2.12% 402.391 2.12% 22.1%

Diabetes Prevention_18 2 404.690 1.56% 396.066 3.66% 38.2%

Smoking Cessation_16.5 3 405.258 1.42% 391.119 4.86% 50.7%

Blood Pressure Management_25 4 406.856 1.03% 387.019 5.86% 61.1%

Physical Activity_11 5 407.652 0.84% 383.876 6.62% 69.1%

Colorectal Cancer
Screening_26.5 6 409.220 0.46% 382.029 7.07% 73.8%

Diabetes Screening_20 7 409.494 0.39% 380.604 7.42% 77.4%

Asthma Control_16 8 409.605 0.36% 379.371 7.72% 80.6%

Cholesterol Management_18 9 409.766 0.32% 378.140 8.02% 83.7%

Blood Pressure Screening_20 10 409.806 0.31% 376.764 8.35% 87.2%

Fruit and Vegetable
Consumption_5 11 409.934 0.28% 375.771 8.59% 89.7%

Diabetes Management_7 12 410.033 0.26% 374.768 8.84% 92.2%

Radon Reduction, Housing
Resale_100 13 410.138 0.23% 374.009 9.02% 94.2%

Cholesterol Screening_20 14 410.577 0.13% 373.480 9.15% 95.5%

Radon Reduction, New
Construction_100 15 410.704 0.10% 373.249 9.21% 96.1%

Respiratory Cancer
Screening_10.5 16 410.789 0.08% 372.986 9.27% 96.8%

Smoking Prevention, Youth_23 17 410.805 0.07% 372.765 9.32% 97.3%

Asthma Control, Youth_16 18 410.876 0.05% 372.605 9.36% 97.7%

COPD Treatment_3.9 19 410.884 0.05% 372.409 9.41% 98.2%

Mammograms_16 20 410.924 0.04% 372.239 9.45% 98.7%

HPV Vaccination, Females_61.5 21 410.977 0.03% 372.119 9.48% 99.0%

Sugar Sweetened Beverage
Policy_5 22 410.997 0.02% 372.036 9.50% 99.2%

Physical Activity Youth_6 23 410.999 0.02% 371.960 9.52% 99.4%

Breastfeeding Iniatives_23 24 411.007 0.02% 371.873 9.54% 99.6%

Pap Smears_19.5 25 411.028 0.02% 371.810 9.56% 99.8%

HPV Vaccination, Male_61.5 26 411.035 0.02% 371.750 9.57% 99.9%

Fruit/Vegetable Consumption
Youth_5 27 411.052 0.01% 371.714 9.58% 100.0%

Sugar Sweetened Beverage
Policy Youth_5 28 411.096 0.00% 371.712 9.58% 100.0%

1 Interventions target adults population unless youth denoted. 2 Interventions are ranked from highest to lowest
based on their individual impact.

3.1. Base Run

In the base run (which assumes no interventions implemented), the annualized
Combo10 death rate per 100,000 adults rises from 341.3 (2025) to 411.1 (2050). This is
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due to increases over time in per-capita deaths from diabetes, hypertension, CVD, colorec-
tal and breast cancer, and COPD. These death rates increase due to aging of the population
and reflect the legacy of the substantial rise in obesity over the past decades [23,24].

3.2. Individual Intervention Testing Results

Interventions (assuming the representative doses) were ranked from most to least
impactful in terms of their ability to reduce the Combo10 death rate by the end of the
simulation in 2050. The single-intervention results are shown in the ‘independent impact;
columns in Table 3, with the base run result shown at the top for comparison purposes.
Three distinct clusters of interventions were distinguished based on magnitude of impact.
The first cluster included top-ranking interventions 1 to 5 with impacts in the range of
2.12% down to 0.84%. The second cluster encompassed interventions 6 to 13 with impacts
ranging from 0.46% down to 0.23%. The last cluster included interventions 14 to 28 with
impacts of 0.13% or less. We find that reasonable uncertainties about assumptions (e.g.,
intervention dose) could lead to changes in the order of ranking within each cluster, but
they are unlikely to move an intervention out of one cluster and into another.

Figure 2 presents the single-intervention testing results for the six most impactful
interventions as a graph over time from 2020 to 2050. The outcomes are expressed as a
percent reduction from the base run in the Combo10 death rate. Taken together, these
six most impactful interventions include at least one intervention from each of the four
general categories (i.e., population health, clinical prevention, clinical screening, or clinical
management); differ in terms of which causes of death they avert (collectively averting
all of the Combo10 types except cervical cancer); and vary in the speed and strength of
their impacts.
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Figure 2. Simulated Combo10 death rate reduction over time relative to the base run for the six
top interventions tested individually, 2020–2050; ‘Combo10’ first-listed causes of death: diabetes,
hypertension, CVD, asthma, COPD, and 5 types of cancer. All interventions started in January 2020,
ramped up to the indicated dose by January 2021. Top six interventions: (i) SmokePrev_adult23:
smoking prevention (adults) intervention with a dose of 23%; (ii) DPP18: diabetes prevention program
with a dose of 18%; (iii) SmokeQuit16.5: smoking quitting services intervention with a dose of 16.5%;
(iv) BPmgmt25: BP management intervention with a dose of 25%; (v) PA_adult11: physical activity
(adults) intervention with a dose of 11%; (vi) CRCscreen26.5: colorectal cancer screening intervention
with a dose of 26.5%. For additional information, see Supplemental File Table S1.
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In particular:

1. Smoking prevention for adults (Smoking Prevention_23) is a population health in-
tervention that averts eight of the Combo10 causes of death (see Figure 1 to trace
this and other interventions to impacted deaths). The dose was estimated to be 23%
based on HP2030 goal TU-02. The death reduction is rapid for CVD but delayed for
other causes of death as the intervention effects traverse changes in the incidence and
prevalence of diabetes, cancer, asthma, and COPD before gaining strength throughout
the simulation. It is the second-most impactful intervention through 2030, and the
single most impactful by 2040 and 2050.

2. The National Diabetes Prevention Program (Diabetes Prevention_18) is a clinical
prevention intervention that ultimately averts 4 of the 10 specified causes of death. The
dose was estimated at 18% based on HP2030 goal D-01. The death reduction is delayed
(traversing the incidence and gradual progression of diabetes) but gains strength
throughout the simulation to make this the second-most impactful intervention by
2040 and 2050.

3. Smoking cessation services and products (Smoke Cessation_16.5) represent a clinical
prevention intervention that averts eight causes of death. The dose is estimated at
16.5% based on HP2030 goal TU-14. Its effects are similar to those of the smoking
prevention intervention above, only not as strong. It is the third-most impactful
intervention by 2040 and 2050.

4. Blood pressure management (Blood Pressure Management_25) is a clinical man-
agement intervention that averts deaths from hypertension and CVD. The dose is
estimated at 25% based on HP2030 goal HDS-05. The death reduction starts quickly
and strongly, making this the most impactful of the six interventions through 2030
and the fourth-most impactful in 2040 and 2050.

5. Adult physical activity (Physical Activity_11) is a population health intervention that
averts seven causes of death. The dose is estimated at 11% based on HP2030 goal
PA-02. The death reduction is delayed (traversing changes in the prevalence of obesity,
diabetes, hypertension, high cholesterol, and COPD) but grows rapidly after 2030 to
make this the fifth-most impactful intervention by 2040 and 2050.

6. Colorectal cancer screening (Colorectal Cancer Screening_26.5) is a clinical screening
intervention that averts deaths from CRC. The dose is estimated at 26.5% based on
HP2030 goal C-07. The death reduction is delayed by several years (traversing the
progression of colorectal cancer) but is substantial by 2030, making this the sixth-most
impactful intervention by 2040 and 2050.

3.3. Combination Intervention Testing Results

The ‘cumulative impact’ columns of Table 3 present the results of combination testing
and show how the addition of each subsequent intervention contributes to a reduction in
the Combo10 death rate in 2050. All 28 interventions combined produce a Combo10 death
rate reduction of 9.6% by 2050. A small number of top interventions are responsible for a
majority of the combined potential. For example, the first 3 interventions together produce
a reduction of 4.9%, which is 51% of the full combination; and the top 6 interventions
together produce a reduction of 7.1%, which is 74% of the full combination of 28.

4. Discussion
4.1. Findings

Here, we have described and demonstrated a SD simulation model of CVD, cancer,
and pulmonary disease using publicly available data for the state of Colorado. The model
was initialized in 2000 and closely matches historical data through 2019. The model
simulates 28 evidence-based interventions individually or in combination from 2020 to
2050 across four public health domains (i.e., population health, clinical prevention, clinical
screening, and clinical disease management). The interventions were tested individually at
representative doses, and the six interventions with the largest projected impact by 2050
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on the combined 10 causes of death (5 types of cancer plus CVD, hypertension, diabetes,
asthma, and COPD) were identified. These top six interventions were adult smoking
prevention, diabetes prevention, smoking cessation, blood pressure management, adult
physical activity promotion, and colorectal cancer screening.

We have compared these six interventions to the others with a lower impact to look
for differentiating characteristics. The top interventions were found to share the following
characteristics: (a) significant room for improvement in performance; (b) significant inter-
vention dose; (c) significantly affecting at least one of the six leading causes of death—CVD,
COPD, respiratory cancer, diabetes, colorectal cancer, or breast cancer; and (d) a shorter
lead time from behavioral change to impact on deaths. Less impactful interventions lacked
at least one of these characteristics. These characteristics should be considered by public
health decision-makers weighing alternative interventions to improve population health.

In combination testing, we found that a small number of the top interventions could
together deliver a majority of the potential impact on deaths from all 28 evidence-based
interventions combined. In particular, the top 6 interventions (6/28 = 21% of all interven-
tions) produced a combined simulated impact equal to 74% of that of all interventions
combined. This result is reminiscent of the well-known 80/20 rule, or more generally the
Pareto principle or Zipf’s law, observed in many fields of study, in which a relatively small
subset of contributing elements are responsible for the great majority of the total combined
contribution [25].

4.2. Next Steps and Future Applications

The next steps and future applications of the model include incorporating data from
state-level implementation of the sorts of interventions we have identified here. Incor-
porating real-world data would enable users of this SD model to test actual doses that
were achieved during intervention implementation in a specific state. The model could be
used to prospectively evaluate the long-term impacts of such efforts and provide realistic
expectations for impacts on population health over the course of three decades. This
would likely include exploring various strategic combinations of interventions, such as
those sharing a particular public health approach (e.g., population health) or focusing on a
particular set of diseases (e.g., cancers). Additionally, the model can be used to identify the
evidence-based public health interventions (or combinations of interventions) that have the
greatest potential to influence population health outcomes. Such prospective evaluations
can help to guide the prioritization and implementation of diverse public health approaches
that will be required to alleviate the burden of chronic disease.

Future extensions of the model could further improve its usefulness. First, the model
could be adapted to other U.S. states and/or extended to include other chronic diseases for
which a strong enough evidence base exists. Second, the model could be supplemented
with additional outcome metrics of interest to researchers and decision-makers. The PRISM
model, for example, calculates disease impacts on life years, disability-adjusted life years,
quality-adjusted life years, and work productivity. It also includes estimates of intervention
implementation cost, but these can be difficult to estimate and may vary widely depending
on the assumed specifics of implementation [13,14]. Finally, the model could be extended
to address questions of health inequity by characteristics such as race, education, income,
and urbanicity. Toward this end, we have done some preliminary disaggregation of the
model, making it possible to explore the implications (for disparity as well as total impact)
of interventions targeted toward subgroups that have higher risks but also higher barriers
to intervention adoption.

4.3. Strengths and Limitations

SD is an attractive approach for chronic disease modeling and has proven its value
over the years, as the PRISM model attests. However, such models are only as strong as
the quality of data inputted into the model. To continually improve the model efficacy, the
best available data should be continually monitored and updated. For example, future
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iterations of this model might adjust doses for each intervention based on their impact
during the COVID-19 pandemic. Because of their compartmental nature (in contrast with
individual-level microsimulations), SD models can be quite broad in scope, and alternative
scenarios can be set up and run in a matter of seconds. However, compartmental models
such as PRISM and the newer one described here do have a limitation: they cannot easily
identify and quantify emergent clinical phenomena and distributions at the individual level,
such as co-morbidity patterns. For such focused analysis, excellent microsimulations have
been built, including single-disease models of particular cancers, CVD, and COPD [26–30].
For the purposes of public health decision-making, however, SD models can provide a
practical yet rigorous approach to projecting population-level intervention impacts into the
near and longer terms.

5. Conclusions

The SD simulation model discussed here can help public health decision-makers
to systematically evaluate the short- and long-term impacts of diverse approaches to
improving population health. In our Colorado application, the six top interventions for
reducing projected deaths were adult smoking prevention, diabetes prevention, smoking
cessation, blood pressure management, adult physical activity promotion, and colorectal
cancer screening. These six interventions address 9 of the 10 specified types of preventable
death (all but cervical cancer, which causes the fewest deaths of the 10 types) and encompass
four public health domains. Together, they would make a powerful and relatively compact
package of interventions for reducing deaths from chronic disease, potentially delivering
74% of the impact of 28 evidence-based interventions combined.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/systems10040089/s1, Table S1: Simulated Combo10 death rate
reduction over time relative to the base run for the six top interventions tested individually, 2020–2050
(supporting Figure 2).
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Abstract: Globally, the COVID-19 pandemic bought devastating impacts to multiple economic sectors,
with a major downfall observed in the tourism sector owing to explicit travel bans on foreign and
domestic tourism. In Nelson Mandela Bay (NMB), South Africa, tourism plays an important role;
however, negative effects from the pandemic and resulting restrictions has left the sector dwindling
and in need of a path to recovery. Working together with local government and stakeholders, this
study applied system dynamics modelling to investigate the impacts of COVID-19 on coastal tourism
in NMB to provide decision-support and inform tourism recovery strategies. Through model analysis,
a suite of management interventions was tested under two ‘what-if’ scenarios, with reference to the
business-as-usual governance response scenario. Scenario one specifically aimed to investigate a
desirable tourism recovery strategy assuming governance control, whereas scenario two investigated
a scenario where the effects of governance responses were impeded on by the exogenous effects from
the virus. Results suggest that uncertainty remained prevalent in the trajectory of the infection rate
as well as in associated trends in tourism; however, through the lifting of travel restrictions and the
continual administration of vaccines, a path to recovery was shown to be evident.

Keywords: COVID-19; tourism recovery; public policy; system dynamics; participatory modelling

1. Introduction

The COVID-19 pandemic, and its subsequent lockdowns, was a severe shock to the
global economy. After the initial spread of the virus from its origin in China, governments
around the world started to respond, some more cautiously and hastily than others, in
an effort to combat the spread of the virus. Despite interventions, a continual rise in
infection rates led to the declaration of a global pandemic by the World Health Organisation
(WHO) in March 2020. Thereafter, stricter government interventions through national
lockdowns were introduced to assist in ‘flattening the infection curve’. Though the national
lockdowns were introduced with good intent to help ‘save lives’, the strict restrictions
caused devastating impacts on the global economy. This effect was exacerbated in South
Africa (SA) and locally in Nelson Mandela Bay (NMB), the focus area of this study, where
the economy was previously strained by slow economic growth and social imbalances [1].
Multiple sectors have been devasted by the impacts of COVID-19, with many countries
experiencing large contractions in Gross Domestic Product (GDP) and a consequential
decline in employment levels [2]. It has been projected that the tourism sector will be one of
the most affected by the pandemic, with devastating impacts that have never been observed
before. Globally, COVID-19 caused a ~70% decrease in international tourism, return to the
levels of 30 years ago, a significantly greater reduction than what was observed during the
SARS virus in 2003 or the global economic recession in 2009, which resulted in contractions
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of ~0.4% and ~4%, respectively [2,3]. Economies slowly started to recover in 2021 owing to
the lift of ‘lockdown’ restrictions in response to the administration of vaccines; however,
sectors such as tourism, that were less resilient to the exogenous shock of the pandemic,
are still experiencing negative effects, with remaining uncertainty concerning the rate of
recovery to pre-pandemic levels.

In SA, and at a local scale, in NMB, uncertainty around recovery has manifested
throughout in the tourism sector. Tourism plays an important role in the metro, with a
total economic contribution (direct and induced) of ~R14 billion in 2019 (~11% of GDP),
and employs a total of 98,000 persons, with the largest contribution coming from domestic
tourism [4]. As a result of the pandemic, in reference to 2019, the metro experienced a
72% and 45% contraction in foreign and domestic tourists, respectively, followed by a
61% decrease in bednight sales and a 37% decline in direct tourism spend [4]. To ‘control’
COVID-19 transmission in SA, the government adopted an adaptive risk reduction strategy
based on a five-level alert system, with level five corresponding to the strictest level of
restrictions (i.e., national lockdown). The restrictions, particularly those associated with
public movement, drastically impacted domestic and foreign tourism, where provincial
travel was only permitted for levels one and two, and foreign travel only at level one,
notwithstanding individual country’s travel ban thresholds. Additional restrictions in-
cluding beach closures and accommodation capacity limitations further affected coastal
tourism in the bay. Moreover, the trajectory of COVID-19 infections influenced travelers’
behaviour patterns through changes in the perception of the susceptibility and severity of
the situation [5]. This study therefore highlights the need for tourism stakeholders and
related government authorities to understand the knock-on effects arising from COVID-19
and associated feedback processes to facilitate and enable sustainable tourism recovery.

The temporal nature underlying the impacts of COVID-19 on tourism, and the associ-
ated uncertainty regarding tourism recovery, makes it particularly amenable to the method
of system dynamics modelling (SDM). SDM is a structured approach to systems thinking
that involves mapping, modelling, and managing complex and dynamic problems [6].
The method has proven to be advantageous for policy makers to gain a holistic overview
of the problem and recognise key feedback effects and time delays through analytical
decision support. SDM has been widely applied in the field of epidemiology [7] and re-
cently used to explore questions related to COVID-19 and the underlying social responses
and consequential impacts. Different models have been applied to different regions and
contexts and to address different questions. For example, SDM was applied to investigate
the evolution of COVID-19 infection waves and societal responses at a global scale [8,9].
Similarly, Ibarra-Vega [10] and Sy et al. [11] assessed COVID-19 outbreak responses to vari-
ous containment policies. SDM as a method has also been proven suitable for application
in tourism management and planning [12–15]. In combination, a few simulation-based
studies have been applied to explore tourism re-opening strategies amid COVID-19 [16,17]
and specifically to investigate the impacts on coastal tourism [18]. The application of SDM
has therefore proven to be particularly useful to explore the complex infection dynamics
and to understand impacts on tourism over time by providing a virtual environment to
simulate and test recovery strategies.

This study aimed to develop a system dynamics model to simulate the impacts of
COVID-19 on coastal tourism in NMB, in order to provide decision-support and to inform
recovery strategies. This entailed:

• Exploring the implications of COVID-19 on the tourism sector by mapping the cause-
and-effect problem dynamics;

• Identifying key model variables that could serve as leverage points for potential
management interventions;

• Simulating scenarios of how different management interventions can facilitate sus-
tainable recovery of the tourism sector.
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2. Methods: System Analysis and Simulation Design

System dynamics modelling (SDM) was applied in this study. Model development
consisted of conceptualisation, model formulation, and model testing, in line with SDM
best practices [19,20]. Model conceptualisation involved desktop research and stakeholder
engagement, where Causal Loop Diagramming (CLD) was applied as a tool to facilitate
stakeholder engagement and to capture multiple perspectives. The stakeholders involved
in the process included representatives from the tourism sector, local government, accom-
modation groups, and local tourism operators. The meeting process was divided into
three stages held between September 2021 and February 2022. The processes consisted
of individual stakeholder meetings (to capture stakeholders’ ‘mental models’) and two
group modelling workshops: the first aimed at presenting the model results and discussing
relevant scenarios and the second focused on discussing leverage points and management
interventions from the stance of the local municipality. A more comprehensive overview
of the stakeholder engagement process is available in [21]. Thereafter, model formulation
entailed formulating the stock–flow diagrams (SFDs) with associated algebraic equations
and parameters values. Finally, model testing was performed through a series of validation
tests to build confidence in the model structure and behaviour (see Section 2.3).

2.1. Model Boundary

The model boundary was drawn by collating information from the literature and
stakeholder conversations into a holistic CLD. This included identifying and mapping the
common causal links that capture the dynamics associated with the impacts of COVID-19
on coastal tourism in the bay. The boundary map shows the causal links and feedback
loops between the key model variables. These feedback loops are described in more detail
below (Figure 1 and Table 1).
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Figure 1. Casual map (or Casual-Loop-Diagram) illustrating the key model variables and feedback
loops making up the model structure. Positive arrows (in green) represent a positive polarity and
negative arrows (in red) represent a negative polarity; ‘B’ represents a balancing (negative) loop and
‘R’ represents a reinforcing (positive) loop. Orange variables show the suggested leverage points.
Grey boxes illustrate areas of input from different stakeholder groups.
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Table 1. Description of the balancing and reinforcing feedback loops affecting model behaviour. The
sequence of variables in each loop is described, where a plus corresponds to a positive polarity and a
minus a negative polarity.

Feedback Loop Feedback Loop Description

Balancing Feedback Loops

B1 “virus running out of fuel”
(infected − susceptible + risk of infection + infected)

The “virus running out of fuel” balancing loop explains how the
infection population decreases as the susceptible population
decreases, thus limiting the number of infection cases. More

susceptible persons, more infections, more infections, less
susceptible people.

B2 “stay safe”
(infected + hospitalised + healthcare strain + social restrictions − risk

of infection + infected)

“Stay safe” demonstrates how a reduction in social contacts
through lockdown and social distancing regulations reduces the
risk of infection, which decreases the infected population. More
infections, more social restrictions, lower risk of infection, lower

infected population.

B3 “vaccination relief”
(infected + hospitalised + healthcare strain + perceived severity

+vaccination demand + vaccinated − susceptible + risk of infection
+ infected)

This loop shows that more infected cases result in a higher
vaccination demand, which in turn may increase the number of
vaccinated persons, which reduces the susceptible population

vulnerable to being infected.

B4 “vaccination immunity”
(hospitalised + healthcare strain + perceived severity + vaccination

demand + vaccinated − infection severity + hospitalised)

The “vaccination immunity loop” captures the effects of
decreased severity and hospitalisations as the vaccinated

population increases.

B5 “foreign travel lock-down”
(infected + international travel ban − foreign tourists + infected)

The foreign and domestic tourism lockdown loops explain how
the number of infected cases decreases the number of foreign
and domestic tourists due to various travel restrictions. This
results in less movement from tourists and, hence, the risk of

infection transmission.

B6 “domestic travel lock-down”
(infected + perceived severity + travel risk − tourism attractiveness +

domestic tourists + infected)

B7 “too much room at the inn”
(accommodation occupancy − closures − capacity − occupancy)

This loop explains how a low accommodation occupancy can
result in more accommodation closures, which in turn decreases

tourism accommodation capacity, which increases the
accommodation occupancy fraction across the metro.

Reinforcing feedback loops

R1 “contact spreading”
(infected + risk of infection + infected)

Contact spreading explains that more infected persons can
increase the risk of infection, transmission of the infection, and,

hence, the number of infections. However, this loop is
counteracted on by the ‘virus running out of fuel’

balancing loop.

R2 “reinfections”
(infected + recovered + herd immunity + susceptible + risk of infection

+ infected)

The “reinfections loop” shows the reinforcing effect, where
those who have recovered from infection or who were
vaccinated become susceptible again after the assumed

immunity delay.

R3 “tourism infrastructure investment”
(tourism attractiveness + tourists + revenues + public infrastructure +

tourism attractiveness)

The tourism infrastructure investment loop shows that an
increase in tourism can increase the tourism budget, which can
result in higher investment in public and tourism infrastructure,
which can increase the attractiveness of tourism and hence the

number of tourists.

R4 “marine aesthetic beauty”
(coastal and marine attractiveness + marine tours + tourist

participation + marine health awareness + marine health
+ attractiveness)

“Nature showing off” explains how a healthy marine
environment can increase the level of participation in coastal

and marine activities, which can result in a higher awareness of
the natural value of the bay and a greater awareness of the need

to protect this natural value.

18



Systems 2022, 10, 120

2.2. Model Structure

The model is divided into three sub-models: (1) COVID-19 infection dynamics;
(2) tourism dynamics of NMB; (3) coastal tourism impacts (Figure 2). Figure 2 shows
that COVID-19 affects tourism, which in turn affects COVID-19 infection dynamics. Sim-
ilarly, tourism affects coastal tourism activities, which in turn affects the attractiveness
of tourism in NMB. A simplified overview of the sub-model structures is shown below
(Figures 3–5). The model was built in Stella® Architect software [22]. It simulates the
dynamics over a five-year period, from January 2019 to December 2023, using a daily
time scale and the Euler integration method. The model was parameterised with data
and information obtained from scientific literature, news articles, and stakeholders. Addi-
tional information on model documentation is available in the supplementary materials
(Tables S1 and File S1).
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Figure 3. Simplified stock–flow diagram showing the main model variables that were formulated
to simulate the COVID-19 infection dynamics at a national scale. Encircled variables represent
the key output variables of interest, which were chosen based on their importance for decision-
making and policy analysis. Variables in pink are those connected to another sub-model, and orange
variables are applied in scenario analysis or in the visual user interface. This structure also applies to
Figures 4 and 6 below.
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Figure 5. Stock–flow diagram showing the main model variables that were formulated to capture the
impacts of COVID-19 on coastal and marine tourism activities.

2.2.1. COVID-19 Sub-Model Structure
COVID-19 Infection Dynamics

The COVID-19 sub-model captures the infection dynamics at a national scale, given
that government decisions regarding the pandemic were initially based on country-level
statistics, which in turn were enforced in provincial and local regions (Figure 3). The
model is based on the Susceptible–Exposed–Infected–Recovered (SEIR) structure, which
is commonly applied in epidemiology [7–9]. The COVID-19 infection is initiated by an
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imported infection at the beginning of 2020 through foreign tourists. Thereafter, the
infection dynamics are formulated such that the Susceptible Population (60 million persons)
flows into the Exposed Population depending on the infectivity of the virus, which can depend
on the variant of the virus. In the model, the infectivity is estimated to be 0.0125 dmnl,
so as to obtain a reproduction factor between 3 and 5 dmnl, depending on the number of
social contacts (~14 persons/person/day) and duration of the infection (~14 days) [23].
After an incubation delay of approximately ~5 days [8,10], the exposed population then
becomes either symptomatically or asymptomatically infectious. According to [24], it has been
found, based on seroprevalence estimates (i.e., SARS-CoV-2 antibody positivity among the
population), that, for every reported, case there are approximately nine asymptomatic cases
(and hence unreported). This has particularly increased uncertainty regarding transmission
of the virus among asymptomatic infectious and susceptible persons. Depending on the
infection duration, asymptomatic and symptomatic persons recover, except for the severe
symptomatic cases (~15–20% [25]) that are admitted to hospital. Further, depending on the
fatality of the virus (~3–5% [10]), the hospitalised population can recover or become deceased,
where the fatality fraction is subject to the level of healthcare strain, defined by hospital
capacity (i.e., intensive care (ICU) beds = 3000 persons; [1,26]). Based on the level of health
care strain, decisions are made based on the severity of the infection trend and hence the
level of social restrictions, which, in turn, are intended to decrease the number of social
contacts to slow transmission of the virus. In order to ‘control’ infection trends in the model
(i.e., decrease transmission), the process of vaccination is introduced, which ultimately
‘drains’ the susceptible population stock, at least for the period of vaccine efficacy. The model
does not differentiate between different types of vaccines or differences in vaccine efficacy,
though this may be important to consider for future work. Nor does the model differentiate
between the effectiveness of infection-induced immunity against vaccination immunity, as
suggested in [27], but rather assumes that the recovered and vaccinated population may
become susceptible again after 180 days (6 months) [28,29] in the absence of an immune-
escaping variant. Therefore, the effects of vaccination are formulated with the purpose of
decreasing the level of hospitalisations and fatalities, and to achieve ‘heard immunity’ (i.e.,
~70% of the population with immune response either from vaccination or recovery from
previous infection as defined by WHO) such that the likelihood of mutation and infection is
decreased. The rate of vaccination is affected by a daily (initial) vaccination goal of ~300,000
persons/day [30], which is formulated through a step function starting in March 2021 and
changes depending on vaccination demand, which is dependent on the perceived severity
induced through the level of healthcare strain. Lastly, the rate of vaccination is constrained
by vaccination hesitancy, which has been shown to range between 50 and 70% [31] on the
basis of cultural grounds, or from being unaware, apathetic, or misinformed [32].

Effects of COVID-19 on Tourism Behaviour

The national infection trends and wave severity further impact tourism demand in
NMB, with different effects for foreign and domestic tourism behaviour (Figures 3 and 5).
Foreign travel risk is formulated by applying the formula that was developed by the Centres
for Disease Control and Prevention (CDC). This calculates the travel health threshold, which
is based on the cumulative infection incidence per 100,000 individuals of the population
over a consecutive 28-day period [33]. Then, according to the four-level system criteria
of the CDC, reported numbers above 500 persons categorise countries on the red list and
prohibit travel, whereas reported figures below 500 gradually lowers restrictions. Therefore,
in the model, foreign tourism depends on the number of tourists that normally visit SA per
year (10.2 million in 2019 [34]), subject to the current travel restriction level. In contrast,
domestic tourism in SA is formulated through a domestic tourism pool, which is represented
by the populations that are assumed to have ‘herd immunity’, as they are assumed to
be more willing to travel. The portion of the population that are less likely to travel are
those that remain susceptible and are therefore still affected by the perceived risk of travel
emanating from trends in healthcare strain, which is expected to delay travel decisions
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by ~365 days. This logic was derived from an investigation conducted by [5], whereby
changes in the infection rate directly affected the perceived severity of the situation, hence
decreasing attractiveness of travel, whereas, understanding the chances of contracting
the virus affected perceived susceptibility and the willingness to travel. This theory is in
line with the concept of “risk habituation” by [35], whereby perceived risk decreases as
threats decrease or becoming increasingly familiar. Variables associated with the effects of
socio-economic uncertainty on one’s willingness to travel are additionally considered to be
relevant to the problem context but have been excluded from the model boundary during
the current analysis and can be considered for future adaptations.

2.2.2. Tourism Sub-Model Structure
NMB Tourism and Accommodation

In NMB, there are two stocks of tourists, namely domestic and foreign tourists, initialised
to 2019 data (Figure 4). The number of tourists, both foreign and domestic, is dependent
on the attractiveness of NMB as a tourist destination, which depends on factors such as
seasonality, tourism infrastructure, the attractiveness of coastal and marine activities, and,
finally, the effects on travel emanating from the COVID-19 infection rate (Figures 3 and 4).
Regardless of the purpose for travel, tourists are typically in the bay for short trips (~3 days
for domestic tourists and ~2 days for foreigners [36]). The number of tourists staying in
paid accommodation at any time (~36% for domestic tourists and 50% for foreign tourists),
relative to the number of accommodation facilities (~400 facilities) and accommodation
capacity (~15,000 persons), determines the level of accommodation occupancy. The number
of bednights sold multiplied by the average rate per night (~R600 person/day) further
contributes to local tourism revenue, in addition to those obtained from daily tourist
spending (~R800–R1500/person/day [36]) and revenue from coastal and marine activities.
It is then assumed that a fraction of total tourism revenues (~20%), collected through
tourist taxes and levies, contributes towards the local municipal tourism budget. A higher
tourism budget is required to increase tourism attractiveness through local investments
in public and tourism infrastructure; however, degrading infrastructure simultaneously
increases expenditure, in addition to operational costs and costs associated with COVID-
relief funding during the periods of travel restriction. Lastly, tourism labour is assumed
to increase in relation to the number of tourists visiting the bay, assuming 1 employee for
every 40 tourists, calculated according to the number of employees in the sector obtained
from [37,38]. In the tourism sub-model, the main variables of interest are the total number
of bednights sold; accommodation occupancy; the total number of tourists; the tourism budget;
tourism employees; and the state of tourist infrastructure. These variables have been identified
in the literature, as well as by stakeholders, to be particularly important as indicators with
which to measure the impacts of COVID-19 on the tourism sector (Figure 4).

Coastal Tourism Dynamics

The coastal tourism sub-model specifically aims to capture the knock-on effects on
beach recreation and marine tour participation and associated revenues (Figure 5). As
reported in [38,39], coastal and marine tourism attracts approximately 55% of visiting
tourists through beach recreation alone. The normal coastal and marine attractiveness
factor is largely dependent on the marine aesthetic value of the bay, which is formulated
through a stock variable “Marine health”. Marine health is, however, subject to changes in
the rate of cumulative pressure from other marine developments in the bay [40] (Figure 5).
Next, marine wildlife tours are considered an attractive marine activity [41], with the
number of tour participants affected by the attractiveness of marine wildlife tours [42] and
tour costs. The number of tourists engaging in coastal and marine activities and a portion
of the revenues obtained can be considered valuable in creating marine awareness and
funding conservation activities aimed at conserving marine health. All the same, the impacts
that arose directly from the pandemic included beach closures and the closure of beach
establishments [43]. This decreased the overall attractiveness of coastal and marine tourism,
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largely decreasing the number of tourists visiting the bay, with consequences on tourism
accommodation, revenue, and labour (Figure 5).

2.3. Model Testing

As the study was undertaken simultaneous to the evolving dynamics of the COVID-
19 pandemic, model validation was a continuous and iterative process. This involved
comparing the model data to available observational data to determine the ‘goodness of fit’
and assisted in manually calibrating the model to verify the estimated model parameters.
To verify the model behaviour, infection data for South Africa were sourced from Johns
Hopkins University and compared to model results (Figure 6a). To calculate the ‘goodness
of fit’ between the observed and model data, the model data were exported and the
coefficient of determination, a measure of the data variance, was calculated in Microsoft
Excel. According to the final baseline run, the model explains 73% of the data variance of
the observed COVID-19 infections, measured according to the seven-day-moving average
(Figure 6a). The model was first validated in October 2021, before the onset of the fourth
wave associated with the Omicron variant. According to the outdated model run (October
version), the projected simulation suggested that SA may experience a fourth wave over the
December 2021 holiday period, albeit with a smaller amplitude (Figure 6b). This projection
was consistent with the projection from the SA COVID-19 Ministerial Advisory Committee,
which reported that “the fourth wave will likely be a small mini wave”, and that the severity
of the fourth wave depends on a balance between the prospects of a new immune-escaping
variant versus vs. the rate of vaccination by this time [24]. After observing changes in the
reported infections during the fourth wave, the model structure and assumptions were
re-evaluated and adjusted accordingly.Systems 2022, 10, x FOR PEER REVIEW 8 of 20 
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To validate trends in tourism at a local scale, observed data in accommodation occu-
pancy from 2019 to 2021 were compared with the modelled occupancy data. Stakeholders

23
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specifically suggested the validation of trends in tourism one-year prior to the onset of the
pandemic to verify the model against trends observed ‘normally’. The data were made
available to the study by the Nelson Mandela Bay Municipality (NMBM), the Department of
Economic Development, Tourism and Agriculture, and were recommended as an effective
indicator with which to measure tourism variability at a local scale [4].

Baseline results show that the modelled accommodation occupancy captures 71% of
the variance of the observed data (Figure 7). Additional testing included running extreme
parameter tests and ensuring that the model was dimensionally consistent and structurally
robust. Finally, a multivariate sensitivity analyses, using the Latin Hypercube Sampling
method, was performed over 50 runs to investigate changes in model behaviour under a
combination of parameter values. The parameter values of the included model variables
were varied by 50% of the baseline value, as suggested in [19] (Table A1). Results of the
multivariate sensitivity analysis are shown in Appendix A (Figure A1). As expected, the
extreme conditions tests and multivariate sensitivity analysis revealed variability in the
model results, though the results remained robust and behaviourally sound.
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Figure 7. Nelson Mandela Bay accommodation occupancy levels as observed (in orange) and
simulated in the model (in grey) from January 2019 to December 2021.

3. Results
3.1. Model Scenarios

Once the model was considered to be sufficiently robust (i.e., it performed the right
behaviour for the right reasons), scenario planning was performed. This consisted of
testing the model results under two scenarios compared to the baseline (or business-as-
usual (BAU)) scenario. The BAU scenario captures the infection trends and projected
tourism recovery under current governance decision-making strategies as formulated in
the model. As for the two exploratory scenarios, scenario one investigates a desirable
tourism recovery strategy, assuming that the government has control of the situation,
through enabling a rapid vaccination rollout process, securing efficacious vaccines, and
ensuring effective tourism management. In contrast, scenario two portrays a situation
of governance instability, whereby uncertainty regarding the infection trajectory, owing
to high levels of vaccination hesitancy, risks of an immune-escaping variants, and a lax
tourism response strategy leads to a less desirable recovery trajectory.

Table 2 shows the variables and associated parameter values that were varied during
the scenario analysis. ‘Vaccination acceptance’ corresponds to the fraction of the population
accepting the vaccination, and ‘vaccination efficacy’ corresponds to the probability of
losing immunity after the assumed period of 180 days (or 6 months) [28]. The intervention
‘government response time’ corresponds to the time delay for government to respond to
the severity of the pandemic and implement social restrictions, and changes to the ‘ICU
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capacity’ can affect the level of healthcare strain and, ultimately, fatalities. In the tourism
sub-model, the ‘CDC travel limit’ corresponds to the threshold by which foreign travel
becomes prohibited, and ‘marketing intensity’ refers to a change in marketing campaigns.
Then, the ‘fraction of funds to COVID relief’ is the portion of the tourism budget that is
diverted towards COVID-related costs, implementation, and business support and, lastly,
‘infrastructure upgrade costs’ refers to the minimum costs associated to small infrastructure
upgrades that can contribute towards tourism attractiveness.

Table 2. Key variables and associated parameter values applied in the scenario analysis.

Model Parameter and Unit Base Value–Business as
Usual

Scenario 1–Governance
Control

Scenario 2–Governance
Instability

COVID-19 Interventions

Vaccination acceptance (dmnl)
(opposite to hesitancy) 0.50 0.80 0.40

Vaccination efficacy (immunity
duration) (dmnl) 180 270 90

Government response time (days) 30 15 40
ICU capacity (persons) 3000 4000 2500

Tourism Interventions

CDC travel limit (persons) 500 1000 800
Marketing intensity (%) 1 1.2 1

Fraction of tourism budget to
COVID relief (%) 1 0.3 0.4

Infrastructure upgrade costs (R) 3 × 106 2 × 106 4 × 106

For the COVID-19 sub-model, the results of the scenario analysis were specifically
investigated in terms of the COVID-19 infection rate and the number of vaccinated persons
in SA (Figure 8). Furthermore, to investigate the impacts of COVID-19 on coastal tourism,
results were analysed in terms of the total number of bednights sold in NMB, accommo-
dation occupancy, tourism infrastructure condition, and coastal tourism attractiveness
(Figure 9). Though other indicators such as tourism revenues and tourism employment
are also important, these results are not shown; however, it is expected that changes in
these indicators are primarily driven through changes in the number of tourists. Under the
baseline simulation, the model shows three consecutive infection peaks corresponding to
the results showed in the observed data, in addition to a fourth peak around December
2021, with a maximum of ~25,000 persons/days (Figures 6 and 8a). Moreover, Figure 8b
shows the number of vaccinated persons (assuming full vaccination) to reach approxi-
mately 18 million by February 2022, though this tends to level off, as the portion of the
population that is willing to accept the vaccine becomes vaccinated and, due to decreasing
vaccination demand.
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Figure 9. Model results of the total number of tourist bednight sales in NMB (people.days/years)
(a) and associated tourism indicators: accommodation occupancy (dmnl) (b), tourist infrastructure
condition (dmnl) (c) and coastal marine attractiveness (dmnl) (d) under three model scenarios. The
baseline run (or business-as-usual scenario) is shown in solid-blue, scenario one in dashed green lines
and two in dot-dashed red.

Trends in NMB tourism show a sharp decrease in the numbers of bednights sold
during the ‘midst’ of the pandemic, when foreign and domestic travel was prohibited, as
well as when NMB was declared a national COVID-19 hotspot in December 2020, leading
to subsequent beach closures (Figure 9a) [44]. Similarly, the trend in accommodation
occupancy decreased to as low as 1% in April 2020 and is slowly recovering to levels
around 35–40% from mid-2021, in line with observed results and stakeholder perspectives
(Figures 7 and 9b). Figure 9c,d shows the projected impacts of the pandemic on public
and tourism infrastructure condition, which is shown to decreases over the period of the
pandemic owing to a lack of tourism revenue and a diminishing tourism budget. The
condition of tourist infrastructure is, however, projected to increase as tourists slowly return;
however, this is dependent on the magnitude of upgrades, associated costs, and delays in
initiating upgrades. Lastly, Figure 9d shows the level of participation in coastal tourism,
with two evident dips in attractiveness corresponding to the time of beach closures, which
drastically reduced the attractiveness of beach recreation during this time.

Results from scenario 1 illustrate a more desirable recovery trajectory, as shown in
terms of the infection rate as well as in NMB tourism, with the former showing smaller
infection peaks from February 2022 to December 2023 and the latter showing a visible
increase in the number of tourists and bednights sold from October 2021 onwards, with
trends in occupancy recovering to pre-pandemic levels in early 2022 (Figures 8 and 9a,b).
Figure 9c,d show that tourist infrastructure condition is also expected to recover with the
return of tourists, and that no more beach closures can be expected, possibly owing to
the adaptations to the levels of social restrictions due to increasing immunity. The results
from scenario 2,show an increase in wave peaks, with a fifth peak expected over June 2022,
followed by additional waves owed to low levels of immunity among the population as
well an increased risk of breakthrough infections (Figure 8a,b). Trends in NMB tourism and
accommodation concurrently take a longer time to recover to levels observed in 2019 in
this scenario, with projected knock-on effects on the state of local tourism infrastructure
further inhibiting future tourism growth (Figure 9a–d). Both scenarios show how the
beach closures drastically impacted coastal tourism attractiveness during the periods of
infection peaks; however, as social restrictions were relaxed, coastal and marine tourism
attractiveness recovered (Figure 9d). Furthermore, the effect of marine health on coastal
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tourism attractiveness is less evident in the results, owing to a longer delay associated with
changes in marine health.

3.2. Model Interface

An additional output from the study is the model visual user interface (VUI) (Figure 10),
which provides a ‘user-friendly’ portal to engage with the model. Decision-makers or
stakeholders can unravel the cause-and-effect model structure and explore model scenarios
by adjusting the model variables through ‘levers’ on the interface. Additional variables
(e.g., variant infectivity, variant introduction time) are additionally included to investigate
the impacts of future variants on the resilience of tourism recovery strategies. The VUI
can additionally be used in a collaborative stakeholder setting, whereby stakeholders
representing different institutions or areas of the problem can implement alternative man-
agement interventions to investigate tourism recovery strategies in NMB, similar to what
was demonstrated during the group stakeholder workshops.
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Figure 10. Central control panel in the visual user interface to enable additional scenario analyses.
The interface is accessible through the following link: https://exchange.iseesystems.com/public/
esteevermeulen/nelson-mandela-bay-covid-19---coastal-and-marine-tourism-recovery-tool (ac-
cessed on 8 July 2022).

4. Discussion: Recommendations and Policy Design

The scenario analysis that was performed to investigate the impacts of COVID-19
on coastal tourism in NMB highlighted the complexity and uncertainty that existed, and
remains to exist, around projected infection trends, recovery delays, and vulnerabilities
of the tourism sector to the effects of the COVID-19 pandemic (Figures 8 and 9). During
the time of writing, the baseline simulation suggested that, under current governance
response and vaccination rates, subsequent waves are expected with lower infection peaks
and levels of severity in terms of healthcare strain and fatalities (Figures 8 and 9). While
this may be logical, the projection relies on the assumption that current vaccinations are
sufficiently effective against existing variants, though skepticism exists regarding the
length of the immunity of current vaccinations (i.e., waning immunity) [45], as well as
existing controversy surrounding mandatory vaccination protocols to overcome vaccination
hesitancy [32,46]. Moreover, the analysis reveals that, even though government can adopt
different means to respond, there can be scenarios where even strong response strategies
may be weakened by factors beyond their control, such as by breakthrough infections
owing to the introduction of immune-escaping variants, as shown by the recent Omicron
variant [47].
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Nonetheless, the model is an analytical tool with which to investigate uncertainty,
such that governments could ‘test’ their strategies through ‘what-if’ scenarios in order to
evaluate the resilience of their responses and, hence, the knock-on effects on the tourism
sector. Moreover, the model demonstrated how the rate of tourism recovery is dependent
on various feedback effects and the effectiveness of management interventions under
alternative governance scenarios. The analysis has additionally highlighted that there is
not necessarily only one response with which to assist in the recovery of coastal tourism in
NMB, but rather multiple interventions, each with a different degree of leverage that could
simultaneously be applied to achieve a more desirable trajectory. Such interventions could
include, but are not limited to, the following:

• Rapid vaccination procurement and administration;
• Vaccination awareness and campaigns to address vaccination hesitancy;
• Research and development into vaccination efficacy;
• Adaptations to international travel limit thresholds recognising the need for personal

responsibility and well-being relative to situational awareness;
• Allowing tourists to return to enhance tourism cash flow and the recovery of the

tourism budget;
• Redirecting and possibly increasing the tourism budget towards public and tourism

infrastructure to increase tourism attractiveness;
• Funding diversion towards tourism marketing to stimulate demand;
• Collaboration among local government directorates (tourism, public health, safety and

security, infrastructure and engineering) to establish a consensus regarding depart-
ments’ recovery mandates.

Lastly, there has been confusion regarding the levels of restrictions, which has con-
tributed to the levels of social and sectoral adherence fatigue. Though the government
has opted towards adaptive, risk-adverse strategies (as is required for a rapid response),
adverse and sudden changes to COVID-19 regulations and decision-making thresholds has
made it difficult for sectors to adapt. Therefore, governments should remain transparent
about their decision-making criteria and develop decision frameworks that are informed
through scientifically robust models and datasets.

5. Conclusions

This study highlights the importance of exploratory simulation to support decision-
making. Using system dynamics modelling, this study investigated the impacts of COVID-
19 on coastal tourism in Nelson Mandela Bay (NMB), South Africa, with the aim to devise
and simulate the effects of potential recovery pathways. The model provided the means
to simulate stakeholder’s mental models under alternative scenarios to demonstrate how
feedback behaviour and time delays can affect tourism recovery. Though the model
boundary may be limited to this specific problem, the boundary may be adapted, and
the assumptions adjusted, to explore similar policy questions in the future. This can
include downscaling the model to investigate infection trends at a more local scale and
the transmission of COVID-19 among tourists and the local population in NMB, as well
as incorporating localised socio-economic impacts into the model boundary. Additional
scenarios can also be tested to investigate the effectivity of recommended tourism policies
to future variants. Finally, additional behavioural validation with updated tourism data
could further improve the analysis. This study concludes that there are various levels
of uncertainty that need to be considered during the development of a recovery plan for
the tourism sector or any other economic sector in this regard, but that small changes in
multiple interventions could result in more sustainable recovery pathways.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/systems10040120/s1. Table S1. Model Documentation. File S1.
Model Equations.
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Appendix A

Table A1. Model variables and associated parameter values applied in the multivariate sensitivity
analysis. Parameter values were varied by ±50% of the base value and simulated using a UNI-
FORM distribution.

COVID-19 Sub-Model

Asymptomatic contacts [7; 14; 21]
Infectivity [0.00625; 0.0125; 0.01875]

Immunity duration [90; 180; 270]
Vaccination hesitancy [0.50; 0.70; 0.80]

Hospital capacity (change for scenarios) [1500; 3000; 4500]
ICU fraction [0.10; 0.20; 0.30]

Travel risk perception delay [180; 365; 545]
Governance reaction time (time to perceive severity) [15; 30; 45]

NMB Tourism & Accommodation Sub-Model

Fraction of tourism revenues to NMB tourism budget [0.10; 0.20; 0.30]
Operational costs fraction [0.15; 0.3; 0.45]

Public and Tourist Infrastructure costs [1.5 × 106; 3 × 106; 4.5 × 106]
Public and Tourist Infrastructure condition (t0) [0.6; 0.8; 1]

Fraction of tourism budget to COVID-relief [0.25; 0.5; 0.75]

Coastal Tourism Sub-Model

Marine heath (t0) [0.6; 0.8; 1]
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Using Cascaded and Interlocking Generic System Archetypes
to Communicate Policy Insights—The Case for Justifying
Integrated Health Care Systems in Terms of Reducing
Hospital Congestion
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Symmetric Scenarios, Edinburgh EH8 8DL, UK; eric@symmetriclab.com

Abstract: A persistent problem in UK hospitals is that of delayed discharges, where patients who are
fit for discharge continue to occupy beds whilst awaiting care packages from Social Care. Integrated
Care Systems (ICSs) in which Health and Social Care collaborate are now a major NHS initiative, the
thinking being that such spending will have direct cost savings to health by freeing up expensive
beds. The premise of this paper is that the benefits to health of assisting Social Care could also reduce
a number of serious indirect costs and provide wide-ranging benefits to hospital patients, staff and
budgets. This is accomplished by reducing the congestion arising from the use of many painful
internal coping strategies and unintended consequences, which hospitals have to resort to when
constrained by a lack of discharge solutions. The paper explores new and novel ways of using generic
systems archetypes to create a hypothesis linking general Integrated Care Systems to congestion
reduction throughout hospitals. Rather than use archetypes individually, they are applied here
collectively in tandem. These are named ‘cascaded archetypes’, where the unintended consequence
of one archetype becomes the driver for the next and are useful where fundamental solutions to
problems are difficult to implement and unintended consequences must be dealt with.

Keywords: health; social care; integrated care; hospital; delayed hospital discharges; strategy;
congestion; capacity; archetypes; unintended consequences

1. Introduction

For many years, hospitals in the UK and other government-funded health systems
have struggled with the problem of delayed discharges. Typically, a relatively small number
of usually older patients cannot be discharged due to a lack of continuing Health and Social
Care capacity (care packages) although they have been declared as “medically fit” for
discharge. The problem has been well documented [1–3] but despite many attempts at
rectification it remains [4–6].

This paper builds on two very recent developments in Health and Systems Thinking,
which have the potential to help the problem. The first is the formation of Integrated Care
Systems (ICSs) within Health and Social Care [7], and the second is the development of
new methods for communicating complex feedback structure.

1.1. Developments in Health—Integrated Care Systems

Integrated Care Systems denotes ways of coordinating the delivery of diverse health
and social care services to the same person, based on the belief that services should be
centred on the person, not the provider [8]. Within the UK, there are now different variations
in each of England, Scotland, Wales, and Northern Ireland [9], mainly aimed at interventions
to keep people out of hospital to reduce delayed hospital discharges. Rather than wait
for government action to improve the funding of Social Care, trials are underway in
places for health to both subsidise domiciliary social care wages and ‘discharge to assess’
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facilities [10–12]. The benefits to health of these trials are being assessed mainly in terms of
their direct benefits, such as maintaining the viability of Social Care delivery in the face
of government spending cuts and saving the costs of expensive hospital beds. The flow
of patients through health and social care is analogous to a supply chain and it seems
logical that the most powerful actor in the chain (health) should subsidise the weakest for a
win/win outcome.

However, it is the premise of this paper that the potential savings to health from
integrated care initiatives are being significantly underestimated by not taking into account
their potential to reduce many indirect costs associated with delayed discharges. These
costs result from congestion which builds up at both the front and rear end of hospitals
pathways. Delayed discharges reduce hospital capacity and admissions and increase patient
waiting times. However, more damagingly, they cause hospitals to resort to numerous
unofficial coping strategies to maintain patient throughput, each of which have numerous
and serious unintended consequences for patients, staff and costs and which, ultimately,
tend to defeat their purpose. These strategies are becoming so necessary and common that
that they have become embedded in hospital practice and their unintended consequences,
by necessity, overlooked.

Increases in congestion in hospital accident and emergency departments and wards is
undoubtably due in part to increases in population aging and there are ongoing attempts
to reduce demand by such things as same day emergency care, urgent treatment centres
and primary care networks. However, it is too easy to blame all congestion on external
demand and a cornerstone of system dynamics is to look for internal system drivers of
problems. It is suggested here that hospital congestion is significantly compounded by the
use of internal coping strategies. Indeed, as shown later the use of coping strategies can
cause both health service supply problems as well as latent demand surges.

1.2. Developments in Systems Thinking

Determining and communication of complex feedback structure to facilitate system
change is one of the axioms of system dynamics and this paper uses a new and novel
approach which represents the cumulation of work over many years by the author to trace
and demonstrate feedback connections between Health and Social Care [13–20]. One of the
cornerstones of this work has been the judicial blend of qualitative and quantitative system
dynamics, with qualitative hypotheses leading to testing with quantitative models and to
further qualitative hypotheses. Numerous early models were quantitative and embedded
the benefits to health of eliminating elements of coping strategies and individual generic
archetypes were often used to explain unintended consequences. Discussions of the early
quantitative work with health care staff have led over time to the surfacing of a much wider
range of coping strategies with multiple unintended consequences. System dynamics has
proven to be a valuable tool in teasing out the way in which organisations really work in
response to the stress of capacity constraints. These coping strategies are all embodied in
the next stage of qualitative analysis described in this paper. The resultant hypothesis is an
amalgam of knowledge captured from health and social care professionals and from the
modeler. A modeler who is also a domain expert, may be able to trace interconnections that
those inside the field can sometimes miss and to link them to new initiatives such as ICSs.

The medium for communicating the hypothesis is to use generic systems archetypes
collectively in tandem, rather than the more conventional approach of using them individ-
ually. These collective archetypes are named cascaded archetypes, where the unintended
consequence of one archetype becomes the driver for the next and they are particularly
useful in communicating situations where solutions are difficult to implement, and unin-
tended consequences must be dealt with. The approach provides a balance between the use
of individual system archetypes and the use of full causal loop diagrams. Some interesting
choices must be made between keeping each archetype free-standing for simplicity, whilst
showing important interlocking between them. The generic nature of the method could
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have wide application in other systems where capacity constraints inhibit achievement and
informal strategies need to be surfaced.

1.3. The Aims, Impact and Shape of the Paper

It is hoped that approach described herein will communicate better the need to balance
Health and Social Care capacities, lead to hospitals working more within their design
capacities and justify further specific ICS initiatives to reduce the costs of internal coping
strategies and congestion. Whilst no specific integrated care initiatives are defined in the
paper, it is postulated that linking Integrated Care Systems generally to hospital congestion
and communicating the wider benefits in a succinct and compelling manor could boost the
case for and number and shape of specific initiatives.

Indeed, the use of cascading archetypes is already making a significant impact on
Health policy within the NHS and will be subject to further quantification studies:

‘We have found the thinking in this paper tremendously useful. It is a revelation and my
favourite new idea. It provides a new way of thinking about the problems of Health and
Social Care and how to improve our justification of Integrated Care Systems’.

Steven Wyatt, Head of Research and Policy,

NHS Strategy Unit

The paper will:

1. Restate and recast the essence of coping strategies,
2. Review generic system archetypes and introduce cascaded archetypes
3. Apply cascaded archetypes to tracing the linkages between delayed discharges and

hospital congestion, together with the role of ICSs in reducing negative outcomes.
4. Reflect on the benefits and limitations of cascaded archetypes as a tool of system

dynamics

2. A Brief Summary and Clustering of Hospital Coping Strategies

Five hospital internal coping strategies have been identified that are becoming per-
manent features of hospital practice (This list of hospital coping strategies first appeared
in Chapter 10 in The Dynamics of Care. Springer, Cham, and is published here with the
permission of Springer). These are effectively complex ‘unofficial’ pathways into, through
and out of hospital. A summary of the literature on these strategies has been presented
elsewhere [19].

A new way of thinking about these coping strategies introduced here is to cluster
them into two groups. The first group is entitled ‘patient absorption’. It is suggested that
this group is usually employed in the first instance as capacity becomes constrained. The
second is entitled ‘patient expulsion and exclusion’ and it is suggested that this group is
usually employed as a last resort when hospital space, costs and congestion are approaching
breaking point. The strategies are:

2.1. Patient Absorption Strategies

1. Overspill wait areas (escalation beds): When pressure on accident and emergency
departments in hospitals is high there is little choice but to accommodate patients
as best as possible, which means using temporary admission wards, corridors and
ambulances.

2. Transfer of unscheduled patients to scheduled beds (boarders or outliers): Another
way of making room for unscheduled (emergency) patients is to transfer them to
scheduled (elective) beds.

2.2. Patient Expulsion and Exclusion Strategies

1. Early/premature hospital discharge: The early discharge of patients is a means of
freeing up beds on an individual basis.
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2. Hospital demand management: Demand management is defined here to mean re-
ductions in GPs referrals from primary to secondary health care, which is now often
carried out with commissioning group approval.

3. Spot purchase of social care beds: The purchase of Social Care beds directly by
hospitals to facilitate patient discharge is a way of freeing up beds on a group basis,
with some hospitals actually buying Care Homes for this purpose.

The unintended consequences of these coping strategies are complex and will be
described in the cascaded archetypes presented later in the paper.

3. A Review of Generic Systems Archetypes

Causal loop diagrams (CLDs) have long been part of the system dynamics approach as
a way of extracting the underlying feedback loops in organisations and models, responsible
for their behaviour over time. However, CLDs can themselves be complex.

System archetypes simplify understanding of feedback structure by capturing and
categorising common groups of feedback loops [21,22] responsible for generic patterns of
behaviour over time and numerous archetypes have been reported [23–26].

Since there are only two types of feedback loop (reinforcing and balancing), it was sug-
gested by this author that archetypes could be simplified even more. That is by condensing
them down to 4 core types, representing the four ways of ordering the two loop types [17]
and defining them in two forms; problem and solution archetypes. This core group were
shown to be capable of subsuming a wide range of existing archetypes [17].

The 4 core, generic archetypes representing the four ways of ordering a pair of rein-
forcing and balancing feedback loops, were defined as:

1. Underachievement: where intended reinforcing action is diminished by balancing
unintended consequences,

2. Out of Control: where intended balancing control is diminished by reinforcing unin-
tended consequences,

3. Relative achievement: where intended reinforcing action is diminished by reinforcing
unintended consequences,

4. Relative control: where intended balancing control is diminished by balancing unin-
tended consequences.

This paper will focus on under-achievement and out-of-control archetypes since they
are the ones used in the later hospital analysis. Figures 1–4 show these two archetypes in
problem and solution forms.

In contrast to earlier writing by this author [17], the intended outcome for a reinforcing
feedback loop will be defined as the realisation of an opportunity and the intended outcome
for a balancing feedback loop will be defined as containment of a threat.

Notation: Actions and intended consequences will be shown in thick causal links and
bold text. Unintended consequences will be shown in thin causal links and italics. A
positive sign will be used to depict a causal link between variables in the same direction.
A negative sign will be used to depict a causal link between variables in the opposite
directions. A balancing feedback loop is defined as one which contains an odd number of
negative causal links which gives rise to its control behaviour over time towards a target.
A reinforcing feedback loop is defined as one which contains none or an even number of
negative causal links which gives rise to its exponential behaviour over time (virtuous
or vicious).
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3.1. Underachievement Archetype

The problem version of this archetype (Figure 1) consists of a reinforcing loop intended
to generate growth in an opportunity over time, but this is countered by a balancing
unintended consequence loop which inhibits the growth, occurring across a boundary
(physical or mental barrier) and after a delay, both of which can mask the unintended
consequence. Although shown as two loops, in practice the unintended consequence loop
of the archetype may subsume a number of detrimental balancing effects giving rise to a
variety of behaviours over time. Figure 1 shows an example of one such behaviour.

When the underachievement happens it is only too easy to blame external factors,
rather than accept it as being seeded by the earlier action—a realisation of the systems
message that today’s problems are often yesterday’s solutions.

The solution version of the archetype is shown in Figure 2. This suggests that if the
unintended consequence can be pre-empted, a possible solution exit by introducing a
second action in parallel with the first to reduce the impact of the unintended consequence
and hence compliment the intended reinforcing loop.

A health-related example of this archetype would be investment in hospital capacity
to increase the number of interventions, but this might result in more delayed discharges
and actually reduce the effective capacity. A solution might be to make a corresponding
investment in Social Care capacity.

3.2. Out-of-Control Archetype (Figures 3 and 4)

In this case, the problem archetype consists of a balancing feedback loop intended to re-
duce an exogenous rising threat (Figure 3), perhaps to a target level, but this is undermined
by a reinforcing unintended consequence loop, again occurring across a boundary and
after a delay, which mask the unintended consequences. Again, in practice, the unintended
consequence loop may subsume a number of (this time) detrimental reinforcing effects
giving rise to a variety of behaviours over time. Figure 3 shows one of these where each
time the action is applied control is re-established, but only for limited periods.

As before, if the unintended consequence can be pre-empted, a possible solution
exit by introducing a second action in parallel with the first to reduce the impact of the
unintended consequence and hence compliment the intended balancing loop (Figure 4).

A health-related example would be the introduction of additional beds to control
(reduce) patient waiting times, but these might stimulate demand and quickly fill up with
waiting times increasing again. A solution might be to combine this action with measures
to inhibit demand.

4. An Introduction to Cascaded and Interlocking Systems Archetypes

The generic archetypes in the last section were originally perceived as being useful
in an individual context. However, it is suggested here that they can have a wider role
collectively in tandem to capture actions and reactions in complex feedback situations. This
is particularly true where solution links in individual archetypes have been identified, but
proved difficult, if not impossible, to implement.

Rather than deploy solution links, it is far more common for new reactive strategies
to be employed by groups of stakeholders to deal with unintended consequences. Such
reactions can spawn a new archetype to address the unintended consequence of the first
archetype. The key to drawing this situation is to understand that the unintended conse-
quence variable of the first archetype becomes the driving variable of the second archetype.
It is then possible to consider that the action of the second archetype (in addition to coun-
tering the unintended consequence of the first archetype), may have its own unintended
consequence(s) which could be depicted with in a third archetype.

This sequence can happen repeatedly and give rise to chains of archetypes, defined
here as a set of cascaded archetypes.

Each archetype in a chain may well be linked to the same system and these links
would all be shown in a full causal loop diagram. Such causal maps can be self-defeating
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as a means of communication due to the number of interconnections contained and cas-
caded archetypes strive to reduce the links. In order to achieve this simplifying role, each
archetype can be introduced separately in turn within a story telling context, before the
composite picture of the full cascade is presented.

Some interesting choices must be made between keeping each archetype free-standing
for simplicity, whilst showing important interlocking between them. The term interlocking
archetypes applies to those cascaded archetypes whose unintended consequences link
directly to an opportunity or threat variable of earlier ones. They may in fact be the
same variables.

Within the overall picture, the pattern of each archetype (opportunity/threat-action-
unintended consequence) provides familiar structure and simplicity. It is suggested that
this approach has an intermediate role in communication between the more conventional
use of individual system archetypes and the use of full causal loop diagrams.

It is of interest to note that reactions in each cascaded archetype may be carried out by
different stakeholders reacting in their own interests or by the same group as in the first
archetype, perhaps trying multiple attempts to solve the original problem.

Figure 5 shows an example of a generic representation of cascaded and interlocking
archetypes. This is a cascade of 4 archetypes starting with an underachievement archetype
(top) and 3 out-of-control archetypes. The last of which feeds back on the first. This is a
similar sequence to the one used later to describe hospital congestion. The choice of the
number of archetypes to use is subjective and should be made on the basis of clarity, ease
of grouping of coping actions and their dynamic phasing.
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Starting at the top of Figure 5:

1. archetype 1, underachievement: a reinforcing action to exploit an opportunity is
undermined by balancing unintended consequence 1.

2. archetype 2, out-of-control: in the absence of a solution link, a balancing action
to address the threat of unintended consequence 1 is undermined by reinforcing
unintended consequence 2.

3. archetype 3, out-of-control: again, in the absence of a solution link, a balancing action
to address the threat of unintended consequence 2 is undermined by a reinforcing
unintended consequence 3.

4. archetype 4, out-of-control: again, in the absence of a solution link, a balancing action
to address the threat of unintended consequence 3 is undermined by a reinforcing
unintended consequence 4. This unintended consequence has strong links to the
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variables in the opportunity loop of archetype 1 (or may be the same variables), hence
it is referred to as interlocking with archetype 1.

The important point is that the original actions in the first (prime) archetype in the
chain are not only undermined by their own unintended consequences, but also by the
unintended consequences arising from subsequent actions to counter them.

Cascaded archetypes raise an interesting question not encountered in using individual
archetypes. The convention with individual archetypes is to either start with a reinforcing
feedback loop (opportunity) or a balancing loop (threat) as described earlier. However, if
an archetype is started with a balancing feedback loop, cascaded thinking begs the question
as to whether this threat is already an unintended consequence of a preceding archetype? It
may have a linear source, but it is always worth exploring whether there is some reinforcing
driver of the threat. It there is, it leads to the further question as to whether all cascaded
archetypes should begin with a reinforcing feedback loop? This is certainly true in the
hospital congestion example to follow.

5. Using Cascaded and Interlocking Archetypes to Trace the Links between Delayed
Hospital Discharges, Hospital Congestion and Integrated Care Systems—A Case of
3 Interlocking Archetypes
5.1. Archetype 1

Health service underachievement (an underachievement archetype): investment in
successful hospital interventions increases demand and is limited by delayed discharges,
Figure 6.
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This archetype is a classic example of underachievement and captures the way in
which the demand for health services is driven by both population growth and aging, but
also by health services being a victim of their own success by increasing longevity [27].
The supply response is investment in all types of hospital capacity with the intention
of facilitating admissions and interventions. However, even if this is forthcoming, it
results in problems with delayed discharges resulting from inadequate social care capacity,
which feedback to reduce admissions and to cause underachievement in the number of
hospital interventions.
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The good news is that solutions do exist for this archetype which are shown in Figure 7.
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Figure 7. Archetype 1: The underachievement solution archetype involving health and social care.

First, solution link 1 is to expand Social Care capacity in line with Heath capacity
and much previous has work has been aimed at demonstrating the merits of this link.
The assumption has been that being that the government would provide this spending.
However, the reality of implementing this solution has remained elusive since Health is
funded from central government and Social Care is funded from local government. The
new approach, motivating the thinking in this paper, is that an alternative solution might
be pursued. That is for Health to subsidise Social Care to the benefit of both. Figure 7 shows
this as solution link 2 and it is the purpose of this paper is to provide more justification for
it by showing the congestion that arises from not doing so.

In the absence of solutions, hospitals have had to resort to numerous coping strategies,
which can disguise the plight of their predicament.

5.2. Archetype 2

Patient absorption (an out-of-control archetype): using boarders and overspill waiting
areas to counter delayed discharges leads to deteriorating services and rising costs, Figure 8.

The idea of using cascaded archetypes for improved communication is that they can
be introduced one at a time. So, at this point archetype 1 is put to one side and archetype 2
starts with the threat from the unintended consequence of archetype 1—delayed discharges
(highlighted).

However, rather than tackle delayed discharges head on, attention in hospitals is
usually focussed on the consequential problem of delayed admissions at the ‘front end’ of
the patient pathways. In fact, delayed admissions have often not been linked to delayed
discharges, but more to lack of emergency room capacity. A clear case of looking for obvious
solutions close to the symptoms of problems, when the best levers might be quite remote
from the symptoms. This situation is changing, and hospitals now have sophisticated bed
management systems and see freeing up discharges as a key to improving admissions.
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These ‘front end’ issues are addressed by ‘patient absorption’ strategies comprising
‘boarders’ and ‘overspill waiting areas.
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Archetype 2 shows how these 2 coping strategies, are applied in response to admission
problems. Both strategies lead to multiple and reinforcing unintended consequences.

The use of corridor and ambulance waits can lead to treatment inefficiencies and
complications for patients. The use of temporary admissions wards restricts space for
other conditions, and regular out-patient clinics, particularly long-term conditions clinics,
have to be suspended. The use of boarders leads to the cancellation of elective procedures,
redundant surgical teams, unused theatres and increases in the hospital elective waiting
list. The resulting prioritising and rescheduling of elective procedures, places a massive
demand on management and clinical time. Additionally, patients awaiting suspended
clinics and elective operations may need social care, taking valuable capacity away from
hospital discharges.

Both of these coping measures, like any form of bed capacity expansion, can quickly
fill up without solving the flow problem. It is somewhat ironic that, whilst acknowledging
the need for long term bed reductions, hospitals are forced into short term bed expansion.
The coping measures are intended to provide a temporary solution to congestion, but
periods of high demand and suspension of regular treatments are becoming more frequent
and of longer duration. In recent years, there have been times when UK hospitals have
formally cancelled elective operations during periods of high emergency demand.

Boarders and temporary admissions accommodation can also result in patients having
longer stays in hospital, increased mortality rates [28] and reductions in treatment efficiency
and efficacy [29,30]. Treatment efficiency is vital to care and recovery and when diminished
has implications for both patients and staff. The longer patients are in hospital the greater
the chance of infection and increased risk of fatalities. There are significant external issues
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in recruiting and retaining Health staff, but these are compounded by internal coping
strategies. As patient to staff ratios increase staff disillusionment quickly shows up in
staff productivity decline, increases in sick leave, burnout and higher staff turnover, with
its associated loss of knowledge. Space becomes at a premium and budget deficits rise,
perhaps to a point where new investment funds have to go to pay off accrued deficits rather
than to enhance the supply of services [31].

It becomes more and more difficult for hospital management to address these vicious
spirals of declining services and the net effect of the coping strategies is more patient bed-
days in hospital and rising costs with delayed discharges increasing, rather than reducing.

An interesting question is whether there is a solution link for this second archetype on
its own. It is easy to see in hindsight how absorbing more patients might inevitably lead to
congestion and impact staff and patients. However, essential firefighting gives little time to
think ahead to mitigate against these eventualities.

5.3. Archetype 3

Patient expulsion and exclusion (an out-of-control archetype): using early discharge,
demand management and spot purchase of social care to counter deteriorating services and
rising costs leads to reduced investment and increases in unmet need and latent demand
Figure 9.
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As overspending and provision of extra space become more and more difficult to
address, attention of hospital managers and clinicians are inclined towards more radical
coping strategies to relieve congestion pressures. In control engineering terms, from which
System Dynamics emerged, there is a need to find a safety valve. The actions taken tend to
have a ‘rear end’ focus with the intention of directly accelerating hospital discharge, but
they also include stemming demand and hence admissions. They consist of early discharge
of patients, the ‘spot’ purchase by health of social care capacity and demand management.
This second group of coping strategies, in contrast to ‘patient absorption’, are referred to
here as ‘patient expulsion/exclusion’ strategies.

In methodological terms Archetypes 1 and 2 are now put to one side and archetype
3 starts with how to address bed days in hospital (highlighted), space limitation and
accrued deficits.

Early discharge can have serious unintended consequences by compromising patient
safety. It can lead to readmissions and despite many guidelines poor hospital discharge is a
recurring problem [32–36].

Demand management results in pushing demand further back upstream and ulti-
mately this has to be absorbed by primary health care and society [37]. Demand can get
pushed back on to families, charities and communities to create a cumulative unmet need
which can result in further demands on Social Care.

The latent demand associated with early discharge and demand management eventu-
ally adds to demand on hospital services and interventions which add to the need for more
coping strategies and space rather than to relieve them. Interestingly, due to delays, when
extra demand impacts it can be puzzling as why it has happened, rather than seen as an
inevitable consequence of earlier actions.

Purchasing Social Care beds by hospitals can be much more expensive than beds
bought from social care under block contracts [38–40] and can also result in more variable
quality of care. The cost of spot purchases also adds further to budget deficits.

The important point about archetype 3 is that it impacts directly on (interlocks with)
variables which were the fundamental drivers of archetype 1. There is a double impact on
achievement with investment reducing and demand increasing.

Again, the question might be raised as to whether there is a solution loop for this
archetype, perhaps associated with providing help in the community to support early
discharges and unmet need. Ironically, this would require more Social Care, the shortage of
which caused the problems in the first place.

5.4. The Composite Picture

Figure 10 shows a composite picture of the 3 cascaded and interlocking archetypes, all
on one page and without any crossed lines.

Whilst still complex, the structure of each individual generic archetype can be recog-
nised in Figure 10, comprising opportunities/threats, actions and unintended consequences.
The picture captures the phases of the coping strategies (patient absorption and patient
expulsion/exclusion) and conveys the barriers and time delays conspiring to mask the
unintended consequences in the early stages of action. In the composite picture it is also
perhaps easier to see some of the feedback effects through the whole picture, rather than
just within each archetype.

The key point, and a core point about interlocking archetypes, is that not only is
archetype 1 inhibited by its own unintended consequence (delayed discharges), but this
leads to a series of cascaded reactions which have implications for patients, staff and costs
that undermine its achievement even more.

Figure 10 also includes the solution links and the message hopefully communicated
is that investment in social care by government of Health in the form of Integrated Care
Systems has the potential to both reduce delayed hospital discharges (direct cost saving),
but to greatly reduce the use of coping strategies and congestion (indirect cost saving).
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The financial costs of coping strategies are yet to be assessed but are underway and
indications are that these could be much greater than a modest social care investment
increase in the first place. However, financial costs pale into insignificance compared with
the loss of efficacy and increased risk of patient illness and death arising from congestion.
Additionally, eliminating the need for coping strategies would bring much-needed stress
relief to both clinical and nursing staff.
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6. Benefits and Limitations of the Cascaded Archetype Approach

Whilst feedback loops do not in themselves provide definitive quantitative solutions
to problems, they are very important at each stage of system dynamics modelling. They
are useful both for conceptualising models and to extract insights from them. The idea of
alternating between these two modes to develop models and thinking makes maximum use
of both attributes. The work here has extrapolated early quantitative modelling results into
a broad and succinct hypothesis, capable of drawing attention for further testing, which is
already starting. Qualitative thinking is particularly important when some consequences
in the situation described, such as mortality are intangible.

Cascaded archetypes enable complex feedback structures to be easily understood at
a high level of aggregation and are proving useful to explain interconnections between
Health and Social Care. Whether this is true in other domains is yet to be seen, but they
have the potential to be helpful wherever obvious solutions prove elusive and informal
strategies dominate system performance.

7. Conclusions

This paper has created a hypothesis that indicates that additional spending on Social
Care, either by the government or Health (NHS) to reduce hospital-delayed discharges
could bring very significant benefits to hospital management, staff and patients. It suggests
that health spending on social care though Integrated Care Systems can be justified not only
in the direct cost savings of expensive hospital beds, but by the indirect and wide-ranging
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benefits and savings associated with reducing hospital congestion. Whilst no specific
integrated care initiatives are defined, it is recommended that linking Integrated Care
Systems generally to relieving coping strategies and communicating the wider savings in a
compelling manner could boost the case for and number and shape of the initiatives.

Methodologically, the paper has suggested that individual generic two-loop system
archetypes can be usefully deployed collectively to improve the clarity of communication
and storytelling of complex issues and to explain why unintended consequences occur.
This is achieved by decomposing complex causal loop maps into recognisable and under-
standable structures. The process is particularly apposite to situations where the solution
links of individual archetypes can be very difficult to implement and reactive actions by
multiple stakeholders dominate.

It is suggested that further research is necessary to explore the full potential and
limitations of the approaches described in other contexts and involving other types and
combinations of generic archetypes. The generic nature of the method could have wide
application in other systems where capacity constraints inhibit achievement and informal
strategies need to be surfaced.
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Abstract: Local communities sometimes face severe shocks, such as the COVID-19 pandemic or
economic recession, which inflict widespread harm, intensify injustice and test the ties that bind
people together. A recent “Springboard” theory proposes a way to spring forward toward an
equitable, thriving future by altering priorities among four structural drivers of population well-
being: the extent of vital conditions, equity, urgent services capacity, and belonging and civic muscle.
To explore the strategic implications of the Springboard theory, we developed the Thriving Together
Model, a system dynamics simulation model that lets users play out alternative investment priorities
and track changes over a decade as they try to maximize the number of people thriving and minimize
suffering. The prototype model is exploratory, subject to further refinement and empirical support, but
it has already sparked creative conversations among hundreds of changemakers who have interacted
with it through an interactive theater. This paper presents the model’s structure, illustrative results,
and tentative insights. The Thriving Together Model extends Ostrom’s Nobel Prize-winning work on
shared stewardship by offering a general explanation about how stewards of a divided community
can heal through a traumatic shock and spring forward toward a future with greater well-being and
justice.

Keywords: population health and well-being; equity; stewardship; resilience; simulation modeling

1. Introduction

All communities must contend with persistent gaps in health and well-being as well as
sudden crises that may make things even worse and test a community’s resilience. Shocks
(such as economic recessions, fires, floods, heat waves, mass violence, pandemics, etc.)
typically unfold quickly, intensify pre-existing injustice, and lead to greater morbidity and
mortality. When faced with such a shock, how can community changemakers establish
conditions for everyone to heal and enhance life satisfaction, without leaving anyone
behind?

A large body of evidence connects the health and well-being of individuals to features
in the communities they inhabit [1,2]. Two sets of community-level contributors are
especially crucial [3]: (1) adequacy of urgent services, which anyone may need temporarily
in a crisis (e.g., acute care for injury or physical/mental illness; addiction treatment; crime
response; environmental clean-up; homeless services; unemployment and food assistance);
and (2) the presence of vital conditions, which everyone needs consistently to reach their
full potential. Seven vital conditions are widely recognized: a thriving natural world;
basic needs for health and safety; humane housing; meaningful work and wealth; lifelong
learning; reliable transportation; and a sense of belonging and civic muscle (which is both a
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vital condition as well as practical capacity necessary for equitable progress in every other
area) [4].

When a shock occurs, it tests community resilience and usually hits the most disad-
vantaged members hardest, widening pre-existing inequities. Much is known about the
details of disaster recovery [5,6], but few studies explore what it takes to spring forward
with greater levels of justice and equitable well-being.

At the start of the COVID-19 pandemic, more than 100 contributors came together to
develop a general theory of how a shock that inflicts widespread loss might be converted
into equitable renewal. The result was “Thriving Together: A Springboard for Equitable Recovery
and Resilience in Communities Across America” [7]. The Springboard theory emphasizes four
key elements for thriving together through periods of intense adversity:

1. Affirm racial justice and full inclusion for all people;
2. Strengthen belonging and civic muscle by working across differences, which, in turn,

unlocks new assets for concerted action;
3. Expand all vital conditions with local stewards in the lead;
4. Renew civic life; economic life; and social, emotional, and spiritual life.

In conjunction with the Springboard, our system dynamics modeling team at ReThink
Health (an initiative of the nonprofit Rippel Foundation) developed a model-based simula-
tion to help changemakers understand the strategic challenges they would inevitably face
when trying to spring forward toward an equitable, thriving future. The resulting Thriving
Together Model (TTM), though still exploratory, enables community stewards to play out
the dynamics of renewal over a 10-year time horizon, while they experiment with various
ways to balance investment priorities among vital conditions, equity, belonging and civic
muscle, and the adequacy of urgent services. This paper describes the structure, empirical
foundation, illustrative results, and strategic insights from the prototype Thriving Together
Model, as well as how it might be further refined.

2. Materials and Methods
2.1. Extending an Earlier Line of Research

The current TTM continues our inquiry into the dynamics of population well-being,
which initially explored how to set investment priorities in communities that are contending
with multiple interrelated or “tangled” threats [8]. That study compared the relative value
of investing in one or more vital conditions. For that analysis, each of the seven vital
conditions (other than reliable transportation) was operationalized using metrics available
from the US County Health Rankings [9].

The TTM is broader than the earlier tangled threats analysis. It portrays a decade-
long strategic challenge to equitably renew well-being after a severe shock using four
interconnected investment priorities. However, it is also admittedly still exploratory, not
yet as well grounded in data and community experiences as it could be. In the Discussion,
we describe directions for further development to assure that this tool becomes more
accurate and useful. Nonetheless, the current TTM has provoked strong interest from
several hundred changemakers who have experienced it, making its preliminary findings
worth documenting.

2.2. Representing Well-Being and Its Drivers

The TTM takes a broad view of population outcomes, looking not only at conventional
measures of health status but more generally at population well-being using the Cantril
Ladder categories of thriving, struggling, and suffering [10]. These self-reported life
evaluation metrics are measured regularly in the US and around the world by Gallup.

Users of the TTM must find a way to allocate community assets over a period of
10 years so that more people are thriving and fewer are struggling and suffering. This
involves generating greater equity, more secure vital conditions, adequate urgent services,
and a stronger sense of belonging and civic muscle. Time starts at Year 0; shocks occur in
Year 1; and the overall path toward renewal is tracked from Year 2 to Year 12.
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2.3. Model Structure

Figure 1 presents an overview of the causal logic of the TTM (see Supplementary
File S1 for a complete list of equations).
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Figure 1. Structural logic of the Thriving Together Model (TTM).

On the right are sub-groups of people thriving, struggling, and suffering. There are
three ways to increase the thriving percent: (a) expand vital conditions, (b) increase equity;
and (c) strengthen social support (via higher levels of belonging and civic muscle). Those
who are not thriving are struggling or suffering. Thus, one way to reduce suffering is to
increase thriving. The other way is to increase urgent services capacity.

Vital conditions, equity, and belonging and civic muscle are all represented in the
model as stock variables (rectangular boxes in Figure 1) measured as 0–1 indices. Vital
conditions here refers to all of the vital conditions mentioned previously other than be-
longing and civic muscle, which is represented separately because of its distinct dynamic
effects. The vital conditions index is initialized at Year 0 in the simulation as a weighted
average of multiple indicators of household income, housing, education, physical activity,
non-smoking, and health insurance across all US counties.

Belonging and civic muscle here describes the extent to which people feel they belong
and have the power—as well as the practical capacity—to shape their common world. It is
a shared community asset used to build all others. Additionally, as indicated in Figure 1,
greater belonging and civic muscle not only increases community assets, but also drives
peoples’ sense of social support, which, in turn, helps boost the percent of people thriving.
In lieu of an established multivariate measure, the belonging and civic muscle index is
initialized based on social associations per capita across all US counties (again from the US
County Health Rankings (CHR) [9]).

Equity here refers to whether there is just and fair inclusion for everyone as opposed
to systemic exclusion rooted in institutional policies, practices, programs, and priorities. In
lieu of an established multivariate measure, the equity index is based on the Gini Index
for the US, which measures how fairly income is distributed [11]. As indicated in Figure 1,
greater equity not only improves the percent of people thriving, but also tends to boost
belonging and civic muscle through wider inclusion of people in civic life.

Urgent services capacity is expressed as a percent of the population. If the capacity to
deliver urgent services is less than the current urgent need percent (a portion, e.g., 20%, of
non-thriving people), then its adequacy will be something less than 100%, and people will
suffer accordingly for lack of urgent services. For example, if the urgent need percent is 9%
(20% of 45% non-thriving) and urgent services capacity is 5.4%, then its adequacy will be
60% (=5.4/9%), and the suffering percent will be 3.6% (=9–5.4%).
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2.4. Gathering Assets

It can be difficult for a community to spring forward from a severe shock using only
its usual resources and funding. However, shocks often unleash the potential to acquire
special resources and dedicated funding for some number of years after the shock. The
extent to which these assets for renewal can be gathered depends on the community’s
state of belonging and civic muscle: with greater belonging and civic muscle, community
stewards can gather even more assets (e.g., through fundraising, grants, and in-kind
support). Seeking assets beyond a certain point (or threshold) may impose obligations that
begin to erode civic muscle. If that erosion is strong enough, it can counteract the benefit
of the additional assets (creating a dysfunctional trap of depending on assets that also
undermine their own capabilities). For the simulation analysis here, none of the scenarios
exceed that threshold. Instead, this study explores what can happen with assets that can
be gathered and managed relatively easily, without encumbering the community with
onerous outside obligations or dependencies.

2.5. Allocating Assets

In the model, there are four distinct ways to allocate community assets. They can be
used in various combinations to expand any of the four drivers of well-being (depicted
as boxes in Figure 1): (1) vital conditions; (2) equity; (3) urgent services capacity; and/or
(4) belonging and civic muscle. Any allocation scheme may be depicted as a pie chart
dividing 100% of community assets among the four drivers. At any moment, available
assets are finite, therefore a decision to prioritize one area of work necessarily means paying
somewhat less attention to the others. Investments in belonging and civic muscle, however,
can enable the community to gather even more assets over time, as shown in Figure 1. The
overall resilience of a community after a shock depends on how effectively local stewards
negotiate these four investment priorities over time.

How community assets are allocated among the four drivers of well-being is deter-
mined by the model’s initial assumptions at Year 0 and then, starting in Year 2, by the
model user. The initial allocations in the model may be suboptimal and leave room for
improvement. Model users can adjust this allocation every two years starting at Year 2
(immediately after the shock) and for the last time at Year 10 before the simulation ends at
Year 12.

Each of the four stock variables is subject to gradual erosion if they are not continuously
maintained, as well as the possibility of a sudden, unexpected, adverse shock. The shocks
may reflect rapid external occurrences, such as a pandemic, or internal ones, such as the
loss of organizational leaders.

2.6. Parametric Assumptions

The model is configured with several parametric assumptions we have set based on
data for the US overall (see Supplementary File S2 for a complete list with sources). Some
of the most prominent parameters include initial values for the population well-being and
its four drivers. Those include the initial thriving percent (55%; Gallup 2019), suffering
percent (3.5%; Gallup 2019), vital conditions index (0.80; CHR 2006–2012), equity index
(0.52; Gini 2011–2017), belonging and civic muscle index (0.50; CHR social associations per
capita 2014–2017), and social support index (0.80; BRFSS “have social/emotional support”
2006–2012).

Other parameter values were estimated more impressionistically with the help of
ReThink Health collaborators across the country who evaluated the model as it was being
developed. These include estimates of the initial adequacy of urgent services; the strengths
of causal links in Figure 1; the natural erosion rates of the four stock variables in Figure 1;
and the initial allocation of community assets to those same four stocks.

To enhance clarity when interpreting simulated results, all variables in the model
start in a dynamic equilibrium, unchanging over time absent any shock. This means that
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initially (prior to any shock) the normal erosion outflow for each of the four stock variables
is exactly offset by a corresponding inflow which replenishes the stock.

Together, the model’s parameters determine not only how well the community is
doing initially, but also how close to optimal its starting priorities are, in terms of its
ability to spring forward after a shock. A community that begins with suboptimal starting
priorities will have to shift its priorities more dramatically to spring forward. Because of
the model’s complexity and nonlinearity, the optimal set of investment priorities is not
directly calculable but can only be determined by testing the simulator under different
conditions.

Any of the four allocation areas may be shocked; these shocks occur during Year 1
and take one year to have their full effect. For all tests described below, we used the same
set of relative shock values: vital conditions (−12.5%), equity (−11.5%), urgent services
capacity (−5.8%), belonging and civic muscle (0%). We configured these parameters to
approximate what occurred in the US during March to April 2020, as COVID-19 swept
through the country, a time when Gallup reported that the percent of Thriving adults in
the US dropped sharply [12]. The decision not to alter the level of belonging and civic
muscle was informed by observations that people and organizations were simultaneously
separating and coming together.

2.7. Summary Measures

The model calculates several summary measures of cumulative performance. First is
the change in average life expectancy, measured relative to Year 0. In line with national
data, we assume that struggling (relative to thriving) reduces life expectancy by three years,
while suffering reduces life expectancy by 20 years [13].

We also calculate a “renewal score” determined by cumulative changes in thriving
and suffering over a decade relative to where those well-being metrics were at Year 2,
immediately after the shock. If either metric moves in the wrong direction, a double
penalty is applied. This renewal score starts at zero, with a minimum value of −100 and a
maximum value of +100.

2.8. Illustrative Model Tests

We have performed hundreds of model tests, varying uncertain parameters as well
as allocation decisions. Here, we present six tests that illustrate noteworthy dynamics
of renewal. Each scenario is based on a particular allocation of community assets to the
model’s four drivers of well-being (i.e., vital conditions, equity, urgent services capacity,
belonging and civic muscle).

1. Status Quo: continue the historical, pre-shock allocation, which gives greatest priority
to urgent services capacity (40%) and vital conditions (30%), and far less to equity
(15%) and belonging and civic muscle (15%).

2. Vital Conditions 40%: switch at Year 2 to a new stable allocation emphasizing vital
conditions (40%), with the other three at 20%.

3. Equity 40%: switch at Year 2 to a new stable allocation emphasizing equity (40%), with
the other three at 20%.

4. Belonging and Civic Muscle 40%: switch at Year 2 to a new stable allocation emphasizing
belonging and civic muscle (40%), with the other three at 20%.

5. Even Balance 25%: switch at Year 2 to a new stable allocation with all four at 25%.
6. Best Pivot: switch at Year 2 to emphasize equity first (65%) and belonging and civic

muscle (25%), with the other two at 5% each; then, from Years 4–6, pivot back toward
urgent services and vital conditions, for an eventual stable allocation at Year 6 of
urgent services (45%), vital conditions (35%), belonging and civic muscle (15%), and
equity (5%).
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2.9. Tests in a More Disorganized Community

In addition to tests using community settings based on US national averages, we
also conducted the same battery of simulated scenarios using settings that portray a
more disorganized community. Relative to the baseline assumptions above, we used an
alternative setup to explore the potential for renewal in a community that begins with twice
as many people suffering, as well as half as much equity, social support, and belonging and
civic muscle. See Supplementary File S3 for parameter assumptions and results of those
alternative tests.

3. Results

The six illustrative renewal strategies result in different outcome trajectories for thriv-
ing and suffering and consequently average life expectancy. See Figures 2–4.

Vital conditions and equity are the strongest drivers of thriving (Figure 2). Throughout
Vital Conditions 40% (red line) and Equity 40% (green line), the sum of the asset allocations
to vital conditions and equity is a strong 60%; accordingly, thriving rises the farthest in
these two runs. Thriving also rises strongly at first in Best Pivot (brown line), but slows
after Year 6, as the sum of the allocations to vital conditions and equity declines from 70%
in Year 2, to 60% in Year 4, and finally to 40% in Years 6 and beyond. Both Even Balance 25%
(black line) and Belonging and Civic Muscle 40% (grey line) initially have modest effects, but
by Year 12, both produce slightly better results for Thriving than Best Pivot.
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When attempting to reduce the suffering percent (Figure 3), the two most influential
forces are the size of the thriving percent and urgent services capacity. Because Status Quo
devotes a large 40% allocation to urgent services capacity, suffering declines consistently
throughout. In all other runs, suffering rises at first (even with the increases in thriving
seen in Figure 2) because there is less allocation to urgent services capacity. However, the
trajectory is very different in Best Pivot, where suffering falls rapidly after Year 6—declining
below Status Quo by Year 9. This turnaround occurs for two reasons. First, the allocation to
urgent services capacity in Best Pivot starts at only 5% in Year 2 but rises to 45% in Years 6
and beyond. Second, thriving is much greater in Best Pivot than it is in Status Quo.
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The trajectories for the change in life expectancy (Figure 4) (measured relative to Year
0) all show rebound after the shock, but with significant differences in magnitude and
timing.
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Status Quo looks best for the first several years. With its heavy emphasis on urgent
services capacity, it is the only strategy that avoids a further rise in suffering after the shock.
However, Status Quo is also the worst strategy for increasing the thriving percent; as a
result, it is the worst of the six investment scenarios on life expectancy by Year 12. Runs

55



Systems 2022, 10, 158

with a fixed emphasis on drivers other than urgent services capacity (Vital Conditions 40%,
Equity 40%, Belonging and Civic Muscle 40%, Even Balance 25%) all do better on thriving but
not as well on suffering, ultimately producing modest net gains in life expectancy.

The clear winner on this metric, from Year 7 onward, is Best Pivot. This strategy
allocates 65% of assets to equity in Year 2, and then pivots decisively to urgent services
capacity and vital conditions. The early emphasis on equity works because it activates a
virtuous reinforcing feedback loop (designated in Figure 1 as “equity builds strength”):
equity helps build belonging and civic muscle, which builds more community assets, which,
in turn, help expand equity even more—as well as all other drivers of well-being.

Although Best Pivot does worse on life expectancy than most of the other strategies
immediately after the shock, it establishes equity as an immediate priority and builds a
reservoir of belonging and civic muscle, both of which continue to yield benefits for years
even after attention pivots back to expanding urgent services capacity and vital conditions–
both of which become stronger and more equitable than under the other strategies. By
concentrating first on equity and belonging and civic muscle, Best Pivot prepares the ground
for building adequate urgent services but without sacrificing vital conditions and thriving
(as occurs in Status Quo and Belonging and Civic Muscle 40%).

Furthermore, tests using alternative initial conditions (described in Supplementary
File S3) show that (1) a more disorganized community would have a harder time recovering;
but (2) even a community with twice as many suffering people and half the amount of
equity, social support, and belonging and civic muscle can still recover fully and reach
greater levels of equitable well-being within a decade if they commit to the Best Pivot
strategy.

4. Discussion
4.1. Tentative Strategic Implications

The results above illustrate dynamics that we have seen consistently from the Thriving
Together Model. Although the model is still exploratory, we hypothesize that the basic
logic of the Springboard (e.g., the idea that belonging and civic muscle is a critical, yet
constrained and contested resource) may lead to the following conclusions:

1. The best resilience strategy may require decisive shifts from historical priorities.
2. The best strategy requires investing early in both equity and belonging and civic

muscle so that one may build on those assets later: a kind of self-reinforcing, asset-
building maneuver. The value of those early investments is not only because they
support thriving by helping people connect and heal through collective trauma. It
is also because they support the infrastructure needed for shared stewardship. In
a diverse and divided community, it takes dedicated resources to establish greater
interdependence and enable stewards to work across differences, devise shared plans,
gather and manage assets, and adapt to challenges over time.

3. Efforts to transition toward an equitable, thriving future may involve some inevitable
sacrifice of greater suffering in the shorter term; a “worse before better” dynamic. This
dynamic has been described previously with respect to downstream and upstream
health investments [14], as well as business process improvements and the concept of
the “capability trap” [15].

4. A risk-averse approach (changing priorities little from the status quo and leaving
them fixed over time) may avoid the worse-before-better pattern, but the lack of a
decisive pivot will result in a mediocre trajectory over time. Safe, static allocation
avoids sacrifice, but it does not build the reservoirs of equity or belonging and civic
muscle needed to both boost thriving and drive down suffering.

5. A community that can pivot strongly toward building equity and belonging and
civic muscle after a severe shock may be best positioned to spring forward and
maximize well-being over time. Although that maneuver is superior in principle
(under the conditions of this analysis), it may be perceived as infeasible in practice–
especially if it entails somewhat greater suffering immediately after a shock. Actual
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feasibility, however, depends on how effectively community stewards make the case
for equitable system change [16]. For instance, savvy casemakers could portray long-
overdue investments in equity and belonging and civic muscle as a decisive break
from a status quo that for generations has caused far greater unjust suffering and
would otherwise continue to leave the entire community weaker and more vulnerable.

4.2. Contributions

The Thriving Together Springboard [7] lays out clear goals and principles but does not
provide a detailed strategy for allocating assets over time. To help community stewards
play out investment scenarios, we developed the Thriving Together Model as an exploratory
tool that puts the Springboard concepts into motion. As far as we know, this is the first
formal simulation model to represent dynamic connections among equity, belonging and
civic muscle, vital conditions, and urgent services capacity as drivers of population levels
of thriving, struggling, and suffering over a multiyear time horizon. This project also builds
on Elinor Ostrom’s Nobel Prize-winning work on shared stewardship [17] by developing a
general explanation about how a divided community can heal through a traumatic shock
and spring forward toward a future with greater well-being and justice. The practical
contributions of the TTM include:

1. A focus on summary measures of population-level health and well-being, as opposed
to focusing only on a particular subset of health or social outcomes. The model’s
main outcome measures (i.e., the Cantril categories of people thriving, struggling,
and suffering) are routinely tracked across the US and around the world, allowing
standardized comparisons over time and geography.

2. Representation of equity as a structural driver affecting the entire system, as opposed
to only accounting for differences among certain subpopulations (e.g., by race, gender,
or income).

3. Broad analytic boundary, encompassing concepts of well-being, vital conditions,
urgent services, equity, and belonging and civic muscle and portraying their dynamic
interactions.

4. Ability to explore alternative paths toward equitable renewal over a decade. The
model does not tell leaders what to do, but rather strengthens their ability to interpret
local data and negotiate local priorities, spot opportunities, weigh tradeoffs, and think
creatively about navigating a multiyear path from crisis to renewal.

5. Ability to explain the dynamics of shock and renewal by tracking a suite of interacting
variables and outcome metrics over time.

ReThink Health also used the TTM to create the Thriving Together Theater [18].
Guided by input from several hundred contributors, this interactive experience combines
dynamic simulation, powered by the TTM, with dramatic role-play to explore how a group
of community stewards can spring forward through an unjust shock. It is an immersive
experience in shared stewardship that asks, “How will you and your fellow stewards
exercise civic muscle while looking for an equitable path from crisis to renewal?” As in
real life, the story depends on who shows up. The experience helps stewards rehearse
high-stakes negotiations and play out potential consequences of their own investment
priorities. Participants learn for themselves how to weigh tradeoffs and navigate the dy-
namics of equitable well-being in a community experiencing unjust adversity. The Thriving
Together Theater has provoked creative conversations with hundreds of changemakers
across the country, including community-led multisector partnerships, government agen-
cies, and graduate schools. It is a reliable way to surface participants’ mental models about
equitable long-term resilience, while also emphasizing the importance of adaptive, shared
stewardship.

4.3. Limitations and Extensions

The TTM incorporates multiple sources of available evidence, but it requires further
development and validation in line with system dynamics modeling best practice [19,20] to
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generate more definitive insights. This would likely entail working closely with colleagues
in several communities that have experienced shock and attempts at renewal. Data collec-
tion and group model building with community leaders would inform a new iteration of
the TTM that is more historically grounded and usefully detailed. This enhanced model
would likely have more precise and operational measures for concepts such as equity as
well as belonging and civic muscle. Ideally, it would also have a straightforward data-
driven method for calibration to represent characteristics of any given community as they
explore their own path toward an equitable, thriving future.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/systems10050158/s1, Supplementary File S1: Equation List;
Supplementary File S2: Parameter Assumptions; Supplementary File S3: Tests in a more disorganized
community.
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Abstract: Resilience describes individuals’ and organizations’ recovery from crises and adaptation
to disturbances and adversities. Emerging research shows the deterioration of the population’s
mental health and well-being during the multiple waves of the COVID-19 pandemic, suggesting that
the resilience developed is insufficient to address the system’s persistent shocks. Drawing on the
findings on mental health and well-being during the COVID-19 pandemic and the psychological and
organizational resilience theories, we developed a system dynamics theory model exploring how
the presence of multiple shocks to the system challenges the population’s health and well-being. We
initiated the model with three shocks with the same intensities and durations, and then experimented
with scenarios in which the strength of multiple shocks (duration and intensity) was attenuated and
amplified. The model showed that temporary environmental adjustments with limited long-term
stabilized solutions and a lack of health service provision can increase the accumulative risks of health
and well-being deterioration. We highlight the role of essential health service sectors’ resilience and
individuals’ and organizations’ tolerance of adversities and disturbances in providing sustainable
resilience. We conclude by discussing critical factors in organizational and psychological resilience
development in crises with multiple shocks to the system.

Keywords: COVID-19; resilience; system dynamics

1. Introduction

As of August 2022, COVID-19 has caused over six million deaths and approximately
600 million confirmed cases worldwide [1]. While many of us hoped that COVID-19
would be over before the summer of 2020 after the first wave, the pandemic continued
with multiple ongoing waves of increasing diseases and cases. Despite the attempts and
responses to the pandemic from multiple levels, the system has not developed enough
resilience to address the ongoing shocks and waves of the crisis. In the U.K., multiple
studies have shown the population’s deterioration in mental health and overall well-being
between March and May 2020 [2]. Followed by a period of improvement in the summer of
2020, there was a second deterioration in population mental health and well-being between
October 2020 and February 2021. Studies have shown that inequality in population mental
health and psychological distress was significantly higher in the second wave [3]. The
threat of persistent stress on health is also lasting. Trajectory analysis of psychological well-
being in the COVID-19 waves showed that nearly two-fifths of the population experienced
elevated distress risk [4]. The risk of persistent deterioration shows that the experience
of distress in the first wave was not transformed into resilience to respond to following
shocks in the second and third waves.

Resilience describes how the system recovers and adapts to the disturbances in crises.
At the individual level, resilience refers to how individuals retrieve stability in healthy func-
tioning and develop insights and learnings to positively adapt to future disturbances [5,6].
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Crises bring multiple shocks to a complex system in which individual resilience intercon-
nects with social and physical ecology factors at the group and organizational levels [7–9].
Pandemics require integrated systems to provide prevention and treatment services [10],
as well as require organizations and their members to provide and adjust to new norms
of collaboration and communication. However, mitigation measures might upend peo-
ple’s economic and social lives, leading to increases in psychological distress [4]. The
mental health and well-being deterioration during the COVID-19 pandemic indicates that
resilience development has not been activated or is insufficient for handling persistent
stress, strains, and adversity.

While the resilience literature views adversity, strain, and significant barriers as
bringing opportunities for adaptation and development [11,12], it is unclear how human–
environment resilience is interconnected and provides the population and system with
sustainable recovery during the multiple waves of crises.

System dynamics modeling offers opportunities to explore and theorize resilience
development by exploring the causal and feedback mechanisms of the risk of accumulative
interruptions and resilience development [13,14]. System dynamics focus on the feedback
structures that underlie complex behaviors [15]. Through computer-aided simulation
models, we can explore the underlying mechanisms to advance theory development [16,17].
By drawing on the findings of mental health and well-being during the COVID-19 pandemic
and psychological and organizational resilience theories, we developed a small system
dynamics theory model exploring how the presence of multiple shocks to the system
challenges the population’s health and well-being.

Our contributions are two-fold: First, drawing on the psychosocial (individual) and
organizational resilience literature, we contribute to the theorizing of multisystemic ap-
proaches in resilience development, especially when the system is exposed to risks of
multiple shocks. Second, we explore the accumulative risk of the population’s health
and well-being deterioration and propose interventions that can help mitigate and protect
population well-being in long-crisis events such as COVID-19.

2. COVID-19 and Multisystemic Perspectives in Resilience Development

This section summarizes the resilience perspectives in relation to COVID-19 and
provides an overview of psychological resilience and organizational resilience theories.

2.1. Resilience Development during COVID-19

The systematic review revealed that the deterioration of health and well-being, espe-
cially the negative impact on mental well-being, including high rates of anxiety, depression,
posttraumatic stress disorder, and psychological and emotional distress, is widespread
worldwide [18]. In the U.K., the COVID-19 mental health and well-being surveillance
report [2] published by Public Health England showed that mental health and well-being
during the pandemic has demonstrated an “up-and-down” pattern, in that there have been
continuous deteriorations in health and well-being throughout the multiple waves. The
report synthesized insights from multiple data sources, such as the University College Lon-
don’s COVID-19 Social Study and national data from the Office for National Statistics. The
report highlighted a general increase in psychological stress during the pandemic, particu-
larly for young people aged between 18 to 34 years. Analysis from the U.K. Householder
Longitudinal Study further suggested that the second wave of COVID-19 was associated
with a significant increase in psychological distress [19]. As Figure 1 shows, the proportion
of people with clinically significant levels of psychological distress rose from 20.7% to 29.8%
compared to the pre-pandemic levels. Between October 2020 and February 2021, a second
deterioration in the population’s mental health and well-being was observed [19]. By March
2021, the distress levels increased to 27.1%, significantly higher than the pre-pandemic
level [19]. Even though the majority of the population are resilient or recovered quickly,
two-fifths of the population experienced significant and severe distress repeatedly and
continuously [4].
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Long-term distress exposure increases mortality risk and results in poor health outcomes [20].
Due to the nature of the long-lasting and prolonged effect of COVID-19, researchers pay increas-
ing attention to trajectory changes in the multiple waves of crises [3,4,21,22]. Health systems’
resilience in governance, health workforce, provision of medical products, and health
service delivery has been stressed [23]. Aside from vaccination and hospital capacity, health
workers’ well-being also influences service capacity. Greenberg et al. [24] suggested that
the National Health Service (NHS), as an organization, needs to provide post-trauma social
support to healthcare workers during the COVID-19 pandemic facing increasing numbers
of working hours.

Emerging research presents a resilience perspective that the unprecedented and pro-
longed pandemic brings shocks to individuals’ health and well-being [22], and the health
service system [25], and significant disturbances at all societal levels [26]. However, despite
the attention to resilience development in relation to COVID-19, there is limited knowledge
and theory of resilience development in crises with multiple shocks.

2.2. Clinical and Multisystemic Perspectives in Psychological Resilience

Psychological resilience at the clinical level promotes personal assets and protects them
from the adverse effects of stressors [6]. Psychological resilience indicates less appraisal
of negative emotions, higher capacity of meta-cognition in response to felt emotions [5,6],
more insights and self-reflection [27], positivity [28], psychological flexibility [29], and
adaptive coping strategies. A multisystemic perspective in psychological resilience theory
concerns a process where various systems (biological, psychological, social, and ecological)
interact in ways that help individuals to regain, sustain, or improve their mental well-being
in contexts of adversity and distress [9]. Psychological resilience can vary among different
populations and cultural communities. It reinforces positive and protective/presentive
aspects at different stages of the stress process.

The multisystemic perspective has broadened the understanding and facilitation of
psychological resilience. At the individual level, the study of children with abuse experience
recognizes cognitive appraisal, high rumination, high distress tolerance, low suppression of
emotion, low expression of aggression, and a secure attachment relating to high psychology
resilience [30]. Family- and community-level factors such as family cohesion, parental
involvement, social support, and household income contribute to psychological and be-
havioral changes in resilience [30]. Recent findings have recognized that biological genes,
confounded by factors such as the environment, population, and demographic features,
are associated with the complexity of individual resilience [31]. Furthermore, cultural
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dynamics and contexts and environmental safety and security also impact how individuals
adjust to adversity [8]. Compared to narrow perspectives on individual dynamics, the mul-
tisystemic perspective stresses that psychological resilience is a complex phenomenon of
intersectionality, which dynamically varies and shifts alongside individuals, communities,
and societal systems.

Clinical facilitation of psychological resilience may relate to interventions on the
individual psyche to achieve protective psychological features and personal development,
as mentioned above, to prevent individuals from being overwhelmed by emotional distress
and adversity. By strengthening one’s tolerance of distress, individuals are equipped with
a range of coping skills and strategies for adjusting and coping with adversity. Clinical
contact, as a kind of interpersonal contact with its frame, provide relational social support,
companionship, and a process where the individual has the space to explore and experience
their own resilience and personal assets. Relevant psychoeducation, taking into account
intersectionality, can include contextual factors, such as cultural identity, community
environment, and external systems, in interventions. Lastly, community clinical settings
can identify and bridge an individual with needed social welfare support, resources, and
social advocacy, so that one may regain homeostasis in their social and ecological systems.

2.3. Organizational Resilience and Impact

Exploring interconnections between individual and organizational resilience is crucial
from the multisystemic perspective as organizations underly the complex system and
generate mitigation and actions [32]. Discontinuity and disruption not only cause adversity
for individuals to respond to [7], but also raise a question regarding to what extent the
environment is stable for people in acute distress. Crisis events such as climate change,
energy (gas) crises, and extreme weather events leave high-level complexities and uncer-
tainties for organizations to adapt to [33]. Thus, the idea of organizational resilience and
how organizations adapt to exogenous changes are becoming increasingly relevant and
essential. For example, Bryce et al. [25] argued that the U.K. government and NHS need to
“readjust” to the new environment by operating through national emergency preparedness,
aside from coping with the challenge of inadequate resource provision in terms of virus
tests, ventilators, and personal protective equipment.

Organizational resilience describes the environment attempting to adjust to distur-
bances in the environment. While turbulence and adverse events are often viewed nega-
tively, resilience studies have the underlying aim of shifting from the tendency to focus
on “failures, decline, and maladaptive or pathological cycles” to “how organizations con-
tinually achieve desirable outcomes amid diversity” [11]. Meyer [34] framed sudden and
unprecedented events as “environmental jolts” that create transient perturbations and force
organizations to adapt to the environment. The process of averting maladaptive outcomes
involves the organizations, their units, and members developing and mobilizing cognitive,
emotional, relational, and structured resources to cope with adverse events. When organi-
zations face sudden and unprecedented events, according to Meyer [34], resilience occurs if
the organization absorbs the environmental jolt’s impacts and decreases deviation from the
previous order. Specifically, the process of adapting to environmental stimuli includes three
phases: Anticipating changes and risks of failure, responding to and providing changes,
and then readjusting the strategies and resources after the shocks.

The psychodynamic perspective in organizational research has shed light on some
of the unintended consequences of organizational defenses against disturbances derived
from external threats, internal conflicts, or the nature of work [35]. Understanding the
interplays of individual and organizational narratives in organizational changes is essential,
as collective learning can develop "critical self-reflexivity and an identify-focused dialogue"
to mitigate maladaptive defenses such as denial, rationalization, and idealization [36].

In facing threats and potential risks in functioning and performance, learnings and
insights can inform strategy-making to be resilient to future disturbances [34]. Organiza-
tional adaptations and learnings are “dynamic” and require “multi-institutional working”
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in broader systems [37]. Williams et al. [38] described that organizational members’ and
organizations’ responses to disturbance can change over time and shape future interpreta-
tions and responses to adverse events. The responses depend on individuals’ cognitive,
behavioral, emotional, and relational capabilities and their interactions with organizational
efforts in risk reduction and reliability, forming “feedback causal mechanisms” between
individuals and organizations [38].

Although the connection between individual and organizational psychosocial re-
silience has been recognized—for example, individual employees’ response to and coping
with adverse or significant traumatic events may influence their capacity to perform their
roles [33]—mainstream research on organizational resilience uses business performance
as one of the key indicators. According to Ilseven et al. [39], the critical components in
measuring resilience are the magnitude and rate of the both drop and recovery in organiza-
tions’ performance. The operational or engineering frame of organizational resilience is
helpful in that the functioning of organizations is essential. However, the frame misses the
multisystemic perspective that individuals and members of organizations face psychosocial
risk or challenges, which influences how individuals collaborate and perform. As Kahn
et al. [40] suggested, if the relational systems that underlie organizations remain disturbed,
even when operational performance interruptions have been resolved, organizations can
still face dysfunctional patterns of behavior and longer-term performance issues.

3. Methods

System dynamics modeling is a methodology that explores the complexity of circular
causality or feedback loops and how interactions between factors can result in non-linear
behaviors in the systems [15]. It can be applied to generate robust policies in specific real-
world issues such as public health (e.g., [41–43]), climate and environmental (e.g., [44,45]),
and operational and managerial issues (e.g., [46,47]). It is also widely used to inform
theory building and testing [48], especially in organizational and management theories
(e.g., [49–52]). The significant difference between theoretical and applied system dynamics
modeling regards the steps in the modeling process (if specifics of policy arrangements need
to be provided), data (if the collection of primary data is needed), and model boundaries
(if the omission of specific variables and relationships is acceptable) [17]. While applied
modeling is about developing a model to develop specific policy suggestions for the
phenomenon under investigation, theory-based modeling focuses on generalizability and
providing incremental knowledge to explain and theorize a phenomenon without the
absolute need to collect empirical data on a specific instance [16,17,48,53]. Through model-
based theory building, more profound insights can be gained and tested to inform the
development of “minor and middle-range theories” that attempt to build generic and
overall explanations of a problem but have not yet been formed as a unified theory [53].

A theory-based modeling approach was chosen to contribute to the theorizing of
resilience development in multiple shocks and to provide some generic learnings regarding
health and well-being deterioration during the COVID-19 pandemic. A resilience model
was developed via the following steps: First, health and well-being deterioration phenom-
ena are defined through reports and data. The COVID-19 mental health and well-being
surveillance report [2] was chosen mainly to aid in forming a definition of the problem,
as it is one of the earliest publications synthesizing evidence in health and well-being
deterioration during the COVID-19 pandemic. Second, a dynamic hypothesis was formed
through reviewing the broader theories of psychological and organizational resilience.
Third, the conceptualized model was developed iteratively by revising the initial structures
and conceptualization [54]. Lastly, the model was tested and provided equilibrium runs
and different combinations of shock duration and intensity, providing directions for policy
testing and insight.
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4. Model Conceptualization

This section describes the causal mechanisms and main feedback loops in the model
conceptualization.

4.1. Resilience and Disturbance

The model starts with a stock of Disturbance Events (see Figure 2. Resilience and
disturbance interconnections), representing the accumulation of disturbance events in the
system. Disturbance events cause a departure from a standard or desired state [55]. We
followed the definition of disturbance by White and Pickett [56] (p.7), that “a disturbance
is any relatively discrete event in time that disrupts ecosystem, community, or population
structure and changes resources, substrate availability, or the physical environment.” In
the model, the stock of Disturbance Events increases with an inflow of average disturbance
events per month, assuming that there is a constant exogenous inflow of disturbance events
for individuals to address. The stock decreases after the disturbances are processed by indi-
viduals, which depends on the time needed to resolve events, effect of environmental resilience,
and effect of individual resilience on decreasing disturbance events.
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Figure 2. Resilience and disturbance interconnections. The top box describes the conceptualization of
multiple shocks to the system. The bottom part of the figure shows the causal links between resilience
and disturbance. Note: A positive (+) sign implies positive arrow polarity, meaning that an increase
(decrease) in the cause variable will result in an increase (decrease) in the effect variable, compared to
what would have been otherwise and if everything else stays the same. A negative (−) sign implies
positive causality, meaning that an increase (decrease) in the cause variable will result in a decrease
(increase) in the effect variable, compared to a what would have been otherwise and if everything else
stays the same. ‘B’ represents ‘balancing loops, meaning that an increase (decrease) of one variable
would trigger a decrease (increase) of this variable after travelling the full loop.
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Another stock in Figure 2 is Psychological Resilience, which represents the accumulation
of resilience that individuals retain to address disturbances in the system. Resilience
describes how individuals recover from shock, acquire stability in healthy functioning,
and adapt to disturbances. Increasing disturbance events increases the resilience needed to
address disturbance events, demanding individuals to develop resilience and decreasing
the disturbance events perceived, which forms the first balancing loop—B1a: Resilience
Prevents Disturbances. As individuals resolving disturbance events, the stock of Disturbance
Events decreases, decreasing the demand for resilience, which forms another balancing
loop—B1b: Resilience Helps Process Disturbances.

As shown in Figure 2, multiple shocks can create waves of disturbances in the system,
increasing the inflow of the stock of Disturbance Events. To understand the impact of the
multiple waves of crises on the system, we added three waves to the system, with the
intensity and duration of each crisis that can be specified and changed.

4.2. Psychological Resilience at the Population Level

“Stress” describes people’s general experience of psychosocial distress, including
anxiety, depressive symptoms, sleep problems, self-reported mental health, loneliness, and
general stress. We used three stocks in the population structure to describe changes in
distress levels at the population level: Low/mild Stress People, Highly Stressed People without
Health and Well-being (HW) Services, and Highly Stressed People with HW Services (see Figure 3).
When low/mild stress people are exposed to crises or disturbance events, they move to
the Highly Stressed People without HW Services through the flow Stressing up. The speed of
moving to high-stress stock depends on two variables: (1) The disturbance to resilience ratio,
which measures individuals’ experience of disturbance level relative to their resilience
level; (2) time to change the stress level. Although crises with multiple waves can hit all
three population stocks, in the model, we assumed that the shocks do not bring additional
adversities for the people who are already in the two high-stress stocks.
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Short-term deterioration in health and well-being does not directly indicate an increase
in mental illness or a need for HW service support. As this model aims to understand the
connections between individual and organizational resilience and potential policies, we
assumed that a fraction of highly stressed people will use HW services and move to the
third stock: Highly Stressed People with HW Services. A fraction of people from the service-
using population might drop out and move to the Highly Stressed People without HW Services
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stock. People from the two high-stress stocks can recover after a specific time (2.5–3 months
in the model) and move back to the Low/mild Stress People stock. The flow recovering by
using services describes the process for people to gain higher tolerance of emotional distress
and disturbance. The recovering process increases Psychological Resilience, which decreases
the Stressing up process, decreasing highly stressed people with or without HW services,
forming two balancing loops—B2a: Gain Resilience through Self-recovery and B2b: Gain
Resilience through Service Recovery.

4.3. Health and Well-Being Service Sector Resilience

At the organizational level, the health service sector is critical in supporting and
helping highly stressed people recover and gain emotional tolerance to adversity and
distress. HW services include a range of therapies, case management, and community-
based support. For example, brief treatments provide clinical intervention to decrease
emotional distress, identify and reinforce strength and protective factors, introduce coping
skills, increase relative insights, and provide social support and relational connection. HW
services include triage systems that refer people to the appropriate level of care services.
The process includes assessing the severity of psychological distress and can provide case
management services with needed resources.

We used the stock of HW Service Staff to measure the health and well-being service
sector capacity (see Figure 4). We measured how many health and well-being support
sessions can be provided monthly. In this model, Highly Stressed People without HW Services
increase the total sessions demand, requiring HW organizations to hire more staff to increase
the service capacity, forming the third balancing loop—B3: Reduce Out of Services. Here,
we also considered the demand of the existing clients in the system. Highly stressed people
using HW services are also part of the session’s demand. Providing services to the people
already in the HW system indicates a further increase in the total sessions demand, which
increases HW Service Staff as the capacity increase, forming the first reinforcing loop—R1:
Adjust HW Service Capacity. Prioritizing services to people indicates a decrease in the
remaining capacity, creating the fourth balancing loop—B4: Prioritize Existing Clients.
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4.4. Organizational Resilience in the Environment

Aside from the health service sector mentioned above, another critical factor that
connects individuals’ and organizations’ resilience is how the surrounding environment
and organizations can mitigate the adversities and disturbances that individuals face.
Multiple crisis events are “environmental jolts” that potentially bring opportunities for
organizational transformation, which might also create disturbances for individuals. With
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“crisis shocks” in the system, the average number of disturbance events increases, increasing
the number of people experiencing increased stressing.

In this model, we used the stock of Environment Temporary Adjustments to describe the
organization’s attempts to provide solutions (see Figure 5). Increasing disturbance events
requires organizations such as workplaces to accommodate the events and increase tempo-
rary adjustments, which increases the disturbance events that individuals need to adjust to,
forming the second reinforcing loop—R2: Temporary Environmental Disturbance. Environ-
ment Temporary Adjustments are settled and moved to the stock of Stabilized Adjustments,
forming the fifth balancing loop—B5: Long-term Stabilization. For example, vaccination
programs, work-from-home guidelines, and traveling notices formed some of the stabilized
adjustments during the COVID-19 pandemic. Environment Stabilized Adjustments could be
revisited after a specific time in multiple shocks, being moved to Temporary Adjustments.
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Figure 6. Stock and flow structure of the resilience model. The red box highlights the impact of
multiple shocks to the system.

5. Model Results

The simulation model had a 200-month time horizon. In this section, we describe
the model equilibrium conditions and how the model responds to different scenarios of
multiple shocks.

5.1. Model Equilibrium

We initialized the model in equilibrium without any shocks to the system. The model
equations are included in Appendix A. With an average of 2.5 disturbance events happening
every month, the psychological resilience remained 0.6 throughout the model’s running
time of 200 months. The number of temporary adjustments remained the same as the
adjustments demanded by the disturbance events, leaving the disturbance to temporary
adjustments ratio at 1. The environmental stabilization ratio remained 0.23, indicating
that the environment was stable in providing support. The model was initialized with
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12,300 people, with 10,000 people having low/mild stress, 1.74k people not using HW
services, and 543 highly stressed people using HW services. The mental health services had
57 staff throughout the model running time, providing 5700 sessions monthly to support
the population’s health and well-being.

5.2. Multiple Shocks in the Base Run

For the base run, we simulated the model with three consecutive shocks with equal
intensities and durations. The model’s time horizon was 200 months, while the shocks
only presented in the initial 60 months, which is less than one-third of the running time.
The reason is that a long time horizon can show the long-term impact and the process
for the system to regain steady status. Each shock lasted five months, with an interval
of six months and an equal intensity of three. The three shocks from month 20 to month
47 indicate that there were approximately two years of elevated disturbance, ensuring the
investigation of the long-term impacts. A shock intensity of three increased the number of
disturbances of events to 10 events per month. The first shock started by month 20. Figure 7
shows that the number of highly stressed people without HW services rose to 4200 by
month 26.5, which shows that the peak of the first wave shocks had a 6.5-month delay. The
maximum number of highly stressed people was a third of the total population. The next
two waves displayed the same delays as the first wave. The peak of highly stressed people
without HW services remained the same as in the first wave in the second wave, and then
decreased to 3240 in the third wave. The psychological resilience ratio increased over the
three consecutive shocks from 0.63 to 0.66, indicating that people recovering from using
HW services or self-recovery gained tolerance toward the same intensity and duration of
shock, increasing the population’s resilience to future shocks. The psychological resilience
ratio describes the general trend and changes in psychological resilience. The impact of the
multiple shocks on the system lasted for the remaining simulation time, with a relatively
stable increase in highly stressed people without HW services. Overall, the number of
highly stressed people without HW services remained lower compared to pre-multiple
shocks, due to the overall improvement in psychological resilience gained from the multiple
shocks. The base run showed two interesting results:

• Resilience developed in multiple shocks can lower the number of highly stressed
people without HW services compared to pre-shock conditions.

• Under the scenario of three consecutive shocks with the same durations and intensities, the
psychological resilience at the population level increased over time, but was not sufficiently
high enough to decrease the overall risk of deterioration of health and well-being.

5.3. Attenuation of Multiple Shocks

In the real world, the level of disturbances and adversities from crises varies. To
explore the system’s response to different crisis scenarios, we changed the durations,
intervals, and intensities of the three consecutive shocks. The first scenario that we were
interested in was the “attenuation of multiple shocks,” in which the duration and intensity
of the three shocks decreased over time. The first shock lasted 12 months with an intensity
of six, the second shock lasted five months with an intensity of three, and the third shock
lasted two months with an intensity of two. As Figure 8 shows, the number of highly
stressed people without HW services increased immediately after the starting point of the
first crisis in month 20 and kept increasing during the first wave for 10 months, reaching
6720 in month 30. Afterward, the number of highly stressed people without HW services
started to decline before the end of the first wave, which occurred by month 32. Toward the
end of the subsequent two waves of crises, the number of highly stressed people without
HW services reached 3090 and 1670 per month.

The number of highly stressed people without HW services showed a stable decreasing-
over-time pattern after the first wave, and the overall increase in psychological resilience
was enormous compared to the base run throughout the 200 months. One of the reasons
is that the duration and intensity of the shocks to the system decreased. Another reason
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is that the amplified first wave increased the total number of environmental adjustments
needed for stabilizing the environment in comparison to the base run. While it brought
more short-term disturbances to individuals to adjust (see R2: Temporary Environmental
Disturbance in Figure 6), in the long run, the temporary solutions were transformed to
stabilized adjustments that were relatively more sufficient to address the second and third
waves as the shocks to the systems were also attenuated (see B5: Long-term Stabilization
in Figure 6). Moreover, as more people experienced disturbances and adversities in the
first wave, the recovering process increased the population’s psychological resilience by
increasing the emotional tolerance of distress and prevented individuals from becoming
more stressed when the second and third shocks happened (see B2a and B2b: Gain Re-
silience through Self-recovery and Service Recovery, respectively in Figure 6). The health
service system tried to increase the number of staff in the first significant wave, reaching
approximately 139 staff by month 36.5 (after 4.5 months of the end of the first crisis), which
was approximately 40 more staff in the same month in comparison to the base run. Conse-
quently, the maximum number of flows of people becoming more stressed was significantly
lower in the second and third waves. The environment became stable, providing more
transformational adjustments throughout the crisis. The attenuation run showed another
significant result:

• When the intensity and duration of the shocks decreased over time, the system’s rapid
responses in providing health services and environmental stabilization in the first
significant shock were critical in improving the population’s resilience in addressing
the risk of health and well-being deterioration in later shocks.
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interval of six months (dashed dot pink, right axis). Two indicators of population resilience were
included: The number of highly stressed people without HW services (solid black, left axis, scale:
0~8000 people) and the psychological resilience ratio (dashed dot black, left axis, scale: 0.5~1).

5.4. Amplification of Multiple Shocks

The second scenario we were interested in was the “amplification of multiple shocks.”
The duration and intensity of the three shocks increased over time. In this scenario, we
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reversed the setting conditions of the “attenuation of multiple shocks” scenario. Here,
the first shock lasted two months with an intensity of two, the second shock lasted five
months with an intensity of three, and the third shock lasted 12 months with an intensity
of six. Figure 9 shows that the number of highly stressed people without HW services kept
increasing during the first and second waves for 10 months, reaching 4350 by month 34,
which is higher than the base run. Afterward, until month 48, the number of highly stressed
people without HW services rose exponentially to 5620 as the third shock hit the system
by month 39 for another 12 months. The number of people without HW services started
to decline from month 48, three months before the third shock ended, indicating that the
stabilized solutions and HW services provided by the HW sector were effective before the
third wave ended.
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Figure 8. Population resilience with an input of three attenuated shocks. The shocks (right axis) are
shown in dashed dot lines in pink. The first shock lasted 12 months with an intensity of six, the
second shock lasted five months with an intensity of three, and the third shock lasted two months
with an intensity of two. The intervals between shocks remained six months.

Changes in the sequence of primary, mild, and minor shocks resulted in changes in the
number of people who were stressed. Figure 10 shows comparisons of the accumulation of
people became increasingly stressed and highly stressed people without HW services in
four runs: Equilibrium, base run, shocks attenuation, and amplification. Before month 50,
the accumulative number of people who became increasingly stressed in the attenuation
scenario was the highest among the four runs, as the first wave was primary, leaving
6700 people without HW services (Figure 10b). However, from month 48 onward, the
accumulative number of people stressed in the amplification scenario was higher than
in the attenuation scenario throughout the simulation time. The outbreak of the third
wave in the amplification scenario between months 39 and 51 left 5600 people without HW
services (Figure 10b), which is lower than the peak in the attenuation stage. However, in
the case of shock amplification, the psychological resilience and environmental stabilization
solutions developed in the last two waves were not sufficient to prevent deterioration in
the third wave (see B1a and B1b: Resilience Prevents Disturbances and Resilience Helps
Process Disturbances, respectively in Figure 6), the accumulative number of people without
HW services remaining in the amplification scenario was higher in comparison to that in
the attenuation stage. After the disturbances were processed and resilience development
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caught up (see B2a and B2b: Gain Resilience through Self-recovery and Service Recovery,
respectively, in Figure 6), the number of people who became increasingly stressed was
lower than that in the equilibrium and base run. The amplification run and comparisons
leave us with a final point that:

• When the intensity and duration of the shocks increased over time, while the direct
consequences of the first minor and mild shocks can be relatively smaller, a higher risk
of health and well-being deterioration can present in the following major shock if the
resilience development process does not sufficiently prepare the system.
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Figure 9. Population resilience with input of three amplified shocks. The shocks (right axis) are
shown in dashed dot line in pink. The first shock lasted two months with an intensity of two, the
second shock lasts five months with an intensity of three, and the third shock lasted 12 months with
an intensity of six. The intervals between shocks remained six months.

74



Systems 2022, 10, 183

Systems 2022, 10, x FOR PEER REVIEW 16 of 30 
 

 

wave in the amplification scenario between months 39 and 51 left 5600 people without 
HW services (Figure 10b), which is lower than the peak in the attenuation stage. However, 
in the case of shock amplification, the psychological resilience and environmental stabili-
zation solutions developed in the last two waves were not sufficient to prevent deteriora-
tion in the third wave (see B1a and B1b: Resilience Prevents Disturbances and Resilience 
Helps Process Disturbances, respectively in Figure 6), the accumulative number of people 
without HW services remaining in the amplification scenario was higher in comparison 
to that in the attenuation stage. After the disturbances were processed and resilience de-
velopment caught up (see B2a and B2b: Gain Resilience through Self-recovery and Service 
Recovery, respectively, in Figure 6), the number of people who became increasingly 
stressed was lower than that in the equilibrium and base run. The amplification run and 
comparisons leave us with a final point that: 
• When the intensity and duration of the shocks increased over time, while the direct 

consequences of the first minor and mild shocks can be relatively smaller, a higher 
risk of health and well-being deterioration can present in the following major shock if 
the resilience development process does not sufficiently prepare the system. 

 
Figure 10. Comparisons of four runs: (a) Accumulation of people becoming increasingly stressed; 
(b) highly stressed people without HW services. 

6. Policy Testing 
The four runs suggest the importance of policies that develop resilience pre- and dur-

ing multiple shocks of crises to decrease the risk of health and well-being deterioration. In 
this section, we describe how different policies can potentially reduce the number of 
highly stressed people without HW services in crises and increase the system’s resilience 
to withhold future shocks. 

Table 1 shows three policies and their dynamic principles and target loops. The first 
policy (P1) focuses on organizational adjustments—specifically, how organizations re-
spond to crises and help individuals adjust to crises early when the shock hits the system. 
The second policy (P2) focuses on the health service sector’s response to health service 
demand. The third policy (P3) focuses on individual and organizational learning during 
crises, which can help individuals develop a higher tolerance of distress and adversities. 
Moreover, organizations require stabilized adjustment when there are multiple and con-
secutive shocks as waves of crises. 

  

Accumulation of people stressed up

Months

Pe
op

le

0

35k

70k

0 50 100 150 200
1

2

3
4

1
2

3

4 1
2 3

4

1

2

3
4

Base run1 Equilibirum 2

Attenuation shocks3 Amplification shocks4

Highly Stressed People without HW Services

Months

pe
op

le

0

3.5k

7k

0 50 100 150 200

1 2

3

4

1 2

3 4
1

2

3 4

1
2

3 4

Base run1 Equilibirum 2

Attenuation shocks3 Amplification shocks4

(a) (b)

1 2

3 4

1 2

3 4

Figure 10. Comparisons of four runs: (a) Accumulation of people becoming increasingly stressed;
(b) highly stressed people without HW services.

6. Policy Testing

The four runs suggest the importance of policies that develop resilience pre- and
during multiple shocks of crises to decrease the risk of health and well-being deterioration.
In this section, we describe how different policies can potentially reduce the number of
highly stressed people without HW services in crises and increase the system’s resilience to
withhold future shocks.

Table 1 shows three policies and their dynamic principles and target loops. The first
policy (P1) focuses on organizational adjustments—specifically, how organizations respond
to crises and help individuals adjust to crises early when the shock hits the system. The
second policy (P2) focuses on the health service sector’s response to health service demand.
The third policy (P3) focuses on individual and organizational learning during crises,
which can help individuals develop a higher tolerance of distress and adversities. Moreover,
organizations require stabilized adjustment when there are multiple and consecutive shocks
as waves of crises.

75



Systems 2022, 10, 183

Table 1. Policies for enhancing individual and organizational resilience when facing multiple crises.

Policy Policy Description Dynamic Principle Targeted
Loops

P1: Environment-
based fast

adjustments

Speeding up the environment’s adjustments in
providing temporary solutions. Organizations

monitor changes, quickly respond to crises,
and attempt to develop temporary plans and
revisit them quickly once the shock hits the

system.

The organizational response time is one
month (base run is three months), the

time needed for temporary plans
equals two months (base run is four
months), and every six months (base
run is 12 months), the organization

revisits the plan.

B2, B1a, B1b

P2: Health service
sector-based fast

responses

Providing health services to support health
and well-being throughout crises. The health

service sector responds to the demands of
health services quickly and provides programs

to encourage the use of health services.

The fraction of people reaching out to
health and well-being services is 0.8
(base run is 0.5). The waiting time to

access these services equals two
months (base run is four months), and
the time to hire new staff is now three

months (base run is 12 months).

R1, B3, B4, B2b,
B1a, B1b

P3: Collective
growth

Facilitating organizations’ and individuals’
evolvement and adjustment for long-term

stabilization in crises. Specifically, individuals
develop more resilience in tolerating distress

and adversities through self-recovery and
using health services. Moreover, organizations

can provide stabilized adjustments (such as
guidelines, arrangements, long-term strategies,

and solutions) more quickly in crises.

The emotional tolerance acquired from
the recovery process is four times that
of the original baseline, which is now 4

(base run is 1), and the time for
organizations to settle their

stabilization adjustment is now three
months (base run is 12 months).

B2a, B2b, B5,
B1a, B1b

Figure 11a shows the accumulation of people becoming increasingly stressed, which
is the sum of the flow “becoming increasingly stressed” over the 200 months. The accu-
mulation shows the long-term impact of disturbance and resilience development. For the
scenario of attenuation shocks (see runs 2~5 in Figure 11) and the scenario of amplification
shocks (see runs 6~9 in Figure 11), while the first policy P1 managed to lower the number of
highly stressed people with no HW services in the long run, it unexpectedly increased the
maximum number of highly stressed people with no HW services in the major waves (runs
3 and 7 in Figure 11b), which suggests that the recovery from services cannot be placed
to support the population’s psychological resilience development, leaving more people
at risk of becoming increasingly stressed. The unintended consequence of increasing the
number of highly stressed people with no HW services is that the adjustment in P1 only
considered the increase in short-time adjustments rather than stabilization of the long-term
adjustment, which increased the disturbance level significantly in a short time, resulting
in an increase in the number of highly stressed people with no HW services. As a result,
the increased psychological resilience was not sufficient to address the increased level of
disturbances in the environment.
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Figure 11. Policy tests. Comparisons of the three policies P1, P2, and P3 for the scenario of attenuation
and amplification shocks, in comparison to the equilibrium conditions: (a) Accumulation of people
becoming increasingly stressed in 200 months; (b) highly stressed people without HW services in the
initial 100 months.

P2 (see runs 4 and 8 in Figure 11) showed the best outcome in reducing the number
of highly stressed people with no HW services, compared to all other runs. Under P2,
more than 200 health service staff, four times the initial number of health service staff in
the system, were hired to provide services and help individuals gain resilience through
the recovery process in both the attenuation and amplification scenarios. P2 significantly
reduced the accumulation of stressed people over the long run after month 150. However,
between months 50 and 125, a significant number of people still experienced adversity and
distress, which shows that the reliance on service capacity changes is not the best policy.

Policy P3, collective growth (see runs 5 and 9 in Figure 11), significantly reduced
the maximum number of stressed people with no HW services. As Figure 11b shows,
the number of highly stressed people without HW services started to decline before the
onset of the first shock in both the attenuation and amplification shocks scenarios, and the
peaks were reduced by approximately 50%, suggesting that the prevention and pre-crises
responses were activated before the crises. Consequently, disturbances and adversities can
be addressed without being stressed. As Figure 11a shows, the accumulation of people
becoming increasingly was significantly reduced throughout the simulation time. However,
the impact of the shocks did not reach equilibrium until month 60 in Figure 11b, showing
the accumulative risk of multiple shocks in the system again.

In summation, the policy test showed the critical role of health services in hiring staff
to meet the service demand. However, it did not solve the fundamental problem of how
multiple crisis shocks increase disturbance and stress for individuals, thus not sufficiently
addressing the challenges of multiple shocks. Moreover, without long-term stabilization
adjustments, rapid temporary adjustments can create unintended consequences in terms
of increasing the number of disturbances over a short time, challenging the resilience
of the system. Furthermore, providing individuals’ and organizations’ learnings and
reflections on tolerating adversities and disturbances seems vital to improving resilience
and preventing a significant level of distress at the population level.

7. Discussion, Limitations, and Implications

This paper adopted a feedback view of resilience development and drew theories
of psychological and organizational resilience to determine how resilience is developed
during multiple shocks in crises. The multisystemic perspective in connecting psycholog-
ical and organizational resilience was used to develop a simulation model based on the
learnings from mental health and well-being deterioration during the COVID-19 pandemic,
which extends resilience theories. Model analysis illuminated that multiple shocks in crises,

77



Systems 2022, 10, 183

the rise of temporary adjustments, and limited service provision resources can increase the
accumulative risk of the deterioration of health and well-being. Simulations and multiple
combinations of intensities and durations of shocks demonstrated that the learnings devel-
oped during the first few shocks could potentially provide the system with a significant
level of prevention that decreases the chances of continuous deterioration. In Figure 12,
we show the how psychological resilience, environmental resilience, and the HW service
provision form this “resilience,” which can grow and buffer shocks in the multiple waves
of a crisis. The simulation model contributed a few critical implications in theorizing the
dynamics of resilience development in multiple shocks.
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The first implication is extending the multisystemic perspectives in resilience develop-
ment by seeing resilience as a complex adjustment process involving multiple systems and
contexts. The risk of crises accumulates as the number of disturbance events rises beyond
the resilience level. Abrupt, significant, temporary, and frequent changes in surrounding
organizations may cause unintended difficulties for individuals, primarily when changes
concern essential resources or support for one’s immediate stabilization and grounding. For
people who struggle with acute abruptions and disturbances, these changes may become
another burdensome object that people need to become acquainted with quickly, which is
likely to contribute to emotional disturbance in the sense of experiencing the unknown,
uncertainty, and feelings of powerlessness, helplessness, and hopelessness.

The second implication relates to strengthening and reinforcing protective factors
in producing systemic efforts of strategy development and policy design in population
resilience. At an individual level, resilience developed through recovering from previous
shocks of the exact nature is critical as it provides higher tolerance of distress and adversity.
The recovery process requires individuals to constantly build on personal assets such
as self-esteem and emotional positivity. It is also critical to develop adequate insights
into one’s external reality, nuanced emotions, and intrapsychic experiences. Individuals
can present with psychological flexibility, reflect, and wonder about goals and visions of
oneself and life, as well as present with adaptive coping skills and strategies, which support
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individuals’ counter against appraisal of negative emotions and destructive responses.
Involving multi-sector organizations such as the education, workplace, and public service
sectors across systems is essential, as resilience development is a process of experiencing
human relationships, connections, rapport, and trust across the boundaries of multiple
systems. Resilience of multiple systems serves not only certain designed functions, but
also forms stable systems to protect individuals, families, and even groups from being
shattered by crises and forceful interruptions. As the model suggested, systemic efforts such
as equipping parents with skills and knowledge about crises and providing supportive
resources, strategic guidelines, and financial and employment security are needed to
facilitate the growth of resilience.

The third implication is conceptualizing organizational resilience from individual
resilience development perspectives. Persistent crises require organizations to respond
with mitigations, but short-term adjustments that only focus on securing organizational
performance and functioning without considering individual resilience can increase the
accumulative disturbances individuals face within the short term, which hinders the
development of psychological resilience during crises. Organizational and individual
learnings are critical to help the growth of resilience and decrease the number of people
becoming increasingly stressed during a crisis. When crises and shocks to the system regard
health and well-being, such as COVID-19, measurements of organizational resilience should
expand from organizational functionality and performance. An individual–environment
view of organizational resilience should incorporate indicators such as to what extent the
organization provides insights and learnings from the adverse events for individuals, and
to what extent the organization’s capacity to adapt to disturbances and mobilize resources
to sustain changes and provide transformational adjustments.

The last implication regards COVID-19 lessons. Significant changes have been ob-
served in conducting and receiving health and well-being services. As all parties strive to
adjust to the long-pandemic, we wonder how we may learn and reflect from our experi-
ences of the pandemic and continuously support people in need. When the population
faces constant and enduring waves of a pandemic, policies and multiple sectors should
facilitate the development of psychological assets such as self-esteem, psychological flexi-
bility, adaptive self-care or coping strategies, and supportive social welfare. The present
reality is that the pandemic has a high level of uncertainty, and the unknown may not be
eliminated, which requires us to live with these disturbing and uncomfortable dynamics.
A resilience perspective can cultivate tolerance of disturbances and distress, reinforcing the
population’s growth to strive for a happy life.

In terms of limitations, while we used the COVID-19 pandemic as an example to
explore the interconnections between individual and organizational resilience, the model
is not calibrated with empirical data and does not consider variations across subpopula-
tions. Emerging longitudinal research shows that young generations aged 19–30 years
and females had a higher risk of distress during the pandemic and its lockdowns [57].
Additionally, younger age (<40 years), female gender, psychological illness, student status,
exposure to social media/news, and unemployment are common risk factors that have
been shown to be associated with mental distress caused by the pandemic [18]. The model
was not calibrated with empirical data, as the focus of this model is to provide theoretical
exploration. Empirical evidence decides the realism and reliability of the model’s valid-
ity, which requires both structural and behavior-over-time data [58]. While we believe
theory-based modeling was useful and proper for the purpose of this paper, the model
was not calibrated with behavior-over-time data; thus, the model should be considered
exploratory with tentative and uncertain conclusions. To improve the evidence level of
the model, future studies can calibrate the model using data on the population’s health
and well-being, service provision, and environmental changes. Future research can further
include the impact of accumulative risk on different socioeconomic or age groups to show
the different levels of vulnerability.
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The model provided theoretical insights but was overall simplified at quite a high
level. A more systematic review of theoretical orientations or models in clinical psychology
can be used to improve the structural conceptualization. For example, resilience can
be closely linked to psychological development, insights, judgments, resourcefulness,
behavioral regulation, distress tolerance, etc. For organizational resilience, we simplified
the conceptualization of organization resilience by using the number of staff in the health
and well-being service sector. In practice, different agencies have broader approaches to
health services, such as crisis intervention and community-based health services. Agencies
that provide community health services and care might have more significant challenges in
responding to crisis interventions during multiple pandemic waves. Future research can
integrate broader service provision challenges by different agencies. Meanwhile, it could
be meaningful to include resilience in different cultures, communities, and groups, so this
concept and thinking can be further nuanced to different cultural norms and identities.
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Appendix A Model Equations

**********
Crises_multiple_shocks:
**********
First_shock_duration = 5

UNITS: month
First_shock_intensity = 3

UNITS: dmnl
First_shock_start = 20

UNITS: month
First_shock_stop = First_shock_start+First_shock_duration

UNITS: month
Interval_to_second_shock_start = 6

UNITS: month
Interval_to_third_shock_start = 6

UNITS: month
Multiple_Shocks[First_wave] = STEP(Risk_intensity_of_each_shock[First_wave],

First_shock_start)-STEP(Risk_intensity_of_each_shock[First_wave], First_shock_stop)
UNITS: dmnl

Multiple_Shocks[Second_wave] = STEP(Risk_intensity_of_each_shock[Second_wave],
Second_shock_Start)-STEP(Risk_intensity_of_each_shock[Second_wave], Second_shock_stop)

UNITS: dmnl
Multiple_Shocks[Third_wave] = STEP(Risk_intensity_of_each_shock[Third_wave],

Third_shock_start)-STEP(Risk_intensity_of_each_shock[Third_wave], Third_shock_stop)
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UNITS: dmnl
"MULTIPLE_SHOCKS_Switch_1=_crisis_on" = 1

UNITS: dmnl
Risk_intensity_of_each_shock[First_wave] = First_shock_intensity

UNITS: dmnl
Risk_intensity_of_each_shock[Second_wave] = Second_shock_intensity

UNITS: dmnl
Risk_intensity_of_each_shock[Third_wave] = Third_shock_intensity

UNITS: dmnl
Second_shock_duration = 5

UNITS: month
Second_shock_intensity = 3

UNITS: dmnl
Second_shock_Start = Interval_to_second_shock_start+First_shock_stop

UNITS: month
Second_shock_stop = Second_shock_duration+Second_shock_Start

UNITS: month
Third_shock_duration = 5

UNITS: month
Third_shock_intensity = 3

UNITS: dmnl
Third_shock_start = Second_shock_stop+Interval_to_third_shock_start

UNITS: month
Third_shock_stop = Third_shock_start+Third_shock_duration

UNITS: month
**********
Disturbance_and_Psychological_resilience:
**********
Disturbance_events_that_can_be_dealt_with_resiliency = Psychological_Resilience//

Resilience_needed_per_disturbance_event
UNITS: event

Fractional_emotional_tolerance_acquired_from_recovering = IF P3_Collective_growth
=1 THEN Normal_fractional_emotional_tolerance_acquired_from_recovering*Intensity_of
_P3_on_distress_tolerance ELSE Normal_fractional_emotional_tolerance_acquired_from
_recovering

UNITS: dmnl
Goal_of_resilience = Resilience_needed_per_disturbance_event*Disturbance_events

UNITS: resilience
Initial_individual_resilience = INIT(Goal_of_resilience)

UNITS: resilience
Normal_fractional_emotional_tolerance_acquired_from_recovering = 1

UNITS: dmnl
Psychological_Resilience(t) = Psychological_Resilience(t - dt) + (Resilience_adjusting

_by_Recovering_from_shocks) ∗ dt
INIT Psychological_Resilience = Initial_individual_resilience
UNITS: resilience

Psychological_resilience_ratio = EXP(Psychological_Resilience)/(1+EXP(Psycholo-
gical_Resilience))

UNITS: dmnl
Resilience_adjusting_by_Recovering_from_shocks = (Goal_of_resilience-Psycholo-

gical_Resilience)*(Fractional_effect_of_tolerating_emotional_distress_through_recovering
_process_per_month)*Environment_stabilization_ratio

UNITS: resilience/month
Resilience_needed_per_disturbance_event = 0.053
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UNITS: resilience/event
**********
Environment_adjustments:
**********
Adjustments_Gap = MAX(0, SMTH3(Total_adjustments_needed-Environment_Sta-

bilized_Adjustments, Organization_response_time))
UNITS: adjustment

Environment_adjusting = MAX(0, (Adjustments_Gap)//Time_needed_to_develop_
temporary_adjustments)

UNITS: adjustment/month
Environment_Stabilized_Adjustments(t) = Environment_Stabilized_Adjustments(t -

dt) + (Environment_stabilizing - "Re-adjusting") ∗ dt
INIT Environment_Stabilized_Adjustments = Initial_stabilised_adjustments
UNITS: adjustment

Environment_stabilizing = Fractional_adjustments_that_move_to_stabilized_adjustments*
Environment_Temporary_Adjustments//Time_needed_to_settle_permanent_solutions

UNITS: adjustment/month
Environment_Temporary_Adjustments(t) = Environment_Temporary_Adjustments(t -

dt) + (Environment_adjusting + "Re-adjusting" - Environment_stabilizing) ∗ dt
INIT Environment_Temporary_Adjustments = Initial_temporary_adjustments
UNITS: adjustment

Fractional_adjustments_that_move_to_stabilized_adjustments = 0.3
UNITS: dmnl

Initial_stabilised_adjustments = Total_adjustments_needed
UNITS: adjustment

Initial_temporary_adjustments = Total_adjustments_needed*Time_needed_to_settle_
permanent_solutions/(Time_needed_for_revisiting_adjustments*Fractional_adjustments_
that_move_to_stabilized_adjustments)

UNITS: adjustment
Normal_organizational_response_time = 3

UNITS: month
Normal_time_needed_to_develop_temporary_adjustments = 4

UNITS: month
Normal_time_needed_to_revisit_adjustments = 12

UNITS: month
Normal_time_needed_to_settle_permanent_adjustments = 12

UNITS: month
Organization_response_time = IF P1:_Environment_Fast_Adaptation=1 THEN Nor-

mal_organizational_response_time/Intensity_of_P1_on_organizational_response_time ELSE
Normal_organizational_response_time

UNITS: month
"Re-adjusting" = Environment_Stabilized_Adjustments//Time_needed_for_revisit-

ing_adjustments
UNITS: adjustment/month

Time_needed_for_revisiting_adjustments = IF P1:_Environment_Fast_Adaptation=1
THEN Normal_time_needed_to_revisit_adjustments/Intensity_of_P1_on_revisiting_adjust-
ments ELSE Normal_time_needed_to_revisit_adjust ments

UNITS: month
Time_needed_to_develop_temporary_adjustments = IF P1:_Environment_Fast_Adap-

tation=1 THEN Normal_time_needed_to_develop_temporary_adjustments/Intensity_of_-
P1_on_temporary_adjustment_time ELSE Normal_time_needed_to_develop_temporary-
_adjustments

UNITS: month
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Time_needed_to_settle_permanent_solutions = IF P3_Collective_growth=1 THEN
Normal_time_needed_to_settle_permanent_adjustments/Intensity_of_P3_on_stabilised-
_adjustment ELSE Normal_time_needed_to_settle_permanent_adjustments

UNITS: month
**********
Health and Well-being_service:
**********
Changes_of_employee = CAPACITY_RESPOND_STWITCH∗ (Indicated_demanded-

_number_of_MH_staff-HW_service_staff)//Time_to_hire
UNITS: people/month

HW_service_staff(t) = HW_service_staff(t - dt) + (changes_of_employee) ∗ dt
INIT HW_service_staff = Initial_MH_service_staff
UNITS: people

Indicated_demanded_number_of_MH_staff = Total_sessions_demand/Number_of-
_sessions_per_staff_per_month//Target_Waiting_Time

UNITS: people
Normal_target_waiting_time = 4

UNITS: month
Normal_time_to_hire = 12

UNITS: month
Number_of_sessions_per_staff_per_month = 100

UNITS: session/people/month
Remaining_monthly_sessions_capacity = MAX(0, Total_monthly_session_capacity-

Total_monthly_sessions_occupied)
UNITS: session/month

Target_Waiting_Time = IF P2_Mental_Wellbeing_Service_Fast_Response=1 THEN
Normal_target_
waiting_time/Intensity_of_P2_on_waiting_time ELSE Normal_target_waiting_time

UNITS: month
Time_to_hire = IF P2_Mental_Wellbeing_Service_Fast_Response=1 THEN Normal

_time_to_hire/Intensity_of_P2_on_time_to_hire ELSE Normal_time_to_hire
UNITS: month

Total_monthly_session_capacity = HW_service_staff*Number_of_sessions_per_staff
_per_month

UNITS: session/month
Total_monthly_sessions_occupied = “Highly stressed_people_with_HW_services”

*Frequency_of_sessions_attended_per_month_per_people
UNITS: session/month

Total_number_of_service_sessions_needed_per_person = 10
UNITS: session/people

Total_sessions_demand = (“Highly_stressed_people_without_HW_services”+“Highly
_stressed_people_with_HW_services”)*Total_number_of_service_sessions_needed_per
_person

UNITS: session
**********
Initial_numbers:
**********
Fractional_recovering_by_own = Fraction_of_self_recover/"Time_to_self-recover"

UNITS: 1/month
Fractional_Stressing_up = Normal_fraction_of_highly_stressed_symptoms/Time_to

_change_stress_level
UNITS: 1/month

Fractional_using_service = Fraction_of_service_using_among_highly_stressed_
people/Target_Waiting_Time
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UNITS: 1/month
INIT_highly_stressed_not_using_HW_services = INIT_low_stress_population*(frac-

tional_Stressing_up)/(fractional_recovering_by_own+Fractional_using_service)
UNITS: people

INIT_highly_stressed_using_HW_services = INIT_highly_stressed_not_using_HW
_services*Fractional_using_service*Time_to_recover/(1+Time_to_recover*Fraction_of_
dropping_out_per_month)

UNITS: people
INIT_low_stress_population = 10000

UNITS: people
Initial_MH_service_staff = INIT(Indicated_demanded_number_of_MH_staff)

UNITS: people
Sum_of_population_stocks = "Low/mild_stress_people" + "Highly-stressed_people

_with_HW_services" + "Highly-stressed_people_without_HW_services"
UNITS: people

**********
Multiple_shocks_and_disturbance:
**********
Decreasing_disturbance_events = (Effect_of_environmental_resilience_on_processing

_disturbance_events*Effect_of_individual_resilience_on_processing_disturbances)*Dis-
turbance_events/Time_needed_to_resolve_events

UNITS: event/month
Disturbance_events(t) = Disturbance_events(t - dt) + (Increasing_disturbance_events -

Decreasing_disturbance_events) ∗ dt
INIT Disturbance_events = Initial_disturbance_events
UNITS: event

Disturbance_to_temporary_adjustments_ratio = Environment_Temporary_Adjust-
ments//Max_adjustment_depending_on_resiliency

UNITS: dmnl
Effect_of_environmental_resilience_on_processing_disturbance_events = GRAPH

(Environment_stabilization_ratio)
Points: (0.000, 0.000), (0.100, 0.360), (0.200, 0.660), (0.330, 1.000), (0.400, 1.100), (0.500,

1.200), (0.600, 1.300), (0.700, 1.400), (0.800, 1.600), (0.900, 1.800), (1.000, 2.000)
UNITS: dmnl

Effect_of_individual_resilience_on_processing_disturbances = GRAPH(Psychological
_Resilience)

Points: (0.000, 0.0133857018486), (0.100, 0.0359724199242), (0.200, 0.0948517463551),
(0.300, 0.238405844044), (0.400, 0.53788284274), (0.423, 1.000), (0.600, 1.46211715726), (0.700,
1.76159415596), (0.800, 1.90514825364), (0.900, 1.96402758008), (1.000, 1.98661429815)

UNITS: dmnl
Effect_of_temporary_disturbance_on_increasing_disturbance_events = GRAPH(Dis-

turbance_to_temporary_adjustments_ratio)
Points: (0.000, 0.0133857018486), (0.400, 0.0359724199242), (0.800, 0.0948517463551),

(1.200, 0.238405844044), (1.600, 0.53788284274), (2.000, 1.000), (2.400, 1.46211715726), (2.800,
1.76159415596), (3.200, 1.90514825364), (3.600, 1.96402758008), (4.000, 1.98661429815)

UNITS: dmnl
Environment_stabilization_ratio = (Environment_Stabilized_Adjustments)//(Environ-

ment_Stabilized_Adjustments+Environment_Temporary_Adjustments)
UNITS: dmnl

Increasing_disturbance_events = Effect_of_temporary_disturbance_on_increasing_
disturbance_events*Number_of_disturbance_events_per_month

UNITS: event/month
Initial_disturbance_events = Normal_disturbance_events_per_month*Time_needed

_to_resolve_events*2
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UNITS: event
Initial_Disturbance_ratio_input = INT(Environment_Temporary_Adjustments//Max

_adjustment_depending_on_resiliency)
UNITS: dmnl

Max_adjustment_depending_on_resiliency = Disturbance_events_that_can_be_dealt
_with_resiliency*Number_of_adjustments_needed_per_disturbance_events

UNITS: adjustment
Multiple_shocks_to_the_system = (1+“MULTIPLE_SHOCKS_Switch_1=_crisis_on”

*SUM(Multiple_Shocks))
UNITS: dmnl

Normal_disturbance_events_per_month = 2.5
UNITS: event/month

Number_of_adjustments_needed_per_disturbance_events = 3
UNITS: adjustment/event

Number_of_disturbance_events_per_month = Normal_disturbance_events_per_month
*Multiple_shocks_to_the_system

UNITS: event/month
Time_needed_to_resolve_events = 2

UNITS: month
Total_adjustments_needed = (Disturbance_events*Number_of_adjustments_needed

_per_disturbance_events)
UNITS: adjustment

**********
Policy_switches:
**********
CAPACITY_RESPOND_STWITCH = 1

UNITS: dmnl
Intensity_of_P1_on_organizational_response_time = 3

UNITS: dmnl
Intensity_of_P1_on_revisiting_adjustments = 2

UNITS: dmnl
Intensity_of_P1_on_temporary_adjustment_time = 2

UNITS: dmnl
Intensity_of_P2_on_fraction_of_dropping_out = 2

UNITS: dmnl
Intensity_of_P2_on_fraction_of_using_services = 1.6

UNITS: dmnl
Intensity_of_P2_on_time_to_hire = 4

UNITS: dmnl
Intensity_of_P2_on_waiting_time = 2

UNITS: dmnl
Intensity_of_P3_on_distress_tolerance = 4

UNITS: dmnl
Intensity_of_P3_on_stabilised_adjustment = 4

UNITS: dmnl
P1:_Environment_Fast_Adaptation = 0

UNITS: dmnl
P2_Mental_Wellbeing_Service_Fast_Response = 0

UNITS: dmnl
P3_Collective_growth = 1

UNITS: dmnl
**********
Psychological_resilience_structure:
**********
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Accumulative_people_stressed_up(t) = Accumulative_people_stressed_up(t - dt) +
(stressing_up_flow) ∗ dt

INIT Accumulative_people_stressed_up = 0
UNITS: people

Disturbance_to_resilience_ratio = Disturbance_events//Disturbance_events_that_can
_be_dealt_with_resiliency

UNITS: dmnl
Dropping_out_services = IF P2_Mental_Wellbeing_Service_Fast_Response=1 THEN

“Highly_stressed_people_with_HW_services”*Fraction_of_dropping_out_per_month/
Intensity_of_P2_on_fraction_of_dropping_out ELSE Fraction_of_dropping_out_per_month
*"Highly_stressed_people_with_HW_services"

UNITS: people/month
Fraction_of_dropping_out_per_month = 0

UNITS: 1/month
Fraction_of_self_recover = 0.2

UNITS: dmnl
Fraction_of_service_using_among_highly_stressed_people = IF P2_Mental_Wellbeing

_Service_Fast_Response=1 THEN Normal_fraction_of_service_using_among_highly
_stressed_people*Intensity_of_P2_on_fraction_of_using_services ELSE Normal_fraction
_of_service_using_among_highly_stressed_people

UNITS: dmnl
Fractional_effect_of_tolerating_emotional_distress_through_recovering_process_per

_month = (“Self-_recovering”+Recovering_by_using_services)*Fractional_emotional_
tolerance_acquired_from_recovering//Sum_of_population_stocks

UNITS: 1/month
Frequency_of_sessions_attended_per_month_per_people = 4

UNITS: session/people/month
Highly_stressed_people_reaching_out_services = “Highly_Stressed_people_without

_HW_services” *Fraction_of_service_using_among_highly_stressed_people
UNITS: people

Highly_stressed_people_that_can_be_scheduled = Remaining_monthly_sessions_
capacity//Frequency_of_sessions_attended_per_month_per_people

UNITS: people
“Highly_Stressed_people_with_HW_services”(t) = “Highly_Stressed_people_with

_HW_services”(t - dt) + (Using_services - Recovering_by_using_services - Dropping_out
_services) ∗ dt

INIT "Highly_Stressed_people_with_HW_services" = INIT_Highly_stressed_
using_HW_services

UNITS: people
“Highly_Stressed_people_without_HW_services”(t) = “Highly_Stressed_people_

without_HW_services”(t - dt) + (Stressing_up + Dropping_out_services - “Self-_recovering”
- Using_services) ∗ dt

INIT "Highly_Stressed_people_without_HW_services" = INIT_highly_stressed
_not_using_HW_services

UNITS: people
“Low/mild_stress_people”(t) = “Low/mild_stress_people”(t - dt) + (“Self-_recovering”

+ Recovering_by_using_services - Stressing_up) ∗ dt
INIT “Low/mild_stress_people” = INIT_low_stress_population
UNITS: people

Normal_fraction_of_highly_stressed_symptoms = 0.2
UNITS: dmnl

Normal_fraction_of_service_using_among_highly_stressed_people = 0.5
UNITS: dmnl
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Recovering_by_using_services = "Highly_Stressed_people_with_HW_services"//
Time_to_recover

UNITS: people/month
“Self-_recovering” = “Highly_Stressed_people_without_HW_services”*Fraction_of

_self_recover//“Time_to_self-recover”
UNITS: people/month

Stressing_up = “Low/mild_stress_people”*Disturbance_to_resilience_ratio*Normal
_fraction_of_highly_stressed_symptoms//Time_to_change_stress_level

UNITS: people/month
Stressing_up_flow = Stressing_up

UNITS: people/month
Time_to_recover = Total_number_of_service_sessions_needed_per_person//Frequen-

cy_of_sessions_attended_per_month_per_people
UNITS: month

“Time_to_self-recover” = 3
UNITS: month

Time_to_change_stress_level = 6
UNITS: month

Using_services = MIN(Highly_stressed_people_that_can_be_scheduled, Highly_
stressed_people_reaching_out_services)/Target_Waiting_Time

UNITS: people/month
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Abstract: We present a practical guide and step-by-step flowchart for establishing uncertainty inter-
vals for key model outcomes in a simulation model in the face of uncertain parameters. The process
starts with Powell optimization to find a set of uncertain parameters (the optimum parameter set or
OPS) that minimizes the model fitness error relative to historical data. Optimization also helps in
refinement of parameter uncertainty ranges. Next, traditional Monte Carlo (TMC) randomization
or Markov Chain Monte Carlo (MCMC) is used to create a sample of parameter sets that fit the
reference behavior data nearly as well as the OPS. Under the TMC method, the entire parameter
space is explored broadly with a large number of runs, and the results are sorted for selection of
qualifying parameter sets (QPS) to ensure good fit and parameter distributions that are centrally
located within the uncertainty ranges. In addition, the QPS outputs are graphed as sensitivity graphs
or box-and-whisker plots for comparison with the historical data. Finally, alternative policies and
scenarios are run against the OPS and all QPS, and uncertainty intervals are found for projected
model outcomes. We illustrate the full parameter uncertainty approach with a (previously published)
system dynamics model of the U.S. opioid epidemic, and demonstrate how it can enrich policy
modeling results.

Keywords: simulation model; uncertainty analysis; optimization; sensitivity testing; Monte Carlo
randomization; opioid epidemic

1. Introduction
1.1. Background and Approach

System dynamics (SD) models frequently employ parameters for which solid empir-
ical data are not available. Modelers often use expert judgment to provide estimates of
parameter values for which empirical data are not available. When several experts are avail-
able, and a formal process (such as Delphi) produces convergent estimates, modelers may
have reasonable confidence in the parameter values despite the lack of data. Nevertheless,
these parameter values remain uncertain to a degree—as is indeed true even for measured
parameters, due to issues including small sample sizes and definitional variation.

To address parameter uncertainty, SD modelers test alternative parameter values in
order to understand their degree of influence in the model. Formal sensitivity analyses
can be run using features provided in popular SD software packages, and results can be
displayed in a table or portrayed graphically as a “Tornado diagram” [1].

Once the modeler has identified influential parameters, additional effort is applied, as
time and budget allow, to increase confidence that the values of these influential parameters
are well supported. When reliable empirical data are available, ideally from multiple
sources, the parameter value may be fixed and used with confidence. Usually, however,
some, perhaps even many, parameter values typically remain uncertain.

This paper describes how the model analysis features available in the VensimTM

software package (as well as other popular packages including Stella®), can be used to
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represent and incorporate parameter uncertainty into the analysis of SD model results,
including providing outcome uncertainty intervals.

In this paper, we present a flowchart describing a step-by-step process for incorpo-
rating parameter uncertainty in SD models. We then illustrate use of the method using a
previously published model of the U.S. opioid epidemic [2]. We close with a discussion of
how model results under uncertainty can be described for interested parties such as policy
makers or other end users of the analyses.

1.2. Prior Work in This Area

Ford [3] and Sterman [4] discussed uncertainty analysis vis-à-vis dynamic models.
Helton et al. [5] provided a general overview of sampling-based methods for sensitiv-
ity analysis, including traditional Monte Carlo (TMC). Dogan [6,7] discussed confidence
interval estimation in SD models using bootstrapping and the likelihood ratio method.
Cheung and Beck [8] explained Bayesian updating in Monte Carlo processes, and back-
ground material on the mathematics of Markov Chain Monte Carlo (MCMC) is readily
available [9,10].

Background on sensitivity analysis methods for dynamic modeling, and SD in par-
ticular, including the TMC and MCMC methods being employed in this paper, may be
found in Fiddaman and Yeager [11], Osgood [12], Osgood and Liu [13], and Andrade and
Duggan [14]. Using TMC methods to search a parameter space is sometimes considered
to be a brute force or totally random search, whereas the MCMC method uses a Bayesian
update process to guide the search of parameter space. In at least some contexts, it has been
shown that MCMC optimally creates statistically valid samples [9].

Although publications describing the application of these methods are plentiful in
some scientific and engineering disciplines, publications featuring their use with SD models
are scant. A search for “system dynamics” AND (“MCMC” or “monte carlo”) returned only
a handful of publications. Five relevant examples are Jeon and Chin [15], who described
their use of TMC with an SD model of renewable energy; Sterman et al. [16], who applied
MCMC in a model of bioenergy; Garfazadegan and Rahmandad [17] who used MCMC to
estimate parameter values for a COVID-19 model, Lim et al. [18] who applied MCMC in a
model of the U.S. opioid crisis; and Rahmandad et al. [19] who applied MCMC in another
model of COVID-19.

2. Materials and Methods
2.1. The Process: Initial Steps

Figure 1 presents the initial steps of a process for incorporating uncertainty analysis
into SD models, with further steps shown in Figures 2–4. The complete process is shown in
a single flowchart in Supplement Part S1.

The process starts at Create model & modify as needed. This would be a model that
employs uncertain parameters and includes dynamic outcome variables that strive to match
the dynamics seen in real world reference behavior data. To use the methods described
in Figure 1, one needs to Define error metric variables and Add error metrics to model. A
useful example could be to compute the mean absolute error (MAE) between the model
calculated time series and the reference behavior time series for each outcome variable.
Care must be taken to consider how to compute MAE when reference data are incomplete
so as not to distort results. When different outcomes have very different scales, it is useful
to use MAEM, which stands for MAE over M, where M is the mean value of the metric.
In addition, composite error statistics are added to the model, such as the average of the
MAEMs over all the outcomes, and the maximum value of the individual MEAMs. These
are used later in the process for identifying well-fitting parameter sets. There are statistical
macros available for Vensim to help with this (Supplement Part S2).
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Figure 1. Process for addressing simulation model uncertainty, initial steps.

Another initial step is to Estimate parameter uncertainty ranges, a lower and upper
bound for each uncertain parameter, and to Specify weights for the outcome variables.
These are needed for the algorithm used in a key part of the process: Estimate uncertain
parameter values. This process employs a Powell optimization process that uses an ob-
jective function consisting of model outcomes vs. reference data. For more information,
see Menzies et al. [20] for a tutorial on using Bayesian methods to calibrate health policy
models. Each term of the objective function represents one of the outcome time series of
interest. The algorithm strives to minimize the differences between model and reference
data. Weights are needed because outcomes may have very different scales and variances.
This tends to be an iterative process, so Figure 1 contains a feedback loop, and some of the
connections are bidirectional. The end result of this step is a set of optimized parameter val-
ues for the uncertain parameters (OPS). Its average MAEM might be 0.1 and its maximum
MAEM (worst MAEM for any one of the outcomes) might be 0.2.

2.2. The Process: Intermediate Steps for the Traditional Monte Carlo (TMC) Approach

At this point, the user may elect to use traditional Monte Carlo (TMC) or Markov
Chain Monte Carlo (MCMC). TMC is discussed first; see Figure 2.

Make very large traditional Monte Carlo (TMC) run employs Vensim’s sensitivity
feature to perform a very large number of model runs, millions if there are many uncertain
parameters. Using this feature requires the user to specify how many runs to perform,
the seed to start with, the type of sampling (e.g., multivariate, Latin hypercube, etc.), and
which parameters to vary and how. We used multi-variate, which is a totally random
search process. Latin hypercube strives to cover a large parameter space more efficiently.
Both may be valid choices. We experimented with Uniform but settled on Triangular with
the mode specified as the value from the OPS. Since we were focused on overall error,
we changed the output save period (SAVEPER) to be the length of the run. This kept the
output file size manageable. We also specified some additional variables to be saved (all
the parameters being varied are automatically saved). These additions were the average
MAEM and maximum MAEM for the run.
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Figure 2. Intermediate steps for the traditional Monte Carlo (TMC) approach.

Note that when more than one million runs are needed, we find it practical to perform
one million at a time and to change the seed for each run. At the end of a sensitivity run,
the data output file (.vdf in Vensim) is exported to a tab-delimited file for further analysis.

Next, the user needs to Determine cutoffs for a qualified parameter set (QPS) which
involves determining how well-fitting a candidate parameter set must be to warrant
its inclusion in the QPS. The vast majority of the TMC runs will not be well-fitting in
the manner of the OPS. One rational approach would be to accept parameter sets that
performed nearly as well as the OPS. For example, for a model in which the OPS has an
average MAEM = 0.1 and the maximum MAEM = 0.2, the cutoffs for the inclusion of a
candidate parameter set could be average MAEM < 0.12 and maximum MAEM < 0.25.

Sort TMC runs & create N-QPS employs Excel’s data/import external data from file
to read in the TMC results. The result will be M columns by N rows, where M is the
number parameters being varied + K, and N is the number of runs. K is the number of
saved variables times the number of saved times per variable, which could be one, two
(start time and end time), or more. The results are then sorted by average MAEM and all
rows > average MAEM cutoff are discarded. The remainder is sorted by maximum MAEM
and all rows > maximum MAEM are discarded. This will likely leave a very tiny fraction
of runs, perhaps a few hundred out of a million. These N runs are the qualified parameter
sets (N-QPS).

2.3. The Process: Intermediate Steps for Markov Chain Monte Carlo (MCMC) Approach

A very different approach for creating a set of runs to be used to evaluate the impacts
of parameter uncertainty is to use the MCMC approach; see Figure 3.

This begins with Estimate Optimal Outcome Weights. First, one adds to the model
a weight variable for each outcome, instead of specifying the weights numerically as in
the MC process. One also needs to specify the search range for outcome weight constants.
The search ranges for the uncertain parameters can be the same as for the MC approach.
Or, these ranges could be broader than those used with the prior approach. No sampling
distribution such as Uniform or Triangular is specified because the search of parameter
space is guided by a heuristic, not by random, sampling. Guidance regarding how broad to
set the ranges for MCMC varies by expert. We have heard from some, the comment that
very broad ranges will give the algorithm “room to work”. Others have suggested that
ranges should not include implausible values. Both comments are sensible, suggesting that
a careful study of this question is needed. To proceed, first a Powell search is performed
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that optimizes the uncertain parameters and the weights simultaneously. In our experience,
allowing larger ranges may allow the algorithm to find an optimum that achieves slightly
lower average MAEM, but higher maximum MAEM. The reason is that some of the
individual outcomes are sacrificed to achieve lower overall error. However, these results
may be less realistic.

Figure 3. Intermediate steps for the Markov Chain Monte Carlo (MCMC) approach.

Next is to Conduct MCMC search & generate SVS. MCMC, in the manner of MC,
varies the uncertain parameters over the specified ranges, but uses in the objective function
the outcome weights that were found in previous step. The Markov Chain-driven search
algorithm is designed to create a statistically valid sample (abbreviated here as SVS). It can
be quite large and contain many duplicates (which apparently helps to assure a sample
with the correct properties). Model fitness may be further improved, but be less plausible,
as mentioned earlier. Results are then exported as a tab-delimited file.

One then must Import results into Excel, and, if the population of runs produced by
the MCMC search is excessively large, one can select a random sample of desired size M
from the SVS. This subsample of size M, which is still a statistically valid sample (M-SVS),
is comparable to the N-QPS set of runs created by the conventional MC process described
earlier. One can proceed to computing statistics by parameter using the M-SVS and/or use
it to run file-driven sensitivity runs, analyze alternative scenarios, etc.

2.4. The Process: Final Steps for Both TMC and MCMC

The final steps of the process are shown in Figure 4.
Save sensitivity (TMC or MCMC) parameters as a tab-delimited txt file creates the

file needed for file-driven sensitivity runs.
Within Excel, the user can proceed to Compute/graph statistics by parameter to see

what the values in N-QPS (or M-SVS) file are for each parameter, for example, to see if the
entire range of possible values for a given parameter is represented in N-QPS, if the mean
of this sample is near the value of the parameter in the OPS. Additionally, it could be used
to determine the confidence interval of the estimate for the mean of the parameter based
on this sample and examine the distribution (shape) of the sample. Does this information
raise any red flags with respect to the OPS or N-QPS? Or, does this information indicate
that the N-QPS may be representative of the entire parameter space?
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Next, the N-QPS (or M-SVS) file can be used in two primary ways. One is the Run
file-driven Trajectory Sensitivity Run for Baseline, for which the user can change the
SAVEPER to a useful time-period, such as by year, in order to create a series of N (or M)
trajectories for each outcome. The result is exported to a tab-delimited file that can be
imported into Excel to Compute/graph baseline statistics by primary outcome, including
uncertainty intervals for the model calculated outcome at each time period, since there is
now a sample of N model-calculated values at each time point. Excel can also be used to
create box and whisker plots at each time point, with or without outliers. However, we
found it more expedient to create these plots using Python.

For the other primary use of the N-QPS (or M-SVS) file, explained below, the user first
needs to Specify primary high-level outcomes of interest such as total cost and net perfor-
mance. The previous sensitivity run was focused on behavior over time for all outcome
time series, but to compare alternative scenarios in an overall sense, a few key end-of-run
metrics are needed. In addition, one also needs to Specify alternative scenarios of interest;
these might be different configurations or policy changes that could be implemented in the
model as switches that are used in conjunction with magnitude-of-impact parameters and
timing parameters linked to specific model constants.

Using the N-QPS or M-SVS, the user will change the SAVPER back to the End of Run
and then Make file driven sensitivity runs for baseline and each alternative scenario. The
results, for the baseline and for each scenario, are matched pairs of data points (where all of
the uncertain parameter values are the same for baseline and the alternative). This means
that the distributions of the differences can be used to determine, in a statistically valid
fashion, the credible interval estimates (a term from Bayesian statistics), for the mean of
the difference by outcome between baseline and the alternative, that can be attributed to
parameter uncertainty.

We suggest that one Assemble a consolidated spreadsheet to perform these analyses.
In the upper left corner, is O × N, where O is the number of overall outcomes and N is the
number of runs. Note that the raw sensitivity results file has columns for all the parameters
as well as columns for each outcome. The user selects and copies only the end columns for
each outcome into the consolidated sheet. The data for Alternative 1 is placed below the
Baseline results; Alternative 2 below Alternative 1, etc. Then, starting at the first row of
Alternative 1, columns will be added to compute the differences between the Alternative 1
numbers and baseline number, one column for each outcome. Similarly for Alternative 2
vs. baseline, and so forth. Columns for percentage differences can also be added.

Finally, Create summary table(s) or tab(s) is used to provide the results of relevant
calculations, such as means and their credible intervals for each outcome at baseline and for
each alternative. In addition, the results for the differences by outcome between baseline
and Alternative 1, baseline and Alternative 2, etc., may be compiled. Similarly, for the
percentage differences.

2.5. About the Opioid Epidemic Model

To illustrate the process and results, the TMC method was applied to an SD model
of significant complexity that explored the opioid epidemic in the United States from
1990 to 2030 including the impacts of alternative policies (hereafter the Opioid Epidemic
Model) [2,21]. SD has been frequently applied to drug abuse and other areas of public
health and social policy [22–26]. The current model adopts the basic scientific approach
and some of the same elements as these forerunner models, but the current model was
completely redeveloped to address current needs.

A committee of the National Academies of Sciences/Engineering/Medicine consid-
ered the complexities of the opioid epidemic and stated that for informed decision making
“a true systems model, not just simple statistics” was needed because “decisions made
about complex systems with endogenous feedback can be myopic in the absence of a formal
model” [27]. The NAS cited the system dynamics model by Wakeland et al. [24] as an
example of a true systems model.
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Best practices for model development, testing, and reporting are well documented [4,28–30].
The model building process for the Opioid Epidemic Model involved amassing evidence
from many different sources and developing a dynamic structure that reproduces historical
trends and is sufficiently parsimonious to allow explanation. Uncertainties are addressed
through sensitivity testing and the multivariate TMC testing described previously that
allows results to be reported with rigorous credible intervals.

A complete list of the approximately 340 interacting model equations (including about
80 input constants, 17 time series for input and validation, and 240 output variables) is
available in the model’s reference guide [21]. This guide also provides stock and flow
diagrams for each sector of the model and describes how model constants and time series
were estimated, including data sources. The model time horizon was 1990–2030. Figure 5
shows the basic model structure.

Figure 5. Opioid Epidemic Model diagram showing high level stocks, flows, and primary feedback
structures. Red lines are causal links with negative valence, while blue lines have positive valence.
Reproduced by permission from Homer and Wakeland 2020 [2].

3. Results
3.1. Error Metrics

As the first step in the TMC approach, error metrics were created, in this case, MAEM
(mean absolute error over mean) for multiple outcome time series with historical data
counterparts. We used the Vensim SSTATS macro provided by Professor John Sterman at
MIT; see Supplement Part S2. This code was inserted via text editor (we used Notepad)
at the top of the model file starting at the second line. Supplement Part S3 presents the
model code for calculating the statistics, which was also inserted into the model file via
text editor, typically after the Control block, which is located after the user-defined model
variables/constants section. We utilized an Excel workbook that included a worksheet with
Time in Row 1 and historical time series data in the rows below. In some cases, there were
data only for some of the historical years. The SSTATS macro calculations are designed to
handle this correctly. An example Vensim equation for reading one these data time series is
GET XLS DATA (‘model RBP data.xlsx’, ‘RBP’, ‘1’, ‘B2’).

Another step to prepare the model for analysis was to add a custom graphs file via the
Control Panel and add custom tables that display the variables calculated by the SSTATS
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macro (R2, MAPE, MAEM, RMSE, Um, Us, Uc, and Count), one table for each Outcome
variable. I/O Objects were added to a model view to display the custom tables.

Figure 6 shows a sample of these statistical parameter displays created using the
SSTATS macro, with the MAEM statistics on the left and R-squared statistics on the right.
These outputs were from the optimized parameter set (OPS) version of the Opioid Epidemic
Model; see discussion below. In addition to the weighted average of all the MAEMs of 8.9%
(bottom left 2020 column), it is clear that OD death-related trajectories were reproduced
more accurately than, for example, heroin-related trajectories. The MAEM for OD deaths
total was 3.6%, whereas for H initiates it was 18%. This large difference was due mostly to
noise in the data representing the actual values. OD death data are the actual data collected
by the CDC, and the changes from year to year are modest. Data on persons initiating
heroin in a given year is based on a small sample of a difficult-to-access population and the
resulting estimates by year vary dramatically. In fact, the difference between the data and
the corresponding three-period moving average was 12.5%, suggesting that most (70%) of
the 18% model-calculated MAEM was due to noise in the data.

Figure 6. Selected SSTATS displays (MAEM and R-squared for outcome variables).

3.2. Optimized Parameter Set (OPS)

Before using optimization to estimate uncertain parameter values, the user must
specify an appropriate range for each parameter to be used by the Powell search algorithm.
Supplement Part S4 provides an example Vensim optimization control file (.voc) which
specified the uncertain parameters to be varied. Table 1 shows the first few rows of the
model parameter spreadsheet by parameter, including the minimum and maximum values.
Many of the 80 model parameters had empirical support from the literature, which helped
to reduce the uncertainty ranges for these parameters.

In addition, weights must be specified for the objective function, informed by the
relative magnitudes and variances of the outcome variables. In this example, weights were
set so that metrics with solid empirical data were given more weight than those for which
empirical data were scant or less reliable.

The optimization runs using the CG (calibration Gaussian) option ran for several
minutes on a laptop computer. A blend of modeler judgment and optimization results was
used iteratively to select the values for the optimized parameter set. The MAEMs for many
of the outcomes were reduced compared with a purely manual calibration process. The
weighted (based on the amount of data available for each outcome) average of the MAEMs
was 8.9%, with the largest individual MAEM being 17.9%.
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Table 1. Portion of the opioid model parameter spreadsheet showing parameter name, units, value
(central estimate), source (or optimized), and the minimum and maximum values used during
optimization runs.

Parameter Units Value Sources Min Value Max Value

Addicted frac of H
users initial fraction 0.65 Optimized; our NSDUH analysis

showed 60.8% 2000, 61.1% 2005. 0.6 0.7

Addicted frac of
PONHA initial fraction 0.123 Optimized; our NSDUH analysis

showed 11.4% 2000, 14.2% 2005. 0.1 0.15

Addicted H user OD
death rate initial 1/year 0.010 Optimized 0.005 0.015

Addicted H user quit
rate initial 1/year 0.138 Optimized 0.07 0.21

Addicted opioid
abuser misc death rate 1/year 0.0045

Ray et al. 2016 [31] determined a mortality hazard
ratio of 1.94 vs. general popn for high dose users
(>60 mg ME). Multiplied by general popn: average
of NVSR death rates for [age 25–34, 35–44, 45–54]
= 0.0023 for 2000–2010 × 1.94 = 0.0045.

Addicted PONHA
move to heroin rate
initial

1/year 0.021 Optimized 0.01 0.03

Addicted PONHA OD
death rate initial 1/year 0.0059 Optimized 0.004 0.007

Addicted PONHA
quit rate initial 1/year 0.149 Optimized 0.08 0.22

Figure 7 shows the trajectories for two example outcomes calculated by the model
using the optimized parameter set compared with the available historical data for these
metrics. The MAEMs for the two outcomes in Figure 7 were 9% and 4%. The calculated
Persons with Addiction trajectory was somewhat biased downward, whereas the OD Deaths
trajectory matched very well. One possible reason could be the amount of data available:
the standardized errors for the first variable may carry somewhat less weight than the
second one. Additionally, note that measurement uncertainty was greater for the first
variable than the second one.

Figure 7. Model fit to two key outcomes using the optimized parameter set.
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3.3. Qualified Parameter Sets (N-QPS)

Creating a large Monte Carlo run is easy using the sensitivity feature in Vensim, which
uses or creates a .vsc file. One option for exploring parameter space could be to use Uniform
distributions between thoughtfully chosen minima and maxima. These values could be the
same as those used during calibration, or perhaps narrowed somewhat. Another option
could be to use a Triangular distribution with the optimum value as the mode, which
would increase samples near the optima. For this illustration, Triangular distributions were
used. The user also needs to specify a .lst file that lists which variables are to be saved for
each run. Sensitivity runs automatically save the varied parameters used for each run, and
in addition, it is useful to know the maximum MAEM and average MAEM (to be used to
select which runs are qualified). Since we do not need to know the time trajectories, we set
the model SAVEPER to 40. This kept the output file modest in size. Supplement Part S5
shows the .vsc and .lst files.

The simulation was set to create one million runs, which took about seven hours on
a laptop. Ten such runs were made, changing the random seed for each run, creating a
total sample of ten million runs. Each resulting data output file (.vdf) was exported (via the
model menu) to a tab-delimited file and read into Excel using data/get external data/from
text (switch to All Files to see .tab files). This was sorted by weighted average of MAEMs.
The weighted average MAEM was below 0.11 for 300–600 runs in each of the one million
runs, and these rows were kept. The other rows were deleted.

The file was then sorted by maximum MAEM, and 100–130 runs were less than 0.20
and kept. The rest were deleted. These ten spreadsheets were combined, yielding a sample
of 1119 runs that accomplished <11% weighted average error and <20% maximum error.
Rows were added below the sample to calculate useful statistics about the sample, regarding
both the distributions of the input parameters and the how well each run performed. Table 2
shows the first and last few rows of the spreadsheet.

Table 2. First and last few rows and columns of the file used to create the N-QPS.

Uncertain Parameters

Addicted Addicted Addicted

Frac Frac H User OD MAEM Statistics

H Users PONHA Death Rate Simple Weighted

Simulation Number Initial Initial Initial Max Average Average

681,526 0.6303 0.1269 0.0121 0.1994 0.1002 0.0958
376,905 0.6913 0.1186 0.0126 0.1975 0.1019 0.0969
131,761 0.6460 0.1180 0.0098 0.1967 0.1055 0.0980
67,350 0.6841 0.1172 0.0078 0.1713 0.1013 0.0982
726,864 0.6501 0.1246 0.0108 0.1838 0.1018 0.0983
736,791 0.6538 0.1236 0.0109 0.1904 0.1150 0.1100
358,518 0.6887 0.1224 0.0100 0.1849 0.1147 0.1100

MIN all sims 0.6012 0.1003 0.0059 0.1612 0.1002 0.0958
MIN allowed 0.6 0.1 0.005

MAX all sims 0.6998 0.1488 0.0145 0.2000 0.1191 0.1100
MAX allowed 0.7 0.15 0.015

MEAN all sims 0.6487 0.1247 0.0105
OPS value 0.650 0.123 0.010 0.1795 0.0994 0.0935

STD DEV all sims 0.0204 0.0100 0.0015

We next examined the properties of the parameter samples contained in the N-QPS.
The rows at the bottom of Table 2 show the minimum, maximum, mean, and standard
deviation of each parameter. For more detail, histogram plots were created, with examples
shown in Figure 8. The parameter shown on the left, Addicted PONHA move to heroin rate
initial, was limited to be in the 0.01 to 0.03 range. As the histogram shows, nearly all of
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this allowed range was included in the N-QPS. The mode was about 0.0235, which was
slightly higher than its value of 0.021 in the optimized parameter set. The parameter on the
right, Consumption mgs ME per addicted PO abuser per month initial, was limited to be in the
range of 2000 to 5000; the values in the N-QPS were well inside these limits (2092 to 4566).
The mode was 3330, very slightly higher than its value of 3200 in the optimized parameter
set. One can examine all of the parameter histograms in this fashion to build confidence
in the sample.

Figure 8. Histograms for two uncertain parameters resulting from the TMC approach.

For comparison, Figure 9 shows a histogram that results from using the MCMC
algorithm rather than TMC, again considering the parameter that was on the left side of
Figure 8. For MCMC, nearly all of the samples fell in the range from 0.02 to 0.0216 with
a width of 0.0016, whereas the range for same parameter in Figure 8 is from 0.014 to 0.03
with a width of 0.026 (greater by 16x), and the shape has a sharp rather than rounded
peak. We found that nearly all of the parameter distributions from testing MCMC on the
Opioid Epidemic Model had this narrow and pointed characteristic. The problem was not
skewness, but the implausibly high degree of precision in the estimated parameter value,
within just a few percentage points.

Using different settings for the MCMC algorithm yielded similar very narrow and
pointed samples, prompting the decision to rely on the TMC-based method that tests a
much broader range of potential values for these parameters. However, other researchers
have reported successful use of the MCMC method [15–19], indicating that the MCMC
approach may be preferred in many cases.

3.4. Sensitivity Runs for the Baseline Scenario

To put the N-QPS sample from the MC-based method to use, file-driven sensitivity
runs were performed. The SAVEPER was changed to 40, and the Sensitivity tool was
selected. Previous settings were cleared, and the Type of sensitivity run was changed to
File. The N-QPS text file was selected as the file. Next a save list was created. The previous
save list (with the statistical variables) was cleared, and three primary outcome variables
were entered: Total opioid addicts, Opioid overdoses seen at ED, and Total opioid OD deaths. This
run took just a minute to complete, and the data output file (.vdf) it produced was exported
via Vensim and imported into Excel.
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Figure 9. Histogram for an uncertain parameter resulting from the MCMC approach. Note that all of
the bars in this diagram are contained within the fourth bar on the left side of Figure 8.

The first 50 columns of this trajectory spreadsheet provided the run number (1–1119)
and the values of the 49 uncertain parameter values used for each specific run. The
remaining 41 columns were values from time 1990 to 2030 for the three outcome variables.
Figure 10 shows the trajectory under uncertainty for Overdoses Seen at ED using a box-
and-whiskers plot. One can also use the data in the spreadsheet to report useful sample
statistics, such as mean and standard deviation.

Figure 10. Excel box-and-whisker time series plot for Overdoses Seen at ED under the baseline scenario.
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Unfortunately, there was no easy way using Excel to superimpose the historical data
on this plot. Python software could be used to create such a plot as needed. Figure 11
shows the plot produced using Python for Total opioid OD deaths, showing the credible
interval trajectory overlaid with green dots for the historical data. The credible interval was
similar in spirit to the confidence intervals used to characterize statistical samples from
actual populations.

Figure 11. Python box-and-whisker time series plot for Total Opioid OD Deaths under the baseline
scenario, overlaid with historical data (green dots).

To prepare the file needed by Python, a version of the trajectory spreadsheet was created,
named Outcome Trajectory Data for Python Plotting (OTDPP), in which the columns for run
number and the parameter values were deleted. Additionally, two rows were added below
the first row. Row 2 should contain the actual data to be overlaid. For each outcome variable,
the appropriate row of the RBP spreadsheet was copied above its corresponding section in
OTDPP. Since the RBP data spreadsheet contained up to 30 values of historical data for each
outcome trajectory, and since the data sections for each outcome in OTDPP were oriented
horizontally, it was a simple copying process, even for several outcomes. Row 3 in OTDPP
should provide the time values, which was easily created in Excel or could be copied from the
historical data spreadsheet (41 cells copied once and pasted N times in the OTDPP, where N is
the number of outcome variable, 3 for this example).

3.5. Sensitivity Runs for Alternative Scenarios (Policy Testing under Uncertainty)

Another use of the N-QPS is to compare a baseline case with policy runs, to determine
how much impact parameter uncertainty may have with respect to the most important
outcome indicators. In the case of the Opioid Epidemic Model, three key indicators were
the number of people with opioid addiction (also known as opioid use disorder or OUD),
opioid overdose events, and opioid overdose deaths. These metrics are saved for each of
the parameter sets in the N-QPS, for the baseline condition and for each alternative. The net
change in outcome, and policy vs. baseline, were calculated run by run, in both absolute
and percentage terms.

The Opioid Epidemic Model was run using the file-driven sensitivity tool reading
in the 1119-QPS parameter sets, and for five potential policies aside from the baseline.
The final values for the three key metrics were saved for each of the 1119 runs, and a
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spreadsheet was created to compute the differences in outcome metrics, run by run. This
spreadsheet had 1119 rows and 48 columns. The first three columns were the final baseline
values for each of the three metrics. Then, nine columns were created for each of the five
policies. These were the three columns of raw outcomes, plus three columns that calculated
the change, and three more that calculated the percentage change. A row was added at
the bottom to compute the mean percentage change in each outcome due to each policy.
Two more rows computed minimum change in each metric and the maximum change
in each metric.

Table 3 presents a summary of the parameter uncertainty analysis of the impacts of
the various policies. The % change vs. Baseline under OPS may be compared with the Mean
%∆ and the range (min, max) of percentage changes under the QPS 1119. Even though the
mean of the QPS-driven change was generally close to the results using the OPS, seeing the
uncertainty interval provides more information to inform policy decisions. Three examples
are highlighted in yellow, as follows:

• Treatment rate 65% (from 45%) policy and the outcome Persons with OUD: The model
projected a modest unfavorable impact for the OPS and a modest favorable impact for
the QPS. The QPS sample interval contained zero, so this policy should perhaps be
considered not to impact Persons with OUD;

• All four policies combined and the outcome Overdoses Seen at ED: a mean beneficial out-
come was predicted by both, but the credible interval again included zero, indicating
that the net effect of all four policies on overdose events could be neutral;

• Diversion control policy and the outcome OD Deaths: The uncertainty interval again
included zero, suggesting that for a significant number of the qualified parame-
ter sets, the impact was unfavorable. This was likely due to persons switching to
more dangerous drugs. This hypothesis could be examined directly by studying the
uncertainty analysis results to find the specific parameter values which render the
policy ineffective.

Table 3. Impact of parameter uncertainty on the simulated results of policy changes.

Optimized
Parameter Set QPS 1119 MC Result QPS 1119 MC,

% Change vs. Baseline

Outcome Measure Test Condition Result
% Change

vs.
Baseline

Mean
Credible
Interval Mean %∆

Credible Interval

Min Max Min Max
Persons with OUD
(thou)

Baseline 1694 1593 1111 2084
Avg MME dose down 20% 1510 −10.9% 1416 1035 1823 −11.1% −25.7% −3.4%

Diversion Control 30% 1428 −15.7% 1339 1007 1716 −15.9% −37.4% −4.6%
Treatment rate 65% (from 45%) 1713 1.1% 1585 1054 2130 −0.5% −9.0% 5.0%
Naloxone lay use 20% (from 4%) 1728 2.0% 1624 1150 2111 1.9% 1.3% 2.3%
All four policies combined 1285 −24.1% 1189 905 1560 −25.4% −60.2% −6.5%

Overdoses seen at
ED (thou)

Baseline 155 149 124 179
Avg MME dose down 20% 153 −1.3% 145 118 176 −2.7% −8.2% 3.8%

Diversion Control 30% 153 −1.1% 144 116 175 −3.4% −11.6% 6.0%

Treatment rate 65% (from 45%) 150 −3.0% 144 118 171 −3.7% −11.3% −0.3%

Naloxone lay use 20% (from 4%) 159 2.9% 154 128 187 3.1% 2.2% 5.1%
All four policies combined 148 −4.1% 139 111 168 −7.3% −19.6% 6.1%

Overdose deaths
(thou)

Baseline 40.3 39.0 32.5 46.7
Avg MME dose down 20% 39.8 −1.3% 37.9 30.9 46.0 −2.7% −8.2% 0.6%
Diversion Control 30% 39.9 −1.1% 37.6 30.3 45.5 −3.4% −11.6% 6.0%
Treatment rate 65% (from 45%) 39.2 −3.0% 37.5 30.8 44.6 −3.7% −11.3% −0.3%

Naloxone lay use 20% (from 4%) 35.3 −12.5% 34.2 28.4 41.4 −12.3% −18.6% −8.1%

All four policies combined 32.9 −18.4% 30.7 24.5 31.2 −21.1% −36.4% −6.9%
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4. Discussion

Here we have demonstrated a practical method for analyzing the effects of parameter
uncertainty on simulated model projections, using a health policy example. The process
summarized in Figures 1–4 (and Supplement Part S1) provides two alternative approaches:
traditional Monte Carlo (TMC) and Markov Chain Monte Carlo (MCMC). We featured the
former in this paper, because of its greater familiarity and ease of understanding.

However, it should be noted that, despite our difficulties with MCMC (specifically,
the overly narrow parameter distributions we observed), it is the theoretically superior
and less time-consuming of the two approaches. Tom Fiddaman at Ventana Systems (the
makers of Vensim) has suggested that a better choice of likelihood function for MCMC
might have produced better dispersed parameter distributions.

Indeed, other research teams have had success with MCMC [15–19]. Although MCMC
yields theoretically superior results, further examination and characterization of the pa-
rameter distributions resulting from MCMC seems to be in order. Garfazadegan and
Rahmandad [17] note in their Appendix A “rather tight confidence intervals coming from
MCMC methods directly applied to large nonlinear models,” which they address via
heuristics that scale the likelihood function.

A possible limitation of both TMC and MCMC is their reliance on the goodness of
fit to historical data. Forrester [32] warned that “the particular curves of past history are
only a special case.” The implication is that this method should not be used to make claims
of precision in predicted outcomes, but rather to better appreciate the range of possible
outcomes and, especially, the uncertainty in projected policy impacts.

5. Conclusions

We have presented a step-by-step approach to assessing the degree of uncertainty in
simulation model outcomes related to uncertainty in the model’s input parameters. Our
flowchart summarizes two ways to perform this, and we have demonstrated one of these
in detail with a concrete health policy example. Providing uncertainty intervals for the
range of possible outcomes from contemplated policy options, as we have described here,
could increase the value of simulation models to decision makers.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/systems10060225/s1, Supplement Part S1: Complete process for
addressing simulation model uncertainty (uniting Figures S1 to S4) and Supplement Parts S2 to S5.
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Abstract: The World Health Organization estimates that 5 to 15% of amputees in any given population
have access to a prosthesis. This figure is likely to worsen as the amputee population is expected to
double by 2050, straining the limited capacity of prosthetics services. Without proper and timely
prosthetic interventions, amputees with major lower-limb loss experience adverse mobility outcomes,
including the loss of independence, lowered quality of life, and decreased life expectancy. Presently,
the use of digital technology in prosthetics (e.g., 3D imaging, digital processing, and 3D printed
sockets) is contended as a viable solution to this problem. This paper uses system dynamics modeling
to assess the impact of digital prosthetics service provision. Our simulation model represents the
patient-care continuum and digital prosthetics market system, providing a feedback-rich causal
theory of how digital prosthetics impacts amputee mobility and the corollary socio-health-economic
outcomes over time. With sufficient resources for market formation and capacity expansion for
digital prosthetics services, our work suggests an increased proportion of prosthesis usage and
improved associated health-economic outcomes. Accordingly, our findings could provide decision
support for health policy to better mitigate the accessibility problem and bolster the social impact of
prosthesis usage.

Keywords: prosthetics; major lower-limb amputations; prosthesis usage; amputee mobility; system
dynamics; simulation model; health care system; health policy

1. Introduction

The World Health Organization (WHO) estimates that around 0.5% of any given
population require prosthetics and orthotics services [1]. This figure is expected to double
by 2050 as a result of ageing populations and rising rates of medical conditions, such as
diabetes mellitus, peripheral arterial disease (PAD), and sepsis [1,2]. Particularly for major
lower-limb amputations (i.e., above ankle), over 90% of cases in industrialized countries
are attributed to PAD (either primary or secondary to diabetes); whereas traumatic injuries
make up most cases in developing countries [3–5]. PAD is a progressive vascular disease
that commonly causes arterial obstruction in the lower extremities. Known PAD risk
factors include cigarette smoking, diabetes mellitus, hypertension, and dyslipidemia, with
incidence sharply rising for populations above age 50 [6,7]. PAD progresses to the more
severe critical limb ischemia, if not effectively managed at an earlier stage, which could
lead to amputation [8].

Major lower-limb amputation, without timely prosthetic intervention, leads to a loss
of mobility, which has several ripple effects at both the individual and societal level. It
worsens individual health and psychosocial outcomes, including the loss of independence,
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increased depression and self-esteem issues, lowered quality of life, and increased risk
of comorbidities and mortality [9–11]. There is also high economic burden on patients,
families (increased caregiving), health and welfare systems, as well as the workforce (lower
rates of return to work) [1,12,13]. Such negative externalities can be alleviated with the
use of prostheses to regain mobility and functional independence [14]. However, WHO
estimates that only 5 to 15% of amputees have access to prosthetics services [1]. Even
then, approximately 50% of amputees in prosthetics care abandon the process or their
prosthetic devices [15,16]. Barriers include high financial costs for treatment, poor health
care coverage, prosthetics service capacity constraints, limits in prosthetics technology and
fitting, lack of proximity to services, and inadequate continuity of care [14–17].

The recent introduction of digital technology in prosthetics is seen as a viable solution
to the accessibility problem [16,18,19]. Digital solutions to prosthesis fitting (henceforth,
digital prosthetics) involve a streamlined process of scanning the limb and using a digital
software to create a model of the socket for three-dimensional printing. Digital technology
reduces the delays, patient time and travel burden, and labor involved in traditional
prosthetics. Using traditional methods, the prosthetist must handcraft the socket using
plaster casts and test the fittings several times before a definitive socket is manufactured
and assembled [19]. With digital prosthetics, this manufacturing delay can be more than
halved. In turn, this reduces the chances of the patient’s limb and/or weight having
changed before receiving the prosthesis device—the main cause of discomfort and pain [16].
The fit challenges are a primary cause for the 50% abandonment [15,16]. Hence, digital
prosthetics could lead to higher success rates since the digital design is more accurate,
precise, and enables direct translation of a prosthetist’s skill-level over a minimum baseline
in place; has a much shorter timeframe such that there is little time for limb changes; and
results in a more comfortable fit for patients [16].

Moreover, digital prosthetics could improve accessibility by expanding service capacity.
With a more streamlined and effective fitting process, each prosthetist can fit more patients
in their schedule than it otherwise would have been possible with conventional techniques
and processes. Digital technology also frees the prosthetist from their clinic and gives
them the flexibility to bring the service to patients through distributed care networks [20].
Accordingly, proponents of digital prosthetics anticipate several positive externalities for
amputees, their families, and the economy more broadly. This paper seeks to assess this
impact of digital prosthetics service provision on total amputee mobility. Mobility, here, is
measured by the proportion of medically eligible amputees who are fitted with a prosthesis
and have regained functional mobility. The benefit of digital prosthetics can be further
measured by the health-related socio-economic consequences of such mobility; namely, the
surplus economic productivity from returning to work and the net economic costs incurred
or avoided (health care, family opportunity cost, social and welfare payments).

The purpose of this study is to explore how the adoption of digital prosthetics impact
amputee mobility and associated outcomes over time. To assess such changes, we model
the key causal mechanisms found in the health care system, including the patient-care
continuum and prosthetic service provision. For this purpose, we build and analyze a
dynamic simulation model to identify high-leverage points that can enhance the effects
of digital prosthetics service provision on mobility outcomes. This paper describes the
structure, empirical foundation, illustrative results, and strategic insights from the proto-
type prosthetic service provision model, as well as how it might be further refined. The
results reported in this paper result from two activities: First, we use an in-depth review of
the existing knowledge (from literature and expert interviews) coupled with causal loop
diagramming [21] to identify core feedback mechanisms driving prosthetic service provi-
sion. Second, we developed a formal system dynamics simulation model to characterize
the range of outcomes that these processes generate, even in a data-poor context. The end
result is an internally consistent theory that provides insights into the determinants of
success and failure of digital prosthetics service provision.
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2. Materials and Methods

This study employs the system dynamics (SD) method, using compartment models,
for conducting model-based hypothesis testing. SD models seek to simulate and explain
problem behaviors by modeling the underlying system structure [21]. Importantly, they
offer an “endogenous or feedback perspective” to structural problems [22] (p. 1) that can
aid “theory building, policy analysis, and strategic decision support” [23] (p. 11). This
endogenous perspective relates to two fundamental methodological tenets: (1) problem
behaviors arise from the complex interaction of interrelated components within a closed
boundary of a system, and (2) the system components are connected in feedback loops
(circular chains of causal relationships), which endogenously generate the observed system
behavior [24,25]. In this sense, the SD method “helps construct a causal-loop theory of
system behavior in terms of feedback linkages” [26] (p. 400).

SD modeling is well-suited to domains in public health and medicine, with over
300 applications to date – for a review, see [27,28]. The “dynamic complexity in public
health” (particularly due to nonlinear effects of multiple interacting variables within the
system that affect health outcomes) makes it “difficult to know how, where, and when to
intervene” [29] (p. 452). SD simulation modelling can effectively address this challenge
and “elucidate the counterintuitive behavior of complex healthcare problems” [28] (p. 1).
Particularly for prosthetics provision and related health care policy, SD modelling can
support decision-making under uncertainty. The domain of prosthetics services is mired by
the lack of robust data collection, contributing to a high level of uncertainty surrounding
policy planning [1,16]. SD models, however, can “admit more variables on the basis of
logic or expert opinion and for which solid statistical estimates may not be available” [29]
(p. 453) and still generate useful insights under such uncertainty.

2.1. Literature Review

To our knowledge, apart from the two preliminary versions of this work [30,31],
there has been no other application of SD to prosthetic service provision or major lower
limb amputations in the academic literature. However, this work builds on existing SD
literature on emerging medical technologies and innovation diffusion more generally.
Paich, Peck and Valant present a model on pharmaceutical product strategy that integrates
patient flows, product diffusion and adoption by physicians, and treatment attractiveness to
patients [32]. Homer developed a model for medical technology adoption based on demand-
side (user dispositions to accept or abandon based on social exposure and evaluation of
product performance) and supply-side (R&D for product performance improvement and
investment in promotional activities) dynamics [33]. These models are extensions of the
Bass Diffusion generic structure that includes a word-of-mouth diffusion process (social
exposure and imitation) and external adoption from advertising, which enhance the realism
of innovation diffusion [21].

In their systematic review of SD models on innovation systems, Uriona and Grobbelaar
point to a “promising stream of research” based on Technological Innovation Systems (TIS)
theory, that departs from the innovator-imitator structure of Bass Diffusion [34] (p. 34).
TIS theory posits that the formation of a new technological innovation system requires
seven key interacting elements: (1) entrepreneurial activities, (2) knowledge development,
(3) knowledge diffusion, (4) guidance of search, (5) market formation, (6) mobilization
of resources, and (7) creation of legitimacy [35–37]. The complex interactions of these
elements determine the growth prospects of a new technology. Subsequently, Walrave
and Raven operationalized the theory into a conceptual SD simulation model [36,38]. The
main advantage of the TIS framework is its explanatory power for the market formation of
new technologies—a “complex non-linear interactive process” that involves several actors
and institutions [34] (p. 28). Indeed, market formation requires collective market-oriented
action to develop “shared market infrastructure” for “supporting the functioning of a stable
market” [39] (p. 244).
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Our work contributes to existing knowledge by synthesizing the TIS model with
medical technology adoption models. Similar to Paich, Peck and Valant, we represent the
patient flow of the health care and prosthetics care system for amputees. Like Homer, we
represent the demand-side dispositions of amputees to adopt or abandon the emerging
digital prosthetic device based on performance evaluation and word-of-mouth diffusion.
We then captured the supply-side conditions of digital prosthetics using the TIS framework.
In doing so, we present a feedback perspective to digital prosthetics market formation
prospects and the corollary effects on product adoption as well as on the socio-economic
and health indicators for the amputee population.

2.2. Data Collection

The iterative model building process, from conceptualization, quantification, to valida-
tion, was conducted in collaboration with Toyota Mobility Foundation—expert in system
dynamics and human centered design for promoting mobility (second author) and ProsFit
Technologies—digital prosthetics service provider (third author). It is tradition in SD to
include problem owners and experts in the model building process who possess impor-
tant domain expertise, experiential knowledge, and mental models of the system under
investigation [40–42]. During this process, several iterations of the model were presented
to the collaborators for validation. In terms of model parameterization, ProsFit provided
numerical estimates for some parameter values where existing data was not available. In
such instances, ProsFit relied on its network of prosthetists and other experts in the field
to corroborate their assumptions and understanding. Estimates and comments from these
domain experts were anonymized and shared via email correspondence. Such estimates
represent the best available data and expert judgement at the time of the model development.

Apart from expert opinion, existing peer-reviewed literature was utilized extensively
for model conceptualization—especially so for the conceptual market formation subsystem
in the model. As for quantification, parameter values were obtained either from epidemio-
logical data reported in the literature or from secondary datasets (Table 1). The model is
calibrated to data from the United Kingdom (UK), since expert knowledge and literature
pertaining to the country is more readily available, but it can nevertheless be calibrated to
other contexts.

Table 1. Data sources used for model parameterization.

Data Source Description

UK Office for National Statistics [43–48] UK population estimates for fertility rate and mortality rate

Healthcare Quality Improvement Partnership [49–54] UK National Vascular Registry statistics on PAD-related major lower limb
amputations and clinical outcomes

Global Burden of Disease Collaborative Network [55] UK estimates for yearly prevalence and incidence estimates on PAD as well as
lower limb amputations from injuries as a cause between 2010 and 2019

ProsFit Technologies [56] UK health economics data for estimating economic costs and net benefit of
prosthetic service provision

2.3. Model Description

In this section, we present a simplified stock-and-flow representation of the model.
The simplified structure is split into the top-level Health Care System (Figure 1) and the
Market Subsystem (Figure 2). We then briefly describe the key feedback processes involved
(see Appendix A for a more detailed description of each feedback loop).
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2.3.1. Health Care System

The health care system for amputees is represented as an aging chain that captures the
flow of people across different stages or compartments. This structure is further arrayed to
better capture and represent the characteristics and choices of different population groups
(e.g., age and prosthesis type). Aging chains, commonly used in SD health models, can help
identify accumulations and key bottle-necks in patient flows [27]. Figure 1 captures the flow
of people from the general population and the PAD population stocks to acute care for either
trauma-related or PAD-related amputation. At this stage, the Prevention Pressure loop (B1)
works to reduce the PAD incidence rate over the long-term as the PAD-related amputations
increase over time. This balancing feedback loop represents the prevention pressure faced
by public health agencies to address the prevalence of PAD by stepping up efforts towards
primary prevention, including early screening, smoking cessation, nutritional and activity
programs [57,58]. A decline in PAD incidence would lead to a reduction of the PAD
prevalence over time, which would eventually decrease major lower-limb amputations
from PAD.

Amputees then flow into the prosthetic care stage, either into traditional prosthetics or
digital prosthetics depending on the respective market share, from the primary care stage.
They may achieve full mobility if successfully fitted with a prosthesis. However, both
prosthesis types need to be replaced every three years on average [59]. As more amputees
enter the prosthetics care stage, prosthesis degradation over time increases the number of
amputees awaiting replacement of their devices before re-entering the prosthetic fitting
process again. In this regard, the Prosthesis Lifecycle loop (R1) could result in a growing
pressure for prosthetics demand, emanating from our best efforts to successfully fit new
amputees with a prosthesis. Alternatively, amputees may dropout from the prosthesis
fitting process altogether or abandon the device due to an unsuccessful fit [16,60]. These
individuals flow into the limited mobility stock. However, amputees with limited mobility
may later decide to readopt a prosthesis and therefore re-enter the prosthetic care stage
again. This process is captured in the Prosthetics Re-entry loop (R2). Both loops engender a
reinforcing mechanism that moves amputees through different stages of prosthetics care.
They do not independently multiply the number of amputees in the loop beyond those
already within the closed aging chain.

With the introduction of a digital prosthetics market, amputees are probabilistically
referred to a digital prosthetist dependent on the market share. The perceived success
of digital prosthetics is then conceptualized as the ratio of the rate of successful digital
fitting relative to traditional fitting. When the rate of digital fittings surpass the incumbent
traditional technology, we can expect a stronger favorable word-of-mouth diffusion about
the success or reputation of digital prosthesis [61,62]. Over time, we expect the reputation
of digital technology to reinforce the growth of the digital market size and thus the market
share of the digital prosthetics through the Digital Growth loops (R3 and R4). With a higher
market share, even more amputees are more likely to be referred to a digital prosthetist
or may seek out one themselves if they are re-adoptees. Concurrently, the Prosthesis
Attractiveness loops (R8 and R9) encourage stronger uptake of digital prosthesis devices.
Word-of-mouth diffusion about the relative success of digital technology could motivate
individuals to stick to the process and thus translate to a lower drop-out rate. It could
also motivate those who have previously abandoned the process to re-enter the fitting the
process, consequently increasing the re-adoption rate. Here, the diffusion processes are
driven by evaluations of the relative performance of digital prosthetics (successful digital
fitting rates vs. traditional), similar to the adoption structure in Homer’s model [33].

While the digital growth and prosthesis attractiveness loops drive the accumulation
of amputees in the digital prosthetics care sector, the Access Constraint loops (B2, B3 and B4)
counteract their reinforcing effects. Amputees’ access to the prosthetics care stage is limited
by the capacity of the sector (number of fittings that can be accommodated by available
prosthetists). Fitting demand is driven by new amputees, those seeking to replace their
degraded device, and re-adoptees who previously abandoned the fitting process. When
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the fitting demand outweighs the fitting capacity, prosthetic accessibility reduces and thus
limits amputees from entering the stage even if so desired. Over the longer term, however,
the Market Access loops (R5, R6 and R7) work to improve accessibility for digital prosthetics
by expanding capacity. A higher market share of digital technology would lead to an
expansion of digital prosthetic clinics, which enables the sector to accommodate a larger
number of patients. This effect, however, is delayed as it takes time to assess the market
and set up new clinics.

As for the incumbent traditional prosthetics, they compete with the growing digital
prosthetics market for referrals from the primary care stage. This is captured in the patient
flow between the two stages, where entry to traditional prosthetics is determined by the
inverse of the digital market share (i.e., 1–“Digital Market Share”). However, in the model,
traditional prosthetics is assumed to be unaffected by the diffusion processes of digital
technology. Should digital technology gain dominance, one might expect the incumbent’s
reputation to diminish and, as a result, more amputees might dropout and fewer might
re-adopt a traditional prosthesis. Moreover, traditional prosthetics sector might also face a
capacity contraction. Yet, these effects were not modeled for a more conservative estimate of
digital prosthetics’ impact since, without concrete data, this could add to further uncertainty
of the model. Instead, the patient flows within the traditional prosthetics care sector were
held at constant fractional rates, apart from new amputee referrals.

2.3.2. Market Subsystem

In the top-level health care system, we sought to explain the effects of digital pros-
thetics market growth on the prosthetics care sector. The complexity involved in market
formation within the market subsystem is represented in Figure 2.

The process of technological knowledge development is described by the synergistic
interaction of the Technology Development loop (R10) and Knowledge Diffusion loop (R11).
Innovation development and diffusion of knowledge is required for any TIS to grow, and
this is dependent on the level of resources available for R&D [35,63]. As innovation is
developed and diffused through the exchange of knowledge between various actors in the
system, the guidance of search for the new technology increases. Guidance of search refers
to the “visibility and clarity” of the state of the art [35] (p. 423) that reflects the “promises
and expectations of the emerging technology” [63] (p. 56). This helps in the priority-setting
of that technology and directing more resources for further R&D, which would enable even
more technological knowledge development and diffusion.

This process, in turn, attracts new entrepreneurs into the emerging market through the
Innovation Attractiveness loop (R12) and Knowledge Attractiveness loop (R13). Entrepreneurs
are central to any TIS for carrying out market-oriented action [63]. As more innovation
is developed and diffused, the technological legitimacy of the technology increases and
accumulates the perceived legitimacy of innovation system. [36]. This encourages more
entrants to enter the market and grow the level of market-oriented entrepreneurial activity.
Since entrepreneurial activities indicate the health and sustainability of an innovation
system [35], this would bring in more external funding/resource stream into the system
from private or public actors [36,63]. External funding further reinforces the growth of
entrepreneurial activities through the External Engine loop (R14). External backing reduces
the perceived entrepreneurial risks involved, and consequently is better able to attract
further entry into the market [36,63]. Moreover, the external funding stream increases the
total resources available in the system, which spurs more development of innovation that
increases the legitimacy of the technology even further.

While the external engine stimulates entrepreneurial activity initially, the System Legit-
imacy loop (R17) endogenously generates internal (“financial, material, human capital”)
resources over the longer term for market sustainability [63] (p. 57). This loop comprises
the two smaller Internal Engine loop (R15) and the System Building loop (R16), and is capable
of driving the entire system [37]. Entrepreneurs contribute to the “development of formal
market rules, establishment of intermediary networks, the building of infrastructure, or the
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development of formal regulations” [36] (p. 1837). The developed market infrastructure
generates market legitimacy for the TIS, which reduces market formation uncertainty and
the perceived cost to participation [39]. Hence, more entrepreneurs are willing to overcome
perceived risks and enter the market, contributing to further infrastructure development
(R16). Moreover, these established market structures, mediated by entrepreneurial activi-
ties, “contribute to the creation of a demand for the emerging technology” [63] (p. 56). This
increases the market size for the technology that generates internal resources from the mar-
ket (R15). The synergy of the loops, reflected in R17, thus drives the self-reinforcing growth
of entrepreneurial activities, market infrastructure, market legitimacy, and market size.

The formation of a niche market for the emerging technology, however, precipitates
“resistance from actors with interests in the incumbent” regime [63] (p. 57). For instance,
“when regime actors try to influence public discourses, or lobby against favourable sup-
port” [36] (p. 1837). This process is captured in the Resistance loop (R18). Regime resistance
decreases the market legitimacy of the emerging technology, which disincentivizes entrants
due to higher perceived risks. In turn, there will be less market infrastructure develop-
ment to counter the regime resistance. As the niche market grows and competes with
the incumbent regime, resistance could also come in the form of innovation. Given the
new threat, regime actors would “increase their efforts to improve the performance of the
existing regime through innovation” [36] (p. 1838). This is referred to as the sailing ship
effect [64,65] and is represented in the Sailing Ship loop (B7). It contributes to a stronger
regime resistance and counteracts the effects of the System Legitimacy loop.

Finally, the top-level health care system is connected to market subsystem through
the Digital Growth loops and Market Access loops. As the reputation of digital fittings grow,
we expect it to bolster the technological legitimacy of digital prosthetics. This would lend
strength to the System Legitimacy loop, which ultimately increases the market size. With a
larger market size, the market share of digital prosthetics rises relative to the incumbent
traditional prosthetics. Importantly, the number of digital prosthetic clinics also increases
to expand the fitting capacity. This improves the digital prosthetics accessibility, which
enables more amputees to be fitted with a prosthesis and achieve mobility.

2.4. Model Validation

The described feedback structure was operationalized into a SD simulation model. The
model was built in Stella Architect version 3.0 (SD modelling software from isee systems)
using Euler Integration with a time-step of 1/16 of a month, or about 2 days, which is less
than half of the smallest time constant of 7 days (0.23 months) for the pre-operation hospital
stay in the primary care sector. The model is simulated over a time horizon of 480 months,
representing January 2010 to January 2050. Simulation modelling facilitates the visualiza-
tion of the impact of digital prosthetics on the health care system and, more importantly,
experimentations to better understand the dynamic complexity of the system [21,29]. Here,
we summarize the results of the model validation procedure as proposed by Forrester and
Senge [66] and Barlas [67] to build confidence in the simulation results. A more detailed
validation report is available in a previous iteration of this work [30].

The model structure is supported by relevant literature and input from stakeholders.
As a digital prosthetics service provider (ProsFit) and a double lower-limb amputee, the
third author of this paper was heavily consulted during the iterative process of model
building to validate the structures in the health care system. Parameterization of the
health care system was based on empirical data sources (Table 1). In instances where
data was not available, the values were estimated from expert opinion. This pertains to
the fractional dropout and readoption rates, which are estimates from ProsFit and their
network of prosthetists. Parameter verification for the market subsystem, however, was
challenging given the conceptual nature of the model. Thus, the parameter values set in
the original model [38] was kept and subject to further sensitivity tests. All parameters and
variables in the model were assigned units of measurement that are both mathematically
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and conceptually consistent. The model documentation provided in the Supplementary
Materials details the above for each variable in the model.

Moreover, direct- and indirect-extreme conditions tests were performed to ensure
robustness of structural formulations. There were no computational errors detected in the
model and the results conform to values that are within bounds. We further conducted
sensitivity analysis for all parameters in the model. Each parameter was varied over
100 sensitivity runs. The variation is based on a uniform distribution random draw using
Sobol Sequence sampling method [68]. The results of the sensitivity analysis are summa-
rized in Table 2. Expectedly, the model was mostly sensitive to parameters in the conceptual
market subsystem. As a result, it introduces uncertainty to the relatively empirical top-level
model. This means that this model cannot produce accurate numerical estimations. Never-
theless, it was deemed more useful to represent the complexity of market formation than
the alternative: a simplistic table function with high levels of sensitivity. Understanding
how digital prosthetic market formation may plausibly occur from a feedback perspective
could be useful to decision-makers seeking to improve mobility outcomes and maximize
the impact of limited resources.

Table 2. Parameters resulting in model sensitivity.

Model Sector Parameter Range Sensitivity

Prosthetic Care

Reference Dropout Fraction (Eligible for Prosthesis) 0.01–0.50 Numerical
Reference Dropout Fraction (Initial Device) 0.01–0.50 Numerical

Reference Dropout Fraction (Matured Limb) 0.01–0.50 Numerical
Reference Readoption Fraction 0.01–0.50 Numerical

Market Formation

Market Size Threshold 0.025–0.075 Behavioral *
Relative External Resources Size 0–9 Behavioral *

Sensitivity of Clinics to Market Size 0.25–0.75 Numerical
Sensitivity of Resources to Market Size 0.5–1.5 Behavioral *

Steepness Effect of Total Resources on EA 1.25–3.75 Numerical
Steepness Effect of EA on Market Infrastructure 0.2–0.6 Numerical

Steepness Effect of Legitimacy on EA 0.2–0.6 Numerical
Steepness Effect of Total Resources on Infrastructure 1.25–3.75 Numerical

Time to Adjust Clinics 12–36 Numerical
Time to Adjust Entrepreneurial Activity 6–18 Numerical

Time to Adjust Market Infrastructure 30–90 Numerical
Time to Adjust Market Size 12–36 Numerical
Time to Perceive Legitimacy 6–18 Numerical

Weight of Entrepreneurial Activity 0.25–0.75 Behavioral *
Weight of Perceived Legitimacy 0.25–0.75 Numerical

Innovation Diffusion Time to Decay 30–90 Numerical

* Refer to Appendix B for the confidence plots of the model’s sensitivity.

3. Simulation Results
3.1. Baseline Setup

The model was initialized in equilibrium to produce the baseline simulation results.
In a previous iteration, we attempted to initialize the stocks at the obtained or calculated
initial values [30]. However, there are virtually no numerical estimates for individuals in
the various transitory stages of the primary care continuum and prosthetic care continuum.
Consequently, we opted to initialize the stocks in their long-term equilibrium values to
prevent transient stock adjustments. Moreover, initializing the model in equilibrium enables
us to observe the full effects of any shocks exogenously introduced to the model—in our
case, the formation of a niche digital prosthetics market.

To set the model in equilibrium, we held the total population of the UK constant at
about 61.1 million individuals over the time horizon and initialized the population stocks
in their long-term equilibrium values. The equilibrium switch in the market subsystems
initializes the innovation diffusion stocks at zero and cuts off the exogenous input of relative
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resources. This ensures there are no dynamics in the market subsystem, thus representing
a scenario wherein the prosthetics sector is solely serviced by the traditional prosthetics
service providers at their existing capacity.

3.2. Baseline Results

The baseline results provide the estimated equilibrium values of the respective key
indicators for the system (see Table 3). With a constant population size of 61.1 M people,
we estimate a total of 84.8 K major lower-limb amputees, with about 85% of them being
deemed medically eligible for a prosthetic device (71.9 K people). Of those eligible, only
5.5 K amputees are estimated to be fitted with a (traditional) prosthesis, thus resulting
in a mobility proportion of over 7%. The amputee mobility proportion represents the
proportion of eligible amputees who have achieved full mobility through a successful
prosthesis fitting, which is determined by three factors. First, the accessibility of prosthetics
services, which represents the percentage of demand that is met by the existing service
capacity. The model estimates this to be just under 12%, indicating a bottleneck in the
prosthetic care system. This is also within range of the WHO global estimate—that only
5 to 15% of amputees have access to prostheses [1]. Second, individual dispositions to drop
out from the fitting process (estimated by experts to be about 10% for each stage of the
process prior to the final device) and to readopt it (about 20%) at a later time. Third, the
probability of final device fit success, which is about 50% for traditional devices [15,16].

Table 3. Baseline results of key indicators.

Indicator Result Units

Total Amputee Population 84.8 K People
Medically Eligible Amputee Population 71.9 K People

Amputees fitted with Prosthesis 5.5 K People
Amputee Mobility Proportion 0.07 Dimensionless

Prosthetics Accessibility 0.12 Dimensionless
Economic Productivity 14 M USD/Month

Economic Cost 210 M USD/Month
Prosthesis Reimbursement 1.94 M USD/Month

Furthermore, health-related economic indicators were calculated based on the inputs
from the endogenous processes in the health and prosthetics care systems. The monthly
economic productivity of amputees is estimated to be about USD14 M per month. This
indicator represents the economic participation of amputees from returning to work and
reintegrating into the workforce. It is conceptualized as the product of the estimated number
of employed amputees with the gross domestic product per capita. Amputees not fitted
with prostheses are excluded from workforce participation given their limited mobility.
This is a gross simplification that does not completely reflect the economic contribution of
amputees from other measures such as individual consumption. The total economic cost
incurred, on the other hand, is estimated to be USD210 M per month. This includes the
differentiated health care costs, unemployment and social payments, and the opportunity
costs borne by families for caretaking. Lastly, the estimated total cost of prosthesis provision
is about USD1.94 M per month, which includes both successful and failed prosthesis fittings.
Reimbursements for prosthesis costs are assumed to be fully covered by national insurance
mechanisms, which would otherwise be borne as out-of-pocket payments.

3.3. Experimental Setup

To simulate and investigate the impact of digital prosthetics on the baseline behavior,
we introduced dynamics in the market subsystem module. This was done by setting the
parameter value of Relative External Resources (RER) Size above 0 from month 96 for an
assumed duration of 180 months (year 2018 to 2033) to exogenously kick start the dynamics.
This simulates the deployment of external funding streams to support initial market growth
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prior to self-sufficiency. Moreover, the Innovation Developed and Knowledge Diffused
stocks were initialized at 0.01 to push them out of unstable equilibrium.

As mentioned, given the conceptual nature of the market subsystem, we have in-
troduced several assumptions in the parameter values that would result in estimation
errors. Therefore, we ran a global sensitivity analysis with combined variations in all the
parameters that the model is sensitive to (as identified in Table 2). The experimental results,
in turn, show the confidence intervals (up to 95%) of the key indicators from 1000 runs
based on Sobol Sequence sampling method [68]. A total of 1000 runs was sufficient to fully
explore the state space of the stocks in the market subsystems. This experiment gives us
the full range of possibilities for digital prosthetics market growth and thus enables us to
observe the corollary effects on the more empirical prosthetics care system.

3.4. Experimental Results

Given its known sensitivity, the model produces a range of market growth for digital
prosthetics, from 0.03% to 96% market share by 2050 with a mean of 43.6% (Figure 3).
In general, with a RER size of more than 0, the External Engine loop (R14) powers the
endogenous market formation processes that allows the Digital Market Share to start
growing. However, as R14 loop is cut off by year 2033, we observe three behavioral
patterns: (1) steady decline, (2) a much slower albeit continued growth, or (3) sustained
growth. The sustainability of market growth is ultimately dependent on the strength of the
Internal Engine (R15) and the System Legitimacy (R17) loops in endogenously generating
sufficient internal market resources.
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Nevertheless, we can observe the impact of digital prosthetics market growth on
the amputee population and mobility outcomes. As digital prostheses are introduced
to the prosthetics care system, Figure 4a shows an increase in the mobility proportion
from the baseline of 7% to a mean of 23% by 2050 (range: 6.2–50%). The introduction of
digital prosthetics not only increases the existing service capacity, but also results in more
successful fittings—a synergistic product of the Digital Growth (R3 and R4) and Prosthetics
Attractiveness (R8 and R9) loops. The Digital Growth loops enable more amputees to
enter the prosthetics care system either as a new entrant or a re-adoptee, whereas the
Prosthetics Attractiveness loops discourages amputees in the fitting process from dropping
out and encourages previous dropouts to re-adopt a device. In turn, more amputees achieve
mobility. The increased mobility further leads to improved health outcomes, including
a lower mortality risk. In this sense, the expansion of digital prosthetics prevents more
deaths, which accounts for the increase in the amputee population from the baseline of
84.8 K to an average of 87.6 K individuals by 2050 (range: 83.2 K–94 K) as seen in Figure 4b.
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Additionally, we observe that the mobility proportion develops similarly to the digital
market share; if the market share were to decline after year 2033, so would the mobility
proportion. However, the mobility proportion develops at slower pace and changes to
a smaller extent. This is due to (1) the multiple delays involved in the aging chains
of the fitting process and (2) the effect of the Access Constraint loops (B2, B3 and B4)
from prosthetics accessibility that limits the number of amputees according to available
service capacity.

As for the prosthetics accessibility, it increases for the first of half the simulation
duration before declining again, which consequently limits the growth of the mobility
proportion. With reference to Figure 5, the peak of the mean accessibility is about 44%
some time in 2028 (range: 13.6% to 100%), which eventually declines to 20% by 2050 (range:
2.8% to 93.6%). In general, the accessibility ratio increases as the digital market grows
and adds additional service capacity to the existing level. In conditions where there is
limited market growth, we observe that the accessibility declines around the time when the
exogenous funding is cut-off in year 2033. However, under more optimistic market growth
conditions, we observe that the accessibility peaks prior to the cut-off time and declines
thereafter. This is due to the higher volume of demand for replacing degraded prostheses
generated by the Prosthesis Lifecycle loop (R1). Prostheses have a lifecycle of 3 years on
average, and hence there is a captive consumer base that will continue to shore up fitting
demand—more so when the proportion of fitted amputees is high. As seen in Figure 5,
the total accessibility may increase to the maximum (100%) in instances where parameters
enable a rapid and large expansion of digital clinics (e.g., Sensitivity of Clinics to Market
Size) to meet the demand for fittings. Even then, it declines by the tail end of the simulation
for the reasons described.

As a result of the developments in the prosthetics care system, we can further assess the
impact on the health-related economic indicators. The economic productivity of amputees
follows a similar development to the mobility proportion since employed amputees make
up a fraction of those who are mobile. Figure 6a shows and increase in the monthly
productivity of amputees from an average of USD14 M to USD43 M by year 2050 (range:
USD11.5 M to USD97.7 M). Again, these figures are underestimates that only partially
captures the true economic contribution of amputees. Whereas Figure 6b shows a reduction
in the monthly economic cost incurred, decreasing from USD210 M to USD202 M on
average (range: USD289 M to USD211 M). The economic cost per capita reduces as the
mobility proportion increases because mobile amputees incur smaller health care costs,
social payments, and opportunity costs for their families. However, note that effect from
the per capita cost reduction has been counteracted by the overall increase in amputee
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population size from improved health outcomes (less deaths). In this sense, the reduction
in total economic cost is not as pronounced as the per capita reduction in economic cost.
Based on these figures, we can further anticipate the net benefit of digital prosthetics service
provision: the sum of the additional economic productivity and the amount of reduction in
economic cost. The average net social benefit is then calculated to be a mean of USD37 M
per month.
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economic cost incurred for the total amputee population.

3.5. Scenario Setup

The experimental results have shown that there are three fundamental behavior
modes within the range of possibilities for digital market growth. To better visualize the
differentiated impact on the prosthetics care system, we developed three hypothetical
scenarios for digital market growth. First, a pessimistic scenario to represent the growth
and steady decline. Second, a realistic scenario wherein the digital market experiences a
much slower rate of growth after external funding is cut off. Third, an optimistic scenario
to represent the sustained market growth throughout the simulation duration.

To this end, we conducted a sensitivity analysis with only the parameters that the
model is behaviorally sensitive to (see Table 2) for a total of 50 runs. From these runs, we
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selected the set of parameter values that produced the appropriate behavior mode for each
of the scenarios. These values are reported in Table 4.

Table 4. Behaviorally sensitive parameters and corresponding values for each scenario.

Parameter Pessimistic Realistic Optimistic Remarks

Relative External
Resources Size 1.27 4.78 8.02 The higher the figure, the larger the size of the external resources

brought in from entrepreneurial activity relative to a certain normal size.

Market Size Threshold 0.04 0.05 0.05

The threshold is the base value of the Relative Market Size, which
determines how much the internal resources generated by market grows
beyond the normal amount. A higher threshold means that the nascent

market must grow to a larger extent before becoming profitable.

Sensitivity of Resources to
Market Size 1.20 0.72 0.95

A sensitivity of less than 1 results in a less than proportional change in
the Relative Internal Resources to changes in the Relative Market.

Conversely, a sensitivity of more than 1 results in a more than
proportional relative change.

Weight of Entrepreneurial
Activity 0.65 0.32 0.27

The smaller the value, the more weight is placed on the effect of total
resources available for market development on market infrastructure

than on the effect of entrepreneurial activities, vice versa.

The set of parameter values for the pessimistic scenario results in a condition where
there is a low level of resources flowing in the market subsystem. With a relatively lower
RER size, the External Engine loop (R14) has a weaker reinforcing effect in the pessimistic
scenario as compared to the other two. The weight of entrepreneurial activity modulates
the level of market infrastructure development. A higher weight implies that infrastructure
development is more dependent on the level of entrepreneurial activity in the system than
the volume of resources available for market formation. Not only is there a low level of
resources to begin with, but the market infrastructure development is also not as reactive
to those resources in the pessimistic scenario. On the other end, in the optimistic scenario
there are ample of resources in the system for market formation. A relatively lower weight
on entrepreneurial activity further implies that market development is stimulated by the
resources available. The realistic scenario represents a more likely median between the
two extremes.

3.6. Scenario Results

We reproduced the three behavior patterns representing the varied conditions for digi-
tal prosthetics market growth (see Figure 7a). Under pessimistic market growth conditions,
the market share of digital prosthetics growths to a maximum of about 5% before declining
to 0.5% by 2050. Under the realistic scenario, the digital market share increases to 36%
in 2033 and thereafter increases gradually to 43% by 2050. Whereas digital prosthetics
experiences sustained growth in the optimistic scenario, capturing 80% of the market share
by 2050.

Based on these three hypothetical market growth scenarios, we can observe the relative
impact on the amputee mobility outcome in Figure 7b. In general, the mobility proportion
follows the same behavioral pattern as the digital market share. The proportion increases
as market share increases and vice versa. The gap between the realistic and optimistic
scenarios for amputee mobility is disproportionately smaller than the gap for the digital
prosthetics market share. This is due to the dampening effect of the Access Constraint loops
(B2, B3 and B4) as explained before. Amputee mobility is being constrained by the fitting
capacity that is unable to meet the demand. By further expanding digital fitting capacity,
we can strengthen the effect of the Market Access loops (R5 and R6) to better counteract the
constraint loops. In this sense, we can anticipate an even higher mobility proportion in the
optimistic scenario than the 32% mobility observed in Figure 7b.
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Figure 7. (a) Comparative graphs of the digital prosthetics market share under three growth scenarios;
(b) Comparative graphs of the proportion of eligible amputees who are fitted with a prosthesis under
three scenarios.

As for the health-related economic indicators, we can now graphically represent the net
benefit of digital prosthetics service provision compared to the baseline behavior (Figure 8a).
In all three scenarios, the introduction of digital prosthetics results in a positive net benefit.
A 0.5% digital market share in 2050 still yields a net benefit of USD5 M per month in the
pessimistic scenario. This figure is USD41 M and USD53 M for the realistic and optimistic
scenario, respectively. Moreover, we can compare the scale of the net benefit to that of
the additional prosthesis reimbursement (Figure 8b). The additional reimbursement is the
difference between the total costs for prosthesis services and the baseline costs. In contexts
where prosthetics services are covered by national health care systems, digital market
growth increases the total costs borne by the state in terms of insurance reimbursements
as the volume fittings increases over time. Nevertheless, additional costs incurred in that
instance is far outweighed by the net benefit accrued—on average by a factor of 15 across
all scenarios.
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Figure 8. (a) Comparative graphs of the undiscounted net benefit of digital prosthetics under three
growth scenarios; (b) Comparative graphs of the undiscounted additional prosthesis reimbursement
cost incurred under three scenarios.

4. Discussion

In summary, our simulation model allows exploring the range of mobility outcomes
for the amputee population given different market growth conditions for digital prosthetics.
We observed in all experimental scenarios that an increase in digital prosthetics market
share was associated with improved mobility outcomes. Specifically, there was an increase
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in the mobility proportion, an increase in total economic productivity, a decrease in total
economic costs and an overall positive net benefit from digital prosthetics even under
pessimistic conditions. Our model could, thus, serve as a tool for health policy planners to
explore a shift in prosthetics service provision to better mitigate the accessibility problem
and bolster the social impact of prosthesis usage.

Furthermore, our model contributes to the growing body of public health modeling
literature within the system dynamics field. To the best of our knowledge, this model is the
first application of simulation modeling to the domain of amputee patient-care continuum
and prosthetics service provision. Our work builds on and integrates elements of existing
SD models on TIS and medical technologies diffusion and adoption [32,33,36], which we
have adapted to anticipate the growth of the emerging digital prosthetics. In doing so,
our model presents an internally consistent theory of the complex interactions between
the health care system and the market formation subsystem and provides a feedback-rich
explanation for the dynamics of prosthetics service provision and amputee mobility.

4.1. Strategic Insights

The main insights from our work can be summarized as follows:

• While the External Engine loop provides the initial fuel for the various endogenous
market formation processes, the System Legitimacy loop ultimately determines the
trajectory of market growth for digital prosthetics. This loop generates internal re-
sources from the market to sustain the growth in entrepreneurial activities, market
infrastructure, perceived legitimacy of digital prosthetics, and its market size.

• The Digital Growth loops and Prosthesis Attractive loops are the key drivers for improv-
ing prosthetic accessibility and enabling mobility. With a higher market share of digital
prosthetics, more amputees can receive prosthetics services and are incentivized to
remain in or re-adopt prosthetics care.

• The Market Access loops are particularly important for driving the expansion of pros-
thetics clinics and service capacity, thus improving prosthetics accessibility over time.
The strength of this loop determines the extent of the counteracting effect on the Access
Constraint loops, which limits the mobility proportion.

• To best ensure the sustainability of the digital prosthetics market over the longer
term, investment is needed in this emerging technological system to garner sufficient
resources and momentum for sustained market growth. As seen in the sensitivity
analyses, the model is behaviorally sensitive to parameters related to the internal and
external resources in the market subsystem. High-leverage policies would thus seek
to influence the resource flows in the system.

• Investments in digital prosthetics could improve accessibility and ameliorate the
underuse of prosthesis amongst amputees, which enables mobility. Importantly, this
results in a positive net benefit for society in terms of higher economic productivity
and reduced economic costs.

• Besides the economic value of individuals, improving mobility appears to improve
health, also preventing more amputee deaths over time.

• To maximize the impact on the mobility outcomes and net benefit of prosthetics
services, policy planning must ensure that service capacity is expanded to meet fitting
demand. The scenario analysis revealed that prosthetics accessibility is limited by
service capacity even under optimistic market growth conditions. Policy planners
should be cognizant of the effect of Prosthesis Lifecycle loop, which drives the pressure
on fitting demand as the mobility outcomes improve over time.

4.2. Limitations and Further Research

The main limitation of the top-level health care system pertains to modelling individual
predispositions or decision points. Specifically, the propensity to dropout from the fitting
process or readopt a prosthesis. They remain as simplifications (estimated average fractional
rates) that could benefit from further work. Such predispositions are not simply functions
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of attractiveness, but also dependent on a broad array of individual factors, including
mental health state, level of social support, and occurrence of limb pain [69]. In addition,
we have excluded individual factors related to quality of life for amputees [70]—which is
particularly difficult to operationalize without the involvement of amputees in the model
building process. Including groups of amputees, through Group Model Building [71], could
be a potent avenue for further research in this field. This could lead to a more robust model
boundary that includes individual predispositions as well as quality of life measures.

The partially conceptual nature of the model further precludes it from generating
numerically accurate estimates of indicators. Though numerical estimation is beyond
the scope of this paper, further modelling work could be carried out to improve the
model’s ability to do so. Here, a much larger research scope is required to empirically
study the digital prosthetics market growth that should involve robust data collection
for parameterization. Additionally, the boundary of the subsystem could be expanded to
include fitting capacity adjustment structures that are more responsive to market dynamics
(demand, supply, profits, etc.).

Nevertheless, our model in its current iteration provides a structural explanation
for digital prosthetics growth and reasonable projected developments under different
conditions. It further generates qualitatively and directionally indicative results of digital
prosthetics’ impact on key amputee mobility and health-related socio-economic outcomes.
The strategic insights from our findings could further provide decision support for health
policy planning. To that end, further work should expand on these insights in a more
accessible language for relevant decision makers.
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Appendix A. Feedback Loop Descriptions

Here, we present the detailed feedback loop descriptions extracted from an earlier
version of this work [30]. Each description includes the causal pathway of the feedback
loop. The arrow symbol (à) represents a causal link between two variables. (+) indicates
a positive polarity, while (–) indicates a negative polarity. Polarities simply indicate the
directionality of the correlation. For instance, “A à(–) B à(+) C” should be interpreted as
such: when A increases, B decreases, and in turn C decreases. Here, the positive polarity
between B and C indicates that both vary in the same direction.

Prevention Pressure (B1): PAD Amputation à(+) PAD Prevention Programs à(-) PAD Incidence à(+) PAD Population
à(+) PAD Amputation
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This balancing feedback loop represents the prevention pressure faced by public health
agencies to address the prevalence of PAD. As PAD-related amputation rates increases over
time, we expect reporting from medical professionals to raise the alarms for stepping up
efforts towards primary prevention. This is observed, for instance, in trend studies of PAD
incidence and risk factors, calling for better detection and prevention interventions [57,58].
With increased reporting, we can expect more resources directed towards prevention
interventions such as screening, smoking cessation, nutritional and activity programs [57].
In the long run, such interventions could lead to a decrease in PAD incidence rate. Indeed,
there is evidence that PAD incidence have declined in the UK, which have been attributed
to the uptake of prevention strategies [58]. A declining PAD incidence would lead to a
reduction of the PAD Population over time, which would eventually decrease the PAD
Amputation Rate. Since an initial increase in amputation rate ends up with an eventual
decrease in amputation rate, this feedback loop has a negative polarity overall and is thus
described as a balancing loop.

Prosthesis Lifecycle (R1): Amputees in Prosthetic Care à(+) Successful Fitting à(+) Full Mobility à(+) Prosthesis
Degradation à(+) Awaiting Replacement à(+) Prosthesis Replacement à(+) Amputees in Prosthetic Care

This loop describes the lifecycle that is part of the lifelong holistic care for amputees
successfully fitted with a prosthesis [59]. As more amputees enter the prosthetic care
continuum from the primary care sector, there will be more people who are successfully
fitted with a prosthesis thus increasing the number of amputees with full mobility. However,
the prosthesis device has an average lifespan of three years [16,59]. Hence, over time,
prosthesis degradation increases the number of amputees awaiting replacement of their
devices before re-entering the prosthetic care continuum to be fitted for a new device again.
In this regard, this loop represents a growing pressure emanating from our best efforts to
successfully fit individuals with a prosthesis. While this closed aging chain engenders a
reinforcing mechanism, that transitions amputees through different stages of prosthetic
care, it does not endogenously accumulate the stocks without an exogenous inflow to the
Amputees in Prosthetics Care stock. As more amputees enter the prosthetics fitting stage
from elsewhere, the more the other stocks in this aging chain get filled.

Prosthetics Re-entry (R2): Amputees in Prosthetic Care à(+) Abandon Prosthesis à(+) Limited Mobility à(+) Readopt
Prosthesis à(+) Amputees in Prosthetic Care

R2 represents the Prosthetic Care Re-entry process for amputees. Not all amputees
who enter the care continuum end up with a prosthesis; some individuals dropout from
the fitting process or some abandon the device due to an unsuccessful fit [16,60]. Hence,
with more people in the continuum abandoning prosthesis, there will be more people
who are left with limited mobility due to the lack of a prosthesis device. However, more
amputees might later decide to readopt a prosthesis, thus re-entering the prosthesis fitting
process. Similarly, the reinforcing effect of this loop is dependent on an exogenous inflow
of amputees entering the closed aging chain.

Digital Growth (R3): Amputees in Digital Prosthetic Care à(+) Successful Fitting à(+) Perceived Relative Success of
Digital Fitting à(+) Digital Market Size à(+) Digital Market Share à(+) Digital Prosthesis Referral à(+) Amputees in

Digital Prosthetic Care

R3 is a reinforcing loop that represents the hypothesis for the market growth of digital
prosthetics. As more amputees get referred to a digital prosthetic clinic and more people
become successfully fitted with a prosthesis with better outcomes, we expect favorable
word-of-mouth diffusion about the success of digital prosthesis [61]. This is captured with
the Perceived Relative Success of Digital Fitting, which represents the mental perceptions
of people’s comparison of success between the digitally fitted prosthesis and traditional
plaster-casted device. Over time, we expect the attractiveness of digital fitting to grow the
digital market size and thus the market share of the digital prosthetics relative to traditional.
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With a higher market share, more amputees are probabilistically to be referred to a digital
prosthetist and thus driving up the number of amputees in the digital prosthetic care
continuum as opposed to the traditional one.

Digital Growth (R4): Amputees in Digital Prosthetic Care à(+) Successful Fitting à(+) Perceived Relative Success of
Digital Fitting à(+) Digital Market Size à(+) Digital Market Share à(+) Digital Prosthesis Readoption à(+) Amputees

in Digital Prosthetic Care

Similarly, the R4 loop drives up the number of amputees in Digital Prosthetic Care by
way of readoption. As the digital market share increases, potential re-adoptees looking to
restart their prosthetic fitting journey are more likely to seek out a digital prosthetist. The
assumption here is that as digital fittings experience more success, people are more likely
to be motivated to try the digital process and experience a similar success as others [61,62].
Thus, more re-adoptees enter the digital prosthetic care continuum as opposed to the
traditional one.

Access Constraint—B2, B3 and B4 Loops

Access Constraint (B2): Amputees in Prosthetic Care à(+) Fitting Demand à(-) Prosthetic Accessibility à(+) Prosthesis
Referral à(+) Amputees in Prosthetic Care

The balancing feedback loop B2 counteracts the reinforcing Digital Growth loops. As
more Amputees in Prosthetic Care are attracted to the digital prosthesis fitting process, the
Fitting Demand for digital prosthesis increases. In turn, this limits availability of resources
and limits Prosthetic Accessibility if demand outweighs the fitting capacity, which then
reduces the amount of people who can enter the prosthesis fitting process. Hence, the
Amputees in Prosthetic Care declines to a level lower than it otherwise would have been.
Through this balancing feedback, B2 dampens the strength of the R3 and R4 loops.

Access Constraint (B3): Prosthesis Readoption à(+) Subtotal Re-adoptees à(+) Fitting Demand à(-) Prosthetic
Accessibility à(+) Prosthesis Readoption

Access Constraint (B4): Amputees Awaiting Replacement à(+) Fitting Demand à(-) Prosthetic Accessibility à(+)
Prosthesis Replacement à(+) Amputees Awaiting Replacement

Fitting Demand is not solely determined by the number of Amputees in Prosthetic
Care. Amputees who have previously abandoned the fitting process and those seeking to
replace their degraded prosthesis device also make up the demand. Hence, B3 captures
a similar mechanism whereby more Prosthesis Readoption brings up the demand and
consequently reduces the Prosthetic Accessibility. B4, on the other hand, reduces the
Accessibility through the Prosthesis Replacement process. All three balancing loops work
in concert to counteract the reinforcing loops seeking to increase the demand for digital
prosthesis fitting.

Market Access (R5): Amputees in Prosthetic Care à(+) Successful Fitting à(+) Perceived Relative Success of Digital
Fitting à(+) Digital Market Size à(+) Fitting Capacity à(+) Prosthetic Accessibility à(+) Prosthesis Referral à(+)

Amputees in Prosthetic Care

The Market Access loops, however, interplay with the balancing Access Constraint
loops described above. In the longer term, these loops work to increase the Fitting Capacity
so as to improve the Prosthetic Accessibility that was driven down by increased demand.
With reference to R5 loop, when more Amputees in Prosthetic Care get successfully fitted
with the prosthesis and the perceived success of digital prosthesis relative to traditional
increases, the digital market share grows. The growth in market share is likely to lead to
the expansion of digital prosthetic clinics, which in turn drives up the Fitting Capacity.
Hence, with more capacity, more people have access to prosthetic services, and thus the
care continuum can accommodate a larger number of new amputees seeking a prosthesis.
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Market Access (R6): Amputees in Prosthetic Care à(+) Successful Fitting à(+) Perceived Relative Success of Digital
Fitting à(+) Digital Market Size à(+) Fitting Capacity à(+) Prosthetic Accessibility à(+) Readopt Prosthesis à(+)

Amputees in Prosthetic Care

Market Access (R7): Amputees in Prosthetic Care à(+) Successful Fitting à(+) Perceived Relative Success of Digital
Fitting à(+) Digital Market Size à(+) Fitting Capacity à(+) Prosthetic Accessibility à(+) Prosthesis Replacement à(+)

Amputees in Prosthetic Care

Likewise, R6 enables a larger number of people seeking to readopt the prosthesis fitting
process to enter the Prosthetic Care, whereas R7 enables more people waiting to replace
their old prosthesis to re-enter the care continuum at any one point in time. However, it
must be noted that increasing capacity involves a delay as it takes time to assess the market
and set up new clinics. Hence, the effects of Market Access loops are delayed.

Prosthesis Attractiveness (R8): Amputees in Prosthetic Care à(+) Successful Fitting à(+) Perceived Relative Success of
Digital Fitting à(-) Dropout Rate à(+) Abandon Prosthesis à(-) Amputees in Prosthetic Care

Prosthesis Attractiveness (R9): Amputees in Prosthetic Care à(+) Successful Fitting à(+) Perceived Relative Success of
Digital Fitting à(+) Re-adoption Rate à(+) Readopt Prosthesis à(+) Amputees in Prosthetic Care

As previously described, when people perceive digital prosthesis to be more successful
than traditional ones, the attractiveness of digital prosthesis is expected to increase through
word-of-mouth diffusion. However, a negative experience with the new technology would
reduce the consideration and available market. [61]. Hence, R8 captures the process by
which a higher attractiveness translates to a lower dropout rate as individuals might be
more motivated to see through the process and experience a similar success as others.
This could lead to fewer people abandoning the prosthesis fitting process and therefore
increasing the number of Amputees in Prosthetic Care to a level higher than it otherwise
would have been. Concurrently, R9, works to increase the re-adoption rate amongst those
who have previously abandoned the process. The higher attractiveness of digital fitting
would then increase the number of people readopting a prosthesis and thus re-entering the
prosthetic care continuum.

Prosthesis Abandonment (B5): Amputees in Prosthetic Care à(+) Successful Fitting à(+) Perceived Relative Success of
Digital Fitting à(-) Dropout Rate à(+) Abandon Prosthesis à(+) Limited Mobility à(+) Readopt Prosthesis à(+)

Amputees in Prosthetic Care

This balancing feedback loop counteracts the effects of R2 and R9, by draining the
number of people available for entering readoption process. When more amputees enter
the digital prosthetics care stage, more individuals are fitted with a digital prosthesis. As a
result, the perceived attractiveness of digital prosthetics increases. Amputees are therefore
less likely to dropout from digital prosthetics fitting. In turn, the Limited Mobility stock
does not accumulate as much as it otherwise would have. This takes away the effect of R2
and R9 since fewer amputees are available for the re-adoption process. Regardless, this is a
constructive effect that reduces rates of prosthesis abandonment and yields better overall
mobility outcomes.

Technology Development (R10): Innovation Developed à(+) Guidance of Search à(+) Resources to R&D à(+) Innovation
Development à(+) Innovation Developed

This feedback loop represents the process of technological knowledge development,
typical of research and development (R&D), required for any TIS to grow [35,63]. As more
innovation is developed, the Guidance of Search for the technology increases. Guidance
of search refers to the “visibility and clarity” of the state of the art [35] (p. 423) that
reflects the “promises and expectations of the emerging technology” [63] (p. 56). It helps
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in the priority-setting process for R&D resource allocation and “thus the direction of
technological change” [35] (p. 423). Hence, in this context, increased Guidance of Search for
the digital solutions in prosthetic fittings, would help increase the Resources to R&D, which
would enable further Innovation Development that increases the Innovation Developed
even more [62].

Knowledge Diffusion (R11): Knowledge Diffused à(+) Guidance of Search à(+) Resources to R&D à(+) Knowledge
Diffusion à(+) Knowledge Diffused

Knowledge Diffusion, R11 loop, refers to process by which various actors in the TIS
interact and exchange knowledge and thus establish “a mutual understanding” that enables
institutions to gradually adjust to new technologies [63] (p. 55). Since Guidance of Search is
also “an interactive and cumulative process of exchanging ideas” [35] (p. 423), it increases
with more Knowledge Diffused [36]. In turn, this works to increase the Resources to R&D,
which further enables more Knowledge Diffusion.

Knowledge Erosion (B6): Knowledge Diffused à(+) Guidance of Search à(+) Resources to R&D à(+) Innovation
Development à(+) Knowledge Decay à(-) Knowledge Diffused

B6 loop represents the process of Knowledge Erosion, which counteracts R11. Knowl-
edge Diffused can become “obsolete over time (due to new technological developments,
etc.)” [38] (p. 4). When knowledge diffusion increases guidance of search, and thus secures
more resources for R&D to further develop innovation, previously diffused knowledge
become outdated, and thus increases the Knowledge Decay. In turn, this drains the body of
Knowledge Diffused.

Innovation Attractiveness (R12): Innovation Developed à(+) Perceived Legitimacy à(+) Entrepreneurial Activity à(+)
External Funding à(+) Total Resources à(+) Resources to R&D à(+) Innovation Development à(+)

Innovation Developed

According to Hekkert et al. [35] and Surrs [63], entrepreneurs are central to any TIS.
Entrepreneurs refer to actors within the system whose “actions are directed at conducting
market-oriented experiments with an emerging technology” [63] (p. 54). The Innovation
Attractiveness loop represents the process of attracting new entrepreneurs to the system
through innovation. When the Innovation Developed increases, technological legitimacy
of the innovation system increases [36]. As potential entrants perceive the legitimacy
of the emerging technology positively, they are more willing to enter the market, thus
increasing the Entrepreneurial Activity. Entrepreneurial activities indicate the health and
sustainability of an innovation system [35]. Higher levels of Entrepreneurial Activity thus
increase the Total Resources in the system by way of attracting more External Funding or
resources from private or public actors [36,63]. In turn, more resources become available
for R & D, which spurs further development of innovation that increases the attractiveness
to entrepreneurs even more.

Knowledge Attractiveness (R13): Knowledge Diffused à(+) Perceived Legitimacy à(+) Entrepreneurial Activity à(+)
External Funding à(+) Total Resources à(+) Resources to R&D à(+) Knowledge Diffusion à(+) Knowledge Diffused

R13 loop works in a similar mechanism in attracting entrepreneurs. Technological
legitimacy is a function of both Innovation Developed and Knowledge Diffused. The more
knowledge about the technological innovation diffused in various networks, the higher the
perceived legitimacy of the technology. Loops R12 and R13, thus, work concurrently and in
concert to shore up the attractiveness of the emerging technology to potential market actors.

External Engine (R14): Entrepreneurial Activity à(+) External Funding à(+) Total Resources à(+) Resources to Market
Development à(+) Entrepreneurial Activity
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The External Engine loop represents the effect of external funding in reinforcing the
growth of entrepreneurial activity within the emerging market. As explained previously,
Entrepreneurial Activity can build confidence in the prospect of investment, thus increasing
funding and resources from external actors, either private funders or governmental bodies.
This increases the Total Resources available for market development. External backing
reduces the perceived entrepreneurial risks involved, and consequently is better able to
attract further entry into the market to spur even more Entrepreneurial Activity [36,63].

Internal Engine (R15): Entrepreneurial Activity à(+) Market Infrastructure à(+) Market Size à(+) Internal Resources
from Market à(+) Total Resources à(+) Resources to Market Development à(+) Entrepreneurial Activity

While the external engine stimulates entrepreneurial activity temporarily, the Internal
Engine endogenously generates internal (“financial, material, human capital”) resources
over the longer term through market formation to become self-sufficient [63] (p. 57). With
reference to R15, increased Entrepreneurial Activity leads to the development of Market
Infrastructure [39]. Entrepreneurs contribute to the “development of formal market rules,
establishment of intermediary networks, the building of infrastructure, or the development
of formal regulations” [38] (p. 1837). Through establishing the Market Infrastructure for
market formation, entrepreneurial activity “contribute to the creation of a demand for
the emerging technology” [63] (p. 56). This increases the Market Size for the technology
that generates Internal Resources from the Market. In turn, with more Total Resources in
the innovation system, Entrepreneurial Activity can further flourish by attracting more
entrants to the system.

System Building (R16): Perceived Legitimacy à(+) Entrepreneurial Activity à(+) Market Infrastructure à(+) Perceived
Legitimacy

Previously, we discussed how innovation diffusion increases the technological legiti-
macy of the emerging technology. Here, we consider market legitimacy, which stems from
established market structures [36]. When market infrastructure is developed, it reduces
market formation uncertainty and the perceived cost to participation [39]. With reference to
R16, as the Perceived Legitimacy of the emerging technology increases, more entrepreneurs
are willing to overcome perceived risks and enter the market. Consequently, the develop-
ment of Market Infrastructure increases with the growth of Entrepreneurial Activity. This
feeds back into increasing the market legitimacy of the emerging technology.

System Legitimacy (R17): Entrepreneurial Activity à(+) Market Size à(+) Internal Resources from Market à(+) Total
Resources à(+) Resources to Market Development à(+) Market Infrastructure à(+)

Perceived Legitimacy à(+) Entrepreneurial Activity

The System Legitimacy loop, R17, encompasses the aforementioned smaller loops
R15 and R16, and “constitutes the most powerful self-reinforcing loop, potentially able
to drive the whole system” [36] (p. 1838). Following the previous explanations provided
for the individual links between variables, we observe that when Entrepreneurial Activity
increases Market Size through market formation, Internal Resources from the Market
burgeon and increase the Total Resources. This translates to more Resources for Market
Development, which enables further development of Market Infrastructure. Consequently,
the market legitimacy of the technological innovation flourishes, and thus begets even
more Entrepreneurial Activity.

Resistance (R18): Regime Resistance à(-) Perceived Legitimacy à(+) Entrepreneurial Activity à(+) Market
Infrastructure à(-) Regime Resistance

Market formation of a new technology is bound to precipitate “resistance from actors
with interests in the incumbent” regime [63] (p. 57). This Resistance is captured in R18.
Regime Resistance decreases the market legitimacy of the emerging technology, for instance
“when regime actors try to influence public discourses, or lobby against favourablefavorable
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support” [36] (p. 1837). In turn, entrepreneurs might be less willing to enter the market
due to higher perceived risks, thus reducing the Entrepreneurial Activity to a lower level
than it otherwise would have been. In turn, there will be less Market Infrastructure
development to counter Regime Resistance, which further emboldens resistance given the
inverse relationship. The underlying mechanism for the negative link is supported by the
fact that market infrastructure enables the system “to become less dependent on external
dynamics and counter-balance regime-resistance” [36] (p. 1838). Importantly, R18 could
work in a virtuous or vicious manner, depending on whosever perspective, either working
to reinforce more resistance or reduce it.

Sailing Ship (B7): Perceived Legitimacy à(+) Entrepreneurial Activity à(+) Market Infrastructure à(+) Market Size à(+)
à(+) Regime Resistance à(-) Perceived Legitimacy

As the emerging market grows and competes with the incumbent regime, resistance
could also come in the form of innovation. Given the new threat, regime actors would
“increase their efforts to improve the performance of the existing regime through inno-
vation” [36] (p.1838). This “response aimed at improving the incumbent technology”
is referred to as the sailing-ship effect [64,65] (p. 593). The Sailing Ship effect is thus
represented in the balancing loop, B7. When the Perceived Legitimacy of the emerging
technology increases, which attracts more entrepreneurial activity and thus market forma-
tion, the Sailing Ship Effect increases. This contributes to a stronger Regime Resistance,
which consequently reduces the Perceived Legitimacy of the emerging technology. This
loop thus seeks to counteract the effect of the System Legitimacy loop, R17.

In the top-level health care system, we assumed that the Perceived Relative Success of
Digital Fitting will lead to an increase in Digital Market Size, thus masking the underlying
structure between that link. Here, we consider the conceptual model in the Market Forma-
tion subsystem that could possibly explain how exactly the two variables are linked. Since
R3 and R4 share a similar pathway in the subsystem, we only comment on R3.

Digital Growth (R3): Amputees in Digital Prosthetic Care à(+) Successful Fitting à(+) Perceived Relative Success of
Digital Fitting à(+) Digital Fitting Reputation à(+) Perceived Legitimacy à(+) Entrepreneurial Activity à(+) Market
Infrastructure à(+) Digital Market Size à(+) Digital Market Share à(+) Digital Prosthesis Referral à(+) Amputees in

Digital Prosthetic Care

When the perceived relative success of digital fittings increases, we expect the emerg-
ing digital technology for prosthesis fitting to start amassing a reputation. This formed
reputation improves technological legitimacy, which would attract more Entrepreneurial
Activity to the emerging technological innovation system. Hence, the System Legitimacy
loop works to increase the Market Infrastructure as well as Market Size for digital prosthet-
ics. Consequently, the Digital Market Share rises to compete with the traditional prosthetics
industry. The Digital Growth loops and the System Legitimacy loop thus work in tandem
to increase the number of Amputees in Digital Prosthetic Care.

Market Access (R5): Amputees in Prosthetic Care à(+) Successful Fitting à(+) Perceived Relative Success of Digital
Fitting à(+) Digital Fitting Reputation à(+) Perceived Legitimacy à(+) Entrepreneurial Activity à(+) Market

Infrastructure à(+) Digital Market Size à(+) Prosthetic Clinics à(+) Fitting Capacity à(+) Prosthetic Accessibility à(+)
Prosthesis Referral à(+) Amputees in Prosthetic Care

Similarly, we expect the interaction of the Market Access loops and the System Legiti-
macy loop. As Digital Fitting Reputation forms over time and builds the Digital Market
Size, through the same pathway described above, we expect the expansion of digital pros-
thetic clinics that increases the Fitting Capacity. This improves the Market Access in the
digital prosthetic continuum, which enables more people to be fitted with a prosthesis and
improves the overall mobility outcomes.
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Appendix B. Sensitivity Analysis Results
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Figure A1. Confidence plots of (a) digital prosthetics market share and (b) amputee mobility pro‐

portion sensitivity to variations in Relative External Resources Size (range: 1–9). 
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Figure A2. Confidence plots of (a) digital prosthetics market share and (b) amputee mobility pro‐
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9. Akarsu, S.; Tekin, L.; Safaz, I.; Göktepe, A.S.; Yazıcıoğlu, K. Quality of Life and Functionality after Lower Limb Amputations:

Comparison between Uni- vs. Bilateral Amputee Patients. Prosthet. Orthot. Int. 2013, 37, 9–13. [CrossRef]
10. Horgan, O.; MacLachlan, M. Psychosocial Adjustment to Lower-Limb Amputation: A Review. Disabil. Rehabil. 2004, 26, 837–850.

[CrossRef]
11. Roberts, T.L.; Pasquina, P.F.; Nelson, V.S.; Flood, K.M.; Bryant, P.R.; Huang, M.E. Limb Deficiency and Prosthetic Management. 4.

Comorbidities Associated With Limb Loss. Arch. Phys. Med. Rehabil. 2006, 87, 21–27. [CrossRef]
12. Darter, B.J.; Hawley, C.E.; Armstrong, A.J.; Avellone, L.; Wehman, P. Factors Influencing Functional Outcomes and Return-to-Work

After Amputation: A Review of the Literature. J. Occup. Rehabil. 2018, 28, 656–665. [CrossRef] [PubMed]
13. Stewart, C.C.; Berhaneselase, E.; Morshed, S. The Burden of Patients With Lower Limb Amputations in a Community Safety-Net

Hospital. J. Am. Acad. Orthop. Surg. 2022, 30, e59–e66. [CrossRef] [PubMed]
14. Pasquina, P.F.; Carvalho, A.J.; Sheehan, T.P. Ethics in Rehabilitation: Access to Prosthetics and Quality Care Following Amputation.

AMA J. Ethics 2015, 17, 535–546. [CrossRef] [PubMed]
15. Raichle, K.A.; Hanley, M.A.; Molton, I.; Kadel, N.J.; Campbell, K.; Phelps, E.; Ehde, D.; Smith, D.G. Prosthesis Use in Persons with

Lower- and Upper-Limb Amputation. JRRD 2008, 45, 961–972. [CrossRef] [PubMed]
16. ProsFit Technologies. Solution to Mobility and Quality of Life for Millions of Amputees at Scale; ProsFit Technologies JSC: Sofia,

Bulgaria, 2022; (Unpublished).
17. Wyss, D.; Lindsay, S.; Cleghorn, W.L.; Andrysek, J. Priorities in Lower Limb Prosthetic Service Delivery Based on an International

Survey of Prosthetists in Low- and High-Income Countries. Prosthet. Orthot. Int. 2015, 39, 102–111. [CrossRef] [PubMed]
18. Silva, K.; Rand, S.; Cancel, D.; Chen, Y.; Kathirithamby, R.; Stern, M. Three-Dimensional (3-D) Printing: A Cost-Effective Solution

for Improving Global Accessibility to Prostheses. PMR 2015, 7, 1312–1314. [CrossRef]

133



Systems 2023, 11, 22

19. Kozbunarova, A. ProsFit: The Startup That Aims To Democratize the Prosthetic Industry. Trending Topics 2019. Available online:
https://www.trendingtopics.eu/prosfit-prosthetic-industry-democratization-pandofit/ (accessed on 28 December 2022).

20. Hutchison, A. Distributed Care: The Third Dimension! LinkedIn 2020. Available online: https://www.linkedin.com/pulse/
distributed-care-third-dimension-alan-hutchison/ (accessed on 28 December 2022).

21. Sterman, J. Business Dynamics: Systems Thinking and Modeling for a Complex World; Irwin/McGraw-Hill: Boston, MA, USA, 2000;
ISBN 978-0-07-231135-8.

22. Hovmand, P.S. Community Based System Dynamics; SpringerLink; Springer: New York, NY, USA, 2014; ISBN 978-1-4614-8763-0.
23. Richardson, G.P. Core of System Dynamics. In Encyclopedia of Complexity and Systems Science; Meyers, R.A., Ed.; Springer: Berlin,

Heidelberg, 2019; pp. 1–10. ISBN 978-3-642-27737-5.
24. Forrester, J.W. Principles of Systems; Pegasus Communications, Inc.: Waltham, MA, USA, 1968; ISBN 978-1-883823-41-2.
25. Richardson, G.P. Reflections on the Foundations of System Dynamics: Foundations of System Dynamics. Syst. Dyn. Rev. 2011, 27,

219–243. [CrossRef]
26. Sohn, T.-W.; Surkis, J. System Dynamics: A Methodology for Testing Dynamic Behavioral Hypotheses. IEEE Trans. Syst. Man.

Cybern. 1985, SMC-15, 399–408. [CrossRef]
27. Darabi, N.; Hosseinichimeh, N. System Dynamics Modeling in Health and Medicine: A Systematic Literature Review. Syst. Dyn.

Rev. 2020, 36, 29–73. [CrossRef]
28. Davahli, M.R.; Karwowski, W.; Taiar, R. A System Dynamics Simulation Applied to Healthcare: A Systematic Review. IJERPH

2020, 17, 5741. [CrossRef] [PubMed]
29. Homer, J.B.; Hirsch, G.B. System Dynamics Modeling for Public Health: Background and Opportunities. Am. J. Public Health 2006,

96, 452–458. [CrossRef] [PubMed]
30. Rajah, J.K. Enabling Mobility for Persons with Major Lower-Limb Amputations: A Model-Based Study of the Impact of Digital

Prosthetics Service Provision on Mobility Outcomes. Master Thesis, University of Bergen, Bergen, Norway, 2022.
31. Rajah, J.K.; Hutchison, C.; Chernicoff, W.; Gonçalves, P. The Dynamics of Prosthetics Care Continuum for Persons with

Amputation. In Proceedings of the International Conference of the System Dynamics Society 2022, Frankfurt, Germany, 19
July 2022.

32. Paich, M.; Peck, C.; Valant, J.J. Pharmaceutical Product Strategy; CRC Press: Boca Raton, FL, USA, 2004; ISBN 978-0-203-49252-9.
33. Homer, J.B. A Diffusion Model with Application to Evolving Medical Technologies. Technol. Forecast. Soc. Change 1987, 31,

197–218. [CrossRef]
34. Uriona, M.; Grobbelaar, S.S. Innovation System Policy Analysis through System Dynamics Modelling: A Systematic Review.

Sci. Public Policy 2019, 46, 28–44. [CrossRef]
35. Hekkert, M.P.; Suurs, R.A.A.; Negro, S.O.; Kuhlmann, S.; Smits, R.E.H.M. Functions of Innovation Systems: A New Approach for

Analysing Technological Change. Technol. Forecast. Soc. Change 2007, 74, 413–432. [CrossRef]
36. Walrave, B.; Raven, R. Modelling the Dynamics of Technological Innovation Systems. Res. Policy 2016, 45, 1833–1844. [CrossRef]
37. Wicki, S.; Hansen, E.G. Clean Energy Storage Technology in the Making: An Innovation Systems Perspective on Flywheel Energy

Storage. J. Clean. Prod. 2017, 162, 1118–1134. [CrossRef]
38. Walrave, B.; Raven, R. Modelling the Dynamics of TIS-Model Appendix. Res. Policy 2016, 45, 1833–1844.
39. Lee, B.H.; Struben, J.; Bingham, C.B. Collective Action and Market Formation: An Integrative Framework. Strat Mgmt. J. 2018, 39,

242–266. [CrossRef]
40. Forrester, J.W. Industrial Dynamics; M.I.T. Press: Cambridge, MA, USA, 1961; ISBN 978-0-262-06003-5.
41. Király, G.; Miskolczi, P. Dynamics of Participation: System Dynamics and Participation-An Empirical Review. Syst. Res. Behav.

Sci. 2019, 36, 199–210. [CrossRef]
42. McCardle-Keurentjes, M.H.F.; Rouwette, E.A.J.A.; Vennix, J.A.M.; Jacobs, E. Potential Benefits of Model Use in Group Model

Building: Insights from an Experimental Investigation. Syst. Dyn. Rev. 2018, 34, 354–384. [CrossRef]
43. Office for National Statistics Population Estimates and Deaths by Single Year of Age for England and Wales and the United Kingdom, 1961

to 2014; UK Statistics Authority: London, UK, 2015.
44. Office for National Statistics. Long-Term International Migration 2.07, Age and Sex, UK and England and Wales; UK Statistics Authority:

London, UK, 2020.
45. Office for National Statistics United Kingdom Population Mid-Year Estimate; UK Statistics Authority: London, UK, 2021.
46. Office for National Statistics 2020-Based Interim National Population Projections; UK Statistics Authority: London, UK, 2022.
47. Office for National Statistics Age-Specific Fertility Rates (ASFRs) and Total Fertility Rates (TFRs) for UK-Born and Non-UK-Born Women

Living in the UK, Scotland and Northern Ireland: 2004 to 2020; UK Statistics Authority: London, UK, 2022.
48. Office for National Statistics. Mortality Rates (Mx), 2020-Based Principal Projection, UK (Ages 0 to 125 Years, 1961 to 2120); UK

Statistics Authority: London, UK, 2022.
49. Vascular Services Quality Improvement Programme. In 2015 Annual Report of the National Vascular Registry; Healthcare Quality

Improvement Partnership: London, UK, 2015.
50. Vascular Services Quality Improvement Programme. In 2016 Annual Report of the National Vascular Registry; Healthcare Quality

Improvement Partnership: London, UK, 2016.
51. Vascular Services Quality Improvement Programme. In 2017 Annual Report of the National Vascular Registry; Healthcare Quality

Improvement Partnership: London, UK, 2017.

134



Systems 2023, 11, 22

52. Vascular Services Quality Improvement Programme. In 2018 Annual Report of the National Vascular Registry; Healthcare Quality
Improvement Partnership: London, UK, 2018.

53. Vascular Services Quality Improvement Programme. In 2019 Annual Report of the National Vascular Registry; Healthcare Quality
Improvement Partnership: London, UK, 2019.

54. Vascular Services Quality Improvement Programme. In 2020 Annual Report of the National Vascular Registry; Healthcare Quality
Improvement Partnership: London, UK, 2020.

55. Global Burden of Disease Collaborative Network. Global Burden of Disease Study 2019 (GBD 2019) Results; Institute for Health
Metrics and Evaluation: Seattle, WA, USA, 2020.

56. Hutchison, C. ProsFit Health Economics Model; ProsFit Technologies JSC: Sofia, Bulgaria, 2021; (Unpublished Data Set).
57. Farndon, L.; Stephenson, J.; Binns-Hall, O.; Knight, K.; Fowler-Davis, S. The PodPAD Project: A Podiatry-Led Integrated Pathway

for People with Peripheral Arterial Disease in the UK—A Pilot Study. J. Foot Ankle. Res. 2018, 11, 26. [CrossRef] [PubMed]
58. Cea-Soriano, L.; Fowkes, F.G.R.; Johansson, S.; Allum, A.M.; García Rodriguez, L.A. Time Trends in Peripheral Artery Disease

Incidence, Prevalence and Secondary Preventive Therapy: A Cohort Study in The Health Improvement Network in the UK. BMJ
Open 2018, 8, e018184. [CrossRef] [PubMed]

59. Rheinstein, J.; Carroll, K.; Stevens, P. Prosthetic Care for the Mangled Extremity. In The Mangled Extremity; Pensy, R.A., Ingari, J.V.,
Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 257–283. ISBN 978-3-319-56647-4.

60. Davie-Smith, F.; Hebenton, J.; Scott, H. A Survey of the Lower Limb Amputee Population in Scotland: 2015 Full Report; Scottish
Physiotherapy Amputee Research Group: Scotland, UK, 2018.

61. Chernicoff, W.; Naumov, S.; Sarkani, S.; Holzer, T. Modeling Market Dynamics in a Super Octane Ethanol Fuel Blend-Vehicle
Power-Train System: Understanding the Role of Consumer Perception in Ethanol Market Growth. JPCS 2014, 1, 110–137.
[CrossRef]

62. Nieuwenhuijsen, J.; de Almeida Correia, G.H.; Milakis, D.; van Arem, B.; van Daalen, E. Towards a Quantitative Method to
Analyze the Long-Term Innovation Diffusion of Automated Vehicles Technology Using System Dynamics. Transp. Res. Part C
Emerg. Technol. 2018, 86, 300–327. [CrossRef]

63. Suurs, R.A.A. Motors of Sustainable Innovation: Towards a Theory on the Dynamics of Technological Innovation Systems; Utrecht
University: Utrecht, the Netherlands, 2009.

64. De Liso, N.; Arima, S.; Filatrella, G. The “Sailing-Ship Effect” as a Technological Principle. Ind. Corp. Change 2022, 30, 1459–1478.
[CrossRef]

65. De Liso, N.; Filatrella, G. On Technology Competition: A Formal Analysis of the ‘Sailing-Ship Effect’. Econ. Innov. New Technol.
2008, 17, 593–610. [CrossRef]

66. Senge, P.M.; Forrester, J.W. Tests for Building Confidence in System Dynamics Models. In System Dynamics; Legasto, A.A.,
Forrester, J.W., Lyneis, J.M., Eds.; North-Holland Publishing Company: Amsterdam, the Netherlands, 1980; pp. 209–228.

67. Barlas, Y. Formal Aspects of Model Validity and Validation in System Dynamics. Syst. Dyn. Rev. 1996, 12, 183–210. [CrossRef]
68. Burhenne, S.; Jacob, D.; Henze, G.P. Sampling Based on Sobol′ Sequences for Monte Carlo Techniques Applied to BuildingSimula-

tions. In Proceedings of the Proceedings of the Building Simulation 2011: 12th Conference of International Building Performance
SimulationAssociation, Sydney, Australia, 14 November 2011; pp. 1816–1823.

69. Webster, J.B.; Hakimi, K.N.; Williams, R.M.; Turner, A.P.; Norvell, D.C.; Czerniecki, J.M. Prosthetic Fitting, Use, and Satisfaction
Following Lower-Limb Amputation: A Prospective Study. JRRD 2012, 49, 1493. [CrossRef]

70. Pell, J.P.; Donnan, P.T.; Fowkes, F.G.R.; Ruckley, C.V. Quality of Life Following Lower Limb Amputation for Peripheral Arterial
Disease. Eur. J. Vasc. Surg. 1993, 7, 448–451. [CrossRef] [PubMed]

71. Andersen, D.F.; Richardson, G.P.; Vennix, J.A.M. Group Model Building: Adding More Science to the Craft. Syst. Dyn. Rev. 1997,
13, 187–201. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

135





Citation: Hirsch, G.B.; Mosher, H.I.

Using a System Dynamics Simulation

Model to Identify Leverage Points for

Reducing Youth Homelessness in

Connecticut. Systems 2023, 11, 163.

https://doi.org/10.3390/

systems11030163

Academic Editor: Wayne Wakeland

Received: 18 January 2023

Revised: 11 March 2023

Accepted: 18 March 2023

Published: 22 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

systems

Article

Using a System Dynamics Simulation Model to Identify
Leverage Points for Reducing Youth Homelessness
in Connecticut
Gary B. Hirsch 1,* and Heather I. Mosher 2

1 Independent Consultant and Creator of Learning Environments, 7 Highgate Road, Wayland, MA 01778, USA
2 Institute for Community Research (ICR), 146 Wyllys Street, Hartford, CT 06106, USA;

heather.mosher@icrweb.org
* Correspondence: gbhirsch@comcast.net

Abstract: Youth homelessness is a significant problem in most United States communities. Health
problems are both a contributor to and a consequence of homelessness. Responses to youth home-
lessness are typically fragmentary. Different agencies deal with various causes and consequences of
the problem. Stakeholders in Connecticut sought a more coherent approach. This article describes
the development and use of a system dynamics simulation model as a decision-support tool that:
(1) brings stakeholders together from diverse service sectors and allows them to see the system as a
whole, (2) enables them to explore how delivery systems interact to affect homeless and unstably
housed youth, (3) lets them test the impact of different intervention alternatives on reducing the
problem, and (4) helps develop insights about coherent approaches to youth homelessness. The
model’s development is described as a phased process including stakeholder engagement, causal
mapping, and creation of the quantitative simulation model. The resulting model is presented along
with an interface that enables stakeholders to use the model in a Learning Lab setting. Results of an
initial set of Learning Labs are presented, including types of insights gained by participants from
using the simulation model. Conclusions include limitations of the model and plans for its future use.

Keywords: youth homelessness; system dynamics; child welfare; juvenile justice; mental health

1. Introduction
1.1. Magnitude of Youth Homelessness as a Problem

Most communities across the United States are struggling to address the complex
and persistent problem of youth homelessness. In 2017, an estimated 4.3% of teens
(13–17 years old) and 12.5% of young adults (18–25 years old) experienced some form
of homelessness [1]. Homelessness among youth is typically defined as unaccompanied
youth between 14- and 24-years old who are living apart from parents/guardians and who
lack a fixed, regular, and adequate residence (e.g., living in shelters, on the streets, in cars or
vacant buildings, or who are “couch surfing” or living in other unstable circumstances) [2].
Young people find themselves without homes for many reasons, including family conflicts,
mental health and substance use problems, early pregnancy and parenting, coping with the
effects of sexual and/or gender minority status, fleeing domestic or sexual violence, and
leaving child welfare or juvenile justice systems without adequate skills or support [3–5].
The impact of homelessness on youth and society is extensive. Evidence suggests that
periods of homelessness lead to higher rates of substance use, sexual risk behaviors, early
parenthood, unemployment, incarceration, mental illness, suicide, injury due to physical
violence, and poor educational and health outcomes [6–16].

Young people experiencing homelessness have histories of contact with multiple
systems—education, child welfare, mental health, and juvenile/criminal justice—yet no
entity has ongoing responsibility for them. For example, approximately 44% of homeless
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youth in a national study indicated that they had been in foster care [17]. A study following
a sample of adolescents who left the foster care system two years prior found that 43%
endured housing instability since their exit from foster care, and 20% experienced chronic
homelessness [18]. These young people experiencing housing instability reported having
spent time in foster care, inpatient mental health settings, juvenile detention, or jail [18].
Effective solutions to addressing youth homelessness will involve coordination and collab-
oration among multiple system stakeholders and a holistic understanding of the factors
and dynamics that influence the issue.

1.2. Case Study: Connecticut’s Mission to Address Youth Homelessness

This article describes a system dynamics simulation model developed in partnership
with a cross-sector coalition of youth-serving providers and young people with lived
experience of homelessness in Connecticut (CT). The coalition has been meeting since
2012 with the mission to end youth homelessness across the state. At the time of model
development, the total population projection by 2015 in CT was nearly 3.6 million people,
with 191,056 minors (ages 14–17) and 348,167 young adults (ages 18–24) [19]. In 2019,
an estimated 28.7% of young people (ages 14–24) had reported experiencing a form of
homelessness in CT, which is greater than the national prevalence estimate [1,20]. Of
those who were experiencing housing instability or homelessness, approximately half had
experienced literal homelessness (e.g., sleeping outside, in a shelter, or other places not
meant for human habitation) while the remaining individuals had been living in precarious
housing situations, such as staying with others and moving frequently from place to place
while unaccompanied by a parent [20]. Over half of the young adults experiencing housing
instability and homelessness had a history of criminal justice involvement (56.7%), and
over 80% had been involved in foster care [20]. To prevent this ongoing cycle between
homelessness and involvement in state systems, the coalition hoped to develop a coordi-
nated response that would address the varied and unique needs of young people who are
at risk of or experiencing homelessness.

Connecticut’s goals aligned with the United States Interagency Council on Homeless-
ness (USICH) national strategic plan to prevent and end homelessness by making youth
homelessness rare, brief and non-recurring [21,22]. This means: (a) driving down the num-
ber of youth experiencing housing instability/homelessness to as close to zero as possible;
(b) enhancing and coordinating systems and interventions to prevent new youth from en-
tering into housing instability/homelessness; (c) quickly identifying and rapidly providing
necessary assistance when a youth does fall into housing instability/homelessness; and
(d) ensuring formerly homeless youth have the tools to remain in stable housing.

A number of problems interfered with developing a coherent approach to youth
homelessness in CT. One was simply a lack of consensus about definitions of homelessness,
complicated by different definitions used by Federal programs. Another was the lack of
compatible data systems and protocols which prevented sharing of data needed to provide
a complete picture of youth homelessness. There also was not a history of coordination
among agencies that were dealing with the same population of at-risk and housing-unstable
youth. Finally, there was an acknowledged shortage of housing and other resources that
resulted in too many youths not receiving the help they needed and suffering more serious
and long-lasting consequences as a result. It was hoped that the modeling effort would
highlight these problems and point the way to practical solutions.

1.3. Role of System Dynamics in Addressing Youth Homelessness in Connecticut

Connecticut stakeholders sought the use of a system dynamics simulation model as a
decision-making tool that would bring stakeholders together from diverse service sectors
and allow them to see the system as a whole, explore how intervention delivery systems
interact, and determine the impact that state policy might have on solving the problem.
The aims were to help stakeholders develop and use the simulation model to identify
the best combination of interventions and avoid unintended impacts, coordinate services
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across systems, and garner support for resource allocation and policy change. Due to the
geographic diversity (urban, rural, and suburban) and differences in available resources
across the state, stakeholder planning and coordination occurred both at the regional and
statewide levels. Therefore, a model was needed that can be used in planning statewide
efforts and also adapted to particular regions.

Prior to initiating the modeling process, the coalition had been using an Excel spread-
sheet to estimate the number of housing resources that would be needed based on a
population of young people with diverse needs. However, they expressed a desire for a
tool that would allow them to project the dynamics of movement into and out of homeless-
ness for young people, visually map the intersections between systems of care (e.g., child
welfare, justice, mental health), and assess how specific policies and prevention strategies
could reduce the inflow of young people into homelessness and result in a reduced need
for housing resources. The purpose of this paper is to describe the processes by which
stakeholders came together and formed a core modeling and data team (CMDT), developed
an initial causal map that embodied their understanding of the system of forces responsible
for youth homelessness, created a simulation model based on that understanding along
with an interface that enabled stakeholders to use the model themselves, and derived
insights from using the simulation model in a series of Learning Labs.

2. Methodology

Solving a complex problem such as youth homelessness requires collaboration in a
community setting and across multiple sectors. We used a community-based group model
building (GMB) approach to engage diverse stakeholders in the process of systems thinking
and developing system dynamics models [23,24]. GMB is an intentional approach to model
building that is participatory and embedded in the community, involving stakeholders
as partners in the modeling process from defining the problem to developing and using
models to implement changes [25]. This direct involvement leads to a better model as well
as enhanced capacity for the use of systems thinking, more effective collaborations, and
increased ability to implement changes based on system insights gained through the process.
We also used the Typology of Youth Participation and Empowerment (TYPE) Pyramid
framework for effective youth–adult partnerships in the modeling process [26]. The TYPE
Pyramid articulates different configurations of youth–adult control that reflect optimal
participation for youth empowerment and positive youth development. Youth–adult
partnerships are crucial to creating solutions that are effective, relevant, and responsive to
youth needs.

The project was divided into four major phases to support the involvement of a
large number of stakeholders, providing the broadest perspectives possible from many
vantage points. The four phases involved: (1) forming a core modeling team to co-design
a modeling process; (2) mapping the causal factors and the relationships between them;
(3) co-developing a simulation model; and (4) building stakeholders’ capacity to use the
model for gaining system insights. The project was implemented between March 2017
to March 2023. Overall, 126 system stakeholders participated in the modeling process.
Each stakeholder was selected based on their expertise with different systems that touch
the lives of young people who experience homelessness. A total of 97 front-line service
providers, service directors, and policymakers participated. Young people (n = 29) with
lived expertise of youth homelessness and the service systems were involved in all phases
of the project, including on the core modeling team.

2.1. Forming a Core Modeling Team and Engaging Stakeholders (Phase 1)

The Youth Homelessness System Dynamics Modeling project was initiated by the
community, specifically, a statewide taskforce focused on addressing youth homelessness
in CT. The second author, as a member of this taskforce, was approached by coalition
partners to lead and facilitate the system dynamics modeling (SDM) process. All decisions
regarding the SDM process were made in collaboration with taskforce members which
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consisted of 30–40 representatives of youth-serving institutions, community-based service
providers, policymakers, and advocates.

Twelve individuals from the taskforce formed the “core modeling and data team”
(CMDT) responsible for designing the causal mapping process. The CMDT consisted of four
young people (17–24 years old) with lived experience of youth homelessness, a senior-level
representative from the CT Department of Housing and one from the CT Department of
Children and Families, a director of a social service organization, a director of a community-
based organization, two housing/homelessness policy analysts, an attorney/legislative
advocate for homeless youth, and a researcher/system scientist (second author HM). The
CMDT met six times between March and July 2017 to select stakeholders to participate in all
phases of the modeling process, to plan, design, and co-facilitate the GMB workshops and
to review synthesized causal maps. The CMDT defined the goals of phase 1 as: (a) build
strong collaborations across systems, (b) develop a shared problem definition and language,
(c) build systems thinking, and (d) create a shared understanding of causal pathways
driving youth homelessness by using causal mapping.

As an initial step in identifying stakeholders to participate in the modeling process
(e.g., GMB workshops, model review sessions, simulation model workshops), the team
identified seven areas of stakeholder expertise needed for creating a holistic understanding
of the causal pathways involved in youth homelessness and for building confidence in
the model. These areas of expertise included: housing, health/mental health, education,
employment, child welfare, juvenile/criminal justice, and parenting as a teen/young
adult. The group carried out stakeholder analysis using a power/interest grid stakeholder
mapping tool [27] to strategically plan who and how different stakeholders were to be
meaningfully engaged in the project and modeling process. To increase diversity, additional
factors were considered in the selection process, including stakeholder demographics
(race, ethnicity, gender, and sexual orientation), geographic expertise within CT, and
role/perspective (e.g., service-user, front-line service providers, director/management,
policymakers, data expert).

2.2. Causal Mapping (Phase 2)

Over a hundred (n = 108) system stakeholders from across the state—including
29 young people (14–24 years old) who had experienced housing instability/homelessness—
participated in the causal mapping process. The process involved thirteen separate GMB
workshops (with different stakeholders) and three model review sessions (same stakehold-
ers across the three sessions) to map and validate the structural dynamics that drive the
problem of youth homelessness in CT, and to build systems thinking and collaboration
among stakeholders. Professionals did not receive monetary incentives for participating
in the modeling process. However, service users (young adults who had experienced
homelessness) received $50 each to participate in a GMB session.

Each GMB workshop was 4 h long and consisted of short orientation presentations
and a sequence of structured small group activities called “scripts” [28] that focus on
different goals of the modeling process and support team decision making that results
in useful products and insights for community stakeholders by the end of the workshop.
The workshop sequence started with a “Hopes and Fears” activity to understand group
expectations for the GMB sessions and products [29] and then a variable elicitation activity
called “Connection Circles” to elicit information about the factors that affect or are affected
by youth homelessness. These variables were used in “Causal Mapping in Small Groups”
where subgroups worked together to map key causal factors and their relationships in
a causal loop diagram. Time was set aside for breaks, discussion, and model reflections
between scripted activities to identify and understand the main feedback loops in the
diagrams. The “Action Ideas” and “Dots” activities were used at the end of the workshop
to brainstorm, prioritize potential actions to impact variables, and emphasize connections
between variables. Detailed procedures for executing each script can be viewed online
from Scriptapedia [30].
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During the GMB sessions, the CMDT served as presenters, reflectors, runners, and
wall-builders. HM functioned as a community facilitator and three staff researchers at
the Institute for Community Research served as ethnographers/notetakers. GMB experts
from Washington University in St. Louis supported HM and the CMDT in the design and
facilitation of the GMB workshops and in developing systematic procedures for model
synthesis and review/refinement.

Raw data (small group causal maps) from GMB sessions were synthesized by HM
into a causal map that integrated key variables and feedback relationships found in partici-
pants’ maps. The synthesis involved transferring individual hand-drawn causal maps into
STELLA Architect [31], identifying the most common variables and links among variables
across the maps using content analysis [32], and then creating a synthesized causal diagram
that included the variables in common that had the most links [24]. Validation occurred
iteratively in stakeholder model review sessions [33], which were used to seek participant
feedback on synthesized maps, insights and stories, and to check researcher interpretation.
The review involved stakeholder feedback on a synthesized map created by HM, discussing
each variable and causal link to ensure it had face validity and was supported by stakehold-
ers’ knowledge and the literature. Synthesized maps were revised through feedback from
subsequent GMB and model review sessions, and consultation with the existing literature.
The process resulted in 12 interconnected causal maps that visually described “stories” of
stakeholders’ shared understanding of what is driving the youth homelessness problem.
The rich qualitative information collected through this process was used in the next phase
of modeling as well as in CT’s HUD Youth Homelessness Demonstration Project (YHDP)
planning phase to develop collective goals, objectives, and action steps in the Coordinated
Community Plan.

2.3. Developing the Simulation Model (Phase 3)

To initiate this next phase, the CMDT invited an additional six members to replace one
representative of the CT Department of Children and Families, who transitioned jobs, and
to address gaps in expertise. New members included a data expert at the CT Department
of Mental Health and Addiction Services/Young Adult Services, a policy expert in juvenile
justice systems, a researcher/scholar from the University of New Haven with expertise
in justice systems, a senior-level representative from CT Court Support Services Division,
and a senior level expert from the youth and adult employment sector. (See Appendix A
for CMDT members’ organizations.) This phase began with the co-authors facilitating a
4 h workshop with the CMDT to orient new members to the project and system dynamics
concepts, practice systems thinking, and refine and expand on an initial stock-and-flow
diagram seed structure. Stocks and flows in the initial diagram were identified through the
co-authors’ initial content analysis of the stories depicted in the qualitative maps from the
previous phase that described the factors and relationships that led to youth homelessness
and caused it to remain a serious problem. The workshop ended with a number of products:
a parallel stock-and-flow structure that separated young people based on their age grouping
(minors and young adults), shared definitions of the different stocks, and an initial list
of the most important causal factors affecting each of the flows. Follow-up interviews
with eight members of the CMDT were conducted to elicit more in-depth feedback on the
model structure. Changes were critiqued, discussed, and refined in several subsequent
CMDT meetings before settling on a final set that formed the “backbone” of the model. The
causal factors determining the rates of flow were identified first by the CMDT and through
analysis of the causal maps in the previous phase. Then, these factors were compared and
prioritized based on an extensive review of the youth homelessness literature and feedback
from our CMDT that included young people who had experienced housing instability. The
estimates on the effects of these factors were extensively reviewed with the CMDT and
other experts and adjusted as necessary.

The research team requested secondary quantitative data from institutions partici-
pating in the modeling process. The specific data needed for modeling was identified by
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stakeholders. The co-authors met with data experts from eight different institutions and
submitted data sharing requests to obtain data in aggregate form with no identifying infor-
mation. CMDT members helped facilitate the data request process within their agencies.
Data were collected from: The Department of Housing, The Department of Corrections,
The Court Support Services Division, The Department of Mental Health and Addiction
Services, The Department of Education, The Department of Labor, The Department of
Children and Families, and the United Way (2-1-1 helpline data).

The next task was to quantify the relationships in the model so that it could be used to
simulate the impact of various interventions, by themselves and in various combinations.
Some of the data assumptions in the model include:

1. Initial populations in various statuses, corresponding with stocks in the model. These
come from various data sources or estimation procedures carried out by respected
authorities. Some of these are further adjusted based on estimates derived from
the youth homelessness literature, for example, dividing the initial population of
homeless young adults into groups of those experiencing homelessness for the first
time and those that endure repeated homelessness. These are presented in Table S1 in
the Supplementary Materials.

2. Assumptions based on the youth homelessness literature and discussions of our
CMDT that assign numerical values to concepts in the literature. Some of these
numerical assumptions are not based on particular values derived from the literature
as much as a sense of the relative strength of the causal relationships they represent,
based on those discussions with the CMDT. These are presented in Table S2A–E in the
Supplementary Materials.

3. An additional set of model parameters came from calibrating the model to produce
what we believed was a reasonable baseline simulation, one that projects current
trends and assumes no major new initiatives to prevent or remediate youth home-
lessness. We considered a number of trends in unstable housing and homelessness
in youth, both locally and nationally. Some were growing, others declining. There
was no definitive trend apparent. The CMDT confirmed that a stable trend going into
the future was the most likely scenario. Therefore, we decided to settle on a baseline
simulation that projected constant levels of unstable housing and homelessness for
youth. The calibration process then consisted of calculating the fractions of minors
and young adults flowing from one status to the next (e.g., from At Risk to Unstably
Housed) over a given period that would maintain (relatively) stable numbers in each
status as the simulation progressed over a ten-year period. These are presented in
Table S3 in the Supplementary Materials for each section of the model. Table S3
also contains data derived from the CT CAN (Coordinated Access Network) Data
Dashboards (ctcandata.org) on Temporary and Supportive Housing programs, the
average lengths of time youth spend in those programs, and the fractions of various
outcomes upon leaving those programs.

4. Data on the costs of homelessness and of various interventions to reduce homeless-
ness, taken from various studies and used to calculate social costs and program
costs, both on a monthly and cumulative basis. These are presented in Table S4 in
the Supplementary Materials. Calculating these costs and resultant savings due to
various interventions enables the model to project resources that can be freed up and
reinvested in those interventions.

The simulation model was validated through an iterative process of model review
sessions and interviews with additional experts. Data and assumptions used to quantify
the model were critiqued by the CMDT over several group sessions and through member-
checking with content and data experts to verify the credibility of parameters in the
model. For example, we consulted with six experts outside of the CMDT to verify model
assumptions related to child welfare service populations. Through these consultations, we
were able to build consensus on parameters such as the proportions and relative risks of
unaccompanied homelessness for minors receiving in-home services as compared to that
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of minors receiving out-of-home care and the proportion of out-of-home youth who have a
history of behavioral health needs, among others. Validation of the model against historical
data was not possible due to a lack of reliable longitudinal data on youth experiencing
unstable housing and homelessness. The point-in-time counts of homeless youth most often
cited significantly undercount their numbers. Estimates of actual numbers of homeless and
unstably housed youth came from a methodology derived by Dr. Stephen Adair for the
Connecticut Coalition to End Homelessness [20]. The CMDT and other experts supported
the assumption that those numbers going forward would remain relatively constant in the
absence of any additional or stronger interventions. Interventions represented in the model
were tested to assure that their effects were realistic and, in the process, also indicated that
the model was responding appropriately to various inputs.

2.4. Building Stakeholders’ Capacity to Use the Model (Phase 4)

The CMDT hosted five virtual 1.5 h workshops, or Learning Labs, with key stakehold-
ers via Zoom to build the stakeholders’ capacity to use the model for testing and analyzing
different combinations of strategies and to plan for implementing model insights. The
workshop series began with an orientation on the model structure, a simulation demon-
stration, and time for individual hands-on play and practice with the model. Subsequent
workshops involved an iterative process of structured activities for stakeholders to explore
testing different scenarios and then refining strategies based on insights. The results of
simulation runs were recorded by stakeholders using an intervention impact summary
matrix that allowed stakeholders to analyze results by easily comparing across scenarios
and creating higher order metrics to understand how different strategies performed on
key objectives. Stakeholders’ feedback and insights were recorded on a whiteboard and
through detailed ethnographic field notes during the Learning Lab, then discussed by
stakeholders to build a shared understanding of the underlying dynamics generating the
observed behavior. The large number and varied simulations run during these labs pro-
vided additional opportunities to test the model and make adjustments when the results
seemed questionable.

3. Results
3.1. Model Structure

Figure 1 depicts the basic flow structure of the Youth Homelessness Model. The
population represented is for the entire state of Connecticut and is divided into minors
(ages 14–17) and young adults (ages 18–24). Additional versions specific to regions of the
state are currently being implemented using the same model structure and region-specific
data. The boxes represent statuses with respect to stable housing (Stably Housed), risk
(At Risk), unstable housing and homelessness (Unstably Housed and Homeless), and
recovering from instability/homelessness (Stably Housed Formerly Homeless).

Horizontal arrows indicate flows among statuses as minors and young adults become
at risk, become unstably housed or homeless, and potentially become stably housed again.
Formerly homeless minors and young adults can also fall back into unstable housing and
homelessness. Vertical arrows simply represent aging as minors reach age 18 and become
young adults. Young adults age out of the youth-serving homelessness system as they
reach age 25.

The majority of minors and young adults are in the two left-hand boxes and are either
living with family or other guardians or are on their own in stable housing situations and
considered not at risk of becoming unstably housed or homeless. These numbers come
from state population data. How do we consider someone at risk of unstable housing
and homelessness? How large a group do we assign to this status? There are many
ways of determining risk. One that seemed appropriate was based on the experience of
Adverse Childhood Experiences (ACEs). The connection between ACEs and homelessness
is supported by a number of citations from the literature [34,35]. Examples of ACEs include
experiencing violence within the family and living with someone who has had mental

143



Systems 2023, 11, 163

health or substance abuse problems [34]. An extensive body of literature shows that
individual ACEs can impact young people’s development in a dose–response manner.
For example, the higher number of ACEs experienced, the greater the likelihood of poor
physical and mental health outcomes, less successful educational attainment, and reduced
workforce success [36–43]. Research also shows a relationship between ACEs and unstable
housing and homelessness, suggesting that young people who have had three or more
ACEs are at more chronic risk and have a greater likelihood of homelessness [44–49].
National prevalence research suggests that about 17% of young people in the US meet this
criterion [45,46]. We applied this percentage to estimate the total number of minors and
young adults at risk.
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Minors and young adults at risk of housing instability or homelessness fall into two
categories. One category consists of those at home with their families who are not part
of an organized System of Care (SOC). An SOC is a system/institution that coherently
provides services with case management or other oversight that can provide or refer
clients to the services that they need (e.g., child welfare). These young people at home
with their families are deemed at risk of becoming unstably housed or homeless due to
family conflict, potential physical, emotional, or sexual abuse, and/or mental health and
substance abuse problems suffered by themselves, their parents, or other family members.
Evidence supports that these risk factors are strong predictors of youth and young adult
homelessness [50–54].

The remainder of at-risk youth are in some form of SOC. Two of these SOCs are
represented for minors: The Department of Children and Families (DCF) and the Juvenile
Justice System. Four are represented for Young Adults: DCF, Criminal Justice, Department
of Mental Health, and Department of Labor (Job Training). The numbers of minors and
young adults were provided by the relevant SOCs and were subtracted from the total
numbers assumed to be at risk to obtain the number of those not in an SOC. Some of the
young people in SOCs may remain at home with their families, but they remain connected to
the SOC under the supervision of a caseworker or probation officer; others are in residential
settings. Remaining connected to an SOC with case management can serve as a protective
factor for young people who are at risk of homelessness. However, these young people can
become at greater risk when discharged from SOCs. Without teaching them the necessary
skills and offering careful discharge planning, young people leaving systems of care can
“fall through the cracks” and become unstably housed or homeless once they leave [55].

The model represents two types of housing instability for minors and three for young
adults. Being unstably housed means that a young person is nominally off the street and
living in a domicile fit for human habitation but is not in a secure situation and can be
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ejected at any time. This status is sometimes referred to as “couch surfing.” While typically
viewed as less dangerous than homelessness, those who are unstably housed are often at
risk of abuse and exploitation from people with whom they are staying [56–60]. For minors
especially, the lack of adult supervision leaves them vulnerable to additional risks.

Homelessness means having no domicile designed for human habitation (e.g., living
under a bridge or in a park). This naturally exposes a young person to additional risk
of harm and exploitation as well as being injurious to their physical and mental health.
The impacts of homelessness feed on themselves and make it even more difficult to help a
young person find stable housing [61].

A third status for young adults is repeated homelessness, which is more than one
episode of homelessness. People in this status typically have accumulated more trauma
and are at risk of more serious drug abuse and mental health issues and can require more
extensive housing and wrap-around services [62,63].

The vertical dashed line and unidirectional arrows between at-risk and unstably
housed statuses in Figure 1 indicate that young people remain at risk if they have expe-
rienced housing instability or homelessness in the past. This assumption came from a
large body of literature and consensus among the CMDT. Experiencing housing instabil-
ity/homelessness has long-term effects on young people’s mental health, physical health,
and financial and future housing stability [64–72]. These young people cannot return to the
At-Risk and Stably Housed statuses that represent individuals who have not experienced
housing instability. They are a different population of youth who might need a different
set of interventions. As someone continues to experience homelessness, they accumulate
trauma and stabilization becomes more difficult. Young people who have experienced
homelessness can still become housed but remain chronically at risk due to cumulative
trauma resulting from experiencing homelessness [36].

Estimating the number of youth experiencing unstable housing and homelessness
is difficult [73]. “Point-in-Time (PIT) counts” are a method of trying to rigorously count
numbers of people experiencing homelessness on a particular day, but are generally rec-
ognized to be undercounted because of the limited ability to accurately identify youth
experiencing homelessness and unstable housing, as this population experiences more
hidden forms of homelessness and tends to avoid shelters [14,74,75]. These counts also
would miss many of those young people who are unstably housed. We relied instead on
a Youth Outreach and Count methodology in Connecticut that added a robust element
of data that addressed some of the limitations of the PIT Count by including youth from
a wide variety of community contexts (e.g., schools, popular gathering spots, and youth
programs) and executing the Youth Outreach and Count for a full week.

Even this more rigorous method of counting could miss some youth facing housing
instability. As indicated earlier, further refinement and extension of these enhanced Point in
Time Counts was based on a methodology developed by Professor Stephen Adair of Central
Connecticut State University. Professor Adair started with the number of people reporting
at least one night in a shelter, developed estimates of the numbers who were unstably
housed and homeless for each city and town in Connecticut, and aggregated upward for
the state as a whole. Detailed information on the Youth Outreach and Count and estimation
methodology can be found in the 2019 PIT report on the Connecticut Coalition to End
Homelessness website [20].

Formerly homeless young people who are stably housed may be placed in housing
designated specifically for this population on a temporary or permanent basis or in a regular
apartment with some supportive services. As suggested in Figure 1, they continue to be at
risk of future homelessness and may fall back into housing instability and homelessness.

The behavior of the model is determined by the stock-and-flow structure shown in
Figure 1, the model’s causal structure, the magnitude of interventions applied by model
users, and the places in which those interventions impact the flows of youth through the
system. An overview of the causal structure affecting young adults is shown in Figure 2.
It indicates that the trajectory of housing instability and homelessness is determined by a
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set of reinforcing loops that can worsen the problem and balancing loops that can limit or
reduce its magnitude.
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Figure 2. Overview of Model Causal Structure for Young Adults.

One set of reinforcing loops (represented by blue dotted lines) involves the numbers of
young adults at risk of housing instability and the length of time they remain at risk. Longer
times spent at risk increase the likelihood and severity of risk factors, such as involvement
in the criminal justice system, and further lengthen the time at risk and maintain a greater
at-risk number. The other set of reinforcing loops acts on young adults once they become
unstably housed or homeless. Longer times spent unstably housed make it more likely
that they will be exposed to risks such as mental illness and substance abuse disorders that
cause them to become homeless. Once homeless, longer times on the street expose them
to additional risks and increase the cumulative trauma of homelessness that can result in
repeated episodes of homelessness and additional trauma. As with any reinforcing loops,
efforts that reduce the lengths of time unstably housed or homeless and cumulative trauma
can lead to further improvements and reductions in the number of youths dealing with
these problems.

Working against these reinforcing loops are balancing loops, which reduce the risks
of homelessness, the numbers of youth unstably housed and homeless, and the trauma
arising from homelessness. One set of balancing loops (represented by the green dotted
lines) includes interventions designed to reduce risks such as diverting young adults from
criminal justice, better preparing them for jobs, or helping them deal with mental health
or substance abuse conditions. These interventions can reduce the length of time and
number of young adults who remain at risk. The other set of balancing loops includes
services directed at young adults who have already become unstably housed or homeless.
These services can reduce the number and length of time that they experience housing
instability or homelessness by finding them temporary or supportive housing, or reducing
cumulative trauma through care for mental health and substance abuse problems. Model
users, working through an interface described below, can increase the intensity of these
interventions and observe their impact on the number of youths experiencing unstable
housing and homelessness. They can investigate what combinations will yield the best
overall result in reducing the burden of youth housing instability. The effects of more
intense interventions can be amplified by the reinforcing loops diagrammed in Figure 2
and have a greater impact.

Figure 3 indicates the full set of interventions that can be used in different combina-
tions, where in the model they have their effect, and the assumed strength of those effects.
Assumptions about the impact of various interventions were not based on single quanti-
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ties derived from the literature, since there were usually multiple studies that indicated
different impacts. Instead, they were estimates based on a sense of the relative impacts
suggested by multiple studies. These are described further in the document “Intervention
Descriptions” (Appendix B).
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3.2. Model Interface

An interface was created to enable users to directly access the model without being
familiar with the Stella modeling language. Figure 4 displays the Simulator Dashboard
screen on which users can select initiatives to include in simulated strategies and compare
high-level results achieved with different strategies. Figure 5 displays one of the screens
with more detailed simulation results, on which users can “drill down” to better understand
what is going on in the different simulations. That screen features specific results related to
young adults’ housing instability.

3.3. Using the Simulator

Users work from the simulator’s Dashboard to set up and run scenarios with various
interventions selected. They typically start by generating a baseline run to serve as a basis
for comparison. As indicated earlier, the baseline simulation reflects an underlying set of
assumptions that the number of minors and young adults experiencing housing instability
and homelessness in Connecticut is likely to remain stable for the foreseeable future. As
indicated earlier, this was supported by the CMDT and other various experts we spoke
with based on recent trends and limited expected changes in exogenous factors that affect
youth homelessness. This work was completed just before COVID-19 struck. COVID-19
had some immediate effects such as delays in receiving services (which was also true of a
whole range of other services) and reduced access to shelters and temporary housing. The
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Department of Children and Families also held off on discharging clients when they turned
18 during the quarantine. Our impression is that these effects were transitory and expect
that the policy conclusions based on the types of results reported below would remain the
same despite COVID-19′s impacts.
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4. Discussion

Some of the benefits of dealing with Connecticut’s youth homelessness challenge came
from the model’s development itself. The CMDT was a diverse group of stakeholders
representing multiple state agencies and non-profit organizations concerned with various
aspects of youth homelessness, as well as young adults who had experience with housing
instability and homelessness. Though CMDT members were coming from different agen-
cies that each had their own agenda, team members agreed they were seeking a holistic
approach to the problem rather than representing their agencies’ narrower perspectives.
Seeing the problem as a coherent whole rather than in fragments and sharing insights had
an immediate effect in producing a collective understanding of the need for comprehen-
sive strategies rather than policies that focused separately on one aspect of homelessness
or another.

Once developed, the model with its interface was employed in a series of Learning
Labs. Approximately 20 people attended the first Learning Lab and a core group of
15 stakeholders continue to use the model to develop a strategy for addressing youth
homelessness across the state of Connecticut. During the Learning Labs, participants spoke
of a number of benefits and insights gained through using the simulation model:

• As with the CMDT’s experience in developing the model, stakeholders spoke of the
process of using the model as valuable, extremely important, and different from any-
thing that they have experienced before. They attributed this to the process of bringing
people together who have different experiences and perspectives and who come from
diverse sectors of the system. For example, attendees of the Learning Lab included
policy-makers, front-line staff, and people with lived experience from different parts
of the system, including schools/education, criminal/juvenile justice, mental health,
employment, child welfare, homelessness crisis response, and housing. Some of these
system stakeholders had worked together, but many had not. Additionally, young
people with lived experience of homelessness and housing instability both contributed
to the development of the model and also co-led some of the Learning Labs. Their
engagement and unique perspectives were greatly valued by other stakeholders, re-
sulting in a rich dialogue and new understanding of why programs may or may not
be working.

• A big “ah-ha” moment for stakeholders was a shift in thinking about the time it takes
to see their desired changes in outcomes after implementing an intervention. They
realized that they may not see the positive effect of interventions until several years
down the line. This realization brought about some reflection regarding how they
may be shifting strategies too early because they had believed the strategies to be
ineffective when reviewing short-term performance metrics that indicated no change.
In fact, those strategies may actually be working, and anticipating a longer-term view
of change was important. One of the stakeholders commented: “I’m telling other
people about the model. It is really groundbreaking if we can think this way. It made
me think differently about time—how it might take more time for an intervention to
have its effect.” This insight also resulted in a dialogue about how to communicate
with policymakers and funders that some programs will take time before seeing the
desired effect so that funding is maintained over the necessary period.

• Stakeholders were able to test a widely-held theory that youth homelessness could be
significantly reduced by targeting funding and resources to increase the capacity of
the current crisis response system (e.g., outreach, diversion, and housing programs).
They were surprised to see that this strategy was both expensive and had only a
limited impact. When they added prevention efforts to this strategy, they observed a
significant cost reduction and much higher impact on reducing youth homelessness.
The insight that ‘housing helped less than prevention’ was not what they had expected.
They learned that a balance of preventive programs with crisis response interventions
was most effective in reducing youth homelessness. They also learned that some
interventions may be redundant, and adding interventions may achieve diminishing
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returns. This led to the insight that it is important to be very selective in crafting
combined strategies when resources are limited and coordinating programs from
different agencies is a challenge. The model provides a framework for experimenting
with different combinations of interventions to find the most efficient one for reaching
a particular goal.

• They learned there are unintended consequences to some strategies that can result
in greater, rather than fewer, young people experiencing homelessness. For example,
when screening and referrals of minors and young adults to Systems of Care (SOCs)
were increased, more youth/young adults experienced homelessness than in the base-
line simulation. They discovered that this was the result of having more young people
leaving those Systems of Care without adequate discharge planning and falling into
unstable housing and homelessness. Increased referrals to SOCs had to be combined
with expanded discharge planning in order to avoid that negative effect.

• Finally, the stakeholders using the model learned that youth homelessness could not be
driven to zero regardless of how many resources are applied. Experience across a large
number of simulations suggested that the maximum reduction in homelessness was
around 67%. When the number of youths experiencing homelessness is significantly
reduced, the ones remaining will be those with more significant problems that will
make them more difficult to house.

There are naturally some limitations to the work. One is that the model is a learning
environment, not a program planning or predictive tool. The state-level model lacks
the precision and explicit variables to plan the implementation of programs. Insights
gained from using the model can guide planning, but other tools are required to plan
the implementation of indicated interventions. Taking the model down to the regional
level will still face the same limitation. Using data specific to each region will adjust the
model parameters so that the simulation results will be on a scale familiar to regional users.
However, the use of the model will still be for learning rather than planning the specific
details of interventions.

Another limitation is the baseline assumption that the rates of youth experiencing
unstable housing and homelessness will remain constant in the absence of new or stronger
interventions. This is an assumption that may have to be revisited periodically to see if
those rates are remaining stable or if they are trending upward or downward. Those trends
could be the result of changes in the state’s environment (e.g., economic stresses) or as a
result of programmatic interventions that have an impact on youth homelessness. The
model’s parameters would have to be adjusted to reflect the causes of those trends.

5. Conclusions

The System Dynamics simulation model has achieved its initial goal of engaging
Connecticut stakeholders in the search for leverage points for reducing youth homelessness.
A large number of people participated, including representatives of agencies and organi-
zations dealing with various causes and consequences of youth homelessness and young
people with lived experience with the problem. Their participation has produced shared
insights that enable them to pursue solutions in a more coherent manner. There is now an
extensively tested decision-support tool in place that enables additional stakeholders to
explore combinations of interventions for reducing youth homelessness.

The Learning Labs using the statewide model have continued. The Learning Labs have
focused on: (a) the CMDT building their capacity and confidence in using the simulation
model and sharing the model with others; (b) learning and identifying key system insights
from using the model; and (c) developing a plan for engaging key system stakeholders in
using the model as a learning- and decision-support tool. For example, some initial model
insights highlight a need for engaging stakeholders in changing policies and practices
concerning discharge planning from Systems of Care, as well as advocating for potential
reallocation or leveraging of resources. Future Learning Labs would engage important
decision makers on these issues. In addition, the CMDT plans to facilitate regional use of the
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model at the level of Connecticut’s eight regions. Each region will be given a spreadsheet
to enter its own data and have the model simulate the results of various strategies for
its region.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/systems11030163/s1, Table S1: Initial Values of Statuses (Stocks) in
the Model; Table S2: Flow Rates and Intervention Assumptions, (A): Minors at Risk (Including in
SOC’s), (B): Young Adults at Risk (Including in SOC’s), (C): Minors Unstably Housed or Homeless,
(D): Young Adults Unstably Housed or Homeless, (E): Formerly Homeless Stably Housed Minors,
(F): Formerly Homeless Stably Housed Young Adults; Table S3: Flow Variables Developed by Model
Calibration or from Data Dashboards; Table S4: Cost Data Used on the Youth Homelessness Model.
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Appendix A

Connecticut Organizations Represented on the Core Modeling and Data Team

1. Career Resources/Capital Workforce Partners
2. Center for Children’s Advocacy
3. CT Court Support Services Division
4. CT Department of Children & Families
5. CT Department of Housing
6. CT DMHAS—Young Adult Services
7. Journey Home
8. Partnership for Strong Communities
9. The Connection, Inc.
10. Tow Youth Justice Institute
11. University of New Haven
12. Youth Action Hub/Institute for Community Research

Appendix B

Intervention Descriptions

Prevention
Legislation, Policy and Investment Strategies That Build Assets and Address

System Gaps That Increase the Risk of Homelessness.

School Counseling and Academic
Support for Minors

Improves graduation rates and academic performance, reduces fraction of minors at
risk by 20%, and increases later employability of young adults, also by 20%.

151



Systems 2023, 11, 163

Prevention
Legislation, Policy and Investment Strategies That Build Assets and Address

System Gaps That Increase the Risk of Homelessness.

Diagnostic and Behavioral Services
for Minors

Reduces the fraction of minors at risk by 20% by identifying and providing services for
various conditions.

Family Mediation and Counseling
for Minors

Reduces fraction of minors at risk by 20% and increases ability of young adults to
remain with family.

Screening and Referral of Minors to
Systems of Care

Increases the fraction of minors at risk entering Systems of Care by 20%.

Young Adult Screening and Referral to
Systems of Care

Increases fraction of at-risk young adults entering Systems of Care and receiving
services by 50%.

Juvenile Justice Diversion for Minors
Reduces likelihood of juvenile justice involvement of minors and later criminal justice

involvement as young adults by 50%.

Criminal Justice Diversion of Young
Adults

Halves likelihood of young adults’ involvement with criminal justice system and
affects employability and ability to remain with family and, in turn, reduces the

fraction at risk by 17%.

Pregnancy Prevention
Reduces fraction of both minors and young adults at risk due to pregnancy and

parenting by 20%.

Remedial Education and Job Training
Doubles employability of young adults and reduces fraction at risk by 17% (Impact

will depend on job creation intervention).

Job Creation
Will increase availability of jobs and is necessary for job training to have its full impact

on fraction of young adults at risk.

Transition/Permanency Planning from
Systems of Care for Minors

Doubles the fraction of minors aging out of Systems of Care going into appropriate
programs as young adults.

Young Adult Discharge Planning in
Systems of Care

Reduces fraction of young adults leaving Systems of Care becoming unstably housed
or homeless by half.

Crisis Response
Policies and Practice to Identify Young People Experiencing Housing Instability

or Homelessness and to Intervene Early by Connecting Them to Housing and
Supportive Services.

Systems of Care Outreach to Unstably
Housed Minors

Increases flow of unstably housed minors into Systems of Care that can provide
services by 50%.

Outreach to Homeless Minors Connects 50% more minors experiencing homelessness to housing.

Outreach to Homeless Young Adults
Connects 50% more young adults experiencing homelessness to housing, preventing

persistent homelessness.

Outreach to Repeatedly Homeless
Young Adults

Outreach with special emphasis on young adults who have experienced repeated
homelessness to connect them to housing.

Diversion Programs

Increases the number of young adults who can receive diversion funds that keep
unstably housed young adults from experiencing homelessness, reduces fraction of
unstably housed who might experience homelessness by 20%. Examples: financial,
utility, and/or rental assistance, short-term case management, conflict mediation,

connection to jobs and mainstream services, and housing search.

Expand Access to Emergency Housing
and Services

Increases the number of emergency beds/apartments to serve a larger number of
young adults experiencing first time and repeated homelessness.

Mental Health and Substance Abuse
Services for Homeless Young Adults

Services that reduce cumulative trauma of being homeless by half and thereby reduce
the fraction of young adults who experience repeated homelessness. Examples:

Mental health services and substance use programs delivered by agencies or
community providers.
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Housing Stability
Initiatives and Support for People Who Have Experienced Homelessness That
Allows Them to Exit Homelessness Quickly and Never Experience It Again.

Expand Temporary Housing Capacity

Increase the capacity of temporary housing programs to serve a larger number of
young adults experiencing first time and persistent homelessness. Examples:
Transitional housing, host homes, DMHAS Young Adult Services’ supervised

apartments, and rapid re-housing programs that are time-limited and aim to stably
rehouse young people by providing them with housing/rental assistance and

supports for health and well-being, education, and employment.

Expand Long-Term Supportive Housing

Make additional housing units available for young adults experiencing persistent
homelessness who require extensive additional services to keep them stably housed.

Examples: Permanent supportive housing that combines affordable housing assistance
with voluntary support services.

Preventing Returns to Homelessness

Reduce the flow of young adults by half who had achieved stable housing and fell
back to unstable housing with short-term rental assistance and other supports.

Examples: Temporary housing programs that offer short-term assistance to young
adults who experience a housing crisis (loss of job/roommate, increased rent, etc.)

within a year of exiting their programs.
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Abstract: In public health, the routine use of linear forecasting, which restricts our ability to un-
derstand the combined effects of different interventions, demographic changes and wider health
determinants, and the lack of reliable estimates for intervention impacts have limited our ability
to effectively model population needs. Hence, we adopted system dynamics modelling to forecast
health and care needs, assuming no change in population behaviour or determinants, then generated
a “Better Health” scenario to simulate the combined impact of thirteen interventions across cohorts
defined by age groups and diagnosable conditions, including “no conditions”. Risk factors for the
incidence of single conditions, progression toward complex needs and levels of morbidity including
frailty were used to create the dynamics of the model. Incidence, prevalence and mortality for each
cohort were projected over 25 years with “do nothing” and “Better Health” scenarios. The size
of the “no conditions” cohort increased, and the other cohorts decreased in size. The impact of
the interventions on life expectancy at birth and healthy life expectancy is significant, adding 5.1
and 5.0 years, respectively. We demonstrate the feasibility, applicability and utility of using system
dynamics modelling to develop a robust case for change to invest in prevention that is acceptable to
wider partners.

Keywords: system dynamics; public health; decision making; prevention; long-term conditions;
resource allocation; complex systems

1. Introduction

In any local health system, data and intelligence are essential for service planning and
investment/disinvestment decision making for a defined population. This will invariably
include forecasting demographics, health determinants, disease distribution and health
status. At present, most attempts at forecasting the future health and care needs of local
populations rely on linear extrapolations, which use a series of limited assumptions to
estimate the likely burden of a specific health condition or demand for a service. These
assumptions include trends in population change as well as in the condition or service
under investigation [1]. This method of forecasting can be described as predictive analytics,
where historical data are used to make predictions about future events [2]. Prevention
is a key activity in public health, and this requires robust evidence to convince decision
makers to invest in prevention where the gains may not be immediately apparent.

A variety of tools explaining the public health cost-effectiveness of individual in-
terventions have been published, providing evidence for implementing them or not [3].
However, the use of such tools may not be feasible when it comes to extrapolating directly
to local systems and contexts for financial and capacity planning, and decision making for
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investing in prevention. While this provides a baseline estimate, it does not consider the
complexities and interdependencies within populations and systems. For example, the
onset of multimorbidity, the effect of intersectionality [4] and the interaction between social
and economic factors. Historically, evidence-based public health relied upon estimating
the health impacts of interventions separately. However, in local health systems, health
planners are routinely expected to calculate the combined effect of multiple interventions
to make robust decisions on resource allocation. Due to the current limitations of evidence
in the field of public health, this is not always feasible. Moreover, estimates of the effec-
tiveness of interventions are from varied populations and may not be externally valid.
Traditional public health approaches are limited by our inability to assess the combined
effects of multiple interventions and their interdependencies, the issues of external validity,
i.e., applying the results of peer-reviewed external research to a given local population,
and the use of linear extrapolation in forecasting. Hence, we need an evidence-based
approach that overcomes the above limitations and addresses the key properties of com-
plex systems, such as systems dynamics modelling (SDM). SDM is a powerful tool for
assessing the impact of multiple interventions within a complex and dynamic system [5].
Jadeja et al. [6] conducted a recent systematic review that found at least 29 studies that
used SDM approaches that incorporate health economic efficiency analyses for decision
making, either as embedded sub-models or as cost calculations based on SDM outputs,
across a variety of themes ranging from communicable diseases to behavioural and wider
health determinants.

There have been previous attempts to use SDM “to align prevention efforts and max-
imise the effect of limited resources” [7]. A prevention impacts simulation model [8] was
employed in the field of cardiovascular disease prevention to simulate the medium- and
long-term impact of the various interventions. However, the simulation and the applica-
tion of the SDM approach here were disease-specific. From a complex adaptive system
perspective, population health needs are dynamic, and are shaped by socio-economic risk
factors as well as the level of access to health and care services. Rutter et al. [9] describe the
following properties of complex systems: emergence is defined as “properties of a complex
system which cannot be directly predicted from the elements within it and are more than
just the sum of its parts”, feedback where “a change reinforces, or balances further change”
and adaptation, which refers to “adjustments in behaviour in response to interventions”.
Such properties are the basis on which public health practice operates within a local health
system. As such, it is essential that we move towards an approach that takes these com-
plexities into account to help to answer the key questions in public health of what can
be done and how it can be done in practice. Prescriptive analytics is the process of using
data to determine an optimal course of action [2]. This would not only provide more
accurate estimates of future health need but enable the system to better plan services and
to ultimately reduce health inequalities. There are many evaluations of the use of SDM in
health policy and planning; however, recent reviews [10,11] in this area have highlighted
the lack of research prior to 2013. Reviews also highlighted the importance of stakeholder
involvement [12], which was highly valued in our study.

Cohort modelling using SDM is an accepted methodology in improving health policy
making in complex systems, using qualitative and quantitative approaches. One such
international example is the “Rethink health dynamics model” developed by the Rippel
Foundation [13]. The model simulates a range of scenarios for a combination of preventive
interventions, including reducing health risks and improving healthcare, on a defined
US population over a 40-year period. This has generated evidence on the value of these
interventions, which informs the planning and decision making, including investment in
prevention. To our knowledge, such an approach has not been employed across multiple
programme areas within a local health system in the United Kingdom to inform policy and
decision making.

The Joint Strategic Needs Assessment (JSNA) uses a range of health indicators to
identify the current health and care needs of the population and is a mandatory requirement
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for all local authority public health departments in England. Using the JSNA [14], local
system leaders can work together to understand and agree on the needs of all local people,
setting the priorities for collective action. Our aim is to demonstrate and apply the use
of simulation modelling in the area of routine public health intelligence, analysis and
inference. In this regard, our objective is to create a population cohort model using SDM
to generate necessary evidence on the value of various preventive interventions for local
priority setting within the current Kent JSNA development process and intelligence tools.

2. Materials and Methods

This study was carried out in the county of Kent, positioned in the southeast of Eng-
land, with a diverse population of approximately 1.6 million [15] that varies considerably
in terms of deprivation and ethnicity. Like other local areas in England, Kent exhibits
wide health inequalities by geography and different vulnerable groups [16]. The model
outputs were presented at the level of three sub-geographical regions, which aligned with
existing commissioning boundaries—West Kent, East Kent and North Kent—and for this
communication, we present selected examples from North Kent.

The prototype model was co-produced with the local council public health team, and
was conceptualised, tested, populated and validated over a period of 9–12 months. Two
parallel group model building workshops were run alongside each other, one for adults
and one for children and young people (CYP). A series of three dedicated engagement
sessions were carried out for each cohort and involved between 8 and 12 experts from
across health and care settings as appropriate, as well as regular contact, dialogue and
checking in with group participants in between sessions. These two groups were brought
together at the Better Health Workshop in 2018. The model conceptualisation was socialised
and developed, followed by scenario generation and testing, which was an iterative process.
Stakeholders explored the key factors that influenced better health outcomes for population
health within the Kent system. Variables, interactions and feedback loops were identified
and informed the design of the causal loop diagram. We discussed key interventions
impacting population health outcomes, identified cohorts of interest, selected relevant
peer-reviewed evidence and agreed on appropriate data sources to input into the model.
Data sources are described in Table S1 [17–27]. Cohorts were based on the health or disease
status of the individuals, and disease status is further broken down into individual long-
term conditions (LTCs). The Kent County Council (KCC) senior team of public health
specialists met to identify a combined scenario in which thirteen prevention/public health
measures were achieved, including, for example, the rates of breastfeeding, the presence of
adverse childhood experiences and the levels of smoking and obesity in the population.
This has resulted in a ‘Better Health’ scenario being created that forecasts potential changes
in the prevalence of a range of conditions, and, as a result, the prospects for increasing
healthy life expectancy and the potential demand for health and care services. This exercise
took place in January 2019 within days of the release of the NHS Long Term Plan [28]
blueprint, in which many of the prevention strategies included in the model were heralded.
This gave the public health specialists a ‘real-time’ opportunity to evidence the benefit of
the Long Term Plan in our local context.

Population segmentation: Segmentation aims to categorise the population according
to their health status, healthcare needs and priorities. According to this approach, groups
of people share characteristics that influence the way they interact with health and care
services. There is value in segmenting patients by need, complexity and severity of condi-
tions. Segmentation was performed differently for children and adults. Segmentation for
the CYP cohort was based on earlier work from the Derbyshire local health system [29].
Adult segmentation was based the work carried out by Outcome Based Health Care on
behalf of NHS England [30].

For CYP, the population aged under 25 years was initially segmented into 8 cohorts
and 6 age groups using a local person-level longitudinally linked population dataset known
as the Kent Integrated Dataset (KID) [17]. The hierarchy for segmentation is illustrated in
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Figure 1. The eight cohorts for CYP were physical enduring, mental health enduring, learn-
ing disability, physical non-enduring, mental health non-enduring, autism and attention
deficit hyperactivity disorder and no identified condition. This list is comprehensive and
includes 100% of all people within the KID. These cohorts are described in Table S2.
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For adults, the population was segmented using the English Longitudinal Study of
Ageing (ELSA) [31] to gain insight about the progression of need and mortality. The
hierarchy of segmentation is illustrated in Figure 2. The KID was also accessed in the same
hierarchy to extract local prevalence and rates of access to health and care services.

The modelled adult population was segmented into five cohorts based on the presence
of pre-defined health conditions or frailty. These cohorts are (1) severely frail, (2) single
conditions with high/complex needs, (3) multiple conditions, (4) single conditions and
(5) no conditions. In Figure 2, cohorts (2) and (3) are combined into “Multiple and Complex
needs”. These cohorts have an increasing progression of need, with cohort (5) as the lowest
and cohort (1) as the highest need, and if an individual meets the requirements for more
than one cohort, they are assigned to the highest need cohort. Cohort (1) includes those who
are severely frail, which is defined as a score of 6 or more disabilities equivalent to moderate
and severe frailty within the electronic frailty index [32]. Cohort (2) includes individuals
with high-needs serious mental illness, severe learning disability, dementia or neurological
conditions. Cohort (3) includes individuals with more than one of the following conditions:
asthma, coronary heart disease, chronic obstructive pulmonary disease, type 2 diabetes,
heart failure, stroke or moderate frailty. Cohort (4) includes individuals who have one of
the conditions listed for cohort (3). Cohort (5) includes individuals who do not meet the
requirements for cohorts (1–4). These cohorts are described in Table S3.

Model building: The model was split into two sections, CYP (under 18 years and
under 25 years for selected health conditions) and adults (18 years and over). The CYP
section and adult section have different structures, and the CYP section provides projected
populations at age 18 years (and 25 years for selected health conditions), which form
inputs to the adult section. The starting point for the model used the incidence, prevalence
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and mortality for each cohort in 2012 and projects forward to 2037. Initial prevalence as
well as incidence and mortality for CYP and adults are shown in Tables S4–S10 [17,19,31].
This was calculated using local data analysis from the KID and nationally published
longitudinal studies [17–20] The approach used epidemiological information to estimate
the contributions of changes in population-level risk factors relating to health and wellbeing
where the impacts were mainly on the incidence of individual conditions and cohorts.
Changes in the uptake of evidence-based interventions were subsequently applied and
the impacts of these interventions were mainly measured using case fatality rates over
time. The model scope incorporated additional risk factors relating to socioeconomic
circumstances. Tables S11 and S12 [21,31] provide details about the sources and methods
that were used to accommodate socio-economic circumstances. We used socio-economic
status as a proxy indicator of socioeconomic circumstances. This model examined the
effects of changes in treatment uptake and risk factor trends on changes in cohort incidence,
prevalence and mortality. It also explored the extent to which prevention strategies impact
the incidence and mortality of cohorts.
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The model estimated changes in incidence and deaths related to changes in adult risk
factor levels in the population. The risk factors considered were cigarette smoking, total
cholesterol (TC), systolic blood pressure (SBP), body mass index (BMI), physical inactivity
and alcohol consumption, and these are listed in Table S13 [21]. The Health Survey for
England was used to calculate trends in the prevalence (or mean values) of each risk
factor. In both the CYP and adult sections of the model, two approaches to calculating
relative risk reductions from changes in risk factors were used: the regression approach
and change in the population attributable fraction (PAF). In the regression model for adults,
the incidences of cohorts in 2012 (the start year) were multiplied by the absolute change in
risk factor level and by a regression coefficient (‘beta’) quantifying the estimated relative
change in cohort incidence and mortality that would result from a one-unit change in risk
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factor level. The regression (beta) coefficients used in these analyses for key risk factors
are listed in Tables S14–S16 [33–36]. A ‘fixed gradient’ approach was used to stabilise
the estimates of risk factor change across the quintiles. Natural logarithms were used,
as is conventional, in order to best describe the log-linear relationship between absolute
changes in risk factor levels and relative change in incidence and mortality. The PAF
approach can be interpreted as the proportion by which the incidence or mortality would
be reduced if the exposure were eliminated. Worked examples for the two approaches
are presented in Figures S1 and S2. Relative risks are displayed in Tables S17–S23 [37–43].
The CYP section included 5 interventions, as shown in Table 1, which were activated to
test projected future impact. For each of the CYP cohorts, we estimated the proportions of
incidence that were attributable to various treatments or interventions. We adopted the
general approach of calculating the risk reduction from an intervention among a particular
cohort by multiplying the change in the proportion of people exposed to a risk factor by the
incidence rate and by the relative reduction due to the change in intervention or exposure.
The approach to measuring the impact of interventions or risk factors for children was
exactly the same as for adults using the PAF in most cases. The only difference was the
application of a delay if the impact of an intervention in childhood occurs in adulthood.
For example, the impact of changes in adverse childhood experience upon serious mental
illness in adults is delayed by an average of 10 years. However, changes in smoking
during pregnancy impact upon stillbirths immediately, similarly for breastfeeding upon
child obesity.

Table 1. Population-level interventions to achieve “Better Health” scenario. Impacts were applied
proportionally or absolutely to the baseline to achieve the target.

Intervention Title Baseline Impact (%) Number Start End Target Implementation

1 Increase breastfeeding at
6–8 weeks 45.2 20 NA 2019 2024 65.2 absolute

2 Reduce smoking in
pregnancy 13.9 6 NA 2019 2025 7.9 absolute

3 Reduce child obesity 16.5 20 NA 2019 2025 13.2 proportional

4 Reduce fuel poverty
in children 17.4 20 NA 2019 2022 13.9 proportional

5 Reduce ACE in
childhood 24 20 NA 2020 2030 19.2 proportional

6
Improve recognition

and treatment
of hypertension

40 30 NA 2020 2025 28 proportional

7 Improve recognition and
treatment of CVD risk 50 30 NA 2020 2025 65 proportional

8 Improve smoking
cessation 20 8 NA 2019 2024 28 absolute

9 Increase weight
management 25 10 NA 2019 2024 27.5 proportional

10 Alcohol screening NA Screening 50,000 2019 2025 NA absolute

11 Alcohol treatment NA Treatment 5000 2019 2030 NA absolute

12 Reduce fuel poverty for
older people 11.5 20 NA 2019 2024 9.2 proportional

13 Reduce ACE at 15 years 7.5 20 NA 2020 2030 6 proportional

The primary outcome measures of the model were cohort incidence, prevalence and
deaths projected over the model timescale and the impacts of cohort incidence and preva-
lence on potential demand for health and wellbeing services. The calculation of the mod-
elled impacts of change on incidence and mortality was based on utilising two well-studied
relationships. The first is a change in risk factor against a relative change in incidence and
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mortality, and the second is changes in intervention uptake resulting in mortality reduc-
tions. Estimates in relative risk reduction for both relationships were derived from previous
randomised controlled trials and meta-analyses, as shown in Tables S17–S23 [37–43]. The
incidence and mortality benefits from the risk factor reduction in the population and the
treatment and intervention benefits in patient groups were then summed. This summing
used a cumulative approach rather than an additive approach [44] to avoid double-counting
benefits in the same individual. This sum represents the changes in incidence and mortality
‘explained’ by policy changes made within the model.

Model structure: SDM was chosen for this project due to the complex interactions and
dynamic nature of the system. An example of the causal loop diagrams used to investigate
and visualise relationships in the system prior to model building is demonstrated in the
Supplementary Materials (Figure S3). As the final SDM model has a total of 63 stocks,
170 flows and 869 converters, which generated 9024 variables including multiple element
arrays and graphical functions, a simplified model structure is illustrated in Figure 3. The
first five interventions in Table 1 apply to CYP section of the model and the others apply
to the adult section. The left of the figure shows the CYP model structure and illustrates
the movement of the population from birth through an aging chain (0–1, 2–4, 5–10, 11–15,
16–17 and 18–24 years) whilst also moving between different health cohorts, represented
by the vertical arrows. The aging chain arrows represent the natural flow of the population
from birth on to different age groups and flowing to the adult model at 18 and 25 years.
The physical and mental enduring and LD cohorts move to the adult model at 25 years
and progress to the same cohort group. For all other cohorts, they enter the adult model
at 18 years and progress to the healthy cohort. Risk factors for CYP do carry a rate of risk
across to the adult cohorts (e.g., child obesity and adult diabetes). The vertical arrows
represent the progression or recovery of CYP who are flowing from different cohorts or
health states over time (incidence). Adults flow from one cohort to another cohort without
an aging chain, e.g., from healthy to a single condition. People flowing into or out of the
geography are included in the model via net migration per cohort and people flowing
out of a cohort due to death are represented by the red arrows. These rates of flow were
determined by the data outlined in Tables S4–S12 [17,19,31]. Tables S2 and S3 outline the
cohorts used in the model and illustrate the SD model structure in more detail.
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Model calibration: To initiate the model with population cohorts through incidence,
prevalence and mortality, we used various data sources, which are outlined in
Tables S4–S12 [17,19,31]. Additionally, population-level risk factors were used to influence
the impacts across cohorts, which are listed in Tables S17–S23 [37–43]. In the first instance,
we used local data to initiate the model to consider differences in demographics and risk
factors. The process of calibration involved importing baseline data and projections from
various national sources including the Office for National Statistics and KCC housing
forecast [18] to carry out validation of general outcome measures such as population and
mortality. Locally, further validation took place to check against known outcome measures
such as the Quality Outcome Framework [45] and health and care activity data.

The model validation process followed the framework outlined by Yarnoff et al. [46],
and the five validation stages were undertaken in accordance with this. Face validation,
involving assessment by subject matter experts (public health consultants from the local-
ity), was achieved through model development in group model building workshops and
through ongoing testing. This included continual one-way sensitivity analysis in order
to validate input factors and the ranges of variables with their associated effect. Internal
validation, verifying the model’s code and calculations, involved a secondary modeller
and analyst, who had not participated in the model development, reviewing model logic
and calculations and evaluating the sensitivities. In cross validation, which compared
the model output to other available models, we reviewed all of the available evidence of
comparable models. Due to the novel nature and aims of this project, we were unable to
find models with a similar magnitude and scope; however, individual sources of evidence
were used in calibration and sensitivity testing. We encountered a similar challenge with
external validation, which compares modelled outputs to surveillance data, and predic-
tive validation, which compares modelled impacts to actual observations resulting from
interventions. Although surveys were not available for the local health population and
limited intervention and actual data could be retrieved, consensus amongst public health
experts and healthcare providers along with the triangulation of academic literature was
used where data were not available. Where appropriate, proxies for comparable regions
or national average data were used in agreement with subject matter experts. Due to
the complexity of the model and high number of variables, including graphical functions
and arrayed elements, a small number of key prevalence percentages were selected for
single output-level validation through discussion with subject matter experts and ongoing
sensitivity testing throughout development. Similarly to Zhang et al., [47] relative deviation
rate and average relative deviation rate were used to demonstrate the deviation between
simulated outputs and surveillance data or externally modelled data (calculations for these
are available in Figure S4). Single output and population validation results are shown
in Figures S5 and S6 and Tables S24 and S25. The model represented the time trends in
the population for CYP (0–17) and adults (18+) well when compared to ONS 2018 [48]
population projections, with the largest average relative deviation of 1.12% (Table S25
and Figure S6). Validation against external data sources was difficult because the base
population of the model included major longitudinal studies. However, there was good
agreement between modelled condition prevalence for CHD, COPD, stroke and diabetes
compared to quality and outcomes framework (QoF) data (Table S24 and Figure S5) [45].
The relative deviation for these variables ranges from 0.01% to 10.35%, and the average
relative deviation ranges from 3.77% to 4.84%.

Sensitivity testing was based on Hekimoğlu and Barlas’ behaviour sensitivity analysis
algorithm [49]. The initial screening of key input factors was created during development,
where sensitivities and ranges of input values, practical for public health planning and
policy, were agreed on by experts. As noted above, sensitivities were further tested during
internal validation. The regression model of behaviours was undertaken using ranges
around selected input values (for example, input variables for healthy life expectancy at 18
are shown in Table S26), and five runs for each variable based on incremental steps were
run through Stella Architect’s model analysis tool (including all combinations). For the
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healthy life expectancy at 18 output, this resulted in 625 runs and the behaviour shown in
Figure S7. However, selecting a dependent variable value that represents the behaviour did
not fall within the examples of Hekimoğlu and Barlas’ work [49]. Firstly, this model can not
be defined as an inherently oscillating or tipping point. Secondly, our model is significantly
more complex and has a far greater number of elements, including graphical interface
variables and multiple arrays. The regression-dependent variable selected was based on
the difference between the start and end values of the outputs, representing the change in
health over the modelled period. The results of the regression in this example based on this
calculation showed an R2 adjusted >80 and significance at p < 0.05 of all included variables.

The model was developed using a software platform known as Stella Architect devel-
oped by Isee Systems, which is accessible via Isee exchange [50]. Following calibration of
the model, outputs were viewed and extracted.

Model interventions: Thirteen public health interventions were agreed on by Kent
County Council public health professionals to achieve “Better Health” for their population.
They were selected based on the latest published evidence and national policy [27] of these
interventions in improving health. The interventions are listed in Table 1. The level of
change and the target to be achieved were also agreed on by local professionals in the better
health workshop by mutual consensus.

The CYP section of the model included interventions 1–5 in Table 1, and relative
risk is shown in Table S27 [51–57]. The adult section of the model included interventions
6–13 in Table 1, which could be activated to test the projected future impact. For each
cohort, we estimated the proportion of incidence and deaths that were attributable to
various treatments or interventions. Data sources used to estimate the percentage at risk
from the included interventions are displayed in Table S1 [17–27]. The general approach
to calculating the risk reduction from an intervention among a particular cohort was to
multiply the change in the proportion of people exposed to a risk factor by the incidence
rate and by the relative reduction due to the change in intervention or exposure. Sources
for current risk factors and treatment uptake are shown in Table S1 [17–27]. Sources
for estimates of treatment efficacy (relative risk reductions) are shown in Tables S17–S23
and S27 [37–57]. When multiple risk factors impacted simultaneously on incidence and
mortality, they were jointly estimated by calculating cumulative risk reduction. Examples
of the calculations to find treatment or incidence impacts, cumulative risk factor impact and
proportional changes in incidence and mortality over time are shown in Figures S8–S11.
This accounts for risk factor prevalence overlap but assumes independence of effects [44].

3. Results

We present the outputs of the model using North Kent as an example, which covers
22% of the Kent population and 27% of Kent County’s land mass.

The children’s section was primarily used for setting appropriate assumptions on
interventions and other factors within the children age group, and the model scenarios
were run to determine the consequential impact in the adult population over time. Hence,
results are presented for the adult population of the model (Figures 4–6). Table 2 shows
the prevalence of long-term conditions in 2012 and 2037 and demonstrates the percentage
difference between no interventions and “Better Health” scenarios.

165



Systems 2023, 11, 247

Table 2. Modelled changes in the prevalence of long-term conditions due to no interventions or
“Better Health” scenario.

Long-Term
Condition

2012
No Interventions Better Health Difference between

Better Health and No
Interventions2037 Percentage

Difference 2037 Percentage
Difference

Asthma 6.83% 5.95% −12.90% 5.88% −13.90% −1.00%

CHD 1.92% 1.59% −17.23% 1.51% −21.48% −4.25%

COPD 0.75% 0.63% −15.79% 0.57% −23.92% −8.13%

Diabetes 2.76% 3.25% 18.02% 3.07% 11.35% −6.66%

HF 0.02% 0.02% −10.74% 0.02% −10.96% −0.22%

Stroke 0.67% 0.59% −12.52% 0.49% −27.56% −15.04%

Frail moderate 1.30% 1.53% 17.88% 1.55% 19.27% 1.39%

Multiple 3.89% 3.51% −9.61% 3.42% −12.01% −2.40%

SE MI 0.54% 0.46% −14.18% 0.44% −18.27% −4.09%

Neuro 0.18% 0.19% 4.82% 0.19% 5.17% 0.35%

Dementia 0.32% 0.34% 8.12% 0.34% 7.60% −0.52%

LD 0.28% 0.26% −7.46% 0.26% −7.59% −0.13%

Frail severe 2.96% 3.35% 13.21% 3.27% 10.45% −2.76%

4. Discussion
Main Finding

We have described an SD simulation model for the population of Kent in southeast
England, showing the impacts of a range of prevention interventions on life expectancy,
the prevalence of long-term conditions, healthcare utilisation and cost. The model was
initialised from 2012 and closely matches the historical data up till 2018. Of the 13 evidence-
based prevention interventions that were simulated, 5 were applied to children and young
people and 8 to the adult section. The application of the “Better Health” scenario in the
model resulted in changes to the size of the four cohorts over the model period (Figure 4).
The size of the no-condition cohort increased, and the other three cohorts decreased in
size. This shows the marginal benefit of the combined effect of the interventions across the
course of life, at pace and scale. The impact of the interventions on both life expectancy
at birth and healthy life expectancy is significant, adding 5.1 and 5.0 years, respectively
(Figure 5). This is significant from an individual perspective in terms of adding years to
life and life to years, but the increase in the overall proportion and size of the healthy
living population is moderated due to the dynamic properties of complex systems. Any
improvement in the health status of the population leads to a productive workforce and its
associated positive impact on the wider economy and society as a whole.

Using the modelling approach, we have also demonstrated the impact on healthcare
utilisation in terms of emergency admissions and attendance at accident and emergency
centres. Although the reduction in activity appears insignificant, the estimated accrued cost
savings calculated using the unit price of activity over the model period is noteworthy, as for
one area of Kent, it is GBP 7.8 million (GBP (Pound Sterling) 1 = USD (United States Dollar)
1.22) (Figure 6). In the “Better Health” scenario, the modelling shows a significant reduction
in most of the long-term conditions over the course of the model. All thirteen conditions
except neurological conditions and moderate frailty show varying levels of reduction. Three
conditions show a reduction well over 5% when compared to no interventions—stroke
(15.04%), COPD (8.13%) and diabetes (6.66%). This demonstrates the robustness of the
evidence base behind the included interventions (Table 2).
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The result of our study aligns with broader research in this area that uses SDM to
address the complexities of preventing chronic diseases and other associated conditions. By
creating “do nothing” versus “do something” scenarios, important distinctions are revealed,
showing the long-term gains by investing in preventative actions [58]. To our knowledge,
the systematic review by Wang et al. is the first attempt to evaluate the application of SDM
to chronic diseases, which included 34 studies. Surprisingly, there were no studies from
the UK, and the majority were from the USA. This represents a gap in the literature in
the UK and the relevance of this research. Studies analysed differences between upstream
and downstream prevention measures for chronic conditions. Upstream interventions
include wider determinants such as improving income and community cohesion, whereas
downstream interventions include behaviour-related interventions. Although only down-
stream interventions were found to significantly reduce chronic disease and mortality, the
resources to fund them would need to be redirected from upstream allocations to meet these
pressures. Upstream interventions, however, would reduce the prevalence of chronic illness
but would have the added value of an increased impact on economic productivity. This
demonstrated how SDM analyses health challenges as a whole, rather than taking a less
reliable, simplistic view. Homer and Hirsh [7] explain the conditions that are best suited for
the application of SDM to public health actions. They state that prevention models should
incorporate all the elements of the ecological approach, incorporating disease outcomes,
health and risk behaviour, environmental factors and health-related resources and delivery
systems. There were notably very few examples of studies that simulated wider deter-
minants, including employment, socioeconomic status and community cohesion, in the
literature. This is one of the limitations of our model, as explained in the limitations section.
Some studies focus on the qualitative process of engaging thought leaders and health
planners in prioritising actions. Loyo et al. [59] demonstrated that SD modelling and local
expertise were valuable tools in reprioritising community issues, obtaining community
buy-in and determining the best use of community resources.

Further steps and future direction: The model provided the basis for conversations
with health leaders, particularly in the North Kent system, where this needs-led approach
to forecasting future demand became the subject of healthy debate. The approach was
distinct from the extant ‘big consultancy’ solutions that projected future demand based on
recent trends, sometimes also ‘adding on’ demographic changes, making the relationship
between need and demand opaque. This led to a significant over-estimation of future
demand, to the point that local plans to invest in community alternatives to inpatient care
became unaffordable, thus undermining the confidence of local leaders in their ability to
achieve a sustainable long-term solution. The use of the cohort model outputs formed the
basis of a blended approach to demand forecasting that used trend analysis in the short
term, gradually being replaced in a blended fashion using a needs-led approach. Cohort
modelling is seen as complementary to population health management approaches [60]
that are also based on segmentation but are designed to enable targeted interventions by
professionals rather than strategic prospective modelling. Population health management
represents the population segmented at a particular point in time. In SDM, the segmentation
data are used to produce a dynamic projection of the population across segments and
cohorts. Thus, both approaches complement each other. Going forward, investment is
required to build up local research infrastructure to undertake evaluation studies in order
to generate reliable evidence for model inputs. Currently, the cohort model does not
include wider determinants. However, we are in the process of expanding the model by
including wider determinants such as income, housing and education. This is likely to
simulate much more pronounced health effects on the population than behavioural and
healthcare determinants [61].

Strengths and limitations: SDM is a better approach than the traditional linear mod-
elling and forecasting as it is able to deal with complex and dynamic systems and their
interactions. For example, the draining of a stock through the application of incidence rates
based on the presence of risk factors feeds back to reduce the absolute size of the stock
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and, therefore, the relationship between relative and absolute rates of flow, i.e., absolute
rates of flow will reduce as a result of this feedback. These complex relationships are easily
represented and calculated at each model time-step using the stock–flow characteristics of
SDM, making these explicit and transparent to a model user. During the development of the
model, we involved key stakeholders, including subject matter experts, in conceptualising
the model, testing and developing the various inputs, and validated the selected scenarios.
We also used validated, up-to-date local data to inform model assumptions and calibrate
the model outputs.

In terms of the reliability of the results of the model, SDM is deterministic and, hence,
the scenario run outputs will remain the same, assuming model inputs and assumptions
remain constant, which is the case in our study.

Consideration of possible lag time and our approach: As the model is operating at
a population level, the concept of considering lag at an individual patient level is not
directly applicable. In the ‘no intervention’ scenario, disease incidence is routinely applied
as an annual rate, which is converted into a monthly rate. Changes in risk factors in
the Better Health scenario are applied to the incidence to increase or decrease this rate.
Secondly, the specification of a timescale for each intervention is displayed in Table 1. This
also affects disease incidence rates and is applied over the model timeframe.

Our model did not include an aging chain for the adult model and, hence, age-level
assumptions could not be used. This led to the model being more generic. As set out in
the Main Finding section, our initial model also did not incorporate wider determinants,
and we are addressing all the identified limitations in the future version of the model,
which is currently under development. Additionally, in regard to the sensitivity analysis
performed, the significance of the input values on change in health over the model period
are meaningful. However, the understanding of behaviour patterns and the ability to
compute the simulation runs needed to test the model based on the behaviour sensitivity
analysis algorithm [48] mentioned above require further study.

5. Conclusions

We have demonstrated the feasibility, applicability and utility of using system dy-
namics modelling to simulate the impacts of various preventive interventions on health
status and healthcare utilisation in the local population. We created a “Better Health”
scenario based on 13 interventions and were able to produce outputs through the model
compared to the “no intervention” scenario. From the model conception stage to selecting
interventions, we worked with stakeholders and subject matter experts, which further
strengthened and added value to our approach. Through our modelling, we were able to
demonstrate to the decision makers that investing in these prevention interventions will
lead to an increase in the proportion of healthy people in the local population, a reduction
in those with one or more health conditions and frailty, an increase in life expectancy,
reduced urgent healthcare utilisation and reduced expenditure to the local health services,
and will prevent the occurrence of many long-term conditions. If these results are scaled up
to a wider geography, this could be potentially very significant. This modelling approach
has helped us to have informed conversations backed by evidence with local healthcare
leaders in our attempt to provide a realistic view of prevention impact on population health
and reducing demand on local health services and cost.

Supplementary Materials: The following supporting information can be downloaded at: https://ww
w.mdpi.com/article/10.3390/systems11050247/s1. The Supplementary Materials include Table S1:
Data inputs and sources, Table S2: Children and young people cohort definitions, Table S3: Adult
cohort definitions, Table S4: Prevalence of children and young people long-term conditions, Table S5:
Prevalence of adult long-term conditions, Table S6: Adult percentage prevalence of single-condition
long-term conditions within multiple and frail cohorts, Table S7: Incidence per 1000 people aged 18
and over, Table S8: Incidence and mortality rates per 1000 people aged 18 and over, Table S9: Cause
of death percentage aged 50 and over, Table S10: ONS mortality by main cause of death, Table S11:
Adult percentage prevalence of long-term conditions by social group, Table S12: Observed risk factor
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Beta coefficients for major risk factors: systolic blood pressure, Table S15: Beta coefficients for major
risk factors: body mass index, Table S16: Beta coefficients for major risk factors: cholesterol, Table S17:
Relative risk for underlying risk, incidence and mortality: smoking in adults, Table S18: Relative risk
for underlying risk, incidence and mortality: physical inactivity in adults, Table S19: Relative risk for
underlying risk, incidence and mortality: obesity and overweight in adults, Table S20: Relative risk for
underlying risk, incidence and mortality: dementia in adults, Table S21: Relative risk for underlying
risk, incidence and mortality: hypertension and hypercholesterolaemia in adults, Table S22: Relative
risk reduction for CHD and stroke, Table S23: Relative risk for underlying risk, incidence and
mortality: alcohol consumption in adults, Table S24: Single prevalence validation through relative
deviation rates for Kent, Table S25:Population validation through relative deviation rates for Kent,
Table S26: Sensitivity analysis testing ranges, Table S27: Relative risk for underlying risk, incidence:
breastfeeding, smoking in pregnancy, child obesity, fuel poverty and ACE in Children and Young
People, Figure S1: Estimation of risk factor changes using regression method, Figure S2: Estimation
of incidence and mortality changes from risk factor changes using the PAF method, Figure S3: Causal
Loop Diagram, Figure S4: Relative deviation, Figure S5: Visual single prevalence model validation for
Kent, Figure S6: Visual population model validation for Kent, Figure S7: Sensitivity analysis variation
for Healthy Life Expectancy (HLE) at 18, Figure S8: Model validation, Figure S4: Estimation of
incidence and mortality changes from a specific treatment, Figure S9: Estimation of incidence changes
from fuel poverty changes, Figure S10: Cumulative risk-reduction and Figure S11: Proportional
change in cohort incidence and mortality rate over time.
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Abstract: In this study, we present a novel simulation model and case study to explore the long-term
dynamics of early detection of disease, also known as routine population screening. We introduce
a realistic and portable modeling framework that can be used for most cases of cancer, including
a natural disease history and a realistic yet generic structure that allows keeping track of critical
stocks that have been generally overlooked in previous modeling studies. Our model is specific to
prostate-specific antigen (PSA) screening for prostate cancer (PCa), including the natural progression
of the disease, respective changes in population size and composition, clinical detection, adoption of
the PSA screening test by medical professionals, and the dissemination of the screening test. The key
outcome measures for the model are selected to show the fundamental tradeoff between the main
harms and benefits of screening, with the main harms including (i) overdiagnosis, (ii) unnecessary
biopsies, and (iii) false positives. The focus of this study is on building the most reliable and flexible
model structure for medical screening and keeping track of its main harms and benefits. We show
the importance of some metrics which are not readily measured or considered by existing medical
literature and modeling studies. While the model is not primarily designed for making inferences
about optimal screening policies or scenarios, we aim to inform modelers and policymakers about
potential levers in the system and provide a reliable model structure for medical screening that may
complement other modeling studies designed for cancer interventions. Our simulation model can
offer a formal means to improve the development and implementation of evidence-based screening,
and its future iterations can be employed to design policy recommendations to address important
policy areas, such as the increasing pool of cancer survivors or healthcare spending in the U.S.

Keywords: simulation model; early detection of cancer; mass screening; decision-making;
dissemination; chronic disease; prevention; clinical practice guidelines; evidence-based guidelines;
policy decision thresholds; prostate cancer; natural history of disease; dissemination; biomarker;
prostate cancer; PSA

1. Introduction and Motivation

Decades after routine medical screening became common, our understanding of
screening and its consequences remains limited. Over the last few decades, the criteria for
screening for several disorders have changed significantly, including thresholds dividing
positive from negative test results and the recommended ages for routine screening. Major
health organizations have recommended changes in several common disease definitions,
often resulting in the expansion of the criteria for screening, diagnosis, and treatment,
generally leading to increases in reported incidence and prevalence [1,2].

PCa is the second most frequently diagnosed cancer in men, and about two-thirds of
these are diagnosed in high-income countries where 18% of the world’s male population
resides, with much of the variation reflecting differences in the use of PSA testing [3]. In
the U.S., approximately 90% of PCa is detected by means of screening. The lifetime risk
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of receiving a diagnosis of PCa nearly doubled after the introduction of prostate-specific
antigen (PSA) testing and increased from approximately 9% in 1985 [4] to 16% in 2007 [5].
The value of PSA screening to reduce deaths from PCa while balancing potential harms
remains controversial, and routine screening is not recommended in many European
countries [6,7]. In the U.S., the U.S. Preventive Services Task Force (USPSTF) recommends
that average-risk men aged 55–69 have a conversation with their healthcare provider about
the benefits and limitations of PSA testing to make an informed decision about whether
to be tested based on their personal values and preferences [8]. Based on 2017–2019 data,
approximately 12.6 percent of U.S. men will be diagnosed with PCa at some point during
their lifetime, with an estimated 3.3 million men living with PCa [9].

In this study, we present an extended case study specific to the PSA screening for
PCa, with the end goal of building a sound dynamic theory firmly grounded in empirical
evidence and data to explain both the core harm-and-benefit issues and the natural disease
progression and dissemination of the PSA screening practice among clinicians and the
general population. The PSA case study includes a natural history disease progression
model for PCa and a behavioral theory explaining how guidelines change over time in
response to changes in the evidence. These in turn depend on the fundamental tradeoff
between test sensitivity and specificity, the natural progression of the disease, and changes
in population size and composition. While PSA screening is not specific to the U.S., we
mainly treat the problem within the U.S. context where early detection of disease is most
controversial. Our model has a natural history disease model at its core as well as a classical
evidence-based dynamic theory for evolving screening indications, and interventions such
as screening are superimposed on the natural history model based on available evidence.
The natural history model has two stages, locoregional (M0) and distant (M1), and three
grades (high, low, and indolent) of disease can both be screen- or clinically detected. The
fundamental approach and assumptions for screening and its adoption/dissemination are
explained, while the various assumptions and propositions are supported by reference to
the modeling and medical literature. Model behavior shows reasonable correspondence to
historical screening trends in the U.S.

2. Methodology and Background of Systems Models for Cancer

We use the system dynamics (SD) modeling approach to complex systems to explain
the dissemination of medical screening for cancer within the U.S. context, supported by
qualitative data [10,11]. Modeling of PCa in this study draws on an extensive body of
SD work on healthcare issues across various domains and SD has been increasingly used
to model many public health and healthcare issues [12–21]. A full recent account on SD
applications in health and medicine can be found in Darabi and Hosseinichimeh [22].
Problems around early detection of disease are particularly suited to SD modeling because
of the presence of many time-related phenomena, delayed feedback, and nonlinearities,
such as varying trends in screening dissemination and population structure, and the delays
associated with disease progression, translation of evidence, and policy-making efforts. SD
methodology employs a series of guidelines for the model-building process, and a variety
of tests and types of evidence organized around the purpose of the model that serve to
increase confidence in model structure and dynamic theory [11,23,24].

The first attempt at a systems model of cancer was undertaken by Richmond, demon-
strating a structural model for cancer development [25]. Fett built two SD models to
examine breast cancer screening for public health policy analysis [26,27]. Fett et al. [27]
represented a model with multiple stages of breast cancer that could be used to exam-
ine the Australian breast cancer screening program. There have been a few other SD
studies involving population health screening: chlamydia, cervical cancer, or diabetes
screening, and decision/referral thresholds in developmental and behavioral screening
such as autism [28–30]. Royston et al. [28] used SD models to test alternative policies for
cervical cancer and chlamydia screening. The U.K. Department of Health found the results
to be useful for the development of screening guidelines. Policy questions included the
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optimal screening interval and coverage. The results suggested that it is more effective
to increase the screening coverage than to decrease the screening interval. More recently,
Palma and Lounsbury et al. [31] built an SD model for PCa that replicates the Prostate,
Lung, Colorectal, and Ovarian (PLCO) cancer screening trial to assess the benefits of PSA
screening for PCa-specific mortality.

Karanfil and Sterman [32] provide the foundations for the development of evidence-
based screening guidelines for the early detection of disease. They develop and test an
endogenous theory for population screening and present a stylized model to explore and
formalize the guideline formation process. In this study we are expanding the boundaries
of this classical evidence-based model for screening to create a more realistic life setting
and present a case study for cancer, particularly focusing on the adoption and diffusion
dynamics of PSA screening for PCa in the U.S. context. We tie the generic model presented
by [32,33] to a natural history model for PCa that simulates the population-level changes in
screening and dissemination. The range of screening indications in the model includes the
biopsy referral threshold and the recommended starting age.

3. Overview of the PSA Screening Model

We demonstrate correspondence to historical data on various metrics including popu-
lation counts, death rates, and some metrics on disease progression. Then, policy-relevant
factors and analysis in the base run will be shown, which replicates history and shows
the future trajectory. The case study model for PSA screening consists of six fundamental
sectors, including the dynamics of the U.S. male population and natural history of dis-
ease; screening and clinical detection; treatment; screening dissemination; harm reduction
technology; and the PSA screening harms and benefits. The fundamental approach, sector
diagrams, and assumptions for each sector with critical formulations are explained in the
Supplementary Materials. The various assumptions and propositions are supported by
references to the modeling and medical literature.

3.1. Data Types and Inputs

Data used in this study are from multiple sources. Some are secondary data based
on the literature, such as medical articles and reports we accessed directly. Others are
composite data, which we obtained by combining several data points to support the
model design. Most of the historical population and PCa trends are widely available on
organization websites such as the NCI, CDC, NHANES, U.S. mortality files by the NCHS,
NCI-SEER database, and NHIS. Complementary data were gathered from a literature
review of the history of PSA screening in the U.S. To bring the model assumptions and
findings closer to the real trends and to support the emerging model structure, we collected
additional data through interviews with domain experts from medical and healthcare
professions [33]. Figure 1 presents the conceptual framework used for modeling PCa’s
natural history, screening, adoption, utilization, harms, and benefits. Table 1 lists important
model inputs and references used throughout the paper with the range used for sensitivity
analysis, as well as associated data sources.

3.2. Population and Natural History of Disease
3.2.1. Population Increase and Aging

The target population of interest is U.S. males (all races) 50–80-year-olds; however, we
also model younger ages (35–50-year-olds) to improve the quality of model calibration to
target population trends. We define nine age groups by five-year intervals starting from 35,
and another age group that represents the 80+ male population. Different age groupings are
used to represent simulation results, including the most used 50+ or 65+ populations. Other
subpopulations include the 35 to 44, 45 to 54, 55 to 64, 65 to 75, and 75+-year-old age groups,
for which mortality data and population counts were made available by the National
Center for Health Statistics (NCHS) at the CDC [34]. The aging structure comprises one
inflow that indicates the rate of entering the indicated age category, for nine age groups,
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and one outflow that indicates the rate of leaving the age category. The inflow-of-male-
population-turning-35 time series is provided exogenously for the years 1980–2040, based
on U.S. census data history and future projections. The age cohort-specific all-cause death
rates and projections for the decrease in all-cause mortality were derived from sex- and
age-specific data. The all-cause death rates for all age groups are then compared to the
death counts specified by the CDC WONDER- [34,35]. Net immigration (migration to and
from a country) is another component that influences the historical and future population
counts in the U.S. that we considered.
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3.2.2. Natural History of Disease

Figures 2–4 gradually illustrate the sectors or the main stock-flow structure for the
natural history of PCa and its diagnosis, including the health states and transitions, the
asymptomatic onset of screen-detectable cancer, and disease progression through stages.
The model design (onset and progression through disease stages) and assumptions were
inspired by the PCa natural history diagnosis and history models developed by the NCI-
sponsored Cancer Intervention and Surveillance Modeling Network (CISNET) group and
other modeling studies published previously [36–40].
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Figure 2 shows the model sector for natural disease progression, where screen-
detectable cancers progress from the loco-regional (M0) to the distant-metastatic stage
(M1). “At Risk” populations with different screening results are lumped into one group
here for simplicity. People with undiagnosed disease may get both screening and clinical
detection, or progress to metastatic disease before being diagnosed. Cancers are localized
at onset and may be either low-grade (Gleason score 2–7), high-grade (Gleason score 8–10),
or indolent (any Gleason). High- and low-grade cancers represent those that are of a
progressive type and may get metastasized, while the indolent class tumors represent the
non-progressive or latent tumors, including regressive tumors which are, by definition,
destined to stay confined to the prostate and not metastasize or kill the patient. The model
assumes stage durations to be distributed independently according to exponential distri-
butions and not correlated with each other. Disease progression rates are independent of
patient age or disease onset, as with other studies.

Asymptomatic onset used in the model is estimated from autopsy studies and pre-
viously published models [36,41–43]. The model assumes that these adequately reflect
the real prevalence of disease in the U.S., although that may be an underestimation of the
true amount of latent disease in the population. Biopsy studies using better techniques
find a higher age-specific prevalence. The present model assumes a constant secular trend
in incidence, in line with other modeling studies. The probabilities of tumor grade at
onset determine the fraction of disease in each grade category (high, low, indolent) at the
onset. The metastasis hazard for men with cancer depends on the grade, and the hazard of
transition to metastatic disease from the loco-regional to distant stage is selected based on
the medical literature [44]. Mortality of PCa from loco-regional and distant disease stages
is represented with death fractions defined by grade. The death fraction and metastasis
hazard of indolent tumors are zero, by its definition.

3.3. Screening, Clinical Detection, Dissemination of Screening
3.3.1. Screening Structure and Test Specifics

We introduce a more realistic screening stock-flow structure for the at-risk popula-
tion compared to the available literature, which includes an explicit demonstration of
all potential pathways a subject can go through during the screening process (Figure 3).
Subjects in all the three at-risk stocks (at-risk and never screened, at risk and screened true
negative-TN, or at risk and screened false positive-FP) may eventually develop a disease
based on their age-specific onset. Note that subjects who are at risk and never screened
may get an initial screening test with an TN test result or an FP test result. Subjects with an
FP test result may then have a follow-up test or get a biopsy to confirm that they do not
have the disease.

The model estimates an effective test sensitivity that combines test sensitivity, biopsy
compliance, and biopsy detection rate. The endogenous PSA test sensitivity of loco-
regional, stage M0 disease is determined by the evidence-based model structure [32,33].
The sensitivity of stage M1 disease is assumed to be 100% accurate, as the test sensitivity
increases substantially when the disease has progressed beyond M0. The standard for
biopsy referral in the U.S. from 1990 to 2005 was a PSA level greater than 4 ng/mL, yet lower
thresholds were suggested and used in the 1990s, including 3, or even 2.5 ng/mL. In this
model, men are eligible for biopsy after screening if their PSA exceeds this endogenously
changing threshold. The screen detection rate of disease is given by age and grade. For the
average time between two consecutive screening tests; a testing interval of 2 years is found
to be reasonably consistent [39].

Not all men with positive test results submit to a follow-up biopsy. The model base
biopsy compliance rate following a positive PSA test is taken as 0.5, which is lower than
in Europe, where estimates range around 0.8–0.9. In the PLCO trial of the U.S., 40% of
men with a PSA between 4 and 7, 53% of men with a PSA between 7 and 10, and 69% of
men with a PSA greater than 10 had a follow-up biopsy [45]. Biopsy detection rate (or
biopsy accuracy) represents the ability of biopsy to detect men with the disease. Its value
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has increased with the dissemination of extended biopsy schemes over time. Before 1990,
4-core biopsies were standard, 6-core biopsies were by 1995, and 8- to 12-core biopsies were
standard by the early 2000s. A 6-core biopsy is 80% accurate, 4-core biopsy accuracy is 2/3
of this amount, and extended-core biopsies, which are presently used, are 100% accurate.
The biopsy detection rate varied from 0.6 to 1, based on estimates provided in previous
studies [46]. Cancer can also be clinically detected at any stage and the clinical detection
hazard by grade is assumed to be much higher after metastasis of the disease [39]. We do
not model digital rectal exam (DRE) testing explicitly and assume that the clinical detection
hazard stays constant after the PSA era. This is an important assumption that may lead to
an overestimation of the value of the PSA test since we do not capture possible increases
in the frequency of the DRE test rate. In fact, DRE detections are also likely to increase
because of disease awareness, which has increased over the years. Figure 4 illustrates the
final and simplified sector stock-flow structure for the natural history of disease including
disease progression and its detection by screening or clinical detection.

3.3.2. Screening Dissemination

The screening dissemination sector stock/flow structure is given in Figure 5. In our
model, the doctor’s adoption of PSA screening is modeled as adoption fraction A that
ranges between 0 and the maximum adoption fraction. Screening dissemination takes
place after 1985, the year PSA screening is introduced and rapidly diffuses in the medical
community after that. Adoption and dissemination parameters are estimated by the
first and repeat PSA screening data [46]. Screen eligibility is determined by the formally
recommended starting and stopping ages in guidelines and the standard eligibility fraction,
which indicates the maximum eligibility or the reference market for the PSA practice. The
effects of starting/stopping ages on screening-eligible fractions are modeled by using
graphical functions for an S-shaped curve. Accordingly, the screen-eligible fraction F is
closer to the maximum between the recommended starting and stopping ages, yet it fails
to reach its maximum within this range and extends beyond the formal ranges. Both the
screen-eligible fraction and the currently screened fraction are given for 5-year age groups
between the defined age ranges of 35–80+. Critical equations, graphical functions, and
other supporting assumptions are provided in Supplementary Materials.
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Table 1 lists important model inputs and symbols used with the range used for
sensitivity analysis, and associated data sources. The key selected outcome measures for
the model are selected to show the fundamental tradeoff between the harms and benefits
of screening. These include proxy variables for the most common harms and benefits
of screening and detection, mainly screen vs. clinical detection fractions, the fraction of
overdiagnosed cases, the number of unnecessary biopsies, the metastasized fraction of
cancer at initial detection, and men with FP test results. The main harms of screening
include (i) false positives, (ii) unnecessary biopsies, and (iii) overdiagnosis (and, hence,

181



Systems 2023, 11, 252

overtreatment). The main benefit is saving lives, or early detection of cancer (before it
gets metastasized).

Table 1. List of Important Model Inputs.

Name Parameter [Unit] Sensitivity
Range

Source(s) for
Base Case

Probability of indolent tumor at onset pOx [dmnl] 0.2–0.6 Expert judgement

Hazard Asymptomatic Onset (by age group)
PCa specific mortality fraction (by grade)

Oxi [1/year]
dfM0, dfM1

[1/year]

0.0–0.05
0.07–0.37

[36,41,42]
SEER survival

curves by stage,
[37,47,48]

Pre-metastasis clinical diagnosis hazard (by
age, grade) Cx1, Cx2 [1/year] 0–0.03 [37,39]

Multiplier for Hazard of Clinical Diagnosis
(by age group) MCx [dmnl] 15–25 [39]

Time between screenings TimeBtwSx [year] 1.5–2.5 [39]

Biopsy compliance (by stage) BiopCompM0/M1
[dmnl] 0.3–0.7; 0.9 [39,45]

Time to act τ [year] 0.25–0.5 [49]

alpha α [1/year] 0.015–0.03 Based on PSA
curve [46]

beta β [1/year] 0.45–0.65 Based on PSA
curve [46]

Max adoption fraction Amax [dmnl] 0.25–0.9 Expert judgement
Stopping age to screen Agestop [years] 70–85 Expert judgement

HBR Translation Delay λt [year] 2–10 Expert judgement

4. Simulation Results
4.1. Basic Dynamics and Model Validation

The model is implemented using VensimTM software (Ventana Systems Inc., Harvard,
MA, USA), initialized in 1980, in the pre-PSA era, and simulates forward by increments
of a 1/8th of a year through 2040; all output variables are calculated at every increment.
The time horizon is selected as 1980–2040, about 60 years, to capture the dynamic trends
in the diffusion of screening and compliance with recommendations and the potential
trajectories for selected policy variables. Detailed documentation of the model is available
upon request from the authors. We demonstrated correspondence to historical data on
various metrics including population counts, crude and death rates by age group, disease
prevalence, and some metrics on disease progression.

We conducted structurally oriented behavior validation experiments throughout the
model-building process to test the validity of the model with respect to its intended
purpose. First, we tested the model’s response to a series of extreme conditions to check
its robustness. For example, the latent disease cannot get detected in the absence of PSA
screening. After screening gets introduced, the loco-regional fraction of indolent disease
at detection becomes 100%, as an indolent disease cannot get metastasized by definition.
Table 2 provides a summary of the qualitative behavior of the PSA model under selected
extreme conditions and various logic tests, e.g., the indolent disease cannot get detected
in the absence of PSA screening and cannot get metastasized. Experiments prove that
model behavior matches the behavior expected from the model for the listed conditions
and passes all logic and extreme condition tests. Throughout the model-building process,
we also tested the model’s mass balance for the population counts by calculating the sum
of all the stocks in the model and comparing it against the integration of the net inflow over
the simulation horizon. The only inflow to the population stocks is the male-population-
turning-35 exogenous time series, and the net immigration flows.
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Table 2. Extreme condition tests with the corresponding (expected and confirmed) qualitative behavior.

Extreme Condition Test Qualitative Behavior

Screening switch turned off

PSA screening tests go to zero, % Ever had PSA goes to zero, % of Screen detected
cancer goes to zero, % of Clinically detected cancer goes to 100%, Reported PCa
prevalence goes down, % of men healthy with a FP goes to zero, no detection, and
treatment of latent (indolent) disease

Clinical detection switch turned off % of Cancer clinically detected goes to zero, All cancer detection is through
PSA screening

Both screen and clinical detection switches
turned off

Reported PCa incidence goes to zero, Reported PCa prevalence goes to zero, no new
PCa cancer survivors

Treatment switch turned off % Ever treated goes to zero, There are no survivors with primary treatment

Treatment is 100% effective No one dies of prostate cancer, M0 and M1 PCa deaths go to zero

Metastasis switch turned off M0 loco-regional disease doesn’t get metastasized, no distant M1 cases, no M1
prostate cancer deaths

All-cause mortality turned off Mean population age increases, only deaths are PCa deaths

Decrease in mortality trend is removed Overall deaths increase, population’s mean age goes down

All disease is indolent No prostate cancer deaths, 100% overdiagnosis

Other logic tests

% PSA detected % of disease detected by screening is 100% for indolent disease (Latent cancer cannot
get detected clinically)

PCa incidence/prevalence Reported PCa incidence is higher for older age groups

% Loco-regional at detection 100% for latent disease, as latent disease cannot get metastasized to M1 disease

% Distant at detection 0% for latent disease, higher for higher grade cancer

We provide a summary of simulation results to show the correspondence of the model
to historical data and future projections for the population stocks, including the total
population, percent above 65 years old, and for various age groups in Supplementary
Materials. The death rate is in terms of millions of deaths per year, and as a crude death
rate, expressed as the number of deaths reported each calendar year per factor selected.
The default factor at the CDC compressed mortality file is per 100,000 of the population,
reporting the death rate per 100,000 persons. Rates are for three age groups, 35–55, 55–75,
and 75+. Model behavior shows reasonable correspondence to historical behavior of the
total population counts and deaths.

4.1.1. Cancer Prevalence

The main and most important risk factor affecting all types of cancer, except cervical
cancer, is getting older. Autopsy studies indicate that prevalence of PCa is an increasing
function of age [41–43]. Since the real underlying prevalence of PCa is unknown, we use
estimates from autopsy studies. Figure 6 shows the fraction of men with a PCa tumor
at autopsy, a proxy for real underlying cancer prevalence. Prevalence estimates are from
Carter et al. [50], who studied 5250 autopsies from the U.S. literature. Estimates apply
to the symptom-free male population; men with a PCa diagnosis are excluded. Please
note that more recently conducted autopsy studies are finding a higher age-specific preva-
lence [41,42], so our estimates are conservative with respect to the underlying (unknown)
asymptomatic disease in the U.S. male population.
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Figure 6. Age specific prevalence of asymptomatic PCa among symptom-free men based on autopsy
studies [50] vs. base case simulation.

4.1.2. Screen vs. Clinical Detection and Overdiagnosis Rates

Cancer overdiagnosis is a contentious issue with various definitions and implications
for policy making. Models of cancer registry data and trial results estimate that 23% to
42% of PSA-detected cancers would not be found without screening, and 42–66% of all
diagnosed prostate cancers would have caused no clinical harm had they remained unde-
tected [51]. Cancer overdiagnosis has several definitions. It refers to people diagnosed with
indolent disease, and to others who die of other causes. This study uses the most conserva-
tive definition of overdiagnosis, where a screen-detected case is considered overdiagnosed
if it is an indolent tumor. While existing estimates vary widely between 23–66% [1,51] our
base case estimate is somewhere in this range on the conservative side, indicating 24%
of all diagnosed cases, and 33% of all screen-detected cases, are overdiagnosed, once the
adoption trends get stabilized. PSA screening started in 1985, before which cancer could
only be detected clinically, as confirmed by the base case simulation (Figure 7).
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Figure 7. Base-case (a) fraction of screen- vs. clinically detected cancers; (b) overdiagnosis fraction of
all diagnosed vs. screen-detected cases.

4.2. Sensitivity Testing

We conducted several types of sensitivity tests on the model by exploring the param-
eter space for selected key indicators, mainly overdiagnosis rates by detection method,
other harms such as unnecessary biopsies due to an FP test result, and metastatic disease
fraction at initial diagnosis. We chose these key outcome measures to provide insights into
different system features, inform policymakers regarding each indicator’s tradeoffs, and
apply the notion of multiplism suggesting that essential problems should be measured in
different ways.
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4.2.1. Over-Diagnosis Due to Large Pool of Indolent (Latent) Disease

Experimental results summarized in Figure 8a,b demonstrate the “indolent” or “latent”
fraction of disease as one of the most important underlying parameters affecting cancer
overdiagnosis rates. Indolent class tumors represent the non-progressive, or latent tumors,
including regressive tumors which are destined to stay confined to the prostate and not
metastasize or kill the patient by definition. We varied the value of the latent fraction
of disease between 20–50% (base case = 35%) to show its effect on the overdiagnosis
fraction of screen-detected, or all (screen- and clinically) detected cancers. Adoption of
the screening practice is another important parameter determining overdiagnosis rates.
Figure 8c shows that overdiagnosis rates are also affected by the PSA screening adoption
practice by medical professionals (base case value for maximum adoption fraction = 0.75).
As expected, detection and overdiagnosis of indolent disease drops to zero without PSA
screening, since they cannot be detected without screening.
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4.2.2. Parameter Set Exploration for Benefits and Harms of Screening

To explore the parameter space, we ran a global sensitivity analysis with combined
variations in all the parameters the model is sensitive to (as identified in Table 1). These
include all the important time constants related to screening, including the harms and
benefits ratio (HBR) translation delay indicating how long it takes to translate scientific
evidence to clinical practice, the time between screenings, the stopping age to screen,
and the time to act. Other sensitive parameters include the biopsy compliance rate (by
patients with a positive test result) and the maximum adoption fraction (of the PSA test
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by clinicians). The experimental results, in turn, show the confidence intervals (up to
100%) of the key indicators for harms and benefits from 300 runs, sufficient to explore the
state space of the harms and benefits in the screening and adoption subsystems. A Monte
Carlo simulation, also known as multivariate sensitivity simulation (MVSS), was used to
automate the sensitivity analysis. The experiment gives us the full range of possibilities for
potential harms and benefits of screening and allows us to observe their tradeoff.

Confidence plots in Figures 9 and 10 demonstrate the common and extreme operating
ranges for the main harms of medical screening, and the tradeoff between its harms and
benefits. The main harms of screening include (i) false positives, (ii) unnecessary biopsies,
and (iii) overdiagnosis (and, hence, overtreatment). The main benefit includes saved lives,
or early detection of cancer (before it gets metastasized). We selected respective proxy
variables as (1) the overdiagnosed fraction of all detected cases, (2) the cumulative number
of unnecessary biopsies, (3) the fraction of healthy male population living with an FP test
result, and (4) the fraction of disease already metastasized at initial detection or the fraction
of M1 at detection.
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5. Discussion

We present a generic simulation model for medical screening, and a case study specific
to PSA screening for PCa, including the natural history of the disease, screening, and
clinical detection of PCa; the adoption of the PSA screening test by medical professionals;
and the dissemination of the test in the U.S. context. While our focus for this study is
primarily on the fundamental tradeoff between the main harms and benefits of screening as
exemplified by the selected key proxy variables, the model can be used for policy analysis
and the estimation of potential future trajectories for other important policy variables,
such as the increasing pool of cancer survivors in the U.S. The reasons for choosing these
key outcome measures are to (i) keep track of the critical stocks for the cancer screening
problem, (ii) provide insights into different features of the system, (iii) inform policymakers
regarding the tradeoffs of each indicator, and (iv) apply the notion of multiplism suggesting
that a problem should be measured in different ways.

5.1. Strategic Insights

• One of the important contributions of this study is the introduction of a more realistic
yet flexible structure for routine medical screening that allows keeping track of critical
stocks that have been generally overlooked in previous modeling studies. Existing
modeling studies do not explicitly define some of these population stocks in the
screening process, including men who currently live with an FP test result, which has
implications for anxiety and depression. In this study, we use the flexibility of the SD
modeling stock-flow structure to keep track and account for all critical stocks in the
cancer screening problem, while their values are not readily measured in the literature.
Simulations show that the fraction of healthy men who live with an FP may vary
between 5 and 15% in most situations, depending on screening criteria, or breadth
indications of disease, and may increase up to 30% with lower biopsy compliance
rates. The value of the FP stock relative to the healthy population (i.e., “the fraction of
healthy male population currently living with an FP”) may be an important indicator
for policy making. Another variable for which we were not able to find historical data
includes the the “fraction of disease in target screening population”. These metrics
are potentially very important, yet not readily measured or considered in existing
medical and modeling literature. Simulations show that the fraction of false positives
in the healthy male population may have increased to as high as 18% in the 1990s
when screening was overused. At the same time, the real diseased fraction of the
target population must have dropped down to its historical minimum. We do not
aim to suggest optimal estimates for these variables but would like to highlight the
importance of having a better understanding of their dynamics by additional data
collection, rather than excluding them from our “mental” models, or making the
constancy assumption [52].

• The addition of an “indolent/latent” disease category is a novel addition in this
modeling study, facilitating to make of inferences about the real (yet unknown) occult
disease prevalence in the population. One aspect that increases the reported cancer
prevalence is the existence of a silent pool of indolent diseases, which varies among
different types of cancers. These are “TP” cases where the disease identified has
uncertain significance, and where men would never become aware of their disease if
they were not tested for it, as evidenced by the silent reservoirs of undetected thyroid,
breast, and prostate [41] cancers. Our interview data for the PCa case study confirms
the importance of the size of this latent pool of disease: “ . . . If you take enough time to
understand what this means, if I tell a patient, “Look I’m 47, my probability to have a prostate
cancer histologically under the microscope right now as I sit here, is about 30%. Period.”
That’s a start, so there’s a pool of prostate cancer that we all carry, most of them they’ll never
become symptomatic, some of us have to have bad cards. Do we understand who have bad
cards and who don’t? No, we don’t. There’s a residual risk that there’s something going on.
“—Peter Juni. MD-PhD, Director, Applied Health Research Centre, St. Michael’s Hospital,
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and Professor of Medicine, University of Toronto, Previous: University of Bern, Director of the
Institute of Primary Health Care, Professor and Chair of Primary Health Care and Clinical
Epidemiology in the Faculty of Medicine, Switzerland.

• We endogenize variables that are mostly taken as constants in other studies. These
include the breadth of indications of screening (including the biopsy threshold and
the starting age to screen), the prevalence of disease in the screening population,
the sensitivity and specificity of the test, and the harm reduction technology. It also
separates the formal decision thresholds for screening from the decision thresholds
that are implemented, showing their interdependency to each other as well as to the
diagnostics of the test. For example, existing studies usually assume a constant PSA
level as the trigger for biopsy, which stays constant over time, but this is not an accurate
reflection of the clinical practice. Endogenizing such variables allows us to show how
they are changing over time, affecting the target screening prevalence, and, hence, the
screening diagnostics themselves which are also taken as constants in most studies. To
be specific, the model endogenizes the adoption and diffusion of the screening process
and defines the different components of screen detection explicitly. These include the
fraction of the population that receives the screening test, the sensitivity of the test,
biopsy compliance, and biopsy detection. The test sensitivity and currently screened
fraction are endogenous to the model, while biopsy compliance and detection are
exogenous. Subjects are eligible to receive regular screenings if their doctor adopted
the PSA screening test at the time, and if they are around the age-eligible range for
the test. Interview results confirm that one of the main determinants of screening is
the doctor’s opinion: “Access to care, coverage, and I also think it is how the screening is
presented by their doctor . . . .a lot of medicine is sales, and if a doctor presents something as
either optional or a bad idea like, “You don’t really want to do that, do you?” the patient’s going
to say no. But if their doctor’s enthusiastic about it and believes in it, then they’re probably
more likely to go ahead and get it done . . . ”—MD, PhD Erin Hofstatter, Medical Oncologist,
Yale School of Medicine.

• Karanfil and Sterman show that the “formal” recommended starting age to screen
varies, both over time and between different guideline-issuing organizations [32]. The
recommended “formal” biopsy threshold for PSA testing stayed constant at 4 ng/mL
throughout the initial years of screening dissemination, after which it starts to vary
in the 2000s. The informal, “practice” threshold, however, has reportedly been lower
than the formal one, suggesting poor compliance with recommendations. The real
pattern for the average biopsy threshold is unknown, but it is generally accepted to
be 2.5 ng/mL between 1990 and 2000 [39]. In addition, Pinsky et al. [53] have shown
that biopsy frequencies of men with PSAs between 2.5 and 4 ng/mL were of the same
order of magnitude as for men with a PSA higher than 4 ng/mL. The actual starting
age data are also not available, but they presumably follow the same pattern as the
biopsy threshold, where formal indications first expand in the early years of screening
and then start to narrow as harms and the evidence for harms accumulate over time.

• Since the test diagnostics are directly derived from the underlying probability distri-
butions for diseased and healthy people, the model can as well be used to estimate the
real prevalence of the disease.

5.2. Limitations and Further Research

The results of this study rest on several key assumptions. First, as with any other
natural history model, we make assumptions about disease onset, progression, and di-
agnosis in the absence of screening. Second, we assume that disease incidence remains
constant at pre-PSA levels after 1987. Third, the model assumes that baseline PCa survival
remains constant in the PSA era. We use data from a variety of sources that are subject to
limitations. Data on some key indicators, such as the actual starting age and the actual
biopsy threshold used in clinical practice, are not available. We used data from expert
opinions and published medical literature to justify model propositions.
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We also assume a constant clinical detection hazard in the base case, which may lead
to an overestimation of screening benefits. In fact, clinical detection rates may also have
increased over time because of increased disease awareness in the PSA era. Immigration
data was not available by age group and was assumed to be distributed proportionally
between age groups, yet it may have implications for population aging. No historical data
were available for some other variables we identified as important, including the fraction
of healthy men with a false positive or true negative, or the progress of harm reduction
technology. However, the focus of this study was on building the most reliable and flexible
model structure for medical screening, rather than point prediction for policy variables.

This model is not primarily designed for making inferences about optimal screening
policies but can inform modelers and policymakers about potential levers in the system and
complement other modeling and interactive studies designed for cancer interventions [54].
Simulation models like ours are flexible tools that can aid healthcare professionals and
policymakers in making complex decisions. They can provide constructive insights and
dynamic intuition to supplement the typical empirical evidence for updating cancer screen-
ing recommendations and can offer a formal means to improve the development and
implementation of evidence-based screening.

Future iterations of our simulation model can be employed to design policy recommen-
dations and address important problem areas, such as policy making for cancer survivors,
cost of care, or quality of life considerations. Particularly, the increasing pool of cancer
survivors in the U.S. is an important consideration, as their numbers in the U.S. are at
a record high. The AACR Cancer Progress Report 2022 reports that there are 18 million
cancer survivors in the U.S., up from 3 million in 1971, and the number is expected to
increase to 26 million by 2040 [55].

The aging of the U.S. population and the increase in life expectancy has serious
implications for chronic disease incidence and prevalence since cancer is an age-related
disease and the aging of the male population implies more PCa survivors in the future. As
more and more men are given a cancer diagnosis by screening, the natural perception of
each “survivor” is that screening “saved” his life. However, a portion of these survivors
have a type of PCa that could have been treated as effectively when found later, or that
might not have caused problems. The problem is that for each “survivor”, there is no way to
know whether screening and the treatment “caused” survival, as there is no counterfactual.
Thus, the number of men who perceive benefits from screening may be substantially
greater than the actual number who receive benefits, and the impression of benefit may
get exaggerated.

Existing studies primarily focus on the medical evidence supporting different screen-
ing guidelines but usually neglect the broad boundary processes that condition the adoption
of and adherence to evidence-based guidelines by clinicians and the public. This simulation
study is part of a continuing line of research in our investigation of the universal problem
of evidence-based development of sound and reliable clinical practice guidelines (CPGs).
Despite their importance especially in high-risk conditions, guidelines are far from optimal
in practice. While there is a proliferation of modeling studies to inform CPGs, not many
are addressing the actual guideline-making process itself. The scientific community also
recently recognized the inherent complexity of the guideline formation process itself and
invited researchers to explore the potential implications of this complexity that is inherent
in complex decision-making environments. In line with this motivation, we aim to come
up with empirically grounded theoretical frameworks and provide formal simulation mod-
els to document the long-term effects and unintended consequences of changing disease
definitions on published screening guidelines and, consequently, on the actual practice,
the specific mechanisms that influence different implementations of these guidelines, and
the mechanisms which account for the gaps between the scientific evidence and the actual
practice of screening.

Eventually, we aim to expand the boundaries of this case study model to create a
more realistic life setting, including the influence of the socio-political environment where
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the actual screening decision is embedded. More specifically, we aim to look at how
medical professional societies—including radiologists, patient advocacy groups, and other
principal actors—influence the adoption and diffusion dynamics of medical screening in the
U.S. context.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/systems11050252/s1, Figure S1: Supplementary PSA; Table S1:
Supplementary PSA.
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